
Discrete Fourier Transform (DFT)

DFT transforms the time domain signal samples to the 
frequency domain components. 
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DFT is often used to do frequency analysis of a time domain signal.
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Four Types of Fourier Transform 
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DFT: Graphical Example

1000 Hz sinusoid with 
32 samples at 8000 Hz 
sampling rate.

DFT

8000 samples = 1 second
32 samples = 32/8000 sec 

= 4 millisecond

1 second = 1000 cycles
32/8000 sec = 
(1000*32/8000=) 4 cycles 

Sampling rate

Frequency
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DFT Coefficients of Periodic Signals

Periodic 
Digital 
Signal

Equation of DFT coefficients:
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Fourier series coefficient ck is periodic of N

DFT Coefficients of Periodic Signals

Amplitude 
spectrum of the 
periodic digital 
signal

Copy
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Example 1

The periodic signal: is sampled at 

Solution:

We match )2sin()( ttx  with )2sin()( fttx  and get f = 1 Hz.

Fundamental frequency

Therefore the signal has 1 cycle or 1 period in 1 second.

Sampling rate fs = 4 Hz 1 second has 4 samples.

Hence, there are 4 samples in 1 period for this particular signal.

Sampled signal
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Example 1 – contd. (1)

b.
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Example 1 – contd. (2)
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On the Way to DFT Formulas

Imagine periodicity of 
N samples. 

Take first N samples 
(index 0 to N -1) as 
the input to DFT.
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DFT Formulas

Where,

Inverse DFT:
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MATLAB Functions

FFT: Fast Fourier Transform
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Example 2

Solution:
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Example 2 – contd. 

Using MATLAB,
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Example 3

Inverse DFT of the previous example. 
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Example 3 – contd. 

Using MATLAB,
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Relationship Between Frequency Bin k
and Its Associated Frequency in Hz

Frequency step or frequency resolution:

Example 4

In the previous example, if the sampling rate is 10 Hz, 
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Example 4 – contd. 

Sampling period: 

For x(3), time index is n = 3, and sampling time instant is

a.

b.

Frequency resolution:

Frequency bin number for X(1) is k = 1, 
and its corresponding frequency is 

Similarly, for X(3) is k = 3, and its 
corresponding frequency is 

       
k

f
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Amplitude and Power Spectrum 

Since each calculated DFT coefficient is a complex number, it is not convenient
to plot it versus its frequency index

Amplitude Spectrum:

To find one-sided amplitude spectrum, we double the amplitude.

no
tes
4fr
ee
.in



19

Power Spectrum:

Amplitude and Power Spectrum –contd. 

For, one-sided power spectrum:

Phase Spectrum:
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Example 5

Solution:

See Example 2.
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Example 5 – contd. (1)
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Example 5 – contd. (2)

Amplitude Spectrum Phase Spectrum

Power Spectrum
One sided Amplitude Spectrum
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Example 6

Solution:
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Zero Padding for FFT

FFT: Fast Fourier Transform.

A fast version of DFT; It requires signal length to be power of 2.

Therefore, we 
need to pad zero 
at the end of the 
signal.

However, it does 
not add any new 
information.

no
tes
4fr
ee
.in



25

Example 7

Consider a digital signal has sampling rate = 10 kHz. For amplitude spectrum we 
need frequency resolution of less than 0.5 Hz. For FFT how many data points are 
needed? 

Solution:

214 = 16384 < 20000 And 215 = 32768 > 20000

For FFT, we need N to be power of 2.

Recalculated frequency resolution,
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MATLAB Example - 1

fs

xf = abs(fft(x))/N;    %Compute the amplitude spectrum
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MATLAB Example – contd. (1)
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MATLAB Example – contd. (2)
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MATLAB Example – contd. (3)

………..
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Effect of Window Size

When applying DFT, we assume the following:

1. Sampled data are periodic to themselves (repeat). 

2. Sampled data are continuous to themselves and band limited to 
the folding frequency.  

1 Hz sinusoid, 
with 32 
samples
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Effect of Window Size –contd. (1)

If the window size is not multiple of waveform cycles:

Discontinuous
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Effect of Window Size –contd. (2)
2- cycles Mirror Image

Spectral 
Leakage

Produces 
single 
frequency

Produces many 
harmonics as well.

The bigger the 
discontinuity, the more 
the leakage
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Reducing Leakage Using Window

To reduce the effect of spectral leakage, a window function can be used
whose amplitude tapers smoothly and gradually toward zero at both ends.

Window function, w(n)
Data sequence, x(n)
Obtained windowed sequence, xw(n)
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Example 8
Given,

Calculate,
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Different Types of Windows

Rectangular Window (no window):

Triangular Window:

Hamming Window:

Hanning Window:
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Different Types of Windows –contd.
Window size of 20 samples
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Example 9
Problem:

Solution:
Since N = 4, Hamming window function can be found as:no
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Example 9 – contd. (1)
Windowed sequence:

DFT Sequence: no
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Example 9 – contd. (2)
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MATLAB Example - 2

no
tes
4fr
ee
.in



41

MATLAB Example – 2 contd.
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DFT Matrix

Frequency Spectrum Multiplication Matrix Time-Domain samples
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DFT Matrix

Let,

Then

DFT equation:

DFT requires N2 complex multiplications.
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FFT

FFT: Fast Fourier Transform

A very efficient algorithm to compute DFT; it requires less multiplication.

The length of input signal, x(n) must be 2m samples, where m is an integer.

Samples N = 2, 4, 8, 16 or so.

If the input length is not 2m, append (pad) zeros to make it 2m.

4 5 1 7 1

N = 5

4 5 1 7 1 0 0 0

N = 8, power of 2 
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DFT to FFT: Decimation in Frequency

DFT:
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Now decompose into even (k = 2m) and odd (k = 2m+1) sequences.

DFT to FFT: Decimation in Frequency
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DFT to FFT: Decimation in Frequency
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DFT to FFT: Decimation in Frequency

12 complex 
multiplication
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DFT to FFT: Decimation in Frequency

For 1024 samples data sequence, 
DFT requires 1024×1024 = 
1048576 complex multiplications. 
FFT requires (1024/2)log(1024) = 
5120 complex multiplications.
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IFFT: Inverse FFT
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Number of complex multiplication = 

FFT

IFFT

FFT and IFFT Examples
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DFT to FFT: Decimation in Time

Split the input sequence x(n) into the even indexed x(2m) and x(2m + 1), 
each with N/2  data points.

Using
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DFT to FFT: Decimation in Time

As,
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DFT to FFT: Decimation in Time

First iteration:

Second iteration:
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DFT to FFT: Decimation in Time

Third iteration:

IFFT
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FFT and IFFT Examples

IFFT

FFT
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Fourier Transform Properties (1)

FT is linear:

• Homogeneity

• Additivity

Homogeneity:

x[]           X[]

kx[]          kX[]

DFT

DFT

Frequency is not 
changed.
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Fourier Transform Properties (2)

][Im][Im][Im    

][Re][Re][Re:

][][][:

321

321

321

fXfXfXand

fXfXfXThen

nxnxnxIf







Additivity
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Fourier Transform Pairs 

Delta Function

Shifted Delta Function

Shifted Delta Function

Same Magnitude, 
Different Phase

Delta Function Pairs 
in Polar Form
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MODULE-2 

 

BASIC CONCEPTS AND MODULES AND PORTS 

2.1: Objectives 

 Understand the lexical conventions and define the logic value set and data type. 

 Identify useful system tasks and basic compiler directives. 

 Identify and understanding of components of a Verilog module definition. 

 Understand the port connection rules and connection to external signals by ordered list and by name. 

2.2 Lexical conventions 

The basic lexical conventions used by Verilog HDL are similar to those in the C programming 

language. Verilog contains a stream of tokens. Tokens can be comments, delimiters, numbers, strings, 

identifiers, and keywords. Verilog HDL is a case-sensitive language. All keywords are in lowercase.  
 

2.2.1 Whitespace 

Blank spaces (\b),  tabs (\t) and newlines (\n) comprise the whitespace. Whitespace is ignored by Verilog    

except when it separates tokens. Whitespace is not ignored in strings. 

2.2.2 Comments 
 

Comments can be inserted in the code for readability and documentation. There are two ways to write 

comments. A one-line comment starts with "//". Verilog skips from that point to the end of line. A multiple-

line comment starts with "/*" and ends with "*/". Multiple-line comments cannot be nested. However, one-line 

comments can be embedded in multiple-line comments. 

a = b && c; // This is a one-line comment 

 

/* This is a multiple line comment 

*/ 

/* This is /* an illegal */ comment */ 

 

/* This is //a legal comment */ 
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2.2.3 Operators 
 

 

Operators are of three types: unary, binary, and ternary. Unary operators precede the operand. Binary operators 

appear between two operands. Ternary operators have two separate operators that separate three operands. 

a = ~ b; // ~ is a unary operator. b is the operand 
 

a = b && c; // && is a binary operator. b and c are operands 
 

a = b ? c : d; // ?: is a ternary operator. b, c and d are operands 

 

2.2.4 Number Specification 
 

There are two types of number specification in Verilog: sized and unsized. 
 

Sized numbers 
 

Sized numbers are represented as <size> '<base format> <number>. 

<size> is written only in decimal and specifies the number of bits in the number. Legal base formats are 

decimal ('d or 'D), hexadecimal ('h or 'H), binary ('b or 'B) and octal ('o or 'O). The number is specified as 

consecutive digits from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. Only a subset of these digits is legal for a 

particular base. Uppercase letters are legal for number specification. 

4'b1111 // This is a 4-bit   binary number 

 

12'habc // This is a 12-bit  hexadecimal number 

 

16'd255 // This is a 16-bit  decimal number 

 

Unsized numbers 
 

Numbers that are specified without a <base format> specification are decimal numbers by default. Numbers 

that are written without a <size> specification have a default number of bits that is simulator- and machine-

specific (must be at least 32). 

23456 // This is a 32-bit decimal number by default 

 

'hc3 // This is a 32-bit hexadecimal number 

 

'o21 // This is a 32-bit octal number 
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X or Z values 

Verilog has two symbols for unknown and high impedance values. These values are very important for 

modeling real circuits. An unknown value is denoted by an x. A high impedance value is denoted by z. 

12'h13x // This is a 12-bit hex number; 4 least significant bits unknown 

6'hx // This is a 6-bit hex number 
 

32'bz // This is a 32-bit high impedance number 

An x or z sets four bits for a number in the hexadecimal base, three bits for a number in the octal base and one bit 

for a number in the binary base. If the most significant bit of a number is 0, x, or z, the number is 

automatically extended to fill the most significant bits, respectively, with 0, x, or z.  

This makes it easy to assign x or z to whole vector. If the most significant digit is 1, then it is also zero 

extended. 
 

Negative numbers 
 

Negative numbers can be specified by putting a minus sign before the size for a constant number. Size 

constants are always positive. It is illegal to have a minus sign between <base format> and <number>. An 

optional signed specifier can be added for signed arithmetic. 

6'd3 // 8-bit   negative number stored as 2's complement of 3 
 

-6'sd3 // Used for performing signed integer math 
 

4'd-2 // Illegal specification 
 
 

Underscore characters and question marks 
 

An underscore character "_" is allowed anywhere in a number except the first character. Underscore characters 

are allowed only to improve readability of numbers and are ignored by Verilog. A question mark "?" is the 

Verilog HDL alternative for z in the context of numbers. The ? is used to enhance readability in the casex and 

casez statements. 
 

2.2.5 Strings 
 

A string is a sequence of characters that are enclosed by double quotes. The restriction on a string is that it 

must be contained on a single line, that is, without a carriage return. It cannot be on multiple lines. Strings are 

treated as a sequence of one-byte ASCII values. 

"Hello Verilog World" // is a string 
 

"a / b" // is a string 
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 2.2.6 Identifiers and Keywords 
 

Keywords are special identifiers reserved to define the language constructs. Keywords are in lowercase. 

Identifiers are names given to objects so that they can be referenced in the design. Identifiers are made up of 

alphanumeric characters, the underscore ( _ ), or the dollar sign ( $ ). Identifiers are case sensitive. Identifiers 

start with an alphabetic character or an underscore. They cannot start with a digit or a $ sign (The $ sign as the 

first character is reserved for system tasks) 

 reg value; // reg is a keyword; value is an identifier 

 input clk; // input is a keyword, clk is an identifier 

2.2.7 Escaped Identifiers 
 

Escaped identifiers begin with the backslash ( \ ) character and end with whitespace (space, tab, or newline). 

All characters between backslash and whitespace are processed literally. Any printable ASCII character can be 

included in escaped identifiers.  

Neither the backslash nor the terminating whitespace is considered to be a part of the identifier. 

\a+b-c 
 

\**my_name** 

 

2.3 Data Types 

This section discusses the data types used in Verilog. 

 

2.3.1 Value Set 
 

Verilog supports four values and eight strengths to model the functionality of real hardware. The four 

value levels are listed in Table 2-1. 

Table 2-1. Value Levels 
 

 

In addition to logic values, strength levels are often used to resolve conflicts between drivers of different 

strengths in digital circuits. Value levels 0 and 1 can have the strength levels listed in Table2-2. 
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Table 2-2. Strength Levels 
 

 

 
If two signals of unequal strengths are driven on a wire, the stronger signal prevails. For example, if two 

signals of strength strong1 and weak0 contend, the result is resolved as a strong1. If two signals of equal 

strengths are driven on a wire, the result is unknown. If two signals of strength strong1 and strong0 conflict, 

the result is an x. 

 

2.3.2 Nets 
 

Nets represent connections between hardware elements. Just as in real circuits, nets have values continuously 

driven on them by the outputs of devices that they are connected to. In Figure 2.1 net a is connected to the 

output of and gate g1. Net a will continuously assume the value computed at the output of gate g1, which is b 

& c. 

 

Figure 2.1. Example of Nets 

 

Nets are declared primarily with the keyword wire. Nets are one-bit values by default unless they are declared 

explicitly as vectors. The terms wire and net are often used interchangeably. The default value of a net is z 

(except the trireg net, which defaults to x ). Nets get the output value of their drivers. 

 If a net has no driver, it gets the value z. 

wire a; // Declare net a for the above circuit 
 

wire b,c; // Declare two wires b,c for the above circuit 
 

wire d = 1'b0; // Net d is fixed to logic value 0 at declaration. 
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2.3.3 Registers 
 

Registers represent data storage elements. Registers retain value until another value is placed onto them. In 

Verilog, the term register merely means a variable that can hold a value. Unlike a net, a register does not need 

a driver. Verilog registers do not need a clock as hardware registers do. Values of registers can be changed 

anytime in a simulation by assigning a new value to the register. 

Register data types are commonly declared by the keyword reg.  

Example 3-1 Example of Register 

reg reset; // declare a variable reset that can hold its value  

initial // keyword to specify the initial  value of reg. 

reset = 1'b1; //initialize reset to 1 to reset the digital circuit. 
 

#100 reset = 1'b0; // after 100 time units reset is deasserted.  

end 

Example 2-2 Signed Register Declaration 

reg signed [63:0] m; // 64 bit signed value  

integer i; // 32 bit signed value 

 

2.3.4 Vectors 
 

Nets or reg data types can be declared as vectors (multiple bit widths). If bit width is not specified, the default 

is scalar (1-bit). 

wire a; // scalar net variable, default  

wire [7:0] bus; // 8-bit   bus 

wire [31:0] busA,busB,busC; // 3 buses of 32-bit width.  

reg clock; // scalar register, default 

reg [0:40] virtual_addr; // Vector register, virtual address 41 bits wide 

 

Vectors can be declared at [high# : low#] or [low# : high#], but the left number in the squared brackets is always 

the most significant bit of the vector. In the example shown above, bit 0 is the most significant bit of vector 

virtual_addr. 
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Vector Part Select 
 

For the vector declarations shown above, it is possible to address bits or parts of vectors.  

busA[7] // bit # 7 of vector busA 

bus[2:0] // Three least significant bits of vector bus, 
 

// using bus[0:2] is illegal because the significant bit shouldalways be on the left of a range specification 
 

virtual_addr[0:1] // Two most significant bits of vector virtual_addr 

 

Variable Vector Part Select 
 

Another ability provided in Verilog HDL is to have variable part selects of a vector. This allows part selects to 

be put in for loops to select various parts of the vector. There are two special part-select operators: 

[<starting_bit>+:width] - part-select increments from starting bit.  

