Maharaja Education Trust (R), Mysuru
Maharaja Institute of Technology Mysore MET

Belawadi, Sriranga Pattana Taluk, Mandya — 571 477

EDUCATION

REVOLUTION IN

Approved by AICTE, New Delhi,
Affiliated to VI'U, Belagavi & Recognized by Government of Karnataka

Lecture Notes on

OBJECT ORIENTED MODELING
DESIGN(17CS551)

Prepared by

Department of Information Science and
Engineering

Maharaja Education Trust (R), Mysuru

Maharaja Institute of Technology Mysore

Belawadi, Sriranga Pattana Taluk, Mandya — 571 477 REVOLUTION IN

Vision/ es3ad

“To be recognized as a premier technical and management institution promoting extensive
education fostering research, innovation and entrepreneurial attitude"
SoTREFS, B8Iw,T Torte LVTEHBeLTALRY, VBB BN, Fo03T DB VRO TN

3369 BeogjmaN MHDSIBAR,IT.

Mission/ d’éeai)

To empower students with indispensable knowledge through dedicated teaching and
collaborative learning.

JhTeme DIpeRIT weedS Torie ITNZE 30ZZACT IoyBINVRY o33, &

2RRROBT TNV,

To advance extensive research in science, engineering and management disciplines.
B3o8, S03B Torte BBEB PN QINMNYY TS BoTRBFINHRBS 3Sedrt

TR OTDID.

To facilitate entrepreneurial skills through effective institute - industry collaboration and
interaction with alumni.
G ZeSnWedS JBodeert, ToFod LA ITYBENH DT AB0B3 FoSBINPT I BNVt

wdéd)%evéab 59506 BB0DEY ITTVJ)D.

To instill the need to uphold ethics in every aspect.
BeSIBO 338 WPYMYRY, WYBBIZARITT HH3,B 200 90 SweBHJIHD.

To mould holistic individuals capable of contributing to the advancement of the society.
SSRd BYBEST Meadeod Rt edwe) BO[pHE BIS DY, IDFE TeNOesTY

BRAIDITD.

EDUCATION

Department of Information Science and Engineering

Maharaja Institute of Technology Mysore 3
&

VISION OF THE DEPARTMENT

To be recognized as the best centre for technical education and research in the field of

information science and engineering.

MISSION OF THE DEPARTMENT

» To facilitate adequate transformation in students through a proficient teaching
learning process with the guidance of mentors and all-inclusive professional activities.

» To infuse students with professional, ethical and leadership attributes through industry
collaboration and alumni affiliation.

» To enhance research and entrepreneurship in associated domains and to facilitate real
time problem solving.

>

PROGRAM EDUCATIONAL OBJECTIVES:

> Proficiency in being an IT professional, capable of providing genuine solutions to
information science problems.
» Capable of using basic concepts and skills of science and IT disciplines to pursue
greater competencies through higher education.
» Exhibit relevant professional skills and learned involvement to match the
requirements of technological trends.
PROGRAM SPECIFIC OUTCOME:

Student will be able to

» PSO1: Apply the principles of theoretical foundations, data Organizations,
networking concepts and data analytical methods in the evolving technologies.

» PSO2:Analyse proficient algorithms to develop software and hardware

competence in both professional and industrial areas

Maharaja Institute of Technology Mysore

Department of Information Science and Engineering

Program Outcomes

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

2. Problem analysis: ldentify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex engineering
activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological change.

Department of Information Science and Engineering

Maharaja Institute of Technology Mysore (s
&

Course Overview

SUBJECT: OBJECT ORIENTED MODELING DESIGN SUBJECT CODE: 17CS551

Object oriented approach to software development based on modeling objects from the real
world & then using the model to build a language-independent design organized around those
objects. Object-Oriented modeling & design (OOMD) promote better understanding of
requirements, cleaner designs and more maintainable systems. We describe a set of object
oriented concepts & graphical notation that can be used to analyze problem requirements,
design a solution, & then implement the solution in programming language or database. This
is used throughout the entire software development process. Object oriented technology
provides a practical, productive way to develop software for most applications, regardless of
the final implementation language. After final design process for software development
model, an appropriate design pattern has to be chosen to facilitate the development
procedure. Students will gain knowledge and able to apply these development design process

and patterns to build a software development model.

Course Objectives

e Describe the concepts involved in Object-Oriented modeling and their benefits.

e Demonstrate concept of use-case model, sequence model and state chart model for a
given problem.

e Explain the facets of the unified process approach to design and build a Software system.

e Translate the requirements into implementation for Object Oriented design.

e Choose an appropriate design pattern to facilitate development procedure.

Course Qutcomes

CO’s DESCRIPTION OF THE OUTCOMES

17CS551.1 | Apply basic concepts of Object Oriented models to design solutions.

17CS551.2 | Construct class diagram, use case diagram, sequence diagrams, activity diagrams and
interaction diagrams for designing software systems.

17CS551.3 | Analyze class modeling, use case modeling, processes, domain analysis, and design
patterns to develop simple systems.

17CS551.4 | Examine the class modeling, use case modeling, processes, domain analysis, and design
patterns to interpret real world problems.

17CS551.5 | Evaluate the description of given pattern and design solution to real world problems

Department of Information Science and Engineering

Maharaja Institute of Technology Mysore
&

Svyllabus
SUBJECT: OOMD SUBJECT CODE: 17CS551
. Teaching
Topics Covered as per Syllabus Hours
MODULE-1
What is Object orientation? What is Object-Oriented development? Object-Oriented Themes,
Evidence for the usefulness of Object-Oriented development, Object-Oriented modeling
history.Modeling, abstraction, Object and Class Concept. Link and associations concepts,
Generalization and Inheritance. 10 Hours
MODULE-2
Overview of UseCase Modelling and Detailed Requirements. Detailed Requirements definitions of
object-oriented design.
Identifying Input and outputs, Object Behaviour. The System sequence diagram 10 Hours
MODULE -3
System Conception and Domain Analysis. Development stages, Life Cycle, and System Conception.
Devising a system, elaborating a concept and preparing an object-oriented design problem
statement.
Overview of domain analysis, Class model, interaction model and Iterating the analysis Hlo
ours
MODULE-4
The Design Discipline within up iterations. The Bridge between Requirements and Implementation.
Design Classes and Design within Class Diagrams. Interaction Diagrams-Realizing Use Case and
defining methods. Designing with Communication Diagrams 10
Hours
MODULE-5
Introduction to Design Patterns. what is a design pattern? Describing, the catalog, Organizing the
catalog, How design patterns solve design problems.
how to select a design pattern, how to use a design pattern. 10
Hours

List of Text Books

1. Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML,2nd Edition,
Pearson Education,2005

4. Satzinger, Jackson and Burd: Object-Oriented Analysis & Design with the Unified Process,
Cengage Learning, 2005.

5. Erich Gamma, Richard Helm, Ralph Johnson and john Vlissides: Design Patterns —Elements of
Reusable Object-Oriented Software, Pearson Education,2007.

List of Reference Books

1. Grady Booch et. al.: Object-Oriented Analysis and Design with Applications,3rd Edition,Pearson
Education,2007.

2. 2.Frank Buschmann, RegineMeunier, Hans Rohnert, Peter Sommerlad, Michel Stal: Pattern —
Oriented Software Architecture. A system of patterns , Volume 1, John Wiley and Sons.2007.

3. 3. Booch, Jacobson, Rambaugh : Object-Oriented Analysis and Design with Applications, 3rd
edition, pearson, Reprint 2013

Index

SUBJECT: OOMD SUBJECT

Maharaja Institute of Technology Mysore
&

Department of Information Science and Engineering

CODE: 17CS551

Module-1 Pg no
1. Object orientation 1-18
2. Object-Oriented modeling history.Modeling 19-32
Module-2 Pg no
1. Overview of UseCase Modelling and Detailed Requirements 33-41
2. System sequence diagram 42-80
Module-3 Pg no
1. System Conception and Domain Analysis 81-89
2. Overview of domain analysis 89-95
Module-4 Pg no
1. Design Discipline within up iterations 05-110
2. Designing with Communication Diagrams 111-132
Module-5 Pg no
1. Introduction to Design Patterns 133-140
2. how to use a design pattern. 141-148

Mabharaja Institute of Technology Mysore Department of ISE

Module 1: INTRODUCTION, MODELING CONCEPTS, CLASS
MODELING:

What is object orientation?
What is 0o development?

Oo themes

Evidence for usefulness of oo development
Oo modeling history

Modeling

Abstraction

The tree models

Objects and class concepts
Link and association concepts
Generalization and inheritance
A sample class model
Navigation of class models
Practical tips

INTRODUCTION
Note 1:
Intention of this subject (object oriented modeling and design) is to learn how to
apply object -oriented concepts to all the stages of the software development life
cycle.
Note 2:
Object-oriented modeling and design is a way of thinking about problems using
models organized around real world concepts. The fundamental construct is the
object, which combines both data structure and behavior.
WHAT IS OBJECT ORIENTATION?
Definition: OO means that we organize software as a collection of discrete
objects (that incorporate both data structure and behavior).
Thereare fouraspects(characteristics) required by an OOapproacho
Identity.
Classification.
Inheritance.
Polymorphism.
Identity:
Identity means that data is quantized into discrete, distinguishable entities
called objects.
E.g. for objects: personal computer, bicycle, queen in chess etc.

OOMD Modulel
Page |1

Mabharaja Institute of Technology Mysore

Objects can be concrete (such as a file in a file system) or conceptual (such
as scheduling policy in a multiprocessing OS). Each object has its own inherent
identity. (i.e two objects are distinct even if all their attribute values are identical).

In programming languages, an object is referenced by a unique handle.
Classification:

Classification means that objects with the same data structure (attribute) and

behavior (operations) are grouped into a class.
E.g. paragraph, monitor, chess piece.
Each object is said to be an instance of its class.

Fig below shows objects and classes: Each class describes a possibly infinite
set of individual objects.

Eg
Polygon class:
Arribuces-
-vertices,
abstract border class,
_—D' -fill color.
into
Operations-
«draw.
-grase,
-move
Bycycle class:
Attributes-
- frame size
-wheel size
no. of gears
: -material
Operations-
. -shift
-move
-repair
Inheritance:

It is the sharing of attributes and operations (features) among classes based
on a hierarchical relationship. A super class has general information that sub classes
refine and elaborate.

E.g. Scrolling window and fixed window are sub classes of window.
Polymorphism:

Polymorphism means that the same operation may behave differently for

different classes.

For E.g. move operation behaves differently for a pawn than for the queen in
a chess game.

OOMD Modulel
Page |5

Department of ISE

Mabharaja Institute of Technology Mysore

Note: An operation is a procedure/transformation that an object performs or is
subjected to. An implementation of an operation by a specific class is called a
method.

WHAT IS OO DEVELOPMENT?

Object-Oriented Development =

- — s
- ™~

7 Object-Crientac \“>
3 Analysis (OOA)

-
- g
R e

+

- /. E \\‘
(’ Object-Oriented
.. DesigniocDp))

&

S "
+
e oy
" Object-Oriented

(\. Programming (QOFP) /

S— —

Figure 1-3 Object-vriented development

Development refers to the software life cycle: Analysis, Design and
Implementation. The essence of OO Development is the identification and
organization of application concepts, rather than their final representation in a
programming language. It’s a conceptual process independent of programming
languages. OO development is fundamentally a way of thinking and not a
programming technique.

OO methodology

Here we present a process for OO development and a graphical notation for
representing OO concepts. The process consists of building a model of an application
and then adding details to it during design.

The methodology has the following stages

System conception: Software development begins with business analysis or
users conceiving an application and formulating tentative requirements.

Analysis: The analyst scrutinizes and rigorously restates the requirements
from the system conception by constructing models. The analysis model is a concise,
precise abstraction of what the desired system must do, not how it will be done.

The analysis model has two parts-

OOMD Modulel
Page |6

Department of ISE

Mabharaja Institute of Technology Mysore Department of ISE

Domain Model- a description of real world objects reflected within the
system.

Application Model- a description of parts of the application system itself
that are visible to the user.

E.g. In case of stock broker application-

Domain objects may include- stock, bond, trade & commission.

Application objects might control the execution of trades and present the
results.

System Design: The development teams devise a high-level strategy- The
System Architecture- for solving the application problem. The system designer
should decide what performance characteristics to optimize, chose a strategy of
attacking the problem, and make tentative resource allocations.

Class Design: The class designer adds details to the analysis model in
accordance with the system design strategy. His focus is the data structures and
algorithms needed to implement each class.

Implementation: Implementers translate the classes and relationships
developed during class design into a particular programming language, database or
hardware. During implementation, it is important to follow good software
engineering practice.

Three models
We use three kinds of models to describe a system from different view points.

1. Class Model—for the objects in the system & their relationships.

It describes the static structure of the objects in the system and their
relationships.

Class model contains class diagrams- a graph whose nodes are classes and arcs
are relationships among the classes.

2. State model—for the life history of objects.

It describes the aspects of an object that change over time. It specifies and
implements control with state diagrams-a graph whose nodes are states and whose
arcs are transition between states caused by events.

3. Interaction Model—for the interaction among objects.

It describes how the objects in the system co-operate to achieve broader results.
This model starts with use cases that are then elaborated with sequence and activity
diagrams.

Use case — focuses on functionality of a system — i.e what a system does for
users.

Sequence diagrams — shows the object that interact and the time sequence of their
interactions.
Activity diagrams — elaborates important processing steps.

THEMES

OOMD Modulel
Page |7

Mabharaja Institute of Technology Mysore Department of ISE

Several themes pervade OO technology. Few are —
Abstraction

Abstraction lets you focus on essential aspects of an application while

ignoring details i.e focusing on what an object is and does, before deciding how to
implement it.

It’s the most important skill required for OO development.
Encapsulation (information hiding)
It separates the external aspects of an object (that are accessible to other
objects) from the internal implementation details (that are hidden from other objects)

Encapsulation prevents portions of a program from becoming so
interdependent that a small change has massive ripple effects.
3. Combining data and behavior

Caller of an operation need not consider how many implementations exist.

In OO system the data structure hierarchy matches the operation inheritance
hierarchy (fig).

<>

data seruceurs hierarchy

A

procedure hicrarchy

/

Is replaced widh =l

class hlerarchy

\

old approach QQ approach

Sharing
OO techniques provide sharing at different levels.

Inheritance of both data structure and behavior lets sub classes share
common code.

OO development not only lets you share information within an application,
but also offers the prospect of reusing designs and code on future projects.

5. Emphasis on the essence of an object
OO development places a greater emphasis on data structure and a lesser
emphasis on procedure structure than functional-decomposition methodologies.
6. Synergy

Identity, classification, polymorphism and inheritance characterize OO
languages.

N

Page |8

Mabharaja Institute of Technology Mysore Department of ISE

Each of these concepts can be used in isolation, but together they
complement each other synergistically.

MODELLING AS A DESIGN TECHNIQUE
Note: A model is an abstraction of something for the purpose of understanding it
before building it.
MODELLING
Designers build many kinds of models for various purposes before constructing things.

Models serve several purposes—

Testing a physical entity before building it: Medieval built scale models of
Gothic Cathedrals to test the forces on the structures. Engineers test scale models of
airplanes, cars and boats to improve their dynamics.

Communication with customers: Architects and product designers build
models to show their customers (note: mock-ups are demonstration products that
imitate some of the external behavior of a system).

Visualization: Storyboards of movies, TV shows and advertisements let
writers see how their ideas flow.

Reduction of complexity: Models reduce complexity to understand directly
by separating out a small number of important things to do with at a time.
ABSTRACTION

Abstraction is the selective examination of certain aspects of a problem.

The goal of abstractionistoisolate those aspectsthatareimportant for some purpose
and suppress those aspects that are unimportant.
THE THREE MODELS

Class Model: represents the static, structural, “data” aspects of a system.

It describes the structure of objects in a system- their identity, their
relationships to other objects, their attributes, and their operations.

Goal in constructing class model is to capture those concepts from the real
world that are important to an application.

Class diagrams express the class model.

State Model: represents the temporal, behavioral, “control” aspects of a
system.

State model describes those aspects of objects concerned with time and the
sequencing of operations — events that mark changes, states that define the context
for events, and the organization of events and states.

State diagram express the state model.

Each state diagram shows the state and event sequences permitted in a
system for one class of objects.

State diagram refer to the other models.

I EEEEEEEEEE—————
OOMD Modulel
Page |9

TRSTTET o]l TTSUTLTE OF TeCTotogy torysore Department of ISE

Actions and events in a state diagram become operations on objects in the
class model. References between state diagrams become interactions in the
interaction model.

3. Interaction model — represents the collaboration of individual objects, the
“interaction” aspects of a system.

Interaction model describes interactions between objects — how individual
objects collaborate to achieve the behavior of the system as a whole.

The state and interaction models describe different aspects of behavior, and
you need both to describe behavior fully.

Use cases, sequence diagrams and activity diagrams document the interaction
model.

CLASS MODELLING
Note: A class model captures the static structure of a system by characterizing the
objects in the system, the relationships between the objects, and the attributes and
operations for each class of objects.
OBJECT AND CLASS
CONCEPT Objects

Purpose of class modeling is todescribe objects.

Anobject is a concept, abstraction or thing with identity that has meaning for an
application.
Ex: Joe Smith, Infosys Company, process number 7648 and top window are objects.
Classes

An object is an instance or occurrence of a class.

Aclass describes a group of objects with the same properties (attributes), behavior
(operations), kinds of relationships and semantics.
Ex: Person, company, process and window are classes.
Note: All objects have identity and are distinguishable. Two apples with same color,
shape and texture are still individual apples: a person can eat one and then the other.
The term identity means that the objects are distinguished by their inherent existence
and not by descriptive properties that they may have.

%

OOMD Modulel

Mabharaja Institute of Technology Mysore Department of ISE

CLASS MODELLING

OBJECT AND CLASS CONCEPT

An object has three characteristics: state,

behavior and a unique identification. or

An object is a concept, abstraction or

thing with identity that has meanlng for

an application. Eg: — o

Note: The term | ‘ ;'1 .
identity means that '

"* "
the objects are x“ﬁ’ w| o
distinguished by their | 44"} l'g;T"~;';;.;
inherent existence K« S I A 8
and not by descriptive " ¥ 31
properties that they s | il
may have. st || mopreven

Class diagrams

Class diagrams provide a graphic notation for modeling classes and their
relationships, thereby describing possible objects.
Note: An object diagram shows individual objects and their relationships.
Useful for documenting test cases and discussing examples.

Class diagrams are useful both for abstract modeling and for designing actual
programs.
Note: A class diagram corresponds to infinite set of object diagrams.

Figure below shows a class (left) and instances (right) described by it.

Person | JoeSmith:Person [MarySharp: Person 1 :Person

Class Gbjects
Conventions used (UML):
UML symbol for both classes and objects is box.
Obijects are modeled using box with object name followed by colon followed
by class name.
Use boldface to list class name, center the name in the box and capitalize the
first letter. Use singular nouns for names of classes.
To run together multiword names (such as JoeSmith), separate the words
with
intervening capital letter.

Values and Attributes:
Value is a piece of data.

OOMD Modulel
Page |11

Mabharaja Institute of Technology Mysore Department of ISE

Attribute is a named property of a class that describes a value held by each object of
the class.

Following analogy holds:

Object is to class as value is to attribute.
E.g. Attributes: Name, bdate, weight.

Values: JoeSmith, 21 October 1983, 64. (Of person object).
Fig shows modeling notation

Person § JoeSmith:Person [Mﬂryﬁhgég:Person
name: string = | name="Joe Smith" ‘ name="Mary Shamp”
birthdate: date . birthdate=21 October 1983 | | birthdate=16 March 1950 |

-

Class wi!k. Attribuses Dhjecis with Values
Conventions used (UML):

List attributes in the 2nd compartment of the class box. Optional details (like
default value) may follow each attribute.

A colon precedes the type, an equal sign precedes default value.
Show attribute name in regular face, left align the name in the box and use
small case for the first letter.
Similarly we may alsoinclude attribute valuesinthe 2nd compartment of object
boxes with same conventions.

Note: Do not list object identifiers; they are implicit in models.
E.g.

1

Person

-

J name: string
- | birthdate: date .
~date homeTelephoneNumber:string

elephoneNumbersigng

Wrong Correct

An operation is a function or procedure that maybe applied to or by objects in a
class.
E.g. Hire, fire and pay dividend are operations on Class Company. Open, close, hide
and redisplay are operations on class window.

Amethod is the implementation of an operation for a class.
E.g. In class file, print is an operation you could implement different methods to
print files.

Note: Same operation may apply to many different classes. Such an operation is
polymorphic.

Fig shows modeling notation.

OOMD Modulel
Page |12

ﬁWWDMWISE

S,

Person v File » Geofnetric(’)biect
name fileName color
birthdate _{ sizelnBytes position
TN stlpdate | ——
| changeJob ‘ i o | move (delta : Vector)
| changeAddress | print select {p : Point): Boolean

l rotate (in angle : float = 0.0) l

UML conventions used —
List operations in 3rd compartment of class box.
List operation name in regular face, left align and use lower case for first
letter.

Optional details like argument list and return type may follow each operation
name.

Parenthesis enclose an argument list, commas separate the arguments. A
colon precedes the result type.
Note: We do not list operations for objects, because they do not vary among
objects of same class.
Summary of Notation for classes

P :
ClassName

attributeName1 : dataTypel = dcf_al_nt\/alum
attributeName2 : dataType2 = defaullValue2

¢ & @

operalionNaﬁ;nm (argumentl_ish) : resultTypet
operationName?2 (argumentl i8t2) : resultType2

Fig: Summary of modeling notation for classes

direction argumentName : type = defaultValue
Fig: Notation for an argument of an operation

DeloflSE Paeld

OOMD Modulel

Mabharaja Institute of Technology Mysore

Department of ISE

Class Digarms: Relationships

Classes can related to each other
through different relationships:

— Dependency [Classl— {Class? |

— Association (delegation) Classl]

— Generalization (inheritancq Base <~— sub |

— Realization (interfaces) | Base|<#{ sub |

Dependency: A Uses Relationship

Dependencies
— occurs when one object depends on another

—if you change one object's interface, you
need to change the dependent object

— arrow points from dependent to needed
objects

. CardReader
| Jukebox [
" CDCollection
b SongSelector

2)Association: Structural Relationship

= Association

— a relationship between classes indicates some
meaningful and interesting connection

— Can label associations with a hyphen connected
verb phrase which reads well hetween concepts

OOMD Modulel

Page |14

Mabharaja Institute of Technology Mysore Department of ISE

association

association name
| Class 1 } { Jass 2 |

if association name is replaced with “owns>",
it would read “Class 1 owns Class 2”

LINK AND ASSOCIATION CONCEPTS
Note: Links and associations are the means for establishing relationships among
objects and classes.
Links and associations
Alink is a physical or conceptual connection among objects.
E.g. JoeSmith WorksFor Simplex Company.
Mathematically, we define a link as a tuple- that is, a list of objects.
A link is an instance of anassociation.
Anassociation is a description of a group of links with common structure and
common semantics.
E.g. a person WorksFor a company.
An association describes a set of potential links in the same way that a class describes
a set of potential objects.
Fig showsmany-to-many association (model for a financial application).

