
 

 
 

 

 Maharaja Education Trust (R), Mysuru  

Maharaja Institute of Technology Mysore 

Belawadi, Sriranga Pattana Taluk, Mandya – 571 477 

 

Approved by AICTE, New Delhi,  
Affiliated to VTU, Belagavi & Recognized by Government of Karnataka 

 

 

 

 

 

 

 

 

Lecture Notes on 

OBJECT ORIENTED MODELING 
DESIGN(17CS551) 

 

Prepared by 

 

 

 

 

Department of Information Science and 
Engineering   

 



 

 
 

 
Maharaja Education Trust (R), Mysuru 

Maharaja Institute of Technology Mysore 

Belawadi, Sriranga Pattana Taluk, Mandya – 571 477 

 

 

Vision/ ಆಶಯ  

 “To be recognized as a premier technical and management institution promoting extensive 

education fostering research, innovation and entrepreneurial attitude" 

ಸಂಶೆ ೋಧನೆ, ಆವಿಷ್ಕಾರ ಹಕಗೂ ಉದ್ಯಮಶೋಲತೆಯನ್ನು ಉತೆತೋಜಿಸನವ ಅಗರಮಕನ್ಯ ತಕಂತ್ರರಕ ಮತ್ನತ ಆಡಳಿತ್ ವಿಜ್ಞಕನ್ 

ಶಕ್ಷಣ ಕೆೋಂದ್ರವಕಗಿ ಗನರನತ್ರಸಿಕೊಳ್ಳುವುದ್ನ.  

Mission/ ಧ್ಯೇಯ 

➢ To empower students with indispensable knowledge through dedicated teaching and 

collaborative learning. 

ಸಮರ್ಪಣಕ ಮನೊೋಭಕವದ್ ಬೊೋಧನೆ ಹಕಗೂ ಸಹಭಕಗಿತ್ವದ್ ಕಲಿಕಕಕರಮಗಳಿಂದ್ ವಿದ್ಕಯರ್ಥಪಗಳ್ನ್ನು ಅತ್ಯತ್ೃಷ್ಟ 

ಜ್ಞಕನ್ಸಂರ್ನ್ುರಕಗಿಸನವುದ್ನ. 

➢ To advance extensive research in science, engineering and management disciplines. 

ವೆೈಜ್ಞಕನಿಕ, ತಕಂತ್ರರಕ ಹಕಗೂ ಆಡಳಿತ್ ವಿಜ್ಞಕನ್ ವಿಭಕಗಗಳ್ಲಿಿ ವಿಸೃತ್ ಸಂಶೆ ೋಧನೆಗಳೊೆಡನೆ ಬೆಳ್ವಣಿಗೆ 

ಹೊಂದ್ನವುದ್ನ. 

➢ To facilitate entrepreneurial skills through effective institute - industry collaboration and 

interaction with alumni. 

ಉದ್ಯಮ ಕ್ೆೋತ್ಗಳೊೆಡನೆ ಸಹಯೋಗ, ಸಂಸ್ೆೆಯ ಹಿರಿಯ ವಿದ್ಕಯರ್ಥಪಗಳೊೆಂದಿಗೆ ನಿರಂತ್ರ ಸಂವಹನ್ಗಳಿಂದ್ ವಿದ್ಕಯರ್ಥಪಗಳಿಗೆ 

ಉದ್ಯಮಶೋಲತೆಯ ಕೌಶಲಯ ರ್ಡೆಯಲನ ನೆರವಕಗನವುದ್ನ. 

➢ To instill the need to uphold ethics in every aspect. 

ಜಿೋವನ್ದ್ಲಿಿ ನೆೈತ್ರಕ ಮೌಲಯಗಳ್ನ್ನು ಅಳ್ವಡಿಸಿಕೊಳ್ಳುವುದ್ರ ಮಹತ್ವದ್ ಕನರಿತ್ನ ಅರಿವು ಮೂಡಿಸನವುದ್ನ. 

 

➢ To mould holistic individuals capable of contributing to the advancement of the society. 

ಸಮಕಜದ್ ಬೆಳ್ವಣಿಗೆಗೆ ಗಣನಿೋಯ ಕೊಡನಗೆ ನಿೋಡಬಲಿ ರ್ರಿರ್ೂಣಪ ವಯಕ್ತತತ್ವವುಳ್ು ಸಮರ್ಪ ನಕಗರಿೋಕರನ್ನು 

ರೂಪಿಸನವುದ್ನ. 

 

 



 

 
 

 

 

        Maharaja Institute of Technology Mysore 
       Department of Information Science and Engineering 

 

 

 

VISION OF THE DEPARTMENT 

To be recognized as the best centre for technical education and research in the field of 

information science and engineering.  

 

MISSION OF THE DEPARTMENT 

➢ To facilitate adequate transformation in students through a proficient teaching 

learning process with the guidance of mentors and all-inclusive professional activities.   

➢ To infuse students with professional, ethical and leadership attributes through industry 

collaboration and alumni affiliation.      

➢ To enhance research and entrepreneurship in associated domains and to facilitate real 

time problem solving.  

➢  

PROGRAM EDUCATIONAL OBJECTIVES: 

➢ Proficiency in being an IT professional, capable of providing genuine solutions to 

information science problems. 

➢ Capable of using basic concepts and skills of science and IT disciplines to pursue 

greater competencies through higher education. 

➢ Exhibit relevant professional skills and learned involvement to match the 

requirements of technological trends. 

PROGRAM SPECIFIC OUTCOME: 

Student will be able to 

➢ PSO1: Apply the principles of theoretical foundations, data Organizations, 

networking concepts and data analytical methods in the evolving technologies. 

➢ PSO2:Analyse proficient algorithms to develop software and hardware 

competence in both professional and industrial areas  

 



 

 
 

 

        Maharaja Institute of Technology Mysore 
       Department of Information Science and Engineering 

 

 

Program Outcomes 

 

 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering 

problems.  

2. Problem analysis: Identify, formulate, review research literature, and analyze complex 

engineering problems reaching substantiated conclusions using first principles of 

mathematics, natural sciences, and engineering sciences.  

3. Design/development of solutions: Design solutions for complex engineering problems 

and design system components or processes that meet the specified needs with appropriate 

consideration for the public health and safety, and the cultural, societal, and environmental 

considerations.  

4. Conduct investigations of complex problems: Use research-based knowledge and 

research methods including design of experiments, analysis and interpretation of data, and 

synthesis of the information to provide valid conclusions.  

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modeling to complex engineering 

activities with an understanding of the limitations.  

6. The engineer and society: Apply reasoning informed by the contextual knowledge to 

assess societal, health, safety, legal and cultural issues and the consequent responsibilities 

relevant to the professional engineering practice.  

7. Environment and sustainability: Understand the impact of the professional engineering 

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need 

for sustainable development.  

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 

norms of the engineering practice.  

9. Individual and team work: Function effectively as an individual, and as a member or 

leader in diverse teams, and in multidisciplinary settings.  

10. Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and 

write effective reports and design documentation, make effective presentations, and give and 

receive clear instructions.  

11. Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a member and 

leader in a team, to manage projects and in multidisciplinary environments.  

12. Life-long learning: Recognize the need for, and have the preparation and ability to 

engage in independent and life-long learning in the broadest context of technological change. 

 

 



 

 
 

 

        Maharaja Institute of Technology Mysore 
       Department of Information Science and Engineering 

 

Course Overview 
 

SUBJECT:   OBJECT ORIENTED MODELING DESIGN               SUBJECT CODE: 17CS551 

 
 

 Object oriented approach to software development based on modeling objects from the real 

world & then using the model to build a language-independent design organized around those 

objects. Object-Oriented modeling & design (OOMD) promote better understanding of 

requirements, cleaner designs and more maintainable systems. We describe a set of object 

oriented concepts & graphical notation that can be used to analyze problem requirements, 

design a solution, & then implement the solution in programming language or database. This 

is used throughout the entire software development process. Object oriented technology 

provides a practical, productive way to develop software for most applications, regardless of 

the final implementation language. After final design process for software development 

model, an appropriate design pattern has to be chosen to facilitate the development 

procedure. Students will gain knowledge and able to apply these development design process 

and patterns to build a software development model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

Course Objectives 
 

• Describe the concepts involved in Object-Oriented modeling and their benefits.  

• Demonstrate concept of use-case model, sequence model and state chart model for a 

given problem.  

• Explain the facets of the unified process approach to design and build a Software system.  

• Translate the requirements into implementation for Object Oriented design.  

• Choose an appropriate design pattern to facilitate development procedure. 

Course Outcomes 

CO’s DESCRIPTION OF THE OUTCOMES 

17CS551.1 Apply basic concepts of Object Oriented models to design solutions.  

  

  

  

  
 

17CS551.2 Construct class diagram, use case diagram, sequence diagrams, activity diagrams and 

interaction diagrams for designing software systems. 

17CS551.3 Analyze class modeling, use case modeling, processes, domain analysis, and design 

patterns to develop simple systems. 

17CS551.4 Examine the class modeling, use case modeling, processes, domain analysis, and design 

patterns to interpret real world problems.  

17CS551.5 Evaluate the description of given pattern and design solution to real world problems 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

        Maharaja Institute of Technology Mysore 
       Department of Information Science and Engineering 

Syllabus 
SUBJECT:   OOMD                                                      SUBJECT CODE: 17CS551 

Topics Covered as per Syllabus 
Teaching 
Hours 

MODULE-1 

What is Object orientation? What is Object-Oriented development? Object-Oriented Themes, 

Evidence for the usefulness of Object-Oriented development, Object-Oriented modeling 

history.Modeling, abstraction, Object and Class Concept. Link and associations concepts, 

Generalization and Inheritance. 

 

 

 

10 Hours 

MODULE-2 

Overview of UseCase Modelling and Detailed Requirements. Detailed Requirements definitions of 

object-oriented design.  

Identifying Input and outputs, Object Behaviour. The System sequence diagram  

 

 

 10 Hours 

MODULE -3 

System Conception and Domain Analysis. Development stages, Life Cycle, and System Conception.  

Devising a system, elaborating a concept and preparing an object-oriented design problem 

statement.  

Overview of domain analysis, Class model, interaction model and Iterating the analysis  

 
 
 

   10 

Hours 

MODULE-4 

The Design Discipline within up iterations. The Bridge between Requirements and Implementation.  

Design Classes and Design within Class Diagrams. Interaction Diagrams-Realizing Use Case and 
defining methods. Designing with Communication Diagrams  

 
 

   10 

Hours 

MODULE-5 

Introduction to Design Patterns. what is a design pattern? Describing, the catalog, Organizing the 

catalog, How design patterns solve design problems.  

how to select a design pattern, how to use a design pattern.  

 
 
 

   10 

Hours 

List of  Text Books 

1. Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML,2nd Edition,  
Pearson Education,2005  

4. Satzinger, Jackson and Burd: Object-Oriented Analysis & Design with the Unified Process,  

Cengage Learning, 2005.  

5. Erich Gamma, Richard Helm, Ralph Johnson and john Vlissides: Design Patterns –Elements of  

Reusable Object-Oriented Software, Pearson Education,2007.  
List of Reference Books 
1. Grady Booch et. al.: Object-Oriented Analysis and Design with Applications,3rd Edition,Pearson  

Education,2007.  

2. 2.Frank Buschmann, RegineMeunier, Hans Rohnert, Peter Sommerlad, Michel Stal: Pattern –  

Oriented Software Architecture. A system of patterns , Volume 1, John Wiley and Sons.2007.  

3. 3. Booch, Jacobson, Rambaugh : Object-Oriented Analysis and Design with Applications, 3rd  

edition, pearson, Reprint 2013  



 

 
 

 

        Maharaja Institute of Technology Mysore 
       Department of Information Science and Engineering 

 

Index 

 

SUBJECT:  OOMD SUBJECT                                                                CODE: 17CS551 

Module-2 Pg no 

1. Overview of UseCase Modelling and Detailed Requirements 33-41 

2. System sequence diagram 42-80 

Module-3 Pg no 

1. System Conception and Domain Analysis 81-89 

2. Overview of domain analysis 89-95 

Module-4 Pg no 

1. Design Discipline within up iterations 95-110 

2. Designing with Communication Diagrams 111-132 

Module-5 Pg no 

 1. Introduction to Design Patterns 133-140 

 2. how to use a design pattern. 141-148 

 

 

 

 Module-1 Pg no 

1.  Object orientation 1-18 

2. Object-Oriented modeling history.Modeling 19-32 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 1 

 

Module 1: INTRODUCTION, MODELING CONCEPTS, CLASS 

MODELING: 

 
What is object orientation? 

What is oo development? 

Oo themes 

Evidence for usefulness of oo development 

Oo modeling history 

Modeling 

Abstraction 

The tree models 

Objects and class concepts 

Link and association concepts 

Generalization and inheritance 

A sample class model 

Navigation of class models 

Practical tips 

 
 

INTRODUCTION 

Note 1: 

Intention of this subject (object oriented modeling and design) is to learn how to 

apply object -oriented concepts to all the stages of the software development life 

cycle. 

Note 2: 

Object-oriented modeling and design is a way of thinking about problems using 

models organized around real world concepts. The fundamental construct is the 

object, which combines both data structure and behavior. 

WHAT IS OBJECT ORIENTATION? 

Definition: OO means that we organize software as a collection of discrete 

objects (that incorporate both data structure and behavior). 

Thereare fouraspects(characteristics) required by an OOapproacho 

Identity. 

Classification. 

Inheritance. 

Polymorphism. 

Identity: 

Identity means that data is quantized into discrete, distinguishable entities 

called objects. 

E.g. for objects: personal computer, bicycle, queen in chess etc. 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 5 

 

Objects can be concrete (such as a file in a file system) or conceptual (such 

as scheduling policy in a multiprocessing OS). Each object has its own inherent 

identity. (i.e two objects are distinct even if all their attribute values are identical). 

In programming languages, an object is referenced by a unique handle. 

Classification: 

Classification means that objects with the same data structure (attribute) and 

behavior (operations) are grouped into a class. 

E.g. paragraph, monitor, chess piece. 

Each object is said to be an instance of its class. 

Fig below shows objects and classes: Each class describes a possibly infinite 

set of individual objects. 

 

Inheritance: 

It is the sharing of attributes and operations (features) among classes based 

on a hierarchical relationship. A super class has general information that sub classes 

refine and elaborate. 

E.g. Scrolling window and fixed window are sub classes of window. 

Polymorphism: 

Polymorphism means that the same operation may behave differently for 

different classes. 

For E.g. move operation behaves differently for a pawn than for the queen in 

a chess game. 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 6 

 

Note: An operation is a procedure/transformation that an object performs or is 

subjected to. An implementation of an operation by a specific class is called a 

method. 

WHAT IS OO DEVELOPMENT? 
 

 

 

 

 

Development refers to the software life cycle: Analysis, Design and 

Implementation. The essence of OO Development is the identification and 

organization of application concepts, rather than their final representation in a 

programming language. It’s a conceptual process independent of programming 

languages. OO development is fundamentally a way of thinking and not a 

programming technique. 

OO methodology 

Here we present a process for OO development and a graphical notation for 

representing OO concepts. The process consists of building a model of an application 

and then adding details to it during design. 

The methodology has the following stages 

System conception: Software development begins with business analysis or 

users conceiving an application and formulating tentative requirements. 

Analysis: The analyst scrutinizes and rigorously restates the requirements 

from the system conception by constructing models. The analysis model is a concise, 

precise abstraction of what the desired system must do, not how it will be done. 

The analysis model has two parts- 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 7 

 

 
system. 

Domain Model- a description of real world objects reflected within the 

 
Application Model- a description of parts of the application system itself 

that are visible to the user. 

E.g. In case of stock broker application- 

Domain objects may include- stock, bond, trade & commission. 

Application objects might control the execution of trades and present the 

results. 

