
Discrete Fourier Transform (DFT)

DFT transforms the time domain signal samples to the
frequency domain components.

Time

A
m

p
lit

u
d

e

Frequency

A
m

p
lit

u
d

e

DFT
Signal

Spectrum

DFT is often used to do frequency analysis of a time domain signal.

no
tes
4fr
ee
.in

2

Four Types of Fourier Transform

no
tes
4fr
ee
.in

3

DFT: Graphical Example

1000 Hz sinusoid with
32 samples at 8000 Hz
sampling rate.

DFT

8000 samples = 1 second
32 samples = 32/8000 sec

= 4 millisecond

1 second = 1000 cycles
32/8000 sec =
(1000*32/8000=) 4 cycles

Sampling rate

Frequency

no
tes
4fr
ee
.in

4

DFT Coefficients of Periodic Signals

Periodic
Digital
Signal

Equation of DFT coefficients:

no
tes
4fr
ee
.in

5

Fourier series coefficient ck is periodic of N

DFT Coefficients of Periodic Signals

Amplitude
spectrum of the
periodic digital
signal

Copy

no
tes
4fr
ee
.in

6

Example 1

The periodic signal: is sampled at

Solution:

We match)2sin()(ttx with)2sin()(fttx and get f = 1 Hz.

Fundamental frequency

Therefore the signal has 1 cycle or 1 period in 1 second.

Sampling rate fs = 4 Hz 1 second has 4 samples.

Hence, there are 4 samples in 1 period for this particular signal.

Sampled signal

a.
no
tes
4fr
ee
.in

7

Example 1 – contd. (1)

b.

no
tes
4fr
ee
.in

8

Example 1 – contd. (2)

no
tes
4fr
ee
.in

9

On the Way to DFT Formulas

Imagine periodicity of
N samples.

Take first N samples
(index 0 to N -1) as
the input to DFT.

no
tes
4fr
ee
.in

10

DFT Formulas

Where,

Inverse DFT:

no
tes
4fr
ee
.in

11

MATLAB Functions

FFT: Fast Fourier Transform

no
tes
4fr
ee
.in

12

Example 2

Solution:

no
tes
4fr
ee
.in

13

Example 2 – contd.

Using MATLAB,

no
tes
4fr
ee
.in

14

Example 3

Inverse DFT of the previous example.

no
tes
4fr
ee
.in

15

Example 3 – contd.

Using MATLAB,

no
tes
4fr
ee
.in

16

Relationship Between Frequency Bin k
and Its Associated Frequency in Hz

Frequency step or frequency resolution:

Example 4

In the previous example, if the sampling rate is 10 Hz,

no
tes
4fr
ee
.in

17

Example 4 – contd.

Sampling period:

For x(3), time index is n = 3, and sampling time instant is

a.

b.

Frequency resolution:

Frequency bin number for X(1) is k = 1,
and its corresponding frequency is

Similarly, for X(3) is k = 3, and its
corresponding frequency is

k

f

no
tes
4fr
ee
.in

18

Amplitude and Power Spectrum

Since each calculated DFT coefficient is a complex number, it is not convenient
to plot it versus its frequency index

Amplitude Spectrum:

To find one-sided amplitude spectrum, we double the amplitude.

no
tes
4fr
ee
.in

19

Power Spectrum:

Amplitude and Power Spectrum –contd.

For, one-sided power spectrum:

Phase Spectrum:

no
tes
4fr
ee
.in

20

Example 5

Solution:

See Example 2.
no
tes
4fr
ee
.in

21

Example 5 – contd. (1)

no
tes
4fr
ee
.in

22

Example 5 – contd. (2)

Amplitude Spectrum Phase Spectrum

Power Spectrum
One sided Amplitude Spectrum

no
tes
4fr
ee
.in

23

Example 6

Solution:
no
tes
4fr
ee
.in

24

Zero Padding for FFT

FFT: Fast Fourier Transform.

A fast version of DFT; It requires signal length to be power of 2.

Therefore, we
need to pad zero
at the end of the
signal.

However, it does
not add any new
information.

no
tes
4fr
ee
.in

25

Example 7

Consider a digital signal has sampling rate = 10 kHz. For amplitude spectrum we
need frequency resolution of less than 0.5 Hz. For FFT how many data points are
needed?

Solution:

214 = 16384 < 20000 And 215 = 32768 > 20000

For FFT, we need N to be power of 2.

Recalculated frequency resolution,

no
tes
4fr
ee
.in

26

MATLAB Example - 1

fs

xf = abs(fft(x))/N; %Compute the amplitude spectrum

no
tes
4fr
ee
.in

27

MATLAB Example – contd. (1)

no
tes
4fr
ee
.in

28

MATLAB Example – contd. (2)

no
tes
4fr
ee
.in

29

MATLAB Example – contd. (3)

………..

no
tes
4fr
ee
.in

30

Effect of Window Size

When applying DFT, we assume the following:

1. Sampled data are periodic to themselves (repeat).

2. Sampled data are continuous to themselves and band limited to
the folding frequency.

1 Hz sinusoid,
with 32
samples

no
tes
4fr
ee
.in

31

Effect of Window Size –contd. (1)

If the window size is not multiple of waveform cycles:

Discontinuous

no
tes
4fr
ee
.in

32

Effect of Window Size –contd. (2)
2- cycles Mirror Image

Spectral
Leakage

Produces
single
frequency

Produces many
harmonics as well.

The bigger the
discontinuity, the more
the leakage

no
tes
4fr
ee
.in

33

Reducing Leakage Using Window

To reduce the effect of spectral leakage, a window function can be used
whose amplitude tapers smoothly and gradually toward zero at both ends.

Window function, w(n)
Data sequence, x(n)
Obtained windowed sequence, xw(n)

no
tes
4fr
ee
.in

34

Example 8
Given,

Calculate,

no
tes
4fr
ee
.in

35

Different Types of Windows

Rectangular Window (no window):

Triangular Window:

Hamming Window:

Hanning Window:

no
tes
4fr
ee
.in

36

Different Types of Windows –contd.
Window size of 20 samples

no
tes
4fr
ee
.in

37

Example 9
Problem:

Solution:
Since N = 4, Hamming window function can be found as:no

tes
4fr
ee
.in

38

Example 9 – contd. (1)
Windowed sequence:

DFT Sequence: no
tes
4fr
ee
.in

39

Example 9 – contd. (2)

no
tes
4fr
ee
.in

40

MATLAB Example - 2

no
tes
4fr
ee
.in

41

MATLAB Example – 2 contd.

no
tes
4fr
ee
.in

42

DFT Matrix

Frequency Spectrum Multiplication Matrix Time-Domain samples

no
tes
4fr
ee
.in

43

DFT Matrix

Let,

Then

DFT equation:

DFT requires N2 complex multiplications.

no
tes
4fr
ee
.in

44

FFT

FFT: Fast Fourier Transform

A very efficient algorithm to compute DFT; it requires less multiplication.

The length of input signal, x(n) must be 2m samples, where m is an integer.

Samples N = 2, 4, 8, 16 or so.

If the input length is not 2m, append (pad) zeros to make it 2m.

4 5 1 7 1

N = 5

4 5 1 7 1 0 0 0

N = 8, power of 2

no
tes
4fr
ee
.in

45

DFT to FFT: Decimation in Frequency

DFT:

no
tes
4fr
ee
.in

46

Now decompose into even (k = 2m) and odd (k = 2m+1) sequences.

DFT to FFT: Decimation in Frequency

no
tes
4fr
ee
.in

47

DFT to FFT: Decimation in Frequency

no
tes
4fr
ee
.in

48

DFT to FFT: Decimation in Frequency

12 complex
multiplication

no
tes
4fr
ee
.in

49

DFT to FFT: Decimation in Frequency

For 1024 samples data sequence,
DFT requires 1024×1024 =
1048576 complex multiplications.
FFT requires (1024/2)log(1024) =
5120 complex multiplications.

no
tes
4fr
ee
.in

50

IFFT: Inverse FFT

no
tes
4fr
ee
.in

51

Number of complex multiplication =

FFT

IFFT

FFT and IFFT Examples

no
tes
4fr
ee
.in

52

DFT to FFT: Decimation in Time

Split the input sequence x(n) into the even indexed x(2m) and x(2m + 1),
each with N/2 data points.

Using
no
tes
4fr
ee
.in

53

DFT to FFT: Decimation in Time

As,

no
tes
4fr
ee
.in

54

DFT to FFT: Decimation in Time

First iteration:

Second iteration:

no
tes
4fr
ee
.in

55

DFT to FFT: Decimation in Time

Third iteration:

IFFT

N
j

N
eW N

N

2
sin

2
cos

2

jjeeW

)2/sin()2/cos(28

22

2

8

no
tes
4fr
ee
.in

56

FFT and IFFT Examples

IFFT

FFT

no
tes
4fr
ee
.in

57

Fourier Transform Properties (1)

FT is linear:

• Homogeneity

• Additivity

Homogeneity:

x[] X[]

kx[] kX[]

DFT

DFT

Frequency is not
changed.

no
tes
4fr
ee
.in

58

Fourier Transform Properties (2)

][Im][Im][Im

][Re][Re][Re:

][][][:

321

321

321

fXfXfXand

fXfXfXThen

nxnxnxIf

Additivity

no
tes
4fr
ee
.in

59

Fourier Transform Pairs

Delta Function

Shifted Delta Function

Shifted Delta Function

Same Magnitude,
Different Phase

Delta Function Pairs
in Polar Form

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 16

MODULE-2

BASIC CONCEPTS AND MODULES AND PORTS

2.1: Objectives

 Understand the lexical conventions and define the logic value set and data type.

 Identify useful system tasks and basic compiler directives.

 Identify and understanding of components of a Verilog module definition.

 Understand the port connection rules and connection to external signals by ordered list and by name.

2.2 Lexical conventions

The basic lexical conventions used by Verilog HDL are similar to those in the C programming

language. Verilog contains a stream of tokens. Tokens can be comments, delimiters, numbers, strings,

identifiers, and keywords. Verilog HDL is a case-sensitive language. All keywords are in lowercase.

2.2.1 Whitespace

Blank spaces (\b), tabs (\t) and newlines (\n) comprise the whitespace. Whitespace is ignored by Verilog

except when it separates tokens. Whitespace is not ignored in strings.

2.2.2 Comments

Comments can be inserted in the code for readability and documentation. There are two ways to write

comments. A one-line comment starts with "//". Verilog skips from that point to the end of line. A multiple-

line comment starts with "/*" and ends with "*/". Multiple-line comments cannot be nested. However, one-line

comments can be embedded in multiple-line comments.

a = b && c; // This is a one-line comment

/* This is a multiple line comment

*/

/* This is /* an illegal */ comment */

/* This is //a legal comment */

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 17

2.2.3 Operators

Operators are of three types: unary, binary, and ternary. Unary operators precede the operand. Binary operators

appear between two operands. Ternary operators have two separate operators that separate three operands.

a = ~ b; // ~ is a unary operator. b is the operand

a = b && c; // && is a binary operator. b and c are operands

a = b ? c : d; // ?: is a ternary operator. b, c and d are operands

2.2.4 Number Specification

There are two types of number specification in Verilog: sized and unsized.

Sized numbers

Sized numbers are represented as <size> '<base format> <number>.

<size> is written only in decimal and specifies the number of bits in the number. Legal base formats are

decimal ('d or 'D), hexadecimal ('h or 'H), binary ('b or 'B) and octal ('o or 'O). The number is specified as

consecutive digits from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. Only a subset of these digits is legal for a

particular base. Uppercase letters are legal for number specification.

4'b1111 // This is a 4-bit binary number

12'habc // This is a 12-bit hexadecimal number

16'd255 // This is a 16-bit decimal number

Unsized numbers

Numbers that are specified without a <base format> specification are decimal numbers by default. Numbers

that are written without a <size> specification have a default number of bits that is simulator- and machine-

specific (must be at least 32).

23456 // This is a 32-bit decimal number by default

'hc3 // This is a 32-bit hexadecimal number

'o21 // This is a 32-bit octal number

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 18

X or Z values

Verilog has two symbols for unknown and high impedance values. These values are very important for

modeling real circuits. An unknown value is denoted by an x. A high impedance value is denoted by z.

12'h13x // This is a 12-bit hex number; 4 least significant bits unknown

6'hx // This is a 6-bit hex number

32'bz // This is a 32-bit high impedance number

An x or z sets four bits for a number in the hexadecimal base, three bits for a number in the octal base and one bit

for a number in the binary base. If the most significant bit of a number is 0, x, or z, the number is

automatically extended to fill the most significant bits, respectively, with 0, x, or z.

This makes it easy to assign x or z to whole vector. If the most significant digit is 1, then it is also zero

extended.

Negative numbers

Negative numbers can be specified by putting a minus sign before the size for a constant number. Size

constants are always positive. It is illegal to have a minus sign between <base format> and <number>. An

optional signed specifier can be added for signed arithmetic.

6'd3 // 8-bit negative number stored as 2's complement of 3

-6'sd3 // Used for performing signed integer math

4'd-2 // Illegal specification

Underscore characters and question marks

An underscore character "_" is allowed anywhere in a number except the first character. Underscore characters

are allowed only to improve readability of numbers and are ignored by Verilog. A question mark "?" is the

Verilog HDL alternative for z in the context of numbers. The ? is used to enhance readability in the casex and

casez statements.

2.2.5 Strings

A string is a sequence of characters that are enclosed by double quotes. The restriction on a string is that it

must be contained on a single line, that is, without a carriage return. It cannot be on multiple lines. Strings are

treated as a sequence of one-byte ASCII values.

"Hello Verilog World" // is a string

"a / b" // is a string

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 19

 2.2.6 Identifiers and Keywords

Keywords are special identifiers reserved to define the language constructs. Keywords are in lowercase.

Identifiers are names given to objects so that they can be referenced in the design. Identifiers are made up of

alphanumeric characters, the underscore (_), or the dollar sign ($). Identifiers are case sensitive. Identifiers

start with an alphabetic character or an underscore. They cannot start with a digit or a $ sign (The $ sign as the

first character is reserved for system tasks)

 reg value; // reg is a keyword; value is an identifier

 input clk; // input is a keyword, clk is an identifier

2.2.7 Escaped Identifiers

Escaped identifiers begin with the backslash (\) character and end with whitespace (space, tab, or newline).

All characters between backslash and whitespace are processed literally. Any printable ASCII character can be

included in escaped identifiers.

Neither the backslash nor the terminating whitespace is considered to be a part of the identifier.

\a+b-c

my_name

2.3 Data Types

This section discusses the data types used in Verilog.

2.3.1 Value Set

Verilog supports four values and eight strengths to model the functionality of real hardware. The four

value levels are listed in Table 2-1.

Table 2-1. Value Levels

In addition to logic values, strength levels are often used to resolve conflicts between drivers of different

strengths in digital circuits. Value levels 0 and 1 can have the strength levels listed in Table2-2.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 20

Table 2-2. Strength Levels

If two signals of unequal strengths are driven on a wire, the stronger signal prevails. For example, if two

signals of strength strong1 and weak0 contend, the result is resolved as a strong1. If two signals of equal

strengths are driven on a wire, the result is unknown. If two signals of strength strong1 and strong0 conflict,

the result is an x.

2.3.2 Nets

Nets represent connections between hardware elements. Just as in real circuits, nets have values continuously

driven on them by the outputs of devices that they are connected to. In Figure 2.1 net a is connected to the

output of and gate g1. Net a will continuously assume the value computed at the output of gate g1, which is b

& c.

Figure 2.1. Example of Nets

Nets are declared primarily with the keyword wire. Nets are one-bit values by default unless they are declared

explicitly as vectors. The terms wire and net are often used interchangeably. The default value of a net is z

(except the trireg net, which defaults to x). Nets get the output value of their drivers.

 If a net has no driver, it gets the value z.

wire a; // Declare net a for the above circuit

wire b,c; // Declare two wires b,c for the above circuit

wire d = 1'b0; // Net d is fixed to logic value 0 at declaration.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 21

2.3.3 Registers

Registers represent data storage elements. Registers retain value until another value is placed onto them. In

Verilog, the term register merely means a variable that can hold a value. Unlike a net, a register does not need

a driver. Verilog registers do not need a clock as hardware registers do. Values of registers can be changed

anytime in a simulation by assigning a new value to the register.

