Discrete Fourier Transform (DFT)

DFT transforms the time domain signal samples to the
frequency domain components.

A o A
o N s Signal
E E%E E Spectrum
Q | < Q
£ £
< <
> >
Frequency

Time

DFT is often used to do frequency analysis of a time domain signal.

Four Types of Fourier Transform

Tvpe of Transform

Example S1gnal

Fourier Transform
signals that ave contiriows and qperiodic

Fowrier Series
signals that ave eomhiriows and peviadic

Discrete Time Foutier Transform
signals that ave diserete and aperiodic

Diszctete F ourier T ratisform
signals that ave diserete and periode

DFT

DFT: Graphical Example

T T"l ’TT T TTT\ 1000 Hz sinusoid with
. o % $ j 32 samples at 8000 Hz

- “?\ L i ”‘ii / .
'y [1’| samplingrate.
! o d

-
8) T o
L —
= ——
-
= S
r‘g.—
= —
%

_5 1 s\ 1
0 10 15 Qﬁﬁ 25 30 ,
Sample nqu@ Sampling rate
ﬁ T T T T T T T
8000 samples = 1 second
£
= ¢ 1| 32 samples = 32/8000 sec
8 = 4 millisecond
R -
N
=
ob—a—ad— oA o oo oo o
0 500 1000 1500 2000 2500 3000 3500 4000 F req uen Cy

F (Hz)
requency (Rz 1 second = 1000 CyC|eS

32/8000 sec =
(1000*32/8000=) 4 cycles

3

DFT Coefficients of Periodic Signals

x(n) x(N+1)=x(1)

Periodic ~L . | e | T
Digital y |
Signal . & W
o} wtl |11ty
N
NT

x(N) = x(0)

N-1

l Frkon
Equation of DFT coefficients: ¢ =+ ”Z_;l(ﬂ)e"fT, — 00 < k < o0

DFT Coefficients of Periodic Signals

Fourier series coefficient c, is periodic of N

1 e 1 ¥ ,;
LN — 2mwkn 2arH
CktN = E x(n)e™ =N x(n)e 7N e~
n=0 n=0
)

Q)

Since e /*™ = cos (2mn) — j sin(%abh) = 1, |f‘> CltN = Cf-
(\O

DC component kfy=0xf;=0 Hz

, | 1st harmonic kig= 1Krf.|]=f|:| Hz 50 Py
Dther. harmonics ... | / P Other harmonics ...
Amplitude
spectrum of the
periodic digital
signal

2nd harmonic kfy=2xf;=2f; Hz

Example 1

The periodic signal:| x(7) = sin (27¢)| issampled at f, =4 Hz

a. Compute the spectrum ¢; using the samples in one period.

b. Plot the two-sided amplitude spectrum |¢;| over the range from —2 to 2 Hz.

RN
N

. <
Solution: &
&

O
a. We match X(t)=sin(22t) with X?t) =sin(2t) and get f=1 Hz.

>

Therefore the signal has 1 cycle or 1 period in 1 second.

Sampling rate f, = 4 Hz |:> 1 second has 4 samples.

/ Fundamental frequency

Hence, there are 4 samples in 1 period for this particular signal.
T =1/f, =025 p2meledsignal x(n) = x(nT) = sin 2mnT) = sin (0.57n)

6

Example 1 - contd. (1)

x(0) = 0; x(1) = 1; x(2) = 0; and x(3) = —1

x(n)

1

x(1)

x(3) J {

x(0) |/
b. o °
5
| M-l 0\0" <
Ck =57 Hz_ﬂ:x(n)e'_f*f — 00 < k <‘00
1 & |
¢ =7 Zﬂ:x(n) = 7 (X(0) + x(1) + x(2) + x(3))
H=
1 3
‘173 ”Z_D: 4
1

>
N=4

1
=70+140-1)=0

x(me PmINE = (x(ﬂ) + x(De™2 + x(2)e ™ + x(3)e—f3ffr~)

=7 (¥(0) —jx(1) = x(2) +jx(3) = 0 — j(1) = 0 +j(— 1)) = —=/0.5.

Example 1 - contd. (2)
1 & oo] & .
=7 ZJ«:(H)E‘*"”‘”H =0, and ¢; = 1 Zx(k)e_f”ﬂ”f‘* — j0.5.
k=0 n=0

Using periodicity, 1t fDllDW%QF}%[
W

% L
c_1 = ¢3% j0.5, and ¢_> = ¢ = 0.

|"3k|

0.2 0.2 U.o U.o 0.5 0.9

l 2 4
' fHz
1

On the Way to DFT Formulas

x(t) This portion of the signal is used for
Ao DFT and spectrum calculation

Y — v/
)

To=NT I
.
x(N+1)=x(1) b‘§

Imagine periodicity of

sl \ o

. l x(n) X(k)= Ney Take first N samples
13,1 n=0,1,--N—1 k=0,1,-N~1 (index 0 to N -1) as
H { — | DFT —— the input to DFT.
.~ Xx(N=1) t=nT f= kAf
L’ »n Af=f,/ N

DFT Formulas

N-I
X(k) =) x(n)e /2N
n={

N-1
= x(mWy, for k =0gl1,..., N — L
n=0 bs‘\@g
)

xQ
(\O

X(k) = x(0) Wfﬂ + x(1) W]f,' +x(2) W}E‘:} 4 4 x(N - I)Wﬂﬁ_”

f AT 2 N 2
Where, Wy = ¢ 7/N = cos (Fﬂ) —j s1n(£>.

Inverse DFT:

1 = SR B
) =— S X(kel2™Ne= _N"X(lw* forn=01,..., N —1
x(n) ng_ﬂj()e- N;uh n

MATLAB Functions

FFT: Fast Fourier Transform

MATLAB FFT functions.

X = fit(x) YoCalculate DFT coeflicients
x = ifft(X) & % Inverse DFT
X = Input vector &

X = DFT coefficient vector <©

11

Example 2

Given a sequence x(n) for 0 =n =3, where x(0) = 1, x(1) = 2, x(2) = 3, and x(3) = 4,

a. Evaluate its DFT X(k).

Solution: 3

— — _-% .(\] ko
N=4and Wy =e %@’ X(k) = Zx(n) Win = Zx(n)g—ﬁ
n=0
XS

=0

RS
Thus, for k =0
3

X(0) =Y x(me”” = x(0)e 7 + x(1)e” + x(2)e 7 + x(3)e
n=0
= x(0) + x(1) + x(2) + x(3)
=1+2+3+4=10
3
X(1) = 3" x(me#F = x(0)e 7 + x(1)e 7 + x(2)e 7 + x(3)e %
n=0
= x(0) —jx(1) = x(2) +jx(3)
=1-2-3+j4=-2+2

12

Example 2 - contd.

3
X(2) = xme?™ = x0)e” + x(1)e 7 + x(2)e 7 + x(3)e P7
n=0
= x(0) — x(1) + x(2) — x(3)
=1-24+3-4=-2
.S
,\@

X(3) = ZA(}‘I]ﬁ_—I— — *(ng’% + x()e % + x(2)e ™ + x(3)e %

= x(0) +jx(1) — x(2) — jx(3)
=14+/2-3—-j4=-2—j2

Using MATLAB,

> X =1{1t([1 2 3 4])
X =10.0000 —2.0000+ 2.00000 —2.0000 —2.0000 — 2.00001

13

Example 3

Inverse DFT of the previous example.

- 1 3 ,] 3 i
N=dand W' =ef ———> x(0=7> XOW;" =23 X (ke
k=0 "

o
X(0) = Z X(k)e! = X(ﬂ)ef&w X(1)e® + X(2)e” + X(3)e’)
(\O

:E(IU+(—2+}‘2)—2+(—2—.f2))=1

3
x(1) = ZX(L)EJ— (X([})E"rﬂ + X(ef + X(2)e/™ + X(3e ,.r—)
=()
(X(0) +jX(1) — X(2) - jX(3))

(10+j(=2+j2) —(-2) —j(-2-,2) =2

-P-I—-h-|-— .r:.|

14

Example 3 - contd.

3
X2 = Z X()eH™ = L (X + X(Del™ + XQeR" + X(3jel™)
=0
1
F(X(0) ~ X(1) + X - X(3)
——(10—(—2+12)+(x&"&)—(— —j2)) =3
(\O\Q

x(3) = Z X(k)e'E (X(U)e-’ﬂ + X()eF + X(2)e™ + X(3)e!)

— E(X(U) —JX(1) — X(2) + jX(3))
1
:E{m — (=242 (=2 +j(-2—-j2) =4

Using MATLAB,
> x =1fft(10 —2+2j -2 —2-2j])
X =1 2 3 4.

15

Relationship Between Frequency Bin &

and Its Associated Frequency in Hz

W,

J=N

(Hz)

x Q‘
@Q>
&

Y fe
Frequency step or frequency resolution; g8 1 — 2~ (Hz)
N

Example 4

In the previous example, if the sampling rate is 10 Hz,

a. Determine the sampling period, time index, and sampling time instant for
a digital sample x(3) in time domain.

b. Determine the frequency resolution, frequency bin number, and mapped

frequency for each of the DFT coefficients X(1) and X(3) in frequency
domain.

16

Example 4 - contd.

Sampling period: T =1/f; = 1/10 = 0.1 second

For x(3), time index is n = 3, and sampling time instantis = T = 3-0.1 = 0.3 second.

Af
oS |

b,§®
Frequency resolution: Af = £§Q@ = 2.5 Hz.
TN 4 k
Frequency bin number for X(1) isk =1, k. 1% 10
and its corresponding frequency is TN T T4 T 2o Hz.
Similarly, for X(3) is k = 3, and its P kfs 3x10 Sy

corresponding frequency is ' N 4

17

Amplitude and Power Spectrum

Since each calculated DFT coefficient is a complex number, it is not convenient
to plot it versus its frequency index

Amplitude Spectrum: N

|X(A)| o \7 (Real X (k)])*+(Imag X (K)))’.
k —U, 1,2,...,N—1.

To find one-sided amplitude spectrum, we double the amplitude.

k

- +1X(0), k=0
ZIX(k)|, k=1,...,N/2

18

Amplitude and Power Spectrum -contd.

Power Spectrum:

] 1 7 2
= = { (Real X ()] + (Imag [X (k)" },

k=0,1,2,...,N—1l.¢

Q) .
,\&6
>

P = — | X (k)=

<
For, one-sided power spect&l\m:

- LIXO) k=0
ZIX(k)] k=0,1,..., N/2

Phase Spectrum:

.y (Imag[X(k)|
¢ =1an (Real[)((k)]

),k:U, 1,2,..., N—-1

Example 5

Assuming that f; = 100 Hz,

a. Compute the amplitude spectrum, phase spectrum, and power spectrum.

x(n)
4
. 4 -+ .
Solution:
& ST 2 2
& 2+
X(0)= 10 By 1 !
X(1) = 2+ 2 & I
| | | |
X(2)= -2 See Example 2. o 1 > 3 a4 s
X(3)=-2-j2.

Fork=0,f=k-f/N=0x100/4 = 0Hz,

Imang(U)l) o
Real([X (0)]

3

1

Ao :E|X(U}| = 2.5, ¢p = tan™" (
1)

Py = 7z|X(0)]"= 6.25.

20

Example 5 - contd. (1)

Fork=1,f=1x100/4 = 25Hz,

— I . o —1
Ay = 7|X(D] = 0.7071, ¢; = tan (Rr—:al[)((l)]

P, = 4i,,|X(1)|3: 0.5000.

&

Imﬂg[X(l)l) 3

®0

1J®
Fork =2, f = 2 x 100/4 = 50 Hz. &
@)
<
Ay = 1 1X(2) = 0.5, ¢, = tan"! Imag X)) _ 190,
4 : Real X (2)]
!)
Py = 5 |X(2)*= 0.2500.

Similarly, for k = 3, f =3 x 100/4 = 75 Hz,

Imag X (3)
Real X' (3)])

1
Ay = 2|X(3)| = 0.7071, @5 = tan ! (

1)
P3 = 5| X(3)[*= 0.5000.

1357,

21

Example 5 - contd. (2)

\Am

4 1
¢ 25
2T 0.7071
G.???'I 0.8 T
- k
0 1 2 3
| | | I f(Hz)
0 25 50 75

plitude Spectrum /

-

~

B -
*6.25
4 1
05 o5 0.5
P o T
0 1 2 3
L f(HD
0 25 50 Fis)

\ Power Spectrum

-

1

2000 +

1000 +

—

m%@gb
(%)
Q@

T

po

135¢

|

~

180°

N

Sooo -

J

1

1 l k
2 l
—1350

k Phase Spectrum /

41
s 2D
ol 14141
1
I
0 1 2
Pt f (Hz)
0 29 20
\@e sided Amplitude Spectrum/

22

Example 6

Consider a digital sequence sampled at the rate of 10 kHz. If we use a size of
1,024 data points and apply the 1,024-point DFT to compute the spectrum,

a. Determine the frequency resolution.

b. Determine the highest frequency in the spectrum.
\
bi\KQ

\0
Qo

a. Af =& =100 _ 9 776 Hz.

Solution:

b. The hlghES[frequency is the folding frequency, given by

fma_!: - Af — E

= 512-9.776 = 5000 Hz

23

Zero Padding for FFT

FFT: Fast Fourier Transform.

g A fast version of DFT; It requires signal length to be power of 2.

5
g sfmm T fos[go o]
o i T A @ o |
Therefore, we] o o R e e B |
d d = ’L 0 : L s\@ : 3 1 - : o
need to pad zero c-2r—-—-8-A-d—o - Z oL Tlo0doo
O
at the end of the 0 58 10 g o 50 100
] Numbefof samples Frequency (Hz)
signal. o 5
o =
= 2 - 4 1| 0O . I____________
@ | | | 0.5
SN I AC JOUUS U0 S I A
G il I L] GGO(} 4] !
. (=)} L L B
However, it does = o170 Lo =T/ 3 DLT | o T
T 2p-—-CO—d zefopadding) = ¢ P20dho@? | |
not add any new o g 5 10 5 £ %0 50 100
information. . Number of samples £ Frequency (Hz)
o =
R e et & - N S — S—
S S A |
o O[Oty pEsEEEs.n o | o
8 2} O ___|zed padding £ i %; E | ﬂ{\ |§§ ““:i
@ : ' o~
a0 10 20 30 E o 50 100

Number of samples Frequency (Hz)

Example 7

Consider a digital signal has sampling rate = 10 kHz. For amplitude spectrum we

need frequency resolution of less than 0.5 Hz. For FFT how many data points are
needed?

