

 Maharaja Education Trust (R), Mysuru

Maharaja Institute of Technology Mysore

Belawadi, Sriranga Pattana Taluk, Mandya – 571 477

Approved by AICTE, New Delhi,
Affiliated to VTU, Belagavi & Recognized by Government of Karnataka

Lecture Notes on

Operating Systems

(17CS64)

Prepared by

Department of Computer Science and
Engineering

Maharaja Education Trust (R), Mysuru

Maharaja Institute of Technology Mysore

Belawadi, Sriranga Pattana Taluk, Mandya – 571 477

Vision/ ಆಶಯ

 “To be recognized as a premier technical and management institution promoting extensive

education fostering research, innovation and entrepreneurial attitude"

ಸಂಶ ೋಧನೆ, ಆವಿಷ್ಕಾರ ಹಕಗ ಉದ್ಯಮಶೋಲತೆಯನ್ನು ಉತೆತೋಜಿಸನವ ಅಗರಮಕನ್ಯ ತಕಂತ್ರರಕ ಮತ್ನತ ಆಡಳಿತ್ ವಿಜ್ಞಕನ್ ಶಕ್ಷಣ

ಕೋಂದ್ರವಕಗಿ ಗನರನತ್ರಸಿಕ ಳ್ನುವುದ್ನ.

Mission/ ಧ್ಯೋಯ

 To empower students with indispensable knowledge through dedicated teaching and

collaborative learning.

ಸಮರ್ಪಣಕ ಮನೆ ೋಭಕವದ್ ಬ ೋಧನೆ ಹಕಗ ಸಹಭಕಗಿತ್ವದ್ ಕಲಿಕಕಕರಮಗಳಿಂದ್ ವಿದ್ಕಯರ್ಥಪಗಳ್ನ್ನು ಅತ್ಯತ್ಾೃಷ್ಟ

ಜ್ಞಕನ್ಸಂರ್ನ್ುರಕಗಿಸನವುದ್ನ.

 To advance extensive research in science, engineering and management disciplines.

ವೈಜ್ಞಕನಿಕ, ತಕಂತ್ರರಕ ಹಕಗ ಆಡಳಿತ್ ವಿಜ್ಞಕನ್ ವಿಭಕಗಗಳ್ಲಿಿ ವಿಸತೃತ್ ಸಂಶ ೋಧನೆಗಳ ಡನೆ ಬಳ್ವಣಿಗೆ ಹ ಂದ್ನವುದ್ನ.

 To facilitate entrepreneurial skills through effective institute - industry collaboration and

interaction with alumni.

ಉದ್ಯಮ ಕ್ಷೋತ್ಗಳ ಡನೆ ಸಹಯೋಗ, ಸಂಸ್ಥೆಯ ಹಿರಿಯ ವಿದ್ಕಯರ್ಥಪಗಳ ಂದಿಗೆ ನಿರಂತ್ರ ಸಂವಹನ್ಗಳಿಂದ್ ವಿದ್ಕಯರ್ಥಪಗಳಿಗೆ

ಉದ್ಯಮಶೋಲತೆಯ ಕೌಶಲಯ ರ್ಡೆಯಲನ ನೆರವಕಗನವುದ್ನ.

 To instill the need to uphold ethics in every aspect.

ಜಿೋವನ್ದ್ಲಿಿ ನೆೈತ್ರಕ ಮೌಲಯಗಳ್ನ್ನು ಅಳ್ವಡಿಸಿಕ ಳ್ನುವುದ್ರ ಮಹತ್ವದ್ ಕನರಿತ್ನ ಅರಿವು ಮ ಡಿಸನವುದ್ನ.

 To mould holistic individuals capable of contributing to the advancement of the society.

ಸಮಕಜದ್ ಬಳ್ವಣಿಗೆಗೆ ಗಣನಿೋಯ ಕ ಡನಗೆ ನಿೋಡಬಲಿ ರ್ರಿರ್ೂಣಪ ವಯಕ್ತತತ್ವವುಳ್ು ಸಮರ್ಪ ನಕಗರಿೋಕರನ್ನು

ರ ಪಿಸನವುದ್ನ.

Maharaja Institute of Technology Mysore
Department of Computer Science and Engineering

VISION/ ಆಶಯ

 “To be a leading academic department offering computer science and engineering education,

fulfilling industrial and societal needs effectively.”

“ಕ ೈಗರಿಕ ಮತ್ತು ಸಮಜಿಕ ಅಗತ್ಯಗಳನ್ತು ಪರಿಣಮಕರಿಯಗಿ ಪೂರ ೈಸತ ಮೂಲಕ ಕಂಪೂಯಟರ್ ವಿಜ್ಞನ್ ಮತ್ತು
ಎಂಜಿನಿಯರಿಂಗ್ ಶಿಕ್ಷಣನ್ತು ನಿೀಡತ ಪರಮತಖ ಶ ೈಕ್ಷಣಿಕ ವಿಭಗವಗತುದತ.”

MISSION/ ಧ್ಯೇಯ

 To enrich the technical knowledge of students in diversified areas of Computer science and

engineering by adopting outcome based approaches.

 ಫಲಿತಂವ ಆಧರಿತ್ ವಿಧನ್ಗಳನ್ತು ಅಳಡಿಸಿಕ ೂಳಳು ಮೂಲಕ ಕಂಪೂಯಟರ್ ವಿಜ್ಞನ್ ಮತ್ತು ಎಂಜಿನಿಯರಿಂಗ್ ನ್

ವ ೈವಿಧ್ಯಮಯ ಕ್ ೀತ್ರಗಳಲಿನಿ್ ವಿದ್ಯರ್ಥಿಗಳ ತಂತ್ರರಕ ಜ್ಞನ್ನ್ತು ಅಭಿೃದ್ಧ ಿಪಡಿಸತುದತ.

 To empower students to be competent professionals maintaining ethicality.

 ನ ೈತ್ರಕತ ಯನ್ತು ಕಡತ ಸಮರ್ಿ ೃತ್ರುಪರರಗಿ ವಿದ್ಯರ್ಥಿಗಳನ್ತು ಸವಕುಗ ೂಳಿಸತುದತ.

 To facilitate the development of academia-industry collaboration.

 ಶ ೈಕ್ಷಣಿಕ-ಉದಯಮ ಸಹಯೀಗದ ಅಭಿೃದ್ಧಿಗ ಅನ್ತಕೂಲವಗತಂತ .

 To create awareness of entrepreneurship opportunities.

ಉದಯಮಶಿೀಲತ ಅಕವಗಳ ಬಗ ೆ ಜಗೃತ್ರ ಮೂಡಿಸತುದತ.

Maharaja Institute of Technology Mysore

Department of Computer Science and Engineering

Program Outcomes

 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to

the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

Maharaja Institute of Technology Mysore
Department of Computer Science and Engineering

VISION/ ಆಶಯ

 “To be a leading academic department offering computer science and engineering education,

fulfilling industrial and societal needs effectively.”

“ಕ ೈಗರಿಕ ಮತ್ತು ಸಮಜಿಕ ಅಗತ್ಯಗಳನ್ತು ಪರಿಣಮಕರಿಯಗಿ ಪೂರ ೈಸತ ಮೂಲಕ ಕಂಪೂಯಟರ್ ವಿಜ್ಞನ್ ಮತ್ತು
ಎಂಜಿನಿಯರಿಂಗ್ ಶಿಕ್ಷಣನ್ತು ನಿೀಡತ ಪರಮತಖ ಶ ೈಕ್ಷಣಿಕ ವಿಭಗವಗತುದತ.”

MISSION/ ಧ್ಯೇಯ

 To enrich the technical knowledge of students in diversified areas of Computer science and

engineering by adopting outcome based approaches.

 ಫಲಿತಂವ ಆಧರಿತ್ ವಿಧನ್ಗಳನ್ತು ಅಳಡಿಸಿಕ ೂಳಳು ಮೂಲಕ ಕಂಪೂಯಟರ್ ವಿಜ್ಞನ್ ಮತ್ತು ಎಂಜಿನಿಯರಿಂಗ್ ನ್

ವ ೈವಿಧ್ಯಮಯ ಕ್ ೀತ್ರಗಳಲಿನಿ್ ವಿದ್ಯರ್ಥಿಗಳ ತಂತ್ರರಕ ಜ್ಞನ್ನ್ತು ಅಭಿೃದ್ಧ ಿಪಡಿಸತುದತ.

 To empower students to be competent professionals maintaining ethicality.

 ನ ೈತ್ರಕತ ಯನ್ತು ಕಡತ ಸಮರ್ಿ ೃತ್ರುಪರರಗಿ ವಿದ್ಯರ್ಥಿಗಳನ್ತು ಸವಕುಗ ೂಳಿಸತುದತ.

 To facilitate the development of academia-industry collaboration.

 ಶ ೈಕ್ಷಣಿಕ-ಉದಯಮ ಸಹಯೀಗದ ಅಭಿೃದ್ಧಿಗ ಅನ್ತಕೂಲವಗತಂತ .

 To create awareness of entrepreneurship opportunities.

ಉದಯಮಶಿೀಲತ ಅಕವಗಳ ಬಗ ೆ ಜಗೃತ್ರ ಮೂಡಿಸತುದತ.

Maharaja Institute of Technology Mysore

Department of Computer Science and Engineering

 Overview

 Subject: Operating System Subject Code: 17CS64

An operating system(OS) is system software that manages computer hardware,software

resources, and provides common services for computer programs. Timesharingoperating

systemsschedule tasks for efficient use of the system and may also include accounting software

for cost allocation of processor time, mass storage, printing, and other resources.

For hardware functions such as input and output and memory allocation, the

operatingsystem acts as an intermediary between programs and the computer hardware, although

the application code is usually executed directly by the hardware and frequently makes system

calls to an OS function or is interrupted by it. Operating systems are found on many devices that

contain a computer – from cellular phones and video game consoles to web servers and

supercomputers.

The dominant desktop operating system is Microsoft Windows with a market share of

around 82.74%, mac OS by Apple in second place with 13.23%, and the varieties of Linux are

collectively in third place with 1.57%.while other operating systems amount to just 0.3%, Linux

distributions are dominant in the server and supercomputing sectors. Other specialized classes of

operating systems, such as embedded and real-time systems, exist for many applications.

Course objectives

 Introduce concepts and terminology used in OS.

 Explain threading and multithreaded systems.

 Illustrate process synchronization and concept of Deadlock.

 Introduce Memory and Virtual memory management, File system and storage techniques.

 A case study on Linux operating system.

Course Outcomes

CO’s DESCRIPTION OF THE OUTCOMES

C364.1
Acquire the basic knowledge of Operating System Architecture, Operations and

Services offered.

C364.2
Identify and estimate process management, thread management and deadlock

management strategies.

C364.3 Illustrate Memory, File system and Disk Management techniques.

C364.4 Outline the design principles of Linux operating systems through case study.

C364.5 Demonstrate the importance of life-long learning of operating system usage.

OPERATING SYSTEMS
[As per Choice Based Credit System (CBCS) scheme]

(Effective from the academic year 2017 - 2018)
SEMESTER – VI

Subject Code 17CS64 IA Marks 40
Number of Lecture Hours/Week 4 Exam Marks 60
Total Number of Lecture Hours 50 Exam Hours 03

CREDITS – 04
Module – 1 Teaching

Hours
Introduction to operating systems, System structures: What operating systems
do; Computer System organization; Computer System architecture; Operating
System structure; Operating System operations; Process management; Memory
management; Storage management; Protection and Security; Distributed system;
Special-purpose systems; Computing environments. Operating System Services;
User - Operating System interface; System calls; Types of system calls; System
programs; Operating system design and implementation; Operating System
structure; Virtual machines; Operating System generation; System boot. Process
Management Process concept; Process scheduling; Operations on processes;
Inter process communication

10 Hours

Module – 2
Multi-threaded Programming: Overview; Multithreading models; Thread
Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling
Criteria; Scheduling Algorithms; Multiple-processor scheduling; Thread
scheduling. Process Synchronization: Synchronization: The critical section
problem; Peterson’s solution; Synchronization hardware; Semaphores; Classical
problems of synchronization; Monitors.

10 Hours

Module – 3
Deadlocks : Deadlocks; System model; Deadlock characterization; Methods for
handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock
detection and recovery from deadlock. Memory Management: Memory
management strategies: Background; Swapping; Contiguous memory allocation;
Paging; Structure of page table; Segmentation.

10 Hours

Module – 4
Virtual Memory Management: Background; Demand paging; Copy-on-write;
Page replacement; Allocation of frames; Thrashing. File System,
Implementation of File System: File system: File concept; Access methods;
Directory structure; File system mounting; File sharing; Protection:
Implementing File system: File system structure; File system implementation;
Directory implementation; Allocation methods; Free space management.

10 Hours

Module – 5
Secondary Storage Structures, Protection: Mass storage structures; Disk
structure; Disk attachment; Disk scheduling; Disk management; Swap space
management. Protection: Goals of protection, Principles of protection, Domain of
protection, Access matrix, Implementation of access matrix, Access control,
Revocation of access rights, Capability- Based systems. Case Study: The Linux
Operating System: Linux history; Design principles; Kernel modules; Process

10 Hours

management; Scheduling; Memory Management; File systems, Input and output;
Inter-process communication.
Course outcomes: The students should be able to:

• Demonstrate need for OS and different types of OS
• Discuss suitable techniques for management of different resources
• Illustrate processor, memory, storage and file system commands
• Explain the different concepts of OS in platform of usage through case studies

Question paper pattern:
The question paper will have TEN questions.
There will be TWO questions from each module.
Each question will have questions covering all the topics under a module.
The students will have to answer FIVE full questions, selecting ONE full question from each
module.
Text Books:
1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Principles 7th

edition, Wiley-India, 2006.
Reference Books
1. Ann McHoes Ida M Fylnn, Understanding Operating System, Cengage Learning, 6th

Edition
2. D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw-

Hill, 2013.
3. P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th Edition,

PHI(EEE), 2014.
4. William Stallings Operating Systems: Internals and Design Principles, 6th Edition,

Pearson.

 Maharaja Institute of Technology Mysore

 Department of Computer Science and Engineering

 INDEX

 Subject: Operating System Subject Code: 17CS64

 SL. No. Contents Page No.

Module-1: Introduction to OS

1.1 What Operating Systems do? M1-1

1.2 Computer System Organization M1-2

1.3 Computer System Architecture M1-4

1.4 Operating System Structure M1-6

1.5 Operating System Operations M1-7

1.6 Process Management M1-8

1.7 Memory Management M1-9

1.8 Storage Management M1-9

1.9 Protection and Security M1-11

1.10 Distributed Systems M1-12

1.11 Special Purpose Systems M1-12

1.12 Computing Environments M1-13

1.13 Operating System Services M1-15

1.14 User Operating-System Interface M1-16

1.15 System Calls M1-17

1.16 Types of System calls M1-19

1.17 System Programs M1-22

1.18 OS Design & Implementation M1-23

1.19 Operating System Structures M1-24

1.20 Virtual Machines M1-27

1.21 System Boot M1-30

1.22 Process Concepts M1-30

1.23 Process Scheduling M1-32

1.24 Process Operations M1-35

1.25 Inter-Process Communication (IPC) M1-37

 Module-2: Multithreaded Programming

2.1 Overview M2-1

2.2 Multithreading Models M2-2

2.3 Thread Libraries M2-3

2.4 Threading Issues M2-8

2.5 PROCESS SHEDULING: Basic Concepts M2-11

2.6 Scheduling Criteria M2-14

2.7 Scheduling Algorithms M2-14

2.8 Multiple-Processor Scheduling M2-20

2.9 Thread Scheduling M2-22

2.10 Synchronization: Background M2-23

2.11 The critical-section problem M2-23

2.12 Peterson’s solution M2-24

2.13 Synchronization hardware M2-26

2.14 Semaphores M2-28

2.15 Classic problems of Synchronization M2-31

2.16 Monitors M2-35

Module-3: Deadlocks, Memory Management

3.1 Deadlocks M3-1

3.2 System Model M3-1

3.3 Deadlock Characterization M3-1

3.4 Methods for Handling Deadlocks M3-4

3.5 Deadlock Prevention M3-4

3.6 Deadlock Avoidance M3-5

3.7 Deadlock Detection M3-11

3.8 Recovery from Deadlock M3-13

3.9 MEMORY MANAGEMENT STRATEGIES: Background M3-17

3.10 Swapping M3-22

3.11 Contiguous Memory Allocation M3-22

3.12 Paging M3-24

3.13 Structure of the Page Table M3-30

3.14 Segmentation M3-33

Module-4: Virtual Memory Management, File System

4.1 Background M4-1

4.2 Demand Paging M4-2

4.3 Copy-on-write M4-6

4.4 Page Replacement M4-7

4.5 Allocation of Frames M4-14

4.6 Thrashing M4-16

4.7 File System M4-19

4.8 File Concept M4-19

4.9 Access Methods M4-22

4.10 Directory Structure M4-24

4.11 File System Mounting M4-29

4.12 File Sharing M4-30

4.13 Protection M4-33

4.14 File System Structure M4-35

4.15 File System Implementation M4-36

4.16 Directory Implementation M4-39

4.17 Allocation Methods M4-40

4.18 Free Space Management M4-44

Module-5: Secondary Storage Structures, Protection

5.1 Overview of Mass Storage Structure M5-1

5.2 Disk Structure M5-2

5.3 Disk Attachment M5-2

5.4 Disk Scheduling M5-4

5.5 Disk Management M5-8

5.6 Swap - Space Management M5-10

5.7 System Protection M5-11

5.8 Goals of Protection M5-11

5.9 Principles of Protection M5-12

5.10 Domain of Protection M5-12

5.11 Access Matrix M5-15

5.12 Implementing Access matrix M5-18

5.13 Access Control M5-19

5.14 Revocation of Access Rights M5-20

5.15 Capability Based Systems M5-21

5.16 Linux History M5-22

5.17 Design Principles M5-24

5.18 Kernel Modules M5-26

5.19 Process management M5-29

5.20 Scheduling M5-32

5.21 Memory Management M5-35

5.22 File System M5-43

5.23 Input and Output M5-48

5.24 Inter-Process Communication M5-50

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 1

MODULE-1

INTRODUCTION TO OPERATING SYSTEMS, SYSTEM STRUCTURE

An Operating System (OS) is a system software that manages the computer hardware.

o It provides a basis for application programs and acts as an intermediary between the

computer users and the computer hardware.

o The purpose of an OS is to provide an environment in which the user can execute the

program in a convenient & efficient manner.

1.1 What Operating Systems do?

 A computer system can be divided into four components

 Hardware: The Hardware consists of memory, CPU, ALU, I/O devices, peripherals

devices & storage devices.

 OS: The OS controls & co-ordinates the use of hardware among various application

programs for various users.

 Application Program: The application programs includes word processors, spread

sheets, compilers & web browsers which defines the ways in which the resources are

used to solve the problems of the users.

 User: Who works/executes the required function.

The following figureshows the abstract view of the components of a computer system

To completely understand the role of operating system two views are considered as below:

 User View:

 The user view of the computer depends on the interface used.

 Some users may use PC’s. Such system is designed for one user. Here, the OS is

designed for ease of use where some attention is mainly on performances and not on

the resource utilization.

 Some users may use a terminal connected to a mainframe or minicomputers.Other

users may access the same computer through other terminals. These users may share

resources and exchange information. In this case the OS is designed to maximize

resource utilization- so that all available CPU time, memory & I/O are used

efficiently.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 2

 Other users may sit at workstations, connected to the networks of other workstation

and servers. In this case OS is designed to compromise between individual usability

& resource utilization.

 System View:

 An operating systemcan be viewed as resource allocator.

 A computer system has many resources such as CPU Time, memory space, file

storage space, I/O devices and so on that may be used to solve a problem.

 The OS acts as a manager of these resources and decides how to allocate these

resources to programs and the users so that it can operate the computer system

efficiently and fairly.

 A different view of an OS is that it controls various I/O devices & user programs

i.e. an OS is a control program which manages the execution of user programs

to prevent errors and improper use of the computer.

1.2 Computer System Organization

 Computer system operation

 A general purpose computer system consists of one or more CPUs and device

controllers connected through common bus providing access to shared memory as

shown in figure below.

 Each device controller is in-charge of a particular device type.

 CPUs and device controllers can execute concurrently competing for memory

utilization and memory controller synchronizes the memory access.

 For computer to start running when it is powered-up or rebooted an initial program

called bootstrap program is loaded.It is stored in ROM or EEPROM, generally

known as firmware.It loads the operating system and starts executing the first

process, such as “init” and waits for some event to occur.

 An operating system is interrupt driven.The occurrence of an event is signaled by an

interrupt through signal or system call.When CPU is interrupted it stops its job and

immediately transfers execution to fixed location. Fixed location contains the starting

address of interrupt service routine.On completion of the execution of interrupt

service routine CPU resumes interrupted computation.

 A timeline of this operation is shown below in figure.

 Each computer has its own interrupt design mechanism but several functions are

common. The interrupttransfers the control to the interrupt service routine through the

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 3

interrupt vector, which contains the starting addresses of all the interrupt service

routines. The interrupted service routine executes and after completion, CPU returns

back to previous execution by preserving the state of the CPU by storing registers and

the program counter value.

 Storage Structure

 Main memory is the large storage media that the CPU can access directly. It forms

an array of memory words. Each word has its own address. Interaction is achieved

through a sequence of load and storeinstructions to specify memory addresses. The

load instruction moves a word from main memory to an internal register within the

CPU, where as store instruction moves the content of a register to main memory.

 It But it is very small and volatile storage device.Computer systems have secondary

storage that provides large nonvolatile storage capacity.

 Magnetic disks are the common secondary storage devices.Other storage devices are

cache memory, CD-ROM, magnetic tapes and so on.
 Storage system is differentiated based on their speed, cost and volatility.

 Storage systems above electronic disks are volatile,expensive but fast.Below are non-

volatile, comparatively cheap and slower.
 Electronic disks can be designed as both volatile and non-volatile. Eg. Flash memory

used in cameras, robot and Personal Digital Assistants (PDA).
 NVRAM (Non Volatile RAM) is a DRAM with a battery backup power.

 Storage systems can be organized in a hierarchy as shown below in figure according

to speed and cost.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 4

 I/O Structure

 Storage is one form of I/O devices.OS spends considerable amount of time in

managing I/O devices because they have an impact on the performance and

reliability of the system.

 There is one device driver for each device controller. Each device controller

maintains a buffer and registers. The device driver understands the device controller

and presents a uniform interface to the device and to the rest of the system.

 When an I/O operation is started, the device driver loads the appropriate registers

within the device controller. The device controller examines the contents of the

registers and determines what action to be taken.

 The controller starts transfer of data from the device to the local buffer.

 Once the transfer is complete the device controller informs the device driver via an

interrupt that the operation is complete. The device driver then returns control to the

OS through an interrupt.

 This form of interrupt driven I/O works well for moving small amounts of data but it

is a big overhead when bulk transfer is required. To solve this problem, DMA (direct

memory access) is used.DMA is used for high-speed I/O devices.The device

controller transfers entire block of data to or from buffer storage to main memory

without CPU intervention.Only one interrupt is generated per block, rather than the

one interrupt per byte.

 The figure shows the interplay of all components of a computer system.

1.3 Computer System Architecture

A computer system can be categorized based on number of processors used.

 Single Processor Systems

 A system that has one main CPU and is capable of executing a general-purpose

instruction set, including instructions from the user processes.

 Some systems also have special purpose processor to perform specific task, or on

mainframes, they come in the form of general purpose processors such as I/O

processor.These special purpose processors have limited instruction set and do not

run user processes.They are managed by the OS by sending information about the

next task and monitor their status.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 5

 Ex1: A disk controller microprocessor receives a sequence of requests from the

main CPU and implements its own disk queue and scheduling algorithm. This

relieves the main CPU from disk scheduling.

 Ex2: PCs contain a microprocessor in the keyboard to convert the keystrokes into

codes to be sent to the CPU.

 These special purpose processors do not convert single processor system into

multiprocessor system.

 Multiprocessor Systems

 Multiprocessor systems have more than one processor in close communication.Also

known as Tightly Coupled System or Parallel Systems.

 They share computer bus, the clock, memory & peripheral devices.

 Two processes can run in parallel.

 Multi Processor Systems have 3 advantages,

o Increased Throughput: By increasing the number of processors we can get more

work done in less time. Speed up ratio with N processors is not N, but it is less

than N.

o Economy of Scale:As Multiprocessor systems share peripherals, mass storage &

power supplies, they can save more money than multiple single processor

systems. If many programs operate on same data, they will be stored on one disk

and all processors can share them instead of maintaining data on several systems.

o Increased Reliability: If a program is distributed properly on several processors,

then the failure of one processor will not halt the system but it only slows down.

 The ability to continue providing service proportional to the level of surviving

hardware is called graceful degradation. Such systems that provide graceful

degradation are fault tolerant.Fault tolerant requires a mechanism to allow failure to

be detected, and diagnosed and corrected.

 Multi processor systems are of two types

o Asymmetric Multiprocessing: Each processor is assigned a specific task. It uses

a master slave relationship. A master processor controls the system. The master

processors schedules and allocates work to slave processors.

o Symmetric Multiprocessing (SMP): Each processor performs all tasks within

the OS. SMP means all processors are peers i.e. no master slave relationship

exists between processors. Each processor concurrently runs a copy of OS.

Ex: Solaris. The following figure shows SMP architecture.

 The differences between symmetric & asymmetric multiprocessing may result from

either hardware or software. Special hardware can differentiate the multiple processors,

or the software can be written to allow only one master & multiple slaves.

 A recent trend in CPU design is to include multiple compute cores on a single chip.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 6

 Blade Servers are recent development in which multiple processor boards, I/O boards,

and networking boards are placed in same chassis. Here each processors can boot

independently and run their own OS.

 Clustered Systems

 The clustered systems have multiple CPUs but they are composed of two or more

individual systems coupled together.

 Clustered systems share storage and are closely linked via LAN Network.

 Clustering is usually used to provide high availability.

 A layer of software cluster runs on the cluster nodes. Each node can monitor one or

more of the others. If the monitored machine fails, the monitoring machine takes

ownership of its storage and restarts the applications that were running on failed

machine.

 Clustered systems can be categorized into two groups

1. Asymmetric Clustering.

2. Symmetric clustering.

 In asymmetric clustering one machine is in hot standby mode while others are

running the application. The hot standby machine does nothing but it monitors the

active server. If the server fails the hot standby machine becomes the active server.

 In symmetric mode two or more hosts are running the application & they monitor

each other. This mode is more efficient since it uses all the available hardware.

 Other forms of clusters include parallel clusters and clustering over WAN.

 Parallel clusters allow multiple hosts to access the same data on shared storage.

 To provide this shared access, system must also supply access control and locking to

ensure that no conflicting operations occur. This function known as distributed lock

manager (DLM) is included.

 Clustering provides better reliability than the multiprocessor systems.

1.4 Operating System Structure

 Multiprogramming system

 Single user cannot keep CPU and I/O devices busy at all times.

 Multiprogramming increases CPU utilization by organizing jobs so that CPU always

has one to execute.

 The OS has to keep several jobs in memory simultaneously as shown in figure

 The OS picks up and starts executing one of the jobs.

 Eventually if this job may not need the CPU due to some reason like, an I/O operation

to complete, then in non multi-programmed system CPU would sit idle.

 But in a multi-programmed system instead of having the CPU idle the OS switches to

the next job in the memory.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 7

 Timesharing (multitasking)

 It is a logical extension of multiprogramming in which CPU switches among jobs so

frequently that users can interact with each job while it is running, creating interactive

computing.

 Allows many users to share the computer simultaneously.

 It requires an interactive system or a hands-on computer system that provides direct

communication between the user and the system.

 Response time should be less than 1 second.

 Each user has at least one program executing in memory.

 A program loaded into memory and executing is called a process.

 Timesharing and multiprogramming requires several jobs to be kept simultaneously

in memory.

 Job scheduling: A job pool consists of all processes residing on disk and awaiting

allocation of main memory. If several jobs are ready to be brought into memory and if

there is not enough room for them, then the system must choose among them. Making

this decision is Job scheduling.

 CPU scheduling: If several jobs are ready to run at the same time then the system must

choose among them. Making this decision is CPU scheduling.

 Swapping: In time shared system processes are swapped in and out of main memory into

the disk to ensure reasonable response time.A common method for achieving this is

Virtual memory.The main advantage of the virtual-memory scheme is that it enables

users to run programs that are larger than actual physical memory.

1.5 Operating System Operations

 Modern OS is Interrupt driven.

 Events are signaled by an interrupt or trap.

 An exception or trap is a software generated interrupt either by an error.

(For ex: Division by zero, invalid memory access)or specific request from a user

program.

 Dual-mode operation

 To ensure proper execution of the OS, we must be able to distinguish between OS

code and user defined code.

 Most computer systems provide hardware support to differentiate among various

modes of execution.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 8

 Two modes of operation are

1. User mode
2. kernel mode (also called supervisor, system or privileged mode)

 Mode bit is added to the hardware to indicate current mode User mode(1) and kernel

mode(0).

 When system is executing on behalf of user application, the system is in user mode.

 When a user application requests a service from OS, it must transit from user to

kernel mode to fulfill the request as shown in figure

 At system boot time, the hardware starts in kernel mode. The OS is then loaded and

starts user applications in user mode. Whenever a trap or interrupt occurs, the

hardware switches from user mode to kernel mode. Thus whenever the OS gains

control of the computer, it is in kernel mode. The system always switches to user

mode before passing control to user program. This allows protection to OS.

 The hardware allows privileged instructions to be executed only in kernel mode.

If an attempt is made to execute privileged instructions in user mode, the hardware does

not execute it but rather treats it as an illegal and traps it to the OS.

 Examples:Instruction to switch to user mode, I/O control instructions, timer

management instructions and interrupt management instructions.

 User program asks OS to perform OS tasks through system call.

 Timer

 Timer is used to prevent a program from getting stuck in an infinite loopor not

calling system services and never returning control to the OS.

 Timer can be set to interrupt the computer after a specific period.

 The period may be fixed or variable.The variable timer is implemented by fixed

rate clock and a counter.Whenever the clock ticks, operating system decrements the

counter.When counter reaches zero it generates an interrupt.

 Timer has to be set before scheduling process to regain control or terminate program

that exceeds allotted time.

1.6 Process Management

 A process is a program in execution. Ex1. A time-shared user program like a

compiler is a process. Ex2. A word processing program run by an individual user on a

PC is a process.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 9

 A process requires certain resources like CPU time, Memory, I/O devices to

complete its task.

 When the process terminates, the OS reclaims all the reusable resources.

 A program in a file is stored on disk and is a passive entity, where as a process is an

active entitylocated on main memory.

 A single threaded process has one PC (program counter) specifying the address of

the next instruction to be executed. Such processes are sequential i.e. the CPU

executes one instruction after the other.

 A multi-threaded process has multiple program counters each pointing to the next

instruction to execute for a given thread.

 A system consists of a collection of processes, some of which are OS processes and

the rest are user processes. All these processes can execute concurrently by

multiplexing the CPU among them on a single CPU.

 The OS is responsible for the following activities of the process management,

o Creating & deleting of the user & system processes.

o Suspending and resuming processes.

o Providing mechanisms for process synchronization.

o Providing mechanisms for process communication.

o Providing mechanisms for deadlock handling.

1.7 Memory Management

 Main memory is the central to the operation of the computer system.

 Main memory is the large array of words or bytes, ranging in size from hundreds of

thousands to billions. Each word or byte will have their own address.

 The CPU reads the instruction from main memory during instruction fetch cycle&

during the data-fetch cycleit reads & writes the data.

 The main memory is the only storage device in which a CPU is able to address &

access directly.

 For a program to be executed, it must be loaded into memory & mapped to absolute

addresses. When the program terminates, all available memory will be returned back.

 To improve the utilization of CPU & the response time several programs will be kept

in memory.

 Several memory management schemes are available & selection depends on the

Hardware design of the system.

 The OS is responsible for the following activities

o Keeping track of which parts of the memory are used & by whom.

o Deciding which process and data to move into and out of memory.

o Allocating & reallocating memory space as needed.

1.8 Storage Management

 File System Management

 File management is one of the most visible components of an OS.

 Computer can store information on different types of physical media like Magnetic

Disks, Magnetic tapes, optical disks etc.

 These devices have their own unique characteristics like access speed, capacity,

data transfer rate, and access method (sequential or random).

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 10

 OS implements the abstract concept of a file by managing mass storage media like

tapes, disks etc.,

 A file is a collection of related information defined by its creator. They commonly

represent programs (source and object) and data. Data files may be numeric,

alphabetic or alphanumeric.

 Files can be organized into directories to make them easier to use.

 The OS is responsible for the following activities,

o Creating & deleting files.

o Creating & deleting directories.

o Supporting primitives for manipulating files & directories.

o Mapping files onto secondary storage.

o Backing up files on stable(non volatile) storage media.

 Mass Storage management

 Computer system must provide secondary storage toback up main memory because,

o It is too small to accommodate all data and programs.

o Data held in this memory is lost when power goes off.

 Most programs including compilers, assemblers, word processors, editors etc are

stored on the disk until loaded into the memory and then use disk as both source and

destination of processing. Hence proper management of disk storage is very

important.

 The OS is responsible for the following activities,

o Free space management.

o Storage allocation.

o Disk scheduling.

 Slower and low cost but high capacity backup storage devices are called tertiary

devices which are used for back-up of the regular disk data, seldom used data, long

term archival storage etc. Eg. Magnetic tapes and their drives, CD and DVD drives

and platters like tape and optical platters.

 Caching

 It is an important principle of a computer system and is a fast memory which is used

for storing information on a temporary basis.

 First, the cache is searched when a particular piece of information is required during

processing. If the information already available, then it is directly used from the

cache, otherwise we use information from the source, putting a copy in the cache,

under the assumption that we will need the information again very soon.

 Internal programmable registers like index registers can be used as high-speed

cache for the main memory.

 Caches have limited size and thus Cache management is an important design

problem.

 In a hierarchical storage structure, the same data may appear in different levels of

storage system.For ex, Suppose that an integer A is to be incremented by 1 is located

in file B which resides on disk, the migration of integer A from Disk to Register is

shown in below

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 11

 Once the increment to A takes place in the internal registers, the value of A differs in

various storage systems. The value of A becomes same only after the new value of A

is written from the internal register back to the disk.

 In multitasking environments, extreme care must be taken to use most recent value,

not matter where it is stored in the storage hierarchy.

 The situation becomes more complicated in multiprocessor environment, where

each CPU is associated with local cache. A care must be taken to make sure that an

update to the value of A in one cache is immediately reflected in all other caches.

This situation is called as cache coherency.

 The situation becomes even more complex in a distributed environment. Several

copies of the same file can be kept on different computers. Since the various replicas

may be accessed and updated concurrently, some distributed systems ensure that,

when a replica is updated in one place all other replicas are also updated as soon as

possible.

 I/O Systems

 OS hides peculiarities of hardware devices from the user.

 I/O subsystem consists of several components like,

o The memory management component that includes buffering, caching and

spooling.

o A general device driver interface.

o Drivers for specific hardware devices.

 Only the device driver knows the peculiarities of each of the devices.

1.9 Protection and Security

 If a computer system has multiple users and allows the concurrent execution of

multiple processes, then a protection mechanism is required to regulate access to data.

 System resources like files, memory segments, CPU etc. are made available to only

those processes which have gained authorization from OS.

 Protection is a mechanism for controlling the access of processes or users to the

resources defined by a computer system.

 The mechanism must specify the controls to be imposed and what for.

 The advantages of providing protection are: it can improve reliability by detecting

latent errors at the interfaces between component subsystems and early detection of

interface errors can prevent corruption of good subsystems by another malfunctioning

subsystem. Protection can prevent misuse by an unauthorized or incompetent user.

 The security system must defend the system from external and internal attacks.

Attacks can be of various types like viruses, worms, denial-of-service attack, identity

theft, theft of service etc. Ex. If a user’s authentication information is stolen then the

owner’s data can be stolen, corrupted or deleted.

 The mechanism of protection and security must be able to distinguish among all its

users.This is possible because the system maintains a list of all user ids. These ids are

unique per user.

 When it is required to distinguish among a set of users rather than individual users

then group functionality is implemented.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 12

 A system-wide list of group names and group ids are stored.

 If a user needs to escalate privileges for gaining extra permissions then different

methods are provided by the OS.

1.10 Distributed Systems

 A distributed system is a collection of physically separate heterogeneous computer

systems that are networked to provide the users with access to various resources that

the system maintains.

 A distributed system is one in which Hardware or Software components located at the

networked computerscommunicate & coordinate their actions only by passing

messages.

 Distributed systems depend on networking for their functionality.Network may vary

by the protocols used, distance between nodes (LAN, WAN, MAN, etc) & transport

media.

 A network operating system is an OS that provides features such as file sharing

across the network and allows different processes on different computers to exchange

messages.

 The advantages of Distributed Systems are,

o Resource sharing

o Higher reliability

o Better price performance ratio

o Shorter response time

o Higher throughput

o Incremental growth

1.11 Special Purpose Systems

The special purpose computers are those whose functions are more limited and whose

objectives are to deal with limited computation domains. Egs.Realtime Embedded Systems,

Multimedia Systems and Handheld Systems.

 Real- Time Embedded Systems

 Embedded computers are found almost everywhere from car engines, robots, alarm

systems, medical imaging systems, industrial control systems, microwave ovens,

weapon systems etc.

 This class of computers have very specific task and run an OS with very limited

features.Usually they have limited or no user interface.

 Embedded systems runs on real time OS.

 A real time system should have well defined, fixed time constraints.Processing must

be done within the defined constraints or the system will fail.Hence they are often

 used as controlled device in a dedicated application.Real time OS uses priority

scheduling algorithm to meet the response requirement of a real time application.

 Real time systems are of two types

o Hard Real Time Systems

o Soft Real Time Systems

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 13

 A hard real time system guarantees that the critical tasks to be completed on time.

This goal requires that all delays in the system be bounded from the retrieval of stored

data to time that it takes the OS to finish the request.

 In soft real time system is a less restrictive one where a critical real time task gets

priority over other tasks & retains the property until it completes. Soft real time

system is achievable goal that can be mixed with other type of systems. They have

limited utility than hard real time systems.Soft real time systems are used in area of

multimedia, virtual reality & advanced scientific projects. It cannot be used in

robotics or industrial controls due to lack of deadline support.Soft real time requires

two conditions to implement, CPU scheduling must be priority based & dispatch

latency should be small.

 Multimedia Systems

 A recent trend in technology is the incorporation of multimedia data.

 Multimedia data consists of audio and video files along with conventional files(text

files, word document, etc).

 The difference from conventional data is that the multimedia data must be delivered

or streamed according to some time restrictions.

 Multimedia applications include video conferencing, news stories download over the

internet, live webcasts of speeches and so on.

 Handheld Systems

 Handheld systems include Personal Digital Assistants (PDAs), Cellular telephones,

palm and pocket PCs and so on, which uses special purpose embedded OS.

 Drawbacksare, because of smaller size they have small amount of memory, slow

processors and small display screen.

 Memory-Because of small size, OS and applications must manage the memory

efficiently. (Making sure all memory allocated is returned back to the memory

manager if no longer used).Many handheld devices do not use virtual memory

techniques.

 Speed-Processors run at a fraction of the speed of the PC processor. Faster processors

require more power. Therefore, OS and applications must not tax the processor.

 The small display screen also limits the output options. To allow the display of the

contents of the web pages web clipping is done where only a small subset of the web

page is delivered and displayed on the screen.

 Advantages are
o Ability to synchronize with desktops.

o Small size hence can be carried around easily.

1.12 Computing Environments

 Traditional Computing

 Consider the “typical office environment”: Few year’s back it consisted of PCs

connected to the network with servers providing file and print service, Remote access

looked tough and portability was achieved through laptop.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 14

 Terminals attached to mainframes were common at many companies with even few

remote access and portability option.

 The web technologies are stretching the boundaries of traditional computing.

Companies have portals, which provide web access to their internal servers.Network

computers are terminals that understand the web based computing. Hand held PDAs

can also connect to wireless networks to use company’s web portal.

 Client-Server Computing

 Many of today’s systems act as server systems to satisfy requests of clients.

 This form of specialized distributed system, called client-server system has general

structure as shown in belowfigure

 Server system can be classified as follows

a. Compute-Server Systems: Provides an interface to which client can send

requests to perform some actions, in response the server execute the action

and send back result to the client. Ex. A server running a database that

responds to client requests for data.

b. File-Server Systems: Provides a file system interface where clients can create,

update, read & delete files. Ex. A web server that delivers files to clients running web

browsers.

 Peer-to-Peer(P2P) Computing

 It is another form of a distributed system.Here, clients and servers are not

distinguished from one another.

 All nodes within the system are considered as peers.Each can act as a server or a

client depending on who is requesting or providing a service.

 The advantage is the removal of bottleneck as the services can be provided by

several nodes that are distributed throughout the network.

 To participate in a P2P system a node must first join the network of peers. On joining,

the new node can provide and request for services.

 Determining what services are available in the network can be accomplished in one

of two methods,

1. When a node joins a network, it registers its services with a centralized lookup

service on the network. Any node wants service, first contacts the centralized

lookup service to determine which nodes provides the service. Then the

communication takes place between the client and the service provider.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 15

2. A peer which is a client broadcasts a request for service to all nodes in the

network. The nodes that provide the service responds to the requesting peer. A

discovery protocol is used by the peers to discover the services provided by

other peers.

 Web Based Computing

 It leads to more access by wider variety of devices other than PCs workstations,

PDAs, and cell phones.

 Web computing has increased the emphasis on networking.

 Devices that were not previously networked have been wired or wireless nowadays.

 The network connectivity is faster through improved network technology and

optimized network implementation code.

 Web based computing has given rise to a new category of devices called load

balancers which distribute network connections among a pool of similar servers.

1.13 Operating System Services
An OS provides an environment for the execution of the programs. The common services

provided by the OS are

1. User interface: Almost all operating systems have a user interface (UI).This

interface can take several forms.

a. Command-line interface(CLI): uses text commands and a specific

method for entering them.

b. Batch Interface: commands and directives to control are entered into files

and those files are executed.

c. Graphical User Interface (GUI): most common. Interface is a window

system with a pointing device directing the I/O, choose from menus, make

selections along with keyboard to enter text.

2. Program Execution: The OS must able to load the program into memory & run that

program. The program must be able to end its execution either normally or

abnormally.

3. I/O Operation: A running program may require I/O(file or an I/O device). Users

cannot control the I/O devices directly. So the OS must provide a means for

controlling I/O devices.

4. File System manipulation: Program needs to read and write files and directories.

They also need to create and delete files, search for a given file and list file

information. Some programs include permission management to deny access to files

or directories based on file ownership.

5. Communication: In certain situation one process may need to exchange information

with another process. This communication may takes place in two ways.

i. Between the processes executing on the same computer.

ii. Between the processes executing on different computer that are connected

by a network.

Communications can be implemented via shared memory or by message passing, in

which packets of information are moved between processes by the OS.