Register data types are commonly declared by the keyword reg.

Example 3-1 Example of Register

reg reset; // declare a variable reset that can hold its value

initial // keyword to specify the initial value of reg.

reset = 1'b1; //initialize reset to 1 to reset the digital circuit.

#100 reset = 1'b0; // after 100 time units reset is deasserted.

end

Example 2-2 Signed Register Declaration

reg signed [63:0] m; // 64 bit signed value

integer i; // 32 bit signed value

2.3.4 Vectors

Nets or reg data types can be declared as vectors (multiple bit widths). If bit width is not specified, the default

is scalar (1-bit).

wire a; // scalar net variable, default

wire [7:0] bus; // 8-bit bus

wire [31:0] busA,busB,busC; // 3 buses of 32-bit width.

reg clock; // scalar register, default

reg [0:40] virtual_addr; // Vector register, virtual address 41 bits wide

Vectors can be declared at [high# : low#] or [low# : high#], but the left number in the squared brackets is always

the most significant bit of the vector. In the example shown above, bit 0 is the most significant bit of vector

virtual_addr.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 22

Vector Part Select

For the vector declarations shown above, it is possible to address bits or parts of vectors.

busA[7] // bit # 7 of vector busA

bus[2:0] // Three least significant bits of vector bus,

// using bus[0:2] is illegal because the significant bit shouldalways be on the left of a range specification

virtual_addr[0:1] // Two most significant bits of vector virtual_addr

Variable Vector Part Select

Another ability provided in Verilog HDL is to have variable part selects of a vector. This allows part selects to

be put in for loops to select various parts of the vector. There are two special part-select operators:

[<starting_bit>+:width] - part-select increments from starting bit.

[<starting_bit>-:width] - part-select decrements from starting bit.

The starting bit of the part select can be varied, but the width has to be constant. The following example

shows the use of variable vector part select:

reg [255:0] data1; //Little endian notation

reg [0:255] data2; //Big endian notation

reg [7:0] byte;

//Using a variable part select, one can choose parts

byte = data1[31-:8]; //starting bit = 31, width =8 => data[31:24]

byte = data1[24+:8]; //starting bit = 24, width =8 => data[31:24]

byte = data2[31-:8]; //starting bit = 31, width =8 => data[24:31]

byte = data2[24+:8]; //starting bit = 24, width =8 => data[24:31]

//The starting bit can also be a variable. The width has to be constant.

//Therefore, one can use the variable part select

//in a loop to select all bytes of the vector.

 for (j=0; j<=31; j=j+1)

byte = data1[(j*8)+:8]; //Sequence is [7:0], [15:8]... [255:248]

//Can initialize a part of the vector

data1[(byteNum*8)+:8] = 8'b0; //If byteNum = 1, clear 8 bits [15:8]

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 23

2.3.5 Integer , Real, and Time Register Data Types

Integer, real, and time register data types are supported in Verilog.

Integer

An integer is a general purpose register data type used for manipulating quantities. Integers are declared

by the keyword integer. Although it is possible to use reg as a general-purpose variable, it is more convenient

to declare an integer variable for purposes such as counting. The default width for an integer is the host-

machine word size, which is implementation-specific but is at least 32 bits. Registers declared as data type reg

store values as unsigned quantities, whereas integers store values as signed quantities.

integer counter; // general purpose variable used as a counter.

initial

counter = -1; // A negative one is stored in the counter

Real

Real number constants and real register data types are declared with the keyword real. They can be specified in

decimal notation (e.g., 3.14) or in scientific notation (e.g., 3e6, which is 3 x 10
6

). Real numbers cannot have a

range declaration, and their default value is 0. When a real value is assigned to an integer, the real number is

rounded off to the nearest integer.

real delta; // Define a real variable called delta initial

begin

delta = 4e10; // delta is assigned in scientific notation

delta = 2.13; // delta is assigned a value 2.13 end

integer i; // Define an integer i

initial

i = delta; // i gets the value 2 (rounded value of 2.13)

Time

Verilog simulation is done with respect to simulation time. A special time register data type is used in Verilog

to store simulation time. A time variable is declared with the keyword time. The width for time register data

types is implementation-specific but is at least 64 bits.The system function $time is invoked to get the

current simulation time.

time save_sim_time; // Define a time variable save_sim_time

initial

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 24

save_sim_time = $time; // Save the current simulation time

Arrays

Arrays are allowed in Verilog for reg, integer, time, real, realtime and vector register data types. Multi-

dimensional arrays can also be declared with any number of dimensions. Arrays of nets can also be used to

connect ports of generated instances. Each element of the array can be used in the same fashion as a scalar or

vector net. Arrays are accessed by <array_name>[<subscript>]. For multi- dimensional arrays, indexes need to

be provided for each dimension.

integer count[0:7]; // An array of 8 count variables

reg bool[31:0]; // Array of 32 one-bit boolean register variables time

chk_point[1:100]; // Array of 100 time checkpoint variables reg [4:0]

port_id[0:7]; // Array of 8 port_ids; each port_id is 5 bits wide

integer matrix[4:0][0:255]; // Two dimensional array of integers

reg [63:0] array_4d [15:0][7:0][7:0][255:0]; //Four dimensional array

 wire [7:0] w_array2 [5:0]; // Declare an array of 8 bit vector wire

wire w_array1[7:0][5:0]; // Declare an array of single bit wires.

It is important not to confuse arrays with net or register vectors. A vector is a single element that is n-bits

wide. On the other hand, arrays are multiple elements that are 1-bit or n-bits wide.

Examples of assignments to elements of arrays discussed above are shown below:

count[5] = 0; // Reset 5th element of array of count variables

chk_point[100] = 0; // Reset 100th time check point value

port_id[3] = 0; // Reset 3rd element (a 5-bit value) of port_id array.

matrix[1][0] = 33559; // Set value of element indexed by [1][0] to 33559

port_id = 0; // Illegal syntax - Attempt to write the entire array

matrix [1] = 0; // Illegal syntax - Attempt to write [1][0]..[1][255]

2.3.6 Memories

In digital simulation, one often needs to model register files, RAMs, and ROMs. Memories are modeled in

Verilog simply as a one-dimensional array of registers. Each element of the array is known as an element or

word and is addressed by a single array index. Each word can be one or more bits. It is important to

differentiate between n 1-bit registers and one n-bit register. A particular word in memory is obtained by using

the address as a memory array subscript.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 25

reg mem1bit[0:1023]; // Memory mem1bit with 1K 1-bit words

reg [7:0] membyte[0:1023]; // Memory membyte with 1K 8-bit words(bytes)

membyte[511] // Fetches 1 byte word whose address is 511.

2.3.7 Parameters

Verilog allows constants to be defined in a module by the keyword parameter. Parameters cannot be used as

variables. Parameter values for each module instance can be overridden individually at compile time. This

allows the module instances to be customized. This aspect is discussed later. Parameter types and sizes can also

be defined.

parameter port_id = 5; // Defines a constant port_id

parameter cache_line_width = 256; // Constant defines width of cache line

parameter signed [15:0] WIDTH; // Fixed sign and range for parameter WIDTH

 2.3.8 Strings

Strings can be stored in reg. The width of the register variables must be large enough to hold the string. Each

character in the string takes up 8 bits (1 byte). If the width of the register is greater than the size of the string,

Verilog fills bits to the left of the string with zeros. If the register width is smaller than the string width, Verilog

truncates the leftmost bits of the string. It is always safe to declare a string that is slightly wider than necessary.

reg [8*18:1] string_value; // Declare a variable that is 18 bytes wide initial

string_value = "Hello Verilog World"; // String can be stored in variable

Special characters serve a special purpose in displaying strings, such as newline, tabs, and displaying argument

values. Special characters can be displayed in strings only when they are preceded by escape characters, as

shown in Table 2-3

Table 2-3. Special Characters

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 26

2.4 System Tasks and Compiler Directives

In this section, we introduce two special concepts used in Verilog: system tasks and compiler directives.

2.4.1 System Tasks

Verilog provides standard system tasks for certain routine operations. All system tasks appear in the form

$<keyword>. Operations such as displaying on the screen, monitoring values of nets, stopping, and finishing

are done by system tasks.

Displaying information

$display is the main system task for displaying values of variables or strings or expressions. This is one of the

most useful tasks in Verilog.

Usage: $display(p1, p2, p3,....., pn);

p1, p2, p3,..., pn can be quoted strings or variables or expressions. The format of $display is very similar to

printf in C. A $display inserts a newline at the end of the string by default. A $display without any arguments

produces a newline.

Monitoring information

Verilog provides a mechanism to monitor a signal when its value changes. This facility is provided by the

$monitor task.

Usage: $monitor(p1,p2,p3,....,pn);

The parameters p1, p2, ... , pn can be variables, signal names, or quoted strings. A format similar to the

$display task is used in the $monitor task. $monitor continuously monitors the values of the variables or

signals specified in the parameter list and displays all parameters in the list whenever the value of any one

variable or signal changes. Unlike $display, $monitor needs to be invoked only once. Only one monitoring list

can be active at a time.

If there is more than one $monitor statement in your simulation, the last $monitor statement will be the active

statement. The earlier $monitor statements will be overridden.

Two tasks are used to switch monitoring on and off.

Usage:

$monitoron;

$monitoroff;

The $monitoron tasks enables monitoring, and the $monitoroff task disables monitoring during a simulation.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 27

Example of Monitor Statement

//Monitor time and value of the signals clock and reset

//Clock toggles every 5 time units and reset goes down at 10 time units

initial

begin

$monitor ($time," Value of signals clock = %b reset = %b", clock,reset);

end

Partial output of the monitor statement:

-- 0 Value of signals clock = 0 reset = 1

-- 5 Value of signals clock = 1 reset = 1

-- 10 Value of signals clock = 0 reset = 0

Stopping and finishing in a simulation

The task $stop is provided to stop during a simulation.

Usage: $stop;

The $stop task puts the simulation in an interactive mode. The designer can then debug the design from the

interactive mode. The $stop task is used whenever the designer wants to suspend the simulation and

examine the values of signals in the design.

The $finish task terminates the simulation.

Usage: $finish;

Examples of $stop and $finish are given below

Example of Stop and Finish Tasks

// Stop at time 100 in the simulation and examine the results

// Finish the simulation at time 1000.

initial

begin

clock = 0;

reset = 1;

#100 $stop; // This will suspend the simulation at time = 100

#900 $finish; // This will terminate the simulation at time = 1000

end

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 28

2.4.2 Compiler Directives

Compiler directives are provided in Verilog. All compiler directives are defined by using the

`<keyword> construct. The two most useful compiler directives are

`define

The `define directive is used to define text macros in Verilog .The Verilog compiler substitutes the text of the

macro wherever it encounters a `<macro_name>. This is similar to the #define construct in C. The defined

constants or text macros are used in the Verilog code by preceding them with a ` (back tick).

Example for `define Directive

//define a text macro that defines default word size

//Used as 'WORD_SIZE in the code

'define WORD_SIZE 32

//define an alias. A $stop will be substituted wherever 'S appears

'define S $stop;

//define a frequently used text string

'define WORD_REG reg [31:0]

`include

The `include directive allows you to include entire contents of a Verilog source file in another Verilog file

during compilation. This works similarly to the #include in the C programming language.

Example for `include Directive

// Include the file header.v, which contains declarations in themain verilog file design.v.

'include header.v

...

...

<Verilog code in file design.v>

...

...

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 29

2.5 Modules

Module is a basic building block in Verilog. A module definition always begins with the keyword module.

The module name, port list, port declarations, and optional parameters must come first in a module

definition. Port list and port declarations are present only if the module has any ports to interact

with the external environment.

The five components within a module are: variable declarations, dataflow statements, instantiation of

lower modules, behavioral blocks, and tasks or functions. These components can be in any order and at any

place in the module definition.

The endmodule statement must always come last in a module definition. All components except

module, module name, and endmodule are optional and can be mixed and matched as per design needs.

Verilog allows multiple modules to be defined in a single file. The modules can be defined in any order in the

file.

Figure 2.2.:Components of a Verilog Module

Consider a simple example of an SR latch, as shown in Figure 2.3

Figure 2-3. SR Latch

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 30

The SR latch has S and R as the input ports and Q and Qbar as the output ports. The SR latch and its stimulus

can be modeled as shown in Example.

Example of Components of SR Latch

// This example illustrates the different components of a module

// Module name and port list

// SR_latch module

module SR_latch(Q, Qbar, Sbar, Rbar);

//Port declarations

output Q, Qbar;

input Sbar, Rbar;

// Instantiate lower-level modules

// In this case, instantiate Verilog primitive nand gates

// Note how the wires are connected in a cross-coupled fashion. nand n1(Q, Sbar, Qbar);

nand n2(Qbar, Rbar, Q);

// endmodule statement

endmodule

// Module name and port list

// Stimulus module

module Top;

// Declarations of wire, reg, and other variables

reg set, reset;

// Instantiate lower-level modules

// In this case, instantiate SR_latch Feed inverted set and reset signals to the SR latch

SR_latch m1(q, qbar, ~set, ~reset);

// Behavioral block, initial

initial

begin

$monitor($time, " set = %b, reset= %b, q= %b\n",set,reset,q);

set = 0; reset = 0;

#5 reset = 1;

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 31

#5 reset = 0;

#5 set = 1;

end

// endmodule statement

endmodule

From the above example following characteristics are noticed:

• In the SR latch definition above ,all components described in Figure 2-2 need not be present in a module.

We do not find variable declarations, dataflow (assign) statements, or behavioral blocks (always or initial).

• However, the stimulus block for the SR latch contains module name, wire, reg, and variable

declarations, instantiation of lower level modules, behavioral block (initial), and endmodule

statement but does not contain port list, port declarations, and data flow (assign) statements.

• Thus, all parts except module, module name, and endmodule are optional and can be mixed and

matched as per design needs.

2.6 Ports

Ports provide the interface by which a module can communicate with its environment. For example, the

input/output pins of an IC chip are its ports. The environment can interact with the module only through its

ports. The internals of the module are not visible to the environment. This provides a very powerful

flexibility to the designer. The internals of the module can be changed without affecting the environment as

long as the interface is not modified. Ports are also referred to as terminals.

2.6.1 List of Ports

A module definition contains an optional list of ports. If the module does not exchange any signals with

the environment, there are no ports in the list. Consider a 4-bit full adder that is instantiated inside a top-

level module Top. The diagram for the input/output ports is shown in Figure 2-4.

 Figure 2-4. I/O Ports for Top and Full Adder

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 32

From the above figure, the module Top is a top-level module. The module fulladd4 is instantiated

below Top. The module fulladd4 takes input on ports a, b, and c_in and produces an output on ports

sum and c_out. Thus, module fulladd4 performs an addition for its environment. The module Top is a top-

level module in the simulation and does not need to pass signals to or receive signals from the

environment. Thus, it does not have a list of ports. The module names and port lists for both module

declarations in Verilog are as shown in below example.

Example of List of Ports

module fulladd4(sum, c_out, a, b, c_in); //Module with a list of ports

module Top; // No list of ports, top-level module in simulation

2.6.2 Port Declaration

All ports in the list of ports must be declared in the module. Ports can be declared as follows:

input -Input port

output- Output port

inout- Bidirectional port

Each port in the port list is defined as input, output, or inout, based on the direction of the port signal. Thus,

for the example of the the port declarations will be as shown in example below.

Example for Port Declarations

module fulladd4(sum, c_out, a, b, c_in);

//Begin port declarations section

output[3:0] sum;

output c_cout;

 input [3:0] a, b;

input c_in;

//End port declarations section

...

<module internals>

... endmodule

All port declarations are implicitly declared as wire in Verilog. Thus, if a port is intended to be a wire, it is

sufficient to declare it as output, input, or inout. Input or inout ports are normally declared as wires.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 33

However, if output ports hold their value, they must be declared as reg. Ports of the type input and inout

cannot be declared as reg because reg variables store values and input ports should not store values but

simply reflect the changes in the external signals they are connected to.

