
III SEM UNIX AND SHELL PROGRAMMING 
15CS35

UNIX AND SHELL PROGRAMMING
[As per Choice Based Credit System (CBCS) scheme]

(Effective from the academic year 2015 -2016)

SEMESTER – III

Subject Code 15CS35 IA Marks 20

Number of Lecture Hours/Week 04 Exam Marks 80
Total Number of Lecture Hours 50 Exam Hours 03
CREDITS – 04

Course objectives: This course will enable students to

• Understand the UNIX Architecture, File systems and use of basic Commands.

• Use of editors and Networking commands.

• Understand Shell Programming and to write shell scripts.

• Understand and analyze UNIX System calls, Process Creation, Control & Relationship.

Module -1 10Hours

Introduction, Brief history. Unix Components/Architecture. Features of Unix.
The  UNIX  Environment  and  UNIX  Structure,  Posix  and  Single  Unix
specification. The login prompt. General features of Unix commands/ command
structure.  Command  arguments  and  options.  Understanding  of  some  basic
commands  such  as  echo,  printf,  ls,  who,  date,  passwd,  cal,  Combining
commands. Meaning of Internal and external commands. The type command:
knowing the type of a command and locating it. The man command knowing
more about Unix commands and using Unix online manual pages. The man with
keyword  option  and  what  is.  The  more  command  and  using  it  with  other
commands. Knowing the
user terminal, displaying its characteristics and setting characteristics. Managing
the  nonuniform  behaviour  of  terminals  and  keyboards.  The  root  login.
Becoming the super user: su command. The /etc/passwd and /etc/shadow files.
Commands to add, modify and delete users.

Module -2 10Hours

Unix files. Naming files.Basic file types/categories.Organization of files.Hidden
files. Standard directories. Parent child relationship. The home directory and the
HOME  variable. Reaching required files- the PATH variable, manipulating the
PATH, Relative and absolute pathnames. Directory commands – pwd, cd, mkdir,
rmdir commands. The dot (.) and double dots (..) notations to represent present

Dept Of CSE,ACE Bengaluru Page 1



III SEM UNIX AND SHELL PROGRAMMING 
15CS35

and  parent  directories  and  their  usage  in  relative  path  names.  File  related
commands  –  ca  t,  mv,  rm,  cp,  wc  and  od  commands.  File  attributes  and
permissions and knowing them. The ls command with options. Changing file
permissions: the relative and absolute permissions changing methods.
Recursively changing file permissions. Directory permissions.
Topics from chapters 4, 5 and 6 of text book 1

Module – 3 10Hours

The vi editor. Basics.The .exrc file. Different ways of invoking and quitting vi.
Different modes of vi. Input mode commands. Command mode commands. The
ex  mode  commands  Illustrative  examples  Navigation  commands.  Repeat
command. Pattern searching. The search and replace command. The set, map
and  abbr  commands.Simple  examples  using  these  commands.  The  shells
interpretive cycle. Wild cards and file name generation. Removing the special
meanings  of  wild  cards.  Three  standard  files  and  redirection.  Connecting
commands:  Pipe.Splitting  the  output:  tee.Command  substitution.  Basic  and
Extended  regular  expressions.  The  grep,  egrep.Typical  examples  involving
different regular expressions.
Topics from chapters 7, 8 and 13 of text book 1. Topics from chapter 2 and
9 ,10 of textbook 2

Module-4 10Hours

Shell programming. Ordinary and environment variables.The .profile. Read and
readonly  commands.  Command  line  arguments.exit  and  exit  status  of  a
command. Logical operators for conditional execution. The test command and
its  shortcut.The if,  while,  for  and case  control  statements.  The set  and shift
commands and handling positional parameters. The here ( << ) document and
trap  command.  Simple  shell  program  examples.  File  inodes  and  the  inode
structure. File links – hard and soft links. Filters.Head and tail commands. Cut
and paste commands. The sort command and its usage with different options.
The umask and default file permissions. Two special files /dev/null and /dev/tty.
Topics from chapter 11, 12, 14 of text book 1,chapter 17 from text book2

Module-5 10Hours

Dept Of CSE,ACE Bengaluru Page 2



III SEM UNIX AND SHELL PROGRAMMING 
15CS35

Meaning of a process.Mechanism of process creation.Parent and child process.
The ps command with its options. Executing a command at a specified point of
time: at command. Executing a command periodically: cron command and the
crontab  file..Signals.The  nice  and  nohup  commands.  Background  processes.
The bg and fg command. The kill command.The find command with illustrative
example.
Structure of a perl script.Running a perl script.Variables and operators. String
handling functions. Default variables - $_ and $. – represen ting the current line
and current  line  number.  The  range operator.Chop()  and  chomp()  functions.
Lists and arrays. The @-variable. The splice operator, push(), pop(), split() and
join().  File  handles  and  handling  file  –  using  open(),  close()  and  die  ()
functions.. Associative arrays – keys and value functions. Overview of decision
making loop control structures – the foreach. Regular expressions –simple and
multiple search patterns. The match and substitute operators. Defining and using
subroutines.
Topics from chapter 9 and 19 of text book 1. Topics from chapter 11 of
reference book1

Question paper pattern:
The question paper will have ten
questions. There will be 2 questions from each module.
Each question will have questions covering all the topics under a module.
The students will have to answer 5 full questions, selecting one full question 
from each module.

Text Books:

1. Sumitabha Das., Unix Concepts and Applications., 4 th Edition., Tata 
McGraw Hill

2. Behrouz A. Forouzan, Richard F. Gilberg : UNIX and Shell Programming- 
Cengage Learning – India Edition. 2009.

Reference Books:

1. M.G. Venkatesh Murthy: UNIX & Shell Programming, Pearson Education.

2. Richard Blum , Christine Bresnahan : Linux Command Line and Shell 
Scripting Bible,2nd Edition , Wiley,2014.

Dept Of CSE,ACE Bengaluru Page 3



III SEM UNIX AND SHELL PROGRAMMING 
15CS35

UNIX AND SHELL PROGRAMMING

Module-I 

Introduction
This  chapter  introduces  you to the UNIX operating system. We first  look at  what  is  an
operating system and then proceed to discuss the different features of UNIX that have made
it a popular operating system.

Objectives
What is an operating system (OS)? 
Features of UNIX OS
A Brief History of UNIX OS, POSIX and Single Unix Specification (SUS)

1. What is an operating system (OS)?
An operating system (OS) is  a resource manager.  It  takes the form of a set  of software
routines that allow users and application programs to access system resources (e.g. the CPU,
memory, disks, modems, printers, network cards etc.) in a safe, efficient and abstract way.

For  example,  an  OS ensures  safe access  to  a  printer  by  allowing  only  one  application
program to send data directly to the printer at any one time. An OS encourages efficient use
of the CPU by suspending programs that are waiting for I/O operations to complete to make
way for programs that can use the CPU more productively. An OS also provides convenient
abstractions (such as files rather than disk locations) which isolate application programmers
and users from the details of the underlying hardware.

User Applications

Application System Utilities
Programs

System Call Interface

Operating System Kernel

Processor/Hardware

Dept Of CSE,ACE Bengaluru Page 4



III SEM UNIX AND SHELL PROGRAMMING 
15CS35

UNIX Operating system allows complex tasks to be performed with a few keystrokes. It 
doesn’t tell or warn the user about the consequences of the command.

Kernighan and Pike (The UNIX Programming Environment) lamented long ago that “as

the UNIX system has spread, the fraction of its users who are skilled in its application has 
decreased.” However, the capabilities of UNIX are limited only by your imagination.
2. Features of UNIX OS
Several features of UNIX have  ls cp rm mv made it popular. Some of them are:

Portable

UNIX can be installed on many hardware platforms. Its widespread use can be traced to the 
decision to develop it using the C language.

Multiuser
The UNIX design allows multiple users to concurrently share hardware and software

Multitasking

UNIX allows a user to run more than one program at a time. In fact more than one program
can be running in the background while a user is working foreground.

Networking

While UNIX was developed to be an interactive, multiuser, multitasking system, networking
is also incorporated into the heart of the operating system. Access to another system uses a
standard  communications  protocol  known  as  Transmission  Control  Protocol/Internet
Protocol (TCP/IP).

Organized File System

UNIX has  a  very  organized file  and directory  system that  allows users  to  organize and
maintain files.

Device Independence

UNIX treats input/output devices like ordinary files. The source or destination for file input
and output is easily controlled through a UNIX design feature called redirection.

Utilities
UNIX provides a rich library of utilities that can be use to increase user productivity.

3. A Brief History of UNIX

In the late 1960s, researchers from General Electric, MIT and Bell Labs launched a joint
project  to  develop  an  ambitious  multi-user,  multi-tasking  OS  for  mainframe  computers
known as MULTICS (Multiplexed Information and Computing System). MULTICS failed,
but it did inspire Ken Thompson, who was a researcher at Bell Labs, to have a go at writing a

Dept Of CSE,ACE Bengaluru Page 5



III SEM UNIX AND SHELL PROGRAMMING 
15CS35

simpler operating system himself. He wrote a simpler version of MULTICS on a PDP7 in
assembler and called his attempt UNICS (Uniplexed Information and Computing System).
Because memory and CPU power were at  a premium in those days,  UNICS (eventually
shortened to UNIX) used short commands to minimize the space
needed to store them and the time needed to decode them - hence the tradition of short
UNIX commands we use today.

Ken Thompson then teamed up with Dennis Ritchie, the author of the first C compiler in
1973. They rewrote the UNIX kernel in C - this was a big step forwards in terms of the
system's portability - and released the Fifth Edition of UNIX to universities in 1974. The
Seventh  Edition,  released  in  1978,  marked a  split  in  UNIX development  into  two main
branches: SYSV (System 5) and BSD (Berkeley Software Distribution). BSD arose from the
University  of  California  at  Berkeley  where  Ken  Thompson  spent  a  sabbatical  year.  Its
development was continued by students at Berkeley and other research institutions. SYSV
was developed by AT&T and other commercial companies. UNIX flavors based on SYSV
have traditionally been more conservative, but better supported than BSD-based flavors.

Until recently, UNIX standards were nearly as numerous as its variants. In early days,
AT&T published a document called System V Interface Definition (SVID). X/OPEN
(now The Open Group), a consortium of vendors and users, had one too, in the X/Open
Portability  Guide (XPG).  In  the  US,  yet  another set  of  standards,  named Portable
Operating System Interface for Computer Environments (POSIX), were developed at
the behest of the Institution of Electrical and Electronics Engineers (IEEE).
In  1998,  X/OPEN and IEEE undertook an ambitious  program of  unifying  the  two
standards. In 2001, this joint initiative resulted in a single specification called the Single
UNIX  Specification,  Version  3  (SUSV3),  that  is  also  known  as  IEEE  1003.1:2001
(POSIX.1).  In  2002,  the  International  Organization  for  Standardization  (ISO)
approved SUSV3 and IEEE 1003.1:2001.

Some of the commercial UNIX based on system V are:

 IBM's AIX
 Hewlett-Packard's HPUX
 SCO's Open Server Release 5
 Silicon Graphics' IRIS
 DEC's Digital UNIX
 Sun Microsystems' Solaris 2

Some of the commercial UNIX based on BSD are:

 SunOS 4.1.X (now Solaris)
 DEC's Ultris
 BSD/OS,  4.4BSD

Some Free UNIX are:

Dept Of CSE,ACE Bengaluru Page 6



III SEM UNIX AND SHELL PROGRAMMING 
15CS35

Linux, written by Linus Torvalds at University of Helsinki in Finland.
FreeBSD and NetBSD, a derivative of 4.4BSD

The UNIX Architecture 
Objectives

The UNIX Architecture 
Locating Commands
Internal and External Commands 
Command Structure and usage 
Flexibility of Command Usage The 
man Pages, apropos and whatis

1. The UNIX Architecture

 Shell     Shell

                         windows

CP ls
Kernel

Hardware                     sed

                                 who
     System Calls                
                                    grep  

                                              copy                awk                  

UNIX architecture comprises of two major components viz., the shell and the kernel. The
kernel interacts with the machine’s hardware and the shell with the user.

The kernel is the core of the operating system. It is a collection of routines written in C. It is
loaded  into  memory  when  the  system  is  booted  and  communicates  directly  with  the
hardware. User programs that need to access the hardware use the services of the kernel via
use of system calls and the kernel performs the job on behalf of the user. Kernel is also
responsible for managing system’s memory, schedules processes, decides their priorities.

Dept Of CSE,ACE Bengaluru Page 7



III SEM UNIX AND SHELL PROGRAMMING 
15CS35

The shell performs the role of command interpreter. Even though there’s only one kernel
running on the system, there could be several shells in action, one for each user who’s logged
in. The shell is responsible for interpreting the meaning of metacharacters if any, found on
the command line before dispatching the command to the kernel for execution.

The File and Proces
A file is an array of bytes that stores information. It is also related to another file in the sense
that both belong to a single hierarchical directory structure.

A process is the second abstraction UNIX provides. It can be treated as a time image of an
executable  file.  Like  files,  processes  also  belong to  a  hierarchical  structure.  We will  be
discussing the processes in detain in a subsequent chapter.

Locating Files
All UNIX commands are single words like ls, cd, cat, etc. These names are in lowercase.
These commands are essentially  files containing programs, mainly written in C. Files are
stored in directories, and so are the binaries associated with these commands. You can find
the location of an executable program using type command:

$ type ls ls
is /bin/ls

This means that when you execute ls command, the shell locates this file in /bin directory
and makes arrangements to execute it.

The Path
The sequence of directories that the shell searches to look for a command is specified in its
own PATH variable. These directories are colon separated. When you issue a command, the
shell searches this list in the sequence specified to locate and execute it.

Internal and External Commands
Some commands are implemented as part of the shell itself rather than separate executable
files. Such commands that are built-in are called internal commands. If a command exists
both as an internal command of the shell as well as an external one (in /bin or /usr/bin), the
shell will accord top priority to its own internal command with the
same name. Some built-in commands are echo, pwd, etc.

Command Structure
UNIX commands take the following generalform:

$ verb [options] [arguments]

where verb is the command name that can take a set of optional options and one or more
optional arguments.
Commands, options and arguments have to be separated by spaces or tabs to enable the shell
to  interpret  them as  words.  A contiguous  string  of  spaces  and  tabs  together  is  called  a
whitespace.  The  shell  compresses  multiple  occurrences  of  whitespace  into  a  single
whitespace.

Dept Of CSE,ACE Bengaluru Page 8



III SEM UNIX AND SHELL PROGRAMMING 
15CS35

Options
An option is preceded by a minus sign (-) to distinguish it from filenames. 
Example: $ ls –l
There must not be any whitespaces between – and l. Options are also arguments, but given a
special name because they are predetermined. Options can be normally compined with only
one – sign. i.e., instead of using

$ ls –l –a –t  
we can as well use,

$ ls –lat

Because UNIX was developed by people who had their own ideas as to what options should
look like, there will be variations in the options. 
Filename Arguments
Many UNIX commands use a filename as argument so that the command can take input
from the file. If a command uses a filename as argument, it will usually be the last argument,
after all options.
Example: $cp file1 file2 file3 dest_dir

$rm file1 file2 file3

The command with its  options  and arguments  is  known as  the  command line,  which is
considered as complete after [Enter] key is pressed, so that the entire line is fed to the shell
as its input for interpretation and execution.

Exceptions
Some  commands  in  UNIX  like  pwd  do  not  take  any  options  and  arguments.  Some
commands like who may or may not be specified with arguments. The ls command can run
without arguments (ls), with only options (ls –l), with only filenames (ls f1 f2), or using a
combination of both (ls –l f1 f2). Some commands compulsorily take options (cut). Some
commands like grep, sed can take an expression as an argument, or a set of instructions as
argument.

Flexibility of Command Usage
UNIX provides flexibility in using the commands. The following discussion looks at 
how permissive the shell can be to the command usage.

Combining Commands
Instead of executing commands on separate lines, where each command is processed and
executed  before  the  next  could  be  entered,  UNIX allows you to  specify  more  than  one
command in the single command line. Each command has to be separated from the other by
a ; (semicolon).