System Design: The development teams devise a high-level strategy- The 

System Architecture- for solving the application problem. The system designer 

should decide what performance characteristics to optimize, chose a strategy of 

attacking the problem, and make tentative resource allocations. 

Class Design: The class designer adds details to the analysis model in 

accordance with the system design strategy. His focus is the data structures and 

algorithms needed to implement each class. 

Implementation: Implementers translate the classes and relationships 

developed during class design into a particular programming language, database or 

hardware. During implementation, it is important to follow good software 

engineering practice. 

Three models 

We use three kinds of models to describe a system from different view points. 

1. Class Model—for the objects in the system & their relationships. 

It describes the static structure of the objects in the system and their 

relationships. 

Class model contains class diagrams- a graph whose nodes are classes and arcs 

are relationships among the classes. 

2. State model—for the life history of objects. 

It describes the aspects of an object that change over time. It specifies and 

implements control with state diagrams-a graph whose nodes are states and whose 

arcs are transition between states caused by events. 

3. Interaction Model—for the interaction among objects. 

It describes how the objects in the system co-operate to achieve broader results. 

This model starts with use cases that are then elaborated with sequence and activity 

diagrams. 

Use case – focuses on functionality of a system – i.e what a system does for 

users. 

Sequence diagrams – shows the object that interact and the time sequence of their 

interactions. 

Activity diagrams – elaborates important processing steps. 

 
THEMES 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 8 

 

 

Several themes pervade OO technology. Few are – 

Abstraction 

Abstraction lets you focus on essential aspects of an application while 

ignoring details i.e focusing on what an object is and does, before deciding how to 

implement it. 

It’s the most important skill required for OO development. 

Encapsulation (information hiding) 

It separates the external aspects of an object (that are accessible to other 

objects) from the internal implementation details (that are hidden from other objects) 

Encapsulation prevents portions of a program from becoming so 

interdependent that a small change has massive ripple effects. 

3. Combining data and behavior 

Caller of an operation need not consider how many implementations exist. 

In OO system the data structure hierarchy matches the operation inheritance 

hierarchy (fig). 

 

 
Sharing 

OO techniques provide sharing at different levels. 

Inheritance of both data structure and behavior lets sub classes share 

common code. 

OO development not only lets you share information within an application, 

but also offers the prospect of reusing designs and code on future projects. 

5. Emphasis on the essence of an object 

OO development places a greater emphasis on data structure and a lesser 

emphasis on procedure structure than functional-decomposition methodologies. 

6. Synergy 

Identity, classification, polymorphism and inheritance characterize OO 

languages. 
 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 9 

 

 

Each of these concepts can be used in isolation, but together they 

complement each other synergistically. 

 
MODELLING AS A DESIGN TECHNIQUE 

Note: A model is an abstraction of something for the purpose of understanding it 

before building it. 

MODELLING 

Designers build many kinds of models for various purposes before constructing things. 

 
Models serve several purposes– 

Testing a physical entity before building it: Medieval built scale models of 

Gothic Cathedrals to test the forces on the structures. Engineers test scale models of 

airplanes, cars and boats to improve their dynamics. 

Communication with customers: Architects and product designers build 

models to show their customers (note: mock-ups are demonstration products that 

imitate some of the external behavior of a system). 

Visualization: Storyboards of movies, TV shows and advertisements let 

writers see how their ideas flow. 

Reduction of complexity: Models reduce complexity to understand directly 

by separating out a small number of important things to do with at a time. 

ABSTRACTION 

Abstraction is the selective examination of certain aspects of a problem. 

The goal of abstraction is to isolate those aspects that are important for some purpose 

and suppress those aspects that are unimportant. 

THE THREE MODELS 

Class Model: represents the static, structural, “data” aspects of a system. 

It describes the structure of objects in a system- their identity, their 

relationships to other objects, their attributes, and their operations. 

Goal in constructing class model is to capture those concepts from the real 

world that are important to an application. 

Class diagrams express the class model. 

State Model: represents the temporal, behavioral, “control” aspects of a 

system. 

State model describes those aspects of objects concerned with time and the 

sequencing of operations – events that mark changes, states that define the context 

for events, and the organization of events and states. 

State diagram express the state model. 

Each state diagram shows the state and event sequences permitted in a 

system for one class of objects. 

State diagram refer to the other models. 
 

 
 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

 

 

Actions and events in a state diagram become operations on objects in the 

class model. References between state diagrams become interactions in the 

interaction model. 

3. Interaction model – represents the collaboration of individual objects, the 

“interaction” aspects of a system. 

Interaction model describes interactions between objects – how individual 

objects collaborate to achieve the behavior of the system as a whole. 

The state and interaction models describe different aspects of behavior, and 

you need both to describe behavior fully. 

Use cases, sequence diagrams and activity diagrams document the interaction 

model. 

CLASS MODELLING 

Note: A class model captures the static structure of a system by characterizing the 

objects in the system, the relationships between the objects, and the attributes and 

operations for each class of objects. 

OBJECT AND CLASS 

CONCEPT Objects 

Purpose of class modeling is todescribe objects. 

Anobject is a concept, abstraction or thing with identity that has meaning for an 

application. 

Ex: Joe Smith, Infosys Company, process number 7648 and top window are objects. 

Classes 

An object is an instance or occurrence of a class. 

Aclass describes a group of objects with the same properties (attributes), behavior 

(operations), kinds of relationships and semantics. 

Ex: Person, company, process and window are classes. 

Note: All objects have identity and are distinguishable. Two apples with same color, 

shape and texture are still individual apples: a person can eat one and then the other. 

The term identity means that the objects are distinguished by their inherent existence 

and not by descriptive properties that they may have. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Dept. of ISE, Page 10 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 11 

 

CLASS MODELLING 

OBJECT AND CLASS CONCEPT 

An object has three characteristics: state, 

behavior and a unique identification. or 
An object is a concept, abstraction or 
thing with identity that has meaning for 
an application. Eg: 

Note: The term 

identity means that 

the objects are 

distinguished by their 

inherent existence 

and not by descriptive 

properties that they 

may have. 

 
Class diagrams 

Class diagrams provide a graphic notation for modeling classes and their 

relationships, thereby describing possible objects. 

Note: An object diagram shows individual objects and their relationships. 

Useful for documenting test cases and discussing examples. 

Class diagrams are useful both for abstract modeling and for designing actual 

programs. 

Note: A class diagram corresponds to infinite set of object diagrams. 

Figure below shows a class (left) and instances (right) described by it. 

Conventions used (UML): 

UML symbol for both classes and objects is box. 

Objects are modeled using box with object name followed by colon followed 

by class name. 

Use boldface to list class name, center the name in the box and capitalize the 

first letter. Use singular nouns for names of classes. 

To run together multiword names (such as JoeSmith), separate the words 

with 

intervening capital letter. 

Values and Attributes: 

Value is a piece of data. 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 12 

 

Attribute is a named property of a class that describes a value held by each object of 

the class. 

Following analogy holds: 

Object is to class as value is to attribute. 

E.g. Attributes: Name, bdate, weight. 

Values: JoeSmith, 21 October 1983, 64. (Of person object). 

Fig shows modeling notation 

Conventions used (UML): 

List attributes in the 2nd compartment of the class box. Optional details (like 

default value) may follow each attribute. 

A colon precedes the type, an equal sign precedes default value. 

Show attribute name in regular face, left align the name in the box and use 

small case for the first letter. 

Similarly we may also include attribute values in the 2nd compartment of object 

boxes with same conventions. 

Note: Do not list object identifiers; they are implicit in models. 

E.g. 

An operation is a function or procedure that maybe applied to or by objects in a 

class. 

E.g. Hire, fire and pay dividend are operations on Class Company. Open, close, hide 

and redisplay are operations on class window. 

Amethod is the implementation of an operation for a class. 

E.g. In class file, print is an operation you could implement different methods to 

print files. 

Note: Same operation may apply to many different classes. Such an operation is 

polymorphic. 

Fig shows modeling notation. 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

 

 

UML conventions used – 

List operations in 3rd compartment of class box. 

List operation name in regular face, left align and use lower case for first 

letter. 

name. 

Optional details like argument list and return type may follow each operation 

Parenthesis enclose an argument list, commas separate the arguments. A 

colon precedes the result type. 

Note: We do not list operations for objects, because they do not vary among 

objects of same class. 

Summary of Notation for classes 

Fig: Summary of modeling notation for classes 

 

Fig: Notation for an argument of an operation 
 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Dept. of ISE, Page 13 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 14 

CardReader 
Jukebox 

CDCollection 

 

SongSelector 

 

 

Class Digarms: Relationships 

Classes can related to each other 
through different relationships: 

– Dependency 

 

– Association (delegation) Class1 

 

– Generalization (inheritance) 

 

– Realization (interfaces) 
 
 
 

 

Dependency: A Uses Relationship 

Dependencies 

– occurs when one object depends on another 

 
– if you change one object's interface, you 

need to change the dependent object 

 
– arrow points from dependent to needed 

objects 

 

Class1 Class2 

Base sub 

Base sub 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 15 

 

 
 
 

LINK AND ASSOCIATION CONCEPTS 

Note: Links and associations are the means for establishing relationships among 

objects and classes. 

Links and associations 

Alink is a physical or conceptual connection among objects. 

E.g. JoeSmith WorksFor Simplex Company. 

Mathematically, we define a link as a tuple– that is, a list of objects. 

A link is an instance of anassociation. 

Anassociation is a description of a group of links with common structure and 

common semantics. 

E.g. a person WorksFor a company. 

An association describes a set of potential links in the same way that a class describes 

a set of potential objects. 

Fig shows many-to-many association (model for a financial application). 

Conventions used (UML): 

Link is a line between objects; a line may consist of several line 

segments. If the link has the name, it is underlined. 

Association connects related classes and is also denoted by a line. 

Show link and association names in italics. 

Note: 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 16 

 

 

Association name is optional, if the model is unambiguous. Ambiguity arises 

when a model has multiple associations among same classes. 

Developers often implement associations in programming languages as 

references from one object to another. A reference is an attribute in one object that 

refers to another object. 
 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 17 

 
 

Multiplicity 

Multiplicity specifies the number of instances of one class that may relate to a 

single instance of an associated class. Multiplicity constrains the number of related 

objects. 

UML conventions: 

UML diagrams explicitly lists multiplicity at the ends of association lines. 

UML specifies multiplicity with an interval, such as 

“1” (exactly one). 

“1..”(one or more). 

“3..5”(three to five, inclusive). 

“ * ” ( many, i.e zero or more). 

 

notations 

 

exactly one 
 

many 

(zero or more) 
 

0..1 optional 

(zero or one) 

numerically 
m..n

 Class  Specified 

Example:  
0..* 

(m to n, inclucive) 

Course  CourseOffering 
1 

1
 Class  

0..*
 Class  

  Class  



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 18 

 

Previous figure illustrates many-to-many multiplicity. Below figure illustrates 

one-to-one multiplicity. 

Below figure illustrateszero-or-one multiplicity. 

 

Note 1: Association vs Link. 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 19 

 

 
One-to-many 
– Inventory has many items, items know 1 inventory 

 

Multiplicity of Associations 
Many-to-one 

– Bank has many ATMs, ATM knows only 1 bank 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 20 

Teacher 
1 Teaches 1..3 

Course 

1..5 

Students 
Takes 

10..300 

 

Association 
–

- Multiplicityli ity 
A teacher teaches 1 to 3 courses (subjects) 

Each course is taught by only one teacher. 

A student can take between 1 to 5 courses. 

A course can have 10 to 300 students. 

 

 

 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 21 

 
 

Note 2: Multiplicity vs Cardinality. 

Multiplicity is a constraint on the size of a collection. 

Cardinality is a count of elements that are actually in a 

collection. Therefore, multiplicity is a constraint on cardinality. 

Note 3: The literature often describes multiplicity as being “one” or “many”, 

but more generally it is a subset of the non negative numbers. 

Association end names 

Multiplicity implicitly refers to the ends of associations. For E.g. A one-to-many 

association has two ends – 

an end with a multiplicity of “one” 

an end with a multiplicity of “many” 

You can not only assign a multiplicity to an association end, but you can give it a 

name as well. 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 22 

 

 

A person is an employee with respect to company. 

A company is an employer with respect to a person. 

Note 1: Association end names are optional. 

Note 2: Association end names are necessary for associations between two objects 

of the same class. They can also distinguish multiple associations between a pair of 

classes. 

E.g. each directory has exactly one user who is an owner and many users who are 

authorized to use the directory. When there is only a single association between a 

pair of distinct classes, the names of the classes often suffice, and you may omit 

association end names. 

Note 3: Association end names let you unify multiple references to the same class. 

When constructing class diagrams you should properly use association end names 

and not introduce a separate class for each reference as below fig shows. 

 

 

 
Sometimes, the objects on a “many” association end have an explicit order. 

E.g. Workstation screen containing a number of overlapping windows. Each window 

on a screen occurs at most once. The windows have explicit order so only the top 

most windows are visible at any point on the screen. 

Ordering is an inherent part of association. You can indicate an ordered set of 

objects by writing “{ordered}” next to the appropriate association end. 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 23 

 

 

Fig: ordering sometimes occurs for “many” multiplicity 

Bags and Sequences 

Normally, a binary association has at most one link for a pair of objects. 

However, youcanpermitmultiplelinks forapairofobjectsbyannotating an 

association end with {bag} or {sequence}. 

Abag is a collection of elements with duplicates allowed. 

Asequence is an ordered collection of elements with duplicates allowed. 

Example: 

fig: an itinerary may visit multiple airports, so you should use {sequence} and 

not {ordered} 

Note: {ordered} and {sequence} annotations are same, except that the first 

disallows duplicates and the other allows them. 

Association classes 

Anassociation class is an association that is also a class. 

Like the links of an association, the instances of an association class derive identity 

from instances of the constituent classes. 

Like a class, an association class can have attributes and operations and participate in 

associations. 

Ex: 

UML notation for association class is a box attached to the association by a 

dashed line. 

Note: Attributes for association class unmistakably belong to the link and cannot 

be ascribed to either object. In the above figure, accessPermission is a joint property 

of File and user cannot be attached to either file or user alone without losing 

information. 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 24 

 

Below figure presents attributes for two one-to-many relationships. Each person 

working for a company receives a salary and has job title. The boss evaluates the 

performance of each worker. Attributes may also occur for one-to-one associations. 

Note 1: Figure shows how it’s possible to fold attributes for one-to-one and one- 

to-many associations into the class opposite a “one” end. This is not possible for 

many-to-many associations. 

As a rule, you should not fold such attributes into a class because the multiplicity of 

the association may change. 

Note 2: An association class participating in an association. 

 

Note 3: Association class vs ordinary class. 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

 

 

eg: 

 

Qualified associations 

A Qualified Association is an association in which an attribute called the 

qualifier disambiguates the objects for a “many” association ends. It is possible to 

define qualifiers for one-to-many and many-to-many associations. 

A qualifier selects among the target objects, reducing the effective multiplicity from 

“many” to “one”. 

Ex 1: qualifier for associations with one to many multiplicity. A bank services 

multiple accounts. An account belongs to single bank. Within the context of a bank, 

the Account Number specifies a unique account. Bank and account are classes, and 

Account Number is a qualifier. Qualification reduces effective multiplicity of this 

association from one-to-many to one-to-one. 
 

 

 

Dept. of ISE, Page 25 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 26 

 

 

Fig: qualification increases the precision of a model. (note: however, both are 

acceptable) 

Ex 2: a stock exchange lists many companies. However, it lists only one company 

with a given ticker symbol. A company maybe listed on many stock exchanges, 

possibly under different symbols. 

 

Eg 3: Qualified Association 
 

 

 
 
 

eg 4: 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 27 

 

 

GENERALIZATION AND INHERITANCE 

 
Generalization is the relationship between a class (the superclass) and one or 

more variations of the class (the subclasses). Generalization organizes classes by 

their similarities and differences, structuring the description of objects. 