Alternate syntax for port declaration is shown in below example. This syntax avoids the duplication of

naming the ports in both the module definition statement and the module port list definitions. If a port is

declared but no data type is specified, then, under specific circumstances, the signal will default to a wire

data type.

Example for ANSI C Style Port Declaration Syntax

module fulladd4(output reg [3:0] sum,

output reg c_out,

input [3:0] a, b, //wire by default

input c_in); //wire by default

...

<module internals>

...

endmodule

2.6.3 Port Connection Rules

A port as consisting of two units, one unit that is internal to the module and another that is external to the

module. The internal and external units are connected. There are rules governing port connections when

modules are instantiated within other modules. The Verilog simulator complains if any port connection rules

are violated. These rules are summarized in Figure2.5

Figure 2-5. Port Connection Rules

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 34

Inputs

Internally, input ports must always be of the type net. Externally, the inputs can be connected to a variable

which is a reg or a net.

Outputs

Internally, outputs ports can be of the type reg or net. Externally, outputs must always be connected to a net.

They cannot be connected to a reg.

Inouts

Internally, inout ports must always be of the type net. Externally, inout ports must always be

connected to a net.

Width matching

It is legal to connect internal and external items of different sizes when making intermodule port

connections. However, a warning is typically issued that the widths do not match.

Unconnected ports

Verilog allows ports to remain unconnected. For example, certain output ports might be simply for debugging,

and you might not be interested in connecting them to the external signals. You can let a port remain

unconnected by instantiating a module as shown below

fulladd4 fa0 (SUM, , A, B, C_IN); // Output port c_out is unconnected

Example of illegal port connection

To illustrate port connection rules, assume that the module fulladd4 Example is instantiated in the

stimulus block Top. Below example shows an illegal port connection

Example 2-14 Illegal Port Connection

module Top;

//Declare connection variables reg

[3:0]A,B;

reg C_IN;

reg [3:0] SUM;

wire C_OUT;

//Instantiate fulladd4, call it fa0

fulladd4 fa0(SUM, C_OUT, A, B, C_IN);

//Illegal connection because output port sum in module fulladd4

//is connected to a register variable SUM in module Top.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 35

.

.

<stimulus>

.

. endmodule

This problem is rectified if the variable SUM is declared as a net (wire).

2.7 Connecting Ports to External Signals

There are two methods of making connections between signals specified in the module instantiation and the

ports in a module definition. These two methods cannot be mixed. These methods are

Connecting by ordered list

The signals to be connected must appear in the module instantiation in the same order as the ports in the port list

in the module definition. Consider the module fulladd4.To connect signals in module Top by ordered list, the

Verilog code is shown in below example. Notice that the external signals SUM, C_OUT, A, B, and C_IN appear

in exactly the same order as the ports sum, c_out, a, b, and c_in in module definition of fulladd4.

Example 2-15 Connection by Ordered List

module Top;

//Declare connection variables

reg [3:0]A,B;

reg C_IN;

wire [3:0] SUM;

wire C_OUT;

//Instantiate fulladd4, call it fa_ordered.

//Signals are connected to ports in order (by position)

fulladd4 fa_ordered (SUM, C_OUT, A, B, C_IN);

...

<stimulus>

... endmodule

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 36

module fulladd4(sum, c_out, a, b, c_in);

output[3:0] sum; output c_cout; input [3:0] a, b; input c_in;

...

<module internals>

... endmodule

Connecting ports by name

For large designs where modules have, say, 50 ports, remembering the order of the ports in the

module definition is impractical and error-prone. Verilog provides the capability to connect external signals

to ports by the port names, rather than by position. We could connect the ports by name in above example

by instantiating the module fulladd4, as follows. Note that you can specify the port connections in any

order as long as the port name in the module definition correctly matches the external signal.

// Instantiate module fa_byname and connect signals to ports by name

fulladd4 fa_byname(.c_out(C_OUT), .sum(SUM), .b(B), .c_in(C_IN), .a(A),);

Note that only those ports that are to be connected to external signals must be specified in port connection

by name. Unconnected ports can be dropped. For example, if the port c_out were to be kept unconnected,

the instantiation of fulladd4 would look as follows. The port c_out is simply dropped from the port list.

// Instantiate module fa_byname and connect signals to ports by

name fulladd4 fa_byname(.sum(SUM), .b(B), .c_in(C_IN), .a(A),);

Another advantage of connecting ports by name is that as long as the port name is not changed, the order of

ports in the port list of a module can be rearranged without changing the port connections in module

instantiations.

2.8 Hierarchical Names

Every module instance, signal, or variable is defined with an identifier. A particular identifier has a unique

place in the design hierarchy. Hierarchical name referencing allows us to denote every identifier in the

design hierarchy with a unique name. A hierarchical name is a list of identifiers separated by dots (".") for

each level of hierarchy. Thus, any identifier can be addressed from any place in the design by simply

specifying the complete hierarchical name of that identifier. The top-level module is called the root module

because it is not instantiated anywhere. It is the starting point.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 37

To assign a unique name to an identifier, start from the top-level module and trace the path along the design

hierarchy to the desired identifier.

Consider the simulation of SR latch Example. The design hierarchy is shown in Figure 2.6.

Figure 2-6. Design Hierarchy for SR Latch Simulation

For this simulation, stimulus is the top-level module. Since the top-level module is not instantiated

anywhere, it is called the root module. The identifiers defined in this module are q, qbar, set, and reset.

The root module instantiates m1, which is a module of type SR_latch. The module m1 instantiates

nand gates n1 and n2. Q, Qbar, S, and R are port signals in instance m1. Hierarchical name referencing

assigns a unique name to each identifier. To assign hierarchical names, use the module name for root

module and instance names for all module instances below the root module.

Example

stimulus

stimulus.q

stimulus.qbar

timulus.set

stimulus.reset

stimulus.m1

stimulus.m1.Q

stimulus.m1.Qbar

stimulus m1.S

stimulus.m1.R

stimulus.n1

stimulus.n2

Each identifier in the design is uniquely specified by its hierarchical path name. To display the level of

hierarchy, use the special character %m in the $display task.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 38

2.9: Outcomes

After completion of the module the students are able to:

 Understand the lexical conventions and different data types of verilog.

 Identify useful system tasks such as $display and $monitor and basic compiler directives.

 Understand different components of a Verilog module definition

 Understand the port connection rules and connection to external signals by ordered list and by name

2.10: Recommended questions

1. Describe the lexical conventions used in Verilog HDL with examples.

2. Explain different data types of Verilog HDL with examples

3. What are system tasks and compiler directives?

4. What are the uses of $monitor, $display and $finish system tasks? Explain with examples.

5. Explain `define and `include compiler directives.

6. Explain the components of Verilog HDL module.

7. What are the components of SR latch? Write Verilog HDL module of SR latch.

8. Explain the different types of ports supported by Verilog HDL with examples.

9. Explain the port connection rules of Verilog HDL with examples.

10. How hierarchical names helps in addressing any identifier used in the design from any other level of

hierarchy? Explain with examples.

11. What are the basic components of a module? Which components are mandatory?

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 39

MODULE -3

GATE LEVEL MODELING AND DATA FLOW MODELING

3.1: Objectives

 Identify logic gate primitives provided in Verilog.

 Understand instantiation of gates, gate symbols, and truth tables for and/or and buf/not type gates.

 Understand how to construct a Verilog description from the logic diagram of the circuit.

 Describe rise, fall, and turn-off delays in the gate-level design and Explain min, max, and typ delays

in the gate-level design

 Describe the continuous assignment (assign) statement, restrictions on the assign statement, and the

implicit continuous assignment statement.

 Explain assignment delay, implicit assignment delay, and net declaration delay for continuous

assignment statements and Define expressions, operators, and operands.

 Use dataflow constructs to model practical digital circuits in Verilog

3.2 Gate Types

A logic circuit can be designed by use of logic gates. Verilog supports basic logic gates as predefined

primitives. These primitives are instantiated like modules except that they are predefined in Verilog and do not

need a module definition. All logic circuits can be designed by using basic gates. There are two classes of basic

gates: and/or gates and buf/not gates.

3.2.1 And/Or Gates

And/or gates have one scalar output and multiple scalar inputs. The first terminal in the list of gate terminals is

an output and the other terminals are inputs. The output of a gate is evaluated as soon as one of the inputs

changes. The and/or gates available in Verilog are: and, or, xor, nand, nor, xnor.

The corresponding logic symbols for these gates are shown in Figure 3-1. Consider the gates with two inputs.

The output terminal is denoted by out. Input terminals are denoted by i1 and i2.

These gates are instantiated to build logic circuits in Verilog. Examples of gate instantiations are shown

below. In Example 3-1, for all instances, OUT is connected to the output out, and IN1 and IN2 are

connected to the two inputs i1 and i2 of the gate primitives. Note that the instance name does not need to be

specified for primitives. This lets the designer instantiate hundreds of gates without giving them a name.

More than two inputs can be specified in a gate instantiation. Gates with more than two inputs are

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 40

instantiated by simply adding more input ports in the gate instantiation. Verilog automatically instantiates

the appropriate gate.

Figure 3-1. Basic Gates

Example 3-1 Gate Instantiation of And/Or Gates

wire OUT, IN1, IN2;

// basic gate instantiations.

and a1(OUT, IN1, IN2);

nand na1(OUT, IN1, IN2);

or or1(OUT, IN1, IN2);

nor nor1(OUT, IN1, IN2);

xor x1(OUT, IN1, IN2);

xnor nx1(OUT, IN1, IN2);

// More than two inputs; 3 input nand gate

nand na1_3inp(OUT, IN1, IN2, IN3);

// gate instantiation without instance name

and (OUT, IN1, IN2); // legal gate instantiation

The truth tables for these gates define how outputs for the gates are computed from the inputs. Truth tables are

defined assuming two inputs. The truth tables for these gates are shown in Table 3-1. Outputs of gates with

more than two inputs are computed by applying the truth table iteratively.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 41

Table 3-1. Truth Tables for And/Or

3.2.2 Buf/Not Gates

Buf/not gates have one scalar input and one or more scalar outputs. The last terminal in the port list is connected

to the input. Other terminals are connected to the outputs. We will discuss gates that have one input and one

output. Two basic buf/not gate primitives are provided in Verilog

buf not

The symbols for these logic gates are shown in Figure 3-2.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 42

Figure 3-2. Buf/not Gates

These gates are instantiated in Verilog as shown Example 3-2. Notice that these gates can have multiple

outputs but exactly one input, which is the last terminal in the port list.

Example 3-2 Gate Instantiations of Buf/Not Gates

// basic gate instantiations.

buf b1(OUT1, IN);

not n1(OUT1, IN);

// More than two outputs

buf b1_2out(OUT1, OUT2, IN);

// gate instantiation without instance name

not (OUT1, IN); // legal gate instantiation

Truth tables for gates with one input and one output are shown in Table 3-2.

Table 3-2. Truth Tables for Buf/Not Gates

Bufif/notif

Gates with an additional control signal on buf and not gates are also available.

bufif1 notif1

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 43

bufif0 notif0

These gates propagate only if their control signal is asserted. They propagate z if their control signal is

deasserted. Symbols for bufif/notif are shown in Figure 3-3.

Figure 3-3. Bufif/notif Gates

The truth tables for these gates are shown in Table 3-3

Table 3-3. Truth Tables for Bufif/Notif Gates

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 44

These gates are used when a signal is to be driven only when the control signal is asserted. Such a situation is

applicable when multiple drivers drive the signal. These drivers are designed to drive the signal on mutually

exclusive control signals. Example 3-3 shows examples of instantiation of bufif and notif gates.

Example 3-3 Gate Instantiations of Bufif/Notif Gates

//Instantiation of bufif gates.

bufif1 b1 (out, in, ctrl);

bufif0 b0 (out, in, ctrl);

//Instantiation of notif gates

notif1 n1 (out, in, ctrl);

notif0 n0 (out, in, ctrl);

3.2.3 Array of Instances

There are many situations when repetitive instances are required. These instances differ from each other only by

the index of the vector to which they are connected. To simplify specification of such instances, Verilog HDL

allows an array of primitive instances to be defined. Example3-4 shows an example of an array of instances.

Example 3-4 Simple Array of Primitive Instances

wire [7:0] OUT, IN1, IN2;

// basic gate instantiations.

nand n_gate[7:0](OUT, IN1, IN2);

// This is equivalent to the following 8 instantiations

nand n_gate0(OUT[0], IN1[0], IN2[0]);

nand n_gate1(OUT[1], IN1[1], IN2[1]);

nand n_gate2(OUT[2], IN1[2], IN2[2]);

nand n_gate3(OUT[3], IN1[3], IN2[3]);

nand n_gate4(OUT[4], IN1[4], IN2[4]);

nand n_gate5(OUT[5], IN1[5], IN2[5]);

nand n_gate6(OUT[6], IN1[6], IN2[6]);

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 45

nand n_gate7(OUT[7], IN1[7], IN2[7]);

3.1.4 Examples

Having understood the various types of gates available in Verilog, consider the real examples that illustrates

design of gate-level digital circuits.

Gate-level multiplexer

Consider the design of 4-to-1 multiplexer with 2 select signals. Multiplexers serve a useful purpose in logic

design. They can connect two or more sources to a single destination. They can also be used to implement

Boolean functions. We will assume for this example that signals s1 and s0 do not get the value x or z. The I/O

diagram and the truth table for the multiplexer are shown in Figure 3-4. The I/O diagram will be useful in

setting up the port list for the multiplexer.

Figure 3-4. 4-to-1 Multiplexer

Implement the logic for the multiplexer using basic logic gates. The logic diagram for the multiplexer is shown

in Figure 3-5.

Figure 3-5. Logic Diagram for Multiplexer

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 46

The logic diagram has a one-to-one correspondence with the Verilog description. The Verilog description for

the multiplexer is shown in Example 3-5. Two intermediate nets, s0n and s1n, are created; they are

complements of input signals s1 and s0. Internal nets y0, y1, y2, y3 are also required. Note that instance names

are not specified for primitive gates, not, and, and or. Instance names are optional for Verilog primitives but are

mandatory for instances of user-defined modules.

Example 3-5 Verilog Description of Multiplexer

// Module 4-to-1 multiplexer. Port list is taken exactly from

// the I/O diagram.

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s1, s0;

// Internal wire declarations

wire s1n, s0n;

wire y0, y1, y2, y3;

// Gate instantiations

// Create s1n and s0n signals.

not (s1n, s1);

not (s0n, s0);

// 3-input and gates instantiated

and (y0, i0, s1n, s0n);

and (y1, i1, s1n, s0);

and (y2, i2, s1, s0n);

and (y3, i3, s1, s0);

// 4-input or gate instantiated

or (out, y0, y1, y2, y3);

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 47

endmodule

This multiplexer can be tested with the stimulus shown in Example 3-6. The stimulus checks that each

combination of select signals connects the appropriate input to the output. The signal OUTPUT is displayed

one time unit after it changes. System task $monitor could also be used to display the signals when they

change values.

Example 3-6 Stimulus for Multiplexer

// Define the stimulus module (no ports)

module stimulus;

// Declare variables to be connected

// to inputs

reg IN0, IN1, IN2, IN3;

reg S1, S0;

// Declare output wire

wire OUTPUT;

// Instantiate the multiplexer

mux4_to_1 mymux(OUTPUT, IN0, IN1, IN2, IN3, S1, S0);

// Stimulate the inputs

// Define the stimulus module (no ports)

initial

begin

// set input lines

IN0 = 1; IN1 = 0; IN2 = 1; IN3 = 0;

#1 $display("IN0= %b, IN1= %b, IN2= %b, IN3= %b\n",IN0,IN1,IN2,IN3);

// choose IN0

S1 = 0; S0 = 0;

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

// choose IN1

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 48

S1 = 0; S0 = 1;

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

// choose IN2

S1 = 1; S0 = 0;

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

// choose IN3

S1 = 1; S0 = 1;

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

end

endmodule

The output of the simulation is shown below. Each combination of the select signals is tested.

