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MODULE - 1 
                                     Static Force Analysis 

CONTENTS 

1.1. Introduction: 

1.2.  Static equilibrium.  

1.3. Equilibrium of two and three force members.  

1.4. Members with two forces and torque. 

1.5.  Free body diagrams. 

1.6.  Static force analysis of four bar and single slider mechanism 

1.7.  Slider-crank mechanism with and without friction. 

  

Objectives 

 To analyze static force analysis of four bar chain mechanism 

 To analyze static force analysis of slider crank  mechanism 

 

1.1. Introduction: 
 
 
Relation between motion and forces causing is a fascinating subject. This study is a generally 

referred as dynamic. Modern Engineering aims at analysing and predicting dynamics behavior 

of physical systems 

Theory of Mechanisms & Machines is used to understand the relationships between the 

geometry and motions of the parts of a machine or mechanism and forces which produce 

motion. 

 
TOM (M&M theory) is divided into two parts:- 
 

Kinematics of Machinery: Study of motion of the components and basic geometry of 

the mechanism and is not concerned with the forces which cause or affect motion. Study 

includes the determination of velocity and acceleration of the machine members 

Dynamics of Machinery: Analyses the forces and couples on the members of the 

machine due to external forces (static force analysis) also analyses the forces andcouples due 

to accelerations of machine members ( Dynamic force analysis) 

Deflections of the machine members are neglected in general by treating machine 

members as rigidbodies (also called rigid body dynamics). In other words the link must be 

properly designed to withstand the forces without undue deformation to facilitate proper 

functioning of the system. 

In order to design the parts of a machine or mechanism for strength, it is necessary to 

determine the forces and torques acting on individual links. Each component however small, 

should be carefully analysed for its role in transmitting force. 

The forces associated with the principal function of the machine are usually known or 

assumed. 
 
Ex: 

a) Piston type of engine: gas force on the piston is known or assumed 
b) QRM – Resistance of the cutting tool is assumed. 

 
a & b are called static forces. 
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Example of other static forces are: 
 

i. Energy transmitted 
 

ii. Forces due  to assembly 
 

iii. Forces due to applied loads 
 

iv. Forces due to changes in temperature 
 

v. Impact forces 
 

vi. Spring forces 
 

vii. Belt and pulley 
 

viii. Weights of different parts 
 

 
 

Apart from static forces, mechanism also experiences inertia forces when subjected to 

acceleration, called dynamic forces. 

Static forces are predominant at lower speeds and dynamic forces are predominant at 

higher speeds. 

 
Force analysis: 

The analysis is aimed at determining the forces transmitted from one point to another, 

essentially from input point to out put point. This would be the starting point for strength 

design of a component/ system, basically to decide the dimensions of the components 

Force analysis is essential to avoid either overestimation or under estimation of forces on 

machine member. 

Under estimation: leads to design of insufficient strength and to early failure. 

Overestimation: machine component would have more strength than required. Over design 

leads to heavier machines, costlier and becomes not competitive 

Graphical analysis of machine forces will be used here because of the simplification it 

offers to a problem, especially in cases of complex machines. Moreover, the graphical 

analysis of forces is a direct application of the equations of equilibrium. 

General Principle of force analysis: 

A machine / mechanism is a three dimensional object, with forces acting in three 

dimensions. For a complete force analysis, all the forces are projected on to three mutually 

perpendicular planes. Then, for each reference plane, it is necessary that, the vector sum of the 

applied forces in zero and that, the moment of the forces about any axis perpendicular to the 

reference plane or about any point in the plane is zero for equilibrium. 

That is ∑F  = 0 & ∑M  = 0 or 

∑F x=0 &∑Fy =0 and ∑M=0 

A force is a vector quantity and three in properties define a force completely; 

Magnitude 

Direction 

Point of application 
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1.2. Static equilibrium.  

 
Equilibrium 
 
For a rigid body to be in Equilibrium 
 
i) Sum of all the forces must be zero 

 
ii) Sum of all the moments of all the forces about any axis must be zero 
 
i.e, (i) ∑ F = 0 (ii) ∑ M  = 0 
 

or ∑ Fx = 0 ∑TM  = 0 

 ∑ Fy = 0 ∑ My = 0 
     
    

 ∑ Fz = 0  ∑Tz =0 (For a planar system represented by 2D vectors) 

   Fx, Fy, Fz force Components along X, Y & Z  axis 

   Similarly moments 
 
 
 

 

1.3 Equilibrium of two and three force members.  

 
 

(i)   Equilibrium of a body under the action of two forces only (no torque)  

   Line of action   

FA 
   

FB 
 

 
A B 

 
    
      

 
 
 

For body to the in Equilibrium under the action of 2 forces (only), the two forces must the equal 

opposite and collinear. The forces must be acting along the line joining A&B. 

 
That is, 

FA= - FB (for equilibrium) 
 
 

h 
If this body is to be under equilibrium ‗h‘ should tend to zero 

 
  

 
 

` 
 
(ii) Equilibrium of a body under the action of three forces only (no torque / couple)  

  FC  

  C  

FA A 
For equilibrium, the 3 forces must be concurrent  

and the force polygon will be a triangle. 
 

   
 
 

B 
 

FB 
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1.4 Members with two forces and torque. 

 
 
(iii) Equilibrium of a body acted upon by 2 forces and a torque. 
 
 

  
T 

 For equilibrium, the two forces must form a  
   

counter couple. Therefore the forces must be 
 

F 
    
     

 
h 

  equal, opposite and parallel and their senses  
   

must be so as to oppose the couple acting on the 
 

   
F 

 
   

body 
 

     
 
 
 
 

Example: 
 

 F2   
T 

h = Perpendicular distance between 
 

h 
 

F1 & F2 
 

  
 

F1 
 
 
 

Free body diagram 
 

The mass is separated from the system and all the forces acting on the mass are represented. 
 

slider-crank mechanism with and without friction. 
 
Problem No.1: Slider crank mechanism 
 

 

Figure shows a slider crank mechanism in which the resultant gas pressure 8 x 104 Nm-2 acts on 

the piston of cross sectional area 0.1 m2. The system is kept in equilibrium as a result of the 

couple applied to the crank 2, through the shaft at O2. Determine forces acting on all the links 

(including the pins) and the couple on 2. 

 
 
 
 
 
 
 
 

P = (8 × 104 ) × (0.1) 
 

= 8 × 103  N 
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1.5 Free body diagrams. 

 
Free body diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Force triangle for the forces acting on 4 is drawn to some suitable scale. 
 
Magnitude and direction of P known and lines of action of F34 & F14 known. 
 
 
 
 
 

Measure the lengths of vectors and multiply by the 

scale factor to get the magnitudes of F14 & F34. 

Directions are also fixed. 

 
 
 
 
 
 
 
 
 
 

i.e, F23 = − F32 
 
 
 
 
 
Since link 3 is acted upon by only two forces, F43 and F23 are collinear, equal in magnitude 

and opposite in direction 

 

i.e., F43 = − F23 = 8.8 × 103 N 

 

Also, F23 = - F32 (equal in magnitude and opposite in direction). 
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Link 2 is acted upon by 2 forces and a torque 

(stated in the problem), for equilibrium the two 

forces must be equal, parallel and opposite and 

their sense must oppose T2. 

 
There fore,  

F32 = − F12 = 8.8 ×103 N 

 
F32 & F12 form a counter clock wise couple of magnitude, 

 
F23 × h= F12 × h = 8.8 × 103 × 0.125 = 1100Nm. 

 
To keep 2 in equilibrium, T2 should act clockwise and magnitude is 1100 

Nm. Important to note; 

i) h is measured perpendicular to F32 & F12; 

ii) always multiply back by scale factors. 

 

 
 

 1.6 Static force analysis of four bar  and single slider mechanism 

 
Problem No 2. Four link mechanism. 

 

A four link mechanism is acted upon by forces as shown in the figure. Determine the torque T2 

to be applied on link 2 to keep the mechanism in equilibrium. 

 

AD=50mm, AB=40mm, BC=100mm, Dc=75mm, DE= 35mm, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Link 3 is acted upon by only two forces F23 & F43 and they must be collinear & along BC. 

Link 4 is acted upon by three forces F14, F34 & F4 and they must be concurrent. LOA F34 is 

known and FE completely given. 
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F32 & F12 from a CCW couple which is equaled 

by a clockwise couple T2 

 

  
 
Problem No 3. 

Determine T2 to keep the mechanism in equilibrium 

AC=70mm,  
AB=150mm, 
O2A= 40mm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F32 and F12 form a CCW couple and hence T2 acts clock wise. 
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Problem No 4. 

Determine the torque T2 required to keep the given mechanism in equilibrium. 

O2A= 30mm, = AB =O4B, O2O4 =60mm, A O 2 O4 = 60º, BC = 19mm, AD=15mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
None of the links are acted upon by only 2 forces. Therefore links can‘t be analyzed individually. 
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Problem No 5. 
 
Determine the torque T2 required to overcome the force FE along the link 6. 
 
AD=30mm, AB=90mm, O4 B=60mm, DE=80mm, O2 A=50mm, O2 O4 =70mm 
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Problem No 6 

 

For the static equilibrium of the quick return mechanism shown in fig. 12.11 (a), determine the 

input torque T2 to be applied on link AB for a force of 300N on the slider D. The dimensions of 

the various links are OA=400mm, AB=200mm, OC=800mm, CD=300mm 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Than, torque on link 2, 
 
T2 = F42x h = 403x120 = 48 360 N counter - clockwise 
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Problem No 7. Determine T2 to keep the body in equilibrium. O2A =100MM, AB=250MM, 

AE=50MM,  A O 2  B = 300 

 
 
 
 

The problem is solved as two 
sub problems:  
i) Considering only FB 

ii) Considering only FE 
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1.7 Force Analysis considering friction.

 

If friction is considered in the analysis, the resultant 

centre of the pin. Coefficient of friction  is assumed 

and speed. 

 

force on a pin doesn‘t pass through the 

to the known and is independent of load 

 

Friction in sliding member. 

 
 
 
 
 

 
F = Frictional force 

 
 = coefficient of friction 

 
 
 

tan φ   µ    
 
 
 
 
 
 
 
 
 
 
Friction at pin points (bearings) & friction circle. 

 

 
µN  
N 

 
 
 
 
 
 
 
 
 
 
 
When a shaft revolves in a bearing, some power is lost due to friction between surfaces. 
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While rotating, the point of contact shifts to B; Rn passes through B. 

The resultant ‗R‘ is in a direction opposite to ω. 

The circle drawn at O, with OC as radius is called ‗FRICTION CIRCLE‘ 

For the shaft to be in equilibrium; W = R 

Frictional moment M = R x OC 

= W x OC 

= W x r sin φ 

= W x r tan φ 

(sin φ ≈ tan φ, for small 

φ) i.e, M = w x r x µ 

∴Radius of the friction circle (OC) = µr. 

The friction circle is used to locate the line of action of the force between the shaft (pin) and the 

bearing or a pin joint. The direction of the force is always be tangent to it (friction axis) Friction 

axis: the new axis along which the thrust acts. 

 
Problem No 8. 
 
In a four bar mechanism ABCD, AB=350mm, BC=50mm, CD=400mm, AD=700mm, 

DE=150mm, D A B = 600 , AD is fixed. Determine the force on link AB required at the mid 

point, in the direction shown, for static equilibrium. µ=0.4 for each revolving pair. Assume 

CCW impending motion of AB. Radius of each journal is 50mm. 

 

Also find the torque on AB for its impending CW motion. 

 

Analysis for CCW motion 

 
 
 
 
 

Solve the problem neglecting 
friction to know the 
magnitudes and directions of 
forces 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Radius of the friction circle = µ x journal radius = 0.4 x 50 = 20 
mm 
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Analysis with Friction considered--- 
AB rotates CCW, DC rotates CCW  
ABC decreasing, LBCD increasing 

 
At C: 
 
BCD increases & 3 rotates CW w.r.t  4 
Therefore, F43 opposes the rotation of 4 by generating a CCW friction couple at C 
 
At B: 
 
BCD decreases & 3 rotates CW w.r.t  2 
Therefore, F23 forms a CCW friction couple at B 

 
(not to scale) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For CW rotation of AB 
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OUT COMES 

 

1) Students will able to analyze mechanism for a given force system by graphical 

method. 

2) Students will be able to analyze mechanism considering and not considering 

friction. 

3)  Student will be able to analyze 4 bar and single slider mechanism for the given 

static force. 

 

Exercise 

1. State D‘Alembert‘s principle. 

2. Define static force analysis 

3. What is free body diagram? 

4. The lengths of crank and connecting rod of horizontal steam engine are 300 mm 

and 1.2 m respectively. When the crank has moved 30° from the inner dead center, 

the acceleration of piston is 35 m/s2 . The average frictional resistance to the 

motion of piston is equivalent to a force of 550 N and net effective steam pressure 

on piston is 500 kN/m2 . The diameter of piston is 0.3 m and mass of reciprocating 

parts is 160 kg. Determine (i) Reaction on the cross-head guides; (ii) Thrust on the 

crankshaft bearings; and (iii) Torque on the crank shaft. 

 
FURTHER READING 
 
1) Theory of machines and mechanisms by Dr.Jagadishlal, Metropolitain Book co. Pvt. 

Ltd., New Delhi 
 
2) Mechanisms and Dynamics of machinery by Hamitton H.Mabie and Fred W.Ocvirk, 

John Wiley & sons, Newyork. 
 
3) Machine Dynamics (DOM), Vol ii, G.Bapaiah, Mechanical Engineering, Monograph 

Series, IIT, Madras. 
 
4) Theory of Machines, by S.S Rathan, Tata McGraw-hill. 
 
5) Mechanism & Machine Theory by Ashok G.Ambekar, Prentice Hall of India Pvt. 

Limited, New Delhi – 110001, 2007. 
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MODULE-2 

Balancing of Rotating Masses 

CONTENTS 

 

2.1Balancing of Rotating Masses 

2.2 Static and dynamic balancing.  

2.3Balancing of single rotating mass by balancing masses in same plane and in different 

planes.  

