Introduction to data structures
—— .__ 3

[11111
a[QO] a[l] a[2] a[3] a[4]
3

memory representation
1.2

Figure 1.2
Storage Representation Of Data
THE NEED FOR DATA STRUCTURES
One of the tools that beginers often take for granted is the high-level language in which they
write their programs. Since most of us first learn to program in a language like C. we do not appreciate
its branching and looping structures and built-in data structures until we are later introduced to language
that do not have these features.
In the first semester(C programming). we decided to use an array of structure to store our data.
But what is an array? What is a structure? C. as well as many other hig-level programming langauges.
provides arrays and structure as built-in data structures. As a C programming. you can use these tools
without concern about their implementation. much as a car driver can use a car without knowing about
automobile technology.

However, there are many interesting and useful ways of structuring data that are not provided in
general-purpose programming languages. The programmer who wants to use these structures must build
them. In this book, we will look in detail four useful data structures: stacks, queues, lists and binary trees.
We will decribe each of these structures and design algorithms to manipulate them. We will build them
using the tools that are available in the C language. Finally, we will examine applications where each is
appropriate.

First,however, we will develop a definition of data structure and an approach that we can use to
examine data structures. By way of example, we will apply our definition and approach to familiar C
data structures: the one dimensional array, the two dimensional array, and the structure.

Definiti

" The two important goals of data structures are first to identify the representation of abstract
entities and then to identify the operations. which can be performed with them. The operations help us to
determine the class of problems, which can be solved with these entities.

4 Introduction to data structures

The choice of data model depends on two considerations. First. it must be rich
enough in structure to show the actual relationships of data in real world. On the other hand,
the structure should be simple enough so that one can efficiently process the data when
necessary. Data structure is nothing but arrangement of data and their relationship and the
allowed operations. One can use simple data structure to build complex data structures.

Data structures are fundamental to computer programming in any language. As
progranuners work on algorithm development and problem analysis. they make crucial
decisions about data structures. A data structure is a representation of the data in the
program. The proper construction of a program is influenced by the choice of data structure.
which is used. A data structure is a systematic way of organizing and accessing data, and an
algorithm is a step- by-step procedure for perfonlling some task ina tillite amount of time.
These concepts are central in computing.

1.3 GOALS OF DATA STRUCTURES
The goals of data structures can be designed to answer certain questions such as

1. Does the data structure do what it is supposed to do?
,.2. Does the representation work according to the requirement specification , of the task?
~ 3. Is there a proper description of the representation des;cribing how to use .it and how it works?

The above questions when answered create the- fundamental goals that are used in
designing descriptions of data structures. some of them are

1. Correctness
i 2. Efficiency .,

b
., 3. Robustness ,; 4. Adaptability
5. Reusability

By correctness. we mean that a data structure is designed. to work correctly .for all
possible inputs that one might encounter. For example. a data structure that
is supposed to store a collection of numbers in order should never allow for elements i to be
stored out of order. The precise meaning of correctness. will always depend I on the specific problem
the data structure is intended to solve. but correctness
should be a primary
goal.

Useful data structure and their operations also need to be efficient. That is, they
should be fast and not use more of the computer's resources. such as memory space. than
required. In a real-time situation, the speed of a data structure

~ operation can make the difference between success and failure, a difference that can often be quite
important.

Introduction to data structures 5

Every good programmer wants to produce software that is robust, which
means that a program produces the correct output for all inputs. For example, if a
program is expecting a number to be input as an integer and instead it is input as
a floating-point number, then the program should be able to recover from this error.
A program that does not handle such unexpected-input errors can be embarrassing
for the programmer.

Modern software projects, such as those for developing word processors, Web
browsers, and Internet search engines, involve large software systems that are
expected to last for many years. Software, therefore, needs to be able to evolve over
time in response to changing conditions. These changes can be expected, such as
the need to adapt to an increase in CPU speed. Software should also be able to
adapt to unexpected events. Thus, another important goal of quality software is
that it be adaptable.

Going hand-in-hand with adaptability is the desire that software be reusable
that is the same code be a component of different systems in various application
situations. Developing quality software can be expensive, and its cost can be
reduced somewhat if the software is designed in a way that makes it easily reusable
in future applications. Software reuse can be a significant cost-saving and
timesaving technique.