6. Error Detection: Errors may occur in CPU, I/O devices or in Memory Hardware.

The OS constantly needs to be aware of possible errors. For each type of errors the

OS should take appropriate actions to ensure correct & consistent computing.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 16

7. Resource Allocation: When multiple users logs onto the system or when multiple

jobs are running, resources must be allocated to each of them. The OS manages

different types of OS resources. Some resources may need some special allocation

codes & others may have some general request & release code.

8. Accounting: We need to keep track of which users use how many & what kind of

resources. This record keeping may be used for accounting. This accounting data may

be used for statistics or billing. It can also be used to improve system efficiency.

9. Protection and security: Protection ensures that all the access to the system are

controlled. Security starts with each user having authenticated to the system, usually

by means of a password. External I/O devices must also be protected from invalid

access. In multi process environment it is possible that one process may interface

with the other or with the OS, so protection is required.

1.14 User Operating-System Interface

There are two fundamental approaches for users to interface with OS,

1. Command Interpreter

2. Graphical User Interface

 Command Interpreter(CI)

 Some OS include CI in the kernel, and in others like windows-XP and UNIX, it is

treated as a special program that is running when a job is initiated or when a user

first logs on.

 On systems with multiple command interpreters to choose from, the interpreters

are known as shells. For ex:On UNIX and Linux systems, there are different

shells a user may choose from including Bourne shell, C shell and Korn shell etc

 The main function of the command interpreter is to get and execute the next user-

specified command.

 Commands are implemented in two ways:

1. In one approach, the command interpreter itself has the code to execute the

command. Ex. a command to delete a file.

2. This will result in the command interpreter to go to a section of its code that

sets up the parameters and makes the appropriate system call.In this method,

the size of the command interpreter depends on the number of commands that

can be given.

3. Alternative approach used by UNIX is most commands are implemented

through system programs. The command interpreter uses the command to

identify a file to be loaded into memory and executed. Ex. rmfile.txt would

make the command interpreter search for a file rm, load that file into memory

and execute it with parameter file.txt.

 Advantages of CIs are,

o Command interpreter program is small.

o Command interpreter does not have to be changed when new commands

are added.

o New commands can be easily added to the system.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 17

 Graphical User Interface

 GUI provides user-friendly desktop metaphor interface where the mouse is

moved to position where images or icons on the desktop that represent programs,

files directories and other system functions.

 Depending on mouse pointer’s location, clicking the mouse button can invoke the

corresponding program, select a file or directory known as folders or pull down a

menu that contains commands.

 First appeared in 1970s as a part of research at Xerox Parc research facility.

 It became widespread with the coming of Apple Macintosh in 1980s.

 Microsoft’s first version of Windows was based on GUI interface for MS-DOS.

The various windows systems that have been appeared and had enhancements in

the GUI.

 UNIX later implemented GUI in CDE (Common Desktop Environment) and X-

Windows Systems.Also seen in Solaris and IBM’s AIX system.

1.15 SYSTEM CALLS

 System provides interface to the services made available by an OS.

 These calls are generally available as routines written in C and C++, although certain

low-level tasks may need to be written using assembly language instruction.

 System call sequence to read the contents of one file and copy to another file is

illustrated in belowfigure

o The first input that the program will need is the names of two files which can

be specified in many ways. This sequence requires many I/O system calls.

o Next, the program must open the input file which requires another system call.

If opening of file fails, it should display error message on console (another

system call) and should terminate abnormally (another system call).

o Next, the program must create the output file (another system call), If fails, it

should display error message on console (another system call) and should also

abort (another system call).

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 18

o Next, we enter a loop that reads from input file (system call) and writes to the

output file (system call).Write/read operation may fail, which needs another

systemcall to continue.

o Finally, after the entire file is copied, the program may close both files

(system call), write message to console (system call)), and terminate normally

(system call).

 Application developers design programs according to an Application Program

Interface (API). API specifies the set of functions that are available to an application

programmerincluding the parameter that are passed to each function and returns

values the programmer can expect.

 Three most common APIs are Win32 API for Windows, POSIX API for POSIX-

based systems (UNIX, Linux, and Mac OS X), and Java API for the Java virtual

machine (JVM).

 The runtime support system(a set of functions built into libraries included with a

compiler) for most programming languages provides a system call interface that

serves as the link to system calls made available by the OS.

 The system call interface intercepts function call in the API and invokes the necessary

system call within the OS.

 Anumber is associated with each system call and the system-call interface

maintains a table indexed according to these numbers.

 The system call interface invokes intended system call in OS kernel and returns

status of the system call and any return values.

 The caller needs to know nothing about how the system call is implemented or what it

does during execution.

 Thefigure illustrates how the OS handles a user application which is invoking open()

system call.

Three general methods are used to pass the parameters to the OS.

1. The simplest approach is to pass the parameters in registers.

2. In some cases there can be more parameters than registers. In these cases the

parameters are stored in a block or table in memory and the address of the block

is passed as a parameter in register. It is shown in below figure. This approach is

used by Linux and Solaris.

3. Parameters can also be placed or pushed onto stack by the program &popped

off the stack by the OS.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 19

Some OS prefer the block or stack methods, because those approaches do not limit the

number or length of parameters being passed.

1.16 Types of System calls

System calls may be grouped roughly into 5 categories

1. Process control

 end, abort

 A running program needs to be able to halt its execution either normally or

abnormally. In an abnormal termination a dump of memory is taken and an error

message is generated.Dump is written to disk and examined by the debugger to

determine the cause of problem.

 In normal or abnormal situations the OS must transfer the control to the command

interpreter system, which then reads the next command given by the user.

 In batch system the command interpreter terminates the execution of job &

continues with the next job.Batch-systems uses control cards to indicate the

special recovery action to be taken in case of errors. It is a command to manage

the execution of a process.

 More severe errors can be indicated by a higher level error parameter. Normal &

abnormal termination can be combined by defining normal termination as an error

at level 0.The command interpreter uses this error level to determine next action

automatically.

 load, execute

 A process executing one program may want to load and execute another

program. This feature allows the command interpreter to execute programs as

directed by the user.

 The question of where to return the control when the loaded program terminates is

related to the problem of whether the existing program is lost, saved or allowed to

continue execution concurrently with the new program. There is a system call for

this purpose (create or submit process).

 create process, terminate process

 If we create a new job or process, itshould be able to control its execution.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 20

 This control requires the ability to determine and reset the attributes of a process,

including the process priority, its maximum allowable execution time, and so on

(get process attributes and set process attributes).

 We may also want to terminate a process that we created (terminate process)

 wait event, signal event

 When new jobs have been created, we may want to wait for certain amount of

time using wait time system call.

 When a job has to wait for a certain event to occur wait event system call is used.

 When the event has occurred the job should signal the occurrence through the

signal event system call.

 get process attributes, set process attributes

 wait for time

 allocate and free memory

o In MS-DOS

 MS-DOS is an example of single tasking system, which has command interpreter

system that is invoked when the computer is started as shown in figure a.

 To run a program MS-DOS uses simple method. It does not create a new process

when one process is running.

 It loads the program into memory and gives the program as much memory as

possible as shown in figure b.

o In FreeBSD
 Free BSD is an example of multitasking system.

 In free BSD the command interpreter may continue running while other program

is executed as shown in figure

 fork() is a system call used to create new process.

 Then, the selected program is loaded into memory via an exec() system call, and

then program is executed.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 21

2. File management

 create file, delete file

 System calls can be used to create & delete files.System calls may require the

name of the files and attributes for creating & deleting of files.

 open, close file

 Opens the file for usage and finally we need to close the file.

 read, write, reposition

 Other operation may involve the reading of the file, write & reposition the file

after it is opened.

 get and set file attributes

 For directories, some set of operation are to be performed. Sometimes it is

required to reset some of the attributes on files & directories. The system call get

file attribute&set file attribute are used for this type of operation.

3. Device management

 request device, release device

 read, write, reposition

 get device attributes, set device attributes

 logically attach or detach devices

 The system calls are also used for accessing devices.

 Many of the system calls used for files are also used for devices.

 A system with multiple users may require us to first request the device, to ensure

exclusive use of it.

 After using the device, it must be released using release system call. These

functions are similar to open & close system calls of files.

 Read, write & reposition system calls may be used with devices.

 MS-DOS & UNIX merge the I/O devices & the files to form file-device

structure.

4. Information maintenance

 get time or date, set time or date

 get system data, set system data

 get and set process, file, or device attributes

 Many system calls exist for the purpose of transferring information between the

user program and the operating system.

 For example, most systems have a system call to return the current time and date.

 Other system calls may return information about the system, such as the number

of current users, the version number of the operating system, the amount of free

memory or disk space, and so on.

 The operating system also keeps information about all its processes, and system

calls are used to access this information.

 System calls are also used to reset the process information (get process

attributes and set process attributes).

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 22

5. Communications

 create, delete communication connection

 send, receive messages

 transfer status information

 attach and detach remote devices

There are two models of inter-process communication:

 Message Passing model

 In message passing model, the communicating processes exchange messages with

one another to transfer information. Messages can be exchanged between the

processes either directly or indirectly through a common mailbox.

 Each computer in a network will have a host name. Similarly, each process has a

process name, and this name is translated into an identifier by which the

operating system can refer to the process. The get hostid and get processid

system calls do this translation.

 The identifiers are then passed to the general purpose open and close calls

provided by the file system or to specific open connection and close connection

system calls, depending on the system's model of communication.

 The recipient process must give itspermission for communication to take place

with an accept connection system call.

 The receiving daemons execute a wait forconnection call and are awakened

when a connection is made.

 The source of the communication, known as the client, and the receiving daemon,

known as a server, exchange messages by using read message and write

message system calls.

 The close connection call terminates the communication.

 Shared Memory model

 In shared memory model, processes use shared memory create and shared

memory attach system calls to create and gain access to regions of memory

owned by other processes.

 The OS tries to prevent one process from accessing another process’s memory, so

several processes have to agree to remove this restriction. Then they exchange

information by reading and writing in the shared areas.

 The processes are also responsible for ensuring that they are not writing to the

same location simultaneously.

1.17 System Programs

 System programs, also known as system utilities, provide a convenient environment

for program development and execution.Some of them are simply user interfaces to

system calls and others are considerably more complex. They can be divided into

these categories:

i. File management: These programs create, delete, copy, rename, print, dump,

list, and generally manipulate files and directories.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 23

ii. Status information: Some programs asks the system for the date, time,

amount of available memory or disk space, number of users, or similar status

iii. information. Others are more complex, providing detailed performance,

logging, and debugging information.

iv. File modification: Several text editors are available to create and modify the

content of files stored on disk or other storage devices. There may also be

special commands to search contents of files or perform transformations of the

text.

v. Programming language support: Compilers, assemblers, debuggers, and

interpreters for common programming languages (such as C, C++, Java,

Visual Basic, and PERL) are often provided to the user with the operating

system.

vi. Program loading and execution: Once a program is assembled or compiled,

it must be loaded into memory to be executed. The operating system may

provide absolute loaders, relocatable loaders, linkage editors, and overlay

loaders.

vii. Communications: These programs provide the mechanism for creating

virtual connections among processes, users, and computer systems. They

allow users to send messages to one another's screen, to browse web pages, to

send electronic-mail messages, to log in remotely, or to transfer files from one

machine to another.

In addition to system programs, most operating systems are supplied with application

programs that are useful in solving common problems or performing common

operations. Such application programs are word processors, text formatters, spreadsheets,

database systems, compilers, plotting and statistical-analysis packages and games.

1.18 OS Design & Implementation

 Design goals

 The first aspect in designing a system is defining goals and specifications. Next we

need to define the mechanisms and policies to be implemented. Finally the

implementation takes place.

 At the highest level, the system design will be affected by the choice of hardware and

type of system like timesharing, batch, distributed, real time, single user, multiuser

OS or general purpose etc.

 At the next level the requirements can be divided into two basic groups: user goals

and system goals.

 The user goals basically comprises of convenient to use, easy to learn and to use,

reliable, safe and fast etc.

 The system goals are from the designer’s perspective that the system must be easy to

design, create and maintain. It should also be flexible, reliable, error free and

efficient.

 The requirements vary from system to system. Different requirements result in

different solutions and hence different Operating Systems.

 Mechanisms and policies

 Mechanisms determine how to do something. Mechanisms that are insensitive to

changes in policy are more desirable.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 24

 Policy determines what will be done. Policies are likely to change across places and

over time.

 Change in policy may require redefinition of certain parameters of the system.

 Policy decisions are important for all resource allocation.

o Ex. timer construct is a mechanism to ensure CPU protection, whereas for how

long the timer is to be set for a particular user is a policy decision.

 Implementation

 Once an operating system is designed, it must be implemented.

 Traditionally, operating systems have been written in assembly language.

 MS-DOS was initially implemented in Intel 8088 and was available on Intel CPUs

only. Master Control Program (MCP) written in ALGOL, MULTICS in PL/I, and

Linux is with C and available on Intel 8086, Motorola 680, SPARC and MIPS

RX000.

 Now, they are most commonly written in higher-level languages such as C or C++.

 The advantages of using higher-level languages are, the code can be written faster, it

is more compact, and is easier to understand and debug.

 The improvements in compiler technology will improve the generated code for the

entire operating system by simple recompilation.

 Finally, an operating system is easier to port(tomove to some other hardware) if it is

written in a higher-level language.

 The only possible disadvantages of implementing an operating system in a higher-

level language are reduced speed and increased storage requirements.

1.19 Operating System Structures

 Modern OS is large & complex. It consists of different types of components.These

components are interconnected & melded into kernel.

 For designing the system, different types of structures are used. They are,

 Simple structures.

 Layered Approach.

 Micro kernels.

 Simple Structures

 Simple structure OS are small, simple & limited systems. The structure is not well

defined.

 MS-DOS is an example of simple structure OS. MS-DOS layer structure is shown in

below figure

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 25

 In MS-DOS, the interfaces and levels of functionality are not well separated.

 For instance, application programs are able to access the basic I/O routines to write

directly to the display and disk drives.

 UNIX is another example for simple structure. Initially it was limited by hardware

functions.

o It consists of two separable parts: the kernel and the system programs.

o The kernel is further separated into series of interfaces & device drivers.

o We can view the traditional UNIX operating system as being layered, as shown

in figure

 Everything below the system-call interface and above the physical hardware is the

kernel.

 Kernel provides the file system, CPU scheduling, memory management, and other

operating-system functions through system calls.

 This monolithic structure was difficult to implement and maintain.

 Layered Approach

 A system can be made modular in many ways. One method is the layered approach

in which the OS is divided into number of layers, where one layer is built on the top

of another layer.

 The bottom layer (layer 0) is hardware and higher layer (layer N) is the user

interface. This layering structure is depicted in below figure 2.8.

 An OS is an implementation of abstract object made up of data & operations that

manipulate these data.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 26

 A typical operating-system layer say layer M consists of data structures and a set of

routines that can be invoked by higher-level layers. Layer M, in turn can invoke

operations on lower level layers.

 The main advantage of layered approach is the simplicity i.e. each layer uses the

services & functions provided by the lower layer. This approach simplifies the

debugging & verification. Once first layer is debugged the correct functionality is

guaranteed while debugging the second layer. If an error is identified then it is a

problem in that layer because the layer below is already debugged.

 Each layer tries to hide some data structures, operations & hardware from the higher

level layers.

 A problem with layered implementation is that they are less efficient.

 Micro Kernels

 In the mid-1980s, researchers at Carnegie Mellon University developed an operating

system called Mach that modularized the kernel using the operating system by

removing all nonessential components from the kernel and implementing them as

system and user level programs. The result is a smaller kernel.

 The main function of the micro kernels is to provide communication facilities

between the client program and various services that are running in user space.

 This approach provided a high degree of flexibility and modularity.

 It includes the ease of extending OS. All the new services are added to the user space

& do not need the modification of kernel.

 This approach also provides more security&reliability.

 Most of the services will be running as user process rather than the kernel process.

 A micro kernel in Windows NT provides portability and modularity.

 Modules

 The best current methodology for operating-system design involves using object-

oriented programming techniques to create a modular kernel.

 Here, the kernel has a set of core components and links in additional services either

during boot time or during run time. Such a strategy uses dynamically loadable

modules and is common in modern implementations of UNIX, such as Solaris, Linux,

and Mac OS X.

 For example, the Solaris operating system structure, shown in the figure, is organized

around a core kernel with seven types of loadable kernel modules:

1.Scheduling classes

2.File systems

3.Loadable system calls

4.Executable formats

5.STREAMS modules

6.Miscellaneous

7.Device and bus drivers

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 27

 The Apple Macintosh Mac OS X operating system uses a hybrid structure. It is a

layered system in which one layer consists of the Mach microkernel. The structure of

Mac OS X appears as shown in figure

 The top layers include application environments and a set of services providing a

graphical interface to applications.

 Below these layers is the kernel environment, which consists primarily of the Mach

microkernel and the BSD kernel.

 Mach provides memory management, support for remote procedure calls (RPCs) and

interprocess communication facilities, including message passing and thread

scheduling.

 The BSD component provides a BSD command line interface, support for networking

and file systems, and an implementation of POSIX APIs, including Pthreads.

1.20Virtual Machines

 The fundamental idea behind a virtual machine is to abstract the hardware of a single

computer (the CPU, memory, disk drives, network interface cards, and so on) into

several different execution environments, thereby creating the illusion that each

separate execution environment is running its own private computer.

 By using CPU scheduling and virtual-memory techniques, an operating system can

create the illusion that a process has its own processor with its own (virtual) memory.

 Each process is provided with a (virtual) copy of the underlying computer as shown

in the below figure

 (a) Non virtual machine (b) virtual machine

 A major difficulty with the virtual machine approach involves disk systems. Suppose

that the physical machine had three disk drives but wanted to support seven virtual

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 28

machines. Clearly, it could not allocate a disk drive to each virtual machine, because

the virtual machine software itself will need substantial disk space to provide virtual

memory and spooling. The solution is to provide virtual disks-termed minidisksin

IBM's VM operating system which are identical in all respects except size.

 Implementation

 It is difficult to implement VM concept. Much work is required to provide an

exactduplicate of the underlying machine.

 The machine typically has two modes: user mode and kernel mode.

 The virtual-machine software can run in kernel mode, since it is the operating system.

The virtual machine itself can execute in only user mode.

 The major difference between virtual and non virtual m/c is time. The real I/O might

have taken 100 milliseconds, the virtual I/O might take less time (because it is

spooled) or more time (because it is interpreted). In addition, the CPU is being multi

programmed among many virtual machines, further slowing down the virtual

machines in unpredictable ways.

 Benefits

 The virtual-machine concept provides complete protection of system resources since

each virtual machine is isolated from all other virtual machines. This isolation permits

no direct sharing of resources.

 A virtual-machine system is a perfect vehicle for operating-systems research and

development.

 System programmers are given their own VM, and system development is done on

the virtual machine instead on a physical machine. Thus changing OS will not cause

any problem.

Examples

1. VMware

 The architecture is shown below figure.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 29

 It is a popular commercial application that abstracts Intel X86 and compatible

hardware into isolated virtual machines.

 It runs as an application on a host operating system such as Windows or Linux and

allows this host system to concurrently run several different guest operating systems

as independent virtual machines.

 Here, Linux is running as the host operating system and FreeBSD, Windows NT, and

Windows XPare running as guest operating systems.

 The virtualization layer is the heart of VMware, as it abstracts the physical hardware

into isolated virtual machines running as guest operating systems.

 Each virtual machine has its own virtual CPU, memory, disk drives, network

interfaces, and so on.

VMware architecture

2. Java virtual machine

 Java is a popular object-oriented programming language introduced by Sun

Microsystems in 1995.

 In addition to a language specification and a large API library, Java also provides a

specification for a Java virtual machine-or JVM.

 Java objects are specified with the class construct. A Java program consists of one or

more classes. For each Java class, the compiler produces an architecture-neutral

bytecode output(.class) file that will run on any implementation of the JVM.

 The JVM is a specification for an abstract computer. It consists of a class loader and a

Java interpreter that executes the architecture-neutral byte codes, as given in figure

 The class loader loads the compiled .class files from both the Java program and the

Java API for execution by the Java interpreter.

 After a class is loaded, the verifier checks that the .class file is valid Java bytecode

and does not overflow or underflow the stack. It also ensures that the bytecode does

not perform pointer arithmetic, which could provide illegal memory access.

 If the class passes verification, it is run by the Java interpreter.

 The JVM also automatically manages memory by performing garbage collection -

the practice of reclaiming memory from objects no longer in use and returning it to

the system.

 The JVM may be implemented in software on top of a host operating system, such as

Windows, Linux, or Mac OS X, or as part of a Web browser.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 30

1.21 System Boot

 The procedure of starting a computer by loading the kernel is known as booting the

system.
 Bootstrap program or Bootstrap loader locates the kernel, loads it into main memory

and start its execution.
 Bootstrap program is in the form of read only memory (ROM) because the RAM is in

unknown state at a system startup. All forms of ROM are knows as firmware.
 For large OS like Windows, Mac OS, the Bootstrap loaders is stored in firmware and the

OS is on disk.
 Bootstrap has a bit code to read a single block at a fixed location from disk into the

memory and execute the code from that boot block.
 A disk that has a boot partition is called a boot disk or system disk.

1.22 PROCESS CONCEPTS: Process Concepts

 Process is an active entity. A process is a sequence of instruction execution. Process

exists in a limited span of time. Two or more process may execute the same program

by using its own data & resources.

 A program is a passive entity which is made up of program statement. Program

contains instructions.

 The Process

 A process is more than the program code which is also called text section.

 It contains program counter which represents the current activity and also the

contents of the processor's registers.

 A process also consists of a process stack section which contains temporary data

&data section which contains global variables.

 A process may also include a heap, which is memory that is dynamically

allocated during process run time.

 The structure of a process in memory is shown in below figure

 Process State

 As process executes it changes its state and each process may be in one of the

following states:

o New: The process is being created

o Running: Instructions are being executed

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 31

o Waiting: The process is waiting for some event to occur

o Ready: The process is waiting to be assigned to a process

o Terminated: The process has finished execution

 Only one process can be running on any processor at any instant. Many processes

may be ready and waiting.

 The state diagram corresponding to these states is shown below figure

 Process Control Block

 A process in an operating system is represented by a data structure known as a

Process Control Block (PCB) and it is also called as task control block. The

following figure shows the process control block.

 The PCB contains important information about the specific process including,

o Process state: The current state of the process i.e., whether it is ready, running,

waiting, halted and so on.

o Program counter: Indicates the address of the next instruction to be executed

for a process.

o CPU registers: The registers vary in number and type. Along with program

counter this state information should be saved to allow process to be continued

correctly after an interrupt occurs.

o CPU scheduling information: This information includes a process priority,

pointers to scheduling queues, and any other scheduling parameters.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 32

o Memory-management information: This information may include the value

of base and limit registers, the page tables, or the segment tables, depending

on the memory system used by the OS.

o Accounting information: This information includes the amount of CPU and

real time used, time limits, account numbers, job or process numbers, and so

on.

o I/O status information: This information includes the list of I/O devices

allocated to the process, a list of open files, and so on.

CPU switch from process to process

 Threads

 A process is a program that performs a single thread of execution. For example,

when a process is running a word-processor program, a single thread of

instruction is being executed. This single thread of control allows the process to

perform only one task at one time. The user cannot simultaneously type in

characters and run the spell checker within the same process.

 Many modern operating systems have extended the process concept to allow a

process to have multiple threads of execution and thus to perform more than one

task at a time. On a system that supports threads, the PCB is expanded to include

information for each thread. Eg: Windows OS and UNIX

1.23 Process Scheduling

 The process scheduler selects an available process for execution on the CPU.

 Scheduling queues

 The following are the different types of process scheduling queues.

o Job queue: set of all processes in the system.

o Ready queue:The processes that are placed in main memory and are ready

and waiting to execute are placed in a list called the ready queue. This is in the

form of linked list, the header contains pointer to the first and final PCB in the

list. Each PCB contains a pointer field that points to next PCB in ready queue.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 33

o Device queue:The list of processes waiting for a particular I/O device is called

device queue. When the CPU is allocated to a process it may execute for some

time and may quit or interrupted or wait for the occurrence of a particular event

like completion of an I/O request, but the I/O may be busy with some other

processes. In this case the process must wait for I/O and it will be placed in

device queue. Each device will have its own queue.

 The below figure shows Ready queue and various I/O Device queues

 The process scheduling is represented using a queuing diagram as shown in

below figure 3.5. Queues are represented by the rectangular box and resources

they need are represented by circles, and the arrows indicate the flow of

processes in the system.

 A new process is initially put in the ready queue and it waits there until it is

selected for execution or dispatched. Once the process is assigned CPU and is

executing, the following events can occur,

o It can execute an I/O request and is placed in I/O queue.

o The process can create a sub process & wait for its termination.

o The process may be removed from the CPU as a result of interrupt and can

be put back into ready queue.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 34

 Schedulers

 The following are the different types of schedulers,

o Long-term scheduler (or job scheduler): selects which processes should

be brought into the ready queue. Long-term scheduler is invoked very

infrequently (in terms of seconds or minutes). The long-term scheduler

controls the degree of multiprogramming (number of processes in main

memory).

o Short-term scheduler (or CPU scheduler): selects which process should

be executed next and allocates CPU. Short-term scheduler is invoked very

frequently.

o Medium-term schedulers: Some OS introduces intermediate level of

scheduling called Medium-term schedulers as shown in figure. It can be

advantageous to remove processes from memory and thus reduce the degree

of multiprogramming. The process can be later reintroduced into memory,

and its execution can be continued where it left off. The process is swapped

out, and is later swapped in, by the medium-term scheduler.

 Processes can be described as either:

o I/O-bound process: processes spend more time doing I/O than

computations.

o CPU-bound process: processes spend more time doing computations; and

generates I/O request less frequently.

 Context Switch

 When an interrupt occurs, the system needs to save the currentcontext of the

process running on the CPU. The context is represented in the PCB of the

process.

 When CPU switches to another process, the system must save the state of the old

process and load the saved state for the new process. A state save of the current

state of the CPU, and then state restore to resume operations is performed.

 Context-switch time is overhead and the system does no useful work while

switching. Context-switch times are highly dependent on hardware support.

Context-switch speed varies from machine to machine, depending on the memory

speed, the number of registers that must be copied, and the existence of special

instructions.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 35

1.24 Process Operations

 The processes in most systems can execute concurrently, and they may be created and

deleted dynamically. Thus, these systems must provide a mechanism for process creation and

termination.

 Process Creation

 A process may create several new processes by some create-process system

call,during the course of execution.

 The creating process is called parent process and the created one is called the

child process. Each of the new process may in turn create other processes,

forming a tree of processes. Processes are identified by unique process identifier

(orpid).

 Figure3.7 shows the process tree for the solaris OS. The process at the top of the

tree is sched process, with pid of 0,and this creates several children processes.

The sched process creates several children processes including pageout and

fsflush. These processes are responsible for managing memory and file systems.

The sched process also creates the init process, which serves as the root parent

process for all user processes. These processes are responsible for managing

memory and file systems.

 inetd and dtlogin are two children of init where inetd is responsible for

networking services such as telnet and ftp; dtlogin is the process representing a

user login screen.

 When a user logs in, dtlogin creates an X-windows session (Xsession), which in

turns creates the sdt_shel process. Below sdt_shel, a user's command-line shell,

the C-shell or csh is created. In this command line interface, the user can then

invoke various child processes, such as the ls and cat commands.

 There is also csh process with pid of 7778 representing a user who has logged

onto the system using telnet. This user has started the Netscape browser (pid of

7785) and the emacs editor (pid of 8105).

 A process needs certain resources to accomplish its task. Along with the various

logical and physical resources that a process obtains when it is created,

initialization data may be passed along by the parent process to the child

process.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 36

 When a process creates a new process, two possibilities exist in terms of

execution.

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of the children have terminated.

 There are also two possibilities in terms of the address space of the new process.

1. The child process is a duplicate of the parent process.

2. The child process has a new program loaded into it.

 In UNIX OS,fork() system call creates new process. In windows CreateProcess()

does the job.

 Exec() system call is called after a fork() to replace the process memory space

with a new program.

 The C program shown below illustrates these system calls.

int main()

{

Pid_tpid;

 pid = fork();/* fork another process */

 if (pid< 0)/* error occurred */

 {

 fprintf(stderr, "Fork Failed");

 exit(-1);

 }

 else if (pid == 0) /* child process */

 {

 execlp("/bin/ls", "ls", NULL);

 }

 else /* parent process */

 {

 wait (NULL);/* parent will wait for the child to complete */

 printf ("Child Complete");

 exit(0);

 }

 }

 If there are two different processes running a copy of the same program, the pid

for child is zero and for the parent it is greater than zero. The parent process

waits for the child process to complete with the wait() system call.

 When the child process completes, the parent process resumes from the call to

wait(), where it completes using exit() system call. This is shown in belowfigure

 Process Termination

 A process terminates when it finishes executing its last statement and asks the

operating system to delete it by using exit() system call.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 37

 Process resources are deal located by the operating system. A process can

terminate another process via Terminate Process() system call. A Parent may

terminate execution of children processes (abort) for the following reasons.

o Child has exceeded usage of allocated resources.

o Task assigned to child is no longer required.

o If parent is exiting some operating system do not allow child to continue if

its parent terminates.

 Some systems does not allow child to exist if its parent has terminated. If process

terminates then all its children must also be terminated, this phenomenon is

referred as cascading termination.

1.25 Interprocess Communication (IPC)

 Processes executing concurrently in the operating system may be either independent

processes or cooperating processes.

 A process is independent if it cannot affect or be affected by the other processes

executing in the system. Any process that does not share data with any other process

is independent.

 A process is cooperating if it can affect or be affected by the other processes

executing in the system. Any process that shares data with other processes is a

cooperating process.

 Advantages of process cooperation are,

o Information sharing: several users may be interested in same piece of

information, so an environmentmust be provided to allow concurrent access to

such information.

o Computation speed-up: If we want particular task to run faster,it can be

broken into subtasks,each of which will be executing in parallel with each

other.

o Modularity: If the system is to be constructed in modular fashion, then

system functions can be divided into separate processes or threads.

o Convenience: An individual user may work on many tasks at the same time.

 Cooperating processes require an Interprocess Communication (IPC) mechanism

that will allow them to exchange data and information. There are two fundamental

models of IPC as shown in below figure.

1. Shared memory: A region of memory that is shared by cooperating processes

is established. Processes then exchange information by reading and writing

data to the shared region.

2. Message passing: Communication takes place by means of message exchange

between the cooperating processes.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 38

 The differences between these two models are,

Message passing Shared memory

a. Useful for exchangingsmall

amount of data.
a. large data

b. easy to implement b. complex

c. slower c. faster

d. implemented using system calls
d.system calls are required only

toestablish Shared memory region

 Shared Memory System

 A region of memory that is shared by cooperating processes is

established. Processes then exchange information by reading and writing data to

the shared region.

 To illustrate cooperating processes, consider producer-consumer problem.

 Producer process produces information that is consumed by a consumer process.

 One solution to producer-consumer problem uses shared memory. To allow

producer and consumer processes to run concurrently, there must be a buffer of

items that can be filled by a producer and emptied by consumer.The buffer will

reside in a shared memory region.

 The producer can produce one item while the consumer is consuming another

item.The producer and consumer must be synchronized, so that the consumer

does not try to consume an item that has not yet been produced by the producer.

 Two types of buffers can be used.

o unbounded-buffer:places no practical limit on the size of the buffer. The

consumer may have to wait for new items, but the producer can always

produce new items.

o bounded-buffer: assumes that there is a fixed buffer size, sothe consumer

must wait if the buffer is empty, and the producer must wait if the buffer is

full.

 The following variables reside in a region of memory shared by the producer and

consumer processes

#define BUFFER_SIZE 10

typedefstruct {

……..

……..

}item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 The shared buffer is implemented as a circular array with two logical pointers in

and out. The variable in points to the next free position in the buffer; out points

to the first full position in the buffer. The buffer is empty when in= =out, the

buffer is full when ((in+ 1)% BUFFER_SIZE) = = out.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 39

 The code for the producer process is shown below.

 itemnextProduced;

 while (true)

 {

 /* produce an item in nextProduced*/

while (((in + 1) % BUFFER_SIZE) = = out); //do nothing

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

 }

 The code for the consumer process is shown below.

 itemnextConsumed;

while (true)

{

while (in = = out); //do nothing

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

 /* consume the item in nextConsumed*/

 }

 Message Passing System

 Communication takes place by means of message exchange between the

cooperating processes.

 Message passing facility provides two operations.

o Send(message)

o Receive(message)
 Message size can be fixed or variable.

 If P and Q wish to communicate, they need to establish a communicationlink

between them and communication link can be,

o physical (eg: shared memory, hardware bus)

o logical (eg: logical properties)

 Several methods for logically implementing a link are,

o Direct or Indirect communication

o Synchronous or asynchronous communication

o Automatic or explicit buffering

 Naming

 Processes that want to communicate must have a way to refer to each other.

They can use either direct or indirect communication.

 Under Direct Communication processes must name each other explicitly

 The send() and receive() primitives are defined as,

o Send(P, message) – send a message to process P.

o Receive(Q, message) – receive a message from process Q.

 Properties of communication link in this scheme are,

o Links are established automatically between every pair of processes

that want to communicate.

o A link is associated with exactly two communicating processes.

o Between each pair there exists exactly one link.

 This scheme exhibits two types of addressing,

o Symmetry: Both sender and receiver must name the other to

communicate.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No1. Introduction to OS M1- 40

o Asymmetry: Only the sender names the recipient, the recipient is not

required to name the sender.The send() and receive() primitives are

defined as,

Send (P, message) – send a message to process P

Receive(id, message) – receive a message from any process; the

variable id is set to the name of the process with which

communication has taken place.

 In Indirect Communication messages are sent and received from mailboxes

(also referred to as ports)

 A mailbox can be viewed abstractly as an object into which messages can be

placed by processes and from which messages can be removed.

 Each mailbox has a unique id and processes can communicate only if they

share a mailbox.

 The send() and receive() primitives are defined as,

o Send(A, message) – send a message to mailbox A

o Receive(A, message) – receive a message from mailbox A

 Properties of communication link are,

o Links are established only if processes share a common mailbox.

o A link may be associated with many processes.

o Each pair of processes may share several communication links.

 OS allows the process to do the following operations

o createa new mailbox

o send and receive messages through mailbox

o destroy a mailbox

 Synchronization

 Message passing may be either blocking or non-blocking. Blocking is

considered synchronous. Non-blocking is considered asynchronous.

o Blocking send: The sending process is blocked until the message

isreceived by the receiving process or by the mailbox.

o Non-blocking send: The sending process sends the message and

resumesoperation.

o Blocking receive: The receiver blocks until a message is available.

o Non-blocking receive: The receiver retrieves either a valid message

or a null.

 Buffering

 Messages exchanged by communicating processes reside in a temporary

queue, and such queues can be implemented in one of three ways,

1. Zero capacity – Maximum length is zero and sender must wait for

the receiver.

2. Bounded capacity – finite length ofn messages, sender must wait

if link is full.

3. Unbounded capacity – infinite length and sender never waits.

---0o0---

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 1

MODULE-2

MULTITHREADED PROGRAMMING

2.1 Overview

Threads
 A thread is a basic unit of CPU utilization.

 It comprises a thread ID, a program counter, a register set, and a stack. It shares

its code section, data section, and other operating-system resources, such as open

files and signals with other threads belonging to the same process.

 A traditional (or heavyweight) process has a single thread of control. If a process

has multiple threads of control, it can perform more than one task at a time.

 The below figure 4.1 illustrates the difference between a traditional single threaded

process and a multithreaded process.

 Motivation

 Many software packages that run on modern desktop PCs are multithreaded.

 An application is implemented as a separate process with several threads of

control. Eg: A Web browser might have one thread to display images ortext while

another thread retrieves data from the network.

 Process creation takes more time than threadcreation.It is more efficient to use

process that contains multiple threads, so that the amount of time that a client

have to wait for its request to be serviced from the web server will be less.

 Threads also play an important role in remote procedure call.

 Benefits

 The benefits of multithreaded programming

1. Responsiveness: Multithreading allows program to continue running even if

part of it is blocked or is performing a lengthy operation, thereby increasing

responsiveness to the user.

2. Resource Sharing: Threads share the memory and resources of the process to

which they belong. The benefit of sharing code and data is that it allows an

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 2

application to have several different threads of activity within the same

address space.

3. Economy: Because of resource sharing context switching and thread creation

are fast when working with threads.

4. Utilization of multiprocessor architectures: Threads can run in parallel on

different processors. Multithreading on multi-CPU machine increases

concurrency.

2.2 Multithreading Models

 Support for threads may be provided either at user level for user threads or by the

kernel for kernel threads.
 There must be a relationship between user threadsand kernel threads. Three

common ways of establishing this relationship are,

 Many-to-One

 Many user-level threads are mapped to single kernel thread as shown in below

figure below.

 This model is efficient as the thread management is done by the thread library in

user space, but the entire process will block if a thread makes a blocking system

call.

 As only one thread can access the kernel thread at a time, multiple threads are

unable to run in parallel on multiprocessors.

 Examples:Solaris Green Threads, GNU Portable Threads

 One-to-One

 Each user-level thread maps to kernel thread as shown in figure 4.3

 It provides more concurrency than Many-to-One model by allowing thread to run

when a thread makes a blocking system call.

 It allows multiple threads to run in parallel on multiprocessors.

 The only drawback is, creating a user thread requires creating the corresponding

kernel thread and it burdens performance of an application.

 Examples: Windows NT/XP/2000, Linux

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 3

 Many-to-Many Model

 One-to-One model restricts creating more user threads and Many-to-One model

allows creating more user threads but kernel can schedule only one thread at a

time. These drawbacks can be overcome by Many-to-Many model as shown in

below figure.(Left side)

 Many-to-Many model allows many user level threads to be mapped to many

kernel threads.

 It allows the operating system to create a sufficient number of kernel threads.

 When thread performs a blocking system call, the kernel can schedule another

thread for execution.

 It allows user-level thread to be bound to a kernel thread and this is referred as

two- level modelas shown in below figure.(Right side)

 Examples: IRIX, HP-UX, Solaris OS.

2.3 Thread Libraries

 A thread library provides the programmer an API for creating and managing threads.
 There are two primary ways of implementing a thread library.

o The first approach is to provide a library entirely in user space with no kernel

support. All code and data structures for the library exist in user space.

o The second approach is to implement a kernel-level library supported directly

by the operating system.

 Three primary thread libraries are

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 4

o POSIX Pthreads: extension of posix standard, they may be provided as either

a user bor kernel library.

o Win32 threads: is a kernel level library available on windows systems.

o Java threads: API allows creation and management directly in Java programs.

However, on windows java threads are implemented using win32 and on

UNIX and Linux using Pthreads

 Pthreads

 Pthreads, the threads extension of the POSIX standard, may be provided as either a

user or kernel-level library.

 Pthreads refers to the POSIX standard (IEEE 1003.1c) defining an API for thread

creation and synchronization.

 This is a specification for thread behavior, not an implementation.

 Operating system designers may implement the specification in any way they wish.

Numerous systems implement the Pthreads specification, including Solaris, Linux,

Mac OS X, and Tru64 UNIX.

 Shareware implementations are available in the public domain for the various

Windows operating systems as well.

 Ex: Multithreaded C program using the Pthreads API

#include <pthread.h>

#include <stdio.h>

int sum; /* this data is shared by the thread(s) */

void *runner(void *param); /* the thread */

int main(intargc, char *argv[])

{

pthread_ttid; /* the thread identifier */

pthread_attr_tattr; /* set of thread attributes */

if (argc != 2)

{

fprintf(stderr,"usage: a.out<integer value>\n");

return -1;

}

if (atoi(argv[1]) < 0)

{

fprintf(stderr,"%d must be>= 0\n",atoi(argv[1]));

return -1;

}

pthread_attr_init(&attr);/* get the default attributes */

pthread_create(&tid,&attr,runner,argv[1]);/* create the thread */

pthread_join(tid,NULL);/*wait for the thread to exit */

printf("sum = %d\n",sum);

}

void *runner(void *param)/* The thread will begin control in this function */

{

int i, upper= atoi(param);

sum = 0;

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 5

for (i = 1; i <= upper; i++)

sum += i;

pthread_exit(0) ;

}

 Win32 Threads

 The Win32 thread library is a kernel-level library available on Windows systems.

 The technique for creating threads using the Win32 thread library is similar to the

Pthreads technique in several ways. We must include the windows.h header file when

using the Win32 API.

 Threads are created in the Win32 API using the CreateThread() function and a set of

attributes for the thread is passed to this function.

 These attributes include security information, the size of the stack, and a flag that can

be set to indicate if the thread is to start in a suspended state.

 The parent thread waits for the child thread using the WaitForSingleObject()

function, which causes the creating thread to block until the summation thread has

exited.

 Ex: Multithreaded C program using the Win32 API
#include <Windows.h>

#include <stdio.h>

DWORD Sum; /* data is shared by the thread(s) */

/* the thread runs in this separate function */

DWORD WINAPI Summation(LPVOID Param)

{

DWORD Upper = *(DWORD*)Param;

for (DWORD i = 0; i <= Upper; i++)

Sum += i;

return 0;

}

int main(intargc, char *argv[])

{

DWORD ThreadId;

HANDLE ThreadHandle;

intParam;

if (argc != 2)/* perform some basic error checking */

{

fprintf(stderr,"An integer parameter is required\n");

return -1;

}

Param = atoi(argv[1]);

if (Param< 0)

{

fprintf(stderr,"An integer>= 0 is required\n");

return -1;

}

 /*create the thread*/

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 6

ThreadHandle = CreateThread(NULL, 0,Summation,&Param,0,&ThreadId);

 // NULL:default security attributes

 // 0: default stack size

 // Summation: thread function

 // &Param: parameter to thread

function

 // 0: default creation flags

 //ThreadId: returns the

thread identifier

if (ThreadHandle != NULL)

 {

WaitForSingleObject(ThreadHandle,INFINITE);// now wait for the thread to

finish

CloseHandle(ThreadHandle);// close the thread handle

printf("surn = %d\n" ,Sum);

}

}

 Java Threads

 The Java thread API allows thread creation and management directly in Java

programs.

 Threads are the fundamental model of program execution in a Java program, and the

Java language and its API provide a rich set of features for the creation and

management of threads.

 All Java programs comprise at least a single thread of control and even a simple Java

program consisting of only a main() method runs as a single thread in the JVM.

 There are two techniques for creating threads in a Java program. One approach is to

create a new class that is derived from the Thread class and to override its run()

method. An alternative and more commonly used technique is to define a class that

implements the Runnable interface. The Runnable interface is defined as follows:

public interface Runnable

{

public abstract void run () ;

}

 When a class implements Runnable, it must define a run() method. The code

implementing the run() method runs as a separate thread.

 Creating a Thread object does not specifically create the new thread but it is the

start() method that actually creates the new thread. Calling the start() method for the

new object does two things:

o It allocates memory and initializes a new thread in the JVM.

o It calls the run() method, making the thread eligible to be run by the JVM.