2.4 Balancing of several rotating masses by balancing masses in same plane and in 

different planes. 

 

OBJECTIVES 

 To study Importance of Balancing of rotating masses. 

 To solve Various problems on Balancing of rotating masses. 

 
2.1Balancing of Rotating Masses 

 
INTRODUCTION: 
 

When man invented the wheel, he very quickly learnt that if it wasn‘t completely 

round and if it didn‘t rotate evenly about it‘s central axis, then he had a problem! 

What the problem he had? 

The wheel would vibrate causing damage to itself and it‘s support mechanism and 

in severe cases, is unusable. 

A method had to be found to minimize the problem. The mass had to be evenly 

distributed about the rotating centerline so that the resultant vibration was at a minimum. 

 

UNBALANCE: 

The condition which exists in a rotor when vibratory force or motion is imparted 

to its bearings as a result of centrifugal forces is called unbalance or the uneven 

distribution of mass about a rotor‘s rotating centerline. 
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Rotating centerline: 

 

The rotating centerline being defined as the axis about which the rotor would 

rotate if not constrained by its bearings. (Also called the Principle Inertia Axis or PIA). 

Geometric centerline: 

The geometric centerline being the physical centerline of the rotor.When the two 

centerlines are coincident, then the rotor will be in a state of balance. When they are 

apart, the rotor will be unbalanced. 

Different types of unbalance can be defined by the relationship between the two 

centerlines. These include: 

Static Unbalance – where the PIA is displaced parallel to the geometric centerline. 

(Shown above) 

Couple Unbalance – where the PIA intersects the geometric centerline at the center of 

gravity. (CG) 

Dynamic Unbalance – where the PIA and the geometric centerline do not coincide or 

touch. 

The most common of these is dynamic unbalance. 

Causes of Unbalance: 

In the design of rotating parts of a machine every care is taken to eliminate any out of 

balance or couple, but there will be always some residual unbalance left in the finished 

part because of 

 

i) slight variation in the density of the material or 

ii) inaccuracies in the casting or 

iii) inaccuracies in machining of the parts. 

Why balancing is so important? 
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iii) A level of unbalance that is acceptable at a low speed is completely 

unacceptable at a higher speed. 

iv) As machines get bigger and go faster, the effect of the unbalance is much more 

severe. 

v) The force caused by unbalance increases by the square of the speed. 

vi) If the speed is doubled, the force quadruples; if the speed is tripled the force 

increases by a factor of nine! 

Identifying and correcting the mass distribution and thus minimizing the force and 

resultant vibration is very very important 

 
2.2 Static and dynamic balancing.  

 
BALANCING: 
 
Balancing is the technique of correcting or eliminating unwanted inertia forces or 

moments in rotating or reciprocating masses and is achieved by changing the location of 

the mass centers. 

The objectives of balancing an engine are to ensure: 

 That the centre of gravity of the system remains stationery during a complete 

revolution of the crank shaft and .That the couples involved in acceleration of the different 

moving parts balance each other. 

 
Types of balancing: 
 
Static Balancing: 

 Static balancing is a balance of forces due to action of gravity. 

 A body is said to be in static balance when its centre of gravity is in the axis of 

rotation. 

Dynamic balancing: 

 Dynamic balance is a balance due to the action of inertia forces. 

 A body is said to be in dynamic balance when the resultant moments or couples, 

which involved in the acceleration of different moving parts is equal to zero. 

 The conditions of dynamic balance are met, the conditions of static balance are also 

met. 
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In rotor or reciprocating machines many a times unbalance of forces is produced due to 

inertia forces associated with the moving masses. If these parts are not properly balanced, 

the dynamic forces are set up and forces not only increase loads on bearings and stresses 

in the various components, but also unpleasant and dangerous vibrations. 

Balancing is a process of designing or modifying machinery so that the unbalance is 

reduced to an acceptable level and if possible eliminated entirely. 

 

BALANCING OF ROTATING MASSES 
 
When a mass moves along a circular path, it experiences a centripetal acceleration and a 

force is required to produce it. An equal and opposite force called centrifugal force acts 

radially outwards and is a disturbing force on the axis of rotation. The magnitude of this 

remains constant but the direction changes with the rotation of the mass. 

In a revolving rotor, the centrifugal force remains balanced as long as the centre 

of the mass of rotor lies on the axis of rotation of the shaft. When this does not happen, 

there is an eccentricity and an unbalance force is produced. This type of unbalance is 

common in steam turbine rotors, engine crankshafts, rotors of compressors, centrifugal 

pumps etc. 

 
 
 
 

meω
2 

 
 
 

G 

 
e 

 
m 

 
 

 

 

The unbalance forces exerted on machine members are time varying, impart vibratory 

motion and noise, there are human discomfort, performance of the machine deteriorate 

and detrimental effect on the structural integrity of the machine foundation.
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Balancing involves redistributing the mass which may be carried out by addition or 

removal of mass from various machine members 

Balancing of rotating masses can be of 

1) Balancing of a single rotating mass by a single mass rotating in the same plane. 

2) Balancing of a single rotating mass by two masses rotating in different planes. 

3) Balancing of several masses rotating in the same plane 

4) Balancing of several masses rotating in different planes 

 
STATIC BALANCING 

 

A system of rotating masses is said to be in static balance if the combined mass centre of 

the system lies on the axis of rotation 

 

DYNAMIC BALANCING 

 

When several masses rotate in different planes, the centrifugal forces, in addition to being 

out of balance, also form couples. A system of rotating masses is in dynamic balance 

when there does not exist any resultant centrifugal force as well as resultant couple. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



Dynamics of Machinery-15ME52 
 

Depart of Mechanical Engineering ,  ATMECE MYSORE Page 21 
 

 
 
2.3 Balancing of single rotating mass by balancing masses in same plane and in 

different planes.  

 
CASE 1. 
BALANCING OF A SINGLE ROTATING MASS BY A SINGLE 
MASS ROTATING IN THE SAME PLANE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Consider a disturbing mass m1 which is attached to a shaft rotating at ω 

rad/s. Let 

r1 = radius of rotation of the mass m1 

=distance between the axis of rotation of the shaft and the centre of 

gravity of the mass m1 

The centrifugal force exerted by mass m1  on the shaft is given by, 

Fc1 = m1 ω 2 r1 − − − − − − − − − − − − − − − − − −(1) 

 

This force acts radially outwards and produces bending moment on the shaft. In order to 

counteract the effect of this force Fc1 , a balancing mass m2 may be attached in the same 

plane of rotation of the disturbing mass m1 such that the centrifugal forces due to the two 

masses are equal and opposite. 
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Let, 
 

r2 = radius of rotation of the mass m2 

= distance between the axis of rotation of the shaft and the centre of 

gravity of the mass m2 

Therefore the centrifugal force due to mass m2  will be, 

Fc2 =m2 ω
2 r2 − − − − − − − − − − − − − − − − − −(2) 

Equating equations (1) and (2), we get 

 
Fc1 =Fc2 

m ω
2 r = m ω

2 r or m r = m r − − − − − − − − − − − − − − − −(3) 

        

 

The product m 2  r2 can be split up in any convenient way. As for as possible the radius 

of rotation of mass m2 that is r2 is generally made large in order to reduce the balancing 

mass m2. 

 

CASE 2: 
 
BALANCING OF A SINGLE ROTATING MASS BY TWO MASSES ROTATING 

IN DIFFERENT PLANES. 

 
There are two possibilities while attaching two balancing masses: 

 

1. The plane of the disturbing mass may be in between the planes of the two 

balancing masses. 

2. The plane of the disturbing mass may be on the left or right side of two planes 

containing the balancing masses. 

In order to balance a single rotating mass by two masses rotating in different 

planes which are parallel to the plane of rotation of the disturbing mass i) the net dynamic 

force acting on the shaft must be equal to zero, i.e. the centre of the masses of the system 

must lie on the axis of rotation and this is the condition for static balancing ii) the net 

couple due to the dynamic forces acting on the shaft must be equal to zero, i.e. the 

algebraic sum of the moments about any point in the plane must be zero. The conditions 

i) and ii) together give dynamic balancing.
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CASE 2(I): 
 
THE PLANE OF THE DISTURBING MASS LIES IN BETWEEN THE PLANES 
OF THE TWO BALANCING MASSES. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider the disturbing mass m lying in a plane A which is to be balanced by two 

rotating masses m1 and m2 lying in two different planes M and N which are parallel to the 

plane A as shown. 

Let r, r1 and r2 be the radii of rotation of the masses in planes A, M and N respectively. 

Let L1, L2 and L be the distance between A and M, A and N, and M and N respectively. 

Now, 

The centrifugal force exerted by the mass m in plane A will be, 

Fc =m ω
2 r − − − − − − − − − − − − − − − − − −(1) 

Similarly, 

The centrifugal force exerted by the mass m1 in plane M will be, 

 

Fc1 =m1 ω
2 r1 − − − − − − − − − − − − − − − − − −(2)
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And the centrifugal force exerted by the mass m2 in plane N will be, 
 

Fc2 =m2 ω
2 r2 − − − − − − − − − − − − − − − − − −(3) 

 
For the condition of static balancing, 

 

Fc = Fc1 + Fc2 

or mω
2 r = m ω

2 r + m ω
2 r 

 

i.e. mr = m1 r1 + m2 r2 − − − − − − − − − − − − − − − −(4) 

Now, to determine the magnitude of balancing force in the plane ‗M‘ or the dynamic 

force at the bearing ‗O‘ of a shaft, take moments about ‗ P ‘ which is the point of 

intersection of the plane N and the axis of rotation. 

Similarly, in order to find the balancing force in plane ‗N‘ or the dynamic force at the 

bearing ‗P‘ of a shaft, take moments about ‗ O ‘ which is the point of intersection of the 

plane M and the axis of rotation 

For dynamic balancing equations (5) or (6) must be satisfied along with equation (4). 
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CASE 2(II): 
 
WHEN THE PLANE OF THE DISTURBING MASS LIES ON ONE END OF THE 
TWO PLANES CONTAINING THE BALANCING MASSES. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For static balancing, 

 

Fc1 = Fc + Fc2 

 

or m1 ω
2 r1 =mω

2 r + m2 ω
2 r2 

 

i.e. m1 r1 = mr+ m2 r2 − − − − − − − − − − − − − − − − (1) 

For dynamic balance the net dynamic force acting on the shaft and the net couple due to 

dynamic forces acting on the shaft is equal to zero. 

To find the balancing force in the plane ‗M‘ or the dynamic force at the bearing ‗O‘ of a 

shaft, take moments about ‗P‘. i.e. 
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Fc1 xL= Fc xL2        
or m ω

2 r x L = mω
2 r xL 

2 
   

 1 1       
Therefore,        

m r L = mrL 
 

or m r = mr 
L2 

− − − − − − − −(2) 
 

2 
  

1 1  1 1  
L 

  
         

 
Similarly, to find the balancing force in the plane ‗N‘ , take moments about ‗O‘, i.e., 
 

Fc2 xL= Fc xL1        
or m ω

2 r x L = mω
2 r xL 

1 
   

 2 2       
Therefore,        

m r L = mrL 
 

or m r = mr 
L1 

− − − − − − − −(3) 
 

1 
  

2 2  2 2  
L 

  
         

2.4 Balancing of several rotating masses by balancing masses in same plane and in 
different planes. 
 
CASE 3: 
BALANCING OF SEVERAL MASSES ROTATING IN THE SAME PLANE 
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Consider a rigid rotor revolving with a constant angular velocity ω rad/s. A number of 

masses say, four are depicted by point masses at different radii in the same transverse 

plane. 
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If m1, m2, m3 and m4 are the masses revolving at radii r1, r2, r3 and r4 respectively in the 

same plane. 

The centrifugal forces exerted by each of the masses are Fc1, Fc2, Fc3 and Fc4 respectively. 

Let F be the vector sum of these forces. i.e. 

1. =Fc1 +Fc2 +Fc3 + Fc4 

=m1 ω
2 r1 + m2 ω

2 r2 + m3 ω
2 r3 + m4 ω

2 r4 − − − − − − − − − (1) 

The rotor is said to be statically balanced if the vector sum F is zero. If the vector sum F 

is not zero, i.e. the rotor is unbalanced, then introduce a counterweight ( balance weight) 

of mass ‗m‘ at radius ‗r‘ to balance the rotor so that, 

m1 ω
2 r1 + m2 ω

2 r2 + m3 ω
2 r3 + m4 ω

2 r4 + m ω
2 r = 0 − − − − − − − − − (2) 

 
or 

m1 r1 + m2 r2 + m3 r3 + m4 r4 + m r = 0 − − − − − − − − − − − − − − − −  (3) 

 
The magnitude of either ‗m‘ or ‗r‘ may be selected and the other can be calculated. 
In general, if ∑m i ri is the vector sum of m1 r1 , m 2 r2 , m 3 r3 , m 4 r4 etc, then, 
 

∑mi ri + mr= 0− − − − − − − −(4) 

 
The above equation can be solved either analytically or graphically. 
 
1. Analytical Method: 
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2. Graphical Method: 
 
Step 1: 

Draw the space diagram with the positions of the several masses, as shown. 

Step 2: 

Find out the centrifugal forces or product of the mass and radius of rotation exerted by 

each mass. 

Step 3: 

Now draw the vector diagram with the obtained centrifugal forces or product of the 

masses and radii of rotation. To draw vector diagram take a suitable scale. 

Let ab, bc, cd, de represents the forces Fc1, Fc2, Fc3 and Fc4 on the vector diagram. 

Draw ‗ab‘ parallel to force Fc1 of the space diagram, at ‗b‘ draw a line parallel to force 

Fc2. Similarly draw lines cd, de parallel to Fc3 and Fc4 respectively. 

Step 4: 

As per polygon law of forces, the closing side ‗ae‘ represents the resultant force in 

magnitude and direction as shown in vector diagram. 

Step 5: 

The balancing force is then , equal and opposite to the resultant force. 