Solution: <
Af =0.5Hz &
f. 10000 F
<
N =2
N=37= — 20000

For FFT, we need N to be power of 2.

214 =16384 < 20000 And 215=32768 > 20000

Recalculated frequency resolution,

.Sy 10000
ﬂ — — =
/ N 32768.

= (.31 Hz.

25

MATLAB Example -
x(n)=2- sm(Sl}l}pf

S

Use the MATLAB DFT to compute the signal spectrum with the
frequency resolution to be equal to or less than 8 Hz.

&
®
N = j—qﬁ 5000 _ — 1000
&

% Generate the sine wave sequence

fs = 8000; $Sampling rate
N=1000; % Number of data points
¥x=2%sin (2000* pi*[0: 1:N—1]/fs);

figure(l), plot(x):

xf = abs(fft(x))/N; %Compute the amplitude spectrum

P—=xf¥*xf; tCompute the power spectrum

f=[0:1:N—-1]*fs/N; tMap the frequency bin to the frequency (Hz)

26

Amplitude spectrum (DFT)

MATLAB Example - contd. (1)

subplot(2,1,1); plot (f,xf) ;grid
xlabel ('Frequency (Hz)') ; ylabel (
subplot (2,1, 2) ;plot (£,P) ;grid

xlabel ('Frequency (Hz)') ; ylabel (

‘Amplitude spectrum (DFT)');

'Power spectrum (DFT)');

I I I I I
I | | | | L
. 4\
e
I
I U SN S S I V-, A SR
| | | &
| | | |
1 | | |
I | | |
) S | | ¢
1000 2000 3000 4000 2000 6000 7000 8000
Frequency (Hz) 1 | | | | |
[| | | | |
o 08r——-—r-———+-——-—--——— e - — g
| | | | |
S 06f———f-——
B I I I I I
2 04f——fom
2 | | | | |
S o S
a | | | | |
ﬂ 1 1 1 1 1
0 1000 2000 3000 4000 2000 6000 7000
Frequency (Hz)

8000

27

MATLAB Example - contd. (2)

% Convert it to one-sided spectrum

xfF(2:N) = 2*xf (2:N) ;

% Get the single-sided spectrum

P=xf*xf; % Calculate the power spectrum

f=[0:1:N/2]*fs/N &

Frequencies up to the folding frequency

subplot(2,1,1); plot(f,=xf (1: TJ;"E +1));grid
xlabel ('Frequency (Hz)') ; yla}%ﬁl (‘Amplitude spectrum (DFT)');

subplot (2,1, 2) ;plot (£, P{Ig,@?,’EJrl);grid

xlabel ('Frequency (Hz)') ; ylabel ("Power spectrum (DFT)');

15— b

Amplitude spectrum (DFT)

e e e e i el el St
| | | | | |
[[[[[[
| | | | | |
] e I N
| | | | | |
. Y, G : ' : :
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

28

MATLAB Example - contd. (3)

= | |
L | I N
S B
£ | | | | | I
S | | | | | i
E ol b
a2 I I I I I |
o | | | | | |
% T 1 ! T T 1
& | S
ﬂ 1 1 1 G 1 1 1
0 500 1000 1500 2@@0 2500 3000 3500 4000
Fl}\@ﬁency (Hz)
(______________]
% Zero padding to the length of 1024 »
x =[x, zeros(1,24)];
N =length(x);
xf =abs (fft (%)) /N; $Compute the amplitude spectrumwith zero padding
P=xf.*xf; tCompute the power spectrum
f=[0:1:N—-1])*fs/N; $tMap frequency bin to frequency (Hz)

subplot(2,1,1); plot (f,xf);grid

xlabel ('Frequency (Hz)') ; yvlabel (‘Amplitude spectrum (FFT)");
subplot(2,1,2);plot(f,P) ;grid

xlabel (‘Frequency (Hz)') ; vlabel ('Power spectrum (FFT)');

29

Effect of Window Size

When applying DFT, we assume the following:

1. Sampled data are periodic to themselves (repeat).
-

N
2. Sampled data are continuous@&é”e’themselves and band limited to
the folding frequency. ¥

it

1 Hz sinusoid,

with 32 = zal
samples o %J;‘uﬂ 1

—1 ! yJ ! LY
0 5 10 20 25 30 35

Window size: N =16 (multiple of waveform cycles)

30

Effect of Window Size -contd. (1)

If the window size is not multiple of waveform cycles:

Discontinuous

'\._‘l 1
0 5 10 15 20 25 30 35 40
Window size: N =18 (not multiple of waveform cycles)

Effect of Window Sizi -com‘ci . (2)

2- cycles Mirror Image
J o : o P.roduces
-pgp-Ld S et SRR SRR e - single
[: | frequency
o S R S
’ et e L
10 5 1 15
Window size: N =16 Window size: N =16
l nB ke P ' I '
SIS SR S— - o | o Produces many
_ S T L A e e s 171 harmonics as well.
= I 1 _ _ _ _ | - | 1 |
= T < | L \
\ / ! \ / 0.2 ’4".;:_:."1' _______ _:_:i_\
0.5 f----m-- g i o Lo < | | >¢Spectral
» ', | ! 0 2L | T P20009099 Leakage
A o
0 5 10 15 0 5 10 15
Window size: N =18 Window size: N =18

The bigger the
discontinuity, the more
the leakage 2

Reducing Leakage Using Window

To reduce the effect of spectral leakage, a window function can be used
whose amplitude tapers smoothly and graduallydoward zero at both ends>

-

’
- ’
1 I 1 J/ "E":\. 'gﬁe G_ E I I 1 /
‘c : : ,f”#‘! @b q : 1 1 //
= ' L= < T ’
= S <’)\, I 1)/
% 0.5 booeeo AN o LYl te I 14
o A”’ 1 1 1 ’
é T 1 l;:i \O-.,_‘_h ! l(//
o /ﬁ\ I I q;' ¢y
0 2 4 5] 8 10 12 14 16

Xu(n) = x(m)w(n), forn=0,1,..., N — 1.

Window function, w(n)
Data sequence, x(n)
Obtained windowed sequence, x,(n)

33

Example 8

Given,

x(2) = 1 and w(2) = 0.2265:

N~ 1 i
...... S S . -
| | W\ "____
....... N O O SR o A A
I I I
I ¥ I
I I

— A 7
...... e T e e e [B B
A VA -
o e o
e L e e
% I " I I
&— ® m &—
w1 ! s
...... e “ I hnl - EEEE
P i P
—= | p— —
1 5 | 1 1 %
....... Iuﬁ iﬂj| © -----Lm|\w.
— 9 G———] ﬂ@
I I I
...... RS I IS PN N S
o i
i i i
£ & &
| | \ [
_m|m-.®.mm- (YR Sp— .m-£| o ----Ju.m
e a— U o &
- 1 %0 “ \ﬁl
g oo 8o &
™ = ™ p Ty = ™ o ™
_ o
(u)x (UM mopuipp (U)amx pamopuip
H-J.
WO
= s
oM
= <+
. v -
= W -
I d ___
— .
=
= — 2
= S =
= = o =
= . N — @
- 72y x o v x
— — j— < = —
s = X T =
U 1
T s 8 N) <
o © . =
I S & =) |
— k il = ~—
o 0w F| A D
" &) xu

Time index n

34

Different Types of Windows

4 N
Rectangular Window (no window): wg(n) =1 0=n=N — |
\ J

Triangular Window: }%@fﬁ)zl_lzﬂ—NHIj 0<n=N _1

xQ N -1
(\O
4 N
. . 29N
Hamming Window: Wim(n) = 0.54 — D.dﬁcas(N — 1), 0=n=N —1
29N
Hanning Window: Wip(n) = 0.5 — ﬂ.ﬁCDS(N — l), O=n=N -1

35

Different Types of Windows -contd.

Window size of 20 samples

“ “ “ DO
L A A
| | L
||||+||ILI|IE|.|
“ Q“D _ “
| t t
ﬁ.J“G i i i
N S
L) | | I |
e
| _M-.H 1 t
il C “
| L T
IR R e
N B B Car !
- @ W = o ©°
= = =]
MO PUIM JB|EUE L |
N
T T %
S N N SN
T I I i %0,
VA T T T T A\
- _ " "
P " “ "
o
vw | | “ “
S I N N
S _ “ _
— —
WM “ “ | “
V | | 1 |
T | | I |
* 1 1 1 1
S S S S—
o I | 1 |
S ————
- ® © ¥ o O
= = = =

mopum JejnBuejoey

20

15

10

12 20

10

R

IRy -

_ _ G e e
---J-lmvlmL_|"|

|3 _ _
L& i i i
T—————
o

| G————
-I-ﬂ-- = MHD "

| | | |

| | I

L e
- @ © = o o

= = = =

mopuim Buiuuey

i I _ I

I Y a

| | | __r.w
g T

e e
e
S S —
T “ “ “
e —
R e e

" | O]

I I (o]

T T T

A N B
- ® © 9 N O

= = = =

mopuim BuiweH

20

15

10

15 20

10

36

Example 9

Problem:

Considering the sequence x(0) = 1, x(1) = 2, x(2) = 3, and x(3) = 4, and given
fi =100Hz, T = 0.01 seconds, compute the amplitude spectrum, phase spec-
trum, and power spectrum

Using the Hﬂmmin§ window function.
\@&
>

xQ
Since N = 4, Hamming whdow function can be found as:

Solution:

27 % 0
Win(0) = 0.54 — U.4ﬁms(;T x 1) —0.08

2 x 1
Wim(1) = 0.54 — U.46cas(I_}{ ;) ~0.77.

Similarly, wiym(2) = 0.77, wpm(3) = 0.08.

37

Example 9 - contd. (1)

Windowed sequence:

x,(0) = x(0) x wy,,(0) = 1 x 0.08 = 0.08
Xoo(1) = x(1) X wy(1) =2 x 0.77 = 1.54
xX(2) = x(2) X Wim(2) 3 x 0.77 =231
1, (0) = x(3) x w;,,,,(%w% 4% 0.08 =0.32.

%
o

DFT Sequence: ¢

X(k) = x(0) W 4 x() WE + xQW2 + ...+ x(N — Hwi¥Y

> X(k) = x (O WE + x(DWE + xQWE? + xR,

—

X(0) = 4.25
! 1
X(1) = —223 —j1.22 LI ~
—p | ¥ / V=T “ao0 - P
X(2) =053

X(3) = —2.23 +j1.22

—

Example 9 - contd. (2)

| u
Ao = 7|X(0)| = 1.0625, ¢, = tan~' ()
1
Py = 4—2|X([})|2: 1.1289

1 —1.22
Al = —|X(l)| = [}6355, (P]é,i\tﬂn_l (—) = —15132D,
4 b‘&\@ —2.23

1 =]
P = 1 X()]= 0.43%

1 0
A = £—1|X(2)| — 0.1325, ¢, = tan™! (ﬁ) = 0",
1
P> = 4—2|X(2)|2: 0.0176.
1 B 122N o
A3 = 7|1X(3)| = 0.6355, ¢; = tan (ﬁ) — 151.32°,

1
P = E|J{(3)|3: 0.4308.

39

MATLAB Example - 2

1
=2.5 (2000)
x(n) sin :rr8

Compute the spectrum of a Hamming window function with a window

size = 100,
&
&
% Generate the sine wave sequenc%o\e'%
fs=8000; T=1/fs; % Sampling rate and sampling period

% Generate the sine wave seguence
x=2*%s5in (2000*pi*[0:1:100]*T);
% Apply the FFT algorithm
N=length (x) ;
index t = [0:1:N—1];

($Using the Hamming window

x_hm = x.*hamming (N)'; (Apply the Hamming window function
f=[0:1:N—-1] =l‘fE'-"IIN': ®f hm=abs (fft(x hm)) /N; tCalculate the amplitude spectrum
xf=abs (fft (x)) /N; - -

40

MATLAB Example - 2 contd.

subplot (2,2,1) ;plot (index t,x);grid

xlabel ('Time index n'); ylabel ('x(n)’);

subplot (2,2,3) ; plot(index t,x hm);grid

xlabel ('Time index n'); ylabel ('Hamming windowed x (n)') ;
subplot (2,2,2) ;plot (f,xf) ;grid;axis ([0 £fs01]);
xlabel ('Frequency (Hz)'); vlabel ('Ak (no w1n@ow) ;
subplot (2,2,4) ; plot (f,xf _hm);grid; axj&qﬁ (0fs01]);
xlabel ('Frequency (Hz)'); ylabel (IIamn&ﬁﬂg windowed Ak') ;

2 IFI| | | | 1 | T £ Ty
‘Tfﬂ”nﬁ'H|'ﬁi“|ﬂ”|'|“|'JM" it
g0 '|LH|H4|T|L{|HTH*-H%}" £ o (\ﬂjﬂlw'-luﬁHﬂﬂwl-l|-|l+'¢.*"w
D a1 a1
_2 | U L %_2 ||I '|||EU |
’ Time mdex n 1Dﬂ ° Timeﬁir?dex n 100

Ak (no window)
=
o

—

o
oo

S O
=

Hamming windowed Ak
]
8

o

---l|---'r——————1'-————--+-- -

T
1 |
G DL

0 2000 4000 6000 8000

Frequency (Hz)

e
L N
J-l E : | Illn

0 2000 4000 6000 8000
Frequency (Hz)

41

DFT Matrix

Frequency Spectrum Multiplication Matrix Time-Domain samples
XS
N
- &Q’@ -
. L 1 H "’!-.' 2) 2*1‘: 1) '
= —.:-—h- _I:i_.-'!' \Q’ _.-l.‘_.l"'_ - VAN LR \r -1
I[:D:I 1 & - J.III- & .:"-r Qo S &8 ’ ."l:' & - J.III- | Tl:l:l-} |
AL s i _AN-Iis L AN-Ix | x(1)
"N YN YN N
X 1 e e -8 e o x(2)
o HN-1)x HN-D)x AN-2 AN-2NN-I}x |)
XS |, Ty T ST T N |-
| X(N-1) | _ANDm AN _ YN-DIN-2)x I R e 1) |

42

DFT Matrix

Let, Wi =g_}.jf':"\"'

Then _ - _
X(0) 11 1 1 x(0)
X 1w B S 6

% bs§ 4 ﬂl'l:-lllir_].::'
X2y |=|1 w Qo\@% W e W x(2)
XD |1 WD 2 DT v -1
] N-1)
DFT equatlon: _;f-[:;::}: ZI{”E}“J-;J}K = ﬂ’ - N—1
=0

DFT requires N? complex multiplications.