 As Java is a pure object-oriented language, it has no notion of global data. If two

or more threads have to share data means then the sharing occurs by passing

reference to the shared object to the appropriate threads.

 This shared object is referenced through the appropriate getSum() and setSum()

methods.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 7

 As the Integer class is immutable, that is, once its value is set it cannot change, a

new sum class is designed.

 The parent threads in Java uses join() method to wait for the child threads to finish

before proceeding.

Ex: Java program for the summation of a non-negative integer.

class Sum

{

privateint sum;

publicintgetSum()

{

return sum;

}

public void setSum(int sum)

{

this.sum= sum;

}

}

class Summation implements Runnable

{

privateint upper;

private Sum sumValue;

public Summation(int upper, Sum sumValue)

{

this.upper = upper;

this.sumValue = sumValue;

}

public void run()

{

int sum = 0;

for (int i = 0; i <= upper; i++)

sum += i;

sumValue.setSum(sum);

 }

}

public class Driver

{

public static void main(String[]args)

{

if (args.length> 0)

{

if (Integer.parseint(args[O]) < 0)

System.err.println(args[O] + "must be>= 0.");

else

{

 Sum sumObject = new Sum(); //create the object to be shared

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 8

int upper= Integer.parseint(args[O]);

Thread thrd =new Thread(new Summation(upper, sumObject));

thrd.start();

try

{

 thrd. join () ;

System.out.println("The sum of "+upper+" is "+sumObject.getSum());

}

catch (InterruptedExceptionie) { }

}

 }

else

System.err.println("Usage: Summation <integer value>");

 }

2.4 Threading Issues

 The fork() and exec() System Calls

 The semantics of the fork() and exec() system calls change in a multithreaded

program. Some UNIX systems have chosen to have two versions of

fork(),one that duplicates all threads and another that duplicates only the

thread that invoked the fork() system call.

 If a thread invokes the exec() system call, the program specified in the

parameter to exec()will replace the entire process including all threads.

 Which of the two versions of fork() to use depends on the application. If

exec() is called immediately after forking, then duplicating all threads is

unnecessary, as the program specified in the parameters to exec() will replace

the process. In this instance, duplicating only the calling thread is appropriate.

 Thread Cancellation

 Thread cancellation is the task of terminating a thread before it has completed.

For example, if multiple threads are concurrently searching through a database

and one thread returns the result, the remaining threads might be cancelled.

 A thread that is to be cancelled is often referred to as the target thread.

Cancellation of a target thread may occur in two different scenarios:

o Asynchronous cancellation: One thread immediately terminates the target

thread.

o Deferred cancellation:The target thread periodically checks whether it

should terminate, allowing it an opportunity to terminate itself in an orderly

fashion.

 The difficulty with asynchronous cancellation occurs in situations where

resources have been allocated to a cancelled thread or where a thread is cancelled

while in the midst of updating data it is sharing with other threads. This becomes

especially troublesome with asynchronous cancellation. Often, the operating

system will reclaim system resources from a cancelled thread but will not reclaim

all resources. Therefore, cancelling a thread asynchronously may not free a

necessary system-wide resource.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 9

 With deferred cancellation, one thread indicates that a target thread is to be

cancelled, but cancellation occurs only after the target thread has checked a flag

to determine if it should be cancelled or not. This allows a thread to check

whether it should be cancelled at a point when it can be cancelled safely. Pthreads

refers to such points as cancellation points.

 Signal Handling

 A signal is used in UNIX systems to notify a process that a particular event has

occurred.

 A signal may be received either synchronously or asynchronously, depending on

the source of and the reason for the event being signaled.

 All signals, whether synchronous or asynchronous, follow the same pattern:

o A signal is generated by the occurrence of a particular event.

o A generated signal is delivered to a process.

o Once delivered, the signal must be handled.

 Examples of synchronous signals include illegal memory access and division by

0. If a running program performs either of these actions, a signal is generated.

Synchronous signals are delivered to the same process that performed the

operation that caused the signal.

 When a signal is generated by an event external to a running process, that process

receives the signal asynchronously.Examples of such signals include terminating

a process with specific keystrokes (such as <control><C>) and having a timer

expires. An asynchronous signal is sent to another process.

 Every signal may be handled by one of two possible handlers,

o A default signal handler

o A user-defined signal handler

 Every signal has a default signal handler that is run by the kernel when handling

that signal.

 This default action can be overridden by a user-defined signal handler that is

called to handle the signal.

 Signals may be handled in different ways. Some signals (such as changing the

size of a window) may simply be ignored; others (such as an illegal memory

access) may be handled by terminating the program.

 Delivering signals is more complicated in multithreaded programs. The following

options existto delivera signal:

o Deliver the signal to the thread to which the signal applies.

o Deliver the signal to every thread in the process.

o Deliver the signal to certain threads in the process.

o Assign a specific thread to receive all signals for the process.

 Thread Pools

 The idea behind a thread pool is to create a number of threads at process startup

and place them into a pool, where they sit and wait for work.

 When a server receives a request, it awakens a thread from this pool and passes the

request to it to service.

 Once the thread completes its service, it returns to the pool and waits for more work.

 If the pool contains no available thread, the server waits until one becomes free.

 The benefitsof Thread pools are,

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 10

o Servicing a request with an existing thread is usually faster than waiting to

create a thread.

o A thread pool limits the number of threads that exist at any one point. This

is particularly important on systems that cannot support a large number of

concurrent threads.

 The number of threads in the pool can be set based on factors such as the number of

CPUs in the system, the amount of physical memory, and the expected number of

concurrent client requests.

 Thread-Specific Data

 Threads belonging to a process share the data of the process. This sharing of data

provides one of the benefits of multithreaded programming. But, in some

circumstances, each thread might need its own copy of certain data. Such data is

called as thread-specific data. For example, in a transaction-processing system, we

might service each transaction in a separate thread. Furthermore, each transaction

may be assigned a unique identifier.

 Most thread libraries including Win32 and Pthreads provide support for thread-

specific data.

 Scheduler Activations

 Many systems implementing either the many-to-many or two-level model place an

intermediate data structure between the user and kernel threads. This data structure is

known as a lightweight process, or LWP as shown in the following figure

 An application may require any number of LWPs to run efficiently.

 In a CPU-bound application running on a single processor only one thread can run at

once, so one LWP is sufficient. An application that is I/O- intensive may require

multiple LWPs to execute.

 One scheme for communication between the user-thread library and the kernel is

known as scheduler activation. It works as follows: The kernel provides an

application with a set of virtual processors (LWPs), and the application can

schedule user threads onto an available virtual processor. The kernel must inform an

application about certain events. This procedure is known as an upcall.

 Upcalls are handled by the thread library with an upcall handler, and upcall handlers

must run on a virtual processor.

 One event that triggers an upcall occurs when an application thread is about to block.

In this situation, the kernel makes an upcall to the application informing it that a

thread is about to block and identifying the specific thread. The kernel then allocates

a new virtual processor to the application.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 11

 The application runs an upcall handler on this new virtual processor, which saves the

state of the blocking thread and gives up the virtual processor on which the blocking

thread is running. The upcall handler then schedules another thread that is eligible to

run on the new virtual processor.

 When the event that the blocking thread was waiting for occurs, the kernel makes

another upcall to the thread library informing it that the previously blocked thread is

now eligible to run.

 The upcall handler for this event also requires a virtual processor, and the kernel may

allocate a new virtual processor or preempt one of the user threads and run the upcall

handler on its virtual processor.

 After marking the unblocked thread as eligible to run, the application schedules an

eligible thread to run on an available virtual processor.

 Differences

 The differences between process and thread are,

 Process Thread

1. It is called heavyweightprocess. It is called lightweight process.

2.
Process switching needs interface with

OS.

Thread switching does not need interface

with OS.

3.
Multiple processes use more resources

than multiple threads.

Multiple threaded processes use fewer

resources than multiple processes.

4.

In multiple process implementations

each process executes same code but

has its own memory and file

resources.

All threads can share same set of open

files.

5.

If one server process is blocked no

other server process can execute until

the first process unblocked.

While one server thread is blocked and

waiting, second thread in the same task

could run.

6.
In multiple processes each process

operates independently of others.

One thread can read, write or even

completely wipeout another threads

stack.

 PROCESS SHEDULING

2.5 Basic Concepts

 In a single-processor system, only one process can run at a time and others must wait

until the CPU is free and can be rescheduled.

 The objective of multiprogramming is to have some process running at all times, to

maximize CPU utilization.

 With multiprogramming, several processes are kept in memory at one time. When

one process has to wait, the operating system takes the CPU away from that process

and gives the CPU to another process.

 The CPU is one of the primary computer resources. Thus, its scheduling is central to

 operating-system design.

 CPU–I/O Burst Cycle

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 12

 Process execution consists of a cycle of CPU execution and I/O wait

 Process execution starts with CPU burst and this is followed by I/O burst as

shown in below figure.

 The final CPU burst ends with a system request to terminate execution.

 The duration of CPU bursts vary from process to process and from computer to

computer.

 The frequency curve is as shown belowfigure.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 13

 CPU Scheduler

 Whenever the CPU becomes idle, the operating system must select one of the

processes in the ready queue to be executed. This selection is carried out by the

short-term scheduler (or CPU scheduler).

 The scheduler selects a process from the processes in memory that are ready to

execute and allocates the CPU to that process.

 A ready queue can be implemented as a FIFO queue, a priority queue, a tree, or

simply an unordered linked list. But all the processes in the ready queue are lined

up waiting for a chance to run on the CPU. The records in the queues are Process

Control Blocks (PCBs) of the processes.

 Preemptive scheduling

 CPU-scheduling decisions may take place under the following four

circumstances.

1. When a process switches from the running state to the waiting state (for

example, as the result of an I/O request or an invocation of wait for the

termination of one of the child processes)

2. When a process switches from the running state to the ready state (for

example, when an interrupt occurs)

3. When a process switches from the waiting state to the ready state (for

example, at completion of I/O)

4. When a process terminates

 When scheduling takes place only under circumstances 1 and 4, we say that the

scheduling scheme is nonpreemptive or cooperative; otherwise, it is

preemptive.

 Under nonpreemptive scheduling, once the CPU has been allocated to a process,

the process keeps the CPU until it releases the CPU either by terminating or by

switching to the waiting state. A scheduling algorithm is preemptive if, once a

process has been given the CPU and it can be taken away.

 Dispatcher

 Another component involved in the CPU-scheduling function is the dispatcher.

 The dispatcher is the module that gives control of the CPU to the process selected

by the short-term scheduler.

 This function involves the following:

o Switching context

o Switching to user mode

o Jumping to the proper location in the user program to restart that program

 The dispatcher should be as fast as possible, since it is invoked during every

process switch.

 The time it takes for the dispatcher to stop one process and start another running

is known as the dispatch latency.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 14

2.6 Scheduling Criteria

 Many criteria have been suggested for comparing CPU scheduling algorithms. The

criteria include the following:

o CPU utilization: CPU must be kept as busy as possible.CPU utilization can range

from 0 to 100 percent. In a real system, it should range from 40 percent (for a

lightly loaded system) to 90 percent (for a heavily used system).

o Throughput: If the CPU is busy executing processes, then work is being done.

One measure of work is the number of processes that are completed per time

unit, called throughput. For long processes, this rate may be one process per hour;

for short transactions, it may be 10 processes per second.

o Turnaround time: The interval from the time of submission of a process to the

time of completion is the turnaround time. Turnaround time is the sum of the

periods spent waiting to get into memory, waiting in the ready queue, executing

on the CPU, and doing I/O.

o Waiting time: The CPU scheduling algorithm does not affect the amount of time

during which a process executes or does I/O; it affects only the amount of time

that a process spends waiting in the ready queue. Waiting time is the sum of the

periods spent waiting in the ready queue.

o Response time: The measure of the time from the submission of a request until

the first response is produced. This measure, called response time, is the time it

takes to start responding, not the time it takes to output the response.

2.7 Scheduling Algorithms

CPU Scheduling deals with the problem of deciding which of the processes in the

ready queue is to be allocated the CPU. Following are some scheduling algorithms,

o FCFS Scheduling.

o Round Robin Scheduling.

o SJF Scheduling.

o Priority Scheduling.

o Multilevel Queue Scheduling.

o Multilevel Feedback Queue Scheduling.

 First-Come-First-Served (FCFS) Scheduling

 The simplest CPU-scheduling algorithm is the first-come, first-served (FCFS)

scheduling algorithm.

 With this scheme, the process that requests the CPU first is allocated the CPU

first.

 The implementation of the FCFS policy is easily managed with a FIFO queue.

 When a process enters the ready queue, its PCB is linked onto the tail of the

queue.

 When the CPU is free, it is allocated to the process at the head of the queue. The

running process is then removed from the queue.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 15

 The average waiting time under the FCFS policy is often quite long. Consider the

following set of processes that arrive at time 0, with the length of the CPU burst

given in milliseconds:

 If the processes arrive in the order P1, P2, P3, and are served in FCFS order, we get

the result shown in the following Gantt chart:

 The waiting time is 0 milliseconds for process P1, 24 milliseconds for process P2, and

27 milliseconds for process P3. Thus, the average waiting time is (0 + 24 + 27)/3 = 17

milliseconds.

 The FCFS scheduling algorithm is nonpreemptive. Once the CPU has been allocated

to a process, that process keeps the CPU until it releases the CPU, either by

terminating or by requesting I/O. The FCFS algorithm is thus particularly

troublesome for time-sharing systems, where it is important that each user get a share

of the CPU at regular intervals.

 Shortest-Job-First Scheduling

 This algorithm associates with each process the length of the process's next CPU

burst.

 When the CPU is available, it is assigned to the process that has the smallest next

CPU burst.

 If the next CPU bursts of two processes are the same, FCFS scheduling is used to

break the tie.

 As an example of SJF scheduling, consider the following set of processes, with the

length of the CPU burst given in milliseconds:

 Using SJF scheduling, we would schedule these processes according to the following

Gantt chart:

 The waiting time is 3 milliseconds for process P1, 16 milliseconds for process P2, 9

milliseconds for process P3, and 0 milliseconds for process P4. Thus, the average

waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 16

 The SJF scheduling algorithm is optimal,it gives the minimum average waiting time

for a given set of processes. Moving a short process before a long one, decreases the

waiting time of the short process more than it increases the waiting time of the long

process. Consequently, the average waiting time decreases.

 The SJF algorithm can be either preemptive or nonpreemptive. The choice arises

when a new process arrives at the ready queue while a previous process is still

executing. The next CPU burst of the newly arrived process may be shorter than what

is left of the currently executing process. A preemptive SJF algorithm will preempt

the currently executing process, whereas a nonpreemptive SJF algorithm will allow

the currently running process to finish its CPU burst. Preemptive SJF scheduling is

sometimes called shortest-remaining-time-first scheduling.

 As an example, consider the following four processes, with the length of the CPU

burst given in milliseconds:

 If the processes arrive at the ready queue at the times shown and need the indicated

burst times, then the resulting preemptive SJF schedule is as depicted in the following

Gantt chart:

 Process P1 is started at time 0, since it is the only process in the queue. Process P2

arrives at time 1.

 The remaining time for process P1 (7 milliseconds) is larger than the time required by

process P2 (4 milliseconds), so process P1 is preempted, and process P2 is scheduled.

The average waiting time for this example is ((10 -1) + (1-1) + (17 -2) + (5- 3))/4 =

26/4 = 6.5 milliseconds. Nonpreemptive SJF scheduling would result in an average

waiting time of 7.75 milliseconds.

 Priority Scheduling

 The SJF algorithm is a special case of the general priority scheduling algorithm.

 A priority is associated with each process, and the CPU is allocated to the process

with the highest priority.

 Equal-priority processes are scheduled in FCFS order.

 An SJF algorithm is simply a priority algorithm where the priority (p) is the inverse

of the (predicted) next CPU burst. The larger the CPU burst, the lower the priority,

and vice versa.

 As an example, consider the following set of processes, assumed to have arrived at

time 0, in the order P1, P2, … , P5, with the length of the CPU burst given in

milliseconds:

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 17

 Using priority scheduling, we would schedule these processes according to the

following Gantt chart:

 The average waiting time is 8.2 milliseconds.

 Priority scheduling can be either preemptive or nonpreemptive. When a process

arrives at the ready queue, its priority is compared with the priority of the currently

running process. A preemptive priority scheduling algorithm will preempt the CPU if

the priority of the newly arrived process is higher than the priority of the currently

running process. A nonpreemptive priority scheduling algorithm will simply put the

new process at the head of the ready queue.

 A major problem with priority scheduling algorithms is indefinite blocking, or

starvation. A process that is ready to run but waiting for the CPU can be considered

blocked. A priority scheduling algorithm can leave some low- priority processes

waiting indefinitely. In a heavily loaded computer system, a steady stream of higher-

priority processes can prevent a low-priority process from ever getting the CPU.

 A solution to the problem of indefinite blockage of low-priority processes is aging.

Aging is a technique of gradually increasing the priority of processes that wait in the

system for a long time.

 Round-Robin Scheduling

 The round-robin (RR) scheduling algorithm is designed especially for timesharing

systems.

 It is similar to FCFS scheduling, but preemption is added to switch between

processes.

 A small unit of time, called a time quantum or time slice, is defined.A time

quantum is generally from 10 to 100 milliseconds.

 The ready queue is treated as a circular queue.The CPU scheduler goes around the

ready queue, allocating the CPU to each process for a time interval of up to 1 time

quantum.

 To implement RR scheduling, we keep the ready queue as a FIFO queue of processes.

New processes are added to the tail of the ready queue.

 The CPU scheduler picks the first process from the ready queue, sets a timer to

interrupt after 1 time quantum, and dispatches the process.One of two things will then

happen.

o The process may have a CPU burst of less than 1 time quantum. In this case, the

process itself will release the CPU voluntarily. The scheduler will then proceed to

the next process in the ready queue.

o Otherwise, if the CPU burst of the currently running process is longer than 1 time

quantum, the timer will go off and will cause an interrupt to the operating system.

A context switch will be executed, and the process will be put at the tail of the

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 18

ready queue. The CPU scheduler will then select the next process in the ready

queue.

 The average waiting time under the RR policy is often long. Consider the following

set of processes that arrive at time 0, with the length of the CPU burst given in

milliseconds:

 If we use a time quantum of 4 milliseconds, then process P1 gets the first 4

milliseconds. Since it requires another 20 milliseconds, it is preempted after the first

time quantum, and the CPU is given to the next process in the queue ie.process P2.

Since process P2 does not need 4 milliseconds, it quits before its time quantum

expires.

 The CPU is then given to the next process P3. Once each process has received 1 time

quantum, the CPU is returned to process P1 for an additional time quantum. The

resulting RR schedule is

 The average waiting time is 17/3 = 5.66 milliseconds.

 The RR scheduling algorithm is thus preemptive.

 If there are n processes in the ready queue and the time quantum is q, then each

process gets 1/n of the CPU time in chunks of at most q time units. Each process must

wait no longer than (n-1) * q time units until its next time quantum. For example,

with five processes and a time quantum of 20 milliseconds, each process will get up

to 20 milliseconds every 100 milliseconds.

 Multilevel Queue Scheduling

 Another class of scheduling algorithms has been created for situations in which

processes are easily classified into different groups. For example, a common division

is made between foreground (interactive) processes and background (batch)

processes.

 These two types of processes have different response-time requirements and may

have different scheduling needs.

 Foreground processes have priority over background processes.

 A multilevel queue scheduling algorithm partitions the ready queue into several

separate queues as shown in figure 5.3.

 The processes are permanently assigned to one queue based on some property of the

process, such as memory size, process priority, or process type.

 Each queue has its own scheduling algorithm. For example, separate queues might be

used for foreground and background processes.

 The foreground queue might be scheduled by an RR algorithm, while the

background queue is scheduled by an FCFS algorithm.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 19

 There must be scheduling among the queues, which is commonly implemented as

fixed-priority preemptive scheduling. For example, the foreground queue may have

absolute priority over the background queue.

 An example of a multilevel queue scheduling algorithm with five queues, listed

below in order of priority:

1. System processes

2. Interactive processes

3. Interactive editing processes

4. Batch processes

5. Student processes

 Each queue has absolute priority over lower-priority queues. No process in the batch

queue could run unless the queues for system processes, interactive processes, and

interactive editing processes were all empty.

 If an interactive editing process entered the ready queue while a batch process was

running, the batch process would be preempted.

 Another possibility is to time-slice among the queues. So, each queue gets a certain

portion of the CPU time, which it can then schedule among its various processes. For

example, the foreground queue can be given 80 percent of the CPU time for RR

scheduling among its processes, whereas the background queue receives 20 percent

of the CPU to give to its processes on an FCFS basis.

 Multilevel Feedback-Queue Scheduling

 When the multilevel queue scheduling algorithm is used, processes are permanently

assigned to a queue when they enter the system.

 The multilevel feedback-queue scheduling algorithm allows a process to move

between queues. The idea is to separate processes according to the characteristics of

their CPU bursts.

 If a process uses too much CPU time, it will be moved to a lower-priority queue. This

scheme leaves I/O-bound and interactive processes in the higher-priority queues.

 A process that waits too long in a lower-priority queue may be moved to a higher-

priority queue. This form of aging prevents starvation.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 20

 For example,consider a multilevel feedback-queue scheduler with three queues,

numbered from 0 to 2 as shown in below figure5.4.

 The scheduler first executes all processes in queue 0. Only when queue 0 is empty it

will execute processes in queue 1.

 Similarly, processes in queue 2 will only be executed if queues 0 and 1 are empty. A

process that arrives for queue 1 will preempt a process in queue 2.

 A process in queue 1 will in turn be preempted by a process arriving for queue 0.

 A process entering the ready queue is put in queue 0. A process in queue 0 is given a

time quantum of 8 milliseconds. If it does not finish within this time, it is moved to

the tail of queue 1. If queue 0 is empty, the process at the head of queue 1 is given a

quantum of 16 milliseconds. If it does not complete, it is preempted and is put into

queue 2. Processes in queue 2 are scheduled on an FCFS basis but they run only when

queue 0 and 1 are empty.

 This scheduling algorithm gives highest priority to any process with a CPU burst of 8

milliseconds or less. Such a process will quickly get the CPU, finish its CPU burst,

and go off to its next I/O burst. Processes that need more than 8 but less than 24

milliseconds are also served quickly, although with lower priority than shorter

processes. Long processes automatically sink to queue 2 and are served in FCFS

order with any CPU cycles left over from queues 0 and 1.

 A multilevel feedback-queue scheduler is defined by the following parameters:

o The number of queues.

o The scheduling algorithm for each queue.

o The method used to determine when to upgrade a process to a higher-priority

queue.

o The method used to determine when to demote a process to a lower-priority

queue.

o The method used to determine which queue a process will enter when that

processneeds service.

2.8 Multiple-Processor Scheduling

 Approaches to Multiple-Processor Scheduling

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 21

 One approach to CPU scheduling in a multiprocessor system is where all

scheduling decisions, I/O processing, and other system activities are handled by a

single processor i.e., the master server. The other processors execute only user

code. This asymmetric multiprocessing is simple because only one processor

accesses the system data structures, reducing the need for data sharing.

 A second approach uses symmetric multiprocessing (SMP), where each

processor is self-scheduling. All processes may be in a common ready queue, or

each processor may have its own private queue of ready processes.

 Some of the issues related to SMP are,

a. Processor Affinity

 The data most recently accessed by the process is populated in the cache for the

processor and successive memory accesses by the process are often satisfied in

cache memory.

 If the process migrates to another processor, the contents of cache memory must

be invalidated for the processor being migrated from, and the cache for the

processor being migrated to must be re-populated. Because of the high cost of

invalidating and re-populating caches, most SMP systems try to avoid migration

of processes from one processor to another and instead tries to keep a process

running on the same processor. This is known as processor affinity, i.e., a

process has an affinity for the processor on which it is currently running.

 Processor affinity takes several forms. When an operating system has a policy of

attempting to keep a process running on the same processor but not guaranteeing

that it will do so, a situation is known as soft affinity. Here, it is possible for a

process to migrate between processors.

 Some systems such as Linux provide system calls that support hard affinity,

thereby allowing a process to specify that it must not migrate to other processors.

b. Load Balancing

 On SMP systems, it is important to keep the workload balanced among all

processors to utilize the benefits of having more than one processor. Otherwise,

one or more processors may sit idle while other processors have high workloads

along with lists of processes awaiting the CPU.

 Load balancing attempts to keep the workload evenly distributed across all

processors in an SMP system.

 There are two general approaches to load balancing: push migration and pull

migration.

 With push migration, a specific task periodically checks the load on each

processor and if it finds an imbalance it evenly distributes the load by moving (or

pushing) processes from overloaded to idle or less-busy processors.

 Pull migration occurs when an idle processor pulls a waiting task from a busy

processor.

c. Symmetric Multithreading

 SMP systems allow several threads to run concurrently by providing multiple

physical processors.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 22

 An alternative strategy is to provide multiple logical processors rather than

physical processors. Such a strategy is known as symmetric multithreading (or

SMT).

 The idea behind SMT is to create multiple logical processors on the same

physical processor, presenting a view of several logical processors to the

operating system, even on a system with only a single physical processor.

 Each logical processor has its own architecture state, which includes general-

purpose and machine-state registers and is responsible for its own interrupt

handling, meaning that interrupts are delivered to and handled by logical

processors rather than physical ones. Otherwise, each logical processor shares the

resources of its physical processor, such as cache memory and buses.

 The following figure5.5 illustrates a typical SMT architecture with two

physical processors, each housing two logical processors. From the operating

system's perspective, four processors are available for work on this system.

2.9 Thread Scheduling

 On operating systems that support user-level and kernel-level threads, thekernel-level

threads are being scheduled by the operating system.

 User-level threads are managed by a thread library, and the kernel is unaware of

them. To run on a CPU, user-level threads must be mapped to an associated kernel-

level thread, although this mapping may be indirect and may use a lightweight

process (LWP).

 One distinction between user-level and kernel-level threads lies in how they are

scheduled.On systems implementing the many-to-one and many-to-many models, the

thread library schedules user-level threads to run on an available LWP, a scheme

known as process-contention scope (PCS), since competition for the CPU takes

place among threads belonging to the same process.

 To decide which kernel thread to schedule onto a CPU, the kernel uses system-

contention scope (SCS). Competition for the CPU with SCS scheduling takes place

among all threads in the system.

 PCS is done according to priority. The scheduler selects the runnable thread with the

highest priority to run. User-level thread priorities are set by the programmer. PCS

will preempt the currently running thread in favour of a higher-priority thread.

 Pthread Scheduling

 Pthreads identifies the following contention scope values:

o PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 23

o PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling.

 On systems implementing the many-to-many model, the

PTHREAD_SCOPE_PROCESS policy schedules user-level threads onto

available LWPs.

 The number of LWPs is maintained by the thread library using scheduler

activations. The PTHREAD_SCOPE_SYSTEM scheduling policy will create and

bind an LWP for each user-level thread on many-to-many systems, effectively

mapping threads using the one-to-one policy.

 The Pthread IPC provides the following two functions for getting and setting the

contention scope policy;

o pthread_attr_setscope (pthread_attr_t *attr, int scope)

o pthread_attr_getscope (pthread_attr_t *attr, int *scope)

 The first parameter for both functions contains a pointer to the attribute set for the

thread.

 The second parameter for the pthread_attr_setscope () function is passed either

the THREAD_SCOPE_SYSTEM or PTHREAD_SCOPE_PROCESS value,

indicating how the contention scope is to be set. In the case of

pthread_attr_getscope(), this second parameter contains a pointer to an int value

that is set to the current value of the contention scope. If an error occurs, each of

these functions returns non-zero values.

2.10 Synchronization: Background
A situation where several processes access and manipulate the same data concurrently

and the outcome of the execution depends on the particular order in which the access takes place,

is called a race condition. To guard against race condition, we require that the processes must be

synchronized in some way.

2.11 The critical-section problem

 Consider a system consisting of n processes {P0, P1... Pn-1}. Each process has a

segment of code, called a critical section, in which the process may be changing

the common variables, updating a table, writing a file, and so on.

 The important feature of the system is that, when one process is executing in its

critical section, no other process is to be allowed to execute in its critical section.

That is, no two processes are executing in their critical sections at the same time.

 The critical-section problem is to design a protocol that the processes can use to

cooperate.

 Each process must request permission to enter its critical section. The section of

code implementing this request is the entry section.

 The critical section may be followed by an exit section.

 The remaining code is the remainder section.

 The general structure of a typical process Pi, is shown in the following figure

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 24

 A solution to the critical-section problem must satisfy the following three

requirements:

1. Mutual exclusion. If process P, is executing in its critical section, then no other

processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some processes

wish to enter their critical sections, then only those processes that are not

executing in their remainder sections can participate in the decision on which will

enter its critical section next, and this selection cannot be postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times that

other processes are allowed to enter their critical sections after a process has made

a request to enter its critical section and before that request is granted.

 We assume that each process is executing at a nonzero speed.We can make no

assumption concerning the relative speed of the n processes.

 Two general approaches are used to handle critical sections in operating systems.

1. Pre-emptive kernel 2. Nonpreemptive kernel.

 A pre-emptive kernel allows a process to be pre-empted while it is running in kernel

mode. It is difficult to design for SMP architectures, since in these environments it is

possible for two kernel-mode processes to run simultaneously on different processors.

It is more suitable for real-time programming, as it will allow a real-time process to

pre-empt a process currently running in the kernel. Also, pre-emptive kernel may be

more responsive, since there is less risk that a kernel-mode process will run for an

arbitrarily long period before giving up the processor to waiting processes.

 A Nonpreemptive kernel does not allow a process running in kernel mode to be pre-

empted; a kernel-mode process will run until it exits kernel mode, blocks, or

voluntarily yields control of the CPU. It is essentially free from race conditions on

kernel data structures, as only one process is active in the kernel at a time.

2.12 Peterson’s solution

 A classic software-based solution to the critical-section problem is known as

Peterson's solution.
 Peterson's solution is restricted to two processes that alternate execution between

their critical sections and remainder sections.

 The processes are numbered P0 and P1 or Pi and Pj where j=1-i.

 Peterson's solution requires two data items to be shared between the two processes,

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 25

int turn;

boolean flag[2];

 The variable turn indicates whose turn it is to enter its critical section. That is, if turn

== i, then process Pi, is allowed to execute in its critical section.

 The flag array is used to indicate if a process is ready to enter its critical section. For

example, if flag[i] is true, this value indicates that Pi is ready to enter its critical

section.

 To enter the critical section, process Pi first sets flag[i] to be true and then sets turn to

the value j, thereby asserting that if the other process wishes to enter the critical

section, it can do so.

 If both processes try to enter at the same time, turn will be set to both i and j at

roughly the same time. Only one of these assignments will last; the other will occur

but will be overwritten immediately.

 The eventual value of turn decides which of the two processes is allowed to enter its

critical section first.

 The following algorithm describes the structure of Pi in Peterson’s solution.

 To prove that this solution is correct, we need to show that,

1. Mutual exclusion is preserved.

2. The progress requirement is satisfied.

3. The bounded-waiting requirement is met.

 To prove property 1, we note that each Pi enters its critical section only if either

flag[j] = = false or turn = = i. For P0 to enter, turn must be equal to 0 and for P1 to

enter, turn must be equal to 1 because flag[0] = = flag[1] = = true. Since the value of

turn can be either 0 or 1 but cannot be both, hence P0 and P1 cannot enter into critical

section simultaneously.

 To prove properties 2 and 3, we note that a process Pi can be prevented from

entering the critical section only if it is stuck in the while loop with the condition

flag[j] = = true and turn = = j. If Pj is not ready to enter the critical section, then flag

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 26

[j] = = false, and Pi can enter its critical section. If turn = = j, then Pj will enter the

critical section. However, once Pj exits its critical section, it will reset flag[j] to false,

allowing Pi to enter its critical section. If Pj resets flag[j] to true, it must also set turn

to i. Thus, Pi will enter the critical section (progress) after at most one entry by Pi

(bounded waiting).

2.13 Synchronization hardware

 Any solution to the critical-section problem requires a simple tool called a lock. Race

conditions are prevented by requiring that critical regions be protected by locks.

 That is, a process must acquire a lock before entering a critical section; it releases the

lock when it exits the critical section. This is illustrated below,

 Hardware features can make any programming task easier and improve system

efficiency.

 The critical-section problem can be solved simply in a uniprocessor environment if

we could prevent interrupts from occurring while a shared variable was being

modified.

 This solution is not feasible in a multiprocessor environment. Disabling interrupts on

a multiprocessor can be time consuming, as the message is passed to all the

processors. This message passing delays entry into each critical section, and system

efficiency decreases.
 Many modern computer systems therefore provide special hardware instructions that

allow us either to test and modify the content of a word or to swap the contents of

two words atomically that is, as one uninterruptible unit.

 We can use these special instructions to solve the critical-section problem in a

relatively simple manner.TheTestAndSet() instruction can be defined as below,

booleanTestAndSet(boolean *target)

{

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 27

booleanrv = *target;

*target = TRUE;

returnrv;

}

 The important characteristic is that this instruction is executed atomically. Thus, if

two TestAndSet() instructions are executed simultaneously (each on a different CPU),

they will be executed sequentially in some arbitrary order.

 The structure of process Pi is shown below,

 do {

while (TestAndSetLock(&lock))

; // do nothing

// critical section

lock = FALSE;

// remainder section

}while (TRUE);

 The Swap() instruction, in contrast to the TestAndSet() instruction, operates on the

contents of two words as shown below,

 void Swap(boolean *a, boolean *b)

 {

boolean temp = *a;

*a = *b;

 *b = temp;

}
 It is executed atomically. If the machine supports the Swap() instruction, then mutual

exclusion can be provided as follows.

 A global Boolean variable lock is declared and is initialized to false. In addition, each

process has a local Boolean variable key. The structure of process Pi is shown below,

do {

key = TRUE;

while (key = = TRUE)

Swap(&lock, &key

};

// critical section

lock = FALSE;

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 28

// remainder section

}while (TRUE);

 Although these algorithms satisfy the mutual-exclusion requirement, they do not

satisfy the bounded-waiting requirement.

 Another algorithm is given below using the TestAndSet() instruction that satisfies all

the critical-section requirements. The common data structures are,

boolean waiting[n];

 boolean lock;

 These data structures are initialized to false.

do {

 waiting[i] = TRUE;

key = TRUE;

while (waiting[i] && key)

key= TestAndSet(&lock);

waiting[i] = FALSE;

// critical section

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j = = i)

lock = FALSE;

else

waiting[j] = FALSE;

// remainder section

} while (TRUE);

2.14 Semaphores

 The hardware-based solutions to the critical-section problem are complicated for

application programmers to use.

 To overcome this difficulty, we can use a synchronization tool called asemaphore.

 A semaphore S is an integer variable it is accessed only through two standard

atomic operations:wait() and signal(). The wait() operation was termed as P;

signal() was called V. The definition of wait() is as follows,

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 29

 wait(S)

 {

while S<= 0

; // no-op

S--;

}

 The definition of signal() is as follows,

 signal(S)

 {

 S++ ;

}
 The wait() and signal() operations must be executed indivisibly. That is, when one

process modifies the semaphore value, no other process can simultaneously modify

that same semaphore value.

 Usage

 Operating systems often distinguish between counting and binary semaphores.

 The value of a counting semaphore can range over an unrestricted domain.

 The value of a binary semaphore can range only between 0 and 1.

 Binary semaphores are known as mutex locks, as they are locks that provide

mutual exclusion.

 We can use binary semaphores to deal with the critical-section problem for

multiple processes. The n processes share a semaphore, mutex, initialized to 1.

Each process Pi is organized as shown,

do {

waiting(mutex);

// critical section

signal (mutex) ,

// remainder section

}while (TRUE);

 Counting semaphores can be used to control access to a given resource consisting of

a finite number of instances. The semaphore is initialized to the number of resources

available. Each process that wishes to use a resource performs a wait() operation on

the semaphore (thereby decrementing the count). When a process releases a resource,

it performs a signal() operation (incrementing the count). When count=0, all

resources are being used. Then the processes that wish to use a resource will block

until the count becomes greater than 0.

 We can also use semaphores to solve various synchronization problems. For example,

consider two concurrently running processes: P1 with a statement S1 and P2 with a

statement S2. Suppose we require that P2 be executed only after S1 has completed. We

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 30

can implement this by letting P1 and P2to share a common semaphore synch,

initialized to 0, and by inserting the statements

S1;

signal(synch);

in process P1, and the statements

wait(synch);

S2;

in process P2. Because synch is initialized to 0, P2 will execute S2 only after P1 has

invoked signal (synch), which is after statement S1 has been executed.

 Implementation

 The main disadvantage of the semaphore definition given here is that it requires

busy waiting. While a process is in its critical section, any other process that tries

to enter its critical section must loop continuously in the entry code.

 This type of semaphore is also called a spin lock because the process "spins"

while waiting for the lock.

 To overcome the need for busy waiting, we can modify the definition of the

wait() and signal() semaphore operations. When a process executes the wait()

operation and finds that the semaphore value is not positive, then rather than

engaging in busy waiting, the process can blockitself. The block operation places

a process into a waiting queue associated with the semaphore, and the state of the

process is switched to the waiting state.

 A process that is blocked, waiting on a semaphore S, should be restarted when

some other process executes a signal() operation. The process is restarted by a

wakeup() operation, which changes the process from the waiting state to the

ready state. The process is then placed in the ready queue. To implement

semaphores under this definition, we define a semaphore as a "C' struct:

typedefstruct {

int value;

struct process *list;

} semaphore;

 Each semaphore has an integer value and a list of processes list. When a process

must wait on a semaphore, it is added to the list of processes. A signal() operation

removes one process from the list of waiting processes and awakens that process.

The wait() semaphore operation can now be defined as,

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

 }

 }

The signal () semaphore operation can now be defined as,

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 31

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from< S->list;

wakeup(P);

}

}

 The block() operation suspends the process that invokes it. The wakeup(P) operation

resumes the execution of a blocked process P. These two operations are provided by

the operating system as basic system calls.

 This implementation, semaphore values may be negative, if a semaphore value is

negative, its magnitude is the number of processes waiting on that semaphore.

 The list of waiting processes can be easily implemented by a link field in each

process control block (PCB). Each semaphore contains an integer value and a pointer

to a list of PCBs.

 Deadlocks and Starvation

 The implementation of a semaphore with a waiting queue may result in a

deadlock situation where two or more processes are waiting indefinitely for an

event that can be caused only by one of the waiting processes. When such a state

is reached, these processes are said to be deadlocked.

 To illustrate this, we consider a system consisting of two processes, P0and P1,

each accessing two semaphores, S and Q, set to the value 1:

 P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

 . .

 . .

 . .

signal(S); signal(Q);

signal(Q); signal(S);

 Suppose that P0executes wait(S) and then P1 executes wait(Q). When P0 executes

wait(Q), it must wait until P1 executes signal(Q). Similarly, when P1 executes

wait(S), it must wait until P0executes signal(S). Since these signal() operations

cannot be executed, P0and P1 are deadlocked.

 Another problem related to deadlocks is indefinite blocking, or starvation, a

situation in which processes wait indefinitely within the semaphore. Indefinite

blocking may occur if we remove processes from the list associated with a

semaphore in LIFO (last-in, first-out) order.

2.15 Classic problems of Synchronization

 Bounded-buffer problem

 The Readers-Writers Problem

 The Dining-Philosophers Problem

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 32

 The Bounded-Buffer Problem

 We assume that the pool consists of n buffers, each capable of holding one item.

 The mutex semaphore provides mutual exclusion for accesses to the buffer pool

and is initialized to the value 1.

 The empty and full semaphores count the number of empty and full buffers.

 The semaphore empty is initialized to the value n; the semaphore full is

initialized to the value 0.

 The code for the producer process is shown:

do{

// produce an item in nextp

...

wait(empty);

wait (mutex);

...

// add nextp to buffer

...

signal(mutex);

signal (full);

}while (TRUE);

 The code for the consumer process is shown:

do {

wait (full);

wait(mutex);

 ...

//remove an item from buffer to nextc

...

signal(mutex);

signal(empty);

//consume the item in nextc

...

}while (TRUE);

 We can interpret this code as the producer producing full buffers for the

consumer or as the consumer producing empty buffers for the producer.

 The Readers-Writers Problem

 A database is to be shared among several concurrent processes. Some of these

processes may want only to read the database, whereas others may want to

update (that is, to read and write) the database.

 Readers - processes that only read the database.

 Writers - processes performing both read and write (update).

 Problem: If two readers access the shared data simultaneously, no problem

will result. But if a writer and some other thread (either a reader or a writer)

access the database simultaneously, problem arises.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 33

 This synchronization problem is referred to as the readers-writers problem.

 The readers-writers problem has several variations.

 The firstreaders-writers problem, which requires that no reader must be kept

waiting unless a writer has already obtained permission to use the shared

object.

 The secondreaders-writers problem requires that, once a writer is ready, that

writer performs its write as soon as possible.

 A solution to either problem may result in starvation. In the first case, writers

may starve; in the second case, readers may starve.

 In the solution to the first readers-writers problem, the reader processes share

the following data structures:

semaphoremutex, wrt;

intreadcount;

 The semaphores mutex and wrt are initialized to 1and readcount is

initialized to 0.

 The semaphore wrt is common to both reader and writer processes.

 The mutex semaphore is used to ensure mutual exclusion when the variable

readcount is updated.

 The readcount variable keeps track of how many processes are currently

reading the object.

 The semaphore wrt functions as a mutual-exclusion semaphore for the

writers.

 The code for a writer process is,

do {

wait(wrt);

…..

//writing is performed

signal(wrt);

} while (TRUE);

 The code for a reader process is shown,

do {

wait (mutex);

readcount++;

if (readcount = = 1)

wait (wrt);

signal(mutex);

 ……..

 //reading is performed

 ……..

wait(mutex);

readcount--;

if (readcount= = 0)

signal(wrt);

signal(mutex);

} while (TRUE);

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 34

 If a writer is in the critical section and n readers are waiting, then one reader is

queued on wrt, and n-1 readers are queued on mutex.

 Also, when a writer executes signal(wrt), we may resume the execution of

either the waiting readers or a single waiting writer. The selection is made by

the scheduler.

 The Dining-Philosophers Problem

 Consider five philosophers who spend their lives thinking and eating.

 The philosophers share a circular table surrounded by five chairs, each

belonging to one philosopher.

 In the centre of the table is a bowl of rice, and the table is laid with five single

chopsticks (below figure).

 When a philosopher is thinking, she does not interact with her colleagues.

 When a philosopher gets hungry, she tries to pick up the two chopsticks that

are closest to her (the chopsticks that are between her and her left and right

neighbors).

 When a hungry philosopher has both her chopsticks at the same time, she eats

without releasing her chopsticks. When she is finished eating, she puts down

both of her chopsticks and starts thinking again.

figure 6.1:The situation of the dining philosophers

 One simple solution is to represent each chopstick with a semaphore.

 A philosopher tries to grab a chopstick by executing a wait() operation on that

semaphore; she releases her chopsticks by executing the signal() operation on

the appropriate semaphores.

 Thus, the shared data are

semaphore chopstick[5];

where all the elements of chopstick are initialized to 1.