 
Step 6: 
 
Determine the magnitude of the balancing mass ( m ) at a given radius of rotation ( r ), 
such that, 
 

Fc =mω
2 r 

or 
 

Mr=resultantofm1 r1 ,m2 r2 ,m3 r3 andm4 r4 
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CASE 4: 
 
BALANCING OF SEVERAL MASSES ROTATING IN DIFFERENT PLANES 
 
When several masses revolve in different planes, they may be transferred to a reference 

plane and this reference plane is a plane passing through a point on the axis of rotation 

and perpendicular to it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When a revolving mass in one plane is transferred to a reference plane, its effect is to 

cause a force of same magnitude to the centrifugal force of the revolving mass to act in 

the reference plane along with a couple of magnitude equal to the product of the force 

and the distance between the two planes. 

In order to have a complete balance of the several revolving masses in different planes, 

1. the forces in the reference plane must balance, i.e., the resultant force must be zero and 

2. the couples about the reference plane must balance i.e., the resultant couple must be 

zero. 

A mass placed in the reference plane may satisfy the first condition but the couple 

balance is satisfied only by two forces of equal magnitude in different planes. Thus, in 

general, two planes are needed to balance a system of rotating masses. 
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Example: 

Consider four masses m1, m2, m3 and m4 attached to the rotor at radii r1, r2, r3 and r4 

respectively. The masses m1, m2, m3 and m4 rotate in planes 1, 2, 3 and 4 respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a) Position of planes of masses 

Choose a reference plane at ‗O‘ so that the distance of the planes 1, 2, 3 and 4 from ‗O‘ 

are L1, L2 , L3 and L4 respectively. The reference plane chosen is plane ‗L‘. Choose 

another plane ‗M‘ between plane 3 and 4 as shown. 

Plane ‗M‘ is at a distance of Lm from the reference plane ‗L‘. The distances of all the 

other planes to the left of ‗L‘ may be taken as negative( -ve) and to the right may be taken 

as positive (+ve). 

The magnitude of the balancing masses mL and mM in planes L and M may be obtained 

by following the steps given below. 

Step 1: 

Tabulate the given data as shown after drawing the sketches of position of planes of 

masses and angular position of masses. The planes are tabulated in the same order in 

which they occur from left to right. 
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   Centrifugal Distance 

Couple/ ω 
2  

Plane Mass (m) Radius (r) force/ω2 from Ref.   

1 2 3 (m r) plane ‗L‘ (L) 
(m r L)   

6 
  

   
4 5 

  
      

1 m1 r1 m1 r1 - L1 - m1 r1 L1  
L mL rL mL rL 0 0   
2 m2 r2 m2 r2 L2 m2 r2 L2   
3 m3 r3 m3 r3 L3 m3 r3 L3   
M mM rM mM rM LM mM rM LM  
4 m4 r4 m4 r4 L4 m4 r4 L4   

 
 
Step 2: 

Construct the couple polygon first. (The couple polygon can be drawn by taking a 

convenient scale) 

Add the known vectors and considering each vector parallel to the radial line of the 

mass draw the couple diagram. Then the closing vector will be ‗mM rM LM‘. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The vector d ‘o‘ on the couple polygon represents the balanced couple. Since the 

balanced couple CM is proportional to mM rM LM , therefore, 

 

C 
M 

=m r L 
M 

= vector d' o'  
 M M     
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or m = 
vector d' o' 

 
 

  
  M    

rM LM 
 

       
 
From this the value of mM in the plane M can be determined and the angle of inclination 

φ of this mass may be measured from figure (b). 

Step 3: 

Now draw the force polygon (The force polygon can be drawn by taking a convenient 

scale) by adding the known vectors along with ‗mM rM‘. The closing vector will be ‗mL 

rL‘. This represents the balanced force. Since the balanced force is proportional to ‗mL rL‘ 

, 

mL rL =  vector eo  

or m = 
vector eo 

 
 

  
  L  

rL 
 

     

From  this  the  balancing  mass  mL    can  be  obtained  in  plane  ‗L‘  and  the  angle  of  

inclination of this mass with the horizontal may be measured from figure (b). 

 

Problems and solutions 
 
 

1. A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg, 400 kg and 

200 kg respectively and revolving at radii 80 mm, 70 mm, 60 mm and 80 mm in planes 

measured from A at 300 mm, 400 mm and 700 mm. The angles between the cranks 

measured anticlockwise are A to B 45°, B to C 70° and C to D 120°. The balancing 

masses are to be placed in planes X and Y. The distance between the planes A and X is 

100 mm, between X and Y is 400 mm and between Y and D is 200 mm. If the balancing 

masses revolve at a radius of 100 mm, find their magnitudes and angular positions. 

 

Given : mA = 200 kg ; mB = 300 kg ; mC = 400 kg ;mD = 200 kg ,rA = 80 mmv= 0.08m ; 

rB = 70 mm = 0.07 m ; rC = 60 mm = 0.06 m ; rD = 80 mm = 0.08 m ; rX = rY = 100 mm = 

0.1 m 
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2. Four masses A, B, C and D as shown below are to be completely balanced. The planes 

containing masses B and C are 300 mm apart. The angle between planes containing B 

and C is 90°. B and C make angles of 210° and 120° respectively with D in the same 

sense. Find : 

1. The magnitude and the angular position of mass A ; and 

2. The position of planes A and D. 

Given rA = 180 mm = 0.18 m ; mB = 30 kg ; rB = 240 mm = 0.24 m ; mC = 50 kg ;  

rC = 120 mm = 0.12 m ; mD = 40 kg ; rD = 150 mm = 0.15 m ; ∠BOC = 90° ;  

∠BOD = 210° ; ∠COD = 120° 
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3. A, B, C and D are four masses carried by a rotating shaft at radii 100, 125, 200 and 150 

mm respectively. The planes in which the masses revolve are spaced 600 mm apart and 

the mass of B, C and D are 10 kg, 5 kg, and 4 kg respectively. Find the required mass A 

and the relative angular settings of the four masses so that the shaft shall be in complete 

balance. 

 
Given : rA = 100 mm = 0.1 m ; rB = 125 mm = 0.125 m ; rC = 200 mm = 0.2 m ; 
rD = 150 mm = 0.15 m ; mB = 10 kg ; mC = 5 kg ; mD = 4 kg 
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Dynamics of Machinery-15ME52 
 

Depart of Mechanical Engineering ,  ATMECE MYSORE Page 39 
 

 

 
 
 

4. A shaft is supported in bearings 1.8 m apart and projects 0.45 m beyond bearings at 

each end. The shaft carries three pulleys one at each end and one at the middle of its 

length. The mass of end pulleys is 48 kg and 20 kg and their centre of gravity are 15 mm 

and 12.5 mm respectively from the shaft axis. The centre pulley has a mass of 56 kg and 

its centre of gravity is 15 mm from the shaft axis. If the pulleys are arranged so as to give 

static balance, determine : 1. relative angular positions of the pulleys, and 2. dynamic 

forces produced on the bearings when the shaft rotates at 300 r.p.m. 

 

Given : mA = 48 kg ; mC = 20 kg ; rA = 15 mm = 0.015 m ; rC = 12.5 mm = 0.0125 m ; 

mB = 56 kg ; rB = 15 mm = 0.015 m ; N = 300 r.p.m. or ω= 2 π × 300/60 = 31.42 rad/s 
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OUT COMES 
 
1. Students will be able Check static and Dynamic balancing for Rotating systems. 

2.  Students able to solve problems on balancing of rotating masses  

 
Exercise 

 
1. What is meant by balancing of rotating masses?  

2. Why rotating masses are to be dynamically balanced?  

3. Define static balancing.  

4. Define dynamic balancing. 
 
FURTHER READING 
 
1. Theory of Machines by S.S.Rattan, Third Edition, Tata McGraw Hill Education 

Private Limited. 

2. Kinematics and Dynamics of Machinery by R. L. Norton, First Edition in SI units, Tata 

McGraw Hill Education Private Limited. 

3. Primer on Dynamic Balancing ―Causes, Corrections and Consequences‖ By 

Jim Lyons International Sales Manager IRD Balancing Div. EntekIRD International 
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MODULE 3 
 
GYROSCOPE 

 
 

CONTENTS 

3.1 INTRODUCTION 
3.2 GYROSCOPIC COUPLE 
3.3 GYROSCOPIC EFFECT ON SHIP 
3.4 GYROSCOPIC EFFECT ON AEROPLANE 
3.5 STABILITY OF AUTOMOTIVE VEHICLE 
 
3.1 INTRODUCTION 
 

‘Gyre’ is a Greek word, meaning ‗circular motion‘ and Gyration means the whirling 
motion. A gyroscope is a spatial mechanism which is generally employed for the study of 
precessional motion of a rotary body. Gyroscope finds applications in gyrocompass, used in 
aircraft, naval ship, control system of missiles and space shuttle. The gyroscopic effect is also 
felt on the automotive vehicles while negotiating a turn. 

 
A gyroscope consists of a rotor mounted in the inner gimbal. The inner gimbal is 

mounted in the outer gimbal which itself is mounted on a fixed frame as shown in Fig.1. 
When the rotor spins about X-axis with angular velocity ω rad/s and the inner gimbal 

precesses (rotates) about Y-axis, the spatial mechanism is forced to turn about Z-axis other 
than its own axis of rotation, and the gyroscopic effect is thus setup. The resistance to this 
motion is called gyroscopic effect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Gyroscope mechanism 
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 ANGULAR MOTION 
 

A rigid body, (Fig.2) spinning at a constant angular velocity ω rad/s about a spin axis 

through the mass centre. The angular momentum ‗H‘ of the spinning body is represented by a 
vector whose magnitude is ‗Iω‘. I represents the mass amount of inertia of the rotor about the 
axis of spin. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Spinning body 
 

‗.‘ H= Iw  
The direction of the angular momentum can be found from the right hand screw rule 

or the right hand thumb rule. Accordingly, if the fingers of the right hand are bent in the 
direction of rotation of rotor, then the thumb indicates the direction of momentum. 
 
3.2 GYROSCOPIC COUPLE 
 

Consider a rotary body of mass m having radius of gyration k mounted on the shaft 
supported at two bearings. Let the rotor spins (rotates) about X-axis with constant angular 
velocity  rad/s. The X-axis is, therefore, called spin axis, Y-axis, precession axis and Z-axis, 
the couple or torque axis (Fig.3). 
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Fig. 3 
 
 
 
 
Now, suppose the shaft axis (X-axis) precesses through a small angle  about Y-axis in the 
plane XOZ, then the angular momentum varies from H to H + H, where H is the change 
in the angular momentum, represented by vector ab [Figure 15.2(b)]. For the small value of 
angle of rotation 50, we can write 
 
 
 
 
 
 
However, the rate of change of angular momentum is: 
 
 
 
 
 
 
 
 
 
 
 
or C = IWWp 
 

where C = gyroscopic couple (N-m)  
W = angular velocity of rotary body 
(rad/s) Wp = angular velocity of 
precession (rad/s) 
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 Direction of Spin vector, Precession vector and Couple/Torque vector with forced 
precession 
 

To determine the direction of spin, precession and torque/couple vector, right hand 
screw rule or right hand rule is used. The fingers represent the rotation of the disc and the 
thumb shows the direction of the spin, precession and torque vector (Fig.4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. Direction of Spin vector, Precession vector and Couple/Torque vector 
 
 

The method of determining the direction of couple/torque vector is as follows. 
 
Case (i):  

Consider a rotor rotating in anticlockwise direction when seen from the right (Fig.5 
and Fig. 6), and to precess the spin axis about precession axis in clockwise and anticlockwise 
direction when seen from top. Then, to determine the active/reactive gyroscopic couple 
vector, the following procedure is used. 
 

1. Turn the spin vector through 900 in the direction of precession on the XOZ 
plane  

2. The turned spin vector will then correspond to the direction of active 
gyroscopic couple/torque vector  

3. The reactive gyroscopic couple/torque vector is taken opposite to active gyro 
vector direction 
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Fig. 5 Direction of active and reactive gyroscopic couple/torque vector 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Direction of active and reactive gyroscopic couple/torque vector 
 
Case (ii):  
Consider a rotor rotating in clockwise direction when seen from the right (Fig.7 and Fig. 8), 
and to precess the spin axis about precession axis in clockwise and anticlockwise direction 
when seen from top. Then, to determine the active/reactive gyroscopic couple vector, 
 

1. Turn the spin vector through 900 in the direction of precession on the XOZ 
plane  

2. The turned spin vector will then correspond to the direction of active 
gyroscopic couple/torque vector  

 The reactive gyroscopic couple/torque vector is taken opposite to active gyro 
vector direction 
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Fig. 7 Direction of active and reactive gyroscopic couple/torque vector 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Direction of active and reactive gyroscopic couple/torque vector 
 
 

The resisting couple/ reactive couple will act in the direction opposite to that of the 
gyroscopic couple. This means that, whenever the axis of spin changes its direction, a 
gyroscopic couple is applied to it through the bearing which supports the spinning axis. 
 