—ee

Fe-'gon OwnsStock j Company
Clgss diagram. <. ————1 % s]
| name | name
,jgh;:l;er;,an
name="Joh* |-
Mary:Person ——— GE:Company
name="T4ary" ————l NANEGE"
SuePerson |~ ['gniCompany |
biect diagram ¢] P e BV |
\ "name;_- ale | " r—1 namec="IBM* !
Alice: Pargon
name-"Alice" f

f : Jefi-Parson
|

name="Jeff"

Conventions used (UML):
Link is a line between objects; a line may consist of several line
segments. If the link has the name, it is underlined.
Association connects related classes and is also denoted by a line.
Show link and association names in italics.
Note:

OOMD Modulel
Page |15

TRSTTET o]l TTSUTLTE OF TeCTotogy torysore Department of ISE

Association name is optional, if the model is unambiguous. Ambiguity arises
when a model has multiple associations among same classes.

Developers often implement associations in programming languages as
references from one object to another. A reference is an attribute in one object that
refers to another object.

Association Relationships

We tan grecily dnal assovialions.

rJ:?’.v!.-q.‘-\.'.V.'n'.'.l I

iy E
i iy Aneoe ot o
Member of
1.t 1.+
studant Tem
l President o 1%

Class Diagrams (cont)

a Tynes ot seecclatiors Aaqgraaation (has-a)
lin M
DAy .
e e Foirl
Crnpunsltlnne (1s=nn g end-nl
o L
™
n ary - -
Chawsd o i e
ik o Aavad CimimaAll salliin {lemri=kinl=nl)
— ey —
rd i Vol

K

Claww ¥

OOMD Modulel Page [16

ISE
Class Diagrams (cont)

' uddﬁﬂh‘pﬂr
I P s s -&--.
I s rrlny Raaliratinn
“ﬂm L [
B g N— i
b
Pyt Muwiger | ___ _ |
""" e
Taarm ke ni e LN S
____-__I'J i}
Class suppor Ls &l
The source class operatizns of ta-get cless
depends on (uses) but rot all attrizuzes or
the target class agscciations.

Multiplicity
Multiplicity specifies the number of instances of one class that may relate to a
single instance of an associated class. Multiplicity constrains the number of related
objects.
UML conventions:
UML diagrams explicitly lists multiplicity at the ends of association lines.
UML specifies multiplicity with an interval, such as

“1” (exactly one).
“I1..”(one or more).
“3..5”(three to five, inclusive).
“*” ('many, i.e zero or more).

notations
1 & exactly one
, many
0.. Class (zero or more)
—
01 optional
Class (zero or one)
numerically
M Gass Specified
Example:. L——l(mton, inclucive)
0..3
Course CourseOffering
1

OOMD Modulel Page [17

Maharaja Institute of Technology Mysore Department of ISE

Previous figure illustrates many-to-many multiplicity. Below figure illustrates
one-to-one multiplicity.

l_f*aﬁ@ﬁf] CapitalCity

name name

—

| | Country
News diggram B

[[Cansda:Country | wasCapial [Ottawa:CapitaiCity
name="Canada”

| name="Ottawa"

. [France:Country | HasCapiial | ParisiCapitaiCity |
et diagram- 4. [= = 2* P 1
| name="France name="Paris

|

| Senegal:Country | HasCapital | Dekar:CaplialClty
—lﬁrre-"Senegal“J name="Dzakar"

8

Below figure illustrateszero-or-one multiplicity.

e q 0.1 rWindOW
Workstallm’i console 1 —___l

Note 1: Association vs Link.

1 anAsgociation v.n | --abiok L B_]
e a [

-\‘A. - 3 F
Class divgram Okject divgram

Figure 3.100 Association vs. link. A pair of ubjects can he mstantizzed ot
Ot onee Per association (except tor bags #nd saquences),

Ext ati ey ﬂL'L‘(3
Tk anAgeociation 2 = [ana:2 l}—- —GB?‘

i e AR |
L% anotherassosiation *L— = gnotherkink -

-

e

Class diagram Obfect diagrum

Figare 311 Association vs. Link. You can use multple desosiations i
rxlel multiple links betwoean the same vbjects.

OOMD Modulel
Page |18

Mabharaja Institute of Technology Mysore Department of ISE

Multiplicity of Associations
Many-to-one

— Bank has many ATMs, ATM knows only 1 bank

A
[P]

One-to-many

— Inventory has many items, items know 1 inventory

Invantory Toam
name Gleing
aerd g TNum g B dng
adkli’ iwasd, Cligh ! T].l..l:LI..)
cléaleslé?] zwiald I.::-::u duanidbelny
el 1 Py 1) v A grpnTTmemt i ETrAnY
Lozataed) s lten

Association - Multiplicity

» ASludent canlake up to five Courses

« Shudert has to be enrdlled in at |rast one course
Up L 300 students can enroll in a course.

+ Aclass should have st |east 10 students.

| Student Course
Takes- 5

10..300 1

OOMD Modulel
Page |19

Mabharaja Institute of Technology Mysore

Department of ISE

Association

- Multiplicityli ity

A teacher teaches 1 to 3 courses (subjects)
Each course is taught by only one teacher.
A student can take between 1 to 5 courses.
A course can have 10 to 300 students.

Teacher

1 Teaches»

1.3

Students

aKkes»

10..300

Multiplicity

« Multiplicity defines how many instances
of type A can be associated with one
instance of type B at some point

Game

Course

1.5

hother

2.8

Flayer

Actar

pefarms-in

1+

Child

*

*

can label assortali ons

. Actor izassodated
Filrm with () to trerry filrs
A filinis associated
waith 0 to treny actors

OOMD Modulel

Page |20

Coums . 4 feoges Professor
-name
-schedue n* 0.* 'g?an o id
-term Boll Lo i
7 N
1.*
offers
1 1.>
Department| g \fanages Chair
-narme His chair

MULTIPLICITIES IN ASSOCIATIONS

min.max notation | 0..* related to zero or more objects

(related to at 0.1 related to no object or at most one object
least min 1.* | related to at least one object

objects and 1.1 related to exactly one object.

at most max 3.5 related to at least three objects and at
objects) most five objects

short hand 1 sameas 1.1

notation . sameas 0.*

Note 2: Multiplicity vs Cardinality.
Multiplicity is a constraint on the size of a collection.
Cardinality is a count of elements that are actually in a
collection. Therefore, multiplicity is a constraint on cardinality.
Note 3: The literature often describes multiplicity as being “one” or “many”,
but more generally it is a subset of the non negative numbers.
Association end names
Multiplicity implicitly refers to the ends of associations. For E.g. A one-to-many
association has two ends —
an end with a multiplicity of “one”
an end with a multiplicity of “many”
You can not only assign a multiplicity to an association end, but you can give it a
name as well.

OOMD Modulel Page |21

ISE

Mabharaja Institute of Technology Mysore Department of ISE

Pers_c;n employee amployer C_Ompan; '
_* WaorksFor .1

employee employer

Joe Doe Simplex
Mary Brown Simplex
Jean Smith United Widgets

Assueiation end names, Each end of an association can have a namc.

A person is an employee with respect to company.
A company is an employer with respect to a person.
Note 1: Association end names are optional.

Note 2: Association end names are necessary for associations between two objects

of the same class. They can also distinguish multiple associations between a pair of
classes.
E.g. each directory has exactly one user who is an owner and many users who are
authorized to use the directory. When there is only a single association between a
pair of distinct classes, the names of the classes often suffice, and you may omit
association end names.

samerll 0] gontamer
f User i irectory

l' % r tent
authorizedUser | * ~ %|con

b

Note 3: Association end names Iet you unify multiple references to the same class.
When constructing class diagrams you should properly use association end names
and not introduce a separate class for each reference as below fig shows.

5 t
| Perzon R ;n]

|
l Parent w J ohid[® |

M —

Wrong model Correct model

Sometimes, the objects on a “many” association end have an explicit order.
E.g. Workstation screen containing a number of overlapping windows. Each window
on a screen occurs at most once. The windows have explicit order so only the top
most windows are visible at any point on the screen.

Ordering is an inherent part of association. You can indicate an ordered set of
objects by writing “{ordered}” next to the appropriate association end.

OOMD Modulel Page [22

Mabharaja Institute of Technology Mysore

o] ordered) ——;l
Screen ; = ,_WIndow
B 8 VisibleOn

Fig: ordering sometimes occurs for “many” multiplicity
Bags and Sequences

Normally, a binary association has at most one link for a pair of objects.
However, youcanpermitmultiplelinks forapairofobjectsbyannotating an
association end with {bag} or {sequence}.

Abag is a collection of elements with duplicates allowed.

Asequence is an ordered collection of elements with duplicates allowed.
Example:

Department of ISE

IERSRE I [sequence}
linerary — = LAlrport

| caana— s
fig: an itinerary may visit multiple airports, so you should use {sequence} and
not {ordered}

Note: {ordered} and {sequence} annotations are same, except that the first
disallows duplicates and the other allows them.
Association classes

Anassociation class is an association that is also a class.
Like the links of an association, the instances of an association class derive identity
from instances of the constituent classes.
Like a class, an association class can have attributes and operations and participate in
associations.
Ex:

FI'Ie_ J—— . = { user"

[AccessxbleBb‘ o

—

accessPermission |

jochormeap (2, hiary Brown
'fﬁtscr'fc?cr)ea Iogm read-write John Doe

UML notation for association class is a box attached to the association by a
dashed line.

Note: Attributes for association class unmistakably belong to the link and cannot
be ascribed to either object. In the above figure, accessPermission is a joint property

of File and user cannot be attached to either file or user alone without losing
information.

OOMD Modulel Page [23

Mabharaja Institute of Technology Mysore Department of ISE

Below figure presents attributes for two one-to-manyrelationships. Each person
working for a company receives a salary and has job title. The boss evaluates the
performance of each worker. Attributes may also occur for one-to-one associations.

()1"—’

'—Person l—— ———— Company J
i | name
e | g?é?\?)ate l rworksFor | address _~

7! address ?’atI}?Tr'%e J

i
ManaQQSL =| worker l___lo S B
s

I
B

}—performanceﬂathI_'

Note 1: Figure shows how it’s poss1ble to fold attributes for one-to-one and one-
to-many associations into the class opposite a “one” end. This is not possible for
many-to-many associations.

As a rule, you should not fold such attributes into a class because the multiplicity of
the association may change.

- —
* Person ' ; 11 company

od 4 name ’ name
1 | binhDate | WorksFor | | address

address salary
e jobTitle

PE ¥ WorksFor 0.1

name
birthDate]
address

Note 2: An association class participating in an association.

Swcouraged

-

¥ &l
User ; ; Worketation
Authorization
priority homeDirectory [o, . |
privileges ~ - Directory |
startSession

Note 3: Association class vs ordinary class.

OOMD Modulel Page |24

Mabharaja Institute of Technology Mysore Department of ISE

[— Peraon - Company
e F name " J——w = name
s OwnsStock | |
e .
guantity :
Person | = Purchase Company
fe e TR s 1
b < | hame quantity name
dess — ' date
cost

eg:

] * employer
Ll’mson ‘ 0.1 Company

Employment

perindicdatelange

Figure 6-14: Assnniation Class

/employer
" — 0.1

1 0.1 Employment j . -

Person — period | daleRange ——

- Company

Qualified associations

A Qualified Association is an association in which an attribute called the
qualifier disambiguates the objects for a “many” association ends. It is possible to
define qualifiers for one-to-many and many-to-many associations.

A qualifier selects among the target objects, reducing the effective multiplicity from
“many” to “one”.

Ex 1: qualifier for associations with one to many multiplicity. A bank services
multiple accounts. An account belongs to single bank. Within the context of a bank,
the Account Number specifies a unique account. Bank and account are classes, and
Account Number is a qualifier. Qualification reduces effective multiplicity of this
association from one-to-many to one-to-one.

Beripaidaie1 Page 25

Mabharaja Institute of Technology Mysore Department of ISE

TR ' T
r——'_l A * [Aico_um_
— L, S ' Bank [——] accountNumber |
;_Bank ra_ccoth'meE)L ———LACCOU’“_l __,}_ __ai noer |
e —Iﬁ —d—— Not qualified
{Jualifie

Fig: qualification increases the precision of a model. (note: however, both are

acceptable)

Ex 2: a stock exchange lists many companies. However, it lists only one company
with a given ticker symbol. A company maybe listed on many stock exchanges,

possibly under different symbols.

StockExchange StockExchange

| tickerSymbal | ; e
Eg Listst-<ma——a
Lists . tickerSymbol I

0.1 = o |
' ampany
Company l —p__ '
Quaéx'ﬁed Not qu'atiﬁed

Eg 3: Qualified Association

|
Contains ’ P-oduct

(@) Froduct ‘
Description

Ca'alog ‘ ' n

1) x
) Procuct temiD Contains | Pfo(!ug.t
Czlelog | Description
qualifier k multisticity reduoed to 1 k

eg 4:

OOMD Modulel

Page |26

Mabharaja Institute of Technology Mysore Department of ISE

qualifier|

1 4 1 8

A 2 | Ny on—— v |
(Al'rdy Indext Alrray vu—luk_‘

‘ N

| qualified object target object
J

| |

GENERALIZATION AND INHERITANCE

Generalization is the relationship between a class (the superclass) and one or
more variations of the class (the subclasses). Generalization organizes classes by
their similarities and differences, structuring the description of objects.

The superclass holds common attributes, operations and associations; the
subclasses add specific attributes, operations and associations. Each subclass is said
to inherit the features of its superclass.

There can bemultiple levels of generalization.

Fig(a) and Fig(b) (given in the following page) shows examples of generalization.

Fig(a) — Example of generalization for equipment.

Each object inherits features from one class at each level of generalization.

UML convention used:

Use large hollow arrowhead to denote generalization. The arrowhead points to
superclass.

Fig(b) — inheritance for graphic figures.

The word written next to the generalization line in the diagram (i.e dimensionality) is
a generalization set name. A generalization set name is an enumerated attribute that
indicates which aspect of an object is being abstracted by a particular generalization.
It is optional.

OOMD Modulel Page [27

Maharaja Institute of Technology Mysore

Department of ISE

3 H» Equipment
1 name INote: Tha listing of equinmant,
manutacturer sumps, and tanks s incomplete.}
weight ‘
| cost |
| Ll
[I y S| ===
Fump HeatExchanger | Tank
suctionPressure surfaceArea | volume
dischargePressure tubeDiametar pressure
flowRate | tubeLength
tubePressure
ﬁ:\ shgliPressure
-])|
CentrifugalPump DlaphragmPump ; PlungerPump
impellerDiameles diaphragmMaterial i ; plungerLength
numberQfBlades plungerDiameter
axisQlRolaton | numberOfCylinders

weight = 100 kg

cost = $5000
suctionPres = 1.1 atm
dischargePres = 3.3 atm
flowRate = 300 Ithr

manufacturer = “Simplex”

weight = 5000 kg
cost = $200C0

tubelength=6m

manufacturer = “Brown”

surfaceArea = 300 m@
tubeDiameter = 2 cm

[| TS A
SpherlcaiTank PressurizedTank FloatingRoofTank
diameter | diameter | diameter
height | height
P101:DiaphmagmPump | | E302:HeatExchanger T111:FloatingRoofTank
name = “P107” name = “E3(2" name =“T111"

1
{
| |

we:ght = 10000 kg
| cost = 850000
| wolume = 400000 liter
i pressure = 1.1 atm
| diameter=8m

manufacturer = “Simplex"

tubePressure = 15 atir \ height =9 m

diaphragmbat! = Teflon 1
sheliPressurs = 1.7 atm

Fig(a)

OOMD Modulel
Page |28

Mabharaja Institute of Technology Mysore Department of ISE

Figure |
color
T ® centerPosition
Dlagram—]. | penThickness
: ' panT/pe
name -
— move
select
rotat'e
| displa
disp! y\ iy
Z[dimensionality :
[=
. 9 = | - -
Zerolimenslonal Onel}lmensmné_] { TwoDm:\ensuonal
Ny n orientation
‘ orientatio o
3 1 scale
scae fill
IR - /’S_ i
l L G L, ,v
i 1] " 11 circle
Point I Lme ‘ Arc Spline 4. l Polygen | |
E. :l enclPomts '—radlus controiPts numQiSides l d:ametﬂ
T = = ng[e \!Gﬂlces —d.s‘play—
3 play dasplay i arcAngIe [ilsmav | ’_lbp‘ay j |
- ——————— B
! | display _j

Fig (b)
‘move’, ‘select’, ‘rotate’, and ‘display’ are operations that all subclasses inherit.
‘scale’ applies to one-dimensional and two-dimensional figures.
“fill” applies only to two-dimensional figures.
Use of generalization: Generalization has three purposes —

To support polymorphism: You can call an operation at the superclass
level, and the OO language complier automatically resolves the call to the method
that matches the calling object’s class.

To structure the description of objects: i.e to frame a taxonomy and
organizing objects on the basis of their similarities and differences.

To enable reuse of code: Reuse is more productive than repeatedly writing
code from scratch.

Note: The terms generalization, specialization and inheritance all refer to aspects
of the same idea.
Overriding features
A subclass may override a superclass feature by defining a feature with the same name.

The overriding feature (subclass feature) refines and replaces the overridden feature
(superclass feature) .

Why override feature?
To specify behavior that depends on subclass.
To tighten the specification of a feature.

OOMD Modulel
Page |29

Mabharaja Institute of Technology Mysore Department of ISE

To improve performance.

In fig(b) (previous page) each leaf subclasses had overridden ‘display = feature.

Note: You may override methods and default values of attributes. You should
never override the signature, or form of a feature.

A SAMPLE CLASS MODEL

s
display ‘H

| x1
H ‘!-1
undisplay 5

Window |
*2
y2
r8iSE
lower

AY
B s | Panel I
ScrofiingWindow | o .
e ex! ' [lemName |
KOﬂS&t L:Q" _-li—
| yOtest Mz 24 |
o A, P | [Evant |
- addt: ¢ i TR
X _.__{;J deleleElemBm' ' ' -mfi!vt'mﬁunj
o | winchaw) || 3 I::—J
) : =
\ + eloments Panslltem—l' kayboardEven:
I i Shaps ' X—r—.
— —)l : .
;olor |
| I fme\ﬂnmh J r‘ib e | 5
|_—'—/':_ S A
o o 5 ——— = [Texiltam
L— e i Bution Choice Sy
r Text rsjgrolllne | Line ' %‘8;";.5’ ——'—-‘” ftem | raxiangth
sieaagint § ot AR B {T‘ucﬁor"I ?;;’,%sse.n T " e
[swing ‘;}3 | IiiuPem:fnl = | | =
i y2] = |isubse;:
msgr‘l T = Sa
coraw - "
Lo = _Jr__] cureniChuice 1 # ‘ﬁofﬁ
- e][]
— ——— voriices Polygen e e
] Pol"_t-_}ggor_o;m—d}'_'_l]__ o_y&i | L_x— =] | slr:ﬂg l
TX | draws ¥ i

—— —

NAVIGATION OF CLASS MODELS

Class models are useful for more than just data structure. In particular, navigation of
class model lets you express certain behavior. Furthermore, navigation exercises a
class model and uncovers hidden flaws and omission, which you can then repair.

UMLincorporatesalanguage thatcanbeusedfornavigation, theobjectconstraint
language(OCL).

OCL constructs for traversing class models

OOMD Modulel

Page |30

TRSTTET o]l TTSUTLTE OF TeCTotogy torysore Department of ISE

OCL can traverse the constructs in classmodels.

Attributes: You can traverse from an object to an attribute value.
Syntax: source object followed by dot and then attribute name.
Ex: aCreditCardAccount.maximumcredit

Operations: You can also invoke an operation for an object or collection of
objects. Syntax: source object or object collection, followed by dot and then the
operation followed by parenthesis even if it has no arguments. OCL has special
operations that operate on entire collections (as opposed to operating on each object
in a collection). Syntax for collection operation is: source object collection followed
by “->”, followed by the operation.

Simple associations: Dot notation is also used to traverse an association to a
target end. Target end maybe indicated by an association end name, or class name (
if there is no ambiguity).

Ex: refer fig in next page.

» aCustomer.MailingAddress yields a set of addresses for a customer (the
target end has “many” multiplicity).

» aCreditCardAccount.MailingAddress yields a single address(the target
end has multiplicity of “one”).

Qualified associations: The expression aCreditCardAccount.Statement [30
November 1999] finds the statement for a credit card account with the statement date
of November 1999. The syntax is to enclose the qualifier value in brackets.

Associations classes: Given a link of an association class, you can find the
constituent objects and vice versa.

Generalization: Traversal of a generalization hierarchy is implicit for the
OCL notation.

Filters: Most common filter is ‘select’ operation.

Ex: aStatement.Transaction->select(amount>$100).
Examples of OCL expressions

OOMD Modulel Page [31

- > — —JzocourtNamber o

| -
— ‘ Institution |
| 'H -~ 4 -~ > t
MailingAddrass CredilCardAccount 1 ! Ins ,

1)
exiTonl | Transaction

: _,l;u,_f._"cl."l:'.Ej,i::i' [— e
Cusiomer l —_

1o ol &] ransacticnNumtar — ‘ransaclicnDate I
axplanation
‘ amount |

o
™ — —_— - e |
= —_ — - AiuEd nt
ota s as ustment
CashAdyance interest | ERIERas i l |-—-Au'

Write an OCL expressionfor—
What transactions occurred for a credit card account within a time
interval?
Soln: aCreditCardAccount.Statement. Transaction -
> select(aStartDate<=TransactionDate and
TransactionDate<=anEndDate)

What volumes of transactions were handled by an institution in the last
year?
Soln: anInstitution.CreditCardAccount.Statement. Transaction ->
select(aStartDate<=TransactionDate and TransactionDate<=anEndDate).amount-
>sum()

What customers patronized a merchant in the last year by any kind of
credit card?

Soln: aMerchant.Purchase -> select(aStartDate<=TransactionDate
andtransactionDate<=anEndDate).Statement.CreditCardAccount.MailingAddress.Cu
stomer ->asset()

How many credit card accounts does a customer currently have?