 The structure of philosopher i is shown below,

do {

wait(chopstick[i]);

k[(i+l) % 5]);

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 35

 ……

 //eat

........

signal(chopstick[i]);

signal(chopstick[(i+l) % 5]);

 ………

 //think

..........

} while (TRUE);

 The disadvantage is it could create a deadlock. Suppose that all five

philosophers become hungry simultaneously and each grabs her left

chopstick. All the elements of chopstick will now be equal to 0. When each

philosopher tries to grab her right chopstick, she will be delayed forever.

 Several possible remedies to the deadlock problem are available.

o Allow at most four philosophers to be sitting simultaneously at the table.

o Allow a philosopher to pick up her chopsticks only if both chopsticks are

available (to do this, she must pick them up in a critical section).

o Use an asymmetric solution; that is, an odd philosopher picks up first her

left chopstick and then her right chopstick, whereas an even philosopher

picks up her right chopstick and then her left chopstick.

2.16 Monitors

 All processes share a semaphore variable mutex, which is initialized to 1. Each

process must execute wait(mutex) before entering the critical section and

signal(mutex) afterward. If this sequence is not observed, two processes may be in

their critical sections simultaneously.

 This may result in various difficulties.

o Suppose that a process interchanges the order in which the wait() and signal()

operations on the semaphore mutex are executed, resulting in the following

execution:

signal(mutex);

 ……

 critical section

 ……

wait(mutex);

 In this situation, several processes may be executing in their critical sections

simultaneously, violating the mutual-exclusion requirement. This error may be

discovered only if several processes are simultaneously active in their critical

sections.

o Suppose that a process replaces signal (mutex) with wait (mutex). That is, it

executes

wait(mutex);

 ……

 critical section

 ……

wait(mutex);

 In this case, a deadlock will occur.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 36

o Suppose that a process omits the wait (mutex), or the signal (mutex), or both.

In this case, either mutual exclusion is violated or a deadlock will occur.

 These examples illustrate that various types of errors can be generated easily when

programmers use semaphores incorrectly to solve the critical-section problem. To

deal with such errors, one fundamental high-level synchronization construct-the

monitor is used.

 Usage

 The syntax of a monitor is shown below,

monitormonitor name

{

 //shared variable declarations

procedure P1 (. . .) {

………

}

procedure P2 (. . .) {

……….

}

 .

 .

 .

procedurePn (. . .) {

…………

}

initialization code (. . .) {

…………

}

}

 The monitor construct ensures that only one process at a time is active within

the monitor. The programmer does not need to code this synchronization

constraint explicitly.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 37

Schematic view of a monitor

 The monitor construct, as defined so far is not sufficiently powerful for

modeling some synchronization schemes. For this purpose, we need to define

additional synchronization mechanisms. These mechanisms are provided by

the condition construct. A programmer can define one or more variables of

the type condition,

condition x, y;

 The only operations that can be invoked on a condition variable are wait() and

signal().

 The operation x.wait() means that the process invoking this operation is

suspended until another process invokes x.signal();

 The x. signal() operation resumes exactly one suspended process.

 If no process is suspended, then the signal() operation has no effect; that is,

the state of x is the same as if the operation has never been executed. It is

shown in below figure.

Monitor with condition variables

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 38

 Suppose when the x. signal () operation is invoked by a process P, there exists

a suspended process Q associated with condition x. If the suspended process

Q is allowed to resume its execution, the signaling process P must wait.

Otherwise, both P and Q would be active simultaneously within the monitor.

However both processes can continue with their execution. Two possibilities

exist,

o Signal and wait. P either waits until Q leaves the monitor or waits for

another condition.

o Signal and continue. Q either waits until P leaves the monitor or

waits for another condition.

 Dining-Philosophers Solution Using Monitors

 It is a deadlock-free solution to the dining-philosophers problem.

 This solution imposes the restriction that a philosopher may pick up her

chopsticks only if both of them are available.

 We use the following data structure to distinguish among three states in which

we may find a philosopher.

enum {thinking, hungry, eating}state [5];

 Philosopher i can set the variable state[i] = eating only if her two neighbors

are not eating.

 We also need to declare

condition self [5];

where philosopher i can delay herself when she is hungry but is unable to

obtain the chopsticks she needs.

 The distribution of the chopsticks is controlled by the monitor dp, whose

definition is shown below.

monitordp

{

enum {THINKING, HUNGRY, EATING} state[5];

conditionself[5];

void pickup(int i) {

state[i] =HUNGRY;

test(i);

if (state [i] ! = EATING)

self [i] . wait() ;

 }

void putdown(int i) {

state[i] =THINKING;

test((i + 4) % 5);

test((i + 1) % 5);

}

void test(int i) {

if ((state[(i + 4) % 5] !=EATING) &&

(state[i] ==HUNGRY) &&

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 39

(state[(i + 1) % 5] !=EATING)) {

state[i] =EATING;

self[i] .signal();

 }

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] =THINKING;

}

 }

 Each philosopher, before starting to eat, must invoke the operation

pickup().After the successful completion of the operation, the philosopher

may eat. Following this, the philosopher invokes the putdown() operation.

Thus, philosopher i must invoke the operations pickup() and putdown() in the

following sequence,

dp.pickup(i);

...

eat

...

dp.putdown(i);

 Implementing a Monitor Using Semaphores

 For each monitor, a semaphore mutex (initialized to 1) is provided.

 A process must execute wait(mutex) before entering the monitor and must

execute signal(mutex) after leaving the monitor.

 Since a signaling process must wait until the resumed process either leaves or

waits, an additional semaphore, next (initialized to 0) is introduced, on which

the signaling processes may suspend themselves.

 An integer variable next_count is also provided to count the number of

processes suspended on next. Thus, each external procedure F is replaced by ,

wait(mutex) ;

...

body of F

...

if (next_count> 0)

signal(next);

else

signal(mutex);

Mutual exclusion within a monitor is ensured.

 Condition variables are implemented as follows. For each condition x,

semaphorex_sem and an integer variable x_count, both initialized to 0 are

introduced.

 The operation x.wait() can now be implemented as

x_count++;

if (next_count> 0)

 signal(next);

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 40

else

 signal(mutex);

wait(x_sem);

x_count--;

 The operation x.signal() can be implemented as

if (x_count> 0) {

next_count++;

signal(x_sem);

wait(next) ;

next_count--;

}

 Resuming Processes within a Monitor

 If several processes are suspended on condition x, and an x.signal() operation

is executed by some process, then the problem is how to determine which of

the suspended processes should be resumed next.

 One simple solution is to use an FCFS ordering, so that the process that has

been waiting for the longest time is resumed first.

 In many circumstances, such simple scheduling scheme is not adequate. For

this purpose, the conditional-wait construct can be used; it has the form

x.wait(c);

where c is an integer expression that is evaluated when the wait()

operation is executed. The value of c, which is called a priority number

is then stored with the name of the process that is suspended.

 When x.signal() is executed, the process with the smallest priority number is

resumed next.

 To illustrate this, consider the ResourceAllocator monitor shown below,

which controls the allocation of a single resource among competing

processes.

monitorResourceAllocator

{

boolean busy;

condition x;

void acquire(int time) {

 if (busy)

x.wait(time);

 busy = TRUE;

}

void release() {

 busy = FALSE;

 x. signal() ;

}

 initialization_code() {

 busy = FALSE;

}

}

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.2 Multi-threaded Programming M2- 41

 Each process, when requesting an allocation of this resource, it specifies the

maximum time it plans to use the resource.

 The monitor allocates the resource to the process that has the shortest time-

allocation request. A process that needs to access the resource in question

must observe the following sequence:

R.acquire(t);

 ……

 access the resource;

 ……

R. release() ;

 where R is an instance of type ResourceAllocator.

 The monitor concept cannot guarantee that the preceding access sequence will

be observed and the following problems can occur,

o A process might access a resource without first gaining access permission

to the resource.

o A process ntight never release a resource once it has been granted access

to the resource.

o A process might attempt to release a resource that it never requested.

o A process might request the same resource twice (without first releasing

the resource).

 The same difficulties are encountered with the use of semaphores.

---0o0---

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 1

MODULE-3

DEADLOCKS

3.1 Deadlocks

 When processes request resources and if the resources are not available (held by other

process) at that time, then process enters into waiting state. This situation is called

deadlock.

3.2 System Model

 A system consists of finite number of resources and is distributed among number of

processes. A process must request a resource before using it and it must release the

resource after using it. It can request any number of resources to carry out a

designated task. The amount of resource requested may not exceed the total number

of resources available.

 A process may utilize the resources in only the following sequence,

1. Request: If the request is not granted immediately then the requesting process

must wait it can acquire the resources.

2. Use:The process can operate on the resource.

3. Release:The process releases the resource after using it.

 To illustrate deadlock, consider a system with one printer and one tape drive. If a

process Pi currently holds a printer and a process Pj holds the tape drive. If process Pi

request a tape drive and process Pj request a printer then a deadlock occurs.

 Multithread programs are good candidates for deadlock because they compete for

shared resources.

3.3 Deadlock Characterization

 Necessary Conditions

A deadlock situation can occur if the following 4 conditions occur simultaneously in

a system.

o Mutual Exclusion: At least one resource must be held in a non-sharable mode;

that is, only one process at a time can use the resource. If another process requests

for the resource, the requesting process must be delayed until the resource has

been released.

o Hold and Wait: A process must be holding at least one resource and waiting to

acquire additional resources that are currently being held by the other process.

o No Preemption: Resources cannot be preempted i.e., only the process holding

the resources must release it after the process has completed its task.

o Circular Wait: A set {P0,P1……..Pn} of waiting process must exist such that P0

is waiting for a resource held by P1, P1 is waiting for a resource held by P2, Pn-1 is

waiting for resource held by process Pn and Pn is waiting for the resource held by

P0.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 2

 Resource Allocation Graph

 Deadlocks are described by using a directed graph called system resource

allocation graph. The graph consists of set of vertices (V) and set of edges (E).

 The set of vertices (V) can be described into two different types of nodes,

 P={ P1,P2……..Pn} a set consisting of all active processes and

R={R1,R2……….Rn} a set consisting of all resource types in the system.

 A directed edge from process Pi to resource type Rjis denoted by PiRj ,it

indicates that Pi has requested an instance of resource type Rj and is waiting for

that resource. This edge is called Request edge.

 A directed edge Rj Pi signifies that an instance of resource type Rj has been

allocated to process Pi. This is called Assignment edge.

 Process Piis represented as circle and each resource type Rjas a rectangle.

 Since resource type Rjmay have more than one instance, we represent each such

instance as a dot within the rectangle.

 Request edge points to only the rectangle Rj, whereas an assignment edge must

also designate one of the dots in the rectangle.

 The below figure shows the Resource allocation graph which denotes,

 The sets P, R and E:

 P = {P1, P2, P3}

 R = {R1, R2, R3, R4}

 E ={ P1 R1, P2 R3, R1 P2, R2 P2, R2 P1, R3 P3}

 Resource instances:

o One instance of resource type R1

o Two instances of resource type R2

o One instance of resource type R3

o Three instances of resource type R4

 Process states:

o Process P1 is holding an instance of resource type R2 and is waiting for an

instance of resource type R1.

o Process P2 is holding an instance of R1 and an instance of R2 and is waiting

for an instance of R3.

o Process P3is holding an instance of R3.

 If the graph contains no cycle, then no process in the system is deadlocked. If the

graph contains a cycle then a deadlock may exist.

 If each resource type has exactly one instance than a cycle implies that a deadlock has

occurred.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 3

 If each resource type has several instances then a cycle do not necessarily implies that

a deadlock has occurred.

 Consider the resource-allocation graph shown in above figure.

 Suppose, process P3requests an instance of resource type R2. Since no resource

instance is currently available, a request edge P3R2 is added to the graph which

results in below figure.

 Now, two minimal cycles exist in the system:

o P1R1 P2 R3P3 R2 P1

o P2R3P3 R2 P2

 Processes P1, P2, and P3are deadlocked.

 Process P2is waiting for the resource R3, which is held by process P3.

 Process P3is waiting for either process P1or process P2to release resource R2.

 In addition, process P1is waiting for process P2to release resource R1.

 Consider the resource-allocation graph in below figure, which also have a cycle

P1R1P3 R2P1 ,but there is no deadlock.

 P4may release its instance of resource type R2. That resource can then be allocated to

P3, breaking the cycle.

 If a resource-allocation graph does not have a cycle, then the system is not in a

deadlocked state. If there is a cycle, then the system may or may not be in a

deadlocked state.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 4

3.4 Methods for Handling Deadlocks

 There are three ways to deal with deadlock problem

o We can use a protocol to prevent or avoid deadlocks, ensuring that the system

will never enter into the deadlock state.

o We can allow a system to enter into deadlock state, detect it and recover from it.

o We can ignore the problem and pretend that the deadlock never occur in the

system. This is used by most OS including UNIX.

 To ensure that the deadlock never occurs, the system can use either deadlock

avoidance or deadlock prevention.

 Deadlock prevention is a set of method for ensuring that at least one of the necessary

conditions does not occur.

 Deadlock avoidance requires the OS is given advance information about which

resource a process will request and use during its lifetime.

 If a system does not use either deadlock avoidance or deadlock prevention then a

deadlock situation may occur. In this situation the system can provide an algorithm

that examines the state of the system to determine whether a deadlock has occurred

and an algorithm to recover from deadlock.

 Undetected deadlock will result in deterioration of the system performance.

3.5 Deadlock Prevention

 For a deadlock to occur each of the four necessary conditions must hold. If at least

one of these conditions does not hold then we can prevent occurrence of deadlock.

o Mutual Exclusion:This holds for non-sharable resources. For ex, A printer can

be used by only one process at a time. Mutual exclusion is not possible in

sharable resources and thus they cannot be involved in deadlock. Read-only files

are good examples for sharable resources.

o Hold and Wait:This condition can be eliminated by forcing a process to release

all its resources held by it when it requests a resource. Two possible

solutions(protocols) to achieve this are,

 One protocol can be used is that each process is allocated with all of its

resources before it starts execution.

 Another protocol that can be used is to allow a process to request a resource

when the process has none.

 To illustrate the difference between these two protocols, we consider a

process that copies data from a DVD drive to a file on disk, sorts the file, and

then prints the results to a printer. If all resources must be requested at the

beginning of the process, then the process must initially request the DVD

drive, disk file, and printer. It will hold the printer for its entire execution,

even though it needs the printer only at the end.

 The second method allows the process to request initially only the DVD drive

and disk file. It copies from the DVD drive to the disk and then releases both

the DVD drive and the disk file. The process must then again request the disk

file and the printer. After copying the disk file to the printer, it releases these

two resources and terminates.

 Both protocols have two main disadvantages. First, resource utilization is

low, since resources may be allocated but unused for a long period.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 5

 Second, starvation is possible. A process that needs several popular resources

may have to wait indefinitely, because at least one of the resources that it

needs is always allocated to some other process.

o No Preemption:To ensure that this condition never occurs the resources must be

preempted. The following protocols can be used.

 If a process is holding some resource and request another resource that cannot

be immediately allocated to it, then all the resources currently held by the

requesting process are preempted and added to the list of resources for which

other processes may be waiting. The process will be restarted only when it

regains the old resources and the new resources that it is requesting.

 When a process request resources, we check whether they are available or not.

If they are available we allocate them else we check that whether they are

allocated to some other waiting process. If so we preempt the resources from

the waiting process and allocate them to the requesting process. Otherwise,

the requesting process must wait.

o Circular Wait:One way to ensure that this condition never holds is to impose

total ordering of all resource types and each process requests resource in an

increasing order.For ex, Let R={R1,R2,………Rm} be the set of resource types.

We assign each resource type with a unique integer value. This allows us to

compare two resources and determine whether one precedes the other in ordering.

We can define a one to one function F:RN as follows,

F(disk drive)=5, F(printer)=12, F(tape drive)=1

 Deadlock can be prevented by using the following protocols.

 Each process can request the resource in increasing order. A process can

request any number of instances of resource type say Ri and it can request

instances of resource type Rj only F(Rj) > F(Ri).

 Alternatively when a process requests an instance of resource type Rj, it has

released any resource Ri such that F(Ri) >= F(Rj).

 If these two protocols are used then the circular wait cannot hold.

3.6 Deadlock Avoidance

 Deadlock prevention algorithm may lead to low device utilization and reduces system

throughput.

 Avoiding deadlocks requires additional information about how resources are to be

requested. With the knowledge of the complete sequences of requests and releases we

can decide for each requests whether the process should waitor not.

 For each requests it requires checking of the resources currently available, resources

that are currently allocated to each processes, future requests and release of each

process to decide whether the current requests can be satisfied or must wait to avoid

future possible deadlock.

 A deadlock avoidance algorithm dynamically examines the resources allocation state

to ensure that a circular wait condition never exists. The resource allocation state is

defined by the number of available and allocated resources and the maximum demand

of each process.

 Safe State

 A state is a safe state in which there exists at least one order in which all the

process will run completely without resulting in a deadlock.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 6

 A system is in safe state if there exist a safe sequence.

 A sequence of processes <P1,P2,…….Pn> is a safe sequence for the current

allocation state if, for each Pi, the resources requests that Pi can still make and it

can be satisfied by the currently available resources plus the resources held by all

pj, with j<i.

 If the resources that Pi requests are not currently available then Pi can wait until all

Pjhave finished. When they have finished, Pi can obtain all of its needed resource

to complete its designated task.

 A safe state is not a deadlocked state. But, a deadlocked state is an unsafe state.

 Not all unsafe states are deadlocked. An unsafe state maylead to a deadlock. It is

shown in below figure.

 For Ex, Consider a system with 12 magnetic tape drives and three processes Po,

P1, and P2. Process Porequires ten tape drives, process P1may need as many as

four tape drives, and process P2 may need up to nine tape drives. Suppose that, at

time to, process Pois holding five tape drives, process P1 is holding two tape

drives, and process P2 is holding two tape drives. (there are 3 free tape drives.)

Maximum Needs Current Needs (allocated)

P0 10 5

P1 4 2

P2 9 2

 At time t0, the system is in a safe state. The sequence <P1, P0, P2> satisfies the

safety condition.

 A system can go from a safe state to an unsafe state. Suppose that, at time t1,

process P2 requests and is allocated one more tape drive. The system is no longer

in a safe state. Only process P1 can be allocated all its tape drives.

 Whenever a process request a resource that is currently available, the system must

decide whether resources can be allocated immediately or whether the process

must wait. The request is granted only if the allocation leaves the system in safe

state.

 Resource Allocation Graph Algorithm

 This algorithm is used only if we have one instance of a resource type. In

addition to the request edge and the assignment edge a new edge called claim

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 7

edge is used.A claim edge PiRj indicates that process Pi may request Rj in

future. The claim edge is represented by a dotted line.

 When a process Pi requests the resource Rj, the claim edge is converted to a

request edge.When resource Rj is released by process Pi, the assignment

edgeRj Pi is replaced by the claim edge PiRj.

 When a process Pi requests resource Rj the request is granted only if converting

the request edge PiRj to as assignment edge Rj Pi do not result in a cycle.

 Cycle detection algorithm is used to detect the cycle. If there are no cycles then

the allocation of the resource to process leave the system in safe state.

 To illustrate this algorithm, we consider the resource-allocation graph shown in

below figure.

 Suppose that P2requests R2 but we cannot allocate it to P2 even if R2 is currently

free, because this will create a cycle in the graph as shown in figure.

 A cycle indicates that the system is in an unsafe state. If P1 requests R2, and P2

requests R1, then a deadlock will occur.

 Banker’s Algorithm

 This algorithm is applicable to the system with multiple instances of each

resource types, but this is less efficient than the resource allocation graph

algorithm.

 When a new process enters the system it must declare the maximum number of

resources that it may need. This number may not exceed the total number of

resources in the system. The system must determine that whether the allocation of

the resources will leave the system in a safe state or not. If it is so resources are

allocated else it should wait until the process release enough resources.

 Several data structures are used to implement the banker‟s algorithm. Let „n‟ be

the number of processes in the system and „m‟ be the number of resources types.

The following data structures are needed.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 8

o Available: A vector of length m indicates the number of available resources.

If Available[j]=k, then k instances of resource type Rj is available.

o Max: An n*m matrix defines the maximum demand of each process.If

Max[i][j]=k, then Pi may request at most k instances of resource type Rj.

o Allocation: An n*m matrix defines the number of resources of each type

currently allocated to each process. If Allocation[i][j]=k, then Pi is currently

allocated k instances of resource type Rj.

o Need: An n*m matrix indicates the remaining resources need of each process.

If Need[i][j]=k, then Pi may need k more instances of resource type Rj to

complete its task. So Need[i][j]=Max[i][j]-Allocation[i][j].

 Safety Algorithm

 This algorithm is used to find out whether a system is in safe state or not.

The algorithm can be described as follows,

Step 1. Let Work and Finish be two vectors of length m and n

respectively.Initialize work = available and Finish[i]=false for

i=1,2,3,…….n

 Step 2. Find i such that both

 Finish[i]==false

 Needi≤ Work

 If no such i exists, then go to step 4

 Step 3. Work = Work +Allocation

 Finish[i]=true

 Go to step 2

 Step 4. If Finish[i]==true for all i, the system is in safe state.

 This algorithm may require an order of m*n
2
 operation to decide whether

a state is safe.

 Resource Request Algorithm

 Let Requesti be the request vector of process Pi. If Requesti[j]==k, then

process Pi wants k instances of the resource type Rj. When a request for

resources is made by process Pi the following actions are taken.

Step 1:If Requesti≤Needi , go to step 2. Otherwise raise an error

condition, since the process has exceeded its maximum claim.

Step 2:If Requesti≤Available, go to step 3. Otherwise Pi must wait,

since the resources are not available.

Step 3:The system pretend to have allocated the requested resources to

process Pi,then modify the state as follows.

 Available = Available – Requesti

 Allocationi = Allocationi+Requesti

 Needi = Needi – Requesti

 If the resulting resource allocation state is safe, the transaction is complete

and Pi is allocated its resources. If the new state is unsafe, then Pi must

wait for Requesti and old resource allocation state is restored.

 An Illustrative Example

 To illustrate the use of the banker's algorithm, consider a system with five

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 9

Processes Pothrough P4and three resource types A, B, and C. Resource

type Ahas ten instances, resource type B has five instances, and resource

type C hasseven instances. Suppose that, at time T0, the following

snapshot of the system has been taken.

a)

Allocation MaxAvailable

 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 00 3 2 2

 P2 3 02 9 0 2

 P3 2 11 2 2 2

 P4 0 02 4 3 3

 The content of the matrixNeedis defined to be Max - Allocationand is as

follows:

Need

A B C

P07 4 3

P11 2 2

P26 0 0

P30 1 1

P44 3 1

Now, we have to applysafety algorithmto this snapshot as shown below,

P0 →7 4 3 ≤ 3 3 2 is false,

 P1→1 2 2≤ 3 3 2 is true, so work=work + allocation

 work=3 3 2 + 2 0 0=5 3 2

 P2→600≤5 3 2 is false,

 P3 → 011≤5 3 2 is true, so work=5 3 2 + 2 1 1=7 4 3

 P4→4 3 1≤74 3 is true, so work=7 4 3 + 0 0 2=7 4 5

 P2→600≤7 4 5 is true, so work=7 4 5 + 3 0 2=10 4 7

 P0 →7 4 3 ≤10 47 is true, so work=10 4 7 + 0 1 0=10 5 7

 We claim that the system is currently in a safe state. The sequence

<Pl, P3, P4, P2, Po> satisfies the safety criteria.

b)Suppose now the process P1 requests one additional instance of resource type A

and two instances of resource type C, so Request1= (1,0,2).

 To decide whether this request can be immediately granted, we first check that

from Resource request algorithm,

Request1≤ Need1, that is, (1,0,2) ≤ (1,2,2), which is true then,

Request1≤Available, that is, (1,0,2) ≤ (3,3,2), which is true. Then we arrive at

the following new state:

Allocation Need Available

 A B C A B C A B C

 P00 1 0 7 4 3 2 3 0

P13 0 2 0 2 0

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 10

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

 Now we must determine whether this new system state is safe. We execute

safety algorithm as shown belowand find that the sequence <P1, P3, P4, Po,

P2>satisfies the safety requirement. Hence the request can be immediately

granted.

P0 →7 4 3 ≤ 2 3 0 is false,

 P1→0 2 0≤ 2 3 0 is true, so work=work + allocation

 work=2 3 0+ 3 0 2=5 3 2

 P2→600≤5 3 2 is false,

 P3 →011 ≤5 3 2 is true, so work=5 3 2 + 2 1 1=7 4 3

 P4→ 4 3 1 ≤74 3 is true, so work=7 4 3 + 0 0 2=7 4 5

 P0 →7 4 3 ≤7 4 5 is true, so work=7 4 5 + 0 1 0=7 5 5

 P2→6 0 0 ≤7 55 is true, so work=7 5 5 + 3 0 2=10 5 7

c) Suppose P4 request for (3,3,0) can it be granted immediately? From

Resource Request Algorithm, we must see that when the system is in this

state, a request for (3,3,0) by P4cannot be granted, since the resources are not

available, that is, Request4≤ Need4, (3,3,0)≤(4,3,1)……true

Request4≤ Available, (3,3,0) ≤ (2,3,0)……false

d) Similarly, a request for (0,2,0) by Pocannot be granted, even though the

resources are available, because the resulting state is unsafe.

that is, Request4≤ Need1, (0,2,0) ≤ (7,4,3)……true

 Request1≤Available1, (0,2,0) ≤ (2,3,0)……true

Now the snapshot changes as follows,

Allocation Need Available

 A B C A B C A B C

P00 3 0 7 2 3 2 1 0

 P13 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

Then we are supposed to applysafety algorithmto this snapshot as shown

below, but no safe sequence is generated, hence the request for (0,2,0) by

Pocannot be granted.

That is, Needi ≤ Available

P0→7 2 3 ≤2 1 0 is false

 P1→0 2 0 ≤2 1 0 is false

 P2→600 ≤2 1 0 is false

 P3→011 ≤2 1 0 is false

 P4 →4 3 1≤ 2 1 0 is false

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 11

3.7 Deadlock Detection

 If a system does not employ either deadlock prevention or a deadlock avoidance

algorithm then a deadlock situation may occur. In this environment the system must

provide,

o An algorithm that examines the state of the system to determine whether a

deadlock has occurred.

o An algorithm to recover from the deadlock.

 Single Instances of each Resource Type

 If all the resources have only a single instance then we can define deadlock

detection algorithm that uses a variant of resource allocation graph as shown in

below figure (a) called a wait-for graphas shown in below figure (b). This

graph is obtained by removing the resource nodes and collapsing appropriate

edges.

 An edge from Pi to Pj in wait for graph implies that Pi is waiting for Pj to release a

resource that Pi needs.

 An edge from Pi to Pj exists in wait for graph if and only if the corresponding

resource allocation graph contains the edges PiRq and RqPj.

 Deadlock exists within the system if and only if there is a cycle. To detect

deadlock the system needs an algorithm that searches for cycle in a graph.

 Several Instances of Resource Type

 The wait-for graph scheme is not applicable to a resource-allocation system with

multiple instances of each resource type.

 The deadlock detection algorithm includes following time-varying data structures.

o Available. A vector of length mindicates the number of available resources of

each type.

o Allocation. An n*mmatrix defines the number of resources of each type

currently allocated to each process.

o Request. An n*m matrix indicates the current request of each process. If

Request[i][j]=k then Pi is requesting k more instances of resources type Rj.

 The deadlock detection algorithm can be defined as follows,

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 12

Step 1. Let Work and Finish be vectors of length m and n respectively. Initialize

Work= Available. For i=0,1,2……….n-1, if allocationi≠0 then Finish[i]=false,

else Finish[i]=true.

Step 2. Find an index i such that both

Finish[i]= false

Requesti≤Work

If no such i exists, go to step 4.

Step 3. Work = Work + Allocationi

Finish[i] = true

Go to step 2.

Step 4. If Finish[i] ==false, for some i where 0≤i<n, then a system is in a

deadlock state.

 To illustrate this algorithm, we consider a system with five processes P0through

P4and three resource types A, B, and C. Resource type A has seven instances,

resource type B has two instances, and resource type C has six instances. Suppose

that, at time T0, we have the following resource-allocation state:

a)

 Allocation Request Available

 A B C A B C A B C

 P0 0 10 0 0 0 0 0 0

 P1 2 00 2 0 2

 P2 3 03 0 0 0

 P3 2 11 1 0 0

 P4 0 02 0 0 2

 From the above deadlock detection algorithm, the sequence <P0, P2, P3, P1, P4>or

<P0, P2, P3, P4, P1>will result in Finish[i]== true for all i. The steps includes,

Requesti≤ work, that is,

P0 →0 0 0 ≤0 0 0 is true, so work=work + allocation

 work=0 0 0+ 0 1 0=0 1 0

 P1→ 2 0 2≤ 0 1 0 is false,

 P2 →0 00 ≤ 010 is true, so work=0 1 0 + 3 0 3=3 1 3

 P3 →1 0 0 ≤3 1 3 is true, so work=3 1 3 + 2 1 1=5 2 4

 P4→0 0 2 ≤ 5 2 4 is true, so work=5 2 4 + 0 0 2=5 2 6

 P1→2 0 2 ≤ 5 2 6 is true, so work=5 2 6+ 2 0 0= 7 2 6

If P2 requests an additional instance of typeCie., (0, 0, 1), the Request matrix is

modified as follows,

 Request

 A B C

 P0 0 00

 P1 2 02

 P2 0 0 1

 P3 1 00

 P4 0 02

From the deadlock detection algorithm,That is, Requesti≤ work,

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 13

P0 →0 0 0 ≤0 0 0 is true, so work=work + allocation

 work=0 0 0+ 0 1 0=0 1 0

P1→ 2 0 2≤ 0 1 0 is false,

 P2 →0 0 1 ≤ 010 is false,

 P3 →1 0 0 ≤0 1 0 is false,

 P4→0 0 2 ≤ 0 1 0is false,

 The system is now deadlocked. Even though we can reclaim resources held by

process P0, but number of available resources is not sufficient to fulfill the

requests of other processes.Thus, deadlock exists, consisting of processes P1, P2,

P3, and P4.

 Detection algorithm usage

 This algorithm helps to find,

o How often a deadlock is likely to occur?

o Howmanyprocesses will be affected by deadlock when it happens?

 We can invoke the deadlock detection algorithm when a request for allocation

cannot be granted immediately.

 If detection algorithm is invoked for every resource request, this will cause a

computational time overhead. So the algorithm must be invoked less frequently.

3.8 Recovery from Deadlock
 There are two options for breaking a deadlock,

o One is to abort one or more processes to break the circular wait.

o The other is to preempt some resources from one or more of the deadlocked

processes.

 Process Termination

 To eliminate deadlocks by aborting a process, one of two methods can be used.

In both methods, the system reclaims all resources allocated to the terminated

processes.

o Abort all deadlocked processes. This method breaks the deadlock cycle,

but at great expense.

o Abort one process at a time until the deadlock cycle is eliminated. This

method causes overhead, since after each process is aborted, a deadlock-

detection algorithm must be invoked to determine whether any processes

are still deadlocked.

 Aborting a process is not a easy task. If the process was in the middle of updating

a file, terminating it will leave that file in an incorrect state.

 If the partial termination method is used, then we must determine which

deadlocked process (or processes) should be terminated.

 We should abort those processes whose termination will incur the minimum cost.

The following factors are considered to select the process.

1. What the priority of the process is?

2. How long the process has computed and how much longer the process will

compute before completing its designated task?

3. How many and what types of resources the process has used?

4. How many more resources the process needs in order to complete?

5. How many processes will need to be terminated?

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 14

6. Whether the process is interactive or batch?

 Resource Preemption

 To eliminate deadlocks using resource preemption, we successively preempt

some resources from processes and give these resources to other processes until

the deadlock cycle is broken.

 The three issues need to be addressed are,

o Selecting a victim. Which resources and which processes are to be

preempted? We must determine the order of preemption to minimize cost.

o Rollback. We must roll back the preempted process to some safe state and

restart it from that state.

o Starvation. We must ensure that a process can be picked as a victim only a

small number of times. The most common solution is to include the number of

rollbacks in the cost factor.

Solved Exercises (VTU QP problems)

1. Consider given chart where maximum resource available of type A, B, C and D are 3, 14, 12

and 12 respectively, and answer i) what is content of matrix need? ii) Is system safe?If yes give

safe sequence. iii) If request comes from P1 as(0,4,2,0), can it be granted ?

Allocation Max Available

 ABCD ABCD ABCD

P0 0012 0012 1 520

P1 1000 1750

P2 1354 2356

P3 0632 0652

P4 0014 0656

a) The content of the matrixNeedis defined to be Max - Allocationand is as follows:

Need

A B C D

P00 0 0 0

P1075 0

P21 0 0 2

P30 02 0

P40 64 2

Now, we have to applysafety algorithmto this snapshot as shown below,

P0 →00 0 0≤1 5 2 0 is true, so work=work + allocation

 work= 1 5 2 0 + 0 0 1 2=1 5 3 2

P1→0 7 5 0 ≤ 1 5 3 2 is false,

P2→1 0 0 2≤1 5 3 2 is true, so work=1 5 3 2 + 1 3 5 4=2 8 8 6

P3→0 020 ≤ 2 8 8 6 is true, so work=2 8 8 6 + 0 6 3 2=2 14 11 8

P4→064 2 ≤2 14 11 8 is true, so work=214 118+ 0 0 1 4=2 14 12 12

P1→0 7 5 0≤214 1212 is true, so work=214 1212+ 1 0 0 0=314 12 12

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 15

 We claim that the system is currently in a safe state. The sequence < Po,P2, P3, P4, Pl>

satisfies the safety criteria.

b) Suppose now the process P1 requests for (0,4,2,0). To decide whether this request can be

immediately granted, we first check that,

Request1≤ Need1, that is, (0,4,2,0) ≤ (0,7,5,0)which is true then,

Request1≤Available, that is, (0,4,2,0) ≤ (1,5,2,0) which is true.

Then we arrive at the following new state:

Allocation Available

 ABC D ABCD

P0 001 2 1 1 0 0

P1 1 4 2 0

P2 135 4

 P3 063 2

P4 001 4

Need

A B C D

P00 0 0 0

P10 3 3 0

P21 0 0 2

P30 02 0

P40 64 2

 Now we must determine whether this new system state is safe. We execute safety

algorithm as shown below and find that the sequence <P0, P2, P3, P4, P1> satisfies the

safety requirement. Hence the request can be immediately granted.

P0 →00 0 0≤1 1 0 0 is true, so work=work + allocation

 work= 1 1 0 0 + 0 0 1 2=1 1 12

P1 →0 3 3 0 ≤ 1 11 2 is false,

P2 →1 0 02 ≤ 1 11 2 is true, so work=1 11 2 + 1 3 5 4=2 4 6 6

P3 →0 020 ≤2 4 6 6 is true, so work=2 4 6 6 + 0 6 3 2=2 10 9 8

P4 →064 2 ≤ 2 10 9 8 is true, so work=21098 + 0 0 1 4=2 10 10 12

P1→0 3 3 0 ≤ 2101012 is true, so work=2101012 + 142 0=3 1412 12

2.Consider a system consisting of m resources of the same type beingshared by n processes. A

process can request or release only one resourceat a time. Show that the system is deadlock free

if the following twoconditions hold:

a. The maximum need of each process is between one resource andm resources.

b. The sum of all maximum needs is less than m + n.

Solution:

 The given conditions can be written as

 Maxi≥1 for all i

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 16

 𝑀𝑎𝑥𝑖

𝑛

𝑖=1

< 𝑚 + 𝑛

 The need value can be calculated as, Needi=Maxi − Allocationi

 If there exists a deadlock then,

 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖
𝑛
𝑖=1 = m

 Therefore, ∑Needi+∑Allocationi = ∑Maxi<m+n

We get, ∑Needi+m<m+n

 Hence, ∑Needi< n

This implies there exist Pisuch that Needi=0.

Since Maxi≥1, Pihas atleast one resource to release. Hence no deadlock.

For ex, consider m=5, n=3 and below snapshot then we can trace out with above steps

and prove that no deadlock occurs.

 Max Allocation Available Need

P0 2 1 0 1

P1 3 2 1

P2 2 2 0

Also, by applying safety algorithm, we can generate a safe sequence as follows.

That is, Needi ≤ Available,

P0→1 ≤ 0 is false,

P1→1 ≤ 0 is false,

P2 →0 ≤ 0 is true, so work=work + allocation

 work= 0 + 2 =2

P0→1 ≤ 2 is true, so work=work + allocation

 work= 2 + 1 =3

P1 → 1 ≤ 3 is true, so work=work + allocation

 work= 3 + 2 =5

Hence, the safe sequence <P2, P0, P1>is generated and therefore no deadlock.

3.Using Banker‟s algorithm determine whether the following system is in a safe state.

Process Allocation Max Available

A B C A B C A B C

P0 0 02 0 0 4 10 2

P1 1 0 0 2 0 1

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 17

P2 1 3 5 1 3 7

P3 6 3 2 8 4 2

P4 1 4 3 1 5 7

If a request from process P2 arrives for (0 0 2), can the request be granted immediately?

a) The content of the matrixNeedis defined to be Max - Allocationand is as follows:

Need

A B C

P0 0 0 2

P1 1 0 1

P2 0 0 2

P3 2 1 0

P4 0 1 4

Now, we have to applysafety algorithmto this snapshot as shown below,

 P0 →0 0 2≤10 2 is true, so work=work + allocation

 work =1 0 2 + 0 0 2=1 0 4,

P1→1 01≤1 0 4 is true, so work=1 0 4 + 1 0 0=2 0 4,

P2→ 002≤2 0 4 is true, so work= 2 0 4 + 1 3 5=3 3 9

 P3 → 210≤3 3 9 is true, so work=3 3 9 + 6 3 2=9 6 11

 P4→0 14 ≤96 11is true, so work=9 6 11 + 1 4 3=10 10 14

 We claim that the system is currently in a safe state. The sequence

<P0, P1, P2, P3, P4> satisfies the safety criteria.

b) Suppose now the process P2 requests for the resources (0,0,2), so Request2= (0,0,2).

 To decide whether this request can be immediately granted or not, we have to

first check from Resource request algorithm that,

Request2≤ Need2, that is, (0,0,2) ≤ (0,0,2), which is true then,

Request2 ≤Available, that is, (0,0,2) ≤ (1,0,2), which is false.

Hence, a request for (0,0,2) by P2cannot be immediately granted, since the

resources are not available

 MEMORY MANAGEMENT STRATEGIES

3.9 Background

 Memory management is concerned with managing the primary memory.

 Memory consists of array of bytes or words each with its own address.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 18

 We can ignore howa program generates a memory address. We are interested only in

the sequence of memory addresses generated by the running program.

 Basic Hardware

 Main memory and the registers in the processor are the only storage that the

CPU can access directly. Hence the program and data must be brought from disk

into main memory for CPU to access.

 Registers can be accessed in one CPU clock cycle. But main memory access can

take many CPU clock cycles.

 A fast memory called cache is placed between main memory and CPU registers.

 We must ensure correct operation to protect the operating system from access

by user processes and also to protect user processes from one another. This

protection must be provided by the hardware. It can be implemented in several

ways and one such possible implementation is,

o We first need to make sure that each process has a separate memory space.

o To do this, we need the ability to determine the range of legal addresses that

the process may access and to ensure that the process can access only these

legal addresses.

o We can provide this protection by using two registers, a base and a limit, as

illustrated in below figure.

o The base register holds the smallest legal physical memory address; the

limit register specifies the size of the range. For example, if the base

register holds 300040 and the limit register is 120900, then the program can

legally access all addresses from 300040 through 420940.

 Protection of memory space is accomplished by having the CPU hardware

compare everyaddress generated in user mode with the registers.

 Any attempt by a program executing in user mode to access operating-system

memory or other users' memory results in a trap to the operating system, which

treats the attempt as a fatal error as shown in below figure.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 19

 This prevents a user program from (accidentally or deliberately) modifying the

code or data structures of either the operating system or other users.

 The base and limit registers uses a special privileged instructions which can be

executed only in kernel mode, and since only the operating system executes in

kernel mode, only the operating system can load the base and limit registers.

 Address Binding

 Programs are stored on the secondary storage disks as binary executable files.

 When the programs are to be executed they are brought in to the main memory

and placed within a process.

 The collection of processes on the disk waiting to enter the main memory forms

the input queue.

 One of the processes which are to be executed is fetched from the queue and is

loaded into main memory.

 During the execution it fetches instruction and data from main memory. After the

process terminates it returns back the memory space.

 During execution the process will go through several steps as shown in below

figure and in each step the address is represented in different ways.

 In source program the address is symbolic. The compiler binds the symbolic

address to re-locatable address.The loader will in turn bind this re-locatable

address to absolute address.

 Binding of instructions and data to memory addresses can be done at any step

along the way:

o Compile time: If we know at compile time where the process resides in

memory, then absolute code can be generated. For example, if we know that

a user process will reside starting at location R, then the generated compiler

code will start at that location and extend up from there. If, at some later time,

the starting location changes, then it will be necessary to recompile this code.

o Load time: If it is not known at compile time where the process will reside in

memory, then the compiler must generate relocatable code. In this case, final

binding is delayed until load time.

o Execution time: If the process is moved during its execution from one

memory segment to another then the binding is delayed until run time. Special

hardware is used for this. Most of the general purpose operating system uses

this method.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 20

 Logical versus physical address

 The address generated by the CPU is called logical address or virtual address.

 The address seen by the memory unit i.e., the one loaded in to the memory

register is called the physical address.

 Compile time and load time address binding methods generate samelogical and

physical address.The execution time addressing binding generate

differentlogical and physical address.

 Set of logical address space generated by the programs is the logical address

space.Set of physical address corresponding to these logical addresses is the

physical address space.
 The mapping of virtual address to physical address during run time is done by the

hardware device called Memory Management Unit (MMU).

 The base register is now called re-location register.

 Value in the re-location register is added to every address generated by the user

process at the time it is sent to memory as shown in below figure.

 For example, if the base is at 14000, then an attempt by the user to address

location 0 is dynamically relocated to location 14000; an access to location 346 is

mapped to location 14346. The user program never sees the real physical

addresses.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 21

 Dynamic Loading

 For a process to be executed it should be loaded in to the physical memory. The

size of the process is limited to the size of the physical memory.Dynamic loading

is used to obtain better memory utilization.

 In dynamic loading the routine or procedure will not be loaded until it is called.

 Whenever a routine is called, the calling routine first checks whether the called

routine is already loaded or not. If it is not loaded it calls the loader to load the

desired program in to the memory and updates the programs address table to

indicate the change and control is passed to newly invoked or called routine.

 The advantages are ,

o Gives better memory utilization.

o Unused routine is never loaded.

o Do not need special operating system support.

o Useful to handle infrequently occurring cases, such as error routines.

 Dynamic linking and Shared libraries

 Some operating system supports only the static linking.

 In dynamic linking only the main program is loaded in to the memory. If the main

program requests a procedure, the procedure is loaded and the link is established

at the time of references. This linking is postponed until the execution time.