The superclass holds common attributes, operations and associations; the 

subclasses add specific attributes, operations and associations. Each subclass is said 

to inherit the features of its superclass. 

There can bemultiple levels of generalization. 

Fig(a) and Fig(b) (given in the following page) shows examples of generalization. 

Fig(a) – Example of generalization for equipment. 

Each object inherits features from one class at each level of generalization. 

UML convention used: 

Use large hollow arrowhead to denote generalization. The arrowhead points to 

superclass. 

Fig(b) – inheritance for graphic figures. 

The word written next to the generalization line in the diagram (i.e dimensionality) is 

a generalization set name. A generalization set name is an enumerated attribute that 

indicates which aspect of an object is being abstracted by a particular generalization. 

It is optional. 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 28 

 

 
 

Fig(a) 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 29 

 

 

Fig (b) 

‘move’, ‘select’, ‘rotate’, and ‘display’ are operations that all subclasses inherit. 

‘scale’ applies to one-dimensional and two-dimensional figures. 

‘fill’ applies only to two-dimensional figures. 

Use of generalization: Generalization has three purposes – 

To support polymorphism: You can call an operation at the superclass 

level, and the OO language complier automatically resolves the call to the method 

that matches the calling object’s class. 

To structure the description of objects: i.e to frame a taxonomy and 

organizing objects on the basis of their similarities and differences. 

To enable reuse of code: Reuse is more productive than repeatedly writing 

code from scratch. 

Note: The terms generalization, specialization and inheritance all refer to aspects 

of the same idea. 

Overriding features 

A subclass may override a superclass feature by defining a feature with the same name. 

The overriding feature (subclass feature) refines and replaces the overridden feature 

(superclass feature) . 

Why override feature? 

To specify behavior that depends on subclass. 

To tighten the specification of a feature. 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 30 

 

To improve performance. 

In fig(b) (previous page) each leaf subclasses had overridden ‘display’ feature. 

Note: You may override methods and default values of attributes. You should 

never override the signature, or form of a feature. 

A SAMPLE CLASS MODEL 

 
NAVIGATION OF CLASS MODELS 

Class models are useful for more than just data structure. In particular, navigation of 

class model lets you express certain behavior. Furthermore, navigation exercises a 

class model and uncovers hidden flaws and omission, which you can then repair. 

UML incorporates alanguage that canbe used fornavigation, the objectconstraint 

language(OCL). 

OCL constructs for traversing class models 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 31 

 

 

OCL can traverse the constructs in class models. 

Attributes: You can traverse from an object to an attribute value. 

Syntax: source object followed by dot and then attribute name. 

Ex: aCreditCardAccount.maximumcredit 

Operations: You can also invoke an operation for an object or collection of 

objects. Syntax: source object or object collection, followed by dot and then the 

operation followed by parenthesis even if it has no arguments. OCL has special 

operations that operate on entire collections (as opposed to operating on each object 

in a collection). Syntax for collection operation is: source object collection followed 

by “->”, followed by the operation. 

Simple associations: Dot notation is also used to traverse an association to a 

target end. Target end maybe indicated by an association end name, or class name ( 

if there is no ambiguity). 

Ex: refer fig in next page. 

➢ aCustomer.MailingAddress yields a set of addresses for a customer ( the 

target end has “many” multiplicity). 

➢ aCreditCardAccount.MailingAddress yields a single address( the target 

end has multiplicity of “one”). 

Qualified associations: The expression aCreditCardAccount.Statement [30 

November 1999] finds the statement for a credit card account with the statement date 

of November 1999. The syntax is to enclose the qualifier value in brackets. 

Associations classes: Given a link of an association class, you can find the 

constituent objects and vice versa. 

Generalization: Traversal of a generalization hierarchy is implicit for the 

OCL notation. 

Filters: Most common filter is ‘select’ operation. 

Ex: aStatement.Transaction->select(amount>$100). 

Examples of OCL expressions 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module1 

 

 

 

P a g e  | 32 

 

Write an OCL expressionfor– 

What transactions occurred for a credit card account within a time 

interval? 

Soln: aCreditCardAccount.Statement.Transaction - 

> select(aStartDate<=TransactionDate and 

TransactionDate<=anEndDate) 

What volumes of transactions were handled by an institution in the last 

year? 

Soln: anInstitution.CreditCardAccount.Statement.Transaction -> 

select(aStartDate<=TransactionDate and TransactionDate<=anEndDate).amount- 

>sum( ) 

What customers patronized a merchant in the last year by any kind of 

credit card? 

Soln: aMerchant.Purchase -> select(aStartDate<=TransactionDate 

andtransactionDate<=anEndDate).Statement.CreditCardAccount.MailingAddress.Cu 

stomer ->asset( ) 

How many credit card accounts does a customer currently have? 

Soln: aCustomer.MailingAddress.CreditCardAccount -> size( ) 

What is the total maximum credit for a customer for all accounts? Soln: 

acustomer.MailingAddress.CreditCardAccount.Maximumcredit -> sum( ) 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module2 

 

 

P a g e  | 33 

 

Module 2: Advanced Class Modeling 6 Hours 

Toipics : 

Advanced object and class concepts 

Asoociation ends 

N-ary association 

Aggregation 

Abstract classes 

Multiple inheritance 

Metadata 

Reification 

Constraints 

Derived data 

Packages 

2.1 Advanced object and class concepts 

2.1.1 Enumerations 

A data type is a description of values, includes numbers, strings, 

enumerations Enumerations: A Data type that has a finite set of values. 

 
When constructing a model, we should carefully note enumerations, because they 

often occur and are important to users. 

Enumerations are also significant for an implantation; we may display the possible 

values with a pick list and you must restrict data to the legitimate values. 

Do not use a generalization to capture the values of an Enumerated attribute. 

An Enumeration is merely a list of values; generalization is a means for structuring 

the description of objects. 

Introduce generalization only when at least one subclass has significant attributes, 

operations, or associations that do not apply to the superclass. 

In the UML an enumeration is a data type. 

We can declare an enumeration by listing the keyword enumeration in guillemets 

(<< >>) above the enumeration name in the top section of a box. The second section 

lists the enumeration values. 

Eg: Boolean type= { TRUE, FALSE} 

➢ Eg: figure.pentype  - - - - - -------- 

Two diml.filltype 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module2 

 

 

P a g e  | 34 

 

 

 
 
 

Wrong 

 
 
 
 
 
 
 
 
 

 
Correct 

 
 
 
 
 

Modeling enumerations. Do not use a generalization to capture the 
values of an enumerated attribute 

2.1.2 Multiplicity 

Multiplicity is a collection on the cardinality of a set, also applied to attributes 

(database application). 

Multiplicity of an attribute specifies the number of possible values for each 

instantiation of an attribute. i.e., whether an attribute is mandatory ( [1] ) or an 

optional value ( [0..1] or * i.e., null value for database attributes ) . 

Multiplicity also indicates whether an attribute is single valued or can be a 

collection. 

2.1.3 Scope 

Scope indicates if a feature applies to an object or a class. 

An underline distinguishes feature with class scope (static) from those with object 

scope. 

Our convention is to list attributes and operations with class scope at the top of the 

attribute and operation boxes, respectively. 

 
Card 

rank: rank 

suit: suit 

<<enumeration>> 

Suit 

Clubs 
Hearts 
Diamonds 
Spades 

<<enumeration>> 

Rank 

King 

Queen 

….. 

Card 
rank 

Spades Clubs Hearts Diamonds 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module2 

 

 

P a g e  | 35 

 

It is acceptable to use an attribute with class scope to hole the extent of a class (the 

set of objects for a class) - this is common with OO databases. Otherwise, you  

should avoid attributes with class scope because they can lead to an inferior model. 

It is better to model groups explicitly and assigns attributes to them. 

In contrast to attributes, it is acceptable to define operations of class scope. The most 

common use of class-scoped operations is to create new instances of a class, 

sometimes for summary data as well. 

2.1.4 Visibility 

Visibility refers to the ability of a method to reference a feature from another class 

and has the possible values of public, protected, private, and package. 

Any method can access public features. 

Only methods of the containing class and its descendants via inheritance can access 

protected features. 

Only methods of the containing class can access private features. 

Methods of classes defined in the same package as the target class can access 

package features 

The UML denotes visibility with a prefix. “+” public, “-” private, 

“#”protected, “~” package. Lack of a prefix reveals no information 

aboutvisibility. 

Several issues to consider when choosing visibility are 

Comprehension: understand all public features to understand the capabilities of a 

class. In contrast we can ignore private, protected, package features – they are 

merely an implementation convince. 

Extensibility: many classes can depend on public methods, so it can be highly 

disruptive to change their signature. Since fewer classes depend on private, 

protected, and package methods, there is more latitude to change them. 

Context: private, protected, and package methods may rely on preconditions or state 

information created by other methods in the class. Applied out of context, a private 

method may calculate incorrect results or cause the object to fail. 

2.2 Associations ends 

Association End is an end of association. 

A binary association has 2 ends; a ternary association has 3 ends. 

2.3 N-ary Association 

We may occasionally encounter n-ary associations (association among 3 or more 

classes). But we should try to avoid n-ary associations- most of them can be 

decomposed into binary associations, with possible qualifiers and attributes. 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module2 

 

 

P a g e  | 36 

Person 

1 
1 

Car 
 
inventoryI 

D 
Make 

model 

* Bank 

bankID 

bNam e 

Finance 

loanAmou 
nt 

 
 

 
 

 

 

 
 

 

➢ 

The UML symbol for n-ary associations is a diamond with lines connecting to 

related classes. If the association has a name, it is written in italics next to the 

diamond. 

The OCL does not define notation for traversing n-ary associations. 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module2 

 

 

P a g e  | 37 

 

A typical programming language cannot express n-ary associations. So, promote n- 

ary associations to classes. Be aware that you change the meaning of a model, when 

you promote n-ary associations to classes. 

An n-ary association enforces that there is at most one link for each combination. 

Instance see prescribed text book page no. 65 and fing no. 4.6 

Diagram 

2.4 Aggregation 

Aggregation is a strong form of association in which an aggregate object is made of 

constituent parts. 

Constituents are the parts of aggregate. 

The aggregate is semantically an extended object that is treated as a unit in many 

operations, although physically it is made of several lesser objects. 

We define an aggregation as relating an assembly class to one constituent part class. 

 
An assembly with many kinds of constituent parts corresponds to many 

aggregations. 

We define each individual pairing as an aggregation so that we can specify the 

multiplicity of each constituent part within the assembly. This definition emphasizes 

that aggregation is a special form of binary association. 

The most significant property of aggregation is transitivity (if A is part of B and B is 

part of C, then A is part of C) and antisymmetric (if A is part of B then B is not part 

of A) 

 

2.4.1 Aggregation versus Association 

Aggregation is a special form of association, not an independent concept. 

Aggregation adds semantic connotations. 

If two objects are tightly bound by a part-whole relationship, it is an aggregation. If 

the two objects are usually considered as independent, even though they may often 

be linked, it is an association. 

Aggregation is drawn like association, except a small (hollow) diamond indicates the 

assembly end. 



Maharaja Institute of Technology Mysore 
Department of ISE 

OOMD Module2 

 

 

P a g e  | 38 

 

The decision to use aggregation is a matter of judgment and can be arbitrary. 

2.4.2 Aggregation versus Composition 

The UML has 2 forms of part-whole relationships: a general form called 

Aggregation and a more restrictive form called composition. 

Composition is a form of aggregation with two additional constraints. 

A constitute part can belong to at most one assembly. 

Once a constitute part has been assigned an assembly, it has a coincident lifetime 

with the assembly. Thus composition implies ownership of the parts by the whole. 

This can be convenient for programming: Deletion of an assembly object triggers 

deletion of all constituent objects via composition. 

Notation for composition is a small solid diamond next to the assembly class. 

Eg: see text book examples also 



OOMD Module2 

MOabhjearcatjaOIrnisetnittuetde oMf ToedchenlionloggyanMdysDoreesign 
Depa1rt0mCeSnt7o1f ISE 

 

 

P a g e  | 39 

 
 

 
 

2.4.3 Propagation of Operations 

Propagation (triggering) is the automatic application of an operation to a network of 

objects when the operation is applied to some starting object. 

For example, moving an aggregate moves its parts; the move operation propagates to 

the parts. 

Provides concise and powerful way of specifying a continuum behavior. 

Propagation is possible for other operations including save/restore, destroy, print, 

lock, display. 

Notation (not an UML notation): a small arrow indicating the direction and 

operation name next to the affected association. 

Eg: see page no: 68 fig: 4.11 

2.5 Abstract Classes 

Abstract class is a class that has no direct instances but whose descendant classes 

have direct instances. 

A concert class is a class that is insatiable; that is, it can have direct instances. 

A concrete class may have abstract class. 

Only concrete classes may be leaf classes in an inheritance 

tree. Eg: see text book page no: 69, 70 fig: 4.12, 4.13,4.14 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 40 

 

In UML notation an abstract class name is listed in an italic (or place the keyword 

{abstract} below or after the name). 

We can use abstract classes to define the methods that can be inherited by 

subclasses. 

Alternatively, an abstract class can define the signature for an operation with out 

supplying a corresponding method. We call this an abstract operation. 

Abstract operation defines the signature of an operation for which each concrete 

subclass must provid4 its own implementation. 

A concrete class may not contain abstract operations, because objects of the concrete 

class would have undefined operations. 

2.6 Multiple Inheritance 

Multiple inheritance permits a class to have more than one superclass and to inherit 

features from all parents. 

We can mix information from 2 or more sources. 

This is a more complicated from of generalization than single inheritance, which 

restricts the class hierarchy to a tree. 

The advantage of multiple inheritance is greater power in specifying classes and an 

increased opportunity for reuse. 

The disadvantage is a loss of conceptual and implementation simplicity. 

The term multiple inheritance is used somewhat imprecisely to mean either the 

conceptual relationship between classes or the language mechanism that implements 

that relationship. 

2.6.1 Kinds of Multiple Inheritance 

The most common form of multiple inheritance is from sets of disjoint classes. Each 

subclass inherits from one class in each set. 

The appropriate combinations depend on the needs of an application. 

Each generalization should cover a single aspect. 

We should use multiple generalizations if a class can be refined on several distinct 

and independent aspects. 

A subclass inherits a feature from the same ancestor class found along more than one 

path only once; it is the same feature. 

Conflicts among parallel definitions create ambiguities that implementations must 

resolve. In practice, avoid such conflicts in models or explicitly resolve them, even if 

a particular language provides a priority rule for resolving conflicts. 

The UML uses a constraint to indicate an overlapping generalization set; the 

notation is a dotted line cutting across the affected generalization with keywords in 

braces. Eg: see text book page no: 71,72 fig: 4.15,4.16 

2.6.2 Multiple Classification 

An instance of a class is inherently an instance of all ancestors of the class. 

For example, an instructor could be both faculty and student. But what about a 

Harvard Professor taking classes at MIT? There is no class to describe the 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 41 

 

combination. This is an example of multiple classification, in which one instance 

happens to participate in two overlapping classes. Eg: see text book page no: 73 fig: 

4.17 

2.6.3 Workarounds 

Dealing with lack of multiple inheritance is really an implementation issue, but early 

restructuring of a model is often the easiest way to work around its absence. 

Here we list 2 approaches for restructuring techniques (it uses delegation) 

Delegation is an implementation mechanism by which an object forwards an 

operation to another object for execution. 

Delegation using composition of parts: Here we can recast a superclass with 

multiple independent generalization as a composition in which each constituent part 

replaces a generalization. This is similar to multiple classification. This approach 

replaces a single object having a unique ID by a group of related objects that 

compose an extended object. Inheritance of operations across the composition is not 

automatic. The composite must catch operations and delegate them to the appropriate 

part. 