Soln: aCustomer.MailingAddress.CreditCardAccount -> size()

What is the total maximum credit for a customer for all accounts? Soln:
acustomer.MailingAddress.CreditCardAccount. Maximumcredit -> sum()

OOMD Modulel Page [32

ISE

Mabharaja Institute of Technology Mysore Department of

Module 2: Advanced Class Modeling 6 Hours

Toipics :
Advanced object and class concepts
Asoociation ends
N-ary association
Aggregation
Abstract classes
Multiple inheritance
Metadata
Reification
Constraints
Derived data
Packages
2.1 Advanced object and class concepts

2.1.1 Enumerations

A data type is a description of values, includes numbers, strings,
enumerations Enumerations: A Data type that has a finite set of values.

When constructing a model, we should carefully note enumerations, because they
often occur and are important to users.

Enumerations are also significant for an implantation; we may display the possible
values with a pick list and you must restrict data to the legitimate values.

Do not use a generalization to capture the values of an Enumerated attribute.

An Enumeration is merely a list of values; generalization is a means for structuring
the description of objects.

Introduce generalization only when at least one subclass has significant attributes,
operations, or associations that do not apply to the superclass.

In the UML an enumeration is a data type.

We can declare an enumeration by listing the keyword enumeration in guillemets
(<< >>) above the enumeration name in the top section of a box. The second section
lists the enumeration values.

Eg: Boolean type= { TRUE, FALSE}

Eg: figure.pentype TR

Two diml.filltype
=T

OOMD Module2

ISE

Page |33

Mabharaja Institute of Technology Mysore

D

epartment of ISE

Card
rank
Wrong %
Spades Clubs Hearts Diamonds
\
Card - -
<<enumeration>> <<enumeration>>
Correct rar.1k: rgnk Suit Rank
suit: suit Clubs King
Hearts Queen
Diamonds
Spades | | ¢

\

Modeling enumerations. Do not use a generalization to capture the
values of an enumerated attribute

2.1.2 Multiplicity

Multiplicity is a collection on the cardinality of a set, also applied to attributes
(database application).

Multiplicity of an attribute specifies the number of possible values for each
instantiation of an attribute. i.e., whether an attribute is mandatory ([1]) or an
optional value ([0..1] or * i.e., null value for database attributes) .

Multiplicity also indicates whether an attribute is single valued or can be a
collection.

Person

rae s =hing [1]
sdoress . srnz [1.7]
FhonzNurber | string[*]

kirhDatc : zaxc[1]

2.1.3 Scope

Scope indicates if a feature applies to an object or a class.

An underline distinguishes feature with class scope (static) from those with object
scope.

Our convention is to list attributes and operations with class scope at the top of the
attribute and operation boxes, respectively.

OOMD Module2
Page |34

Mabharaja Institute of Technology Mysore Department of ISE

It is acceptable to use an attribute with class scope to hole the extent of a class (the
set of objects for a class) - this is common with OO databases. Otherwise, you
should avoid attributes with class scope because they can lead to an inferior model.

It is better to model groups explicitly and assigns attributes to them.

In contrast to attributes, it is acceptable to define operations of class scope. The most
common use of class-scoped operations is to create new instances of a class,
sometimes for summary data as well.

2.1.4 Visibility

Visibility refers to the ability of a method to reference a feature from another class
and has the possible values of public, protected, private, and package.

Any method can access public features.

Only methods of the containing class and its descendants via inheritance can access
protected features.

Only methods of the containing class can access private features.

Methods of classes defined in the same package as the target class can access
package features

The UML denotes visibility with a prefix. “+”@ public, “-’@ pig&
“#’@protected, “~”@ package. Lack of a prefix reveals no information
aboutvisibility.

Several issues to consider when choosing visibility are

Comprehension: understand all public features to understand the capabilities of a
class. In contrast we can ignore private, protected, package features — they are
merely an implementation convince.

Extensibility: many classes can depend on public methods, so it can be highly
disruptive to change their signature. Since fewer classes depend on private,
protected, and package methods, there is more latitude to change them.

Context: private, protected, and package methods may rely on preconditions or state
information created by other methods in the class. Applied out of context, a private
method may calculate incorrect results or cause the object to fail.

2.2 Associations ends

Association End is an end of association.

A binary association has 2 ends; a ternary association has 3 ends.

2.3 N-ary Association

We may occasionally encounter n-ary associations (association among 3 or more

classes). But we should try to avoid n-ary associations- most of them can be
decomposed into binary associations, with possible qualifiers and attributes.

OOMD Module2
Page |35

Mabharaja Institute of Technology Mysore Department of

Team

The UML symbol for n-ary associations is a diamond with lines connecting to
related classes. If the association has a name, it is written in italics next to the

diamond.

Year

aoalkeeper

Record

goals lor
geals against
Wins

losses

TiSs

Car *

Player

Person

inventoryl
D
Make

model

<

Finance

nf

! A
TUAITATTTUU

Persaon

pld
pName

Finance

11 oanAmount ’

Bank

bankID

ot
UINalmre

Person

bankId
1 | bName

The OCL does not define notation for traversing n-ary associations.

OOMD Module2

ISE

Page |36

Mabharaja Institute of Technology Mysore Department of ISE

A typical programming language cannot express n-ary associations. So, promote n-
ary associations to classes. Be aware that you change the meaning of a model, when
you promote n-ary associations to classes.

An n-ary association enforces that there is at most one link for each combination.

Person
Eg: Lrogrammer
Project | - AN Languag
Class N e
diagrarn
Instance see prescribed text book page no. 65 and fing no. 4.6
Diagram

2.4 Aggregation

Aggregation is a strong form of association in which an aggregate object is made of
constituent parts.
Constituents are the parts of aggregate.
The aggregate is semantically an extended object that is treated as a unit in many
operations, although physically it is made of several lesser objects.

We define an aggregation as relating an assembly class to one constituent part class.

An assembly with many kinds of constituent parts corresponds to many
aggregations.

We define each individual pairing as an aggregation so that we can specify the
multiplicity of each constituent part within the assembly. This definition emphasizes
that aggregation is a special form of binary association.

The most significant property of aggregation is transitivity (if A is part of B and B is
part of C, then A is part of C) and antisymmetric (if A is part of B then B is not part
of A)

A Zior IR
| Car }:_;— Door —O‘ llouse |
", 4
\'b- /L__

Ywhale ‘ Fart

2.4.1 Aggregation versus Association

Aggregation is a special form of association, not an independent concept.
Aggregation adds semantic connotations.

If two objects are tightly bound by a part-whole relationship, it is an aggregation. If
the two objects are usually considered as independent, even though they may often
be linked, it is an association.

Aggregation is drawn like association, except a small (hollow) diamond indicates the
assembly end.

OOMD Module2
Page |37

Mabharaja Institute of Technology Mysore

Department of ISE

The decision to use aggregation is a matter of judgment and can be arbitrary.
2.4.2 Aggregation versus Composition

The UML has 2 forms of part-whole relationships: a general form called
Aggregation and a more restrictive form called composition.

Composition is a form of aggregation with two additional constraints.

A constitute part can belong to at most one assembly.

Once a constitute part has been assigned an assembly, it has a coincident lifetime
with the assembly. Thus composition implies ownership of the parts by the whole.
This can be convenient for programming: Deletion of an assembly object triggers
deletion of all constituent objects via composition.

Notation for composition is a small solid diamond next to the assembly class.
EQ: see text book examples also

Composition

|] com)siien mezns A
Lol | FPhoer -3 part instance (Square) can crly be part of one
comosts (Boera) ata fime
composition k <he composte hes sole responsibilty for management of
‘ s parts, 2specely weeton and defeter
g
et @ Syuare

| CIMautr I

(\ 1 \
LYV N\
cPy

database
1> O
) B —Ql T— 1..%
table query

OOMD Module2
Page |38

ObjectiOristittae K Todeliiepahty Design DenatOESTH 1SE

Aggregation
Composition

.................

1
3 e e
T
A } fesscccspemcc=es
Ty ap Hug Wimng t--‘ i 'I‘
3
)
L}
L}
L}
L}
L}
L}

e Iniptdl 1

RO RS ZRGENN - 2 SR {rneathaw Tewal e 2 e
1
Person - FacultyRole ‘
1%)
0.1
StudentRole

Crcle

Cirde }. L Foint | pn rt
Polyaza i’ L T

2.4.3 Propagation of Operations

L 4

Propagation (triggering) is the automatic application of an operation to a network of
objects when the operation is applied to some starting object.

For example, moving an aggregate moves its parts; the move operation propagates to
the parts.

Provides concise and powerful way of specifying a continuum behavior.
Propagation is possible for other operations including save/restore, destroy, print,
lock, display.

Notation (not an UML notation): a small arrow indicating the direction and
operation name next to the affected association.

Eg: see page no: 68 fig: 4.11

2.5 Abstract Classes

Abstract class is a class that has no direct instances but whose descendant classes
have direct instances.

A concert class is a class that is insatiable; that is, it can have direct instances.

A concrete class may have abstract class.

Only concrete classes may be leaf classes in an inheritance

tree. Eg: see text book page no: 69, 70 fig: 4.12, 4.13,4.14

OOMD Module2
odute Page |39

Mabharaja Institute of Technology Mysore Department of

In UML notation an abstract class name is listed in an italic (or place the keyword
{abstract} below or after the name).

We can use abstract classes to define the methods that can be inherited by
subclasses.

Alternatively, an abstract class can define the signature for an operation with out
supplying a corresponding method. We call this an abstract operation.

Abstract operation defines the signature of an operation for which each concrete
subclass must provid4 its own implementation.

A concrete class may not contain abstract operations, because objects of the concrete
class would have undefined operations.

2.6 Multiple Inheritance

Multiple inheritance permits a class to have more than one superclass and to inherit
features from all parents.

We can mix information from 2 or more sources.

This is a more complicated from of generalization than single inheritance, which
restricts the class hierarchy to a tree.

The advantage of multiple inheritance is greater power in specifying classes and an
increased opportunity for reuse.

The disadvantage is a loss of conceptual and implementation simplicity.

The term multiple inheritance is used somewhat imprecisely to mean either the
conceptual relationship between classes or the language mechanism that implements
that relationship.

2.6.1 Kinds of Multiple Inheritance

The most common form of multiple inheritance is from sets of disjoint classes. Each
subclass inherits from one class in each set.

The appropriate combinations depend on the needs of an application.

Each generalization should cover a single aspect.

We should use multiple generalizations if a class can be refined on several distinct
and independent aspects.

A subclass inherits a feature from the same ancestor class found along more than one
path only once; it is the same feature.

Conflicts among parallel definitions create ambiguities that implementations must
resolve. In practice, avoid such conflicts in models or explicitly resolve them, even if
a particular language provides a priority rule for resolving conflicts.

The UML uses a constraint to indicate an overlapping generalization set; the

notation is a dotted line cutting across the affected generalization with keywords in
braces. EQ: see text book page no: 71,72 fig: 4.15,4.16

2.6.2 Multiple Classification

An instance of a class is inherently an instance of all ancestors of the class.
For example, an instructor could be both faculty and student. But what about a
Harvard Professor taking classes at MIT? There is no class to describe the

OOMD Module2

ISE

Page |40

Mabharaja Institute of Technology Mysore Department of

combination. This is an example of multiple classification, in which one instance
happens to participate in two overlapping classes. Eg: see text book page no: 73 fig:
4.17

2.6.3 Workarounds

Dealing with lack of multiple inheritance is really an implementation issue, but early
restructuring of a model is often the easiest way to work around its absence.

Here we list 2 approaches for restructuring techniques (it uses delegation)

Delegation is an implementation mechanism by which an object forwards an
operation to another object for execution.

Delegation using composition of parts: Here we can recast a superclass with
multiple independent generalization as a composition in which each constituent part
replaces a generalization. This is similar to multiple classification. This approach
replaces a single object having a unique ID by a group of related objects that
compose an extended object. Inheritance of operations across the composition is not
automatic. The composite must catch operations and delegate them to the appropriate
part.

In this approach, we need not create the various combinations as explicit
classes. All combinations of subclasses from the different generalization are
possible.

Inherit the most important class and delegate the rest:

Fig 4.19 preserves identity and inheritance across the most important generalization.
We degrade the remaining generalization to composition and delegate their
operations as in previous alternative.

Nested generalization: this approach multiplies out all possible combinations. This
preserves inheritance but duplicates declarations and code and violets the spirit of
OO programming.

Superclasses of equal importance: if a subclass has several superclasses, all of
equal importance, it may be best to use delegation and preserve symmetry in the
model.

Dominant superclass: if one superclass clearly dominates and the others are less
important, preserve inheritance through this path.

Few subclasses: if the number of combinations is small, consider nested
generalization. If the number of combinations is large, avoid it.

Sequencing generalization sets: if we use generalization, factor on the most
important criterion first, the next most important second, and so forth.

Large quantities of code: try to avoid nested generalization if we must duplicate
large quantities of code.

Identity: consider the importance of maintaining strict identity. Only nested
generalization preserves this.

OOMD Module2

ISE

Page |41

Mabharaja Institute of Technology Mysore Department of

2.7 Metadata

Metadata is data that describes other data. For example, a class definition is a
metadata.

Models are inherently metadata, since they describe the things being modeled (rather
than being the things).

Many real-world applications have metadata, such as parts catalogs, blueprints, and
dictionaries. Computer-languages implementations also use metadata heavily.

We can also consider classes as objects, but classes are meta-objects and not real-
world objects. Class descriptor object have features, and they in turn have their own
classes, which are called metaclasses.

Eg: see text book page no: 75 fig: 4.21

2.8 Reification

Reification is the promotion of something that is not an object into an object.
Reification is a helpful technique for Meta applications because it lets you shift the
level of abstraction.

On occasion it is useful to promote attributes, methods, constraints, and control
information into objects so you can describe and manipulate them as data.

As an example of reification, consider a database manager. A developer could write
code for each application so that it can read and write from files. Instead, for many
applications, it is better idea to reify the notion of data services and use a database
manager. A database manager has abstract functionality that provides a general-
purpose solution to accessing data reliably and quickly for multiple users.

Eg: see text book page no: 75 fig: 4.22

2.9 Constraints

Constraint is a condition involving model elements, such as objects, classes,
attributes, links, associations, and generalization sets.

A Constraint restricts the values that elements can assume by using OCL.
2.9.1 Constraints on objects

Eg: see text book page no: 77 fig: 4.23
2.9.2 Constraints on generalization sets

Class models capture many Constraints through their very structure. For example,
the semantics of generalization imply certain structural constraints.
With single inheritance the subclasses are mutually exclusive. Furthermore, each
instance of an abstract superclass corresponds to exactly one subclass instance. Each
instance of a concrete superclass corresponds to at most one subclass instance.
The UML defines the following keyword s for generalization.

Disjoint: The subclasses are mutually exclusive. Each object belongs
to exactly one of the subclasses.

Overlapping: The subclasses can share some objects. An object may
belong to more than one subclass.

4
5 2 age

ISE

Mabharaja Institute of Technology Mysore Department of

Complete: The generalization lists all the possible subclasses.
Incomplete: The generalization may be missing some subclasses.
2.9.3 Constraints on Links

Multiplicity is a constraint on the cardinality of a set. Multiplicity for an association
restricts the number of objects related to a given object.

Multiplicity for an attribute specifies the number of values that are possible for each
instantiation of an attribute.

Qualification also constraints an association. A qualifier attribute does not merely
describe the links of an association but is also significant in resolving the “many”
objects at an association end.

An association class implies a constraint. An association class is a class in every
right; for example, it can have attribute and operations, participate in associations,
and participate in generalization. But an association class has a constraint that an
ordinary class does not; it derives identity from instances of the related classes.

An ordinary association presumes no particular order on the object of a “many” end.
The constraint {ordered} indicates that the elements of a “many” association end
have an explicit order that must be preserved.

Eg: see text book page no: 78 fig: 4.24

2.9.4 Use of constraints

It is good to express constraints in a declarative manner. Declaration lets you express
a constraint’s intent, without supposing an implementation.

Typically, we need to convert constraints to procedural form before we can
implement them in a programming language, but this conversion is usually
straightforward.

A “good” class model captures many constraints through its structure. It often
requires several iterations to get the structure of a model right from the prospective
of constraints. Enforce only the important constraints.

The UML has two alternative notations for constraints; either delimit a constraint
with braces or place it in a “dog-ecarned” comment box. We can use dashed lines to
connect constrained elements. A dashed arrow can connect a constrained element to
the element on which it depends.

2.10. Derived Data

A derived element is a function of one or more elements, which in turn may be
derived. A derived element is redundant, because the other elements completely
determine it. Ultimately, the derivation tree terminates with base elements. Classes,
associations, and attributes may be derived. The notation for a derived element is a
slash in front of the element name along with constraint that determines the
derivation.

Date ofbirth/age

OOMD Module2

ISE

Page |43

7/

Mabharaja Institute of Technology Mysore Department of

A class model should generally distinguish independent base attributes from
dependent derived attributes.

Eg: see text book page no: 79 fig: 4.25

2.11 Packages

A package is a group of elements (classes, association, generalization, and lesser
packages) with a common theme.

A package partitions a model, making it easier to understand and manage.

A package partitions a model making it easier to understand and manage. Large
applications my require several tiers of packages.

Packages form a tree with increasing abstraction toward the root, which is the
application, the top-level package.

Notation for pakage is a box with a tab.

PackageName

Tips for devising packages
Carefully delineate each packages’s scope
Define each class in a single package
Make packages cohesive.
State Modeling

State model describes the sequences of operations that occur in response to external
stimuli.
The state model consists of multiple state diagrams, one for each class with temporal
behavior that is important to an application.
The state diagram is a standard computer science concept that relates events and
states.
Events represent external stimuli and states represent values objects.
Events
An event is an occurrence at a point in time, such as user depresses left button or Air
Deccan flight departs from Bombay.
An event happens instantaneously with regard to time scale of an application.
One event may logically precede or follow another, or the two events may be
unrelated (concurrent; they have no effect on each other).
Events include error conditions as well as normal conditions.
Three types of events:

signal event,

change event,

OOMD Module2

ISE

Page |44

Mabharaja Institute of Technology Mysore Department of

time event.
Signal Event
. A signal is an explicit one-way transmission of information from one object
to another.
It is different form a subroutine call that returns a value.

An object sending a signal to another object may expect a reply, but the reply
IS a separate signal under the control of the second object, which may or may not
choose to send it.

A signal event is the event of sending or receiving a signal (concern about
receipt of a signal).

ISE

ol Eqg: .
<<signal>> <<signal>> <<signal>>
StringEntered DigitDialed MouseButton Pushed
text digit button
location

The difference between signal and signal event
a signal is a message between objects a signal
event is an occurrence in time.
Change Event

A change event is an event that is caused by the satisfaction of a Boolean
expression.

UML notation for a change event is keyword when followed by a
parenthesized Boolean expression.
Eg:

when (room temperature < heating set point)
when (room temperature > cooling set point)
when (battery power < lower limit)

when (tire pressure < minimum pressure)

Time Event
Time event is an event caused by the occurrence of an absolute time or the
elapse of a time interval.
UML notation for an absolute time is the keyword when followed by a
parenthesized expression involving time.
The notation for a time interval is the keyword after followed by a
parenthesized expression that evaluates to a time duration.

Eg:
when (date = jan 1, 2000)
after (10 seconds)
Dept.of tSEvHTivt Page 45

OOMD Module2

Mabharaja Institute of Technology Mysore

Department of ISE

States

A state is an abstraction of the values and links of an object.

Sets of values and links are grouped together into a state according to the
gross behavior of objects

UML notation for state- a rounded box Containing an optional state name,
list the state name in boldface, center the name near the top of the box, capitalize the
fist letter.

Ignore attributes that do not affect the behavior of the object.
The objects in a class have a finite number of possible states.
Each object can be in one state at a time.

A state specifies the response of an object to input events.

All events are ignored in a state, except those for which behavior is explicitly
prescribed.

Event vs. States
» Event represents points in
time. > State represents intervals
of time.

Eg: power turned on power turned off power turned on

\ A)
Time Y Y

Powered Not powered

A state corresponds to the interval between two events received by an object.
The state of an object depends on past events.
Both events and states depend on the level of abstraction.

b

Dept. of ISE, Page 46

v

Mabharaja Institute of Technology Mysore Department of ISE

State Alarm ringing on a watch

o State : Alarm Ringing
e Description : alarm onwatch is ringing to indicate target time
» Event sequence that produces the state
setAlarm {targetTime)
any sequence notincluding cleardiarm
when {currentTime = targetTime)
» Condition that characterrizes the state:

alarm = on, alarm set to targetTime,

targetTime <= currentTime <=targetTime+20 sec , and no button has
been pushed since targetTime

» Events accepted in the state:

event response next state
when (currentTime =targetTime+20) resetAlarm normal
buttonPushea(any button) resetdlarm normal

Fig: various characterizations of a state. A state specifies the response of an
object to input events
Transitions & Conditions
A transition is an instantaneous change from one state to another.
The transition is said to fire upon the change from the source state to target
state.
The origin and target of a transition usually are different states, but
sometimes may be the same.
A transition fires when its events (multiple objects) occurs.

A guard condition is a Boolean expression that must be true in order for a
transition to occur.

A guard condition is checked only once, at the time the event occurs, and the
transition fires if the condition is true.

Guard condition Vs. change event

Guard condition change event

a guard condition is checked only once a change event is checked continuously
UML notation for a transition is a line may include event label in italics
followed by guard condition in square from the origin state to the target state
Brackets an arrowhead points to the target state.

OOMD Module2 Page |47

Wculllluluy‘y WIyouUTtT -Department Of ISE

= ™ fimeout [cars in NVS lell lanes] =
{North/south =" Northfsouth

\ may go straight/™~~__ may turn left)

fimeour [no cars

3 S~ e in N/S left lanes] ==
timeout RS | timeout
[fimeaatt [no pars g W

o T, | in E/W left lanes] e
(Eastiwest \ ~f Eastfwest |
\ mayturnleft ;. , may go strmgl'_l!,-

= timecut [cars in EMW left lanes]

Figure 5.7 Guarded transitions. A transition is an mstmiancous change
from one state o another. A guard condition is a hoolean ex
pression that must be true in order for 4 ransiion (o occur

State Diagram

A state diagram is a graph whose nodes are states and whose directed arcs
are transitions between states.

A state diagram specifies the state sequence caused by event sequences.

State names must be unique within the scope of a state diagram.

All objects in a class execute the state diagram for that class, which models
their common behavior.

A state model consists of multiple state diagrams one state diagram for each
class with important temporal behavior.

State diagrams interact by passing events and through the side effects of
guard conditions.

UML notation for a state diagram is a rectangle with its name in small
pentagonal tag in the upper left corner.

The constituent states and transitions lie within the rectangle.

States do not totally define all values of an object.

If more than one transition leaves a state, then the first event to occur causes
the corresponding transition to fire.

If an event occurs and no transition matches it, then the event is ignored.