 With dynamic linking a “stub” is used in the image of each library referenced

routine. A “stub” is a piece of code which is used to indicate how to locate the

appropriate memory resident library routine or how to load library if the

routine is not already present.

 When “stub” is executed it checks whether the routine is present is memory or

not. If not it loads the routine in to the memory.

 This feature can be used to update libraries i.e., library is replaced by a new

version and all the programs can make use of this library.

 More than one version of the library can be loaded in memory at a time and each

program uses its version of the library. Only the program that is compiled with the

new version is affected by the changes incorporated in it. Other programs linked

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 22

before new version was installed will continue using older library.This system is

called “shared libraries”.

3.10 Swapping

 A process can be swapped temporarily out of the memory to a backing store and

then brought back in to the memory for continuing the execution. This process is

called swapping.Ex. In a multi-programming environment with a round robin CPU

scheduling whenever the time quantum expires then the process that has just finished

is swapped out and a new process swaps in to the memory for execution as shown in

below figure.

 A variant of this swapping policy is priority based scheduling. When a low priority is

executing and if a high priority process arrives then a low priority will be swapped

out and high priority is allowed for execution. This process is also called as Roll out

and Roll in.

 Normally the process which is swapped out will be swapped back to the same

memory space that is occupied previously andthis depends upon address binding.

 The system maintains a ready queue consisting of all the processes whose memory

images are on the backing store or in memory and are ready to run.

 The context-switch time in a swapping system is high. For ex,assume that the user

process is 10 MB in size and the backing store is a standard hard disk with a transfer

rate of 40MB per second. The actual transfer of the 40MB process to or from main

memory takes,

10MB(10000KB)/40MB(40000KB) per second

=1/4 second =250 miliseconds

 Assuming an average latency of 8 milliseconds, the swap time is 258 milliseconds.

Since we must both swap out and swap in, the total swap time is about 516

milliseconds.

 Swapping is constrained by other factors,

o To swap a process, it should be completely idle.

o If a process is waiting for an I/O operation, then the process cannot be swapped.

3.11 Contiguous Memory Allocation

 The main memory must accommodate both the operating system and the various user

processes. One common method to allocate main memory in the most efficient way

is contiguous memory allocation.

 The memory is divided into two partitions, one for the resident of operating system

and one for the user processes.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 23

 Memory mapping and protection

 Relocation registers are used to protect user processes from each other, and to

protect from changing OS code and data.

 The relocation register contains the value of the smallest physical address and the

limit register contains the range of logical addresses.

 With relocation and limit registers, each logical address must be less than the

limit register.

 The MMU maps the logical address dynamicallyby adding the value in the

relocation register. This mapped address is sent tomain memory as shown in

below figure.

 The relocation-register scheme provides an effective way to allow the operating

system's size to change dynamically.

Memory Allocation

 One of the simplest methods for memory allocation is to divide memory in to

several fixed partition. Each partition contains exactly one process. The degree

of multi-programming depends on the number of partitions.

 In multiple partition method, when a partition is free, process is selected from

the input queue and is loaded in to free partition of memory.When process

terminates, the memory partition becomes available for another process.

 The OS keeps a table indicating which part of the memory is free and is occupied.

 Initially, all memory is available for user processes and is considered one large

block of available memory called a hole.

 When a process requests, the OS searches for large hole for this process. If the

hole is too large it is split in to two. One part is allocated to the requesting process

and other is returned to the set of holes.

 The set of holes are searched to determine which hole is best to allocate.

 Dynamic storage allocation problem is one which concerns about how to satisfy

a request of size n from a list of free holes. There are three strategies/solutions to

select a free hole,

o First bit: Allocates first hole that is big enough. This algorithm scans

memory from the beginning and selects the first available block that is

large enough to hold the process.

o Best bit: It chooses the hole i.e., closest in size to the request. It allocates

the smallest hole i.e., big enough to hold the process.

o Worst fit: It allocates the largest hole to the process request. It searches

for the largest hole in the entire list.

 First fit and best fit are the most popular algorithms for dynamic memory

allocation. All these algorithms suffer from fragmentation.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 24

 Fragmentation

 External Fragmentation exists when there is enough memory space exists to

satisfy the request, but it is not contiguous.Storage is fragmented into a large

number of small holes.

 External Fragmentation may be either minor or a major problem.

 Statistical analysis of first fit reveals that, even with some optimization, given N

allocated blocks, another 0.5 N blocks will be lost to fragmentation. That is, one-

third of memory may be unusable. This property is known as the 50-percent rule.

 Memory fragmentation can be internal as well as external. Consider a multiple-

partition allocation scheme with a hole of 18,464 bytes. Suppose that the next

process requests 18,462 bytes. If we allocate exactly the requested block, we are

left with a hole of 2 bytes.

 The overhead to keep track of this hole will be substantially larger than the hole

itself.

 The general approach to avoid this problem is to break the physical memory into

fixed-sized blocks and allocate memory in units based on block size. With this

approach, the memory allocated to a process may be slightly larger than the

requested memory.

 The difference between these two numbers is internal fragmentation that is

internal to a partition.

 One solution to over-come external fragmentation is compaction. The goal is to

move all the free memory together to form a large block. Compaction is possible

only if the re-location is dynamic and done at execution time.

 Another solution to the external fragmentation problem is to permit the logical

address space of a process to be non-contiguous. This can be achieved with

Paging and Segmentation schemes.

3.12 Paging

 Paging is a memory management scheme that permits the physical address space of

a process to be non-contiguous. Support for paging is handled by hardware.

 Paging avoids the considerable problem of fitting the varying sized memory chunks

on to the backing store.

 Basic Method

 Physical memory is broken in to fixed sized blocks called frames (f) and Logical

memory is broken in to blocks of same size called pages (p).

 When a process is to be executed its pages are loaded in to available frames from

the backing store. The backing store is also divided in to fixed-sized blocks of

same size as memory frames.

 The below figure shows paging hardware.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 25

 Logical address generated by the CPU is divided in to two parts: page number

(p) and page offset (d).

 The page number (p) is used as index to the page table. The page table contains

base address of each page in physical memory. This base address is combined

with the page offset to define the physical memory i.e., sent to the memory unit.

The paging model memory is shown in below figure.

 The page size is defined by the hardware. The size is the power of 2, varying

between 512 bytes and 16Mb per page.

 If the size of logical address space is 2
m

 address unit and page size is 2
n
, then high

order m-n designates the page number and n low order bits represents page

offset. Thus logic address is as follows.

page number page offset

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 26

m-n n

 Ex:To show how to map logical memory in to physical memory, consider a page

size of 4 bytes and physical memory of 32 bytes (8 pages) as shown in below

figure.

a. Logical address 0 is page 0 and offset 0 and Page 0 is in frame 5. The logical

address 0 maps to physical address [(5*4) + 0]=20.

b. Logical address 3 is page 0 and offset 3 and Page 0 is in frame 5.The logical

address 3 maps to physical address [(5*4) + 3]=23.

c. Logical address 4 is page 1 and offset 0 and page 1 is mapped to frame 6. So

logical address 4 maps to physical address [(6*4) + 0]=24.

d. Logical address 13 is page 3 and offset 1 and page 3 is mapped to frame 2.

So logical address 13 maps to physical address [(2*4) + 1]=9.

 In paging scheme, we have no external fragmentation. Any free frame can be

allocated to a process that needs it. But we may have some internal

fragmentation.

 If the memory requirements of a process do not happen to coincide with page

boundaries, the lastframe allocated may not be completely full.

 For example, if page size is 2,048 bytes, a process of 72,766 bytes will need 35

pages plus 1,086 bytes. It will be allocated 36 frames, resulting in internal

fragmentation of 2,048 - 1,086= 962 bytes.

 When a process arrives in the system to be executed, its size expressed in pages is

examined. Each page of the process needs one frame. Thus, if the process requires

p d

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 27

npages, at least nframes must be available in memory. If n frames are available,

they are allocated to this arriving process.

 The first page of the process is loaded in to one of the allocated frames, and the

frame number is put in the page table for this process. The next page is loaded

into another frame and its frame number is put into the page table and so on, as

shown in below figure (a) before allocation, (b) after allocation.

 Hardware Support

 The hardware implementation of the page table can be done in several ways. The

simplest method is that the page table is implemented as a set of dedicated registers.

 The use of registers for the page table is satisfactory if the page table is reasonably

small (for example, 256 entries). But most computers, allow the page table to be very

large (for example, 1 million entries) and for these machines, the use of fast registers

to implement the page table is not feasible.

 So the page table is kept in the main memory and a page table base register (PTBR)

points to the page table and page table length register (PTLR) indicates size of page

table. Here two memory accesses are needed to access a byte and thus memory access

is slowed by a factor of 2.

 The only solution is to use a special, fast lookup hardware cache called Translation

look aside buffer(TLB). TLB is associative, with high speed memory. Each entry in

TLB contains two parts, a key and a value. When an associative register is presented

with an item, it is compared with all the key values.If found, the corresponding value

field is returned. Searching is fast but hardware is expensive.

 TLB is used with the page table as follows,

o TLB contains only few page table entries.

o When a logical address is generated by the CPU, its page number is presented to

TLB.

o If the page number is found, then its frame number is immediately available

(TLB hit) andis used to access the actual memory.If the page number is not in the

TLB (TLB miss) the memory reference to the page table must be made.

o When the frame number is obtained we can use it to access the memory as shown

in below figure.The page number and frame number are added to the TLB, so

that they will be found quickly on the next reference.

o If the TLB is full of entries, the OS must select anyone for replacement.

o Some TLBs allow entries to be wired down meaning that they cannot be removed

from the TLB.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 28

 Some TLBs store Address Space Identifiers (ASIDs) in each TLB entry. An ASID

uniquely identifies each process and is used to provide address-space protection for

that process.

 The percentage of time that a page number is found in the TLB is called hit ratio.

 For example, an 80-percent hit ratio means that we find the desired page number in

the TLB 80 percent of the time. If it takes 20 nanoseconds to search the TLB and 100

nanoseconds to access memory, then a mapped-memory access takes 120

nanoseconds when the page number is in the TLB. If we fail to find the page

number in the TLB (20 nanoseconds), then we must first access memory for the page

table and frame number (100 nanoseconds) and then access the desired byte in

memory (100 nanoseconds), for a total of 220 nanoseconds. Thus the effective

access time is,

Effective Access Time (EAT)= 0.80 x 120 + 0.20 x 220

= 140 nanoseconds.

In this example, we suffer a 40-percent slowdown in memory-access time (from 100 to

140 nanoseconds).

 For a 98-percent hit ratiowe have

 Effective Access Time (EAT) = 0.98 x 120 + 0.02 x 220

= 122 nanoseconds.

 This increased hit rate produces only a 22 percent slowdown in access time.

 Protection

 Memory protection in paged environment is done by protection bits that are

associated with each frame.These bits are kept in page table.

 One bit can define a page to be read-write or read-only.

 One more bit is attachedto each entry in the page table, a valid-invalid bit.

 A valid bit indicates that associated page is in the process‟s logical address space and

thus it is a legal or valid page.

 If the bit is invalid, it indicates the page is not in the process‟s logical address space

and is illegal. Illegal addresses are trapped by using the valid-invalid bit.

 The OS sets this bit for each page to allow or disallow accesses to that page.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 29

 For example, in a system with a 14-bit address space (0 to 16383), we have a

program that should use only addresses 0 to 10468. Given a page size of 2 KB, we

have the situation shown in below figure. Addresses in pages 0, 1, 2, 3, 4, and 5 are

mapped normally through the page table. Any attempt to generate an address in pages

6 or 7, we find that the valid -invalid bit is set to invalid, and the computer will trap

to the operating system (invalid page reference).

 Shared

Pages

 An advantage of paging is the possibility of sharing common code. This

consideration is particularly important in a time-sharing environment.

 Consider a system that supports 40 users, each of whom executes a text editor. If the

text editor consists of 150 KB of code and 50 KB of data space, we need 8,000 KB to

support 40 users. If the code is reentrant code (or pure code) it can be shared as

shown in below figure. Here there are three-page editor-each page 50 KB in size and

are being shared among three processes. Each process has its own data page.

 Reentrant code is non-self-modifying code(Read only). It never changes during

execution. Thus, two or more processes can execute the same code at the same time.

 Each process has its own copy of registers and data storage to hold the data for the

process's execution.

 Thus, to support 40 users, we need only one copy of the editor (150 KB), plus 40

copies of the 50 KB of data space per user. The total space required is now 2150 KB

instead of 8,000 KB. (i.e., 150+40*50= 2150 KB).

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 30

3.13 Structure of the Page Table

 Hierarchical paging

 Recent computer system support a large logical address apace from 2
32

 to 2
64

and thus page table becomes large. So it is very difficult to allocate

contiguous main memory for page table. One simple solution to this problem

is to divide page table in to smaller pieces.

 One way is to use two-level paging algorithm in which the page table itself

is also paged as shown in below figure.

 Ex. In a 32- bit machine with page size of 4kb, a logical address is divided in

to a page number consisting of 20 bits and a page offset of 12 bit. The page

table is further divided since the page table is paged, the page number is

further divided in to 10 bit page number and a 10 bit offset. So the logical

address is,

 Page number page offset

P1 P2 d

 10 10 12

 P1 is an index into the outer page table and P2is the displacement within the

page of the outer page table. The address-translation method for this

architecture is shown in below figure. Because address translation works from

the outer page table inward, this scheme is also known as aforward-mapped

page table.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 31

 For a system with a 64-bit logical address space, a two-level paging scheme is

no longer appropriate. Suppose the page size in such a system is

4 KB the page table consists of up to 2
52

 entries. If we use a two-level paging

scheme, then the inner page tables can be one page long, or contain 2
10

 4-byte

entries. The addresses look like this,

Outer page inner page offset

P1 P2 d

 42 10 12

 The outer page table consists of 2
42

 entries, or 2
44

 bytes. The one way to avoid

such a large table is to divide the outer page table into smaller pieces.

 We can avoid such a large table usingthree-level paging scheme.

2
nd

 outer page outer page inner page offset

P1 P2 P3 d

 32 10 10 12

 The outer page table is still 2
34

 bytes in size. The next step would be a four-

level paging scheme.

 Hashed page table

 Hashed page table handles the address space larger than 32 bit. The virtual

page number is used as hash value. Linked list is used in the hash table which

contains a list of elements that hash to the same location.

 Each element in the hash table contains the following three fields,

o Virtual page number

o Mapped page frame value

o Pointer to the next element in the linked list

 The algorithm works as follows,

o Virtual page number is taken from virtual/logical address space and is

hashed in to the hash table.

o Virtual page number is compared with field 1 of the first element in the

linked list.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 32

o If there is a match, the corresponding page frame in field 2 is used to form

the desired physical address. If there is no match, subsequent entries in the

linked list are searched for matching virtual/logical page number. This

scheme is shown in above figure.

o Clustered pages are similar to hash table but one difference is that each

entity in the hash table refer to several pages.

 Inverted Page Tables

 Page tables may consume large amount of physical memory just to keep track

of how other physical memory is being used.

 To solve this problem, we can use an inverted page table that has one entry for

each real page (or frame) of memory. Each entry consists of the virtual

address of the page stored in that real memory location with information about

the process that owns the page.

 Thus, only one page table is in the system, and it has only one entry for each

page of physical memory. The below figure shows the operation of an

inverted page table.

 The inverted page table entry is a pair <process-id, page number>. Where

process-id assumes the role of the address-space identifier. When a

memory reference is made, the part of virtual address consisting of <process-

id, page number>is presented to memory sub-system.

 The inverted page table is searched for a match. If a match is found at entry i,

then the physical address <i, offset> is generated. If no match is found then an

illegal address access has been attempted.

 This scheme decreases the amount of memory needed to store each page

table, but increases the amount of time needed to search the table when a page

reference occurs.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 33

3.14 Segmentation

 Basic method
 Users prefer to view memory as a collection of variable-sized segments, with no

ordering among segments as shown in below figure.

 Segmentation is a memory-management scheme that supports the user view of

memory.

 A logical address is a collection of segments. Each segment has a name and

length. The address specifies both the segment name and the offset within the

segments.

 The segments are numbered and are referred by a segment number. So the logical

address consists of<segment number, offset>.

 Hardware

 Segment tablemaps2-Dimensional user defined address in to

1-Dimensional physical address.

 Each entry in the segment table has a segment base and segment limit.

 The segment base contains the starting physical address where the segment

resides and limit specifies the length of the segment.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.3 Deadlocks, Memory Management M3- 34

 The use of segment table is shown in the below figure.

 Logical address consists of two parts, segment number s and an offset d.

 The segment number is used as an index to segment table.The offset must be in

between 0 and limit, if not an error is reported to OS.

 If legal the offset is added to the base to generate the actual physical address.

 The segment table is an array of base-limit register pairs.

 For example, consider the below figure. We have five segments numbered from

0 through 4. Segment 2 is 400 bytes long and begins at location 4300. Thus, a

reference to byte 53 of segment 2 is mapped onto location 4300 +53= 4353. A

reference byte 852 of segment 3, is mapped to 3200 (the base of segment 3) + 852

= 4052. A reference to byte 1222 of segment 0 would result in a trap to the

operating system, as this segment is only 1,000 bytes long.

---0O0---

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 1

MODULE-4
 VIRTUAL MEMORY MANAGEMENT

 Virtual memory is a technique that allows the execution of processes that are not

completely in memory.

 The main advantage of this scheme is that programs can be larger than physical memory.

 Virtual memory also allows processes to share files easily and to implement shared

memory. It also provides an efficient mechanism for process creation.

 But virtual memory is not easy to implement.

4.1 Background

 An examination of real programs shows us that, in many cases, the entire program is

not needed to be in physical memory to get executed.

 Even in those cases where the entire program is needed, it may not need all to be at

the same time.

 The ability to execute a program that is only partially in memory would confer many

benefits,

o A program will not be limited by the amount of physical memory that is

available.

o More than one program can run at the same time which can increase the

throughput and CPU utilization.

o Less I/O operation is needed to swap or load user program in to memory. So

each user program could run faster.

 Virtual memory involves the separation of user’s logical memory from physical

memory. This separation allows an extremely large virtual memory to be provided

for programmers when there is small physical memory as shown in below figure.

 The virtual address space of a process refers to the logical (or virtual) view of how a

process is stored in memory.

 In below figure, we allow heap to grow upward in memory as it is used for dynamic

memory allocation andstack to grow downward in memory through successive

function calls.

 The large blank space (or hole) between the heap and the stack is part of the virtual

address space but will require actual physical pages only if the heap or stack grows.

 Virtual address spaces that include holes are known as sparse address spaces.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 2

 Virtual memory allows files and memory to be shared by two or more processes

through page sharing. This leads to the following benefits,

o System libraries can be shared by several processes through mapping of the

shared object into a virtual address space as shown in below figure.

o Virtual memory allows one process to create a region of memory that it can

share with another processas shown in below figure.

o Virtual memory can allow pages to be shared during process creation with

the fork()

system call

thus

speeding up

process

creation.

4.2 Demand Paging

 Virtual memory is implemented using Demand Paging.

 A demand paging is similar to paging system with swapping as shown in below

figurewhere the processes reside in secondary memory.

 When we want to execute a process we swap it in to memory.Rather than swapping

the entire process into memory we use a lazy swapper whichnever swaps a page into

memory unless that page will be needed.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 3

 A swapper manipulates entire process, whereas apager is concerned with the

individual pages of a process. We thus use pagerrather than swapperin connection

with demand paging.

 Basic concepts

 We need some form of hardware support to distinguish between the pages that are

in memory and the pages that are on the disk.

 The valid-invalid bit scheme can provide this .If the bit is valid then the page is both

legal and is in memory.If the bit is invalid then either the page is not valid or is valid

but is currently on the disk.

 The page-table entry for a page that is brought into memory is set as valid but the

page-table entry for a page that is not currently in memory is either simply marked

invalid or contains the address of the page on disk as shown in below figure.

 Access to the page which is marked as invalid causes a page fault trap.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 4

The steps for handling page fault is straight forward and is shown in below figure,

1. We check the internal table usually PCB (Process Control Block)of the process to

determine whether the reference made is valid or invalid.

2. If invalid, terminate the process. If valid, then the page is not yet loaded and we

now page it in.

3. We find a free frame.

4. We schedule disk operation to read the desired page in to newly allocated frame.

5. When disk read is complete, we modify the internal table kept with the process to

indicate that the page is now in memory.

6. We restart the instruction which was interrupted by the trap. The process can now

access the page.

 In extreme cases, we can start executing the process without pages in memory. When

the OS sets the instruction pointer of process which is not in memory, it generates a

page fault. After this, page is brought in to memory then the process continues to

execute and faulting every time until every page that it needs is in memory. This

scheme is known as pure demand paging. That is, it never brings the page in to

memory until it is required.

 The hardware support for demand paging is same as paging and swapping.

o Page table: It has the ability to mark an entry invalid through valid-invalid bit.

o Secondary memory: This holds the pages that are not present in main memory. It

is a high speed disk.It is known as the swap device, and the section of disk used

for this purpose is known as swap space.

 A crucial requirement for demand paging is the need to be able to restart any

instruction after a page fault.

 A page fault may occur at any memory reference. If the page fault occurs on

instruction fetch, we can restart by fetching the instruction again.

 If a page fault occurs while we are fetching an operand, we must fetch and decode the

instruction again and then fetch the operand.

 As an example, consider three-address instruction such as ADD the content of A to

B, placing the result in C. These are the steps to execute this instruction:

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 5

1. Fetch and decode the instruction (ADD).

2. Fetch A.

3. Fetch B.

4. Add A and B.

5. Store the sum in C.

 If we fault when we try to store in C (because C is in a page not currently in

memory), we have to get the desired page, bring it into memory, correct the page

table, and restart the instruction.

 The restart will require fetching the instruction again, decoding it again, fetching the

two operands again, and then adding again.

 Performance of demand paging

 Demand paging can have significant effect on the performance of the computer

system.

 Let us compute the effective access time for a demand-paged memory.

 The memory-access time, denoted ma, ranges from 10 to 200 nanoseconds. As long

as we have no page faults, the effective access time is equal to the memory access

time.

 If a page fault occurs, we must first read the relevant page from disk and then access

the desired word.

 Letpbe the probability of a page fault (0<=p<=1). The effective access time is then,

Effective Access Time= (1 - p) *ma + p * page fault time.

 To compute the effective access time, we must know how much time is needed to

service a page fault. A page fault causes the following sequence to occur,

1. Trap to the OS.

2. Save the user registers and process state.

3. Determine that the interrupt was a page fault.

4. Check that the page reference was legal and determine the location of the

page on disk.

5. Issue a read from disk to a free frame.

a. Wait in a queue for this device until the read request is serviced.

b. Wait for the device seek and/or latency time.

c. Begin the transfer of the page to a free frame.

6. While waiting, allocate the CPU to some other user.

7. Receive an interrupt from the disk I/O subsystem.

8. Save the registers and process statefor the other user.

9. Determine that the interrupt was from the disk.

10. Correct the page table and other table to show that the desired page is

now in memory.

11. Wait for the CPU to be allocated to this process again.

12. Restore the user registers,process state and new page table, then resume

the interrupted instruction.

 The three major components of the page-fault service time,

1. Service the page-fault interrupts.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 6

2. Read in the page.

3. Restart the process.

 With an average page-fault service time of 8 milliseconds and a memory access

time of 200 nanoseconds, the effective access time in nanoseconds is

Effective Access Time = (1 - p) * (200) + p (8 milliseconds)

= (1 - p) * 200 + p * 8,000,000

= 200 + 7,999,800 *p.

 The effective access time is directly proportional to thepage-fault rate.

 If one access out of 1,000 causes a page fault, the effective access time is 8.2

microseconds. The computer will be slowed down by a factor of 40 because of

demand paging. If we want performance degradation to be less than 10 percent,

then,

10% of 200 ns = 20, ie., 220 ns.

So,

220> 200 + 7,999,800 *p,

20 >7,999,800 *p,

P <7,999,800 ÷ 20

p< 0.0000025 (less than 10% hike in memory access time)

or

7,999,800 ÷ 20 = 3,99,999

From this we can conclude that, allow one page out of 3,99,990 to fault.

So memory access time will be less than 10%.

4.3 Copy-on-write

 Copy-on-write technique allows both the parent and the child processes to share the

same pages. These pages are marked as copy-on-write pages i.e., if either process

writes to a shared page, a copy of shared page is created.

 Copy-on-write is illustrated in below figures, which shows the contents of the

physical memory before and after process 1 modifies page C.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 7

 For Ex: If a child process tries to modify a page containing portions of the stack, the

OS recognizes them as a copy-on-write page and create a copy of this page and maps

it on to the address space of the child process. So the child process will modify its

copied page and not the page belonging to parent.

 The new pages are obtained from the pool of free pages. Operating systems allocate

these pages using a technique known as zero-fill-on-demand. Zero-fill-on-demand

pages have been zeroed-out before being allocated, thus erasing the previous

contents.

4.4 Page Replacement

 If the total memory requirement exceeds physical memory,Page replacement policy

deals withreplacing (removing) pages frommemory to free frames for bringing inthe

new pages.

 While user process is executing, a page fault occurs.The operating system determines

where the desired page is residing on the disk, and this finds that there are no free

frames on the free frame list as shown in below figure.

 The OS has several optionslike; it could terminate the user process or instead swap

out a process, freeing all its frames and thus reduce the level of multiprogramming.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 8

 Basic Page Replacement

 If frame is not free, we find one that is not currently being used and free it. We

can free a frame by writing its contents to swap space and changing the page table

to indicate that the page is no longer in memory as shown in below figure. We

can now use the freed frame to hold the page for which the process faulted. The

page-fault service routineis modifiedas follows to include page replacement,

1. Find the location of derived page on the disk.

2. Find a free frame

a. If there is a free frame, use it.

b. Otherwise, use a replacement algorithm to select a victim frame.

c. Write the victim frame to the disk; change the page and frame tables

accordingly.

3. Read the desired page into the free frame and change the page and frame

tables.

4. Restart the user process.

 If no frames are free, the two page transfers (one out and one in) are required.

This will doubles the page-fault service time and increases the effective access

time.

 This overhead can be reduced by usingmodify (dirty) bit. Each page or frame

may have modify (dirty) bit associated with it. The modify bit for a page is set by

the hardware whenever any word or byte in the page is written into, indicating

that the page has been modified.

 When we select the page for replacement, we check the modify bit. If the bit is

set, then the page is modified and we must write the page to the disk.

 If the bit is not set then the page has not been modified. Therefore, we can avoid

writing the memory page to the disk as it is already there.

 We must solve two major problems to implement demand paging i.e., we must

develop a frame allocation algorithm and a page replacement algorithm. If we

have multiple processes in memory, we must decide how many frames to allocate

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 9

to each process and when page replacement is needed. We must select the frames

that are to be replaced.

 There are manydifferent page-replacement algorithms. We want the one with the

lowest page-fault rate.
 An algorithm is evaluated by running it on a particular string of memory

references called a reference string and computing the number of page faults.

 FIFO page replacement algorithm

 This is the simplest page replacement algorithm. A FIFO replacement algorithm

associates the time of each page when that page was brought into memory.

 When a page is to be replaced the oldest one is selected.

 We replace the queue at the head of the queue. When a page is brought into

memory, we insert it at the tail of the queue.

 For example, consider the following reference string with 3 frames initially

empty.

 The first three references (7,0,1) causes page faults and are brought into the empty

frames.

 The next reference 2 replaces page 7 because the page 7 was brought in first.

 Since 0 is the next reference and 0 is already in memory we have no page fault for

this reference.

 The next reference 3 replaces page 0 so but the next reference to 0 causer page

fault. Page 1 is then replaced by page 0.

 This will continue till the end of string as shown in below figure and there are 15

faults all together.

 For some page replacement algorithm, the page fault may increase as the

number of allocated frames increases. This is called as Belady’sAnamoly. FIFO

replacement algorithm may face this problem.

 To illustrate Belady’sAnamoly with a FIFO page-replacement algorithm,

consider the following reference string.

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 The below figureshows the curve of page faults for this reference string versus

the number of available frames. The number of faults for four frames (ten) is

greaterthan the number of faults for three frames (nine).

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 10

 Optimal page replacement algorithm

 Optimal page replacement algorithm is mainly used to solve the problem of

Belady’sAnamoly.

 Optimal page replacement algorithm has the lowest page fault rate of all

algorithms.

 An optimal page replacement algorithm is also called OPT or MIN.

 The working is simple “Replace the page that will not be used for the longest

period of time”

 For example, consider the following reference string with 3 frames initially

empty.

 The first three references cause faults that fill the three empty frames.

 The references to page 2 replaces page 7, because 7 will not be used until

reference 18.

 The page 0 will be used at 5 and page 1 at 14.This will continue till the end of the

string as shown in figure.

 With only 9 page faults, optimal replacement is much better than a FIFO, which

had 15 faults.

 This algorithm is difficult to implement because it requires future knowledge of

reference strings.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 11

 Least Recently Used (LRU) page replacement algorithm

 If the optimal algorithm is not feasible, an approximation to the optimal algorithm

is possible.

 The main difference between OPT and FIFO is that, FIFO algorithm uses the time

when the pages was brought in and OPT uses the time when a page is to be used.

 The LRU algorithm “Replaces the pages that have not been used for longest

period of time”.

 The LRU associated its pages with the time of that pages last use.

 This strategy is the optimal page replacement algorithm looking backward in

time rather than forward.

 For example, consider the following reference string with 3 frames initially

empty.

 LRU replacement associates with each page the time of that page's last use.

 When a page must be replaced LRU chooses the page that has not been used

for the longest period of time.

 The result of applying LRU replacement to our example reference string is

shown in below figure.

 The first 5 faults are similar to optimal replacement.

 When reference to page 4 occurs, LRU sees that page 2 is used least recently. The

most recently used page is page 0 and just before page 3 was used.

 The LRU policy is often used as a page replacement algorithm and considered to

be good.

 Two implementations are possible,

o Counters: In this we associate each page table entry a time-of-use field, and

add to the CPU a logical clock or counter. The clock is incremented for each

memory reference.When a reference to a page is made, the contents of the

clock register are copied to the time-of-use field in the page table entry for

that page.In this way we have the time of last reference to each page and we

replace the page with smallest time value. The time must also be maintained

when page tables are changed.

o Stack: Another approach to implement LRU replacement is to keep a stack

of page numbers when a page is referenced it is removed from the stack and

put on to the top of stack as shown in below figure. In this way the top of

stack is always the most recently used page and the bottom in least recently

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 12

used page. Since the entries are removed from the stack it is best implement

by a doubly linked list with a head and tail pointer.Neither optimal

replacement nor LRU replacement suffers from Belady’sAnamoly. These are

called stack algorithms.

 LRU Approximation page replacement algorithm

 Many systems provide hardware support in the form of a reference bit.

 The reference bit for a page is set by the hardware whenever that page is

referenced. Reference bits are associated with each entry in the page table.

 Initially, all bits are cleared to 0 by the operating system. As a user process

executes, the bit associated with each page is set to 1.

 The three LRU Approximation page replacement algorithms are as follows,

 Additional-Reference-Bits Algorithm

 We can keep an 8-bit byte for each page in a table in memory.

 At regular intervals (say, every 100 milliseconds), a timer interrupt transfers

control to the operating system. The operating system shifts the reference bit

for each page into the high-order bit of its 8-bit byte, shifting the other bits

right by 1 bit and discarding the low-order bit. These 8-bit shift registers

contain the history of page use for the last eight time periods.

 For example, if the shift register contains 00000000, then the page has not

been used for eight time periods; a page that is used at least once in each

period has a shift register value of 11111111. A page with a value of

11000100 has been used more recently than one with a value of 01110111
i.e., the page with the lowest number is the LRU page and it can be replaced.

In the extreme case, the number can be reduced to zero, leaving only the

reference bit itself. This algorithm is called the Second-Chance Algorithm

 Second-Chance Algorithm

 The basic algorithm of second-chance replacement is a FIFO replacement

algorithm.

 When a page has been selected we inspect its reference bit. If the value is 0,

we proceed to replace this page; but if the reference bit is set to 1, we give the

page a second chance and move on to select the next FIFO page.

 When a page gets a second chance, its reference bit is cleared, and its arrival

time is reset to the current time. Thus, a page that is given a second chance

will not be replaced until all other pages have been replaced.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 13

 One way to implement the second-chance algorithm (clock algorithm) is as

a circular queue. A pointer indicates which page is to be replaced next. When

a frame is needed, the pointer advances until it finds a page with a 0 reference

bit. As it advances, it clears the reference bits as shown in below figure.

 Once a victim page is found, the page is replaced, and the new page is inserted

in the circular queue in that position.

 When all bits are set, the pointer cycles through the whole queue, giving each

page a second chance. It clears all the reference bits before selecting the next

page for replacement. Second-chance replacement degenerates to FIFO

replacement if all bits are set.

 Enhanced Second-Chance Algorithm

 We can enhance the second-chance algorithm by considering the reference

bit and the modify bit as an ordered pair. With these two bits, we have four

possible classes,

o (0, 0)neither recently used nor modified -best page to replace.

o (0, 1) not recently used but modified-not quite as good, because

thepage must be written out before replacement.

o (1, 0) recently used but clean-probably will be used again soon.

o (1, 1) recently used and modified - probably will be used again soon,

andthe page must be written out to disk before it can be replaced.

 Each page is in one of these four classes. We replace the first page

encountered in the lowest nonempty class.

 The major difference between this algorithm and the simpler clock algorithm

is that here we give preference to those pages that have been modified to

reduce the number of I/Os required.

 Count Based Page Replacement

 There is many other algorithms that can be used for page replacement, we can

keep a counter of the number of references that has made to a page.

o LFU (Least Frequently Used)

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 14

 This causes the page with the smallest count to be replaced. The reason for

this selection is that actively used page should have a large reference

count.

 This algorithm suffers from the situation in which a page is used heavily

during the initial phase of a process but never used again. Since it was

used heavily, it has a large count and remains in memory even though it is

no longer needed.

o Most Frequently Used(MFU)

 This is based on the principle that the page with the smallest count was

probably just brought in and has yet to be used.

 Page-Buffering Algorithms

 Systems keep a pool of free frames and when a page fault occurs, a victim frame

is chosen as before. The desired page is read into a free frame from the pool

before the victim is written out. This procedure allows the process to restart as

soon as possible, without waiting for the victim page to be written out. When the

victim is later written out, itsframe is added to the free-frame pool.

 An expansion of this idea is to maintain a list of modified pages. Whenever the

paging device is idle, a modified page is selected and is written to the disk. Its

modify bit is then reset. This scheme increases the probability that a page will be

clean when it is selected for replacement and will not need to be written out.

 Another modification is to keep a pool of free frames but to remember which

page was in each frame. Since the frame contents are not modified when a frame

is written to the disk, the old page can be reused directly from the free-frame pool

if it is needed before that frame is reused. No I/O is needed in this case. When a

page fault occurs, we first check whether the desired page is in the free-frame

pool. If it is not, we must select a free frame and read into it.

 Applications and Page Replacement

 Applications accessing data through the operating system's virtual memory

perform worse than if the operating system provided no buffering at all. An

example is a database, which provides its own memory management and I/0

buffering. Applications like this understand their memory use and disk use better

than an operating system that is implementing algorithms for general-purpose use.

 In another example, data warehouses frequently perform massive sequential

disk reads, followed by computations and writes. The LRU algorithm would be

removing old pages and preserving new ones, while the application would more

likely be reading older pages than newer ones. Here, MFU would be more

efficient than LRU.

 Because of such problems, some operating systems give special programs the

ability to use a disk partition as a large sequential array of logical blocks, without

any file-system data structures. This array is sometimes called the raw disk, and

I/O to this array is termed raw I/0.

4.5 Allocation of Frames
 It is concerned with how we allocate the fixed amount of free memory among the

various processes.

 The simplest case, Consider a single-user system with 128 KB of memory composed

of pages 1 KB in size. This system has 128 frames. The operating system may take 35

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 15

KB, leaving 93 frames for the user process. When the free-frame list exhaust, a page-

replacement algorithm would be used to select one of the 93 in-memory pages to be

replaced with the 94th, and so on. When the process terminates the 93 frames would

once again be placed on the free-frame list.

 Minimum Number of Frames

 The strategies for the allocation of frames are constrained in various ways. We

cannot allocate more than the total number of available frames. We must also

allocate at least a minimum number of frames.

 One reason for allocating at least a minimum number of frames involves

performance. As the number of frames allocated to each process decreases, the

page-fault rate increases, slowing process execution.

 Whereas the minimum number of frames per process is defined by the

architecture, the maximum number is defined by the amount of available physical

memory.

 Allocation Algorithms

 The easiest way to split m frames among n processes is to give everyone an

equal share i.e., m/n frames. For example, if there are 93 frames and five

processes, each process will get 18 frames. The three leftover frames can be

used as a free-frame buffer pool. This scheme is called equal allocation.

 An alternative is to recognize that various processes will need differing amounts

of memory. Consider a system with a 1-KB frame size. If a small student process

of 10 KB and an interactive database of 127 KB are the only two processes

running in a system with 62 free frames, it does not make much sense to give

each process 31 frames. The student process does not need more than 10 frames,

so the other 21 are wasted.

 To solve this problem, we can use proportional allocation in which we allocate

available memory to each process according to its size. Let the size of the virtual

memory for process pibe si, and define

S=∑ si

 Then, if the total number of available frames is m, we allocate ai frames to

 process pi, where ai is approximately

ai = si /S * m.

 We must adjust each ai to be an integer that is greater than the minimum number

of frames required, with a sum not exceeding m.

 With proportional allocation, we would split 62 frames between two processes,

one of 10 pages and one of 127 pages, by allocating 4 frames and 57 frames,

respectively, since

10/137 x 62 ~ 4, and

127/137 X 62 ~57.

 In this way, both processes share the available frames according to their "needs"

rather than equally.

 We may want to give the high-priority process more memory low-priority

processes to speed its execution. One solution is to use a proportional allocation

scheme wherein the ratio of frames depends not on the relative sizes of processes

but rather on the priorities of processes or on a combination of size and

priority.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 16

 Global versus Local Allocation

 Another important factor in the way frames are allocated to the various processes

is page replacement. With multiple processes competing for frames, we can

classify page-replacement algorithms into two broad categories, Global and

local replacement. The difference between them are,

Global replacement local replacement

Allows process to replace the frames from

the set of all frames, even if that frame is

allocated to other process.

Each process selects a replacement only

from its own set of allocate frames.

Number of frames will change. Number of frame does not change.
Increases system throughput Less system throughput

Process cannot control its own page fault

rate

Process can control its own page fault

rate

Commonly used Rarely used

4.6 Thrashing

 A process is thrashing if it is spending more time in paging than executing.

 If the processes do not have enough number of frames, it will quickly page fault.

During this it must replace some page that is not currently in use. The process

continues to fault; it quickly faults again and again, replacing pages that it must bring

back in immediately. This high paging activity is called thrashing.

 Cause of Thrashing

 Thrashing results in severe performance problem.

 The operating system monitors CPU utilization. If it is low, we increase the

degree of multiprogramming by introducing new process to the system.

 A global page-replacement algorithm is used; it replaces pages without regard to

the process to which they belong.

 Suppose a process enters a new phase in its execution and needs more frames. It

starts faulting and takes frames away from other processes. These processes need

those pages, and so they also fault, taking frames from other processes.

 These faulting processes must use the paging device to swap pages in and out. As

they queue up for the paging device, the ready queue empties and CPU utilization

decreases.

 The CPU scheduler sees the decreasing CPU utilization and increases the degree

of multiprogramming. The new process tries to get started by taking frames from

other processes, causing more page faults and a longer queue for the paging

device. As a result, CPU utilization drops even further, and the CPU scheduler

tries to increase the degree of multiprogramming even more.But this

causesthrashing and the CPU utilization drops sharply as shown in belowfigure.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 17

 We can limit the effect of thrashing by using a local replacement algorithm. To

prevent thrashing, we must provide a process as many frames as it needs.

 But how do we know how many frames it "needs"? There are several techniques.

 The working-set strategy starts by looking at how many frames a process is

actually using. This approach defines the locality of process execution.

 The locality model states that, as a process executes, it moves from locality to

locality. A locality is a set of pages that are actively used.

 Working set model

 The working set model is based on the assumption of locality.

 This model uses a parameter ∆ to define the working set window.

 The idea is to examine the most recent ∆ page references. The set of pages in the

most recent ∆ page references is the working set as shown in below figure.

 If a page is in active use, it will be in the working set. If it is no longer being used,

it will drop from the working set ∆ time units after its last reference. Thus, the

working set is an approximation of the program's locality.

 For example, the sequence of memory references is as shown in below figure. If

∆ = 10 memory references, then the working set at time t1 is {1, 2, 5, 6, 7}. By

timet2, the working set has changed to {3, 4}.

 The accuracy of the working set depends on the selection of ∆. The most

important property of the working set is its size. If we compute the working-set

size,WSSi, for each process in the system, we can then consider that

D=∑WSSi

 Where D is the total demand for frames. Each process is actively using the pages

in its working set. Thus, process i needs WSSi frames. If the total demand is

greater than the total number of available frames (D > m), thrashing will occur,

because some processes will not have enough frames.

 Working set prevents thrashing by keeping the degree of multiprogramming as

high as possible. Thus it optimizes the CPU utilization.

 The main disadvantage of this model is keeping track of the working set. The

working-set window is a moving window. At each memory reference, a new

reference appears at one end and the oldest reference drops off the other end. A

page is in the working set if it is referenced anywhere in the working-set window.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 18

 Page-Fault Frequency

 The working-set model is a clumsy way to control thrashing. A strategy that uses

Page Fault Frequency(PFF) takes a more direct approach.

 When page fault rate is too high, we know that the process needs more frames.

Conversely, if the page-fault rate is too low, then the process may have too many

frames.

 We can establish upper and lower bounds on the desired page-fault rate as

shown in below figure. If the actual page-fault rate exceeds the upper limit, we

allocate the process another frame; if the page-fault rate falls below the lower

limit, we remove a frame from the process. Thus, we can directly measure and

control the page-fault rate to prevent thrashing.

 As with the working-set strategy, we may have to suspend a process. If the page-

fault rate increases and no free frames are available, we must select some process

and suspend it. The freed frames are then distributed to processes with high page-

fault rates.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 19

4.7 File System

 The file system is the most visible aspect of an operating system. It provides the

mechanism for on-line storage of and access to both data and programs of the operating

system and all the users of the computer system.

 The file system consists of two distinct parts, a collection of files each storing related

data, and a directory structure which organizes and provides information about all the

files in the system.

4.8 File Concept

 Computers can store information on various storage media.

 Operating system provides a uniform logical view of information storage. This

logical storage unit is called as a file.

 Files are mapped by operating system onto physical devices. These storage devices

are nonvolatile, so contents are persistent through power failures and system

reboots.

 File is a named collection of related information that is recorded on secondary

storage.

 Files represent both the program and the data. Data can be numeric, alphanumeric,

alphabetic or binary.