$wc sample.txt ; ls –l sample.txt

You can even group several commands together so that their combined output is redirected to
a file.

(wc sample.txt ; ls –l sample.txt) > newfile

When a command line contains a semicolon, the shell understands that the command on 
each side of it needs to be processed separately. Here ; is known as a metacharacter.

Note: When a command overflows into the next line or needs to be split into multiple lines,

Dept Of CSE,ACE Bengaluru Page 9



III SEM UNIX AND SHELL PROGRAMMING 
15CS35

just press enter, so that the secondary prompt (normally >) is displayed and you can enter the
remaining part of the command on the next line.
Entering a Command before previous command has finished

You need not have to wait for the previous command to finish before you can enter the next
command. Subsequent commands entered at the keyboard are stored in a buffer (a temporary
storage  in  memory)  that  is  maintained  by  the  kernel  for  all  keyboard  input.  The  next
command will be passed on to the shell for interpretation after the previous command has
completed its execution.

man: Browsing The Manual Pages Online
UNIX commands are rather cryptic. When you don’t remember what options are supported
by a command or what its syntax is, you can always view man (short for manual) pages to
get online help. The man command displays online documentation of a specified command.

A pager is a program that displays one screenful information and pauses for the user to view 
the contents. The user can make use of internal commands of the pager to scroll up and scroll
down the information. The two popular pagers are more and less. more is the
Berkeley’s pager, which is a superior alternative to original pg command. less is the standard
pager used on Linux systems. less if modeled after a popular editor called vi and is more
powerful  than  more as  it  provides  vi-like navigational  and search facilities.  We can use
pagers with commands like ls | more. The man command is configured to work with a pager.

Understanding The man Documentation
The man documentation is organized in eight (08) sections. Later enhancements have added
subsections like 1C, 1M, 3N etc.) References to other sections are reflected as SEE ALSO
section of a man page.

When you use man command, it starts searching the manuals starting from section 1. If it locates
a keyword in one section, it won’t continue the search, even if the keyword occurs
in another section. However, we can provide the section number additionally as argument for
man command.

User Commands wc(1)
NAME

wc – displays a count of lines, words and characters
in a file
SYNOPSIS

wc [-c | -m | -C] [-lw] [file ...]
DESCRIPTION

The wc utility reads one or more input files and, by
default, writes the number of newline characters,
words and bytes contained in each input file to the
standard output. The utility also writes a total count for

Dept Of CSE,ACE Bengaluru Page 10



III SEM UNIX AND SHELL PROGRAMMING 
15CS35

all named files, if more than one input file is

specified.
OPTIONS

The following options are supported:
-c Count bytes.
-m Count characters.

For example, passwd appears in section 1 and section 4. If we want to get documentation of 
passwd in section 4, we use,

$ man 4 passwd OR $ man –s4 passwd (on Solaris)

Understanding a man Page
A typical man for wc command is shown below:

-C same as –m. -l 
Count lines.
-w Count words delimited by white spaces or new line 

characters ...
OPERANDS

The following operand is supported:
file A path name of an input file. If no file operands are specified, the standard input 
will be used.

 EXIT STATUS

See largefile(5) for the description of the behavior of wc when encountering files
greater than or equal to 2 Gbyte (2 **31 bytes)

SEE ALSO
cksum(1), isspace(3C), iswalpha(3C), iswspace(3C),largefile(5)

A man is divided into a number of compulsory and optional sections. Every command 
doesn’t need all sections, but the first three (NAME, SYNOPSIS and
DESCRIPTION)  are  generally  seen  in  all  man  pages.  NAME  presents  a  one-line
introduction  of  the  command.  SYNOPSIS shows the  syntax  used  by the  command  and
DESCRIPTION provides a detailed description.

The SYNOPSIS follows certain conventions and rules:
If a command argument is enclosed in rectangular brackets, then it is optional; 
otherwise, the argument is required.
The ellipsis (a set if three dots) implies that there can be more instances of the 
preceding word.
The | means that only one of the options shows on either side of the pipe can be 
used.

All the options used by the command are listed in OPTIONS section. There is a separate
section named EXIT STATUS which lists possible error conditions and their numeric 
representation.

Dept Of CSE,ACE Bengaluru Page 11



III SEM UNIX AND SHELL PROGRAMMING 
15CS35

Note: You can use man command to view its own documentation ($ man man). You can also
set the pager to use with man ($ PAGER=less ; export PAGER). To understand which pager
is being used by man, use $ echo $PAGER.

The following table shows the organization of man documentation.

Section Subject (SVR4) Subject (Linux)
1 User programs User programs
2 Kernel’s system calls Kernel’s system calls
3 Library functions Library functions

4
Administrative file 
formats Special files (in /dev)

5 Miscellaneous Administrative file formats
6 Games Games
7 Special files (in /dev) Macro packages and conventions

8
Administration 
commands Administration commands

8. Further Help with man –k, apropos and whatis
man –k: Searches a summary database and prints one-line description of the 
command. Example:
$ man –k awk

awk awk(1) -pattern scanning and processing language
nawk nawk(1) -pattern scanning and processing language

apropos: lists the commands and files associated with a
keyword. Example:
$ apropos FTP
ftp ftp(1) -file transfer program
ftpd in.ftpd(1m) -file transfer protocol server

ftpusers ftpusers(4) -file listing users to be disallowed ftp login privileges

whatis: lists one-liners for a 

Dept Of CSE,ACE Bengaluru Page 12



III SEM UNIX AND SHELL PROGRAMMING 
15CS35

command. Example:
$ whatis cp cp 
cp(1)

The File System
Objectives
o 

Dept Of CSE,ACE Bengaluru Page 13



III SEM UNIX AND SHELL PROGRAMMING 
15CS35

 Types of files
o  UNIX Filenames
o  Directories and Files
o Absolute and Relative pathnames 
o pwd – print working directory
o  cd – change directory
o mkdir – make a directory 
o rmdir – remove directory
o The PATH environmental variable o 
ls – list directory contents

The UNIX File System
Types of files
A simple description of the UNIX system is this:“On a UNIX system, everything is a file; if 
something is not a file, it is a process.”

A UNIX system makes no difference between a file and a directory, since a directory is just a
file containing names of other files. Programs, services, texts, images, and so forth, are all files.
Input and output devices, and generally all devices, are considered to be files, according to the
system.

Most files are just files, called  regular files; they contain normal data, for example text files,
executable files or programs, input for or output from a program and so on.
While it is reasonably safe to suppose that everything you encounter on a UNIX system is a file,
there are some exceptions.
Directories: files that are lists of other files.

Special files or Device Files: All devices and peripherals are represented by files. To read or
write a device, you have to perform these operations on its associated file. Most special files are
in /dev.
Links: a system to make a file or directory visible in multiple parts of the 
system's file tree.
(Domain)  sockets:  a  special  file  type,  similar  to  TCP/IP  sockets,  providing  inter−process
networking protected by the file system's access control.
Named pipes: act more or less like sockets and form a way for processes to communicate with
each other, without using network socket semantics.
Ordinary (Regular) File
This is the most common file type. An ordinary file can be either a text file or a binary file.
A text file contains only printable characters and you can view and edit them. All C and Java
program sources,  shell  scripts  are text  files.  Every line of a text file is  terminated with the
newline character.
A binary file, on the other hand, contains both printable and nonprintable characters that cover
the  entire  ASCII  range.  The object  code and executables  that  you produce  by compiling C
programs are binary files. Sound and video files are also binary files.

Directory File

Dept Of CSE,ACE Bengaluru Page 14



III SEM UNIX AND SHELL PROGRAMMING 
15CS35

A directory contains no data, but keeps details of the files and subdirectories that it contains. A
directory file contains one entry for every file and subdirectory that it houses. Each entry has two
components namely, the filename and a unique identification number of the file or directory
(called the inode number).
When you create or remove a file, the kernel automatically updates its corresponding directory
by adding or removing the entry (filename and inode number) associated with the file.
Device File
All the operations on the devices are performed by reading or writing the file representing the
device. It is advantageous to treat devices as files as some of the commands used to access an
ordinary file can be used with device files as well.
Device filenames are found in a single directory structure, /dev. A device file is not really a
stream of characters. It is the attributes of the file that entirely govern the operation of the device.
The kernel identifies a device from its attributes and uses them to operate the device.
Filenames in UNIX

On a UNIX system, a filename can consist of up to 255 characters. Files may or may not have
extensions and can consist of practically any ASCII character except the / and the Null character.
You  are  permitted  to  use  control  characters  or  other  nonprintable  characters  in  a  filename.
However, you should avoid using these characters while naming a file. It is recommended that
only the following characters be used in filenames:

Alphabets and numerals.
The period (.), hyphen (-) and underscore (_).

UNIX imposes no restrictions on the extension. In all cases, it is the application that imposes that
restriction. Eg. A C Compiler expects C program filenames to end with .c, Oracle requires SQL
scripts to have .sql extension.
A file can have as many dots embedded in its name. A filename can also begin with or end with a
dot. UNIX is case sensitive; cap01, Chap01 and CHAP01 are three different filenames that can 
coexist in the same directory.

Directories and Files
A file is a set of data that has a name. The information can be an ordinary text, a user-written
computer program, results of a computation, a picture, and so on. The file name may consist of
ordinary characters, digits and special tokens like the underscore, except the forward slash (/). It
is permitted to use special tokens like the ampersand (&) or spaces in a filename.

Unix organizes files in a tree-like hierarchical structure, with the root directory, indicated by a
forward slash (/), at the top of the tree. See the Figure below, in which part of the hierarchy of
files and directories on the computer is shown.

Dept Of CSE,ACE Bengaluru Page 15



Absolute and relative paths
A path, which is the way you need to follow in the tree structure to reach a given file, can be
described as starting from the trunk of the tree (the / or root directory). In that case, the path
starts with a slash and is called an absolute path, since there can be no mistake: only one file on
the system can comply.
Paths that don't start with a slash are always relative to the current directory. In relative paths we
also use the . and .. indications for the current and the parent directory.

The HOME variable

When you log onto the system, UNIX automatically places you in a directory called the home
directory. The shell variable HOME indicates the home directory of the user.
E.g.,

$echo $HOME
/home/kumar

hat you see above is an absolute pathname, which is a sequence of directory names starting from 
root
(/). The subsequent slashes are used to separate the directories.

pwd - print working directory
At any time you can determine where you are in the file system hierarchy with the pwd, print 
working directory, command,

E.g.,:

$ pwd /home/frank/src

cd - change directory
You can change to a new directory with the cd, change directory, command. cd will accept both 
absolute and relative path names.
Syntax

cd directory Examples
cd changes to user's home directory



cd / changes directory to the system's root cd .. 
goes up one directory level
cd ../.. goes up two directory levels

cd /full/path/name/from/root changes directory to absolute path named 
(note the leading slash)

cd path/from/current/location changes directory to path relative to current 
location (no leading slash)

. mkdir - make a directory
You extend your home hierarchy by making sub-directories underneath it. This is done with 
the mkdir, make directory, command. Again, you specify either the full or relative path of the 
directory.
Examples

mkdir patch Creates a directory patch under current directory

mkdir patch dbs doc Creates three directories under current directory

current directory and progs and data as subdirectories under pis

Note the order of specifying arguments in example 3. The parent directory should be 
specified first, followed by the subdirectories to be created under it.

The system may refuse to create a directory due to the following reasons:
1. The directory already exists. 
2. There may be an ordinary file by the same name in the current directory. 
3. The permissions set for the current directory don’t permit the creation of files and 

directories by the user.

rmdir - remove directory
A directory needs to be empty before you can remove it. If it’s not, you need to remove the files 
first. Also, you can’t remove a directory if it is your present working directory;
you must first change out of that directory. You cannot remove a subdirectory unless you are
placed in a directory which is hierarchically above the one you have chosen to remove.

E.g.
rmdir patch Directory must be empty
rmdir pis pis/progs pis/data Shows error as pis is not empty. However 
rmdir

silently deletes the lower level subdirectories progs 
and
data.

The PATH environment variable
Environmental variables are used to provide information to the programs you use.  We have
already seen one such variable called HOME.
A command runs in UNIX by executing a disk file. When you specify a command like date, the
system will locate the associated file from a list of directories specified in the PATH variable and



then executes it. The PATH variable normally includes the current directory also.
$echo $PATH

as /bin/myprog
Whenever you enter any UNIX command, you are actually specifying the name of an executable
file located somewhere on the system. The system goes through the following steps in order to
determine which program to execute:

1. Built in commands (such as cd and history) are executed within the shell. 

2. If an absolute path name (such as /bin/ls) or a relative path name (such as ./myprog), the
system executes the program from the specified directory. 

3. Otherwise the PATH variable is used. 

ls - list directory contents
The command to list your directories and files is ls. With options it can provide information 
about the size, type of file, permissions, dates of file creation, change and access.
Syntax

$ls [options] [argument]

Common Options

When no argument is used, the listing will be of the current directory. There are many very
useful  options  for  the  ls  command.  A listing  of  many  of  them follows.  When  using  the
command, string the desired options together preceded by "-".
-a Lists all files, including those beginning with a dot (.).
-d Lists only names of directories, not the files in the directory
-F  Indicates type of entry with a trailing symbol: executables with *, 

directories with / and symbolic links with @
-R Recursive list
-u  Sorts filenames by last access time

-t Sorts filenames by last modification 
time 
-i Displays inode number
-l Long listing: lists the mode, link information, owner, size, last modification (time). 

If the file is a symbolic link, an arrow (-->) precedes the pathname of the linked-to 
file.

The mode field is given by the -l option and consists of 10 characters. The first character is 
one of the following

CHARACTER IF ENTRY IS A

d directory
- Plain File
b block-type special file
c character-type special file
l symbolic link
s socket

The next 9 characters are in 3 sets of 3 characters each. They indicate the  file
access permissions: the first 3 characters refer to the permissions for the user, the



next three for the users in the Unix group assigned to the file, and the last 3 to the
permissions for other users on the system.
Designations are as follows: r read permission

w write permission x execute permission - no permission
Examples

1. To list the files in a directory: $ ls 
2. To list all files in a directory, including the
hidden (dot) files: $ $ls -a 

3. To get a long listing: 
$ls -al
total 24
drwxr-xr-x 512 Jun 7 11:12 .
rwxr-xr-x 512 May 29 09:59
-rwxr-xr-x    532   May 20 15:31    cshrc

The UNIX File System
The root directory has many subdirectories. The following table describes 
some of the subdirectories contained under root.

Directory Content

/bin Common programs, shared by the system, the system administrator and the users.

/dev
Contains references to all the CPU peripheral hardware, which are represented as files with
special properties.

/etc
Most important system configuration files are in /etc, this directory contains data similar to
those in the Control Panel in Windows

/home Home directories of the common users.

/lib Library files, includes files for all kinds of programs needed by the system and the users.

/sbin

/tmp

/usr

/var

Programs for use by the system and the system administrator.

Temporary space for use by the system, cleaned upon reboot, so don't use this for 
saving any work!

Programs, libraries, documentation etc. for all user-related programs.

Storage for all variable files and temporary files created by users, such as log files, the 
mail queue, the print spooler area, space for temporary storage of files downloaded 
from the Internet, or to keep an image of a CD before burning it.



Module-II 
Basic File Attributes

The UNIX file system allows the user to access other files not belonging to them and without
infringing  on security.  A file  has  a  number  of  attributes  (properties)  that  are  stored  in  the
inode.In this uit we will discuss the following topics,

• ls –l to display file attributes (properties) 

• Listing of a specific directory 
• Ownership and group ownership 
• Different file permissions 

Listing File Attributes

ls command is used to obtain a list of all filenames in the current directory. The output 
in UNIX lingo is often referred to as the listing. Sometimes we combine this option with other 
options for displaying other attributes, or ordering the list in a different sequence. ls look up the
file’s inode to fetch its attributes. It lists seven attributes of all files in the current directory and 
they are:

• File type and Permissions 
• Links 
• Ownership 
• Group ownership 
• File size 
• Last Modification date and time 
• File name 

The file type and its permissions are associated with each file. Links indicate the number of
file names maintained by the system. This does not mean that there are so many copies of the
file. File is created by the owner. Every user is attached to a group owner. File size in bytes is
displayed.  Last  modification  time  is  the  next  field.  If  you change  only  the  permissions  or
ownership of the file, the modification time remains unchanged. In the last field, it displays the
file name.