IN0= 1, IN1= 0, IN2= 1, IN3= 0

S1 = 0, S0 = 0, OUTPUT = 1

S1 = 0, S0 = 1, OUTPUT = 0

S1 = 1, S0 = 0, OUTPUT = 1

S1 = 1, S0 = 1, OUTPUT = 0

4-bit Ripple Carry Full Adder

Consider the design of a 4-bit full adder whose port list was defined in, List of Ports. We use primitive

logic gates, and we apply stimulus to the 4-bit full adder to check functionality. For the sake of simplicity,

we will implement a ripple carry adder. The basic building block is a 1-bit full adder. The mathematical

equations for a 1-bit full adder are shown below.

sum = (a b cin)

cout = (a b) + cin (a b)

The logic diagram for a 1-bit full adder is shown in Figure 3-6.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 49

Figure 3-6. 1-bit Full Adder

This logic diagram for the 1-bit full adder is converted to a Verilog description, shown in Example 3-7.

Example 3-7 Verilog Description for 1-bit Full Adder

// Define a 1-bit full adder

module fulladd(sum, c_out, a, b, c_in);

// I/O port declarations

output sum, c_out;

input a, b, c_in;

// Internal nets

wire s1, c1, c2;

// Instantiate logic gate primitives

xor (s1, a, b);

and (c1, a, b);

xor (sum, s1, c_in);

and (c2, s1, c_in);

xor (c_out, c2, c1);

endmodule

A 4-bit ripple carry full adder can be constructed from four 1-bit full adders, as shown in Figure 3-7. Notice that

fa0, fa1, fa2, and fa3 are instances of the module fulladd (1-bit full adder).

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 50

Figure 3-7. 4-bit Ripple Carry Full Adder

This structure can be translated to Verilog as shown in Example 3-8. Note that the port names used in a 1-bit

full adder and a 4-bit full adder are the same but they represent different elements. The element sum in a 1-bit

adder is a scalar quantity and the element sum in the 4-bit full adder is a 4-bit vector quantity. Verilog keeps

names local to a module.

Names are not visible outside the module unless hierarchical name referencing is used. Also note that instance

names must be specified when defined modules are instantiated, but when instantiating Verilog primitives, the

instance names are optional.

Example 3-8 Verilog Description for 4-bit Ripple Carry Full Adder

// Define a 4-bit full adder

module fulladd4(sum, c_out, a, b, c_in);

// I/O port declarations

output [3:0] sum;

output c_out;

input[3:0] a, b;

input c_in;

// Internal nets

wire c1, c2, c3;

// Instantiate four 1-bit full adders.

fulladd fa0(sum[0], c1, a[0], b[0], c_in);

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 51

fulladd fa1(sum[1], c2, a[1], b[1], c1);

fulladd fa2(sum[2], c3, a[2], b[2], c2);

fulladd fa3(sum[3], c_out, a[3], b[3], c3);

endmodule

Finally, the design must be checked by applying stimulus, as shown in Example 3-9. The module stimulus

stimulates the 4-bit full adder by applying a few input combinations and monitors the results.

Example 3-9 Stimulus for 4-bit Ripple Carry Full Adder

// Define the stimulus (top level module)

module stimulus;

// Set up variables

reg [3:0] A, B;

reg C_IN;

wire [3:0] SUM;

wire C_OUT;

// Instantiate the 4-bit full adder. call it FA1_4

fulladd4 FA1_4(SUM, C_OUT, A, B, C_IN);

// Set up the monitoring for the signal values

initial

begin

$monitor($time," A= %b, B=%b, C_IN= %b, --- C_OUT= %b, SUM= %b\n",

A, B, C_IN, C_OUT, SUM);

end

// Stimulate inputs

initial

begin

A = 4'd0; B = 4'd0; C_IN = 1'b0;

#5 A = 4'd3; B = 4'd4;

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 52

#5 A = 4'd2; B = 4'd5;

#5 A = 4'd9; B = 4'd9;

#5 A = 4'd10; B = 4'd15;

#5 A = 4'd10; B = 4'd5; C_IN = 1'b1;

end

endmodule

The output of the simulation is shown below.

0 A= 0000, B=0000, C_IN= 0, --- C_OUT= 0, SUM= 0000

5 A= 0011, B=0100, C_IN= 0, --- C_OUT= 0, SUM= 0111

10 A= 0010, B=0101, C_IN= 0, --- C_OUT= 0, SUM= 0111

15 A= 1001, B=1001, C_IN= 0, --- C_OUT= 1, SUM= 0010

20 A= 1010, B=1111, C_IN= 0, --- C_OUT= 1, SUM= 1001

25 A= 1010, B=0101, C_IN= 1,--- C_OUT= 1, SUM= 0000

3.3 Gate Delays

Until now, circuits are described without any delays (i.e., zero delay). In real circuits, logic gates have delays

associated with them. Gate delays allow the Verilog user to specify delays through the logic circuits. Pin-to-pin

delays can also be specified in Verilog.

3.3.1 Rise, Fall, and Turn-off Delays

There are three types of delays from the inputs to the output of a primitive gate.

Rise delay

The rise delay is associated with a gate output transition to a 1 from another value.

Fall delay

The fall delay is associated with a gate output transition to a 0 from another value.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 53

Turn-off delay

The turn-off delay is associated with a gate output transition to the high impedance value (z) from another

value. If the value changes to x, the minimum of the three delays is considered.

Three types of delay specifications are allowed. If only one delay is specified, this value is used for all

transitions. If two delays are specified, they refer to the rise and fall delay values. The turn-off delay is the

minimum of the two delays. If all three delays are specified, they refer to rise, fall, and turn-off delay values. If

no delays are specified, the default value is zero. Examples of delay specification are shown in Example 3-10.

Example 3-10 Types of Delay Specification

// Delay of delay_time for all transitions

and #(delay_time) a1(out, i1, i2);

// Rise and Fall Delay Specification.

and #(rise_val, fall_val) a2(out, i1, i2);

// Rise, Fall, and Turn-off Delay Specification

bufif0 #(rise_val, fall_val, turnoff_val) b1 (out, in, control);

Examples of delay specification are shown below.

and #(5) a1(out, i1, i2); //Delay of 5 for all transitions

and #(4,6) a2(out, i1, i2); // Rise = 4, Fall = 6

bufif0 #(3,4,5) b1 (out, in, control); // Rise = 3, Fall = 4, Turn-off= 5

3.3.2 Min/Typ/Max Values

Verilog provides an additional level of control for each type of delay mentioned above. For each type of

delay?rise, fall, and turn-off?three values, min, typ, and max, can be specified. Any one value can be chosen at

the start of the simulation. Min/typ/max values are used to model devices whose delays vary within a minimum

and maximum range because of the IC fabrication process variations.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 54

Min value

The min value is the minimum delay value that the designer expects the gate to have.

Typ val

The typ value is the typical delay value that the designer expects the gate to have.

Max value

The max value is the maximum delay value that the designer expects the gate to have. Min, typ, or max values

can be chosen at Verilog run time. Method of choosing a min/typ/max value may vary for different simulators

or operating systems. (For Verilog- XL , the values are chosen by specifying options +maxdelays, +typdelays,

and +mindelays at run time. If no option is specified, the typical delay value is the default).

This allows the designers the flexibility of building three delay values for each transition into their design. The

designer can experiment with delay values without modifying the design.

Examples of min, typ, and max value specification for Verilog-XL are shown in Example3-11.

Example 3-11 Min, Max, and Typical Delay Values

// One delay

// if +mindelays, delay= 4

// if +typdelays, delay= 5

// if +maxdelays, delay= 6

and #(4:5:6) a1(out, i1, i2);

// Two delays

// if +mindelays, rise= 3, fall= 5, turn-off = min(3,5)

// if +typdelays, rise= 4, fall= 6, turn-off = min(4,6)

// if +maxdelays, rise= 5, fall= 7, turn-off = min(5,7)

and #(3:4:5, 5:6:7) a2(out, i1, i2);

// Three delays

// if +mindelays, rise= 2 fall= 3 turn-off = 4

// if +typdelays, rise= 3 fall= 4 turn-off = 5

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 55

// if +maxdelays, rise= 4 fall= 5 turn-off = 6

and #(2:3:4, 3:4:5, 4:5:6) a3(out, i1,i2);

Examples of invoking the Verilog-XL simulator with the command-line options are shown below. Assume that

the module with delays is declared in the file test.v.

//invoke simulation with maximum delay

> verilog test.v +maxdelays

//invoke simulation with minimum delay

> verilog test.v +mindelays

//invoke simulation with typical delay

> verilog test.v +typdelays

3.3.3 Delay Example

Let us consider a simple example to illustrate the use of gate delays to model timing in the logic circuits. A

simple module called D implements the following logic equations:

out = (a b) + c

The gate-level implementation is shown in Module D (Figure 3-8). The module contains two gates with delays

of 5 and 4 time units.

Figure 3-8. Module D

The module D is defined in Verilog as shown in Example 3-12.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 56

Example 3-12 Verilog Definition for Module D with Delay

// Define a simple combination module called D

module D (out, a, b, c);

// I/O port declarations

output out;

input a,b,c;

// Internal nets

wire e;

// Instantiate primitive gates to build the circuit

and #(5) a1(e, a, b); //Delay of 5 on gate a1

or #(4) o1(out, e,c); //Delay of 4 on gate o1

endmodule

This module is tested by the stimulus file shown in Example 3-13.

Example 3-13 Stimulus for Module D with Delay

// Stimulus (top-level module)

module stimulus;

// Declare variables

reg A, B, C;

wire OUT;

// Instantiate the module D

D d1(OUT, A, B, C);

// Stimulate the inputs. Finish the simulation at 40 time units.

initial

begin

A= 1'b0; B= 1'b0; C= 1'b0;

#10 A= 1'b1; B= 1'b1; C= 1'b1;

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 57

#10 A= 1'b1; B= 1'b0; C= 1'b0;

#20 $finish;

end

endmodule

The waveforms from the simulation are shown in Figure 3-9 to illustrate the effect of specifying delays on

gates. The waveforms are not drawn to scale. However, simulation time at each transition is specified below the

transition.

1. The outputs E and OUT are initially unknown.

2. At time 10, after A, B, and C all transition to 1, OUT transitions to 1 after a delay of 4 time units and E

changes value to 1 after 5 time units.

3. At time 20, B and C transition to 0. E changes value to 0 after 5 time units, and OUT transitions to 0, 4 time

units after E changes.

Figure 3-9. Waveforms for Delay Simulation of module D

It is a useful exercise to understand how the timing for each transition in the above waveform corresponds to the

gate delays shown in Module D.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 58

3.4 Dataflow Modeling

For small circuits, the gate-level modeling approach works very well because the number of gates is limited and

the designer can instantiate and connects every gate individually. Also, gate-level modeling is very intuitive to a

designer with a basic knowledge of digital logic design. However, in complex designs the number of gates is

very large. Thus, designers can design more effectively if they concentrate on implementing the function at a

level of abstraction higher than gate level. Dataflow modeling provides a powerful way to implement a design.

Verilog allows a circuit to be designed in terms of the data flow between registers and how a design processes

data rather than instantiation of individual gates.

3.4.1 Continuous Assignments

A continuous assignment is the most basic statement in dataflow modeling, used to drive a value onto a net. This

assignment replaces gates in the description of the circuit and describes the circuit at a higher level of abstraction.

The assignment statement starts with the keyword assign. The syntax of an assign statement is as follows.

continuous_assign ::= assign [drive_strength] [delay3] list_of_net_assignments ;

list_of_net_assignments ::= net_assignment { , net_assignment }

net_assignment ::= net_lvalue = expression

The default value for drive strength is strong1 and strong0. The delay value is also optional and can be used to

specify delay on the assign statement. This is like specifying delays for gates. Continuous assignments have the

following characteristics:

1. The left hand side of an assignment must always be a scalar or vector net or a concatenation of scalar and vector

nets. It cannot be a scalar or vector register.

2. Continuous assignments are always active. The assignment expression is evaluated as soon as one of the right-

hand-side operands changes and the value is assigned to the left-hand-side net.

3. The operands on the right-hand side can be registers or nets or function calls. Registers or nets can be scalars or

vectors.

4. Delay values can be specified for assignments in terms of time units. Delay values are used to control the time

when a net is assigned the evaluated value. This feature is similar to specifying delays for gates. It is very useful in

modeling timing behavior in real circuits.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 59

Examples of continuous assignments are shown below. Operators such as &, ^, |, {, } and + used in the examples, At

this point, concentrate on how the assign statements are specified.

Example 3-14 Examples of Continuous Assignment

// Continuous assign. out is a net. i1 and i2 are nets.

assign out = i1 & i2;

// Continuous assign for vector nets. addr is a 16-bit vector net

// addr1 and addr2 are 16-bit vector registers.

assign addr[15:0] = addr1_bits[15:0] ^ addr2_bits[15:0];

// Concatenation. Left-hand side is a concatenation of a scalar

// net and a vector net.

assign {c_out, sum[3:0]} = a[3:0] + b[3:0] + c_in;

3.4.2 Implicit Continuous Assignment

Instead of declaring a net and then writing a continuous assignment on the net, Verilog provides a shortcut by which

a continuous assignment can be placed on a net when it is declared. There can be only one implicit declaration

assignment per net because a net is declared only once.

In the example below, an implicit continuous assignment is contrasted with a regular continuous assignment.

//Regular continuous assignment

wire out;

assign out = in1 & in2;

//Same effect is achieved by an implicit continuous assignment

wire out = in1 & in2;

Implicit Net Declaration

If a signal name is used to the left of the continuous assignment, an implicit net declaration will be inferred for that

signal name. If the net is connected to a module port, the width of the inferred net is equal to the width of the module

port.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 60

// Continuous assign. out is a net.

wire i1, i2;

assign out = i1 & i2; //Note that out was not declared as a wire

//but an implicit wire declaration for out

//is done by the simulator

3.5 Delays

Delay values control the time between the change in a right-hand-side operand and when the new value is assigned

to the left-hand side. Three ways of specifying delays in continuous assignment statements are regular assignment

delay, implicit continuous assignment delay, and net declaration delay.

3.5.1 Regular Assignment Delay

The first method is to assign a delay value in a continuous assignment statement. The delay value is specified after

the keyword assign. Any change in values of in1 or in2 will result in a delay of 10 time units before re-computation

of the expression in1 & in2, and the result will be assigned to out. If in1 or in2 changes value again before 10 time

units when the result propagates to out, the values of in1 and in2 at the time of re-computation are considered. This

property is called inertial delay. An input pulse that is shorter than the delay of the assignment statement does not

propagate to the output.

assign #10 out = in1 & in2; // Delay in a continuous assign

1. When signals in1 and in2 go high at time 20, out goes to a high 10 time units later (time = 30).

2. When in1 goes low at 60, out changes to low at 70.

3. However, in1 changes to high at 80, but it goes down to low before 10 time units have elapsed.

4. Hence, at the time of re-computation, 10 units after time 80, in1 is 0. Thus, out gets the value 0. A pulse of width

less than the specified assignment delay is no propagated to the output.

Figure 3-10. Waveforms for Delay Simulation

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 61

Inertial delays also apply to gate delays,

Implicit Continuous Assignment Delay

An equivalent method is to use an implicit continuous assignment to specify both a delay and an assignment on the

net.

//implicit continuous assignment delay

wire #10 out = in1 & in2;

//same as

wire out;

assign #10 out = in1 & in2;

The declaration above has the same effect as defining a wire out and declaring a continuous assignment on out.

Net Declaration Delay

A delay can be specified on a net when it is declared without putting a continuous assignment on the net. If a delay is

specified on a net out, then any value change applied to the net out is delayed accordingly. Net declaration delays

can also be used in gate-level modeling.

//Net Delays

wire # 10 out;

assign out = in1 & in2;

//The above statement has the same effect as the following.

wire out;

assign #10 out = in1 & in2;

3.5 Expressions, Operators, and Operands

Dataflow modeling describes the design in terms of expressions instead of primitive gates. Expressions, operators,

and operands form the basis of dataflow modeling.

Expressions are constructs that combine operators and operands to produce a result.