In this approach, we need not create the various combinations as explicit 

classes. All combinations of subclasses from the different generalization are 

possible. 

Inherit the most important class and delegate the rest: 

Fig 4.19 preserves identity and inheritance across the most important generalization. 

We degrade the remaining generalization to composition and delegate their 

operations as in previous alternative. 

Nested generalization: this approach multiplies out all possible combinations. This 

preserves inheritance but duplicates declarations and code and violets the spirit of 

OO programming. 

Superclasses of equal importance: if a subclass has several superclasses, all of 

equal importance, it may be best to use delegation and preserve symmetry in the 

model. 

Dominant superclass: if one superclass clearly dominates and the others are less 

important, preserve inheritance through this path. 

Few subclasses: if the number of combinations is small, consider nested 

generalization. If the number of combinations is large, avoid it. 

Sequencing generalization sets: if we use generalization, factor on the most 

important criterion first, the next most important second, and so forth. 

Large quantities of code: try to avoid nested generalization if we must duplicate 

large quantities of code. 

Identity: consider the importance of maintaining strict identity. Only nested 

generalization preserves this. 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

 

2.7 Metadata 

Metadata is data that describes other data. For example, a class definition is a 

metadata. 

Models are inherently metadata, since they describe the things being modeled (rather 

than being the things). 

Many real-world applications have metadata, such as parts catalogs, blueprints, and 

dictionaries. Computer-languages implementations also use metadata heavily. 

We can also consider classes as objects, but classes are meta-objects and not real- 

world objects. Class descriptor object have features, and they in turn have their own 

classes, which are called metaclasses. 

Eg: see text book page no: 75 fig: 4.21 

 
2.8 Reification 

Reification is the promotion of something that is not an object into an object. 

Reification is a helpful technique for Meta applications because it lets you shift the 

level of abstraction. 

On occasion it is useful to promote attributes, methods, constraints, and control 

information into objects so you can describe and manipulate them as data. 

As an example of reification, consider a database manager. A developer could write 

code for each application so that it can read and write from files. Instead, for many 

applications, it is better idea to reify the notion of data services and use a database 

manager. A database manager has abstract functionality that provides a general- 

purpose solution to accessing data reliably and quickly for multiple users. 

Eg: see text book page no: 75 fig: 4.22 

2.9 Constraints 

Constraint is a condition involving model elements, such as objects, classes, 

attributes, links, associations, and generalization sets. 

A Constraint restricts the values that elements can assume by using OCL. 

2.9.1 Constraints on objects 

Eg: see text book page no: 77 fig: 4.23 

2.9.2 Constraints on generalization sets 

Class models capture many Constraints through their very structure. For example, 

the semantics of generalization imply certain structural constraints. 

With single inheritance the subclasses are mutually exclusive. Furthermore, each 

instance of an abstract superclass corresponds to exactly one subclass instance. Each 

instance of a concrete superclass corresponds to at most one subclass instance. 

The UML defines the following keyword s for generalization. 

▪  Disjoint: The subclasses are mutually exclusive. Each object belongs 

to exactly one of the subclasses. 

▪  Overlapping: The subclasses can share some objects. An object may 

belong to more than one subclass. 

Dept. of ISE, MITM Page 42 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 43 

 

▪ Complete: The generalization lists all the possible subclasses. 

▪ Incomplete: The generalization may be missing some subclasses. 

2.9.3 Constraints on Links 

Multiplicity is a constraint on the cardinality of a set. Multiplicity for an association 

restricts the number of objects related to a given object. 

Multiplicity for an attribute specifies the number of values that are possible for each 

instantiation of an attribute. 

Qualification also constraints an association. A qualifier attribute does not merely 

describe the links of an association but is also significant in resolving the “many” 

objects at an association end. 

An association class implies a constraint. An association class is a class in every 

right; for example, it can have attribute and operations, participate in associations, 

and participate in generalization. But an association class has a constraint that an 

ordinary class does not; it derives identity from instances of the related classes. 

An ordinary association presumes no particular order on the object of a “many” end. 

The constraint {ordered} indicates that the elements of a “many” association end 

have an explicit order that must be preserved. 

Eg: see text book page no: 78 fig: 4.24 

2.9.4 Use of constraints 

It is good to express constraints in a declarative manner. Declaration lets you express 

a constraint’s intent, without supposing an implementation. 

Typically, we need to convert constraints to procedural form before we can 

implement them in a programming language, but this conversion is usually 

straightforward. 

A “good” class model captures many constraints through its structure. It often 

requires several iterations to get the structure of a model right from the prospective 

of constraints. Enforce only the important constraints. 

The UML has two alternative notations for constraints; either delimit a constraint 

with braces or place it in a “dog-earned” comment box. We can use dashed lines to 

connect constrained elements. A dashed arrow can connect a constrained element to 

the element on which it depends. 

2.10. Derived Data 

A derived element is a function of one or more elements, which in turn may be 

derived. A derived element is redundant, because the other elements completely 

determine it. Ultimately, the derivation tree terminates with base elements. Classes, 

associations, and attributes may be derived. The notation for a derived element is a 

slash in front of the element name along with constraint that determines the 

derivation. 
 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 44 

 

A class model should generally distinguish independent base attributes from 

dependent derived attributes. 

Eg: see text book page no: 79 fig: 4.25 

2.11 Packages 

A package is a group of elements (classes, association, generalization, and lesser 

packages) with a common theme. 

A package partitions a model, making it easier to understand and manage. 

A package partitions a model making it easier to understand and manage. Large 

applications my require several tiers of packages. 

Packages form a tree with increasing abstraction toward the root, which is the 

application, the top-level package. 

Notation for pakage is a box with a tab. 
 

❖  Tips for devising packages 

Carefully delineate each packages’s scope 

Define each class in a single package 

Make packages cohesive. 

State Modeling 

 
State model describes the sequences of operations that occur in response to external 

stimuli. 

The state model consists of multiple state diagrams, one for each class with temporal 

behavior that is important to an application. 

The state diagram is a standard computer science concept that relates events and 

states. 

Events represent external stimuli and states represent values objects. 

Events 

An event is an occurrence at a point in time, such as user depresses left button or Air 

Deccan flight departs from Bombay. 

An event happens instantaneously with regard to time scale of an application. 

One event may logically precede or follow another, or the two events may be 

unrelated (concurrent; they have no effect on each other). 

Events include error conditions as well as normal conditions. 

Three types of events: 

signal event, 

change event, 
 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

 

time event. 

Signal Event 

▪ A signal is an explicit one-way transmission of information from one object 

to another. 

It is different form a subroutine call that returns a value. 

 
An object sending a signal to another object may expect a reply, but the reply 

is a separate signal under the control of the second object, which may or may not 

choose to send it. 

A signal event is the event of sending or receiving a signal (concern about 

receipt of a signal). 
▪ Eg: 

 

 

 

 
 

The difference between signal and signal event 

a signal is a message between objects a signal 

event is an occurrence in time. 

Change Event 

A change event is an event that is caused by the satisfaction of a Boolean 

expression. 

UML notation for a change event is keyword when followed by a 

parenthesized Boolean expression. 

Eg: 
when (room temperature < heating set point ) 
when (room temperature > cooling set point ) 
when (battery power < lower limit ) 
when (tire pressure < minimum pressure ) 

 

Time Event 

Time event is an event caused by the occurrence of an absolute time or the 

elapse of a time interval. 

UML notation for an absolute time is the keyword when followed by a 

parenthesized expression involving time. 

The notation for a time interval is the keyword after followed by a 

parenthesized expression that evaluates to a time duration. 

Eg: 

when (date = jan 1, 2000 ) 
after (10 seconds ) 

 
Dept. of ISE, MITM Page 45 

<<signal>> 
StringEntered 

text 

<<signal>> 
DigitDialed 

digit 

<<signal>> 

MouseButton Pushed 

 
button 
location 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

 

 

States 

A state is an abstraction of the values and links of an object. 

Sets of values and links are grouped together into a state according to the 

gross behavior of objects 

UML notation for state- a rounded box Containing an optional state name,  

list the state name in boldface, center the name near the top of the box, capitalize the 

fist letter. 

Ignore attributes that do not affect the behavior of the object. 

The objects in a class have a finite number of possible states. 

Each object can be in one state at a time. 

A state specifies the response of an object to input events. 

All events are ignored in a state, except those for which behavior is explicitly 

prescribed. 

Event vs. States 

➢ Event represents points in 

time. ➢ State  represents  intervals 

of time. 

• Eg: power turned on power turned off power turned on 

 

 

 

 

 

 

 
• Powered Not powered 

 
A state corresponds to the interval between two events received by an object. 

The state of an object depends on past events. 

Both events and states depend on the level of abstraction. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

Dept. of ISE, Page 46 

Time 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 47 

 
Fig: various characterizations of a state. A state specifies the response of an 

object to input events 

Transitions & Conditions 

A transition is an instantaneous change from one state to another. 

The transition is said to fire upon the change from the source state to target 

state. 

The origin and target of a transition usually are different states, but 

sometimes may be the same. 

A transition fires when its events (multiple objects) occurs. 

A guard condition is a Boolean expression that must be true in order for a 

transition to occur. 

A guard condition is checked only once, at the time the event occurs, and the 

transition fires if the condition is true. 

Guard condition Vs. change event 

Guard condition change event 

a guard condition is checked only once a change event is checked continuously 

UML notation for a transition is a line may include event label in italics 

followed by guard condition in square 

Brackets 

from the origin state to the target state 

an arrowhead points to the target state. 

 

 

 

 

 

 

 

 
 



OOMD Module2 

 

 

P a g e  | 48 

 

State Diagram 

A state diagram is a graph whose nodes are states and whose directed arcs 

are transitions between states. 

A state diagram specifies the state sequence caused by event sequences. 

State names must be unique within the scope of a state diagram. 

All objects in a class execute the state diagram for that class, which models 

their common behavior. 

A state model consists of multiple state diagrams one state diagram for each 

class with important temporal behavior. 

State diagrams interact by passing events and through the side effects of 

guard conditions. 

UML notation for a state diagram is a rectangle with its name in small 

pentagonal tag in the upper left corner. 

The constituent states and transitions lie within the rectangle. 

States do not totally define all values of an object. 

If more than one transition leaves a state, then the first event to occur causes 

the corresponding transition to fire. 

If an event occurs and no transition matches it, then the event is ignored. 

If more than one transition matches an event, only one transition will fire, but 

the choice is nondeterministic. 
 

 

 

 

 

 

 

 

 

 
 
 

Maharaja Institute of Technology Mysore 
Department of ISE 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 49 

PhoneLine 

 

 

 
 
 

Eg: Sample state diagram 

One shot state diagrams 

State diagrams can represent continuous loops or one-shot life cycles 

Diagram for the [hone line is a continuous loop 

One – shot state diagrams represent objects with finite lives and have initial and 

final states. 

Tine initial state is entered on creation of an object 

Entry of the final state implies destruction of the object. 
 

 
 

 

 

 

 

 

 
 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 50 

 

 

 
 
 
 



OOMD Module2 

 

 

Maharaja Institute of Technology Mysore 
Department of ISE

 
 

State diagram Behaviour 
Activity effects 

An effect is a reference to a behavior that is executed in response to an event. 

An activity is the actual behavior that can be invoked by any number of 

effects. 

Eg: disconnectPhoneLine might be an activity that executed in response to an 

onHook event for Figure5.8. 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Dept. of ISE, Page 51 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 52 

 

: Advanced State Diagrams 

Syllabus-------- 7hr 

• Nested state diagram 

• Nested states 

• Signal generalization 

• Concurrency 

• A sample state mode 

• Relation of class and state models 

• Relation of class and state models 

• Use case models 

• Sequence models 

• Activity models 

Problem with flat state diagrams 
Flat unstructured state diagram are impractical for large problems, because – 

n 

representing an object  with n independent  Boolean attribute  requires 2 states. By 

partitioning the state into n independent sate diagram requires 2n states only. 

Eg: 

Above figure requires n2 transition to connect every state to other state. This can be 

reduced to as low as n by using sub diagrams structure. 

 
Expanding states 

One way to organize a model is by having high level diagram with sub diagrams 

expanding certain state. This is like a macro substitution in programming language 

A submachine is a state diagram that may be invoked as part of another state 

diagram 



OOMD Module2 

MOabhjearcatjaOIrnisetnittuetde oMf ToedchenlionloggyanMdysDoreesign 
Depa1rt0mCeSnt7o1f ISE 

 

 

P a g e  | 53 

 

 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 54 

 

 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 55 

 

 

Signal generalization 

You can organize signals into generalization hierarchy with inheritance of signal 

attributes 
 

 
 

 

Ultimately, we can view every actual signal as a leaf on a generalization tree 

of signals 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 56 

 

In a state diagram, a received signal triggers transitions that are defined for 

any ancestor signal type. 

For eg: typing an ‘a’ would trigger a transition on a signal alphanumeric as 

well as key board character. 

Concurrency 1: 

The state model implicitly supports concurrency among objects. 

In general, objects are autonomous entities that can act and change state 

independent of one another. However objects need not be completely independent 

and may be subject to shared constraints that cause some correspondence among 

their state changes. 

1 Aggregation concurrency 

2 concurrency within an object 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 57 

 

 
 

3 synchronization of concurrent activities 



OOMD Module2 

 

 

Maharaja Institute of Technology Mysore 
Department of ISE

 
 

 

Interaction Models 

The class model describes the objects in a system and their relationship. 

The state model describes the life cycles of the objects. 

The interaction model describes how the objects interact. 

 
The interaction model starts with use cases that are then elaborated with sequence 

and activity diagrams 

Use case: focuses on functionality of a system- i.e, what a system does for 

users 

Sequence diagrams: shows the object that interact and the time sequence of 

their interactions 

Activity diagrams: elaborates important processing steps 

Use Case models 

Actors 

A direct external user of a system 

Not part of the system 

For example 

Traveler, agent, and airline for a travel agency system. 

Can be a person, devices and other system 

An actor has a single well-defined purpose 

Use Cases 

A use case is a coherent piece of functionality that a system can provide by 

interacting with actors. 

For example: 

✓ A customer actor can buy a beverage from a vending machine. 

✓ A repair technician can perform scheduled maintenance on a vending 

machine. 

Each use case involves one or more actors as well as the system itself. 

A Vending Machine 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Dept. of ISE, Page 58 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 59 

USE CASE name 

 
 

 
 

A use case involves a sequence of messages among the system and its actors. 

Error conditions are also part of a use case. 

A use case brings together all of the behavior relevant to a slice of system 

functionality. 

 
Use Case Description (see text book fug 7.2) 

Use Case Name 

Summary 

Actors 

Preconditions 

Description 

Exception 

Postcondition 

 
Actor 

 

 

Use Case 
 

 

A Vending Machine 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 60 

 
 

 
 

 

Guidelines for Use Case 

First determine the system boundary 

Ensure that actors are focused 

Each use case must provide value to uses 

Relate use cases and actors 

Remember that use cases are informal 

Use cases can be structured 

Use Case Relationships 

Include Relationship 

Incorporate one use case within the behavior sequence of another use 

case. Extend Relationship 

Add incremental behavior to a use case. 

Generalization 

Show specific variations on a general use case. 

 
Use case Relationships 

 
Include Relationship Exclude relationship generalization 

relationship 

 
Examples: 

<<include>> for common behavior 

(1) 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 61 

 

 

 

 
 

 
 

(2) 
 

 
(3) 

 

 

(4) 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 62 

 

 
 

Extend Relationship examples: 

<<extend>> for special cases: 

(1) 

(2) 

 

 

(3) 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 63 

 
 

 
 

Medical Clinic: «include» and «extend» 

 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 64 

 

 

Generalization 
 

 

 
 
 
 
 
 
 

(2)eg: 



OOMD Module2 

 

 

Interaction Modeling 

Maharaja Institute of Technology Mysore 
Department of ISE

 
 

Use Case Relationships 
 

 
 

Sequence Models 

The sequence model elaborates the themes of use cases. 