 Many different types of information like source programs, object programs,

executable programs, numeric data, payroll recorder, graphic images, and sound

recordings and so on can be stored on a file.

 A file has a certain defined structures according to its type.

o Text file: Text file is a sequence of characters organized in to lines.

o Object file:Object file is a sequence of bytes organized in to blocks

understandable by the systems linker.

o Executable file: Executable file is a series of code section that the loader can

bring in to memory and execute.

o Source File: Source file is a sequence of subroutine and function, each of which

are further organized as declaration followed by executable statements.

 File Attributes

 File attributes varies from one OS to other. The common file attributes are,

o Name: The symbolic file name is the only information kept in human

readable form.

o Identifier: The unique tag, usually a number, identifies the file within the file

system. It is the non-readable name for a file.

o Type: This information is needed for systems that support different types.

o Location: This information is a pointer to a device and to the location of the

file on that device.

o Size: The current size of the file and possibly the maximum allowed size are

included in this attribute.

o Protection: Access control information determines who can do reading,

writing, execute and so on.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 20

o Time, data and User Identification: This information must be kept for

creation, last modification and last use. These data are useful for protection,

security and usage monitoring.

 File Operations

 File is an abstract data type. To define a file we need to consider the operation

that can be performed on the file.

 Basic operations of files are,

o Creating a file:Two steps are necessary to create a file. First,space in the file

system for file is found. Second, an entry for the new file must be made in the

directory.

o Writing a file:System call is mainly used for writing in to the file. System

call specifies the name, of the file and the information to be written to the

file. Given the name the system search the entire directory for the file. The

system must keep a write pointer to the location in the file where the next

write to be taken place.

o Reading a file: To read a file, system call is used. It requires the name of the

file and the memory address from where the next block of the file should be

put. Again, the directory is searched for the associated directory and system

must maintain a read pointer to the location in the file where next read is to

take place.

o Delete a file: System will search the directory for the file to be deleted. If

entry is found it releases all free space. That free space can be reused by

another file.

o Truncating the file: User may want to erase the contents of the file but keep

its attributes. Rather than forcing the user to delete a file and then recreate it,

truncation allows all attributes to remain unchanged except for file length.

o Repositioning within a file: The directory is searched for appropriate entry

and the current file position is set to a given value. Repositioning within a file

does not need to involve actual I/O. This file operation is also known as seek.

 In addition to this basis 6 operations the other two operations include

appending new information to the end of the file and renaming the existing file.

 Most of the file operation involves searching the entire directory for the entry

associated with the file. To avoid this, OS keeps a small tablecalled the open-file

table containing information about all open files. When a file operation is

requested, the file is specified via index into this table. So searching is not

required.

 Several piece of information are associated with an open file,

o File pointer: on systems that does not include offset as part of the read and

write system calls, the system must track the last read-write location as current

file position pointer. This pointer is unique to each process operating on a file.

o File open count: It keeps the count of open files. As the files are closed, the

OS must reuse its open file table entries, or it could run out of space in the

table. Because multiple processes may open a file, the system must wait for

the last file to close before removing the open file table entry. The counter

tracks the number of copies of open and closes and reaches zero to last close.

o Disk location of the file: The information needed to locate the file on the disk

is kept in memory to avoid having to read it from the disk for each operation.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 21

o Access rights: Each process opens a file in an access mode. This information

is stored on per-process table, then OS can allow or deny subsequent I/O

request.

 Some operating systems provide facilities for locking an open file (or sections of

a file). File locks allow one process to lock a file and prevent other processes

from gaining access to it.

 File locks are useful for files that are shared by several processes.

 A shared lock is similar to a reader lock in that several processes can acquire the

lock concurrently. An exclusive lock behaves like a writer lockwhich means

only one process at a time can acquire such a lock.

 Operating systems provide both types of locks, but some systems provide only

exclusive file locking.

 Operating systems may also provide either mandatory or advisory file-locking

mechanisms. If a lock is mandatory, then once a process acquires an exclusive

lock, the operating system will prevent any other process from accessing the

locked file. For advisory locking, it is up to software developers to ensure that

locks are appropriately acquired and released.

 Windows operating systems adopt mandatory locking, and UNIX systems employ

advisory locks.

 File Types

 File type is included as a part of the filename. File name is split into two parts- a

name and extension separated by a period character.

 The system uses the extension to indicate the type of the file and the type of

operations that can be done on that file.

 For example, only a file with a .com, .exe, or .bat extension can be executed. The

.com and .exe files are two forms of binary executable files, whereas .bat file is a

batch file containing commands in ASCII format to the operating system.

 The table shown in below figure gives the file type with extension and function.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 22

 File Structure

 File types can be used to indicate the internal structure of the file. Certain files

must match to a required structure that is understood by the operating system.

 For example, the operating system requires that an executable file have a specific

structure so that it can determine where in memory to load the file and what the

location of the first instruction is.

 Some operating systems extend this idea into a set of system-supported file

structures, with sets of special operations for manipulating files with those

structures. This is one disadvantage where the resulting size of the operating

system is cumbersome.

 Some operating systems impose and support a minimal number of file

structures.

 Too few structures make programming inconvenient, whereas too many cause

operating-system to expand and makes programmer to confuse.

 Internal File Structure

 Locating an offset within a file can be complicated for the operating system.

 Disk systems have a well-defined block size determined by the size of a sector.

All disk I/0 is performed in units of one block and all blocks are the same size. It

is not sure that the physical record size will exactly match the length of the

desired logical record. Logical records may even vary in length.

 Packing a number of logical records into physical blocks is a common solution to

this problem. The logical record size, physical block size, and packing technique

determine how many logical records are in each physical block. The packing can

be done either by the user's application program or by the operating system. In

either case, the file may be considered a sequence of blocks.

 All the basic I/O functions operate in terms of blocks. The conversion from

logical records to physical blocks is a relatively simple software problem.

 Because disk space is always allocated in blocks, some portion of the last block of

each file is wasted. The waste incurred to keep everything in units of blocks is

internal fragmentation.
 All file systems suffer from internal fragmentation; the larger the block size, the

greater the internal fragmentation.

4.9 Access Methods

The information in the file can be accessed in several ways. The different file access

methods are,

 Sequential Access

 Sequential access is the simplest access method. Information in the file is

processed in order, one record after another. Editors and compilers access the

files in this fashion.

 A read operation read next reads the next portion of the file and automatically

advances a file pointer, which tracks next I/O location. The write operation write

next appends to the end of the file and advances to the end of the newly written

material.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 23

 Such a file can be reset to the beginning and on some systems a program may be

able to skip forward or backward n records for some integer n, where n= 1.

 Sequential access, which is depicted in below figure is based on a tape model of

a file and works well on sequential-access devices as it does on random-access

ones.

 Direct Access (Relative Access)

 A file is made up of fixed length logical records. It allows the program to read and

write records rapidly in any order.

 Direct access allows random access to any file block. This method is based on

disk model of a file.

 For direct access, the file is viewed as a numbered sequence of blocks or

records. Thus, we may read block 14, then read block 53, and then write block 7.

 The direct access method is suitable for searching the records in large amount of

information. For example, on an airline-reservation system, we might store all

the information about a particular flight (for example, flight 713) in the block

identified by the flight number. Thus, the number of available seats for flight 713

is stored in block 713 of the reservation file.

 The file operations must be modified to include the block number as a parameter.

Thus, we have read n, where n is the block number, rather than read next, and

write n rather than write next.

 The block number provided by the user to the operating system is normally a

relative block number. A relative block number is an index to the beginning of

the file.

 We can easily simulate sequential access on a direct-access file by simply

keeping a variable cp that defines current position, as shown in below figure,

where as simulating a direct-access file on a sequential-access file is extremely

inefficient and clumsy.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 24

 Other Access Methods

 These methods generally involve the construction of an index for the file.

 The index is like an index at the end of a book which contains pointers to various

blocks.

 To find a record in a file, we search the index and then use the pointer to access

the file directly and to find the desired record.

 With large files index file itself can be very large to be kept in memory. One

solution is to create an index for the index files itself. The primary index file

would contain pointer to secondary index files which would point to the actual

data items.

 For example, IBM's indexed sequential-access method (ISAM) uses a small

master index that points to disk blocks of a secondary index. The secondary index

blocks point to the actual file blocks. The file is kept sorted on a defined key. To

find a particular item, we first make a binary search of the master index, which

provides the block number of the secondary index. This block is read in, and

again a binary search is used to find the block containing the desired record.

Finally, this block is searched sequentially. In this way, any record can be located

from its key by at most two direct-access reads. The below figure shows a similar

situation as implemented by VMS index and relative files.

4.10 Directory Structure

 The files systems can be very large. Some systems stores millions of files on the disk.

To manage all this data we need to organize them. This organization involves the use

of directories.

 Storage structure

 A diskcan be used completely for a file system. Sometimes it is desirable to place

multiple file systems on a disk or to use parts of the disk for a file system. These

parts are known as partitions, slices or minidisks.

 These parts can be combined to form larger structures known as volumes.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 25

 Each volume contains information about files within it. This information is kept

in entries in a device directory (directory) or volume table of contents.

 The directory records the information such as name, location, size, type for all

files on that volume.

The below figure shows a typical file-system organization.

 Directory Overview

 The directory can be viewed as a symbol table that translates the file names into

their directory entries. The directory itself can be organized in many ways.

 When considering a particular directory structure, several operations can be

performed on a directory.

o Search for a file: Directory structure is searched for finding particular file in

the directory. Files have symbolic names and similar names may indicate a

relationship between files, we must be able to find all the files whose name

matches a particular pattern.

o Create a file: New files can be created and added to the directory.

o Delete a file: when a file is no longer needed, we can remove it from the

directory.

o List a directory: We need to be able to list the files in directory and the

contents of the directory entry for each file in the list.

o Rename a file: Name of the file must be changeable, when the contents of the

file are changed. Renaming allows the position within the directory structure

to be changed.

o Traverse the file system: It should be possible to access any file in the file

system. It is always good to keep the backup copy of the file so that it can be

used when the system fails or when the file system is not in use.

 There are different types of logical structures of a directory as discussed below.

 Single-level directory

 This is the simplest directory structure. All the files are contained in the same

directory which is easy to support and understand as shown in below figure

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 26

 The disadvantages are,

o Not suitable for a large number of files and more than one user.

o Because of single directory files, files require unique file names.

o Difficult to remember names of all the files as the number of files increases.

 Two-level directory

 A single level directory often leads to the confusion of file names between

different users. The solution here is to create separate directory for each user.

 In two level directories each user has its own directory. It is called User File

Directory (UFD). Each UFD has a similar structure, but lists only the files of a

single user.

 When a user job starts or users logs in, the system’s Master File Directory

(MFD) is searched. The MFD is indexed by the user name or account number and

each entry points to the UFD for that user as shown in below figure

 When a user refers to a particular file, only his own UFD is searched. Thus

different users may have files with the same name.

 To create a file for a user, OS searches only that user UFD to check whether

another file of that name exists.

 To delete a file OS checks in the local UFD, so that it cannot accidentally delete

another user’s file with the same name.

 Although two-level directories solve the name collision problem but it still has

some disadvantages.

 This structure isolates one user from another and this isolation is an advantage

when the users are independent, but disadvantage when some users want to co-

operate on some task and to access one another’s file.

 If access is to be permitted, one user must have the ability to name a file in

another user's directory. To name a particular file we must give both the user

name and the file name.

 A two-level directory is like a tree, or an inverted tree of height 2.

The root of the tree is the MFD. Its direct descendants are the UFDs. The

descendants of the UFDs are the files. The files are the leaves of the tree. A user

name and a file name define a path name.

 To access the system files the appropriate commands are given to the operating

system and these files are read by the loader and executed. This file name would

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 27

be searched in the current UFD. The sequence of directories searched when a file

is named is called the search path.

 Tree-structured directories

 The two level directory structures can be extended to a tree of arbitrary height

as shown in figure.

 It allows users to create their own subdirectories and to organize their files

accordingly. A subdirectory contains a set of files or subdirectories. A directory is

simply another file, but it is treated in a special way.

 The entire directory will have the same internal format. One bit in each entry

defines the entry as a file (0) and as a subdirectory (1). Special system calls are

used to create and delete directories.

 Each process has a current directory and it should contain most of the files that

are of the current interest to the process. When a reference is made to a file the

current directory is searched. If the needed file is not in the current directory then

the user must specify the path name or change the current directory.

 Path name can be of two types.

o Absolute path name: Begins at the root and follows a path down to the

specified file, giving the directory names on the path.

o Relative path name: Defines a path from the current directory.

 One important task is how to handle the deletion of a directory. If a directory is

empty, its entry can simply be deleted. If a directory is not empty, one of the

two approaches can be used.

o In MS-DOS, the directory is not deleted until it becomes empty.

o In UNIX, rm command is used, where all directory's files and subdirectories

are also deleted before deleting a directory.

 With a tree-structured directory system, users can be allowed to accesstheir files,

and also the files of other users. Alternatively user can change the current

directory to other user's directory and access the file by its file names.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 28

 A path to a file in a tree-structured directory can be longer than a path in a two-

level directory.

 Acyclic graph directories

 A tree structure prohibits the sharing of files or directories.

 An acyclic graph that is, a graph with no cycles allows directories to share

subdirectories and files as shown in below figure. The same file or subdirectory

may be in two different directories.

 The acyclic graph is a natural generalization of the tree-structured directory

scheme. With a shared file, only one actual file exists, so any changes made by

one person are immediately visible to the other.

 Sharing is mainly important for subdirectories; a new file created by one

person will automatically appear in all the shared subdirectories.

 Shared files and subdirectories can be implemented by using links. A link is a

pointer to another file or a subdirectory. Another approach to implementing

shared files is simply to duplicate all information about them in both sharing

directories. Thus, both entries are identical and equal.

 An acyclic graph directory structure is more flexible than a simple tree structure

but sometimes it is more complex.

 Some of the problems are, a file may now have multiple absolute path names

and distinct file names may refer to the same file.

 Another problem involves is in deletion. There are two approaches to decide

when the space allocated to a shared file can be deallocated and reused.

 One possibility is to remove the file whenever anyone deletes it, but this action

may leave dangling pointers to the nonexistent file.

 Another approach is to preserve the file until all references to it are deleted. To

implement this approach, we could keep a list of all references to a file

(directory entries or symbolic links). When a link or a copy of the directory entry

is established, a new entry is added to the file-reference list. When a link or

directory entry is deleted, we remove its entry on the list. The file is deleted when

its file-reference list is empty. The trouble with this approach is the variable

and potentially large size of the file-reference list. So we need to keep only the

count of number of references, and when the count is 0, the file can be deleted.

 This is done through hard link count in UNIX OS.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 29

 General Graph Directory

 The problem with using an acyclic-graph structure is ensuring that thereare no

cycles. When we add links, the tree structure is destroyed, resulting in a simple

graph structure as shown in below figure.

 The advantage of an acyclic graph is the simplicity of the algorithms to traverse

the graph and to determine when there are no more references to a file.

 A poorly designed algorithm might result in an infinite loop continually searching

through the cycle and never terminating. One solution is to limit the number of

directories that will be accessed during a search.

 A problem exists when we are trying to determine when a file can be deleted.

When cycles exist, the reference count may not be 0 even when it is no longer

possible to refer to a directory or file. So agarbage-collection scheme is used.

 Garbage collection involves traversing the entire file system, marking

everything that can be accessed but it is time consuming. Thus, an acyclic-

graph structure is much easier to work than general graph structure. The

difficulty is to avoid cycles as new links are added to the structure. There are

algorithms to detect cycles in graphs but they are computationally expensive,

hence cycles must be avoided.

4.11 File System Mounting

 The file system must be mounted before it can be available to processes on the system

 The procedure for mounting the file is as follows:

o The OS is given the name of the device and the location within the file structure

at which to attach the file system (mount point).A mount point will be an empty

directory at which the mounted file system will be attached.For example:On

UNIX, a file system containing user’s home directory might be mounted as

/home then to access the directory structure within that file system we must

precede the directory names as /home/Jane.

o Then OS verifies that the device contains this valid file system. OS uses device

drivers for this verification.

o Finally the OS mounts the file system at the specified mount point.

 Consider the file system depicted in figure below, where the triangles represent sub

trees of directories. Figure(a)shows an existing file system, while figure (b) shows

an un-mounted volume residing on /device/dsk. At this point, only the files on the

existing file system can be accessed.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 30

 The below Figure shows the effects of mounting the volume residing on /device/dsk

over/users.

 Windows operating systems automatically discover all devices and mount all located

file systems at boot time. In UNIX systems, the mount commands are explicit.

 A system configuration file contains a list of devices and mount points, for automatic

mounting at boot time, but other mounts may be executed manually.

4.12 File Sharing

 Multiple Users

 Given a directory structure that allows files to be shared by users, the operating

system must mediate the file sharing.

 The system either can allow a user to access the files of other users by default or it

may require that a user specifically grant access to the files.

 To implement sharing and protection, the system maintain more file and directory

attributes than on a single user system, most systems support the concept of file

owner and group.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 31

 When a user requests an operation on a file, the user ID can be compared to the

owner attribute to determine if the requesting user is the owner of the file.

Likewise the group ID’s can be compared. The result indicates which permissions

are applicable.

 Remote File Systems

 Remote sharing of the file system is implemented by using network.

 Network allows the sharing of resources. File Transfer Protocol (FTP) is one of

the methods used for remote sharing. Other methods are distributed file

system(DFS) and World Wide Web.

 DFS involves a much tighter integration between the machine that is accessing

the remote files and the machine providing the files. This integration adds

complexity as discussed in below DFSs.

 Client-server Model

 System containing the files is the server and the system requesting access

to the files is a client. Files are specified on a partition or subdirectory

level. A server can serve multiple clients and a client can use multiple

servers.

 A client can be specified network name or other identifier, such as an IP

address, but these can be spoofed or imitated. As a result of spoofing, an

unauthorized client could be allowed to access the server. More secure

solutions include secure authentication of the client by using encrypted

keys.

 Distributed Information systems

 For managing client server services, distributed information system is

used to provide a unified access to the information needed for remote

computing. UNIX systems have a wide variety of distributed information

methods. The domain name system (DNS) provides host-name-to-

network-address translations for the entire internet.

 Before DNS became widespread, files containing the same information

were sent via e-mail or ftp between all networked hosts. This methodology

was not scalable.

 Sun Microsystems introduced yellow pages which are called as Network

Information Service (NIS). It centralizes the storage of user names, host

names, printer information, and others. But it uses unsecure authentication

methods, like sending user passwords unencrypted (in clear text) and

identifying hosts by IP address.

 NIS+ is a much more secure replacement for NIS but is also much more

complicated and has not been widely adopted.

 Microsoft introduced Common Internet File System (CIFS). Here

network information is used in conjunction with user authentication (user

name and password) to create a network login that the server uses to

decide whether to allow or deny access to a requested file system. For this

authentication to be valid, the user names must match between the

machines.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 32

 Microsoft uses two distributed naming structures to provide a single

name space for users. The older naming technology isdomains. The newer

technology, available in Windows XP and Windows 2000, is active

directory.
 Light Weight Directory Access Protocol (LDAP) introduced bySun

Microsystems is a secure distributed naming mechanism. It is a secure

single sign-on for users, who would enter their authentication information

once for access to all computers within the organization. This reduces

system-administration efforts by combining the information that is

currently scattered in various files on each system or in different

distributed information services.

 Failure Modes

 Local file systems can fail for a variety of reasons, including failure of

the disk containing the file system, corruption of the directory structure or

other disk-management information (metadata) disk-controller failure,

cable failure, and host-adapter failure.

 User or system-administrator failure can also cause files to be lost or

entire directories or volumes to be deleted. Many of these failures will

cause a host to crash and an error condition to be displayed, and human

intervention will be required to repair the damage.

 Remote file systems have even more failure modes. Because of the

complexity of network systems and the required interactions between

remote machines, many more problems can interfere with the proper

operation of remote file systems.

 In the case of networks, the network can be interrupted between two hosts.

Such interruptions can result from hardware failure, poor hardware

configuration, or networking implementation issues.

 To recover from failure, some kind of state information may be

maintained on both the client and the server.

 The Networked File System (NFS) takes a simple approach,

implementing a stateless Distributed File System (DFS). It assumes that

a client request for a file read or write would not have occurred unless the

file system had been remotely mounted and the file had been previously

open. The NFS protocol carries all the information needed to locate the

appropriate file and perform the requested operation.

 Consistency Semantics

 Consistency Semantics represent an important criterion for evaluating any file

system that supports file sharing. These semantics specify how multiple users of a

system access a shared file simultaneously and they specify when modifications

of data by one user will be observable by other users. These semantics are

typically implemented as code with the file system.

 A series of file accesses (that is, reads and writes) attempted by a user to the same

file is always enclosed between the open () and close () operations. The series of

accesses between the open () and close () operations makes up a file session.

 examples of consistency semantics are UNIX Semantics

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 33

 The UNIX file system uses the following consistency semantics,

o Writes to an open file by a user are visible immediately to other users

who have opened their file.

o One mode of sharing allows users to share the pointer of current

location into the file. Thus, the advancing of the pointer by one user

affects all sharing users. Here, a file has a single image that interleaves

all accesses, regardless of their origin.

 In the UNIX semantics, a file is associated with a single physical image

that is accessed as an exclusive resource. Contention for this single image

causes delays in user processes.

 Session Semantics

 The Andrew file system (AFS) uses the following consistency semantics,

o Writes to an open file by a user are not visible immediately to other

users that have the same file already opened.

o Once a file is closed, the changes made to it are visible only in sessions

starting later. Already opened instances of the file do not reflect these

changes.

 According to these semantics, a file may be associated temporarily with

several images at the same time. Multiple users are allowed to perform

both read and write accesses concurrently on their images of the file,

without delay.

 Immutable-Shared-Files Semantics

 A unique approach here is that immutable shared files,once a file is

declared as shared by its creator, it cannot be modified. An immutable file

has two key properties i.e., its name may not be reused, and its contents

may not be altered.

4.13 Protection

 Information must be protected from a physical damage and improper access i.e.,

reliability and protection.

 Protection can be provided in many ways. For a small single-user system, we might

provide protection by physically removing the external storage devices and locking

them in a desk drawer or file cabinet.

 In a multiuser system other mechanisms are needed.

 Types of Access

 Protection mechanisms provide controlled access by limiting the types of file

access that can be made. Access is permitted or denied depending on several

factors, one of which is the type of access requested. Several different types of

operations may be controlled. They are ,

o Read -Read from the file.

o Write - Write or rewrite the file.

o Execute - Load the file into memory and execute it.

o Append - Write new information at the end of the file.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 34

o Delete - Delete the file and free its space for possible reuse.

o List -List the name and attributes of the file.

 Other operations, such as renaming, copying, and editing the file, may also be

controlled. For many systems these higher-level functions may be implemented

by a system program that makes lower-level system calls.

 Access Control

 Different users may need different types of access to a file or directory.

 The most general scheme to implement identity dependent access is to associate

with each file and directory an Access Control List (ACL) specifying user names

and the types of access allowed for each user.

 When a user requests access to a particular file, the operating system checks the

access list associated with that file. If that user is listed for the requested access,

the access is allowed. Otherwise, a protection violation occurs, and the user job is

denied access to the file.

 This approach has the advantage of enabling complex access methodologies.

 The main problem with access lists is their length. If we want to allow everyone

to read a file, we must list all users with read access. This technique has two

undesirable consequences,

o Constructing such a list may be a tedious and unrewarding task, especially

if we do not know in advance the list of users in the system.

o The directory entry, previously of fixed size, now must be of variable size,

resulting in more complicated space management.

 These problems can be resolved by use of a condensed version of the access list.

 To condense the length of the access-control list, many systems recognize three

classifications of users in connection with each file as follows,

o Owner. The user who created the file is the owner.

o Group. A set of users who are sharing the file and need similar access is a

group, or work group.

o Universe. All other users in the system constitute the universe.

 Other Protection Approaches

 Another approach to the protection problem is to associate a password with each

file. If the passwords are chosen randomly and changed often, this scheme may be

effective.

 The use of passwords has a few disadvantages. First, the number of passwords

that a user needs to remember may become large. Second, if only one password is

used for all the files, then once it is discovered, all files are accessible.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 35

 Some systems allow a user to associate a password with a subdirectory, rather

than with an individual file, to deal with this problem.

 In a multilevel directory structure, we need to protect not only individual files but

also collections of files in subdirectories. We want to control the creation and

deletion of files in a directory.

File System Implementation

4.14 File System Structure

 Disks provide bulk of secondary storage on which the file system is maintained. Disks

have two characteristics:

o They can be rewritten in place i.e., it is possible to read a block from the disk to

modify the block and to write back in to same place.

o They can access any given block of information on the disk. Thus it is simple to

access any file either sequentially or randomly and switching from one file to

another.

 To provide efficient and convenient access to the disks, OS imposes one or more file

system to allow the data to be stored, located and retrieved easily.

 A file system poses two different design problems. The first problem is defining how

the file system should look to the user. This task involves defining a file and its attributes,

the operations allowed on a file and the directory structure for organizing files. The

second problem is creating algorithms and data structures to map the logical file system

onto the physical secondary-storage devices.

 File system itself is composed of many different levels. Layered design is shown in

below figure.

 Each level in the design uses the features of lower levels to create new features for use by

higher levels.

 The lowest level, the I/O control, consists of device drivers and interrupts handlers to

transfer information between the main memory and the disk system.

 The basic file system issue generic commands to the appropriate device driver to read

and write physical blocks on the disk.

 The file-organization module knows about files and their logical blocks, as well as

physical blocks. It also includes free-space manager.

 Logical file system manages metadata information. Metadata includes all of the file-

system structure except actual data.

 File Control Block (FCB) contains information about the file including the ownership

permission and location of the file contents. Most operating systems supports more than

one type of file system.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 36

4.15 File System Implementation

 Overview

 File system is implemented on the disk and the memory.

 The implementation of the file system varies according to the OS and the file

system, but there are some general principles.

 UNIX supports UNIX File System (UFS), Windows supports File Allocation

Table (FAT), FAT-32, Network Transfer File System (NTFS) and Linux supports

more than 40 file systems.

 If the file system is implemented on the disk it contains the following

information:

o Boot Control Block can contain information needed by the system to boot an

OS from that partition. If the disk has no OS, this block is empty. It is the first

block of the partition. In UFS, it is called boot block and in NTFS it is

partition boot sector.

o Partition control Block contains volume or partition details such as the

number of blocks in partition, size of the blocks, and number of free blocks,

free block pointer, free FCB count and FCB pointers. In NTFS it is stored in

master file tables, In UFS this is called super block.

o Directory structure is used to organize the files. In UFS, this includes file

names and associated inode numbers. In NTFS, it is stored in the master file

table.

o An FCB contains many of the files details, including file permissions,

ownership, size, location of the data blocks. In UFS this is called inode, In

NTFS this information is actually stored within master file table.

 The In-memory information is used for both file-system management and

performance improvement via caching. The data are loaded at mount time and

discarded at dismount. The structures includes,

o An in-memory mount table containing information about each mounted

information.

o An in-memory directory structure that holds the directory information of

recently accessed directories.

o The system wide open file table contains a copy of the FCB of each open file

as well as other information.

o The per-process open file table contains a pointer to the appropriate entry in

the system wide open file table as well as other information.

 To create a new file, an application program calls the logical file system. The

logical file system knows the format of the directory structures. To create a new

file, it allocates a new FCB. The system then reads the appropriate directory into

memory, updates it with the new file name and FCB, and writes it back to the

disk. A typical FCB is shown in below figure

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 37

 File must be opened before using it for I/O. The open() call passes a file name to

the file system. The open() system call searches the system-wide open-file table to

find the file name given by the user. If it is opened, a per-process open-file table

entry is created pointing to the existing system-wide open-file table.

 When a file is opened, the directory structure is searched for the given file name

 The open() call returns a pointer to the appropriate entry in the per-process file-

system table. All file operations are performed via this pointer.

 The name given to the entry varies. UNIX systems refer to it as a file descriptor,

Windows refers to it as a file handle.

 When a process closes the file, the per-process table entry is removed, and

system-wide entry’s open count is decremented.

 The below figure illustrates the necessary file system structures provided by the

operating systems.

 Partition and Mounting

 A disk can be divided in to multiple partitions. Each partition can be either raw

i.e., containing no file system or cooked i.e., containing a file system.

 Raw disk is used where no file system is appropriate. UNIX swap space can use a

raw partition and do not use file system.

 Some databases uses raw disk and format the data to suit their needs. Raw disks

can hold information need by disk RAID (Redundant Array of Independent

Disks) system.

 Boot information can be stored in a separate partition. Boot information will have

their own format. At the booting time, system does not load any device driver for

the file system. Boot information is a sequential series of blocks, loaded as an

image in to memory.

 Dual booting is also possible on some PCs where more than one OS are loaded

on a system.

 A boot loader understands multiple file systems. Multiple OS can occupy the boot

space once loaded and it can boot one of the OS available on the disk. The disks

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 38

can have multiple partitions each containing different types of file system and

different types of OS.

 Boot partition contains the OS kernel and is mounted at a boot time.

 The operating system notes in its in-memory mount table that a file system is

mounted, along with the type of the file system.Microsoft window based systems

mount each partition in a separate name space denoted by a letter and a colon. On

UNIX, file system can be mounted at any directory.

 Virtual File Systems

 Modern operating systems must concurrently support multiple types of file

systems.

 Data structures and procedures are used to isolate the basic systemcall

functionality from the implementation details. The file-system implementation

consists of three major layers as shown in below figure.

 The first layer is the file-system interface, based on the open(),read(), write(),

and close() calls and on file descriptors.

 The second layer is called the Virtual file system layer.

 The virtual file system (VFS) layer, serves two important functions:

o It separates file-system-generic operations from their implementation by

defining a clean VFS interface. Several implementations for the VFS interface

may coexist on the same machine, allowing transparent access to different

types of file systems which are mounted locally.

o The VFS provides a mechanism for uniquely representing a file throughout a

network. The VFS is based on a file-representation structure, called a vnode,

that contains a numerical designator for a network-wide unique file.

 The VFS activates file-system-specific operations to handle local requests

according to their file-system types and even calls the NFS protocol procedures

for remote requests. File handles are constructed from the relevant vnodes and are

passed as arguments to these procedures. The layer implementing the file system

type or the remote-file-system protocol is the third layer of the architecture.

 The four main object types defined by the Linux VFS are:

o The inode object, which represents an individual file.

o The file object, which represents an open file.

o The superblock object, which represents an entire file system.

o The dentry object, which represents an individual directory entry.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 39

4.16 Directory Implementation

Directory is implemented in two ways,

 Linear list

 Linear list is a simplest method.

 It uses a linear list of file names with pointers to the data blocks. It uses a linear

search to find a particular entry as shown in belowfigure.

 It is simple for programming but time consuming to execute.

 To create a new file, we must first search the directory to be sure that no existing

file has the same name. Then, we add a new entry at the end of the directory. To

delete a file, we search the directory for the named file and then release the space

allocated to it.

 To reuse the directory entry, we can do one of several things. We can mark the

entry as unused or we can attach it to a list of free directory entries. A third

alternative is to copy the last entry in the directory into the freed location and to

decrease the length of the directory.

 A linked list can also be used to decrease the time required to delete a file. Linear

search is the main disadvantage.

 An advantage of the sorted list is that a sorted directory listing can be produced

without a separate sort step.

 Hash table

 Hash table decreases the directory search time.

 Insertion and deletion are fairly straight forward.

 Hash table takes the value computed from that file name and it returns a pointer to

the file name in the linear list.

 Insertion and deletion are straightforward, but some provision must be made for

collision i.e; situations in which two file names hash to the same location.

 The major difficulties with a hash table are it is generally fixed size and the

dependence of the hash function on that size.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 40

 A chained-overflow hash table can be used where each hash entry can be a

linked list instead of an individual value, and we can resolve collisions by adding

the new entry to the linked list.

4.17 Allocation Methods(storage mechanisms available to store files)

Three major methods of allocating disk space are,

 Contiguous Allocation

 A single set of blocks is allocated to a file at the time of file creation. This is a

pre-allocation strategy that uses portion of variable size.

 The file allocation table needs single entry for each file, showing the starting

block and the length of the file.

 The below figure shows the contiguous allocation method.

 Contiguous allocation algorithm suffers from external fragmentation.

 Sequential and direct access can be supported by contiguous allocation.

 Compaction is used to solve the problem of external fragmentation.

 Another problem with contiguous allocation algorithm is pre-allocation, that is,

it is necessary to declare the size of the file at the time of creation.

 Even if the total amount of space needed for a file is known in advance, pre-

allocation may be inefficient. A file that will grow slowly over a long period must

be allocated enough space for its final size, even though much of that space will

be unused for a long time. The file therefore has a large amount of internal

fragmentation.

 To minimize these drawbacks, some operating systems use a modified

contiguous-allocation scheme. Here, a contiguous chunk of space is allocated

initially; then, if that amount proves not to be large enough, another chunk of

contiguous space, known as an extent is added. The location of a file's blocks is

then recorded as a location and a block count, and a link to the first block of the

next extent.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 41

 Linked Allocation

 It solves the problem of contiguous allocation. This allocation is on the basis of

an individual block. Each block contains a pointer to the next block in the chain.

 The disk block can be scattered anywhere on the disk.

 The directory contains a pointer to the first and the last blocks of the file.

 The below figure shows the linked allocation. To create a new file, simply create

a new entry in the directory.

 There is no external fragmentation since only one block is needed at a time.

 The size of a file need not be declared when it is created. A file can continue to

grow as long as free blocks are available.

 The major problem is that it can be used effectively only for sequential-access

files. Another disadvantage is the space required for the pointers. The usual

solution to this problem is to collect blocks into multiples, called clusters and to

allocate clusters rather than blocks.

 Another problem of linked allocation is reliability. One partial solution is to use

doubly linked lists, and another is to store the file name and relative block number

in each block.

 An important variation on linked allocation is the use of a File Allocation

Table (FAT). A section of disk at the beginning of each volume is set aside to

contain the table. The table has one entry for each disk block and is indexed by

block number. The FAT is used in the same way as a linked list. The directory

entry contains the block number of the first block of the file. The table entry

indexed by that block number contains the block number of the next block in the

file. This chain continues until it reaches the last block, which has a special end-

of-file value as the table entry.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 42

 An unused block is indicated by a table value of 0. An illustrative example is

the FAT structure shown in below figure for a file consisting of disk blocks 217,

618, and 339.

 Indexed Allocation

 The file allocation table contains a separate one level index for each file. The

index has one entry for each portion allocated to the file.

 The i
th

 entry in the index block points to the i
th

 block of the file. The below figure

shows indexed allocation.

 The indexes are not stored as a part of file allocation table but they are kept as a

separate block and the entry in the file allocation table points to that block.

 Allocation can be made on either fixed size blocks or variable size blocks. When the

file is created all pointers in the index block are set to nil. When an entry is made a

block is obtained from free space manager.

 Indexed allocation supports both direct access and sequential access to the file. It

supports direct access, without suffering from external fragmentation, because any

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 43

free block on the disk can satisfy a request for more space. Indexed allocation also

suffer from wasted space.

 The pointer overhead of the index block is generally greater than the pointer

overhead of linked allocation.

 Every file must have an index block, so we want the index block to be as small as

possible. If the index block is too small it will not be able to hold enough pointers

for a large file, and a mechanism will have to be available to deal with this issue.

 Mechanisms for this purpose include the following,

o Linked scheme
 To allow for large files, we can link together several index blocks. For

example, an index block might contain a small header giving the name of

the file and a set of the first 100 disk-block addresses. The next address is

is a pointer to another index block.

o Multilevel index
 A variant of linked representation uses a first-level index block to point to

a set of second-level index blocks, which in turn point to the file blocks.

To access a block, the operating system uses the first-level index to find a

second-level index block and then uses that block to find the desired data

block. This approach could be continued to a third or fourth level,

depending on the desired maximum file size.

o Combined scheme

 Another alternative, used in the UFS, is to keep the First 15 pointers of the

index block in the file's inode. The first 12 of these pointers point to direct

blocks; that is, they contain addresses of blocks that contain data of the file.

Thus, the data for small block do not need a separate index block.

 The next three pointers point to indirect blocks. The first points to a

single indirect block, which is an index block containing not data but the

addresses of blocks that do contain data. The second points to a double

indirect block, which contains the address of a block that contains the

addresses of blocks that contain pointers to the actual data blocks. The last

pointer contains the address of a triple indirect block.

 In this method, the number of blocks that can be allocated to a file exceeds

the amount of space addressable by the four-byte file pointers used by

many operating systems.

 Performance

 The allocation methods vary in their storage efficiency and data-block access

times. Both are important criteria in selecting the proper methods for an operating

system to implement.

 For any type of access, contiguous allocation requires only one access to get a

disk block. Since we can easily keep the initial address of the file in memory, we

can calculate immediately the disk address of the i
th

block and read it directly.

 For linked allocation, we can also keep the address of the next block in memory

and read it directly. This method is fine for sequential access, but for direct

access, an access to the i
th

 block might require i disk reads.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 44

 The operating system must have appropriate data structures and algorithms to

support both allocation methods.

 Files can be converted from one type to another by the creation of a new file of

 the desired type, into which the contents of the old file are copied. The old file

may then be deleted and the new file renamed.

 Indexed allocation is more complex. If the index block is already in memory,

then the access can be made directly. But keeping the index block in memory

requires considerable space. If this memory space is not available, then we may

have to read first the index block and then the desired data block. For a two-level

index, two index-block reads might be necessary. For an extremely large file,

accessing a block near the end of the file would require reading in all the index

blocks before the needed data block finally could be read. Thus, the performance

of indexed allocation depends on the index structure, on the size of the file,

and on the position of the block desired.

 Some systems combine contiguous allocation with indexed allocation by using

contiguous allocation for small files and automatically switching to an indexed

allocation if the file grows large. Since most files are small, and contiguous

allocation is efficient for small files, average performance can be quite good.

4.18 Free Space Management

 Since disk space is limited, we need to reuse the space from deleted files for new

Files. To keep track of free disk space, the system maintains a free-space list.

 The free-space list records all free disk blocks-those not allocated to some file or

directory. To create a file, we search the free-space list for the required amount of

space and allocate that space to the new file. This space is then removed from the

free-space list. When a file is deleted, its disk space is added to the free-space list.

 There are different methods to manage free space.

 Bit Vector

 The free-space list is implemented as bit vector or bit map.

 Each block is represented by 1 bit. If the block is free, the bit is 1; if the block is

allocated, the bit is 0.

 For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17,

18, 25, 26, and 27 are free and the rest of the blocks are allocated. The free-space

bit map would be001111001111110001100000011100000 ...

 The main advantage of this approach is its relative simplicity and its efficiency

in finding the first free block or nonconsecutive free blocks on the disk.

 Linked List

 Another approach to free-space management is to link together all the free disk

blocks, keeping a pointer to the first free block in a special location on the disk

and caching it in memory.

 This first block contains a pointer to the next free disk block, and so on.

 This scheme is not efficient because to traverse the list, we must read each block,

which requires substantial I/0 time.

 The operating system simply needs a free block so that it can allocate that block

to a file, so the first block in the free list is used.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.4 Virtual Memory Management, File System M4- 45

 Grouping

 A modification of the free-list approach stores the addresses of nfree blocks in the

first free block. The first n-1 of these blocks are actually free. The last block

contains the addresses of other n free blocks, and so on.

 The addresses of a large number of free blocks can be found quickly, unlike the

situation when the linked-list approach is used.

 Counting

 Another approach takes advantage of several contiguous blocks may be allocated

or freed simultaneously.

 Rather than keeping a list of n free disk addresses, we can keep the address of the

first free block and the number (n) of free contiguous blocks that follow the first

block.

 Each entry in the free-space list then consists of a disk address and a count.

---o0o---

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 1

MODULE-5
Secondary Storage Structures, Protection

5.1 Overview of Mass Storage Structure

 Magnetic Disks

 Magnetic disks provide the bulk of secondary storage for modern computer

systems. Each disk platter has a flat circular shape like a CD as shown in below

figure. The two surfaces of a platter are covered with a magnetic material.

 We store information by recording it magnetically on the platters. A Read-write

head flies just above each surface of every platter. The heads are attached to a

disk arm that moves all the heads as a unit.

 Surface of a platter is logically divided into circular tracks which are subdivided

into sectors.

 When the disk is in use, a drive motor spins it at high speed. Most drivers rotate

60 to 200 times per second.

 Disk speed has two parts - The Transfer rate is the rate at which data flow

between the drive and the computer. The Positioning time (random-access time)

consists of the time necessary to move the disk arm to the desired cylinder, called

the seek time and the time necessary for the desired sector to rotate and come

under read-write head is called the rotational latency.

 A disk can be removable, allowing different disks to be mounted as needed. Ex:

floppy disks.

 A disk drive is attached to a computer by a set of wires called an I/O bus. Several

kinds of buses are available, including Enhanced Integrated Drive Electronics

(EIDE), Advanced Technology Attachment (ATA), Serial ATA (SATA),

Universal serial Bus (USB), Fiber Channel (FC) and Small Computer System

Interface (SCSI) buses.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 2

 The data transfers on a bus are carried out by special electronic processors called

controllers. The host controller is the controller at the computer end of the bus.

A disk controller is built into each disk drive.

 To perform a disk I/0 operations, the computer places a command into the host

controller using memory-mapped I/O ports.

 Magnetic Tapes
 Magnetic tape was used as an early secondary-storage medium. Its access time is

slow when compared to main memory and magnetic disk.

 Random access to magnetic tape is slower than disk so it is not very useful for

secondary storage.

 Tapes are used for backup and to store infrequently accessed data.

5.2 Disk Structure

 Disk drives are addressed as large one-dimensional arrays of logical blocks where

logical block is the smallest unit of transfer.

 Sector 0 is the first sector of the first track on the outermost cylinder.

 Mapping proceeds in order through that track, then the rest of the tracks in that

cylinder, and then through the rest of the cylinders from outermost to innermost.

 By using this mapping, we can convert a logical block number into an old-style disk

address that consists of a cylinder number, a track number within that cylinder, and a

sector number within that track.

 It is difficult to perform this translation, for two reasons. First, most disks have some

defective sectors; second, the number of sectors per track is not constant on some

drives.

 On media that use Constant Linear Velocity (CLV), the density of bits per track is

uniform. The farther a track is from the center of the disk, the greater its length, so the

more sectors it can hold. As we move from outer zones to inner zones, the number of

sectors per track decreases. The drive increases its rotation speed as the head moves

from the outer to the inner tracks to keep the same rate of data moving under the

head. This method is used in CD-ROM and DVD-ROM drives.

 Alternatively, the disk rotation speed can stay constant, and the density of bits

decreases from inner tracks to outer tracks to keep the data rate constant. This method

is used in hard disks and is known as Constant Angular Velocity (CAV).

5.3 Disk Attachment

 Computers access disk storage in two ways

o Via I/O ports (host attached storage).

o via a remote host in a distributed file system (network attached storage)

 Host Attached Storage

 Host-attached storage is a storage accessed through local I/O ports.

 High-end workstations and servers use more sophisticated I/O architectures like

SCSI and Fiber channel (FC).