Please note that, for analyzing the gyroscopic effect of the body, always reactive 
gyroscopic couple is considered.  
. 
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Problem 1  
A disc of 5 kg mass with radius of gyration 70 mm is mounted at span on a horizontal 

shaft spins at 720 rpm in clockwise direction when viewed from the right hand bearing. If the 
shaft precesses about the vertical axis at 30 rpm in clockwise direction when viewed from the 
top, determine the reactions at each bearing due to mass of the disc and gyroscopic effect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reaction on the bearings due to weight of the disc, Rm = mg/2 = 5x9.81 /2 = 24.53 N 
 
 

The angular momentum vector and induced reactive gyroscopic couple acting in 
anticlockwise direction is shown in Fig.9b. 
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3.3 GYROSCOPIC EFFECT ON SHIP 
 

Gyroscope is used for stabilization and directional control of a ship sailing in the 
rough sea. A ship, while navigating in the rough sea, may experience the following three 
different types of motion: 
 

r Steering—The turning of ship in a curve while moving forward  
r Pitching—The movement of the ship up and down from horizontal position in a 

vertical plane about transverse axis  
(iii)Rolling—Sideway motion of the ship about longitudinal axis. 
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For stabilization of a ship against any of the above motion, the major requirement is 
that the gyroscope shall be made to precess in such a way that reaction couple exerted by the 
rotor opposes the disturbing couple which may act on the frame. 
 
r Ship Terminology 
 

 Bow – It is the fore end of ship 
 Stern – It is the rear end of ship 
 Starboard – It is the right hand side of the ship looking in the direction of motion 
 Port – It is the left hand side of the ship looking in the direction of motion 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10  
Consider a gyro-rotor mounted on the ship along longitudinal axis (X-axis) as shown 

in Fig.10 and rotate in clockwise direction when viewed from rear end of the ship. The 
angular speed of the rotor is  rad/s. The direction of angular momentum vector oa, based on 
direction of rotation of rotor, is decided using right hand thumb rule as discussed earlier.The 
gyroscopic effect during the three types of motion of ship is discussed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11 
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Gyroscopic effect on Steering of ship 
 

+ Left turn with clockwise rotor 
 

When ship takes a left turn and the rotor rotates in clockwise direction viewed from 
stern, the gyroscopic couple act on the ship is analyzed in the following way. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13  
Note that, always reactive gyroscopic couple is considered for analysis. From the 

above analysis (Fig.12), the couple acts over the ship between stern and bow. This reaction 
couple tends to raise the front end (bow) and lower the rear end (stern) of the ship. 
 

(ii) Right turn with clockwise rotor 
 

When ship takes a right turn and the rotor rotates in clockwise direction viewed 
from stern, the gyroscopic couple acts on the ship is analyzed (Fig 14). Again, the couple acts 
in vertical plane, means between stern and bow. Now the reaction couple tends to lower the 
bow of the ship and raise the stern. 
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Fig. 14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.15 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16 
 
Left turn with anticlockwise rotor 
 

When ship takes a left turn and the rotor rotates in anticlockwise direction viewed 
from stern, the gyroscopic couple act on the ship is analyzed in the following way (Fig.18). 
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Fig. 17 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.18 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 19 

 
The couple acts over the ship is between stern and bow. This reaction couple tends to 

press or dip the front end (bow) and raise the rear end (stern) of the ship. 
 

(iv) Right turn with anticlockwise rotor 
 

When ship takes a right turn and the rotor rotates in anticlockwise direction viewed 
from stern, the gyroscopic couple act on the ship is according to Fig 20. Now, the reaction 
couple tends to raise the bow of the ship and dip the stern. 
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Fig.20 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 21  
 Gyroscopic effect on Pitching of ship  

The pitching motion of a ship generally occurs due to waves which can be 
approximated as sine wave. During pitching, the ship moves up and down from the horizontal 
position in vertical plane (Fig.22. & Fig. 23) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.22 Pitching action of ship 
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Fig.23 Pitching action of ship 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Consider a rotor mounted along the longitudinal axis and rotates in clockwise 
direction when seen from the rear end of the ship. The direction of momentum for this 
condition is shown by vector ox (Fig.24). When the ship moves up the horizontal position in 
vertical plane by an angle  from the axis of spin, the rotor axis (X-axis) processes about 
Z-axis in XY-plane and for this case Z-axis becomes precession axis. The gyroscopic couple 
acts in anticlockwise direction about Y-axis and the reaction couple acts in opposite direction, 
i.e. in clockwise direction, which tends to move towards right side (Fig.25). However, when 
the ship pitches down the axis of spin, the direction of reaction couple is reversed and the ship 
turns towards left side (Fig. 26). 
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Fig. 24 
 
 
 
 
 
 
 
 
 
 

 
Fig. 25 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.18 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.26 
 

Similarly, for the anticlockwise direction of the rotor viewed from the rear end (Stern) 
of the ship, the analysis may be done. 
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 Gyroscopic effect on Rolling of ship. 
 

The axis of the rotor of a ship is mounted along the longitudinal axis of ship and 
therefore, there is no precession of this axis. Thus, no effect of gyroscopic couple on the ship 
frame is formed when the ship rolls. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.27 
 
 
Problem 2  

A turbine rotor of a ship has a mass of 3500 kg and rotates at a speed of 2000 rpm. 
The rotor has a radius of gyration of 0.5 m and rotates in clockwise direction when viewed 
from the stern (rear) end. Determine the magnitude of gyroscopic couple and its direction for 
the following conditions 
 

A When the ship runs at a speed of 12 knots and steers to the left in a curve of 70 m 
radius  

A When the ship pitches 6° above and 6° below the horizontal position and the bow 
(Front) end is lowered. The pitching motion is simple harmonic with periodic time  
30 sec.  

(iii)When the ship rolls and at a certain instant, it has an angular velocity of 0.05 rad/s 
clockwise when viewed from the stern 

 
Also find the maximum angular acceleration during pitching. 
 
Solution Given, 1 knot = 1.86 kmph, the linear velocity of the ship: 
 
 
 
 
 
 
 

Angular velocity of the rotor: 
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When ship steers to the left, the reaction gyroscopic couple action is in anticlockwise 
 
direction and the bow of the ship is raised and stern is lowered, as shown in Fig.28. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.28 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wpmax = 0.2094 x 0.1047 = 0.022 rad/s 
 
Maximum couple for pitching: 
 

Cmax = IWWpmax  
4. 875 x 209.44 x 0.022 
5. 4031.72 Nm  

The effect of gyroscopic couple due to pitching is shown in Fig.29. The reactive 
gyroscopic couple will act in anticlockwise direction seen from top and it will turn ship 
towards the left side. 
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Fig.29  
iii) Angular velocity of precession while the ship rolls is: 

Wp = 0.05 rad/s 
 

and gyroscopic couple : C = 1WWp  
= 875 x 209.44 x 0.05 
= 9163 Nm 

 
Since the ship rolls in the same plane as the plane of spin, there is no gyroscopic effect. 
 
Angular velocity of precess during pitching is: 
 
 
 
 
Therefore, angular acceleration: 
 
 
 
 
 
Maximum angular acceleration: 
 

Wmax = -AW0
2 

= 0.1047 x 0.20942 
= 0.00459 rad/s2 

 
 
Problem 3 
 

A ship is propelled by a rotor of mass of 2000 kg rotates at a speed of 2400 rpm. The 
radius of gyration of rotor is 0.4 m and spins clockwise direction when viewed from bow 
(front) end. Find the gyroscopic couple and its effect when;  

= the ship takes left turn at a radius of 350 m with a speed of 35 kmph  
= the ship pitches with the bow rising at an angular velocity of 1 
rad/s (iii)the ship rolls at an angular velocity of 0.15 rad/s 

 
 
Solution 
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Angular velocity: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The reaction gyroscopic couple will act in anticlockwise and will tend to lower the bow as 
shown in Figure 30. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.30 
 
Pitching. Angular velocity of precession during pitching a)p = 1.0 rad/s 

Gyroscopic couple: C = 320 x 251.33 x 1.0  
= 80425.6 Nm Ans. 

 
The reaction gyroscopic couple acting in anticlockwise direction will tend to turn the bow 
towards the Right side as shown in Figure 31. 
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Rolling, Gyroscopic couple: C = l6XQp  
= 320 x 251.33 x 0.15 = 12063.84 Nm 

 
During rolling, the ship rolls in the same plane as the plane of spin and there will be no 
gyroscopic effect. 
 
 
3.4 Gyroscopic Effect on Aeroplane 
 

Aeroplanes are subjected to gyroscopic effect when it taking off, landing and 
negotiating left or right turn in the air.  
Let  
ω = Angular velocity of the engine rotating parts in rad/s, 
m = Mass of the engine and propeller in kg, 
rW  = Radius of gyration in m, 
I = Mass moment of inertia of engine and propeller in kg m2, 
V = Linear velocity of the aeroplane in m/s,  
R  = Radius of curvature in m, 

ωp =Angular velocity of precession =  rad/s 
 
 Gyroscopic couple acting on the aero plane = C = I WWp 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.32 
 
 

Let us analyze the effect of gyroscopic couple acting on the body of the aero plane for 
various conditions. 

 
Case (i): PROPELLER rotates in CLOCKWISE direction when seen from rear end and 
Aeroplane turns towards LEFT 
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Fig.38 
 
 
According to the analysis, the reactive gyroscopic couple tends to dip the tail and raise the 
nose of aeroplane. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.39 

 
Case (ii): PROPELLER rotates in CLOCKWISE direction when seen from rear end and 
Aeroplane turns towards RIGHT 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.40 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.41 
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Fig.42 

 
 
 
 
 
 
 
 
 

Fig.43 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 44 
 

According to the analysis, the reactive gyroscopic couple tends to raise the tail and dip 
the nose of aeroplane. 
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Fig.45 
 
 
 
 
 
Case (iii): PROPELLER rotates in ANTICLOCKWISE direction when seen from rear end 
and Aeroplane turns towards LEFT 
 
 
 
 
 
 
 
 
 
 
 

Fig.46 
 
 
 
 
 
 
 
 
 
 
 

Fig.47 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.48 
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Fig.49  
The analysis indicates, the reactive gyroscopic couple tends to raise the tail and dip 

the nose of aeroplane. 
 
 
 
 
 
 
 

 
Fig.49 

 
Fig.50 

 
Fig. 50 

 
Case (iv): PROPELLER rotates in ANTICLOCKWISE direction when seen from rear 
end and Aeroplane turns towards RIGHT 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.51 
 
 
 
 
 
 
 
 

 
Fig.52 
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Fig.53 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.54 
 
 
 
 
 

The analysis shows, the reactive gyroscopic couple tends to raise the tail and dip the 
nose of aeroplane. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.55 
 
Case (v): PROPELLER rotates in CLOCKWISE direction when seen from rear end and 
Aeroplane takes off or nose move upwards 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.56 
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Fig.57 

 
The analysis show, the reactive gyroscopic couple tends to turn the nose of aeroplane 

toward right 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.58 

 
Case (vi): PROPELLER rotates in CLOCKWISE direction when seen from rear end and 
Aeroplane is landing or nose move downwards 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.59 
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Fig. 61 
 
The reactive gyroscopic couple tends to turn the nose of aeroplane toward left 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.62 
 
 
 
 
Case (vii): PROPELLER rotates in ANTICLOCKWISE direction when seen from rear end 
and Aeroplane takes off or nose move upwards 
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Fig.63 

The reactive gyroscopic couple tends to turn the nose of aeroplane toward left 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.64 

 
Case (viii): PROPELLER rotates in ANTICLOCKWISE direction when seen from rear end 
and Aeroplane is landing or nose move downwards 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.65 

 
The analysis show, the reactive gyroscopic couple tends to turn the nose of aeroplane 

toward right 
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Fig.66 
 
Problem 4  

An aeroplane flying at a speed of 300 kmph takes right turn with a radius of 50 m. 
The mass of engine and propeller is 500 kg and radius of gyration is 400 mm. If the engine 
runs at 1800 rpm in clockwise direction when viewed from tail end, determine the gyroscopic 
couple and state its effect on the aeroplane. What will be the effect if the aeroplane turns to 
its left instead of right? 
 
Solution Angular velocity of aeroplane engine: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case (i): PROPELLER rotates in CLOCKWISE direction when seen from rear end and 
Aeroplane turns towards RIGHT 
 
 
 
 
 
 
 
 
 
 
 

Fig.67 
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Fig.68 
 

According to the analysis, the reactive gyroscopic couple tends to dip the nose and 
raise the tail of the aeroplane. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.69 
 
When aeroplane turns to its left, the magnitude of gyrocouple remains the same. However, 
the direction of reaction couple is reversed and it will raise the nose and dip the tail of the 
aeroplane. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.70  

3.5 Stability of Automotive Vehicle 
 

A vehicle running on the road is said to be stable when no wheel is supposed to leave 
the road surface. In other words, the resultant reactions by the road surface on wheels should 
act in upward direction. For a moving vehicle, one of the reaction is due to gyroscopic couple 
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produced by the rotating wheels and rotating parts of the engine. Let us discuss stability of 
two and four wheeled vehicles when negotiating a curve/turn. 
 

 
 Stability of Two Wheeler negotiating a turn 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.71 
 
 

Fig. 71 shows a two wheeler vehicle taking left turn over a curved path. The vehicle 
is inclined to the vertical for equilibrium by an angle  known as angle of heel. 
 
Let 
m = Mass of the vehicle and its rider in kg,  
W = Weight of the vehicle and its rider in newtons = m.g, 
h = Height of the centre of gravity of the vehicle and 
rider, rW = Radius of the wheels, 
R = Radius of track or  curvature, 
IW = Mass moment of inertia of each wheel, 
IE = Mass moment of inertia of the rotating parts of the engine, 
ωW = Angular velocity of the wheels, 
ωE = Angular velocity of the engine rotating parts, 
G = Gear ratio = ωE / ωW, 
v = Linear velocity of the vehicle = ωW × rW, 
θ = Angle of heel. It is inclination of the vehicle to the vertical for equilibrium. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7
2 
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Fig.73 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.74 
 
Let us consider the effect of the gyroscopic couple and centrifugal couple on the wheels. 
 
1. Effect of Gyroscopic Couple 
 

We know that, V = ωW × rW 

 ωE = G .ωW or    ωE = G .v/ rW 

Angular momentum due to wheels = 2 Iw ωW 
 
Angular momentum due to engine and transmission =  IE ωE 
 
Total angular momentum (I xω) = 2 Iw ωW  IE ωE 
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Also, Velocity of precession =  ωp =  
 
 

It is observed that, when the wheels move over the curved path, the vehicle is always 
inclined at an angle θ with the vertical plane as shown in Fig… This angle is known as ‗angle 
of heel‘. In other words, the axis of spin is inclined to the horizontal at an angle θ , as shown 
in Fig.73 Thus, the angular momentum vector I ω due to spin is represented by OA inclined 
to OX at an angle θ. But, the precession axis is in vertical. Therefore, the spin vector is 
resolved along OX. 
 