1.4 NEED FOR ABSTRACTION

An abstraction is a powerful concept in computer science. The main idea of
this concept is to distill a complicated system down to its most fundamental parts and
describe these parts in a simple, precise language. Typically, describing the parts of a
system involves naming the different parts and describing their functionality.

For example, a typical text-editor graphical user interface (GUI) provides an
abstraction of an editor program that offers several specialized text-editing
operations, includipg cutting and pasting portions of text or placing graphical
objects at different locations in the text. With abstraction it is not necessary to go
into the details about the various complicated ways in which a GUI represents and
displays text and graphical objects.

The abstract functionality of an edit program and its cutting and pasting
operations is specified in a language precise enough to be clear, but simple enough
to "abstract away” unnecessary details. This combination of clarity and simplicity
benefits robustness, since it leads to understandable and correct implementations.

1.5 CLASSIFICATION OF DATA STRUCTURES
The data structures are classified in the following categories:

1. Primitive data structures
2. Non-primitive data structures.

Introduction to data structures

Figure 1.3 Classification of Data Structures

1.5.1 Primitive Data structures

this. The storage structure of these data structures may vary from one machine to

another. The different primitive data structures are integer, float, double, character
and pointer.

10

Introduction to data structures

Example 1.1 : Consider the following program segment in C.

int *ptr;
int Info;
Info=*ptr;

Where ptr contains the address 0xff02 and the information stored at this location
is 11, after this assignment we will get 11 in Info.

We discuss pointers and its operations in detail in the next chapter.

1.5.2 Operations on Primitive Data Structures *
Some of the common operations on Primitive Data Structure are:

Creation Operation : This operation is used to create g2 storage
Tepresentation for a particular data structure. This operation is normally
performed with the help of a declaration statement available in the
Programming language.

Example 1.2 : int n =45;

tauses memory space to be created for n.

N —— B Name

45 o Value
Oxff02 ———®» Address

access data within a data structure. For complex structures method of access
Is one of the important property of a structure. In case of files the access can
be sequential or random depending on the nature of files. This operation is
normally performed using the name of the structure.

Example 1.3 : scanf (“%d”, &a);

iii. Update Operation : This operation is used to change or modify the data in a
structure. An assignment operation is a good €xample of an update operation.

A v Dl e iai =

Example 1.4 : y=5;

modifies the value of y to store the new value 5 in it. |

\

Introduction to data structures . 11

iv. Destroy Operation : This operation is used to destroy or disassociate a
particular data structure from its storage representation. In some languages
this operation is not supported or it is automatically performed. In C one
can destroy data structure by using the function called free(). This aids in
efficient use of memory.

1.5.3 Non-Primitive Data Structures

Non-Primitive data structures are those structures, which are not readily
available in a programming language i.e., they cannot be directly operated upon
by programming instructions. The storage representation and the possible
operations for these types of structures are not predefined and the user has to
define them. The different non-primitive data structures are arrays, stacks, queues,
files and linked lists.

Non-primitive data structures are further classified into two types.

1. Linear data structure and
2. Non-linear data structure

1.5.3.1 Linear Data Structures

A linear data structures exhibit an important property called as adjacency
between the elements. The concept of adjacency may indicate either a linear or
sequential relationship i.e., if we are able to identify the position of an element we
should be able to identify the position of the previous element and the next element.
The different linear data structures are arrays, strings, stacks, queues and linked
list. We discuss these data structures from chapter 3 to chapter 7.

1.5.3.2 Non-Linear Data Structures

A non-linear data structures can exhibit any property other than adjacency
between the elements. Non-linear data structure may exhibit either a hierarchical
relationship or a parent child relationship. The different non-linear data structures
are trees and graphs.

1.5.3.3 OPERATIONS ON NON-PRIMITIVE DATA STRUCTURES

Some of the common operations on Non Primitive Data Structure are:
i. Traversing: It is the process of visiting each element in the data structure
exactly once to perform certain operations on it.

ii. Sorting : It is the process of arranging the elements of a particular data
structure in some logical order. The order may be either ascending or
descending or alphabetic order depending on the data item present.

iii. Merging : It is the process of combining the elements in two different
structures into a single structure.

iv. Searching : It is the process of finding the location of the element with a
‘given key value in a particular data structure or finding the location of
“an element, which satisfies the given condition.