$ ls –l
total 72
-rw-r--r-- 1 kumar metal 19514 may 10 3:45 chap01
-rw-r--r-- 1 kumar metal 4174 may 10 15:01 chap02
-rw-rw-rw- 1 kumar metal 84 feb 12 12:30 dept.lst
-rw-r--r-- 1 kumar metal 9156 mar 12 1999 genie.sh
drwxr-xr-x 2 kumar metal 512 may 9 10:31 helpdir
drwxr-xr-x 2 kumar metal 512 may 9 09:57 progs

Listing Directory Attributes

ls -d will not list all subdirectories in the current directory For
example,



$ls –ld helpdir progs

drwxr-xr-x 2 kumar metal 512 may 9 10:31 helpdir
drwxr-xr-x 2 kumar metal 512 may 9 09:57 progs

Directories are easily identified in the listing by the first character of the first column,
which here shows a d. The significance of the attributes of a directory differs a good deal from
an ordinary file. To see the attributes of a directory rather than the files contained in it, use ls –
ld with the directory name. Note that simply using ls –d will not list all subdirectories in the
current directory. Strange though it may seem, ls has no option to list only directories.

File Ownership

When you create a file,  you become its  owner.  Every owner is  attached to a  group
owner. Several users may belong to a single group, but the privileges of the group are set by the
owner of the file and not by the group members. When the system administrator creates a user
account, he has to assign these parameters to the user:

The user-id (UID) – both its name and numeric representation The 
group-id (GID) – both its name and numeric representation

File Permissions

UNIX follows a three-tiered file protection system that determines a file’s 
access rights. It is displayed in the following format:

Filetype owner (rwx) groupowner (rwx) others (rwx)

For Example:

-rwxr-xr-- 1 kumar metal 20500 may 10 19:21  chap02

r w x r - x r - -

owner/user group owner others

The first group has all three permissions. The file is readable, writable and executable by the
owner of the file. The second group has a hyphen in the middle slot, which indicates the absence
of write permission by the group owner of the file. The third group has the

write and execute bits absent. This set of permissions is applicable to others.

You can set different permissions for the three categories of users – owner, group and others. It’s
important that you understand them because a little learning here can be a dangerous thing. 
Faulty file permission is a sure recipe for disaster

Changing File Permissions



A file or a directory is created with a default set of permissions, which can be determined by
umask. Let us assume that the file permission for the created file is -rw-r-- r--. Using  chmod
command, we can change the file permissions and allow the owner to execute his file.  The
command can be used in two ways:

In a relative manner by specifying the changes to the current permissions In an 
absolute manner by specifying the final permissions

Relative Permissions

chmod only changes the permissions specified in the command line and leaves the other 
permissions unchanged.

The syntax is:

$chmod category operation permission filename(s)

chmod takes an expression as its argument which ontains: user 
category (user, group, others)
operation to be performed (assign or remove a permission) type 
of permission (read, write, execute)

Category operation permission
u - user + assign r - read
g - group - remove w - write
o - others = absolute x - execute
a - all (ugo)

Let us discuss some examples:
Initially,

-rw-r--r-- 1 kumar metal 1906 sep 23:38 xstart

$chmod  u+x  xstart

-rwxr--r-- 1 kumar metal 1906 sep 23:38 xstart

The command assigns (+) execute (x) permission to the user (u), other permissions 
remain unchanged.

$chmod  ugo+x  xstart  or
$chmod a+x xstart or $chmod
+x xstart

-rwxr-xr-x 1 kumar  metal 1906 sep 23:38 xstart

chmod accepts multiple file names in command line



$chmod u+x note note1 note3

Let initially,

-rwxr-xr-x 1 kumar metal 1906 sep 23:38  xstart

$chmod go-r xstart

Then, it becomes

-rwx--x--x 1 kumar metal 1906 sep 23:38  xstart

Absolute Permissions

Here, we need not to know the current file permissions. We can set all nine permissions
explicitly.  A string  of  three  octal  digits  is  used  as  an  expression.  The  permission  can  be
represented by one octal digit for each category. For each category, we add octal digits. If we
represent the permissions of each category by one octal digit, this is how the permission can be
represented:

Read permission – 4 (octal 100)
Write permission – 2 (octal 010)

 Execute permission – 1 (octal 001)

Octal Permissions Significance
0 - - - no permissions
1 - - x execute only
2 - w - write only
3 - w x write and execute
4 r - - read only
5 r - x read and execute
6 r w - read and write
7 r w x read, write and execute

We have three categories and three permissions for each category, so three octal digits can 
describe a file’s permissions completely. The most significant digit represents user and the 
least one represents others. chmod can use this three-digit string as the expression.

Using relative permission, we have,

$chmod a+rw xstart

Using absolute permission, we have,

$chmod 666 xstart



$chmod 644 xstart

$chmod 761 xstart

will assign all permissions to the owner, read and write permissions for the group and only 
execute permission to the others.

777 signify all permissions for all categories, but still we can prevent a file from being 
deleted. 000 signifies absence of all permissions for all categories, but still we can delete a file. 
It is the directory permissions that determine whether a file can be deleted or not. Only owner 
can change the file permissions. User can not change other user’s file’s permissions. But the 
system administrator can do anything.

The Security Implications

Let the default permission for the file xstart is
-rw-r--r--

$chmod u-rw, go-r xstart

$chmod 000 xstart

----------

This is simply useless but still the user can delete this file
On the other hand,

$chmod  a+rwx  xstart

$chmod  777  xstart

-rwxrwxrwx

The UNIX system by default, never allows this situation as you can never have a secure system. 
Hence, directory permissions also play a very vital role here

We can use chmod Recursively.

$chmod -R a+x shell_scripts

This makes all the files and subdirectories found in the shell_scripts directory, executable by all 
users. When you know the shell meta characters well, you will appreciate that the * doesn’t 
match filenames beginning with a dot. The dot is generally a safer but note that both commands 
change the permissions of directories also.

Directory Permissions

It  is possible that a file cannot be accessed even though it has read permission, and can be



removed even when it is write protected. The default permissions of a directory are,

rwxr-xr-x (755)

A directory must never be writable by group and others

Example:

$mkdir c_progs

$ls –ld c_progs

drwxr-xr-x 2   kumar metal 512 may 9 09:57 c_progs

If a directory has write permission for group and others also, be assured that every user
can remove every file in the directory. As a rule, you must not make directories universally
writable unless you have definite reasons to do so.

Changing File Ownership

Usually,  on  BSD  and  AT&T  systems,  there  are  two  commands  meant  to  change  the
ownership of a file or directory.  Let kumar be the owner and metal be the group owner.  If
sharma copies a file of kumar, then sharma will become its owner and he can manipulate the
attributes

chown changing file owner and chgrp changing group owner

On BSD, only system administrator can use chown
On other systems, only the owner can change both

chown

Changing ownership requires superuser permission, so use su command

$ls -l note

-rwxr----x 1 kumar metal 347 may 10 20:30 note

$chown sharma note; ls -l note

-rwxr----x 1 sharma metal 347 may 10 20:30 note

Once ownership of the file has been given away to sharma, the user file permissions that
previously applied to Kumar now apply to sharma. Thus, Kumar can no longer edit note since
there is no write privilege for group and others. He can not get back the ownership either. But he
can copy the file to his own directory, in which case he becomes the owner of the copy.



chgrp

This command changes the file’s group owner. No superuser permission is required.

$ls –l dept.lst

-rw-r--r-- 1 kumar metal 139 jun 8 16:43 dept.lst 

$chgrp dba dept.lst; ls –l dept.lst

-rw-r--r-- 1 kumar dba  139 jun 8 16:43 dept.lst



MODULE-III
The vi Editor

To write and edit some programs and scripts, we require editors. UNIX provides vi editor for
BSD system – created by Bill Joy. Bram Moolenaar improved vi editor and called it as vim (vi
improved) on Linux OS.

vi Basics

To add some text to a file, we invoke,

vi <filename>

In  all  probability,  the  file  doesn’t  exist,  and  vi  presents  you  a  full  screen  with  the
filename shown at the bottom with the qualifier.  The cursor is positioned at the top and all
remaining lines of the screen show a ~. They are non-existent lines. The last line is reserved for
commands that you can enter to act on text. This line is also used by the system to display
messages. This is the command mode. This is the mode where you can pass commands to act on
text, using most of the keys of the keyboard. This is the default mode of the editor where every
key pressed is interpreted as a command to run on text. You will have to be in this mode to copy
and delete text

For, text editing, vi uses 24 out of 25 lines that are normally available in the terminal. To
enter text, you must switch to the input mode. First press the key i, and you are in this mode
ready to input text. Subsequent key depressions will then show up on the screen as text input.

After text entry is complete, the cursor is positioned on the last character of the last line.
This is known as current line and the character where the cursor is stationed is the current cursor
position. This mode is used to handle files and perform substitution. After the command is run,
you are back to the default command mode. If a word has been misspelled, use ctrl-w to erase
the entire word.

Now press esc key to revert to command mode. Press it again and you will hear a beep.
A beep in vi indicates that a key has been pressed unnecessarily. Actually, the text entered has
not been saved on disk but exists in some temporary storage called a buffer. To save the entered
text, you must switch to the execute mode (the last line mode). Invoke the execute mode from
the command mode by entering a: which shows up in the last line.

The Repeat Factor

vi  provides  repeat  factor  in  command  and  input  mode  commands.  Command  mode
command k moves the cursor one line up. 10k moves cursor 10 lines up.
To undo whenever you make a mistake, press Esc u

To clear the screen in command mode, press

ctrl-l

Don’t use (caps lock) - vi commands are case-sensitive



Avoid using the PC navigation keys

The Three Modes Of Vi editor

Input Mode OR Ex-Mode

Insert Mode

ESC
Enter

:
Ii ;Oo ;Aa ;Ss; Rr

Command

Mode

:x:q && ZZ
Vi XYZ

Shell

Input Mode – Entering and Replacing Text

It is possible to display the mode in which is user is in by typing,

:set showmode

Messages like INSERT MODE, REPLACE MODE, CHANGE MODE, etc will 
appear in the last line.
Pressing ‘i’ changes the mode from command to input mode. To append text to the
right of the cursor position, we use a, text. I and A behave same as i and a, but at line
extremes I inserts text at the beginning of line. A appends text at end of line. o opens a
new line below

the current line

• r<letter> replacing a single character 
• s<text/word> replacing text with s 
• R<text/word> replacing text with R 
• Press esc key to switch to command mode after you have keyed in text 

Some of the input mode commands are:



COMMAND FUNCTION
i inserts text
a appends text
I inserts at beginning of line
A appends text at end of line
o opens line below
O opens line above
r replaces a single character
s replaces with a text
S replaces entire line

Saving Text and Quitting – The ex Mode

When you edit a file using vi, the original file is not distributed as such, but only a copy
of it that is placed in a buffer. From time to time, you should save your work by writing the
buffer contents to disk to keep the disk file current. When we talk of saving a file, we actually
mean saving this buffer. You may also need to quit vi after or without saving the buffer. Some of
the save and exit commands of the ex mode is:

Command Action
:W saves file and remains in editing mode
:x saves and quits editing mode
:wq saves and quits editing mode
:w <filename> save as
:w! <filename> save as, but overwrites existing file

:q quits editing mode
:q! quits editing mode by rejecting changes made
:sh escapes to UNIX shell
:recover recovers file from a crash

Navigation

A command mode command doesn’t show up on screen but simply performs a function. To 
move the cursor in four directions,

k moves cursor up
j moves cursor down
h moves cursor left
l moves cursor right

Word Navigation

Moving by one character is not always enough. You will often need to move faster along a
line. vi understands a word as a navigation unit which can be defined in two ways, depending on
the key pressed. If your cursor is a number of words away from your desired position, you can
use the word-navigation commands to go there directly. There are three basic commands:



b moves back to beginning of word
e moves forward to end of word
w moves forward to beginning word

Example,

5b takes the cursor 5 words back
3w takes the cursor 3 words forward

Moving to Line Extremes

Moving to the beginning or end of a line is a common requirement. To 
move to the first character of a line

0 or |

30| moves cursor to column 30

$ moves to the end of the current line
The use of these commands along with b, e, and w is allowed

Scrolling

Faster movement can be achieved by scrolling text in the window using the control keys.
The two commands for scrolling a at a time are

ctrl-f scrolls forward
ctrl-b scrolls backward

10ctrl-fscroll 10 pages and navigate faster

ctrl-d scrolls half forward

ctrl-u scrolls half backward

The repeat factor can also be used here.

Absolute Movement

The editor displays the total number of lines in the last line

Ctrl-g to know the current line number
40G goes to line number 40
1G goes to line number 1
G goes to end of file

Editing Text

The editing facilitates in vi are very elaborate and invoke the use of operators. They use 



operators, such as,

d delete
y yank (copy)

Deleting Text

x deletes a single character
dd delete entire line
yy copy entire line
6dd deletes the current line and five lines below

Moving Text

Moving text (p) puts the text at the new location.

p and P place text on right and left only when you delete parts of lines. But the same keys get 
associated with “below” and “above” when you delete complete lines

Copying Text

Copying text (y and p) is achieved as,
yy copies current line
10yy  copies current line & 9 lines below

Joining Lines

J to join the current line and the line following it
4J joins following 3 lines with current line

Undoing Last Editing Instructions

In command mode, to undo the last change made, we use u
To discard all changes made to the current line, we use U

vim (LINUX) lets you undo and redo multiple editing instructions. u behaves differently here;
repeated use of this key progressively undoes your previous actions. You could even have the
original file in front of you. Further 10u reverses your last 10 editing actions. The function of U
remains the same.

You may overshoot the desired mark when you keep u pressed, in which case use ctrl-r to redo
your undone actions. Further, undoing with 10u can be completely reversed with 10ctrl-r. The
undoing limit is set by the execute mode command: set undolevels=n, where n is set to 1000 by
default.

Repeating the Last Command

The . (dot) command is used for repeating the last instruction in both editing and command
mode commands



For example:

2dd deletes 2 lines from current line and to repeat this operation, type. (dot)

Searching for a Pattern

/ search forward ? 
search backward

/printf
The search begins forward to position the cursor on the first instance of the word

?pattern
Searches backward for the most previous instance of the pattern

Repeating the Last Pattern Search

n repeats search in same direction of original search n doesn’t necessarily repeat a search in the 
forward direction. The direction depends on the search command used. If you used?
printf to search in the reverse direction in the first place, then n also follows the same 
direction. In that case, N will repeat the search in the forward direction, and not n.

Search and repeat commands

Command Function

/pat searches forward for pattern pat
?pat searches backward for pattern pat
n repeats search in same direction along which previous search was made
N repeats search in direction opposite to that along which previous search was

made

Substitution – search and replace

We can perform search and replace in execute mode using :s. Its syntax is,

:address/source_pattern/target_pattern/flags

:1,$s/director/member/g can also use % instead of 1,$
:1,50s/unsigned//g deletes unsigned everywhere in lines 1 to 50
:3,10s/director/member/g substitute lines 3 through 10
:.s/director/member/g only the current line
:$s/director/member/g only the last line

Interactive substitution: sometimes you may like to selectively replace a string. In that 
case, add the c parameter as the flag at the end:

:1,$s/director/member/gc



Each line is selected in turn, followed by a sequence of carets in the next line, just below the
pattern that requires substitution.  The cursor is  positioned at  the end of this caret  sequence,
waiting for your response.

The ex mode is also used for substitution. Both search and replace operations also use
regular expressions for matching multiple patterns.