If more than one transition matches an event, only one transition will fire, but
the choice is nondeterministic.

oOMDModule2 ~ page |48

Maharaja Institute of Technology Mysore Department of ISE

Eg: Sample state diagram

PhoneLine J

“
on-hock / idie ™ on-hook

Recorded

g digit(n) [:(/T“" "G J invalid number \ Message

 —

valid number
Busy tone) number busy ¢
Connectin
, A g) message
Fast trunk busy] e
busy tone routed

- (o) |

called phona answers

(G

g

called phone hangs up

,,;_!
“ Q)lsconnoct'ql- -

Figure 5.5 State diagram for phone line

One shot state diagrams
State diagrams can represent continuous loops or one-shot life cycles
Diagram for the [hone line is a continuous loop

One - shot state diagrams represent objects with finite lives and have initial and
final states.

Tine initial state is entered on creation of an object
Entry of the final state implies destruction of the object.

OOMD Module2
Page |49

Maharaja Institute of Technology Mysore
Department of ISE

Chess)
R checkmate
0———‘—"(White's turn\F\ 25
black | white stalemate \i N
moves| Mmoves, sralema!e e
Black’s turn |— e
o / checkmate
- |

Figure 5.9 State diagram for chess game. One shot diagrams represent
objects with finite lives.

Chess]
I checkmate

”I White’s turn ; Black wins
Y " black whife stalema e =
Start (¥ movosL ovesL sralcmate = ' Draw

Black’s turn) ——~{X) White wins

. / checkmate J

5.10 State diagram for chess game. You can also show one-shot
diagrams by using entry and cxil points.

Figure 5.

5.4.3 Summary of Basic State Diagram Notation

Figure 5.11 summarizes the basic UML syntax for state diagrams.

State dlagra; m:ng

) '—Stiate1 . event (attribs) [condition] / effect /" State2 \‘\
do /activity B - : : 6 |
\ ovenr [effect / \ /

——————

| — B S

Figure 5.11 Summary of basic notation for state diagrams.

sl masan A onacsiul natation 18 AVl

- |
OOMD Module2
Page |50

NraTar ey TSttt Ot Tecmotogy vysore Department of ISE

State diagram Behaviour
Activity effects

An effect is a reference to a behavior that is executed in response to an event.
An activity is the actual behavior that can be invoked by any number of
effects.

Eg: disconnectPhoneLine might be an activity that executed in response to an
onHook event for Figure5.8.

0 — s |-

OOMD Module2

©

[N

Mabharaja Institute of Technology Mysore Department of ISE

: Advanced State Diagrams

Syllabus-------- 7hr
Nested state diagram
Nested states
Signal generalization
Concurrency
A sample state mode
Relation of class and state models
Relation of class and state models
Use case models
Sequence models
Activity models

Problem with flat state diagrams
Flat unstructured state diagram are impractical for large problems, because —
n

representing an object with n independent Boolean attribute requires 2 states. By
partitioning the state into n independent sate diagram requires 2n states only.

_ .

P

Above figure requires n2 transition to connect every state to other state. This can be
reduced to as low as n by using sub diagrams structure.

Expanding states

One way to organize a model is by having high level diagram with sub diagrams
expanding certain state. This is like a macro substitution in programming language
A submachine is a state diagram that may be invoked as part of another state
diagram

OOMD Module2 Page |52

Uhjecti Origiftael dVicdetingpn vty Dresign Depatentlof ISE
PJERESRRRY AVIDRRIRIPRTPASTY DepaFventiof |

- s 3,
O AT

e—

| VendingMachine ~ — — ——— ——]
/”T T comin@no_unl)ﬁeﬂalan Collectmg money \ I
€\ dle —c;cel 7 refund oia :(coms infamount) ! add to balance/ |
5 TR DOl SR e -/
l [item empty| [select{itern) | [change<0]
| SR | S
| (do /test item m and compute change ge) |
\ —
‘ i[change =0] o [change~0) '
’ E——— s —
| —_— dlspense Dlspanseltem ‘*e —_ do/make change) |
L s S e

Figure 6,2 Vend ing machine state diagram. You can simplify state dia-
grams by using subdiagrums,

;E;}Zns?@m—l_ o

|
e T — N\ arm read, I e — T |
4 —'(do move arrn ta correcl row *

oW — — " \ 90 /move arm 1o 0 correct column) |
——— — _] o — —_— e
‘e, Pushed - ——H1 m rea
| 0 —= do/ /push ish item off eheit k—— W—J
I%_ S
e E_____ e — - -
Figure 6.3 Dispense item submachine of vending machine, A lower-level
state dixgram can o laborate a stage.

53
OOMD Module2 Page |

Maharaja Institute of Technology Mysore

Department of ISE

/B2 Nested States

'__c;‘o/slowl‘.!usyTone,."<)
S T - N
{ GConnecting
\do /findConnection/

/.‘-'— - ‘~.\\
¢ Fegmuey Tons ‘r;,: _ routed messageDone
\\oozfastBusyTone frunkBusy _ V

S S 7

7/ 5 -
[’ Ringing \
do / rir‘gBeI!/,‘

\
\"\.

| calledPhoneAnawers | connecilLine

i Connected N
A R /

f calledPhoneHangsUp / disconnectLine

(Disconnected e
\ WEA N S

PhoneLine
RS
onHook ! disconnectline _ /7~ P
={ Idle)
offHoo
//’-7. W -.'\
/" Active - . P -)
(’ DialTone (., Timeout b
do /soundDalTone / \G27 soundLoudBeeE/
_ timeout - <
digit(in} N Warning 2
\ do / play message
. S timeout A S— 7
d.'glf(n; _' 'f . }/_/’ =
' — Dialing b _ /" Recorded ™\
e S JinvaitdNumber | /Mossage)
e N hers) \da, playMessage /
(~BusyTone % nAumDersusy ujigNumber S L o3

Figure 6.4 Nested states for a phone line. A nested slzle receives the
vulgoing transitions ol its enclosing state,

OOMD Module2

Page |54

Maharaja Institute of Technology Mysore Department of ISE

CarTransmission /! push R

0—»(Neutral e = Reverse
T'* pushN ™~
push N 1, push F

7/~ Forward B

L stop stop __ ——, upshift . ———. upshrﬂ —_— ’ ‘
A ' ' /.

| @ =LFirst ___“{second ___)< IThlrd

X S Gownshift dowrsn:ﬂ —

Figure 6.5 Nested states. You can nest states (o an arbitrary depth.

Signal generalization

You can organize signals into generalization hierarchy with inheritance of signal
attributes

115
nf‘,igna]::
Userinput
device
4 |]
«signals «gignal»
MouseButton J KeyboardCharacter |
location Lcharacler
| AN \
| —
I A
agignale [esignals | | esignal» [«sng'\é:.; l
MouseButtonDown | | MouseButtonUp i | Control | Graphic
! —— S — ‘—/‘T_
S (W "l 1
«signals «signale «gignal»
Alphanumeric Puncluation
Space | p ' |

Figure 6.6 Partial hierarchy for keyboard signals. You can organize
signals using generalization

Ultimately, we can view every actual signal as a leaf on a generalization tree
of signals

OOMD Module2
! Page |55

Maharaja Institute of Technology Mysore Department of

In a state diagram, a received signal triggers transitions that are defined for
any ancestor signal type.

For eg: typing an ‘a’ would trigger a transition on a signal alphanumeric as
well as key board character.

Concurrency 1:
The state model implicitly supports concurrency among objects.

In general, objects are autonomous entities that can act and change state
independent of one another. However objects need not be completely independent

and may be subject to shared constraints that cause some correspondence among
their state changes.

1 Aggregation concurrency

Car

Y

| | g 3
Ignition | | Transmission| | Brake | |Accelerator

ignition turn key to start
ransmission

[T
off in Neutral] Starting release key @
turn key off 3

Transmission sh A
o)

Neutral ch N |Reverse

Accelerator Brake
depress accelerator depress brake_
off). ([on) of | (on)
“release accelarator relaase brake

2 concurrency within an object

OOMD Module2
Page |5

ISE

6

Maharaja Institute of Technology Mysore

Department of ISE

‘dege
Jﬁiaylng rubber |

NSvuInembllity - L

Ze

. N-Sgame N- game
O—iNot vulnorablo. ’*\Vulnerable ——{ N-S wins rubbeH

— - Ny

E-W vulnerabnmy
— N\ E-Wgame. /7 —\ E-Wgame / ~
\ 0——# Not vulnerable e \Vulnerable g +l E W wins rubberl
\\ — /’ N Cbhliadliic' ¢
S . o |

Figure 6,8 Bridge game with concurrent states. You can partition some ohjects into
subsets of attributes or links, each of which has its own subdiagram.

synchronization of concurrent activities

CashDisptir\ser) | EEnittingl
/r/. —— -\\
(;,«'\do /dispense cash)_ﬁ,.(\:/, . =
— e g, e = }—M Ready to reset |
/Semng up } ~—>K N .4
_“—— s (

X
\Kdi/epect card e u

o |

Figure 6.9 Synchronization of control. Control can split into concurrent
activities that subsequently merge.

OOMD Module2
Page |57

NreTar e TTISTTtIee T TecTotogy viysore Department of ISE

Interaction Models
2 The class model describes the objects in a system and their relationship.
€ The state model describes the life cycles of the objects.
& The interaction model describes how the objects interact.

The interaction model starts with use cases that are then elaborated with sequence
and activity diagrams

Use case: focuses on functionality of a system- i.e, what a system does for
users

Sequence diagrams: shows the object that interact and the time sequence of
their interactions

Activity diagrams: elaborates important processing steps

Use Case models
Actors

£

A direct external user of a system
Not part of the system
For example
Traveler, agent, and airline for a travel agency system.

2 Can be a person, devices and other system

2 An actor has a single well-defined purpose

Use Cases

@ A use case is a coherent piece of functionality that a system can provide by
interacting with actors,

@ For example:
A customer actor can buy a beverage from a vending machine.
A repair technician can perform scheduled maintenance on a vending

b

i
g

AN

machine.
< Each use case involves one or more actors as well as the system itself.
A Vending Machine

M
OOMD Module2

Mabharaja Institute of Technology Mysore Department of ISE

W Buy a beverage. The vending machine delivers a beverage after a customer se-
lects and pays for it

W Perform scheduled maintenance, A repair tschnician performs the periodic
service on the vending machine necessary to keep it in good working condition.

B Make repairs. A repair lechnician performs the unexpected service on the vend-
in2 machine nccessary to repair a problem in its operation,

B Load items. A stock clerk adds irems into the vending machine I replenish ity
stock of beverages,

Figure 7.1 Use case summaries far a vending machine. 4 1.ze caseis a cobermit pioca 2 incicr2lity that a syster can peavide by inlera=ling
Wil Asts

Clpoct Omicefoo Modetng and Degign win UYL Seeond Ecion oy Michaod 2000
aNo JEres FLenaugn, ISEN C-13 107500 4, 8 A0 “corsan Boucencn. ng, Upgcr §23dc Frvs WL AT ngiia rcsored

@ A use case involves a sequence of messages among the system and its actors.

< Error conditions are also part of a use case.

& A use case brings together all of the behavior relevant to a slice of system
functionality.

™

Use Case Description (see text book fug 7.2)
Use Case Name

Summary

Actors

Preconditions

Description

Exception

Postcondition

T VI VI]

G

(VI W]

G

Actor

(W]

Use Case

G

A Vending Machine

OOMD Module2
! Page |59

Mabharaja Institute of Technology Mysore Department of ISE

r Vending Machine
O
‘/" 1 buy ‘A\\
| ‘__‘beverag? o = AN
e Customer
.7 perform T
(scheduled) ;—l)
[\P‘z""’c" :\ce S —— _','i_
o — ,L-—"“ V' d \
| /" make ‘\--'-” Repalr techniclan
'\repalrs 7 [
(_‘!oad Items:_} —— . L
‘~- PO — | Stock clerk

Guidelines for Use Case
First determine the system boundary
Ensure that actors are focused
Each use case must provide value to uses
Relate use cases and actors
Remember that use cases are informal
Use cases can be structured
Use Case Relationships
& Include Relationship
Incorporate one use case within the behavior sequence of another use
case. @ Extend Relationship
Add incremental behavior to a use case.
< Generalization
Show specific variations on a general use case.

W]

VI VI WO W W

Use case Relationships

Include Relationship EXtlude relationship generalizZation

relationship

Examples:
<<include>> for common behavior

1)

OOMD Module2
. Page |60

Maharaja Institute of Technology Mysore Department of ISE

Vi \.. /1' \\
I 0 i Ested liwn {
A N - \ 1
T e Wy SR, _<<.m’lu;]e:v>
= s g e
b \ . " Chech 1o pe-zreation /'|
7 s b .
BonkBorroveer \\ S o

~, \\ ;. '.-F' \,‘\. 2 : 4]
N Bortew ¢apy T <includ -
N by ee
\ul huol ,//

o —— S

(2)

secure session «include»

———
—
—

validate password

T
make trade - ~ «include»
Figure 8.1 Use case inclusion. The include relationship lets a base use case

incorporate behavior from another use case.

Object-Oriented Modeling and Design with UML, Second Edition by Michael
Blaha and James Rumbaugh. ISBN 0-13-1-0159820-4. @ 2005 Pearson
Education, Inc., Upper Saddle River, NJ. All rights reserved.

3)
-
A ke \«mclude
Custome el ’ i
4

OOMD Module2
Page |61

Mabharaja Institute of Technology Mysore Department of ISE
ldemtiy Customer
./F? "ﬁlt v\
- 7 ~ .
<<include>> <<ndludess - 2<include>>
7 ~
e ' ~
I -
__H_F_,/

Withdram Cash Deposit Cash Trarefer Funds

Extend Relationship examples:
<<extend>> for special cases:

(1)
O

&

BookBorrower
- h <<extends> o 4 Refuscloan)

[Borrow copy of boak <= =3 =

(2)
/m

Extension points
oddif onel requess: After reservrg e

‘oo

4\ cextend»

Custame b Cusumer sguests
| coffez machine

Raquest coffea
machihe

©)

OOMD Module2
! Page |62

Maharaja Institute of Technology Mysore

Department of ISE

trade stocks

«extend» . 7

margin trading

G
&

: «extend»

~
- “extend»

~
Sy

trade options

«extend»

limit order

Figure 8.2 Use case extension. The axtend relationship is like an include relationship looked at
from the oppesite direction. The extension adds itself to the base

Object-Oriented Modeling and Design with UML, Second Edilion by Michagl Blaha and James
Rumbaugh. ISBN 0-13-1-015920-4. ©@ 2005 Pearson Education, Inc., Upper Saddle River, NJ

All rights reserved.

Medical Clinic: «include» and «extend»

system name —__

system boundary —»

/

X

Patient

\\

extension point -

Make Appcintment

“Clinic

Cancel Appointrrent

— &

e ==include==

_—

e

S —

)

heck Patient Record

==include== /l\
|

r'd

Scheduler

| - include use case

x

Daoctor

Reguest Medication

Pay Bill

==pyend== ¥ Defer Payment >

- extend use case

x

Extension points
Mare Treatment

generalization

child use case
{

Bill Insurance

Clerk

OOMD Module2

Page |63

Maharaja Institute of Technology Mysore Department of ISE

Generalization

.

g@;@v
™

LA

/ rath hond< /radn ntnrlt\ tra;ln nnt‘i;ns\
M T et

Figure 8.3 Use case genoralization. A piront use Case has common Dohavion
and child use Cases add vanations. analoous 10 OaNarEZaton amona classes

(2)eg:
Place Onler
Phone Order Intemet Ord er
Customer Internet Customer

OOMD Module2
odute Page |64

NreTar e TSt TtIee T Tec motogy viysore Department of ISE

Use Case Relationships

(@) 0
Securities
I Customer] exchange
:I/ \\ .‘/‘ \\
7
i
l ,r
Stock Brokerage System SR o s
(‘secure session) J/
P =S S ’,.‘
25 ! P
ainclude» |, 7 «includer /N _wincludon
'l/ 7/ T
- e ‘// e 22 \"/ sincluclen & \> o
(_manage nccoum) (make lrada — — — —=(validate passwotd)
Y — —* ';’\ g™ ‘\\ '\ - S — —
,‘V [A) N
//l o "‘ \ - -~ -~
~ \\\ ~ - L
// N <extond» V’Iimh n-m:‘\
P ,‘ | limitorder)
// \\. L
1\/ AP e o ~. — Ny
ad hor ds > (trada stocks) 'mde nlions)
. ~ - ~ - R
T S - ——— —
AI\
wpxtand» «oxtends, ~ , waxlend»
| ” |
P - — o < '/,- — .
(_margin lrudiﬂg) (short sale)
iyl ol lpac g b
vl Bl of relasoosivos

clagy ey combaes sevenG

Figum A4 Lise casa mintionships. A sl o

Sequence Models
The sequence model elaborates the themes of use cases.

Tow kinds of sequences models

Scenarios
Sequence diagrams

™
!

o

™,
g

Scenarios
& A scenario is a sequence of events that occurs during one particular execution

of a system.

& For example:
John Doe logs in transmits a message from John Doe to the broker system

Page 65

Dept. of ISE,
OOMD Module2

Maharaja Institute of Technology Mysore Department of ISE

Scenario for a stock broker

Jehn Doe logs in.

System establishes secure communications.

System displays portfolio infermation.

John Doe enters a buy order for 100 shares of GE al the markel price.
System verifies sufficient funds for purchase.

System displays confirmation screen with estimated cost.
John Doe conlirms purchase.

System places order on securities exchange.

Svstem displays transaction trackina numbar.

John Doe logs out.

System establishes insecure communication.

System displays good-bye screen.

Securities exchange reports results of trade.

Figure 7.4 Scenario for & session with an anline stock breker, A soenann 8 asatuenco of ovets et oo dur ng
0 FAN O OxDCUBON O 1 IVOm

Sequence Diagram

@ A sequence diagram shows the participants in an interaction and the sequence
of messages among them.

@ A sequence diagram shows the interaction of a system with its actors to
perform all or part of a use case.

@ Each use case requires one or more sequence diagrams to describe its
behavior.

OOMD Module2
Page |66

Maharaja Institute of Technology Mysore

Department of ISE

Sequence Diagram

- an Object
gL ‘ _—
™ lﬂew()bject
i - 1 self-delegation
return] :
Ly '
deletz | p
’d
A
1
Asynehronous Message
ne“’ . N
—p & 1kansaction
new
/ : first
a first
Activation | new . Trunsaction
| | Checker
' Siisanton
| e W AR
| ‘ ‘hecker
RN
| I e ofher ‘
| | Processig
: ok cup,/essed
l \\
\~ N L
all "
done? >< i
ok
(5 "
aeleles
| bevalid | “t“’ sl
' Selt-Dajagation

OOMD Module2

Page |67

TR e TS H e O eCHorogy Ty Sore Do pariment of ISE

Concurrent Processes
Activations - show when a method is active — either executing or waiting for
a subroutine to return
Asynchronous Message — (half arrow) a message which does not block the
caller, allowing the caller to carry on with its own processing; asynchronous
messages can:
Create a new thread
Create a new object
Communicate with a thread that is already running
Deletion — an object deletes itself
Synchronous Message — (full arrow) a message that blocks the caller

When a '

- new .
Transaction " 5 Transaction
is created...

b ereates a
Coordinator to
manage the checking.

The Coordinator

a Transaction ’

Coourdinator
|

= R a first
creates a series new 1
of Checkers, nme » 3 Transa«_hgn
for each kind of o
check. These
Che kers do 2 second
their checks as l T@I_&l&j.m
separate processes. | Lhe cker—‘
| | e
Il ag heck |I : e =
a givem che
fails, the Coordi B . LI\
nator Mlls all [kill 2
other Checkers | checkers 7]
that are sLill ,
running...
i kil
| belnvalid '3
«.and tells the {
Transaction . delomig /
that it is invalid. >< another
ogject
Dept.ofISE, Page68

OOMD Module2

Maharaja Institute of Technology Mysore Department of ISE

Sequence Diagram For a Session
| Actors Lj-zl ey [pe———

oo ||
- SECUME COMMUNIZAton | (vanty customer]
disclay porticio

enler purchase date

-

m ~ request confirmasion | | [verify funds)

con‘sm purchase : t| mp

-
Jesplay ordet number | place order
logout

insacure communication {execute order)

display good bye

repont results of trade
U messages U U

Figure 7.5 Sequence d.agram for a sessicn with an online stock brokar, /. soquorce dagiam

shows the paicipants © & tleracion anc (he sequenca of MESSEges among them

A stock purchase

:Customer :StockBrokerSystem :SecuritiesExchange

enter purchase data

-

~_ request confirmation {verify funds}
confirm purchase
__ display order number place order .

report results of trade {execute order}

-

b L —

Figure 7.6 Sequence diagram for a stock purchase. Sequence diagrams can show large-scale
interactions as well as smaller, constituent tasks.

A stock quote

OOMD Module2
! Page |69

Maharaja Institute of Technology Mysore Department of ISE

:Customer :StockBrokerSystem :SecuritiesExchange

enter stock symbol

request stock data

P report stock data
display quote
L] - ||
Figure 7.7 Sequence diagram for a stock quote.
A exception case
:Customer :StockBrokerSystem :SecuritiesExchange

enter purchase data

.

{verify funds:
reject purchase insufficient)

cancel purchase

- - L
Figure 7.8 Sequence diagram for a stock purchase that fails.
Guidelines
@ Prepare at least one scenario per use case
Abstract the scenarios into sequence diagrams
Divide complex interactions
Prepare a sequence diagram for each error condition

LV W N

Procedural Sequence Models
& Sequence Diagrams with Passive Objects
A passive object is not activated until it has been called.

OOMD Module2
odute Page |70

Maharaja Institute of Technology Mysore Department of ISE

:Transaction :CustomerTable :RateTable

|

compute
commission ()

|
|
|
service level (customer) |

Procedure call

commission
- — —— A ! !

Figure 8.5 Sequence diagram with passive objects. Sequence diagrams can show the
mplementation of operations

Sequence Diagrams with Transient Objects

An active
object

i Passive
operationE (c, d) S object
cresteC (a) | objectC Transient object
operationkt (m, n)
resultT {execute order}
————— -
rosultV
L ey i
I
L |

Figure 8.6 Sequence diagram with a transient ebject. Many applicatons hava a miv of actve ad
pessive objects. Thaey create and destrov objects,

Activity Models

2 An activity diagram shows the sequence of steps that make up a complex
process, such as an algorithm or workflow.

OOMD Module2
odute Page |71

TOrGRTaT oo TS TOee OF TeCTToTogy TvysoTe Department of ISE

@ Activity diagrams are most useful during the early stages of designing
algorithms and workflows.