Gyroscopic Couple, 
 
 
 
 
 
 
 
 
Note: When the engine is rotating in the same direction as that of wheels, then the positive 
sign is used in the above equation. However, if the engine rotates in opposite direction to 
wheels, then negative sign is used. 
 
 
 
 
 
 
 
 
 

The gyroscopic couple will act over the vehicle outwards i.e., in the anticlockwise 
direction when seen from the front of the two wheeler. This couple tends to overturn/topple 
the vehicle in the outward direction as shown in Fig… 
 
Analysis: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.75 
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Fig.7
6 

2. Effect of Centrifugal Couple 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 77 
 
We have, 

Centrifugal force, 
 
 
or  

Centrifugal Couple, 
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The Centrifugal couple will act over the two wheeler outwards i.e., in the 
anticlockwise direction when seen from the front of the two wheeler. This couple tends to 
overturn/topple the vehicle in the outward direction as shown in Fig.78 
 
 
Therefore, the total Over turning couple: C = Cg + Cc 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.79 
 
 
 
 
 
 

For the vehicle to be in equilibrium, overturning couple should be equal to balancing 
couple acting in clockwise direction due to the weight of the vehicle and rider. 
 

 C = mgh sinθ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.80 
For the stability, overturning couple must be equal to balancing couple, 

 
 
 
 
 
 

Therefore, from the above equation, the value of angle of heel (θ) may be determined, 
so that the vehicle does not skid. Also, for the given value of θ, the maximum vehicle speed 
in the turn with out skid may be determined. 
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Problem 5  
A motorcycle and its rider together weighs 2000 N and their combined centre of 

gravity is 550 mm above the road when motorcycle is upright. Each wheel is of 580 mm 
diameter and has a moment of inertia of 1.0 kgm2. The moment of inertia of rotating parts of 
engine is 0.15 kg m2. The engine rotates at 5 times the speed of the vehicle and the same 
sense. Determine the angle of heel necessary when motorcycle is taking a turn over a track of 
35 m radius at a speed of 60 kmph. 
 
Solution: 
 
 
Velocity of vehicle : 
 
 
Angular velocity of wheel: 
 
 
Angular velocity of precession: 
 
(i) Gyroscopic couple due to two wheels: 
 

Cw = 2Iw WWp cosθ 
 2 x 1 .0 x 57.48 x 0.476 x cos θ 
 54.72 cosθ Nm 

= Gyroscopic couple due to rotating parts of engine: 
CE = IE GWWp cosθ 

 0.15 x 5 x 57.48 x 0.476 x cosθ  
 20.52cosθ Nm 

ii) Centrifugal force due to angular velocity of die wheel: 
 
 
 
 
 

Centrifugal couple: Cc = 1618.7 x 0.55 cosθ 
  = 890.28 cos θ Nm 

Total overturning couple:  C = Cw + Ce + Cc 
T (54.72 + 20.52 + 890.28) cosθ  
T 965.52 cosθ Nm 

 
Balancing couple 

 
 
 
 
 

 
For the stability of motorcycle, overturning couple should be equal to resisting couple. 
 
 1100 sinθ = 965.52 cosθ 
 
or  
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Problem 6  
A motor cycle with its rider has a mass of 300 kg. The centre of gravity of the 

machine and rider combined being 0.6 m above the ground with machine in vertical position. 
Moment of inertia of each wheel is 0.525 kg m2 and the rolling diameter of 0.6 m. The engine 
rotates 6 times the speed of the road wheels and in the same sense. The engine rotating parts 
have a mass moment of inertia of 0.1686 kg m2. Find (i) the angle of heel necessary if the 
vehicle is running at 60 km/hr round a curve of 30 m (ii) If the road and tyre friction allow for 
the angle of heel not to exceed 50o, what is the maximum road velocity of the motor cycle. 
 
Solution: 
 
m = 300 kg, h = 0.6 m, Iw = 0.525 kg m2 , dw=0.6 m; rw = 0.3 m, G = 6, IE = 0.1686 
m , V= 60km/hr = 16.66 m/s, R = 30 m (i) θ = ? (ii) θ = 50o V=? 
 
 
1. Angle of heel, 

We have, 

 
 
 
 
 
 
 
 
 
 
 
A) Given, , V=?, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Stability of Four Wheeled Vehicle negotiating a turn. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stable condition Unstable Condition 
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Fig.81 
 

Consider a four wheels automotive vehicle as shown in Figure 82. The engine is 
mounted at the rear with its crank shaft parallel to the rear axle. The centre of gravity of the 
vehicle lies vertically above the ground where total weight of the vehicle is assumed to be 
acted upon. 
 
 
Let 
m = Mass of the vehicle (kg) 
W = Weight of the vehicle (N) = m.g,  
h = Height of the centre of gravity of the vehicle (m) 
rW = Radius of the wheels (m) 
R = Radius of track or curvature (m) 
IW = Mass moment of inertia of each wheel (kg-m2) 
IE = Mass moment of inertia of the rotating parts of the engine (kg-m2)  
ωW = Angular velocity of the wheels 
(rad/s) ωE = Angular velocity of the engine 
(rad/s) 
G = Gear ratio = ωE / ωW,  
v = Linear velocity of the vehicle (m/s)= ωW × 
rW, x = Wheel track (m)  
b = Wheel base (m) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.82 
 
1. Reaction due to weight of Vehicle  
Weight of the vehicle. Assuming that weight of the vehicle (mg) is equally distributed over 
four wheels. Therefore, the force on each wheel acting downward is mg/4 and the reaction by 
the road surface on the wheel acts in upward direction. 



Dynamics of Machinery-15ME52 
 

Depart of Mechanical Engineering ,  ATMECE MYSORE Page 81 
 

x Effect of Gyroscopic couple due to Wheel 
 
Gyroscopic couple due to four wheels is, 
 

Cw = 4 IwWWp 
 
(iii) Effect of Gyroscopic Couple due to Engine 
Gyroscopic couple due to rotating parts of the engine 
 

CE = IE WWp = IE G WWp 
Therefore, Total gyroscopic couple: 
 

Cg = Cw + CE= WWp (4IW ± IEG) 
 
When the wheels and rotating parts of the engine rotate in the same direction, then positive 
sign is used in the above equation. Otherwise negative sign should be considered. 
 
Assuming that the vehicle takes a left turn, the reaction gyroscopic couple on the vehicle acts 
between outer and inner wheels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.83 
 
This  gyroscopic couple tends to press the outer wheels and lift the inner wheels. 
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Fig.84  
Due to the reactive gyroscopic couple, vertical reactions on the road surface will be 

produced. The reaction will be vertically upwords on the outer wheels and vertically 
downwords on the inner wheels. Let the magnitude of this reaction at the two outer and inner 
wheels be P Newtons, then, 

P x X = Cg 
 
 
Road reaction on each outer/Inner wheel, 
 
 
 
 
  Effect of Centrifugal Couple  

When a vehicle moves on a curved path, a centrifugal force acts on the vehicle in 
outward direction through the centre of gravity of the vehicle( Fig…) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.85 
 
Centrifugal force, 

 
 
 
 
 
This force forms a Centrifugal couple. 
 
 
 
 
This centrifugal couple tends to press the outer and lift the inner 
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Fig.86  
Due to the centrifugal couple, vertical reactions on the road surface will be produced. 

The reaction will be vertically upwords on the outer wheels and vertically downwords on the 
inner wheels. Let the magnitude of this reaction at the two outer and inner wheels be F 
Newtons, then, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.87 
Road reaction on each outer/Inner wheel, 
 
 
 
The reactions on the outer/inner wheels are as follows, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.88 
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Total vertical reaction at each outer wheels 
 
 
 
 
 
Total vertical reaction at each inner wheels 
 
 
 
 

 
Problem 7  

An automobile car is travelling along a track of 100 m mean radius. The moment of 
inertia of 500 mm diameter wheel is 1.8 kg m2. The engine axis is parallel to the rear axle and 
crank shaft rotates in the same sense as the wheel. The moment of inertia of rotating parts of 
the engine is 1 kg m2. The gear ratio is 4 and the mass of the vehicle is 1500 kg. If the centre 
of gravity of the vehicle is 450 mm above the road level and width of the track of the vehicle 
is 1.4 m, determine the limiting speed of the vehicle for condition that all four wheels 
maintain contact with the road surface. 
 
Solution Let  = limiting velocity of the vehicle. 
 
 
Angular velocity: 
 
 

Precession velocity:  
 
 
(i) Reaction due to gyroscopic couple: 
 

(a) Gyroscopic couple due to four wheels: 
 
 
 
 
 

 
(b) Gyroscopic couple due to engine parts: 

 
 
 
 
 
 
 
 
 
 
 
 
 
Reaction due to total gyroscopic couple on each outer wheel: 
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Reaction due to total gyroscopic couple on each inner wheel: 
 
 
 
 
 
(ii) Reaction due to centrifugal couple: 
 
 
Centrifugal force: 
 
 

Overturning couple due to centrifugal force: 
 

Cc = Fc x h 
 

= 15 v2x 0.45 = 6.75 v2 Nm 
 

Vertical downward reaction on each inner wheel is: 
 
 
 
 
 
(iii) Reaction due to weight of the vehicle: 
 
 
 
 
 
The limiting condition to avoid lifting of inner wheels from the road surface is: 
 
 
or 
 
 
 
 
 

 
or 
 
Problem 8  

A four wheeled motor vehicle of mass 2000 kg has a wheel base of 2.5 m, track width 
1.5m and height of c.g is 500 mm above the ground level and lies 1 m from the front axle. 
Each wheel has an effective diameter of 0.8m and a moment of inertia of 0.8 kgm2. The drive 
shaft, engine flywheel rotating at 4 times the speed of road wheel in clockwise direction 
when viewed from the front and is equivalent to a mass of 75 kg having a radius of gyration 
of 100mm.If the vehicle is taking a right turn of 60 m radius at 60kmph, determine the load 
on each wheel. 
 
Solution, 
 
Since the C.G of the vehicle is 1 m from the front, 
 
The percentage of weight on the front wheels = (2.5-1)/2.5 x 100 

= 60% 
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The percentage of weight on the rear wheels = 40 % 

Total weight on the front wheels = 11772 N 
 
Total weight on the rear wheels = 7848 N 
 
Weight on each of front wheel = 5886 N = WF/2 
 
Weight on each of rear wheel = 3924 N = WR/2 
 
The road reaction due to weight of the vehicle is always upwards 
 
Effect of Gyroscopic couple due to Wheel, 

CW = 4IW. WW. WP 
= 37.1 Nm 

Gyroscopic couple due to wheels acts between outer and inner wheels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.89 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.90 

 
 
 
The gyroscopic couple tends to press the outer and lift the inner wheels 
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Fig. 91 
 
The road reaction is vertically upward for outer wheels and downward for inner wheels 

Road reaction on each outer/Inner wheel, 

 
Effect of Gyroscopic Couple due to Engine 
 
Gyroscopic couple due to engine 
 
CE = IE. WE. WP 
CE = IE.G. WW. WP  

= 34.7 N m 
 
Gyroscopic couple due to engine acts between Front and Rear wheels. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 92 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 93 
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The couple tends to press Rear wheels and Lift front wheels 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 94 
 
The road reaction is vertically upward for REAR and downward for FRONT 
wheels. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.95 
 

Road reaction on each Front/Rear wheels 
 
 
 
 
 

Effect of Centrifugal Couple 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.96 
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Centrifugal force,  
 
 

Centrifugal Couple  
 
 
The gyroscopic couple tends to press the outer and lift the inner wheels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.97 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 98  
The road reaction is vertically upward for outer wheels and downward for inner 

wheels. Road reaction on each outer/Inner wheel 

 
 
 

Engine crank shaft rotates clockwise direction seen from front, and Vehicle takes 
RIGHT turn 
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Fig.99 
 
 
Load on front wheel 1 = 4322.86 N 
Load on front wheel 2 = 7435.26 N 
Load on rear wheel 3 =  2374.74 N 
Load on rear wheel 4 =  5487.14 N 
 
Problem 9  

A section of an electric rail track of gauge 1.5 m has a left hand curve of radius 300 
m, the superelevation of the outer rail being 260 mm. The approach to the curve is along a 
straight length of track, over the last 50 m there is a uniform increase in elevation of the outer 
rail from level track to the super elevation of 260 mm. Each motor used for traction has a 
rotor of mass 550 kg and radius of gyration 300 mm. The motor shaft is parallel to the axes of 
the running wheels. It is supported in bearings 780 mm apart and runs at four times the wheel 
speed but in opposite direction. The diameter of running wheel is 1.2 m. Determine the forces 
on the bearings due to gyroscopic action when the train is travelling at 90 kmph (a) on the last 
50 m of approach track (b) on the curve track. 
 
Solution Angular velocity: 
 
 
 
 
 
 
Let p = angular velocity of precession. 
 
Moment of inertia: I= mk2 = 550 x 0.32 = 49.5 kg m2 
 
Gyroscopic couple: 



Dynamics of Machinery-15ME52 
 

Depart of Mechanical Engineering ,  ATMECE MYSORE Page 91 
 

Forces on bearings: 
 
 
 
 
(a) Angle turned by engine shaft in the last 50 m track 
 
 
 
 
 
Time taken to cover this distance 
 
 
Velocity of precession: 
 
Forces on bearings: P = 10577.1 x 0.0867 = 917.03 N 
 
The change in momentum is represented by vector oa and ob as shown in Figure 15.18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The couple required for precession is, therefore, acting in clockwise looking upward 
direction. The reaction couple acts in anticlockwise direction looking downward as the forces 
on the bearings are in the directions shown in Figure 100. 
 

i) When electric rail moves on curved path, the effective angular velocity of precession 
about the axis perpendicular to the axis of rotation is: 

 
 
 
 
 
 
 
 
where  is angle due to superelevation of outer rail. Referring to Figure 15.19. 
 
 
 
 
 
or 



Dynamics of Machinery-15ME52 
 

Depart of Mechanical Engineering ,  ATMECE MYSORE Page 92 
 

Effective angular velocity of spin = 
 
Therefore,   

Forces on bearings: P = 10577.1 Wp  
 = 10577.1 x 0.08206  
 = 867.95 N Ans. 
 