[<starting_bit>-:width] - part-select decrements from starting bit. 

The starting bit of the part select can be varied, but the width has to be constant. The following example 

shows the use of variable vector part select: 

reg [255:0] data1; //Little endian notation 

reg [0:255] data2; //Big endian notation 

reg [7:0] byte; 

//Using a variable part select, one can choose parts 
 

byte = data1[31-:8]; //starting bit = 31, width =8 => data[31:24] 

byte = data1[24+:8]; //starting bit = 24, width =8 => data[31:24]  

byte = data2[31-:8]; //starting bit = 31, width =8 => data[24:31]  

byte = data2[24+:8]; //starting bit = 24, width =8 => data[24:31] 

 

//The starting bit can also be a variable. The width has to be constant.  

//Therefore, one can use the variable part select 

//in a loop to select all bytes of the vector. 

 for (j=0; j<=31; j=j+1) 

byte = data1[(j*8)+:8]; //Sequence is [7:0], [15:8]... [255:248] 

//Can initialize a part of the vector 

data1[(byteNum*8)+:8] = 8'b0; //If byteNum = 1, clear 8 bits [15:8] 
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2.3.5 Integer , Real, and Time Register Data Types  

Integer, real, and time register data types are supported in Verilog.  

Integer 

An integer is a general purpose register data type used for manipulating quantities. Integers are declared 

by the keyword integer. Although it is possible to use reg as a general-purpose variable, it is more convenient 

to declare an integer variable for purposes such as counting. The default width for an integer is the host-

machine word size, which is implementation-specific but is at least 32 bits. Registers declared as data type reg 

store values as unsigned quantities, whereas integers store values as signed quantities. 

integer counter; // general purpose variable used as a counter. 

initial 

counter = -1; // A negative one is stored in the counter 

Real 
 

Real number constants and real register data types are declared with the keyword real. They can be specified in 

decimal notation (e.g., 3.14) or in scientific notation (e.g., 3e6, which is 3 x 10
6 

). Real numbers cannot have a 

range declaration, and their default value is 0. When a real value is assigned to an integer, the real number is 

rounded off to the nearest integer. 

real delta; // Define a real variable called delta initial 

begin 
 

delta = 4e10; // delta is assigned in scientific notation 

 

delta = 2.13; // delta is assigned a value 2.13 end 

integer i; // Define an integer i  

initial 

i = delta; // i gets the value 2 (rounded value of 2.13) 

 

Time 
 

Verilog simulation is done with respect to simulation time. A special time register data type is used in Verilog 

to store simulation time. A time variable is declared with the keyword time. The width for time register data 

types is implementation-specific but is at least 64 bits.The system function $time is invoked to get the 

current simulation time. 

time save_sim_time; // Define a time variable save_sim_time 

 

initial 
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save_sim_time = $time; // Save the current simulation time 

 

Arrays 
 

Arrays are allowed in Verilog for reg, integer, time, real, realtime and vector register data types. Multi-

dimensional arrays can also be declared with any number of dimensions. Arrays of nets can also be used to 

connect ports of generated instances. Each element of the array can be used in the same fashion as a scalar or 

vector net. Arrays are accessed by <array_name>[<subscript>]. For multi- dimensional arrays, indexes need to 

be provided for each dimension. 

integer count[0:7]; // An array of 8 count variables 
 

reg bool[31:0]; // Array of 32 one-bit boolean register variables time 

chk_point[1:100]; // Array of 100 time checkpoint variables reg [4:0] 

port_id[0:7]; // Array of 8 port_ids; each port_id is 5 bits wide 

integer         matrix[4:0][0:255];         //         Two         dimensional         array         of         integers 

reg [63:0] array_4d [15:0][7:0][7:0][255:0]; //Four dimensional array 

  wire [7:0] w_array2 [5:0]; // Declare an array of 8 bit vector wire  

wire w_array1[7:0][5:0]; // Declare an array of single bit wires. 

It is important not to confuse arrays with net or register vectors. A vector is a single element that is n-bits 

wide. On the other hand, arrays are multiple elements that are 1-bit or n-bits wide. 

Examples of assignments to elements of arrays discussed above are shown below: 

count[5] = 0; // Reset 5th element of array of count variables  

chk_point[100] = 0; // Reset 100th time check point value 

port_id[3] = 0; // Reset 3rd element (a 5-bit value) of port_id array. 

matrix[1][0] = 33559; // Set value of element indexed by [1][0] to 33559 

port_id = 0; // Illegal syntax - Attempt to write the entire array  

matrix [1] = 0; // Illegal syntax - Attempt to write [1][0]..[1][255] 

 

2.3.6 Memories 

 

In digital simulation, one often needs to model register files, RAMs, and ROMs. Memories are modeled in 

Verilog simply as a one-dimensional array of registers. Each element of the array is known as an element or 

word and is addressed by a single array index. Each word can be one or more bits. It is important to 

differentiate between n 1-bit registers and one n-bit register. A particular word in memory is obtained by using 

the address as a memory array subscript. 
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reg mem1bit[0:1023]; // Memory mem1bit with 1K 1-bit words 
 

reg [7:0] membyte[0:1023]; // Memory membyte with 1K 8-bit words(bytes) 
 

membyte[511] // Fetches 1 byte word whose address is 511. 

 

2.3.7 Parameters 

 

Verilog allows constants to be defined in a module by the keyword parameter. Parameters cannot be used as 

variables. Parameter values for each module instance can be overridden individually at compile time. This 

allows the module instances to be customized. This aspect is discussed later. Parameter types and sizes can also 

be defined. 

parameter port_id = 5; // Defines a constant port_id 
 

parameter cache_line_width = 256; // Constant defines width of cache line 

parameter signed [15:0] WIDTH; // Fixed sign and range for parameter WIDTH 

 

 2.3.8 Strings 

 

Strings can be stored in reg. The width of the register variables must be large enough to hold the string. Each 

character in the string takes up 8 bits (1 byte). If the width of the register is greater than the size of the string, 

Verilog fills bits to the left of the string with zeros. If the register width is smaller than the string width, Verilog 

truncates the leftmost bits of the string. It is always safe to declare a string that is slightly wider than necessary. 

reg [8*18:1] string_value; // Declare a variable that is 18 bytes wide initial 

string_value = "Hello Verilog World"; // String can be stored in variable 

 

Special characters serve a special purpose in displaying strings, such as newline, tabs, and displaying argument 

values. Special characters can be displayed in strings only when they are preceded by escape characters, as 

shown in Table 2-3 

Table 2-3. Special Characters 
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2.4 System Tasks and Compiler Directives 
 

In this section, we introduce two special concepts used in Verilog: system tasks and compiler directives. 

2.4.1 System Tasks 
 

Verilog provides standard system tasks for certain routine operations. All system tasks appear in the form 

$<keyword>. Operations such as displaying on the screen, monitoring values of nets, stopping, and finishing 

are done by system tasks.  

Displaying information 
 

$display is the main system task for displaying values of variables or strings or expressions. This is one of the 

most useful tasks in Verilog. 

Usage: $display(p1, p2, p3,....., pn); 
 

p1, p2, p3,..., pn can be quoted strings or variables or expressions. The format of $display is very similar to 

printf in C. A $display inserts a newline at the end of the string by default. A $display without any arguments 

produces a newline. 

Monitoring information 
 

Verilog provides a mechanism to monitor a signal when its value changes. This facility is provided by the 

$monitor task. 

Usage: $monitor(p1,p2,p3,....,pn); 

The parameters p1, p2, ... , pn can be variables, signal names, or quoted strings. A format similar to the 

$display task is used in the $monitor task. $monitor continuously monitors the values of the variables or 

signals specified in the parameter list and displays all parameters in the list whenever the value of any one 

variable or signal changes. Unlike $display, $monitor needs to be invoked only once. Only one monitoring list 

can be active at a time.  

If there is more than one $monitor statement in your simulation, the last $monitor statement will be the active 

statement. The earlier $monitor statements will be overridden. 

Two tasks are used to switch monitoring on and off.  

Usage: 

$monitoron; 

$monitoroff; 

The $monitoron tasks enables monitoring, and the $monitoroff task disables monitoring during a simulation.   
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Example  of  Monitor Statement 

//Monitor time and value of the signals clock and reset 

//Clock toggles every 5 time units and reset goes down at 10 time units  

initial 

begin 

$monitor ($time," Value of signals clock = %b reset = %b", clock,reset); 

end 

 

Partial output of the monitor statement: 

-- 0 Value of signals clock = 0 reset = 1 

-- 5 Value of signals clock = 1 reset = 1 

-- 10 Value of signals clock = 0 reset = 0 

 

Stopping and finishing in a simulation 

The task $stop is provided to stop during a simulation. 

Usage: $stop; 

The $stop task puts the simulation in an interactive mode. The designer can then debug the design from the 

interactive mode. The $stop task is used whenever the designer wants  to suspend the simulation  and  

examine  the  values  of  signals  in  the  design.   

The  $finish  task  terminates  the simulation. 

Usage: $finish; 

Examples of $stop and $finish are given below 

Example of Stop and Finish Tasks 

// Stop at time 100 in the simulation and examine the results 

// Finish the simulation at time 1000. 

initial  

begin 

clock = 0; 

reset = 1; 

#100 $stop; // This will suspend the simulation at time = 100 

#900 $finish; // This will terminate the simulation at time = 1000  

end 
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2.4.2 Compiler Directives 

Compiler directives are provided in Verilog. All compiler directives are defined by using the 

`<keyword> construct. The two most useful compiler directives are 

`define 

The `define directive is used to define text macros in Verilog .The Verilog compiler substitutes the text of the 

macro wherever it encounters a `<macro_name>. This is similar to the #define construct in C. The defined 

constants or text macros are used in the Verilog code by preceding them with a ` (back tick). 

Example for `define Directive 

//define a text macro that defines default word size 

//Used as 'WORD_SIZE in the code 

'define WORD_SIZE 32 

//define an alias. A $stop will be substituted wherever 'S appears 

'define S $stop; 

//define a frequently used text string 

'define WORD_REG reg [31:0] 

`include 

The `include directive allows you to include entire contents of a Verilog source file in another Verilog file 

during compilation. This works similarly to the #include in the C programming language. 

Example for `include Directive 

// Include the file header.v, which contains declarations in themain verilog file design.v. 

'include header.v 

... 

... 

<Verilog code in file design.v> 

... 

... 
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2.5 Modules  

Module is a basic building block in Verilog. A module definition always begins with the keyword module. 

The module name, port list, port declarations, and optional parameters must come first in a module 

definition. Port list and port declarations  are  present  only  if  the  module  has  any  ports  to  interact  

with   the  external environment. 

The five components within a module are: variable declarations, dataflow statements, instantiation of 

lower modules, behavioral blocks, and tasks or functions. These components can be in any order and at any 

place in the module definition.  

The endmodule statement must always come last in a module definition. All components except 

module, module  name, and endmodule  are optional and can be mixed and matched as per design needs. 

Verilog allows multiple modules to be defined in a single file. The modules can be defined in any order in the 

file. 

 

Figure 2.2.:Components of a Verilog Module 

 

Consider a simple example of an SR latch, as shown in Figure 2.3 

 

 

 

 

 

 

 

 

 

 

Figure 2-3. SR Latch 
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The SR latch has S and R as the input ports and Q and Qbar as the output ports. The SR latch and its stimulus 

can be modeled as shown in Example. 

Example of Components of SR Latch 

// This example illustrates the different components of a module 

// Module name and port list 

// SR_latch module 

module SR_latch(Q, Qbar, Sbar, Rbar); 

//Port declarations  

output Q, Qbar;  

input Sbar, Rbar; 

// Instantiate lower-level modules 

// In this case, instantiate Verilog primitive nand gates 

// Note how the wires are connected in a cross-coupled fashion. nand n1(Q, Sbar, Qbar); 

nand n2(Qbar, Rbar, Q); 

// endmodule statement 

endmodule 

 

// Module name and port list 

// Stimulus module 

module Top; 

// Declarations of wire, reg, and other variables 

reg set, reset; 

// Instantiate lower-level modules 

// In this case, instantiate SR_latch Feed inverted set and reset signals to the SR latch 

SR_latch m1(q, qbar, ~set, ~reset); 

// Behavioral block, initial 

initial 

begin 

$monitor($time, " set = %b, reset= %b, q= %b\n",set,reset,q); 

set = 0; reset = 0; 

#5 reset = 1; 
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#5 reset = 0; 

#5 set = 1; 

end 

// endmodule statement 

endmodule 

From the above example following characteristics  are noticed: 

• In the SR latch definition above ,all components described in Figure 2-2 need not be present in a module. 

We do not find variable declarations, dataflow (assign) statements, or behavioral blocks (always or initial). 

• However, the stimulus block for the SR latch contains module name, wire, reg, and variable 

declarations,  instantiation  of  lower  level  modules,  behavioral  block  (initial),  and  endmodule 

statement but does not contain port list, port declarations, and data flow (assign) statements. 

• Thus, all parts except module, module name, and endmodule are optional and can be mixed and 

matched as per design needs. 

 

2.6 Ports 
 

Ports provide the interface by which a module can communicate with its environment. For example, the 

input/output pins of an IC chip are its ports. The environment can interact with the module only through its 

ports. The internals of the module are not visible to the environment. This provides a very powerful 

flexibility to the designer. The internals of the module can be changed without affecting the environment as 

long as the interface is not modified. Ports are also referred to as terminals. 

2.6.1 List of Ports 

A module definition contains an optional list of ports. If the module does not exchange any signals with 

the environment, there are no ports in the list. Consider a 4-bit full adder that is instantiated inside a top-

level module Top. The diagram for the input/output ports is shown in Figure 2-4. 

 

     Figure 2-4. I/O Ports for Top and Full Adder 
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From the above figure, the module Top is a top-level module. The module fulladd4 is instantiated 

below Top. The module fulladd4 takes input on ports a, b, and c_in and produces an output on ports 

sum and c_out. Thus, module fulladd4 performs an addition for its environment. The module Top is a top-

level module in the simulation and does not need to pass signals to or receive signals from the 

environment. Thus, it does not have a list of ports. The module names and port lists for both module 

declarations in Verilog are as shown in  below example. 

Example of List of Ports 

module fulladd4(sum, c_out, a, b, c_in); //Module with a list of ports 

module Top; // No list of ports, top-level module in simulation 

 

2.6.2 Port Declaration 

All ports in the list of ports must be declared in the module. Ports can be declared as follows: 

input -Input port 

output- Output port 

inout- Bidirectional port 

Each port in the port list is defined as input, output, or inout, based on the direction of the port signal. Thus, 

for the example of the the port declarations will be as shown in example below. 

 

Example for  Port Declarations 

module fulladd4(sum, c_out, a, b, c_in); 

//Begin port declarations section 

output[3:0] sum; 

output c_cout; 

 input [3:0] a, b;  

input c_in; 

//End port declarations section 

... 

<module internals> 

... endmodule 

All port declarations are implicitly declared as wire in Verilog. Thus, if a port is intended to be a wire, it is 

sufficient to declare it as output, input, or inout. Input or inout ports are normally declared as wires.  
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However, if output ports hold their value, they must be declared as reg. Ports of the type input and inout 

cannot be declared as reg because reg variables store values and input ports should not store values but 

simply reflect the changes in the external signals they are connected to. 

Alternate syntax for port declaration is shown in below example. This syntax avoids the duplication of 

naming the ports in both the module definition statement and the module port list definitions. If a port is 

declared but no data type is specified, then, under specific circumstances, the signal will default to a wire 

data type. 

Example for ANSI C Style Port Declaration Syntax 

module fulladd4(output reg [3:0] sum, 

output reg c_out, 

input [3:0] a, b, //wire by default 

input c_in); //wire by default 

... 

