Dynamics of Machinery-15ME52

MODULE -1
Static Force Analysis
CONTENTS

1.1.Introduction:

1.2. Static equilibrium.

1.3.Equilibrium of two and three force members.

1.4.Members with two forces and torque.

1.5. Free body diagrams.

1.6. Static force analysis of four bar and single slider mechanism

1.7. Slider-crank mechanism with and without friction.

Objectives
> To analyze static force analysis of four bar chain mechanism

> To analyze static force analysis of slider crank mechanism

1.1.Introduction:

Relation between motion and forces causing is a fascinating subject. This study is a generaly
referred as dynamic. Modern Engineering aims at analysing and predicting dynamics behavior
of physical systems

Theory of Mechanisms & Machines is used to wnderstand the |onsh|ps between the
geometry and motions of the parts of a machm‘e%

wﬂd forces which produce

motion.

TOM (M&M theory) isdivided into two parts - QX

Kinematics of Machinery: Study of mo &i the components and basic geometry of
the mechanism and is not concerned wit (@ rces which cause or affect motion. Study
includes the determination of velocity and accel eration of the machine members

Dynamics of Machinery: Analyses the forces and couples on the members of the
machine due to external forces (static force analysis) aso analyses the forces andcouples due
to accel erations of machine members( Dynamic force analysis)

Deflections of the machine members are neglected in general by treating machine
members as rigidbodies (adso caled rigid body dynamics). In other words the link must be
properly designed to withstand the forces without undue deformation to facilitate proper
functioning of the system.

In order to design the parts of a machine or mechanism for strength, it is necessary to
determine the forces and torques acting on individual links. Each component however small,
should be carefully analysed for itsrole in transmitting force.

The forces associated with the principal function of the machine are usually known or
assumed.

Ex:
a) Piston type of engine: gas force on the piston is known or assumed
b) QRM — Resistance of the cutting tool is assumed.

a& b are called static forces.
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Example of other static forcesare:
i. Energy transmitted

ii. Forcesdue to assembly
iii. Forces due to applied loads
iv. Forces dueto changesin temperature
v. Impact forces
vi. Spring forces

vii. Belt and pulley

viii. Weights of different parts

Apart from static forces, mechanism also experiences inertia forces when subjected to
acceleration, called dynamic forces.

Static forces are predominant at lower speeds and dynamic forces are predominant at
higher speeds.

Force analysis:

The analysis is aimed at determining the forces transmitted from one point to another,
essentially from input point to out put point. This would be the starting point for strength
design of a component/ system, basically to decide the dimensions of the components

Force analysis is essential to avoid either overestimation or under estimation of forces on
machine member.

Under estimation: leads to design of |nsuff|C| P&;g%’ and to early failure.
Overestimation: machine component would e Ore %h than required. Over design
leads to heavier machines, costlier and becom&e not |t|ve

Graphical analysis of machine forces will \here because of the simplification it
offers to a problem, especially in cases m@\plex machines. Moreover, the graphical
analysis of forcesis adirect application of the’equations of equilibrium.

General Principle of force analysis:

A machine / mechanism is a three dimensional object, with forces acting in three
dimensions. For a complete force anaysis, al the forces are projected on to three mutualy
perpendicular planes. Then, for each reference plane, it is necessary that, the vector sum of the
applied forces in zero and that, the moment of the forces about any axis perpendicular to the
reference plane or about any point in the planeis zero for equilibrium.

ThatisF =0&YM =0or

Y'F x=0 &> Fy=0 and YM=0

A forceisavector quantity and three in properties define aforce completely;
Magnitude

Direction

Point of application
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1.2.Static equilibrium.

Equilibrium

For arigid body to be in Equilibrium
i) Sum of all the forces must be zero
1) Sum of al the moments of all the forces about any axis must be zero

ie ()TF=0 ()M =0

or > Fx=0 >TM =0
> Fy=0 > My=0

>Fz=0 \ >Tz=0 (For aplanar system represented by 2D vectors)

Fx, Fy, Fzforce Componentsalong X, Y & Z axis

Similarly moments

1.3 Equilibrium of two and three force members.

(i) Equilibrium of abody under the action of two forces only (no torque)

Lineof action {7,

Fa 1/ % ¥ 5 T Fs
'l__ _ 'A B‘ _j
P \re)
O
For body to thein Equilibrium u é action of 2 forces (only), the two forces must the equal

opposite and collinear. The forces must be acting along the line joining A&B.

That is,
Fa= - Fg (for equilibrium)
Sy
( h |
\ < If this body is to be under equilibrium ‘h’ should tend to zero

(i) Equilibrium of abody under the action of three forces only (no torque/ couple)

Fc
R _Q\
|' '| For equilibrium, the 3 forces must be concurrent
Fa \ A A /
-------- 1 S DQ: | and the force polygon will be atriangle.
(’J B |
\-\ AA ‘y
o
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1.4 Memberswith two forces and torque.

(ii1) Equilibrium of a body acted upon by 2 forces and a torque.

/ /-a. —‘] For equilibrium, the two forces must form a
J
l ‘ ,." counter couple. Therefore the forces must be
L F oo i
WP s ual, opposite and parallel and their senses
S -h/ €q pp p
must be so as to oppose the couple acting on the
F
body
Example: —
F2
h = Perpendicular distance between
h
—4— Fl&F;
Fi
Free body diagram
the forces N the mass are represented.

The massis separated from the system and
slider -crank mechanism with and W|thou rl%

Problem No.1: Slider crank mechanl
Figure shows a slider crank mechan@whlch the resultant gas pressure 8 x 10* Nm™ acts on
the piston of cross sectional area 0.2m?. The system is kept in equilibrium as a result of the

couple applied to the crank 2, through the shaft at O,. Determine forces acting on al the links

(including the pins) and the couple on 2.

P=(8x10%) x (0.1)

=8x10° N

Depart of Mechanical Engineering, ATMECE MYSORE Page 4



Dynamics of Machinery-15ME52

1.5 Free body diagrams.

Free body diagram

Loa
F
\_fs

~
.

Force triangle for the forces acting on g_;'is drawn to some suitable scale.

Magnitude and direction of P known and lines of action of Fz4 & F14 known.

F;k \\\.\_lr' & Measure the lengths of vectors and multiply by the
scale factor to get the magnitudes of Fi4 & Faa.
Directions are fixed.

\/Co

N
"N

A
A

I.e, Foz3 =—Fa

Sincelink 3 is acted upon by only two forces, F43 and F»3 are collinear, equal in magnitude

and opposite in direction

i.e, Fi=—Fx=88x10°N

Also, F,3=-F3 (equa in magnitude and opposite in direction).
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Link 2 is acted upon by 2 forces and atorque
(stated in the problem), for equilibrium the two
forces must be equal, parallel and opposite and

their sense must oppose T».

Therefore,
Fs=— F1, = 8.8 x10°N

Fs» & F1, form a counter clock wise couple of magnitude,

Fos xh=F, xh =88x10°x 0.125= 1100Nm.

To keep 2 in equilibrium, T2 should act clockwise and magnitude is 1100
Nm. Important to note;
i) h is measured perpendicular to F32 & F12;

ii) always multiply back by scale factors.

1.6 Static force analysis of four bar and single slider mechanism

Problem No 2. Four link mechanism. N

A four link mechanism is acted upon %n\m the figure. Determine the torque T,
to be applied on link 2 to keep the mechanl% Lyllbrlum

o
AD=50mm, AB=40mm, BCﬂOOmQ&?Srhm, DE= 35mm,

C
—F
@ - 'lyl(’gl
q/‘)n,— Tz ? E “‘\\ &% IJ‘.J
i, f P 2 WA
'/-:\_ \ [ FE - 'io N
|20 f
B —
A O D

Link 3 isacted upon by only two forces Fo3 & F43 and they must be collinear & along BC.
Link 4 is acted upon by three forces F14, F31 & F4 and they must be concurrent. LOA Fg4is
known and Fg completely given.
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G
VQB %
¥ |
Faz -R,” LTEN
- F,z

r2: LT8x39.3

= |B. T8 N-mm

Fs2 & F12 from a CCW couple which is equaled

by a clockwise couple T2

Problem No 3.
Determine T, to keep the mechanism in equilibrium
AC=70mm,
A AB=150mm,
T, @ Fe 71000 N 0O.A=40mm
@
Pt
0, 0]

i

F23
Ty Fgh - Fah

F32 and F1, form a CCW couple and hence T, acts clock wise.
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Problem No 4.
Determine the torque T, required to keep the given mechanism in equilibrium.
OA=30mm, =AB =04B, 0,0,=60mm, A O 20,=60° BC =19mm, AD=15mm.

\wn F b
WA 24 J.J wupen O
t \' t ow @ - ;,;z.d» aye
=% a3 Fas» Feats awd Fis
LBP,,-—"- : } C/Qﬂw”

(o,
tﬁkﬂ‘ﬂ nw»wwf
s t” O

4 > d " )

an,wf"”‘

LOA
.‘ <
Fas

:?0‘7(9 obuao-l?b j"" @

(cw) Vechov Seale i {owv = 160N

T =4 60x25 = 11500 N-mm,
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Problem No 5.
Determine the torque T required to overcome the force Fg along the link 6.

AD=30mm, AB=90mm, O, B=60mm, DE=80mm, O, A=50mm, O, O, =70mm

/ F.7ILT5N
56
15 /
] ’/'/ Fw): 0125 N
: Feg F
fom = 250N £ // TRIANGLE
L@ |
F, e
LOAF'S.; ¢
B | Fes
A G
< @ ®
T
&0
o e )
Oz © Oy Loa Fzs
| Fia

F32° Fz;:,

*F,,7 130N
A s 285 220MM = S0MM

Ty? Fapth= Fprh = 1300250

= 65000 N MM
(cw)
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Problem No 6

For the static equilibrium of the quick return mechanism shown in fig. 12.11 (a), determine the
input torque T to be applied on link AB for aforce of 300N on the slider D. The dimensions of
the various links are OA=400mm, AB=200mm, OC=800mm, CD=300mm

Than, torque on link 2,

T, = Faox h = 403x120 = 48 360 N counter - clockwise

Depart of Mechanical Engineering, ATMECE MYSORE Page 10



Dynamics of Machinery-15ME52

Problem No 7. Determine T to keep the body in equilibrium. O,A =100MM, AB=250MM,
AE=50MM, AO 2 B=30°

The problem is solved as two
sub problems:

3 Considering only Fg
i) Considering only Fe

&

F2
Naf‘wy‘? 'CE ) 56““0 fem STEL \31\0@\0\
' Fas'
LOA E
e Fe Fp SO S S
1 F34~_‘%_‘-_‘

LoA F

14 i '
= 2100N Fl 7.-2 ,_.32
2 ,J"
({1 compidering onky FE % >
fﬂ&ykd"ﬂ Fg 8 /’J/ TZ" F32 T,
5 e 14 7000 N-MM
@ {cew)

. \ "
Fs2 T, " =Ty
Fi3 = booN =i = 263000 N-MM

" " in {cew)
Fa3s 5soo~ To= ;:3),(31
Jovce tuﬂ’n?{‘-/" = £800X20 =

116000 N-MM (cew)
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1.7 Force Analysis considering friction.

If friction is considered in the analysis, the resultant force on a pin doesn’t pass through the
centre of the pin. Coefficient of friction [J is assumed to the known and is independent of |oad
and speed.

Friction in sliding member.

F = Frictional force

o= F=lLN 1 = coefficient of friction

N
tang Op 0 MY
N

¢ - )74('C‘{IO7L
(1)1[?[@

N=P"
N=P

Q§b

Friction at pin points (bearings) & fri&tion\5>cle

2“"'{0’("7 }n\f‘l)le'”l '?HC} o \“’u

Mo mtv

(&Q}¥?:tiﬂ
N

When a shaft revolves in a bearing, some power islost due to friction between surfaces.

R Nov I el Joo shaft - neadius.
7€ad¢971 ey
AN
I = r’)'_ {jllﬁ'l} = R / ,/ .\
)"G'I(E = F n l' /‘/ A ‘*' \

a7\

L,(—f:’l“(.& f; MR

R i4 e »a 't(lf(‘"{

. of & R"
At A (e frox ! f:,\" C"-"‘l‘“'{) ! F
R = w
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While rotating, the point of contact shiftsto B; R" passes through B.
The resultant ‘R’ is in a direction opposite to ®.
The circle drawn at O, with OC as radius is called ‘FRICTION CIRCLE’
For the shaft to be in equilibrium; W =R
Frictional moment M = R x OC
= W x OC
= Wxrsine
= W Xxrtan o
(sin = tan ¢, for small
e)i.e, M=wXrxpu
~Radius of thefriction circle (OC) = pr.
Thefriction circleis used to locate the line of action of the force between the shaft (pin) and the
bearing or apin joint. The direction of the force is aways be tangent to it (friction axis) Friction
axis: the new axis along which the thrust acts.

Problem No 8.

In afour bar mechanism ABCD, AB=350mm, BC=50mm, CD=400mm, AD=700mm,
DE=150mm, D AB =60°, AD is fixed. Determine the force on link AB required at the mid

point, in the direction shown, for static equilibrium. p=0.4 for each revolving pair. Assume

CCW impending motion of AB. Radius of each journal is 50mm.
\ <
Also find the torque on AB for itsim@di} ?g)r_ .

Anaysisfor CCW motion <
LOP 4 s
{Cm™m = 100 ™ . : --AV:_'_"‘;J,
fi" Solve the problem neglecting
friction to know the
E | magnitudes and directions of
- E=45 N/‘I LOA forces
¥.- A4 | ¥ 4
£
- 9N ICM = ION
- Fay
W=
(=) A3
D .. i
F?{S _.iJ - sl
.

- ¢ '|qN y a A

52 . F, .= 30N

2"\ £\ » '

-~ \ '}
F=25N " /_----‘
Fz, 18N

Radius of thefriction circle = x journal radius = 0.4 x 50 = 20
mm
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Analysiswith Friction consider ed---
AB rotates CCW, DC rotates CCW
ABC decreasing, LBCD increasing

At C:

BCD increases & 3rotatesCW w.r.t 4
erefore, F43 opposes the rotation of 4 by generating a CCW friction couple at C

At B:

BCD decreases & 3 rotates CW w.r.t 2
erefore, F,3 formsa CCW friction couple at B

(not to scale)

— .( 8

F’:Q

S

{ )

Y

A

- | .'/
i l":’ Fe r-‘f/\‘ g ol ! . ,I
Dhenafort 2l A p: K 'l.’ /’.:M 28N
|_ -"J L% l A ‘:,-— /
L4
QV N
For CW rotation of AB AW o
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OUT COMES

1) Students will able to analyze mechanism for a given force system by graphical
method.

2) Students will be able to analyze mechanism considering and not considering
friction.

3) Student will be able to analyze 4 bar and single slider mechanism for the given

static force.

Exercise

1

State D’ Alembert’s principle.

2. Define static force anaysis
3.
4

. The lengths of crank and connecting rod of horlzo steam engine are 300 mm

What is free body diagram?

and 1.2 m respectively. When th@(:ran ,@D from the inner dead center,
the acceleration of piston i 35 m/s2 §\§y e frictional resistance to the
motion of piston is equwalent tovafforc O N and net effective steam pressure
on piston is 500 KN/m2 . The di % piston is 0.3 m and mass of reciprocating

parts is 160 kg. Determine (i) R@l on_on the cross-head guides; (ii) Thrust on the
crankshaft bearings; and (iii) ue on the crank shaft.

FURTHER READING

1)
2)
3)

4)
5)

Theory of machines and mechanisms by Dr.Jagadishlal, Metropolitain Book co. Pvt.
Ltd., New Delhi

Mechanisms and Dynamics of machinery by Hamitton H.Mabie and Fred W.Ocvirk,
John Wiley & sons, Newyork.

Machine Dynamics (DOM), Vol ii, G.Bapaiah, Mechanical Engineering, Monograph
Series, 11T, Madras.

Theory of Machines, by S.S Rathan, Tata McGraw-hill.

Mechanism & Machine Theory by Ashok G.Ambekar, Prentice Hall of India Pvt.
Limited, New Delhi — 110001, 2007.
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MODULE-2
Balancing of Rotating M asses
CONTENTS

2.1Baancing of Rotating Masses

2.2 Static and dynamic balancing.

2.3Baancing of single rotating mass by balancing masses in same plane and in different
planes.

2.4 Balancing of several rotating masses by balancing masses in same plane and in

different planes.

OBJECTIVES
» To study Importance of Balancing of rotating masses.

» To solve Various problems on Balancing of rotating masses.