V. Insertion : It is the process of adding a new element to the structure.
Most of the times this operation is performed by identifying the position
where the new element is to be inserted.

vi. Deletion : It is the process of removing an item from the structure.
1.6 ALGORITHM

The field of Computer Science can be defined as the study of algorithms
because the main use of computers is to solve problems for us. A good algorithm is
like a sharp knife, which does exactly what it is suppose to do with a minimum
applied effort.

Every problem as we understand can be solved using different methods.
Thus each method may be represented using an algorithm. The important question

to answer is How to choose the best algorithm? The design of a solution requires &

two goals to be looked at, most of the times they are conflicting. They are

)55 Design an algorithm that is easy to understand, code and debug.-
2, Design an algorithm that makes use of computer resources efficiently.

The first goal is concerned with a study in computer science called as

Software Engineering and the second is concerned with the choice of data structures

and the analysis of algorithms. Let us restrict our study to the second goal.

Lug

The main aim of using a computer is to transform data from one form to
another. The algorithm describes the process of transforming data. That is why we
often hear that a computer is referred to as a “Data Processing Machine”. Raw data
is the input to a computer and the algorithm shows the method used to transform
the raw data into refined data or information. The organization of data thus plays
an important role in the efficiency of algorithms since any organized data can be
easily accessed and manipulated.

We have to organize the data either as a logical model or as a mathematical
model as described by the definition of data structures.

The chosen model should reflect all the relationships and properties that
exist between data and they can be accessed and implemented easily. While
choosing a model we should also see to that as to what kind of operations can be
performed on the data. Therefore Data Structures can also be defined as
arrangement of data and their relationships.

Efficiency of algorithms depends upon the data structures that are selected
for data representation. The data structure has to be finally represented in the
memory. This is called as memory representation of data structures. While selecting
the memory representation of data structures it should use less memory space and
it should also be easy to access. Data Structures is also specification of how to
represent information or data.

1.7 COMPLEXITY OF ALGORITHMS

Ever algorithm we write should be analyzed before it is implemented as a
program. The process of analyzing algorithms forms a major field of study in computer
science. There are two main criteria’s or reasons upon which we can judge an
algorithm. They are

L. The correctness of the algorithm and
2. The simplicity of the algorithm

The correctness of an algorithm can be analyzed by tracing the algorithm
with certain sample data and by trying to answer certain questions such as.

Does the algorithm do what we want it to do?

Does the algorithm work when the data structure used is empty?

Does the algorithm work when the data structure used is full?

Does the algorithm work for all possibilities that can occur between a full
structure and an empty structure?

e Bk

The simplicity of an algorithm can be analyzed by trying to understand
whether the algorithm can be implemented in a better and much simpler way. In
order to analyze this we will have to consider the time requirements and the space
requirements of the algorithm. These are the two parameters on which the efficiency

S mmm e e emaras LA WL LU GD

of the algorithms is measured. Space requirements are not a major problem today
because memory is very cheap. So time is the only criteria for measuring efficiency
of the algorithm. Consider the examples given below:

The time complexity of an algorithm is not measured by finding out how
much time a particular algorithm requires for performing its task because the speed
of different computers may be different (a slower computer may take more time
whereas a faster computer may take less time for the same algorithm). The time is
measured by counting the number of key operations, which are performed. Normally
input and output operations are not considered as key operations. Comparison or
assignment operations are considered as key operations. That is because key
operations are so defined that the time for the other operations is much less than or
al most proportional to the time for the key operation.

Statement Complexity

X=x+1; We assume that the statement x=x+1 is not

contained within any loop either explicitly
or implicitly. Then, its frequency count is 1.
for (i=1; i<=n; i++)
X =X+1; Now the same statement will executed n

times.

for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
X =X+1; This will be executed n2 times.

The complexity of algorithm M is the function of f (n), which gives running
time of the algorithm in terms of the number of key operations performed.

Let us take an example to understand how the analysis of time corflp]exity
helps us to decide the amount of work done by the algorithm based on which it is
possible to select the best algorithm.

Example 1.5 : Consider the task of finding the largest of three numbers. This
problem can be solved using many methods, let us look at some of the methods and
then analyze them.

Method 1 : Step 1: L =num1l
Step 2: If (num2 > L) L = num2
Step 3: If (num3>L)L=num3
Method 2 : Step 1: If (numl > num?2)

If (numl > num3) L =numl
else L =nums3
else '
If (num?2 > num3) L = num?2
else L =num3

e ARV)

Method 3 : Step 1: If (numl > num?2) and (numl > num3) L = num1
Step 2: If (num2 > numl) and (num2 > num3) L = num?2
Step 3: If (num3 > numl) and (num3 > num?2) L = num3

Let us now look at the relative efficiency of the three methods. The first
method requires us to perform two comparisons and three assignment operations.
The second method requires three comparisons and four assignment operations.
The last method though relatively simple requires six comparisons and three
assignment operations.