 SCSI supports 16 devices on the bus.

 Fiber-channel is a high-speed serial architecture that can operate over optical fiber

and used in Storage Area Network (SAN).

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 3

 A wide variety of storage devices are suitable for use as host-attached storage.

 Ex: RAID arrays, CD, DVD and tape drives.

 Network-Attached Storage

 A network-attached storage (NAS) device is a special-purpose storage system that

is accessed remotely over a data network as shown in below figure.

 Clients access network–attached storage via a remote-procedure-call interface

such as Network File System (NFS) for UNIX and Common Internet File

System (CIFS) for Windows.

 The remote procedure calls are carried via TCP or UDP over all IP network.

 Internet Small Computer System Interface (ISCSI) is the latest network-

attached storage protocol. It uses IP network protocol to carry SCSI protocol.

 Storage-Area Network

 A storage-area network (SAN) is a private network connecting servers and

storage units as shown in below figure.

 Multiple hosts and multiple storage arrays can attach to the same SAN, and

storage can be dynamically allocated to hosts.

 A SAN switch allows or prohibits access between the hosts and the storage.

 SAN’s have more ports and less expensive ports than storage arrays.

 Fiber channel is used to interconnect multiple storage area networks.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 4

5.4 Disk Scheduling

 Disk access time has two major components.

o Seek Time: It is the time taken by the disk arm to move the read-write head to

the required cylinder that contains the desired sector.

o Rotational Latency: It is the additional time for the disk to rotate the desired

sector to the disk head.

o Disk Bandwidth: It is the total number of bytes transferred, divided by the

total time between the first request for service and the completion of last

transfer.

 Whenever a process needs I/O from the disk, it issues a system call to the operating

system.

 The request specifies several pieces of information,

o Whether this operation is input or output?

o What the disk address for the transfer is?

o What the memory address for the transfer is?

o What the number of sectors to be transferred is?

 If the desired disk drives available, the request can be serviced immediately. If the

driver is busy, request will be placed in the queue. When one request is completed,

OS chooses another pending request to service next. Several disk scheduling are

used for this purpose.

 FCFS Scheduling

 Simplest form of disk scheduling.

 Generally doesn’t provide fastest service.

 For example: A disk queue with requests for I/O to blocks on cylinders 98, 183,

37,122,14,124,65,67 and disk head is initially at cylinder 53.

 It will first move from 53 to 98, then to 183,37,122,14,124,65 and 67 as shown in

below figure for a total head movement of 640 cylinders.

ǀ53-98ǀ = 45

ǀ98-183ǀ = 85

ǀ183-37ǀ = 146

ǀ37-122ǀ = 85

ǀ122-14ǀ = 108

ǀ14-124ǀ = 110

ǀ124-65ǀ = 59

ǀ65-67ǀ = 02

 640

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 5

 SSTF Scheduling (Short-seek-Time-First)

 SSTF assumes that it is better to service all the requests close to the current head

position before moving the head for away to service other requests.

 SSTF choose the pending request closest to the current head position.

 For the queue 98, 183, 37, 122, 14, 124, 65, 67 with head position = 53. Closest

request to the initial head position is 65. Once we are at cylinder 65 next request

served is 67, next is 37 and so on as shown in below figure. This scheduling

results in a total head movement of only 236 cylinders.

 SSTF may cause starvation of some process.

ǀ53-65ǀ

= 45

ǀ65-67ǀ

= 85

ǀ67-37ǀ

= 146

ǀ37-14ǀ

= 85

ǀ14-98ǀ

= 108

ǀ98-122ǀ

= 110

ǀ122-

124ǀ = 59

ǀ124-

183ǀ = 02

236

 SCAN Scheduling (Elevator algorithm) (end points are not considered)

 In SCAN algorithm, the disk arm starts at one end of the disk and moves toward

the other end, servicing requests as it reaches each cylinder, until it get to other

end of the disk. At the other end, the direction of head movement is reversed and

servicing continues.

 Head continuously scans back and forth across the disk.

 Consider requests 98, 183, 37, 122, 14, 124, 65 and 67, head position = 53.

 For this algorithm we need to know the direction of head movement

 If the disk arm is moving towards 0, the head will service 37 and then 14.

 At cylinder 0, the arm will reverse and move towards the other end servicing the

requests at 65, 67, 98, 122, 124 and 183 as shown in below figure.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 6

 This

scheduling method

results in a total head

movement of only

208 cylinders.

ǀ53-37ǀ = 16

ǀ37-14ǀ = 23

ǀ14-65ǀ = 51

ǀ65-67ǀ = 85

ǀ67-98ǀ = 31

ǀ98-122ǀ = 24

ǀ122-124ǀ = 02

ǀ124-183ǀ = 59

 208

 C-Scan Scheduling (end points are considered)

 Circular SCAN (C-SCAN) Scheduling is a variant of SCAN designed to provide

a more uniform wait time.

 C-SCAN moves the head from one end of the disk to the other, servicing requests

along the way. When the head reaches the other end, it immediately returns to the

beginning of the disk, without servicing any requests on the return trip as shown

in below figure.

 The C-SCAN scheduling algorithm essentially treats the cylinders as a circular

list that wraps around from the final cylinder to the first one.

 This scheduling method results in a total head movement of only 382 cylinders.

ǀ53-65ǀ =

12

ǀ65-67ǀ =

02

ǀ67-98ǀ =

31

ǀ98-122ǀ =

24

ǀ122-124ǀ =

02

ǀ124-183ǀ =

59

ǀ183-199ǀ =

16

ǀ199-0ǀ =

199

ǀ0-14ǀ = 14

ǀ14-37ǀ = 23

 382

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 7

 Look Scheduling

 In this disk arm does not move across the full width of the disk.

 The arm goes only as far as the final request in each direction. Then it reverses

direction immediately, without going all the way to the end of the disk.

 Version of SCAN and C-SCAN that follows this pattern are called LOOK and C-

LOOK Scheduling because they look for a request before continuing to move in a

given direction as shown in below figure.

 This scheduling method results in a total head movement of only 299 cylinders.

ǀ53-65ǀ = 12

ǀ65-67ǀ = 02

ǀ67-98ǀ = 31

ǀ98-122ǀ = 24

ǀ122-124ǀ = 02

ǀ124-183ǀ = 59

ǀ183-37ǀ = 146

ǀ37-14ǀ = 23

 299

 C-Look Scheduling (without servicing while returning)

 Version of C-SCAN

 Arm only goes as far as the last request in each direction, then reverses direction

immediately, without first going all the way to the end of the disk.

 This scheduling method results in a total head movement of only 322 cylinders.

ǀ53-65ǀ = 12

ǀ65-67ǀ = 02

ǀ67-98ǀ = 31

ǀ98-122ǀ = 24

ǀ122-124ǀ = 02

ǀ124-183ǀ = 59

ǀ183-14ǀ = 169

ǀ14-37ǀ = 23

 322

 Selection of Disk Scheduling Algorithm

 SSTF is a common scheduling algorithm because it increases performance over

FCFS.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 8

 SCAN and C-SCAN used in the heavily loaded disk because these avoids

starvation problem.

 File-allocation method must be considered while selecting scheduling algorithm.

 The location of directories and index blocks is also important.

 Caching the directories and index blocks in main memory can also help to reduce

disk-arm movement particularly for read requests.

 Because of these complexities, the disk-scheduling algorithm should be written as

a separate module of the operating system, so that it can be replaced with a

different algorithm if necessary.

5.5 Disk Management

OS is responsible for several disk management activities like,

 Disk Formatting

 A new magnetic disc is a blank slate, before a disk can store data, it must be

divided into sectors that the disk controllers can read and write. This process is

called Low level formatting or Physical formatting.

 Low–level formatting fills the disk with a special data structure for each sector. It

consists of a header, data area and a trailer. The header and trailer contain

information used by the disk controller, such as a sector number and an error

correcting code (ECC).

 To use a disk to hold files, the OS needs to record its own data structures on the

disk. Two steps involved in this process are,

o Partition: The disks are partitioned into one or more groups of cylinders.

o Logical formatting: In this step, OS stores the initial file-system data

structure onto the disk.

 To increase efficiency, most file systems group the blocks together into larger

chunks called as clusters.

 Boot Block

 Initial bootstrap program is required for a computer to start running. It initializes

the system and then starts the OS.

 Bootstrap program finds the OS kernel on disk, loads that kernel into memory,

and jumps to an initial address to begin the OS execution.

 It is stored in Read Only Memory (ROM) but the problem is that changing this

bootstrap code requires changing the ROM hardware chips. So most systems store

a tiny bootstrap loader program in the boot ROM whose job is to bring in a full

bootstrap program from disk.

 Full bootstrap program is stored in the boot blocks at a fixed location on the disk.

A disk that has boot partition is called a Boot disk or System disk.

 For example: The boot process in Windows 2000 system places its boot code in

the first sector on the hard disk and it is termed as master boot record (MBR).

 Windows 2000 allows a hard disk to be divided into one or more partitions; one

partition is the boot partition and it contains the operating system and device

drivers. The other partition contains a table listing the partitions for the hard disk

and a flag indicating which partition the system is to be booted from, as shown in

figure.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 9

 Once the system identifies the boot partition, it reads the first sector from that

partition which is called the boot sector and continues with the remainder of the

boot process, which includes loading the various subsystems and system services.

 Bad Blocks

 Because disks have moving parts and small tolerances, they are prone to failures.

Failure may affect complete disk or it may affect one or two sectors. Most disks

even come from factory with bad blocks.

 On simple disks, such as some disks with IDE controllers, bad blocks are handled

manually. For instance, the MS-DOS format command performs logical

formatting and, as a part of the process, scans the disk to find bad blocks. If

format finds a bad block, it writes a special value into the corresponding FAT

entry to tell the allocation routines not to use that block. If blocks go bad during

normal operation, a special program such as chkdsk must be run manually to

search for the bad blocks and to lock them away as before. Data that resided on

the bad blocks usually are lost.

 More sophisticated disks, such as the SCSI disks used in high-end PCs and most

workstations and servers, are smarter about bad-block recovery. The controller

maintains a list of bad blocks on the disk. The list is initialized during the low-

level formatting at the factory and is updated over the life of the disk. The

controller can be told to replace each bad sector logically with one of the spare

sectors. This scheme is known as Sector sparing or Forwarding.

 As an alternative to sector sparing, some controllers can be instructed to replace a

bad block by sector slipping. For example,Suppose that logical block 17 becomes

defective and the first available spare follows sector 202. Then, sector slipping

remaps all the sectors from 17 to 202, moving them all down one spot. That is,

sector 202 is copied into the spare, then sector 201 into 202, and then 200 into

201, and so on, until sector 18 is copied into sector 19. Slipping the sectors in this

way frees up the space of sector 18, so sector 17 can be mapped to it.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 10

5.6 Swap - Space Management

 Swap - Space Management is another low-level task of the operating system.

Virtual memory uses disk space as an extension of main memory.

 Since disk access is much slower than memory access, using swap space

significantly decreases system performance. The main goal for the design and

implementation of swap space is to provide the best throughput for the virtual

memory system.

 Swap - Space Use

 Swap space is used in various ways by different operating systems, depending on

the memory-management algorithms in use. For instance, systems that implement

swapping may use swap space to hold an entire process image, including the code

and data segments. Paging systems may simply store pages that have been pushed

out of main memory.

 The amount of swap space needed on a system can therefore vary depending on

the amount of physical memory, the amount of virtual memory, and the way in

which the virtual memory is used. It can range from a few megabytes of disk

space to gigabytes.

 Swap - Space Location

 Swap Space can reside in one of two places.

o It can be simply a large file within the file system where normal file-system

routines can be used to create it, name it and allocate its space. This approach

is easy to implement but inefficient. Navigating the directory structure and

the disk allocation data structures takes time and extra disk accesses.

o Swap space can be created in a separate disk partition (raw partition). A

separate swap space storage manager is used to allocate and deallocate the

blocks from the raw partition.

 Some operating systems are flexible and can swap both in raw partitions and in

file-system space.

 Swap - Space Management: An Example

 The traditional UNIX kernel started with an implementation of swapping that

copied entire processes between contiguous disk regions and memory. UNIX later

evolved to a combination of swapping and paging as paging hardware became

available.

 In Solaris 1, when a process executes, text - segment pages containing code are

brought in form the file system, accessed in main memory, and thrown away if

select for page out. It is more efficient to reread a page from the file system than

to write it to swap space and then reread it from there.

 Swap Space is only used as a backing store for pages of anonymous memory,

which includes memory allocated for the stack, heap and uninitialized data of a

process.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 11

 The biggest change is that Solaris now allocates swap space only when a page is

forced out of physical memory, rather than when the virtual memory page is first

created. This scheme gives better performance.

 Linux allows one or more swap areas to be established. A swap area may be in

either a swap file on a regular file system or a raw-swap-space partition. Each

swap area consists of a series of 4-KB page slots which are used to hold swapped

pages. An array of integer counters, each corresponding to a page slot called swap

map is associated with a swap area. If the value of a counter is 0, the

corresponding page slot is available. Values greater than 0 indicate that the page

slot is occupied by a swapped page. The value of the counter indicates the number

of mappings to the swapped page.For example, a value of 3 indicates that the

swapped page is mapped to three different processes. The data structures for

swapping on Linux systems are shown in below figure.

 5.7 System Protection

 The processes in an operating system must be protected from one another's activities. To

provide such protection, we can use various mechanisms to ensure that only processes

that have gained proper authorization from the operating system can operate on the files,

memory segments, CPU, and other resources of a system.

 Protection refers to a mechanism for controlling the access of programs, processes, or

users to the resources defined by a computer system.

5.8 Goals of Protection

 Prevention of mischievous, intentional violation of an access restriction by a user.

 Ensures that each program component in a system uses system resources according to

stated policies.

 Protection can improve reliability by detecting latent errors at the interfaces between

component subsystems.

 A protection - oriented system provides means to distinguish between authorized and

unauthorized usage.

 Role of protection in a computer system is to provide a mechanism for the

enforcement of the policies governing resource use.

 Mechanisms determine how something will be done and policies decide what will be

done.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 12

5.9 Principles of Protection

 Guiding principle for protection is the Principle of Least Privilege. It dictates that

programs, users and even system be given just enough privileges to perform their

tasks.

 Principle of least privilege implements programs, system calls in such a way that

failure of a component does the minimum damage.

 It provides mechanisms to enable privileges when they are needed and to disable

them when they are not needed.

 Managing users with the principle of least privilege entails creating a separate

account for each user, with just the privileges that the user needs.An operator who

needs to mount tapes and backup files on the system has access to just those

commands and files needed to accomplish the job. Some systems implement role-

based access control (RBAC) to provide this functionality.

5.10 Domain of Protection

 A computer system is a collection of processes and objects such as hardware objects

like CPU, memory segments, printers, disks, and tape drives and software objects

like files, programs, and semaphores.

 The operations that are possible may depend on the object. A process should be

allowed to access only those resources for which it has authorization.

 At anytime, a process should be able to access only those resources that it currently

requires to complete its task. This is referred as Need-to-Know principle. It limits the

amount of damage caused by faulty process.

 Domain Structure

 A process operates within a Protection Domain which specifies the resources

that the process may access. Each domain defines a set of objects and the types of

operations that may be invoked on each object.

 Ability to execute an operation on an object is called Access Right.

 A domain is a collection of access rights. It is denoted by ordered pair -

˂object-name, right-set˃. For example, if domain D has the access right <file F,

{read, write}>, then a process executing in domain D can both read and write file

F andit cannot perform any other operation on that object.

 Domains do not need to be disjoint; they may share access rights. For example,

in below figure we have three domains: D1, D2, and D3. The access right < 04,

{print}> is shared by D2 and D3, implying that a process executing in either of

these two domains can print object 04.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 13

 Association between a process and a domain may be static or dynamic. Dynamic

association supports domain switching i.e., it enables the process to switch from

one domain to another. A domain can be realized in a variety of ways:

o Each user may be a domain: In this case the set of objects that can be

accessed depends on the identity of the user. Domain switching occurs

when one user logs out and another user logs in.

o Each process may be a domain:In this case, the set of objects that can be

accessed depends on the identity of the process. Domain switching occurs

when one process sends a message to another process and then waits for a

response.

o Each procedure may be a domain:In this case, the set of objects that can

be accessed corresponds to the local variables defined within the

procedure. Domain switching occurs when a procedure call is made.

 An example - UNIX

 In UNIX Operating system, domain is related with the user. Switching the

domain corresponds to changing the user identification temporarily.

 Owner identification and a domain bit (known as the setuid bit) are associated

with each file. When the setuid bit is on, and a user executes that file, the user ID

is set to that of the owner of the file, but when the bit is off, the user ID does not

change.

 Other methods are used to change domains in operating systems in which user

IDs are used for domain definition, because almost all systems need to provide

such a mechanism.

 An alternative to this method used in other operating systems is to place

privileged programs in a special directory. The operating system would be

designed to change the user lDof any program run from this directory, either to

the equivalent of root or to the user lD of the owner of the directory.

 Even more restrictive, and thus more protective, are systems that simply do not

allow a change of user ID. In these instances, special techniques must be used to

allow users access to privileged facilities. For instance, a daemon process may be

started at boot time and run as a special user ID.

 In any of these systems, great care must be taken in writing privileged programs.

 An example –MULTICS

 Protections of domains are organized hierarchically into a ring structure. Rings

are numbered from 0 to ring N-1. Each ring is a single domain as shown in

figure.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 14

 Consider any two domain rings, i.e, Di&Dj. If value of j is less than i (j<i), then

domain Di is subset of domain Dj. The process executing in domain Dj has more

privileges than the process executing in domain Di. Ring 0 has full privileges.

 MULTICS has a segmented address space; each segment is a file, and each

segment is associated with one of the rings. A segment description includes an

entry that identifies the ring number and three access bits to control reading,

writing, and execution.

 A current-ring-number counter is associated with each process, identifying the

ring in which the process is executing currently. When a process is executing in

ring i, it cannot access a segment associated with ring j (j <i). It can access a

segment associated with ring k (k>= i). The type of access is restricted according

to the access bits associated with that segment.

 Domain switching in MULTICS occurs when a process crosses from one ring to

another by calling a procedure in a different ring. This switch must be done in a

controlled manner; otherwise, a process could start executing in ring 0, and no

protection would be provided.

 To allow controlled domain switching, we modify the ring field of the segment

descriptor to include the following:

o Access bracket. A pair of integers, bland b2, such that bl<= b2.

o Limit. An integer b3 such that b3 >b2.

o List of gates. Identifies the entry points (or gates) at which the segments

may be called.

 If a process executing in ring i calls a procedure (or segment) with access bracket

(bl,b2), then the call is allowed if bl<= i <= b2, and the current ring number of the

process remains i. Otherwise, a trap to the operating system occurs, and the

situation is handled as follows:

o If i <bl, then the call is allowed to occur, because we have a transfer to a ring

(or domain) with fewer privileges. If parameters are passed that refer to

segments in a lower ring then these segments must be copied into an area that

can be accessed by the called procedure.

o If i >b2, then the call is allowed to occur only if b3 is greater than or equal to i

and the call has been directed to one of the designated entry points in the list

of gates. This scheme allows processes with limited access rights to call

procedures in lower rings that have more access rights, but only in a carefully

controlled manner.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 15

 The main disadvantage of the ring structure is that it does not allow us to enforce

the need-to-know principle. The MULTICS protection system is generally more

complex and less efficient.

5.11 Access Matrix

 The model of protection can be viewed abstractly as a matrix, called an access

matrix.
 The rows of the access matrix represent domains, and the columns represent

objects. Each entry in the matrix consists of a set of access rights.

 The entry access(i,j) defines the set of operations that a process executing in

domain Di can invoke on object Oj.

 For Example, consider the access matrix shown in below figure

 The access matrix consists of four domains, four objects, three files and one printer.

The summary of access matrix is as follows:

o Process in domain D1 can read file F1 and file F3.

o Process in domain D2 can only use printer.

o Process in domain D3 can read file F2 and execute file F3.

o Process in domain D4 can read and write file F1 and file F3.

 Access matrix scheme provides us with the mechanism for specifying a variety of

policies. We must ensure that a process executing in domain Di, can access only

those objects specified in row, and then only as allowed bythe access-matrix entries.

When a user creates a new object Oj, the column Oj, is added to the access matrix.

Blank entries indicate no access rights. A process is switched from one domain to

another domain by executing switch operation on the object.

 Each entry in the access matrix may be modified individually. Domain switch is

only possible if and only if the access right switch € access (i, j). The below figure

(1) shows the access matrix with domains as objects. Process can change domain as

follows,

o Process in domain D2 can switch to domain D3 and domain D4.

o Process in domain D4 can switch to domain D1.

o Process in domain D1 can switch to domain D2.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 16

figure (1)

 Access matrix is inefficient for storage of access rights in computer system because

they tend to be large and sparse.

 Allowing controlled change in the contents of the access-matrix entries requires

three additional operations: copy, owner, and control.
 The ability to copy an access right from one domain (or row) of the access matrix to

another is denoted by an asterisk (*) appended to the access right.

 The copy right allows the access right to be copied only within the column for

which the right is defined.

 For example, as shown in below figure(a), a process executing in domain D2 can

copy the read operation into any entry associated with file F2. Hence, the access

matrix of figure(a) can be modified to the access matrix shown in figure (b).

 This scheme has two variants:

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 17

o A right is copied from access(i, j) to access(k, j); it is then removed from

access(i, j). This action is a transfer of a right, rather than a copy.

o Propagation of the copy right may be limited. That is, when the right R* is

copied from access(i,j) to access(k,j), only the right R (not R*) is created. A

process executing in domain Dkcannot further copy the right R.

 A system may select only one of these three copy rights, or it may provide all three

by identifying them as separate rights: copy, transfer, and limited copy.

 The owner right controls these operations. If access(i, j) includes the owner right,

then a process executing in domain Dican add and remove any right in any entry in

column j.

 For example, as shown in below figure (a), domain D1 is the owner of F1 and thus

can add and delete any valid right in column F1. Similarly, domain D2 is the owner

of F2 and F3 and thus can add and remove any valid right within these two columns.

Thus, the access matrix of figure (a) can be modified to the access matrix as shown

in figure (b).

 The copy and owner rights allow a process to change the entries in a column.

 A mechanism is also needed to change the entries in a row. The control right is

applicable only to domain objects. If access(i, j) includes the controlright, then a

process executing in domain Di can remove any access right from row j.

 For example, in figure (1) we include the control right in access (D2, D4). Then, a

process executing in domain D2 could modify domain D4, as shown in below

figure.
 The problem of guaranteeing that no information initially held in an object can

migrate outside of its execution environment is called the confinement problem.

This problem is in general unsolvable.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 18

5.12 Implementing Access matrix

 It is implemented in several ways. Methods for implementing access matrix are,

o Global table.

o Access lists for objects.

o Capability list for domain.

o A lock key mechanism.

 Global Table

 It is the simplest method for implementation of access matrix. Global table

consists of domain, object and right set. The order of syntax is

<domain, object, right-set >
 If operation M is executed on an object Oj within domain Di, the global table is

searched for a triple- < Di, Oj, Rk> with M € Rk. If the above triple is found, then

operation is allowed to continue. If suppose triple is not found then an exception

error condition occurs.

 Limitations of Global table are, Global table is large and it cannot be kept in

memory and additional Input/ Output is required.

 Access list for objects

 Each column in the access matrix can be implemented as an access list for one

object. The empty entries can be discarded.

 The resulting list for each object consists of ordered pairs <domain, rights-set>,

which define all domains with a nonempty set of access rights for that object.

 This approach can be extended easily to define a list plus a default set of access

rights. When an operation M on an object Oi is attempted in domain Di, we search

the access list for object Oi, looking for an entry < Di, Rk> with M € Rk. If the

entry is found, we allow the operation; if it is not, we check the default set. If M is

in the default set, we allow the access. Otherwise, access is denied, and an

exception condition occurs.

 Capability list for domains

 Each row is associated with its domain.

 A capability list for a domain is a list of objects together with the operations

allowed on those objects.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 19

 An object is often represented by its physical name or address, called a

Capability.
 Process executes operation M by specifying the capability (or pointer) for object

Oj as a parameter.

 Capabilities are distinguished from other data in two ways-

o Each object has a tag to denote its type as either a capability or as

accessible data.

o The address space associated with a program can be split into two parts.

One part is accessible to the program and contains the programs normal

data and instructions. The other part containing the capability list is

accessible only by the operating system.

 A Lock –Key Mechanism

 The lock key scheme is a compromise between access list and capability list.

 Each object has a list of unique bit patterns called locks and each domain has a

list of unique bit patterns called keys.

 A process executing in a domain can access an object only if the domain has a

key that matches one of the locks of the object.

 Users are not allowed to examine or to modify the list of keys directly.

 Comparison of methods

 Global table is simple but table can be quite large and cannot take

advantage of special groupings of objects or domains.

 Access lists corresponds directly to the needs of users. But determining

the set of access rights of a particular domain is difficult.

 Capability lists do not correspond directly to the needs of users. They are

useful for localizing information for a given process.

 Lock-Key mechanism is a compromise between access lists and capability

lists. The mechanism can be effective and flexible depending on the length

of the keys.

5.13 Access Control

 Role-based Access control (RBAC) facility revolves around privileges.

 A privilege is the right to execute a system call or to use an option within that

system call. Privileges can be assigned to process or roles.

 Users are assigned roles or can take roles based on passwords to the roles.

 In this way a user can take a role that enables a privilege, allowing the user to

run a program to accomplish a specific task as shown in the below figure.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 20

5.14 Revocation of Access Rights

 Revocation of access rights to objects in shared environment is possible. Various

questions about revocation may arise as follows,

o Immediate versus delayed. Does revocation occur immediately, or is it delayed?

If revocation is delayed, can we find out when it will take place?

o Selective versus general. When an access right to an object is revoked, does it

affect all the users who have an access right to that object, or can we specify a

select group of users whose access rights should be revoked?

o Partial versus total. Can a subset of the rights associated with an object be

revoked, or must we revoke all access rights for this object?

o Temporary versus permanent. Can access be revoked permanently (that is, the

revoked access right will never again be available), or can access be revoked and

later be obtained again?

 Revocation is easy for access list and complex for capabilities list.The access list is

searched for any access rights to be revoked, and they are deleted from the list.

 Schemes that implement revocation for capabilities include the following:

o Reacquisition. Periodically, capabilities are deleted from each domain. If a

process wants to use a capability, it may find that that capability has been deleted.

The process may then try to reacquire the capability. If access has been revoked,

the process will not be able to reacquire the capability.

o Back-pointers. A list of pointers is maintained with each object, pointing to all

capabilities associated with that object. When revocation is required, change the

capabilities as necessary. This scheme was adopted in the MULTICS system. It is

quite general, but its implementation is costly.

o Indirection. The capabilities point indirectly to the objects. Each capability

points to a unique entry in a global table, which in turn points to the object. We

implement revocation by searching the global table for the desired entry and

deleting it. Then, when an access is attempted, the capability is found to point to

an illegal table entry. Table entries can be reused for other capabilities without

difficulty, since both the capability and the table entry contain the unique name of

the object. The object for a capability and its table entry must match. This scheme

was adopted in the CAL system. It does not allow selective revocation.

o Keys. A key is a unique bit pattern that can be associated with a capability. This

key is defined when the capability is created, and it can be neither modified nor

inspected by the process that owns the capability. A master key is associated

with each object; it can be defined or replaced with the set-key operation. When a

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 21

capability is created, the current value of the master key is associated with the

capability. When the capability is exercised, its key is compared with the master

key. If the keys match, the operation is allowed to continue; otherwise, an

exception condition is raised. If we associate a list of keys with each object, then

selective revocation can be implemented. Finally, we can group all keys into one

global table of keys. A capability is valid only if its key matches some key in the

global table. In key-based schemes, the operations of defining keys, inserting

them into lists, and deleting them from lists should not be available to all users.

5.15 Capability Based Systems

Capability based protection systems are of two types,

 An example - Hydra
 Hydra provides a fixed set of possible access rights that are known to and

interpreted by the system. These rights include such basic forms of access as the

right to read, write or execute a memory segment.

 Operations an object are defined procedurally. The procedures that implement

such operations are themselves a form of object and they are accessed indirectly

by capabilities. When the definition of an object is made known to hydra, the

names of operations on the type become auxiliary right.

 Hydra also provides rights amplification. This scheme allows certification of a

procedure as trust worthy to act on an formal parameter of a specified type, on

behalf of any process that holds a right to execute the procedure.

 An example - Cambridge Cap System

 CAP system is simpler and superficially less powerful than that of hydra. CAP

has two kinds of capabilities-

o Data capability can be used to provide access to objects, but the only rights

provided are the standard read, write and execute of the individual storage

segments associated with the object. Data capabilities are interpreted by

microcode in the CAP machine.

o Software capability is protected, but not interpreted by the CAP microcode.

It is interpreted by a protected procedure, which may be written by an

application programmer as part of a subsystem. The interpretation of a

software capability is left completely to the subsystem, through the protected

procedures it contains. This scheme allows a variety of protection policies to

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 22

The Linux System

5.16 Linux History

 The Linux system has grown to include much UNIX functionality. Linux

development revolved largely around the central operating-system kernel.

 The linux kernel is an entirely original piece of software developed from scratch by

the Linux community. The linux system, as we know it today, includes a

multitude of components, some written from scratch, others borrowed from other

development projects, and still others created in collaboration with other teams.

 A linux distribution includes all the standard components of the Linux system, plus

a set of administrative tools to simplify the initial installation and subsequent

upgrading of Linux and to manage installation and removal of other packages on the

system. A modern distribution also typically includes tools for management of file

systems, creation and management of user accounts, administration of networks, Web

browsers, word processors, and so on.

 The Linux Kernel

 The first Linux kernel released to the public was Version 0.01, dated May 14,

1991. It had no networking, ran only on 80386-compatible Intel processors

and PC hardware, and had extremely limited device-driver support.

 The virtual memory subsystem was also fairly basic and included no support

for memory-mapped files; however, even this early incarnation supported

shared pages with copy-on-write.

 The only file system supported was the Minix file system.

 The next milestone version, Linux 1.0, was released on March 14, 1994.

 The single biggest new feature was networking: 1.0 included support for

UNIX's standard TCP /IP networking protocols, as well as a BSD-compatible

socket interface for networking programming.

 Device-driver support was added for running IP over an Ethernet or (using

PPP or SLIP protocols) over serial lines or modems.

 The 1.0 kernel also included a new, much enhanced file system.

 The developers extended the virtual memory subsystem to support paging to

swap files and memory mapping of arbitrary files.

 A range of extra hardware support was also included in this release.

 System V UNIX-style interprocess communication(IPC) including shared

memory, semaphores, and message queues, was implemented.

 Kernels with an odd minor-version number, such as 1.1, 1.3, and2.1, are

development kernels; even numbered minor-version numbers are stable

production kernels. In March 1995, the 1.2 kernel was released.

 support a much wider variety of hardware, including the new PCI hardware

bus architecture.

 They also updated the networking stack to provide support for the IPX

protocol and made the IP implementation more complete by including

accounting and firewalling functionality.

 The 1.2 kernel was the final PC-only Linux kernel.

 The source distribution for Linux 1.2 included partially implemented support

for SPARC, Alpha, and MIPS CPUs.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 23

 This work was finally released as Linux 2.0 in Jmce 1996. This release was

given a major version-number increment on account of two major new

capabilities.

 support for multiple architectures, including a 64-bit native Alpha port, and

support for multiprocessor architectures.

 The memory-management code was substantially improved to provide a

unified cache for file-system data independent of the caching of block

devices.

 file-system and virtual memory performance. For the first time, file-system

caching was extended to networked file systems, and writable memory-

mapped regions also were supported.

 The 2.0 kernel also included much improved TCP /IP performance, and a

number of new networking protocols were added, including Apple Talk,

AX.25 an'lateur radio networking, and ISDN support.

 The ability to mount remote netware and SMB (Microsoft LanManager)

network volumes was added.

 Other major improvements in 2.0 were support for internal kernel threads, for

handling dependencies between loadable modules, and for automatic loading

of modules on demand.

 Improvements continued with the release of Linux 2.2 in January 1999.

 A port for Ultra SPARC systems was added.

 Networking was enhanced with more flexible firewalling, better routing and

traffic management, and support for TCP large window and selective acks.

 Acorn, Apple, and NT disks could now be read, and NFS was enhanced and a

kernel-mode NFS daemon added.

 Signal handling, interrupts, and some I/0 were locked at a finer level than

before to improve symmetric multiprocessor (SMP) performance.

 Advances in the 2.4 and 2.6 releases of the kernel include increased support

for SMP systems, journaling file systems, and enhancements to the memory-

management system.

 The process scheduler was modified in Version 2.6, providing an efficient

0(1) scheduling algorithm.

 In addition, the Linux 2.6 kernel is now preemptive, allowing a process to be

preempted while running in kernel mode.

 The Linux System

 The Linux kernel forms the core of the Linux project, but other components make

up the complete Linux operating system.

 Linux uses many tools developed as part of Berkeley's BSD operating system,

MIT's X Window System, and the Free Software Foundation's GNU project.

 The GNU C compiler(gcc), were alreadyof sufficiently high quality to be used

directly in Linux.

 The networking administration tools under Linux were derived from code first

developed for 4.3 BSD, but more recent BSD derivatives, such as FreeBSD, have

borrowed code from Linux in return.

 Examples include the Intel floating-point-emulation math library and the PC

sound-hardware device drivers.

 The Linux system as a whole is maintained by a loose network ofdevelopers

collaborating over the Internet.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 24

 The file system hierarchy standard document is also maintained by the Linux

community as a means of ensuring compatibility across the various system

components.

 Linux Distributions

 Distributions, include much more than just the basic Linux system.

 They typically include extra system-installation and management utilities, as well

as precompiled and ready-to-install packages of many of the common UNIX

tools, such as news servers, Web browsers, text-processing and editing tools, and

even games.

 Linux distributions include a package-tracking database that allows packages to

be installed, upgraded, or removed painlessly.

 The SLS distribution, was the first collection of Linux packages that was

recognizable as a complete distribution.

 Although it could be installed as a single entity, SLS lacked the package-

management tools.

 The slackware distribution represented a great improvement in overall quality,

even though it also had poor package management; in fact, it is still one of the

most widely installed distributions in the Linux community.

 Red Hat andDebian are particularly popular distributions; the first comes from a

commercial Linux support company and the second from the free-software Linux

community.

 Other commercially supported versions of Linux include distributions from

Caldera, craftworks and Workgroup solutions.

 Linux Licensing

 The Linux kernel is distributed under the GNU general public license (GPL), the

terms of which are set out the Free Software Foundation.

 Linux is not public-domain software .Public domine implies that the authors have

waived copyright rights in the software, but copyright rights in Linux code are

still held by the code's various authors.

 Linux is free software, however, in the sense that people can copy it, modify it,

use it in any manner they want, and give away their own copies, without any

restrictions.

 The main implications of Linux's licensing terms are that nobody using linux, or

creating a derivative of Linux (a legitimate exercise), can make the derived

product proprietary.

 Software released under the GPL cannot be redistributed as a binary-only product.

5.17 Design Principles

 Linux resembles any other traditional, no nmicro kernel UNIX implementation. It is a

multiuser, multitasking system with a full set of UNIX-compatible tools.

 Linux's file system adheres to traditional UNIX semantics, and the standard UNIX

networking model is implemented fully.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 25

 Linux can run happily on a multiprocessor machine with hundreds of megabytes of

main memory and many gigabytes of disk space, but it is still capable of operating

usefully in under 4 MB of RAM.

 Speed and efficiency are still important design goals, but much recent and current

work on Linux has concentrated on a third major design goal: standardization.

 There are POSIX documents for common operating-system functionality and for

extensions such as process threads and real-time operations.

 the Linux programming interface adheres to SVR4 UNIX semantics.

 A separate set of libraries is available to implement BSD semantics in places where

the two behaviors differ significantly.

 Linux currently supports the POSIX threading extensions-Pthreads -and a subset of

the POSIX extensions for real-time process control.

 Components of a Linux System

 The Linux system is composed of three main bodies of code, in line with

mosttraditional UNIX implementations:

o Kernel- The kernel is responsible for maintaining all the important

abstractions of the operating system, including such things as virtual

memory and processes.

o System libraries- The system libraries define a standard set of functions

through which applications can interact with the kernel. These functions

implement much of the operating-system functionality that does not need

the full privileges of kernel code.

o System utilities-The system utilities are programs that perform individual,

specialized management tasks. Some system utilities may be invoked just

once to initialize and configure some aspect of the system; others known

as daemons in UNIX terminology -may run permanently, handling such

tasks as responding to incoming network connections, accepting logon

requests from terminals, and updating log files.

 Figure illustrates the various components that make up a full Linux system.

o The most important distinction here is between the kernel and everything

else.

o All the kernel code executes in the processor's privileged mode with full

access to all the physical resources of the computer.

o Linux refers to this privileged mode as kernel mode.

o The kernel is created as a single, monolithic binary. The main reason is to

improve performance.

o Because all kernel code and data structures are kept in a single address

space, no context switches are necessary when a process calls an

operating-system function or when a hardware interrupt is delivered.

o Not only the core scheduling and virtual memory code but all kernel code,

including all device drivers, file systems, andnetworking code.

 The kernel does not necessarily need to know in advance which modules may be

loaded-they are truly independent loadable components.

 The Linux kernel forms the core of the Linux operating system.

 It provides all the functionality necessary to run processes, and it provides system

services to give arbitrated and protected access to hardware resources.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 26

 The system libraries provide many types of functionality.

 At the simplest level, they allow applications to make kernel-system service

requests.

 Making a system call involves transferring control from unprivileged user mode

to privileged kernel mode.

 The libraries take care of collecting the system-call arguments and, if necessary,

arranging those arguments in the special form necessary to make the system call.

 The libraries may also provide more complex versions of the basic system calls.

The libraries also provide routines that do not correspond to system calls at all,

such as sorting algorithms, mathematical functions, and string-manipulation

routines.

 All the functions necessary to support the running of UNIX or POSIX

applications are implemented here in the system libraries.

 The Linux system includes a wide variety of user-mode programs-both system

utilities and user utilities.

 The system utilities include all the programs necessary to initialize the system,

such as those to configure network devices and to load kernel modules.

 Continually running server programs also com1.t as system utilities; such

programs handle user login requests, incoming network connections, and the

printer queues.

5.18 Kernel Modules

 The Linux kernel has the ability to load and unload arbitrary sections of kernel code

on demand.

 These loadable kernel modules run in privileged kernel mode and as a consequence

have full access to all the hardware capabilities of the machine on which they run.

 Kernel modules are convenient for several reasons.

 Linux' s source code is free, so anybody wanting to write kernel code is able to

compile a modified kernel and to reboot to load that new functionality.

 If you use kernel modules, the driver can be compiled on its own and loaded into the

already-running kernel.

 Once a new driver is written, it can be distributed as a module so that other users can

benefit from it without having to rebuilt their kernels.

 The kernel's module interface allows third parties to write and distribute, on their own

terms, device drivers or file systems.

 Kernel modules allow a Linux system to be set up with a standard minimal Kernel,

without any extra device drivers built in.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 27

 Any device drivers that the user needs can be either loaded explicitly by the system

at startup or loaded automatically by the system on demand and unloaded when not in

use.

 The module support under Linux has three components:

o The module management allows modules to be loaded into memory and to talk

to the rest of the kernel.

o The driver registration allows modules to tell the rest of the kernel that a new

driver has become available.

o A conflict-resolution mechanism allows different device drivers to reserve

hardware resources and to protect those resources from accidental use by another

driver.

 Module Management

 Loading a module requires more than just loading its binary contents into kernel

memory.

 The system must also make sure that any references the module makes to kernel

symbols or entry points are updated to point to the correct locations in the kernel's

address space.

 Linux deals with this reference updating by splitting the job of module loading

into two separate sections: the management of sections of module code in kernel

memory and the handling of symbols that modules are allowed to reference.

 Linux maintains an internal symbol table in the kernel.

 This symbol table does not contain the full set of symbols defined in the kernel

during the latter's compilation; rather, a symbol must be exported explicitly by the

kernel.

 The set of exported symbols constitutes a well-defined interface by which a

module can interact with the kernel.

 When a module is to be loaded into the kernel, a system utility first scans the

module for these unresolved references.

 All symbols that still need to be resolved are looked up in the kernel's symbol

table, and the correct addresses of those symbols in the currently running kernel

are substituted into the module's code.

 Only then is the module passed to the kernel for loading. If the system utility

cannot resolve any references in the module by looking them up in the kernel's

symbol table, then the module is rejected.

 The loading of the module is performed in two stages.

 First, the module loader utility asks the kernel to reserve a continuous area of

virtual kernel memory for the module.

 The kernel returns the address of the memory allocated, and the loader utility can

use this address to relocate the module's machine code to the correct loading

address.

 A second system call then passes the module, plus any symbol table that the new

module wants to export, to the kernel.

 The module itself is now copied verbatim into the previously allocated

space, and the kernel's symbol table is updated with the new symbols for possible

use by other modules not yet loaded.

 The final module-management component is the module requestor.

 The kernel defines a communication interface to which a module-management

program can connect.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 28

 With this connection established, the kernel will inform the management process

whenever a process requests a device driver, file system, or network service that

is not currently loaded and will give the manager the opportunity to load that

service.

 The original service request will complete once the module is loaded.

 Driver Registration

 Once a module is loaded, it remains no more than an isolated region of memory

until it lets the rest of the kernel know what new functionality it provides.

 The kernel maintains dynamic tables of all known drivers and provides a set of

routines to allow drivers to be added to or removed from these tables at any time.

 The kernel makes sure that it calls a module's startup routine when that module is

loaded and calls the module's cleanup routine before that module is unloaded:

these routines are responsible for registering the module's functionality.

 A module may register many types of drivers and may register more than one

driver if it wishes.

 Registration tables include the following items:

o Device drivers- These drivers include character devices (such as

printers/terminals/ and mice) 1 block devices (including all disk drives) 1 and

network interface devices.

o File systems- The file system may be anything that implements Linux's

virtual-file-system calling routines. It might implement a format for storing

files on a disk, but it might equally well be a network file system, such as

NFS1 or a virtual file system whose contents are generated on demand/ such

as Linux's /proc file system.

o Network protocols- A module may implement an entire networking protocol

such as IPX1 or simply a new set of packet-filtering rules for a network

firewall.

o Binary format- This format specifies a way of recognizing/ and loading/ a

new type of executable file.

 Conflict Resolution

 Commercial UNIX implementations are usually sold to run on a vendor/s own

hardware.

 One advantage of a single-supplier solution is that the software vendor has a good

idea about what hardware configurations arepossible.

 The problem of managing the hardware configuration becomes more severe when

modular device drivers are supported/ since the currently active set of devices

becomes dynamically variable.

 Linux provides a central conflict-resolution mechanism to help arbitrate access to

certain hardware resources.