2.1Balancing of Rotating M asses a Q/Q/
INTRODUCTION: \/ Y% ’

When man invented the wheel, he v, igkly learnt that if it wasn’t completely
round and if it didn’t rotate evenly aboé’&% Central axis, then he had a problem!

N

What the problem he had? Q >

The wheel would vibrate cauSing damage to itself and it’s support mechanism and
in severe cases, is unusable.

A method had to be found to minimize the problem. The mass had to be evenly

distributed about the rotating centerline so that the resultant vibration was at a minimum.

UNBALANCE:
The condition which exists in a rotor when vibratory force or motion is imparted
to its bearings as a result of centrifugal forces is called unbalance or the uneven

distribution of mass about a rotor’s rotating centerline.
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Principal Inartia Axis
;
:/.
13
. — - :
e S
cG = \
- — >
St
- : [ I e |
f“:\ -
/ Y *
f X - /
| T -
! > -
A ' e
- \\\ }_._,.
/' _—

Geometrc Centerline

Rotating centerline:

The rotating centerline being defined as the axis about which the rotor would
rotate if not constrained by its bearings. (Also called the Principle Inertia Axisor PIA).
Geometric centerline:

The geometric centerline being the physical centerline of the rotor.When the two
centerlines are coincident, then the r@r il beina f balance. When they are
apart, the rotor will be unbal anced.

Different types of unbalance def@‘i%’ Ahe relationship between the two
centerlines. These include:

Static Unbalance — where the PIA é’&,gp’aced paralel to the geometric centerline.

(Shown above)

Couple Unbalance — where the F&ntersects the geometric centerline at the center of
gravity. (CG)

Dynamic Unbalance — where the PIA and the geometric centerline do not coincide or
touch.

The most common of these is dynamic unbalance.

Causes of Unbalance:

In the design of rotating parts of a machine every care is taken to eliminate any out of
balance or couple, but there will be always some residual unbalance left in the finished

part because of

i) dlight variation in the density of the material or
il) inaccuraciesin the casting or
i) inaccuracies in machining of the parts.
Why balancing is so important?
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iii) A level of unbalance that is acceptable at a low speed is completely
unacceptable at a higher speed.

iv) As machines get bigger and go faster, the effect of the unbalance is much more
severe.

V) The force caused by unbalance increases by the square of the speed.

Vi) If the speed is doubled, the force quadruples; if the speed is tripled the force

increases by afactor of ninel

Identifying and correcting the mass distribution and thus minimizing the force and

resultant vibration is very very important
2.2 Static and dynamic balancing.

BALANCING:

Balancing is the technique of correcting or eliminating unwanted inertia forces or

moments in rotating or reciprocating m and is achi ev@y changing the location of

the mass centers. - A SS’(,,Q}

The objectives of balancing an engtxeie/tq m
That the centre of gravity of thefsyst rémains stationery during a complete

revolution of the crank shaft and .That t@ples involved in acceleration of the different
moving parts bal ance each other. 0 R

2

Types of balancing:

Static Balancing:
Static balancing is a balance of forces due to action of gravity.
A body is said to be in static balance when its centre of gravity is in the axis of
rotation.
Dynamic balancing:
Dynamic balance is a balance due to the action of inertiaforces.
A body is said to be in dynamic balance when the resultant moments or couples,
which involved in the acceleration of different moving partsis equal to zero.
The conditions of dynamic balance are met, the conditions of static balance are also
met.
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In rotor or reciprocating machines many atimes unbalance of forcesis produced due to
inertia forces associated with the moving masses. If these parts are not properly balanced,
the dynamic forces are set up and forces not only increase loads on bearings and stresses
in the various components, but also unpleasant and dangerous vibrations.

Balancing is a process of designing or modifying machinery so that the unbalance is

reduced to an acceptable level and if possible eliminated entirely.

BALANCING OF ROTATING MASSES

When a mass moves along a circular path, it experiences a centripetal acceleration and a
force is required to produce it. An equal and opposite force called centrifugal force acts
radially outwards and is a disturbing force on the axis of rotation. The magnitude of this
remains constant but the direction changes with the rotation of the mass.

In a revolving rotor, the centrifugal force remains balanced as long as the centre
of the mass of rotor lies on the axis of rotation of the shaft. When this does not happen,

there is an eccentricity and an unbalance force is producé.é}This type of unbalance is

common in steam turbine rotors, engige cragkshafts, r@ f compressors, centrifugal

\/A&~

pumps €tc.

The unbalance forces exerted on machine members are time varying, impart vibratory
motion and noise, there are human discomfort, performance of the machine deteriorate

and detrimental effect on the structura integrity of the machine foundation.
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Balancing involves redistributing the mass which may be carried out by addition or
removal of mass from various machine members

Balancing of rotating masses can be of

1) Balancing of a single rotating mass by a single mass rotating in the same plane.

2) Balancing of a single rotating mass by two masses rotating in different planes.

3) Balancing of severa masses rotating in the same plane

4) Balancing of several masses rotating in different planes

STATIC BALANCING

A system of rotating masses is said to bein static balance if the combined mass centre of

the system lies on the axis of rotation

DYNAMIC BALANCING

When several masses rotate in different pIan gal forces, in addition to being
out of balance, also form couples mg masses is in dynamic balance
when there does not exist any resultant cent force aswell asresultant couple.

0‘;.\

2
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2.3 Balancing of single rotating mass by balancing masses in same plane and in

different planes.

CASE 1.
BALANCING OF A SINGLE ROTATING MASS BY A SINGLE
MASSROTATING IN THE SAME PLANE

EALANCING OF A SINGLE ROTATING MASS BY A SINGLE MASS ROTATING N THE SAME PLANE
DISTUREING MASS

mt £

AXE OF ROTATION

7 ABALANCING MASS

Qe
Consider a disturbing mass m; which @&hed to a shaft rotating at o
rad/s. Let ‘Q N
r, = radius of rotation of the mass m;
=distance between the axis of rotation of the shaft and the centre of
gravity of the mass m;

The centrifugal force exerted by massm; on the shaft is given by,

This force acts radially outwards and produces bending moment on the shaft. In order to
counteract the effect of this force F¢; , a balancing mass m; may be attached in the same
plane of rotation of the disturbing mass m; such that the centrifugal forces due to the two
masses are equal and opposite.
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Let,

r, = radius of rotation of the mass m,
= distance between the axis of rotation of the shaft and the centre of
gravity of the mass m,
Therefore the centrifugal force due to mass m, will be,
Fo=Mpo’h-—————————————————— 2)

Equating equations (1) and (2), we get

Fe1 =2

mo’r=mo’r ormr=mr———————————————— 3)

The product m , r, can be split up in any convenient way. Asfor as possible the radius
of rotation of mass m, that isr, is generally made large in order to reduce the balancing

mass ms.

V&Z’

BALANCING OF A SINGLE ROTATI WSS BY TWO MASSESROTATING
IN DIFFERENT PLANES. 0 N

There are two possibilities while at‘ta%ng two balancing masses:

1. The plane of the disturbing mass may be in between the planes of the two
balancing masses.

2. The plane of the disturbing mass may be on the left or right side of two planes
containing the balancing masses.

In order to balance a single rotating mass by two masses rotating in different
planes which are parale to the plane of rotation of the disturbing massi) the net dynamic
force acting on the shaft must be equal to zero, i.e. the centre of the masses of the system
must lie on the axis of rotation and this is the condition for static balancing ii) the net
couple due to the dynamic forces acting on the shaft must be equal to zero, i.e. the
algebraic sum of the moments about any point in the plane must be zero. The conditions

)] and i) together give dynamic balancing.
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CASE 2(1):

THE PLANE OF THE DISTURBING MASSLIESIN BETWEEN THE PLANES
OF THE TWO BALANCING MASSES.

The plane of the disturbing mass lies inbetween the planes of the fwo balancing masses
m

U

L2

— ] e ———_— —

e - ————

Consider the disturbing mass m lyi r@glaﬁe A which is to be baanced by two
rotating masses m; and m; lying in@ ifferent planes M and N which are paralld to the
plane A as shown.

Letr, r; and rp betheradii of rotation of the massesin planes A, M and N respectively.
Let L, Lo and L bethe distance between A and M, A and N, and M and N respectively.
Now,

The centrifugal force exerted by the massm in plane A will be,

Similarly,
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And the centrifugal force exerted by the mass m, in plane N will be,
Foo=m; (1)2 n------—-—------——"—"—"——- (3)

For the condition of static balancing,

Fe=Fa+Feo

ormw2r=mc02r+mo)2r

Lemr=mir+mrn-———————————————— 4)
Now, to determine the magnitude of balancing force in the plane ‘M’ or the dynamic
force at the bearing ‘O’ of a shaft, take moments about * P > which is the point of
intersection of the plane N and the axis of rotation.
Similarly, in order to find the balancing force in plane ‘N’ or the dynamic force at the
bearing ‘P’ of a shaft, take moments about * O * which is the point of intersection of the

plane M and the axis of rotation

For dynamic balancing equations (5) of(6) %& ong with equation (4).

Qz
(}&’
,Q.
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CASE 2(11):

WHEN THE PLANE OF THE DISTURBING MASSLIES ON ONE END OF THE
TWO PLANES CONTAINING THE BALANCING MASSES.

When the plane of the disturbing mnss lies on one end of the planes of the balancing masses

3

v
—_

=

For static balancing, 0 ,
Fao=Fc+ Fe
or My 2 r; =mw’r+m, o r,

emri=m+mrn-———————————————— (1)
For dynamic balance the net dynamic force acting on the shaft and the net couple due to
dynamic forces acting on the shaft is equal to zero.
To find the balancing force in the plane ‘M’ or the dynamic force at the bearing ‘O’ of a

shaft, take moments about ‘P’. i.e.
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ch_ XL= FC XL2
ormon’rxL=mo’rxL

1 1 2
Therefore,
L2
mrL=mrL oomr=mr ———————— )
11 2 11
L

Similarly, to find the balancing force in the plane ‘N’ , take moments about ‘O’, i.e.,

ormw’rxL=mo’rxL

2 2 1
Therefore,
L1
mrL=mrL oomr=mr —-—-—-—-————-— 3)
22 1 22
L

2.4 Balancing of several rotating masses by balancing massesin same planeand in
different planes. Q/
CASE 3: Q/

)
BALANCING OF SEVERAL M\SSES R %% INTHE SAME PLANE
/ " N ’

(b} Vector dagram

tal Space diagram

BALANCING OF SEVERAL MASSES ROTATING IN THE SAME PLANE
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Consider a rigid rotor revolving with a constant angular velocity o rad/s. A number of
masses say, four are depicted by point masses at different radii in the same transverse

plane.
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If my, my, mg and m, are the masses revolving at radii ry, 12, r3 and ry respectively in the
same plane.
The centrifugal forces exerted by each of the masses are Fc;, Feo, Fcz and Fey respectively.
Let F be the vector sum of these forces. i.e.
1. =Fq +F tFs + Fes

M e’ +me’h+mMe’rs+mie’ry————————— (1)
The rotor is said to be statically balanced if the vector sum F is zero. If the vector sum F
IS not zero, i.e. the rotor is unbalanced, then introduce a counterweight ( balance weight)

of mass ‘m’ at radius ‘r’ to balance the rotor so that,

Mo’ +mMo’h+mgo’rs+mo’n+me’r=0-————————— ()
or
mri+mrn+mr+mnig+mr=0-——————————————— 3)

The magnitude of either ‘m’ or ‘r’ may be selected and the other can be calculated.
In general, if Y m rjisthevector sumof myr;, mora, M3rz, mg4rgetc, then,

Ymifi+mr=0-—-——————— 4)

The above equation can be solved eithéganaytically or @%ally.

1. Analytical Method: \ bgs,g ¢
” A4

1. Resplve the centniugal forces honzontally and vertically and tind thew sums, 1e. TH
and ¥§° . We koow tiat
Snm of horizontal components of the centrifitgal forces.
LH =my rycos8 +my -1 c0sH, <
and s of vertical conponents of the cenmnfugal forces.
ZF =my wsmby +my mosmb,y +
J. Magninede of the resultant cenrnfiugal force,
Fe =\(ZH): +(ZFY
4. It § = the angle. whech the resnltant force makes with the horzontal, then

tan @ = ZF/ L
. The balancng force 1s then equal to the resultant force. but . eppesite direction.

i

6. Now find out the magnmude of the balancing mass, such that

Fo=m-r
where i = Balancing mass. and

r=Tts rachius of rotatio.
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2. Graphical Method:

Step 1:

Draw the space diagram with the positions of the several masses, as shown.

Step 2:

Find out the centrifugal forces or product of the mass and radius of rotation exerted by
each mass.

Step 3:

Now draw the vector diagram with the obtained centrifugal forces or product of the
masses and radii of rotation. To draw vector diagram take a suitable scale.

Let ab, bc, cd, de represents the forces Fq1, Feo, Fes and Fe4 0N the vector diagram.
Draw ‘ab’ parallel to force F¢; of the space diagram, at ‘b’ draw a line parallel to force
Feo. Similarly draw lines cd, de parallel to Fc3 and Fg4 respectively.

Step 4:

As per polygon law of forces, the closing side ‘ae’ represents the resultant force in
magnitude and direction as shown in vector diagram.

Step 5: a

The balancing force isthen , equal and opposi to@géfegftant force.
\ 7 b& o
d

aFea
Resulant | A Fey
P EE Fd ¥
FE:a = FG-‘.,_' ~.
SR LY
== v A
. g a s Fez
iy Rasuliant
Yo " P
r LA 4
2 '. o
= ' 4
o . i o
r. .'q F
Foa
) Space diagram. (b} Vector diagram.
Step 6:

Determine the magnitude of the balancing mass ( m ) at a given radius of rotation ( r ),
such that,

F. =mo? I
or
Mr=resultantofmy r1 ,ms r> , M3 rz andmy ra
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CASE 4.

BALANCING OF SEVERAL MASSESROTATING IN DIFFERENT PLANES

When several masses revolve in different planes, they may be transferred to a reference
plane and this reference plane is a plane passing through a point on the axis of rotation
and perpendicular to it.

reference plane

L
g

/ (Imaginary)

L Tuimed through 90’ in
> the direction of force

v

(Origmal)
Couple vectors

When a revolving mass in one plane is @%zred to a reference plane, its effect is to
cause a force of same magnitude to tt@ trifugal force of the revolving mass to act in
the reference plane along with a e@e of ‘magnitude equal to the product of the force
and the distance between the two planes.
In order to have a complete balance of the severa revolving massesin different planes,
1. the forces in the reference plane must balance, i.e., the resultant force must be zero and
2. the couples about the reference plane must balancei.e., the resultant couple must be
zero.

A mass placed in the reference plane may satisfy the first condition but the couple
balance is satisfied only by two forces of equal magnitude in different planes. Thus, in

genera, two planes are needed to balance a system of rotating masses.
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Example:
Consider four masses m;, m,, mg and m, attached to the rotor at radii rq, 1y, r3 and rs

respectively. The masses my, m,, mg and my rotate in planes 1, 2, 3 and 4 respectively.

QO @ PO o

13

Lm

L4

b} Angular position of masses

fa) position of planes of masses

N

> w
a) Position of planes of masses K}zﬁ :
Choose a reference plane at ‘O’ so q,distance of the planes 1, 2, 3 and 4 from ‘O’
are Ly, Lo, L3 and L4 respectively? The reference plane chosen is plane ‘L’. Choose
another plane ‘M’ between plane 3 and 4 as shown.

Plane ‘M’ is at a distance of Ly, from the reference plane ‘L’. The distances of all the
other planes to the left of ‘L’ may be taken as negative( -ve) and to the right may be taken
as positive (+ve).

The magnitude of the balancing masses m_ and my, in planes L and M may be obtained
by following the steps given below.

Step 1.

Tabulate the given data as shown after drawing the sketches of position of planes of
masses and angular position of masses. The planes are tabulated in the same order in

which they occur from left to right.
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Centrifuga Distance 2
Plane Mass (m) Radius (r) force/o? from Ref. Couple/
(mrlL)
1 2 3 (mr) plane ‘L’ (L)
6
4 5
1 ml rl milrl -1y -myir Ly
L mL rL mL rL 0 0
2 m, r mo Iy Lo m2r2L2
3 ms I3 m3 ' L3 m3r3L3
M mM ™ mM rM LM My 'v L
4 my I4 Mgy Iy L4 Myrsly
Step 2:

Construct the couple polygon first. (The couple polygon can be drawn by taking a

convenient scale)

Add the known vectors and considering each vector parallél to the radial line of the

mass draw the couple diagram. Then the closing vector will be ‘mm 'y Lm’.

o

ww

f ic) Couple polygon

«\

id Force polygon

The vector d o’ on the couple polygon represents the balanced couple. Since the

balanced couple Cy, is proportiona to my rvy Ly , therefore,

C =m

r L =vectord o

N VM N
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vector d o
o m =
\Y

' L
From this the value of my, in the plane M can be determined and the angle of inclination
¢ of this mass may be measured from figure (b).
Step 3:
Now draw the force polygon (The force polygon can be drawn by taking a convenient
scale) by adding the known vectors along with ‘my ry’. The closing vector will be ‘m;

r.’. This represents the balanced force. Since the balanced force is proportional to ‘m; r.’

m_ r. = vector eo

vector eo
or m=
L
no

From this the balancing mass m_ can be obtained in plane ‘L’ and the angle of
inclination of this mass with the horiontal be mea@rom figure (b).