<module internals> 

...  

endmodule 

 

2.6.3 Port Connection Rules 
 

A port as consisting of two units, one unit that is internal to the module and another that  is  external  to  the  

module.  The  internal  and  external  units  are  connected.  There  are  rules governing port connections when 

modules are instantiated within other modules. The Verilog simulator complains if any port connection rules 

are violated. These rules are summarized in Figure2.5 

 

Figure 2-5. Port Connection Rules 
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Inputs 

Internally, input ports must always be of the type net. Externally, the inputs can be connected to a variable 

which is a reg or a net. 

Outputs 

Internally, outputs ports can be of the type reg or net. Externally, outputs must always be connected to a net. 

They cannot be connected to a reg. 

Inouts 

Internally, inout  ports must  always be  of the type  net. Externally,  inout  ports must always  be 

connected to a net. 

Width matching 

It is legal to connect internal and external items of different sizes when making intermodule port 

connections. However, a warning is typically issued that the widths do not match. 

Unconnected ports 

Verilog allows ports to remain unconnected. For example, certain output ports might be simply for debugging, 

and you might not be interested in connecting them to the external signals. You can let a port remain 

unconnected by instantiating a module as shown below 

fulladd4  fa0 (SUM,     , A, B, C_IN); // Output port c_out is unconnected 

 

Example of illegal port connection 

To illustrate port connection rules, assume that the module fulladd4   Example  is instantiated in the 

stimulus block Top. Below example shows an illegal port connection 

Example 2-14 Illegal Port Connection 

module Top; 

//Declare connection variables reg 

[3:0]A,B; 

reg C_IN; 

reg [3:0] SUM; 

wire C_OUT; 

//Instantiate fulladd4, call it fa0 

fulladd4 fa0(SUM, C_OUT, A, B, C_IN); 

//Illegal connection because output port sum in module fulladd4 

//is connected to a register variable SUM in module Top. 
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. 

. 

<stimulus> 

. 

. endmodule 

This problem is rectified if the variable SUM is declared as a net (wire). 

 

2.7 Connecting Ports to External Signals 

There are two methods of making connections between signals specified in the module instantiation and the 

ports in a module definition. These two methods cannot be mixed.  These methods are  

Connecting by ordered list 

The signals to be connected must appear in the module instantiation in the same order as the  ports in the port list 

in the module definition. Consider the module fulladd4.To connect signals in module Top by ordered list, the 

Verilog code is shown in below example. Notice that the external signals SUM, C_OUT, A, B, and C_IN appear 

in exactly the same order as the ports sum, c_out, a, b, and c_in in module definition of fulladd4. 

 

Example 2-15 Connection by Ordered List 

module Top; 

//Declare connection variables  

reg [3:0]A,B; 

reg C_IN; 

wire [3:0] SUM; 

wire C_OUT; 

//Instantiate fulladd4, call it fa_ordered. 

//Signals are connected to ports in order (by position) 

fulladd4 fa_ordered (SUM, C_OUT, A, B, C_IN); 

... 

<stimulus> 

... endmodule 
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module fulladd4(sum, c_out, a, b, c_in); 

output[3:0] sum; output c_cout; input [3:0] a, b; input c_in; 

... 

<module internals> 

... endmodule 

Connecting ports by name 

For large designs where modules have, say, 50 ports, remembering the order of the ports in the 

module definition is impractical and error-prone. Verilog provides the capability to connect external signals 

to ports by the port names, rather than by position. We could connect the ports by name in above example  

by instantiating the module fulladd4, as follows. Note that you can specify the port connections in any 

order as long as the port name in the module definition correctly matches the external signal. 

 

// Instantiate module fa_byname and connect signals to ports by name 

fulladd4 fa_byname(.c_out(C_OUT), .sum(SUM), .b(B), .c_in(C_IN), .a(A),); 

 

Note that only those ports that are to be connected to external signals must be specified in port connection 

by name. Unconnected ports can be dropped. For example, if the port c_out were to be kept unconnected, 

the instantiation of fulladd4 would look as follows. The port c_out is simply dropped from the port list. 
 

// Instantiate module fa_byname and connect signals to ports by  

name fulladd4 fa_byname(.sum(SUM), .b(B), .c_in(C_IN), .a(A),); 
 

Another advantage of connecting ports by name is that as long as the port name is not changed, the order of 

ports in the port list of a module can be rearranged without changing the port connections in module 

instantiations. 

2.8 Hierarchical Names 
 

Every  module instance, signal, or variable is defined with an identifier. A particular identifier has a unique 

place in the design hierarchy. Hierarchical name referencing allows us to denote every identifier in the 

design hierarchy with a unique name. A hierarchical name is a list of identifiers separated by dots (".") for 

each level of hierarchy. Thus, any identifier can be addressed from any place in the design by simply 

specifying the complete hierarchical name of that identifier. The top-level module is called the root module 

because it is not instantiated anywhere. It is the starting point.  
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To assign a unique name to an identifier, start from the top-level module and trace the path along the design 

hierarchy to the desired identifier. 

Consider the simulation of SR latch Example. The design hierarchy is shown in Figure 2.6. 

 

 

Figure 2-6. Design Hierarchy for SR Latch Simulation 

For this simulation, stimulus is the top-level module. Since the top-level module is not instantiated 

anywhere, it is called the root module. The identifiers defined in this module are q, qbar, set, and reset. 

The  root  module instantiates m1,  which  is a  module  of type  SR_latch. The module  m1 instantiates 

nand gates n1 and n2. Q, Qbar, S, and R are port signals in instance m1. Hierarchical name referencing 

assigns a unique name to each identifier. To assign hierarchical names, use the module name for root 

module and instance names for all module instances below the root module.  

Example  

stimulus                

stimulus.q  

stimulus.qbar  

timulus.set  

stimulus.reset  

stimulus.m1 

stimulus.m1.Q  

stimulus.m1.Qbar 

stimulus m1.S  

stimulus.m1.R 

stimulus.n1  

stimulus.n2 

 
Each identifier in the design is uniquely specified by its hierarchical path name. To display the level of 

hierarchy, use the special character %m in the $display task.  
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2.9: Outcomes 
 

After completion of the module the students are able to: 

 Understand the lexical conventions and different data types of verilog. 

 Identify useful system tasks  such as $display and $monitor and basic compiler directives. 

 Understand different components of a Verilog module definition 

 Understand the port connection rules and connection to external signals by ordered list and by name 

 

2.10:  Recommended questions  
 

1.   Describe the lexical conventions used in Verilog HDL with examples. 

2.   Explain different data types of Verilog HDL with examples 

3.   What are system tasks and compiler directives? 

4.   What are the uses of $monitor, $display and $finish system tasks? Explain with examples. 

5.   Explain `define and  `include compiler directives. 

6.   Explain the components of Verilog HDL module. 

7.   What are the components of SR latch? Write Verilog HDL module of SR latch. 

8.   Explain the different types of ports supported by Verilog HDL with examples. 

9.   Explain the port connection rules of Verilog HDL with examples. 

10. How hierarchical names helps in addressing any identifier used in the design from any other level of 

hierarchy? Explain with examples. 

11. What are the basic components of a module? Which components are mandatory? 
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MODULE -3 

GATE LEVEL MODELING AND DATA FLOW MODELING 

3.1: Objectives 

 Identify logic gate primitives provided in Verilog. 

 Understand instantiation of gates, gate symbols, and truth tables for and/or and buf/not type gates. 

 Understand how to construct a Verilog description from the logic diagram of the circuit. 

 Describe rise, fall, and turn-off delays in the gate-level design and Explain min, max, and typ delays 

in the gate-level design 

 Describe the continuous assignment (assign) statement, restrictions on the assign statement, and the 

implicit continuous assignment statement. 

 Explain assignment delay, implicit assignment delay, and net declaration delay for continuous 

assignment statements and Define expressions, operators, and operands. 

 Use dataflow constructs to model practical digital circuits in Verilog 

3.2 Gate Types 

A logic circuit can be designed by use of logic gates. Verilog supports basic logic gates as predefined 

primitives. These primitives are instantiated like modules except that they are predefined in Verilog and do not 

need a module definition. All logic circuits can be designed by using basic gates. There are two classes of basic 

gates: and/or gates and buf/not gates. 

3.2.1 And/Or Gates 

And/or gates have one scalar output and multiple scalar inputs. The first terminal in the list of gate terminals is 

an output and the other terminals are inputs. The output of a gate is evaluated as soon as one of the inputs 

changes. The and/or gates available in Verilog are: and, or, xor, nand, nor, xnor. 

The corresponding logic symbols for these gates are shown in Figure 3-1. Consider the gates with two inputs. 

The output terminal is denoted by out. Input terminals are denoted by i1 and i2. 

These gates are instantiated to build logic circuits in Verilog. Examples of gate instantiations are shown 

below. In Example 3-1, for all instances, OUT is connected to the output out, and IN1 and IN2 are 

connected to the two inputs i1 and i2 of the gate primitives. Note that the instance name does not need to be 

specified for primitives. This lets the designer instantiate hundreds of gates without giving them a name. 

More than two inputs can be specified in a gate instantiation. Gates with more than two inputs are 
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instantiated by simply adding more input ports in the gate instantiation. Verilog automatically instantiates 

the appropriate gate. 

 

Figure 3-1. Basic Gates 

Example 3-1 Gate Instantiation of And/Or Gates 

wire OUT, IN1, IN2; 

// basic gate instantiations. 

and a1(OUT, IN1, IN2); 

nand na1(OUT, IN1, IN2); 

or or1(OUT, IN1, IN2); 

nor nor1(OUT, IN1, IN2); 

xor x1(OUT, IN1, IN2); 

xnor nx1(OUT, IN1, IN2); 

// More than two inputs; 3 input nand gate 

nand na1_3inp(OUT, IN1, IN2, IN3); 

// gate instantiation without instance name 

and (OUT, IN1, IN2); // legal gate instantiation 

 

The truth tables for these gates define how outputs for the gates are computed from the inputs. Truth tables are 

defined assuming two inputs. The truth tables for these gates are shown in Table 3-1. Outputs of gates with 

more than two inputs are computed by applying the truth table iteratively. 
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Table 3-1. Truth Tables for And/Or 

 

 

 

3.2.2 Buf/Not Gates 

Buf/not gates have one scalar input and one or more scalar outputs. The last terminal in the port list is connected 

to the input. Other terminals are connected to the outputs. We will discuss gates that have one input and one 

output. Two basic buf/not gate primitives are provided in Verilog   

buf  not 

The symbols for these logic gates are shown in Figure 3-2. 
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Figure 3-2. Buf/not Gates 

These gates are instantiated in Verilog as shown Example 3-2. Notice that these gates can have multiple 

outputs but exactly one input, which is the last terminal in the port list. 

Example 3-2 Gate Instantiations of Buf/Not Gates 

// basic gate instantiations. 

buf b1(OUT1, IN); 

not n1(OUT1, IN); 

// More than two outputs 

buf b1_2out(OUT1, OUT2, IN); 

// gate instantiation without instance name 

not (OUT1, IN); // legal gate instantiation 

Truth tables for gates with one input and one output are shown in Table 3-2. 

Table 3-2. Truth Tables for Buf/Not Gates 

 

Bufif/notif 

Gates with an additional control signal on buf and not gates are also available. 

bufif1 notif1 
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bufif0 notif0 

These gates propagate only if their control signal is asserted. They propagate z if their control signal is 

deasserted. Symbols for bufif/notif are shown in Figure 3-3. 

 

Figure 3-3. Bufif/notif Gates 

The truth tables for these gates are shown in Table 3-3 

Table 3-3. Truth Tables for Bufif/Notif Gates 
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These gates are used when a signal is to be driven only when the control signal is asserted. Such a situation is 

applicable when multiple drivers drive the signal. These drivers are designed to drive the signal on mutually 

exclusive control signals. Example 3-3 shows examples of instantiation of bufif and notif gates. 

Example 3-3 Gate Instantiations of Bufif/Notif Gates 

//Instantiation of bufif gates. 

bufif1 b1 (out, in, ctrl); 

bufif0 b0 (out, in, ctrl); 

//Instantiation of notif gates 

notif1 n1 (out, in, ctrl); 

notif0 n0 (out, in, ctrl); 

3.2.3 Array of Instances 

There are many situations when repetitive instances are required. These instances differ from each other only by 

the index of the vector to which they are connected. To simplify specification of such instances, Verilog HDL 

allows an array of primitive instances to be defined. Example3-4 shows an example of an array of instances. 

Example 3-4 Simple Array of Primitive Instances 

wire [7:0] OUT, IN1, IN2; 

// basic gate instantiations. 

nand n_gate[7:0](OUT, IN1, IN2); 

// This is equivalent to the following 8 instantiations 

nand n_gate0(OUT[0], IN1[0], IN2[0]); 

nand n_gate1(OUT[1], IN1[1], IN2[1]); 

nand n_gate2(OUT[2], IN1[2], IN2[2]); 

nand n_gate3(OUT[3], IN1[3], IN2[3]); 

nand n_gate4(OUT[4], IN1[4], IN2[4]); 

nand n_gate5(OUT[5], IN1[5], IN2[5]); 

nand n_gate6(OUT[6], IN1[6], IN2[6]); 
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nand n_gate7(OUT[7], IN1[7], IN2[7]); 

3.1.4 Examples 

Having understood the various types of gates available in Verilog, consider the real examples that illustrates 

design of gate-level digital circuits. 

Gate-level multiplexer 

Consider the design of 4-to-1 multiplexer with 2 select signals. Multiplexers serve a useful purpose in logic 

design. They can connect two or more sources to a single destination. They can also be used to implement 

Boolean functions. We will assume for this example that signals s1 and s0 do not get the value x or z. The I/O 

diagram and the truth table for the multiplexer are shown in Figure 3-4. The I/O diagram will be useful in 

setting up the port list for the multiplexer. 

 

Figure 3-4. 4-to-1 Multiplexer 

Implement the logic for the multiplexer using basic logic gates. The logic diagram for the multiplexer is shown 

in Figure 3-5. 

 

Figure 3-5. Logic Diagram for Multiplexer 
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The logic diagram has a one-to-one correspondence with the Verilog description. The Verilog description for 

the multiplexer is shown in Example 3-5. Two intermediate nets, s0n and s1n, are created; they are 

complements of input signals s1 and s0. Internal nets y0, y1, y2, y3 are also required. Note that instance names 

are not specified for primitive gates, not, and, and or. Instance names are optional for Verilog primitives but are 

mandatory for instances of user-defined modules. 

Example 3-5 Verilog Description of Multiplexer 

// Module 4-to-1 multiplexer. Port list is taken exactly from 

// the I/O diagram. 

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0); 

// Port declarations from the I/O diagram 

output out; 

input i0, i1, i2, i3; 

input s1, s0; 

// Internal wire declarations 

wire s1n, s0n; 

wire y0, y1, y2, y3; 

// Gate instantiations 

// Create s1n and s0n signals. 

not (s1n, s1); 

not (s0n, s0); 

// 3-input and gates instantiated 

and (y0, i0, s1n, s0n); 

and (y1, i1, s1n, s0); 

and (y2, i2, s1, s0n); 

and (y3, i3, s1, s0); 

// 4-input or gate instantiated 

or (out, y0, y1, y2, y3); 
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endmodule 

This multiplexer can be tested with the stimulus shown in Example 3-6. The stimulus checks that each 

combination of select signals connects the appropriate input to the output. The signal OUTPUT is displayed 

one time unit after it changes. System task $monitor could also be used to display the signals when they 

change values. 

Example 3-6 Stimulus for Multiplexer 

// Define the stimulus module (no ports) 

module stimulus; 

// Declare variables to be connected 

// to inputs 

reg IN0, IN1, IN2, IN3; 

reg S1, S0; 

// Declare output wire 

wire OUTPUT; 

// Instantiate the multiplexer 

mux4_to_1 mymux(OUTPUT, IN0, IN1, IN2, IN3, S1, S0); 

// Stimulate the inputs 

// Define the stimulus module (no ports) 

initial 

begin 

// set input lines 

IN0 = 1; IN1 = 0; IN2 = 1; IN3 = 0; 

#1 $display("IN0= %b, IN1= %b, IN2= %b, IN3= %b\n",IN0,IN1,IN2,IN3); 

// choose IN0 

S1 = 0; S0 = 0; 

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 

// choose IN1 
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S1 = 0; S0 = 1; 

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 

// choose IN2 

S1 = 1; S0 = 0; 

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 

// choose IN3 

S1 = 1; S0 = 1; 

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 

end 

endmodule 

The output of the simulation is shown below. Each combination of the select signals is tested. 