Tow kinds of sequences models 

Scenarios 

Sequence diagrams 

Scenarios 

A scenario is a sequence of events that occurs during one particular execution 

of a system. 

For example: 

John Doe logs in transmits a message from John Doe to the broker system. 
 

 

 

 
 

 

 

 

 

Dept. of ISE, Page 65 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 66 

 

 
 

Scenario for a stock broker 
 

 
Sequence Diagram 

A sequence diagram shows the participants in an interaction and the sequence 

of messages among them. 

A sequence diagram shows the interaction of a system with its actors to 

perform all or part of a use case. 

Each use case requires one or more sequence diagrams to describe its 

behavior. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 67 

 

 



OOMD Module2 

 

 

Maharaja Institute of Technology Mysore 
Department of ISE

 
 

 

Concurrent Processes 

Activations - show when a method is active – either executing or waiting for 

a subroutine to return 

Asynchronous Message – (half arrow) a message which does not block the 

caller, allowing the caller to carry on with its own processing; asynchronous 

messages can: 

Create a new thread 

Create a new object 

Communicate with a thread that is already running 

Deletion – an object deletes itself 

Synchronous Message – (full arrow) a message that blocks the caller 
 

 

 

 
 

Dept. of ISE, Page 68 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 69 

 

 

 

Sequence Diagram For a Session 
Actors 

 
 
 
 
 
 

 

Lifeline 

time 
 
 
 
 
 

 

messages 
 
 
 

 

A stock purchase 
 
 

 

 
A stock quote 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 70 

 

 
 

A exception case 

Guidelines 

Prepare at least one scenario per use case 

Abstract the scenarios into sequence diagrams 

Divide complex interactions 

Prepare a sequence diagram for each error condition 

 
Procedural Sequence Models 

Sequence Diagrams with Passive Objects 

A passive object is not activated until it has been called. 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 71 

 
 

 

Sequence Diagrams with Transient Objects 

 

 

 
Activity Models 

An activity diagram shows the sequence of steps that make up a complex 

process, such as an algorithm or workflow. 

An active 
object 

Passive 

object 

Transient object 

Destroy 

activation 

Procedure call 

return 



OOMD Module2 

 

 

Maharaja Institute of Technology Mysore 
Department of ISE

 

Activity diagrams are most useful during the early stages of designing 

algorithms and workflows. 

Activity diagram is like a traditional flowchart in that it shows the flow of 

control from step to step 

Activity diagram Notation 
 
 

 

 

 

 

done 
 

 
 

 

 

Start at the top black circle 

If condition 1 is TRUE, go right; if condition 2 is TRUE, go down 

At first bar (a synchronization bar), break apart to follow 2 parallel paths 

At second bar, come together to proceed only when both parallel activities are 

 
Activity – an oval 

Trigger – path exiting an activity 

Guard – each trigger has a guard, a logical expression that evaluates to “true” 

or “false” 

Synchronization Bar – can break a trigger into multiple triggers operating in 

parallel or can join multiple triggers into one when all are complete 

Decision Diamond – used to describe nested decisions (the first decision is 

indicated by an activity with multiple triggers coming out of it) 

Eg: 
 

 

Dept. of ISE, Page 72 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 73 

 

 
 

 

Eg: activity diagram for Use Case: Receiving an Order 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 74 

 
 

 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 75 

 

 

 

 

 

 

 

 

 

Activity diagram for Use Case: Receiving a Supply 
 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 76 

 

 

 

 

 

 

 

 

 

Activity diagram for Use Case: Receiving an Order and Receiving a Supply 
 

 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 77 

Initiation 

condition 

Refined 

next page 
synchronization 

termination 

 

 

 

Activity diagram for stock trade processing 

 

A Finer Activity for execute order 

 

Guidelines 

Don’t misuse activity diagrams 

Do no be used as an excuse to develop software via flowcharts. 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 78 

 

Level diagrams 

Be careful with branches and conditions 

Be careful with concurrent activities 

Consider executable activity diagrams 

Special constructs for activity diagrams 

Sending and receiving signals 

Swim lanes 

Object flows 

Swimlanes - Activity Diagrams that show activities by class 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 79 

 

Arrange activity diagrams into vertical zones separated by lines 

Each zone represents the responsibilities of a particular class (in this 

example, a particular department) 
 



OOMD Module2 

Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

P a g e  | 80 

 

 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 81 

 

Module 3 7 Hours 

 
PROCESS OVERVIEW, SYSTEM CONCEPTION, DOMAIN 

ANALYSIS 

 
Syllabus : 

Process Overview: Development stages; Development life cycle. System 

Conception: 

Devising a system concept; Elaborating a concept; 

Preparing a problem statement. Domain Analysis: Overview of analysis; 

Domain class model; Domain state model; Domain interaction model; 

Iterating the analysis. 

Process overview 

A software development process provides a basis for the organized production of 

software, using a collection of predefined techniques and notations. 

Development Stages 

System Conception 

Conceive an application and formulate tentative requirements 

Analysis 

Deeply understand the requirements by constructing models 

System design 

Devise the architecture 

Class design 

Determine the algorithms for realizing the operations 

Implementation 

Translate the design into programming code and database structures 

Testing 

Ensure that the application is suitable for actual use and actually satisfies 

requirements 

Training 

Help users master the new application 

Deployment 

Place the application in the field and gracefully cut over from legacy 

application 

Maintenance 

Preserve the long term viability of the application 

Analysis 

To specify what must be done. 

Domain analysis focuses on real-world things whose semantics the 

application captures. 

Application analysis addresses the computer aspects of the application that are 

visible to users 

System Design 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 82 

Devise a high-level strategy — the architecture — for solving the application 

problem. 

The choice of architecture is based on the requirements as well as past experience. 

Class Design 

To emphasis from application concepts toward computer concepts. 

To choose algorithms to implement major system functions. 

 
Development Life Cycle 

Waterfall Development 

Iterative Development 

Waterfall Development 

The stages in a rigid linear sequence with no backtracking. 

Suitable for well-understood applications with predictable outputs from analysis and 

design. 

 

 

 

Iterative Development 

First develop the nucleus of a system, then grow the scope of the system… 

There are multiple iterations as the system evolves to the final deliverable. 

Each iteration includes a full complement of stages: 

analysis, design, implementation, and testing 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 83 

 

 
 

Summary of development process for the organized production of software 
 

 

System Conception 

 
System conception deals with the genesis of an application 

 
Devising a System Concept 

New functionality 

Streamlining 

Simplification automate manual process 

Integration 

Analogies 

Globalization 

Elaborating a Concept 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 84 

 

Good system concept must answer the following questions 

Who is the application for? 

Stakeholders of the system 

What problems will it solve? 

Features 

Where will it be used? 

Compliment the existing base, locally, distributed, customer base 

When is it needed? 

Feasible time, required time 

Why is it needed? 

Business case 

How will it work? 

Brainstorm the feasibility of the problem 

The ATM Case Study 

Develop software so that customers can access a bank’s computers and carry out their own 

financial transactions without the mediation of a bank employee. 

 

The ATM Case Study 

Who is the application for? 

We are vendor building the software 

What problems will it solve? 

Serve both bank and user 

Where will it be used? 

Locations throughout the world 

When is it needed? 

Revenue , investment 

Why is it needed? 

Economic incentive. We have to demonstrate the techniques in the book 

How will it work 

N-tier architecture, 3-tier architecture 

 

Preparing a problem statement 

Design the software to support a computerized banking network including both human 

cashiers and automatic teller machines (ATMs)to be shared by a consortium of banks. Each bank 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 85 

provides its own computer to maintain own accounts and process transactions against them. Cashier 

stations are owned by individual banks and communicate directly with their own bank’s computers. 

Human cashiers enter account and transaction data The ATM Case Study 

 



 

 

OOMD Module 3 P a g e  | 86 

Maharaja Institute of Technology Mysore 
Department of ISE

 

 

 

APPLICATION ANALYSIS, SYSTEM DESIGN 
 
 

7 Hours 
 

Syllabus: 

 
Application Analysis: Application interaction model; Application class model; 

Application state model; 

Adding operations. Overview of system design; Estimating performance; 

Making a reuse plan; Breaking a system in to sub-systems; 

Identifying concurrency; Allocation of sub-systems; Management of data 

storage; Handling global resources; Choosing a software control strategy; 

Handling boundary conditions; Setting the trade-off priorities; Common 

Architectural styles; Architecture of the ATM system as the example. 

 
Application Analysis 

Application Interaction Model - steps to construct model 

Determine the system 

boundary Find actors 

Find use cases 

Find initial and final events 

Prepare normal scenarios 

Add variation and exception scenarios 

Find external events 

Prepare activity diagrams for complex use cases. 

Organize actors and use cases 

Check against the domain class model 

 

1. Determine the system boundary  

Determine what the system includes. 

What should be omitted? 

Treat the system as a black box. 

ATM example: 

– For this chapter, 

Focus on ATM behavior and ignore cashier details. 

 
2. Find actors 

 

 
 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 87 

 

The external objects that interact directly with the system. 

They are not under control of the application. 

Not individuals but archetypical behavior. 

ATM Example: 

– Customer, Bank, Consortium 

 
3. Find use cases 

 

 

For each actor, list the different ways in which the actor uses the system. 

Try to keep all of the uses cases at a similar level of detail. 

– apply for loan 

– withdraw the cash from savings account 

– make withdrawal 

Use Case for the ATM 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 88 

 

 

 
 

Find initial and final events 

Finding the initial and final events for each use case 

To understand the behavior clearly of system 

Execution sequences that cover each use case 

Initial events may be 

A request for the service that the use case provides 

An occurrence that triggers a chain of activity 

ATM example 

• Initial session 

– Initial event 

The customer’s insertion of a cash card. 

– final event 

The system keeps the cash card, or 

The system returns the cash card. 

ATM example 

Query account 

– Initial event 

A customer’s request for account data. 

– final event 

The system’s delivery of account data to the customer. 

ATM example 

Process transaction 

– Initial event 

The customer’s initiation of a transaction. 

– final event 

Committing or 

Aborting the transaction 

ATM example 

Transmit data 

– Initial event 

Triggered by a customer’s request for account data, or 

Recovery from a network, power, or another kind of failure. 

– final event 

Successful transmission of data. 

Prepare normal scenarios 

For each use case, prepare one or more typical dialogs. 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 89 

 
 

A scenario is a sequence of events among a set of interacting objects. 

Sometimes the problem statement describes the full interaction sequence 

 
Normal ATM scenarios 

Initiate session 

 

Query account 

Process transaction 

 

Transmit data 

Add variation and exception scenarios 

Special cases 

Omitted input E.g., maximum values, minimum value 

Error cases 

E.g. Invalid values, failures to respond 

Other cases 

E.g. Help requests, status queries 

 
ATM example 

Variations and exceptions: 

– The ATM can’t read the card. 

– The card has expired. 

– The ATM times out waiting for a response. 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 90 

 

– The amount is invalid. 

– The machine is out of cash or paper. 

– The communication lines are down 

– The transaction is rejected because of suspicious pattern of card usage. 

Find external events 

The external events include 

– All inputs, 

– decisions, 

– interrupts, and 

– Interactions to or from users or external devices. 

An event can trigger effects for a target object. 

Use scenarios for normal 

events Sequence diagram 

Prepare a sequence diagram for each scenario. 

The sequence diagram captures the dialog and interplay between actors. 

The sequence diagram clearly shows the sender and receiver of each event 

ATM Example 

 
Sequence diagram of the process transaction 

 

 
Events for the ATM case study 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 91 

 
 

 
 

9. Activity Diagram 

 
Activity diagram shows behaviors like alternatives and decisions. 

Prepare activity diagrams for complex use cases. 

Appropriate to document business logic during analysis 

Do not use activity diagram as an excuse to begin implementation. 

 
ATM Example 

 
Activity diagram for card verification 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 92 

 
 

 
 

10. Organize actors and use cases 

 
Organize use cases with relationships 

– Include, extend, and generalization 

Organize actors with generalization. 

 
ATM Example 



 

 

OOMD Module 3 P a g e  | 93 

Department of 

* 

0..1 * 

0..1 

Communicates 
With 

Communicates 

With * 
EnteredBy 

1 

* 

AuthorizedBy 

Employs 

0..1 

issues 

1 

1 

  station 

* 
1 

1 

 station 

Code 
Consortium Bank  

  Code  

   

* 
  0..1  

account Code  1 
0.. 

* 

1 type 1 

balance 

1 creditLimit 

Account 

 

CashCard 
passWord 

Card 
Authorizatio 

n 
passwor 

d 
limit 

name1 

Cashier 

amount 
kind 

update 

Cashier 

Code 

Customer 

name 
address 

transaction 

Remote 

Transaction 

Cashier 
station 

ATM 

cashOnHand 

ISE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11. Checking Against the Domain Class Model 

 
The application and domain models should be mostly consistent. 

The actors, use cases, and scenarios are all based on classes and concepts from the 

domain model. 

Examine the scenarios and make sure that the domain model has all the necessary data. 

Make sure that the domain model covers all event parameters. 

 
 

EntryStation Transaction 

EnteredOn 

 dateTime 
amount 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

  Code emplyoee 
Code Ban k 

   
name1 1 card 

 

 

Application Class Model 

Maharaja Institute of Technology Mysore 



 

 

Maharaja Institute of Technology Mysore 
Department of ISE

 

 

Application classes define the application itself, rather than the real-world objects that the 

application acts on 

Most application classes are computer-oriented and define the way that users perceive the 

applications 

Application Class Model – steps 

Specify user interfaces 

Define boundary classes 

Determine controllers 

Check against the interaction model 

Specify user interfaces 

User interface 

Is an object or group of objects 

Provide user a way to access system’s 

domain objects, 

commands, and 

Application options. 

Try to determine the commands that the user can perform. 

A command is a large-scale request for a service, 

c. E.g. 

Make a flight reservation 

Find matches for a phrase in a database 

Decoupling application logic from the user interface. ATM 

example - The details are not important at this point. 

The important thing is the information exchanged. 

 

 

 

 

 

 

Dept. of ISE, Page 94 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 95 

 
 

 
 

2. Defining Boundary Classes 

 
A boundary class 

– Is an area for communications between a system and external source. 

– Converts information for transmission to and from the internal system. 

ATM example 

CashCardBoundary 

AccountBoundary 

– Between the ATM and the consortium 

 
ATM Example 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 96 

 

 

 

 

3. Determining Controllers 

 
Controller is an active object that manages control within an application. 

Controller 

– Receives signals from the outside world or 

– Receives signals from objects within the system, 

– Reacts to them, 

– Invokes operation on the objects in the system, and 

– Sends signals to the outside world. 

 
ATM Example 

 
There are two controllers 

– The outer loop verifies customers and accounts. 

– The inner loop services transactions. 



 

 

Department of ISE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis Stereotypes 

 
<<boundary>> classes in general are used to model interaction between the system and 

its actors. 

<<entity>> classes in general are used to model information that is long-lived and often 

persistent. 

<<control>> classes are generally used to represent coordination, sequencing, 

transactions, and control of other objects. And it is often used to encapsulate control 

related to a specific use case. 

 
The Realization of a Use Case in the Analysis Model 

 

 
A collaboration diagram for the Withdraw Money use-case realization in the analysis model 

 

Dept. of ISE, Page 97 

Maharaja Institute of Technology Mysore 



 

 

OOMD Module 3 P a g e  | 98 

Department of ISE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example:Analysis Classes 
• The diagram shows the classes participating in the Register for Courses use case 

 
 

 

Student Register for Courses Course Catalog System 

Use-Case Diagram 

Analysis Model (classes only listed – no relationships shown here…) 
<<boundary>> 

 
RegisterForCoursesForm 

<<control>> <<boundary>> 

RegistrationController CourseCatalogSystem 

 
 
 

 
 
 

 
4. Checking Against the Interaction Model 

 
Go over the use cases and think about how they would work. 