N\ §X‘».
Probl ;L § S

A

1. A shaft carries four masses A, B, D.of magnitude 200 kg, 300 kg, 400 kg and
200 kg respectively and revolvin 11 80 mm, 70 mm, 60 mm and 80 mm in planes
measured from A at 300 mm, 400°mm and 700 mm. The angles between the cranks
measured anticlockwise are A to B 45°, B to C 70° and C to D 120°. The balancing
masses are to be placed in planes X and Y. The distance between the planes A and X is
100 mm, between X and Y is 400 mm and between Y and D is 200 mm. If the balancing

masses revolve at aradius of 200 mm, find their magnitudes and angular positions.

Given : ma = 200 kg ; mg = 300 kg ; mc = 400 kg ;mp = 200 kg ,ra = 80 mmv= 0.08m ;
r=70MmM=007m;rc=60mm=006m;:rp=8mMm=0.08m:;rx =ry =100 mm =
0.1m
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— o e R g Frn
Wy ®©OY ©
—| 100 |.‘7 -|1|:|-|]—I-|1I—EI:H:I—I-
— 300 —s] |
400 {
. 500 .
+ 700 *
P aipi g Mg fpee) Roadiss fel I"-'n'.',_J'.iJ',l'. o i i TR Ry fireisiy COnMIE & jiF
] (el g Plare xil) m fan.rli kg-rr°
fl fad {al {4 &) )
A 200 LRI 16 = L — il
MRF) iy 0.1 0.1 ey 0 D
] 300 00T 21 .3 d
C 400 0.06 4 0.3 T2
¥ my i1 0.l mrg 0.4 004 iy
o 200 LENEL ] 0.6 o4
N £33
,.-"'"x\
7.2
2.6

d’ / _Ea_-rﬂnﬂgﬂ coupy
2y Couple

Maz

Pt //
ﬂ.q m}r 8= :".‘:,ﬂ'

_1.

(c) Couple polygon.

By measurement, the angular position of my, 15 8y =127 in the clockwise

direction from mass m, (i.e. 200 kg ).

O 04 e~y = Vecltor P
M = 182.5 kg

= 7 =

-5
Kg—-1aa©
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c
16
24
d
QJ}'J.#
PRI . L
il g
0= a
16

(d) Force polygon.
0.1 miy;, = vector eo = 35.5 kg-m

., = 3355 kg a o _
By measurement. the angular position of my, is 8, = 1457 in the clockwise

direction from mass m, (i.e. 200 kg ). -~

\/ \'\*' :

2. Four masses A, B, C and D as shown b cge‘m be completely balanced. The planes

containing masses B and C are 300 yart. The angle between planes containing B
and C is 90°. B and C make ang@f 210° and 120° respectively with D in the same
sense. Find :

1. The magnitude and the angular position of mass A ; and

2. The position of planes A and D.

Givenra=180mm=0.18m ; mg=30kg; rg =240mm =0.24 m ; mc =50kg;
re=120mm=0.12m; mp=40kg; rp =150 mm =0.15m ; zBOC =90° ;
£BOD =210° ; £COD = 120°

A I3 i n
Muass ikg) — A0 S0 A
Radding e 1 240 12 150
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50 kg
P\
—ve RP_ - ' )"
® ® -
nno B
120
241] i)
20135 %
] B a0
L, "'I.'ILI;-R!' I{g
@
&
- | —= X > %
y | ]
Plirme Afgnn Ravefiare Caml foree = o | Diéviarree from Conple i
fairiy Ag el i fiviFf Aa-m T Mol i, mld .ﬂ.;_:-l!l.
i1 idi EF] i) i% 7]
A pl?' L0 ] I_E 1 I\.IS "“.JI. —_ — 1 lﬁ n'l;"l
B {8y 0 [ el T2 L] 1k
[ & 50 i B & 0.z 18
—_ I-'r - 4"" - H |5 -— {-, - 1' -—— m
C
6
d A6
0.18 ma "
Ap
A 56°
Q- = b
7.2

(c) Force polygon.

0.18 m, = Vector do = 3.6 kg-m My = 20 kg
the angular position of mass 4 from mass B in the anticlockwise
direction is ~ZAOQB = 236°

Depart of Mechanical Engineering, ATMECE MYSORE Page 36



Dynamics of Machinery-15ME52

g e ﬂ-
Ei.:-f_.-‘
= o T el
Feo.18 miay
1.8
Gl

() Couple polyvoson.

6 x = vector o & = 2.3 kg-m’
x = 0383 m
— 0.18 mi,. v = vector o’d” = 3.6 kg-m~
— 0.18 = 20 yv = 3.6
vy =— 1m

The pepative sign mddicates thar the plane 4 15 not wowards left of B as assumed bur it is

1000 mauann towards rizht of plane I

otating §th‘?adii 100, 125, 200 and 150
(’)Qe are spaced 600 mm apart and
ecﬁ\}ély. Find the required mass A

3. A, B, Cand D are four masses carrieg by
mm respectively. The planesin which them
themassof B, Cand D are 10kg, 5
and the relative angular settings of the four >s.80 that the shaft shall be in complete

balance. QK-’ N\ )

Given:ra=100mm=0.1m; rB;%Smm:O.lzsm; rc=200mm=0.2m;
ro=150mm=0.15m; mg= 10kg; mc=5kg; mp = 4kg

R.P. + Ve

®»n ® © O

<600« 600—+600—
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Pliame Mass ) Redius fr)| Cent, Force » gy | Distince frame | Conple |_|_|:
kg iff { i 7 LR ir= i plire A {1m fatt Al Egvr.u"
[ fdi {4} {4 % [8)
ArRLE] iy 0.1 | My [ [
8 1o 0115 125 0.6 f.73
f 5 02 I 1.2 12
i, 4 .15 0.6 1.8 1.08
cf
1.2
1.08
—-—
o’ 0.75 P

(¢) Couple polygon.
D

%%@:;Hg

T A 185% 1
- ™
ma, =5 & 5§EEE}

2407

200

Z 5 kg

C
Z BOC = 240°
Z BOD = 100°

Depart of Mechanical Engineering, ATMECE MYSORE

Page 38



Dynamics of Machinery-15ME52

0w : 1—.‘-25 b
0.1 m, ™
i
\ .08
D.Ej{
C

(d) Force polygon.

0.1 m, =0.7 ]{g-m2

m, =7kg

£ BOA

&0
4. A shaft is supported in bearings % apart and projects 0.45 m beyond bearings at
eys one a each end and one at the middle of its

155

each end. The shaft carries three
length. The mass of end pulleysis 48 kg and 20 kg and their centre of gravity are 15 mm
and 12.5 mm respectively from the shaft axis. The centre pulley has a mass of 56 kg and
its centre of gravity is 15 mm from the shaft axis. If the pulleys are arranged so asto give
static balance, determine : 1. relative angular positions of the pulleys, and 2. dynamic

forces produced on the bearings when the shaft rotates at 300 r.p.m.

Given: map=48kg; mc=20kg;ra=15mm=0.015m; rc =125 mm =0.0125m;
Mg =56 kg; rg=15 mm=0.015 m ; N =300 r.p.m. or ®=2 7t x 300/60 = 31.42 rad/s
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—'luu"g

R.P. +ve
& >

]

A

O

=

7

0.45 |+

<+« 1.8m

-

2.7m

— 0.45

(a) Position of shaft and pulleys.
1. Relative angular position of the pulleys

Hlavers Mass Mg aiies Catnil fares = OF T e r."rr:"lr\l £ agple 4 |:II'.
farl hg frl m (Rt Ngem Jrlaae L{Ckm frentl .'u:,'-.'.l.'"
(. (| (E i) (] k)
4 44 UL LA — 45 — @324
L{R P} i i I {l ik
& 1 ] B B4 0.9 {73
A Rl Ty Wy g 1.8 1.8 BTy T
() 0 0.0125 025 2258 0.5625
PR %2
b
‘l
\
\ 0.72 161*
0842 |\ "~ Angle berween pulleys B and 4 = 161°
\ Angle between pulleys 4 and C = 76°
_\c Angle between pulleys Cand B = 123°
-~
m,
L/O‘.25 A "
¢}
(¢) Force polvgon () Angular position of pulleys.
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A 1.8 my,.ry, = vector ¢’ o’ =0.97 kg-m’
0.5625 - 0.324 -
o / ’ my,.ry, = 0.54 kg-m®
Bilanced Dynamic force at the bearing M
. couple > o1 n .
B r | 0.756 = Mty W =0.54 (31.42)° =533 N
. M M.
] .
' | my 1
o' M ‘M
(d) Couple polygon. 0.84T 5
| a 025
e a¢” %
my .rp = 0.54 kg-m o\

o ; C\
. : ng :
Dynamic force at the bearing L Balanced". \0.72

= myp 5 0F =054 (31.42)' =533 N foree AKX, \
"\

"\

'd

\ Q,Q/

OUT COMES y bgér
1. Studentswill be able Check st SL&@n@m‘ic balancing for Rotating systems.

2. Students able to solve problem \ahci ng of rotating masses

Exercise 'Q

1. What is meant by balancing of rotating masses?

2. Why rotating masses are to be dynamically balanced?
3. Define static balancing.

4. Define dynamic balancing.

FURTHER READING

1. Theory of Machines by S.S.Rattan, Third Edition, Tata McGraw Hill Education
Private Limited.

2. Kinematics and Dynamics of Machinery by R. L. Norton, First Edition in Sl units, Tata
McGraw Hill Education Private Limited.

3. Primer on Dynamic Balancing “Causes, Corrections and Consequences” By

Jim Lyons International Sales Manager IRD Balancing Div. EntekIRD International
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MODULE 3

GYROSCOPE

CONTENTS

3.1INTRODUCTION

3.2GYROSCOPIC COUPLE

3.3 GYROSCOPIC EFFECT ON SHIP

3.4 GYROSCOPIC EFFECT ON AEROPLANE
35STABILITY OF AUTOMOTIVE VEHICLE

3.1 INTRODUCTION

‘Gyre’ is a Greek word, meaning ‘circular motion’ and Gyration means the whirling
motion. A gyroscope is a spatial mechanism which is generally employed for the study of
precessional motion of a rotary body. Gyroscope finds applications in gyrocompass, used in
aircraft, naval ship, control system of missiles and space shuttle. The gyroscopic effect is also
felt on the automotive vehicles while negotiating a turn.

A gyroscope consists of a rotor mounted in the inner gimbal. The inner gimbal is
mounted in the outer gimba which itself is mounted on a fixed frame as shown in Fig.1.
When the rotor spins about X-axis with angular velocity ® rad/s and the inner gimbal
precesses (rotates) about Y-axis, the spatial mechanism is forced to turn about Z-axis other
than its own axis of rotation, and the gyroscopic effect is % setup. The resistance to this

motion is called gyroscopic effect. N @

Y

Fig. 1 Gyroscope mechanism
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ANGULAR MOTION

A rigid body, (Fig.2) spinning at a constant angular velocity ® rad/s about a spin axis
through the mass centre. The angular momentum ‘H’ of the spinning body is represented by a
vector whose magnitude is ‘Io’. I represents the mass amount of inertia of the rotor about the

axis of spin.

p I|1I

Fig.2 Spinning body

* H=1Iw
The direction of the angular momentum can be found from the right hand screw rule
or the right hand thumb rule. Accordingly Nif the fingers e right hand are bent in the
direction of rotation of rotor, then the thumb indicates t{@gc ion of momentum.

3.2 GYROSCOPIC COUPLE \/ bg& ;

Consider a rotary body of mass m hawngtadius of gyration k mounted on the shaft
supported at two bearings. Let the rotor 8Qins4rotates) about X-axis with constant angular
velocity [ rad/s. The X-axisis, thereforéfed*spin axis, Y-axis, precession axis and Z-axis,
the couple or torque axis (Fig.3). ,Q '
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Y
Precession

: Z
axis
U ) /)' Couple axis
Ry

X’ J‘«
R
—

direction

>

Direction
of reaction
couple r

—\’; Direction of

gyroscopic
couple

/7

’

Fig. 3

plane XOZ, then the angular momentu from H to H, where [JH is the change
in the angular momentum, represented b vect att(lig 15.2(b)]. For the small value of

Now, suppose the shaft axis (X-axis) precesses through asm;! angle [10J about Y-axisin the
angle of rotation 5°, we can write

\ab-m}xﬁa
oH =Hx 8
= [wd8

d N\
However, the rate of change of angu@entum is:

or C=1WW,

where C = gyroscopic couple (N-m)
W = angular velocity of rotary body
(rad/s) W, = angular velocity of
precession (rad/s)
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Direction of Spin vector, Precession vector and Couple/Torque vector with forced

precession

To determine the direction of spin, precession and torque/couple vector, right hand
screw rule or right hand rule is used. The fingers represent the rotation of the disc and the
thumb shows the direction of the spin, precession and torque vector (Fig.4).

'1"1
(& St
o 5
[ ~
('ﬂp
w0
2
S
o
o
P - (,"\r_f?' o
ey & N
o B Y Eag e
OV ea L A
il VA A
5 . SPINVECTOR .~ SPIN AXIS \ q—q_, 7 PG
X ol 4 S
0
.--6 X s o
ST =
" { (l'_l_': o
) \ ua B
l!-'— -~
(=
Jr
’lr

\ RN
Fig.4. Direction of Spin vectoré&on vector and Couple/Torque vector

The method of determining the direction of couple/torque vector is as follows.

Case (i):

Consider a rotor rotating in anticlockwise direction when seen from the right (Fig.5
and Fig. 6), and to precess the spin axis about precession axis in clockwise and anticlockwise
direction when seen from top. Then, to determine the active/reactive gyroscopic couple
vector, the following procedure is used.

Turn the spin vector through 90° in the direction of precession on the XOZ
plane

The turned spin vector will then correspond to the direction of active
gyroscopic couple/torque vector

The reactive gyroscopic couple/torque vector is taken opposite to active gyro
vector direction

1

2.

Depart of Mechanical Engineering, ATMECE MYSORE Page 45



Dynamics of Machinery-15ME52

y
cl B
\
L
Qs
O
=
(6]
w
5
0
)
L
(&)
e
o & o yal - 'i"?d‘"’"mv‘a“
0%{33 1,:;/ _r:.cf"" O SPINWECTOR \J’ T
&e“‘%ﬁo ] ®
$Whas
S

Fig. 5 Direction of active and reactive gyroscopic couple/torque vector
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Fig. 6 Direction of active and reactive gyroscopic couple/torque vector

Case (ii):

Consider arotor rotating in clockwise direction when seen from the right (Fig.7 and Fig. 8),
and to precess the spin axis about precession axis in clockwise and anticlockwise direction
when seen from top. Then, to determine the active/reactive gyroscopic couple vector,

1. Turn the spin vector through 90° in the direction of precession on the XOZ
plane
2. The turned spin vector will then correspond to the direction of active
gyroscopic couple/torque vector
The reactive gyroscopic couple/torque vector is taken opposite to active gyro
vector direction
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Fig. 7 Direction of active and reactive gyroscopic couple/torque vector
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Fig. 8 Direction of active and reactive gyroscopic couple/torque vector

The resisting couple/ reactive couple will act in the direction opposite to that of the
gyroscopic couple. This means that, whenever the axis of spin changes its direction, a
gyroscopic coupleis applied to it through the bearing which supports the spinning axis.

Please note that, for analyzing the gyroscopic effect of the body, always reactive
gyroscopic couple is considered.
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Problem 1

A disc of 5 kg mass with radius of gyration 70 mm is mounted at span on a horizontal
shaft spins at 720 rpm in clockwise direction when viewed from the right hand bearing. If the
shaft precesses about the vertical axis at 30 rpm in clockwise direction when viewed from the
top, determine the reactions at each bearing due to mass of the disc and gyroscopic effect.