From the above methods if we take the comparison operation as the key
operation. Generalizing say to find the largest of “n” numbers we can say that the
first method requires (n - 1) comparisons. The second method may also require
about (n - 1) comparisons but it looks difficult to analyze. The third method would
require each number to be compared with each other number thus it would require
about n* (n - 1) comparisons i.e., it would have to perform n times more work.

As a result of this analysis we see that methodl is the best method that is
efficient and easy to generalize. =

Example 1.6 : Let us now consider the example of Bubble Sort algorithm and
analyze it.

Let A be an array of size N. This algorithm sorts the array in the ascending
order.

Step 1: ForI=1toN-1do

Step 2: FordJ =1 to N-I do

Step3: IfalJ] > a[J+1] then

Step 4: Interchange alJ] and a[J+1]
[End If |
[END For (end of inner loop)]
[END For (end of outer loop)]

Step 5: END

In this algorithm the key operation is the comparison operation. The number of
comparisons can be easily computed. The first pass of the algorithm results in n-1
comparisons and in the worst case may result in n-1 interchanges also. The second
pass results in n-2 comparisons and in the worst case may result in n-2 interchanges.
Continuing the analysis we observe that as the iterations or passes increases the
comparisons and exchanges decreases. Finally the total number of comparisons will
be equal to

(n-1) + (n-2) + N-3) +.eevvvnnnnns +2+1

1]

) *(n-1)/2
0(n2)

2.1 INTRODUCTION .

A program operates on data. Data is stored in memory. While a program is
executing, different values may be stored in the same memory location at different
times. This kind of memory location is called a variable, and its content is the
variable value. The symbolic name that we associate with a memory location is the
variable name or variable identifier.

RN \‘\\\\§ o\\\ \\X&\xﬁ* Y 3 N
S e e . Y

: Any variable, which is declared and initialized, has three things associated
with it

1. A memory location with to hold the value of the variable,
2. The initialized value, which is stored in the location and
3. ° The address of that memory location.

All the three things are equally important. The name of a variable, which
represents the memory location, is used to output the value stored in the variable
and the address of the variable is used to input a value to the variable. Consider the
following declaration in C.

int a;

In this declaration, a is the name of the variable that is declared to be of type
int. An integer variable a occupies two bytes of memory.

Address ‘| Information
Address 65119 : -- -2—8- - - 1@ = Name of the variable
| 65120 ~
65121 ‘\ b
65122 Qe'v"e
; R0, S
rerereeren . 2, O
A4
. ‘ cesaeennans . 0, tﬁ%
65523 ’ % (0)
. 65524 s

Figure 2.1 Components associated with a variable

Dynamic Memory allocation and Pointers 2

We have always used variables to store values, however a variable can als
be used to store the address of another variable such variables are termed as pointe
variables. Thus a pointer is a variable, which can contain the address of anothe
variable. The program below highlights this fact very clearly.

Program 2.1: To show the creation of a pointer variable.

#include <stdio.h>
void main()

{

int a =28;
int *ptr;
ptr = &a;

printf(“ Address of the variable a = %u\n", &a);
printf(“ Value of the variable a = %d\n”, a);
printf(“ Address present in the pointer variable ptr=%u\n”, ptr);

Observing the program closely highlights the following points:

1. The address of a variable is accessed with the help of the “&” operator.

2. Using the name of the variable we can accesses the value of a variable,

3. A pointer variable is created by including the operator “*” when the variable
is declared.

4. A pointer variable can hold only the address of another variable and not the

value of another variable.

2.2 POINTER DECLARATION

of data stored in the location identified by the pointer. Then a variable is created
along with an asterisk. The asterisk tells the compiler that you are Creating a pointer
variable. Finally, you give the name of the variable.

Variable type being pointed to P(’iy'ariable name

data type [variable_name;

A asterisk denotes a pointer

Dynamic Memory allocation and Pointers
2.3 POINTER OPERATOR

For e€xample:
int *pir;

The base type of the pointer defines which type of variables the pointer is
pointing to. Technically, any type of operator ¢an point anywhere in memory. All
pointer arithmetic is done relative to its base type. So it is important to declare the
pointers correctly.