The features of vi editor that have been highlighted so far are good enough for a beginner who
should not proceed any further before mastering most of them. There are many more functions
that make vi a very powerful editor. Can you copy three words or even the entire file using
simple keystrokes? Can you copy or move multiple sections of text from one file to another in a
single file switch? How do you compile your C and Java programs without leaving the editor? vi
can do all this.

The  Shell  and  its  interpretive  cycle
Pattern  Matching  –  The  wild-cards
Escaping and Quoting
Redirection – The three standard files
Filters – Using both standard input and standard output 
/dev/null and /dev/tty – The two special files
Pipes
tee – Creating a tee 
Command Substitution 
Shell Variables

The shell and its interpretive cycle

The shell sits between you and the operating system, acting as a command interpreter. It reads
your terminal input and translates the commands into actions taken by the system. The shell is
analogous to  command.com in DOS. When you log into the system you are given a default
shell.  When the  shell  starts  up it  reads  its  startup files  and may set  environment  variables,
command search paths, and command aliases, and executes any commands specified in these
files. The original shell  was the Bourne shell,  sh.  Every Unix platform will  either have the
Bourne shell, or a Bourne compatible shell available.

Numerous other shells are available. Some of the more well known of these may be on your
Unix system: the Korn shell, ksh, by David Korn, C shell, csh, by Bill Joy and the Bourne Again
SHell, bash, from the Free Software Foundations GNU project, both based on sh, the T-C shell,
tcsh, and the extended C shell, cshe, both based on csh.

Even though the shell appears not to be doing anything meaningful when there is no activity at
the terminal, it swings into action the moment you key in something.
The following activities are typically performed by the shell in its interpretive cycle:

The shell issues the prompt and waits for you to enter a command.

After a command is entered, the shell scans the command line for metacharacters 
and expands abbreviations (like the * in rm *) to recreate a simplified command line.
It then passes on the command line to the kernel for execution.

The shell waits for the command to complete and normally can’t do any work while the 
command is running



After  the command execution is  complete,  the prompt reappears  and the
shell returns to its waiting role to start the next cycle. You are free to enter another
command.

Pattern Matching – The Wild-Cards

A pattern is framed using ordinary characters and a metacharacter (like *) using well-defined
rules. The pattern can then be used as an argument to the command, and the shell will expand it
suitably before the command is executed.

The metacharacters that are used to construct the generalized pattern for matching filenames
belong to a category called wild-cards. The following table lists them:

Wild Card Matches
* Any number of characters including none

? A single character
[ijk] A single character – either an i, j  or k
[x-z] A single character that is within the ASCII range of characters

x to z

[!ijk] A single character that is not an i,j or k (Not in C shell)

[!x-z] A single character that is not within the ASCII range of the
characters x and z (Not in C Shell)

{pat1,pat2…} Pat1, pat2, etc. (Not in Bourne shell)

Examples:
To list all files that begin with chap, use

$ ls chap*

To list all files whose filenames are six character long and start with chap, use

$ ls chap??

Note:  Both * and ?  operate  with some restrictions.  for example,  the * doesn’t
match all files beginning with a . (dot) ot the / of a pathname. If you wish to list all
hidden filenames in your directory having at least three characters after the dot,
the dot must be matched explicitly.

$ ls .???*

However, if the filename contains a dot anywhere but at the beginning, it 
need not be matched explicitly.

Similarly, these characters don’t match the / in a pathname. So, you cannot use $ 



cd /usr?local to change to /usr/local.

The character class

You can frame more restrictive patterns with the character class. The character class comprises a
set of characters enclosed by the rectangular brackets, [ and ], but it matches a single character
in the class. The pattern [abd] is character class, and it matches a single character – an a,b or d.
Examples:

$ls chap0[124] 

Matches chap01, chap02, chap04 and lists if found. 
$ ls chap[x-z] 

Matches chapx, chapy, chapz and lists if found.
You can negate a character class to reverse a matching criteria. For example,

- To match all filenames with a single-character extension but not the .c ot .o files,
use *.[!co] 
- To match all filenames that don’t begin with an alphabetic character, 
use [!a-zA-Z]*

Matching totally dissimilar patterns

This feature is not available in the Bourne shell. To copy all the C and Java source programs
from another directory, we can delimit the patterns with a comma and then put curly braces
around them.

$ cp $HOME/prog_sources/*.{c,java} .

The Bourne shell requires two separate invocations of cp to do this 
job. $ cp /home/srm/{project,html,scripts/* .

The above command copies all  files from three directories (project, html and scripts) to the
current directory.

Escaping and Quoting
Escaping  is  providing  a  \  (backslash)  before  the  wild-card  to  remove  (escape)  its  special
meaning.
For instance, if we have a file whose filename is chap* (Remember a file in UNIX can be names
with virtually any character except the / and null), to remove the file, it is dangerous to give
command as  rm chap*, as it will remove all files beginning with chap. Hence to suppress the
special meaning of *, use the command rm chap\*
To list the contents of the file chap0[1-3], use

$ cat chap0\[1-3\]

A filename can contain a whitespace character also. Hence to remove a file named

My Documend.doc, which has a space embedded, a similar reasoning should be followed:

$ rm My\ Document.doc



Quoting is enclosing the wild-card, or even the entire pattern, within quotes. Anything within
these quotes (barring a few exceptions) are left alone by the shell and not interpreted. When a
command argument is enclosed in quotes, the meanings of all enclosed special characters are
turned off.
Examples:

$ rm ‘chap*’ Removes fil chap*
$ rm “My Document.doc”  Removes file My Document.doc

Redirection : The three standard files
The shell associates three files with the terminal – two for display and one for the keyboard.
These files are streams of characters which many commands see as input and output. When a
user logs in, the shell makes available three files representing three streams. Each stream is
associated with a default device:
Standard input: The file (stream) representing input, connected to the keyboard. 
Standard output: The file (stream) representing output, connected to the display.
Standard error: The file (stream) representing error messages that emanate from the command or
shell, connected to the display.

The standard input can represent three input sources:
 The keyboard, the default source. 
 A file using redirection with the < symbol. 
 Another program using a pipeline. 

The standard output can represent three possible destinations:
 The terminal, the default destination. 
 A file using the redirection symbols > and >>. 
 As input to another program using a pipeline 

Standard Input Command ls Standard Output

A file is opened by referring to its pathname, but subsequent read and write operations identify
the  file  by  a  unique  number  called  a  file  descriptor.  The  kernel  maintains  a  table  of  file
descriptors for every process running in the system. The first three slots are generally allocated
to the three standard streams as,

0 – Standard input
1 – Standard output
2 – Standard error

These descriptors are implicitly prefixed to the redirection symbols. 
Examples:
Assuming file2 doesn’t exist, the following command redirects the standard output to file 
myOutput and the standard error to file myError.

$ ls –l file1 file2 1>myOutput 2>myError



To redirect both standard output and standard error to a single file use: $ ls –
l file1 file2 1>| myOutput 2>| myError OR
$ ls –l file1 file2 1> myOutput 2>& 

Stdout (1)

Stdin

 Std error(2)

Filters: Using both standard input and standard output
UNIX commands can be grouped into four categories viz.,

1. Directory-oriented commands like mkdir, rmdir and cd, and basic file handling
commands like cp, mv and rm use neither standard input nor standard output. 
2. Commands like ls, pwd, who etc.  don’t  read standard input but they write to
standard output. 
3. Commands like lp that read standard input but don’t write to standard output. 

4. Commands like cat, wc, cmp etc. that use both standard input and standard output.

Commands in the fourth category are called filters. Note that filters can also read directly 
from files whose names are provided as arguments.
Example: To perform arithmetic calculations that are specified as expressions in input file 
calc.txt and redirect the output to a file result.txt, use

$ bc < calc.txt > result.txt

Pipes
With piping, the output of a command can be used as input (piped) to a subsequent 
command.

$ command1 | command2
Output from command1 is piped into input for command2.

This is equivalent to, but more efficient than: $ 
command1 > temp
$ command2 < temp $ rm 
temp

Examples
$ ls -al | more
$ who | sort | lpr

When a command needs to be ignorant of its source
If we wish to find total size of all C programs contained in the working directory, we can use the
command,



$ wc –c *.c

However,  it  also  shows the  usage  for  each  file(size  of  each  file).  We are  not  interested  in
individual statistics, but a single figure representing the total size. To be able to do that, we must
make wc ignorant of its input source. We can do that by feeding the concatenated output stream
of all the .c files to wc –c as its input:

$ cat *.c | wc –c

Creating a tee
tee is an external command that handles a character stream by duplicating its input. It saves one
copy in a file and writes the other to standard output. It is also a filter and hence can be placed
anywhere in a pipeline.

Example: The following command sequence uses tee to display the output of who and saves this
output in a file as well.

$ who | tee users.lst

Command substitution

The shell enables the connecting of two commands in yet another way. While a pipe enables a
command to obtain its standard input from the standard output of another command, the shell
enables one or more command arguments to be obtained from the standard output of another
command. This feature is called command substitution.
Example:

$ echo Current date and time is `date`

Observe the use of  backquotes  around date  in  the above command.  Here the output  of  the
command execution  of  date  is  taken as  argument  of  echo.  The shell  executes  the  enclosed
command and replaces the enclosed command line with the output of the command.

Similarly the following command displays the total number of files in the working directory.

$ echo “There are `ls | wc –l` files in the current directory”

Observe the use of double quotes around the argument of echo. If you use single quotes, the
backquote is not interpreted by the shell if enclosed in single quotes.

Shell variables
Environmental variables are used to provide information to the programs you use. You can have
both global environment and local shell variables. Global environment variables are set by your
login shell and new programs and shells inherit the environment of their parent shell. Local shell
variables are used only by that shell and are not passed on to other processes. A child process
cannot pass a variable back to its parent process.

To declare a local shell variable we use the form variable=value (no spaces around =) and its
evaluation requires the $ as a prefix to the variable.
Example:



$ count=5
$ echo $count 5

A variable can be removed with unset and protected from reassignment by readonly. Both are 
shell internal commands.

Note: In C shell, we use set statement to set variables. Here, there either has to be 
whitespace on both sides of the = or none at all.

$ set count=5 $ set 
size = 10

Uses of local shell variables

1. Setting pathnames: If a pathname is used several times in a script, we can assign
it to a variable and use it as an argument to any command. 
2. Using  command  substitution:  We  can  assign  the  result  of  execution  of  a
command to a variable. The command to be executed must be enclosed in backquotes. 
3. Concatenating variables and strings: Two variables can be concatenated to form a
new variable. 
Example: $  base=foo ; ext=.c 

$ file=$base$ext
$ echo $file // prints foo.c

Regular Expression

We often need to search a file for a pattern, either to see the lines containing (or not containing)
it or to have it replaced with something else. This chapter discusses two important filters that are
specially suited for these tasks – grep and sed. grep takes care of all search requirements we may
have. sed goes further and can even manipulate the individual characters in a line. In fact sed
can de several things, some of then quite well.

grep – searching for a pattern

It scans the file / input for a pattern and displays lines containing the pattern, the line
numbers or filenames where the pattern occurs. It’s a command from a special family in UNIX
for handling search requirements.

$grep options pattern filename(s)

$grep “sales” emp.lst

will display lines containing sales from the file emp.lst.  Patterns with and without quotes is
possible. It’s generally safe to quote the pattern. Quote is mandatory when pattern involves more
than one word. It returns the prompt in case the pattern can’t be located.

$grep president emp.lst



When grep is used with multiple filenames, it displays the filenames along with the output.

$grep “director” emp1.lst emp2.lst

Where it shows filename followed by the contents

grep options

grep is one of the most important UNIX commands, and we must know the options that
POSIX requires grep to support. Linux supports all of these options.

-i ignores case for matching
-v doesn’t display lines matching expression
-n displays line numbers along with lines
-c displays count of number of occurrences
-l displays list of filenames only
-e exp specifies expression with this option
-x matches pattern with entire line
-f file takes pattrens from file, one per line
-E treats pattren as an extended RE
-F matches multiple fixed strings

Examples:$grep -i ‘agarwal’ emp.lst

$grep -v ‘director’ emp.lst > otherlist

wc -l otherlist will display 11 otherlist

$grep –n ‘marketing’ mp.lst $grep 

–c ‘director’ emp.lst $grep –c 

‘director’ emp*.lst

will print filenames prefixed to the line count

$grep –l ‘manager’ *.lst

will display filenames only

$grep –e ‘Agarwal’ –e ‘aggarwal’ –e ‘agrawal’ emp.lst

will print matching multiple patterns

$grep –f pattern.lst emp.lst

all the above three patterns are stored in a separate file pattern.lst

Basic Regular Expressions (BRE) – An Introduction



It is tedious to specify each pattern separately with the -e option. grep uses an expression
of a different type to match a group of similar patterns. If an expression uses meta characters, it
is  termed a  regular  expression.  Some of  the  characters  used by regular  expression  are also
meaningful to the shell.

BRE character subset

The  basic  regular  expression  character  subset  uses  an  elaborate  meta  character  set,
overshadowing the shell’s wild-cards, and can perform amazing matches.

The character class

grep  supports  basic  regular  expressions  (BRE)  by  default  and  extended  regular
expressions  (ERE)  with  the  –E  option.  A regular  expression  allows  a  group  of  characters
enclosed within a pair of [ ], in which the match is performed for a single character in the group.

$grep “[aA]g[ar][ar]wal” emp.lst

A single pattern has matched two similar  strings.  The pattern [a-zA-Z0-9] matches a single
alphanumeric character. When we use range,  make sure that the character on the left of the
hyphen has a lower ASCII value than the one on the right. Negating a class (^) (caret) can be
used to  negate  the  character  class.  When the  character  class  begins  with  this  character,  all
characters other than the ones grouped in the class are matched.

The *

The asterisk refers to the immediately preceding character. * indicates zero or more occurrences
of the previous character.

g* nothing or g, gg, ggg, etc.

grep “[aA]gg*[ar][ar]wal” emp.lst

Notice that we don’t require to use –e option three times to get the same output!!!!!

The dot

A dot matches a single character. The shell uses ? Character to indicate that.

.* signifies any number of characters or none

grep “j.*saxena” emp.lst

Specifying Pattern Locations (^ and $)

Most of the regular expression characters are used for matching patterns, but there
are two that can match a pattern at the beginning or end of a line. Anchoring a pattern is often



necessary when it  can occur  in  more than one place in  a  line,  and we are interested in its
occurance only at a particular location.

^ for matching at the beginning of a line
$ for matching at the end of a line

$grep “^2” emp.lst

Selects lines where emp_id starting with 2

$grep “7…$” emp.lst

Selects lines where emp_salary ranges between 7000 to 7999

$grep “^[^2]” emp.lst

Selects lines where emp_id doesn’t start with 2

When meta characters lose their meaning

It  is  possible  that  some of  these special  characters actually  exist  as  part  of the text.
Sometimes, we need to escape these characters. For example, when looking for a pattern g*, we
have to use \
To look for [, we use \[ To look for
.*, we use \.\*

Extended Regular Expression (ERE) and grep

If current version of grep doesn’t support ERE, then use egrep but without the –E 
option. -E option treats pattern as an ERE.

+ matches one or more occurrences of the previous character

? Matches zero or one occurrence of the previous character

b+ matches b, bb, bbb, etc.

b? matches either a single instance of b or nothing

These characters restrict the scope of match as compared to the *

$grep –E “[aA]gg?arwal” emp.lst

# ?include +<stdio.h>

The ERE set



ch+ matches one or more occurrences of character ch
ch? Matches zero or one occurrence of character ch
exp1|exp2 matches exp1 or exp2
(x1|x2)x3 matches x1x3 or x2x3

Matching multiple patterns (|, ( and ))

$grep –E ‘sengupta|dasgupta’ emp.lst

We can locate both without using –e option twice, or

$grep –E ‘(sen|das)gupta’ emp.lst

MODULE-IV

Shell Programming

Definition:

Shell is an agency that sits between the user and the UNIX system.

Description:



Shell is the one which understands all user directives and carries them out. It processes
the commands issued by the user. The content is based on a type of shell called Bourne
shell.