@ Activity diagram is like a traditional flowchart in that it shows the flow of
control from step to step
Activity diagram Notation

Start at the top black circle
If condition 1 is TRUE, go right; if condition 2 is TRUE, go down
At first bar (a synchronization bar), break apart to follow 2 parallel paths
At second bar, come together to proceed only when both parallel activities are

I

"
g

o
o
>
Do @

T

Activity — an oval
Trigger — path exiting an activity
Guard — each trigger has a guard, a logical expression that evaluates to “true”
or “false”
& Synchronization Bar — can break a trigger into multiple triggers operating in
parallel or can join multiple triggers into one when all are complete
< Decision Diamond — used to describe nested decisions (the first decision is
indicated by an activity with multiple triggers coming out of it)

G

‘ Activity Diagram

A/

7~ .. Neconditon1] 7T\
'\AC“V“Y} ————==> 1 Activity}—
A T e % S
[condition 2]
* [for all thingies] \J
v
- ‘\\~ "‘J' \\‘
| Activity) Activit y/)
g A ~ P
\ " \ 4
[synchronization L
condition|
,/’ -~
[Activity |
. b

PR -~

7N
0~

~—

Eg:

1 R .y s

OOMD Module2

M

aharaja Institute of Technology Mysore

Person Grsgd Dacision Acavity
Rt T oY T
™ Ino coffec) T, [na eola]

7 Find N

1
.— = Beverage .'
gt i <

Suachronzaton Sar ;
) ! [fownd colles| [found cola]
o A "Wwe D
Y E TN i o A Eo vl 5
¢ Put Coffee ™ /7 Add Waler N [Get e Get Can 7
'.\ mTiller)\ to Reservoir W Cups ! of Cnla]
o, VY . pr o B - FISEST ., _ ____/
_L X
/7 Put Filter \
\, inMachine | Activity
2l 55
' 4'- 'V.
< 0N
S TurnOn
\ Machine)
N i
‘L * collewPol. TurnOn
7 Brew N
(, Collee !
Weon e
light goas ot i W &0
WY W
o - —
“

e ™, £

¢ Pour S | Drink Y S,

{ Coffee J = Beveruge "'\._,}
e

~ .

Eg: activity diagram for Use Case: Receiving an Order

Department of ISE

OOMD Module2

Page |73

Department of ISE

Mabharaja Institute of Technology Mysore

- %
(N

4” Ay
¢ Receive \

& =\ Order |
X R

.

b
Adcitiipte Trigges

N //

* |for each line
AR Wi femnoon order]
e U e N
"/ Cancel \'I-"' fAuthorize) 7 (-[E}Slcek \
\ Ovder ; 5 '\ Pa}'ment /‘ (Liem)
NeL B [fnilcd]\--‘ < - 34
[succooded) lin stock]
¢
g
¢ Assign to
, Order)
R "
Synchronization Congition o
.\. —_
X
\.
N\
\‘ [need to] i —-=3,
reorder Reorder
[stock azzigned te ;| = (Item
All e iteme 200 b b s

payrnent authorizerd]

(J Dispatch hY
Order |

\\
/
M. X

Page |74

OOMD Module2

Activity diagram for Use Case: Receiving a Supply

Dl
7 >
’ Receive\s
(Supply
e 433

D

- Choose "M,
(Quistanding |

A !
\V\E)-rder l_tenls/ ;
[for cach chosen
e order item]
."":Assio % N
Coodsto |
- Order /
o i
i
[5'“;"(Pse;"" npd IO A\ Y " 4 T res
Al line i8S Ay e——— \ l:k:‘ii'tiﬁ::l?ﬁ&l
payment authorizad] 1
A l. " 'I
/ﬂj_"\.‘ ;/" Add \\
{ DBF;:C ") | Remainder |
\.\ I /. «\ to S{ock /';

. =

OOMD Module2
Page |75

Activity diagram for Use Case: Receiving an Order and Receiving a Supply

.
= -

A 3

* [fir wach Jing
o itean on ooclec|

i

¥ TR
"' Receive)

. Supply
g PP)‘

1

v
s ™~
7 Chanse

877

| Outstanding)

A W = 3 . j
,'/.%’uthoriz}-l { (ﬂ:‘e“) -\Onlex Items/,
| 2 z
|fuile dl"-\,. ay_,‘menlf/. \,\ Item S
W 5 W5 * l{ur each
T, |‘.".| slacls L'.lOiv':l:l
£ Cangel N [succeaed | % ! | orderiiem]
| Order | TR L .
p - Assi t; ¢~ Bssign™,
. | | Goods tu |
' PhEe 5 v Order
\‘__{ o \Order
W W
*
Inzedto .- .
cr:crdgia Reovder
a Se— % (lem | L

[stock assigned
tnall i ne it&,_“s-‘
and pavment

anthavized]

-

-

A ™~
/ Dispatch ®
|]

L Order !
P

.

A\

7 l

e

e

arder itemes filla

[all -ﬂubﬂandinﬁ W

/7 Add N
(Remainder |
te Stowk /

.

OOMD Module2

Page |76

Maharaja Institute of Technology Mysore

Department of ISE

- ~,

Activity diagram for stock trade processing
>(: verfy o-der :

W
exe.ute o-der
next page

[failure]

synchronization

/’ ~
(sond)
\

feilure rotice ,}
., rd

[ser:css]
y
,—‘*\
_ T M, >y
I
(send { debit acsout | updza:c on inc
\ canfrmation) N g, (\ Sty)
\\,\ -‘_\— //
, rd ~ "1
N\, | 5ottietmde)
oy —
. Y v,
. S
= &
@< closecrde ,)<

Figure 7.9 Activily diagram for slock bude processing. 4 acliviy digpa shows |l
Tl MZEC P 3 COMP On DIOCOES

A Finer Activity for execute order

[markst order]

e seguenoe ol Sy

i < (timeout]
[selingl _A._[buying] fimit order] | [order stll activa] A
\\-// o /}
' 2 "8 _ [prce not available]T
find buyer \‘ / find seller \ Rt
at markzt price \ at market pn:e

[price aveilable]

/

[buying]

\

=

E % [salling]
(fnd buy0' at Ivmt)

price or befter

x—J

X
e

/

(find soller at Iimit\l
. price or befter
7~
(®

Figure 7.10 Activity diagram for axecuo ordor. An acfvily may bo dacomgoesd ivfe finer sctuitios.

Guidelines
@ Don’t misuse activity diagrams

Do no be used as an excuse to develop software via flowcharts.

OOMD Module2

Page |77

Maharaja Institute of Technology Mysore D

& Level diagrams
@ Be careful with branches and conditions
< Be careful with concurrent activities
& Consider executable activity diagrams
Special constructs for activity diagrams
Sending and receiving signals
Swim lanes
Object flows

Sending and Receiving Signals

0—’\/execute boot sequencb

m requesl 'laidalion\/- — i ey U
? !

v v
r

(wait ‘or response) network

¥ |

rd
S gnal receive confirmation Qé— e
raceiving >
vy
—
ready

Figure 8.7 Activity diagram with signals. Actvity diagrams can show
1ine conlral via senang and recerang avents

Swimlanes
o To know which human organization is
responsible for an activity.

Flight attendant [Ground crew [Catering

p— ¥ \\K‘\\, TR
Ccloan !rash\T 1l (addlfuol \, /'\ abn:ddm ol

_L‘/

v

4

Figure 8.8 Activity diagram with swimlanes. Swimianes can show organizational responsibility
for activities

Swimlanes - Activity Diagrams that show activities by class

epartment of

- - __________________________________Jeparimenior

ISE

OOMD Module2

Page |78

Mabharaja Institute of Technology Mysore Department of ISE

Arrange activity diagrams into vertical zones separated by lines
Each zone represents the responsibilities of a particular class (in this
example, a particular department)

_ Oxder Slock
Finanve Pracessing Manager
'/'.. > ""\.
{ Receive)
. Order |
SN A i
S
W { lée&.eire ""
| Su)
| X P
| # [for each line
itern on nrder] sl,r
Wl kY .«6 .Clum.:ﬁ_-\.
- X] e M [Qutstanding '
|""'\uthurizc:" [failed] ¢ (l.'}:l((‘}k) \Order Itemg,:'
\ Payment /7 ‘. Hlem =5 ol
G 18 \e S ok |for cadh
i o l ,C}‘N‘VSPI’!
1 iber
| Cancel | Sencsdten)
\ rder Y [im sinek)
R < ——..
" — ' .’," . \' /. = -.\
succoeded { Assign to ¢ Assign
[l i Order | CGoods to |
REP==S . Order /
N
[need 0 - =
_rearden] Reorder)
_ i N ltem /.‘

[stock assipn,
W

to all line ile |all vitstunding 4
arud payim orderitems [ilecd]
authorized |
| i AN 4
AT N ST
{ Dispatch Fpn Add Y
| “Ohier | { Remainder
I\ / Y toStock /

Object Flows

@ Show both the control and the progression of an
object from state to state as activilies act on it.

OOMD Module2
Page |79

Maharaja Institute of Technology Mysore

Department of ISE

Ohbject with
state

outputs of activines

‘Airplane
[at gate]

:Airplane :Airplane :Airplane
(at gate) ‘ [taxiing] (in flight]

park at gate

:Airplane
[taxiing]

\

Figure 8.9 Activity diagram with object flows. An activity diagram can show 1he objects that are inpuls o

OOMD Module2

Page |80

Mabharaja Institute of Technology Mysore Department of

Module 3 7 Hours
PROCESS OVERVIEW, SYSTEM CONCEPTION, DOMAIN
ANALYSIS
Svllabus :
Process Overview: Development stages; Development life cycle. System
Conception:

Devising a system concept; Elaborating a concept;
Preparing a problem statement. Domain Analysis: Overview of analysis;
Domain class model; Domain state model; Domain interaction model;
Iterating the analysis.
Process overview
A software development process provides a basis for the organized production of
software, using a collection of predefined techniques and notations.
Development Stages
System Conception
Conceive an application and formulate tentative requirements
Analysis
Deeply understand the requirements by constructing models
System design
Devise the architecture
Class design
Determine the algorithms for realizing the operations
Implementation
Translate the design into programming code and database structures
Testing
Ensure that the application is suitable for actual use and actually satisfies
requirements
Training
Help users master the new application
Deployment
Place the application in the field and gracefully cut over from legacy
application
Maintenance
Preserve the long term viability of the application
Analysis
To specify what must be done.
Domain analysis focuses on real-world things whose semantics the
application captures.
Application analysis addresses the computer aspects of the application that are
visible to users
System Design

OOMD Module 3 Page |81

ISE

Mabharaja Institute of Technology Mysore Department of ISE

Devise a high-level strategy — the architecture — for solving the application

problem.

The choice of architecture is based on the requirements as well as past experience.
Class Design

To emphasis from application concepts toward computer concepts.

To choose algorithms to implement major system functions.

Development Life Cycle
Waterfall Development
Iterative Development
Waterfall Development
The stages in a rigid linear sequence with no backtracking.
Suitable for well-understood applications with predictable outputs from analysis and
design.

P |

Faquiramanta

omccificotdon |

leaplera zetation

Iterative Development
First develop the nucleus of a system, then grow the scope of the system...
There are multiple iterations as the system evolves to the final deliverable.
Each iteration includes a full complement of stages:
analysis, design, implementation, and testing

OOMD Module 3 Page |82

Mabharaja Institute of Technology Mysore Department of ISE

Requirements Analysis & Design

Implementation

Planning

s Deployment
Initial

2lanning

Evaluation

Testing

Summary of development process for the organized production of software
*RQsets
System

«pevelopers
conceplicn

Mapagess™~ -~

vBuslness
expeily

Analysis:

Damall Lycar
aitalysis iulerviaws

eapplicaty "TXERrienre. - -
Ralated

O eyareims

vty sis

Design: -Arcultectne

»Systorn CYSERASeS

-:i:‘:'.SigIl *Alyorithms
£Optim¥za F A

e lass

design

System Conception
System conception deals with the genesis of an application

Devising a System Concept
New functionality
Streamlining
Simplification automate manual process
Integration
Analogies
Globalization
Elaborating a Concept

OOMD Module 3 Page |83

Mabharaja Institute of Technology Mysore Department of ISE

Good system concept must answer the following questions
Who is the application for?
Stakeholders of the system
What problems will it solve?
Features
Where will it be used?
Compliment the existing base, locally, distributed, customer base
When is it needed?
Feasible time, required time
Why is it needed?
Business case
How will it work?
Brainstorm the feasibility of the problem
The ATM Case Study
Develop software so that customers can access a bank’s computers and carry out their own
financial transactions without the mediation of a bank employee.

The ATM Case Study

Who is the application for?

We are vendor building the software
What problems will it solve?

Serve both bank and user
Where will it be used?

Locations throughout the world
When is it needed?

Revenue , investment
Why is it needed?

Economic incentive. We have to demonstrate the techniques in the book
How will it work

Preparing a problem statement
Design the software to support a computerized banking network including both human
cashiers and automatic teller machines (ATMs)to be shared by a consortium of banks. Each bank

OOMD Module 3 Page |84

Mabharaja Institute of Technology Mysore Department of ISE

provides its own computer to maintain own accounts and process transactions against them. Cashier
stations are owned by individual banks and communicate directly with their own bank’s computers.
Human cashiers enter account and transaction data The ATM Case Study

). Y 2
- .
~ | Cashier |-
Station 1
()),,_J AN X N
—~ [.~ \ —_
AT A —_— < Account
7N \\\ I~ Bank [~
R W A C‘-«Jn'pum_\ »
3 A~ j=— ~ Accournt
\ § 7\
RO ST [y -
- ~—. p -
i Computsr | S ——— _ — Account
4 e ~J Bank T
o

- Compuier|
ATM 7 — ™ Account

Figure 11.3 ATM network. The ATM casze study threada thrcughout the remainder of this bacl

OOMD Module 3 Page |85

Mahara'!a Institute of Technolog¥ M¥sore Departmsntaf |SE

APPLICATION ANALYSIS, SYSTEM DESIGN

7 Hours

Syllabus:

Application Analysis: Application interaction model; Application class model;
Application state model;

Adding operations. Overview of system design; Estimating performance;

Making a reuse plan; Breaking a system in to sub-systems;

Identifying concurrency; Allocation of sub-systems; Management of data

storage; Handling global resources; Choosing a software control strategy;

Handling boundary conditions; Setting the trade-off priorities; Common

Architectural styles; Architecture of the ATM system as the example.

Application Analysis
Application Interaction Model - steps to construct model
Determine the system
boundary Find actors
Find use cases
Find initial and final events
Prepare normal scenarios
Add variation and exception scenarios
Find external events
Prepare activity diagrams for complex use cases.
Organize actors and use cases
Check against the domain class model

1. Determine the system boundary .

Determine what the system includes.
What should be omitted?
Treat the system as a black box.
ATM example:
— For this chapter,
Focus on ATM behavior and ignore cashier details.

2. Find actors

@

FaN

OOMD Module 3 Page |86

Mabharaja Institute of Technology Mysore Department of ISE

The external objects that interact directly with the system.
They are not under control of the application.
Not individuals but archetypical behavior.
ATM Example:
— Customer, Bank, Consortium

3. Find use cases

For each actor, list the different ways in which the actor uses the system.
Try to keep all of the uses cases at a similar level of detail.

— apply for loan

— withdraw the cash from savings account

— make withdrawal

Use Case for the ATM

ATM

P TR, €
initiate ™
sgss?oen —
> >

/] N

gr | _(account

/",

7 & N e
/7 \ \ \(N
~ process \

/
/
4

Foura 131 liea rasa diaoram ‘or tha ATM. | lae rases nartiton e

« Inigiat session
- Fhe ATRA coeabhichos the Tenitfy Cf thie uxer 2id miackas
avallzgks & bor of geeswne i ections.
* Query acoount
= FThasoyster provides concra! Aa18 405 a0 aczoan?, sk oo
he carrent Bnlonce, date of iast transaction, and datc of
maiiing for gkt statenint,

OOMD Module 3 Page |87

Mabharaja Institute of Technology Mysore Department of ISE

* Procesy ttansaction
- TRe ATEA gyatdin perfainis an Jolwa thar affasr, an
ECCLIUR TS DOl ee e, AU B4 (e min WSO (s, OO TreA e
Thie ATM apsurcs that A coempotad ITAnsanrians s
wHimalely Wweidcies &0 the Dok 5 Galabaase.

= Trangrrny dara

- The ATat over the coti ot tiutn 'y Fachifler 2o cuornmioeabe
Wit rhe aoonronnpis: bank comnurer,

Find initial and final events

Finding the initial and final events for each use case
To understand the behavior clearly of system
Execution sequences that cover each use case
Initial events may be
A request for the service that the use case provides
An occurrence that triggers a chain of activity
ATM example
+ Initial session
— Initial event
The customer’s insertion of a cash card.
— final event
The system keeps the cash card, or
The system returns the cash card.
ATM example
Query account
— Initial event
A customer’s request for account data.
— final event
The system’s delivery of account data to the customer.
ATM example
Process transaction
— Initial event
The customer’s initiation of a transaction.
— final event
Committing or
Aborting the transaction
ATM example
Transmit data
— Initial event
Triggered by a customer’s request for account data, or
Recovery from a network, power, or another kind of failure.
— final event
Successful transmission of data.
Prepare normal scenarios
For each use case, prepare one or more typical dialogs.

OOMD Module 3 Page |88

Maharaja Institute of Technology Mysore Department of ISE

A scenario is a sequence of events among a set of interacting objects.
Sometimes the problem statement describes the full interaction sequence

Normal ATM scenarios

Initiate session

The ATM asks the user lo inserl a card.

I he ussrinserts a ¢ash card,

The ATIM accepts the card and reads its serial number

The ATM requests tre pessword.

The user enlers “1234

Ihe ATl venties the oassword by cortacting the conscrtium and bank.
The AT displays a menu of accounts and commards.

The ussr chooses the command Lo leminaie the session.

Ihe AT prnts a recept, epects tha card, ard asks the user to take tham.
The user takes the receipt enc the card.

Tho ATM asks the user o inscrt a card

Query account

The ATM displays a menu of accounts and commards.

The uscr chooses to query an account.

The AT M contacts the consorlium ard bank which return the data.
The AT displays acccunt data for the user,

The Al M displays a menu of accounts and commards.

Process transaction

The ATIM displays a menu of aczounts and commands

The user selacts ar account withdrawal

The AT asks for the amount of casn.

The user anters $100.

The ATM verifies that the withcrawel satisfies its policy limits,

The ATIM contacts the corsorlium ard bank and verifies that the account
has sufficient funds,

The ATM dispenses the cash and asks the user tc take it.

The user 1akes the cash.

The AT displays a menu of accounts and commands.

Transmit data
The ATM requests account data from the consortium.
The consortium accepts the request and forwards it to the cppropriate bank.
The bank receives the request and retricves the desired data.

The bank sends the data to tha consortium,
The conzorium roules the data to the ATM

Add variation and exception scenarios
Special cases
Omitted input E.g., maximum values, minimumvalue
Error cases
E.g. Invalid values, failures to respond
Other cases
E.g. Help requests, status queries

ATM example
Variations and exceptions:
— The ATM can’t read the card.
— The card has expired.
— The ATM times out waiting for a response.

OOMD Module 3 Page |89

M

aharaja Institute of Technology Mysore

— The amount is invalid.

— The machine is out of cash or paper.

— The communication lines are down

— The transaction is rejected because of suspicious pattern of card usage.
Find external events
The external events include

— All inputs,

— decisions,

— interrupts, and

— Interactions to or from users or external devices.
An event can trigger effects for a target object.
Use scenarios for normal
events Sequence diagram
Prepare a sequence diagram for each scenario.
The sequence diagram captures the dialog and interplay between actors.
The sequence diagram clearly shows the sender and receiver of each event
ATM Example

Sequence diagram of the process transaction

Department of

Rt sNSE——-—.—.. I

‘User (ATM :Consortium ‘Bank

dispiay mzanu

szlect withdrawal

=

select account

recuest amount

enter amount

veriy funds

verity funds

confirm funds

confirm funds

dispense cash

take cash

—

Figure 13.3 Sequerce diagrem for the process transaction acenaric. A soquance cinam cloarky 3hows the
sardar ard raosive” of @ach evan:

Events for the ATM case study

ISE

OOMD Module 3

Page |90

Maharaja Institute of Technology Mysore Department of ISE

User

szt card, enter password, sglect account, select deposit

select witlhdrawal, rans e funds, cuery aceounl
enter amount, take cash, ake card
caneel, erinate, conlinug

>

Bank

<
display main screen
unreadable card message, canceled message
request password, request amount
eject card. fuilure message
dispense cash, request take cash
request continuation
prink receipl. request take cand

had bank cade messnge
display rransaction menu

verify card with bank, verify funds
process bank ransaction

<

~

—

bank transaction succeeded, confirm funds
bank transzaction failed, bank account OK
had hank zecount. had hank password

ATM

process transacticn
verify account l, T bad acconnr
bad account message verify funds

transaction succeeded
transaction failed
aecount OK

had password
hnd hank enide
confirm funds

Consortium

Figure 13.4 Events for the ATM case study. Tally e guems n-h: scanaios and note the chasses Ihat send and recehe ege™ svant.

9. Activity Diagram

Activity diagram shows behaviors like alternatives and decisions.

Prepare activity diagrams for complex use cases.
Appropriate to document business logic during analysis
Do not use activity diagram as an excuse to begin implementation.

ATM Example

Activity diagram for card verification

OOMD Module 3

Page |91

Maharaja Institute of Technology Mysore

> ™ //\\

4 N
raturn card | insert card r—=< -
\ / (/ PRI unraadabdle|

L readable]

Department of ISE

()

‘communications down] "~ [tad bank code or bad account]
e

Lcard OK]
[communications dowr] e [account fraud alert]

l [good account]
[cemmunications down]

N
| request nessword 4

[communications down] I\ |multiple password tailures)|

-

<

[cerract password] VY Yy

@ ooy]

Figure 13.5 Activity diagram for card verification You can uss activity dacrams 1o documert busress logiz
bricanot uss tham as an ez a6 16 259N prematula implemanation,

10. Organize actors and use cases
Organize use cases with relationships
— Include, extend, and generalization

Organize actors with generalization.

ATM Example

OOMD Module 3 Page |92

Maharaja Institute of Technology Mysore

Doanaxt ntof |SE
-

9, 0 O
L Consortium L Customer Bank
SN ' . g P “\
. l -
= o ~ - - = —
ATM S - i
(Inltlate sesslon |
- i A9
dncluces | N
- TR wineludes
- ’ .'J’ N\
o 5 e T
~ - AR \ winigiudes
L_Query account | (process lmnsacilon/)
~— — . = - ~ = a3 = -
air |u,;!.1dt-,=:~l £
- e
Y- = ~F
[lransmit data]
Fagure 13 6 Drganoing Lse cases | 0o the Dasic das cases ams identtiedd 0 can oicanss

fd 1l B re e bon s s

11. Checking Against the Domain Class Model

The application and domain models should be mostly consistent.
The actors, use cases, and scenarios are all based on classes and concepts from the

domain model.