Solution  Angular velocity

S - )
N 2x xT20
{ =

() o4)

-
2.4 mdis

2N
Angular velocity of precession: g = —2
’ 60
o X 30
——— =3.14 rad/s
Ol
Moment of inertia | = mk*

5x0.07° =0,0245 kgm

v
|
'

N\ ; _,/'
+

A g T
( 7
- o ’ Action, coupla

¥ Heaction couple
FiG;.9a
Gyroscopic couple: C=1Imw,
=0.0245x 754 % 3.14
3.8 Nm

Ihis couple induces reaction R, at the bearing support

12
R % =58
1000

o1 R. =483 N

Reaction on the bearings due to weight of the disc, Ry, = mg/2 = 5x9.81 /2 = 24.53 N

The angular momentum vector and induced reactive gyroscopic couple acting in

anticlockwise direction is shown in Fig.9b.
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Gyroscopic couple: C=1] ww,
=0.0245x754x3.14
=5.8 Nm

This couple induces reaction R, at the bearing support.

iR QY

or

The reaction R, acts in upwarh‘i
at left hand bearing. N
The reaction due to weight of th %/ae,té’ in upward direction. Therefore,

Reaction at bearing A: % R.>-R,,
=148.43 - 24.53

=239N)
Reaction at bearing B: Ry =R._+R,

=48.43 +24.53
=7296 N(T

5.8
DA\ S
ion{a:t) ght Hand bearing and in downward ¢

3.3 GYROSCOPIC EFFECT ON SHIP

Gyroscope is used for stabilization and directional control of a ship sailing in the
rough sea. A ship, while navigating in the rough sea, may experience the following three
different types of motion:

r Steering—The turning of ship in a curve while moving forward

r Pitching—The movement of the ship up and down from horizontal position in a
vertical plane about transverse axis

(iii)Rolling—Sideway motion of the ship about longitudinal axis.
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For stabilization of a ship against any of the above motion, the maor requirement is
that the gyroscope shall be made to precess in such away that reaction couple exerted by the
rotor opposes the disturbing couple which may act on the frame.

r Ship Terminology

Bow — It isthe fore end of ship

Stern — It isthe rear end of ship
Starboard — It is the right hand side of the ship looking in the direction of motion
Port — It isthe left hand side of the ship looking in the direction of motion

Consider a gyro-rotor moun
in Fig.10 and rotate in clockwise
angular speed of the rotor is [ rad/s. Th
direction of rotation of rotor, is decided usin

\ ¥
%ongitudinal axis (X-axis) as shown
ieved from rear end of the ship. The
of angular momentum vector oa, based on

hand thumb rule as discussed earlier.The
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Gyroscopic effect on Steering of ship
+ Left turn with clockwise rotor

When ship takes aleft turn and the rotor rotates in clockwise direction viewed from
stern, the gyroscopic couple act on the ship is analyzed in the following way.

HOTOR
BOW F0F EW P | s TERN
L - - q:,'}ié. — o Dyspctas of Ve
® 1 e 1
e - AFT ;
‘
.y
:
)
-5
v,
- _:4,L
T
L
Py <
el Vi
- "
\ - -
w.l"'
S+
__‘§) :.l_'\;.
P AT - ."\
A
™.
o~
ATWE Oy ROSCOPY-
AaCCTWE O
cOouUPLE

Fig. 13
Note that, aways reactive gyroscopic couple is considered for analysis. From the
above analysis (Fig.12), the couple acts over the ship between stern and bow. This reaction
couple tends to raise the front end (bow) and lower the rear end (stern) of the ship.

(if) Right turn with clockwise rotor

When ship takes a right turn and the rotor rotates in clockwise direction viewed
from stern, the gyroscopic couple acts on the ship is analyzed (Fig 14). Again, the couple acts
in vertical plane, means between stern and bow. Now the reaction couple tends to lower the
bow of the ship and raise the stern.
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Left turn with anticlockwise rotor

When ship takes aleft turn and the rotor rotatesin anticlockwise direction viewed
from stern, the gyroscopic couple act on the ship is analyzed in the following way (Fig.18).
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The couple acts over the ship is between stern and bow. This reaction couple tends to
press or dip the front end (bow) and raise the rear end (stern) of the ship.

(iv) Right turn with anticlockwise rotor

When ship takes aright turn and the rotor rotates in anticlockwise direction viewed

from stern, the gyroscopic couple act on the ship is according to Fig 20. Now, the reaction
couple tends to raise the bow of the ship and dip the stern.
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Gyroscopic effect on Pitching of ship
The pitching motion of a ship generaly occurs due to waves which can be
approximated as sine wave. During pitching, the ship moves up and down from the horizontal
position in vertical plane (Fig.22. & Fig. 23)

Fig.22 Pitching action 0
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Fig.23 Pitching action of ship

Let 6 = angular displacement of spin axis from its mean equilibrium position
A = amplitude of swing
|
(= angle In degree 1(7()”'.

| 2x
and oy = angular velocity of simple hormonic moton A==
\ Hme pr.nnd

The angular moton of the rotor is given as
g = A sin ant

de

Angular velocity of precess: @, = ir
L

d '
- {A 5N )

dr
or m, = Ady, COS @y
The angular velocity of precess will be maximum when cos ayl = |
or W s ™ Al
2x
- A X
[
Ihus the gyroscopic couple C=lwoa,

Consider a rotor mounted along the longitudinal axis and rotates in clockwise
direction when seen from the rear end of the ship. The direction of momentum for this
condition is shown by vector ox (Fig.24). When the ship moves up the horizontal position in
vertical plane by an angle [1[] from the axis of spin, the rotor axis (X-axis) processes about
Z-axis in XY-plane and for this case Z-axis becomes precession axis. The gyroscopic couple
acts in anticlockwise direction about Y -axis and the reaction couple acts in opposite direction,
i.e. in clockwise direction, which tends to move towards right side (Fig.25). However, when
the ship pitches down the axis of spin, the direction of reaction coupleis reversed and the ship
turnstowards left side (Fig. 26).
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Similarly, for the anticlockwise direction of the rotor viewed from the rear end (Stern)
of the ship, the analysis may be done.
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Gyroscopic effect on Rolling of ship.

The axis of the rotor of a ship is mounted along the longitudinal axis of ship and
therefore, there is no precession of this axis. Thus, no effect of gyroscopic couple on the ship
frame is formed when the ship rolls.

Problem 2

A turbine rotor of a ship has a mass of
The rotor has a radius of gyration of*Q.
from the stern (rear) end. Determine the
the following conditions

d rotates at a speed of 2000 rpm.
i n ‘tlockwise direction when viewed
gyroscopic couple and its direction for

S
A When the ship runs at aspe@ 2 knots and steers to the left in a curve of 70 m

radius ;9,

A When the ship pitches 6° aiove and 6° below the horizontal position and the bow
(Front) end is lowered. The pitching motion is simple harmonic with periodic time
30 sec.

(iii)When the ship rolls and at a certain instant, it has an angular velocity of 0.05 rad/s
clockwise when viewed from the stern

Also find the maximum angular acceleration during pitching.

Solution Given, 1 knot = 1.86 kmph, the linear velocity of the ship:

V=186 x 12 = 22,32 kmph
22.32 x 1000

= AN PN R — > f
3600 6.2 mfs

Angular velocity of the rotor:m= 2AN _ 2% %2000
60 60
= 209.44 radis
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Precession velocity: @, = v = % = 0.08857 rad/s

R
Moment of inertia: 7 = mk? = 3500 x 0.5% = 875 kg m?
Gyroscopic couple: C = low,
= 875 x 209.44 x 0.08857
16231.34 Nm

When ship steersto the | eft, the reaction gyroscopic couple action isin anticlockwise
direction and the bow of the ship israised and stern is lowered, as shown in Fig.28.

¥
f-\.
[/
o
o
i C.Q"vp 3 =
o ?’C‘% - _,--___x__"'
5 P it
7 AN b S
¥} (-S»Fi‘)‘b“\\: e
(1 o M oy
& SrPIM vECTON a oI Yeyoern)
X-r j &)\i .|" y 5’]
o 'V Yy -
"}"'Argg‘ Ol . ¢
.-f—\.aywr';‘b. 09'09
A s =0
I _;}JGQ\S"‘"
B’ o
40,
7N N
. 6° % 2x
(ii) Amplitude of swing: A = 360° =0.1047 rad
Angular displacement: 8 = A sin @y
! A de _
Angular velocity of precession: @, = 3 = Ay, COs @yt
Maximum angular velocity of precession:
@pmax ™ WpA
2 2
where Wy =— - — -
time period of oscillation 30

= 0.2094 rad/s

Wopmax = 0.2094 x 0.1047 = 0.022 rad/s
Maximum couple for pitching:

Cmax = IWWpmax
4.875 x 209.44 x 0.022
5.4031.72 Nm
The effect of gyroscopic couple due to pitching is shown in Fig.29. The reactive
gyroscopic couple will act in anticlockwise direction seen from top and it will turn ship
towards the left side.
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iii) Angular velocity of precession whilethe ship rollsis:
Wp =0.05rad/s
and gyroscopic couple: C = 1WWp
= 875x 209.44 x 0.05
= 9163 Nm

Since the ship rolls in the same plane as the plane of spin, there is no gyroscopic effect.

Angular velocity of precess during pltchhg\ ‘:3/

(l)r - - " = A(f:'n Cos wu.
Therefore, angular acceleration:
2P
d'e 2
a =———=— Al Sin@,!
dr
. . Y
Maximum angular acceleration:
Wiax = -AWo?
= 0.1047 x 0.2094
= 0.00459 rad/s®

Problem 3

A ship is propelled by a rotor of mass of 2000 kg rotates at a speed of 2400 rpm. The
radius of gyration of rotor is 0.4 m and spins clockwise direction when viewed from bow
(front) end. Find the gyroscopic couple and its effect when;

= the ship takes|left turn at aradius of 350 m with a speed of 35 kmph

= the ship pitches with the bow rising at an angular velocity of 1

rad/s (iii)the ship rolls at an angular velocity of 0.15 rad/s

Solution
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Angular velocity:
2xN 2 2400
0= = -":0 X 25133 radis
Linear velocity: V =35 kmph = 221000 _ 999 o
3600
Moment of inertia: ! = mk* = 2000 x 0.4° = 320 kg
Steering towards left
Vv 972
Angular velocity of precession: @, = — = —-= = 0.0278 rad/y
R 350
Gyroscopic couple: C = low,

= 320 x 251.33 x 0.0278
= 22358 Nm

The reaction gyroscopic couple will act in anticlockwise and will tend to lower the bow as
shown in Figure 30.

Precassion axis 1

S
‘9 » Fig.30
Pitching. Angular velocity of precession during pitching &), = 1.0 rad/s

Gyroscopic couple: C =320 x 251.33x 1.0
=80425.6 Nm Ans.

The reaction gyroscopic couple acting in anticlockwise direction will tend to turn the bow
towards the Right side as shown in Figure 31.

Y
f‘* Reacton couple

"D Action couple _-
! a
i ®
x = a —.-—-O%G-_- . X
2 b
pa
J/
/" Precassion axis
o

P31
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Rolling, Gyroscopic couple: C =16XQp
=320 x 251.33 x 0.15 = 12063.84 Nm

During rolling, the ship rollsin the same plane as the plane of spin and there will be no
gyroscopic effect.

3.4 Gyroscopic Effect on Aeroplane

Aeroplanes are subjected to gyroscopic effect when it taking off, landing and
negotiating left or right turn in the air.
Let
o = Angular velocity of the engine rotating parts in rad/s,
m = Mass of the engine and propeller in kg,
rw = Radius of gyrationinm,
| = Mass moment of inertiaof engine and propeller in kg m?,
V = Linear velocity of the aeroplanein m/s,

R = Radius of curvaturein m,
v

op =Angular velocity of precession = o rad/s

* Gyroscopic couple acting on the aero plane=C = | WW,

. b - X - 9 - & ™ -
- % e
" Rt . ' !

. PN A S v "
v .

Fig.32

Let us analyze the effect of gyroscopic couple acting on the body of the aero plane for
various conditions.

Case (i): PROPELLER rotatesin CLOCKW!ISE direction when seen from rear end and
Aeroplane turns towards LEFT

Tal

Direction of View

>
e

Nose
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According to the analysis, the reactive gyroscopic couple tends to dip the tail and raise the
nose of aeroplane.

& \ig~3§

Case (ii): PROPELLER rotatesin C@{.'SE direction when seen from rear end and

Aeroplane turnstowards RIGHT

Tail

Direction of View

—

Nose

Fig.40
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According to the analysis, the reactive gyroscopic couple tends to raise the tail and dip
the nose of aeroplane.
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Case (iii): PROPELLER rotatesin ANTICLOCKWISE direction when seen from rear end
and Aeroplane turns towards LEFT

Tail

Direction of View

Dimctian aof Vigw
— 135
SPIN AXIS = )1

Tail

Cimactiaon af Vigw

Nose
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The analysis indicates, the reactive gyroscopic couple tends to raise the tail and dip
the nose of aeroplane. Tay

Direction of View

N‘.) 4

Fig. 50

Case (iv): PROPELLER rotatesin A%LI%VOC bSE direction when seen from rear
end and Aeroplaneturnstowards Rl &

0.
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Dimction aof Vigw
— 5 755
SPIN AXIS < '}

Fig.52

Depart of Mechanical Engineering, ATMECE MYSORE Page 66



Dynamics of Machinery-15ME52

Tail
Dimction of Viaw -
= ) P
—> Nose ™
by
he .).-P’)
b U S WL
Fig.53
e Z
o s
: (_.‘""' )?‘,i”} i
y TR
. e """,':1—"""3
S va’” i anay® -'J'v
! ) &= SHAN W o N
PR wAAAS 4
X : } Jo
it
\.’5‘ S
) »“_6
et &
.
A | K
I o
v
Fig.54

&

The analysis shows, the reacti}e gyro opi&gokl e tends to raise the tail and di p the

nose of aeroplane.
i 1\1 o=¢€
T

!

Case (v): PROPELLER rotatesin CLOCKWISE direction when seen from rear end and
Aeroplane takes of f or nose move upwards

Fig.55

po=e

—(:\\\ :

Fig.56
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The analysis show, the reactive gyroscopic couple tends to turn the nose of aeroplane
toward right
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Case (vi): PROPELLER rotatesin CLO SE direction when seen from rear end and
Aeroplaneislanding or nose move artls

Fig.59
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Case (vii): PROPELLER rotatesin ANTICLOCKWISE direction when seen from rear end
and Aeroplane takes off or nose move upwards
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The reactive gyroscopic couple tends to turn the nose of aeroplane toward |eft
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Case (viii): PROPELLER rotates in/@v LOCKWISE direction when seen from rear end
and Aeroplaneis landing or nose movedownwards
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The analysis show, the reactive gyroscopic couple tends to turn the nose of aeroplane
toward right
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Dimction of Viaw
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Fig.66

Problem 4

An aeroplane flying at a speed of 300 kmph takes right turn with a radius of 50 m.
The mass of engine and propeller is 500 kg and radius of gyration is 400 mm. If the engine
runs at 1800 rpm in clockwise direction when viewed from tail end, determine the gyroscopic
couple and state its effect on the aeroplane. What will be the effect if the aeroplane turns to
its left instead of right?

Solution Angular velocity of aeroplane engine:

axN  2x x 1800

W= = = | 88.49 rad/s
60 60
!
\ngula locity of prec ( ) =
l‘V.
O0 » 1000 |
! w ey
3600 S0
= 1.67 rad/s
Moment of inertia / mic- SO0 x 04
80 kg m*
Gyroscopic couple i oy
R x 18849 x1.67
= 25182.26 Nm Ans

Case (i): PROPELLER rotates in CLOCKWISE direction when seen from rear end and
Aeroplane turns towards RIGHT

Tail

Direction of View
Nose

Fig.67
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According to the analysis, the reactive gyroscopic couple tends to dip the nose and
raise thetail of the aeroplane.

Tay

Q7> Fige9

When aeroplane turns to its left, the magnitude of gyrocouple remains the same. However,
the direction of reaction couple is reversed and it will raise the nose and dip the tail of the
aeroplane.

Fig.70

3.5 Stability of Automotive Vehicle

A vehicle running on the road is said to be stable when no wheel is supposed to leave
the road surface. In other words, the resultant reactions by the road surface on wheels should
act in upward direction. For a moving vehicle, one of the reaction is due to gyroscopic couple
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produced by the rotating wheels and rotating parts of the engine. Let us discuss stability of
two and four wheeled vehicles when negotiating a curve/turn.

Stability of Two Wheeler negotiating aturn

Fig.71

Fig. 71 shows atwo wheeler vehicle taking |eft turn over acurved path. The vehicle
isinclined to the vertical for equilibrium by an angle [J knonis angle of hedl.