43

FFT

FFT: Fast Fourier Transform

A very efficient algorithm to compute DFT; it requires less multiplication.
Q;\Q

The length of input signal, x(n) must %@1\‘ m samples, where m is an integer.

A\
QO !!

Samples N =2, 4, 8, 16 or so.

If the input length is not 2™, append (pad) zeros to make it 2™.

415|111 7]|1 > |4|5]11]1711]0]0]0

N=5 N = 8, power of 2

44

DFT to FFT: Decimation in Frequency

N-1
DFT: X(k)=> x(mWy fork=0,1,.... N -1,

n=0

X (k) = x(0) + x(OW§ + ...+ x(N — hwy™ "

. N AN /2— N AT T
X(k) =x(0) + x()YWE + .. —4—,1:(3— 1) [/ —1—).:(3) WN2 L x(N — DD
Sl
(V/2)-1 N-1 &
X(ky= > xmWy + x(nfWkn
n=0 n=N/2
gl
(N/2)—1 e N/ N
Xky= Y xmwg+wyP N x(n +—) W
n=0 n=0 2
(N/2)—1 N
X(ky= Y (x[n) +(— 1fx (n +3)) W
n=0

45

DFT to FFT: Decimation in Frequency

Now decompose into even (k = 2m) and odd (k = 2m+1) sequences.

(N/2)—1

(N/2)-1 N N i
X(2m) = Z (x[n) + x(n +E>) Wiﬁ?m_ X2m+1)= Z (x(n) — x(n + E)) WL WA

n=0 n=>0

9 _j2mx2
\/ &
Q\l

(N/2)—1
X@2m)= Y am)Wy}, = DFT{a(n) with (N /2) points} \/
n=0
(N/2)—1
X2m+1) = Z b(n) Wy Wy}, = DFT{b(n) Wy with (N /2) points}
n=0

N N

a(n) = x(n) +x(n +?), for n = 0,1 sy T 1
N N

b(n):x(n)—x(n-i—i),forn:[l',l 3—1.

46

DFT to FFT: Decimation in Frequency

_ p : B DFT{a(n) with (N /2) points}
DFT{x(n) with N points} = {DFT{b(n)Wg, with (N/2) points}

®Q>Q
x(0) \ 7 a0 \°§§ ———— X(0)
a(1)<® N .
x(1) POt e X(2)
x(2) \\/7 2 > ° DFT [—>—=X(4)
x(3) 85) > ——— X(6)
bo) Wy
x(4) ' > 3 N) X(‘])
x(5) /\ , o(1) tx’g ?—point ——— X(3)
' b2
X(6) ? %21 b§3; > 5| DFT [—>—*X5)
x(7) N ———o X(7)

I
—

Copyright © 2007 by Academic Press. All rights reserved.

47

DFT to FFT: Decimation in Frequency

X X X X X X X X

S22 828828

N

Copyright © 2007 by Academic Press. All rights reserved.

12 complex
multiplication

48

DFT to FFT: Decimation in Frequency

000
001
010
011
100
101
110
111

Binary index 1st split 2nd split 3rd split
0 0 0
2 4 4
4 2 | 2
6 6 & 6
1 187
3 5} 5
5 3 3
4 7 4

0

N O OB~ 0N =

Copyright © 2007 by Academic Press. All rights reserved.

Complex multiplications of DFT = N?, and

hi"

Complex multiplications of FFT = > log, (N)

Bit reversal
000
100
010
011
001
101
011
111

For 1024 samples data sequence,
DFT requires 1024x1024 =
1048576 complex multiplications.
FFT requires (1024/2)log(1024) =
5120 complex multiplications.

49

IFFT: Inverse FFT

L, N—1

> X(Wy, for k=0, 1,..

'N k=0

—kn
N

Z X(ow

k=0

N-1

1
N

x(n)

— e — — — — p—

SN0 0 9O
X X X X X X X X
|00 | v |0] v 0] v~ |0Q]| 0] v~ 0| v |CO| + |0
] 1T ST TS
% - ~— ™
_ _ A | _
S =2 S ZIN =
B IS

<

b
i o2
1 W’
— ~3
1 W

1

NS
XX
XXX X
V‘V
A

74

P e T e T e Y e T s T e T e T e

S

Copyright © 2007 by Academic Press. All rights reserved.

50

FFT and IFFT Examples

Bit index 4 10 Bit reversal
00 X(O) 1) X(0) 00
6 W4 =1 —2
~ X(2) 10
FFT 2 Wi=1 -1 242
10 x(2)_ : 13 $ X(1) 01
11 —2 W4 =—j‘ W4 =1—2—]2 11
x(3)=4 = o o X(3)
Cwnomw@s$WMS Al rights reserved.
Qo\

N 4
Number of complex multiplication = 5 log, (N) = 3 log, (4) =

Bit index 8 % Bit reversal
00 X(0)=10 = L >ﬁ”f/°=— e 1 0X0)=1 oo
IFFT 01 X(1)= —2+j2 ?2 /0 - L ;2 i' x(2)=3 10
10 X(2)=- S ,,;*‘2‘><:,0> = 4. x(1)=2 0
11 X(3)=—2 j2 SWL Waz110 3, x(a)=4 11

= -

Copyright © 2007 by Academic Press. Al rights reserved.

51

DFT to FFT: Decimation in Time

Split the input sequence x(n) into the even indexed x(2m) and x(2m + 1),
each with N/2 data points.

(N/2)-1 (N/2)—1
X(k) = 2m) W™ Q2m -+ HWy W™
(k) Z X(2m) Wy \2_ Z xX(2m + Wy W™,

=0 pr=()

a
for k =0, l,...,N—g}‘
Ry

Using
- T wT 2 S Py
Wit :1..2 j2a /N)_:E jAx (N /2) S

M2

(N/2)-1 (N/2)—1
X(k)= > xQm)Wyh+ Wy Y xQm+ HW,.

=0} m=0)

for k=0,1,.... N — 1.

52

DFT to FFT: Decimation in Time

Define new functions as

(N/2)-1

Gk)= Y xQ2m)Wyk, = DFT{x(2m) with (N/2) points}
mi=()
(N/2)—1 o
H(k) = 3" xQm+)Wk $8DFT{x(2m + 1) with (N/2) points}.
m=0 3¢

¢

As,

G(k) :G(k +£), for k = 0, 1,...,5— 1
2 2
H(k) = H(k+£), fork=0,1,.. .,E— 1.
2 2
4 N)
X(k) = G(k) + Wiy H(k), fork =0, 1,..., —— 1.

2

X(£+k) — G — WEH), for k=0, 1,..., N 1.~ W = —wk.
-),

53

DFT to FFT: Decimation in Time

First iteration:

Second iteration:

. X(0)
.« X(1)

X(2)
X(3)
X(4)
X(5)
X(6)
X(7)

54

DFT to FFT: Decimation in Time

x(0) X(0)
x(2) X(1)
x(4) X(2)
Third iteration: x(6) X(3)
X(1) == X(4)
x(3) X(5)
x(5) X(8)
x(7) X(7)
2z 272 T
N 27 .. (27 2 - = o .
Wy =e —COS(W)—JSIH(WJ W, =e & =e 2=cos(x/2)—jsin(z/2)=—]
X(0) = : (0)
X oo N
o S TS
X(6) — m%’%(f B x(3)
IFFT) Moo P S SR
X(5) d = =< A"‘ :E x(5)
x@) Mo L S ONSNT
ARGl S A I B

0 - 3
Wa ~1 W2 -1 W -1

55

FFT

IFFT

FFT and IFFT Examples

x(0)=1+—> - — —12[11'2 X(0)
x(2)=3 Wﬂzj S = ~ X(1)
x(1)=2 *—*—; : o 22 X@
X(3)=4 »— > X(3)

T

o
T

I&I—*
S
=
e

i]

[

X(0)=10 +—»e SRR X 1

X(2)=—-2 W?Z“ . ' %%—%1{1#2
=1 _

X(1)=—2+/2 otre Je =4 _

i x(3)=4

—i | =
M3
|

-
Ma
o
[

X(@)=-2-j2 o>+ - *‘4 “_'?1 _‘1

¥
|_..

Y

56

Fourier Transform Properties (1)

Time Domain

= 132 153
Sample munter

155

|-:. .fr:{[]|

= 138 153
Sample munber

155

Frequency Domain

|‘:.. I-I[]|

0.1 L 0.I o.d

L]

0.4 0.3 0.x o8
Frequency

0.3

FT is linear:

» Homogeneity

e Additivity

Homogeneity:
X[—X[]
kx[] ————kX[]

Frequency is not
changed.

57

Sl

NAIARAN

Fourier Transform Properties (2)

Time Domain

AAAD AT

1 128 152 FES
Savple mucber
|
LA
0 [128 152 5
Smvple murber

Frequency Domain

I-:l. R.IEX||I:]

100
E
£
100
200
o1 02 oI o8
Feqenoy
|
200
e Re X, []
100
:.
f=N
L
-0
200

u} o1 031 A4l o4 03

Feqenoy

f. Re X:[]

100
ﬁ [
g
]
.
o4 02 ar od
Feqeoy

o T T T
g. ImE []
100
i,
I
- 00
=200
1 [0 }e] 0l 0]
e
W
200
B
6@ ko Tm Z,[]
Qi
2.
L
- 100
200

] o1 02 oI o4 03

Freqency

1 Im (]

1 02 oI
Freqenoy

Additivity

If 2 %,[n]+ %,[n] = x,[n]
Then:Re X, [f]+Re X, [f]=Re X [f]

and

IMX [f]+ImX,[f]=ImX,[f]

58

Fourier Transform Pairs

Delta Function Pairs
in Polar Form

Delta Function —>

Shifted Delta Function
—>

Same Magnitude,
Different Phase

Shifted Delta Function
—>

1

Time Domain

1. Dmpalce at x[0]

7]
<
xS
d. Enpuke it
O
N
i
15 1 4E i3
Eatvp ke munnber
g. Impulke atifg]
|
15 1 LE] 5
Eanp k muniber

Frequency Domain

b, Mlagniade . Phase
g4
Ea
[
x
g
0.5 o 0s 0.5 o 0.5
Freqency Fraquency
|e. Mlazminade) f. Fhase
qd
i NN
a \-
a:
&I 1 %‘
0.5 [[u—u:u.s 0 0.5
Fremency Frequancy
i g
g4
P,
5 LELRLEL AL, .h AL
o e B B i i
FE IR IRIRIBIEIRIR
é" m u w uf v w u ®
L 1 LELBEEL L
& b & h|E EoE &
0.5 o 05 .5 o 0.5
Freqency Frequancy

59

Verilog HDL [15EC53]

MODULE-2

BASIC CONCEPTS AND MODULES AND PORTS

2.1: Objectives

Understand the lexical conventions and define the logic value set and data type.
Identify useful system tasks and basic compiler directives.

Identify and understanding of components of a Verilog module definition.

YV V VYV V

Understand the port connection rules and connection to external signals by ordered list and by name.

2.2 Lexical conventions

The basic lexical conventions used by Verilog HDL are similar to those in the C programming
language. Verilog contains a stream of tokens. Tokens can be comments, delimiters, numbers, strings,

identifiers, and keywords. Verilog HDL is a case-sensitive language. All keywords are in lowercase.

N
2.2.1 Whitespace b‘(\&@
Blank spaces (\b), tabs (\t) and newlines (\ng@%’mprise the whitespace. Whitespace is ignored by Verilog
N

except when it separates tokens. Whitespace is not ignored in strings.

2.2.2 Comments

Comments can be inserted in the code for readability and documentation. There are two ways to write
comments. A one-line comment starts with "//". Verilog skips from that point to the end of line. A multiple-
line comment starts with "/*" and ends with "*/". Multiple-line comments cannot be nested. However, one-line
comments can be embedded in multiple-line comments.

a=Db &&c; // This is a one-line comment

[* This is a multiple line comment
*/

[* This is /* an illegal */ comment */

[* This is //a legal comment */

Dept.of ECE/ATMECE, Mysuru Page 16

Verilog HDL [15EC53]

2.2.3 Operators

Operators are of three types: unary, binary, and ternary. Unary operators precede the operand. Binary operators
appear between two operands. Ternary operators have two separate operators that separate three operands.
a=~Db;// ~isaunary operator. b is the operand

a=b &&c; /l && is a binary operator. b and c are operands

a=b?c:d;//?: isaternary operator. b, c and d are operands

2.2.4 Number Specification

There are two types of number specification in Verilog: sized and unsized.

Sized numbers

Sized numbers are represented as <size> '<base format> <number>.

<size> is written only in decimal and specifies the number of bits in the number. Legal base formats are
decimal ('d or 'D), hexadecimal (‘h or 'H), binary ('b or 'B) and octal (‘o or '‘O). The number is specified as
consecutive digits from 0, 1, 2, 3,4, 5,6, 7, 8,9, a, b, c, d, e, f. Only a subset of these digits is legal for a
particular base. Uppercase letters are legal for number é}j@cification.

4'b1111 // This is a 4-bit binary number %b“\&

\Z
o)
12'habc // This is a 12-bit hexadecimal numb&

16'd255 // This is a 16-bit decimal number

Unsized numbers

Numbers that are specified without a <base format> specification are decimal numbers by default. Numbers
that are written without a <size> specification have a default number of bits that is simulator- and machine-
specific (must be at least 32).