Examine the scenarios and make sure that the domain model has all the necessary data.

Make sure that the domain model covers all event parameters.

N 1
EntryStation Transaction *
EnteredOn I
dateTime update
| amount amount
kind
ATM Cashier | 0..1 *
station —
cashOnHand ST Remote
0.1 . transaction Transaction
. Communicates
Communicates - :
With With
EnteredBy
1
Employs Cashier
0..2 name1
Issues Authorizatio
I n
| ‘—z passwor
CashCard 1 limit
1 passWord *
station 1
station l_l<1> Code— emplyoee Customer
Code Ban ¢ Code - Account *__ hame
Eonsortlum Bank 0..1 — address
Code namei 1 card balance 'y
account 0..1 oreditiimit
Code =T type 1

Application Class Model

OOMD Module 3

Page |93

Mahara'!a Institute of Technolog¥ M¥sore Departmsntaf |SE

Application classes define the application itself, rather than the real-world objects that the
application acts on
Most application classes are computer-oriented and define the way that users perceive the
applications
Application Class Model — steps
Specify user interfaces
Define boundary classes
Determine controllers
Check against the interaction model
Specify user interfaces
User interface
Is an object or group of objects
Provide user a way to access system’s
domain objects,
commands, and
Application options.
Try to determine the commands that the user can perform.
A command is a large-scale request for a service,
c. E.g.

Make a flight reservation
Find matches for a phrase in a database
Decoupling application logic from the user interface. ATM
example - The details are not important at this point.
The important thing is the information exchanged.

Messages o user
1 2 3 CILEAR
B 5 G CANCEL
T 8 9 FENTER
O
f 1]]
rcecipts cash slot

Flgure 13.7 Format of ATM Interface. Somatimes a sampla
iNntertace can halp you visualize the oparation ot an appiic abon

Dept mfulS Sm————y s

aharaja Institute of Technology Mysore

Department of ISE

Userinterface | Consortiumintertace |

CashCardBoundary s Account8oundary

bankCcde benkCode

cardCcde accountCode ProblemType

saria/Numer helance

password crectlimit name

Tl AceauntType

bankName bankNzma
customarName *
custonarAddress ContlrallerProblem

startCataTime

Remole | acine mnsaction TransactionController stopDatelime
Transaction |+ 1.1 -
stertDeteTime *
dcliveCad
CaghCard °= 71 ATMsession SeaslonController
— i *
bl U sterDeteTima l status
Account |acliveAccount
Flgure 13.6 ATN appilcation cleaa medel A/ ca 50N ¢lasses a 1gma il iFe Soran ¢iassea and as

TOECRETY T dalagmen,

2. Defining Boundary Classes

A boundary class
— Is an area for communications between a system and external source.
— Converts information for transmission to and from the internal system.
ATM example
CashCardBoundary
AccountBoundary
— Between the ATM and the consortium

ATM Example

OOMD Module 3 Page |95

Mabharaja Institute of Technology Mysore

Department of ISE

ProblemType
name

#

ControllerProbiem

startCae lime
stopDateTime

Userinterface Consortiuminterface
CashCardBoundary < 2 AccountBoundary
bankCode hankCode
cardCoue accountCode
senalNumber balance
assword crecitl imit
it accountTyue
bankiName bankName
austomerhema
customerAdcrass
Remole |adiveTransagtion TransactionController
Transactlon | s) -
sartDateTime
asiwvaCard
CashCard R R ATMseasion

01

L'

startDataTime

Account acliveAcoount

SessionController

status

Figura 13,6 ATM applicatinn cass madal. Sppication classes an-men the doma class== and e

PRy b Ll pnel

3. Determining Controllers

Controller is an active object that manages control within an application.

Controller

— Receives signals from the outside world or
Receives signals from objects within the system,

— Reacts to them,
— Invokes operation on the objects in the system, and

— Sends signal
ATM Example

There are two cont

s to the outside world.

rollers

— The outer loop verifies customers and accounts.
— The inner loop services transactions.

OOMD Module 3

Page |96

Maharaja Institute of Technology Mysore

Userinterface

Consortiuminterface

»

CashCardBoundary " | AccountBoundary
barkCode bankCude
cardCoce accouniCede ProblemType
saria Numbe- balance
password creditLimi name
limit accountType
barkName henkMNeme
cuetomarNamsa o
customarAddress ControllerPreblem
SE— stertDaaTime
Remole activeTrznsacton TransactionController stopDaleTime
Transaction » K , .
e astetDeweTima >
acliveCad
CashCard |© 01| ATMsession SessionConfroller
—_— 0.l * =
slctDateTime slatus
Account [activeAccoun:
Hgure 13.8 AIM epcheatan claas modal ARJes 01 CE3358 A.10me T ME Caman CIEESos ant an
nareszary O chudd omet
Analysis Stereotypes

Doanaxt ntof |SE
=

<<boundary>> classes in general are used to model interaction between the system and

its actors.

<<entity>> classes in general are used to model information that is long-lived and often

persistent.

<<control>> classes are generally used to

represent coordination,

sequencing,

transactions, and control of other objects. And it is often used to encapsulate control

related to a specific use case.

The Realization of a Use Case in the Analysis Model

Use-Case Model

<=frace== .- i

Analysis Model

Withdraw Money

Dispenser

Withdraw Money

o) N
g J B

i

S0 6 O

Withdrawal

Cashier
Interface

Account

A collaboration diagram for the Withdraw Money use-case realization in the analysis model

Dept&gkgb

Maharaja Institute of Technology Mysore

Doanart nt of |SE
-

1:identify |_O

- : Cashier

j? Interface

:Bank
Customer ‘\.\

S:dispense money

2:request withdrawal

N

J:validare and withdraw

—Q

: Withdrawal « Account

4:authorize dispense

:Dispenser

Example:Analysis Classes

* The diagram shows the classes participating in the Register for Courses use case

A T

Student Register for Courses Course, _Catalog System

Use-Case Diagra

Analysis Mode)/ (classes only listed — no relationships shown here...)
<<hn||nrinry >

ntrol boundary
RegisterForCoursesForm o
RegistrationController CourseCatalogSystem
<<entity>> <<entity>> <<entity>>
Student Schedule CourseOffering

4. Checking Against the Interaction Model
Go over the use cases and think about how they would work.
When the domain and application class models are in place, you should be able to

simulate a use case with the classes.

ATM Example

OOMD Module 3 Page |98

Mabharaja Institute of Technology Mysore Department of ISE
- - __vepartmentor

Userinterface ‘ Consortiuminterface

CashCardBoundary LI AccountBoundary
barkCode kankCode
cardCode accourtCode ProblemType
serialNamuer balarze
password creditL mit name
it accourtTyoe
barkNama bankNzme
customarName s
customerAdcress ControlierProblem
startDateTive
Ramale |actvelransachion TransaclionController slopDzleTune
Transaclion | = 0.1
smadDateTime %
activaCard e ————
CeshCard | '™/ 1| ATMsession SessionController
0.1 | x T s 1
statDateTime slalus
Account [activaicer
Figura 155 ATMappicaton casamedn’ Lepivalnn 2lasses agment ke oocar ceasas 2t e

NN IR AN AECC

Application State Model
The application state model focuses on application classes
Augments the domain state model
Application State Model- steps
Determine Application Classes with States
Find events
Build state diagrams
Check against other state diagrams
Check against the class model
Check against the interaction model
Determine Application Classes with States
» Good candidates for state models
— User interface classes
— Controller classes
ATM example
— The controllers have states that will elaborate.
Find events
Study scenarios and extract events.
In domain model
— Find states and then find events
In application model
— Find events first, and then find states
ATM example
— Reuvisit the scenarios, some events are;
— Insert card, enter password, end session and take card.
Building State Diagrams
To build a state diagram for each application class with temporal behavior.

OOMD Module 3 Page |99

Mahara'!a Institute of Technolog¥ M¥sore Desactmentaf ISE

Initial state diagram
— Choose one of these classes and consider a sequence diagram.
— The initial state diagram will be a sequence of events and states.
— Every scenario or sequence diagram corresponds to a path through the state
diagram.
Find loops
— If a sequence of events can be repeated indefinitely, then they form aloop.
Merge other sequence diagrams into the state diagram.
After normal events have been considered, add variation and exception cases.
The state diagram of a class is finished when the diagram covers all scenarios and the
diagram handles all events that can affect a state.
Identify the classes with multiple states
Study the interaction scenarios to find events for these classes
Reconcile the various scenarios
Detect overlap and closure of loops

SessionContreller |
- ~ __ cardtaken (, Taking card “Ejecting card
\D_'a_ab'“/""* \do /request take card)/ do / eject cnrtl/)
R 2 % A 2
comm up | comm down [no card]
| comm down [has card)
s ¥ 5
-l s Main screen N\
’\do /display main screen /
- = - insernt card
insert card [nc problem] [probliem]
/ count:=0 !
 Getting password (/ Problem card O / keep card
\c'o Srequest password)/ \do Aerror messag B
i | bad _ word) _
{ pass
Rolar pasSwOrd | [count<n] / count+« bad passwaord
o T [count==n)
(’ Verifying account
\—do /veanly accculul"//
account OK
N / new TransactonController >
(Servicing transactions J)
lransactions finished OR cornmmn down
Emitting
o ~ -~ ~—
f /" Ejecting card “’ Taking card N card taken ()
7\ _do /eject c.ard// . '\do /request take carclil TN
\/";’rlnilng recelpt 7~ Taking receipt recaipttaken
\do /print receup(/ do /request take recenpl/ =%
N S o
Figure 13.9 State dingram for SassmanCaontrofior. Bk o st daoraun for oach appkoalon clbes wailh aoposal Botaanos

Dept. of lSE,.MITM Pagell0

Maharaja Institute of Technology Mysore Department of ISE

SessianController)

Cmubhd cardtaken ¢ Takingcard ‘Ejecting oani\v
=) - \da J request take cn:g, go / ajoct canii/
comm up comm down [no card]

B comm down [has card]
i -
7~ Main screen \‘._ | . — [-
& "‘@ /diaplay main screen /

insert card
J maert cerd [no probilem]) (omblem]
/ count:
Getting password Problem card / keep card_|
{!a / request pasmorg) do/orror message
word bsd password
anter pass [count<n] / counts+ bad password
counts=n
(Veritying aooount\ [=n]

R do 7/ verity accoumt -/

account OK
\ / new TransactionControllor /

(wlng lnnsacclona)

transactions finished OR cormm down

[Emiving |

/Ejecting card Taking card card taken
do / eject ca-d/ do 7/ request lake cavd
¥ ST T
Printing receipt ™ Taking receipt \ 'eceipt taken
do /print receipt \do /request take receipt) "CD
¥ B o
Figurs 1.6 Siste diag for Saxsiont: Har. Dudicd = xtnte dingroun lor sach applicion cheos with merpornd bBalwivion
TransactionContreller J
- N comm down
(@<
S
/.’ ua ' s\\
- finishegd .- cancal
(o)-e—(Main screen N
= - e, o 7 disn ey commantds)::
Jolcar recaiptlog - continue
’_r’ ‘\\\
withara wal doposit transfor query
— & _Y_ # e N
’_w:wnhclawalj‘ (d:Deposit) t'Tmnsfcr) (q:Query ;I
\\ l/,
g _/
Figure 13.10 Stale i 1ior T WionCe Wlew. Ollicin o egium o | e soasnsios ol B infeea Son el

OOMD Module 3 Page |101

Maharaja Institute of Technology Mysore

Doanaxt ntof |SE
]

Transfer | P =%
< ° " Getling amount \
|
\ o Saquary amountl 7
enior amounitamount;
- v -~
<" Getting source account \‘
. do /query source gccourt /
enlar accou 'souice)
- y -
[Getting larget account
I . | s ~e, | o TR
/" Bad transfer X5 da s query target account 54 /" Good transler
s do/complain) \ oo Adisplay confirm
N pt = enter accoum 'target) - %
- v‘ —
/ Perform transler
not OK s o /parfom renslen) ok ¢ add to race of 2g
Frgure 13.7" State cagram far Jrapsfer (F s dizgiam acceates he franser siabe © Higure 1470

check against other state diagrams
Every event should have a sender and a receiver.
Follow the effects of an input event from object to object through the system to make
sure that they match the scenarios.
Objects are inherently concurrent.
Make sure that corresponding events on different state diagrams are consistent.
ATM example
The SessionController initiates the TransactionController,
The termination of the TransactionController causes the SessionController to
resume.
Check against the class model
ATM example
— Multiple ATMs can potentially concurrently access an account.
— Account access needs to be controlled to ensure that only one update at a timeis
applied.
Check against the interaction model
Check the state model against the scenarios of the interaction model.
Simulate each behavior sequence by hand and verify the state diagrams.
Take the state model and trace out legitimate paths.
Adding Operations
Operations from the class model
Operations from use cases
Shopping-list operations
Simplifying operations
Operations from the class model
The reading and writing of attribute values and association links.
Need not show them explicitly.
Operations from use cases

OOMD Module 3 Page |102

Mabharaja Institute of Technology Mysore

Department of ISE

Use cases lead to activities.
Many of these activities correspond to operations on the class model.
ATM example

— Consortium @ verifyBankCode.

— Bank @ verifyPassword.

— ATM @ verifyCashCard
Shopping-List Operations
The real-world behavior of classes suggests operations.
Shopping-list operations provide an opportunity to broaden a class definition.
ATM example
Account.close()
Bank.createSavingsAccount(customer):account
Bank.createCheckingAccount(customer):account
Bank.createCashCard Auth(customer);cashCardAuthorization
Simplifying Operations
Try to broaden the definition of an operation to encompass similar operations.
Use inheritance to reduce the number of distinct operations.

ATM domain class model

CnteredOn Transaction
dateTime
—y
I N
| Entrystation I } [) | A
) Cashier] Remote AuthorizedBy
7\ Transaction | | Transaction =
! | i -
>
—_— Undate
AT CashierStation EnteredBy CashCard | ——p—
cashOnHARG 1 serialNumber kind
n 0.1 hier
verityCashCard m - *
o name
‘ 0..1 | 1
Employs Card
! 1 Authorization
el [~ana2 = Pl
c onlum . e R i e s J LLLLLLES
Bank | ' P adoAcczl;inl
- namea o SSues removeAccount
vernfyBankCocde C—udc-[1 v.1| close
bank Codo verfyPassword > —
-~ createSavingsAccount I
createCashCardAuth
[Customer

1 Account = s
balance address
|

1 \]’ 0.1 lcreazecr-eck ngAccountJ I . ’
accountCaoda ’

o, 1] ereditlimit
5 l type
[

1 closs

Figure 13,12 ATM domain class model with some aporations.

Overview of System Design

OOMD Module 3 Page |103

Mabharaja Institute of Technology Mysore Department of ISE

Summary of development process for the)Gsc;

(s]
organized production of software R
System -Users

. . Developer:
- Business

experts

Analysis: Problem

statement

«Domain yeer

analysis interviews
- Experience

sApplicati pejated
on systems

analysis

Build
models

Class model
State model
Interaction model

Design: - Architecture

«System «Use c.ases aborate
desian . Algorithms models
g . Optimization
oClass
design 2

Analysis — focus is on what needs to be done; independent of how it is done
Design — focus is on decisions about how the problem will be solved

— First at high level

— Then with more detail
System Design —

— first design stage

— Overall structure and style

— Determines the organization of the system into subsystems

— Context for detailed decisions about how the problem will be solved

System Design Activities

System Design

1.Design Goals \
. 3. Boundary
Conditicns
Initizlization
Termination
Fzilure

2. System
Decomposition
Layers/Partition s
Cohesion/Couplin

Defmition
7. Software

Trade-dE
Control
Monolithic

Event-Driven

3. Concurrency Threads
dentificationof 4, Hardware/ g p 6. Global Conc. Processes
. .Data ;
Threads Softwae Resource Handling
Mapping Management Access control

Special purpose Persistent Ohjects oop)
Buy or Build Trade-offh Ehacec &

Allocation
Connectivity Data structure

OOMD Module 3 Page |104

Mabharaja Institute of Technology Mysore Department of ISE

Estimate system performance
To determine if the system is feasible
To make simplifying assumptions

ATM Example
Suppose
— The bank has 40 branches, also 40 terminals.
— On a busy day half the terminals are busy at once.
— Each customer takes one minute to perform a session.
— A peak requirement of about 40 transactions a minute.
storage
— Count the number of customers.
Estimate the amount of data for each customer.

Make a reuse plan
Two aspects of reuse:
— Using existing things
— Creating reusable new things
Reusable things include:
— Models
— Libraries
— Frameworks
— Patterns
Reusable Libraries
A library is a collection of classes that are useful in many contexts.
Qualities of “Good” class libraries:
— Coherence — well focused themes
— Completeness — provide complete behavior
— Consistency - polymorphic operations should have consistent names and signatures
across classes
— Efficiency — provide alternative implementations of algorithms
— Extensibility — define subclasses for library classes
— Genericity — parameterized class definitions
Problems limit the reuse ability:
— Argument validation
Validate arguments by collection or by individual
— Error Handling
Error codes or errors
Control paradigms
Event-driven or procedure-driven control
Group operations
Garbage collection

OOMD Module 3 Page |105

Mabharaja Institute of Technology Mysore Department of ISE

— Name collisions

Reusable Frameworks
A framework is a skeletal structure of a program that must be elaborated to build a
complete application.
Frameworks class libraries are typically application specific and not suitable for general
use.
Reusable Patterns
A pattern is a proven solution to a general problem.
There are patterns for analysis, architecture, design, and implementation.
A pattern is more likely to be correct and robust than an untested, custom solution.
Patterns are prototypical model fragments that distill some of the knowledge of experts.
Pattern vs. Framework
A pattern is typically a small number of classes and relationships.
A framework is much broader in scope and covers an entire subsystem or application.
ATM example
Transaction
Communication line
Breaking a System into Subsystem
Each subsystem is based on some common theme, such as
— Similar functionality
— The same physical location, or
— Execution on the same kind of hardware.
Software Architecture

1
]
1
1
)
1
)
1
1
-

".4—

Breaking a System into Subsystem
A subsystem is a group of classes, associations, operations, events, and constrains.
A subsystem is usually identified by the services it provides.
Each subsystem has a well-defined interface to the rest of the system.

OOMD Module 3 Page | 106

Mabharaja Institute of Technology Mysore Department of ISE
The relation between two subsystems can be
— Client-server relationship
— Peer-to-peer relationship
The decomposition of systems
Subsystems is organized as a sequence of
— Horizontal layers,
— Vertical partitions, or
— Combination of layers and partitions.
Layered system
Each built in terms of the ones below it.
The objects in each layer can be independent.
E.g.
— A client-server relationship
Problem statement specifies only the top and bottom layers:
— The top is the desired system.
— The bottom is the availableresources.
The intermediate layers is than introduced.
Two forms of layered architectures:
— Closed architecture
Each layer is built only in terms of the immediate lower layer.
— Open architecture
A layer can use features on any lower layer to any depth.
Do not observe the principle of information hiding.
Partitioned System
Vertically divided into several subsystems
Independent or weakly coupled
Each providing one kind of service.
E.g. A computer operating system includes
— File system
— Process control
— Virtual memory management
— Device control
Partitions vs. Layers
» Layers vary in their level of abstraction.
» Layers depend on each other.
» Partitions divide a system into pieces.
» Partitions are peers that are independent or mutually dependent. (peer-to-peer
relationship)

OOMD Module 3 Page |107

Maharaja Institute of Technology Mysore Department of ISE

Applications Applications

Open 0OS

VirtualLogix VLX

Memory

Partition 1 Partition n

Combining Layers and Partitions

application packays

window craphics
user i

S 2 amulaticn
dialog | screen graphics | packags
control)

pixel graghics

opzrating system

computer hardware

Figure 14.1 Block dlagram of a tyoical apoilcaton.
PAISL e vyslens mix layens snd pariilions.

ATM Example
AT Consorlium Bank
stations computer computers
A=]
Cashier
ATM
| Consgortium | g?:m;:
Cash comm —
Card lirnk Database
stabion Gemm Account
? code |k
User 4 ‘ Customer
bank
uscr Card
interface eode | || Authorization
| —"T :
Transaction| | | Transaction | |Transaction

Figure 14.2 Architacture nf ATAY system. {is ~lan ~elphil to mave anirdorma dagowr shawine tha sigazation -
4 £vsletn 100 suls ke o

Identifying Concurrency
To identify
— The objects that must be active concurrently.
— The objects that have mutually exclusive activity

OOMD Module 3 Page |108

Mabharaja Institute of Technology Mysore Department of

Inherent Concurrency
By exam the state model
Two objects are inherently concurrent if they can receive events at the same time without
interacting.
If the events are unsynchronized, you cannot fold the objects onto a single thread of
control.
Defining Concurrent Tasks
By examining the state diagrams, you can fold many objects onto a single thread of
control.
A thread of control is a path through a set of state diagrams on which only a single object
at a time is active.
ATM example:
— Combine the ATM object with the bank transaction object as a single task.
Allocation of Subsystems
Allocate each concurrent subsystem to a hardware unit by
— Estimating hardware resource requirements
— Making hardware-software trade-offs
— Allocating tasks to processors
— Determining physical connectivity

Estimating hardware resource requirements
The number of processors required depends on the volume of computations and the speed
of the machine
Example: military radar system generates too much data in too short a time to handle in
single CPU, many parallel machines must digest the data
Both steady-state load and peak load are important
Making hardware-software trade-offs
You must decide which subsystems will be implemented in hardware or software
Main reasons for implementing subsystems in hardware
— Cost -
— Performance — most efficient hardware available
Allocating tasks to processors
Allocating software subsystems to processors
Several reasons for assigning tasks to processors.
— Logistics — certain tasks are required at specified physical locations, tocontrol
hardware or permit independent operation
— Communication limits
— Computation limits — assigning highly interactive systems to the same processor,
independent systems to separate processors
Determining physical connectivity

OOMD Module 3 Page |10

ISE

Mabharaja Institute of Technology Mysore Department of ISE

Determine the arrangement and form of the connections among the physical units
— Connection topology- choose an topology for connecting the physical units
— Repeated units-choose a topology of repeated units
— Communications- choose the form of communication channels and communication

protocols
Management of Data Storage

Alternatives for data storage:
— Data structures,
— Files,
— Databases

Data Suitable for Files
Files are cheap, simple, and permanent, but operations are low level.

B Data with high valume and Tow information density {such as archival files or his-
torical records),

B Modest quanttics of data with simple structure,

B Data that are accessed sequentially.

B Data thar can be fully read into memory.

Data Suitable for Databases
Database make applications easier to port, but interface is complex.