// Examples of expressions. Combines operands and operators

a ^ b

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 62

addr1[20:17] + addr2[20:17]

in1 | in2

Operands can be any one of the data types defined, Data Types. Some constructs will take only certain types of

operands. Operands can be constants, integers, real numbers, nets, registers, times, bit-select (one bit of vector net or

a vector register), part-select (selected bits of the vector net or register vector), and memories or function calls

integer count, final_count;

final_count = count + 1;//count is an integer operand

real a, b, c;

c = a - b; //a and b are real operands

reg [15:0] reg1, reg2;

reg [3:0] reg_out;

reg_out = reg1[3:0] ^ reg2[3:0];//reg1[3:0] and reg2[3:0] are

//part-select register operands

reg ret_value;

ret_value = calculate_parity(A, B);//calculate_parity is a

//function type operand

Operators

Operators act on the operands to produce desired results. Verilog provides various types of operators. Operator

Types d1 && d2 // && is an operator on operands d1 and d2.

!a[0] // ! is an operator on operand a[0]

B >> 1 // >> is an operator on operands B and 1

Operator Types

Verilog provides many different operator types. Operators can be arithmetic, logical, relational, equality, bitwise,

reduction, shift, concatenation, or conditional. Some of these operators are similar to the operators used in the C

programming language. Each operator type is denoted by a symbol. Table shows the complete listing of operator

symbols classified by category.

.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 63

Table 3-4 Operator Types and Symbols

Examples

A design can be represented in terms of gates, data flow, or a behavioral description. Consider the 4-to-1 multiplexer

and 4-bit full adder described earlier. Previously, these designs were directly translated from the logic diagram into a

gate-level Verilog description. Here, we describe the same designs in terms of data flow. We also discuss two

additional examples: a 4-bit full adder using carry look ahead and a 4-bit counter using negative edge-triggered D-

flip-flops.

4-to-1 Multiplexer

Gate-level modeling of a 4-to-1 multiplexer, Example. The logic diagram for the multiplexer is given in Figure 3.4

and the gate-level Verilog description is shown in Example. We describe the multiplexer, using dataflow statements.

Compare it with the gate-level description. We show two methods to model the multiplexer by using dataflow

statements.

Method 1: logic equation

We can use assignment statements instead of gates to model the logic equations of the multiplexer. Notice that

everything is same as the gate-level Verilog description except that computation of out is done by specifying one

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 64

logic equation by using operators instead of individual gate instantiations. I/O ports remain the same. This important

so that the interface with the environment does not change. Only the internals of the module change.

Example 4-to-1 Multiplexer, Using Logic Equations

// Module 4-to-1 multiplexer using data flow. logic equation

// Compare to gate-level model

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s1, s0;

//Logic equation for out

assign out = (~s1 & ~s0 & i0)|

(~s1 & s0 & i1) |

(s1 & ~s0 & i2) |

(s1 & s0 & i3) ;

endmodule

Method 2: conditional operator

There is a more concise way to specify the 4-to-1 multiplexers.

Example of 4-to-1 Multiplexer, Using Conditional Operators

// Module 4-to-1 multiplexer using data flow. Conditional operator.

// Compare to gate-level model

module multiplexer4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s1, s0;

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 65

// Use nested conditional operator

assign out = s1 ? (s0 ? i3 : i2) : (s0 ? i1 : i0) ;

endmodule

In the simulation of the multiplexer, the gate-level module can be substituted with the dataflow multiplexer modules

described above. The stimulus module will not change. The simulation results will be identical. By encapsulating

functionality inside a module, we can replace the gate-level module with a dataflow module without affecting the

other modules in the simulation. This is a very powerful feature of Verilog.

4 bit Full Adder

The 4-bit full adder in, Examples, was designed by using gates; the logic diagram is shown in Figure 3.7. In this

section, we write the dataflow description for the 4-bit adder. In gates, we had to first describe a 1-bit full adder.

Then we built a 4-bit full ripple carry adder. We again illustrate two methods to describe a 4-bit full adder by means

of dataflow statements.

Method 1: dataflow operators

A concise description of the adder is defined with the + and { } operators.

Example 4-bit Full Adder, Using Dataflow Operators

// Define a 4-bit full adder by using dataflow statements.

module fulladd4(sum, c_out, a, b, c_in);

// I/O port declarations

output [3:0] sum;

output c_out;

input[3:0] a, b;

input c_in;

// Specify the function of a full adder

assign {c_out, sum} = a + b + c_in;

endmodule

If we substitute the gate-level 4-bit full adder with the dataflow 4-bit full adder, the rest of the modules will not

change. The simulation results will be identical.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 66

Method 2: full adder with carry lookahead

In ripple carry adders, the carry must propagate through the gate levels before the sum is available at the output

terminals. An n-bit ripple carry adder will have 2n gate levels. The propagation time can be a limiting factor on the

speed of the circuit. One of the most popular methods to reduce delay is to use a carry lookahead mechanism. Logic

equations for implementing the carry lookahead mechanism can be found in any logic design book. The propagation

delay is reduced to four gate levels, irrespective of the number of bits in the adder. The Verilog description for a

carry lookahead adder. This module can be substituted in place of the full adder modules described before without

changing any other component of the simulation. The simulation results will be unchanged.

Example 4-bit Full Adder with Carry Lookahead

module fulladd4(sum, c_out, a, b, c_in);

// Inputs and outputs

output [3:0] sum;

output c_out;

input [3:0] a,b;

input c_in;

// Internal wires

wire p0,g0, p1,g1, p2,g2, p3,g3;

wire c4, c3, c2, c1;

// compute the p for each stage

assign p0 = a[0] ^ b[0],

p1 = a[1] ^ b[1],

p2 = a[2] ^ b[2],

p3 = a[3] ^ b[3];

// compute the g for each stage

assign g0 = a[0] & b[0],

g1 = a[1] & b[1],

g2 = a[2] & b[2],

g3 = a[3] & b[3];

// compute the carry for each stage

// Note that c_in is equivalent c0 in the arithmetic equation for

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 67

// carry lookahead computation

assign c1 = g0 | (p0 & c_in),

c2 = g1 | (p1 & g0) | (p1 & p0 & c_in),

c3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & c_in),

c4 = g3 | (p3 & g2) | (p3 & p2 & g1) | (p3 & p2 & p1 & g0) |

(p3 & p2 & p1 & p0 & c_in);

// Compute Sum

assign sum[0] = p0 ^ c_in,

sum[1] = p1 ^ c1,

sum[2] = p2 ^ c2,

sum[3] = p3 ^ c3;

// Assign carry output

assign c_out = c4;

endmodule

Ripple Counter

Consider the design of a 4-bit ripple counter by using negative edge-triggered flipflops. This example was discussed

at a very abstract level, Hierarchical Modeling Concepts. We design it using Verilog dataflow statements and test it

with a stimulus module. The diagrams for the 4-bit ripple carry counter modules are show the counter being built

with four T-flipflops.

Figure 3.11 4 bit ripple counter

.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 68

Figure 3.12 T-flipflop is built with one D-flipflop and an inverter gate

Figure 3.13 shows the D-flipflop constructed from basic logic gates.

Figure 3.13 Negative Edge-Triggered D-flipflop with Clear

Given the above diagrams, we write the corresponding Verilog, using dataflow statements in a top-down fashion.

First we design the module counter. The code is shown in. The code contains instantiation of four T_FF modules.

Example: Verilog Code for Ripple Counter

// Ripple counter

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 69

module counter(Q , clock, clear);

// I/O ports

output [3:0] Q;

input clock, clear;

// Instantiate the T flipflops

T_FF tff0(Q[0], clock, clear);

T_FF tff1(Q[1], Q[0], clear);

T_FF tff2(Q[2], Q[1], clear);

T_FF tff3(Q[3], Q[2], clear);

endmodule

Example :Verilog Code for T-flipflop

// Edge-triggered T-flipflop. Toggles every clock

// cycle.

module T_FF(q, clk, clear);

// I/O ports

output q;

input clk, clear;

// Instantiate the edge-triggered DFF

// Complement of output q is fed back.

// Notice qbar not needed. Unconnected port.

edge_dff ff1(q, ,~q, clk, clear);

endmodule

Verilog Code for Edge-Triggered D-flipflop

// Edge-triggered D flipflop

module edge_dff(q, qbar, d, clk, clear);

// Inputs and outputs

output q,qbar;

input d, clk, clear;

// Internal variables

wire s, sbar, r, rbar,cbar;

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 70

// dataflow statements

//Create a complement of signal clear

assign cbar = ~clear;

// Input latches; A latch is level sensitive. An edge-sensitive

// flip-flop is implemented by using 3 SR latches.

assign sbar = ~(rbar & s),

s = ~(sbar & cbar & ~clk),

r = ~(rbar & ~clk & s),

rbar = ~(r & cbar & d);

// Output latch

assign q = ~(s & qbar),

qbar = ~(q & r & cbar);

endmodule

Stimulus Module for Ripple Counter

// Top level stimulus module

module stimulus;

// Declare variables for stimulating input

reg CLOCK, CLEAR;

wire [3:0] Q;

initial

$monitor($time, " Count Q = %b Clear= %b", Q[3:0],CLEAR);

// Instantiate the design block counter

counter c1(Q, CLOCK, CLEAR);

// Stimulate the Clear Signal

initial

begin

CLEAR = 1'b1;

#34 CLEAR = 1'b0;

#200 CLEAR = 1'b1;

#50 CLEAR = 1'b0;

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 71

end

// Set up the clock to toggle every 10 time units

initial

begin

CLOCK = 1'b0;

forever #10 CLOCK = ~CLOCK;

end

// Finish the simulation at time 400

initial

begin

#400 $finish;

end

endmodule

The output of the simulation is shown below. Note that the clear signal resets the count

to zero.

0 Count Q = 0000 Clear= 1

34 Count Q = 0000 Clear= 0

40 Count Q = 0001 Clear= 0

60 Count Q = 0010 Clear= 0

80 Count Q = 0011 Clear= 0

100 Count Q = 0100 Clear= 0

120 Count Q = 0101 Clear= 0

140 Count Q = 0110 Clear= 0

160 Count Q = 0111 Clear= 0

180 Count Q = 1000 Clear= 0

200 Count Q = 1001 Clear= 0

220 Count Q = 1010 Clear= 0

234 Count Q = 0000 Clear= 1

284 Count Q = 0000 Clear= 0

300 Count Q = 0001 Clear= 0

320 Count Q = 0010 Clear= 0

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 72

340 Count Q = 0011 Clear= 0

360 Count Q = 0100 Clear= 0

380 Count Q = 0101 Clear= 0

3.6: Outcomes

After completion of the module the students are able to:

 Identify logic gate primitives provided in Verilog and Understand instantiation of gates, gate

symbols, and truth tables for and/or and buf/not type gates.

 Understand how to construct a Verilog description from the logic diagram of the circuit.

 Describe rise, fall, and turn-off delays in the gate-level design and Explain min, max, and typ delays

in the gate-level design

 Describe the continuous assignment (assign) statement, restrictions on the assign statement, and the

implicit continuous assignment statement.

 Explain assignment delay, implicit assignment delay, and net declaration delay for continuous

assignment statements and Define expressions, operators, and operands.

 Use dataflow constructs to model practical digital circuits in Verilog

3.7: Recommended questions

1. Write the truth table of all the basic gates. Input values consisting of ‘0’, ‘1’, ‘x’, ‘z’.

2. What are the primitive gates supported by Verilog HDL? Write the Verilog HDL statements to

instantiate all the primitive gates.

3. Use gate level description of Verilog HDL to design 4 to 1 multiplexer. Write truth table, top-level

block, logic expression and logic diagram. Also write the stimulus block for the same.

4. Explain the different types of buffers and not gates with the help of truth table, logic symbol, logic

expression

5. Use gate level description of Verilog HDL to describe the 4-bit ripple carry counter. Also write a

stimulus block for 4-bit ripple carry adder.

6. How to model the delays of a logic gate using Verilog HDL? Give examples. Also explain the

different delays associated with digital circuits.

7. Write gate level description to implement function y = a.b + c, with 5 and 4 time units of gate delay for

AND and OR gate respectively. Also write the stimulus block and simulation waveform.

8. With syntax describe the continuous assignment statement.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 73

9. Show how different delays associated with logic circuit are modelled using dataflow description.

10. Explain different operators supported by Verilog HDL.

11. What is an expression associated with dataflow description? What are the different types of operands

in an expression?

12. Discuss the precedence of operators.

13. Use dataflow description style of Verilog HDL to design 4:1 multiplexer with and without using

conditional operator.

14. Use dataflow description style of Verilog HDL to design 4-bitadder

using i. Ripple carry logic.

ii. Carry look ahead logic.

15. Use dataflow description style, gate level description of Verilog HDL to design 4-bit ripple carry

counter. Also write the stimulus block to verify the same.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 74

MODULE -4

BEHAVIORAL MODELING

4.1 Objectives

• To Explain the significance of structured procedures always and initial in behavioral modeling.

• To Define blocking and nonblocking procedural assignments.

• To Understand delay-based timing control mechanism in behavioral modeling. Use regular delays,

intra-assignment delays, and zero delays.

• To Describe event-based timing control mechanism in behavioral modeling. Use regular event

control, named event control, and event OR control.

• To Use level-sensitive timing control mechanism in behavioral modeling.

• To Explain conditional statements using if and else.

• To Describe multiway branching, using case, casex, and casez statements.

• To Understand looping statements such as while, for, repeat, and forever.

• To Define sequential and parallel blocks.

4.2 Structured Procedures

There are two structured procedure statements in Verilog: always and initial. These statements are the two most

basic statements in behavioral modeling. All other behavioral statements can appear only inside these structured

procedure statements. Verilog is a concurrent programming language unlike the C programming language,

which is sequential in nature.

Activity flows in Verilog run in parallel rather than in sequence. Each always and initial statement represents a

separate activity flow in Verilog. Each activity flow starts at simulation time 0. The statements always and

initial cannot be nested. The fundamental difference between the two statements is explained in the following

sections

4.2.1 Initial Statement

All statements inside an initial statement constitute an initial block. An initial block starts at time 0, executes

exactly once during a simulation, and then does not execute again. If there are multiple initial blocks, each

block starts to execute concurrently at time 0. Each block finishes execution independently of other blocks.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 75

Multiple behavioral statements must be grouped, typically using the keywords begin and end. If there is only

one behavioral statement, grouping is not necessary. This is similar to the begin-end blocks in Pascal

programming language or the { } grouping in the C programming language. Example 4.1 illustrates the use of

the initial statement.

Example 4.1:Initial Statement

module stimulus;

reg x,y, a,b, m;

initial

m = 1'b0; //single statement; does not need to be grouped

initial

begin

#5 a = 1'b1; //multiple statements; need to be grouped

#25 b = 1'b0;

end

initial

begin

#10 x = 1'b0;

#25 y = 1'b1;

end

initial

128

#50 $finish;

endmodule

In the above example, the three initial statements start to execute in parallel at time 0. If a delay #<delay> is

seen before a statement, the statement is executed <delay> time units after the current simulation time. Thus,

the execution sequence of the statements inside the initial blocks will be as follows.

time statement executed

0 m = 1'b0;

5 a = 1'b1;

10 x = 1'b0;

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 76

30 b = 1'b0;

35 y = 1'b1;

50 $finish;

The initial blocks are typically used for initialization, monitoring, waveforms and other processes that must be

executed only once during the entire simulation run. The following subsections discussion how to initialize

values using alternate shorthand syntax. The use of such shorthand syntax has the same effect as an initial block

combined with a variable declaration.

Combined Variable Declaration and Initialization

Variables can be initialized when they are declared. Example 4-2 shows such a declaration.

Example 4-2 Initial Value Assignment

//The clock variable is defined first

reg clock;

//The value of clock is set to 0

initial clock = 0;

//Instead of the above method, clock variable

//can be initialized at the time of declaration

//This is allowed only for variables declared

//at module level.

reg clock = 0;

Combined Port/Data Declaration and Initialization

The combined port/data declaration can also be combined with an initialization. Example 4-3 shows such a

declaration.

Example 4-3 Combined Port/Data Declaration and Variable Initialization

module adder (sum, co, a, b, ci);

output reg [7:0] sum = 0; //Initialize 8 bit output sum

output reg co = 0; //Initialize 1 bit output co

input [7:0] a, b;

input ci;

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 77

--

--

endmodule

Combined ANSI C Style Port Declaration and Initialization

ANSI C style port declaration can also be combined with an initialization. Example 4-4 shows such a

declaration.