The change in angular momentum vector and reaction couple shown in Figure 15.19 shows 
direction of forces on the bearings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.101 
 
 
Problem 10.  

A four wheeled trolley of total weight 20 kN running on rails of 1 m gauge rounds a 
curve of 30 m at 40 kmph on a track of embankment slope of 100. The wheels have external 
diameter of 0.6 m and each pair of axle weighs 2000 N and has a radius of gyration of 0.25 
m. The height of the C.G of trolley above the wheel is 1 m. Calculate the reaction on the each 
rail due to gyroscopic and centrifugal couple. 
 
Solution, 
 
Weight of trolley = N = 20000 N 
Wheel track = 2x  
= 1 m 
Radius of curve = R = 30 m  
Trolley velocity = 40 kmph= 11.1 m/s 
Track of embankment slope of =  = 100 
Diameter of wheel = d = 0.6 m  
Weight of each pair of wheels = W1 = 2000 N= mg 
Radius of gyration kg = 0.25 m 
Height of C.G from wheel base = 1 m 
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Fig.102 
 
Referring to above Fig. 102, 
 
Consider, the total effect of weight of trolley and that of centrifugal force F, 
 

 The reaction RA and RB at the wheels X and Y, 
 
Resolving forces perpendicular to the track, 
 
RA+RB  = mg Cos θ + F Sin θ 
 

= mg cos θ + m sin θ 
 

= mg 
 

= 20000 
RA+RB  = 21.158 N 
 
Taking moments about Q, 
 
RA * 2  = ( F sin θ + mg cos θ )  - ( F cos θ + mg sin θ ) h 
 

RA =    -  
 
 

= -  
 

=  –  
 

RA = 5751 N 
RB = 15407 N 

 
Let the force at each pair of wheels or each rail due to gyroscopic couple = Fg 

Gyroscopic couple applied = Iω cosθ ωp 
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Fg * 2x = Iω cosθ ωp  
= 

 

But, I = mk2
g = = 12.74 kg m2 

 

ωp =  =  = 0.37 rad/s 
 

ω =  =  = 37 rad/s 
 

Fg = 
 

= 172 N 
 Reaction on inner rail = RA - Fg 

ii) 5751 – 172 
  5479 N 

 
 Reaction on outer rail = RA + Fg 

1) 15407 + 172 
 15579 N 
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one of them which converts thermal energy of fossil fuels to power. It produces highly 
fluctuating torque. Even the machines having rotating parts are never completely 
balanced. From static and dynamic analysis of such machines, it is known that these 
machines transmit forces to the ground through structure. These forces are periodic in 
nature. 

You know that in a simple pendulum, bob starts to and fro motion or we can say 
oscillations when bob is disturbed from its equilibrium position. It executes oscillations 
at natural frequency. It keeps on oscillating until its motion dies out. If such a system is 
subjected to the periodic forces it responds to the impressed frequency which makes 
system to execute forced vibration at forcing frequency. If impressed frequency is equal 
to the natural frequency, resonance occurs which results in large oscillations and due to 
this it results in excessive dynamic stresses. 

This unit deals with oscillatory behaviour of the dynamic systems. All the bodies having 
mass and elasticity are capable of vibration. In studying mechanical vibrations, the 
bodies are treated as elastic bodies instead of rigid bodies. The bodies have mass also. 
Because of mass it they can possess kinetic energy by virtue of their velocity. They can 
possess elastic strain energy which is comparable to the potential energy. The change of 
potential energy into kinetic energy and vice-versa keeps the body vibrating without 
external excitation (force or disturbance). If the cause of vibration is known, the remedy 
to control it can be made. 

Vibration of a system is undesirable because of unwanted noise, high stresses, 
undesirable wear, etc. It is of great importance also in diagnostic maintenance. 

Objectives 

After studying this unit, you should be able to 

 analyse a system for mechanical vibration, 
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In earlier units, you have studied various mechanisms and machines. The IC engine is 
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MODULE 4 INTRODUCTION AND FREE VIBRATION 



 

 

 
determine degree of freedom of a system, 

 determine natural frequency of a system, 

 analyse and study dynamical behaviour of a system, and 

 control vibration in a system. 

Periodic Motion 

The motion which repeats after a regular interval of time is called periodic motion. 

Frequency 

The number of cycles completed in a unit time is called frequency. Its unit is 
cycles per second (cps) or Hertz (Hz). 

Time Period 

Time taken to complete one cycle is called periodic time. It is represented in 
seconds/cycle. 

Amplitude 

The maximum displacement of a vibrating system or body from the mean 
equilibrium position is called amplitude. 

Free Vibrations 

When a system is disturbed, it starts vibrating and keeps on vibrating thereafter 
without the action of external force. Such vibrations are called free vibrations. 

Natural Frequency 

When a system executes free vibrations which are undamped, the frequency of 
such a system is called natural frequency. 

Forced Vibrations 

The vibrations of the system under the influence of an external force are called 
forced vibrations. The frequency of forced vibrations is equal to the forcing 
frequency. 

Resonance 

When frequency of the exciting force is equal to the natural frequency of the 
system it is called resonance. Under such conditions the amplitude of vibration 
builds up dangerously. 

Degree of Freedom 

The degree of freedom of a vibrating body or system implies the number of 
independent coordinates which are required to define the motion of the body or 
system at given instant. 

Simple Harmonic Motion 

It is a to and fro periodic motion of a particle in which : 

(a) acceleration is proportional to the displacement from the mean 
position. 

(b) Acceleration is always directed towards a fixed point which is the 
mean equilibrium position. 

It can be represented by an expression having a periodic function like sine or 
cosine. 

 x = X sin t 

where X is the amplitude. 

4.2 DEFINITIONS



     

Diagramatically it can be represented as shown in Figure 7.1. 

when  0, or 2 0t x       

when  ,
2

t x X


     

 

 

 

 

 

SAQ 1 

At which phase angle, amplitude occurs for a sinusoidal function? 

 

 

 

 

 

 

FREEDOM SYSTEMS FOR FREE VIBRATIONS 

A practical system is very complicated. Therefore, before proceeding to analyse the 
system it is desirable to simplify it by modeling the system. The modeling of the system 
is carried over in such a manner that the result is acceptable within the desirable 
accuracy. Instead of considering distributed mass, a lumped mass is easier to analyse, 
whose dynamic behaviour can be determined by one independent principal coordinate, in 
a single degree freedom system. It is important to study the single degree freedom 
system for a clear understanding of basic features of a vibration problem. 

The elements constituting a lumped parameter vibratory system are : 

The Mass 

The mass is assumed to be rigid and concentrated at the centre of gravity. 

The Spring 

It is assumed that the elasticity is represented by a helical spring. When deformed 
it stores energy. The energy stored in the spring is given by 

  21

2
PE k x  

where k is stiffness of the spring. The force at the spring is given by 

  F k x  

The springs work as energy restoring element. They are treated massless. 

x 

x 

 t 
o  2 

Figure  : Simple Harmonic Motion

4.3.1 Elements of Lumped Parameter Vibratory System

4.3 ANALYSIS OF A SINGLE DEGREE OF 



 

 

 
The Damper 

In a vibratory system the damper is an element which is responsible for loss of 
energy in the system. It converts energy into heat due to friction which may be 
either sliding friction or viscous friction. A vibratory system stops vibration 
because of energy conversion by damper. There are two types of dampers. 

Viscous Damper 

A viscous damper consists of viscous friction which converts energy into 
heat due to this. For this damper, force is proportional to the relative 
velocity. 

  relative velocity ( )dF v  

  dF cv  

where c is constant of proportionality and it is called coefficient of 
damping. 

The coefficient of viscous damping is defined as the force in ‘N’ when 

velocity is 1 m/s. 

Coulumb’s Damper 

The dry sliding friction acts as a damper. It is almost a constant force but 
direction is always opposite to the sliding velocity. Therefore, direction of 
friction changes due to change in direction of velocity. 

The Excitation Force 

It is a source of continuous supply of energy to the vibratory system. It is an 
external periodic force which acts on the vibratory system. 

It is important to study the single degree freedom system for a clear understanding 
of basic features of a vibration problem. 

There are several methods to analyse an undapmed system. 

Methodology 

Method Based on Newton’s II Law 

According to the Newton’s II law, the rate of change of linear momentum is 

proportional to the force impressed upon it 

  ( ) Net force in direction of the velocity
d

mv
dt

  

Using  
dx

v x
dt

   

  ( )  
dx

mx c F
dt

 

where c is constant of proportionality. 

or   mx c F  

For proper units in a system c = 1 

   mx F  

The direction of forces mx  and F  are same. A model which represents 
undamped single degree of freedom system shall have two elements, i.e. 
helical spring and mass. The mass is constrained to move only in one 
direction as shown in Figure 7.2. The mass is in static condition in  
Figure 7.2(a). The free body diagram of the mass is shown in 

4.3.2 Undamped Free Vibration



     

Figure 7.2(b). The body is in equilibrium under the action of the two forces. 
Here ‘’ is the extension of the spring after suspension of the mass on the 

spring. 

Therefore,  k mg              . . . (7.1) 

       (a) Spring Mass    (b) Static Condition  (c) Dynamic Condition 

body is moving down with acceleration ‘ x ’ also in downward direction, 

therefore, 

  mx F   in direction of x  

or  ( )mx mg k x             

Incorporating Eq. (7.1) in Eq. (7.2) 

  mx k x   

or  0mx k x            

Method Based on D’Alembert’s Principle 

The free body diagram of the mass in dynamic condition can be drawn as 
follows : 

 

 

 

 

 

 
 

The free body diagram of mass is shown in Figure 7.3. The force equation 
can be written as follows : 

  ( )mx mg k x             

Incorporating Eq. (7.1) in Eq. (7.4), the following relation is obtained. 

  0mx kx   

This equation is same as we got earlier. 

Energy Method 

This method is applicable to only the conservative systems. In conservative 
systems there is no loss of energy and therefore total energy remains 
constant. When a mechanical system is in motion, the total energy of the 

 
k k (+x) 

Unstretched 
position   

mg mg 

x 

k (+x) 

mg 

m x (Inertia force)  ..  

Figure : Undamped Free Vibration

Figure  : Free Body Diagram

figure  represents the dynamic condition of the body. In this case, the 



 

 

 
system is partly kinetic and partly potential (elastic strain energy). The 
kinetic energy is due to the mass (m) and velocity ( x ). The potential energy 
is due to spring stiffness and relative movement between the two ends of the 
spring. 

  Energy (E) = T + U = constant (C) 

where   T = Kinetic energy of the system, and’ 

   U = Elastic strain energy. 

Since total energy remains constant 

  0 or ( ) 0
dE d

T U
dt dt

    
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2
T m x  

 Deflection Diagram 

The potential energy of the system consists of two points : 

(a) loss/gain in PE of mass, and 

(b) strain energy of spring. 

Consider an infinitesimal element du at x = u. 

From Figure 7.4 

  Spring force ( ) ( )uF k u    

  Work done ( )dW k u du     

  
0

x

U dW   loss of PE of mass 

      
0

( )
x

k u du mg x     

  
0

( ) [ ]
x

U ku mg du mg x k mg      

or  21
( )

2
U kx mg x mg x    

or  21

2
U kx              

 
x 

S
pr

in
g 

F
or

ce
  

Deflection    

du 

u 

Figure : Spring Force 
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2 2

d
mx kx

dt
 

  
 

 

  
1 1

2 2 0
2 2

m x x k x x       

or  0mx kx   

This is the same equation as we got earlier. 

Rayleigh’s Method 

It is a modified energy method. It may be noted that in a conservative 
system potential energy is maximum when kinetic energy is minimum and 
vice-versa. Therefore, equating maximum kinetic energy with maximum 
potential energy. 

  2 2
max max

1 1
( ) ( )

2 2
m x k x  

and  maxx X  

  2 21 1
( )

2 2
 m X k X  

or   
k

m
           

Solution of Differential Equation 

The differential equation of single degree freedom undamped system is given by 

   0mx kx   

or   0 
  
 

k
x x

m
          

when coefficient of acceleration term is unity, the underroot of coefficient of x is 
equal to the natural circular frequency, i.e. ‘n’ 

    n
k

m
           

Therefore, Eq. (7.7) becomes 

   2 0  nx x           

The equation is satisfied by functions sin n t and cos n t. Therefore, solution of 
Eq. (7.9) can be written as 

   sin cos   n nx A t B t         

where A and B are constants. These constants can be determined from initial 

(a) by pulling mass by distance ‘X’, and 

(b) by hitting mass by means of a fast moving object with a velocity \ 
say ‘V’. 

Considering case (a) 

  0, and 0t x X x    

  and 0X B A   

  cos nx X t            

onditions. The system shown in Figure can be disturbed in two ways :



 

 

Theory of Machines 
 

Considering case (b) 

  0, 0 andt x x V    

  0 and 
n

V
B A  

  sin 


n
n

V
x t          

Behaviour of Undamped System 

pulling the mass by distance ‘X’. The solution of the system in this case is given 

by Eq. (7.11) which is 

  cos nx X t  

  sin cos
2

 
        

 
n n n nx X t X t  

and  2 2cos cos ( )        n n n nx X t X t  

These expressions indicate that velocity vector leads displacement by 
2


 and 

acceleration leads displacement by ‘’. The maximum velocity is (X n) and 

maximum acceleration is 2( )nX . 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 7.6 shows the plots of displacement, velocity and acceleration, with respect 
to time. The following observations can be made from these diagrams : 

(a) A body, if disturbed, will never stop vibrating. 
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Figure  : Plots of Displacement, Velocity and Acceleration

onsider the system shown in Figure . The system has been disturbed by 



     

(b) When displacement is maximum, velocity is zero and acceleration is 
maximum in direction opposite to displacement. 

(c) When displacement is zero, velocity is maximum and acceleration is 
zero. 