IN0= 1, IN1= 0, IN2= 1, IN3= 0 

S1 = 0, S0 = 0, OUTPUT = 1 

S1 = 0, S0 = 1, OUTPUT = 0 

S1 = 1, S0 = 0, OUTPUT = 1 

S1 = 1, S0 = 1, OUTPUT = 0 

4-bit Ripple Carry Full Adder 

Consider the design of  a 4-bit full adder whose port list was defined in, List of Ports. We use primitive 

logic gates, and we apply stimulus to the 4-bit full adder to check functionality. For the sake of simplicity, 

we will implement a ripple carry adder. The basic building block is a 1-bit full adder. The mathematical 

equations for a 1-bit full adder are shown below. 

sum = (a b cin) 

cout = (a b) + cin (a b) 

The logic diagram for a 1-bit full adder is shown in Figure 3-6. 
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Figure 3-6. 1-bit Full Adder 

This logic diagram for the 1-bit full adder is converted to a Verilog description, shown in Example 3-7. 

Example 3-7 Verilog Description for 1-bit Full Adder 

// Define a 1-bit full adder 

module fulladd(sum, c_out, a, b, c_in); 

// I/O port declarations 

output sum, c_out; 

input a, b, c_in; 

// Internal nets 

wire s1, c1, c2; 

// Instantiate logic gate primitives 

xor (s1, a, b); 

and (c1, a, b); 

xor (sum, s1, c_in); 

and (c2, s1, c_in); 

xor (c_out, c2, c1); 

endmodule 

A 4-bit ripple carry full adder can be constructed from four 1-bit full adders, as shown in Figure 3-7. Notice that 

fa0, fa1, fa2, and fa3 are instances of the module fulladd (1-bit full adder). 
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Figure 3-7. 4-bit Ripple Carry Full Adder  

This structure can be translated to Verilog as shown in Example 3-8. Note that the port names used in a 1-bit 

full adder and a 4-bit full adder are the same but they represent different elements. The element sum in a 1-bit 

adder is a scalar quantity and the element sum in the 4-bit full adder is a 4-bit vector quantity. Verilog keeps 

names local to a module.  

Names are not visible outside the module unless hierarchical name referencing is used. Also note that instance 

names must be specified when defined modules are instantiated, but when instantiating Verilog primitives, the 

instance names are optional. 

Example 3-8 Verilog Description for 4-bit Ripple Carry Full Adder 

// Define a 4-bit full adder 

module fulladd4(sum, c_out, a, b, c_in); 

// I/O port declarations 

output [3:0] sum; 

output c_out; 

input[3:0] a, b; 

input c_in; 

// Internal nets 

wire c1, c2, c3; 

// Instantiate four 1-bit full adders. 

fulladd fa0(sum[0], c1, a[0], b[0], c_in); 
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fulladd fa1(sum[1], c2, a[1], b[1], c1); 

fulladd fa2(sum[2], c3, a[2], b[2], c2); 

fulladd fa3(sum[3], c_out, a[3], b[3], c3); 

endmodule 

Finally, the design must be checked by applying stimulus, as shown in Example 3-9. The module stimulus 

stimulates the 4-bit full adder by applying a few input combinations and monitors the results. 

Example 3-9 Stimulus for 4-bit Ripple Carry Full Adder 

// Define the stimulus (top level module) 

module stimulus; 

// Set up variables 

reg [3:0] A, B; 

reg C_IN; 

wire [3:0] SUM; 

wire C_OUT; 

// Instantiate the 4-bit full adder. call it FA1_4 

fulladd4 FA1_4(SUM, C_OUT, A, B, C_IN); 

// Set up the monitoring for the signal values 

initial 

begin 

$monitor($time," A= %b, B=%b, C_IN= %b, --- C_OUT= %b, SUM= %b\n", 

A, B, C_IN, C_OUT, SUM); 

end 

// Stimulate inputs 

initial 

begin 

A = 4'd0; B = 4'd0; C_IN = 1'b0; 

#5 A = 4'd3; B = 4'd4; 
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#5 A = 4'd2; B = 4'd5; 

#5 A = 4'd9; B = 4'd9; 

#5 A = 4'd10; B = 4'd15; 

#5 A = 4'd10; B = 4'd5; C_IN = 1'b1; 

end 

endmodule 

The output of the simulation is shown below. 

0 A= 0000, B=0000, C_IN= 0, --- C_OUT= 0, SUM= 0000 

5 A= 0011, B=0100, C_IN= 0, --- C_OUT= 0, SUM= 0111 

10 A= 0010, B=0101, C_IN= 0, --- C_OUT= 0, SUM= 0111 

15 A= 1001, B=1001, C_IN= 0, --- C_OUT= 1, SUM= 0010 

20 A= 1010, B=1111, C_IN= 0, --- C_OUT= 1, SUM= 1001 

25 A= 1010, B=0101, C_IN= 1,--- C_OUT= 1, SUM= 0000 

3.3 Gate Delays 

Until now, circuits are described without any delays (i.e., zero delay). In real circuits, logic gates have delays 

associated with them. Gate delays allow the Verilog user to specify delays through the logic circuits. Pin-to-pin 

delays can also be specified in Verilog.  

3.3.1 Rise, Fall, and Turn-off Delays 

There are three types of delays from the inputs to the output of a primitive gate.  

Rise delay 

The rise delay is associated with a gate output transition to a 1 from another value. 

 

Fall delay 

The fall delay is associated with a gate output transition to a 0 from another value. 
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Turn-off delay 

The turn-off delay is associated with a gate output transition to the high impedance value (z) from another 

value. If the value changes to x, the minimum of the three delays is considered. 

Three types of delay specifications are allowed. If only one delay is specified, this value is used for all 

transitions. If two delays are specified, they refer to the rise and fall delay values. The turn-off delay is the 

minimum of the two delays. If all three delays are specified, they refer to rise, fall, and turn-off delay values. If 

no delays are specified, the default value is zero. Examples of delay specification are shown in Example 3-10. 

Example 3-10 Types of Delay Specification 

// Delay of delay_time for all transitions 

and #(delay_time) a1(out, i1, i2); 

// Rise and Fall Delay Specification. 

and #(rise_val, fall_val) a2(out, i1, i2); 

// Rise, Fall, and Turn-off Delay Specification 

bufif0 #(rise_val, fall_val, turnoff_val) b1 (out, in, control); 

Examples of delay specification are shown below. 

and #(5) a1(out, i1, i2); //Delay of 5 for all transitions 

and #(4,6) a2(out, i1, i2); // Rise = 4, Fall = 6 

bufif0 #(3,4,5) b1 (out, in, control); // Rise = 3, Fall = 4, Turn-off= 5 

3.3.2 Min/Typ/Max Values 

Verilog provides an additional level of control for each type of delay mentioned above. For each type of 

delay?rise, fall, and turn-off?three values, min, typ, and max, can be specified. Any one value can be chosen at 

the start of the simulation. Min/typ/max values are used to model devices whose delays vary within a minimum 

and maximum range because of the IC fabrication process variations. 
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Min value 

The min value is the minimum delay value that the designer expects the gate to have. 

Typ val 

The typ value is the typical delay value that the designer expects the gate to have. 

Max value 

The max value is the maximum delay value that the designer expects the gate to have. Min, typ, or max values 

can be chosen at Verilog run time. Method of choosing a min/typ/max value may vary for different simulators 

or operating systems. (For Verilog- XL , the values are chosen by specifying options +maxdelays, +typdelays, 

and +mindelays at run time. If no option is specified, the typical delay value is the default).  

This allows the designers the flexibility of building three delay values for each transition into their design. The 

designer can experiment with delay values without modifying the design. 

Examples of min, typ, and max value specification for Verilog-XL are shown in Example3-11. 

Example 3-11 Min, Max, and Typical Delay Values 

// One delay 

// if +mindelays, delay= 4 

// if +typdelays, delay= 5 

// if +maxdelays, delay= 6 

and #(4:5:6) a1(out, i1, i2); 

// Two delays 

// if +mindelays, rise= 3, fall= 5, turn-off = min(3,5) 

// if +typdelays, rise= 4, fall= 6, turn-off = min(4,6) 

// if +maxdelays, rise= 5, fall= 7, turn-off = min(5,7) 

and #(3:4:5, 5:6:7) a2(out, i1, i2); 

// Three delays 

// if +mindelays, rise= 2 fall= 3 turn-off = 4 

// if +typdelays, rise= 3 fall= 4 turn-off = 5 
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// if +maxdelays, rise= 4 fall= 5 turn-off = 6 

and #(2:3:4, 3:4:5, 4:5:6) a3(out, i1,i2); 

Examples of invoking the Verilog-XL simulator with the command-line options are shown below. Assume that 

the module with delays is declared in the file test.v. 

//invoke simulation with maximum delay 

> verilog test.v +maxdelays 

//invoke simulation with minimum delay 

> verilog test.v +mindelays 

//invoke simulation with typical delay 

> verilog test.v +typdelays 

3.3.3 Delay Example 

Let us consider a simple example to illustrate the use of gate delays to model timing in the logic circuits. A 

simple module called D implements the following logic equations: 

out = (a b) + c 

The gate-level implementation is shown in Module D (Figure 3-8). The module contains two gates with delays 

of 5 and 4 time units. 

 

Figure 3-8. Module D 

The module D is defined in Verilog as shown in Example 3-12. 

 

 

no
tes
4fr
ee
.in



Verilog HDL [15EC53] 
 
  

 

Dept.of ECE/ATMECE, Mysuru Page 56 
 
 

Example 3-12 Verilog Definition for Module D with Delay 

// Define a simple combination module called D 

module D (out, a, b, c); 

// I/O port declarations 

output out; 

input a,b,c; 

// Internal nets 

wire e; 

// Instantiate primitive gates to build the circuit 

and #(5) a1(e, a, b); //Delay of 5 on gate a1 

or #(4) o1(out, e,c); //Delay of 4 on gate o1 

endmodule 

This module is tested by the stimulus file shown in Example 3-13. 

Example 3-13 Stimulus for Module D with Delay 

// Stimulus (top-level module) 

module stimulus; 

// Declare variables 

reg A, B, C; 

wire OUT; 

// Instantiate the module D 

D d1( OUT, A, B, C); 

// Stimulate the inputs. Finish the simulation at 40 time units. 

initial 

begin 

A= 1'b0; B= 1'b0; C= 1'b0; 

#10 A= 1'b1; B= 1'b1; C= 1'b1; 
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#10 A= 1'b1; B= 1'b0; C= 1'b0; 

#20 $finish; 

end 

endmodule 

The waveforms from the simulation are shown in Figure 3-9 to illustrate the effect of specifying delays on 

gates. The waveforms are not drawn to scale. However, simulation time at each transition is specified below the 

transition. 

1. The outputs E and OUT are initially unknown. 

2. At time 10, after A, B, and C all transition to 1, OUT transitions to 1 after a delay of 4 time units and E 

changes value to 1 after 5 time units. 

3. At time 20, B and C transition to 0. E changes value to 0 after 5 time units, and OUT transitions to 0, 4 time 

units after E changes. 

 

Figure 3-9. Waveforms for Delay Simulation of module D 

It is a useful exercise to understand how the timing for each transition in the above waveform corresponds to the 

gate delays shown in Module D. 
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3.4 Dataflow Modeling 

For small circuits, the gate-level modeling approach works very well because the number of gates is limited and 

the designer can instantiate and connects every gate individually. Also, gate-level modeling is very intuitive to a 

designer with a basic knowledge of digital logic design. However, in complex designs the number of gates is 

very large. Thus, designers can design more effectively if they concentrate on implementing the function at a 

level of abstraction higher than gate level. Dataflow modeling provides a powerful way to implement a design. 

Verilog allows a circuit to be designed in terms of the data flow between registers and how a design processes 

data rather than instantiation of individual gates.  

3.4.1 Continuous Assignments 

A continuous assignment is the most basic statement in dataflow modeling, used to drive a value onto a net. This 

assignment replaces gates in the description of the circuit and describes the circuit at a higher level of abstraction. 

The assignment statement starts with the keyword assign. The syntax of an assign statement is as follows. 

continuous_assign ::= assign [ drive_strength ] [ delay3 ] list_of_net_assignments ; 

list_of_net_assignments ::= net_assignment { , net_assignment } 

net_assignment ::= net_lvalue = expression 

The default value for drive strength is strong1 and strong0. The delay value is also optional and can be used to 

specify delay on the assign statement. This is like specifying delays for gates. Continuous assignments have the 

following characteristics: 

1. The left hand side of an assignment must always be a scalar or vector net or a concatenation of scalar and vector 

nets. It cannot be a scalar or vector register.  

2. Continuous assignments are always active. The assignment expression is evaluated as soon as one of the right-

hand-side operands changes and the value is assigned to the left-hand-side net. 

3. The operands on the right-hand side can be registers or nets or function calls. Registers or nets can be scalars or 

vectors. 

4. Delay values can be specified for assignments in terms of time units. Delay values are used to control the time 

when a net is assigned the evaluated value. This feature is similar to specifying delays for gates. It is very useful in 

modeling timing behavior in real circuits. 
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Examples of continuous assignments are shown below. Operators such as &, ^, |, {, } and + used in the examples, At 

this point, concentrate on how the assign statements are specified. 

Example 3-14 Examples of Continuous Assignment 

// Continuous assign. out is a net. i1 and i2 are nets. 

assign out = i1 & i2; 

// Continuous assign for vector nets. addr is a 16-bit vector net 

// addr1 and addr2 are 16-bit vector registers. 

assign addr[15:0] = addr1_bits[15:0] ^ addr2_bits[15:0]; 

// Concatenation. Left-hand side is a concatenation of a scalar 

// net and a vector net. 

assign {c_out, sum[3:0]} = a[3:0] + b[3:0] + c_in; 

 

3.4.2 Implicit Continuous Assignment 

Instead of declaring a net and then writing a continuous assignment on the net, Verilog provides a shortcut by which 

a continuous assignment can be placed on a net when it is declared. There can be only one implicit declaration 

assignment per net because a net is declared only once. 

In the example below, an implicit continuous assignment is contrasted with a regular continuous assignment. 

//Regular continuous assignment 

wire out; 

assign out = in1 & in2; 

//Same effect is achieved by an implicit continuous assignment 

wire out = in1 & in2; 

Implicit Net Declaration 

If a signal name is used to the left of the continuous assignment, an implicit net declaration will be inferred for that 

signal name. If the net is connected to a module port, the width of the inferred net is equal to the width of the module 

port. 
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// Continuous assign. out is a net. 

wire i1, i2; 

assign out = i1 & i2; //Note that out was not declared as a wire 

//but an implicit wire declaration for out 

//is done by the simulator 

3.5 Delays 

Delay values control the time between the change in a right-hand-side operand and when the new value is assigned 

to the left-hand side. Three ways of specifying delays in continuous assignment statements are regular assignment 

delay, implicit continuous assignment delay, and net declaration delay. 

3.5.1 Regular Assignment Delay 

The first method is to assign a delay value in a continuous assignment statement. The delay value is specified after 

the keyword assign. Any change in values of in1 or in2 will result in a delay of 10 time units before re-computation 

of the expression in1 & in2, and the result will be assigned to out. If in1 or in2 changes value again before 10 time 

units when the result propagates to out, the values of in1 and in2 at the time of re-computation are considered. This 

property is called inertial delay. An input pulse that is shorter than the delay of the assignment statement does not 

propagate to the output. 

assign #10 out = in1 & in2; // Delay in a continuous assign 

1. When signals in1 and in2 go high at time 20, out goes to a high 10 time units later (time = 30). 

2. When in1 goes low at 60, out changes to low at 70. 

3. However, in1 changes to high at 80, but it goes down to low before 10 time units have elapsed. 

4. Hence, at the time of re-computation, 10 units after time 80, in1 is 0. Thus, out gets the value 0. A pulse of width 

less than the specified assignment delay is no propagated to the output. 

 

Figure 3-10. Waveforms for Delay Simulation 
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Inertial delays also apply to gate delays,  

Implicit Continuous Assignment Delay 

An equivalent method is to use an implicit continuous assignment to specify both a delay and an assignment on the 

net. 