23456 // This is a 32-bit decimal number by default

'hc3 // This is a 32-bit hexadecimal number

'021 // This is a 32-bit octal number

Dept.of ECE/ATMECE, Mysuru Page 17

Verilog HDL [15EC53]

X or Z values

Verilog has two symbols for unknown and high impedance values. These values are very important for
modeling real circuits. An unknown value is denoted by an x. A high impedance value is denoted by z.
12'h13x // This is a 12-bit hex number; 4 least significant bits unknown

6'hx // This is a 6-bit hex number

32'bz /] This is a 32-bit high impedance number
An x or z sets four bits for a number in the hexadecimal base, three bits for a number in the octal base and one bit
for a number in the binary base. If the most significant bit of a number is 0, x, or z, the number is
automatically extended to fill the most significant bits, respectively, with 0, x, or z.
This makes it easy to assign x or z to whole vector. If the most significant digit is 1, then it is also zero
extended.

Negative numbers

Negative numbers can be specified by putting a minus sign before the size for a constant number. Size
constants are always positive. It is illegal to have a minus sign between <base format> and <number>. An
optional signed specifier can be added for signed arlthg@t C.

6'd3 // 8-bit negative number stored as 2's comple@ent of 3

-6'sd3 // Used for performing signed integer m&c@

4'd-2 /I llegal specification

Underscore characters and question marks

An underscore character "_" is allowed anywhere in a number except the first character. Underscore characters
are allowed only to improve readability of numbers and are ignored by Verilog. A question mark "?" is the
Verilog HDL alternative for z in the context of numbers. The ? is used to enhance readability in the casex and

casez statements.

2.2.5 Strings

A string is a sequence of characters that are enclosed by double quotes. The restriction on a string is that it
must be contained on a single line, that is, without a carriage return. It cannot be on multiple lines. Strings are
treated as a sequence of one-byte ASCII values.

"Hello Verilog World" // is a string

"a/b"/l'isastring

Dept.of ECE/ATMECE, Mysuru Page 18

Verilog HDL [15EC53]

2.2.6 ldentifiers and Keywords

Keywords are special identifiers reserved to define the language constructs. Keywords are in lowercase.
Identifiers are names given to objects so that they can be referenced in the design. Identifiers are made up of
alphanumeric characters, the underscore (_), or the dollar sign ($). Identifiers are case sensitive. Identifiers
start with an alphabetic character or an underscore. They cannot start with a digit or a $ sign (The $ sign as the
first character is reserved for system tasks)

reg value; // reg is a keyword; value is an identifier

input clk; // input is a keyword, clk is an identifier

2.2.7 Escaped ldentifiers

Escaped identifiers begin with the backslash (\') character and end with whitespace (space, tab, or newline).
All characters between backslash and whitespace are processed literally. Any printable ASCII character can be
included in escaped identifiers.

Neither the backslash nor the terminating whitespace is considered to be a part of the identifier.

\a+b-c
my_name Q\(\
0@&*
2.3 Data Types S

This section discusses the data types used in Verilog.

2.3.1 Value Set

Verilog supports four values and eight strengths to model the functionality of real hardware. The four
value levels are listed in Table 2-1.
Table 2-1. Value Levels

Value Level Condition in Hardware Circuits
0 Logic zero, false condition

1 Logic one, true condition

X Unknown logic value

z High impedance, floating state

In addition to logic values, strength levels are often used to resolve conflicts between drivers of different

strengths in digital circuits. Value levels 0 and 1 can have the strength levels listed in Table2-2.

Dept.of ECE/ATMECE, Mysuru Page 19

Table 2-2. Strength Levels

Strength Level Type Degree
supply Driving strongest
strong Driving A
pull riving

large Storage

weak Driving

medinm Storage

small Storage

highz High Impedance weakest

Verilog HDL [15EC53]

If two signals of unequal strengths are driven on a wire, the stronger signal prevails. For example, if two
signals of strength strongl and weak0O contend, the result is resolved as a strongl. If two signals of equal
strengths are driven on a wire, the result is unknown. If two signals of strength strongl and strongO conflict,
the result is an x.

o5

2.3.2 Nets M

xQ
Nets represent connections between hardwarelements. Just as in real circuits, nets have values continuously
driven on them by the outputs of devices that they are connected to. In Figure 2.1 net a is connected to the
output of and gate g1. Net a will continuously assume the value computed at the output of gate g1, which is b

&c.
b —
C_

gl a

Figure 2.1. Example of Nets

Nets are declared primarily with the keyword wire. Nets are one-bit values by default unless they are declared
explicitly as vectors. The terms wire and net are often used interchangeably. The default value of a net is z
(except the trireg net, which defaults to x). Nets get the output value of their drivers.

If a net has no driver, it gets the value z.
wire a; // Declare net a for the above circuit
wire b,c; // Declare two wires b,c for the above circuit

wire d = 1'b0; // Net d is fixed to logic value O at declaration.

Dept.of ECE/ATMECE, Mysuru Page 20

Verilog HDL [15EC53]

2.3.3 Registers

Registers represent data storage elements. Registers retain value until another value is placed onto them. In
Verilog, the term register merely means a variable that can hold a value. Unlike a net, a register does not need
a driver. Verilog registers do not need a clock as hardware registers do. Values of registers can be changed
anytime in a simulation by assigning a new value to the register.

Register data types are commonly declared by the keyword reg.

Example 3-1 Example of Register

reg reset; // declare a variable reset that can hold its value

initial // keyword to specify the initial value of reg.

reset = 1'b1; //initialize reset to 1 to reset the digital circuit.

#100 reset = 1'b0; // after 100 time units reset is deasserted.

end

Example 2-2 Signed Register Declaration

reg signed [63:0] m; // 64 bit signed value Q;§\
integer i; // 32 bit signed value N
&
\
2.3.4 Vectors

Nets or reg data types can be declared as vectors (multiple bit widths). If bit width is not specified, the default
is scalar (1-bit).

wire a; // scalar net variable, default

wire [7:0] bus; // 8-bit bus

wire [31:0] busA,busB,busC; // 3 buses of 32-bit width.

reg clock; // scalar register, default

reg [0:40] virtual_addr; // Vector register, virtual address 41 bits wide

Vectors can be declared at [high# : low#] or [low# : high#], but the left number in the squared brackets is always
the most significant bit of the vector. In the example shown above, bit 0 is the most significant bit of vector

virtual_addr.

Dept.of ECE/ATMECE, Mysuru Page 21

Verilog HDL [15EC53]

Vector Part Select

For the vector declarations shown above, it is possible to address bits or parts of vectors.

busA[7] /I bit # 7 of vector busA

bus[2:0] // Three least significant bits of vector bus,

Il using bus[0:2] is illegal because the significant bit shouldalways be on the left of a range specification

virtual_addr[0:1] // Two most significant bits of vector virtual_addr

Variable Vector Part Select

Another ability provided in Verilog HDL is to have variable part selects of a vector. This allows part selects to
be put in for loops to select various parts of the vector. There are two special part-select operators:
[<starting_bit>+:width] - part-select increments from starting bit.

[<starting_bit>-:width] - part-select decrements from starting bit.

The starting bit of the part select can be varied, but the width has to be constant. The following example
shows the use of variable vector part select:

reg [255:0] datal; //Little endian notation

reg [0:255] data2; //Big endian notation ‘\@
reg [7:0] byte; \Q)%b‘
//Using a variable part select, one can choose pﬁﬁs

byte = datal[31-:8]; //starting bit = 31, width =8 => data[31:24]
byte = datal[24+:8]; //starting bit = 24, width =8 => data[31:24]
byte = data2[31-:8]; //starting bit = 31, width =8 => data[24:31]
byte = data2[24+:8]; //starting bit = 24, width =8 => data[24:31]

&
®0

/[The starting bit can also be a variable. The width has to be constant.
/[Therefore, one can use the variable part select

/lin a loop to select all bytes of the vector.

for (j=0; j<=31; j=j+1)

byte = datal[(j*8)+:8]; //Sequence is [7:0], [15:8]... [255:248]

/[Can initialize a part of the vector

datal[(byteNum*8)+:8] = 8'h0; //If byteNum = 1, clear 8 bits [15:8]

Dept.of ECE/ATMECE, Mysuru Page 22

Verilog HDL [15EC53]

2.3.5 Integer , Real, and Time Register Data Types

Integer, real, and time register data types are supported in Verilog.

Integer

An integer is a general purpose register data type used for manipulating quantities. Integers are declared
by the keyword integer. Although it is possible to use reg as a general-purpose variable, it is more convenient
to declare an integer variable for purposes such as counting. The default width for an integer is the host-
machine word size, which is implementation-specific but is at least 32 bits. Registers declared as data type reg
store values as unsigned quantities, whereas integers store values as signed quantities.

integer counter; // general purpose variable used as a counter.

initial

counter = -1; // A negative one is stored in the counter

Real

Real number constants and real register data types are declared with the keyword real. They can be specified in
decimal notation (e.g., 3.14) or in scientific notation (e.g., 3e6, which is 3 x 10°). Real numbers cannot have a
range declaration, and their default value is 0. When %@é(gl value is assigned to an integer, the real number is
rounded off to the nearest integer. gbi\ﬁ
real delta; // Define a real variable called delta h@}%l
begin

delta = 4e10; // delta is assigned in scientific notation

delta = 2.13; // delta is assigned a value 2.13 end

integer i; // Define an integer i

initial

i = delta; // i gets the value 2 (rounded value of 2.13)
Time
Verilog simulation is done with respect to simulation time. A special time register data type is used in Verilog
to store simulation time. A time variable is declared with the keyword time. The width for time register data
types is implementation-specific but is at least 64 bits.The system function $time is invoked to get the
current simulation time.

time save_sim_time; // Define a time variable save_sim_time

initial

Dept.of ECE/ATMECE, Mysuru Page 23

Verilog HDL [15EC53]

save_sim_time = $time; // Save the current simulation time

Arrays

Arrays are allowed in Verilog for reg, integer, time, real, realtime and vector register data types. Multi-
dimensional arrays can also be declared with any number of dimensions. Arrays of nets can also be used to
connect ports of generated instances. Each element of the array can be used in the same fashion as a scalar or
vector net. Arrays are accessed by <array_name>[<subscript>]. For multi- dimensional arrays, indexes need to
be provided for each dimension.

integer count[0:7]; // An array of 8 count variables

reg bool[31:0]; // Array of 32 one-bit boolean register variables time

chk_point[1:100]; // Array of 100 time checkpoint variables reg [4:0]

port_id[0:7]; // Array of 8 port_ids; each port_id is 5 bits wide

integer matrix[4:0][0:255]; Il Two dimensional array of integers

reg [63:0] array_4d [15:0][7:0][7:0][255:0]; //Four dimensional array

wire [7:0] w_array2 [5:0]; // Declare an array of 8 bit vector wire

wire w_arrayl1[7:0][5:0]; // Declare an array of smgle@t wires.

It is important not to confuse arrays with net or g&fster vectors. A vector is a single element that is n-bits
wide. On the other hand, arrays are multiple eﬂe?nents that are 1-bit or n-bits wide.

Examples of assignments to elements of arrays discussed above are shown below:

count[5] = O; // Reset 5th element of array of count variables

chk_point[100] = O; // Reset 100th time check point value

port_id[3] = 0; // Reset 3rd element (a 5-bit value) of port_id array.

matrix[1][0] = 33559; // Set value of element indexed by [1][0] to 33559

port_id = 0; // lllegal syntax - Attempt to write the entire array

matrix [1] = 0; // lllegal syntax - Attempt to write [1][0]..[1][255]

2.3.6 Memories

In digital simulation, one often needs to model register files, RAMs, and ROMs. Memories are modeled in
Verilog simply as a one-dimensional array of registers. Each element of the array is known as an element or
word and is addressed by a single array index. Each word can be one or more bits. It is important to
differentiate between n 1-bit registers and one n-bit register. A particular word in memory is obtained by using

the address as a memory array subscript.

Dept.of ECE/ATMECE, Mysuru Page 24

Verilog HDL [15EC53]

reg mem1bit[0:1023]; // Memory mem1bit with 1K 1-bit words
reg [7:0] membyte[0:1023]; // Memory membyte with 1K 8-bit words(bytes)
membyte[511] // Fetches 1 byte word whose address is 511.

2.3.7 Parameters

Verilog allows constants to be defined in a module by the keyword parameter. Parameters cannot be used as
variables. Parameter values for each module instance can be overridden individually at compile time. This
allows the module instances to be customized. This aspect is discussed later. Parameter types and sizes can also
be defined.

parameter port_id = 5; // Defines a constant port_id

parameter cache_line_width = 256; // Constant defines width of cache line

parameter signed [15:0] WIDTH,; // Fixed sign and range for parameter WIDTH

2.3.8 Strings

Strings can be stored in reg. The width of the register vaflables must be large enough to hold the string. Each
character in the string takes up 8 bits (1 byte). If the\@ldth of the register is greater than the size of the string,
Verilog fills bits to the left of the string with zerosgj‘f the register width is smaller than the string width, Verilog
truncates the leftmost bits of the string. It is al\%ys safe to declare a string that is slightly wider than necessary.
reg [8*18:1] string_value; // Declare a variable that is 18 bytes wide initial

string_value = "Hello Verilog World"; // String can be stored in variable

Special characters serve a special purpose in displaying strings, such as newline, tabs, and displaying argument
values. Special characters can be displayed in strings only when they are preceded by escape characters, as
shown in Table 2-3

Table 2-3. Special Characters

Escaped Characters Character Displaved

‘n newline

t tab

%% %

‘ooo Character written in 173 octal digits

Dept.of ECE/ATMECE, Mysuru Page 25

Verilog HDL [15EC53]

2.4 System Tasks and Compiler Directives

In this section, we introduce two special concepts used in Verilog: system tasks and compiler directives.