 Its aims are as follows:

o To prevent modules from clashing over access to hardware resources.

o To prevent auto probes-device-driver probes that auto-detect device

configuration-from interfering with existing device drivers.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 29

o To resolve conflicts among multiple drivers trying to access the same

hardware-for example, as when both the parallel printer driver and the

parallel-line IP (PUP) network driver try to talk to the parallel printer port.

 To these ends/ the kernel maintains lists of allocated hardware resources.

 The PC has a limited number of possible I/0 ports (addresses in its hardware I/0

address space), interrupt lines/ and DMA channels.

 When any device driver wants to access such a resource, it is expected to reserve

the resource with the kernel database first.

 This requirement incidentally allows the system administrator to determine exactly

which resources have been allocated by which driver at any given point.

 A module is expected to use this mechanism to reserve in advance any hardware

resources that it expects to use.

 If the reservation is rejected because the resource is not present or is already in use,

then it is up to the module to decide how to proceed.

 It may fail its initialization and request that it be unloaded if it cannot continue, or

it may carry on, using alternative hardware resources.

5.19 Process management

 A process is the basic context within which all user-requested activity is

serviced within the operating system.
 To be compatible with other UNIX systems, Linux must use a process model

similar to those of other versions of UNIX.
 The traditional UNIX process model.

 The fork() and exec() Process Model

 The basic principle of UNIX process management is to separate two operations:

the creation of a process and the running of a new program.

 A new process is created by the fork() system call, and a new program is run after

a call to exec().

 These are two distinctly separate functions.

 A new process may be created with fork() without a new program being run-the

new sub process simply continues to execute exactly the same program that the

first (parent) process was running.

 Equally, running a new program does not require that a new process be created

first: any process may call exec() at any time.

 The currently rumung program is immediately terminated, and the new program

starts executing in the context of the existing process.

 This model has the advantage of great simplicity.

 It is not necessary to specify every detail of the environment of a new program in

the system call that runs that program; the new program simply runs in its existing

environment.

 If a parent process wishes to modify the environment in which a new program

is to be run, it can fork and then, still running the original program in a child

process, make any system calls it requires to modify that child process before

finally executing the new program.

 process properties fall into three groups: the process identity, environment, and

context.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 30

 Process Identity

 A process identity consists mainly of the following items:

o Process ID (PID)- Each process has a Lmique identifier. The PID is used to

specify the process to the operating system when an application makes a

system call to signal, modify, or wait for the process. Additional identifiers

associate the process with a process group (typically, a tree of processes

forked by a single user command) and login session.

o Credentials- Each process must have an associated user ID and one or more

group IDs (user groups are discussed in Section 10.6.2) that determine the

rights of a process to access system resources and files.

o Personality- Process personalities are not traditionally found on UNIX

systems, but under Linux each process has an associated personality identifier

that can slightly modify the semantics of certain system calls. Personalities are

primarily used by emulation libraries to request that system calls be

compatible with certain varieties of UNIX.

 Process Environment

 A process's environment is inherited from its parent and is composed of two null-

terminated vectors: the argument vector and the environment vector.

 The argument vector simply lists the command-line arguments used to invoke the

running program; it conventionally starts with the name of the program itself.

 The environment vector is a list of "NAME= VALUE" pairs that associates

named environment variables with arbitrary textual values.

 The environment is not held in kernel memory but is stored in the process's own

user-mode address space as the first datum at the top of the process's stack.

 The argument and environment vectors are not altered when a new process is

created.

 A completely new environment is set up when a new program is invoked.

 On calling exec (),a process must supply the environment for the new program.

 The kernel passes these environment variables to the next program, replacing the

process's current environment.

 The kernel otherwise leaves the environment and command-line vectors alone.

 The passing of environment variables from one process to the next and the

inheriting of these variables by the children of a process provide flexible ways to

pass information to components of the user-mode system software.

 Various important environment variables have conventional meanings to related

parts of the system software.

 For example, the TERM variable is set up to name the type of terminal connected

to a user's login session.

 Process Context

 process context is the state of the running program at any one time; it changes

constantly.

 Process context includes the following parts:

o Scheduling context The most important part of the process context is its

scheduling context-the information that the scheduler needs to suspend and

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 31

restart the process. This information includes saved copies of all the process's

registers. Floating-point registers are stored separately and are restored only

when needed.

o Accounting The kernel maintains accounting information about the resources

currently being consumed by each process and the total resources consumed

by the process in its entire lifetime so far.

o File table The file table is an array of pointers to kernel file structures. When

making file-I/O system calls, processes refer to files by their index into this

table.

o File-system context Whereas the file table lists the existing open files, the

file-system context applies to requests to open new files. The current root and

default directories to be used for new file searches are stored here.

o Signal-handler table UNIX systems can deliver asynchronous signals to a

process in response to various external events. The signal-handler table

defines the routine in the process's address space to be called when aspecific

signals arrive.

o Virtual memory context The virtual memory context describes the full

contents of a process's private address space; we discuss it in Section 21.6.

 Processes and Threads

 Linux provides the fork() system call with the traditional functionality of

duplicating a process.

 Linux also provides the ability to create threads using the clone() system call.

 However, Linux does not distinguish between processes and threads. Linux uses

the term task.

 When clone()is invoked, it is passed a set of flags that determine how much

sharing is to take place between the parent and child tasks.

 Some of these flags are:

o CLONE_FS-file system information is shared.

o CLONE_VM-the same memory space is shared.

o CLONE_SIGHAND-Signals handlers are shared.

o CLONE_FILES-the set of open files are shared.

 Thus, if clone() is passed the flags CLONE_FS, CLONE_VM,

CLONE_SIGHAND, and CLONE_FILES, the parent and child tasks will share

the same file-system information (such as the current working directory), the

same memory space, the same signal handlers, and the same set of open files.

 If none of these flags is set when clone () is invoked, no sharing takes place,

resulting in functionality similar to the fork() system call.

 The lack of distinction between processes and threads is possible because Linux

does not hold a process's entire context within the main process data structure;

rather, it holds the context within independent sub contexts.

 Thus, a process's file-system context, file-descriptor table, signal-handler table,

and virtual memory context are held in separate data structures.

 The process data structure simply contains pointers to these other structures, so

any number of processes can easily share a sub context by pointing to the same

sub context.

 The arguments to the clone () system call tell it which sub contexts to copy, and

which to share, when it creates a new process.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 32

 The new process always is given a new identity and a new scheduling context

according to the arguments passed.

5.20 Scheduling

 Scheduling is the job of allocating CPU time to different tasks within an operating

system.

 Aspect of scheduling to Linux: the running of the various kernel tasks.

 Kernel tasks encompass both tasks that are requested by a running process and tasks that

execute internally on behalf of a device driver.

 Process Scheduling

 Linux has two separate process-scheduling algorithms.

 One is a time-sharing algorithm for fair, preemptive scheduling among multiple

processes; the other is designed for real-time tasks, where absolute priorities are

more important than fairness.

 Problems with the traditional UNIX scheduling algorithm, which does not provide

adequate support for SMP systems and does not scale well as the number of tasks

on the system grows.

 Version 2.5 of the kernel provides a scheduling algorithm that runs in constant

time-known as 0(1)-regardless of the number of tasks on the system.

 The new scheduler also provides increased support for SMP, including processor

affinity and load balancing, as well as maintaining fairness and support for

interactive tasks.

 The Linux scheduler is a preemptive, priority-based algorithm with two separate

priority ranges: a real-time range from 0 to 99 and a nice value ranging from 100

to 140.

 These two ranges map into a global priority scheme whereby numerically lower

values indicate higher priorities.

 The Linux scheduler assigns higher-priority tasks longer time quanta and lower-

priority tasks shorter time quanta and vise-versa.

The relationship between priorities and time scheduling

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 33

 The relationship between priorities and time-slice length is shown in Figure 21.2.

 When a task has exhausted its time slice, it is considered expired and is not

eligible for execution again until all other tasks have also exhausted their time

quanta.

 The kernel maintains a list of all runnable tasks in a runqueue data structure.

 Because of its support for SMP, each processor maintains its own run queue and

schedules itself independently. Each run queue contains two priority arrays-active

and expired.

 The active array contains all tasks with time remaining in their time slices, and the

expired array contains all expired tasks. Each of these priority arrays includes a

list of tasks indexed according to priority (Figure 21.3).

 When all tasks have exhausted their time slices (that is, the active array is empty),

the two priority arrays are exchanged as the expired array becomes the active

array and vice-versa.

 list of tasks indexed according to priority

 Tasks are assigned dynamic priorities that are based on the nice value plus or

minus a value up to the value 5 based upon the interactivity of the task.

 A task's interactivity is determined by how long it has been sleeping while

waiting for I/0. Linux' s real-time scheduling is simpler.

 Linux implements the two real time scheduling classes required by POSIX.lb:

first-come, first-served (FCFS) and round-robin.

 Processes with different priorities can compete with one another to some extent in

time-sharing scheduling; in real-time scheduling, however, the scheduler always

runs the process with the highest priority. Among processes of equal priority, it

runs the process that has been waiting longest.

 The only difference between FCFS and round-robin scheduling is that FCFS

processes continue to run until they either exit or block, whereas a round-robin

process will be preempted after a while and will be moved to the end of the

scheduling queue, so round-robin processes of equal priority will automatically

time-share among themselves.
 Unlike routine time-sharing tasks, real-time tasks are assigned static

priorities.

 Kernel Synchronization

 The way the kernel schedules its own operations is fundamentally different from

the way it schedules processes.

 A request for kernel-mode execution can occur in two ways.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 34

 A running program may request an operating-system service, either explicitly via

a system call or implicitly-for example, when a page fault occurs. Alternatively, a

device controller may deliver a hardware interrupt that causes the CPU to start

executing a kernel-defined handler for that interrupt.

 The problem posed to the kernel is that all these tasks may try to access the same

internal data structures.

 If one kernel task is in the middle of accessing some data structure when an

interrupt service routine executes, then that service routine cannot access or

modify the same data without risking data corruption.

 This fact relates to the idea of critical sections-portions of code that access shared

data and that must not be allowed to execute concurrently.

 As a result, kernel synchronization involves much more than just process

scheduling.

 A framework is required that allows kernel tasks to run without violating the

integrity of shared data.

 With Version 2.6, the Linux kernel became fully preemptive; so a task can now

be preempted when it is running in the kernel.

 The Linux kernel provides spinlocks and semaphores (as well as reader writer

versions of these two locks) for locking in the kernel.

 On SMP machines, the fundamental locking mechanism is a spinlock; the kernel

is designed so that the spinlock is held only for short durations.

 This pattern is summarized below:

 The kernel is not pre-emptible if a kernel-mode task is holding a lock.

 To enforce this rule, each task in the system has a thread-info structure that

includes the field preempt_count, which is a counter indicating the number of

locks being held by the task.

 The counter is incremented when a lock is acquired and decremented when a lock

is released.

 If the value of preempt_count for the task currently running is greater than zero, it

is not safe to preempt the kernel as this task currently holds a lock.

 If the count is zero, the kernel can safely be interrupted, assuming there are no

outstanding calls to preempt_disable ().

 When the lock is held for short durations. When a lock must be held for longer

periods, semaphores are used.

 The second protection technique used by Linux applies to critical sections that

occur in interrupt service routines.

 The basic tool is the processor's interrupt-control hardware.

 By disabling interrupts (or using spinlocks) during a critical section, the kernel

guarantees that it can proceed without the risk of concurrent access to shared data

structures.

 The Linux kernel uses a synchronization architecture that allows long critical

sections to run for their entire duration without having interrupts disabled.

 This ability is especially useful in the networking code.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 35

interrupt protection levels

 Linux implements this architecture by separating interrupt service routines into

two sections: the top half and the bottom half.

 The Top half is a normal interrupt service routine that runs with recursive

interrupts disabled; interrupts of a higher priority may interrupt the routine, but

interrupts of the same or lower priority are disabled.

 The Bottom half of a service routine is run, with all interrupts enabled, by a

miniature scheduler that ensures that bottom halves never interrupt themselves.

 The bottom-half scheduler is invoked automatically whenever an interrupt service

routine exits.

 This separation means that the kernel can complete any complex processing that

has to be done in response to an interrupt without worrying about being

interrupted itself.

 If another interrupt occurs while a bottom half is executing, then that interrupt

can request that the same bottom half execute, but the execution will be deferred

until the one currently running completes.

 Each execution of the bottom half can be interrupted by a top half but can never

be interrupted by a similar bottom half.

 Figure 21.4 summarizes the various levels of interrupt protection within the

kernel.

 Symmetric Multiprocessing

 The Linux 2.0 kernel was the first stable Linux kernel to support Symmetric

Multiprocessor(SMP) hardware, allowing separate processes to execute in

parallel on separate processors.

 In Version 2.2 of the kernel, a single kernel spinlock (sometimes termed BKL for

"big kernel lock") was created to allow multiple processes (running on different

processors) to be active in the kernel concurrently.

 However, the BKL provided a very coarse level of locking granularity. Later

releases of the kernel made the SMP implementation more scalable by splitting

this single kernel spinlock into multiple locks, each of which protects only a small

subset of the kernel's data structures.

5.21 Memory Management

 Memory management under Linux has two components.

 The first deals with allocating and freeing physical memory.
 The second handles virtual memory, which is memory mapped into the address space of running

processes.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 36

 Management of Physical Memory

 Linux separates physical memory into three different zones, or regions:

o ZONE_DMA

o ZONE_NORMAL

o ZONE_HIGHMEM

 These zones are architecture specific.The relationship of zones and physical

addresses on the Intel80x86 architecture is shown in Figure 21.5.

 The kernel maintains a list of free pages for each zone. When a request for

physical memory arrives, the kernel satisfies the request using the appropriate

zone.

 The primary physical-memory manager in the Linux kernel is the page allocator.

Each zone has its own allocator, which is responsible for allocating and freeing all

physical pages for the zone and is capable of allocating ranges of physically

contiguous pages on request.

 The allocator uses a buddy system to keep track of available physical pages. In

this scheme, adjacent units of allocatable memory are paired together (hence its

name). Each allocatable memory region has an adjacent partner (or buddy).

relationship of zones and physical addresses on the intel 80*86

 Whenever two allocated partner regions are freed up, they are combined to form a

larger region-a buddy heap.

 That larger region also has a partner, with which it can combine to form a still

larger free region.

 Conversely, if a small memory request cannot be satisfied by allocation of an

existing small free region, then a large free region will be subdivided into two

partners to satisfy the request.

 Separate linked lists are used to record the free memory regions of each allowable

size;

 Figure shows an example of buddy-heap allocation. A 4-KB region is being

allocated, but the smallest available region is 16 KB. The region is broken up

recursively until a piece of the desired size is available.

 The kmalloc () variable-length allocator; the slab allocator, used for allocating

memory for kernel data structures; and the page cache, used for caching pages

belonging to files.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 37

Splitting of memory in the buddy system

 Many components of the Linux operating system need to allocate entire pages on

request, but often smaller blocks of memory are required.

 The kernel provides an additional allocator for arbitrary-sized requests, where the

size of a request is not known in advance and may be only a few bytes.

 kmalloc () service allocates entire pages on demand but then splits them into

smaller pieces.

 The kernel maintains lists of pages in use by the kmalloc () service.

 Another strategy adopted by Linux for allocating kernel memory is known as slab

allocation.

 A slab is used for allocating memory for kernel data structures and is made up of

one or more physically contiguous pages.

 A Cache consists of one or more slabs.

 There is a single cache for each unique kernel data structure.

 Each cache is populated with that are instantiations of the kernel data structure the

cache represents.

 The relationship among slabs, caches, and objects is shown in Figure.

Slab allocator in Linux

 The figure shows two kernel objects 3 KB in size and three objects 7 KB in size.

 These objects are stored in the respective caches for 3-KB and 7-KB objects.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 38

 The slab-allocation algorithm uses caches to store kernel objects. When a cache is

created, a number of objects are allocated to the cache. The number of objects in

the cache depends on the size of the associated slab.

 Let's consider a scenario in which the kernel requests memory from the slab

allocator for an object representing a process descriptor.

 In Linux, a slab may be in one of three possible states:

o Full- All objects in the slab are marked as used.

o Empty-All objects in the slab are marked as free.

o Partial-The slab consists of both used and free objects.

 The slab allocator first attempts to satisfy the request with a free object in a partial

slab. If none exist, a free object is assigned from an empty slab.

 If no empty slabs are available, a new slab is allocated from contiguous physical

pages and assigned to a cache; memory for the object is allocated from this slab.

 Two other main subsystems in Linux do their own management of physical

pages: the page cache and the virtual memory system.

 These systems are closely related to one another.

 The page cache is the kernel's main cache for block devices and memory-mapped

files and is the main mechanism through which I/0 to these devices is performed.

 Virtual Memory

 The Linux virtual memory system is responsible for maintaining the address

space visible to each process.

 It creates pages of virtual memory on demand and manages loading those pages

from disk and swapping them back out to disk as required.

 Under Linux, the virtual memory manager maintains two separate views of a

process's address space: as a set of separate regions and as a set of pages.

 The first view of an address space is the logical view, describing instructions that

the virtual memory system has received concerning the layout of the address

space.

 In this view, the address space consists of a set of non overlapping regions, each

region representing a continuous, page-aligned subset of the address space.

 Each region is described internally by a single vm_area_struct structure that

defines the properties of the region, including process's read, write, and execute

permissions in the region as well as information about any files associated with

the region.

 The regions for each 824 Chapter 21 address space are linked into a balanced

binary tree to allow fast lookLlp of the region corresponding to any virtual

address.

 The kernel also n"laintains a second, physical view of each address space.

 This view is stored in the hardware page tables for the process.

 The pagetable entries identify the exact current location of each page of virtual

mernory, whether it is on disk or in physical memory.

 The physical view is managed by a set of routines, which are invoked from the

kernel's software-interrupt handlers whenever a process tries to access a page that

is not currently present in the page tables.

 Each vm_area_struct in the address-space description contains a field that points

to a table of functions that implement the key page-management functions for any

given virtual memory region.

 All requests to read or write an unavailable page are eventually dispatched to the

appropriate handler in the function table for the vm_area_struct, so that the

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 39

central memory management routines do not have to know the details of

managing each possible type of memory region.

 Virtual Memory Regions

 Linux implements several types of virtual memory regions.

 One property that characterizes virtual memory is the backing store for the

region, which describes where the pages for the region come from.

 Most memory regions are backed either by a file or by nothing.

 A region backed by nothing is the simplest type of virtual memory region.

 Such a region represents demand-zero memory: when a process tries to read a

page in such a region, it is simply given back a page of memory filled with

zeros.

 A region backed by a file acts as a viewport onto a section of that file.

 Whenever the process tries to access a page within that region, the page table

is filled with the address of a page within the kernel's page cache

corresponding to the appropriate offset in the file.

 The same page of physical memory is used by both the page cache and the

process's page tables, so any changes made to the file by the file system are

immediately visible to any processes that have mapped that file into their

address space.

 Any number of processes can map the same region of the same file, and they

will all end up using the same page of physical memory for the purpose.

 A virtual memory region is also defined by its reaction to writes.

 The mapping of a region into the process's address space can be either private

or shared.

 If a process writes to a privately mapped region, then the pager detects that a

copy-on-write is necessary to keep the changes local to the process.

 In contrast, writes to a shared region result in updating of the object mapped

into that region, so that the change will be visible immediately to any other

process that is mapping that object.

 Lifetime of a Virtual Address Space

 The kernel will create a new virtual address space in two situations: when a

process runs a new program with the exec() system call and when a new

process is created by the fork() system call.

 The first case is easy.

 When a new program is executed, the process is given a new, completely

empty virtual address space.

 It is up to the routines for loading the program.

 to populate the address space with virtual memory regions.

 The second case, creating a new process with fork(), involves creating a

concplete copy of the existing process's virtual address space.

 The kernel copies the parent process's vm_area_struct descriptors, then creates

a new set of page tables for the child.

 The parent's page tables are copied directly into the child's, and the reference

count of each page covered is incremented; thus, after the fork, the parent and

child share the same physical pages of memory in their address spaces.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 40

 A special case occurs when the copying operation reaches a virtual memory

region that is mapped privately.

 Any pages to which the parent process has written within such a region are

private, and subsequent changes to these pages by either the parent or the

child must not update the page in the other process's address space.

 When the page-table entries for such regions are copied, they are set to be

read only and are marked for copy-on-write.

 As long as neither process modifies these pages, the two processes share the

same page of physical memory.

 However, if either process tries to modify a copy-on-write page, the reference

count on the page is checked.

 If the page is still shared, then the process copies the page's contents to a

brand-new page of physical memory and uses its copy instead.

 This mechanism ensures that private data pages are shared between processes

whenever possible; copies are made only when

absolutely necessary.

 Swapping and Paging

 An important task for a virtual memory system is to relocate pages of memory

from physical memory out to disk when that in memory is needed.

 Early UNIX systems performed this relocation by swapping out the contents

of entire processes at once, but modern versions of UNIX rely more on

paging-the movement of individual pages of virtual memory between physical

memory and disk.

 The paging system can be divided into two sections. First, it decides which to

write out to disk and when to write them. Second, it carries out the transfer

and pages data back into physical memory when they are needed again.

 Linux's pageout policy uses a modified version of the standard clock (or

second-chance) algorithm.

 amultiplepass clock is used, and every page has an age that is adjusted on

each pass of the clock.

 The age is more precisely a measure of the page's youthfulness, or how much

activity the page has seen recently.

 Frequently accessed pages will attain a higher age value, but the age of

infrequently accessed pages will drop toward zero with each pass.

 This age valuing allows the pager to select pages to page out based on a least

frequently used (LFU) policy.

 The paging mechanism supports paging both to dedicated swap devices and

partitions and to normal files, although swapping to a file is significantly

slower due to the extra overhead incurred by the file system.

 Blocks are allocated from the swap devices according to a bitmap of used

blocks, which is maintained in physical memory at all times.

 The allocator uses a next-fit algorithm to try to write out pages to continuous

runs of disk blocks for improved performance.

 The allocator records the fact that a page has been paged out to disk by using

a feature of the page tables on modern processors i.e, the page-table entry's

page-not-present bit is set, allowing the rest of the page table entry to be filled

with an index identifying where the page has been written.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 41

 Kernel Virtual Memory

 Linux reserves for its own internal use a constant, architecture-dependent region

of the virtual address space of every process.

 The page-table entries that map to these kernel pages are marked as protected, so

that the pages are not visible or modifiable when the processor is running in user

mode. This kernel virtual memory area contains two regions.

 The first is a static area that contains page-table references to every available

physical page of memory in the system, so that a simple translation from physical

to virtual addresses occurs when kernel code is run.

 The remainder of the kernel's reserved section of address space is not reserved for

any specific purpose.

 Page-table entries in this address range can be modified by the kernel to point to

any other areas of memory.

 The kernel provides a pair of facilities that allow processes to use this virtual

memory.

 The vmalloc () function allocates an arbitrary number of physical pages of

memory that may not be physically contiguous into a single region of virtually

contiguous kernel memory.

 The vremap () function maps a sequence of virtual addresses to point to an area of

memory used by a device driver form memory-mapped I/0.

 Execution and Loading of User Programs

 The Linux kernel's execution of user programs is triggered by a call to the exec()

system call.

 This exec() call commands the kernel to run a new program within the current

process, completely overwriting the current execution context with the initial

context of the new program.

 The first job of this system service is to verify that the calling process has

permission rights to the file being executed.

 Once that matter has been checked, the kernel invokes a loader routine to start

running the program. The loader does not necessarily load the contents of the

program file into physical memory, but it does at least set up the mapping of the

program into virtual memory.

 There is no single routine in Linux for loadil1.g a new program. Instead, Linux

maintains a table of possible loader functions, and it gives each such function the

opportunity to try loading the given file when an exec() system call is made.

 Newer Linux systems use the more modern ELF format, now supported by most

current UNIX implementations.

 ELF has a number of advantages over a. out, including flexibility and

extensibility.

 New sections can be added to an ELF binary (for example, to add extra

debugging information) without causing the loader routines to become confused.

 By allowing registration of multiple loader routines, Linux can easily support the

ELF and a. out binary formats in a single running system.

 Mapping of Programs into Memory

 The pages of the binary file are mapped into regions of virtual memory.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 42

 Only when the program tries to access a given page a page fault result in the

loading of that page into physical memory using demand paging.

 It is the responsibility of the kernel's binary loader to set up the initial memory

mapping.

 An ELF-format binary file consists of a header followed by several page-

aligned sections. The ELF loader works by reading the header and mapping

the sections of the file into separate regions of virtual memory.

 Figure 21.8 shows the typical layout of memory regions set up by the ELF

loader. In a reserved region at one end of the address space sits the kernel in

its own privileged region of virtual memory inaccessible to normal user-mode

programs.

 The rest of virtual memory is available to applications, which can use the

kernel's memory-mapping functions to create regions that map a portion of a

file or that are available for application data.

 The loader's job is to set up the initial memory mapping to allow the execution

of the program to start. The regions that need to be initialized include the

stack and the program's text and data regions.

 The stack is created at the top of the user-mode virtual memory; it grows

downward toward lower-numbered addresses.

 It includes copies of the arguments and environment variables given to the

program in the exec() system call.

 The other regions are created near the bottom end of virtual memory.

 The sections of the binary file that contain program text or read-onlydata are

mapped into memory as a write-protected region.

 Writable initialized data are mapped next; then any uninitialized data are

mapped in as a private demand-zero region.

Memory layout for ELF programs

 Directly beyond these fixed-sized regions is a variable-sized region that

programs can expand as needed to hold data allocated at run time.

 Each process has a pointer, brk, that points to the current extent of this data

region, and processes can extend or contract their brk region with a single

system call -sbrkO.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 43

 Once these mappings have been set up, the loader initializes the process's

program-counter register with the starting point recorded in the ELF header,

and the process can be scheduled.

 Static and dynamic Linking

 In the simplest case, the necessary library functions are embedded directly in

the program's executable binary file.

 Such a program is statically linked to its libraries, and statically linked

executables can commence running as soon as they are loaded.

 The main disadvantage of static linking is that every program generated must

contain copies of exactly the same common system library functions.

 It is much more efficient, in terms of both physical memory and disk-space

usage, to load the system libraries into memory only once.

 Dynamic linking allows this single loading to happen.

 Linux implements dynamic linking in user mode through a special linker

library.

 Every dynamically linked program contains a small, statically linked function

that is called when the program starts.

 This static function just maps the link library into memory and runs the code

that the function contains.

 The link library determines the dynamic libraries required by the program

and the names of the variables and functions needed from those libraries by

reading the information contained in sections of the ELF binary.

 It then maps the libraries into the middle of virtual memory and resolves the

references to the symbols contained in those libraries i.e., It does not matter

exactly where in memory these shared libraries are mapped: they are compiled

into position-independent code (PIC), which can run at any address in

memory.

5.22 File System

 In UNIX, a file does not have to be an object stored on disk or fetched over a network

from a remote file server.

 Rather, UNIX files can be anything capable of handling the input or output of a

stream of data.

 Device drivers can appear as files, and interprocess communication channels or

network connections also look like files to the user.

 The Linux kernel handles all these types of files by hiding the implementation details

of any single file type behind a layer of software, the virtual file system (VFS).

 The Virtual File System

 The Linux VFS is designed around object-oriented principles.

 It has two components: a set of definitions that specify what file-system objects

are allowed to look like and a layer of software to manipulate the objects.

 The VFS defines four main object types:

o An inode object represents an individual file.

o A file object represents an open file.

o A superblock object represents an entire file system.

o A dentry object represents an individual directory entry.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 44

 For each of these four object types, the VFS defines a set of operations.

 Every object of one of these types contains a pointer to a function table.

 The function table lists the addresses of the actual functions that implement the

defined operations for that object.

 For example, an abbreviated API for some of the file object's operations includes:

o int open (. . .) - Open a file.

o ssize_t read(. . .) -Read from a file.

o ssize_t write (. . .) - Write to a file.

o intmmap (. . .) - Memory-map a file.

 The complete definition of the file object is specified in the structfile_operations

which is located in the file /usr/include/linux/fs.h.

 An implementation of the file object (for a specific file type) is required to

implement each function specified in the definition of the file object.

 The VFS software layer can perform an operation on one of the file-system

objects by calling the appropriate function from the object's function table,

without havil<g to know in advance exactly what kind of object it is dealing with.

 The VFS does not know, or care, whether an inode represents a networked file, a

disk file, a network socket, or a directory file.

 The appropriate function for that file's read() operation will always be at the same

place in its function table, and the VFS software layer will call that function

without caring how the data are actually read.

 The inode and file objects are the mechanisms used to access files.

 An inode object is a data structure containing pointers to the disk blocks that

contain the actual file contents, and a file object represents a point of access to the

data in an open file.

 File objects typically belong to a single process, but inode objects do not.

 Even when a file is no longer being used by any processes, its inode object may

still be cached by the VFS to improve performance if the file is used again in the

near future.

 All cached file data are linked onto a list in the file's inode object.

 The inode also maintains standard information about each file, such as the owner,

size, and time most recently modified.
 Directory files are dealt with slightly differently from other files.

 The system calls for these directory operations do not require that the user open

the files concerned, unlike the case for reading or writing data.

 The VFS therefore defines these directory operations in the inode object, rather

than in the file object.

 The superblock object represents a connected set of files that form a self-

contained file system.

 The operating-system kernel maintains a single superblock object for each disk

device mounted as a file system and for each networked file system currently

connected.

 The main responsibility of the superblock object is to provide access to inodes.

 The VFS identifies every inode by a unique file-system/inode number pair, and it

fil<ds the inode corresponding to a particular inode number by asking the

superblock object to return the inode with that number.

 Finally, a dentry object represents a directory entry that may include the name of

a directory in the path name of a file (such as /usr) or the actual file (such as stdio.

h). For example, the file /usrI include/ stdio. h contains the directory entries (1) /,

(2) usr, (3) include, and (4) stdio. h. Each one of these values is represented by a

separate dentry object.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 45

 The Linux ext2fs File System

 The standard on-disk file system used by Linux is called ext2fs.

 Linuxs ext2fs has much in common with the BSD Fast File System (FFS).

 It uses a similar mechanism for locating the data blocks belonging to a specific

file, storing data-block pointers in indirect blocks throughout the file system with

up to three levels of indirection.

 As in FFS, directory files are stored on disk just like normal files, although their

contents are interpreted differently.

 Each block in a directory file consists of a linked list of entries; each entry

contains the length of the entry, the name of a file, and the inode number of the

inode to which that entry refers.

 The main differences between ext2fs and FFS lie in their disk-allocation policies.

 In FFS, the disk is allocated to files in blocks of 8 KB.

 These blocks are subdivided into fragments of 1 KB for storage of small files or

partially filled blocks at the ends of files.

 In contrast, ext2fs does not use fragments at all but performs all its allocations in

smaller units.

 The default block size on ext2fs is 1 KB, although 2-KB and 4-KB blocks are also

supported.

 The ext2fs allocation policy comes in two parts.

 As in FFS, an ext2fs file system is partitioned into multiple block groups.

 FFS uses the similar concept of cylinder groups, where each group corresponds

to a single cylinder of a physical disk.

 When allocating a file, ext2fs must first select the block group for that file.

 For data blocks, it attempts to allocate the file to the block group to which the

file's inode has been allocated.

 Within a block group, ext2fs tries to keep allocations physically contiguous if

possible, reducing fragmentation if it can.

 It maintains a bitmap of all free blocks in a block group.

 When allocating the first blocks for a new file, it starts searching for a free block

from the beginning of the block group; when extending a file, it continues the

search from the block most recently allocated to the file.

 The search is performed in two stages. First, ext2fs searches for an entire free

byte in the bitmap; if it fails to find one, it looks for any free bit. The search for

free bytes aims to allocate disk space in chunks of at least eight blocks where

possible. Once a free block has been identified, the search is extended backward

until an allocated block is encountered.

 When a free byte is found in the bitmap, this backward extension prevents ext2fs

from leaving a hole between the most recently allocated block in the previous

nonzero byte and the zero byte found.

 Once the next block to be allocated has been found by either bit or byte search,

ext2fs extends the allocation forward for up to eight blocks and preallocates these

extra blocks to the file.

 This preallocation helps to reduce fragmentation during interleaved writes to

separate files and also reduces the CPU cost of disk allocation by allocating

multiple blocks simultaneously.

 The preallocated blocks are returned to the free-space bitmap when the file is

closed.

 Figure illustrates the allocation policies.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 46

 Each row represents a sequence of set and unset bits in an allocation bitmap,

indicating used and free blocks on disk.

 In the first case, if we can find any free blocks sufficiently near the start of the

search, then we allocate them no matter how fragmented they may be.

 The fragmentation is partially compensated for by the fact that the blocks are

close together and can probably all be read without any disk seeks, and allocating

them all to one file is better in the long run than allocating isolated blocks to

separate files once large free areas become scarce on disk.

 In the second case, we have not immediately found a free blocsk close by, so we

search forward for an entire free byte in the bitmap.

ext2fs block-allocation policies

 If we allocated that byte as a whole, we would end up creating a fragmented area

of free space between it and the allocation preceding it so before allocating we

back up to make this allocation flush with the allocation preceding it, and then we

allocate forward to satisfy the default allocation of eight blocks.

 Journaling

 One popular feature in a file system is journaling, whereby modifications to the

file system are sequentially written to a journal.

 A set of operations that performs a specific task is a transaction.

 Once a transaction is written to the journal it is considered to be committed, and

the system call modifying the file system (write()) can return to the user process,

allowing it to continue execution.

 If the system crashes, some transactions may remain in the journal.

 Those transactions were never completed to the file system even though they

were committed by the operating system, so they must be completed.

 Journaling file systems are also typically faster than non-journaling systems, as

updates proceed much faster when they are applied to the in-memory journal

rather than directly to the on-disk data structures.

 The reason for this improvement is found in the performance advantage of

sequential I/0 over random I/0.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 47

 Costly synchronous random writes to the file system are turned into much less

costly synchronous sequential writes to the file system's journal.

 Those changes in turn are replayed asynchronously via random writes to

theappropriate structures.

 The overall result is a significant gain in performance of file-system metadata-

oriented operations, such as file creation and deletion.

 Journaling is not provided in ext2fs.

 It is provided, however, in another common file system available for Linux

systems, ext3, which is based on ext2fs.

 The Linux Proc File System

 The Linux process file system, known as the /proc file system, is an example of a

file system whose contents are not actually stored anywhere but are computed on

demand according to user file I/0 requests.

 A /proc file system is not unique to Linux. SVR4 UNIX introduced a /proc file

system as an efficient interface to the kernel's process debugging support.

 Each subdirectory of the file system corresponded not to a directory on any disk

but rather to an active process on the current system.

 Linux implements such a /proc file system but extends it greatly by adding a

number of extra directories and text files under the file system's root directory.

 These new entries correspond to various statistics about the kernel and the

associated loaded drivers.

 The /proc file system provides a way for programs to access this information as

plain text files; the standard UNIX user environment provides powerful tools to

process such files.

 The /proc file system must implement two things: a directory structure and the file

contents within.

 Because a UNIX file system is defined as a set of file and directory inodes

identified by their inode numbers, the /proc file system must define a unique and

persistent inode number for each directory and the associated files.

 The mapping from inode number to information type splits the inode number into

two fields. In Linux, a PID is 16 bits wide, but an inode number is 32 bits. The

top 16 bits of the inode number are interpreted as a PID, and the remaining bits

define what type of information is being requested about that process.

 A PID of zero is not valid, so a zero PID field in the inode number is taken to

mean that this inode contains global-rather than process-specific information.

 Not all the inode numbers in this range are reserved.

 The kernel can allocate new /procinode mappings dynamically, maintaining a

bitmap of allocated in ode numbers.

 It also maintains a tree data structure of registered global /proc file-system entries.

 Each entry contains the file's inode number, file name, and access permissions,

along with the special functions used to generate the file's contents.

 Drivers can register and deregister entries in this tree at any time, and a special

section of the tree-appearing under the /proc/sys directory is reserved for kernel

variables.

 To allow efficient access to these variables from within applications, the /proc/sys sub

tree is made available through a special system call, sysctl (), that reads and writes the

same variables in binary, rather than in text, without the overhead of the file system.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 48

5.23 Input and Output

 To the user, the I/O system in Linux looks much like that in any UNIX system.

 That is, all device drivers appear as normal files.

 Users can open an access channel to a device in the same way they opens any other

file-devices can appear as objects within the file system.

 The system administrator can create special files within a file system that contain

references to a specific device driver, and a user opening such a file will be able to

read from and write to the device referenced.

 By using the normal file-protection system, which determines who can access which

file, the administrator can set access permissions for each device.

Device driver block structure

 Linux splits all devices into three classes: block devices, character devices, and

network devices.

 Figure illustrates the overall structure of the device-driver system.

 Block Devices include all devices that allow random access to completely

independent, fixed-sized blocks of data, including hard disks and floppy disks, CD-

ROMs, and flash memory.

 Block devices are typically used to store file systems, but direct access to a block

device is also allowed so that programs can create and repair the file system that the

device contains.

 Applications can also access these block devices directly if they wish; for example, a

database application may prefer to perform its own, fine-tuned laying out of data onto

the disk, rather than using the general-purpose file system.

 Character Devices include most other devices, such as mice and keyboards.

 The fundamental difference between block and character devices is random access-

block devices may be accessed randomly, while character devices are only accessed

serially.

 For example, seeking to a certain position in a file might be supported for a DVD but

makes no sense to a pointing device such as a mouse.

 Network Devices are dealt with differently from block and characterdevices.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 49

 Users cannot directly transfer data to network devices; instead,they must

communicate indirectly by opening a connection to the kernel'snetworking

subsystem.

 Block Devices

 Block devices provide the main interface to all disk devices in a system.

 Performance is particularly important for disks, and the block-device system must

provide functionality to ensure that disk access is as fast as possible.

 This functionality is achieved through the scheduling of I/0 operations.

 In the context of block devices, a block represents the unit with which the kernel

performs I/0.

 When a block is read into memory, it is stored in a buffer.

 The request manager is the layer of software that manages the reading and writing

of buffer contents to and from a block-device driver.

 A separate list of requests is kept for each block-device driver.

 Traditionally, these requests have been scheduled according to a unidirectional-

elevator(C-SCAN) algorithm that exploits the order in which requests are inserted

in and removed from the lists.

 The request lists are maintained in sorted order of increasing starting-sector

number.

 When a request is accepted for processing by a block-device driver, it is not

removed from the list.

 It is removed only after the I/O is complete, at which point the driver continues

with the next request in the list, even if new requests have been inserted into the

list before the active request.

 As new I/0 requests are made, the request manager attempts to merge requests in

the lists.

 The scheduling of I/0 operations changed somewhat with Version 2.6 of

the kernel.

 The deadline I/O scheduler used in Version 2.6 works similarly to the elevator

algorithm except that it also associates a deadline with each request, thus

addressing the starvation issue.

 By default, the deadline for read requests is 0.5 second, and that for write requests

is 5 seconds.

 The deadline scheduler maintains a sorted queue of pending I/0 operations

ordered by sector number.

 However, it also maintains two other queues-a read queue for read operations

and a write queue for write operations.

 These two queues are ordered according to deadline.

 Character Devices

 A character-device driver can be almost any device driver that does not offer

random access to fixed blocks of data.

 Any character-device drivers registered to the Linux kernel must also register a

set of functions that implement the file I/0 operations that the driver can handle.

 The kernel maintains a standard interface to these drivers by means of a set of

tty_struct structures.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 50

 Each of these structures provides buffering and flow control on the data stream

from the terminal device and feeds those data to a line discipline.

 A Line Discipline is an interpreter for the information from the terminal device.

 The most common line discipline is the tty discipline, which glues the terminal's

data stream onto the standard input and output streams of a user's running

processes, allowing those processes to communicate directly with the user's

terminal.

 This job is complicated by the fact that several such processes may be running

simultaneously, and the tty line discipline is responsible for attaching and

detaching the terminal's input and output from the various processes connected to

it as those processes are suspended or awakened by the user.

 Other line disciplines also are implemented that have nothing to do with I/0 to a

user process.

 The PPP and SUP networking protocols are ways often coding a networking

connection over a terminal device such as a serial line.

 These protocols are implemented under Linux as drivers that at one end appear to

the terminal system as line disciplines and at the other end appear to the

networking system as network-device drivers.

 After one of these line disciplines has been enabled on a terminal device, any

data appearing on that terminal will be routed directly to the appropriate network-

device driver.

5.24 Interprocess Communication

 Linux provides a rich environment for processes to communicate with each other.

 Communication may be just a matter of letting another process know that some event

has occurred, or it may involve transferring data from one process to another.

 Synchronization and Signals

 The standard Linux mechanism for informing a process that an event has occurred

is the Signals can be sent from any process to any other process, with restrictions

on signals sent to processes owned by another user.

 Signals are not generated only by processes.

 The kernel also generates signals internally.

 Internally, the Linux kernel does not use signals to communicate with processes

ruml.ing in kernel mode.

 If a kernel-mode process is expecting an event to occur it will not normally use

signals to receive notification of that event.

 Rather, communication about incoming asynchronous events within the kernel

takes place through the use of scheduling states and wait_queue structures.

 These mechanisms allow kernel-mode processes to inform one another about

relevant events, and they also allow events to be generated by device drivers or by

the networking system.

 Whenever a process wants to wait for some event to complete, it places itself on a

wait queue associated with that event and tells the scheduler that it is no longer

eligible for execution.

 Once the event has completed, it will wake up every process on the wait Queue.

 This procedure allows multiple processes to wait for a single event.

Maharaja Institute of Technology Mysore Department of Computer Science and Engineering

Operating System (17CS64), Module No.5 Secondary Storage Structures, Protection M5- 51

 Although signals have always been the main mechanism for communicating

asynchronous events among processes, Linux also implements the semaphore

mechanism of System V UNIX.

 A process can wait on a semaphore as easily as it can wait for a signal, but

semaphores have two advantages: Large numbers of semaphores can be shared

among multiple independent processes, and operations on multiple semaphores

can be performed atomically.

 Passing of Data Among Processes

 The standard UNIX mechanism allows a child process to inherit a communication

channel from its parent; data written to one end of the pipe can be read at the

other.

 Under Linux, pipes appear as just another type of inode to virtual-file system

software, and each pipe has a pair of wait queues to synchronize then reader and

writer.

 UNIX also defines a set of networking facilities that can send streams of data to

both local and remote processes.

 Another process communications method, shared memory, offers an extremely

fast way to communicate large or small amounts of data.

 Any data written by one process to a shared memory region can be read

immediately by any other process that has mapped that region into its address

space.

 The main disadvantage of shared memory is that, on its own, it offers no

synchronization.

 A process can neither ask the operating system whether a piece of shared memory

has been written to nor suspend execution until such a write occurs.

 Shared memory becomes particularly powerful when used in conjunction with

another interprocess-communication mechanism that provides the missing

synchronization.

 A shared-memory region in Linux is a persistent object that can be created or

deleted by processes.

 Such an object is treated as though it were a small, independent address space.

The Linux paging algorithms can elect to page out to disk shared-memory pages,

just as they can page out a process's data pages. The shared-memory object acts as

a backing store for shared-memory regions, just as a file can act as a backing store

for a memory-mapped memory region.

---o0o---