A <
Let ,g .;,
ons%?% Q&

m = Mass of the vehicle and its ridenin kg,

W = Weight of the vehicle and its rider

h = Height of the centre of gravity of the'Yehicl
rider, ryy = Radius of the wheels,

R= Radiusof track or curvature, & v
lw= Mass moment of inertia of each A _
le = Mass moment of inertia of ther pa?ts of the engine,

ow = Angular velocity of the wheelSN\,_”

o = Angular velocity of the engine rotating parts,

G = Gear ratio = wg / ow,

v = Linear velocity of the vehicle = ww X Tw,

0 = Angle of heel. It is inclination of the vehicle to the vertical for equilibrium.

Rear whoot!

EXUENTE) ) 20181

Front wimnae!
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Front View

[ )
Fig.73
AXis of precession
: Z
4
2 /
V) ('} Axis of
3 // / / active gyro. couple
;g\,\ I /
b 4 ) o= /
[ Fell/ \thosu /
e L el Iocos o
s T o~ s
~ Io H
I
W=m.g / Bé\ ‘E
Axis of spin o A
Fig.74

Let us consider the effect of the gyroscopic couple and centrifugal couple on the wheels.

1. Effect of Gyroscopic Couple
We know that, V=wwX ry
wEZG.a)W or O)E:G.V/I’W
Angular momentum due to wheels = 2 |, ow

Angular momentum due to engine and transmission = |g wg

Total angular momentum (I x») =2 Iy owE I we

Vv v
= 2’,,.?: + IIG'&‘—.
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= -‘;T(zlw + GI,)

I =<

Also, Velocity of precession = ®p =R

It is observed that, when the wheels move over the curved path, the vehicle is always
inclined at an angle 0 with the vertical plane as shown in Fig... This angle is known as ‘angle
of heel’. In other words, the axis of spin is inclined to the horizontal at an angle 6 , as shown
in Fig.73 Thus, the angular momentum vector | @ due to spin is represented by OA inclined
to OX at an angle 0. But, the precession axis is in vertical. Therefore, the spin vector is
resolved along OX.

Gyroscopic Couple,

C = (lw)cosh x ,

N

. +Gl,)cos8

Note: When the engine is rotating in the same direction as that of wheels, then the positive
sign is used in the above equation. However, if the engine rotates in opposite direction to

whesls, then negative sign is used.
a \ {‘)Q/

Whieel Retation Wheel Rotution

The gyroscopic couple will the vehicle outwards i.e., in the anticlockwise
direction when seen from the front two wheeler. This couple tends to overturn/topple
the vehicle in the outward direction as Shown in Fig...

P ungine votation

Anaysis:

o >
o i¥ C g
b a ’:.)’I’-" i
S gV er
- e o ¥
v s
3 -~ o Yow
¥ T b =
P 0 " ECTIR .
PR T ®
WiR
Fig.75
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Reactive gyro.

¥ couple ™

2. Effect of Centrifugal Couple

Centrifugal Force

= ;\ ok ; C.G
ho
F C _4/ p \\h
- : O\‘é / COSO ~
~N
@
70
We have, O
Centrifugal force,Q : il
=
or

Centrifuga Couple, C, =F, xhcosf

M\’z

=——h cosf
R

Centiifugal Couple
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The Centrifugal couple will act over the two wheeler outwards i.e, in the
anticlockwise direction when seen from the front of the two wheeler. This couple tends to
overturn/topple the vehicle in the outward direction as shown in Fig.78

Therefore, the total Over turning couple: C = Cy + Ce

Reactive gyra,

¥ couple

Cent. couple

W=mug

Fig.79

-
y

=‘F-(ZI_ +Gl,) cos8 + Tk"-— h cos@

<
\@g{% QOi'Jple should be equal to balancing

the vigight of: the vehicle and rider.

For the vehicle to be in equili
couple acting in clockwise direction due

A

O gh s né

Fig.80
For the stability, overturning couple must be equal to balancing couple,
v mv?
— (21, + Gl ) cosB + —R- h cosB = mgh sin@
-

Therefore, from the above equation, the value of angle of heel (6) may be determined,
so that the vehicle does not skid. Also, for the given value of 6, the maximum vehicle speed
in the turn with out skid may be determined.
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Problem 5

A motorcycle and its rider together weighs 2000 N and their combined centre of
gravity is 550 mm above the road when motorc Zycle is upright. Each whed is of 580 mm
diameter and has a moment of inertia of 1.0 kgm*. The moment of inertia of rotating parts of
engine is 0.15 kg m®. The engine rotates at 5 times the speed of the vehicle and the same
sense. Determine the angle of heel necessary when motorcycle is taking a turn over atrack of
35 mradius at a speed of 60 kmph.

Solution:
Velocity of vehicle: 60 x 1000
v o= 600 - 16.67 mvs
. 2y 2x16.67
Angular velocity of wheel: w=7=--0m——<7 48 rad/s
. . v 16,67
Angular velocity of precession: @, = e " 0.476 rad/s

(i) Gyroscopic couple due to two wheels:

Cvw =2y WW,cosH
2x1.0x57.48x0.476 x cos 0
54.72 cosh Nm
= Gyroscopic couple due to rotating parts engine:

Ce =IAGWW, cosd %
0.15x 5 X5 76 X cosd

20.52c0sH m
i) Centrifugal force dueto angular v eel‘

m\‘. "IN_IJ x lf) (.
wu % 38

F. = 16187 N

Centrifugal couple: ‘%18 7 x 0.55 cosd
=890.28 cos 6 Nm

Total overturning couple: C =Cy+Ce+C
T (54.72 + 20.52 + 890.28) cosb
T 965.52 cosd Nm

Balancing couple = .k «inp

20
le X981 x0555ind

= |100 sinf Nm

For the stability of motorcycle, overturning couple should be equal to resisting couple.

1100 sinb = 965.52 cosh

or 965.52 .,
tanf = e 2= ().877
1100

heel angle: @ = 41.27°
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Problem 6

A motor cycle with its rider has a mass of 300 kg. The centre of gravity of the
machine and rider combined being 0.6 m above the ground with machine in vertical position.
Moment of inertia of each wheel is 0.525 kg m? and the rolling diameter of 0.6 m. The engine
rotates 6 times the speed of the road wheels and in the same sense. The engine rotating parts
have a mass moment of inertia of 0.1686 kg m?. Find (i) the angle of heel necessary if the
vehicleisrunning at 60 km/hr round a curve of 30 m (ii) If the road and tyre friction allow for
the angle of heel not to exceed 50°, what is the maximum road velocity of the motor cycle.

Solution:

m=300kg, h=0.6m, |, =0.525 kgm?, dw=0.6 m; r, = 0.3 m, G = 6, I = 0.1686
m, V= 60km/hr = 16.66 m/s, R=30m (i) 6 = ? (i) 6 = 50° V="

1. Angleof hed,

We have,

2 2

Y_ @I, +GL)cosd + 2
Rr,

h cos® = mgh sin@

|

16 662 [2x0 525 + 6x0.1685

30 03 + 300x 0. 6 cos 8 = 300x9.81x0.6x sin @

‘ x?[

éS

A)  Given, & =50° v=?,

— (21,, +Gl,) cosO i h cosB = mgh sinf
Rr... R

' |

b 4

I V2 [2 x0.525 + 6 x 0.1685

e 03 +300x0.6]c0550 =300x981x 0.6 xsin50

~V = 66 Kmph

Stability of Four Wheeled Vehicle negotiating a turn.

Stable conditi orT— Unstable Condition
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Fig.81

Consider a four wheels automotive vehicle as shown in Figure 82. The engine is
mounted at the rear with its crank shaft parallel to the rear axle. The centre of gravity of the
vehicle lies verticaly above the ground where total weight of the vehicle is assumed to be
acted upon.

Let
m = Mass of the vehicle (kg)
W = Weight of the vehicle (N) = m.g,
h = Height of the centre of gravity of the vehicle (m)
rw = Radius of the wheels (m)
R = Radius of track or curvature (m)
lw= Mass moment of inertia of each wheel (kg-n)
le = Mass moment of inertia of the rotating parts of the engine (kg-nr)
ow = Angular velocity of thewheels
rad/sé oe = Angular velocity of the engine
rad/s
= Gear ratio = we / ow,
v = Linear velocity of the vehicle (m/s)= ww %
rw, X = Whesl track (m)
b = Wheel base (m)

Wheel track (x)

REAR WHEELS
?ffm., e BEOTREE | ;} i
/\g( ) 5 !
d& i A% ‘
| INNER WHEELS
OUTFR WHEFLS Wheel base
| {b)

|
SPLATARANA
'.I 1

<
= - - T - —— = ,:"-__;'
| i

\ /
FRONT WHEELS’

Left turn =
Fig.82

1 Reaction dueto weight of Vehicle

Weight of the vehicle. Assuming that weight of the vehicle (mg) is equally distributed over
four wheels. Therefore, the force on each wheel acting downward is mg/4 and the reaction by
the road surface on the wheel actsin upward direction.

mg

R, =
4
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X Effect of Gyroscopic couple dueto Wheel

Gyroscopic couple due to four wheelsis,
Cw=41,WW,

(iii) Effect of Gyroscopic Coupledueto Engine

Gyroscopic couple due to rotating parts of the engine

Ce = le WW, =1 GWW,
Therefore, Total gyroscopic couple:

Cy= Cu + Ce= WW,, (4ly * IcG)

When the wheels and rotating parts of the engine rotate in the same direction, then positive
sign is used in the above equation. Otherwise negative sign should be considered.

Assuming that the vehicle takes aleft turn, the reaction gyroscopic couple on the vehicle acts
between outer and inner wheels.

A //-'
. ngular momantum : F
{11 . f=- g
Ll | 0 SPIVECTOR \ Y A

| [w

'\. 1

" ot 2

w _‘4,-.‘—%_ :".\*'A :

~ - ‘l":"‘

o "_‘\_ -

Fig.83

This gyroscopic couple tendsto press the outer wheels and lift the inner wheels.
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Reactive Gyro. Couple

OUTER “'HEELS@ INNER WHEELS

P P
Fig.84
Due to the reactive gyroscopic couple, vertical reactions on the road surface will be
produced. The reaction will be verticaly upwords on the outer wheels and verticaly

downwords on the inner wheels. Let the magnitude of this reaction at the two outer and inner
wheels be P Newtons, then,

Road reaction on each outer/Inner whee!,

5k

=3x Q/Q:

Effect of Centrifugal Coup

When a vehiclemoveson ac h, a Ifugal force acts on the vehiclein
outward direction through the centre of gravit e vehicle( Fig...)

14

C.G
o

OUTER WHEELS l INNER WHEELS

Left turn
Fig.85

Centrifugal force,

: > mv
F. = I"(OPR = -
R

Thisforce forms a Centrifugal couple.

This centrifugal couple tends to press the outer and lift the inner
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Fig.86
Due to the centrifugal couple, vertical reactions on the road surface will be produced.
The reaction will be vertically upwords on the outer wheels and vertically downwords on the

inner wheels. Let the magnitude of this reaction at the two outer and inner wheels be F
Newtons, then,

Centrifugal Couple

OUTER WHEELS INNER WHEELS

V -
Fig.87
N
Road reaction on each outer/Inner W@D
F

o
The reactions on the outer/inner wheedls are as follows,

')D’.:G

wa ¢ fi{ﬁal

ot i 5]

F { +C8 }F

> 1 >

OUTER WHEELS ! PRI

(H— Q

wia } Wi

{ BT

5t *{g

Left Tmm

Fig.88
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Total vertical reaction at each outer wheels

w P O
Pn = 4 -+ 2 + '2

Total vertical reaction at each inner wheels

W
[)| - 4

NI
NQ

Problem 7

An automobile car is travelling along atrack of 100 m mean radius. The moment of
inertia of 500 mm diameter wheel is 1.8 kg m% The engine axis is parallel to the rear axle and
crank shaft rotates |n the same sense as the wheel. The moment of inertia of rotating parts of
the engine is 1 kg m”. The gear ratio is 4 and the mass of the vehicleis 1500 kg. If the centre
of gravity of the vehicle is 450 mm above the road level and width of the track of the vehicle
is 1.4 m, determine the limiting speed of the vehicle for condition that all four wheels
maintain contact with the road surface.

Solution Let [J = limiting velocity of the vehicle.

. \ '
Angular velocity: @ = == oo rds

)24 Q/
0. = =—— rad/s 8 x&%

Precession velocity: % 10 \/"
(i) Reaction due to gyroscopic couple: &
(a) Gyroscopic couple dueto ’@ eers

C, =41 0w

) v .
=4 XX —x——=0.32 v Nm

025 100
(b) Gyroscopic couple due to engine parts:

C,=1000,

| % 4 X e X e = 0.16 v* N
025 100

Total EYroscopic ¢« \upl
C Cy+C,

=032 +0.16v° =0.48v° Nm

Reaction due to total gyroscopic couple on each outer wheel:

C, 0487

0 ](,1\:\1 ) )
2 2x15

R
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Reaction due to total gyroscopic couple on each inner wheel:

C, = 0.16 v'N (4
(ii) Reaction dueto centrifugal couple:
Centrifugal force: F="0 200X 15N

Overturning couple due to centrifugal force:

C.=F:xh
=15v?x 0.45 = 6.75 v> Nm

Vertical downward reaction on each inner whesdl is;

ase 2887 208N ()
2 2x1.5
(i) Reaction due to weight of the vehicle:
_mg _ ’S‘Ux‘)Sl 2678 75N (T '
= 30
The limiting condition to avoid Ilftlnw&om theroad surfaceis:
or | - n 2 R >0
R, > R. + R,
3678.75 = 2.25¢* + 0.16v*
v = 3907 m/s or 140.65 kmph
or
Problem 8

A four wheeled motor vehicle of mass 2000 kg has awheel base of 2.5 m, track width
1.5m and height of c.g is 500 mm above the ground level and lies 1 m from the front axle.
Each whedl has an effective diameter of 0.8m and a moment of inertia of 0.8 kgm2. The drive
shaft, engine flywheel rotating at 4 times the speed of road wheel in clockwise direction
when viewed from the front and is equivalent to a mass of 75 kg having a radius of gyration
of 100mm.If the vehicle is taking a right turn of 60 m radius at 60kmph, determine the load
on each whesl.

Solution,
Since the C.G of the vehicleis 1 m from the front,

The percentage of weight on the front wheels = (2.5-1)/2.5 x 100
= 60%
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The percentage of weight on the rear wheels = 40 %
Total weight on the front wheels= 11772 N

Total weight on the rear wheels = 7848 N
Weight on each of front wheel =5886 N = W¢g/2
Weight on each of rear whed  =3924 N = Wg/2

The road reaction due to weight of the vehicle is always upwards

Effect of Gyroscopic couple due to Wheel,
CW = 4|W- Ww. Wp
=37.1Nm
Gyroscopic couple due to wheels acts between outer and inner wheels.

o ds ) Lok 2
" ok " W

Fig.90

The gyroscopic couple tends to press the outer and lift the inner wheels
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Reactive Gyro. Couple

INNER WHEELS

Fig. 91

OUTER WHEELS

Theroad reaction is vertically upward for outer wheels and downward for inner wheels

Road reaction on each outer/Inner whee!,

G
5 = 5% = 1237N

Effect of Gyroscopic Couple due to Engi ne

Gyroscopic couple due to engine

CE: IE- WE. Wp Q}
CE: |E.G.Ww.Wp ‘ Q/
=347Nm g"& ¢

Gyroscopic couple due to engine acts betweﬁ@qm gné" Rear wheels.

X

ENGINE

Fig. 93
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The couple tends to press Rear wheels and Lift front wheels

Reactive Gyroscopic couple

Theroad reaction is vertically upward for REAR and downward for FRONT
wheels.

Effect of Centrifugal Couple

C.G

INNER WHEEI OUTER WHEELS

Raght Turn
Fig.96
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MV

- oy
Centrifugal force, ~ * R —9263N

mv*

Centrifugal Couple Ce= R = h =4631.5 N

The gyroscopic couple tends to press the outer and lift the inner wheels.