2.4 ADDRESS OPERATOR

Once we declare a pointer variable, we must make it to point to something.
We can do this by assigning to the Pointer the address of the variable you want to
point to as in:

[__Address Information T

%’65122 65119 - - ptr

L

Figure 2.2 Allocation of address to pointer variable

We can also assign an address to the variable Ptr directly. Thus the
instruction

ptr= 65119;

Dynamic Memory allocation and Pointers 23

would generate a compiler error because it is attempting to assign an integer
value to the pointer. The only assignment you can make to the variable ptr is the
address of a variable, using the address operator, as

ptr = &a;
However, we can assign a value to the pointer *ptr, as in
*ptr = 28;

This means “Place the value 28 in the memory address pointed by the
variable ptr.” Since the pointer contains the address 65119, the value 28 is placed
in that memory location. And since this is the location of the variable a, the value
of a is also becomes 28. This shows how we can change the value of a variable

indirectly using a pointer and the indirection operator.

Program 2.2 : To display the contents of the variable and their address using a pointer
variable.

#include <stdio.h>

void main()

{
int num,*int_ptr;
float x,*float_ptr;
char ch, *char_ptr;

num=123;

x=12.34; -

ch="A’;

int_ptr = #

float_ptr = &x;

char_ptr = &ch;

printf(“Num %d is stored at the address %u\n”, *int_ptr ,int_ptr);
printf(“Float %f is stored at the address %u\n”,*float_ptr, float_ptr);
printf(“Character %c is stored at the address %u\n”,*char __ptr,char_ptr);

2.5 SPACE REQUIRED FOR POINTER VARIABLES

The amount of memory space allotted when a variable is created and
compiled depends on the data type of the variable. The amount of space reserved
for a variable has already been explained in the previous section. In this section

we try to understand how much space will be allotted to a pointer variable of
different types of data. The program below highlights this point clearly.

Program 2.3 : To show the amount of space required to store variables and space reserved
for pointers.

#include <stdio.h>

void main()

{
int a =5, *int_ptr;
char b =‘w’, *char_ptr;
float ¢ = 17.53, *float_ptr;

int_ptr = &a; float_ptr = &b; char_ptr = &c;

printf(“Value of integer = %d\n”, a);

printf(“Value of char = %c\n”, b);

printf(“Value of float = %f\n”, c);

printf(“Amount of space for int ptr = %u bytes\n”, sizeof(int_ptr));

printf(“Amount of space for char ptr = %u bytes\n”, sizeof(char_ptr));
printf(“Amount of space for float ptr = %u bytes\n”, sizeof(float_ptr));

Il

What is observed from the above described fact is a very important point. The
amount of space to store different variables may vary. However the size of all the
addresses available is the same and depends on the word length of the computer
being used. Thus we observe that all the outputs are the same i.e., a pointer is
created to hold the address of another memory location and the size of the address
is the same immaterial of the type of data it holds, thus the outputs are the same.

2.6 POINTERS AND FUNCTIONS

Pointers are used very much with functions. Also sometimes complex
function can easily be represented and accessed only with a pointer. Arguments
can be passed to one of the following methods. '

1. Passing values of the arguments (Call by Value)
2. Passing the addresses of the arguments (Call by Reference)

2.6.1 Call by value

We have seen that when a function is invoked, 4 correspondence is
established between the formal and actual parameters. A temporary storage is created
where the value of the actual parameter is stored. The formal parameter picks up
its value from this storage area. This mechanism of data transfer, between the actual
and formal parameters, allows the actual parameters to be an expression, arrays,
etc. Such parameter is called value parameters and mechanism of data transfer is
referred to as Call-By-Value. The corresponding formal parameter represents a local
variable in the called function. The current value of the corresponding actual
parameter becomes the initial value of the formal parameter. The value of formal
parameter may then change in the body of the subprogram by assignment or input
statements. This will not change the value of the actual parameter.

i

Program 2.4 : A C program to illustrate the function using call by value mechanism.