2.4.1 System Tasks

Verilog provides standard system tasks for certain routine operations. All system tasks appear in the form
$<keyword>. Operations such as displaying on the screen, monitoring values of nets, stopping, and finishing
are done by system tasks.

Displaying information

$display is the main system task for displaying values of variables or strings or expressions. This is one of the
most useful tasks in Verilog.

Usage: $display(pl, p2, p3......, pn);

pl, p2, p3...., pn can be quoted strings or variables or expressions. The format of $display is very similar to
printf in C. A $display inserts a newline at the end of the string by default. A $display without any arguments
produces a newline.

Monitoring information

Verilog provides a mechanism to monitor a signal V\@E% its value changes. This facility is provided by the

Q
$monitor task. 9@
]
Usage: $monitor(p1,p2,p3,....,pn); 06\
The parameters pl, p2, ... , pn can be variables, signal names, or quoted strings. A format similar to the

$display task is used in the $monitor task. $monitor continuously monitors the values of the variables or
signals specified in the parameter list and displays all parameters in the list whenever the value of any one
variable or signal changes. Unlike $display, $monitor needs to be invoked only once. Only one monitoring list
can be active at a time.

If there is more than one $monitor statement in your simulation, the last $monitor statement will be the active
statement. The earlier $monitor statements will be overridden.

Two tasks are used to switch monitoring on and off.

Usage:

$monitoron;

$monitoroff;

The $monitoron tasks enables monitoring, and the $monitoroff task disables monitoring during a simulation.

Dept.of ECE/ATMECE, Mysuru Page 26

Verilog HDL [15EC53]

Example of Monitor Statement

//Monitor time and value of the signals clock and reset

//Clock toggles every 5 time units and reset goes down at 10 time units
initial

begin

$monitor ($time,” Value of signals clock = %D reset = %b", clock,reset);

end

Partial output of the monitor statement:
-- 0 Value of signals clock =0 reset = 1
-- 5 Value of signals clock = 1 reset = 1

-- 10 Value of signals clock = 0 reset = 0

Stopping and finishing in a simulation

The task $stop is provided to stop during a simulation. &
Usage: $stop; ,\@Qf
The $stop task puts the simulation in an mterac@?e mode. The designer can then debug the design from the
interactive mode. The $stop task is used whenever the designer wants to suspend the simulation and
examine the values of signals in the design.

The $finish task terminates the simulation.

Usage: $finish;

Examples of $stop and $finish are given below

Example of Stop and Finish Tasks
// Stop at time 100 in the simulation and examine the results

/ Finish the simulation at time 1000.

initial

begin

clock = 0;

reset =1;

#100 $stop; // This will suspend the simulation at time = 100
#900 $finish; // This will terminate the simulation at time = 1000

end

Dept.of ECE/ATMECE, Mysuru Page 27

Verilog HDL [15EC53]

2.4.2 Compiler Directives

Compiler directives are provided in Verilog. All compiler directives are defined by using the
“<keyword> construct. The two most useful compiler directives are

“define

The “define directive is used to define text macros in Verilog .The Verilog compiler substitutes the text of the
macro wherever it encounters a "<macro_name>. This is similar to the #define construct in C. The defined
constants or text macros are used in the Verilog code by preceding them with a ~ (back tick).

Example for "define Directive

//define a text macro that defines default word size

//Used as 'WORD_SIZE in the code

'define WORD_SIZE 32

/ldefine an alias. A $stop will be substituted wherever 'S appears

'define S $stop;

//define a frequently used text string

‘define WORD_REG reg [31:0] Q;§‘
‘include N

9
The “include directive allows you to include(gﬁ%'re contents of a Verilog source file in another Verilog file

during compilation. This works similarly to the #include in the C programming language.
Example for “include Directive

/I Include the file header.v, which contains declarations in themain verilog file design.v.
‘include header.v

<Verilog code in file design.v>

Dept.of ECE/ATMECE, Mysuru Page 28

Verilog HDL [15EC53]

2.5 Modules
Module is a basic building block in Verilog. A module definition always begins with the keyword module.

The module name, port list, port declarations, and optional parameters must come first in a module
definition. Port list and port declarations are present only if the module has any ports to interact
with the external environment.

The five components within a module are: variable declarations, dataflow statements, instantiation of
lower modules, behavioral blocks, and tasks or functions. These components can be in any order and at any
place in the module definition.

The endmodule statement must always come last in a module definition. All components except
module, module name, and endmodule are optional and can be mixed and matched as per design needs.
Verilog allows multiple modules to be defined in a single file. The modules can be defined in any order in the

file.

Module Name,
Port List, Port Declarations (if ports present)
Parameters (optional),

0\\\
Declarations (lfwire.\.&é) Data flow statements
regs and other \uri'.@[kx (assign)
O\
Instantiation of lower always and initial blocks.
level modules All behavioral statements
go in these blocks.

Tasks and functions

endmodule statement

Figure 2.2.:Components of a Verilog Module

Consider a simple example of an SR latch, as shown in Figure 2.3

Figure 2-3. SR Latch
Dept.of ECE/ATMECE, Mysuru Page 29

Verilog HDL [15EC53]

The SR latch has S and R as the input ports and Q and Qbar as the output ports. The SR latch and its stimulus
can be modeled as shown in Example.

Example of Components of SR Latch

/I This example illustrates the different components of a module

// Module name and port list

/l SR_latch module

module SR_latch(Q, Qbar, Sbhar, Rbar);

//Port declarations

output Q, Qbar;

input Shar, Rbar;

/I Instantiate lower-level modules

/I In this case, instantiate Verilog primitive nand gates

/I Note how the wires are connected in a cross-coupled fashion. nand n1(Q, Sbar, Qbar);

nand n2(Qbar, Rbar, Q);

/1 endmodule statement Q;§\

endmodule N

&

QO

// Module name and port list

/I Stimulus module

module Top;

I/ Declarations of wire, reg, and other variables

reg set, reset;

/I Instantiate lower-level modules

/' In this case, instantiate SR_latch Feed inverted set and reset signals to the SR latch
SR_latch m1(q, gbar, ~set, ~reset);

// Behavioral block, initial

initial

begin

$monitor($time, " set = %b, reset= %b, g= %b\n",set,reset,q);
set = 0; reset = 0;

#5 reset = 1,

Dept.of ECE/ATMECE, Mysuru Page 30

Verilog HDL [15EC53]

#5 reset = 0;

#5set=1,

end

// endmodule statement

endmodule

From the above example following characteristics are noticed:

* In the SR latch definition above ,all components described in Figure 2-2 need not be present in a module.
We do not find variable declarations, dataflow (assign) statements, or behavioral blocks (always or initial).

» However, the stimulus block for the SR latch contains module name, wire, reg, and variable
declarations, instantiation of lower level modules, behavioral block (initial), and endmodule
statement but does not contain port list, port declarations, and data flow (assign) statements.

e Thus, all parts except module, module name, and endmodule are optional and can be mixed and

matched as per design needs.

2.6 Ports &

Ports provide the interface by which a module q,‘ﬁ\ communicate with its environment. For example, the
input/output pins of an IC chip are its ports. T&?enwronment can interact with the module only through its
ports. The internals of the module are not VISIb|e to the environment. This provides a very powerful
flexibility to the designer. The internals of the module can be changed without affecting the environment as
long as the interface is not modified. Ports are also referred to as terminals.

2.6.1 List of Ports

A module definition contains an optional list of ports. If the module does not exchange any signals with
the environment, there are no ports in the list. Consider a 4-bit full adder that is instantiated inside a top-
level module Top. The diagram for the input/output ports is shown in Figure 2-4.

Top
! full i S
adder s
b —®= (4-bit)
fulladdd —f C_Out

C_in —pm-

Figure 2-4. 1/0O Ports for Top and Full Adder
Dept.of ECE/ATMECE, Mysuru Page 31

Verilog HDL [15EC53]

From the above figure, the module Top is a top-level module. The module fulladd4 is instantiated
below Top. The module fulladd4 takes input on ports a, b, and c_in and produces an output on ports
sum and c_out. Thus, module fulladd4 performs an addition for its environment. The module Top is a top-
level module in the simulation and does not need to pass signals to or receive signals from the
environment. Thus, it does not have a list of ports. The module names and port lists for both module
declarations in Verilog are as shown in below example.

Example of List of Ports

module fulladd4(sum, c_out, a, b, c_in); //Module with a list of ports

module Top; // No list of ports, top-level module in simulation

2.6.2 Port Declaration

All ports in the list of ports must be declared in the module. Ports can be declared as follows:
input -Input port

output- Output port

inout- Bidirectional port Q}(\

Each port in the port list is defined as input, outpgﬁ\or inout, based on the direction of the port signal. Thus,

for the example of the the port declarations V\Q@\be as shown in example below.

Example for Port Declarations
module fulladd4(sum, ¢_out, a, b, c_in);
//Begin port declarations section
output[3:0] sum;

output c_cout;

input [3:0] a, b;

input c_in;

//End port declarations section

<module internals>
.. endmodule
All port declarations are implicitly declared as wire in Verilog. Thus, if a port is intended to be a wire, it is

sufficient to declare it as output, input, or inout. Input or inout ports are normally declared as wires.

Dept.of ECE/ATMECE, Mysuru Page 32

Verilog HDL [15EC53]

However, if output ports hold their value, they must be declared as reg. Ports of the type input and inout
cannot be declared as reg because reg variables store values and input ports should not store values but
simply reflect the changes in the external signals they are connected to.

Alternate syntax for port declaration is shown in below example. This syntax avoids the duplication of
naming the ports in both the module definition statement and the module port list definitions. If a port is
declared but no data type is specified, then, under specific circumstances, the signal will default to a wire
data type.

Example for ANSI C Style Port Declaration Syntax

module fulladd4(output reg [3:0] sum,

output reg c_out,

input [3:0] a, b, //wire by default

input c_in); //wire by default

<module internals>

®§‘
endmodule %&\&

xQ
QO

2.6.3 Port Connection Rules

A port as consisting of two units, one unit that is internal to the module and another that is external to the
module. The internal and external units are connected. There are rules governing port connections when
modules are instantiated within other modules. The Verilog simulator complains if any port connection rules

are violated. These rules are summarized in Figure2.5

net ¢
net :imm

input output
— > L
reg or net net reg or net net

Figure 2-5. Port Connection Rules

Dept.of ECE/ATMECE, Mysuru Page 33

Verilog HDL [15EC53]

Inputs
Internally, input ports must always be of the type net. Externally, the inputs can be connected to a variable
which is a reg or a net.
Outputs
Internally, outputs ports can be of the type reg or net. Externally, outputs must always be connected to a net.
They cannot be connected to a reg.
Inouts
Internally, inout ports must always be of the type net. Externally, inout ports must always be
connected to a net.
Width matching
It is legal to connect internal and external items of different sizes when making intermodule port
connections. However, a warning is typically issued that the widths do not match.
Unconnected ports
Verilog allows ports to remain unconnected. For example, certain output ports might be simply for debugging,
and you might not be interested in connecting thegﬁo the external signals. You can let a port remain
unconnected by instantiating a module as shown pogl%w

fulladd4 fa0 (SUM, A(@ C _IN); // Output port ¢_out is unconnected

Example of illegal port connection

To illustrate port connection rules, assume that the module fulladd4 Example is instantiated in the
stimulus block Top. Below example shows an illegal port connection
Example 2-14 lllegal Port Connection

module Top;

//Declare connection variables reg

[3:0]AB;

reg C_IN;

reg [3:0] SUM,;

wire C_OUT;

/lInstantiate fulladd4, call it fa0

fulladd4 faO(SUM, C_OUT, A, B, C_IN);

//llegal connection because output port sum in module fulladd4

/lis connected to a register variable SUM in module Top.

Dept.of ECE/ATMECE, Mysuru Page 34

Verilog HDL [15EC53]

<stimulus>

.endmodule

This problem is rectified if the variable SUM is declared as a net (wire).

2.7 Connecting Ports to External Signals

There are two methods of making connections between signals specified in the module instantiation and the
ports in a module definition. These two methods cannot be mixed. These methods are

Connecting by ordered list

The signals to be connected must appear in the module instantiation in the same order as the ports in the port list
in the module definition. Consider the module fulladd4.To connect signals in module Top by ordered list, the
Verilog code is shown in below example. Notice that the external signals SUM, C_OUT, A, B, and C_IN appear

in exactly the same order as the ports sum, c_out, a, b, aqd c_in in module definition of fulladd4.
R

| @

Example 2-15 Connection by Ordered List \Q)%

module Top; ®

//Declare connection variables

reg [3:0]A,B;

reg C_IN;

wire [3:0] SUM,;

wire C_OUT;

/l\nstantiate fulladd4, call it fa_ordered.

//Signals are connected to ports in order (by position)

fulladd4 fa_ordered (SUM, C_OUT, A, B, C_IN);

<stimulus>

... endmodule

Dept.of ECE/ATMECE, Mysuru Page 35

Verilog HDL [15EC53]

module fulladd4(sum, ¢_out, a, b, c_in);

output[3:0] sum; output ¢_cout; input [3:0] a, b; input c_in;

<module internals>

.. endmodule

Connecting ports by name

For large designs where modules have, say, 50 ports, remembering the order of the ports in the
module definition is impractical and error-prone. Verilog provides the capability to connect external signals
to ports by the port names, rather than by position. We could connect the ports by name in above example
by instantiating the module fulladd4, as follows. Note that you can specify the port connections in any
order as long as the port name in the module definition correctly matches the external signal.

/I Instantiate module fa_byname and connect signals to ports by name
fulladd4 fa_byname(.c_out(C_OUT), .sum(SUM), .b(B), .c_in(C_IN), .a(A),);

O
Note that only those ports that are to be connected @external signals must be specified in port connection
by name. Unconnected ports can be dropped. ngb‘example if the port c_out were to be kept unconnected,
the instantiation of fulladd4 would look as fokt&ms The port c_out is simply dropped from the port list.

/I Instantiate module fa_byname and connect signals to ports by
name fulladd4 fa_byname(.sum(SUM), .b(B), .c_in(C_IN), .a(A),);

Another advantage of connecting ports by name is that as long as the port name is not changed, the order of
ports in the port list of a module can be rearranged without changing the port connections in module
instantiations.