INNER WHEELS

Fig.97

Fig. 98
Theroad reaction is vertically upward for outer wheels and downward for inner

wheedls. Road reaction on each outer/Inner wheel

C

Y 1543.8N

¥
2

Engine crank shaft rotates clockwise direction seen from front, and Vehicle takes
RIGHT turn
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(@
¥ F.1
/1 oeap weigHT /1 DEAD WEIGHT
/| cEnTRIFUGAL | eeTRIFUGA
INNER WHEELS / [ GYROWHEELS lavRo WHEELS
! !
I TGYRO ENGINE PETYRO ENGINE
OUTER. WHEELS
= _.'.|_ --'j:':l
ll'\.l' f : =
| DEAD WEIGHT b DEAD WEIGHT
| CENTRIFUGAL | CENTRIFUGAL
| £YRO WHEELS ["GYRO WHEELS
I":-\.'r-n' P EMIGIHE

| FYRO ENGINE

Right Turn
Fig.99

Load on front wheel 1 =4322.86 N
Load on front wheel 2 = 7435.26 N
Load on rear whedl 3= 2374.74 N
Load on rear wheel 4 = 5487.14 N

Problem 9

A section of an electric rail has a left hand curve of radius 300
m, the superelevation of the outer rail beirig 2 . The approach to the curve is aong a
straight length of track, over the last 50 m th qnlform increase in elevation of the outer
rail from level track to the super elevatlagd 60 mm. Each motor used for traction has a
rotor of mass 550 kg and radius of gyrati 0'mm. The motor shaft is parallel to the axes of
the running wheels. It is supported i &\gﬁ 780 mm apart and runs at four times the wheel
speed but in opposite direction. The eter of running wheel is 1.2 m. Determine the forces

on the bearings due to gyroscopic action when the train istravelling at 90 kmph (&) on the last
50 m of approach track (b) on the curve track.

Solution Angular velocity:
Gear rtio X v
n=—-
,.
4 % 90 % 1000
3600 x 0.6

Let [Jp, = angular velocity of precession.

= 166.67 rad/s

Moment of inertia: I= mk? = 550 x 0.3° = 49.5 kg m?

Gyroscopic couple: C = lox,
495 % 166.67 x @,
8250.16 @, Nm

250160,

0.78
10577.1 @, N

B
|
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Forces on bearings:

(a) Angle turned by engine shaft in the last 50 m track

i
= 220 _ 01734 rud
1.5

50
H . . ol > §
Time taken to cover this distance 90736 2 sec
) . 0.1734 2
Veocity of precession: 4, = - = 0.0867

Forces on bearings. P =10577.1 x 0.0867 = 917.03 N

The change in momentum is represented by vector oa and ob as shown in Figure 15.18.

vl‘
\k'
|

Precession
axs

|
;
\,/ coupie !
2 7 xA.'_‘!ncvrn |

couple .
Fl(: 0

b4

The couple required for precession is, therefore, acting in clockwise looking upward
direction. The reaction couple acts in anticlockwise direction looking downward as the forces
on the bearings are in the directions shown in Figure 100.

i) When electric rail moves on curved path, the effective angular velocity of precession
about the axis perpendicular to the axis of rotation is:

where [ isangle due to superelevation of outer rail. Referring to Figure 15.19.

/ 4773
cost = QB- = E—-— =().9848
AC 15
% 1000
or 0, =—0X100 | 09848 = 0.08206 rai/s
" 3600 x 300
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Effective angular velocity of spin =

Therefore,
Forces on bearings: P=10577.1 Wp
= 10577.1 x 0.08206
=867.95N Ans.

The change in angular momentum vector and reaction couple shown in Figure 15.19 shows
direction of forces on the bearings.

_V_ cos @
'i"./'; v
\ 7 ;
\
\. ! . ’//,,/_,,'\“
N
[ ()T
< 4 P
<
/ Roaction couple

Action couple -7'\ C

LEmM ==
’ ’/ /’] 0.28 m
\
P —"’//A‘L"

14773 m B

X%

&g.i&l
Q.
Problem 10. ‘Q |

A four wheeled trolley of total weight 20 kN running on rails of 1 m gauge rounds a
curve of 30 m at 40 kmph on a track of embankment slope of 10°. The wheels have external
diameter of 0.6 m and each pair of axle weighs 2000 N and has a radius of gyration of 0.25
m. The height of the C.G of trolley above the wheel is 1 m. Calculate the reaction on the each
rail due to gyroscopic and centrifugal couple.

Solution,

Weight of trolley = N = 20000 N

Whesl track = 2x

=1m

Radiusof curve=R =30m

Trolley velocity = 40 kmph= 11.1 m/s
Track of embankment slope of = 8 = 10°

Diameter of wheel =d=0.6 m

Weight of each pair of wheels = W; = 2000 N= mg
Radius of gyration kg = 0.25 m

Height of C.G from wheel base=1m
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Referring to above Fig. 102,
Consider, the total effect of weight of trolley and that of centrifugal force F,
" Thereaction RA and RB at thewheels X and Y,

Resolving forces perpendicular to the tragk,
Ra+tRg =mg Cos 6 + F Sin 6
2
=mgcosO+mV—sin6 % &
2 \
=mg (cos 6+5§Sin6) C:) N

2
1t *0.1736]’. \
Bl.30 1N

= 20000[0.9848 +
Ra+Rg = 21.158'N

Taking moments about Q,

Ra*2%¥=(FsinO+mgcos0)*-(FcosO+mgsinf)h

2
(%sin9+mgcose) L(mvz

RA = 2 -2x

cosf —mg sinG)

V2
mg(——sin 6 + cos 6 2
g(gR ) m(v_ cosf — sinG)
= 2 - 2x \gR

20000 [ 11.1% 1»20000[ 11.12 % . ]
= 2 [9.31*30 x 0.1736 + 0.9848] 77 |5s1.a0 ¥ 0-9848—0.1736
RAo=5751N
Rg = 15407 N

Let the force at each pair of wheels or each rail due to gyroscopic couple = Fgq
. Gyroscopic couple applied = Io cos0 wp
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" Fg+ 2x = lo cosd wp
_ lw cosB wp
B 2x
2000 -
2 _ et N 2
But, | = mk° = 9.1 =12.74kgm

Fg = 12.74+37+0.9848+0.37

=172 N 1
* Reaction on inner rail = Ra - Fy
ii) 5751172
5479 N

* Reaction on outer rail = Ra + Fq
1) 15407 + 172
15579 N
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MODULE 4 INTRODUCTION AND FREE VIBRATION
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4.1 INTRODUCTION N \\ ) &

oW~

In earlier units, you have studied various mechagisms m
one of them which converts thermal energy of fossilfUels ¢
fluctuating torque. Even the machines having rotating never completely
balanced. From static and dynamic analysis of such ifes;. it is known that these
machines transmit forces to the ground through st . These forces are periodic in
nature.

. The IC engineis
er. [t produces highly

Y ou know that in a simple pendulum, bob startSito and fro motion or we can say
oscillations when bob is disturbed from its equilibrium position. It executes oscillations
at natural frequency. It keeps on oscillating until its motion dies out. If such asystemis
subjected to the periodic forces it responds to the impressed frequency which makes
system to execute forced vibration at forcing frequency. If impressed frequency is equal
to the natural frequency, resonance occurs which resultsin large oscillations and due to
thisit resultsin excessive dynamic stresses.

This unit deals with oscillatory behaviour of the dynamic systems. All the bodies having
mass and elasticity are capable of vibration. In studying mechanical vibrations, the
bodies are treated as elastic bodiesinstead of rigid bodies. The bodies have mass al so.
Because of massit they can possess kinetic energy by virtue of their velocity. They can
possess elastic strain energy which is comparable to the potential energy. The change of
potential energy into kinetic energy and vice-versa keeps the body vibrating without
external excitation (force or disturbance). If the cause of vibration is known, the remedy
to control it can be made.

Vibration of a system is undesirable because of unwanted noise, high stresses,
undesirable wear, etc. It is of great importance also in diagnostic maintenance.

Objectives
After studying this unit, you should be able to

° analyse a system for mechanical vibration,



determine degree of freedom of a system,
. determine natural frequency of a system,
. analyse and study dynamical behaviour of a system, and

. control vibration in a system.

4.2 DEFINITIONS

Periodic Motion
The motion which repeats after aregular interval of timeis called periodic motion.
Frequency

The number of cycles completed in a unit timeiscalled frequency. ltsunit is
cycles per second (cps) or Hertz (Hz).

Time Period

Timetaken to complete one cycleis called periodic time. It isrepresented in
seconds/cycle.

Amplitude

The maximum displacement of avibrating system or body from the mean
equilibrium position is called amplitude.

FreeVibrations

When a system is disturbed, it starts vibrating and keeps on vibrating thereafter
without the action &fex nal force. S&/ iprations are called free vibrations.

Natural Frequency

When asysteﬁ%ef;t;?’ ce -%s which are undamped, the frequency of
iscall at

such a system uency.

Forced Vibrations
Thevibrations of th under the influence of an external force are called
forced vibrations. frequency of forced vibrationsis equal to the forcing
frequency. R

Resonance

When frequency of the exciting force is equal to the natural frequency of the
system it is called resonance. Under such conditions the amplitude of vibration
builds up dangeroudly.

Degree of Freedom

The degree of freedom of avibrating body or system implies the number of
independent coordinates which are required to define the motion of the body or
system at given instant.

Simple Harmonic Motion
It isato and fro periodic motion of a particlein which :

(8 acceleration is proportional to the displacement from the mean
position.

(b) Acceleration is always directed towards afixed point which isthe
mean equilibrium position.

It can be represented by an expression having a periodic function like sine or
cosine.

X=Xsnot

where X is the amplitude.



Diagramatically it can be represented as shown in Figure 7.1.

when ot=0,t or 2r = x=0
7T

when (DtZE, = X=X
t

X
¥
X

o] T 2n
ot >

Figure : Simple Harmonic Motion

SAQ1

At which phase angle, amplitude occurs for a sinusoidal function?

A Q,Q/

4.3 ANALYSISOF A SINGLEDEGR bé“
FREEDOM SYSTEMS FOR FREEXHBRATIONS

Y
A practical system isvery complicated. Therefore, b&mgﬁroceédi ng to analyse the
system it is desirable to simplify it by modeling t .. The modeling of the system
is carried over in such a manner that the result 4 table within the desirable
accuracy. Instead of considering distributed mass,’alumped massis easier to analyse,
whose dynamic behaviour can be determined by one independent principal coordinate, in
asingle degree freedom system. It isimportant to study the single degree freedom
system for aclear understanding of basic features of a vibration problem.

4.3.1 Elements of Lumped Parameter Vibratory System
The elements constituting a lumped parameter vibratory system are :
TheMass
The mass is assumed to be rigid and concentrated at the centre of gravity.
The Spring

It is assumed that the elasticity is represented by a helical spring. When deformed
it stores energy. The energy stored in the spring is given by

PE= L1k
2

wherek is stiffness of the spring. The force at the spring is given by
F =kx

The springs work as energy restoring element. They are treated massl ess.



The Damper

In avibratory system the damper is an element which is responsible for loss of
energy in the system. It converts energy into heat due to friction which may be
either dliding friction or viscous friction. A vibratory system stops vibration
because of energy conversion by damper. There are two types of dampers.

Viscous Damper

A viscous damper consists of viscous friction which converts energy into
heat due to this. For this damper, force is proportional to the relative
velocity.

Fy o relative velocity (v)

Fd =CV
where ¢ is constant of proportionality and it is called coefficient of
damping.

The coefficient of viscous damping is defined as the force in ‘N’ when
velocity is1 m/s.

Coulumb’s Damper

The dry dliding friction acts as a damper. It is almost a constant force but
direction is always opposite to the sliding velocity. Therefore, direction of
friction changes due to change in direction of velocity.

The Excitation Force

It isasource of continuous supply of en to the vibratory system. It isan
external periodic face which acts on atory system.

It isimportant to study the %o‘e freedom system for a clear understanding
of basic features of avibrétio
4.3.2 Undamped :Nw)r

There are several methods t@se undapmed system.

M ethodol ogy 0 R

Method Basedrn Wewton’s Il Law

According to the Newton’s II law, the rate of change of linear momentum is
proportional to the force impressed upon it

% (mv) a Net forcein direction of the velocity

Using v:%:x
dt
dx
—=(M)=cXLF
- (M) =c2

where c is constant of proportionality.
or mX=c> F
For proper unitsinasystemc=1
mX=2F
The direction of forces mx and > F are same. A model which represents

undamped single degree of freedom system shall have two elements, i.e.
helical spring and mass. The massis constrained to move only in one
direction as shown in Figure 7.2. The massis in static condition in
Figure 7.2(a). The free body diagram of the massis shown in



Figure 7.2(b). The body isin equilibrium under the action of the two forces.
Here ‘A’ is the extension of the spring after suspension of the mass on the

spring.
Therefore, kA=mg ... (7.0
Uns_tfetched
position A KA s KA
______________ l*‘
______ v

g

(@) Spring Mass (b) Static Condition  (c) Dynamic Condition
Figure : Undamped Free Vibration

figure represents the dynamic condition of the body. In this case, the
body is moving down with acceleration © X’ also in downward direction,
therefore,

mX =2 F indirectionof X

or mMXx=mg — Kk (X+ A)

Incorporating Eq. (7.1) in Eq. (7.2)
mX = — kX . > &
or mX + kx=0 \/
Method Based on D’Alembert’s Principle C:)

The free body diagram of the massin d& condition can be drawn as

follows: 0 N
Q'X)

]

‘ N
m X (Inertia force)

Figure : Free Body Diagram

The free body diagram of massis shown in Figure 7.3. The force equation
can be written asfollows:

mMX +mg =Kk (X+ A)
Incorporating Eqg. (7.1) in Eq. (7.4), the following relation is obtained.
mX + kx =0
This equation is same as we got earlier.
Energy Method

This method is applicable to only the conservative systems. In conservative
systems thereis no loss of energy and therefore total energy remains
constant. When amechanical systemisin motion, the total energy of the



system is partly kinetic and partly potential (elastic strain energy). The
kinetic energy is due to the mass (m) and velocity ( x). The potential energy
is due to spring stiffnhess and relative movement between the two ends of the

spring.
Energy (E) =T + U = constant (C)
where T = Kinetic energy of the system, and’
U = Elagtic strain energy.

Sincetotal energy remains constant

%:O or %(r-i—U):O
T:%m(k)z
{1 ﬂé/
SHB
— A — N ‘i
o

/ A
\(. 2 Deflecton ~—»
Figure: %orce’ Deflection Diagram

The potential %ébf thé system consists of two points :
(8 {o¥/gainin PE of mass, and
( rai ﬁ”energy of spring.
Consider an infinitesimal element du at x = u.
From Figure 7.4
Spring force (F,) =k (u+ A)
Work done dW =k (u+ A) x du

X
U =I dW - loss of PE of mass
0
X
=j K (u+A) du—mg x
0

U=j(ku+mg)du—mgx [~ kA =mg]
0

or U=%(kx2)+mgx—mgx

or U =1k
2



i(lrn>'<+lkx2j=0
dt \ 2 2

1m><2)‘(><5(+£k><2x+)‘(=0
2 2

or mX + kx =0
Thisis the same equation as we got earlier.
Rayleigh’s Method

It isamodified energy method. It may be noted that in a conservative
system potential energy is maximum when kinetic energy is minimum and
vice-versa. Therefore, equating maximum kinetic energy with maximum
potential energy.

1 . 2 1 2
Em(xmax) —2k(xmax)

and Xmax = X
—m(xco)Z_l k X2
2
k
or o=, |—
m

Solution of Differential Equation

The differential equation of single degreefr&dom d i |s given by
mX + kx =0 alax
or X+ (EJ x=0
m

when coefficient of acceleration termis unl@dunderroot of coefficient of xis
equal to the natural circular frequency, ‘10

O =,|—
m

Therefore, Eq. (7.7) becomes

X+ coﬁ x=0
The equation is satisfied by functions sin w, t and cos w, t. Therefore, solution of
Eq. (7.9) can be written as

X=Asno,t + Bcosm,t

where A and B are constants. These constants can be determined from initial
onditions. The system shown in Figure can be disturbed in two ways :

(8 by pulling mass by distance ‘X, and
(b) by hitting mass by means of afast moving object with avelocity \
say ‘V’.
Considering case (a)
t=0, x=X and x=0

X=B and A=0

X=X cosm,t



Theory of Machines Considering case (b)
t=0, x=0and x=V

B=0 and A:i
mn

vV .
X=—s8no,t
0‘)I‘l
Behaviour of Undamped System

onsider the system shown in Figure . The system has been disturbed by
pulling the mass by distance ‘X’. The solution of the system in this case is given
by Eq. (7.11) whichis

X=X cosm,t

. . s

X=—Xo, 9no,t=Xo, cos(cont+zj
and % =— X2 c0sm,t = Xm2 cos (ot + )

These expressions indicate that velocity vector leads displacement by % and

acceleration leads displacement by ‘w’. The maximum velocity is (X ,) and
maximum acceleration is (X ®?) .

s> Qs

\@z?% :

QL+
(@ Q(I\ — 22 2n
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Figure : Plots of Displacement, Velocity and Acceleration

Figure 7.6 shows the plots of displacement, velocity and accel eration, with respect
to time. The following observations can be made from these diagrams :

(& A body, if disturbed, will never stop vibrating.