//implicit continuous assignment delay 

wire #10 out = in1 & in2; 

//same as 

wire out; 

assign #10 out = in1 & in2; 

The declaration above has the same effect as defining a wire out and declaring a continuous assignment on out. 

Net Declaration Delay 

A delay can be specified on a net when it is declared without putting a continuous assignment on the net. If a delay is 

specified on a net out, then any value change applied to the net out is delayed accordingly. Net declaration delays 

can also be used in gate-level modeling. 

//Net Delays 

wire # 10 out; 

assign out = in1 & in2; 

//The above statement has the same effect as the following. 

wire out; 

assign #10 out = in1 & in2; 

3.5 Expressions, Operators, and Operands 

Dataflow modeling describes the design in terms of expressions instead of primitive gates. Expressions, operators, 

and operands form the basis of dataflow modeling. 

Expressions are constructs that combine operators and operands to produce a result. 

// Examples of expressions. Combines operands and operators 

a ^ b 
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addr1[20:17] + addr2[20:17] 

in1 | in2 

Operands can be any one of the data types defined, Data Types. Some constructs will take only certain types of 

operands. Operands can be constants, integers, real numbers, nets, registers, times, bit-select (one bit of vector net or 

a vector register), part-select (selected bits of the vector net or register vector), and memories or function calls  

integer count, final_count; 

final_count = count + 1;//count is an integer operand 

real a, b, c; 

c = a - b; //a and b are real operands 

reg [15:0] reg1, reg2; 

reg [3:0] reg_out; 

reg_out = reg1[3:0] ^ reg2[3:0];//reg1[3:0] and reg2[3:0] are 

//part-select register operands 

reg ret_value; 

ret_value = calculate_parity(A, B);//calculate_parity is a 

//function type operand 

Operators 

Operators act on the operands to produce desired results. Verilog provides various types of operators. Operator 

Types d1 && d2 // && is an operator on operands d1 and d2. 

!a[0] // ! is an operator on operand a[0] 

B >> 1 // >> is an operator on operands B and 1 

Operator Types 

Verilog provides many different operator types. Operators can be arithmetic, logical, relational, equality, bitwise, 

reduction, shift, concatenation, or conditional. Some of these operators are similar to the operators used in the C 

programming language. Each operator type is denoted by a symbol. Table shows the complete listing of operator 

symbols classified by category. 

. 
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Table 3-4 Operator Types and Symbols 

  

Examples 

A design can be represented in terms of gates, data flow, or a behavioral description. Consider the 4-to-1 multiplexer 

and 4-bit full adder described earlier. Previously, these designs were directly translated from the logic diagram into a 

gate-level Verilog description. Here, we describe the same designs in terms of data flow. We also discuss two 

additional examples: a 4-bit full adder using carry look ahead and a 4-bit counter using negative edge-triggered D-

flip-flops. 

4-to-1 Multiplexer 

Gate-level modeling of a 4-to-1 multiplexer, Example. The logic diagram for the multiplexer is given in Figure 3.4 

and the gate-level Verilog description is shown in Example. We describe the multiplexer, using dataflow statements. 

Compare it with the gate-level description. We show two methods to model the multiplexer by using dataflow 

statements. 

Method 1: logic equation 

We can use assignment statements instead of gates to model the logic equations of the multiplexer. Notice that 

everything is same as the gate-level Verilog description except that computation of out is done by specifying one 
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logic equation by using operators instead of individual gate instantiations. I/O ports remain the same. This important 

so that the interface with the environment does not change. Only the internals of the module change.  

Example 4-to-1 Multiplexer, Using Logic Equations 

// Module 4-to-1 multiplexer using data flow. logic equation 

// Compare to gate-level model 

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0); 

// Port declarations from the I/O diagram 

output out; 

input i0, i1, i2, i3; 

input s1, s0; 

//Logic equation for out 

assign out = (~s1 & ~s0 & i0)| 

(~s1 & s0 & i1) | 

(s1 & ~s0 & i2) | 

(s1 & s0 & i3) ; 

endmodule 

Method 2: conditional operator 

There is a more concise way to specify the 4-to-1 multiplexers.  

Example of 4-to-1 Multiplexer, Using Conditional Operators 

// Module 4-to-1 multiplexer using data flow. Conditional operator. 

// Compare to gate-level model 

module multiplexer4_to_1 (out, i0, i1, i2, i3, s1, s0); 

// Port declarations from the I/O diagram 

output out; 

input i0, i1, i2, i3; 

input s1, s0; 
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// Use nested conditional operator 

assign out = s1 ? ( s0 ? i3 : i2) : (s0 ? i1 : i0) ; 

endmodule 

In the simulation of the multiplexer, the gate-level module can be substituted with the dataflow multiplexer modules 

described above. The stimulus module will not change. The simulation results will be identical. By encapsulating 

functionality inside a module, we can replace the gate-level module with a dataflow module without affecting the 

other modules in the simulation. This is a very powerful feature of Verilog. 

4 bit Full Adder 

The 4-bit full adder in, Examples, was designed by using gates; the logic diagram is shown in Figure 3.7. In this 

section, we write the dataflow description for the 4-bit adder. In gates, we had to first describe a 1-bit full adder. 

Then we built a 4-bit full ripple carry adder. We again illustrate two methods to describe a 4-bit full adder by means 

of dataflow statements. 

Method 1: dataflow operators 

A concise description of the adder is defined with the + and { } operators. 

Example 4-bit Full Adder, Using Dataflow Operators 

// Define a 4-bit full adder by using dataflow statements. 

module fulladd4(sum, c_out, a, b, c_in); 

// I/O port declarations 

output [3:0] sum; 

output c_out; 

input[3:0] a, b; 

input c_in; 

// Specify the function of a full adder 

assign {c_out, sum} = a + b + c_in; 

endmodule 

If we substitute the gate-level 4-bit full adder with the dataflow 4-bit full adder, the rest of the modules will not 

change. The simulation results will be identical. 
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Method 2: full adder with carry lookahead 

In ripple carry adders, the carry must propagate through the gate levels before the sum is available at the output 

terminals. An n-bit ripple carry adder will have 2n gate levels. The propagation time can be a limiting factor on the 

speed of the circuit. One of the most popular methods to reduce delay is to use a carry lookahead mechanism. Logic 

equations for implementing the carry lookahead mechanism can be found in any logic design book. The propagation 

delay is reduced to four gate levels, irrespective of the number of bits in the adder. The Verilog description for a 

carry lookahead adder. This module can be substituted in place of the full adder modules described before without 

changing any other component of the simulation. The simulation results will be unchanged. 

Example 4-bit Full Adder with Carry Lookahead 

module fulladd4(sum, c_out, a, b, c_in); 

// Inputs and outputs 

output [3:0] sum; 

output c_out; 

input [3:0] a,b; 

input c_in; 

// Internal wires 

wire p0,g0, p1,g1, p2,g2, p3,g3; 

wire c4, c3, c2, c1; 

// compute the p for each stage 

assign p0 = a[0] ^ b[0], 

p1 = a[1] ^ b[1], 

p2 = a[2] ^ b[2], 

p3 = a[3] ^ b[3]; 

// compute the g for each stage 

assign g0 = a[0] & b[0], 

g1 = a[1] & b[1], 

g2 = a[2] & b[2], 

g3 = a[3] & b[3]; 

// compute the carry for each stage 

// Note that c_in is equivalent c0 in the arithmetic equation for 
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// carry lookahead computation 

assign c1 = g0 | (p0 & c_in), 

c2 = g1 | (p1 & g0) | (p1 & p0 & c_in), 

c3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & c_in), 

c4 = g3 | (p3 & g2) | (p3 & p2 & g1) | (p3 & p2 & p1 & g0) | 

(p3 & p2 & p1 & p0 & c_in); 

// Compute Sum 

assign sum[0] = p0 ^ c_in, 

sum[1] = p1 ^ c1, 

sum[2] = p2 ^ c2, 

sum[3] = p3 ^ c3; 

// Assign carry output 

assign c_out = c4; 

endmodule 

Ripple Counter 

Consider the design of a 4-bit ripple counter by using negative edge-triggered flipflops. This example was discussed 

at a very abstract level, Hierarchical Modeling Concepts. We design it using Verilog dataflow statements and test it 

with a stimulus module. The diagrams for the 4-bit ripple carry counter modules are show the counter being built 

with four T-flipflops. 

 

Figure 3.11 4 bit ripple counter 

. 
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Figure 3.12  T-flipflop is built with one D-flipflop and an inverter gate 

 

Figure 3.13 shows the D-flipflop constructed from basic logic gates. 

 

Figure 3.13  Negative Edge-Triggered D-flipflop with Clear  

Given the above diagrams, we write the corresponding Verilog, using dataflow statements in a top-down fashion. 

First we design the module counter. The code is shown in. The code contains instantiation of four T_FF modules. 

Example: Verilog Code for Ripple Counter 

// Ripple counter 
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module counter(Q , clock, clear); 

// I/O ports 

output [3:0] Q; 

input clock, clear; 

// Instantiate the T flipflops 

T_FF tff0(Q[0], clock, clear); 

T_FF tff1(Q[1], Q[0], clear); 

T_FF tff2(Q[2], Q[1], clear); 

T_FF tff3(Q[3], Q[2], clear); 

endmodule 

Example :Verilog Code for T-flipflop 

// Edge-triggered T-flipflop. Toggles every clock 

// cycle. 

module T_FF(q, clk, clear); 

// I/O ports 

output q; 

input clk, clear; 

// Instantiate the edge-triggered DFF 

// Complement of output q is fed back. 

// Notice qbar not needed. Unconnected port. 

edge_dff ff1(q, ,~q, clk, clear); 

endmodule 

Verilog Code for Edge-Triggered D-flipflop 

// Edge-triggered D flipflop 

module edge_dff(q, qbar, d, clk, clear); 

// Inputs and outputs 

output q,qbar; 

input d, clk, clear; 

// Internal variables 

wire s, sbar, r, rbar,cbar; 
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// dataflow statements 

//Create a complement of signal clear 

assign cbar = ~clear; 

// Input latches; A latch is level sensitive. An edge-sensitive 

// flip-flop is implemented by using 3 SR latches. 

assign sbar = ~(rbar & s), 

s = ~(sbar & cbar & ~clk), 

r = ~(rbar & ~clk & s), 

rbar = ~(r & cbar & d); 

// Output latch 

assign q = ~(s & qbar), 

qbar = ~(q & r & cbar); 

endmodule 

Stimulus Module for Ripple Counter 

// Top level stimulus module 

module stimulus; 

// Declare variables for stimulating input 

reg CLOCK, CLEAR; 

wire [3:0] Q; 

initial 

$monitor($time, " Count Q = %b Clear= %b", Q[3:0],CLEAR); 

// Instantiate the design block counter 

counter c1(Q, CLOCK, CLEAR); 

// Stimulate the Clear Signal 

initial 

begin 

CLEAR = 1'b1; 

#34 CLEAR = 1'b0; 

#200 CLEAR = 1'b1; 

#50 CLEAR = 1'b0; 
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end 

// Set up the clock to toggle every 10 time units 

initial 

begin 

CLOCK = 1'b0; 

forever #10 CLOCK = ~CLOCK; 

end 

// Finish the simulation at time 400 

initial 

begin 

#400 $finish; 

end 

endmodule 

The output of the simulation is shown below. Note that the clear signal resets the count 

to zero. 

0 Count Q = 0000 Clear= 1 

34 Count Q = 0000 Clear= 0 

40 Count Q = 0001 Clear= 0 

60 Count Q = 0010 Clear= 0 

80 Count Q = 0011 Clear= 0 

100 Count Q = 0100 Clear= 0 

120 Count Q = 0101 Clear= 0 

140 Count Q = 0110 Clear= 0 

160 Count Q = 0111 Clear= 0 

180 Count Q = 1000 Clear= 0 

200 Count Q = 1001 Clear= 0 

220 Count Q = 1010 Clear= 0 

234 Count Q = 0000 Clear= 1 

284 Count Q = 0000 Clear= 0 

300 Count Q = 0001 Clear= 0 

320 Count Q = 0010 Clear= 0 
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340 Count Q = 0011 Clear= 0 

360 Count Q = 0100 Clear= 0 

380 Count Q = 0101 Clear= 0 

3.6: Outcomes 
 

After completion of the module the students are able to: 

 

 Identify logic gate primitives provided in Verilog and Understand instantiation of gates, gate 

symbols, and truth tables for and/or and buf/not type gates. 

 Understand how to construct a Verilog description from the logic diagram of the circuit. 

 Describe rise, fall, and turn-off delays in the gate-level design and Explain min, max, and typ delays 

in the gate-level design 

 Describe the continuous assignment (assign) statement, restrictions on the assign statement, and the 

implicit continuous assignment statement. 

 Explain assignment delay, implicit assignment delay, and net declaration delay for continuous 

assignment statements and Define expressions, operators, and operands. 

 Use dataflow constructs to model practical digital circuits in Verilog 

 

3.7:  Recommended questions  

 
1.   Write the truth table of all the basic gates. Input values consisting of ‘0’, ‘1’, ‘x’, ‘z’. 

2.  What are the primitive gates supported by Verilog HDL? Write the Verilog HDL statements to 

instantiate all the primitive gates. 

3.  Use gate level description of Verilog HDL to design 4 to 1 multiplexer. Write truth table, top-level 

block, logic expression and logic diagram. Also write the stimulus block for the same. 

4.  Explain the different types of buffers and not gates with the help of truth table, logic symbol, logic 

expression 

5.  Use gate level description of Verilog HDL to describe the 4-bit ripple carry counter. Also write a 

stimulus block for 4-bit ripple carry adder. 

6. How to model the delays of a logic gate using Verilog HDL? Give examples. Also explain the 

different delays associated with digital circuits. 

7.  Write gate level description to implement function y = a.b + c, with 5 and 4 time units of gate delay for 

AND and OR gate respectively. Also write the stimulus block and simulation waveform. 

8.  With syntax describe the continuous assignment statement. 
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9.  Show how different delays associated with logic circuit are modelled using dataflow description. 

10. Explain different operators supported by Verilog HDL. 

11. What is an expression associated with dataflow description? What are the different types of operands 

in an expression? 

12. Discuss the precedence of operators. 

13. Use dataflow description style of Verilog HDL to design 4:1 multiplexer with and without using 

conditional operator. 

14. Use dataflow description style of Verilog HDL to design 4-bitadder 

using i.   Ripple carry logic. 

ii.   Carry look ahead logic. 

15. Use dataflow description style, gate level description of Verilog HDL to design 4-bit ripple carry 

counter. Also write the stimulus block to verify the same. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

no
tes
4fr
ee
.in



Verilog HDL [15EC53] 
 
  

 

Dept.of ECE/ATMECE, Mysuru Page 74 
 
 

MODULE -4   

 

BEHAVIORAL MODELING 

4.1 Objectives 

• To Explain the significance of structured procedures always and initial in behavioral modeling. 

• To Define blocking and nonblocking procedural assignments. 

• To Understand delay-based timing control mechanism in behavioral modeling. Use regular delays, 

intra-assignment delays, and zero delays. 

• To Describe event-based timing control mechanism in behavioral modeling. Use regular event 

control, named event control, and event OR control. 

• To Use level-sensitive timing control mechanism in behavioral modeling. 

• To Explain conditional statements using if and else. 

• To Describe multiway branching, using case, casex, and casez statements. 

• To Understand looping statements such as while, for, repeat, and forever. 

• To Define sequential and parallel blocks. 

4.2 Structured Procedures 

There are two structured procedure statements in Verilog: always and initial. These statements are the two most 

basic statements in behavioral modeling. All other behavioral statements can appear only inside these structured 

procedure statements. Verilog is a concurrent programming language unlike the C programming language, 

which is sequential in nature.  