2.8 Hierarchical Names

Every module instance, signal, or variable is defined with an identifier. A particular identifier has a unique
place in the design hierarchy. Hierarchical name referencing allows us to denote every identifier in the
design hierarchy with a unique name. A hierarchical name is a list of identifiers separated by dots (".") for
each level of hierarchy. Thus, any identifier can be addressed from any place in the design by simply
specifying the complete hierarchical name of that identifier. The top-level module is called the root module
because it is not instantiated anywhere. It is the starting point.

Dept.of ECE/ATMECE, Mysuru Page 36

Verilog HDL [15EC53]

To assign a unique name to an identifier, start from the top-level module and trace the path along the design
hierarchy to the desired identifier.

Consider the simulation of SR latch Example. The design hierarchy is shown in Figure 2.6.

stimulus
(root level)

ml q, gbar,
(SR_latch) set, reset

/ \\ {variables)

nl n2 ' Qba]‘
(nand) (nand)

[a1q-1.=115.1

Figure 2-6. Design Hierarchy for SR Latch Simulation

For this simulation, stimulus is the top-level module. Since the top-level module is not instantiated
anywhere, it is called the root module. The identifiers defined in this module are q, gbar, set, and reset.
The root module instantiates m1, which is a module of type SR_latch. The module ml instantiates
nand gates n1 and n2. Q, Qbar, S, and R are port srghals in instance m1. Hierarchical name referencing
assigns a unique name to each identifier. To @%n hierarchical names, use the module name for root
module and instance names for all module ms@gées below the root module.

Example

stimulus
stimulus.q
stimulus.gbar
timulus.set
stimulus.reset
stimulus.m1
stimulus.m1.Q
stimulus.m1.Qbar
stimulus m1.S
stimulus.m1.R
stimulus.nl
stimulus.n2

Each identifier in the design is uniquely specified by its hierarchical path name. To display the level of

hierarchy, use the special character %m in the $display task.

Dept.of ECE/ATMECE, Mysuru Page 37

Verilog HDL [15EC53]

2.9: Outcomes

After completion of the module the students are able to:
» Understand the lexical conventions and different data types of verilog.
> Identify useful system tasks such as $display and $monitor and basic compiler directives.

» Understand different components of a Verilog module definition

» Understand the port connection rules and connection to external signals by ordered list and by name

2.10: Recommended questions

Describe the lexical conventions used in Verilog HDL with examples.

Explain different data types of Verilog HDL with examples

What are system tasks and compiler directives?

What are the uses of $monitor, $display and $finish system tasks? Explain with examples.
Explain “define and “include compiler directives.

Explain the components of Verilog HDL module. @\Q

What are the components of SR latch? Write quﬁog HDL module of SR latch.

Explain the different types of ports supportg@%y Verilog HDL with examples.

© oo N o g &~ w D oE

Explain the port connection rules of Verilog HDL with examples.
10. How hierarchical names helps in addressing any identifier used in the design from any other level of
hierarchy? Explain with examples.

11. What are the basic components of a module? Which components are mandatory?

Dept.of ECE/ATMECE, Mysuru Page 38

Verilog HDL [15EC53]

MODULE -3
GATE LEVEL MODELING AND DATA FLOW MODELING

3.1: Objectives

Identify logic gate primitives provided in Verilog.
Understand instantiation of gates, gate symbols, and truth tables for and/or and buf/not type gates.

Understand how to construct a Verilog description from the logic diagram of the circuit.

YV V VYV V

Describe rise, fall, and turn-off delays in the gate-level design and Explain min, max, and typ delays

in the gate-level design

» Describe the continuous assignment (assign) statement, restrictions on the assign statement, and the
implicit continuous assignment statement.

> Explain assignment delay, implicit assignment delay, and net declaration delay for continuous

assignment statements and Define expressions, operators, and operands.

> Use dataflow constructs to model practical diggeal circuits in Verilog

Q)Q)
3.2 Gate Types p&

&
A logic circuit can be designed by use of %gic gates. Verilog supports basic logic gates as predefined
primitives. These primitives are instantiated like modules except that they are predefined in Verilog and do not
need a module definition. All logic circuits can be designed by using basic gates. There are two classes of basic

gates: and/or gates and buf/not gates.
3.2.1 And/Or Gates

And/or gates have one scalar output and multiple scalar inputs. The first terminal in the list of gate terminals is
an output and the other terminals are inputs. The output of a gate is evaluated as soon as one of the inputs

changes. The and/or gates available in Verilog are: and, or, xor, nand, nor, xnor.

The corresponding logic symbols for these gates are shown in Figure 3-1. Consider the gates with two inputs.

The output terminal is denoted by out. Input terminals are denoted by il and i2.

These gates are instantiated to build logic circuits in Verilog. Examples of gate instantiations are shown
below. In Example 3-1, for all instances, OUT is connected to the output out, and IN1 and IN2 are
connected to the two inputs i1 and i2 of the gate primitives. Note that the instance name does not need to be
specified for primitives. This lets the designer instantiate hundreds of gates without giving them a name.

More than two inputs can be specified in a gate instantiation. Gates with more than two inputs are

Dept.of ECE/ATMECE, Mysuru Page 39

Verilog HDL [15EC53]

instantiated by simply adding more input ports in the gate instantiation. Verilog automatically instantiates

the appropriate gate.

i1 :
2 — ou

and

:;:::j___i:}—————aut

=T e

xor
)
®0

il AY
. p———out
2 — J

nand
i1 —
L | out
i2 —

nor

i
i2 }! out

xnor

. N
Flgure(:}ﬁ. Basic Gates

xQ

QO
Example 3-1 G&te Instantiation of And/Or Gates

wire OUT, IN1, IN2;

// basic gate instantiations.

and al (OUT, IN1, IN2);

nand nal (OUT, IN1, IN2);

or orl(OUT, IN1, IN2);

nor norl (OUT, IN1, IN2);

xor x1(OUT, IN1, IN2);

xnor nxl1(OUT, IN1, IN2);

// More than two inputs; 3 input nand gate
nand nal 3inp(OUT, IN1, IN2, IN3);

// gate instantiation without instance name

and (OUT, IN1, IN2); // legal gate instantiation

The truth tables for these gates define how outputs for the gates are computed from the inputs. Truth tables are

defined assuming two inputs. The truth tables for these gates are shown in Table 3-1. Outputs of gates with

more than two inputs are computed by applying the truth table iteratively.

Dept.of ECE/ATMECE, Mysuru

Page 40

Verilog HDL [15EC53]

Table 3-1. Truth Tables for And/Or

il il
and | 1 X z nand| I X z
] 0 0 0 0] | 1 | |
i 0 1 X X 0 X X
12 . i l I
X 0 X X X X 1 X X X
& 0 X X X F 1 X X X
il il
or 0 | X i nor 0 1 X z
0 1] | X X 0 | 0 X X
1 | 1 0 0 0
2 ! 2 1]
X x | X X X X] X X
Z X | X X £ % L] X X
<&
e
il bg‘\Q il
xXor 0 1 % \0% Xnor 0 | X F4
(@)
olo 1 x § ol1 0 x x
L] X)
o]! X s 1[0 1 x X
X X X X x X X X X X
! X X X X £ X X X X

3.2.2 Buf/Not Gates

Buf/not gates have one scalar input and one or more scalar outputs. The last terminal in the port list is connected
to the input. Other terminals are connected to the outputs. We will discuss gates that have one input and one

output. Two basic buf/not gate primitives are provided in Verilog
buf not

The symbols for these logic gates are shown in Figure 3-2.

Dept.of ECE/ATMECE, Mysuru Page 41

Verilog HDL [15EC53]

in :: out in ‘ :: o out

buf not

Figure 3-2. Buf/not Gates

These gates are instantiated in Verilog as shown Example 3-2. Notice that these gates can have multiple

outputs but exactly one input, which is the last terminal in the port list.

Example 3-2 Gate Instantiations of Buf/Not Gates
// basic gate instantiations.
buf bl (0OUT1, IN);
not nl(OUT1, IN);

// More than two outputs é§>
W
buf bl 2out (OUT1, OUT2, IN); P

_ c?@

// gate instantiation without instance® name

not (OUT1, IN); // legal gate instantiation
Truth tables for gates with one input and one output are shown in Table 3-2.

Table 3-2. Truth Tables for Buf/Not Gates

buf | in out not in out
0 0 0 1
1 ! 1 0
X X X b4
z X z X

Bufif/notif
Gates with an additional control signal on buf and not gates are also available.

bufifl notifl

Dept.of ECE/ATMECE, Mysuru Page 42

Verilog HDL [15EC53]

bufifO notif0

These gates propagate only if their control signal is asserted. They propagate z if their control signal is

deasserted. Symbols for bufif/notif are shown in Figure 3-3.

in [\ out in . EO out
ctrl j ctrl

bufifl notifl
in out in out
ctrl ctrl
bufif0 notifo
RN
®§

. S
Figure 368’ ufif/notif Gates
A\
O
The truth tables for these gates are shown in Te;t;le 3-3

Table 3-3. Truth Tables for Bufif/Notif Gates

ctrl ctrl
bufifl | ¢ 1 X 7 bufifo | o 1 X 7
0l z 0 L L 0 0 z L L
’ | H
S U I I H H i z H
X z X X X X X z X X
Z z X X X Z X z X X
c[[] Clrl
notifl | ¢ I X 7 notifll | | X z
0|z I H H 0|1 z H H
0 L
e 1|2 0o |1 L o z L
X z x x X X X z X X
z Z X X X 4 X z X X

Dept.of ECE/ATMECE, Mysuru Page 43

Verilog HDL [15EC53]

These gates are used when a signal is to be driven only when the control signal is asserted. Such a situation is
applicable when multiple drivers drive the signal. These drivers are designed to drive the signal on mutually

exclusive control signals. Example 3-3 shows examples of instantiation of bufif and notif gates.

Example 3-3 Gate Instantiations of Bufif/Notif Gates
//Instantiation of bufif gates.
bufifl bl (out, in, ctrl);
bufif0 b0 (out, in, ctrl);
//Instantiation of notif gates
notifl nl (out, in, ctrl);

notif0 n0 (out, in, ctrl);

3.2.3 Array of Instances

&
R
There are many situations when repetitive instances g\(@%quired. These instances differ from each other only by

the index of the vector to which they are conneQQ@b.‘ To simplify specification of such instances, Verilog HDL

o Q) .
allows an array of primitive instances to be deffied. Example3-4 shows an example of an array of instances.

Example 3-4 Simple Array of Primitive Instances

wire [7:0] OUT, IN1, IN2;

// basic gate instantiations.

nand n_gate[7:0] (OUT, IN1, IN2);

// This 1s equivalent to the following 8 instantiations
nand n_gateO (OUT[0], IN1[O], IN2[0]);

nand n_gatel (OUT[1], IN1[1], IN2[1]);

nand n _gate2 (OUT[2], IN1([2], IN2[2]);

nand n_gate3 (OUT[3], IN1[3], IN2[3]);

nand n_gated4 (OUT[4], IN1[4], IN2[4]);

nand n_gate5(0OUT[5], IN1[5], IN2[5]);

nand n_gate6(OUT[6], IN1[6], IN2[6]);

Dept.of ECE/ATMECE, Mysuru Page 44

Verilog HDL [15EC53]

nand n_gate7 (OUT[7], IN1[7], IN2[7]);
3.1.4 Examples

Having understood the various types of gates available in Verilog, consider the real examples that illustrates

design of gate-level digital circuits.
Gate-level multiplexer

Consider the design of 4-to-1 multiplexer with 2 select signals. Multiplexers serve a useful purpose in logic
design. They can connect two or more sources to a single destination. They can also be used to implement
Boolean functions. We will assume for this example that signals s1 and sO do not get the value x or z. The 1/0
diagram and the truth table for the multiplexer are shown in Figure 3-4. The /O diagram will be useful in

setting up the port list for the multiplexer.

10—
. sl s() out
= ol o5
2 Mux —- oué‘\@ 0 0 10
& 0 1 I1
13— O\
¢ | 0 12
T ? | 1 I3

5] sl

Figure 3-4. 4-to-1 Multiplexer

Implement the logic for the multiplexer using basic logic gates. The logic diagram for the multiplexer is shown

in Figure 3-5.

r
i0 = ¥0

Figure 3-5. Logic Diagram for Multiplexer

Dept.of ECE/ATMECE, Mysuru Page 45

Verilog HDL [15EC53]

The logic diagram has a one-to-one correspondence with the Verilog description. The Verilog description for
the multiplexer is shown in Example 3-5. Two intermediate nets, sOn and sln, are created; they are
complements of input signals s1 and sO. Internal nets y0, y1, y2, y3 are also required. Note that instance names
are not specified for primitive gates, not, and, and or. Instance names are optional for Verilog primitives but are

mandatory for instances of user-defined modules.

Example 3-5 Verilog Description of Multiplexer

// Module 4-to-1 multiplexer. Port list is taken exactly from
// the I/0 diagram.

module mux4 to 1 (out, i0, il, i2, i3, sl, s0);

// Port declarations from the I/0 diagram
output out;

input i0, i1, i2, 1i3;

input sl, s0;

// Internal wire declarations xQ
wire sln, sOn;

wire y0, vl1, vy2, v3;

// Gate instantiations

// Create sln and sOn signals.

not (sln, sl);

not (sOn, s0);

// 3-input and gates instantiated

and (y0, i0, sln, sOn);

and (yl, i1, sln, s0);

and (y2, 1i2, sl, sOn);

and (y3, i3, sl1, s0);

// 4-input or gate instantiated

or (out, yO0, vyl, y2, y3);

Dept.of ECE/ATMECE, Mysuru Page 46

Verilog HDL [15EC53]

endmodule

This multiplexer can be tested with the stimulus shown in Example 3-6. The stimulus checks that each
combination of select signals connects the appropriate input to the output. The signal OUTPUT is displayed
one time unit after it changes. System task $monitor could also be used to display the signals when they

change values.