Example 4-4 Combined ANSI C Port Declaration and Variable Initialization

module adder (output reg [7:0] sum = 0, //Initialize 8 bit output

output reg co = 0, //Initialize 1 bit output co

input [7:0] a, b,

input ci

);

--

--

endmodule

4.2.2 Always Statement

All behavioral statements inside an always statement constitute an always block. The always statement starts at

time 0 and executes the statements in the always block continuously in a looping fashion. This statement is used

to model a block of activity that is repeated continuously in a digital circuit. An example is a clock generator

module that toggles the clock signal every half cycle. In real circuits, the clock generator is active from time 0

to as long as the circuit is powered on. Example 4-5 illustrates one method to model a clock generator in

Verilog.

Example 4-5 always Statement

module clock_gen (output reg clock);

//Initialize clock at time zero

initial

clock = 1'b0;

//Toggle clock every half-cycle (time period = 20)

always

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 78

#10 clock = ~clock;

initial

#1000 $finish;

endmodule

In Example 4-5, the always statement starts at time 0 and executes the statement clock = ~clock every 10 time

units. Notice that the initialization of clock has to be done inside a separate initial statement. If we put the

initialization of clock inside the always block, clock will be initialized every time the always is entered. Also,

the simulation must be halted inside an initial statement. If there is no $stop or $finish statement to halt the

simulation, the clock generator will run forever. C programmers might draw an analogy between the always

block and an infinite loop.

But hardware designers tend to view it as a continuously repeated activity in a digital circuit starting from

power on. The activity is stopped only by power off ($finish) or by an interrupt ($stop).

4.3 Procedural Assignments

Procedural assignments update values of reg, integer, real, or time variables. The value placed on a variable will

remain unchanged until another procedural assignment updates the variable with a different value. These are

unlike continuous assignments, Dataflow Modeling, where one assignment statement can cause the value of

the right-hand-side expression to be continuously placed onto the left-hand-side net. The

syntax for the simplest form of procedural assignment is shown below.

assignment ::= variable_lvalue = [delay_or_event_control] expression

The left-hand side of a procedural assignment <lvalue> can be one of the following:

• A reg, integer, real, or time register variable or a memory element

• A bit select of these variables (e.g., addr[0])

• A part select of these variables (e.g., addr[31:16])

• A concatenation of any of the above

The right-hand side can be any expression that evaluates to a value. In behavioral modeling, all operators can be

used in behavioral expressions.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 79

There are two types of procedural assignment statements: blocking and nonblocking.

4.3.1 Blocking Assignments

Blocking assignment statements are executed in the order they are specified in a sequential block. A blocking

assignment will not block execution of statements that follow in a parallel block. The = operator is used to

specify blocking assignments.

Example 4-6 Blocking Statements

reg x, y, z;

reg [15:0] reg_a, reg_b;

integer count;

//All behavioral statements must be inside an initial or always block

initial

begin

x = 0; y = 1; z = 1; //Scalar assignments

count = 0; //Assignment to integer variables

reg_a = 16'b0; reg_b = reg_a; //initialize vectors

#15 reg_a[2] = 1'b1; //Bit select assignment with delay

#10 reg_b[15:13] = {x, y, z} //Assign result of concatenation to part select of a vector

count = count + 1; //Assignment to an integer (increment)

end

In Example 4-6, the statement y = 1 is executed only after x = 0 is executed. The behavior in a particular block

is sequential in a begin-end block if blocking statements are used, because the statements can execute only in

sequence. The statement count = count + 1 is executed last. The simulation times at which the statements are

executed are as follows:

• All statements x = 0 through reg_b = reg_a are executed at time 0

• Statement reg_a[2] = 0 at time = 15

• Statement reg_b[15:13] = {x, y, z} at time = 25

• Statement count = count + 1 at time = 25

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 80

• Since there is a delay of 15 and 10 in the preceding statements, count = count + 1 will be executed at time = 25

units

Note that for procedural assignments to registers, if the right-hand side has more bits than the register variable,

the right-hand side is truncated to match the width of the register variable. The least significant bits are selected

and the most significant bits are discarded. If the right-hand side has fewer bits, zeros are filled in the most

significant bits of the register variable.

4.3.2 Nonblocking Assignments

Nonblocking assignments allow scheduling of assignments without blocking execution of the statements that

follow in a sequential block. A <= operator is used to specify nonblocking assignments. Note that this operator

has the same symbol as a relational operator, less_than_equal_to. The operator <= is interpreted as a relational

operator in an expression and as an assignment operator in the context of a nonblocking assignment. To

illustrate the behavior of nonblocking statements and its difference from blocking statements, let us consider

Example 4-7, where we convert some blocking assignments to nonblocking assignments, and observe the

behavior.

Example 4-7 Nonblocking Assignments

reg x, y, z;

reg [15:0] reg_a, reg_b;

integer count;

//All behavioral statements must be inside an initial or always block

initial

begin

x = 0; y = 1; z = 1; //Scalar assignments

count = 0; //Assignment to integer variables

reg_a = 16'b0; reg_b = reg_a; //Initialize vectors

reg_a[2] <= #15 1'b1; //Bit select assignment with delay

reg_b[15:13] <= #10 {x, y, z}; //Assign result of concatenation

//to part select of a vector

count <= count + 1; //Assignment to an integer (increment)

end

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 81

In this example, the statements x = 0 through reg_b = reg_a are executed sequentially at time 0. Then the three

nonblocking assignments are processed at the same simulation time.

1. reg_a[2] = 0 is scheduled to execute after 15 units (i.e., time = 15)

2. reg_b[15:13] = {x, y, z} is scheduled to execute after 10 time units (i.e., time = 10)

3. count = count + 1 is scheduled to be executed without any delay (i.e., time = 0) Thus, the simulator schedules

a nonblocking assignment statement to execute and continues to the next statement in the block without waiting

for the nonblocking statement to complete execution. Typically, nonblocking assignment statements are

executed last in the time step in which they are scheduled, that is, after all the blocking assignments in that time

step are executed.

In the example above, we mixed blocking and nonblocking assignments to illustrate their behavior. However, it

is recommended that blocking and nonblocking assignments not be mixed in the same always block.

Application of nonblocking assignments

Having described the behavior of nonblocking assignments, it is important to understand why they are used in

digital design. They are used as a method to model several concurrent data transfers that take place after a

common event. Consider the following example where three concurrent data transfers take place at the positive

edge of clock.

always @(posedge clock)

begin

reg1 <= #1 in1;

reg2 <= @(negedge clock) in2 ^ in3;

reg3 <= #1 reg1; //The old value of reg1

end

At each positive edge of clock, the following sequence takes place for the nonblocking assignments.

1. A read operation is performed on each right-hand-side variable, in1, in2, in3, and reg1, at the positive edge of

clock. The right-hand-side expressions are evaluated, and the results are stored internally in the simulator.

2. The write operations to the left-hand-side variables are scheduled to be executed at the time specified by the

intra-assignment delay in each assignment, that is, schedule "write" to reg1 after 1 time unit, to reg2 at the next

negative edge of clock, and to reg3 after 1 time unit.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 82

3. The write operations are executed at the scheduled time steps. The order in which the write operations are

executed is not important because the internally stored right-hand-side expression values are used to assign to

the left-hand-side values. For example, note that reg3 is assigned the old value of reg1 that was stored after the

read operation, even if the write operation wrote a new value to reg1 before the write operation to reg3 was

executed.

Thus, the final values of reg1, reg2, and reg3 are not dependent on the order in which the assignments are

processed.

To understand the read and write operations further, consider Example 4-8, which is intended to swap the

values of registers a and b at each positive edge of clock, using two concurrent always blocks.

Example 4-8 Nonblocking Statements to Eliminate Race Conditions

//Illustration 1: Two concurrent always blocks with blocking

//statements

always @(posedge clock)

a = b;

always @(posedge clock)

b = a;

135

//Illustration 2: Two concurrent always blocks with nonblocking

//statements

always @(posedge clock)

a <= b;

always @(posedge clock)

b <= a;

In Example 4-8, in Illustration 1, there is a race condition when blocking statements are used. Either a = b

would be executed before b = a, or vice versa, depending on the simulator implementation. Thus, values of

registers a and b will not be swapped. Instead, both registers will get the same value (previous value of a or b),

based on the Verilog simulator implementation.

However, nonblocking statements used in Illustration 2 eliminate the race condition. At the positive edge of

clock, the values of all right-hand-side variables are "read," and the right-hand-side expressions are evaluated

and stored in temporary variables. During the write operation, the values stored in the temporary variables are

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 83

assigned to the left-handside variables. Separating the read and write operations ensures that the values of

registers a and b are swapped correctly, regardless of the order in which the write operations are performed.

Example 4-9 shows how nonblocking assignments shown in Illustration 2 could be emulated using blocking

assignments.

Example 4-9 Implementing Nonblocking Assignments using Blocking Assignments

//Emulate the behavior of nonblocking assignments by

//using temporary variables and blocking assignments

always @(posedge clock)

begin

//Read operation

//store values of right-hand-side expressions in temporary variables

temp_a = a;

temp_b = b;

//Write operation

//Assign values of temporary variables to left-hand-side variables

a = temp_b;

b = temp_a;

end

For digital design, use of nonblocking assignments in place of blocking assignments is highly recommended in

places where concurrent data transfers take place after a common event. In such cases, blocking assignments

can potentially cause race conditions because the final result depends on the order in which the assignments are

evaluated. Nonblocking assignments can be used effectively to model concurrent data transfers because the

final result is not dependent on the order in which the assignments are evaluated. Typical applications of

nonblocking assignments include pipeline modeling and modeling of several mutually exclusive data transfers.

On the downside, nonblocking assignments can potentially cause degradation in the simulator performance and

increase in memory usage.

4.4 Timing Controls

Various behavioral timing control constructs are available in Verilog. In Verilog, if there are no timing control

statements, the simulation time does not advance. Timing controls provide a way to specify the simulation time

at which procedural statements will execute.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 84

There are three methods of timing control: delay-based timing control, event-based timing control, and level-

sensitive timing control.

4.4.1 Delay-Based Timing Control

Delay-based timing control in an expression specifies the time duration between when the statement is

encountered and when it is executed. We used delay-based timing control statements when writing few modules

in the preceding chapters but did not explain them in detail. In this section, we will discuss delay-based timing

control statements. Delays are specified by the symbol #. Syntax for the delay-based timing control statement is

shown below.

delay3 ::= # delay_value | # (delay_value [, delay_value [,

delay_value]])

delay2 ::= # delay_value | # (delay_value [, delay_value])

delay_value ::=

unsigned_number

| parameter_identifier

| specparam_identifier

| mintypmax_expression

Delay-based timing control can be specified by a number, identifier, or a mintypmax_expression. There are

three types of delay control for procedural assignments: regular delay control, intra-assignment delay control,

and zero delay control.

Regular delay control

Regular delay control is used when a non-zero delay is specified to the left of a procedural assignment. Usage of

regular delay control is shown in Example 4-10.

Example 4-10 Regular Delay Control

//define parameters

parameter latency = 20;

parameter delta = 2;

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 85

//define register variables

reg x, y, z, p, q;

initial

begin

x = 0; // no delay control

#10 y = 1; // delay control with a number. Delay execution of

// y = 1 by 10 units

#latency z = 0; // Delay control with identifier. Delay of 20

units

#(latency + delta) p = 1; // Delay control with expression

#y x = x + 1; // Delay control with identifier. Take value of y.

#(4:5:6) q = 0; // Minimum, typical and maximum delay values.

//Discussed in gate-level modeling chapter.

end

In Example 4-10, the execution of a procedural assignment is delayed by the number specified by the delay

control. For begin-end groups, delay is always relative to time when the statement is encountered. Thus, y =1 is

executed 10 units after it is encountered in the activity flow.

Intra-assignment delay control

Instead of specifying delay control to the left of the assignment, it is possible to assign a delay to the right of the

assignment operator. Such delay specification alters the flow of activity in a different manner. Example 4-11

shows the contrast between intra-assignment delays and regular delays.

Example 4-11 Intra-assignment Delays

//define register variables

reg x, y, z;

//intra assignment delays

initial

begin

x = 0; z = 0;

y = #5 x + z; //Take value of x and z at the time=0, evaluate

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 86

//x + z and then wait 5 time units to assign value to y.

end

//Equivalent method with temporary variables and regular delay control

initial

begin

x = 0; z = 0;

temp_xz = x + z;

#5 y = temp_xz; //Take value of x + z at the current time and

//store it in a temporary variable. Even though x and z might change between 0 and 5,

//the value assigned to y at time 5 is unaffected.

end

Note the difference between intra-assignment delays and regular delays. Regular delays defer the execution of

the entire assignment. Intra-assignment delays compute the righthand- side expression at the current time and

defer the assignment of the computed value to the left-hand-side variable. Intra-assignment delays are like using

regular delays with a temporary variable to store the current value of a right-hand-side expression.

Zero delay control

Procedural statements in different always-initial blocks may be evaluated at the same simulation time. The order

of execution of these statements in different always-initial blocks is nondeterministic. Zero delay control is a

method to ensure that a statement is executed last, after all other statements in that simulation time are executed.

This is used to eliminate race conditions. However, if there are multiple zero delay statements, the order

between them is nondeterministic. Example 4-12 illustrates zero delay control.

Example 4-12 Zero Delay Control

initial

begin

x = 0;

y = 0;

end

initial

begin

#0 x = 1; //zero delay control

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 87

#0 y = 1;

end

In Example 4-12, four statements?x = 0, y = 0, x = 1, y = 1?are to be executed at simulation time 0. However,

since x = 1 and y = 1 have #0, they will be executed last. Thus, at the end of time 0, x will have value 1 and y

will have value 1. The order in which x = 1 and y = 1 are executed is not deterministic. The above example was

used as an illustration. However, using #0 is not a recommended practice.

4.4.2 Event-Based Timing Control

An event is the change in the value on a register or a net. Events can be utilized to trigger execution of a

statement or a block of statements. There are four types of event-based timing control: regular event control,

named event control, event OR control, and level sensitive timing control.

Regular event control

The @ symbol is used to specify an event control. Statements can be executed on changes in signal value or at a

positive or negative transition of the signal value. The keyword posedge is used for a positive transition, as

shown in Example 4-13.

Example 4-13 Regular Event Control

@(clock) q = d; //q = d is executed whenever signal clock changes value

@(posedge clock) q = d; //q = d is executed whenever signal clock does

//a positive transition (0 to 1,x or z,

// x to 1, z to 1)

@(negedge clock) q = d; //q = d is executed whenever signal clock does

//a negative transition (1 to 0,x or z,

//x to 0, z to 0)

q = @(posedge clock) d; //d is evaluated immediately and assigned

//to q at the positive edge of clock

Named event control

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 88

Verilog provides the capability to declare an event and then trigger and recognize the occurrence of that event

(see Example 4-14). The event does not hold any data. A named event is declared by the keyword event. An

event is triggered by the symbol ->. The triggering of the event is recognized by the symbol @.

Example 4-14 Named Event Control

//This is an example of a data buffer storing data after the

//last packet of data has arrived.

event received_data; //Define an event called received_data

always @(posedge clock) //check at each positive clock edge

begin

if(last_data_packet) //If this is the last data packet

->received_data; //trigger the event received_data

end

always @(received_data) //Await triggering of event received_data

//When event is triggered, store all four

//packets of received data in data buffer

//use concatenation operator { }

data_buf = {data_pkt[0], data_pkt[1], data_pkt[2],

data_pkt[3]};

Event OR Control

Sometimes a transition on any one of multiple signals or events can trigger the execution of a statement or a

block of statements. This is expressed as an OR of events or signals. The list of events or signals expressed as

an OR is also known as a sensitivity list. The keyword or is used to specify multiple triggers, as shown in

Example 4-15.