Activity flows in Verilog run in parallel rather than in sequence. Each always and initial statement represents a 

separate activity flow in Verilog. Each activity flow starts at simulation time 0. The statements always and 

initial cannot be nested. The fundamental difference between the two statements is explained in the following 

sections 

4.2.1 Initial Statement 

All statements inside an initial statement constitute an initial block. An initial block starts at time 0, executes 

exactly once during a simulation, and then does not execute again. If there are multiple initial blocks, each 

block starts to execute concurrently at time 0. Each block finishes execution independently of other blocks. 
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Multiple behavioral statements must be grouped, typically using the keywords begin and end. If there is only 

one behavioral statement, grouping is not necessary. This is similar to the begin-end blocks in Pascal 

programming language or the { } grouping in the C programming language. Example 4.1 illustrates the use of 

the initial statement. 

Example 4.1:Initial Statement 

module stimulus; 

reg x,y, a,b, m; 

initial 

m = 1'b0; //single statement; does not need to be grouped 

initial 

begin 

#5 a = 1'b1; //multiple statements; need to be grouped 

#25 b = 1'b0; 

end 

initial 

begin 

#10 x = 1'b0; 

#25 y = 1'b1; 

end 

initial 

128 

#50 $finish; 

endmodule 

In the above example, the three initial statements start to execute in parallel at time 0. If a delay #<delay> is 

seen before a statement, the statement is executed <delay> time units after the current simulation time. Thus, 

the execution sequence of the statements inside the initial blocks will be as follows. 

time statement executed 

0 m = 1'b0; 

5 a = 1'b1; 

10 x = 1'b0; 
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30 b = 1'b0; 

35 y = 1'b1; 

50 $finish; 

The initial blocks are typically used for initialization, monitoring, waveforms and other processes that must be 

executed only once during the entire simulation run. The following subsections discussion how to initialize 

values using alternate shorthand syntax. The use of such shorthand syntax has the same effect as an initial block 

combined with a variable declaration. 

Combined Variable Declaration and Initialization 

Variables can be initialized when they are declared. Example 4-2 shows such a declaration. 

Example 4-2 Initial Value Assignment 

//The clock variable is defined first 

reg clock; 

//The value of clock is set to 0 

initial clock = 0; 

//Instead of the above method, clock variable 

//can be initialized at the time of declaration 

//This is allowed only for variables declared 

//at module level. 

reg clock = 0; 

Combined Port/Data Declaration and Initialization 

The combined port/data declaration can also be combined with an initialization. Example 4-3 shows such a 

declaration. 

Example 4-3 Combined Port/Data Declaration and Variable Initialization 

module adder (sum, co, a, b, ci); 

output reg [7:0] sum = 0; //Initialize 8 bit output sum 

output reg co = 0; //Initialize 1 bit output co 

input [7:0] a, b; 

input ci; 
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-- 

-- 

endmodule 

Combined ANSI C Style Port Declaration and Initialization 

ANSI C style port declaration can also be combined with an initialization. Example 4-4 shows such a 

declaration. 

Example 4-4 Combined ANSI C Port Declaration and Variable Initialization 

module adder (output reg [7:0] sum = 0, //Initialize 8 bit output 

output reg co = 0, //Initialize 1 bit output co 

input [7:0] a, b, 

input ci 

); 

-- 

-- 

endmodule 

4.2.2 Always Statement 

All behavioral statements inside an always statement constitute an always block. The always statement starts at 

time 0 and executes the statements in the always block continuously in a looping fashion. This statement is used 

to model a block of activity that is repeated continuously in a digital circuit. An example is a clock generator 

module that toggles the clock signal every half cycle. In real circuits, the clock generator is active from time 0 

to as long as the circuit is powered on. Example 4-5 illustrates one method to model a clock generator in 

Verilog. 

Example 4-5 always Statement 

module clock_gen (output reg clock); 

//Initialize clock at time zero 

initial 

clock = 1'b0; 

//Toggle clock every half-cycle (time period = 20) 

always 
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#10 clock = ~clock; 

initial 

#1000 $finish; 

endmodule 

In Example 4-5, the always statement starts at time 0 and executes the statement clock = ~clock every 10 time 

units. Notice that the initialization of clock has to be done inside a separate initial statement. If we put the 

initialization of clock inside the always block, clock will be initialized every time the always is entered. Also, 

the simulation must be halted inside an initial statement. If there is no $stop or $finish statement to halt the 

simulation, the clock generator will run forever. C programmers might draw an analogy between the always 

block and an infinite loop. 

But hardware designers tend to view it as a continuously repeated activity in a digital circuit starting from 

power on. The activity is stopped only by power off ($finish) or by an interrupt ($stop). 

4.3 Procedural Assignments 

Procedural assignments update values of reg, integer, real, or time variables. The value placed on a variable will 

remain unchanged until another procedural assignment updates the variable with a different value. These are 

unlike continuous assignments, Dataflow Modeling, where one assignment statement can cause the value of 

the right-hand-side expression to be continuously placed onto the left-hand-side net. The 

syntax for the simplest form of procedural assignment is shown below. 

assignment ::= variable_lvalue = [ delay_or_event_control ] expression 

The left-hand side of a procedural assignment <lvalue> can be one of the following: 

• A reg, integer, real, or time register variable or a memory element 

• A bit select of these variables (e.g., addr[0]) 

• A part select of these variables (e.g., addr[31:16]) 

• A concatenation of any of the above 

The right-hand side can be any expression that evaluates to a value. In behavioral modeling, all operators can be 

used in behavioral expressions. 
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There are two types of procedural assignment statements: blocking and nonblocking. 

4.3.1 Blocking Assignments 

Blocking assignment statements are executed in the order they are specified in a sequential block. A blocking 

assignment will not block execution of statements that follow in a parallel block. The = operator is used to 

specify blocking assignments. 

Example 4-6 Blocking Statements 

reg x, y, z; 

reg [15:0] reg_a, reg_b; 

integer count; 

//All behavioral statements must be inside an initial or always block 

initial 

begin 

x = 0; y = 1; z = 1; //Scalar assignments 

count = 0; //Assignment to integer variables 

reg_a = 16'b0; reg_b = reg_a; //initialize vectors 

#15 reg_a[2] = 1'b1; //Bit select assignment with delay 

#10 reg_b[15:13] = {x, y, z} //Assign result of concatenation to  part select of a vector 

count = count + 1; //Assignment to an integer (increment) 

end 

In Example 4-6, the statement y = 1 is executed only after x = 0 is executed. The behavior in a particular block 

is sequential in a begin-end block if blocking statements are used, because the statements can execute only in 

sequence. The statement count = count + 1 is executed last. The simulation times at which the statements are 

executed are as follows: 

• All statements x = 0 through reg_b = reg_a are executed at time 0 

• Statement reg_a[2] = 0 at time = 15 

• Statement reg_b[15:13] = {x, y, z} at time = 25 

• Statement count = count + 1 at time = 25 
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• Since there is a delay of 15 and 10 in the preceding statements, count = count + 1 will be executed at time = 25 

units 

Note that for procedural assignments to registers, if the right-hand side has more bits than the register variable, 

the right-hand side is truncated to match the width of the register variable. The least significant bits are selected 

and the most significant bits are discarded. If the right-hand side has fewer bits, zeros are filled in the most 

significant bits of the register variable. 

4.3.2 Nonblocking Assignments 

Nonblocking assignments allow scheduling of assignments without blocking execution of the statements that 

follow in a sequential block. A <= operator is used to specify nonblocking assignments. Note that this operator 

has the same symbol as a relational operator, less_than_equal_to. The operator <= is interpreted as a relational 

operator in an expression and as an assignment operator in the context of a nonblocking assignment. To 

illustrate the behavior of nonblocking statements and its difference from blocking statements, let us consider 

Example 4-7, where we convert some blocking assignments to nonblocking assignments, and observe the 

behavior. 

Example 4-7 Nonblocking Assignments 

reg x, y, z; 

reg [15:0] reg_a, reg_b; 

integer count; 

//All behavioral statements must be inside an initial or always block 

initial 

begin 

x = 0; y = 1; z = 1; //Scalar assignments 

count = 0; //Assignment to integer variables 

reg_a = 16'b0; reg_b = reg_a; //Initialize vectors 

reg_a[2] <= #15 1'b1; //Bit select assignment with delay 

reg_b[15:13] <= #10 {x, y, z}; //Assign result of concatenation 

//to part select of a vector 

count <= count + 1; //Assignment to an integer (increment) 

end 
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In this example, the statements x = 0 through reg_b = reg_a are executed sequentially at time 0. Then the three 

nonblocking assignments are processed at the same simulation time. 

1. reg_a[2] = 0 is scheduled to execute after 15 units (i.e., time = 15) 

2. reg_b[15:13] = {x, y, z} is scheduled to execute after 10 time units (i.e., time = 10) 

3. count = count + 1 is scheduled to be executed without any delay (i.e., time = 0) Thus, the simulator schedules 

a nonblocking assignment statement to execute and continues to the next statement in the block without waiting 

for the nonblocking statement to complete execution. Typically, nonblocking assignment statements are 

executed last in the time step in which they are scheduled, that is, after all the blocking assignments in that time 

step are executed. 

In the example above, we mixed blocking and nonblocking assignments to illustrate their behavior. However, it 

is recommended that blocking and nonblocking assignments not be mixed in the same always block. 

Application of nonblocking assignments 

Having described the behavior of nonblocking assignments, it is important to understand why they are used in 

digital design. They are used as a method to model several concurrent data transfers that take place after a 

common event. Consider the following example where three concurrent data transfers take place at the positive 

edge of clock. 

always @(posedge clock) 

begin 

reg1 <= #1 in1; 

reg2 <= @(negedge clock) in2 ^ in3; 

reg3 <= #1 reg1; //The old value of reg1 

end 

At each positive edge of clock, the following sequence takes place for the nonblocking assignments. 

1. A read operation is performed on each right-hand-side variable, in1, in2, in3, and reg1, at the positive edge of 

clock. The right-hand-side expressions are evaluated, and the results are stored internally in the simulator. 

2. The write operations to the left-hand-side variables are scheduled to be executed at the time specified by the 

intra-assignment delay in each assignment, that is, schedule "write" to reg1 after 1 time unit, to reg2 at the next 

negative edge of clock, and to reg3 after 1 time unit. 
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3. The write operations are executed at the scheduled time steps. The order in which the write operations are 

executed is not important because the internally stored right-hand-side expression values are used to assign to 

the left-hand-side values. For example, note that reg3 is assigned the old value of reg1 that was stored after the 

read operation, even if the write operation wrote a new value to reg1 before the write operation to reg3 was 

executed. 

Thus, the final values of reg1, reg2, and reg3 are not dependent on the order in which the assignments are 

processed. 

To understand the read and write operations further, consider Example 4-8, which is intended to swap the 

values of registers a and b at each positive edge of clock, using two concurrent always blocks. 

Example 4-8 Nonblocking Statements to Eliminate Race Conditions 

//Illustration 1: Two concurrent always blocks with blocking 

//statements 

always @(posedge clock) 

a = b; 

always @(posedge clock) 

b = a; 

135 

//Illustration 2: Two concurrent always blocks with nonblocking 

//statements 

always @(posedge clock) 

a <= b; 

always @(posedge clock) 

b <= a; 

In Example 4-8, in Illustration 1, there is a race condition when blocking statements are used. Either a = b 

would be executed before b = a, or vice versa, depending on the simulator implementation. Thus, values of 

registers a and b will not be swapped. Instead, both registers will get the same value (previous value of a or b), 

based on the Verilog simulator implementation. 

However, nonblocking statements used in Illustration 2 eliminate the race condition. At the positive edge of 

clock, the values of all right-hand-side variables are "read," and the right-hand-side expressions are evaluated 

and stored in temporary variables. During the write operation, the values stored in the temporary variables are 
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assigned to the left-handside variables. Separating the read and write operations ensures that the values of 

registers a and b are swapped correctly, regardless of the order in which the write operations are performed. 

Example 4-9 shows how nonblocking assignments shown in Illustration 2 could be emulated using blocking 

assignments. 

Example 4-9 Implementing Nonblocking Assignments using Blocking Assignments 

//Emulate the behavior of nonblocking assignments by 

//using temporary variables and blocking assignments 

always @(posedge clock) 

begin 

//Read operation 

//store values of right-hand-side expressions in temporary variables 

temp_a = a; 

temp_b = b; 

//Write operation 

//Assign values of temporary variables to left-hand-side variables 

a = temp_b; 

b = temp_a; 

end 

For digital design, use of nonblocking assignments in place of blocking assignments is highly recommended in 

places where concurrent data transfers take place after a common event. In such cases, blocking assignments 

can potentially cause race conditions because the final result depends on the order in which the assignments are 

evaluated. Nonblocking assignments can be used effectively to model concurrent data transfers because the 

final result is not dependent on the order in which the assignments are evaluated. Typical applications of 

nonblocking assignments include pipeline modeling and modeling of several mutually exclusive data transfers. 

On the downside, nonblocking assignments can potentially cause degradation in the simulator performance and 

increase in memory usage. 

4.4 Timing Controls 

Various behavioral timing control constructs are available in Verilog. In Verilog, if there are no timing control 

statements, the simulation time does not advance. Timing controls provide a way to specify the simulation time 

at which procedural statements will execute. 
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There are three methods of timing control: delay-based timing control, event-based timing control, and level-

sensitive timing control. 

4.4.1 Delay-Based Timing Control 

Delay-based timing control in an expression specifies the time duration between when the statement is 

encountered and when it is executed. We used delay-based timing control statements when writing few modules 

in the preceding chapters but did not explain them in detail. In this section, we will discuss delay-based timing 

control statements. Delays are specified by the symbol #. Syntax for the delay-based timing control statement is 

shown below. 

delay3 ::= # delay_value | # ( delay_value [ , delay_value [ , 

delay_value ] ] ) 

delay2 ::= # delay_value | # ( delay_value [ , delay_value ] ) 

delay_value ::= 

unsigned_number 

| parameter_identifier 

| specparam_identifier 

| mintypmax_expression 

Delay-based timing control can be specified by a number, identifier, or a mintypmax_expression. There are 

three types of delay control for procedural assignments: regular delay control, intra-assignment delay control, 

and zero delay control. 

Regular delay control 

Regular delay control is used when a non-zero delay is specified to the left of a procedural assignment. Usage of 

regular delay control is shown in Example 4-10.  

Example 4-10 Regular Delay Control 

//define parameters 

parameter latency = 20; 

parameter delta = 2; 
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//define register variables 

reg x, y, z, p, q; 

initial 

begin 

x = 0; // no delay control 

#10 y = 1; // delay control with a number. Delay execution of 

// y = 1 by 10 units 

#latency z = 0; // Delay control with identifier. Delay of 20 

units 

#(latency + delta) p = 1; // Delay control with expression 

#y x = x + 1; // Delay control with identifier. Take value of y. 

#(4:5:6) q = 0; // Minimum, typical and maximum delay values. 

//Discussed in gate-level modeling chapter. 

end 

In Example 4-10, the execution of a procedural assignment is delayed by the number specified by the delay 

control. For begin-end groups, delay is always relative to time when the statement is encountered. Thus, y =1 is 

executed 10 units after it is encountered in the activity flow. 

Intra-assignment delay control 

Instead of specifying delay control to the left of the assignment, it is possible to assign a delay to the right of the 

assignment operator. Such delay specification alters the flow of activity in a different manner. Example 4-11 

shows the contrast between intra-assignment delays and regular delays. 

Example 4-11 Intra-assignment Delays 

//define register variables 

reg x, y, z; 

//intra assignment delays 

initial 

begin 

x = 0; z = 0; 

y = #5 x + z; //Take value of x and z at the time=0, evaluate 
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//x + z and then wait 5 time units to assign value to y. 

end 

//Equivalent method with temporary variables and regular delay control 

initial 

begin 

x = 0; z = 0; 

temp_xz = x + z; 

#5 y = temp_xz; //Take value of x + z at the current time and 

//store it in a temporary variable. Even though x and z might change between 0 and 5, 

//the value assigned to y at time 5 is unaffected. 

end 

Note the difference between intra-assignment delays and regular delays. Regular delays defer the execution of 

the entire assignment. Intra-assignment delays compute the righthand- side expression at the current time and 

defer the assignment of the computed value to the left-hand-side variable. Intra-assignment delays are like using 

regular delays with a temporary variable to store the current value of a right-hand-side expression. 