(b)  When displacement is maximum, velocity is zero and acceleration is
maximum in direction opposite to displacement.

(c)  When displacement is zero, velocity is maximum and acceleration is
zero.

4.3.3 Damped Free Vibration

In undamped free vibrations, two elements (spring and mass) were used but in damped
third element which is damper in addition to these are used. The three element model is
shown in Figure 7.7. In static equilibrium

kA =ng
mX=mg —k (x+ A) —cx
MK = — kx — X

or mMX + cX + kx=0

Let x=Xe¥

ms® +cs+ k=0

c k
or +—s+—=0
m- m

IR DR O Ny
[ -

N L\

X

mg

@) (b) ©
Figure : Damped Free Vibration

The nature of this solution depends on the term in the square root. There are three
possible cases :

2
€)] (Ej >4 [Ej — Overdamped case
m m



2
(b) (Ej —4 (ﬁj _ Critically damped case
m m

2
(© (Ej <4 (Ej — Underdamped case
m m

Let the critical damping coefficient be C, therefore,
2
(2
m m

or C.=2Jkm=2 fﬁ m? = 2mm? \/E= 2mao,
m m

or C. = 2Jkm=2mo,
Almost all the systems are underdamped in practice.

s & o5)- ()

Theratio of damping coefficient (c) to the critical damping coefficient is called damping
factor C’.

Let

where wq is natural frequency of the damped free vibrations.
Therefore, for under-damped case
C - .
x=g 2m [Xle"”dt + X, e"‘”dt}
For critically damped system

Cc
-t
X=(X1+th)e 2m

For overdamped system
C
X e_%t \ \
L ]
C_C G _ 2mon_.
2m C., 2m 2m



Under damped System
Over damped System

Critically damped System

Figure

The Eq. (7.19) can also be written as

x=X e “°n' cos(wg t + o)

where X and ¢ are constants. X represents amplitude and ¢ phase angle.

Let at t=t, X=X

X =X e 5! cos(wg t+0

After onetime period
t=t+t, and x=x

—Con (t+tp)

x=Xe cos{my

Dividing Eq. (7.24) by Eq. (7.25)

X _  Xe C°°”(t+tp)cosa)d\§¢ /

)

(t+tp)+

b%&

% Xt costay

(t +t,Y0) Qf;)

Since to _ 1. 2n 0’&’
fp O\)d Q o 8 :
or og t, =2n
X _ Lontp cos (g t + ¢)
X cos{wy t + 21 + ¢}
Since cos 0 = cos (2t + 0)

cos (g t + ¢) =cos{wy t + 21 + ¢}

ﬁ:egwntp
X
X0 2n 2t ®, §
or L Co =Co =—_——" N>
n(XJ " " og o 1- 2
X 21 G
or L, | — |=—==
n(XJ -2

is called |ogarithmic decrement.

If at t=t+nt,

Q/Qx

.. (7.26)



It can be proved that

L X 2nn g
"X -2
It £<03 L, 20 2n¢
X

Figure 7.8 represents displacement time diagram for the above mentioned three cases.
For over-damped and critically damped system mass returns to its original position
sowly and thereis no vibration. Vibration is possible only in the under-damped system
because the roots of Eq. (7.14) are complex and solution consists of periodic functions
(Eq. (7.22)).

4.3.4 Free Transverse Vibration due to a Point Load on a Simply
Supported Shaft

In thistype of vibration, al the particles vibrate along paths perpendicular to the shaft
axis. The shaft may be having single to several supports. It may be carrying its own load,
asingle point load or several point loads come in this category. Now these cases are to
be dealt with separately.

A e a :!: EEE b » B
I
Figurg™: K fah&/erse Vibration
Consider avery IightéaQ?B/O'f | ‘" carrying a point load ‘W’ at a distance ‘&’
from the support A and at adist b’ from the support B.
a+b= é/ ’
andthedeflection ()

a2 b?
3EII

The natural circular frequency for the system is given by
k

(%)

g

or o, =]~
)

W, =

where o=

fzﬁziﬁzﬂ%m
" on 2n\5 Js

The mass of the beam was neglected for determination of the above mentioned natural
frequency.

W
k
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4.3.5 Free Torsional Vibration of a Single Rotor System

In torsional vibration, all the particles of the system vibrate along circular arcs having
their centers along the axis of rotation. Figure 7.10 represents a single rotor systems. In
both the cases (a) and (b), there is only one inertia I’.

A /
/ L

7 4 y %

e e s = e = s = e s mm s = s = s e mm s = = e e =) P PR _.7/ _____________________ U /
L/

/ t t L

g dr H d /

iy
N

(@ (b)

Figure : Free Torsional Vibration

In part (a) it is supported by one shaft segment and in part (b) it is supported by the two
shaft segments.

The differential equation for the rotor shown in Figure 7.10(a) can be obtained by
considering two couples, i.e. inertia couple and torsional elastic couple. If shaft is
twisted slightly say by angle ‘0’, the couple is given by

(k 6)

where k; istorsional stiffness which is given by

T GJ

k=5=T Q/

where G ismodulus of rigidity, %Q/

Jis polar moment of inertia, and
| islength of shaft.
The differential equation for the rotor givenin Flgure 7, %)’ls\

or

|6+kt9=0 0 \
. GJ ‘o

o, =

For the shaft shown in Figure 7.10(b), the two segments are acting like parallel springs.
Therefore, the differential equation for thiswill be

or

or

SAQ 2
(€Y
(b)
(c)

154+ G, B9 g
ly I,

5+S(hid2]9-0
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What is the difference between energy method and Rayleigh’s method?
By how much angle acceleration and velocity |ead displacement?
Along which curve amplitude decays in under-damped system?



4.4 CAUSES OF VIBRATION IN MACHINES

There are various sources of vibration in an industrial environment :
(@  Impact processes such as pile driving and blasting.

(b)  Rotating or reciprocating machinery such as engines, compressors and
motors.

(c)  Transportation vehicles such as trucks, trains and aircraft.
(d) Fow of fluids through pipes and without pipes.
(e) Natural calamities such as earthquakes.

4.5 THE HARMFUL EFFECTS OF VIBRATIONS

There are various harmful effects of vibration :
(@) Excessivewear of bearings.
(b)  Formation of cracksin machines, buildings and structure, etc.
(c) Loosening of fastenersin mechanical systems.
(d)  Structural and mechanical failuresin machines and buildings.
(e) Fregquent and costly maintenance of machines.
(f)  Electronic mafuncti onsthrough f re of solder joints.

(9) Abrasion of igsulation around conductors causing soots.
(h) The occupatl onal ex mans to vibration leads to pain, discomfort
and redu on |nw rk| |ency

4.6 VIBRATION C

The vibration can someti be eliminated on the basis of theoretical analysis. However,
in eliminating the vi may be too high. Therefore, adesigner must compromise the
manufacturing costs involved between an acceptable amount of vibration and a
reasonable manufacturing cost. The following steps may be taken to control vibrations:

(@  Thefirst group of methods attempts to reduce the excitation level at the
source. The balancing of inertial forces, smoothening of fluid flows and
proper lubrication at joints are effective methods and should be applied
whenever possible.

(b) A suitable modification of parameters may also reduce the excitation level.
The system parameters namely inertia, stiffness and damping are suitably
chosen or modified to reduce the response to a given excitation.

() Inthismethod, transmission of path of vibration is modified. It is popularly
known as vibration isolation.

As mentioned above, the first attempt is made to reduce vibration at the source. In some
cases, this can be easily achieved by either balancing or an increase in the precision of
machine element. The use of close tolerances and better surface finish for machine parts
make the machine | ess susceptible to vibration. This method may not be feasible in some
cases like earthquake excitation, atmospheric turbulence, road roughness, engine
combustion instability.

After reduction of excitation at the source, we need to look for a method to further
control the vibration. Such a selection is guided by the factors predominantly governing
the vibration level.



Example 4.1
Determine the natural frequency of spring mass pulley system shown in

Solution
By Energy Method

Total energy (E) =%mx2+%léz+%kx2

X=r0
or X=r0
X=r0
E=£m>’<2+ll—)'(2+lkx2
2 2 r2 2
E=lm2>'<5<+1I—2>‘(5(+lk2x>‘(:0
t 2 2r2
1)
or (m+—jx+kx=0
;2

Q}‘Zx

kx

kx

By D’Alembert’s Principle
M-T)r=16 ad ro6=%

. I,
—-mX—kx=— X
r2

N
or mx+—2x+kx=0
r

Vibration of
M echanical Systems



or m+— | X+kx=0
L rZJ
or X + kl x=0
m+ —

Example

Determine the effect of mass of the spring on the natural frequency of spring mass
system.

Solution
Let m be the mass in kg per unit length.

Figure 7.12 shows a spring mass system. L et the velocity distribution be linear
therefore, the total energy ‘E’ is given by

|
1 .2 1 .2 1 2

E==—mx°+= 3 +=kx
> Zi(ms DY+

or

or




Example

Figure 7.13 shows an indicator mechanisms. The bell crank armis pivoted at O
and has mass moment of inertia |. Find natural frequency of the system.

a

x
&»
~
AN

L
|

y

N __-L
& |

Solution
Let 6 be the angular displacement of bell crank arm.

1
KE:—I6+— abd +— ch
> > M (a6)® > M m (c )

E:%kl (06)2+%k2 (ae)2+1k3 (b 6)2

Total energy (E) = KE + PE ’@/
dt
' (I +mya® + mc?) 0+ (k¢ +k % b?)e 0
2
N éJ{klc + ky a2 +k3b.}§
I+mza +”10

2 2 2
o = k;c +k2§1 +k3£) cadl/see.
Il +mya” + mc

Example
A damped system has following elements :

Mass = 4 kg; k=1kN/m; C =40 N-sec/m
Determine :

(@) damping factor,

(b) natural frequency of damped oscillation,

(c) logarithmic decrement, and

(d) number of cycles after which the original amplitudeis reduced to
20%.

Solution
Given data:
m=4Kg; k=1KkN/m; C =40 N-sec/m

C.=2ykm= Z«flOOOX 4 =126.49 NIm



(8 Damping factor

40
" 126.49

(b \/7 f =15.8r1/s
0y =0 1-C2 = 15.8«/1— (0.316)* =14.99 /s

fqg = % =2.386 cps or Hz

=0.316

T
N 2n ¢
(c)  Logarithmic decrement (3) =
J1-¢?
2n x 0.316

= —— = 2.0928

«/1 — 0.316%

@ s=m2_-ipx
noox,

X2
1
or 20928==1In5
n
In5
or n= = 9
2.0928 %
\ 3
4.7 SUMMARY &
A system which has mass and ela%ty can start vibrating if it is disturbed. The natural
frequencies of a system dep edegrees of freedom of a system. For a
multi-degree of freedom there will be several natural frequencies. For a
two-degree of freedom there will be two natural frequencies.
The vibration can be : transverse or rotational depending on the type of the system.

The methods of analysis constitutes applications of Newton’s law, D’ Alembert’s
principle, energy method and Rayleigh’s method. All the methods can in general be used
to analyse the system but it can be easily analysed by using a particular method.
Therefore, selection of a particular method is always desirable for a given system. The
energy method and Rayleigh’s method can be used for a conservative system where there
isno energy loss but a practical system cannot be conservative in ideal sense. The cause
of vibration, their harmful effects and remedies have also been mentioned for practical
utility to control vibrations.

4.8 KEY WORDS

Periodic Motion : Itisthe motion which repeats after aregular
interval of time.

Frequency . Itisthe number of cycles completed in aunit time.

Time Period :  Itisthetime taken to complete one cycle.

Amplitude : Itis maximum displacement of avibrating system
from the position of mean equilibrium position.

FreeVibration . Itisthe vibration of the system which takes place

without any external force after the disturbance.



Natural Frequency

Forced Vibration

Resonance

Degree of Freedom

M ode of Vibration

Conservative System

Damper

It isthe frequency of vibration of a system which
is undamped and without external excitation when
it isdisturbed.

It isthe vibration of a system which is dueto
external excitation.

When forcing frequency is equal to the natural
frequency, resonance takes place.

It isequal to the number of independent
coordinates which are required to define the
motion of the system.

It isthe way, the system vibrates in the free
vibrations.

It isthe system for which total energy remains
constant.

It isthe element which isresponsible for decay in
energy.




MODULE-5
FORCED VIBRATION (SINGLE DEGREE OF FREEDOM SYSTEM)

In this chapter, the steady state response of harmonically excited single degree of freedom
systems will be discussed. Simpler phasor diagram method will be used to obtain the steady state
response. Response due to rotating unbalance, whirling of shafts, vibration isolations will also
be discussed.

Steady state response due to Harmonic Oscillation:

Consider a spring-mass-damper system as shown in figure 1. The equation of motion of this
system subjected to a harmonic forcing F sinwt can be given by

X+ kx+cx = F sin ot 1)

where, m, k and c is the mass, spring stiffness and damping coefficient of the system.
TS i
a8 S »F

- \\

¢ Fsinot

CwX

. Referenceline

&{ \ ’Figure 2: Force polygon

Figure 1 Harmonically excited sys(t“a\'@
The steady state response of the wstt?m can be determined by solving equation (1) in may
different ways. Here a simpler graphical method is used which will give physical understanding
to this dynamic problem. From solution of differential equations it is known that the steady state
solution (particular integral) will be in the form
X=X sin(wt - @) 2
As each term of equation (1) represents a forcing term viz., first term represent the inertia force,
second term the spring force, third term the damping force and term in the right hand side is the
applied force, one may draw a close polygon as shown in figure 2 considering the equilibrium of
the system under the action of these forces. Considering equation (2),

e spring force = kX sin(wt — @)

e damping force = cwX cos(awt - ¢)



e inertiaforce=

From Figure 2

—mw?X sin(wt — )

X = F
K — 22 2
J(k=me?) + (co) —
¢ =tan™ cw "“A'm
e ¢, = 2ma, = Critical damping
i c
X= ©) =— = damping factor or
2 2 c
:|.—m 2 + C£ ¢ . .
\/( k ¢ j ( k j dalﬂplng ratio
co C
—:—*_ 20 —
k ¢ k ; w,
= F - 2 2 (4) ? k = P > :a)_
w [0} n n
ERIRER
a)n

tang = {Z}(EJJ > x’(y% (5)

As the ratio F/k is the static deflectloKr@s?th‘e spring, Xk/F =X/X, is known as the
magnification factor or amplitude ratlo@ e system. Figure 3 shows the magnification ~

frequency ratio and phase angle (¢ )~ uency ratio plot. It is clear that for undamped system

the magnification factor tends to infinity when the frequency of external excitation equals natural
frequency of the system. But for underdamped systems the maximum amplitude of excitation has

a definite value and it occurs at a frequency 2 1. For frequency of external excitation very
[0

less than the natural frequency of the system, with increase in frequency ratio, the dynamic
deflection (X) dominates the static deflection (Xg), the magnification factor increases till it
reaches a maximum value at resonant frequency after which the magnification factor decreases

and for very high value of frequency ratio (satyﬁ > 2, the vibration is very much attenuated.
a,

n

One may observe that with increase in damping ratio, the resonant response amplitude decreases.
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Figure 3: Magnification factor ~ frequency ratio and phase angle ~frequency ratio for different
damping ratio.

So for a underdamped system the total response of the system which is the combination of
transient response and steady state response can be given by

X (t) = x,e 7 sin( - é/za)nt+¢1)+% Sin(a);[—¢) ©
grjE
a)n a)n

It may be noted that as t — «, the first part of equation (6) tends to zero and second part

remains. From phase angle ~frequency ratio plot it is clear that, for very low value of frequency
ratio, phase angle tends to zero and at resonant frequency it is 90° and for very high value of
frequency ratio it is 180°.



Example 1: Find the resonant frequency ratio (value of frequency ratio for which the steady
state response will be maximum) for a spring-mass-damper system.

Solution: The steady state solution for a single degree of freedom system can be given by

2\2 2
2] (=2
a)n a)n
F
= 4 where, r :2.
J(a-re) 2y o
X will be maximum if the denominator is minimum.
d 2 2
Hence—( 1-r2Y + (207 ):o
gr\(=r) +(2¢r)

or, di(1+r4—2r2+4§2r2):4r3—1&+8
r

Hence, r=0 or, r’=1-2¢2 or,

For r=41-2£%, X_ . = ~ ’
\/(11@ +4¢% (1-2¢7)
F F
I S
Jagtagt-8gt \Jag-agt
F
R g
2¢\1-¢?
So the peak magnification factor == _ which occur at afrequency ratio of
2¢\1-¢*

r =4/1-2¢? . Hence for underdamped system, it occurs when the external excitation frequency
isslightly less than the natural frequency.