When the domain and application class models are in place, you should be able to 

simulate a use case with the classes. 

 
ATM Example 

<<entity>> 

Student 

<<entity>> 

Schedule 

<<entity>> 

CourseOffering 

Maharaja Institute of Technology Mysore 



 

 

OOMD Module 3 P a g e  | 99 

Maharaja Institute of Technology Mysore 
Department of ISE

 
 

 

 

 

Application State Model 

The application state model focuses on application classes 

Augments the domain state model 

Application State Model- steps 

Determine Application Classes with States 

Find events 

Build state diagrams 

Check against other state diagrams 

Check against the class model 

Check against the interaction model 

Determine Application Classes with States 

• Good candidates for state models 

– User interface classes 

– Controller classes 

ATM example 

– The controllers have states that will elaborate. 

Find events 

Study scenarios and extract events. 

In domain model 

– Find states and then find events 

In application model 

– Find events first, and then find states 

ATM example 

– Revisit the scenarios, some events are: 

– Insert card, enter password, end session and take card. 

Building State Diagrams 

To build a state diagram for each application class with temporal behavior. 



 

 

Maharaja Institute of Technology Mysore 
Department of ISE

 

 

Initial state diagram 

– Choose one of these classes and consider a sequence diagram. 

– The initial state diagram will be a sequence of events and states. 

– Every scenario or sequence diagram corresponds to a path through the state 

diagram. 

Find loops 

– If a sequence of events can be repeated indefinitely, then they form aloop. 

Merge other sequence diagrams into the state diagram. 

After normal events have been considered, add variation and exception cases. 

The state diagram of a class is finished when the diagram covers all scenarios and the 

diagram handles all events that can affect a state. 

Identify the classes with multiple states 

Study the interaction scenarios to find events for these classes 

Reconcile the various scenarios 

Detect overlap and closure of loops 

 

 
 

 

Dept. of ISE, MITM Page 100 



 

 

OOMD Module 3 P a g e  | 101 

Maharaja Institute of Technology Mysore 
Department of ISE

 
 

 

 

 

 

 

 

 

 

 
 



 

 

OOMD Module 3 P a g e  | 102 

Department of ISE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

check against other state diagrams 

Every event should have a sender and a receiver. 

Follow the effects of an input event from object to object through the system to make 

sure that they match the scenarios. 

Objects are inherently concurrent. 

Make sure that corresponding events on different state diagrams are consistent. 

ATM example 

The SessionController initiates the TransactionController, 

The termination of the TransactionController causes the SessionController to 

resume. 

Check against the class model 

ATM example 

– Multiple ATMs can potentially concurrently access an account. 

– Account access needs to be controlled to ensure that only one update at a timeis 

applied. 

Check against the interaction model 

Check the state model against the scenarios of the interaction model. 

Simulate each behavior sequence by hand and verify the state diagrams. 

Take the state model and trace out legitimate paths. 

Adding Operations 

Operations from the class model 

Operations from use cases 

Shopping-list operations 

Simplifying operations 

Operations from the class model 

The reading and writing of attribute values and association links. 

Need not show them explicitly. 

Operations from use cases 

 

Maharaja Institute of Technology Mysore 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 103 

 

Use cases lead to activities. 

Many of these activities correspond to operations on the class model. 

ATM example 

– Consortium  verifyBankCode. 

– Bank  verifyPassword. 

– ATM  verifyCashCard 

Shopping-List Operations 

The real-world behavior of classes suggests operations. 

Shopping-list operations provide an opportunity to broaden a class definition. 

ATM example 

– Account.close() 

– Bank.createSavingsAccount(customer):account 

– Bank.createCheckingAccount(customer):account 

– Bank.createCashCardAuth(customer);cashCardAuthorization 

Simplifying Operations 

Try to broaden the definition of an operation to encompass similar operations. 

Use inheritance to reduce the number of distinct operations. 

 

ATM domain class model 

Overview of System Design 
 

 

 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 104 

 
 

 
•Class 
design 2 

 

Analysis – focus is on what needs to be done; independent of how it is done 

Design – focus is on decisions about how the problem will be solved 

– First at high level 

– Then with more detail 

System Design – 

– first design stage 

– Overall structure and style 

– Determines the organization of the system into subsystems 

– Context for detailed decisions about how the problem will be solved 
 

Summary of development process for the 

organized production of software 
System • Users 

conception •
• 

anagers 
Developers 

M Generate 
requests 

• Business 
experts 

Analysis: 
Problem 

statement 

• Domain 
analysis 

• Applicati 

on 
analysis 

• User 
interviews 

• Experience 

• Related 
systems 

Build 

models 

Class model 
State model 
Interaction model 

Design: 

• System 

design 

• Architecture 

• Use cases 

• Algorithms 

• Optimization 

Elaborate 

models 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 105 

 

 

 
Estimate system performance 

To determine if the system is feasible 

To make simplifying assumptions 

 
ATM Example 

Suppose 

– The bank has 40 branches, also 40 terminals. 

– On a busy day half the terminals are busy at once. 

– Each customer takes one minute to perform a session. 

– A peak requirement of about 40 transactions a minute. 

– storage 

– Count the number of customers. 

– Estimate the amount of data for each customer. 

–   : 

–   : 

Make a reuse plan 

Two aspects of reuse: 

– Using existing things 

– Creating reusable new things 

Reusable things include: 

– Models 

– Libraries 

– Frameworks 

– Patterns 

Reusable Libraries 

A library is a collection of classes that are useful in many contexts. 

Qualities of “Good” class libraries: 

– Coherence – well focused themes 

– Completeness – provide complete behavior 

– Consistency - polymorphic operations should have consistent names and signatures 

across classes 

– Efficiency – provide alternative implementations of algorithms 

– Extensibility – define subclasses for library classes 

– Genericity – parameterized class definitions 

Problems limit the reuse ability: 

– Argument validation 

Validate arguments by collection or by individual 

– Error Handling 

Error codes or errors 

– Control paradigms 

Event-driven or procedure-driven control 

– Group operations 

– Garbage collection 

 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 106 

– Name collisions 

 
Reusable Frameworks 

A framework is a skeletal structure of a program that must be elaborated to build a 

complete application. 

Frameworks class libraries are typically application specific and not suitable for general 

use. 

Reusable Patterns 

A pattern is a proven solution to a general problem. 

There are patterns for analysis, architecture, design, and implementation. 

A pattern is more likely to be correct and robust than an untested, custom solution. 

Patterns are prototypical model fragments that distill some of the knowledge of experts. 

Pattern vs. Framework 

A pattern is typically a small number of classes and relationships. 

A framework is much broader in scope and covers an entire subsystem or application. 

ATM example 

Transaction 

Communication line 

Breaking a System into Subsystem 

Each subsystem is based on some common theme, such as 

– Similar functionality 

– The same physical location, or 

– Execution on the same kind of hardware. 

Software Architecture 

Breaking a System into Subsystem 

A subsystem is a group of classes, associations, operations, events, and constrains. 

A subsystem is usually identified by the services it provides. 

Each subsystem has a well-defined interface to the rest of the system. 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 107 

The relation between two subsystems can be 

– Client-server relationship 

– Peer-to-peer relationship 

The decomposition of systems 

Subsystems is organized as a sequence of 

– Horizontal layers, 

– Vertical partitions, or 

– Combination of layers and partitions. 

Layered system 

Each built in terms of the ones below it. 

The objects in each layer can be independent. 

E.g. 

– A client-server relationship 

Problem statement specifies only the top and bottom layers: 

– The top is the desired system. 

– The bottom is the available resources. 

The intermediate layers is than introduced. 

Two forms of layered architectures: 

– Closed architecture 

Each layer is built only in terms of the immediate lower layer. 

– Open architecture 

A layer can use features on any lower layer to any depth. 

Do not observe the principle of information hiding. 

Partitioned System 

Vertically divided into several subsystems 

Independent or weakly coupled 

Each providing one kind of service. 

E.g. A computer operating system includes 

– File system 

– Process control 

– Virtual memory management 

– Device control 

Partitions vs. Layers 

• Layers vary in their level of abstraction. 

• Layers depend on each other. 

• Partitions divide a system into pieces. 

• Partitions  are  peers  that are independent or mutually dependent. (peer-to-peer 

relationship) 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 108 

 
 

 

 

Combining Layers and Partitions 

 

 

ATM Example 

 

Identifying Concurrency 

To identify 

– The objects that must be active concurrently. 

– The objects that have mutually exclusive activity 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 10 

Inherent Concurrency 

By exam the state model 

Two objects are inherently concurrent if they can receive events at the same time without 

interacting. 

If the events are unsynchronized, you cannot fold the objects onto a single thread of 

control. 

Defining Concurrent Tasks 

By examining the state diagrams, you can fold many objects onto a single thread of 

control. 

A thread of control is a path through a set of state diagrams on which only a single object 

at a time is active. 

ATM example: 

– Combine the ATM object with the bank transaction object as a single task. 

Allocation of Subsystems 

Allocate each concurrent subsystem to a hardware unit by 

– Estimating hardware resource requirements 

– Making hardware-software trade-offs 

– Allocating tasks to processors 

– Determining physical connectivity 

 

Estimating hardware resource requirements 

The number of processors required depends on the volume of computations and the speed 

of the machine 

Example: military radar system generates too much data in too short a time to handle in 

single CPU, many parallel machines must digest the data 

Both steady-state load and peak load are important 

Making hardware-software trade-offs 

You must decide which subsystems will be implemented in hardware or software 

Main reasons for implementing subsystems in hardware 

– Cost - 

– Performance – most efficient hardware available 

Allocating tasks to processors 

Allocating software subsystems to processors 

Several reasons for assigning tasks to processors. 

– Logistics – certain tasks are required at specified physical locations, tocontrol 

hardware or permit independent operation 

– Communication limits 

– Computation limits – assigning highly interactive systems to the same processor, 

independent systems to separate processors 

Determining physical connectivity 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 11 

Determine the arrangement and form of the connections among the physical units 

– Connection topology- choose an topology for connecting the physical units 

– Repeated units-choose a topology of repeated units 

– Communications- choose the form of communication channels and communication 

protocols 

Management of Data Storage 

Alternatives for data storage: 

– Data structures, 

– Files, 

– Databases 

Data Suitable for Files 

Files are cheap, simple, and permanent, but operations are low level. 

Data Suitable for Databases 

Database make applications easier to port, but interface is complex. 

 
Handling Global Resources 

The system designer must identify global resources and determine mechanisms for 

controlling access to them. 

Kinds of global resources: 

– Physical units 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 111 

 

– Spaces 

Processors, tape drivers… 

 
Disk spaces, workstation screen… 

– Logical name 

Object ID, filename, class name… 

– Access to shared data 

Database 

Some common mechanisms are: 

– Establishing “guardian” object that serializes all access 

– Partitioning global resources into disjoint subsets which are managed at a lower 

level, and 

– Locking 

ATM example 

Bank codes and account numbers are global resources. 

Bank codes must unique within the context of a consortium. 

Account codes must be unique within the context of a bank. 

Choosing a Software Control Strategy 

To choose a single control style for the whole system. 

Two kinds of control flows: 

– External control 

– Internal control 

Software External Control 

Concerns the flow of externally visible events among the objects in the system. 

Three kinds: 

– Procedure-driven sequential 

– Event-driven sequential 

– Concurrent 

Procedure-driven Control 

Control resides within the program code 

Procedure request external input and then wait for it 

When input arrives, control resumes with in the procedure that made the call. 

Advantage: 

Easy to implement with conventional languages 

Disadvantage: 

The concurrency inherent in objects are to mapped into a sequential flow of 

control. 

Suitable only if the state model shows a regular alternation of input and output events. 

C++ and Java are procedural languages. 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 112 

They fail to support the concurrency inherent in objects. 

Event-driven Control 

Control resides within a dispatcher or monitor that the language, subsystem, or operating 

system provides. 

The dispatcher calls the procedures when the corresponding events occur. 

Software Internal Control 

Refer to the flow of control within a process. 

To decompose a process into several tasks for logical clarity of for performance. 

Three kinds: 

– Procedure calls, 

– Quasi-concurrent intertask call, 

Multiple address spaces or call stacks exist but only a single thread of 

control can be active at once. 

– Current intertask calls 

Handling Boundary Conditions 

Most of system design is concerned with steady-state behavior, but boundary conditions 

are also important 

Boundary conditions are 

– Initialization 

– Termination, and 

– Failure 

Initialization 

– The system must initialize constant data, parameters, global variables, … 

Termination 

– Release any external resources that it had reserved. 

Failure 

– Unplanned termination of a system. The good system designer plans for orderly 

failure 

Setting Trade-off Priorities 

The priorities reconcile desirable but incompatible goals. 

– E.g memory vs. cost 

Design trade-offs affect the entire character of a system. 

The success of failure of the final product may depend on how well its goal s are chosen. 

Essential aspect of system architecture is making trade-offs between 

– time and space 

– Hardware and software 

– Simplicity and generality, and 

– Efficiency and maintainability 

The system design must state the priorities 

 
Common Architectural Styles 

Several prototypical architectural styles are common in existing system. 

Some kinds of systems: 

– Batch transformation    Functional transformations 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 113 

   

– Continuous transformation 
  

– Interactive interface   

– Dynamic simulation  Time-dependent systems 

– Real-time system 

– Transaction manager 

Batch transformation 

– Perform sequential computation. 

 
-> 

 
Database system 

The application receives the inputs, and the goal is to compute an answer. 

Does not interact with the outside world 

E.g. 

– Compiler 

– Payroll processing 

– VLSI automatic layout 

– : 

The most important aspect is to define a clean series of steps 

Sequence of steps for a compiler 

 

The steps in designing a batch transformation are as follows 

– Break the overall transformation into stages, with each stage performing one part of 

the transformation. 

– Prepare class models for the input, output and between each pair of successive 

stages. Each stage knows only about the models on either side of it. 

– Expand each stage in turn until the operations are straightforward to implement. 

– Restructure the final pipeline for optimization. 

Continuous transformation 

– The outputs actively depend on changing inputs. 

– Continuously updates the outputs (in practice discretely ) 

– E.g. 

Signal processing 

Windowing systems 

Incremental compilers 

Process monitoring system 

– Sequence of steps for a graphics application 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 114 

 

 

– Steps in designing a pipeline for a continuous transformation are as follows 

o Break the overall transformation into stages, with each stage 
performing one part of the transformation. 

o Define input, output and intermediate models between each pair of 
successive stages as for the batch transformation 

o Differentiate each operation to obtain incremental charges to each 
stage. 

o Add additional intermediate objects for optimization. 

Interactive interface 

– Dominated by interactions between the system and external agents. 

Steps in designing an interactive interface are as follows 

Isolate interface classes from the application classes 

Use predefined classes to interact with external agents 

Use the state model as the structure of program 

Isolate physical events from logical events. 

Fully specify the application functions that are invoked by the interface 

 
Dynamic simulation 

– Models or tracks real-world objects. 

– Steps in designing a dynamic simulation 

Identify active real-world objects from the class model. 

Identify discrete events 

Identify continuous dependencies 

Generally simulation is driven by a timing loop at a fine time scale 

Real-time system 

– An interactive system with tight time constraints on actions. 

Transaction manager 

– Main function is to store and retrieve data. 

– Steps in designing an information system are as follows 

Map the class model to database structures. 