Zero delay control 

Procedural statements in different always-initial blocks may be evaluated at the same simulation time. The order 

of execution of these statements in different always-initial blocks is nondeterministic. Zero delay control is a 

method to ensure that a statement is executed last, after all other statements in that simulation time are executed. 

This is used to eliminate race conditions. However, if there are multiple zero delay statements, the order 

between them is nondeterministic. Example 4-12 illustrates zero delay control. 

Example 4-12 Zero Delay Control 

initial 

begin 

x = 0; 

y = 0; 

end 

initial 

begin 

#0 x = 1; //zero delay control 
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#0 y = 1; 

end 

In Example 4-12, four statements?x = 0, y = 0, x = 1, y = 1?are to be executed at simulation time 0. However, 

since x = 1 and y = 1 have #0, they will be executed last. Thus, at the end of time 0, x will have value 1 and y 

will have value 1. The order in which x = 1 and y = 1 are executed is not deterministic. The above example was 

used as an illustration. However, using #0 is not a recommended practice. 

 

4.4.2 Event-Based Timing Control 

An event is the change in the value on a register or a net. Events can be utilized to trigger execution of a 

statement or a block of statements. There are four types of event-based timing control: regular event control, 

named event control, event OR control, and level sensitive timing control. 

Regular event control 

The @ symbol is used to specify an event control. Statements can be executed on changes in signal value or at a 

positive or negative transition of the signal value. The keyword posedge is used for a positive transition, as 

shown in Example 4-13. 

Example 4-13 Regular Event Control 

@(clock) q = d; //q = d is executed whenever signal clock changes value 

@(posedge clock) q = d; //q = d is executed whenever signal clock does 

//a positive transition ( 0 to 1,x or z, 

// x to 1, z to 1 ) 

@(negedge clock) q = d; //q = d is executed whenever signal clock does 

//a negative transition ( 1 to 0,x or z, 

//x to 0, z to 0) 

q = @(posedge clock) d; //d is evaluated immediately and assigned 

//to q at the positive edge of clock 

Named event control 
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Verilog provides the capability to declare an event and then trigger and recognize the occurrence of that event 

(see Example 4-14). The event does not hold any data. A named event is declared by the keyword event. An 

event is triggered by the symbol ->. The triggering of the event is recognized by the symbol @. 

Example 4-14 Named Event Control 

//This is an example of a data buffer storing data after the 

//last packet of data has arrived. 

event received_data; //Define an event called received_data 

always @(posedge clock) //check at each positive clock edge 

begin 

if(last_data_packet) //If this is the last data packet 

->received_data; //trigger the event received_data 

end 

always @(received_data) //Await triggering of event received_data 

//When event is triggered, store all four 

//packets of received data in data buffer 

//use concatenation operator { } 

data_buf = {data_pkt[0], data_pkt[1], data_pkt[2], 

data_pkt[3]}; 

Event OR Control 

Sometimes a transition on any one of multiple signals or events can trigger the execution of a statement or a 

block of statements. This is expressed as an OR of events or signals. The list of events or signals expressed as 

an OR is also known as a sensitivity list. The keyword or is used to specify multiple triggers, as shown in 

Example 4-15. 

Example 4-15 Event OR Control (Sensitivity List) 

//A level-sensitive latch with asynchronous reset 

always @( reset or clock or d) 

//Wait for reset or clock or d to 

change 
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begin 

if (reset) //if reset signal is high, set q to 0. 

q = 1'b0; 

else if(clock) //if clock is high, latch input 

q = d; 

end 

Sensitivity lists can also be specified using the "," (comma) operator instead of the or operator. Example 4-16 

shows how the above example can be rewritten using the comma operator. Comma operators can also be 

applied to sensitivity lists that have edge-sensitive triggers. 

Example 4-16 Sensitivity List with Comma Operator 

//A level-sensitive latch with asynchronous reset 

always @( reset, clock, d) 

//Wait for reset or clock or d to 

change 

begin 

if (reset) //if reset signal is high, set q to 0. 

q = 1'b0; 

else if(clock) //if clock is high, latch input 

q = d; 

end 

//A positive edge triggered D flipflop with asynchronous falling 

//reset can be modeled as shown below 

always @(posedge clk, negedge reset) //Note use of comma operator 

if(!reset) 

q <=0; 

else 
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q <=d; 

When the number of input variables to a combination logic block are very large, sensitivity lists can become 

very cumbersome to write. Moreover, if an input variable is missed from the sensitivity list, the block will not 

behave like a combinational logic block. To solve this problem, Verilog HDL contains two special symbols: @* 

and @(*). Both symbols exhibit identical behavior. These special symbols are sensitive to a change on any 

signal that may be read by the statement group that follows this symbol 

Example 4-17 shows an example of this special symbol for combinational logic sensitivity lists. 

IEEE Standard Verilog Hardware Description Language document for details and restrictions on the @* and 

@(*) symbols. 

Example 4-17 Use of @* Operator 

//Combination logic block using the or operator 

//Cumbersome to write and it is easy to miss one input to the block 

always @(a or b or c or d or e or f or g or h or p or m) 

begin 

out1 = a ? b+c : d+e; 

out2 = f ? g+h : p+m; 

end 

//Instead of the above method, use @(*) symbol 

//Alternately, the @* symbol can be used 

//All input variables are automatically included in the 

//sensitivity list. 

always @(*) 

begin 

out1 = a ? b+c : d+e; 

out2 = f ? g+h : p+m; 

end 
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4.4.3 Level-Sensitive Timing Control 

Event control discussed earlier waited for the change of a signal value or the triggering of an event. The symbol 

@ provided edge-sensitive control. Verilog also allows level sensitive timing control, that is, the ability to wait 

for a certain condition to be true before a statement or a block of statements is executed. The keyword wait is 

used for level sensitive constructs. 

always 

wait (count_enable) #20 count = count + 1; 

In the above example, the value of count_enable is monitored continuously. If count_enable is 0, the statement 

is not entered. If it is logical 1, the statement count = count + 1 is executed after 20 time units. If count_enable 

stays at 1, count will be incremented every 20 time units. 

4.5 Conditional Statements 

Conditional statements are used for making decisions based upon certain conditions. These conditions are used 

to decide whether or not a statement should be executed. Keywords if and else are used for conditional 

statements. There are three types of conditional statements. Usage of conditional statements is shown below.  

//Type 1 conditional statement. No else statement. 

//Statement executes or does not execute. 

if (<expression>) true_statement ; 

//Type 2 conditional statement. One else statement 

//Either true_statement or false_statement is evaluated 

if (<expression>) true_statement ; else false_statement ; 

//Type 3 conditional statement. Nested if-else-if. 

//Choice of multiple statements. Only one is executed. 

if (<expression1>) true_statement1 ; 

else if (<expression2>) true_statement2 ; 

else if (<expression3>) true_statement3 ; 
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else default_statement ; 

The <expression> is evaluated. If it is true (1 or a non-zero value), the true_statement is executed. However, if it 

is false (zero) or ambiguous (x), the false_statement is executed. The <expression> can contain any operators. 

Each true_statement or false_statement can be a single statement or a block of multiple statements. A block 

must be grouped, typically by using keywords begin and end. A single statement need not be grouped. 

Example 4-18 Conditional Statement Examples 

//Type 1 statements 

if(!lock) buffer = data; 

if(enable) out = in; 

//Type 2 statements 

if (number_queued < MAX_Q_DEPTH) 

begin 

data_queue = data; 

number_queued = number_queued + 1; 

end 

else 

$display("Queue Full. Try again"); 

//Type 3 statements 

//Execute statements based on ALU control signal. 

if (alu_control == 0) 

y = x + z; 

else if(alu_control == 1) 

y = x - z; 

else if(alu_control == 2) 

y = x * z; 

else 

$display("Invalid ALU control signal"); 
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4.6  Multiway Branching 

Conditional Statements, there were many alternatives, from which one was chosen. The nested if-else-if can 

become unwieldy if there are too many alternatives. A shortcut to achieve the same result is to use the case 

statement. 

4.6.1 case Statement 

The keywords case, endcase, and default are used in the case statement.. 

case (expression) 

alternative1: statement1; 

alternative2: statement2; 

alternative3: statement3; 

... 

... 

default: default_statement; 

endcase 

Each of statement1, statement2 , default_statement can be a single statement or a block of multiple statements. 

A block of multiple statements must be grouped by keywords begin and end. The expression is compared to the 

alternatives in the order they are written. For the first alternative that matches, the corresponding statement or 

block is executed. If none of the alternatives matches, the default_statement is executed. The default_statement 

is optional. Placing of multiple default statements in one case statement is not allowed. The case statements can 

be nested. The following Verilog code implements the type 3 conditional statement in Example 4-18. 

//Execute statements based on the ALU control signal 

reg [1:0] alu_control; 

... 

... 

case (alu_control) 

2'd0 : y = x + z; 

2'd1 : y = x - z; 
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2'd2 : y = x * z; 

default : $display("Invalid ALU control signal"); 

endcase 

The case statement can also act like a many-to-one multiplexer. To understand this, let us model the 4-to-1 

multiplexer, using case statements. The I/O ports are unchanged. Notice that an 8-to-1 or 16-to-1 multiplexer 

can also be easily implemented by case statements. 

Example 4-19 4-to-1 Multiplexer with Case Statement 

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0); 

// Port declarations from the I/O diagram 

output out; 

input i0, i1, i2, i3; 

input s1, s0; 

reg out; 

always @(s1 or s0 or i0 or i1 or i2 or i3) 

case ({s1, s0}) //Switch based on concatenation of control signals 

2'd0 : out = i0; 

2'd1 : out = i1; 

2'd2 : out = i2; 

2'd3 : out = i3; 

default: $display("Invalid control signals"); 

endcase 

endmodule 

The case statement compares 0, 1, x, and z values in the expression and the alternative bit for bit. If the 

expression and the alternative are of unequal bit width, they are zero filled to match the bit width of the widest 

of the expression and the alternative. In Example 4- 20, we will define a 1-to-4 demultiplexer for which outputs 

are completely specified, that is, definitive results are provided even for x and z values on the select signal. 
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Example 4-20 Case Statement with x and z 

module demultiplexer1_to_4 (out0, out1, out2, out3, in, s1, s0); 

// Port declarations from the I/O diagram 

output out0, out1, out2, out3; 

reg out0, out1, out2, out3; 

input in; 

input s1, s0; 

always @(s1 or s0 or in) 

case ({s1, s0}) //Switch based on control signals 

2'b00 : begin out0 = in; out1 = 1'bz; out2 = 1'bz; out3 = 

1'bz; end 

2'b01 : begin out0 = 1'bz; out1 = in; out2 = 1'bz; out3 = 

1'bz; end 

2'b10 : begin out0 = 1'bz; out1 = 1'bz; out2 = in; out3 = 

1'bz; end 

2'b11 : begin out0 = 1'bz; out1 = 1'bz; out2 = 1'bz; out3 = 

in; end 

//Account for unknown signals on select. If any select signal is x 

//then outputs are x. If any select signal is z, outputs are z. 

//If one is x and the other is z, x gets higher priority. 

2'bx0, 2'bx1, 2'bxz, 2'bxx, 2'b0x, 2'b1x, 2'bzx : 

begin 

out0 = 1'bx; out1 = 1'bx; out2 = 1'bx; out3 = 1'bx; 

end 

2'bz0, 2'bz1, 2'bzz, 2'b0z, 2'b1z : 

begin 
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out0 = 1'bz; out1 = 1'bz; out2 = 1'bz; out3 = 1'bz; 

end 

default: $display("Unspecified control signals"); 

endcase 

endmodule 

In the demultiplexer shown above, multiple input signal combinations such as 2'bz0, 2'bz1, 2,bzz, 2'b0z, and 

2'b1z that cause the same block to be executed are put together with a comma (,) symbol. 

4.6.2 casex, casez Keywords 

There are two variations of the case statement. They are denoted by keywords, casex and casez. 

• casez treats all z values in the case alternatives or the case expression as don't cares. All bit positions with z 

can also represented by ? in that position. 

• casex treats all x and z values in the case item or the case expression as don't cares. 

The use of casex and casez allows comparison of only non-x or -z positions in the case expression and the case 

alternatives. Example 4-21 illustrates the decoding of state bits in a finite state machine using a casex statement. 

The use of casez is similar. Only one bit is considered to determine the next state and the other bits are ignored. 

Example 4-21 casex Use 

reg [3:0] encoding; 

integer state; 

casex (encoding) //logic value x represents a don't care bit. 

4'b1xxx : next_state = 3; 

4'bx1xx : next_state = 2; 

4'bxx1x : next_state = 1; 

4'bxxx1 : next_state = 0; 

default : next_state = 0; 

endcase 

Thus, an input encoding = 4'b10xz would cause next_state = 3 to be executed. 
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4.7 Loops 

There are four types of looping statements in Verilog: while, for, repeat, and forever. The syntax of these loops 

is very similar to the syntax of loops in the C programming language. All looping statements can appear only 

inside an initial or always block. Loops may contain delay expressions. 

4.7.1 While Loop 

The keyword while is used to specify this loop. The while loop executes until the while expression is not true. If 

the loop is entered when the while-expression is not true, the loop is not executed at all. Each expression can 

contain the operators. Any logical expression can be specified with these operators. If multiple statements are to 

be executed in the loop, they must be grouped typically using keywords begin and end. Example 4-22 illustrates 

the use of the while loop. 

Example 4-22 While Loop 

//Illustration 1: Increment count from 0 to 127. Exit at count 128. 

//Display the count variable. 

integer count; 

initial 

begin 

count = 0; 

while (count < 128) //Execute loop till count is 127. 

//exit at count 128 

begin 

$display("Count = %d", count); 

count = count + 1; 

end 

end 

//Illustration 2: Find the first bit with a value 1 in flag (vector 

variable) 
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'define TRUE 1'b1'; 

'define FALSE 1'b0; 

reg [15:0] flag; 

integer i; //integer to keep count 

reg continue; 

initial 

begin 

flag = 16'b 0010_0000_0000_0000; 

i = 0; 

continue = 'TRUE; 

148 

while((i < 16) && continue ) //Multiple conditions using operators. 

begin 

if (flag[i]) 

begin 

$display("Encountered a TRUE bit at element number %d", i); 

continue = 'FALSE; 

end 

i = i + 1; 

end 

end 

4.7.2 for Loop 

The keyword for is used to specify this loop. The for loop contains three parts: 

• An initial condition 

• A check to see if the terminating condition is true 

• A procedural assignment to change value of the control variable 
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The counter described in Example 4-22 can be coded as a for loop (Example 4-23). The initialization condition 

and the incrementing procedural assignment are included in the for loop and do not need to be specified 

separately. Thus, the for loop provides a more compact loop structure than the while loop. Note, however, that 

the while loop is more general-purpose than the for loop. The for loop cannot be used in place of the while loop 

in all situations. 

Example 4-23 For Loop 

integer count; 

initial 

for ( count=0; count < 128; count = count + 1) 

$display("Count = %d", count); 

for loops can also be used to initialize an array or memory, as shown below. 

//Initialize array elements 

'define MAX_STATES 32 

integer state [0: 'MAX_STATES-1]; //Integer array state with elements 

0:31 

integer i; 

initial 

begin 

for(i = 0; i < 32; i = i + 2) //initialize all even locations with 0 

state[i] = 0; 

for(i = 1; i < 32; i = i + 2) //initialize all odd locations with 1 

state[i] = 1; 

end 

for loops are generally used when there is a fixed beginning and end to the loop. If the loop is simply looping on 

a certain condition, it is better to use the while loop. 
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4.7.3 Repeat Loop 

The keyword repeat is used for this loop. The repeat construct executes the loop a fixed number of times. A 

repeat construct cannot be used to loop on a general logical expression. A while loop is used for that purpose. A 

repeat construct must contain a number, which can be a constant, a variable or a signal value. However, if the 

number is a variable or signal value, it is evaluated only when the loop starts and not during the loop execution. 

The counter in Example 4-22 can be expressed with the repeat loop, as shown in 

Illustration 1 in Example 4-24. Illustration 2 shows how to model a data buffer that latches data at the positive 

edge of clock for the next eight cycles after it receives a data start signal. 