Example 2: An air compressor of mass 100 kg mounted on an elastic foundation. It has been

observed that, when a harmonic force of amplitude 100N is applied to the compressor, the



maximum steady state displacement of 5 mm occurred at a frequency of 300 rpm. Determine the

equivalent stiffness and damping constants of the foundation.

Sol: The air compressor can be represented as a spring mass damper system as shown in figure
below.

100sinwmt

iy

——® Air Compressor

X = Steady state displacement =5 mm
F = Forcing amplitude = 100 N

e = frequency for max displacement = 27[ 300 = 10@

We have to determine Keg and Ceg,

The system can be modeled as a single do en'(g%wn in the above figure and the steady
state solution can be given by

Do 2
X = F ‘Q Mo~ X

\/(K—mwz )2 +(co) CoX

- KX

"k
\/(1—r2)2+(2§r)2

X will be maximum if the denominator is minimum.

Hence (;j—r((l— r2)2 +(2¢r )2) =0

or, dd(1+r —2r* + 427 %) = 4r° —4r +8¢%r =0
r



O, r=0 or, r?=1-2% or, r=+1-2,7
Tk
For r=y1-2¢%, X, = K

\/(1—1+ 20%) + 4% (1-247)
JAct+agt -8t \Jagt -4t
K
20 \1-¢?

So given
F
X, =5%x107° :—24, /']_K——;’Z o) = % = I%OO

w 107
Also,r:a)—n: K/ =1-2¢7
\ /100
100 Q/

oo >g¢$’

100007[ _ i \/ Cob‘

or K 100 _ 1000072 &Q, ‘
5x10320\1-¢%  J1-2¢? Q &

1 z ‘Q
or, =

*(1-¢7) (1-2¢2)
or, 1+4¢* —4¢2 -7t ({7 -¢*) =0
or, (4+7%)¢* —(4+7")¢? +1=0
or, 101.4091£* —101.4091£2 +1=0
101.4091+ \/(101.4091)2 ~4(101.4091)(2)

—=5x107° =

or, £% =
2x101.4091
=9.9603 x 10° or ¢ =0.0998
100x10°  10*z? 10* 7*

T1001-¢7 1-28% 1-2(0.0998)
=100.7 x 10° N/m. = 100.7 KN/m.

3
C =2x0.0098x100x |07 X107  \pere & _ o,
100 m



=633.396 N.Ym Ans.
Rotating Unbalance

One may find many rotating systems in industrial applications. The unbalanced force in such a
system can be represented by an eccentric mass m with eccentricity e, which is rotating with

angular velocity o as shown in Figure 4.

Inertiaforce of rotating

and nonrotating parts
2
~(M - m)x.Tm%(H esinot)
LY *‘:_—"E i
¢ 2 % Damping
Ing force =cx
E e S e e e e e Orce:kx

Flgure 4. Vibrati ng SyStem with rOtaIInW w% ure 5. Freebody d|agrarn of the sys[ern

Let x be the displacement of the nonrotating m@?ﬂ m) from the static equilibrium position,

then the displacement of the rotating (k. esinat.
From the freebody diagram of the sys@%w”n in figure 5, the equation of motion is

2
(M —m)X+m%(x+esina)t)+kx+c>'<:0:0 9)

or M x+ kx+ ¢ X = mew? sinwt (10)
This equation is same as equation (1) where F is replaced by mew?. So from the force polygon
as shown in figure 6

= {(-Ma?+k)*+co?}X?  (12)

mew?

o, X= (12
J(k=M %)% + (cow)?

or, X Mo/ M (23)

N A

CoX

Reference line

Figure 6: Force polygon



XM ol o, (14)

or, 2= =
em \/(1—(“’)2)%(25”)2
o, o,
2;@2
and tang = h (15)
1- (2
a)n

So the compl ete solution becomes

2

ot o — mew . ~
X(t) = x € sin(y1-¢ wnt+¢1)+\/(k—Ma)2)2+(Ca)2)Sm(wt ®)

= e =lo
¢ =0.01
= i e
- i '._\\' é’ZO
— r_?___b_‘._\_'
:'_I _"'_.- ——; — '-\-i_'.—"_‘:-_—-'_-
i i e ety L I
/".:.'x-"' :
I IiL--m.mr:'_-'ruu- :

Figure 7: MX o t for system with rotating unbalance
me o,

Fluae Aagbs
.

Lreefumty Tl

Figure 8 Phase angle ~ frequency ratio plot for system with rotating unbalance



It may be noted from figure 8 that, for a system with very very low damping, it is very unsafe to
run the machine near the natural frequency ratio greater than 2, the system vibration reduces to

X =me/M and phase angle tends to 180°.

Whirling of shaft:

Whirling is defined as the rotation of the plane made by the bent shaft and the line of the centre
of the bearing. It occurs due to a number of factors, some of which may include (i) eccentricity,

(i) unbalanced mass, (iii) gyroscopic forces, (iv) fluid friction in bearing, viscous damping.

|
W)
% N

~ \

I
@ 2r8

A

Figure 9: Whirlin ti,f
Consider a shaft AB on which adisc i%}lounted at s. G isthe mass center of the disc, which is at
adistance e from s. As mass center of the disc is not on the shaft center, when the shaft rotates, it
will be subjected to a centrifugal force. This force will try to bend the shaft. Now the shafts
neutral axis, which is represented by line ASB, is different from the line joining the bearing
centers AOB. The rotation of the plane containing the line joining bearing centers and the bend
shaft (inthiscaseitis AOBSA) is called the whirling of the shaft.

Considering unit vectorsi, j, k as shown in the above figure 9(b), the acceleration of point G can
be given by
8 =85+ 85,5



:['r'—rté’z—ea)2 cos(a)t—a)]i +{ré—e¢ozsin(a)t—¢9)+2r'9}j (16)

which is acting along radial direction k, which will give rise to restoring torque, assuming a
viscous damping for ato be acting at S. The EOM in radial direction

m| F—r 6° —ea)zcos(wt—e)}+kr+Cr':O (17)
m r9+2r'<9'—ecbzsin(a)t—0)}+cr6'?=0 (18)
e Sl K g ) e costot -
F+—r+ 0° |=ewn cos(wt—6) (29
m m
.. C ) . 5 .
ro+| —r+2r |0 =ew"sin(ot-0 20
o Srear] @0 Q )

Considering the synchronous whirl W 0] 2
S0, 0 = (wt— ) CO <

< =
i h le bet dr. ‘
¢ isaphase angle between eand r &\
Taking 6 =i =1 =0, from equation (
(5 ~o°) = e’ coS¢ (22)
m
c ) .
& —ro=ew’sing (23)
m
w
<o 245




COS¢ = m (25)

)
B
m m @,
- e’ 2 27)
\/(k—ma)z ?+(co’)
or, L = a)z / a)”z Q} (28)

<&
: &
0 ‘3:)x>$
W——ZT (} . (29)
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T
/Iﬁ\
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+
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N
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The eccentricity line e=SG leads the displacement line r = OS by phase angle ¢ which depends

on the amount of damping and the rotation speed ratio @/ @, . When the rotational speed equals

to the natural frequency or critical speed, the amplitude is restrained by damping only. From

equation (29 at very high speed o >> w,, ¢ —180° and the center of mass G tends to approach

the fixed point O and the shaft center Srotates about it in acircle of radius e.



Support Motion:

Many machine components or instruments are subjected to forces from the support. For example while
moving in a vehicle, the ground undulation will cause vibration, which will be transmitted, to the
passenger. Such a system can be modeled by a spring-mass damper system as shown in figure 10. Here

the support motion is considered in the form of y =Y sinwt, which is transmitted to mass m, by spring

(stiffness k) and damper (damping coefficient C). Let X be the vibration of mass about its equilibrium

|

e
m
m

position.

k.
Z Bw §
LWQ\ %/ y) K(x—y)
Figure 10: A system subjected to support motlon x e 11: Freebody diagram

Now to derive the equation of motion, fromfthe fr%)dy dlagram of the mass as shown figure 11
¢

mx = —k(x—y) —c(x-Y) - (30)
let z=x-y (31)
mz+ kz+cz=-my=nmw?ysin (32)
mz+ kz+cz=mw?ysinot (33)

As equation (33) issimilar to equation (1), solution of equation (33) can be written as

2= Z sin(wt - ) (34)

2
Z= mo y and tang = co (35)

J(k-mew?)? +(cw)? k—me*®




If the absolute motion x of the mass is required, we can solve for x = z + y. Using the

exponential form of harmonic motion
y=Ye"

z=2e“""? =(ze")e"

X=X = (Xe™)e”

Substituting equation (38) in (30) one obtains
{M(Ze™)o® +k(Ze") +cim(Ze )} € = mw*Ye”!
Ze (k- mw’® +ico) = mo’Y

Ze'" = _meY _
K—mo?® +icw
x=(Ze" +Y)e"

K —mw? +icw + mo?
k—mw?+icw

)Y

x=(
&

= X (cosy —isiny)e”

The steady state amplitude and Phase frem this-equ

3.

‘5‘:\/ K? + (cw)? 0&:
Y (k —mw?)? + (cw)? ‘Q

mco
tany = 2 2
k(k—mw?) + (cw)
1(%}]
X @,
M‘

(36)
(37)
(38)

(39)

(40)
(41)

(42)

(43)

(44)

(45)

(46)



{3

fray ALY THAMD

Figure 12: Amplitude ratio ~ frequency ratio plot for system with support motion
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Figure 13: Phase angle ~ frequency ratio plot for system with support motion

From figure 12, it is clear that when the frequency of support motion nearly equal to the natural
frequency of the system, resonance occurs in the system. This resonant amplitude decreases with

increase in damping ratio for @ J2. At 9 _ J2, irrespective of damping factor, the mass
@

n a)n

vibrate with an amplitude equal to that of the support and for L2 , amplitude ratio becomes
[0

n

less than 1, indicating that the mass will vibrate with an amplitude less than the support motion.



But with increase in damping, in this case, the amplitude of vibration of the mass will increase.

So in order to reduce the vibration of the mass, one should operate the system at a frequency

very much greater than J2 times the natural frequency of the system. This is the principle of

vibration isolation.

Vibration | solation:

In many industrial applications, one may find the vibrating machine transmit forces to ground
which in turn vibrate the neighbouring machines. So in that contest it is necessary to calculate

how much force is transmitted to ground from the machine or from the ground to the machine.

™ N\

Figure 13 :ﬁ@aﬁng system
Figure 13 shows a system subjected to a force F=F;snet and vibrating with
x= X sin(wt —¢) . Thisforce will be transmitted to the ground only by the spring and damper.

Force transmitted to the ground

F = J(KX)? + (coX)? =KX 1+[@j (47)

@,

It is known from equation (3) that for a disturbing force F =F,sinwt, the amplitude of resulting
oscillation
F, /K
w 2lw
J[l— (2P + (252
, o,

n

X =

(48)




Substituting equation (48) in (47) and defining the transmissibility TR as the ratio of the force
transmitted Force to the disturbing force one obtains

1+ (2{(0}
- h (49)

ROIEG

Comparing equation (49) with equation (46) for support motion, it can be noted that

=

_t

Fo

TR=

Fl_|X

=2 50
Snit 0
When damping is negligible

TR=—+ (51)

T .

“ {0 be used always greater than J2 \ ,(y
Replacing w? =g/ A \/ Cobsr 2

$
N

1

(27zf)2g—1 QS}

To reduce the amplitude X of the isolated mass m without changing TR, mis often mounted on a

TR= (52)

large mass M. The stiffness K must then be increased to keep ratio K/(m+M) constant. The
amplitude X is, however reduced, because K appears in the denominator of the expression

. Fy/K

(53)
(D292 2w,
\/[1 (wn)] )

n
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Figure 14: Transmissibility ~frequency ratio plot

Figure 14 shows the variation transmissibility with frequen @atlo and it can be noted that

vibration will be isolated when the system ®perates at afr ratio higher than J2.

Equivalent Viscous Damping:
In the previous sections, it is assumed tw patlon takes place due to viscous type of

damping where the damping force is proportional C|¢y. But there are systems where the damping
takes place in many other ways. For ex e\may take surface to surface contact in vibrating
systems and take Coulomb friction into . Ag|.§) in many cases energy is dissipated in joints also,
which is a form of structural damping. 1n these cases one may still use the derived equations by
considering an equivalent viscous damping. This can be achieved by equating the energy dissipated in the
original and the equivalent system.

The primary influence of damping on the oscillatory systems is that of limiting the amplitude at
resonance. Damping has little influence on the response in the frequency regions away from resonance. In

case of viscous damping, the amplitude at resonance is
X=—t=_—0 (54)

For other type of damping, no such simple expression exists. It is possible to however, to approximate the
resonant amplitude by substituting an equivalent damping Ceq in the foregoing equation.
The equivalent damping Ceq is found by equating the energy dissipated by the viscous damping to that of

the nonviscous damping with assumed harmonic motion.



nCegwX > =W, (55)
Where W, must be evaluated from the particular type of damping.

Structural Damping:

When materials are cyclically stressed, energy is dissipated internaly within the materia itself.
Experiments by several investigators indicate that for most structural metals such as steel and aluminum,
the energy dissipated per cycle is independent of the frequency over a wide frequency range and
proportional to the sgquare of the amplitude of vibration. Internal damping fitting this classification is
caled solid damping or structural damping. With the energy dissipation per cycle proportional to the
square of the vibration amplitude, the loss coefficient is a constant and the shape of the hysteresis curve
remains unchanged with amplitude and independent of the strain rate. Energy dissipated by structural

damping can be written as
Wd = aX 2 (56)
Where a is a constant with units of force displacement.

By the concept of equivalent viscous damping

W, = aX?® =7c wX’ or, C,, :%‘ > x&Q/@ (57)

Coulomb Damping:
Coulomb damping is mechanical damping g&sorb‘s energy by dliding friction, as opposed to
sC

viscous damping, which absorbs energy in quid@} ous, friction. Sliding friction is a constant value

N

regardless of displacement or velocity. Dalp& f large complex structures with non-welded joints, such
as airplane wings, exhibit coulomb dampi?bo .

Work done per cycle by the Coulomb force F,

W, =4F, X (58)
For calculating equivalent viscous damping
#CeqoX® =4F, X (59)
From the above equation equivalent viscous damping is found
4F,
Cy = 60
R )4 (60)
Summary

Some important features of steady state response for harmonically excited systems are as follows-



The steady state response is aways of the form Xx(t) = X sin(wt — @) . Where it is having same
frequency as of forcing. X is amplitude of the response, which is strongly dependent on the
frequency of excitation, and on the properties of the spring—mass system.

There is a phase lag ¢ between the forcing and the system response, which depends on the
frequency of excitation and the properties of the spring-mass system.

The steady state response of a forced, damped, spring mass system is independent of initial
conditions

In this chapter response due to rotating unbalance, support motion, whirling of shaft and equivalent
damping are also discussed.

Exer cise Problems

1.

An underdamped shock absorber is to be designed for a motor cycle of mass 200Kg. When the
shock absorber is subjected to an initia vertical velocity due to a road bump, the resulting
displacement-time curve is to be as indicated in fig(b). Find the necessary stiffness and damping
constants of the shock absorber if the damped period of vibration isto be 2 s and amplitude x; is
to be reduced to one-fourth in one half cycle (i.e xy15=x1/4). Also find the minimum initial
velocity that leads to a maximum displacement of 250 mm.

Develop equation of motion for a spring mass system with Coulomb damping.

An electronic instrument of mass m= &(g isplaced on f %Stic support pad of special rubber.
y&

The force displacement curve of each pad is g +1000x?)* 10°. Determine the spring

constant between the instrument W' nt ical direction.
A machine of 100kg mass is supported or%[ings o} total stiffness 700 KN/m and has an
unbalanced rotating element, which re% ' a.d}sturbing force of 350N at a speed of 3000
rev/min. Assuming a damping factor@;,t = 0.20, determine (a) its amplitude of motion due to
the unbalance, (b) the transmissibﬂ?jy, and (c) the transmitted force.
Find the dseady state response of the spring mass damper system to a force

F =5sin4t + 10cos4t .
If the steady state response of alinear system to aforce of F =5sin2tis 4sin(2t + 0.25), what

will be the responseif aforceof F =10sin2t will act onit..

Computer Assignment

1.

Develop a general-purpose program, to find the free vibration response of a viscously damped
system. Use the program to find response of a system with m= 450 Kg, K= 26519.2, c= 1000.0,
X0 =0.539657, vq(initial velocity)=1.0.

Find the free vibration response of a critically damped and over damped system with the above

mentioned values of m and k.

Plot magnification factor vs. frequency ratio and [X/Y| or |FyFo| for different values of @

@,