Shell Scripts

When groups of command have to be executed regularly, they should be stored in a file, and the
file itself  executed as a shell  script  or  a shell  program by the user.  A shell  program runs in
interpretive mode. It is not complied with a separate executable file as with a C program but each
statement is loaded into memory when it is to be executed. Hence shell scripts run slower than
the programs written in high-level language. .sh is used as an extension for shell scripts. However
the use of extension is not mandatory.

Shell scripts are executed in a separate child shell process which may or may not be same
as the login shell.

Example: script.sh

#! /bin/sh

# script.sh: Sample Shell Script

echo “Welcome to Shell Programming”

echo “Today’s date : `date`”

echo “This months calendar:”

cal `date “+%m 20%y”` #This month’s calendar. echo “My Shell :$

SHELL”
The # character indicates the comments in the shell script and all the characters that follow
the # symbol are ignored by the shell. However, this does not apply to the first line which
beings with #. This because, it is an interpreter line which always begins with #! followed by
the pathname of the shell to be used for running the script. In the above example the first line
indicates that we are using a Bourne Shell.



To run the script we need to first  make it  executable.  This is  achieved by using the
chmod command as shown below:

$ chmod +x script.sh

Then invoke the script nameas:

$ script.sh

Once this is done, we can see the following output :
Welcome to Shell Programming

Today’s date: Mon Oct 8 08:02:45 IST 2007

This month’s calendar:

October 2007

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

My Shell: /bin/Sh

As stated above the child shell reads and executes each statement in interpretive mode.
We can also explicitly spawn a child of your choice with the script name as argument:

sh script.sh
Note: Here the script neither requires a executable permission nor an interpreter line.

Read: Making scripts interactive
The read statement is the shell’s internal tool for making scripts interactive (i.e. taking input
from the user). It is used with one or more variables. Inputs supplied with the standard input
are read into these variables. For instance, the use of statement like
read name
causes the script to pause at that point to take input from the keyboard.  Whatever is
entered by you will be stored in the variable name.
Example: A shell  script  that  uses read to take a  search string and filename from the
terminal.

#! /bin/sh

# emp1.sh: Interactive version, uses read to accept two inputs

#

echo “Enter the pattern to be searched: \c” # No newline

read pname

echo “Enter the file to be used: \c” # use echo –e in bash



read fname

echo “Searching for pattern $pname from the file $fname”

grep $pname $fname

echo “Selected records shown above”

Running of the above script by specifying the inputs when the script pauses twice:

$ emp1.sh
Enter the pattern to be searched : director

Enter the file to be used: emp.lst

Searching for pattern director from the file emp.lst

9876 Jai Sharma Director Productions

2356 Rohit Director Sales

Selected records shown above
Using Command Line Arguments

Shell scripts also accept arguments from the command line. Therefore e they can be run non 
interactively and be used with redirection and pipelines. The arguments are assigned to special 
shell variables. Represented by $1, $2, etc; similar to C command arguments argv[0], argv[1], 
etc. The following table lists the different shell parameters.

Shell parameter Significance

$1, $2…
Positional parameters representing 
command line arguments

$ #
No. of arguments specified in 
command line

$ 0 Name of the executed command

$ *
Complete set of positional parameters 
as a single string

“$ @”
Each quoted string treated as separate 
argument

$ ? Exit status of last command
$$ Pid of the current shell
$! PID of the last background job.

Table: shell parameters

exit and Exit Status of Command

To terminate a program exit is used. Nonzero value indicates an error condition.

Example 1:

$ cat foo

Cat: can’t open foo

Returns nonzero exit status. The shell variable $? Stores this status.

Example 2:



grep director emp.lst > /dev/null:echo
$? 0

Exit status is used to devise program logic that braches into different paths depending on
success or failure of a command

The logical Operators && and ||

The shell provides two operators that aloe conditional execution, the && and ||.

Usage:

cmd1 && cmd2

cmd1 || cmd2

&& delimits two commands. cmd 2 executed only when cmd1 succeeds.

Example1:

$ grep ‘director’ emp.lst && echo “Pattern found”

Output:

9876 Jai Sharma Director Productions

2356 Rohit Director Sales

Pattern found

Example 2:
$ grep ‘clerk’ emp.lst || echo “Pattern not found”

Output:

Pattern not found

Example 3:

grep “$1” $2 || exit 2

echo “Pattern Found Job Over”

The if Conditional

The if statement makes two way decisions based on the result of a condition. The 
following forms of if are available in the shell:

Form 1 Form 2 Form 3

if command is successful if command is successful if command is successful



then then then

execute commands execute commands execute commands

fi else elif command is successful

execute commands then...

fi else...

fi

If the command succeeds, the statements within if are executed or else statements in 
else block are executed (if else present).

Example:

#! /bin/sh

if grep “^$1” /etc/passwd 2>/dev/null

then

echo “Pattern Found”

else

echo “Pattern Not Found”

fi

Output1:

$ emp3.sh ftp

ftp: *.325:15:FTP

User:/Users1/home/ftp:/bin/true Pattern Found

Output2:

$ emp3.sh mail

Pattern Not Found

While: Looping
To carry out a set of instruction repeatedly shell offers three features namely while, until
and for.

Syntax:
while condition is

true do

Commands

done



The commands enclosed by do and done are executed repeatedly as long as condition 
is true.
Example: #!

/bin/usr

ans=y

while [“$ans”=”y”]

do

echo “Enter the code and description : \c” > /dev/tty

read code description

echo “$code $description” >>newlist

echo “Enter any more [Y/N]”

read any

case $any in

Y* | y* ) answer =y;;

N* | n*) answer = n;;

*) answer=y;;

esac

done
Input:

Enter the code and description : 03 analgestics

Enter any more [Y/N] :y

Enter the code and description : 04 antibiotics

Enter any more [Y/N] : [Enter]

Enter the code and description : 05 OTC drugs

Enter any more [Y/N] : n

Output:

$ cat newlist

03 | analgestics

04 | antibiotics

05 | OTC drugs

Using test and [ ] to Evaluate Expressions
Test statement is used to handle the true or false value returned by expressions, and it is
not possible with if statement. Test uses certain operators to evaluate the condition on its
right and returns either a true or false exit status, which is then used by if for making
decisions. Test works in three ways:

 Compare two numbers
 Compares two strings or a single one for a null value
 Checks files attributes



Test doesn’t display any output but simply returns a value that sets the parameters $?

Numeric Comparison

Operator Meaning

== -eq Equal to

!= -ne Not equal to

-gt Greater than

-ge Greater than or equal to

-lt Less than

-le Less than or equal

Table: Operators



Operators always begin with a – (Hyphen) followed by a two word character word and 
enclosed on either side by whitespace.

Numeric comparison in the shell is confined to integer values only, decimal values are 
simply truncated.

Ex:
$x=5;y=7;z=7.2

1. $test $x –eq $y; echo $?
1 Not equal

2. $test $x –lt $y; echo $?
0 True

3. $test $z –gt $y; echo $?
7.2 is not greater than

1 7
2

4. $test $z –eq $y ; echo $y

0 7.2 is equal to 7
1

Example 3 and 4 shows that test uses only integer comparison.

The script emp.sh uses test in an if-elif-else-fi construct (Form 3) to evaluate the 
shell parameter $#

#!/bin/sh
#emp.sh: using test, $0 and $# in an if-elif-else-fi construct
#
If test $# -eq 0; then
Echo “Usage : $0 pattern file” > /dev/tty
Elfi test $# -eq 2 ;then
Grep “$1” $2 || echo “$1 not found in $2”>/dev/tty
Else
echo “You didn’t enter two arguments”
>/dev/tty fi

It displays the usage when no arguments are input, runs grep if two arguments are
entered and displays an error message otherwise.

Run the script four times and redirect the output every time

$emp31.sh>foo
Usage : emp.sh pattern file

$emp31.sh ftp>foo
You didn’t enter two arguments



$emp31.sh henry /etc/passwd>foo
Henry not found in /etc/passwd
$emp31.sh ftp /etc/passwd>foo
ftp:*:325:15:FTP User:/user1/home/ftp:/bin/true

Shorthand for test

[ and ] can be used instead of test. The following two forms are equivalent

Test $x –eq $y

and

[ $x –eq $y ]

String Comparison
Test command is also used for testing strings. Test can be used to compare strings with
the following set of comparison operators as listed below.

Test True if

s1=s2 String s1=s2

s1!=s2 String s1 is not equal to s2

-n stg String stg is not a null string

-z stg String stg is a null string

stg String stg is assigned and not null

String s1=s
2                             s1= =s2



Table: String test used by test

Example:

#!/bin/sh
#emp1.sh checks user input for null values finally turns emp.sh developed previously
#

if [ $# -eq 0 ] ; then
echo “Enter the string to be searched :\c”
read pname
if [ -z “$pname” ] ; then
echo “You have not entered th e string”; exit 1

fi
echo “Enter the filename to be used :\c”
read flname
if [ ! –n “$flname” ] ; then
echo “ You have not entered the flname” ; exit 2
fi
emp.sh “$pname” “$flname”
else
emp.sh
$* fi

Output1:
$emp1.sh
Enter the string to be searched :[Enter]

You have not entered the string

Output2:
$emp1.sh
Enter the string to be searched :root
Enter the filename to be searched :/etc/passwd
Root:x:0:1:Super-user:/:/usr/bin/bash

When we run the script with arguments emp1.sh bypasses all the above activities and
calls emp.sh to perform all validation checks

$emp1.sh jai
You didn’t enter two arguments

$emp1.sh jai emp,lst
9878|jai sharma|director|sales|12/03/56|70000

$emp1.sh “jai sharma” emp.lst

You didn’t enter two arguments



Because $* treats jai and sharma are separate arguments. And $# makes a wrong argument 
count. Solution is replace $* with “$@” (with quote” and then run the script.

File Tests

Test can be used to test various file attributes like its type (file, directory or symbolic 
links) or its permission (read, write. Execute, SUID, etc).

Example:

$ ls –l emp.lst

-rw-rw-rw- 1 kumar group 870 jun 8 15:52 emp.lst

$ [-f emp.lst] ; echo $? Ordinary file

0

$ [-x emp.lst] ; echo $? Not an executable.



1

$ [! -w emp.lst] || echo “False that file not 

writeable” False that file is not writable.

Example: filetest.sh

#! /bin/usr

#

if [! –e $1] : then

Echo “File doesnot exist”

elif [! –r S1]; then

Echo “File not readable”

elif[! –w $1]; then

Echo “File not writable”

else

Echo “File is both readable and writable”\

fi

Output:

$ filetest.sh emp3.lst

File does not exist $

filetest.sh emp.lst

File is both readable and writable

The following table depicts file-related Tests with test:
Test True if

-f file File exists and is a regular file

-r file File exists and readable

-w file File exists and is writable

-x file File exists and is executable

-d file File exists and is a directory

-s file File exists and has a size greater than zero

-e file File exists (Korn & Bash Only)

-u file File exists and has SUID bit set

-k file File exists and has sticky bit set



-L file
File exists and is a symbolic link (Korn & Bash 
Only)

f1 –nt f2 File f1 is newer than f2 (Korn & Bash Only)

f1 –ot f2 File f1 is older than f2 (Korn & Bash Only)

f1 –ef f2 File f1 is linked to f2 (Korn & Bash Only)

Table: file-related Tests with test

The case Conditional
The case statement is the second conditional offered by the shell. It doesn’t have a parallel
either in C (Switch is similar) or perl. The statement matches an expression for more than one
alternative, and uses a compact construct to permit multiway branching. case also handles
string tests, but in a more efficient manner than if.
Syntax:
case expression in

Pattern1) commands1
; Pattern2) 
commands2 ;

Pattern3) commands3 ;;
…

Esac
Case  first  matches  expression  with  pattern1.  if  the  match  succeeds,  then  it  executes
commands1, which may be one or more commands. If the match fails, then pattern2 is
matched and so forth. Each command list is terminated with a pair of semicolon and the
entire construct is closed with esac (reverse of case).

Example:
#! /bin/sh
#
echo “ Menu\n
1. List of files\n2. Processes of user\n3. Today’s Date

4. Users of system\n5.Quit\nEnter your 
option: \c” read choice

case “$choice” in
1) ls –l;;
2) ps –f ;;
3) date ;;
4) who ;;
5) exit ;;



Unix and Shell programming 10CS44

*) echo “Invalid option”
esac
Output

$ menu.sh

Menu

1. List of files
2. Processes of user
3. Today’s Date
4. Users of system
5. Quit

Enter your option: 3

Mon Oct 8 08:02:45 IST 2007
Note:

 case can not handle relational and file test, but it matches strings with compact
 code. It is very effective when the string is fetched by command substitution.

 case can also handle numbers but treats them as strings.

Matching Multiple Patterns:
case can also specify the same action for more than one pattern . For instance to test a
user response for both y and Y (or n and N).

Example:

Echo “Do you wish to continue? [y/n]: \c”

Read ans

Case “$ans” in

Y | y );;

N | n) exit ;;

esac

Wild-Cards: case uses them:
case  has  a  superb  string  matching  feature  that  uses  wild-cards.  It  uses  the  filename
matching metacharacters *, ? and character class (to match only strings and not files in
the current directory).

expr: Computation and String Handling
The Broune shell uses expr command to perform computations. This command combines
the following two functions:



  Performs arithmetic operations on integers

 Manipulates strings

Computation:
expr can perform the four basic arithmetic operations (+, -, *, /), as well as modulus (%)
functions.

Examples:

$ x=3 y=5

$ expr 3+5
8

$ expr $x-$y
-2

$ expr 3 \* 5 Note:\ is used to prevent the shell from interpreting * as metacharacter 15

$ expr $y/$x
1

$ expr 13%5
3

expr is also used with command substitution to assign a variable.
Example1:

$ x=6 y=2 : z=`expr $x+$y`
$ echo $z

8

Example2:

$ x=5
$ x=`expr $x+1`
$ echo $x
6

String Handling:
expr is also used to handle strings. For manipulating strings, expr uses two expressions
separated by a colon (:). The string to be worked upon is closed on the left of the colon
and a regular expression is placed on its right.  Depending on the composition of the
expression expr can perform the following three functions:

1. Determine the length of the string.
2. Extract the substring.



3. Locate the position of a character in a string.

1. Length of the string:
The regular expression .* is used to print the number of characters matching 
the pattern .

Example1:

$ expr “abcdefg” : ‘.*’
7

Example2:

while echo “Enter your name: \c” 
;do read name
if [`expe “$name” :’.*’` -gt 20] ; then

echo “Name is very long”
else

break
fi

done
2. Extracting a substring:

expr can extract a string enclosed by the escape characters \ (and
\). Example: $ st=2007
$ expr “$st” :’..\(..\)’
07 Extracts last two characters.

3. Locating position of a character:

expr can return the location of the first occurrence of a character inside a string.

Example:

$ stg = abcdefgh ; expr “$stg” : ‘[^d]*d’
4 Extracts the position of character d

$0: Calling a Script by Different Names

There are a number of UNIX commands that can be used to call a file by different names
and doing different things depending on the name by which it is called. $0 can also be to
call a script by different names.

Example:

#! /bin/sh
#
lastfile=`ls –t *.c |head -1`
command=$0
exe=`expr $lastfile: ‘\(.*\).c’`



case $command in
*runc) $exe ;;
*vic) vi $lastfile;;
*comc) cc –o $exe $lastfile &&

Echo “$lastfile compiled successfully”;;
esac

After this create the following three links:
ln comc.sh comc
ln comc.sh runc
ln comc.sh vic
Output:
$ comc
hello.c compiled successfully.

While: Looping

To carry out a set of instruction repeatedly shell offers three features namely while, until
and for.

Synatx:

while condition is true

do

Commands

done

The commands enclosed by do and done are executed repadetedly as long as 
condition is true.