Data that require updates at fine levels of detail by multiple users.
Data that must be accessed by multiplc application programs.
Data that require coordinated updates via transactions.

|arge quantities ol Jaty that must be handled elficiently.

Data that are long-lived and highly valuable to an organization.

Data that must be secuted against unauthorized and malicious access.

Figure 14.4 Dals suilabbe lor dulabmses. Dalabases provich Insspuaing il i eaneguime wnd i v osad Tonmes) o |
TUGNeGT GppRzalions,

Handling Global Resources
The system designer must identify global resources and determine mechanisms for
controlling access to them.
Kinds of global resources:
— Physical units

OOMD Module 3 Page |11

Mabharaja Institute of Technology Mysore

Department of ISE

Processors, tape drivers...

— Spaces

Disk spaces, workstation screen...
— Logical name

Object ID, filename, class name...
— Access to shared data

Database

Some common mechanisms are:
— Establishing “guardian” object that serializes all access
— Partitioning global resources into disjoint subsets which are managed at alower
level, and
— Locking
ATM example
Bank codes and account numbers are global resources.
Bank codes must unique within the context of a consortium.
Account codes must be unique within the context of a bank.
Choosing a Software Control Strategy
To choose a single control style for the whole system.
Two kinds of control flows:
— External control
— Internal control
Software External Control
Concerns the flow of externally visible events among the objects in the system.
Three kinds:
— Procedure-driven sequential
— Event-driven sequential
— Concurrent
Procedure-driven Control
Control resides within the program code
Procedure request external input and then wait for it
When input arrives, control resumes with in the procedure that made the call.
Advantage:
Easy to implement with conventional languages
Disadvantage:
The concurrency inherent in objects are to mapped into a sequential flow of
control.
Suitable only if the state model shows a regular alternation of input and output events.
C++ and Java are procedural languages.

OOMD Module 3 Page |111

Mabharaja Institute of Technology Mysore Department of ISE

They fail to support the concurrency inherent in objects.
Event-driven Control
Control resides within a dispatcher or monitor that the language, subsystem, or operating
system provides.
The dispatcher calls the procedures when the corresponding events occur.
Software Internal Control
Refer to the flow of control within a process.
To decompose a process into several tasks for logical clarity of for performance.
Three kinds:
— Procedure calls,
— Quasi-concurrent intertask call,
Multiple address spaces or call stacks exist but only a single thread of
control can be active at once.
— Current intertask calls
Handling Boundary Conditions
Most of system design is concerned with steady-state behavior, but boundary conditions
are also important
Boundary conditions are
Initialization
— Termination, and
— Failure
Initialization
— The system must initialize constant data, parameters, global variables, ...
Termination
— Release any external resources that it had reserved.
Failure
— Unplanned termination of a system. The good system designer plans for orderly
failure
Setting Trade-off Priorities
The priorities reconcile desirable but incompatible goals.
— E.g memory vs. cost
Design trade-offs affect the entire character of a system.
The success of failure of the final product may depend on how well its goal s are chosen.
Essential aspect of system architecture is making trade-offs between
time and space
Hardware and software
Simplicity and generality, and
— Efficiency and maintainability
The system design must state the priorities

Common Architectural Styles
Several prototypical architectural styles are common in existing system.
Some kinds of systems:

— Batch transformation } Functional transformations

OOMD Module 3 Page |112

Mabharaja Institute of Technology Mysore Department of ISE

— Continuous transformation
— Interactive interface

— Dynamic simulation } Time-dependent systems
— Real-time system
— Transaction manager -> Database system

Batch transformation
— Perform sequential computation.
The application receives the inputs, and the goal is to compute an answer.
Does not interact with the outside world
E.g.
— Compiler
— Payroll processing
— VLSI automatic layout
The most important aspect is to define a clean series of steps

Sequence of steps for a compiler
[parse 1 /" determine { abstract to) I/’ generate |
lext \ cornectivity | \ OOmodel |/ \ dbcode

,f\ A } A M~ A - <

/ \ ! \

L ! L
ASCII Grarhics
File Model

\

- -‘/v
Conrectivity Cass Databzse
Madel Macel e

Figure 14.5 Sequence of steps for a compiler. A bzich krangormation is a sequent al
inpu-to-oulput Iransformaton tha: does not interact with the adtside woild
The steps in designing a batch transformation are as follows
— Break the overall transformation into stages, with each stage performing one part of
the transformation.
— Prepare class models for the input, output and between each pair of successive
stages. Each stage knows only about the models on either side of it.
— Expand each stage in turn until the operations are straightforward to implement.
— Restructure the final pipeline for optimization.
Continuous transformation
— The outputs actively depend on changing inputs.
— Continuously updates the outputs (in practice discretely)
- E.g.
Signal processing
Windowing systems
Incremental compilers
Process monitoring system
— Sequence of steps for a graphics application

OOMD Module 3 Page |113

Mabharaja Institute of Technology Mysore Department of ISE

-~ ~ B T e T—————e e ~,
/' parsa | [oetarmine { abstractto \ I, generate
- \ connectivity \ CO model dbceds)
A A A A\ A~ »-& A A
\i / \y /7 \

%W/
/ / h / T4 ‘
ASCI Graphics | Connectivity Class Database
File Model 1 Model odel Code

Figure 14.5 Sequence of steps for a compiler. 2 batch ranafarmaton is a sequertial
Irpat-to-output transtormation hal does no” interact with the outside waorld
— Steps in designing a pipeline for a continuous transformation are as follows

o Break the overall transformation into stages, with eachstage
performing one part of the transformation.

o Define input, output and intermediate models between each pair of
successive stages as for the batch transformation

o Differentiate each operation to obtain incremental charges to each
stage.

o Add additional intermediate objects for optimization.
Interactive interface
— Dominated by interactions between the system and external agents.
Steps in designing an interactive interface are as follows
Isolate interface classes from the application classes
Use predefined classes to interact with external agents
Use the state model as the structure of program
Isolate physical events from logical events.
Fully specify the application functions that are invoked by the interface

Dynamic simulation
— Models or tracks real-world objects.
— Steps in designing a dynamic simulation
Identify active real-world objects from the class model.
Identify discrete events
Identify continuous dependencies
Generally simulation is driven by a timing loop at a fine time scale
Real-time system
— An interactive system with tight time constraints on actions.
Transaction manager
— Main function is to store and retrieve data.
— Steps in designing an information system are asfollows
Map the class model to database structures.
Determine the units of concurrency
Determine the unit of transaction
Design concurrency control for transactions

Architecture of the ATM system

OOMD Module 3 Page |114

Mabharaja Institute of Technology Mysore Department of ISE

ATM Consortium Bank
stations computer computers
| 1
ATM I" 7 | ‘ Cashier
Consortium Statlon
Cash caomm
Card link — Database _
ggﬂi:- C?'mkm Account |
in
Customer
User ‘ i bank :
AR08 S Card
inierfaca > Authorization

T

[

— Transaction

|
Transaction l = ke ITransaclion J ----- -

Figure 13.2 Architectura of ATM system. It 1s chien halphul 10 make 2n intorral clagram showing e orzanizzbon o
A Sa%m 10 subsystams

OOMD Module 3 Page |115

Mabharaja Institute of Technology Mysore Department of ISE

: Class Design, Implementation modeling
7 Hours
Syllabus:
Class Design: Overview of class design;
Bridging the gap; Realizing use cases; Designing algorithms; Recursing downwards,
Refactoring;
Design optimization; Reification of behavior; Adjustment of inheritance; Organizinga
class design;
ATM example.
Implementation Modeling: Overview of implementation; Fine-tuning classes; Fine-
tuning generalizations; realizing associations; Testing.
Legacy Systems: Reverse engineering;
Building the class models; Building the interaction model;
Building the state model; Reverse engineering tips; Wrapping; Maintenance.
Class design
The analysis phase determines what the implementation must do
The system design phase determines the plan of attack
The purpose of the class design is to complete the definitions of the classes and
associations and choose algorithms for operations

Overview of Class Design — steps
Bridging the gap
Realizing Use Cases
Designing Algorithms
Recursing Downward
Refactoring
Design Optimization
Reification of Behavior
Adjustment of Inheritance
Organizing a Class Design

Bridaing the gap
Bridge the gap from high-level requirements to low-level services

OOMD Module 3 Page |116

Mabharaja Institute of Technology Mysore Department of ISE

Desired features

The gap ‘7

Available resources

Figure 15.1 The design gap. There is often a disconedt between the desired featues
£nd e avelabie [escurc2s

Salesman can use a spreadsheet to construct formula for his commission — readily build
the system

Web-based ordering system — cannot readily build the system because too big gap
between the resources and features

The intermediate elements may be operations, classes or other UML constructs.
You must invent intermediate elements to bridge the gap.

Desired features ‘ 2, |
v s s]
\ — P /
\ \:\.—,:./ L),
tute rmediate elements | 1
3 e~ \
g = \ \
,/’ St = ‘\’ \ \\
Available resources
Fiqure 15.2 Endgqing the gap. Yo ru.sl invent nrmadizle elemn:nle c badagn 170 Q:p botwaer

he dociod tzares ond 110 aval abdo resouicos

Realizing Use Cases
Realize use cases with operations.

The cases define system-level behavior.
During design you must invent new operations and new objects that provide this
behavior.

Stepl: List the responsibilities of a use case or operation.

OOMD Module 3 Page |117

Mabharaja Institute of Technology Mysore Department of

A responsibility is something that an object knows or something it must do.
For Example:
An online theater ticket system
Making a reservation has the responsibility of
Finding unoccupied seats to the desired show,
Marking the seats as occupied,
Obtaining payment from the customer,
Arranging delivery of the tickets, and
Crediting payment to the proper account.

Step2: Each operation will have various responsibilities.

Group the responsibilities into clusters and try to make each cluster coherent.
Step3: Define an operation for each responsibility cluster.
Step4: Assign the new lower-level operations to classes.

ATM Example
Process transaction includes:
Withdrawal includes responsibilities:
Get amount from customer, verify that amount is covered by the account
balance, verify that amount is within the bank’s policies, verify that
ATM has sufficient cash,
A database transaction ensures all-or-nothing behavior.
Deposit
Transfer
Use Case for the ATM

OOMD Module 3 Page |118

ISE

Mahara'!a Institute of Technologz M¥sore Donoctoaont of |SE
=

ATM

—

“initiate a
. sessien)“ T—— |

/‘ ~ J,\ -
t \\ gt
oz - y

- ., -

4 —_— N S AN
” \ //‘(\ fl "y
¢/ query T ~. 7 Bank
—— account AN)
a1 s N - \ o O
/4 e I QP
et — e e, =]
- 4 -~
Custemer process “_— A N

j 1ransac1lon) /

¢ transmil &
" data f

-~ -
————

Fiomirn 181 [lsm seee diearsam ‘or he ATM. | oo et au e

Process transaction includes:
Deposit includes responsibilities:
Get amount from customer, accept funds envelope from customer, ...
Transfer includes responsibilities:
Get source account, get target account, get amount, verify that source
account covers amount, ...
There is some overlap between the operations.
A reasonable design would coalesce this behavior and build it once.
Designing Algorithms
Formulate an algorithm for each operation
The analysis specification tells what the operation does for its clients
The algorithm show how it is done

Designing Algorithms- steps
Choose algorithms that minimize the cost of implementing operations.
Select data structures appropriate to the algorithms
Define new internal classes and operations as necessary.
Assign operations to appropriate classes.
Choosing algorithms (Choose algorithms that minimize the cost of implementing
operations)
When efficiency is not an issue, you should use simple algorithms.
Typically, 20% of the operations consume 80% of execution time.
Considerations for choosing alternative algorithms
Computational complexity
Ease of implementation and
understandability o Flexibility

OOMD Module 3 Page |119

Mabharaja Institute of Technology Mysore Department of

Simple but inefficient
Complex efficient
ATM Example

Interactions between the consortium computer and bank computers
could be complex.
Considerations:
Distributed computing
The scale of consortium computer (scalability)
The inevitable conversions and compromises in coordinating
the various data formats.

All these issues make the choice of algorithms for coordinating the
consortium and the banks important

The ATM Case Study

Q/ ‘\':)
— | Casghiar I—
Slation %
O’m SN \.' [
T] \
ATM | \ o=y
N — __~ Account|
/A‘. ‘ \‘\ I 2 Ban(& —
A SR - Computar —_—
| N A7 T T Account|
, 3~ 1 ol
ATM |~ ~ _ Central 1~
-~ Computer h._ Faie: '
- B WY SR — Asuount |
- // A Oanl-: . P —
Y527 & Computev:_ : .
ATM 7 1 Account|
| | -

Figure 11.3 ATM network. “ha ATM case study threads throughou tha remaindaer cf thiz boalc

Choosing Data Structures (select data structures appropriate to the algorithm)
Algorithms require data structures on which to work.
They organize information in a form convenient for algorithms.
Many of these data structures are instances of container classes.
Such as arrays, lists, queues, stacks, set...etc.
Defining New Internal Classes and Operations
To invent new, low-level operations during the decomposition of high-level
operations.
The expansion of algorithms may lead you to create new classes of objects to
hold intermediate results.
ATM Example:
Process transaction uses case involves a customer receipt.
A Receipt class is added.
Assigning Operations to Classes (assign operations to appropriate classes)
a. How do you decide what class owns an operation?
Receiver of action

OOMD Module 3 Page 120

ISE

Mabharaja Institute of Technology Mysore Department of

To associate the operation with the target of operation, rather
than the initiator.
Query vs. update
The object that is changed is the target of the operation
Focal class
Class centrally located in a star is the operation’s target
Analogy to real world

ATM Example
Process transaction includes:
Withdrawal includesresponsibilities:
Get amount from customer, verify that amount is covered by the account
balance, verify that amount is within the bank’s policies, verify that
ATM has sufficient cash,
A database transaction ensures all-or-nothing behavior.
Deposit
Transfer
Customer.getAccount(), account.verifyAmount(amount), bank.verifyAmount(amount),
ATM.verifyAmount(amount)

OOMD Module 3 Page |121

ISE

Mabharaja Institute of Technology Mysore Donoctoont of [SE

EntaredOn Transaciion
- : <>
dateTime
: T
EntryStation —ﬁ
- Cashier Remole |AuthorizedDy
o Transaction | | Transaclion | ¥
e |
I l = = 0 erez}
ATM CashierSlatian EnteredBy £ Updae
cask CnHanc 1
5 0.1 _ Recelpt amount
verifyCasnCard Cashier kind
verifyamount T | -
dissbursekonds name pusiTrawsaction &
receiveFunds 0.1] 1
0.1
Cmploys 1
1 1 1 CashCard CardAutherization
1aton Station loy=e| | ScrialNumber o~
wer| [am] [: pessiors
Consortium Bank l_
addAcc?\;‘mt
name | ' removeAccount
= = card Issues
verifyBankCode | oc e P aseword | Code [TR i
| bankCode | createSavirgsAccount 2 %
& craateCheckingAccourt
1T 0.1 craateCashGard 1
7 v
venfyAmoun Customer
| aczeuriCode | Account
T .l nama
1| balance ¥ acdress
creditlim temoAmount
0 1| tyoe
o getm-oun‘.
variymount 2 radiaims
debit
uradl 1

Figure 18,4 ATM dorresin clsse mode’ wilh soow duss dosisn elaborslions

Recursing Downward

To organize operations as layers.

Operations in higher layers invoke operations in lower layers.
Two ways of downward recursion:

By functionality

By mechanism
Any large system mixes functionality layers and mechanism layers.

Functionality Layers

Take the required high-level functionality and break it into lesser operations.
Make sure you combine similar operations and attach the operations to classes.
An operation should be coherent meaningful, and not an arbitrary portion ofcode.
ATM eg., use case decomposed into responsibilities (see sec 15.3). Resulting
operations are assigned to classes (see sec 15.4.4). If it is not satisfied rework them

OOMD Module 3 Page |122

Mabharaja Institute of Technology Mysore Department of ISE

Uge case Q
a 8

Respois/bilies - - -
1 R d
es « GOg O

Gperaticns

Angigh 1¢ Slasges
Mechanism Layers
Build the system out of layers of needed support mechanisms.
These mechanisms don’t show up explicitly in the high-level responsibilities of a system,
but they are needed to make it all work.
E.g. Computing architecture includes
Data structures, algorithms, and control patterns.
A piece of software is built in terms of other, more mechanisms than itself.

CP-134U-1 V2
o AN
. g i

| ‘ =
\é | N ¥ Alr Conditioner
-

i Lantral
Mindows NT
server

Elauatar Dantee

i, 7] | Entiznee ol
s

ire Alarm Syttem

Refactoring
Refactoring
Changes to the internal structure of software to improve its design without
altering its external functionality.
You must revisit your design and rework the classes and operations so that they clean
satisfy all their uses and are conceptually sound.

OOMD Module 3 Page |123

Mabharaja Institute of Technology Mysore Department of
ATM Example
Operations of process transaction
Account.credit(amount)
Account.debit(amount)
Combine into
Account.post(amount)
Design Optimization
To design a system is to first get the logic correct and then optimize it.
Often a small part of the code is responsible for most of the time or space costs.
It is better to focus optimization on the critical areas, than to spread effort evenly.
Design Optimization
Optimized system is more obscure and less likely to be reusable.
You must strike an appropriate balance between efficiency and clarity.
Tasks to optimization:
Provide efficient access paths.
Rearrange the computation for greater efficiency.
Save intermediate results to avoid recomputation.
Adding Redundant Associations for Efficient Access
Rearrange the associations to optimize critical aspects of the system.
Consider employee skills database

Empioys HasSkill
Company (- e | Person —————_ Skill
Figure 15.5 Anayais mddel fof person s«lis. Lorves ceta @ uncesiratis
during anakeis DA 114268 01 adC Informaion,

Company.findSkill() returns a set of persons in the company with a given skill.
Suppose the company has 1000 employees,.

In case where the number of hits from a query is low because few objects satisfy
the test, an index can improve access to frequently retrieved objects.

S SpeaksLarguaye
2
language | .
Company |—=TP9S _ person | HasSKI_{ gy

Figure 15.6 Dasign model for peraon skilla. Corived date is acezptab e during
cesion dor opmrains thas ae s grificart pecorm=ncea bott enaths
Examine each operations and see what associations it must traverse to obtain its
information.
Next, for each operation, note the following,
Frequency of access
Fan-out
Selectivity
ATM Example
Banks must report cash deposits and withdrawals greater than $10,000 to the government.

OOMD Module 4 Page |124

ISE

Mabharaja Institute of Technology Mysore Department of ISE

Trace from
— Bank to Account,
— Account to Update,
— Then filter out the updates that are cash and greater than $10,000
A derived association from Bank to Update would speed thisoperation.
ii. Rearranging Execution Order for Efficiency
v’ After adjusting the structure of class model to optimize frequent traversals,
the next thing is
v To optimize the algorithm
To eliminate dead paths as early as possible
To narrow the search as soon as possible
Sometimes, invert the execution order of a loop

Saving Derived Values to Avoid Recomputation
There are three ways to handle updates
Explicit update
Periodic recomputation
Active values
Reification behavior
Behavior written in code is rigid; you can execute but cannot manipulate it at run time
If you need to store, pass, or modify the behavior at run time, you should reify it
Adjustment of Inheritance
To increase inheritance perform the following steps
— Rearrange classes and operations to increase inheritance
— Abstract common behavior out of groups of clusters
— Use delegation to share behavior when inheritance is semantically invalid
Rearrange classes and operations to increase inheritance
Use the following kinds of adjustments to increase the chance of inheritance
— Operations with optional arguments
— Operations that are special cases
— Inconsistent names
— Irrelevant operations
Use delegation to share behavior when inheritance is semantically invalid
When class B inherits the specification of class A, you can assume that every instance of
class B is an instance of class A because it behaves the same
Inheritance of implementation — discourage this
One object can selectively invoke the desired operations of another class, using
delegation rather than inheritance
Delegation consists of catching operation on one object and sending it to a related object
Delegate only meaningful operations, so there is no danger of inheriting meaningless
operations by accident

OOMD Module 4 Page |125

Mabharaja Institute of Technology Mysore

Department of

=
Stack Lat /,/—\'U;: S
hotylstipAvats) o // 7—T \

push acc / ; 44 \\ \\
N re NOVE ROV
i / /\\ii?};f“’ \ A
last st N\

Rzcuonnnended Cesign N TN
(Nelegation |

Decorraged \ D /
: push >
das 1an \\ P -\t\ _,.// //
‘\\ //

Implementation Inheritance

A very similar class is already implemented that does
almost the same as the desired class implementation.

Example: | have a List List

class, | need a Stack Add) _ Fo

class. How about Remove()

subclassing the Stack “Already

class from the List class mplemented”

and providing three

methods, Push() and | _Stack :

Pop(), Top()? ML—- Add(entity, 0)

Remove(0)

Top() EL.

?
Problem with implementation inheritance:

Some of the inherited operations might exhibit unwanted behavior.
What happens if the Stack user calls Remove() instead of Pop()?

Close coupling — what happens if the Add() method is changed?

OOMD Module 4

Page |126

ISE

M

aharaja

Institute of Technology Mysore

Rt sNSE——-—.—.. I

Department of

Problem with implementation inheritance

<+ How to avoid the following problem?

Some of the inherited operations might exhibit unwanted behavior.

What happens if the Stack user calls Remove() instead of Pop()?

1. Delegation MyStack List
Client +Push() |—
+Pop() Remove()
+Top() Add()
2. Interface inheritance
Stack
Client +Push() Remember this
+Pop() structure!!
+Top()
|]
| My Stack List
HerStack YourStack

Delegation as alternative to Implementation Inheritance

Delegation is a way of making composition (for example aggregation) as powerful for
reuse as inheritance

In Delegation two objects are involved in handling arequest

— A receiving object delegates operations to itsdelegate.

The developer can make sure that the receiving object does not allow the client to misuse the
delegate object

Client

calls

OOMD Module 4

Receiver Delegatestqd pelegate

Page |127

ISE

Mabharaja Institute of Technology Mysore Department of

Delegation instead of Implementation

Inheritance
+ Inheritance: Extending a Base class by a new operationor
overwriting an operation.
- Delegation: Catching an operation and sending it to another

object.
*+ Which of the following models is better for implementinga
stack?
List
+Add() Stack List
Q +Remove() (:é
ZIA +Push() Remove
Stack +Pop() Add()
+Top()
+Push()
+Pop()
+Top()

Organization of Class Design
We can improve the organization of a class design with the following steps:
— Information hiding
— Coherence of Entities
— Fine-tuning packages
Information hiding
Carefully separating external specification from internal specification
There are several ways to hide information:
— Limit the scope of class-model traversals
— Do not directly access foreign attributes
— Define interfaces at a high level of abstraction
— Hide external objects
Avoiding cascading method calls
Coherence of Entities
An entity, such as a class, an operation or a package is coherent if it is organized on a
consistent plan and all its parts fit together toward a common goal.
An entity should habve a single major theme
It should not be a collection of unrelated parts.