Example 3-6 Stimulus for Multiplexer

// Define the stimulus module (no ports)
module stimulus;

// Declare variables to be connected

// to inputs

reg INO, IN1, IN2, IN3;

reg S1, SO;
g ’ ,{}
&
// Declare output wire S‘\ﬁ
Q?
X8
wire OUTPUT; QO

// Instantiate the multiplexer

mux4 to 1 mymux (OUTPUT, INO, IN1, IN2Z2, IN3, S1, SO);

// Stimulate the inputs

// Define the stimulus module (no ports)

initial

begin

// set input lines

INO = 1; IN1 = 0; IN2 = 1; IN3 = 0O;

#1 Sdisplay ("INO= $b, INl= %b, IN2= %b, IN3= $b\n", INO,IN1,IN2,IN3);

// choose INO

S1 = 0; sO = 0;

#1 $display("Sl1l = %$b, SO = %b, OUTPUT = %b \n", S1, SO, OUTPUT);

// choose IN1

Dept.of ECE/ATMECE, Mysuru Page 47

Verilog HDL [15EC53]

#1 Sdisplay("S1 = %b, SO %b, OUTPUT = %b \n", S1, S0, OUTPUT);

// choose IN2

S1 =1; s0 = 0;

#1 S$display("S1 = %b, SO = %b, OUTPUT = %b \n", S1, S0, OUTPUT);
// choose IN3

S1 =1; SO0 = 1;

#1 Sdisplay("S1 = %b, SO = %b, OUTPUT = %b \n", S1, SO, OUTPUT);
end

endmodule
The output of the simulation is shown below. Each combination of the select signals is tested.

INO= 1, INl1= 0, IN2= 1, IN3= 0 @\(\
<

&

D

xQ
(\O

s1 =0, SO

Il
(]
~
Il
—

OUTPUT

Il
o

s1 =0, SO =1, OUTPUT

s1 =1, SO = 0, OUTPUT = 1

s1 =1, sO =1, OUTPUT

Il
o

4-bit Ripple Carry Full Adder

Consider the design of a 4-bit full adder whose port list was defined in, List of Ports. We use primitive
logic gates, and we apply stimulus to the 4-bit full adder to check functionality. For the sake of simplicity,
we will implement a ripple carry adder. The basic building block is a 1-bit full adder. The mathematical

equations for a 1-bit full adder are shown below.
sum = (a b cin)
cout=(ab)+cin(ab)

The logic diagram for a 1-bit full adder is shown in Figure 3-6.

Dept.of ECE/ATMECE, Mysuru Page 48

Verilog HDL [15EC53]

- T T B
"L
z : I H } = T \\'I }) : sum
| 5L . |
| /e |
| |
| A |
I / T\ 82 |
-— |
i < Ly
) c_out
: R
c_in : |

Figure 3-6. 1-bit Full Adder
This logic diagram for the 1-bit full adder is converted to a Verilog description, shown in Example 3-7.

Example 3-7 Verilog Description for 1-bit Full Adder

// Define a 1-bit full adder
<&

.

module fulladd(sum, c_out, a, b, c _in); gga
%b‘
<

// 1/0 port declarations é}

N\

output sum, c out;

input a, b, c_in;

// Internal nets

wire sl1, cl, c2;

// Instantiate logic gate primitives

xor (sl, a, Db):

and (cl, a, b);

xor (sum, sl, c in);

and (c2, sl, c_in);

xor (c_out, c2, cl);

endmodule

A 4-bit ripple carry full adder can be constructed from four 1-bit full adders, as shown in Figure 3-7. Notice that
fa0, fal, fa2, and fa3 are instances of the module fulladd (1-bit full adder).

Dept.of ECE/ATMECE, Mysuru Page 49

Verilog HDL [15EC53]

a[0] b[0]

,1[1] b[1]

B AR R R R A

full | ¢

.
'~'—'"—|P- adder —#»t

full

adder |

sum|0]

a[2] b[2 a[3] b[3]
2 .| full | 4 full c_out
= adder — adder |——9
fa2

sum[1] sum(2] sum(3]

Figure 3-7. 4-bit Ripple Carry Full Adder

This structure can be translated to Verilog as shown in Example 3-8. Note that the port names used in a 1-bit

full adder and a 4-bit full adder are the same but they represent different elements. The element sum in a 1-bit

adder is a scalar quantity and the element sum in the 4-bit full adder is a 4-bit vector quantity. Verilog keeps

names local to a module.

o5

Names are not visible outside the module unless h@@%hlcal name referencing is used. Also note that instance

names must be specified when defined moduleﬁe instantiated, but when instantiating Verilog primitives, the

instance names are optional.

Example 3-8 Verilog Description for 4-bit Ripple Carry Full Adder

// Define a 4-bit full adder

module fulladd4 (sum, c_out, a, b, c in);

// 1/0 port declarations

output [3:0] sum;

output c out;

input[3:0] a, b;

input c_in;

// Internal nets

wire cl, c2, c3;

// Instantiate four 1-bit full adders.

fulladd faO(sum[0], cl, a[0], b[O0], c_

in);

Dept.of ECE/ATMECE, Mysuru

Page 50

Verilog HDL [15EC53]

fulladd fal(sum([1l], c2, al[l], b[l], cl);
fulladd fa2(sum[2], c3, al[2], b[2], c2);
fulladd fa3(sum[3], c out, al3], b[3], c3);

endmodule

Finally, the design must be checked by applying stimulus, as shown in Example 3-9. The module stimulus
stimulates the 4-bit full adder by applying a few input combinations and monitors the results.

Example 3-9 Stimulus for 4-bit Ripple Carry Full Adder

// Define the stimulus (top level module)

module stimulus;

// Set up variables

reg [3:0] A, B;

reg C_IN; '§>
<
\
wire [3:0] SUM; q§§
égp
wire C_OUT; <

// Instantiate the 4-bit full adder. call it FAl 4
fulladd4 FAl 4(SUM, C_OUT, A, B, C_IN);

// Set up the monitoring for the signal values
initial

begin

Smonitor ($time," A= %b, B=%b, C IN= %b, --- C OUT= %b, SUM= %b\n",
A, B, C_IN, C OUT, SUM);

end

// Stimulate inputs

initial

begin

A =4'd0; B = 4'd0; C_IN = 1'b0;

#5 A = 4'd3; B = 4'd4;

Dept.of ECE/ATMECE, Mysuru Page 51

Verilog HDL [15EC53]

#5 A = 4'd2; B = 4'd5;

#5 A

4'd9; B

Il
S
Q.
O

Il
[IaN
o.
=
(€]

#5 A 4'd10; B
#5 A = 4'd10; B = 4'd5; C_IN = 1'bl;

end

endmodule

The output of the simulation is shown below.

0 A= 0000, B=0000, C IN= 0, --- C _OUT= 0, SUM= 0000
5 A= 0011, B=0100, C IN= 0, --- C OUT= 0, SUM= 0111
10 A= 0010, B=0101, C_IN= O, --- C_OUT= 0, SUM= 0111
15 A= 1001, B=1001, C IN= 0, --- C_OUT= 1, SUM= 0010
20 A= 1010, B=1111, C _IN= 0, --- C OUT= 1, SUM= 1001
25 A= 1010, B=0101, C IN= 1,--- C _OUT= 1, SuUM= 0000
3.3 Gate Delays o8
gﬁa

Until now, circuits are described without any de{e,"ys (i.e., zero delay). In real circuits, logic gates have delays
associated with them. Gate delays allow the Vé?llog user to specify delays through the logic circuits. Pin-to-pin

delays can also be specified in Verilog.

3.3.1 Rise, Fall, and Turn-off Delays

There are three types of delays from the inputs to the output of a primitive gate.
Rise delay

The rise delay is associated with a gate output transition to a 1 from another value.

0, xore

t_rise
Fall delay

The fall delay is associated with a gate output transition to a 0 from another value.

Dept.of ECE/ATMECE, Mysuru Page 52

Verilog HDL [15EC53]

1, xOrz

t_fall
Turn-off delay

The turn-off delay is associated with a gate output transition to the high impedance value (z) from another
value. If the value changes to x, the minimum of the three delays is considered.

Three types of delay specifications are allowed. If only one delay is specified, this value is used for all
transitions. If two delays are specified, they refer to the rise and fall delay values. The turn-off delay is the
minimum of the two delays. If all three delays are specified, they refer to rise, fall, and turn-off delay values. If

no delays are specified, the default value is zero. Examples of delay specification are shown in Example 3-10.

Example 3-10 Types of Delay Specification

<
// Delay of delay time for all transitions ()
W
and #(delay time) al(out, il, i2); N
<§)

// Rise and Fall Delay Specification.

and #(rise val, fall val) a2(out, i1, i2);

// Rise, Fall, and Turn-off Delay Specification

bufif0 #(rise val, fall val, turnoff val) bl (out, in, control);
Examples of delay specification are shown below.

and #(5) al(out, i1, 1i2); //Delay of 5 for all transitions

and #(4,6) a2(out, il, i2); // Rise = 4, Fall = 6

bufif0 #(3,4,5) bl (out, in, control); // Rise = 3, Fall = 4, Turn-off= 5
3.3.2 Min/Typ/Max Values

Verilog provides an additional level of control for each type of delay mentioned above. For each type of
delay?rise, fall, and turn-off?three values, min, typ, and max, can be specified. Any one value can be chosen at
the start of the simulation. Min/typ/max values are used to model devices whose delays vary within a minimum

and maximum range because of the IC fabrication process variations.

Dept.of ECE/ATMECE, Mysuru Page 53

Verilog HDL [15EC53]

Min value

The min value is the minimum delay value that the designer expects the gate to have.
Typ val

The typ value is the typical delay value that the designer expects the gate to have.
Max value

The max value is the maximum delay value that the designer expects the gate to have. Min, typ, or max values
can be chosen at Verilog run time. Method of choosing a min/typ/max value may vary for different simulators
or operating systems. (For Verilog- XL , the values are chosen by specifying options +maxdelays, +typdelays,
and +mindelays at run time. If no option is specified, the typical delay value is the default).

This allows the designers the flexibility of building three delay values for each transition into their design. The

designer can experiment with delay values without modifying the design.

Examples of min, typ, and max value specification fore\)éf}llog-XL are shown in Example3-11.
N

e

Example 3-11 Min, Max, and Typical Delay Vcﬁg’es
<

// One delay
// if 4mindelays, delay= 4
// 1f +typdelays, delay= 5
// if +maxdelays, delay= 6
and #(4:5:6) al(out, 11, i2);

// Two delays

// 1f +mindelays, rise= 3, fall= 5, turn-off = min(3,5)

// if +typdelays, rise= 4, fall= 6, turn-off min (4, 6)
// if +maxdelays, rise= 5, fall= 7, turn-off = min(5,7)

and #(3:4:5, 5:6:7) a2 (out, i1, 1i2);

// Three delays

Il
KN

// if +mindelays, rise= 2 fall= 3 turn-off

Il
(€}

// if +typdelays, rise= 3 fall= 4 turn-off

Dept.of ECE/ATMECE, Mysuru Page 54

Verilog HDL [15EC53]

// 1if +maxdelays, rise= 4 fall= 5 turn-off = 6
and #(2:3:4, 3:4:5, 4:5:6) a3(out, il1l,12);

Examples of invoking the Verilog-XL simulator with the command-line options are shown below. Assume that

the module with delays is declared in the file test.v.

//invoke simulation with maximum delay
> verilog test.v tmaxdelays
//invoke simulation with minimum delay
> verilog test.v +mindelays
//invoke simulation with typical delay

> verilog test.v +typdelays
3.3.3 Delay Example

Let us consider a simple example to illustrate the use@‘?gate delays to model timing in the logic circuits. A

simple module called D implements the following @sgﬁc equations:
@

_ ®
out=(bh)+c

The gate-level implementation is shown in Module D (Figure 3-8). The module contains two gates with delays

of 5 and 4 time units.

D

———————————— 1

| |
a —— e |
b | #5 |

| |

: #4 | out
c

|

e J

Figure 3-8. Module D

The module D is defined in Verilog as shown in Example 3-12.

Dept.of ECE/ATMECE, Mysuru Page 55

Verilog HDL [15EC53]

Example 3-12 Verilog Definition for Module D with Delay
// Define a simple combination module called D
module D (out, a, b, c);

// 1I/0 port declarations

output out;

input a,b,c;

// Internal nets

wire e;

// Instantiate primitive gates to build the circuit
and #(5) al(e, a, b); //Delay of 5 on gate al

or #(4) ol(out, e,c); //Delay of 4 on gate ol

endmodule ’<>
&
$
This module is tested by the stimulus file shown j&‘%(ample 3-13.
O
N\

Example 3-13 Stimulus for Module D with Delay
// Stimulus (top-level module)

module stimulus;

// Declare variables

reqg A, B, C;

wire OUT;

// Instantiate the module D

D dl(ouT, A, B, C);

// Stimulate the inputs. Finish the simulation at 40 time units.
initial

begin

A= 1'b0; B= 1'b0; C= 1'b0;

#10 A= 1'bl; B= 1'bl; C= 1'bl;

Dept.of ECE/ATMECE, Mysuru Page 56

Verilog HDL [15EC53]

#10 A= 1'bl; B= 1'b0; C= 1'b0;
#20 S$finish;
end

endmodule

The waveforms from the simulation are shown in Figure 3-9 to illustrate the effect of specifying delays on
gates. The waveforms are not drawn to scale. However, simulation time at each transition is specified below the

transition.
1. The outputs E and OUT are initially unknown.

2. At time 10, after A, B, and C all transition to 1, OUT transitions to 1 after a delay of 4 time units and E

changes value to 1 after 5 time units.

3. At time 20, B and C transition to 0. E changes value to 0 after 5 time units, and OUT transitions to 0, 4 time

units after E changes.

&

e;e’§
i | D‘.obs‘\ﬁ | [i

\\1‘
A RS I I I
| | | I |
B | | I I
| | | I [|
C || I I
| 5 || I I I
EXXXX R 4] |
| | 1 | I

OUT XXXXXXX| ¥ | | g
| 1 | [|
Time 0 5 910 14 15 20 25 29

Figure 3-9. Waveforms for Delay Simulation of module D

It is a useful exercise to understand how the timing for each transition in the above waveform corresponds to the

gate delays shown in Module D.