Example 4-24 Repeat Loop 

//Illustration 1 : increment and display count from 0 to 127 

integer count; 

initial 

begin 

count = 0; 

repeat(128) 

begin 

$display("Count = %d", count); 

count = count + 1; 

end 

end 

//Illustration 2 : Data buffer module example 

//After it receives a data_start signal. 

//Reads data for next 8 cycles. 

module data_buffer(data_start, data, clock); 

parameter cycles = 8; 

input data_start; 
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input [15:0] data; 

input clock; 

reg [15:0] buffer [0:7]; 

integer i; 

150 

always @(posedge clock) 

begin 

if(data_start) //data start signal is true 

begin 

i = 0; 

repeat(cycles) //Store data at the posedge of next 8 clock 

//cycles 

begin 

@(posedge clock) buffer[i] = data; //waits till next 

// posedge to latch data 

i = i + 1; 

end 

end 

end 

endmodule 

4.7.4 Forever loop 

The keyword forever is used to express this loop. The loop does not contain any expression and executes 

forever until the $finish task is encountered. The loop is equivalent to a while loop with an expression that 

always evaluates to true, e.g., while (1). A forever loop can be exited by use of the disable statement. 
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A forever loop is typically used in conjunction with timing control constructs. If timing control constructs are 

not used, the Verilog simulator would execute this statement infinitely without advancing simulation time and 

the rest of the design would never be executed. Example 4-25 explains the use of the forever statement. 

Example 4-25 Forever Loop 

//Example 1: Clock generation 

//Use forever loop instead of always block 

reg clock; 

initial 

begin 

clock = 1'b0; 

forever #10 clock = ~clock; //Clock with period of 20 units 

end 

//Example 2: Synchronize two register values at every positive edge of 

//clock 

reg clock; 

reg x, y; 

initial 

forever @(posedge clock) x = y; 

4.8  Sequential and Parallel Blocks 

Block statements are used to group multiple statements to act together as one. In previous examples, we used 

keywords begin and end to group multiple statements. Thus, we used sequential blocks where the statements in 

the block execute one after another. In this section we discuss the block types: sequential blocks and parallel 

blocks. We also discuss three special features of blocks: named blocks, disabling named blocks, and nested 

blocks. 

4.8.1 Block Types 

There are two types of blocks: sequential blocks and parallel blocks. 
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Sequential blocks 

The keywords begin and end are used to group statements into sequential blocks. 

Sequential blocks have the following characteristics: 

• The statements in a sequential block are processed in the order they are specified. A statement is executed 

only after its preceding statement completes execution (except for nonblocking assignments with intra-

assignment timing control). 

• If delay or event control is specified, it is relative to the simulation time when the  previous statement in the 

block completed execution. 

We have used numerous examples of sequential blocks in this book. Two more examples of sequential blocks 

are given in Example 4-26. Statements in the sequential block execute in order. In Illustration 1, the final values 

are x = 0, y= 1, z = 1, w = 2 at simulation time 0. In Illustration 2, the final values are the same except that the 

simulation time is 35 at the end of the block. 

Example 4-26 Sequential Blocks 

//Illustration 1: Sequential block without delay 

reg x, y; 

reg [1:0] z, w; 

initial 

begin 

x = 1'b0; 

y = 1'b1; 

z = {x, y}; 

w = {y, x}; 

end 

//Illustration 2: Sequential blocks with delay. 

reg x, y; 

reg [1:0] z, w; 

initial 

begin 
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x = 1'b0; //completes at simulation time 0 

#5 y = 1'b1; //completes at simulation time 5 

#10 z = {x, y}; //completes at simulation time 15 

#20 w = {y, x}; //completes at simulation time 35 

end 

Parallel blocks 

Parallel blocks, specified by keywords fork and join, provide interesting simulation features. Parallel blocks 

have the following characteristics: 

• Statements in a parallel block are executed concurrently. 

• Ordering of statements is controlled by the delay or event control assigned to each statement. 

• If delay or event control is specified, it is relative to the time the block was entered. 

Notice the fundamental difference between sequential and parallel blocks. All statements in a parallel block 

start at the time when the block was entered. Thus, the order in which the statements are written in the block is 

not important. 

Let us consider the sequential block with delay in Example 4-26 and convert it to a parallel block. The 

converted Verilog code is shown in Example 4-27. The result of simulation remains the same except that all 

statements start in parallel at time 0. Hence, the block finishes at time 20 instead of time 35. 

Example 4-27 Parallel Blocks 

//Example 1: Parallel blocks with delay. 

reg x, y; 

reg [1:0] z, w; 

initial 

fork 

x = 1'b0; //completes at simulation time 0 

#5 y = 1'b1; //completes at simulation time 5 

#10 z = {x, y}; //completes at simulation time 10 
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#20 w = {y, x}; //completes at simulation time 20 

join 

Parallel blocks provide a mechanism to execute statements in parallel. However, it is important to be careful 

with parallel blocks because of implicit race conditions that might arise if two statements that affect the same 

variable complete at the same time. Shown below is the parallel version of Illustration 1 from Example 4-26. 

Race conditions have been deliberately introduced in this example. All statements start at simulation time 0. 

The order in which the statements will execute is not known. Variables z and w will get values 1 and 2 if x = 

1'b0 and y = 1'b1 execute first. Variables z and w will get values 2'bxx and 2'bxx if x = 1'b0 and y = 1'b1 

execute last. Thus, the result of z and w is nondeterministic and dependent on the simulator implementation. In 

simulation time, all statements in the fork-join block are executed at once. However, in reality, CPUs running 

simulations can execute only one statement at a time. Different simulators execute statements in different order. 

Thus, the race condition is a limitation of today's simulators, not of the fork-join block. 

//Parallel blocks with deliberate race condition 

reg x, y; 

reg [1:0] z, w; 

initial 

fork 

x = 1'b0; 

y = 1'b1; 

z = {x, y}; 

w = {y, x}; 

join 

The keyword fork can be viewed as splitting a single flow into independent flows. The keyword join can be 

seen as joining the independent flows back into a single flow. Independent flows operate concurrently. 

 

 

no
tes
4fr
ee
.in



Verilog HDL [15EC53] 
 
  

 

Dept.of ECE/ATMECE, Mysuru Page 106 
 
 

4.8.2 Special Features of Blocks 

We discuss three special features available with block statements: nested blocks, named blocks, and disabling of 

named blocks. 

Nested blocks 

Blocks can be nested. Sequential and parallel blocks can be mixed, as shown in Example 4-28. 

Example 4-28 Nested Blocks 

//Nested blocks 

initial 

begin 

x = 1'b0; 

154 

fork 

#5 y = 1'b1; 

#10 z = {x, y}; 

join 

#20 w = {y, x}; 

end 

Named blocks 

Blocks can be given names. 

• Local variables can be declared for the named block. 

• Named blocks are a part of the design hierarchy. Variables in a named block can be accessed by using 

hierarchical name referencing. 

• Named blocks can be disabled, i.e., their execution can be stopped. 

Example 4-29 shows naming of blocks and hierarchical naming of blocks. 
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Example 4-29 Named Blocks 

//Named blocks 

module top; 

initial 

begin: block1 //sequential block named block1 

integer i; //integer i is static and local to block1 

// can be accessed by hierarchical name, top.block1.i 

... 

... 

end 

initial 

fork: block2 //parallel block named block2 

reg i; // register i is static and local to block2 

// can be accessed by hierarchical name, top.block2.i 

... 

... 

join 

Disabling named blocks 

The keyword disable provides a way to terminate the execution of a named block. Disable can be used to get 

out of loops, handle error conditions, or control execution of pieces of code, based on a control signal. Disabling 

a block causes the execution control to be passed to the statement immediately succeeding the block. For C 

programmers, this is very similar to the break statement used to exit a loop.  
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4.9: Outcomes 
 

After completion of the module the students are able to: 

 

 Explain the significance of structured procedures always and initial in behavioral modeling. 

 Define blocking and nonblocking procedural assignments. 

 Understand delay-based timing control mechanism in behavioral modeling. Use regular delays, intra-

assignment delays, and zero delays. 

 Describe event-based timing control mechanism in behavioral modeling. Use regular event control, 

named event control, and event OR control. 

 Use level-sensitive timing control mechanism in behavioral modeling. 

 Explain conditional statements using if and else. 

 Describe multiway branching, using case, casex, and casez statements. 

 Understand looping statements such as while, for, repeat, and forever. 

 Define sequential and parallel blocks. 

4.10: Recommended Questions 
1.   Describe the following statements with an example: initial and always 

2.   What are blocking and non-blocking assignment statements? Explain with examples. 

3.   With syntax explain conditional, branching and loop statements available in Verilog HDL behavioural 

description. 

4.   Describe sequential and parallel blocks of Verilog HDL. 

5.   Write Verilog HDL program of 4:1 mux using CASE statement. 

6.   Write Verilog HDL program of 4:1 mux using If-else statement. 

7.   Write Verilog HDL program of 4-bit synchronous up counter. 

8.   Write Verilog HDL program of 4-bit asynchronous down counter. 

9.   Write Verilog HDL program to simulate traffic signal controller 
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Filter Design Techniques
• Filter

– Filter is a system that passes certain 
frequency components and totally 
rejects all others

• Stages of the design filter
– Specification of the desired properties 

of the system
– Approximation of the specification using 

a causal discrete-time system
– Realization of the system
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Review of discrete-
time systems

Frequency response :
• periodic : period = 
• for a real impulse response h[k] 

Magnitude response                    is even function
Phase response                  is odd function

• example :

)( ωjeH
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Review of discrete-
time systems

`Popular’ frequency responses for filter design :
low-pass (LP)            high-pass (HP)          band-pass (BP)

band-stop multi-band …
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π π

π

π
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Review of discrete-
time systems

“FIR filters” (finite impulse response):

• “Moving average filters” (MA filters)
• N poles at the origin z=0 (hence guaranteed stability) 
• N zeros (zeros of B(z)), “all zero” filters
• corresponds to difference equation

• impulse response

N
NN zbzbb

z
zBzH −− +++== ...)()( 1

10
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Linear Phase FIR Filters
Non-causal zero-phase filters :

example: symmetric impulse response 
h[-L],….h[-1],h[0],h[1],...,h[L]
h[k]=h[-k], k=1..L

frequency response is

- i.e. real-valued (=zero-phase) transfer function
- causal implementation by introducing (group) delay             
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Linear Phase FIR Filters
• Causal linear-phase filters = non-causal zero-phase + 

delay
example: symmetric impulse response & N even 

h[0],h[1],….,h[N]
N=2L (even)
h[k]=h[N-k], k=0..L

frequency response is

= i.e. causal implementation of zero-phase filter, by   
introducing (group) delay                       
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Linear Phase FIR Filters
Type-1                 Type-2                  Type-3                 Type-4
N=2L=even           N=2L+1=odd          N=2L=even           N=2L+1=odd
symmetric            symmetric anti-symmetric     anti-symmetric
h[k]=h[N-k]          h[k]=h[N-k]          h[k]=-h[N-k]        h[k]=-h[N-k] 

zero at                   zero at   zero at

LP/HP/BP             LP/BP                                      HP

∑
=

−
L

k
k

Nj kae
0

2/ )cos(ωω ∑
=

−
L

k
k

Nj kae
0

2/ )cos()
2

cos( ωωω

∑
=

−
L

k
k

Nj kaej
0

2/ )cos()
2

sin(. ωωω∑
−

=

−
1

0

2/ )cos()sin(
L

k
k

Nj kaje ωωω

πω = πω ,0= 0=ω

no
tes

4fr
ee

.in



Linear Phase FIR Filters
• efficient direct-form realization. 

example:

• PS: IIR filters can NEVER have linear-phase property ! 

bo

y[k]
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Filter Specification

0 0.5 1 1.5 2 2.5 3
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Passband Cutoff -> <- Stopband Cutoff

Ex: Low-pass
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Filter Design Problem
• Design of filters is a problem of 

function approximation

• For FIR filter, it implies polynomial 
approximation

• For IIR filter, it implies 
approximation by a rational function 
of z
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Filter Design by Optimization
(I)  Weighted Least Squares Design :
• select one of the basic forms that yield linear phase

e.g. Type-1 

• specify desired frequency response (LP,HP,BP,…) 

• optimization criterion is

where               is a weighting function 
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Filter Design by Optimization
• …this is equivalent to

=standard ‘Quadratic Optimization’ problem 
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Passband Ripple

Stopband Ripple

Passband Cutoff -> <- Stopband Cutoff

Filter Design by 
Optimization

• Example: Low-pass design 

optimization function is 

i.e. 

...
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Filter Design by Optimization
• a simpler problem is obtained by replacing the F(..) by…

where the wi’s are a set of n sample frequencies
The quadratic optimization problem is then equivalent to a least-squares 
problem

+++ : simple
--- : unpredictable behavior in between sample frequencies.
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Filter Design by Optimization
• …then all this is often supplemented with 

additional constraints

Example: Low-pass (LP) design     (continued) 
pass-band ripple control :

stop-band ripple control :

ripple)  band-pass is (    ,1)( PP δωωδω PA <≤−

ripple)  band-stop is (    ,)( SS δπωωδω ≤≤≤ SA
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Filter Design by Optimization
Example: Low-pass (LP) design     (continued) 

a realistic way to implement these constraints, is to impose 
the constraints (only) on a set of sample frequencies

in the pass-band
and                           in the stop-band

The resulting optimization problem is :
minimize : 

subject to                    (pass-band constraints)
(stop-band constraints)               

=  `Quadratic Linear Programming’ problem
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Filter Design by Optimization
(II)  `Minimax’ Design :
• select one of the basic forms that yield linear phase

e.g. Type-1 

• specify desired frequency response (LP,HP,BP,…) 

• optimization criterion is 

where               is a weighting function 
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Filter Design by Optimization
• Conclusion:

(I) weighted least squares design
(II) minimax design
provide general `framework’, procedures to 
translate filter design problems into standard 
optimization problems

• In practice (and in textbooks):
emphasis on specific (ad-hoc) procedures : 
- filter design based on ‘windows’
- equi-ripple design
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Filter Design using ‘Windows’
Example : Low-pass filter design
• ideal low-pass filter is

• hence ideal time-domain impulse response is

• truncate hd[k] to N+1 samples :

• add (group) delay to turn into causal filter
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Filter Design using ‘Windows’
Example : Low-pass filter design (continued)
• note : it can be shown that time-domain truncation corresponds to  

solving a weighted least-squares optimization problem with the 
given Hd, and weighting function           

• truncation corresponds to applying a ‘rectangular window’ :

• +++: simple procedure (also for HP,BP,…)
• --- : truncation in the time-domain results in ‘Gibbs effect’ in the 

frequency domain, i.e. large ripple in pass-band and stop-band, 
which cannot be reduced by increasing the filter order N.
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Filter Design using ‘Windows’
Remedy : apply windows other than rectangular window:
• time-domain multiplication with a window function w[k] 

corresponds to frequency domain convolution  with W(z) :

• candidate windows : Han, Hamming, Blackman, Kaiser,…. (see 
textbooks)

• window choice/design = trade-off between side-lobe levels
(define peak pass-/stop-band ripple) and width main-lobe 
(defines transition bandwidth) 
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Windowing Effect

Gibbs phenomenon
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Windowing
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Equiripple Design
• Starting point is minimax criterion, e.g.

• Based on theory of Chebyshev approximation and the ‘alternation 
theorem’, which (roughly) states that the optimal ai’s are such that 
the ‘max’ (maximum weighted approximation error) is obtained at 
L+2 extremal frequencies…

…that hence will exhibit the same maximum ripple  (‘equiripple’)
• Iterative procedure for computing extremal frequencies, etc. 

(Remez exchange algorithm, Parks-McClellan algorithm) 
• Very flexible, etc., available in many software packages
• Details omitted here (see textbooks)
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Software
• FIR Filter design abundantly available in 

commercial software
• Matlab:

b=fir1(n,Wn,type,window), windowed linear-phase FIR design, 
n is filter order, Wn defines band-edges, type is 
`high’,`stop’,…

b=fir2(n,f,m,window),  windowed FIR design based on inverse 
Fourier transform with frequency points f and 
corresponding magnitude response m

b=remez(n,f,m), equiripple linear-phase FIR design with 
Parks-McClellan (Remez exchange) algorithm
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