Determine the units of concurrency 

Determine the unit of transaction 

Design concurrency control for transactions 

 
Architecture of the ATM system 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 115 

 
 

 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 116 

: Class Design, Implementation modeling 

Syllabus: 

Class Design: Overview of class design; 

 

 
7 Hours 

Bridging the gap; Realizing use cases; Designing algorithms; Recursing downwards, 

Refactoring; 

Design optimization; Reification of behavior; Adjustment of inheritance; Organizinga 

class design; 

ATM example. 

Implementation Modeling: Overview of implementation; Fine-tuning classes; Fine- 

tuning generalizations; realizing associations; Testing. 

Legacy Systems: Reverse engineering; 

Building the class models; Building the interaction model; 

Building the state model; Reverse engineering tips; Wrapping; Maintenance. 

Class design 

The analysis phase determines what the implementation must do 

The system design phase determines the plan of attack 

The purpose of the class design is to complete the definitions of the classes and 

associations and choose algorithms for operations 

Overview of Class Design – steps 

Bridging the gap 

Realizing Use Cases 

Designing Algorithms 

Recursing Downward 

Refactoring 

Design Optimization 

Reification of Behavior 

Adjustment of Inheritance 

Organizing a Class Design 

Bridging the gap 

Bridge the gap from high-level requirements to low-level services 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 117 

 

 
 

Salesman can use a spreadsheet to construct formula for his commission – readily build 

the system 

Web-based ordering system – cannot readily build the system because too big gap 

between the resources and features 

 

 
The intermediate elements may be operations, classes or other UML constructs. 

You must invent intermediate elements to bridge the gap. 

 

 
Realizing Use Cases 

Realize use cases with operations. 

The cases define system-level behavior. 

During design you must invent new operations and new objects that provide this 

behavior. 

 

 

Step1: List the responsibilities of a use case or operation. 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 118 

A responsibility is something that an object knows or something it must do. 

For Example: 

An online theater ticket system 

Making a reservation has the responsibility of 

Finding unoccupied seats to the desired show, 

Marking the seats as occupied, 

Obtaining payment from the customer, 

Arranging delivery of the tickets, and 

Crediting payment to the proper account. 

 
 

 
Step2: Each operation will have various responsibilities. 

Group the responsibilities into clusters and try to make each cluster coherent. 

Step3: Define an operation for each responsibility cluster. 

Step4: Assign the new lower-level operations to classes. 

 
 

 
ATM Example 

Process transaction includes: 

Withdrawal includes responsibilities: 

Get amount from customer, verify that amount is covered by the account 

balance, verify that amount is within the bank’s policies, verify that 

ATM has sufficient cash, …. 

A database transaction ensures all-or-nothing behavior. 

Deposit 

Transfer 

Use Case for the ATM 



 

 

OOMD Module 3 P a g e  | 119 

Department of ISE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Process transaction includes: 

Deposit includes responsibilities: 

Get amount from customer, accept funds envelope from customer, … 

Transfer includes responsibilities: 

Get source account, get target account, get amount, verify that source 

account covers amount, … 

There is some overlap between the operations. 

A reasonable design would coalesce this behavior and build it once. 

Designing Algorithms 

Formulate an algorithm for each operation 

The analysis specification tells what the operation does for its clients 

The algorithm show how it is done 

 

Designing Algorithms- steps 

Choose algorithms that minimize the cost of implementing operations. 

Select data structures appropriate to the algorithms 

Define new internal classes and operations as necessary. 

Assign operations to appropriate classes. 

Choosing algorithms (Choose algorithms that minimize the cost of implementing 

operations) 

When efficiency is not an issue, you should use simple algorithms. 

Typically, 20% of the operations consume 80% of execution time. 

Considerations for choosing alternative algorithms 

Computational complexity 

Ease of implementation and 

understandability o Flexibility 

Maharaja Institute of Technology Mysore 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 120 

Simple but inefficient 

Complex efficient 

ATM Example 

Interactions between the consortium computer and bank computers 

could be complex. 

Considerations: 

Distributed computing 

The scale of consortium computer (scalability) 

The inevitable conversions and compromises in coordinating 

the various data formats. 

All these issues make the choice of algorithms for coordinating the 

consortium and the banks important 

 
The ATM Case Study 

 
 

 
Choosing Data Structures (select data structures appropriate to the algorithm) 

Algorithms require data structures on which to work. 

They organize information in a form convenient for algorithms. 

Many of these data structures are instances of container classes. 

Such as arrays, lists, queues, stacks, set…etc. 

Defining New Internal Classes and Operations 

To invent new, low-level operations during the decomposition of high-level 

operations. 

The expansion of algorithms may lead you to create new classes of objects to 

hold intermediate results. 

ATM Example: 

Process transaction uses case involves a customer receipt. 

A Receipt class is added. 

Assigning Operations to Classes (assign operations to appropriate classes) 

a. How do you decide what class owns an operation? 

Receiver of action 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 3 P a g e  | 121 

To associate the operation with the target of operation, rather 

than the initiator. 

Query vs. update 

The object that is changed is the target of the operation 

Focal class 

Class centrally located in a star is the operation’s target 

Analogy to real world 

 

 

ATM Example 

Process transaction includes: 

Withdrawal includes responsibilities: 

Get amount from customer, verify that amount is covered by the account 

balance, verify that amount is within the bank’s policies, verify that 

ATM has sufficient cash, …. 

A database transaction ensures all-or-nothing behavior. 

Deposit 

Transfer 

Customer.getAccount(), account.verifyAmount(amount), bank.verifyAmount(amount), 

ATM.verifyAmount(amount) 



 

 

OOMD Module 3 P a g e  | 122 

Department of ISE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recursing Downward 

 
To organize operations as layers. 

Operations in higher layers invoke operations in lower layers. 

Two ways of downward recursion: 

By functionality 

By mechanism 

Any large system mixes functionality layers and mechanism layers. 

Functionality Layers 

Take the required high-level functionality and break it into lesser operations. 

Make sure you combine similar operations and attach the operations to classes. 

An operation should be coherent meaningful, and not an arbitrary portion ofcode. 

ATM eg., use case decomposed into responsibilities (see sec 15.3). Resulting 

operations are assigned to classes (see sec 15.4.4). If it is not satisfied rework them 

Maharaja Institute of Technology Mysore 



 

 

OOMD Module 3 P a g e  | 123 

Maharaja Institute of Technology Mysore 
Department of ISE

 
 

 

Mechanism Layers 

Build the system out of layers of needed support mechanisms. 

These mechanisms don’t show up explicitly in the high-level responsibilities of a system, 

but they are needed to make it all work. 

E.g. Computing architecture includes 

Data structures, algorithms, and control patterns. 

A piece of software is built in terms of other, more mechanisms than itself. 

 

Refactoring 

Refactoring 

Changes to the internal structure of software to improve its design without 

altering its external functionality. 

You must revisit your design and rework the classes and operations so that they clean 

satisfy all their uses and are conceptually sound. 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 4 P a g e  | 124 

ATM Example 

Operations of process transaction 

Account.credit(amount) 

Account.debit(amount) 

Combine into 

Account.post(amount) 

Design Optimization 

To design a system is to first get the logic correct and then optimize it. 

Often a small part of the code is responsible for most of the time or space costs. 

It is better to focus optimization on the critical areas, than to spread effort evenly. 

Design Optimization 

Optimized system is more obscure and less likely to be reusable. 

You must strike an appropriate balance between efficiency and clarity. 

Tasks to optimization: 

Provide efficient access paths. 

Rearrange the computation for greater efficiency. 

Save intermediate results to avoid recomputation. 

Adding Redundant Associations for Efficient Access 

Rearrange the associations to optimize critical aspects of the system. 

Consider employee skills database 

 

 
Company.findSkill( ) returns a set of persons in the company with a given skill. 

Suppose the company has 1000 employees,. 

In case where the number of hits from a query is low because few objects satisfy 

the test, an index can improve access to frequently retrieved objects. 

 

 
 

 

 

 

 

 
ATM Example 

Examine each operations and see what associations it must traverse to obtain its 

information. 

Next, for each operation, note the following, 

Frequency of access 

Fan-out 

Selectivity 

Banks must report cash deposits and withdrawals greater than $10,000 to the government. 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 4 P a g e  | 125 

Trace from 

– Bank to Account, 

– Account to Update, 

– Then filter out the updates that are cash and greater than $10,000 

A derived association from Bank to Update would speed thisoperation. 

ii. Rearranging Execution Order for Efficiency 

✓ After adjusting the structure of class model to optimize frequent traversals, 

the next thing is 

✓ To optimize the algorithm 

To eliminate dead paths as early as possible 

To narrow the search as soon as possible 

Sometimes, invert the execution order of a loop 

 
Saving Derived Values to Avoid Recomputation 

There are three ways to handle updates 

Explicit update 

Periodic recomputation 

Active values 

Reification behavior 

Behavior written in code is rigid; you can execute but cannot manipulate it at run time 

If you need to store, pass, or modify the behavior at run time, you should reify it 

Adjustment of Inheritance 

To increase inheritance perform the following steps 

– Rearrange classes and operations to increase inheritance 

– Abstract common behavior out of groups of clusters 

– Use delegation to share behavior when inheritance is semantically invalid 

Rearrange classes and operations to increase inheritance 

Use the following kinds of adjustments to increase the chance of inheritance 

– Operations with optional arguments 

– Operations that are special cases 

– Inconsistent names 

– Irrelevant operations 

Use delegation to share behavior when inheritance is semantically invalid 

When class B inherits the specification of class A, you can assume that every instance of 

class B is an instance of class A because it behaves the same 

Inheritance of implementation – discourage this 

One object can selectively invoke the desired operations of another class, using 

delegation rather than inheritance 

Delegation consists of catching operation on one object and sending it to a related object 

Delegate only meaningful operations, so there is no danger of inheriting meaningless 

operations by accident 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 4 P a g e  | 126 

 
 

 

 

Implementation Inheritance 
A very similar class is already implemented that does 

almost the same as the desired class implementation. 

Example: I have a List 
class, I need a Stack 
class. How about 
subclassing the Stack 
class from the List class 
and providing three 
methods, Push() and 
Pop(), Top()? 

 
 

Problem with implementation inheritance: 

Some of the inherited operations might exhibit unwanted behavior. 
What happens if the Stack user calls Remove() instead of Pop()? 

Close coupling – what happens if the Add() method is changed? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

List 
Add() 

Remove() 

“Already 

implemented” 

Stack 
PPuosph(()) Add(entity, 0) 

Remove(0) 

Top() 

? 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 4 P a g e  | 127 

Client 

Stack 

+Push() 
+Pop() 

+Top() 

Remember this 
structure!! 

MyStack List 
HerStack YourStack 

 

Problem with implementation inheritance 
❖ How to avoid the following problem? 

Some of the inherited operations might exhibit unwanted behavior. 
What happens if the Stack user calls Remove() instead of Pop()? 

 
1. Delegation 

 
 
 
 

2. Interface inheritance 

 
 
 
 
 
 
 
 
 
 

 
Delegation as alternative to Implementation Inheritance 

Delegation is a way of making composition (for example aggregation) as powerful for 

reuse as inheritance 

In Delegation two objects are involved in handling a request 

– A receiving object delegates operations to its delegate. 

The developer can make sure that the receiving object does not allow the client to misuse the 

delegate object 
 

MyStack List 

Client +Push() 
+Pop() 

+Top() 

Remove() 
Add() 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 4 P a g e  | 128 

Stack List 

+Push() 
+Pop() 
+Top() 

Remove 

Add() 

 

Delegation instead of Implementation 
Inheritance 

• Inheritance: Extending a Base class by a new operation or 
overwriting an operation. 

• Delegation: Catching an operation and sending it to another 
object. 

• Which of the following models is better for implementing a 
stack? 

 

 

 
Organization of Class Design 

We can improve the organization of a class design with the following steps: 

– Information hiding 

– Coherence of Entities 

– Fine-tuning packages 

Information hiding 

Carefully separating external specification from internal specification 

There are several ways to hide information: 

– Limit the scope of class-model traversals 

– Do not directly access foreign attributes 

– Define interfaces at a high level of abstraction 

– Hide external objects 

– Avoiding cascading method calls 

Coherence of Entities 

An entity, such as a class, an operation or a package is coherent if it is organized on a 

consistent plan and all its parts fit together toward a common goal. 

An entity should habve a single major theme 

It should not be a collection of unrelated parts. 

 
Fine – Tuning Packages 

Overview of Implementation 

Fine-tuning Classes 

Fine-tuning Generalization 

Realizing Associations 

Testing 

 
Fine-tuning classes 

List 

+Add() 
+Remove() 

   Stack 

+Push() 

+Pop() 
+Top() 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 

OOMD Module 4 P a g e  | 129 

Fine tune classes before writing code in order to simplify development or to improve 

performance 

Partition a class 

Merge classes 

Partition / merge attributes 

Promote an attribute / demote a class 

Fine-tuning classes – partition a class 

Sometimes it is helpful to fine-tune a model by partitioning or merging classes 

partitioning of a class can be complicated by generalization and association 

 
Fine-tuning classes – merge classes 

 

Fine-tuning classes – partition / merge attributes 

Fine-tuning classes – promoting an attribute / demote a class 

 

Fine-tuning generalizations 



 

 

OOMD Module 4 P a g e  | 130 

Department of ISE 

 

 

 

 

 

 

 

 

 

 

 

 

 

Realizing associations 

Associations are “glue” of the class model, providing access paths between objects 

Analyzing associations by traversing associations 

 

Analyzing Association Traversal 

Until now we assumed that associations are bidirectional 

But some applications are traversed in only one direction 

We may add another operation that make traversal in reverse direction 

Navigability 

Possible to navigate from an associating class to the target class – indicated by arrow 

which is placed on the target end of the association line next to the target class (the one 

being navigated to). 

Associations are bi-directional by default – suppress arrows. 

Arrows only drawn for associations with one-way navigability. 

 

 
Navigability is inherently a design and implementation property. 

Can be specified in Analysis, but with expectation of refining in Class Design. 

In analysis, associations are usually bi-directional; design, we really check this. 

 
Example: Navigability 

Maharaja Institute of Technology Mysore 



 

 

OOMD Module 4 P a g e  | 131 

Department of ISE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

One-way Associations 

Implement one-way associations using pointer- an attribute that contains the object 

reference 

Actual implementation of pointer using 

Programming language pointer or 

Database foreign key 

If the multiplicity is “one” then it is a simple pointer 

If the multiplicity is “many” then it is a set of pointers 
 

 

 

 
Two-way Association 

Many associations are traversed in both directions, not usually with equal frequencies 

Three approaches for implementation 

Implement one-way 

Implement two-way 

Implement with an association object 

Maharaja Institute of Technology Mysore 



 

 

Maharaja Institute of Technology Mysore 
Department of ISE

 
 

 
 

 

 

Testing  
Unit testing 

System testing 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

Dept. of ISE, Page 132 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 
OOMD Module 5 P a g e  | 133 

 

Module 5 DESIGN PATTERNS – 1: 

Syllabus : - 6hrs 

 
What is a pattern 

what makes a pattern? 

Pattern categories; 

Relationships between patterns; 

Pattern description. 

Communication Patterns: 

Forwarder-Receiver; 

Client-Dispatcher-Server; 

Publisher-Subscriber. 

 
Patterns 

❖  Patterns help you build on the collective experience of skilled software 

engineers. 

 
❖ They capture existing, well-proven experience in software development and help to 

promote good design practice. 

 
❖ Every pattern deals with a specific, recurring problem in the design or implementation of 

a software system. 

 
❖  Patterns can be used to construct software architectures with specific 

properties 

 
What is a Pattern? 

▪  Abstracting from specific problem-solution pairs and distilling out 

common factors leads to patterns. 

▪  These problem-solution pairs tend to fall into families of similar 

problems and solutions with each family exhibiting a pattern in both the problems and 

the solutions. 