Example 4-15 Event OR Control (Sensitivity List)

//A level-sensitive latch with asynchronous reset

always @(reset or clock or d)

//Wait for reset or clock or d to

change

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 89

begin

if (reset) //if reset signal is high, set q to 0.

q = 1'b0;

else if(clock) //if clock is high, latch input

q = d;

end

Sensitivity lists can also be specified using the "," (comma) operator instead of the or operator. Example 4-16

shows how the above example can be rewritten using the comma operator. Comma operators can also be

applied to sensitivity lists that have edge-sensitive triggers.

Example 4-16 Sensitivity List with Comma Operator

//A level-sensitive latch with asynchronous reset

always @(reset, clock, d)

//Wait for reset or clock or d to

change

begin

if (reset) //if reset signal is high, set q to 0.

q = 1'b0;

else if(clock) //if clock is high, latch input

q = d;

end

//A positive edge triggered D flipflop with asynchronous falling

//reset can be modeled as shown below

always @(posedge clk, negedge reset) //Note use of comma operator

if(!reset)

q <=0;

else

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 90

q <=d;

When the number of input variables to a combination logic block are very large, sensitivity lists can become

very cumbersome to write. Moreover, if an input variable is missed from the sensitivity list, the block will not

behave like a combinational logic block. To solve this problem, Verilog HDL contains two special symbols: @*

and @(*). Both symbols exhibit identical behavior. These special symbols are sensitive to a change on any

signal that may be read by the statement group that follows this symbol

Example 4-17 shows an example of this special symbol for combinational logic sensitivity lists.

IEEE Standard Verilog Hardware Description Language document for details and restrictions on the @* and

@(*) symbols.

Example 4-17 Use of @* Operator

//Combination logic block using the or operator

//Cumbersome to write and it is easy to miss one input to the block

always @(a or b or c or d or e or f or g or h or p or m)

begin

out1 = a ? b+c : d+e;

out2 = f ? g+h : p+m;

end

//Instead of the above method, use @(*) symbol

//Alternately, the @* symbol can be used

//All input variables are automatically included in the

//sensitivity list.

always @(*)

begin

out1 = a ? b+c : d+e;

out2 = f ? g+h : p+m;

end

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 91

4.4.3 Level-Sensitive Timing Control

Event control discussed earlier waited for the change of a signal value or the triggering of an event. The symbol

@ provided edge-sensitive control. Verilog also allows level sensitive timing control, that is, the ability to wait

for a certain condition to be true before a statement or a block of statements is executed. The keyword wait is

used for level sensitive constructs.

always

wait (count_enable) #20 count = count + 1;

In the above example, the value of count_enable is monitored continuously. If count_enable is 0, the statement

is not entered. If it is logical 1, the statement count = count + 1 is executed after 20 time units. If count_enable

stays at 1, count will be incremented every 20 time units.

4.5 Conditional Statements

Conditional statements are used for making decisions based upon certain conditions. These conditions are used

to decide whether or not a statement should be executed. Keywords if and else are used for conditional

statements. There are three types of conditional statements. Usage of conditional statements is shown below.

//Type 1 conditional statement. No else statement.

//Statement executes or does not execute.

if (<expression>) true_statement ;

//Type 2 conditional statement. One else statement

//Either true_statement or false_statement is evaluated

if (<expression>) true_statement ; else false_statement ;

//Type 3 conditional statement. Nested if-else-if.

//Choice of multiple statements. Only one is executed.

if (<expression1>) true_statement1 ;

else if (<expression2>) true_statement2 ;

else if (<expression3>) true_statement3 ;

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 92

else default_statement ;

The <expression> is evaluated. If it is true (1 or a non-zero value), the true_statement is executed. However, if it

is false (zero) or ambiguous (x), the false_statement is executed. The <expression> can contain any operators.

Each true_statement or false_statement can be a single statement or a block of multiple statements. A block

must be grouped, typically by using keywords begin and end. A single statement need not be grouped.

Example 4-18 Conditional Statement Examples

//Type 1 statements

if(!lock) buffer = data;

if(enable) out = in;

//Type 2 statements

if (number_queued < MAX_Q_DEPTH)

begin

data_queue = data;

number_queued = number_queued + 1;

end

else

$display("Queue Full. Try again");

//Type 3 statements

//Execute statements based on ALU control signal.

if (alu_control == 0)

y = x + z;

else if(alu_control == 1)

y = x - z;

else if(alu_control == 2)

y = x * z;

else

$display("Invalid ALU control signal");

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 93

4.6 Multiway Branching

Conditional Statements, there were many alternatives, from which one was chosen. The nested if-else-if can

become unwieldy if there are too many alternatives. A shortcut to achieve the same result is to use the case

statement.

4.6.1 case Statement

The keywords case, endcase, and default are used in the case statement..

case (expression)

alternative1: statement1;

alternative2: statement2;

alternative3: statement3;

...

...

default: default_statement;

endcase

Each of statement1, statement2 , default_statement can be a single statement or a block of multiple statements.

A block of multiple statements must be grouped by keywords begin and end. The expression is compared to the

alternatives in the order they are written. For the first alternative that matches, the corresponding statement or

block is executed. If none of the alternatives matches, the default_statement is executed. The default_statement

is optional. Placing of multiple default statements in one case statement is not allowed. The case statements can

be nested. The following Verilog code implements the type 3 conditional statement in Example 4-18.

//Execute statements based on the ALU control signal

reg [1:0] alu_control;

...

...

case (alu_control)

2'd0 : y = x + z;

2'd1 : y = x - z;

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 94

2'd2 : y = x * z;

default : $display("Invalid ALU control signal");

endcase

The case statement can also act like a many-to-one multiplexer. To understand this, let us model the 4-to-1

multiplexer, using case statements. The I/O ports are unchanged. Notice that an 8-to-1 or 16-to-1 multiplexer

can also be easily implemented by case statements.

Example 4-19 4-to-1 Multiplexer with Case Statement

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s1, s0;

reg out;

always @(s1 or s0 or i0 or i1 or i2 or i3)

case ({s1, s0}) //Switch based on concatenation of control signals

2'd0 : out = i0;

2'd1 : out = i1;

2'd2 : out = i2;

2'd3 : out = i3;

default: $display("Invalid control signals");

endcase

endmodule

The case statement compares 0, 1, x, and z values in the expression and the alternative bit for bit. If the

expression and the alternative are of unequal bit width, they are zero filled to match the bit width of the widest

of the expression and the alternative. In Example 4- 20, we will define a 1-to-4 demultiplexer for which outputs

are completely specified, that is, definitive results are provided even for x and z values on the select signal.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 95

Example 4-20 Case Statement with x and z

module demultiplexer1_to_4 (out0, out1, out2, out3, in, s1, s0);

// Port declarations from the I/O diagram

output out0, out1, out2, out3;

reg out0, out1, out2, out3;

input in;

input s1, s0;

always @(s1 or s0 or in)

case ({s1, s0}) //Switch based on control signals

2'b00 : begin out0 = in; out1 = 1'bz; out2 = 1'bz; out3 =

1'bz; end

2'b01 : begin out0 = 1'bz; out1 = in; out2 = 1'bz; out3 =

1'bz; end

2'b10 : begin out0 = 1'bz; out1 = 1'bz; out2 = in; out3 =

1'bz; end

2'b11 : begin out0 = 1'bz; out1 = 1'bz; out2 = 1'bz; out3 =

in; end

//Account for unknown signals on select. If any select signal is x

//then outputs are x. If any select signal is z, outputs are z.

//If one is x and the other is z, x gets higher priority.

2'bx0, 2'bx1, 2'bxz, 2'bxx, 2'b0x, 2'b1x, 2'bzx :

begin

out0 = 1'bx; out1 = 1'bx; out2 = 1'bx; out3 = 1'bx;

end

2'bz0, 2'bz1, 2'bzz, 2'b0z, 2'b1z :

begin

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 96

out0 = 1'bz; out1 = 1'bz; out2 = 1'bz; out3 = 1'bz;

end

default: $display("Unspecified control signals");

endcase

endmodule

In the demultiplexer shown above, multiple input signal combinations such as 2'bz0, 2'bz1, 2,bzz, 2'b0z, and

2'b1z that cause the same block to be executed are put together with a comma (,) symbol.

4.6.2 casex, casez Keywords

There are two variations of the case statement. They are denoted by keywords, casex and casez.

• casez treats all z values in the case alternatives or the case expression as don't cares. All bit positions with z

can also represented by ? in that position.

• casex treats all x and z values in the case item or the case expression as don't cares.

The use of casex and casez allows comparison of only non-x or -z positions in the case expression and the case

alternatives. Example 4-21 illustrates the decoding of state bits in a finite state machine using a casex statement.

The use of casez is similar. Only one bit is considered to determine the next state and the other bits are ignored.

Example 4-21 casex Use

reg [3:0] encoding;

integer state;

casex (encoding) //logic value x represents a don't care bit.

4'b1xxx : next_state = 3;

4'bx1xx : next_state = 2;

4'bxx1x : next_state = 1;

4'bxxx1 : next_state = 0;

default : next_state = 0;

endcase

Thus, an input encoding = 4'b10xz would cause next_state = 3 to be executed.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 97

4.7 Loops

There are four types of looping statements in Verilog: while, for, repeat, and forever. The syntax of these loops

is very similar to the syntax of loops in the C programming language. All looping statements can appear only

inside an initial or always block. Loops may contain delay expressions.

4.7.1 While Loop

The keyword while is used to specify this loop. The while loop executes until the while expression is not true. If

the loop is entered when the while-expression is not true, the loop is not executed at all. Each expression can

contain the operators. Any logical expression can be specified with these operators. If multiple statements are to

be executed in the loop, they must be grouped typically using keywords begin and end. Example 4-22 illustrates

the use of the while loop.

Example 4-22 While Loop

//Illustration 1: Increment count from 0 to 127. Exit at count 128.

//Display the count variable.

integer count;

initial

begin

count = 0;

while (count < 128) //Execute loop till count is 127.

//exit at count 128

begin

$display("Count = %d", count);

count = count + 1;

end

end

//Illustration 2: Find the first bit with a value 1 in flag (vector

variable)

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 98

'define TRUE 1'b1';

'define FALSE 1'b0;

reg [15:0] flag;

integer i; //integer to keep count

reg continue;

initial

begin

flag = 16'b 0010_0000_0000_0000;

i = 0;

continue = 'TRUE;

148

while((i < 16) && continue) //Multiple conditions using operators.

begin

if (flag[i])

begin

$display("Encountered a TRUE bit at element number %d", i);

continue = 'FALSE;

end

i = i + 1;

end

end

4.7.2 for Loop

The keyword for is used to specify this loop. The for loop contains three parts:

• An initial condition

• A check to see if the terminating condition is true

• A procedural assignment to change value of the control variable

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 99

The counter described in Example 4-22 can be coded as a for loop (Example 4-23). The initialization condition

and the incrementing procedural assignment are included in the for loop and do not need to be specified

separately. Thus, the for loop provides a more compact loop structure than the while loop. Note, however, that

the while loop is more general-purpose than the for loop. The for loop cannot be used in place of the while loop

in all situations.

Example 4-23 For Loop

integer count;

initial

for (count=0; count < 128; count = count + 1)

$display("Count = %d", count);

for loops can also be used to initialize an array or memory, as shown below.

//Initialize array elements

'define MAX_STATES 32

integer state [0: 'MAX_STATES-1]; //Integer array state with elements

0:31

integer i;

initial

begin

for(i = 0; i < 32; i = i + 2) //initialize all even locations with 0

state[i] = 0;

for(i = 1; i < 32; i = i + 2) //initialize all odd locations with 1

state[i] = 1;

end

for loops are generally used when there is a fixed beginning and end to the loop. If the loop is simply looping on

a certain condition, it is better to use the while loop.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 100

4.7.3 Repeat Loop

The keyword repeat is used for this loop. The repeat construct executes the loop a fixed number of times. A

repeat construct cannot be used to loop on a general logical expression. A while loop is used for that purpose. A

repeat construct must contain a number, which can be a constant, a variable or a signal value. However, if the

number is a variable or signal value, it is evaluated only when the loop starts and not during the loop execution.

The counter in Example 4-22 can be expressed with the repeat loop, as shown in

Illustration 1 in Example 4-24. Illustration 2 shows how to model a data buffer that latches data at the positive

edge of clock for the next eight cycles after it receives a data start signal.

Example 4-24 Repeat Loop

//Illustration 1 : increment and display count from 0 to 127

integer count;

initial

begin

count = 0;

repeat(128)

begin

$display("Count = %d", count);

count = count + 1;

end

end

//Illustration 2 : Data buffer module example

//After it receives a data_start signal.

//Reads data for next 8 cycles.

module data_buffer(data_start, data, clock);

parameter cycles = 8;

input data_start;

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 101

input [15:0] data;

input clock;

reg [15:0] buffer [0:7];

integer i;

150

always @(posedge clock)

begin

if(data_start) //data start signal is true

begin

i = 0;

repeat(cycles) //Store data at the posedge of next 8 clock

//cycles

begin

@(posedge clock) buffer[i] = data; //waits till next

// posedge to latch data

i = i + 1;

end

end

end

endmodule

4.7.4 Forever loop

The keyword forever is used to express this loop. The loop does not contain any expression and executes

forever until the $finish task is encountered. The loop is equivalent to a while loop with an expression that

always evaluates to true, e.g., while (1). A forever loop can be exited by use of the disable statement.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 102

A forever loop is typically used in conjunction with timing control constructs. If timing control constructs are

not used, the Verilog simulator would execute this statement infinitely without advancing simulation time and

the rest of the design would never be executed. Example 4-25 explains the use of the forever statement.

Example 4-25 Forever Loop

//Example 1: Clock generation

//Use forever loop instead of always block

reg clock;

initial

begin

clock = 1'b0;

forever #10 clock = ~clock; //Clock with period of 20 units

end

//Example 2: Synchronize two register values at every positive edge of

//clock

reg clock;

reg x, y;

initial

forever @(posedge clock) x = y;

4.8 Sequential and Parallel Blocks

Block statements are used to group multiple statements to act together as one. In previous examples, we used

keywords begin and end to group multiple statements. Thus, we used sequential blocks where the statements in

the block execute one after another. In this section we discuss the block types: sequential blocks and parallel

blocks. We also discuss three special features of blocks: named blocks, disabling named blocks, and nested

blocks.

4.8.1 Block Types

There are two types of blocks: sequential blocks and parallel blocks.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 103

Sequential blocks

The keywords begin and end are used to group statements into sequential blocks.

Sequential blocks have the following characteristics:

• The statements in a sequential block are processed in the order they are specified. A statement is executed

only after its preceding statement completes execution (except for nonblocking assignments with intra-

assignment timing control).

• If delay or event control is specified, it is relative to the simulation time when the previous statement in the

block completed execution.

We have used numerous examples of sequential blocks in this book. Two more examples of sequential blocks

are given in Example 4-26. Statements in the sequential block execute in order. In Illustration 1, the final values

are x = 0, y= 1, z = 1, w = 2 at simulation time 0. In Illustration 2, the final values are the same except that the

simulation time is 35 at the end of the block.

Example 4-26 Sequential Blocks

//Illustration 1: Sequential block without delay

reg x, y;

reg [1:0] z, w;

initial

begin

x = 1'b0;

y = 1'b1;

z = {x, y};

w = {y, x};

end

//Illustration 2: Sequential blocks with delay.

reg x, y;

reg [1:0] z, w;

initial

begin

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 104

x = 1'b0; //completes at simulation time 0

#5 y = 1'b1; //completes at simulation time 5

#10 z = {x, y}; //completes at simulation time 15

#20 w = {y, x}; //completes at simulation time 35

end

Parallel blocks

Parallel blocks, specified by keywords fork and join, provide interesting simulation features. Parallel blocks

have the following characteristics:

• Statements in a parallel block are executed concurrently.

• Ordering of statements is controlled by the delay or event control assigned to each statement.

• If delay or event control is specified, it is relative to the time the block was entered.

Notice the fundamental difference between sequential and parallel blocks. All statements in a parallel block

start at the time when the block was entered. Thus, the order in which the statements are written in the block is

not important.

Let us consider the sequential block with delay in Example 4-26 and convert it to a parallel block. The

converted Verilog code is shown in Example 4-27. The result of simulation remains the same except that all

statements start in parallel at time 0. Hence, the block finishes at time 20 instead of time 35.