#include <stdio.h>

main()
{
int a,b;
void function(int , int);
a=20;
b=30;

printf(“a =%d b = %d before function call \n “.a,b);
function(a,b);
printf(“a =%d b = %d after function call \n “.a,b);

}

r Call by value function *
void function(int x, int y)
{

X = X+X;

Y= Yy+y,

2.6.2 Call by reference

Whenever a function call is made if we pass the address of a variable to a
function, the parameters receiving the address should be pointers. The process of
calling a function using pointers to pass the address of variable is known as
Call-By-Reference. The function, which is called by ‘reference’, can change the

-

value of the variable used in the call i.e., any changes made to the copied variables
will affect the original variables also.

Program 2.5 : A C program fo illustrate the function using call by reference mechanism.

#include <stdio.h>

main()
{
int a,b;
void function(int *, int *);
a=20;
b=30,

printf(“a =%d b = %d before function call \n “.a,b);
function(&a, &b);
printf(“a =%d b = %d after function call \n “,a,b);

,}f* Call by reference function '}
void function(int *x, int *y)
{

™, = XETX;

*y - iy+ *y;

When the function is called, the address of the variable a, not its value, is
passed into the function. In the function the receiving variables are declared as a
pointer thus the address of the variable is passed. Since X represents the address
of a, the value of a is changed from 20 to 40. Therefore, the output of the above
program segment will be as shown above.

Program 2.6 : A C program to exchange the contents of the two variables using call by
value and call by reference.

#include <stdio.h>
main()
{
int a,b;
void swap_val(int , int); /* Function prototype */
void swap_ref(int *, int *);
printf(“Enter two numbers \n “);

Dynamic Memory allocation and Pointers

scanf(*%d %d”,&a,&b);
printf(“a =%d b = %d before function call \n “a,b); .
swap_val(a,b);

printf(“a =%d b = %d after function call using call by value \n “a,b);

swap_ref(&a,&b);

printf(*a=%d b=%d after function call using call by reference\n “a,b)

}

[Function to exchange two values using call by value
void swap_val(int x, int y)

int temp;
temp = x;
X =
y = temp;
}
* Function to exchange two values using call by reference

void swap_ref(int *x, int * y)

int temp;
temp = “*x;

*x - *y;

*y = temp;

o

Using the technique of call by reference in an intelligent manner it is possible
for us to make a function return more than one value at any instant of time, whereas

till now our function could return only one value.

Program 2.7 : A C program to make a function returning more than one value.

#include <stdio.h>

#define Pl 31415

main()

{
int r;
float a,c;
void calculate(int , float *, float *);
printf(“Enter the radius of a circle \n N
scanf(“%f",&r);
calculate(r,&a,&c);

printf(“Radius =%d \n “r);
printf(‘Area =%f \n “,a);
printf(“Circumference =%f \n “,c);

}) !

7ed Function to calculate the area and circumference of a circle *
void calculate(int x , float *y , float *z)

{

e PITERE
‘2= 2*PlYy

2.7 POINTER AND ARRAYS

An array is a name given to a set of memory locations of the same type of
data. It is a very popular data type especially when we are working with large
amounts of data. However discussing arrays and not discussing pointers and vicg
versa is not possible at all. In actuality all arrays make use of pointers internally,

Before we start studying pointers, let us note a few points about pointers:

1. An array is a collection of memory locations called by the same name
and holding the same type of data and accessed with the help of
subscript.

2. Before using an array it must be declared.

Example 2.1: char name[20];

3. The accessing of elements at any location is done with the help of thg
name of the array. The name of the array always represents the addres;
of the first location of the array. Thus data at any location is access
with the help of the expression.

2.7.1 Onme-dimensional array
Consider the following declaration
int a[], *ptr;

The pointer could be assigned the address of a[0]

* T mevssvay anveanuon and Pointers 33

Address Informa_fiop
| 65524 4| e]a
02145 |a

f‘65524 - _'_ptl' .

—~ 65522 - | ptrptr

Figuré 2.3 To show the concept of a pointer to a pointer

Here, a is an ordinary int, ptr is a pointer to an int, whereas ‘Ptrptr is a
pointer to a int pointer. In Principle, there could be a pointer to pointer. There is no
limit on how far can Wwe g0 on extending this definition. Possibly, till the point we
can comprehend it. And that point of comprehension is usuallya pointer to pointer.

Excess indirection is difficult to follow and process to pointer.