Fine — Tuning Packages
Overview of Implementation
Fine-tuning Classes
Fine-tuning Generalization
Realizing Associations
Testing

Fine-tuning classes

OOMD Module 4 Page |128

ISE

Mabharaja Institute of Technology Mysore Department of ISE

Fine tune classes before writing code in order to simplify development or to improve
performance
Partition a class
Merge classes
Partition / merge attributes
Promote an attribute / demote a class
Fine-tuning classes — partition a class
Sometimes it is helpful to fine-tune a model by partitioning or merging classes
partitioning of a class can be complicated by generalization and association

Fine-tuning classes — merge classes

Rt ICIN =
1
S

o i

Fine-tuning classes — partition / merge attributes

PhoneNumbsen PhoneMumber
b il sounbryCuode
pkeonzNuvber arcuGide
ccaltumber

Fine-tuning classes — promoting an attribute / demote a class

Persun Persur — Address
name — | name sireel Address
pl"CﬂeNJl'“CEI' phc.re[\ uivber iy
uLdrzss I . stafzProvinze

// postalCade

Persun Address

name streetlcdrossp— — Cily 1

pronehlamoer

cityMName

SluleProvsiun
stareProvisonMName

PnstalCroe

pestalzode

Fine-tuning generalizations

OOMD Module 4 Page |129

Maharaja Institute of Technology Mysore

Doanart nt of |SE
-

TraditionConcept

lraditicrloncept
\
Language Fhrase Lungvuge — Phruse
W =tring
t 0.1 £
| pocry

llL.'mh'rrl nnagnge

Mirerl annl e

Realizing associations

child

Associations are “glue” of the class model, providing access paths between objects
Analyzing associations by traversing associations

Tz eci

Colasnmi

Analyzing Association Traversal
Until now we assumed that associations are bidirectional
But some applications are traversed in only one direction

We may add another operation that make traversal in reverse direction

Navigability

Possible to navigate from an associating class to the target class — indicated by arrow
which is placed on the target end of the association line next to the target class (the one
being navigated to).

Associations are bi-directional by default — suppress arrows.
Arrows only drawn for associations with one-way navigability.

Bre-direcifcndl

Lirdeciirsctianial

Clzest & T
L]
it e
Tzt Dazcl
|

Navigability is inherently a design and implementation property.

Can be specified in Analysis, but with expectation of refining in Class Design.
In analysis, associations are usually bi-directional; design, we really check this.

Example: Navigability

OOMD Module 4

Page |130

Maharaja Institute of Technology Mysore

Doanaxt ntof |SE
[

«=zbourdary=» “=cantrol~~
ReyisleiFuiSuvisesFuim — ‘) KaqistranonZontroller

ARegisterForCoursesFonr invokes a single RegistrationContraller tha: will

prozess the registracior forthz curent Student. ~he Registraticnzont-oller wil
never need to communicale cirect v fo ths Registero-Cou-seslorm

wag (lly >

<gnlitys»
Schedule s

CouseOllering

shermnatalo

Here, two way, Yau can ask a Scredu owhat
Course Orr2nnas ltcontalns eénd youcan ask ay navigai
a Course Of'aring wha: Echedules itappesrscn

One-way Associations
Implement one-way associations using pointer- an attribute that contains the object
reference
Actual implementation of pointer using
Programming language pointer or
Database foreign key
If the multiplicity is “one” then it is a simple pointer
If the multiplicity is “many” then it is a set of pointers

. WEsFar
CiaSa‘ ‘. 2 —
tA<ed=] - g

R

danenkatc
fmndal

Two-way Association
Many associations are traversed in both directions, not usually with equal frequencies
Three approaches for implementation
Implement one-way
Implement two-way
Implement with an association object

OOMD Module 4 Page |131

Mabharaja Institute of Technology Mysore Department of ISE

F_-.__-F-"'--'F_-

Testing
Unit testing
System testing

Dept. of ISE, Page 132

*

Mabharaja Institute of Technology Mysore Department of

Module 5 DESIGN PATTERNS - 1:
Syllabus : - 6hrs

What is a pattern

what makes a pattern?

Pattern categories;
Relationships between patterns;
Pattern description.
Communication Patterns:
Forwarder-Receiver;
Client-Dispatcher-Server;
Publisher-Subscriber.

Patterns
Patterns help you build on the collective experience of skilled software
engineers.

They capture existing, well-proven experience in software development and help to
promote good design practice.

Every pattern deals with a specific, recurring problem in the design or implementation of
a software system.

Patterns can be used to construct software architectures with specific
properties

What is a Pattern?

Abstracting from specific problem-solution pairs and distilling out
common factors leads to patterns.

These problem-solution pairs tend to fall into families of similar
problems and solutions with each family exhibiting a patternin ~ both the problems and
the solutions.

Definition :
The architect Christopher Alexander defines the term pattern as

Each pattern is a three-part rule, which expresses a relation between a
certain context,
a problem, and
a solution.

OOMD Module 5 Page |133

ISE

Mabharaja Institute of Technology Mysore Department of

As an element in the world, each pattern is a relationship between a certain
context, a certain system of forces which occurs repeatedly in that context, and a certain
spatial configuration which allows these forces to resolve themselves.

As an element of language, a pattern is an instruction, which shows how
this spatial configuration can be used, over and over again, to resolve the given system of
forces, wherever the context makes it relevant.

The pattern is, in short, at the same time a thing, which happens in the
world, and the rule which tells us how to create that thing. And when we must create it. It
is both a process and a thing: both a description of a thing which is alive, and a
description of the process which will generate that thing.

Properties of patterns for Software Architecture
% A pattern addresses a recurring design problem that arises in specific
design situations, and presents a solution to it.
% Patterns document existing, well-proven design experience.
% Patterns identify & and specify abstractions that are above the level of
single classes and instances, or of components.

R

%+ Patterns provide a common vocabulary and understanding for design principles

%

% Patterns are a means of documenting software architectures.
% Patterns support the construction of software with defined properties.
% Patterns help you build complex and heterogeneous software
architectures «+ Patterns help you to manage software complexity
Putting all together we can define the pattern as:
Conclusion or final definition of a Pattern:
A pattern for software architecture describes a particular recurring design problem that
arises in specific design contexts, and presents a well-proven generic scheme for its

solution. The solution scheme is specified by describing its constituent components, their
responsibilities and relationships, and the ways in which they collaborate.

What Makes a Pattern?

Three-part schema that underlies every pattern:

OOMD Module 5 Page |134

ISE

Mabharaja Institute of Technology Mysore Department of

Context: a situation giving rise to a problem.
Problem: the recurring problem arising in that context.

Solution: a proven resolution of the problem.
Context:
The Contest extends the plain problem-solution dichotomy by describing the
situations in which the problems occur
Context of the problem may be fairly general. For eg: “developing software with a
human-computer interface”. On the other had, the contest can tie specific patters together.
Specifying the correct context for the problem is difficult. It is practically
impossible to determine all situations in which a pattern may be applied.
Problem:
This part of the pattern description schema describes the problem that arises
repeatedly in the given context.
It begins with a general problem specification (capturing its very essence what
is the concrete design issue we must solve?)
This general problem statement is completed by a set of forces

Note: The term ‘force denotes any aspect of the problem that should be
considered while solving it, such as

o Requirements the solution must fulfill
o Constraints you must consider
o Desirable properties the solution should have.

Forces are the key to solving the problem. Better they are balanced, better the
solution to the problem
Solution:
The solution part of the pattern shows how to solve the recurring problem(or
how to balance the forces associated with it)
In software architectures, such a solution includes two aspects:

Every pattern specifies a certain structure, a spatial configuration of elements.
This structure addresses the static aspects of the solution. It consists of both components
and their relationships.

Every pattern specifies runtime behavior. This runtime behavior addresses the
dynamic aspects of the solution like, how do the participants of the patter collaborate?
How work is organized between then? Etc.

The solution does not necessarily resolve all forces associated with the
Problem.
A pattern provides a solution schema rather than a full specified artifact or blue
print.
No two implementations of a given pattern are likely to be the same.

OOMD Module 5 Page |135

ISE

Maharaja Institute of Technology Mysore ISE

The following diagram summarizes the whole schema.

Pattern

—— Context

l— Design situation glving rise to a design prodlem
— Problem
heess Set of furees repeatedly artsing 1o the context

—— Solution
l._. Configuration to balance the forces

I: Structure with components and relationships
Run-time behaviour

Pattern Categories
we group patterns into three categories:

Architectural patterns
Design patterns
Idioms

Each category consists of patterns having a similar range of scale or abstraction.

Architectural patterns

Architectural patterns are used to describe viable software architectures that are
built according to some overall structuring principle.

Definition: An architectural pattern expresses a fundamental structural
organization schema for software systems. It provides a set of predefined subsystems,
specifies their responsibilities, and includes rules and guidelines for organizing the
relationships between them.

Eg: Model-view-controller pattern.

Structure@

Degt. of ISEI Page 136

Maharaja

View

~Renders the models

*Requests Jpdetes from modzis

Institute of Technology Mysore Department of

Model

*Encapsu'aes epplicaticn state

* Bespunds o Slde qoer es

*EXposes apalication
fenctionality

*Noll'ies viaws D! changss

»Se1ds user gestures fo Conliclie

= Allows controlle™ to select view

Moathod Invocaticne

Events

OOMD Module 5

Confroller

Controller

» Defines applitat on fahAavIn®
» Mans user zctions 1o
nodal vpdates
» Sala~is view for recponse
» Onaforeach functisnal tv

Event s passed
fo the Conkoller

Model or View(s

Views get data
from Model

Model ypdates Views
whan data chonges

Page |137

ISE

Mabharaja Institute of Technology Mysore

Department of ISE

Eg:
" Confroller A
Qs
= Ewvents
o Load
5 Save
Execute vent o ar
Update Medz!
" View \
Qass ; ” -
‘ Student [GradeCard A1)
| = Fields e ’ | Oass
| oD +*StudentHistory |
4¢ Name _ Update view * Fields 27 '« Fields
4o GradeShest o 4¢ ID gl
| < Mettods gp-Nane TotalMarks
‘ i 4# Grade
|. w Display ;5' B ks
P — . m— | = Methods
View v CalculateGrade |
Vodel

Design patterns are used to describe subsystems of a software architecture as well
as the relationships between them (which usually consists of several smaller architectural

units)

Definition: A design pattern provides a scheme for refining the subsystems or
components of a software system, or the relationships between them.It describes a
commonly-recurring structure of communicating components that solves a general design

problem within a particular Context.

They are medium-scale patterns. They are smaller in scale than architectural
patterns, but tend to be independent of a particular programming language or

programming paradigm.
Eg: Publisher-Subscriber pattern.

ldioms

Idioms deals with the implementation of particular design issues.

Definition: An idiom is a low-level pattern specific to a programming language.
An idiom describes how to implement particular aspects of components or the
relationships between them using the features of the given language.

Idioms represent the lowest- level patterns. They address aspects of both design

and implementation.
Eg: counted body pattern.

OOMD Module 5

Page |138

Mabharaja Institute of Technology Mysore Department of ISE

Pattern description

Name :The name and a short summary of the pattern
Also known as:Other names for the pattern, if any are known
Example :A real world example demonstrating the existence of the problem
and the need for the pattern

Context :The situations in which the patterns may apply

Problem :The problem the pattern addresses, including a discussion of its
associated forces.

Solution : The fundamental solution principle underlying the pattern

Structure : A detailed specification of the structural aspects of the pattern,
including CRC — cards for each participating component
and an OMT class diagram.

Dynamics :Typical scenarios describing the run time behavior of the pattern

Implementation: Guidelines for implementing the pattern. These are only a
suggestion and not a immutable rule.

Examples resolved: Discussion for any important aspects for resolving the
example that are not yet covered in the solution , structure,
dynamics and implementation sections.

Variants:A brief description of variants or specialization of a pattern

Known uses:Examples of the use of the pattern, taken from existing systems

Consequences: The benefits the pattern provides, and any potential
liabilities.

See Also:References to patterns that solve similar problems, and the patterns
that help us refine the pattern we are describing.

Communication pattern:
Most of the today’s software systems run on distributed systems. These
distributed systems need a means for communication.
Problems:
Many communication mechanisms to choose from.
The use of communication facilities is often hard-wired into existing
applications, leading to various problems.

o Difficult to change the communication mechanism later.
o Portability

OOMD Module 5 Page |139

Mabharaja Institute of Technology Mysore Department of ISE

Migration of sub systems from one network node to another is only
possible if the communication facility allows it.
Solution:
Loosen the coupling between components of a distributed system and the
mechanism it uses for communication, eg: by using
o Encapsulation

o Location transparency
We discuss two patterns that addresses these topics:

The Forwarder — Receiver design pattern (provides encapsulation)
The Client — Dispatcher — Server design pattern (provides location
transparency)
Keeping cooperating component consistent is another problem in communication.
We discuss one pattern that addresses this issue:
The Publisher — Subscriber pattern

Forwarder-Receiver

Problem

Many components in a distributed
system communicate in a peer to peer
fashion.

The communication between the peers
should not depend on a particular IPC
mechanism;

» Performance is (always) an issue; and

« Different platforms provide different
IPC mechanisms.

Forwarder-Receiver (1)

OOMD Module 5 e — D e | 140

Mabharaja Institute of Technology Mysore

Department of

Peer 2

service

[

Receiver

There

receive
unmarshal
receiverMessage

I

Forwarder

marshal
deliver
sendMessage

Forwarder

marshal Here
deliver

sendMessage

Receiver

receive
unmarshal
receiverMessage

Solution
Encapsulate the inter-process
communication mechanism:

Peers implement application services.

Forwarders are responsible for sending
requests or messages to remote
peers
using a specific IPC mechanism.

+Receivers are responsible forreceiving
IPC

| | requests or messages sent by remote

‘ | peers using a specific IPC mechanism
and dispatching the appropriate

Peer 1

method

of their intended receiver.

er (2)

"The Forwarder-Receiver design pattern provides transparent interprocess
communication for software systems with a peer-to-peer interaction model.

It introduces forwarders and receivers to decouple peers from the underlying
communication mechanisms."

Motivation

Distributed peers collaborate to solve a particular problem.

A peer may act as a client - requesting services- as a server, providing services,
or both.

The details of the underlying IPC mechanism for sending or receiving messages
are hidden from the peers by encapsulating all system-specific functionality into separate
components. Examples of such functionality are the mapping of names to physical
locations, the establishment of communication channels, or the marshaling and
unmarshaling of messages.

service

Intent

OOMD Module 5 Page |141

ISE

Mabharaja Institute of Technology Mysore Department of ISE

Structure

Reecwiver

®received
Sunmarshal
i ®receveMsal)

T ®PC meq)
receiveldag 11
— et 1
reen e i |
IFe
Sseviced |~
~Senanisg
\\\
\\
~ 1
\\
~—. Forwarder

Vrrarshall
Qceliverd
®zendMsgd

F-R consists of three kinds of components, Forwarders, receivers and peers.

Peer components are responsible for application tasks.

Peers may be located in different process, or even on a different machine.

It uses a forwarder to send messages to other peers and a receiver to receive
messages form other peers.

They continuously monitor network events and resources, and listen for incoming
messages form remote agents.

Each agent may connect to any other agent to exchange information and requests.

To send a message to remote peer, it invokes the method sendmsg of its
forwarder.

It uses marshal.sendmsg to convert messages that IPC understands.

To receive it invokes receivemsg method of its receiver to unmarshal it uses
unmarshal.receivemsg.

Forwarder components send messages across peers.

When a forwarder sends a message to a remote peer, it determines the physical
location of the recipient by using its name-to-address mapping.

Kinds of messages are

Command message- instruct the recipient to perform some activities.

Information message- contain data.

Response message- allow agents to acknowledge the arrival of a message.

OOMD Module 5 Page |142

Mabharaja Institute of Technology Mysore Department of

It includes functionality for sending and marshaling

Receiver components are responsible for receiving messages.

It includes functionality for receiving and unmarshaling

messages. Dynamics

P1 requests a service from a remote peer P2.

It sends the request to its forwarder forwl and specifies the name of the recipient.

Forw1 determines the physical location of the remote peer and marshals the
message.

Forwl delivers the message to the remote receiver recv2.

At some earlier time p2 has requested its receiver recv2 to wait for an incoming
request.

Now recv2 receives the message arriving from forwl.

Recv2 unmarshals the message and forwards it to its peer p2.

Meanwhile p1 calls its receiver recvl to wait for a response.

P2 performs the requested service and sends the result and the name of the
recipient pl to the forwarder forw2.

The forwarder marshals the result and delivers it recv1.

Recv1 receives the response from p2, unmarshals it and delivers it to p1.

Implmentation

Specify a name to address mapping.-/server/cvramanserver/.....

Specify the message protocols to be used between peers and forwarders.-class
message consists of sender and data.

Choose a communication mechanism-TCP/IP sockets

Implement the forwarder.- repository for mapping names to physical addresses-
desitination Id, port no.

sendmsg(dest, marshal(the mesg))

Implement the receiver — blocking and non blocking

recvmsg() unmarshal(the msg)
Implement the peers of the application — partitioning into client and servers.
Implement a start up configuration- initialize F-R with valid name to address

mapping

Benefits and liability
Efficient inter-process communication
Encapsulation of IPC facilities

No support for flexible re-configuration of components.

Known Uses

This pattern has been used on the following systems: TASC, a software
development toolkit for factory automation systems, supports the implementation of
Forwarder-Receiver structures within distributed applications.

OOMD Module 5 Page |143

ISE

Mabharaja Institute of Technology Mysore Department of

Part of the REBOOT project uses Forwarder-Receiver structures to facilitate an
efficient IPC in the material flow control software for flexible manufacturing.

ATM-P implements the IPC between statically-distributed components using the
Forwarder-Receiver pattern..)

In the Smalltalk environment BrouHaHa, the Forwarder-Receiver pattern is used
to implement interprocess communication.

s |
Forwarder Recelver
marshal I recelve
| deliver unmarshal
 sendMsg receiveMsg I’
L
sendMag receiveMsg
Peer1 | . Peer2
1l optional || ‘
service B r?b;'y seTvice
recelveMsg sendMsg
|| Recelver | Forwarder
receive ‘ marshal
urimarshal “ L deliver
| receiveMsg sendMsg

Client-Dispatcher-Server

Goals
— Introduce an intermediate layer between clients and servers : the dispatcher
— Provide location transparency
— Hides details of establishment of communication

Applicability
— A software system integrating a set of distributed servers, with theservers

running locally or distributed over a network.

OOMD Module 5 Page |144

ISE

Mabharaja Institute of Technology Mysore

D

epartment of ISE

Client-Dispatcher-Server

g E).a]]‘lplc 'HPh)-vn:: m_]‘
Duwislsacs
| 1
—
=R
i
e Server
Dispatcher
Client f ‘W
NASA I“
T Hoet ||
,_-;1!
Components
— Client
Performs some domain-specific tasks
Accesses operations offered by servers
— Ask the dispatcher for a communication channel
— Send its request to the server by this channel
— Server

Provides services to clients
Registers itself with the dispatcher
— Dispatcher
Establishes communications channels
Locates servers
(Un-)Registers servers
Maintains a map of server locations and name

Interaction protocol

OOMD Module 5 Page |145

Maharaja Institute of Technology Mysore Department of ISE

l Client] Dispatcher Server
, erService
regist e r—j
doTask qj) =
getChannel
— | locateScrver
)
establishChannel acceptConnection
/ "~
sendRequest Channel
< recelve e quest

-
|
o
possible possible
s S
mwdary Eu\dnry
« Component structure and inter-relationships
requests
Client SEsvioe Server
doTask ::.::,';{‘s acceptConnection
sendRequest runService
Dispatcher receiveRequest
requests
connection locationMap registers
registerService accepts
unregisterServer link
locateServer establishes
establishChannel | connection
getChannel

Publisher-Subscriber

OOMD Module 5 Page |146

Maharaja Institute of Technology Mysore

Department of ISE

Subscribe 1

Publsher

Subscriber 2

Communication Infrasiruciure

- -

Fixed Subscription
Publisher pe———pp- P

OOMD Module 5

Page |147

Mabharaja Institute of Technology Mysore ISE

Initial Subscription
Publisher -—’ i

Publisher

Publisher-Subscriber

Goal

— Help to keep the state of cooperation components synchronized

— One publisher notifies any number of subscribers about changes to itsstate
Applicability

— Applications in which data changes in one place but many other components
depend on this data

— Number and identities of dependant components may changeovertime

Example : graphical user interfaces
Components

Publisher

— Maintains registry of currently-subscribed components

— Sends notification to subscribers when its state has changed
Subscriber

— Can use the (un)subscribe interface of the publisher

— Retrieve changed data from publisher

OOMD Module 5 Page |148

Mahara'!a Institute of Technolog¥ M¥sore Departmsntaf |SE

Push model
— Publisher sends all changed data when it notifies the subscriber
— Rigid dynamic behavior
— Poor choice for complex data changes
— Useful when subscribers need published information most of the time
Pull model
— Publisher only sends minimal information when sending a change notification
— Subscribers are responsible for retrieving the data they need
— Offers more flexibility but higher number of messages between publisherand
subscriber
— Useful when only individual subscribers can decide if and when they needa
specific piece of information
Strengths
— Loosely-coupled
— Publishers are loosely coupled to subscribers
— Scalable in small installations
Weaknesses
— Not so scalable in large installations
— Publisher assumes that subscriber is listening
Variants
— Gatekeeper
Publisher notifies remote subscribers
— Event Channel
Strongly decouples publishers and subscribers
Possible to have more than one publisher
Subscribers only wish to be notified about changes, don’t care in which
component changes occurred
Publishers are not interested in which components are subscribing
Event channel created and placed between publishers and subscribers
Appears as a subscriber to publishers
Appears as a publisher tosubscribers
Event channel, subscriber and publisher can be in different processes
Can use buffers, can be chained (Unix pipes)

OOMD Module 5 Page |147

Maharaja Institute of Technolo

Mysore

optional optional

r———— process process [r—

sher boundary Event boundary | Subscriber

Channel
L.
Proxy Proxy Proxy | Proxy
er Subscriber lishe Subscriber
Variants

— Use of Producer-Consumer style of cooperation

Known uses

Producer supplies information, consumer accepts it

Strongly decoupled thanks to a buffer

Only synchronization is for buffer under/overflow

Event-Channel pattern can simulate a P-C with more than one producer

or consumer

— Java Swing, GUIs

» Interaction protocol

OOMD Module 5

evenl

evenmOccured()

eventOccurad()

Page |148

ISE

Mahara'!a Institute of Technolog¥ M¥sore Departmsntaf |SE