 
Definition : 

The architect Christopher Alexander defines the term pattern as 

 
Each pattern is a three-part rule, which expresses a relation between a 

certain context, 

a problem, and 

a solution. 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 
OOMD Module 5 P a g e  | 134 

 

▪  As an element in the world, each pattern is a relationship between a certain 

context, a certain system of forces which occurs repeatedly in that context, and a certain 

spatial configuration which allows these forces to resolve themselves. 

 
▪  As an element of language, a pattern is an instruction, which shows how 

this spatial configuration can be used, over and over again, to resolve the given system of 

forces, wherever the context makes it relevant. 

 
▪  The pattern is, in short, at the same time a thing, which happens in the 

world, and the rule which tells us how to create that thing. And when we must create it. It 

is both a process and a thing: both a description of a thing which is alive, and a 

description of the process which will generate that thing. 

Properties of patterns for Software Architecture 

❖ A pattern addresses a recurring design problem that arises in specific 

design situations, and presents a solution to it. 

❖ Patterns document existing, well-proven design experience. 

❖ Patterns identify & and specify abstractions that are above the level of 

single classes and instances, or of components. 

❖ Patterns provide a common vocabulary and understanding for design principles 

 
❖ Patterns are a means of documenting software architectures. 

 
❖ Patterns support the construction of software with defined properties. 

 
❖ Patterns help you build complex and heterogeneous software 

architectures ❖ Patterns help you to manage software complexity 

Putting all together we can define the pattern as: 

 
Conclusion or final definition of a Pattern: 

A pattern for software architecture describes a particular recurring design problem that 

arises in specific design contexts, and presents a well-proven generic scheme for its 

solution. The solution scheme is specified by describing its constituent components, their 

responsibilities and relationships, and the ways in which they collaborate. 

 
What Makes a Pattern? 

 
Three-part schema that underlies every pattern: 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 
OOMD Module 5 P a g e  | 135 

 

Context: a situation giving rise to a problem. 

 
Problem: the recurring problem arising in that context. 

 
Solution: a proven resolution of the problem. 

Context: 

The Contest extends the plain problem-solution dichotomy by describing the 

situations in which the problems occur 

Context of the problem may be fairly general. For eg: “developing software with a 

human-computer interface”. On the other had, the contest can tie specific patters together. 

Specifying the correct context for the problem is difficult. It is practically 

impossible to determine all situations in which a pattern may be applied. 

Problem: 

This part of the pattern description schema describes the problem that arises 

repeatedly in the given context. 

It begins with a general problem specification (capturing its very essence what 

is the concrete design issue we must solve?) 

This general problem statement is completed by a set of forces 

Note: The term ‘force denotes any aspect of the problem that should be 

considered while solving it, such as 

o Requirements the solution must fulfill 

o Constraints you must consider 

o Desirable properties the solution should have. 

Forces are the key to solving the problem. Better they are balanced, better the 

solution to the problem 

Solution: 

The solution part of the pattern shows how to solve the recurring problem(or 

how to balance the forces associated with it) 

In software architectures, such a solution includes two aspects: 

Every pattern specifies a certain structure, a spatial configuration of elements. 

This structure addresses the static aspects of the solution. It consists of both components 

and their relationships. 

Every pattern specifies runtime behavior. This runtime behavior addresses the 

dynamic aspects of the solution like, how do the participants of the patter collaborate? 

How work is organized between then? Etc. 

The solution does not necessarily resolve all forces associated with the 

Problem. 

A pattern provides a solution schema rather than a full specified artifact or blue 

print. 

No two implementations of a given pattern are likely to be the same. 



 

 
OOMD Module 5 

Maharaja Institute of Technology Mysore 
Department of ISE

 
 

The following diagram summarizes the whole schema. 

 

 

 

 

 
Pattern Categories 

we group patterns into three categories: 

 
Architectural patterns 

Design patterns 

Idioms 

 
Each category consists of patterns having a similar range of scale or abstraction. 

 
Architectural patterns 

Architectural patterns are used to describe viable software architectures that are 

built according to some overall structuring principle. 

Definition: An architectural pattern expresses a fundamental structural 

organization schema for software systems. It provides a set of predefined subsystems, 

specifies their responsibilities, and includes rules and guidelines for organizing the 

relationships between them. 

Eg: Model-view-controller pattern. 

Structure 
 

 

 

 

 

 

 

Dept. of ISE, Page 136 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 
OOMD Module 5 P a g e  | 137 

 

 

 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 
OOMD Module 5 P a g e  | 138 

 

Eg: 

 

Design patterns 

Design patterns are used to describe subsystems of a software architecture as well 

as the relationships between them (which usually consists of several smaller architectural 

units) 

Definition: A design pattern provides a scheme for refining the subsystems or 

components of a software system, or the relationships between them.It describes a 

commonly-recurring structure of communicating components that solves a general design 

problem within a particular Context. 

They are medium-scale patterns. They are smaller in scale than architectural 

patterns, but tend to be independent of a particular programming language or 

programming paradigm. 

Eg: Publisher-Subscriber pattern. 

Idioms 

Idioms deals with the implementation of particular design issues. 

Definition: An idiom is a low-level pattern specific to a programming language. 

An idiom describes how to implement particular aspects of components or the 

relationships between them using the features of the given language. 

Idioms represent the lowest- level patterns. They address aspects of both design 

and implementation. 

Eg: counted body pattern. 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 
OOMD Module 5 P a g e  | 139 

 

 

 

Pattern description 

 
Name :The name and a short summary of the pattern 

Also known as:Other names for the pattern, if any are known 

Example :A real world example demonstrating the existence of the problem 

and the need for the pattern 

Context :The situations in which the patterns may apply 

Problem :The problem the pattern addresses, including a discussion of its 

associated forces. 

Solution :The fundamental solution principle underlying the pattern 

Structure :A detailed specification of the structural aspects of the pattern, 

including CRC – cards for each participating component 

and an OMT class diagram. 

Dynamics :Typical scenarios describing the run time behavior of the pattern 

Implementation: Guidelines for implementing the pattern. These are only a 

suggestion and not a immutable rule. 

Examples resolved: Discussion for any important aspects for resolving the 

example that are not yet covered in the solution , structure, 

dynamics and implementation sections. 

Variants:A brief description of variants or specialization of a pattern 

Known uses:Examples of the use of the pattern, taken from existing systems 

Consequences:The benefits the pattern provides, and any potential 

liabilities. 

See Also:References to patterns that solve similar problems, and the patterns 

that help us refine the pattern we are describing. 

 
Communication pattern: 

Most of the today’s software systems run on distributed systems. These 

distributed systems need a means for communication. 

Problems: 

Many communication mechanisms to choose from. 

The use of communication facilities is often hard-wired into existing 

applications, leading to various problems. 

o Difficult to change the communication mechanism later. 

o Portability 
 
 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 
OOMD Module 5 P a g e  | 140 

Forwarder-Receiver 
 

Problem 

Many components in a distributed 
system communicate in a peer to peer 

fashion. 

The communication between the peers 
should not depend on a particular IPC 
mechanism; 

• Performance is (always) an issue; and 

• Different platforms provide different 
IPC mechanisms. 

Forwarder-Receiver (1) 

 

 

Solution: 

Migration of sub systems from one network node to another is only 

possible if the communication facility allows it. 

Loosen the coupling between components of a distributed system and the 

mechanism it uses for communication, eg: by using 

o Encapsulation 

o Location transparency 
We discuss two patterns that addresses these topics: 

The Forwarder – Receiver design pattern (provides encapsulation) 

The Client – Dispatcher – Server design pattern (provides location 

transparency) 

Keeping cooperating component consistent is another problem in communication. 

We discuss one pattern that addresses this issue: 

The Publisher – Subscriber pattern 
 

 

 
 

 

 

 

 

 

 

 

 

 

 
 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 
OOMD Module 5 P a g e  | 141 

 

 

 

 

 
 

 
Peer 2 

service 

 

 

 

 

There 

 

 

 
 

Here 

 

 

 
Peer 1 

service 

Solution 
Encapsulate the inter-process 

communication mechanism: 

 
Peers implement application services. 

Forwarders are responsible for sending 
requests or messages to remote 

peers 

using a specific IPC mechanism. 

• Receivers are responsible for receiving 
IPC 

requests or messages sent by remote 
peers using a specific IPC mechanism 
and dispatching the appropriate 

method 

of their intended receiver. 
 

Forwarder-Receiver (2) 
Intent 

"The Forwarder-Receiver design pattern provides transparent interprocess 

communication for software systems with a peer-to-peer interaction model. 

It introduces forwarders and receivers to decouple peers from the underlying 

communication mechanisms." 

Motivation 

Distributed peers collaborate to solve a particular problem. 

A peer may act as a client - requesting services- as a server, providing services, 

or both. 

The details of the underlying IPC mechanism for sending or receiving messages 

are hidden from the peers by encapsulating all system-specific functionality into separate 

components. Examples of such functionality are the mapping of names to physical 

locations, the establishment of communication channels, or the marshaling and 

unmarshaling of messages. 

Receiver 

receive 

unmarshal 

receiverMessage 

Forwarder 

marshal 

deliver 

sendMessage 

Forwarder 

marshal 

deliver 

sendMessage 

Receiver 

receive 

unmarshal 

receiverMessage 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 
OOMD Module 5 P a g e  | 142 

 

 

 

Structure 
 
 
 

 

 
F-R consists of three kinds of components, Forwarders, receivers and peers. 

Peer components are responsible for application tasks. 

Peers may be located in different process, or even on a different machine. 

It uses a forwarder to send messages to other peers and a receiver to receive 

messages form other peers. 

They continuously monitor network events and resources, and listen for incoming 

messages form remote agents. 

Each agent may connect to any other agent to exchange information and requests. 

To send a message to remote peer, it invokes the method sendmsg of its 

forwarder. 

It uses marshal.sendmsg to convert messages that IPC understands. 

To receive it invokes receivemsg method of its receiver to unmarshal it uses 

unmarshal.receivemsg. 

Forwarder components send messages across peers. 

When a forwarder sends a message to a remote peer, it determines the physical 

location of the recipient by using its name-to-address mapping. 

Kinds of messages are 

Command message- instruct the recipient to perform some activities. 

Information message- contain data. 

Response message- allow agents to acknowledge the arrival of a message. 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 
OOMD Module 5 P a g e  | 143 

 

It includes functionality for sending and marshaling 

Receiver components are responsible for receiving messages. 

It includes functionality for receiving and unmarshaling 

messages. Dynamics 

P1 requests a service from a remote peer P2. 

It sends the request to its forwarder forw1 and specifies the name of the recipient. 

Forw1 determines the physical location of the remote peer and marshals the 

message. 

Forw1 delivers the message to the remote receiver recv2. 

At some earlier time p2 has requested its receiver recv2 to wait for an incoming 

request. 

Now recv2 receives the message arriving from forw1. 

Recv2 unmarshals the message and forwards it to its peer p2. 

Meanwhile p1 calls its receiver recv1 to wait for a response. 

P2 performs the requested service and sends the result and the name of the 

recipient p1 to the forwarder forw2. 

The forwarder marshals the result and delivers it recv1. 

Recv1 receives the response from p2, unmarshals it and delivers it to p1. 

Implmentation 

Specify a name to address mapping.-/server/cvramanserver/….. 

Specify the message protocols to be used between peers and forwarders.-class 

message consists of sender and data. 

Choose a communication mechanism-TCP/IP sockets 

Implement the forwarder.- repository for mapping names to physical addresses- 

desitination Id, port no. 

sendmsg( dest, marshal(the mesg)) 

Implement the receiver – blocking and non blocking 

recvmsg() unmarshal(the msg) 

Implement the peers of the application – partitioning into client and servers. 

Implement a start up configuration- initialize F-R with valid name to address 

mapping 

 
Benefits and liability 

Efficient inter-process communication 

Encapsulation of IPC facilities 

 
No support for flexible re-configuration of components. 

Known Uses 

This pattern has been used on the following systems: TASC, a software 

development toolkit for factory automation systems, supports the implementation of 

Forwarder-Receiver structures within distributed applications. 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 
OOMD Module 5 P a g e  | 144 

 

Part of the REBOOT project uses Forwarder-Receiver structures to facilitate an 

efficient IPC in the material flow control software for flexible manufacturing. 

ATM-P implements the IPC between statically-distributed components using the 

Forwarder-Receiver pattern..) 

In the Smalltalk environment BrouHaHa, the Forwarder-Receiver pattern is used 

to implement interprocess communication. 
 

Client-Dispatcher-Server 

Goals 

– Introduce an intermediate layer between clients and servers : the dispatcher 

– Provide location transparency 

– Hides details of establishment of communication 

Applicability 

– A software system integrating a set of distributed servers, with theservers 

running locally or distributed over a network. 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 
OOMD Module 5 P a g e  | 145 

 

 

 
 

Components 

– Client 

 

 

 

 
– Server 

 

 
Performs some domain-specific tasks 

Accesses operations offered by servers 

– Ask the dispatcher for a communication channel 

– Send its request to the server by this channel 

 
Provides services to clients 

Registers itself with the dispatcher 

– Dispatcher 

Establishes communications channels 

Locates servers 

(Un-)Registers servers 

Maintains a map of server locations and name 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 
OOMD Module 5 P a g e  | 146 

 
 

 
 

 

Publisher-Subscriber 



Maharaja Institute of Technology Mysore 
Department of ISE 

 

 
OOMD Module 5 P a g e  | 147 

 

 

 



 

 
OOMD Module 5 P a g e  | 148 

Maharaja Institute of Technology Mysore 
Department of ISE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Publisher-Subscriber 
Goal 

– Help to keep the state of cooperation components synchronized 

– One publisher notifies any number of subscribers about changes to itsstate 

Applicability 

– Applications in which data changes in one place but many other components 

depend on this data 

– Number and identities of dependant components may changeovertime 

Example : graphical user interfaces 

Components 

Publisher 

– Maintains registry of currently-subscribed components 

– Sends notification to subscribers when its state has changed 

Subscriber 

– Can use the (un)subscribe interface of the publisher 

– Retrieve changed data from publisher 



 

 
OOMD Module 5 P a g e  | 147 

Maharaja Institute of Technology Mysore 
Department of ISE

 

 

 

Push model 

– Publisher sends all changed data when it notifies the subscriber 

– Rigid dynamic behavior 

– Poor choice for complex data changes 

– Useful when subscribers need published information most of the time 

Pull model 

– Publisher only sends minimal information when sending a change notification 

– Subscribers are responsible for retrieving the data they need 

– Offers more flexibility but higher number of messages between publisherand 

subscriber 

– Useful when only individual subscribers can decide if and when they need a 

specific piece of information 

Strengths 

– Loosely-coupled 

– Publishers are loosely coupled to subscribers 

– Scalable in small installations 

Weaknesses 

– Not so scalable in large installations 

– Publisher assumes that subscriber is listening 

Variants 

– Gatekeeper 

Publisher notifies remote subscribers 

– Event Channel 

Strongly decouples publishers and subscribers 

Possible to have more than one publisher 

Subscribers only wish to be notified about changes, don’t care in which 

component changes occurred 

Publishers are not interested in which components are subscribing 

Event channel created and placed between publishers and subscribers 

Appears as a subscriber to publishers 

Appears as a publisher to subscribers 

Event channel, subscriber and publisher can be in different processes 

Can use buffers, can be chained (Unix pipes) 



 

 
OOMD Module 5 P a g e  | 148 

Maharaja Institute of Technology Mysore 
Department of ISE

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variants 

– Use of Producer-Consumer style of cooperation 

Producer supplies information, consumer accepts it 

Strongly decoupled thanks to a buffer 

Only synchronization is for buffer under/overflow 

Event-Channel pattern can simulate a P-C with more than one producer 

or consumer 

Known uses 

– Java Swing, GUIs 



 

 

Maharaja Institute of Technology Mysore 
Department of ISE

 