2.11 MEMORY ALLOCATION

In the previous section we have described the the storage classes Which
determined how memory for variables are allocated by the compiler. When a variable

Is defined in the source program, the type of the variable determines how much
memory the.compiler allocates, When the program exec,tmble consumes
this amount of Imemory regardless of whether the program actually uses the memory

allocated. This is Pparticularly true for arrays. However, in many problems, it is not

Consider the following array declaration,

int a[10][10);

34 Dynamic Memory allocation and Pointers

three rows and three columns. This results in wastage of space of 91 (182 bytes)
memory locations. This method of allocating space when the variable is created is
called as static allocation of space.

2.11.1 Dynamic memory allocation

In programming we may come across situations where we may have to deal
with data, which is dynamic in nature. The number of data items may change during
the executions of a program. The number of customers in a queue can increase or
decrease during the process at any time. When the list grows we need to allocate
more memory space to accommodate additional data items. Such situations can be
handled more easily by using dynamic techniques. This method of allocating space
while running the program is called as dynamic allocation of space. Dynamic data
items at run time, thus optimizing usage of storage space.

The above said concept can be achieved with the help of the four standard
library functions malloc(), calloc(), realloc() and free().

C function Task to be performed by the function
Al

malloc locates memory requests size of bytes and returns a
pointer to the first byte of allocated space.

calloc Allocates space for an array of elements initializes them to '-
zero and returns a pointer to the memory

free Frees previously allocated space

realloc Modifies the size of previously allocated space.

2.11.2 Memory allocations process

The Figure 2.4 shows the conceptual view of storage of a C progra
According to the conceptual view the program instructions and global and sta
variable in a permanent storage area and local area variables are stored in staci
The memory space that is located between these two regions is available for dynami
allocation during the execution of the program. The free memory region is call
the heap. The size of heap keeps changing when program is executed due to creati
and death of variables that are local for functions and blocks. Therefore it is possib

Dynamic Memory allocation and Pointers 35

to encounter memory overflow during dynamic allocation process. In such
situations, the memory allocation functions mentioned above will return a NULL pointer.

_ Definition

Local Variables }———- Stack
Free m
ee memory Heap
)
Global variables
' Permanent
Storage area
C program
instructions 4

Figure 2.4 Conceptual view of storage of a C program
2.11.2.1 Allocating a block of memory (malloc function)

A block of memory may be allocated using the function malloc. The malloc
function reserves a block of memory of specified size and returns a pointer of type
void. This means that we can assign it to any type of pointer. It takes the following
form:

ptr is a pointer of type cast-type the malloc returns a pointer (of cast type) to an
area of memory with size byte-size.

Example 2.3 : ptr=(int *)malloc(100*sizeof(int));

—
e

65530
65531
65532 [
65533

Allocation of memory using malloc function

38 Dynamic Memory allocation and Pointers

Example 2.4 : It is possible to allocate a block of memory for several elements of
the same type by giving the appropriate value as an argument. Suppose, we wish to
allocate memory for 100 float numbers. Then, if fptr is a float *, the following
statement does the job:

fptr = (float *) malloc(100 * sizeof(float));
2.11.2.2 Allocatingmultiple blocks of memory (calloc function)
calloc() is another memory allocation function that is normally used to

request multiple blocks of storage each of the same size and then sets all bytes to
zero. The general form of calloc() is:

The above statement allocates contiguous space for m blocks each of size |
element-size bytes. All bytes are initialized to zero and a pointer to the first byte of
the allocated region is returned. If there is not enough space a NULL pointer is
returned.

Example 2.5 : The following segement of a program allocates space for a structure
variable:

struct std
{
int regno;
char name[10];
|5
typedef struct std STUDENT;

STUDENT *CLASS;
CLASS=(STUDENT *)calloc(10,sizeof(STUDENT));

STUDENT is of type struct std having regno and name. The calloc()
function allocates to hold for 10 students.

CLASS

Block 1 Block 2 BIGeK:3: | simmusmmmmensianbmsass oado e ..Block 10

—12 Bytes +4—12 Bytes —4—12 Bytes — —t12 Bytes

Dynamic Memory allocation and Pointers

1 :‘3“;;é§“?°zww
ne

responsibility to release the space when it is not required. The release of storage

space becomes important when the storage is limited. When we no longer need the

Ptr is a pointer that has been created by using malloc or calloc.
2.11.2.4 To alter the size of allocated memory (realloc function)

The memory allocated by using calloc or malloc mi
€xcess sometimes in bot

allocated with the help
of memory. The general

This function allocates new memory space of size newsize to the pointer
variable ptr and returns a pointer to the first byte of the memory block. The allocated
new block may be or may not be at the same region.