Example:

#! /bin/usr

ans=y

while [“$ans”=”y”]

do

echo “Enter the code and description : \c” > /dev/tty
read code description
echo “$code $description” >>newlist

echo “Enter any more [Y/N]”



read any

case $any in

Y* | y* ) answer =y;;

N* | n*) answer = n;;

*) answer=y;;

esac

done

Input:

Enter the code and description : 03 analgestics

Enter any more [Y/N] :y

Enter the code and description : 04 antibiotics

Enter any more [Y/N] : [Enter]

Enter the code and description : 05 OTC drugs

Enter any more [Y/N] : n

Output:

$ cat newlist

03 | analgestics

04 | antibiotics

05 | OTC drugs

Other Examples: An infinite/semi-infinite loop

(1)
while true ; do

[ -r $1 ] && break



sleep $2
done

(2)

while [ ! -r $1 ] ; do
sleep $2

done

for: Looping with a List

for is also a repetitive structure.

Synatx:

for variable in list

do

Commands

done

list here comprises a series of character strings. Each string is assigned 
to variable specified.

Example:

for file in ch1 ch2; do
> cp $file ${file}.bak

> echo $file copied to
$file.bak done

Output:

ch1 copied to ch1.bak

ch2 copied to ch2.bak

Sources of list:



 List from variables: Series of variables are evaluated by the shell before
executing the loop


Example:


$ for var in $PATH $HOME; do echo “$var” ; done


Output:
/bin:/usr/bin;/home/local/bin;
/home/user1



 List from command substitution: Command substitution is used for creating a
list. This is used when list is large.


Example:


$ for var in `cat clist`


 List  from  wildcards:  Here  the  shell  interprets  the  wildcards  as

filenames. Example:

for file in *.htm *.html ; do sed 
‘s/strong/STRONG/g s/img 
src/IMG SRC/g’ $file > $$ 
mv $$ $file

done

  List from positional

parameters: Example: emp.sh

#! /bin/sh
for pattern in “$@”; do

grep “$pattern” emp.lst || echo “Pattern $pattern not 
found” done


Output:


$emp.sh 9876 “Rohit”



9876 Jai Sharma Director Productions

2356 Rohit Director Sales

basename: Changing Filename Extensions

They are useful in chaining the extension of group of files. Basename extracts the 
base filename from an absolute pathname.

Example1:

$basename /home/user1/test.pl

Ouput:

test.pl

Example2:

$basename test2.doc doc

Ouput:

test2

Example3: Renaming filename extension from .txt to .doc

for file in *.txt ; do

leftname=`basename $file .txt` Stores left part of 
filename mv $file ${leftname}.doc

done

set and shift: Manipulating the Positional Parameters

The set statement assigns positional parameters $1, $2 and so on, to its arguments. This is 
used for picking up individual fields from the output of a program.

Example 1:

$ set 9876 2345 6213



$

This assigns the value 9876 to the positional parameters $1, 2345 to $2 and 6213 to $3.

It also sets the other parameters $# and $*.

Example 2:

$ set `date`

$ echo $*

Mon Oct 8 08:02:45 IST 2007

Example 3:

$ echo “The date today is $2 $3, $6”

The date today is Oct 8, 2007

Shift: Shifting Arguments Left

Shift  transfers the contents of positional parameters to its  immediate lower numbered
one. This is done as many times as the statement is called. When called once, $2 becomes
$1, $3 becomes S2 and so on.

Example 1:

$ echo “$@” $@ and $* are interchangeable

Mon Oct 8 08:02:45 IST 2007

$ echo $1 $2 $3

Mon Oct 8

$shift

$echo $1 $2 $3

Mon Oct 8 08:02:45

$shift 2 Shifts 2 places $echo $1 $2 $3



08:02:45 IST 2007

Example 2:

emp.sh #! /bin/sh

Case $# in

0|1) echo “Usage: $0 file pattern(S)” ;exit ;;

*) fname=$1

shift

for pattern in “$@” ; do

grep “$pattern” $fname || echo “Pattern $pattern not found”

done;;

esac

Output: $emp.sh

emp.lst

Insufficient number of arguments

$emp.sh emp.lst Rakesh 1006 9877

9876 Jai Sharma Director Productions

2356 Rohit Director Sales

Pattern 9877 not found.

Set -- : Helps Command Substitution

Inorder for the set to interpret - and null output produced by UNIX commands the –
option is used . If not used – in the output is treated as an option and set will interpret it
wrongly. In case of null, all variables are displayed instead of null.



Example:

$set `ls –l chp1`

Output:

-rwxr-xr-x: bad options

Example2:

$set `grep usr1 /etc/passwd`

Correction to be made to get correct output are:

$set -- `ls –l chp1`

$set -- `grep usr1 /etc/passwd`

The Here Document (<<)

The shell uses the << symbol to read data from the same file containing the script. This is referred
to as a here document, signifying that the data is here rather than in aspirate file. Any command
using standard input can slo take input from a here document.

Example:

mailx kumar << MARK

Your program for printing the invoices has been 
executed on `date`.Check the print queue

The updated file is
$flname MARK

The string (MARK) is delimiter. The shell treats every line following the command and 
delimited by MARK as input to the command. Kumar at the other end will see three lines
of message text with the date inserted by command. The word MARK itself doesn’t show
up.

Using Here Document with Interactive Programs:



A shell script can be made to work non-interactively by supplying inputs through here 
document.

Example:

$ search.sh <<
END > director

>emp.lst
>END

Output:

Enter the pattern to be searched: Enter the file to be used: Searching for director from file
emp.lst

9876 Jai Sharma Director Productions

2356 Rohit Director Sales

Selected records shown above.

The script search.sh will run non-interactively and display the lines containing “director”
in the file emp.lst.

trap: interrupting a Program

Normally,  the  shell  scripts  terminate  whenever  the  interrupt  key is  pressed.  It  is  not  a  good
programming practice because a lot of temporary files will be stored on disk. The trap statement
lets  you do the things you want to do when a script receives a signal.  The trap statement is
normally placed at the beginning of the shell script and uses two lists:

trap ‘command_list’ signal_list

When  a  script  is  sent  any  of  the  signals  in  signal_list,  trap  executes  the  commands  in
command_list. The signal list can contain the integer values or names (without SIG prefix) of
one or more signals – the ones used with the kill command.

Example: To remove all temporary files named after the PID number of the shell:

trap ‘rm $$* ; echo “Program Interrupted” ; exit’ HUP INT TERM trap is a signal 
handler. It first removes all files expanded from $$*, echoes a message and finally 



terminates the script when signals SIGHUP (1), SIGINT (2) or SIGTERM(15) are sent to
the shell process running the script.

A script can also be made to ignore the signals by using a null command list.

Example:

trap ‘’ 1 2 15

Programs
1)
#!/bin/sh
IFS=“|”
While echo “enter dept code:\c”; do
Read dcode
Set -- `grep “^$dcode”<<limit

01|ISE|22
02|CSE|45
03|ECE|25
04|TCE|58
limit`
Case $# in

3) echo “dept name :$2 \n emp-
id:$3\n” *) echo “invalid 
code”;continue

esac
done

Output:
$valcode.sh

Enter dept code:88
Invalid code

Enter dept code:02
Dept name : CSE
Emp-id :45
Enter dept code:<ctrl-c>

2)



#!/bin/sh
x=1
While [$x –le 10];do

echo “$x”

x=`expr $x+1`
done
#!/bin/sh
sum=0
for I in “$@” do

echo “$I”

sum=`expr $sum + $I`
done
Echo “sum is $sum”

3)
#!/bin/sh
sum=0

for I in `cat list`; do

echo  “string  is  $I”

x= `expr “$I”:’.*’`

Echo “length is $x”
Done

4)

This is a non-recursive shell script that accepts any number of arguments and prints them
in a reverse order.

For example if A B C are entered then output is C B A.

#!/bin/sh
if [ $# -lt 2 ]; then

echo "please enter 2 or more arguments"
exit



fi

for x in $@
do

y=$x" "$y
done echo
"$y"

Run1:
[root@localhost shellprgms]# sh sh1a.sh 1 2 3 4 5 6 7

7 6 5 4 3 2 1
Run2:  [root@localhost shellprgms]# sh ps1a.sh this is an argument

argument an is this

5)The following shell script to accept 2 file names checks if the permission for these files are 
identical and if they are not identical outputs each filename followed by permission.

#!/bin/sh

if [ $# -lt 2 ]

then

echo "invalid number of arguments"

exit

fi

str1=`ls -l $1|cut -c 2-10`

str2=`ls -l $2|cut -c 2-10`

if [ "$str1" = "$str2" ]

then

echo "the file permissions are the same: $str1"

else



echo " Different file permissions "

echo -e "file permission for $1 is $str1\nfile permission for $2 is $str2"

fi

Run1:

[root@localhost shellprgms]# sh 2a.sh ab.c xy.c

file permission for ab.c is rw-r--r--

file permission for xy.c is rwxr-xr-x

Run2:

[root@localhost shellprgms]# chmod +x ab.c 
[root@localhost shellprgms]# sh 2a.sh ab.c xy.c

the file permissions are the same: rwxr-xr-x

6)This shell function that takes a valid directory name as an argument and recursively
descends all the subdirectories, finds the maximum length of any file in that hierarchy
and writes this maximum value to the standard output.

#!/bin/sh

if [ $# -gt 2 ]

then

echo "usage sh flname dir"

exit

fi

if [ -d $1 ]

then

ls -lR $1|grep -v ^d|cut -c 34-43,56-69|sort -n|tail -1>fn1

echo "file name is `cut -c 10- fn1`"



echo " the size is `cut -c -9 fn1`"

else

echo "invalid dir name"

fi

Run1:

[root@localhost shellprgms]# sh 3a.sh

file name is a.out

the size is 12172

7)This shell script that accepts valid log-in names as arguments and prints their 
corresponding home directories. If no arguments are specified, print a suitable 
error message.

if [ $# -lt 1 ]

then

echo " Invlaid Arguments....... "

exit

fi

for x in "$@"

do

grep -w "^$x" /etc/passwd | cut -d ":" -f 1,6

done

Run1:

[root@localhost shellprgms]# sh 4a.sh root

root:/root



Run2:

[root@localhost shellprgms]# sh 4a.sh

Invalid Arguments.......

8) This shell script finds and displays all the links of a file specified as the first argument
to the script. The second argument, which is optional, can be used to specify the directory
in which the search is to begin. If this second argument is not present .the search is to
begin in current working directory.

#!/bin/bash

if [ $# -eq 0 ]

then

echo "Usage:sh 8a.sh[file1] [dir1(optional)]"

exit

fi

if [ -f $1 ]

then

dir="."

if [ $# -eq 2 ]

then

dir=$2

fi

inode=`ls -i $1|cut -d " " -f 2`

echo "Hard links of $1 are"

find $dir -inum $inode -print

echo "Soft links of $1 are"



find $dir -lname $1 -print

else

echo "The file $1 does not exist"

fi

Run1:

[root@localhost shellprgms]$ sh 5a.sh hai.c

Hard links of hai.c are

./hai.c

Soft links of hai.c are

./hai_soft

9) This shell script displays the calendar for current month with current date 
replaced by * or ** depending on whether date has one digit or two digits.

#!/bin/bash

n=` date +%d`

echo " Today's date is : `date +%d%h%y` ";

cal > calfile

if [ $n -gt 9 ]

then

sed "s/$n/\**/g" calfile

else

sed "s/$n/\*/g" calfile

[root@localhost shellprgms]# sh 6a.sh



Today's date is : 10 May 05

May 2005

Su Mo  Tu We  Th Fr Sa

1 2 3 4 5 6 7

8 9 ** 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

10) This shell script implements terminal locking. Prompt the user for a 
password after accepting, prompt for confirmation, if match occurs it must lock and 
ask for password, if it matches terminal must be unlocked

trap “ " 1 2 3 5 20

clear

echo -e “\nenter password to lock terminal:"

stty -echo

read keynew

stty echo

echo -e “\nconfirm password:"

stty -echo

read keyold

stty echo

if [ $keyold = $keynew ]

then

echo "terminal locked!"



while [ 1 ]

do

echo "retype the password to unlock:"

stty -echo

read key

if [ $key = $keynew ]

then

stty echo

echo "terminal unlocked!"

stty sane

exit

fi

echo "invalid password!"

done

else
echo " passwords do not match!"

fi

stty sane

Run1:

[root@localhost shellprgms]# sh 13.sh

enter password:

confirm password:

terminal locked!



retype the password to unlock:

invalid password!

retype the password to unlock:

terminal unlocked!
File Systems and inodes

The hard disk is split into distinct partitions, with a separate file system in each partition.
Every file system has a directory structure headed by root.

n partitions = n file systems = n separate root directories

All attributes of a file except its name and contents are available in a table – inode (index
node), accessed by the inode number. The inode contains the following attributes of a file:

• File type 
• File permissions 
• Number of links 
• The UID of the owner 
• The GID of the group owner 
• File size in bytes 
• Date and time of last modification 
• Date and time of last access 
• Date and time of last change of the inode 
• An array of pointers that keep track of all disk blocks used by the file 

Please note that, neither the name of the file nor the inode number is stored in the inode. To 
know inode number of a file:

$ls -il tulec05
9059 -rw-r--r-- 1 kumar  metal 51813 Jan 31 11:15 tulec05

Where, 9059 is the inode number and no other file can have the same inode number in the same 
file system.

Hard Links

The link count is displayed in the second column of the listing. This count is normally 1, but the
following files have two links,

-rwxr-xr-- 2 kumar metal 163 Jull 13 21:36 backup.sh -rwxr-xr-- 2 
kumar metal 163 Jul 13 21:36 restore.sh

All attributes seem to be identical, but the files could still be copies. It’s the link count that
seems to suggest that the files are linked to each other. But this can only be confirmed by using
the –i option to ls.



ls -li backup.sh restore.sh

478274 -rwxr-xr-- 2 kumar metal163 jul 13 21:36 backup.sh 478274 
-rwxr-xr-- 2 kumar metal163 jul 13 21:36 restore.sh

ln: Creating Hard Links

A file  is  linked  with  the  ln  command  which  takes  two  filenames  as  arguments  (cp
command). The command can create both a hard link and a soft link and has syntax similar to
the one used by cp. The following command links emp.lst with employee:

ln emp.lst employee

The –i option to ls shows that they have the same inode number, meaning that they are
actually one end the same file:

ls -li emp.lst employee

29518 -rwxr-xr-x 2 kumar metal 915 may 4 09:58 emp.lst 29518 
-rwxr-xr-x 2 kumar metal 915 may 4 09:58 employee

The link count, which is normally one for unlinked files, is shown to be two. You can 
increase the number of links by adding the third file name emp.dat as:

ln employee emp.dat ; ls -l emp*

29518 -rwxr-xr-x 3 kumar metal 915 may 4 09:58 emp.dat 29518 
-rwxr-xr-x 3 kumar metal 915 may 4 09:58 emp.lst 29518 -rwxr-xr-x 
3 kumar metal 915 may 4 09:58 employee

You can link multiple files, but then the destination filename must be a directory. A file is 
considered to be completely removed from the file system when its link count drops to

zero. ln returns an error when the destination file exists. Use the –f option to force the removal 
of the existing link before creation of the new one

Where to use Hard Links

ln data/ foo.txt input_files

It creates link in directory input_files. With this link available, your existing programs 
will continue to find foo.txt in the input_files directory. It is more convenient to do this that 
modifies all programs to point to the new path. Links provide some protection against accidental
deletion, especially when they exist in different directories. Because of links, we don’t need to 
maintain two programs as two separate disk files if there is very little difference between them. 
A file’s name is available to a C program and to a shell script. A single file with two links can 
have its program logic make it behave in two different ways depending on the name by which it 
is called.



We can’t have two linked filenames in two file systems and we can’t link a directory
even within the same file system. This can be solved by using symbolic links (soft links).

Symbolic Links

Unlike  the  hard  linked,  a  symbolic  link doesn’t  have  the file’s  contents,  but  simply
provides the pathname of the file that actually has the contents.