Example 4-27 Parallel Blocks

//Example 1: Parallel blocks with delay.

reg x, y;

reg [1:0] z, w;

initial

fork

x = 1'b0; //completes at simulation time 0

#5 y = 1'b1; //completes at simulation time 5

#10 z = {x, y}; //completes at simulation time 10

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 105

#20 w = {y, x}; //completes at simulation time 20

join

Parallel blocks provide a mechanism to execute statements in parallel. However, it is important to be careful

with parallel blocks because of implicit race conditions that might arise if two statements that affect the same

variable complete at the same time. Shown below is the parallel version of Illustration 1 from Example 4-26.

Race conditions have been deliberately introduced in this example. All statements start at simulation time 0.

The order in which the statements will execute is not known. Variables z and w will get values 1 and 2 if x =

1'b0 and y = 1'b1 execute first. Variables z and w will get values 2'bxx and 2'bxx if x = 1'b0 and y = 1'b1

execute last. Thus, the result of z and w is nondeterministic and dependent on the simulator implementation. In

simulation time, all statements in the fork-join block are executed at once. However, in reality, CPUs running

simulations can execute only one statement at a time. Different simulators execute statements in different order.

Thus, the race condition is a limitation of today's simulators, not of the fork-join block.

//Parallel blocks with deliberate race condition

reg x, y;

reg [1:0] z, w;

initial

fork

x = 1'b0;

y = 1'b1;

z = {x, y};

w = {y, x};

join

The keyword fork can be viewed as splitting a single flow into independent flows. The keyword join can be

seen as joining the independent flows back into a single flow. Independent flows operate concurrently.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 106

4.8.2 Special Features of Blocks

We discuss three special features available with block statements: nested blocks, named blocks, and disabling of

named blocks.

Nested blocks

Blocks can be nested. Sequential and parallel blocks can be mixed, as shown in Example 4-28.

Example 4-28 Nested Blocks

//Nested blocks

initial

begin

x = 1'b0;

154

fork

#5 y = 1'b1;

#10 z = {x, y};

join

#20 w = {y, x};

end

Named blocks

Blocks can be given names.

• Local variables can be declared for the named block.

• Named blocks are a part of the design hierarchy. Variables in a named block can be accessed by using

hierarchical name referencing.

• Named blocks can be disabled, i.e., their execution can be stopped.

Example 4-29 shows naming of blocks and hierarchical naming of blocks.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 107

Example 4-29 Named Blocks

//Named blocks

module top;

initial

begin: block1 //sequential block named block1

integer i; //integer i is static and local to block1

// can be accessed by hierarchical name, top.block1.i

...

...

end

initial

fork: block2 //parallel block named block2

reg i; // register i is static and local to block2

// can be accessed by hierarchical name, top.block2.i

...

...

join

Disabling named blocks

The keyword disable provides a way to terminate the execution of a named block. Disable can be used to get

out of loops, handle error conditions, or control execution of pieces of code, based on a control signal. Disabling

a block causes the execution control to be passed to the statement immediately succeeding the block. For C

programmers, this is very similar to the break statement used to exit a loop.

no
tes
4fr
ee
.in

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 108

4.9: Outcomes

After completion of the module the students are able to:

 Explain the significance of structured procedures always and initial in behavioral modeling.

 Define blocking and nonblocking procedural assignments.

 Understand delay-based timing control mechanism in behavioral modeling. Use regular delays, intra-

assignment delays, and zero delays.

 Describe event-based timing control mechanism in behavioral modeling. Use regular event control,

named event control, and event OR control.

 Use level-sensitive timing control mechanism in behavioral modeling.

 Explain conditional statements using if and else.

 Describe multiway branching, using case, casex, and casez statements.

 Understand looping statements such as while, for, repeat, and forever.

 Define sequential and parallel blocks.

4.10: Recommended Questions
1. Describe the following statements with an example: initial and always

2. What are blocking and non-blocking assignment statements? Explain with examples.

3. With syntax explain conditional, branching and loop statements available in Verilog HDL behavioural

description.

4. Describe sequential and parallel blocks of Verilog HDL.

5. Write Verilog HDL program of 4:1 mux using CASE statement.

6. Write Verilog HDL program of 4:1 mux using If-else statement.

7. Write Verilog HDL program of 4-bit synchronous up counter.

8. Write Verilog HDL program of 4-bit asynchronous down counter.

9. Write Verilog HDL program to simulate traffic signal controller

no
tes
4fr
ee
.in

Filter Design Techniques
• Filter

– Filter is a system that passes certain
frequency components and totally
rejects all others

• Stages of the design filter
– Specification of the desired properties

of the system
– Approximation of the specification using

a causal discrete-time system
– Realization of the system

no
tes

4fr
ee

.in

Review of discrete-
time systems

Frequency response :
• periodic : period =
• for a real impulse response h[k]

Magnitude response is even function
Phase response is odd function

• example :

)(ωjeH

)(ωjeH∠

-4 -2 0 2 4
0

0.5

1

-4 -2 0 2 4
-5

0

5

Nyquist frequency
,...1,1,1,1,1..., −−=kje π

π

π2

π−
no

tes
4fr

ee
.in

Review of discrete-
time systems

`Popular’ frequency responses for filter design :
low-pass (LP) high-pass (HP) band-pass (BP)

band-stop multi-band …

π π

π π

π

π
no

tes
4fr

ee
.in

Review of discrete-
time systems

“FIR filters” (finite impulse response):

• “Moving average filters” (MA filters)
• N poles at the origin z=0 (hence guaranteed stability)
• N zeros (zeros of B(z)), “all zero” filters
• corresponds to difference equation

• impulse response

N
NN zbzbb

z
zBzH −− +++== ...)()(1

10

][...]1[][][10 Nkubkubkubky N −++−+=

,...0]1[,][,...,]1[,]0[10 =+=== NhbNhbhbh N

no
tes

4fr
ee

.in

Linear Phase FIR Filters
Non-causal zero-phase filters :

example: symmetric impulse response
h[-L],….h[-1],h[0],h[1],...,h[L]
h[k]=h[-k], k=1..L

frequency response is

- i.e. real-valued (=zero-phase) transfer function
- causal implementation by introducing (group) delay

∑∑
=

+

−=

− ===
L

k
k

L

Lk

kjj kaekheH
0

.)cos(...][)(ωωω

k
L

no
tes

4fr
ee

.in

Linear Phase FIR Filters
• Causal linear-phase filters = non-causal zero-phase +

delay
example: symmetric impulse response & N even

h[0],h[1],….,h[N]
N=2L (even)
h[k]=h[N-k], k=0..L

frequency response is

= i.e. causal implementation of zero-phase filter, by
introducing (group) delay

∑∑
=

−

=

− ===
L

k
k

Lj
N

k

kjj kaeekheH
00

.)cos(...][)(ωωωω

k
N

Lj

ez

L ez j

ω
ω

−

=

− =

0

no
tes

4fr
ee

.in

Linear Phase FIR Filters
Type-1 Type-2 Type-3 Type-4
N=2L=even N=2L+1=odd N=2L=even N=2L+1=odd
symmetric symmetric anti-symmetric anti-symmetric
h[k]=h[N-k] h[k]=h[N-k] h[k]=-h[N-k] h[k]=-h[N-k]

zero at zero at zero at

LP/HP/BP LP/BP HP

∑
=

−
L

k
k

Nj kae
0

2/)cos(ωω ∑
=

−
L

k
k

Nj kae
0

2/)cos()
2

cos(ωωω

∑
=

−
L

k
k

Nj kaej
0

2/)cos()
2

sin(. ωωω∑
−

=

−
1

0

2/)cos()sin(
L

k
k

Nj kaje ωωω

πω = πω ,0= 0=ω

no
tes

4fr
ee

.in

Linear Phase FIR Filters
• efficient direct-form realization.

example:

• PS: IIR filters can NEVER have linear-phase property !

bo

y[k]

u[k]
Δ Δ Δ Δ

+

Δ Δ Δ Δ

+ ++ +

++

x x
b4

x
b3

x
b2

x
b1

++

no
tes

4fr
ee

.in

Filter Specification

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

Passband Ripple

Stopband Ripple

Passband Cutoff -> <- Stopband Cutoff

Ex: Low-pass

Sδ

PωP1 δ−
Sω

no
tes

4fr
ee

.in

Filter Design Problem
• Design of filters is a problem of

function approximation

• For FIR filter, it implies polynomial
approximation

• For IIR filter, it implies
approximation by a rational function
of z

no
tes

4fr
ee

.in

Filter Design by Optimization
(I) Weighted Least Squares Design :
• select one of the basic forms that yield linear phase

e.g. Type-1

• specify desired frequency response (LP,HP,BP,…)

• optimization criterion is

where is a weighting function

)()cos()(2/

0

2/ ωω ωωω AekaeeH Nj
L

k
k

Njj −

=

− == ∑

)()(2/ ωω ω
d

Nj
d AeH −=

4444 34444 21
),...,(

2

,...,

2

,...,

0

00

)()()(min)()()(min

L

LL

aaF

daad
j

aa
dAAWdHeHW ωωωωωωω

π

π

ω
π

π

−=− ∫∫
+

−

+

−

0)(≥ωW

no
tes

4fr
ee

.in

Filter Design by Optimization
• …this is equivalent to

=standard ‘Quadratic Optimization’ problem

[]

[]
...

)cos(...)cos(1)(

)()()(

)()()(

...

}2{min

0

0

10

),...,(0

=
=

=

=

=

+−

∫

∫

μ
ωωω

ωωωω

ωωωω

μ

π

π

Lc

dcAWp

dccWQ

aaax

pxQxx

T

d

T

L
T

aaF

TT

x

L 444 8444 76

pQxOPT
1−=

no
tes

4fr
ee

.in

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

Passband Ripple

Stopband Ripple

Passband Cutoff -> <- Stopband Cutoff

Filter Design by
Optimization

• Example: Low-pass design

optimization function is

i.e.

...

band-stop

)(.

band-pass

1)(),...,(2

0

2
0 =+−= ∫∫

+

443442144 344 21

ωωγωω
π

ω

ω

dAdAaaF
S

P

L

band)-(stop ,0)(

band)-(pass ,1)(

πωωω

ωωω

≤≤=

<=

Sd

Pd

A

A

...)(=ωW
no

tes
4fr

ee
.in

Filter Design by Optimization
• a simpler problem is obtained by replacing the F(..) by…

where the wi’s are a set of n sample frequencies
The quadratic optimization problem is then equivalent to a least-squares
problem

+++ : simple
--- : unpredictable behavior in between sample frequencies.

∑∑
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=−=

i
id

L

i
T

i
i

idiiL A
a

a
cWAAWaaF

2
0

2
0)(:)()()()()(),...,(ωωωωωω

{ { {}2{minmin
......)()()(

2

2

∑
+

∑
−

∑
=−

iii
i

T
ii

bbbAxxAAxbxA TTT

ccW

TT

xx
ωωω

bAAAx TT
LS

1)(−= Compare to p.12
no

tes
4fr

ee
.in

Filter Design by Optimization
• …then all this is often supplemented with

additional constraints

Example: Low-pass (LP) design (continued)
pass-band ripple control :

stop-band ripple control :

ripple) band-pass is (,1)(PP δωωδω PA <≤−

ripple) band-stop is (,)(SS δπωωδω ≤≤≤ SA
no

tes
4fr

ee
.in

Filter Design by Optimization
Example: Low-pass (LP) design (continued)

a realistic way to implement these constraints, is to impose
the constraints (only) on a set of sample frequencies

in the pass-band
and in the stop-band

The resulting optimization problem is :
minimize :

subject to (pass-band constraints)
(stop-band constraints)

= `Quadratic Linear Programming’ problem

PmPP ωωω ,...,, 21

SnSS ωωω ,...,, 21

[]L
T

L

aaax

aaF

...

...),...,(

10

0

=

=

SS

PP

bxA
bxA

≤
≤

no
tes

4fr
ee

.in

Filter Design by Optimization
(II) `Minimax’ Design :
• select one of the basic forms that yield linear phase

e.g. Type-1

• specify desired frequency response (LP,HP,BP,…)

• optimization criterion is

where is a weighting function

)()cos(][)(2/

0

2/ ωω ωωω AekkaeeH Nj
L

k

Njj −

=

− == ∑

)()(2/ ωω ω
d

Nj
d AeH −=

)()()(maxmin)()()(maxmin
0,...,0,..., 00

ωωωωω
πω

ω

πω daad
j

aa
AAWHeHW

LL

−=−
≤≤≤≤

0)(≥ωW
no

tes
4fr

ee
.in

Filter Design by Optimization
• Conclusion:

(I) weighted least squares design
(II) minimax design
provide general `framework’, procedures to
translate filter design problems into standard
optimization problems

• In practice (and in textbooks):
emphasis on specific (ad-hoc) procedures :
- filter design based on ‘windows’
- equi-ripple design

no
tes

4fr
ee

.in

Filter Design using ‘Windows’
Example : Low-pass filter design
• ideal low-pass filter is

• hence ideal time-domain impulse response is

• truncate hd[k] to N+1 samples :

• add (group) delay to turn into causal filter

⎩
⎨
⎧

<<
<

=
πωω

ωω
ω

 0
 1

)(
C

C
dH

k
kdeeHkh

c

ckj
dd

j

ω
ωαω

π
ω

π

π

ω)sin(...)(
2
1][. === ∫

+

−

⎩
⎨
⎧ <<−

=
otherwise 0

2/2/][
][

NkNkh
kh d

π

Non-causal and infinitely long

no
tes

4fr
ee

.in

Filter Design using ‘Windows’
Example : Low-pass filter design (continued)
• note : it can be shown that time-domain truncation corresponds to

solving a weighted least-squares optimization problem with the
given Hd, and weighting function

• truncation corresponds to applying a ‘rectangular window’ :

• +++: simple procedure (also for HP,BP,…)
• --- : truncation in the time-domain results in ‘Gibbs effect’ in the

frequency domain, i.e. large ripple in pass-band and stop-band,
which cannot be reduced by increasing the filter order N.

][][][kwkhkh d=

⎩
⎨
⎧

=
<<−

otherwise 0
 1

][
2/2/ NkN

kw

1)(=ωW

no
tes

4fr
ee

.in

Filter Design using ‘Windows’
Remedy : apply windows other than rectangular window:
• time-domain multiplication with a window function w[k]

corresponds to frequency domain convolution with W(z) :

• candidate windows : Han, Hamming, Blackman, Kaiser,…. (see
textbooks)

• window choice/design = trade-off between side-lobe levels
(define peak pass-/stop-band ripple) and width main-lobe
(defines transition bandwidth)

][][][kwkhkh d=

)()()(zWzHzH d ∗=

no
tes

4fr
ee

.in

Windowing Effect

Gibbs phenomenon

no
tes

4fr
ee

.in

Windowing

no
tes

4fr
ee

.in

Equiripple Design
• Starting point is minimax criterion, e.g.

• Based on theory of Chebyshev approximation and the ‘alternation
theorem’, which (roughly) states that the optimal ai’s are such that
the ‘max’ (maximum weighted approximation error) is obtained at
L+2 extremal frequencies…

…that hence will exhibit the same maximum ripple (‘equiripple’)
• Iterative procedure for computing extremal frequencies, etc.

(Remez exchange algorithm, Parks-McClellan algorithm)
• Very flexible, etc., available in many software packages
• Details omitted here (see textbooks)

)(maxmin)()()(maxmin
0,...,0,..., 00

ωωωω
πωπω

EAAW
LL aadaa ≤≤≤≤

=−

2,..,1for)()(max
0

+==
≤≤

LiEE iωω
πω

no
tes

4fr
ee

.in

Software
• FIR Filter design abundantly available in

commercial software
• Matlab:

b=fir1(n,Wn,type,window), windowed linear-phase FIR design,
n is filter order, Wn defines band-edges, type is
`high’,`stop’,…

b=fir2(n,f,m,window), windowed FIR design based on inverse
Fourier transform with frequency points f and
corresponding magnitude response m

b=remez(n,f,m), equiripple linear-phase FIR design with
Parks-McClellan (Remez exchange) algorithm

no
tes

4fr
ee

.in