In undamped free vibrations, two elements (spring and mass) were used but in damped 
third element which is damper in addition to these are used. The three element model is 
shown in Figure 7.7. In static equilibrium 

   k mg   

   ( )mx mg k x cx      

   mx kx cx    

or   0mx cx kx              

Let   stx X e  

   2 0  ms cs k  

or   2 0
c k

s s
m m

              

   
2

1,2
1

4
2 2

     
        

     

c c k
s

m m m
        

        (a)                 (b)      (c) 
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The nature of this solution depends on the term in the square root. There are three 
possible cases : 

(a) 
2
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 Overdamped case 
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Figure : Damped Free Vibration

4.3.3 Damped Free Vibration



 

 

 (b) 
2

4
c k

m m
   

    
   

 Critically damped case 

(c) 
2

4
c k

m m
   

    
   

 Underdamped case 

Let the critical damping coefficient be Cc, therefore, 

   
2

4cC k

m m
   

   
  

 

or   2 22 2 2 2    c n
k k

C km m m m m
m m

 

or   2 2  c nC km m  

Almost all the systems are underdamped in practice. 

Therefore,  
2 2

4 4
c k k c

i
m m m m

       
         

       
 

The ratio of damping coefficient (c) to the critical damping coefficient is called damping 
factor ‘’. 

    
c

C

C
          

  
2 2

2 2 2 2
4 4 4c n

n n
c

C mc

C m m

   
          

  
 

         22 1n     

  
2 2( 1 ) ( 1 )2

1 2
n n

c
t i t i tmx e X e X e


       

  
 

 

Let  21n d      (say)         

where d is natural frequency of the damped free vibrations. 

Therefore, for under-damped case 

  2
1 2

d d

c
i t i tmx e X e X e


    

 
       

For critically damped system 

  2
1 2( )

c
t

mx X X t e


           

For overdamped system 

  2
c

t
mx e



 

  
2

2 2 2
c n

n
c

C mC C

m C m m


         

  n tx e  

 



     

 

 

 

 

 

 

 
 

The Eq. (7.19) can also be written as 

  cos ( )n t
dx X e t  

              

where X and  are constants. X represents amplitude and  phase angle. 

Let at  t = t,  x = x0. 

  0 cos ( )n t
dx X e t  

              

After one time period 

  1andpt t t x x    

  
( )

1 cos { ( ) }n pt t
d px X e t t

   
             

Dividing Eq. (7.24) by Eq. (7.25) 

  
( )

0
( )

1

cos

cos { ( ) }

n p

n p

t t
d

t t
d p

x X e t

x X e t t

   

   

  


  
 

Since  
1 2

p
p d

t
f


 


 

or  2d pt    

  0

1

cos ( )

cos { 2 }
n pt d

d

x t
e

x t

    


    
 

Since  cos cos (2 )      

  cos ( ) cos { 2 }d dt t          

  0

1

n ptx
e

x

 
  

or  0
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 is called logarithmic decrement. 
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It can be proved that 

  0

2

2

1

 


 
n

n

x n
L

x
          

If  0

1

0.3 2n
x

L
x

     

Figure 7.8 represents displacement time diagram for the above mentioned three cases. 
For over-damped and critically damped system mass returns to its original position 
slowly and there is no vibration. Vibration is possible only in the under-damped system 
because the roots of Eq. (7.14) are complex and solution consists of periodic functions 
(Eq. (7.22)). 

Supported Shaft 

In this type of vibration, all the particles vibrate along paths perpendicular to the shaft 
axis. The shaft may be having single to several supports. It may be carrying its own load, 
a single point load or several point loads come in this category. Now these cases are to 
be dealt with separately. 

Consider a very light shaft AB of length ‘l’ carrying a point load ‘W’ at a distance ‘a’ 

from the support A and at a distance ‘b’ from the support B. 

   a b l            

and the deflection 

   
2 2

3

W a b

E I l
           

The natural circular frequency for the system is given by 

    
 
 
 

n
k

W

g

 

or     
 
 
 

n
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where   
W

k
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1 4.985
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2 2


  

   

n
n

g
f       

The mass of the beam was neglected for determination of the above mentioned natural 
frequency. 
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Figure  : Free Transverse Vibration

4.3.4 Free Transverse Vibration due to a Point Load on a Simply 



     

In torsional vibration, all the particles of the system vibrate along circular arcs having 
their centers along the axis of rotation. Figure 7.10 represents a single rotor systems. In 
both the cases (a) and (b), there is only one inertia ‘I’. 

(a)       (b) 

In part (a) it is supported by one shaft segment and in part (b) it is supported by the two 
shaft segments. 

The differential equation for the rotor shown in Figure 7.10(a) can be obtained by 
considering two couples, i.e. inertia couple and torsional elastic couple. If shaft is 
twisted slightly say by angle ‘’, the couple is given by 

   ( )tk    

where kt is torsional stiffness which is given by 

   t
T G J

k
l

 


 

where    G is modulus of rigidity, 

     J is polar moment of inertia, and 

     l is length of shaft. 

The differential equation for the rotor given in Figure 7.10(a) is 

   0   tI k            

or   0   
G J

l
 

    n
G J

l
            

For the shaft shown in Figure 7.10(b), the two segments are acting like parallel springs. 
Therefore, the differential equation for this will be 

   1 2

1 2

0
 

     
 

G J G J
I

l l
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     
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J JG

I l l
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J JG

I l l

 
   

 
          

SAQ 2 
(a) What is the difference between energy method and Rayleigh’s method? 

(b) By how much angle acceleration and velocity lead displacement? 

(c) Along which curve amplitude decays in under-damped system? 

d1 d2

2 

l1 l2 

I 

Figure  : Free Torsional Vibration

4.3.5 Free Torsional Vibration of a Single Rotor System



 

 

 

There are various sources of vibration in an industrial environment : 

(a) Impact processes such as pile driving and blasting. 

(b) Rotating or reciprocating machinery such as engines, compressors and 
motors. 

(c) Transportation vehicles such as trucks, trains and aircraft. 

(d) Flow of fluids through pipes and without pipes. 

(e) Natural calamities such as earthquakes. 

There are various harmful effects of vibration : 

(a) Excessive wear of bearings. 

(b) Formation of cracks in machines, buildings and structure, etc. 

(c) Loosening of fasteners in mechanical systems. 

(d) Structural and mechanical failures in machines and buildings. 

(e) Frequent and costly maintenance of machines. 

(f) Electronic malfunctions through failure of solder joints. 

(g) Abrasion of insulation around electric conductors, causing soots. 

(h) The occupational exposure of humans to vibration leads to pain, discomfort 
and reduction in working efficiency. 

The vibration can sometimes be eliminated on the basis of theoretical analysis. However, 
in eliminating the vibration may be too high. Therefore, a designer must compromise the 
manufacturing costs involved between an acceptable amount of vibration and a 
reasonable manufacturing cost. The following steps may be taken to control vibrations : 

(a) The first group of methods attempts to reduce the excitation level at the 
source. The balancing of inertial forces, smoothening of fluid flows and 
proper lubrication at joints are effective methods and should be applied 
whenever possible. 

(b) A suitable modification of parameters may also reduce the excitation level. 
The system parameters namely inertia, stiffness and damping are suitably 
chosen or modified to reduce the response to a given excitation. 

(c) In this method, transmission of path of vibration is modified. It is popularly 
known as vibration isolation. 

As mentioned above, the first attempt is made to reduce vibration at the source. In some 
cases, this can be easily achieved by either balancing or an increase in the precision of 
machine element. The use of close tolerances and better surface finish for machine parts 
make the machine less susceptible to vibration. This method may not be feasible in some 
cases like earthquake excitation, atmospheric turbulence, road roughness, engine 
combustion instability. 

After reduction of excitation at the source, we need to look for a method to further 
control the vibration. Such a selection is guided by the factors predominantly governing 
the vibration level. 

4.4 CAUSES OF VIBRATION IN MACHINES

4.5 THE HARMFUL EFFECTS OF VIBRATIONS

4.6 VIBRATION CONTROL



     
Vibration of 

Mechanical Systems 
Determine the natural frequency of spring mass pulley system shown in 

Solution 

By Energy Method 
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Determine the effect of mass of the spring on the natural frequency of spring mass 
system. 

Solution 

Let ms be the mass in kg per unit length. 

Figure 7.12 shows a spring mass system. Let the velocity distribution be linear 
therefore, the total energy ‘E’ is given by 
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Figure 7.13 shows an indicator mechanisms. The bell crank arm is pivoted at O 
and has mass moment of inertia I. Find natural frequency of the system. 

 

 

 

 

 

 

 

 

 

Solution 

Let  be the angular displacement of bell crank arm. 
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A damped system has following elements : 

 Mass = 4 kg; k = 1 kN/m;  C = 40 N-sec/m 

Determine : 

(a) damping factor, 

(b) natural frequency of damped oscillation, 

(c) logarithmic decrement, and 

(d) number of cycles after which the original amplitude is reduced to 
20%. 

Solution 

Given data : 

 m = 4 kg;  k = 1 kN/m;  C = 40 N-sec/m 

   2 2 1000 4 126.49 Ns/mcC k m     
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(a) Damping factor 
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A system which has mass and elasticity can start vibrating if it is disturbed. The natural 
frequencies of a system depend on the degrees of freedom of a system. For a 
multi-degree of freedom system, there will be several natural frequencies. For a 
two-degree of freedom system, there will be two natural frequencies. 

The vibration can be linear, transverse or rotational depending on the type of the system. 
The methods of analysis constitutes applications of Newton’s law, D’Alembert’s 

principle, energy method and Rayleigh’s method. All the methods can in general be used 

to analyse the system but it can be easily analysed by using a particular method. 
Therefore, selection of a particular method is always desirable for a given system. The 
energy method and Rayleigh’s method can be used for a conservative system where there 

is no energy loss but a practical system cannot be conservative in ideal sense. The cause 
of vibration, their harmful effects and remedies have also been mentioned for practical 
utility to control vibrations. 

Periodic Motion : It is the motion which repeats after a regular 
interval of time. 

Frequency : It is the number of cycles completed in a unit time. 

Time Period : It is the time taken to complete one cycle. 

Amplitude : It is maximum displacement of a vibrating system 
from the position of mean equilibrium position. 

Free Vibration : It is the vibration of the system which takes place 
without any external force after the disturbance. 

4.7 SUMMARY

4.8 KEY WORDS



     

: It is the frequency of vibration of a system which 
is undamped and without external excitation when 
it is disturbed. 

Forced Vibration : It is the vibration of a system which is due to 
external excitation. 

Resonance : When forcing frequency is equal to the natural 
frequency, resonance takes place. 

Degree of Freedom : It is equal to the number of independent 
coordinates which are required to define the 
motion of the system. 

Mode of Vibration : It is the way, the system vibrates in the free 
vibrations. 

Conservative System : It is the system for which total energy remains 
constant. 

Damper : It is the element which is responsible for decay in 
energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Natural Frequency



 
In this chapter, the steady state response of harmonically excited single degree of freedom 

systems will be discussed. Simpler phasor diagram method will be used to obtain the steady state 

response.  Response due to rotating unbalance, whirling of shafts, vibration isolations will also 

be discussed. 

 

Steady state response due to Harmonic Oscillation: 

Consider a spring-mass-damper system as shown in figure 1. The equation of motion of this 

system subjected to a harmonic forcing sinF tω  can be given by  

sinmx kx cx F tω+ + =             (1) 

where, m, k and c is the mass, spring stiffness and damping coefficient of the system.  

   

c Xω

kX  
tω φ−  

F

φ  

tω

2m Xω  
 

Reference line 

Figure 2: Force polygon           Figure 1 Harmonically excited system 

 

The steady state response of the system can be determined by solving equation (1) in may 

different ways. Here a simpler graphical method is used which will give physical understanding 

to this dynamic problem. From solution of differential equations it is known that the steady state 

solution (particular integral) will be in the form 

sin( )x X tω ϕ= −                                  (2) 

As each term of equation (1) represents a forcing term viz., first term represent the inertia force, 

second term the spring force, third term the damping force and term in the right hand side is the 

applied force, one may draw a close polygon as shown in figure 2 considering the equilibrium of 

the system under the action of these forces.  Considering equation (2),  

• spring force  = sin( )kX tω φ−   

• damping force  =  cos( )c X tω ω φ−  
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• inertia force =  2 sin( )m X tω ω φ− −   

From Figure 2               

( ) ( )ω ω
Χ =

− +
2 22

F

k m c
 

1
2

tan
c

k m
ωφ
ω

−=
−

 

ωω

Χ =
⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2 2
2

   

1

F
k

m c
k k

(3) 

 
 

22

1
  

1 2
n n

k
F ω ωζ

ω ω

Χ
⇒ =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥− + ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦

(4) 

n

k
m

ω =  

2c nc mω=  = Critical damping 

=
c

c
c

ζ  = damping factor or    

               damping ratio 
c

2
k

c

c n

cc
c k

ω ωζ
ω

= ∗ =  

2

2 2 2c n n

n n

c m
k k

ω ω
ω ω

= = =  

 

2

2

tan

1

n

n

ωζ
ω

φ
ω
ω

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣=
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

⎦              (5) 

As the ratio  is the static deflection (Xo)f the spring, Xk/F =X/X/F k 0 is known as the 

magnification factor or amplitude ratio of the system. Figure 3 shows the magnification ~ 

frequency ratio and phase angle (φ  )~ frequency ratio plot. It is clear that for undamped system 

the magnification factor tends to infinity when the frequency of external excitation equals natural 

frequency of the system. But for underdamped systems the maximum amplitude of excitation has 

a definite value and it occurs at a frequency 1.
n

ω
ω

<  For frequency of external excitation very 

less than the natural frequency of the system, with increase in frequency ratio, the dynamic 

deflection (X) dominates the static deflection (X0), the magnification factor increases till it 

reaches a maximum value at resonant frequency after which the magnification factor decreases 

and for very high value of frequency ratio (say 2
n

ω
ω

> , the vibration is very much attenuated. 

One may observe that with increase in damping ratio, the resonant response amplitude decreases.  

 



 

 
Figure 3: Magnification factor ~ frequency ratio and  phase angle ~frequency ratio for different 
damping ratio.  
 