$ln -s note note.sym 

$ls -li note note.sym

9948 -rw-r--r-- 1 kumar  group 80  feb 16 14:52 note
9952 lrwxrwxrwx 1 kumar group 4 feb16 15:07note.sym ->note

Where, l indicate symbolic link file category. -> indicates note.sym contains the pathname for
the filename note. Size of symbolic link is only 4 bytes; it is the length of the pathname of note.

It’s important that this time we indeed have two files, and they are not identical. 
Removing note.sym won’t affect us much because we can easily recreate the link. But if we 
remove note, we would lose the file containing the data. In that case, note.sym would point to a 
nonexistent file and become a dangling symbolic link.

Symbolic links can also be used with relative pathnames. Unlike hard links, they can
also span multiple file systems and also link directories. If you have to link all filenames in a
directory to another directory, it makes sense to simply link the directories. Like other files, a
symbolic link has a separate directory entry with its own inode number.



This means that rm can remove a symbolic link even if its points to a directory.

A symbolic link has an inode number separate from the file that it points to. In most
cases, the pathname is stored in the symbolic link and occupies space on disk.However, Linux
uses a fast symbolic link which stores the pathname in the inode itself provided it doesn’t exceed
60 characters.

find : locating files

It recursively examines a directory tree to look for files matching some criteria, and then
takes some action on the selected files. It has a difficult command line, and if you have ever
wondered why UNIX is hated by many, then you should look up the cryptic find documentation.
How ever, find is easily tamed if you break up its arguments into three components:

$find  path_list  selecton_criteria  action
where,

• Recursively examines all files specified in path_list 
• It then matches each file for one or more selection-criteria 
• It takes some action on those selected files 

The path_list comprises one or more subdirectories separated by white space. There can also be
a host of selection_criteria that you use to match a file, and multiple actions to dispose of the
file. This makes the command difficult to use initially, but it is a program that every user must
master since it lets him make file selection under practically any condition.

FILTERS

Filters are the commands which accept data from standard input manipulate it and write 
the results to standard output. Filters are the central tools of the UNIX tool kit, and each filter 
performs a simple function. Some commands use delimiter, pipe (|) or colon
(:).
Many filters work well with delimited fields, and some simply won’t work without them.

The  piping  mechanism allows  the  standard  output  of  one  filter  serve  as  standard  input  of
another.  The  filters  can  read  data  from  standard  input  when  used  without  a  filename  as
argument, and from the file otherwise

The Simple Database

Several UNIX commands are provided for text editing and shell programming. (emp.lst)
- each line of this file has six fields separated by five delimiters. The details of an employee are
stored in one single line. This text file designed in fixed format and containing a personnel
database. There are 15 lines, where each field is separated by the delimiter |.

$ cat emp.lst

1006 | chanchal singhvi | director | sales | 03/09/38 | 6700
6213 | karuna ganguly | g.m. | accounts | 05/06/62 | 6300
1265 | s.n. dasgupta | manager | sales | 12/09/63 | 5600
4290 | jayant choudhury | executive | production | 07/09/50 |



6000 2476 | anil aggarwal | manager | sales | 01/05/59 | 5000
6521 | lalit chowdury | directir | marketing | 26/09/45 | 8200

$pr : paginating files

We know that,

$cat dept.lst

01|accounts|6213
02|progs|5423
03|marketing|6521
04|personnel|2365
05|production|9876
06|sales|1006

pr command adds suitable headers, footers and formatted text. pr adds five lines of margin at the
top and bottom. The header shows the date and time of last modification of the file along with
the filename and number.

$pr dept.lst

May 06 10:38 1997 dept.lst 1

01:accounts:6213
02:progs:5423
03:marketing:6521
04:personnel:2365
05:production:9876
06:sales:1006

…blank lines…

$pr options
The different options for pr command are:

-k prints k (integer) columns
-t to suppress the header and footer - h to 
have a header of user’s choice
-d double spaces input
-n will number each line and helps in debugging
-on offsets the lines by n spaces and increases left margin of page

$pr +10 chap01

starts printing from 10



$pr -l 54 chap01 this option sets the length to 54

$head – displaying the beginning of the file

The command displays the top of the file. It displays the first 10 lines of the file, when
used without an option.

$head emp.lst

-n to specify a line count

$head -n 3 emp.lst

will display the first three lines of the file.

$tail – displaying the end of a file

This command displays the end of the file. It displays the last 10 lines of the file, when
used without an option.

$tail emp.lst

-n to specify a line count

$tail -n 3 emp.lst

displays the last three lines of the file. We can also address lines from the beginning of
the file instead of the end. The +count option allows to do that, where count represents the line
number from where the selection should begin.

$tail +11 emp.lst

Will display 11
th

 line onwards

Different options for tail are:

Monitoring the file growth (-f)

Extracting bytes rather than lines (-c)

Use tail –f when we are running a program that continuously writes to a file, and we want to see
how the file is growing. We have to terminate this command with the interrupt key.

$cut – slitting a file vertically

It is used for slitting the file vertically. head -n 5 emp.lst | tee shortlist will select the first
five lines of emp.lst and saves it to shortlist. We can cut by using -c option with a list of column
numbers, delimited by a comma (cutting columns).



$cut -c 6-22,24-32 shortlist

$cut -c -3,6-22,28-34,55- shortlist

The expression 55- indicates column number 55 to end of line. Similarly, -3 is the same as 1-3.

Most files don’t contain fixed length lines, so we have to cut fields rather than columns 
(cutting fields).

-d for the field delimiter -f for the field list

$cut -d \ | -f 2,3 shortlist | tee cutlist1

will display the second and third columns of shortlist and saves the output in 
cutlist1. here | is escaped to prevent it as pipeline character

• To print the remaining fields, we have 

$cut –d \ | -f 1,4- shortlist > cutlist2

paste – pasting files

When we cut with  cut, it can be pasted back with the  paste command,  vertically rather than
horizontally. We can view two files side by side by pasting them. In the previous topic, cut was
used to create the two files cutlist1 and cutlist2 containing two cut-out portions of the same file.

$paste cutlist1 cutlist2

We can specify one or more delimiters with -d

$paste -d “|” cutlist1 cutlist2

here each field will be separated by the delimiter |. Even though paste uses at least two files for
concatenating lines, the data for one file can be supplied through the standard input.

Joining lines (-s)

Let us consider that the file address book contains the details of three persons

cat addressbook

$paste -s addressbook -to print in one single line

paste -s -d ”| | \n” addressbook  -are used in a circular manner

$sort : ordering a file



Sorting is the ordering of data in ascending or descending sequence. The sort command orders a
file and by default, the entire line is sorted

$sort shortlist

This default sorting sequence can be altered by using certain options. We can also sort one or
more keys (fileds) or use a different ordering rule.

sort options

The important sort options are:

-tchar uses delimiter char to identify fields
-k n sorts on nth field
-k m,n starts sort on mth field and ends sort on nth field
-k m.n starts sort on nth column of mth field
-u removes repeated lines
-n sorts numerically
-r reverses sort order
-f folds lowercase to equivalent uppercase
-m list merges sorted files in list
-c checks if file is sorted
-o flname places output in file flname

$sort –t“|” –k 2 shortlist

sorts the second field (name)
$sort –t”|” –r –k 2 shortlist
or

sort –t”|” –k 2r shortlist

sort order can be revered with this –r option.

$sort –t”|” –k 3,3 –k 2,2 shortlist

sorting on secondary key is also possible as shown above.

$sort –t”|” –k 5.7,5.8 shortlist

we can also specify a character position with in a field to be the beginning of sort as
shown above (sorting on columns).

$sort –n numfile

when sort acts on numericals, strange things can happen. When we sort a file containing



only numbers, we get a curious result. This can be overridden by –n (numeric) option.

$cut –d “|” –f3 emp.lst | sort –u | tee desigx.lst

Removing repeated lines can be possible using –u option as shown above. If we cut out
the designation filed from emp.lst, we can pipe it to sort to find out the unique designations that
occur in the file.

Other sort options are:

$sort –o sortedlist –k 3 shortlist $sort 

–o shortlist shortlist

$sort –c shortlist

$sort –t “|” –c –k 2 $shortlist 

sort –m foo1 $foo2 foo3

uniq command – locate repeated and nonrepeated lines

When we concatenate  or  merge  files,  we will  face  the  problem of  duplicate  entries
creeping in. we saw how sort removes them with the –u option. UNIX offers a special tool to
handle these lines – the uniq command. Consider a sorted dept.lst that includes repeated lines:

$cat dept.lst

displays all lines with duplicates. Where as,

$uniq dept.lst

simply fetches one copy of each line and writes it to the standard output. Since uniq requires a
sorted file  as  input,  the general  procedure is  to  sort  a  file  and pipe its  output  to  uniq.  The
following pipeline also produces the same output, except that the output is saved in a file:

$sort dept.lst | uniq – uniqlist

Different uniq options are :

Selecting the nonrepeated lines (-u)

$cut –d “|” –f3 emp.lst | sort | uniq –u

Selecting the duplicate lines (-d)



$cut –d “|” –f3 emp.lst | sort | uniq –d

Counting frequency of occurrence (-c)

$cut –d “|” –f3 emp.lst | sort | uniq –c 

$tr command – translating haracters

The tr filter manipulates the individual characters in a line. It translates characters using
one or two compact expressions.

$tr options expn1 expn2 standard input

It takes input only from standard input, it doesn’t take a filename as argument. By default, it
translates  each character  in  expression1 to  its  mapped counterpart  in  expression2.  The first
character in the first expression is replaced with the first character in the second expression, and
similarly for the other characters.

$tr ‘|/’ ‘~-’ < emp.lst | head –n 3

exp1=‘|/’ ; exp2=‘~-’

tr “$exp1” “$exp2” < emp.lst

Changing case of text is possible from lower to upper for first three lines of the file.

$head –n 3 emp.lst | tr ‘[a-z]’ ‘[A-Z]’

Different tr options are:
Deleting charecters (-d)

$tr –d ‘|/’ < emp.lst | head –n 3

Compressing multiple consecutive charecters (-s)

$tr –s ‘ ‘ < emp.lst | head –n 3

Complementing values of expression (-c)

$tr –cd ‘|/’ < emp.lst

Using ASCII octal values and escape sequences

$tr ‘|’ ‘\012’ < emp.lst | head –n 6

Two special files :



/dev/null  and  /dev/tty : 
/dev/null: If you would like to execute a command but don’t like to see its contents on the

screen, you may wish to redirect the output to a file called /dev/null. It is a special file that can
accept any stream without growing in size. It’s size is always zero.

/dev/tty: This file indicates one’s terminal. In a shell script, if you wish to redirect the output of
some select statements explicitly to the terminal. In such cases you can redirect these explicitly
to /dev/tty inside the script.

MODULE-V

The Process

Objectives
Process Basics ps: 
Process Status
Mechanism of Process Creation

Internal and External Commands 
Process States and Zombies 
Background Jobs
nice: Assigning execution priority 
Processes and Signals
job Control
at and batch: Execute Later

cron command: Running Jobs Periodically time: 
Timing Usage Statistics at process runtime

Process Basics
UNIX is a multiuser and multitasking operating system. Multiuser means that several people can
use the computer system simultaneously (unlike a single-user operating system, such as MS-
DOS).  Multitasking means  that  UNIX,  like  Windows  NT,  can  work  on  several  tasks
concurrently; it can begin work on one task and take up another before the first task is finished.
When you execute a program on your UNIX system, the system creates a special environment
for  that  program.  This  environment  contains  everything  needed  for  the  system  to  run  the
program as if no other program were running on the system. Stated in other words, a process is
created. A process is a program in execution. A process is said to be born when the program
starts execution and remains alive as long as the program is active. After execution is complete,
the process is said to die.

The kernel  is  responsible  for  the management  of  the processes.  It  determines  the time and
priorities  that  are  allocated  to  processes  so that  more  than  one  process  can  share  the  CPU
resources.

Just as files have attributes, so have processes. These attributes are maintained by the kernel in a
data structure known as process table. Two important attributes of a process are:

1. The Process-Id (PID): Each process is uniquely identified by a unique integer



called the PID, that is allocated by the kernel when the process is born. The PID can
be used to control a process. 
2. The Parent PID (PPID): The PID of the parent is available as a process attribute. 



There are three types of processes viz.,
1. Interactive: Initiated by a shell and running in the foreground or background 

2. batch:  Typically  a series  of  processes  scheduled for  execution at  a specified
point in time 

3. daemon: Typically initiated at boot time to perform operating system functions
on demand, such as LPD, NFS, and DNS 

The Shell Process
As soon as you log in, a process is set up by the kernel. This process represents the login
shell,  which can be either sh(Bourne Shell),  ksh(korn Shell),  bash(Bourne Again Shell) or
csh(C Shell).

Parents and Children

When you enter an external command at the prompt, the shell acts as the parent process,
which in turn starts the process representing the command entered. Since every parent has a
parent, the ultimate ancestry of any process can be traced back to the first process (PID 0) that
is set up when the system is booted. It is analogous to the root directory of the file system. A
process can have only one parent. However, a process can spawn multiple child processes.

Wait or not Wait?
A parent process can have two approaches for its child:

It may wait for the child to die so that it can spawn the next process. The death of the
child is intimated to the parent by the kernel. Shell is an example of a parent that waits
for the child to terminate. However, the shell can be told not to wait for the child to
terminate.
It may not wait for the child to terminate and may continue to spawn other processes.
init process is an example of such a parent process.

 ps: Process Status
Because processes are so important to getting things done, UNIX has several commands that
enable you to examine processes and modify their state. The most frequently used command
is ps, which prints out the process status for processes running on your system. Each system
has a  slightly different  version  of  the ps  command,  but  there are  two main variants,  the
System V version (POSIX) and the Berkeley version. The following table shows the options
available with ps command.

POSIX BSD Significance
-f f Full listing showing PPID of each process
-e or –A aux All processes (user and system) processes

4245 pts/7 00:00:00 bash
5314 pts/7 00:00:00 ps

The  output  shows  the  header  specifying  the  PID,  the  terminal  (TTY),  the  cumulative
processor time (TIME) that has been consumed since the process was started, and the process
name (CMD).



$ ps -f
TIME

UID PID PPID C STIME TTYCOMMAND
root 14931 136 0 08:37:48 ttys0 0:00 rlogind
sartin 14932 14931 0 08:37:50 ttys0 0:00 -sh

sartin 15339 14932 7 16:32:29 ttys0 0:00 ps –f

The header includes the following information: 
UID – Login name of the user
PID – Process ID
PPID – Parent process ID

C – An index of recent processor utilization, used by kernel for scheduling 
STIME – Starting time of the process in hours, minutes and seconds TTY
– Terminal ID number

TIME – Cumulative CPU time consumed by the process 
CMD – The name of the command being executed

System processes (-e or –A)

Apart from the processes a user generates, a number of system processes keep running all the
time. Most of them are not associated with any controlling terminal.
They are spawned during system startup and some of them start when the system goes into
multiuser mode. These processes are known as daemons because they are called without a
specific request from a user. To list them use,

$ ps –e
PID TTY TIME CMD
0 ? 0:34 sched
1 ? 41:55 init
23274 Console 0:03 sh
272 ? 2:47 cron
7015 term/12 20:04 vi

Mechanism of Process Creation
There are three distinct phases in the creation of a process and uses three important system calls
viz., fork, exec, and wait. The three phases are discussed below:

Fork: A process in UNIX is created with the fork system call, which creates a copy of the
process that invokes it.  The process image is  identical to that of the calling process,
except for a few parameters like the PID. The child gets a new PID.
Exec: The forked child overwrites its own image with the code and data of the new
program. This mechanism is called exec, and the child process is said to  exec a new
program, using one of the family of exec system calls. The PID and PPID of the exec’d
process remain unchanged.
Wait: The parent then executes the wait system call to wait for the child to complete. It
picks up the exit status of the child and continues with its other functions. Note that a
parent need not decide to wait for the child to terminate.

To get a better idea of this, let us explain with an example. When you enter ls to look at the
contents  of  your  current  working  directory,  UNIX  does  a  series  of  things  to  create  an



environment for ls and the run it:
The shell has UNIX perform a fork. This creates a new process that the shell will use to
run the ls program.
The shell has UNIX perform an exec of the ls program. This replaces the shell program
and data with the program and data for ls and then starts running that new program.
The ls program is loaded into the new process context, replacing the text and data of the
shell.
The ls program performs its task, listing the contents of the current directory. In the
meanwhile, the shell executes wait system call for ls to complete.

When a process is forked, the child has a different PID and PPID from its parent. However, it
inherits most of the attributes of the parent. The important attributes that are inherited are:

User name of the real and effective user (RUID and EUID): the owner of the process.
The real owner is the user issuing the command, the effective user is the one determining
access to system resources. RUID and EUID are usually the same, and the process has
the same access rights the issuing user would have.
Real and effective group owner (RGID and EGID): The real group owner of a process is
the primary group of the user who started the process. The effective group owner is
usually the same, except when SGID access mode has been applied to a file.
The current directory from where the process was run.

The file descriptors of all files opened by the parent process. 
Environment variables like HOME, PATH.

The inheritance here means that the child has its own copy of these parameters and thus can
alter the environment it  has inherited.  But the modified environment is  not available to the
parent process.

How the Shell is created?

shell
init  getty  login

fork fork-exec fork-exec

When the system moves to multiuser mode,  init forks and execs a  getty for every active
communication port.
Each one of these getty’s prints the login prompt on the respective terminal and then goes 
off to sleep.
When a user tries to log in, getty wakes up and fork-execs the login program to verify login 
name and password entered.
On successful login, login for-execs the process representing the login shell.
init goes off to sleep, waiting for the children to terminate. The processes getty and login 
overlay themselves.
When the user logs out, it is intimated to init, which then wakes up and spawns another 
getty for that line to monitor the next login.



Internal and External Commands
From the process viewpoint, the shell recognizes three types of commands:

1. External commands: Commonly used commands like cat, ls etc. The shell creates
a process for each of these commands while remaining their parent. 
2. Shell scripts: The shell executes these scripts by spawning another shell, which
then executes the commands listed in the script. The child shell becomes the parent of
the commands that feature in the shell. 
3. Internal commands: When an internal command is entered, it is directly executed 

by the shell. Similarly, variable assignment like x=5, doesn’t generate a process either.
Note: Because the child process inherits the current working directory from its parent as one of
the  environmental  parameters,  it  is  necessary  for  the  cd  command not  to  spawn a child  to
achieve a change of directory. If this is allowed, after the child dies, control would revert to the
parent and the original directory would be restored. Hence, cd is implemented as an internal
command.

Process States and Zombies
At any instance of time, a process is in a particular state.  A process after creation is in the
runnable state. Once it starts running, it is in the running state. When a process requests for a
resource (like disk I/O), it may have to wait. The process is said to be in  waiting or  sleeping
state. A process can also be suspended by pressing a key (usually Ctrl-z).

When a process terminates, the kernel performs clean-up, assigns any children of the exiting
process to be adopted by init, and sends the death of a child signal to the parent process, and
converts the process into the zombie state.

A process in zombie state is not alive; it does not use any resources nor does any work. But it is 
not allowed to die until the exit is acknowledged by the parent process.

It is possible for the parent itself to die before the child dies. In such case, the child becomes an
orphan and the kernel makes init the parent of the orphan. When this adopted child dies, init
waits for its death.

Running Jobs in Background
The basic idea of a background job is simple. It's a program that can run without prompts or
other manual interaction and can run in parallel with other active processes.

Interactive processes are initialized and controlled through a terminal session. In other words,
there has to be someone connected to the system to start these processes; they are not started
automatically  as  part  of  the  system functions.  These  processes  can  run  in  the  foreground,
occupying the terminal that started the program, and you can't start other applications as long as
this process is running in the foreground.

There are two ways of starting a job in the background – with the shell’s & operator and the
nohup command.

&: No Logging out
Ordinarily, when the shell runs a command for you, it waits until the command is completed.
During this time, you cannot communicate with the shell. You can run a command that takes a



long time to finish as a background job, so that you can be doing something else. To do this, use
the & symbol at the end of the command line to direct the shell to execute the command in the
background.

$ sort –o emp.dat emp.dat &
[1] 1413 The job’s PID

Note:

1. Observe  that  the  shell  acknowledges  the  background  command  with  two
numbers. First number [1] is the job ID of this command. The other number 1413 is the
PID. 
2. When you specify a command line in a pipeline to run in the background, all the
commands are run in the background, not just the last command. 
3. The shell remains the parent of the background process. 

nohup: Log out Safely

A background job  executed  using  & operator  ceases  to  run when a user  logs  out.  This  is
because, when you logout, the shell is killed and hence its children are also killed. The UNIX
system provides nohup statement which when prefixed to a command, permits execution of the
process even after the user has logged out. You must use the & with it as well.

The syntax for the nohup command is as follows:

nohup command-string [input-file] output-file &

If you try to run a command with nohup and haven’t redirected the standard error, UNIX

automatically places any error messages in a file named nohup.out in the directory from which
the command was run.In the following command, the sorted file and any error messages are
placed in the file nohup.out.
$ nohup sort sales.dat&

1252
Sending output to nohup.out

Note that the shell has returned the PID (1252) of the process.

When the user logs out, the child turns into an orphan. The kernel handles such situations by 
reassigning the PPID of the orphan to the system’s init process (PID 1) - the parent of all shells. 
When the user logs out, init takes over the parentage of any process run with nohup. In this way,
you can kill a parent (the shell) without killing its child.

Additional Points

When you run a command in the background, the shell disconnects the standard input from the
keyboard,  but  does  not  disconnect  its  standard output  from the screen.  So,  output  from the
command, whenever it  occurs,  shows up on screen.  It  can be confusing if  you are entering
another command or using another program. Hence, make sure that both standard output and
standard error are redirected suitably.



$ find . –name “*.log” –print> log_file 2> err.dat & OR $ 
find . –name “*.log” –print> log_file 2> /dev/null &

Important:
1. You should relegate time-consuming or low-priority jobs to the background. 
2. If you log out while a background job is running, it will be terminated. 

nice: Job Execution with Low Priority
Processes in UNIX are sequentially assigned resources for execution. The kernel assigns the
CPU to a process for a time slice; when the time elapses, the process is places in a queue. How
the execution is scheduled depends on the priority assigned to the process.

The nice command is used to control background process dispatch priority.

The idea behind nice is that background jobs should demand less attention from the system than
interactive processes.
Background jobs execute without a terminal attached and are usually run in the background for
two reasons:

1. the job is expected to take a relatively long time to finish, and 
2. the job's results are not needed immediately. 

Interactive  processes,  however,  are  usually  shells  where  the  speed  of  execution  is  critical
because it directly affects the system's apparent response time. It would therefore be nice for
everyone (others as well as you) to let interactive processes have priority over background work.
nice values are system dependent and typically range from 1 to 19.

A high  nice value implies a lower priority. A program with a high nice number is friendly to
other  programs,  other  users  and the  system;  it  is  not  an important  job.  The lower the  nice
number, the more important a job is and the more resources it will take without sharing them.
Example:

$ nice wc –l hugefile.txt OR $ nice wc –l hugefile.txt &

The default nice value is set to 10.

We can specify the nice value explicitly with –n number option where number is an offset to the
default. If the –n number argument is present, the priority is incremented by that amount up to a
limit of 20.
Example: $ nice –n 5 wc –l hugefile.txt &

Killing Processes with Signals
When you execute a command, one thing to keep in mind is that commands do not run in a
vacuum. Many things can happen during a command execution that are not under the control of
the command. The user of the command may press the interrupt key or send a kill command to
the process, or the controlling terminal may become disconnected from the system. In UNIX,
any of these events can cause a  signal to be sent to the process. The default action when a
process receives a signal is to terminate.

When a process ends normally, the program returns its exit status to the parent. This exit status
is a number returned by the program providing the results of the program's execution.



Sometimes, you want or need to terminate a process. The 
following are some reasons for stopping a process:

It’s using too much CPU time.

It’s running too long without producing the expected output. It’s 
producing too much output to the screen or to a disk file.
It appears to have locked a terminal or some other session.

It’s using the wrong files for input or output because of an operator or 
programming error.
 It’s no longer useful.

If the process to be stopped is a background process, use the kill command to get out of these 
situations. To stop a command that isn’t in the background, press <ctrl-c>.

To use kill, use either of these forms:

kill PID(s) OR kill –s NUMBER PID(s) To kill a 
process whose PID is 123 use,

$ kill 123
To kill several processes whose PIDs are 123, 342, and 73 use,

$ kill 123 342 73

Issuing the kill command sends a signal to a process. The default signal is SIGTERM signal
(15). UNIX programs can send or receive more than 20 signals, each of which is represented by
a number. (Use kill –l to list all signal names and numbers)

If the process ignores the signal SIGTERM, you can kill it with SIGKILL signal (9) as, $ kill 
-9 123 OR $ kill –s KILL 123

The system variable $! stores the PID of the last background job. You can kill the last 
background job without knowing its PID by specifying $ kill $!
Note: You can kill only those processes that you own; You can’t kill processes of other 
users. To kill all background jobs, enter kill 0.

Job Control
A job is a name given to a group of processes that is typically created by piping a series of
commands using pipeline character. You can use job control facilities to manipulate jobs. You
can use job control facilities to,

1. Relegate a job to the background (bg) 
2. Bring it back to the foreground (fg) 
3. List the active jobs (jobs) 
4. Suspend a foreground job ([Ctrl-z]) 
5. Kill a job (kill) 

The following examples demonstrate the different job control facilities. Assume a 
process is taking a long time. You can suspend it by pressing [Ctrl-z].
[1] + Suspended wc –l hugefile.txt

A suspended job is not terminated. You can now relegate it to background by, $ bg
You can start more jobs in the background any time: $ sort
employee.dat > sortedlist.dat &

[2] 530 



$ grep ‘director’ emp.dat &
[3] 540 

You can see a listing of these jobs using jobs command,
$ jobs
[3] + Running grep ‘director’ emp.dat &
[2] - Running sort employee.dat > sortedlist.dat &
[1] Suspended wc –l hugefile.txt
You can bring a job to foreground using fg %jobno OR fg %jobname as, $ fg 
%2 OR $ fg %sort

at And batch: Execute Later
UNIX provides facilities to schedule a job to run at a specified time of day. If the system load
varies greatly throughout the day, it makes sense to schedule less important jobs at a time when
the system load is low. The at and batch commands make such job scheduling possible.

at: One-Time Execution
To schedule  one  or  more  commands  for  a  specified  time,  use  the  at  command.  With  this
command, you can specify a time, a date, or both.
For example,
$ at 14:23 Friday
at> lp /usr/sales/reports/*
at> echo “Files printed, Boss!” | mail -s”Job done” boss
[Ctrl-d]

commands will be executed using /usr/bin/bash job 1041198880.a at Fri
Oct 12 14:23:00 2007

The above job prints all files in the directory /usr/sales/reports and sends a user named boss
some mail announcing that the print job was done.
All at jobs go into a queue known as at queue.at shows the job number, the date and time of
scheduled execution. This job number is derived from the number of seconds elapsed since the
Epoch. A user should remember this job number to control the job.

$ at 1 pm today
at> echo  “^G^GLunch  with  Director  at  1  PM^G^G”  >

/dev/term/43

The above job will display the following message on your screen (/dev/term/43) at 1:00 PM,
along with two beeps(^G^G).

Lunch with Director at 1 PM

To see which jobs you scheduled with at, enter at -l. Working with the preceding examples, you
may see the following results:

job 756603300.a at Tue Sep 11 01:00:00 2007 job 
756604200.a at Fri Sep 14 14:23:00 2007

The following forms show some of the keywords and operations permissible with at 
command:
at hh:mm Schedules job at the hour (hh) and minute (mm) specified, using a



24-hour clock
at hh:mm month day year Schedules job at the hour (hh), minute (mm), month, day,

and year specified
at -l Lists scheduled jobs
at now +count time-units Schedules the job right now plus count number of

timeunits; time units can be minutes, hours, days, or weeks
at –r job_id Cancels the job with the job number matching job_id

batch: Execute in Batch Queue
The batch command lets  the operating system decide an appropriate time to run a process.
When you schedule a job with batch,  UNIX starts  and works on the process whenever the
system load isn’t too great.

To sort a collection of files, print the results, and notify the user named boss that the job is done,
enter the following commands:

$ batch
sort /usr/sales/reports/* | lp
echo “Files printed, Boss!” | mailx -s”Job done” boss

The system returns the following response: job 
7789001234.b at Fri Sep 7 11:43:09 2007

The date  and time listed are  the date and time you pressed <Ctrl-d> to complete the batch
command. When the job is complete, check your mail; anything that the commands normally
display is mailed to you. Note that any job scheduled with batch command goes into a special at
queue.

cron: Running jobs periodically
cron  program  is  a  daemon  which  is  responsible  for  running  repetitive  tasks  on  a  regular
schedule. It is a perfect tool for running system administration tasks such as backup and system
logfile maintenance. It can also be useful for ordinary users to schedule regular tasks including
calendar reminders and report generation.

Both at and batch schedule commands on a one-time basis. To schedule commands or processes
on a regular basis, you use the cron (short for chronograph) program. You specify the times and
dates you want to run a command in crontab files. Times can be specified in terms of minutes,
hours, days of the month, months of the year, or days of the week.

cron is listed in a shell script as one of the commands to run during a system boot-up sequence.
Individual users don’t have permission to run cron directly.

If there’s nothing to do, cron “goes to sleep” and becomes inactive; it “wakes up” every minute,
however, to see if there are commands to run.
cron looks for instructions to be performed in a control file in 

/var/spool/cron/crontabs
After executing them, it goes back to sleep, only to wake up the next minute.

To a create a crontab file,
First use an editor to create a crontab file say cron.txt



Next use crontab command to place the file in the directory containing crontab files.
crontab  will  create  a  file  with  filename  same  as  user  name  and  places  it  in
/var/spool/cron/crontabs directory.

Alternately you can use crontab with –e option.

You can see the contents of your crontab file with crontab –l and remove them with crontab –r.

The cron system is managed by the cron daemon. It gets information about which programs and 
when they should run from the system's and users' crontab entries. The crontab files are stored in
the file /var/spool/cron/crontabs/<user> where <user> is the login-id of the user. Only the root 
user has access to the system crontabs, while each user should only have access to his own 
crontabs.

A typical entry in crontab file
A typical entry in the crontab file of a user will have the following format. Minute 

hour day-of-month month-of-year day-of-week command

where, Time-Field Options are as follows: Field 
Range
-----------------------------------------------------------------------------------------------
minute 00 through 59 Number of minutes after the hour
hour 00 through 23 (midnight is 00)
day-of-month 01 through 31
month-of-year 01 through 12
day-of-week 01 through 07 (Monday is 01, Sunday is 07)
-----------------------------------------------------------------------------------------------
The first five fields are time option fields. You must specify all five of these fields. Use an 
asterisk (*) in a field if you want to ignore that field.

Examples:
00-10 17 * 3.6.9.12 5 find / -newer .last_time –print >backuplist

In the above entry, the find command will be executed every minute in the first 10 minutes after
5 p.m. every Friday of the months March, June, September and December of every year.

30 07 * * 01 sort /usr/wwr/sales/weekly |mail -s”Weekly Sales” srm

In the above entry, the sort command will be executed with /usr/www/sales/weekly as argument
and the output is mailed to a user named srm at 7:30 a.m. each Monday.

time: Timing Processes
The time command executes the specified command and displays the time usage on the 
terminal.
Example: You can find out the time taken to perform a sorting operation by preceding the sort 
command with time.

$ time sort employee.dat > 
sortedlist.dat real 0m29.811s user 
0m1.370s



sys 0m9.990s
where,the real time is the clock elapsed from the invocation of the command until its 
termination.
the user time shows the time spent by the program in executing itself.

the sys time indicates the time used by the kernel in doing work on behalf of a user 
process.The sum of user time and sys time actually represents the CPU time. This could be 
significantly less than the real time on a heavily loaded system.