So for a underdamped system the total response of the system which is the combination of 

transient response and steady state response can be given by  
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It may be noted that as , the first part of equation (6) tends to zero and second part 

remains. From phase angle ~frequency ratio plot it is clear that, for very low value of frequency 

ratio, phase angle tends to zero and at resonant frequency it is 90

t →∞

0 and for very high value of 

frequency ratio it is 1800. 

 



Example 1: Find the resonant frequency ratio (value of frequency ratio for which the steady 
state response will be maximum) for a spring-mass-damper system.  
 
Solution: The  steady state solution for a single degree of freedom system can be given by 
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So the peak magnification factor =
ζ ζ

=
− 2

1

2 1
 which occur at a frequency ratio of 

ζ= − 21 2r . Hence for underdamped system, it occurs when the external excitation frequency 

is slightly less than the natural frequency. 
 
Example 2:  An air compressor of mass 100 kg mounted on an elastic foundation. It has been 

observed that, when a harmonic force of amplitude 100N is applied to the compressor, the 

 



maximum steady state displacement of 5 mm occurred at a frequency of 300 rpm. Determine the 

equivalent stiffness and damping constants of the foundation.                 

 
Sol: The air compressor can be represented as a spring mass damper system as shown in figure 

below. 
 

  
 X = Steady state displacement = 5 mm 
 F = Forcing amplitude = 100 N 

 maxω = frequency for max displacement = 
2  300

60
xπ

 = 10π  rad/s. 

 We have to determine Keq  and  Ceq. 

 
The system can be modeled as a single dof system as shown in the above figure and the steady 
state solution can be given by 
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=100.7 x 103 N/m. = 100.7 KN/m. 
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 = 633.396 N.S/m     Ans. 
Rotating Unbalance  
 
One may find many rotating systems in industrial applications. The unbalanced force in such a 

system can be represented by an eccentric mass m with eccentricity e, which is rotating with 

angular velocity ω as shown in Figure 4. 

 
Inertia force of rotating  
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=
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2
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Damping 
force = cx  Spring 

force = kx  

 
Figure 4. Vibrating system with rotating unbalance. Figure 5. Freebody diagram of the system 
 
Let x be the displacement of the nonrotating mass (M-m) from the static equilibrium position, 

then the displacement of the rotating mass m is x + e sinω t. 

 From the freebody diagram of the system shown in figure 5, the equation of motion is   
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This equation is same as equation (1) where F is replaced by 2meω . So from the force polygon 
as shown in figure 6 
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Figure 6: Force polygon 
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So the complete solution becomes 
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Figure 8 Phase angle ~ frequency ratio plot for system with rotating unbalance 

 



 

It may be noted from figure 8 that, for a system with very very low damping, it is very unsafe to 

run the machine near the natural frequency ratio greater than 2, the system vibration reduces to 

 and phase angle tends to 180/X me M= 0. 

 
Whirling of shaft: 
 
Whirling is defined as the rotation of the plane made by the bent shaft and the line of the centre 

of the bearing. It occurs due to a number of factors, some of which may include (i) eccentricity, 

(ii) unbalanced mass, (iii) gyroscopic forces, (iv) fluid friction in bearing, viscous damping.          

 

B 

(b) 

(a) 
A 

                               Figure 9:  Whirling of shaft 

Consider a shaft AB on which a disc is mounted at s. G is the mass center of the disc, which is at 

a distance e from s. As mass center of the disc is not on the shaft center, when the shaft rotates, it 

will be subjected to a centrifugal force. This force will try to bend the shaft. Now the shafts 

neutral axis, which is represented by line ASB, is different from the line joining the bearing 

centers AOB.  The rotation of the plane containing the line joining bearing centers and the bend 

shaft (in this case it is AOBsA) is called the whirling of the shaft. 

 

Considering unit vectors i, j, k as shown in the above figure 9(b), the acceleration of point G can 

be given by 

/G S Ga a a= + S  
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which is acting along radial direction k, which will give rise to restoring torque, assuming a 

viscous damping for a to be acting at S. The EOM in radial direction 
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Considering the synchronous whirl case, i.e.,  θ ω=  

So, ( t )θ ω φ= −                                                                                                                       (21) 

φ  is a phase angle between e and r. 
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The eccentricity line e=SG leads the displacement line r = OS by phase angle φ  which depends 

on the amount of damping and the rotation speed ratio / nω ω . When the rotational speed equals 

to the natural frequency or critical speed, the amplitude is restrained by damping only. From 

equation (29 at very high speed  and the center of mass G tends to approach 

the fixed point O and the shaft center S rotates about it in a circle of radius e.  

0, 180nω ω φ>> →

 

 

 

 

 



Support Motion: 

 

Many machine components or instruments are subjected to forces from the support. For example while 

moving in a vehicle, the ground undulation will cause vibration, which will be transmitted, to the 

passenger. Such a system can be modeled by a spring-mass damper system as shown in figure 10. Here 

the support motion is considered in the form of  siny Y tω= , which is transmitted to mass m, by spring 

(stiffness ) and damper (damping coefficient ).  Let  be the vibration of mass about its equilibrium 

position.  

k c x

mx

m

( )c x y−  ( )k x y−  

 

 

 
Figure 10: A system subjected to support motion Figure 11: Freebody diagram 

Now to derive the equation of motion, from the freebody diagram of the mass as shown figure 11 

.. . .

( ) (m x k x y c x y= − − − − )                                                          (30) 

let z=x-y                                                                                     (31) 

.. . ..
2 sinm z kz c z m y m y tω ω+ + = − =                                                  (32) 

 

.. .
2 sinm z kz c z m y tω ω+ + =                                                         (33) 

 

As equation (33) is similar to equation (1), solution of equation (33) can be written as  

 

sin( )z Z tω φ= −                                                                           (34) 
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If the absolute motion x of the mass is required, we can solve for x = z + y. Using the 

exponential form of harmonic motion 

i ty Ye ω=                                                                                        (36) 

( ) ( )i t i i tz Ze Ze eω φ φ− −= = ω                                                               (37) 

( ) ( )i t i i tx Xe Xe eω ψ ψ− −= = ω                                                             (38) 

Substituting equation (38) in  (30)  one obtains 

{ }2 2( ) ( ) ( )i i i i tm Ze k Ze ci Ze e m Yei tφ φ φ ωω ω− − −+ + = ωω

2

                   (39) 

2( )iZe k m ic m Yφ ω ω ω− − + =                                                       (40) 
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( )i i tx Ze Y eφ ω−= +                                                                           (42) 
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    (cos sin ) i tX i e ωψ ψ= −                                                                 (43) 

The steady state amplitude and Phase from this equation are 
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Figure 12: Amplitude ratio ~ frequency ratio plot for system with support motion       
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 Figure 13: Phase angle ~ frequency ratio plot for system with support motion 
 

From figure 12, it is clear that  when the frequency of support motion nearly equal to the natural 

frequency of the system, resonance occurs in the system. This resonant amplitude decreases with 

increase in damping ratio for 2
n

ω
ω

< . At 2
n

ω
ω

= , irrespective of damping factor, the mass 

vibrate with an amplitude equal to that of the support and for 2
n

ω
ω

> , amplitude ratio becomes 

less than 1, indicating that the mass will vibrate with an amplitude less than the support motion. 

 



But with increase in damping, in this case, the amplitude of vibration of the mass will increase. 

So in order to reduce the vibration of the mass, one should operate the system at a frequency 

very much greater than 2 times the natural frequency of the system. This is the principle of 

vibration isolation. 

 

Vibration Isolation: 

 

In many industrial applications, one may find the vibrating machine transmit forces to ground 

which in turn vibrate the neighbouring machines. So in that contest it is necessary to calculate 

how much force is transmitted to ground from the machine or from the ground to the machine.  

 

                                             Figure 13 : A vibrating system 

Figure 13 shows a system subjected to a force 0 sinF F tω=  and vibrating with 

sin( )x X tω φ= − . This force will be transmitted to the ground only by the spring and damper.  

Force transmitted to the ground 

2 2( ) ( )tF KX c Xω= +  

2
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1
n
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It is known from equation (3) that for a disturbing force  F = 0 sinF tω , the amplitude of resulting 

oscillation  
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Substituting equation (48) in (47) and defining   the transmissibility TR as the ratio of the force 

transmitted Force to the disturbing force one obtains 
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Comparing  equation (49) with equation (46) for support motion, it can be noted that 

TR=
0

tF

F
=

X
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                                                                   (50) 

When damping is negligible 
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 to be used always greater than 2  
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To reduce the amplitude X of the isolated mass m without changing TR, m is often mounted on a 

large mass M. The stiffness K must then be increased to keep ratio K/(m+M) constant. The 

amplitude X is, however reduced, because K appears in the denominator of the expression 
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          Figure 14: Transmissibility ~frequency ratio plot  

 

Figure 14 shows the variation transmissibility with frequency ratio and it can be noted that 

vibration will be isolated when the system operates at a frequency ratio higher than 2 .  

Equivalent Viscous Damping: 

In the previous sections, it is assumed that the energy dissipation takes place due to viscous type of 

damping where the damping force is proportional to velocity. But there are systems where the damping 

takes place in many other ways.  For example, one may take surface to surface contact in vibrating 

systems and take Coulomb friction into account. Also in many cases energy is dissipated in joints also, 

which is a form of structural damping.  In these cases one may still use the derived equations by 

considering an equivalent viscous damping. This can be achieved by equating the energy dissipated in the 

original and the equivalent system.  

The primary influence of damping on the oscillatory systems is that of limiting the amplitude at 

resonance. Damping has little influence on the response in the frequency regions away from resonance. In 

case of viscous damping, the amplitude at resonance is  

0

2n

0F F
X

c kω ζ
= =                                                   (54) 

For other type of damping, no such simple expression exists. It is possible to however, to approximate the 

resonant amplitude by substituting an equivalent damping Ceq in the foregoing equation. 

The equivalent damping Ceq is found by equating the energy dissipated by the viscous damping to that of 

the nonviscous damping with assumed harmonic motion. 

 



dWXCeq =2ωπ               (55) 

Where must be evaluated from the particular type of damping. dW

Structural Damping: 

 When materials are cyclically stressed, energy is dissipated internally within the material itself. 

Experiments by several investigators indicate that for most structural metals such as steel and aluminum, 

the energy dissipated per cycle is independent of the frequency over a wide frequency range and 

proportional to the square of the amplitude of vibration. Internal damping fitting this classification is 

called solid damping or structural damping. With the energy dissipation per cycle proportional to the 

square of the vibration amplitude, the loss coefficient is a constant and the shape of the hysteresis curve 

remains unchanged with amplitude and independent of the strain rate.  Energy dissipated by structural 

damping can be written as  

             (56) 2
dW Xα=

Where α is a constant with units of force displacement. 

By the concept of equivalent viscous damping  

2
d eW X c Xα π ω= = 2

q   or, eqc
α
πω

=                                                                                    (57) 

Coulomb Damping: 

 Coulomb damping is mechanical damping that absorbs energy by sliding friction, as opposed to 

viscous damping, which absorbs energy in fluid, or viscous, friction. Sliding friction is a constant value 

regardless of displacement or velocity. Damping of large complex structures with non-welded joints, such 

as airplane wings, exhibit coulomb damping. 

Work done per cycle by the Coulomb force   dF

XFW dd 4=                                                                                                                                    (58) 

For calculating equivalent viscous damping 

       XFXCeq d42 =ωπ                    (59) 

 From the above equation equivalent viscous damping is found 

4 d
eq

F
c

Xπω
=            (60) 

 
Summary 
 
Some important features of steady state response for harmonically excited systems are as follows- 

 



• The steady state response is always of the form ( ) sin( )x t X tω φ= − .  Where it is having same 
frequency as of forcing. X is amplitude of the response, which is strongly dependent on the 
frequency of excitation, and on the properties of the spring—mass system.  

• There is a phase lag φ  between the forcing and the system response, which depends on the 
frequency of excitation and the properties of the spring-mass system. 

• The steady state response of a forced, damped, spring mass system is independent of initial 
conditions 

In this chapter response due to rotating unbalance, support motion, whirling of shaft and equivalent 
damping are also discussed.  

 
Exercise Problems 

1. An underdamped shock absorber is to be designed for a motor cycle of mass 200Kg. When the 

shock absorber is subjected to an initial vertical velocity due to a road bump, the resulting 

displacement-time curve is to be as indicated in fig(b). Find the necessary stiffness and damping 

constants of the shock absorber if the damped period of vibration is to be 2 s and amplitude x1 is 

to be reduced to one-fourth in one half cycle (i.e x1.5=x1/4). Also find the minimum initial 

velocity that leads to a maximum displacement of 250 mm. 

2. Develop equation of motion for a spring mass system with Coulomb damping.  

3. An electronic instrument of mass m= 8kg is placed on four elastic support pad of special rubber. 

The force displacement curve of each pad is given by F = (5x+1000x2)*103. Determine the spring 

constant between the instrument and ground in the vertical direction.  

4. A machine of 100kg  mass is supported on springs of total stiffness 700 KN/m and has an 

unbalanced rotating element, which results in a disturbing force of 350N at a speed of 3000 

rev/min. Assuming a damping factor of 20.0=ξ , determine (a) its amplitude of motion due to 

the unbalance, (b) the transmissibility, and (c) the transmitted force. 

5. Find the steady state response of the spring mass damper system to a force 

. ttF 4cos104sin5 +=

6. If the steady state response of a linear system to a force of tF 2sin5= is , what 

will be the response if a force of 

)25.02sin(4 +t

tF 2sin10=  will act on it.. 

Computer Assignment  

1. Develop a general-purpose program, to find the free vibration response of a viscously damped 

system. Use the program to find response of a system with m= 450 Kg, K= 26519.2, c= 1000.0, 

x0 =0.539657, v0(initial velocity)=1.0. 

2. Find the free vibration response of a critically damped and over damped system with the above 

mentioned values of m and k. 

3. Plot magnification factor vs. frequency ratio  and |X/Y| or |Ft/F0| for different values of 
n

ω
ω

 

 