Dept.of ECE/ATMECE, Mysuru Page 57

Verilog HDL [15EC53]

3.4 Dataflow Modeling

For small circuits, the gate-level modeling approach works very well because the number of gates is limited and
the designer can instantiate and connects every gate individually. Also, gate-level modeling is very intuitive to a
designer with a basic knowledge of digital logic design. However, in complex designs the number of gates is
very large. Thus, designers can design more effectively if they concentrate on implementing the function at a
level of abstraction higher than gate level. Dataflow modeling provides a powerful way to implement a design.
Verilog allows a circuit to be designed in terms of the data flow between registers and how a design processes

data rather than instantiation of individual gates.

3.4.1 Continuous Assignments

A continuous assignment is the most basic statement in dataflow modeling, used to drive a value onto a net. This
assignment replaces gates in the description of the circuit and describes the circuit at a higher level of abstraction.

The assignment statement starts with the keyword assign. The syntax of an assign statement is as follows.

continuous_assign ::= assign [drive_strength] [delay3]@I@‘t(_\of_net_assignments ;
N
e
list_of _net_assignments ::= net_assignment { , net &"’s’ignment }
\

net_assignment ::= net_Ivalue = expression

The default value for drive strength is strongl and strong0. The delay value is also optional and can be used to
specify delay on the assign statement. This is like specifying delays for gates. Continuous assignments have the

following characteristics:

1. The left hand side of an assignment must always be a scalar or vector net or a concatenation of scalar and vector

nets. It cannot be a scalar or vector register.

2. Continuous assignments are always active. The assignment expression is evaluated as soon as one of the right-

hand-side operands changes and the value is assigned to the left-hand-side net.

3. The operands on the right-hand side can be registers or nets or function calls. Registers or nets can be scalars or

vectors.

4. Delay values can be specified for assignments in terms of time units. Delay values are used to control the time
when a net is assigned the evaluated value. This feature is similar to specifying delays for gates. It is very useful in

modeling timing behavior in real circuits.

Dept.of ECE/ATMECE, Mysuru Page 58

Verilog HDL [15EC53]

Examples of continuous assignments are shown below. Operators such as &, », |, {, } and + used in the examples, At
this point, concentrate on how the assign statements are specified.

Example 3-14 Examples of Continuous Assignment

// Continuous assign. out is a net. il and i2 are nets.

assign out = il & 1i2;

// Continuous assign for vector nets. addr is a 16-bit vector net
// addrl and addr2 are 16-bit vector registers.

assign addr([15:0] = addrl bits[15:0] *~ addr2 bits[15:0];

// Concatenation. Left-hand side is a concatenation of a scalar

// net and a vector net.

assign {c out, sum([3:0]} = a[3:0] + b[3:0] + c_in;
&
®0
e
3.4.2 Implicit Continuous Assignment 6@9
<

Instead of declaring a net and then writing a continuous assignment on the net, Verilog provides a shortcut by which
a continuous assignment can be placed on a net when it is declared. There can be only one implicit declaration

assignment per net because a net is declared only once.

In the example below, an implicit continuous assignment is contrasted with a regular continuous assignment.
//Regular continuous assignment

wire out;

assign out = inl & in2;

//Same effect is achieved by an implicit continuous assignment

wire out = inl & in2;

Implicit Net Declaration

If a signal name is used to the left of the continuous assignment, an implicit net declaration will be inferred for that
signal name. If the net is connected to a module port, the width of the inferred net is equal to the width of the module
port.

Dept.of ECE/ATMECE, Mysuru Page 59

Verilog HDL [15EC53]

// Continuous assign. out is a net.

wire il, 1i2;

assign out = il & 12; //Note that out was not declared as a wire
//but an implicit wire declaration for out

//is done by the simulator

3.5 Delays

Delay values control the time between the change in a right-hand-side operand and when the new value is assigned
to the left-hand side. Three ways of specifying delays in continuous assignment statements are regular assignment

delay, implicit continuous assignment delay, and net declaration delay.
3.5.1 Regular Assignment Delay

The first method is to assign a delay value in a continuous assignment statement. The delay value is specified after
the keyword assign. Any change in values of inl or in2 WQi)i{Q‘esult in a delay of 10 time units before re-computation
of the expression inl & in2, and the result will be ass‘;ggéd to out. If inl or in2 changes value again before 10 time
units when the result propagates to out, the valueg)’& inl and in2 at the time of re-computation are considered. This
property is called inertial delay. An input pulse that is shorter than the delay of the assignment statement does not

propagate to the output.

assign #10 out = inl & in2; // Delay in a continuous assign

1. When signals in1 and in2 go high at time 20, out goes to a high 10 time units later (time = 30).
2. When inl goes low at 60, out changes to low at 70.

3. However, inl changes to high at 80, but it goes down to low before 10 time units have elapsed.

4. Hence, at the time of re-computation, 10 units after time 80, inl is 0. Thus, out gets the value 0. A pulse of width

less than the specified assignment delay is no propagated to the output.

[1 [1 L !

[I [| .
inl ! | ' | 1

1 1 [I | | T

|] I I i
in2 1 E I I I I |

|] | | I : |
Ol seacmeex 1 l | II .

I] [!
time 10 20 30 60 70 80 85

Figure 3-10. Waveforms for Delay Simulation

Dept.of ECE/ATMECE, Mysuru Page 60

Verilog HDL [15EC53]

Inertial delays also apply to gate delays,
Implicit Continuous Assignment Delay

An equivalent method is to use an implicit continuous assignment to specify both a delay and an assignment on the

net.

//implicit continuous assignment delay
wire #10 out = inl & in2;

//same as

wire out;

assign #10 out = inl & in2;

The declaration above has the same effect as defining a wire out and declaring a continuous assignment on out.

Net Declaration Delay
\<‘
A delay can be specified on a net when it is declared w;{@ut putting a continuous assignment on the net. If a delay is

specified on a net out, then any value change app@%f to the net out is delayed accordingly. Net declaration delays

can also be used in gate-level modeling. Q

//Net Delays

wire # 10 out;

assign out = inl & in2;

//The above statement has the same effect as the following.
wire out;

assign #10 out = inl & in2;
3.5 Expressions, Operators, and Operands

Dataflow modeling describes the design in terms of expressions instead of primitive gates. Expressions, operators,

and operands form the basis of dataflow modeling.

Expressions are constructs that combine operators and operands to produce a result.
// Examples of expressions. Combines operands and operators

a b

Dept.of ECE/ATMECE, Mysuru Page 61

Verilog HDL [15EC53]

addrl1[20:17] + addr2[20:17]
inl | in2

Operands can be any one of the data types defined, Data Types. Some constructs will take only certain types of
operands. Operands can be constants, integers, real numbers, nets, registers, times, bit-select (one bit of vector net or

a vector register), part-select (selected bits of the vector net or register vector), and memories or function calls
integer count, final count;

final count = count + 1;//count is an integer operand

real a, b, c;

c =a - b; //a and b are real operands

reg [15:0] regl, reg2;

reg [3:0] reg out;

reg out = regl[3:0] ”~ reg2[3:0];//regl[3:0] amsbregZ[B:O} are

o
- N
//part-select register operands S§
&
reg ret value; QQ
ret value = calculate parity (A, B);//calculate parity is a

//function type operand
Operators

Operators act on the operands to produce desired results. Verilog provides various types of operators. Operator
Types d1 && d2 // && is an operator on operands d1 and d2.

1a[0] // ! is an operator on operand a[0]
B >>1// >> is an operator on operands B and 1
Operator Types

Verilog provides many different operator types. Operators can be arithmetic, logical, relational, equality, bitwise,
reduction, shift, concatenation, or conditional. Some of these operators are similar to the operators used in the C
programming language. Each operator type is denoted by a symbol. Table shows the complete listing of operator

symbols classified by category.

Dept.of ECE/ATMECE, Mysuru Page 62

Verilog HDL [15EC53]

Table 3-4 Operator Types and Symbols

Operator Type | Operator Symbol | Operation Performed | Number of Operands - .
. . bitwise negation one
* multiply two
& bitwise and two
divide two
Bitwise | bitwise or two
+ add two
Arithmetic o bitwise xor two
subtract two
A of " bitwise xnor two
0 -
'" modulus o & reduction and one
* power (exponent) two & reduction pand one
! logical negation one
| reduction or one
Logical && logical and two Reduction
~ reduction nor one
| logical or two
reduction xor one
greater than two
A of " reduction xnor one
< less than two — - -
Relational = Right shift Two
= greater than or equal [fwo .
Left shift Two
o= less than or equal two Shift . L)
Arithmetic right shift | Twe
== equality two
o - < Arithmetic left shift | Two
= inequality two () - -
Equality o ‘@ catenation |{} Concatenation Any number
= case equality twa Cpb‘ Replication f{r Replication Any number
\Z — "
== case inequality two (\O\' Conditional % Conditional Three
-
Examples

A design can be represented in terms of gates, data flow, or a behavioral description. Consider the 4-to-1 multiplexer
and 4-bit full adder described earlier. Previously, these designs were directly translated from the logic diagram into a
gate-level Verilog description. Here, we describe the same designs in terms of data flow. We also discuss two
additional examples: a 4-bit full adder using carry look ahead and a 4-bit counter using negative edge-triggered D-
flip-flops.

4-to-1 Multiplexer

Gate-level modeling of a 4-to-1 multiplexer, Example. The logic diagram for the multiplexer is given in Figure 3.4
and the gate-level Verilog description is shown in Example. We describe the multiplexer, using dataflow statements.
Compare it with the gate-level description. We show two methods to model the multiplexer by using dataflow

statements.
Method 1: logic equation

We can use assignment statements instead of gates to model the logic equations of the multiplexer. Notice that

everything is same as the gate-level Verilog description except that computation of out is done by specifying one

Dept.of ECE/ATMECE, Mysuru Page 63

Verilog HDL [15EC53]

logic equation by using operators instead of individual gate instantiations. I/O ports remain the same. This important
so that the interface with the environment does not change. Only the internals of the module change.

Example 4-to-1 Multiplexer, Using Logic Equations

// Module 4-to-1 multiplexer using data flow. logic equation
// Compare to gate-level model

module mux4 to 1 (out, i0, il, i2, i3, sl, s0);

// Port declarations from the I/O diagram
output out;

input 1i0, il, 12, i3;

input sl1, sO;

//Logic equation for out

assign out = (~sl & ~s0 & 1i0) | (%
(~s1 & sO & il) |
(sl & ~s0 & i2) |
(sl & sO & i3) ;

endmodule
Method 2: conditional operator
There is a more concise way to specify the 4-to-1 multiplexers.

Example of 4-to-1 Multiplexer, Using Conditional Operators

// Module 4-to-1 multiplexer using data flow. Conditional operator.
// Compare to gate-level model

module multiplexer4 to 1 (out, i0O, i1, i2, i3, sl1, s0);

// Port declarations from the I/0 diagram

output out;

input 10, 11, 12, 1i3;

input sl1l, sO0;

Dept.of ECE/ATMECE, Mysuru Page 64

Verilog HDL [15EC53]

// Use nested conditional operator
assign out = sl1 ? (sO ? i3 : i2) : (sO 2 i1 : 1i0) ;
endmodule

In the simulation of the multiplexer, the gate-level module can be substituted with the dataflow multiplexer modules
described above. The stimulus module will not change. The simulation results will be identical. By encapsulating
functionality inside a module, we can replace the gate-level module with a dataflow module without affecting the
other modules in the simulation. This is a very powerful feature of Verilog.

4 bit Full Adder

The 4-bit full adder in, Examples, was designed by using gates; the logic diagram is shown in Figure 3.7. In this
section, we write the dataflow description for the 4-bit adder. In gates, we had to first describe a 1-bit full adder.
Then we built a 4-bit full ripple carry adder. We again illustrate two methods to describe a 4-bit full adder by means

of dataflow statements.

Method 1: dataflow operators Q\(\
4
Q
A concise description of the adder is defined with th\e,‘br and { } operators.
O

N\
Example 4-bit Full Adder, Using Dataflow Operators

// Define a 4-bit full adder by using dataflow statements.
module fulladd4 (sum, c_out, a, b, c _in);

// 1/0 port declarations

output [3:0] sum;

output c_out;

input[3:0] a, b;

input c_in;

// Specify the function of a full adder

assign {c_out, sum} = a + b + c_in;

endmodule

If we substitute the gate-level 4-bit full adder with the dataflow 4-bit full adder, the rest of the modules will not

change. The simulation results will be identical.

Dept.of ECE/ATMECE, Mysuru Page 65

Verilog HDL [15EC53]

Method 2: full adder with carry lookahead

In ripple carry adders, the carry must propagate through the gate levels before the sum is available at the output
terminals. An n-bit ripple carry adder will have 2n gate levels. The propagation time can be a limiting factor on the
speed of the circuit. One of the most popular methods to reduce delay is to use a carry lookahead mechanism. Logic
equations for implementing the carry lookahead mechanism can be found in any logic design book. The propagation
delay is reduced to four gate levels, irrespective of the number of bits in the adder. The Verilog description for a
carry lookahead adder. This module can be substituted in place of the full adder modules described before without
changing any other component of the simulation. The simulation results will be unchanged.

Example 4-bit Full Adder with Carry Lookahead

module fulladd4 (sum, c out, a, b, c _in);
// Inputs and outputs

output [3:0] sum;

output c_out;

input [3:0] a,b;

input c in;

// Internal wires

wire p0,g0, pl,gl, p2,92, pP3,93;
wire c4, c3, c2, cl;

// compute the p for each stage
assign p0 = a[0] ~ b[O0],

pl = all]l] * b[l],

p2 = al2] * b[2],

p3 = al3] »~ b[3];

// compute the g for each stage
assign g0 = a[0] & b[0],

gl = all] & b[1l],

g2 = al2] & b[2],

g3 = al3] & b[3];

// compute the carry for each stage

// Note that c_in is equivalent c0 in the arithmetic equation for

Dept.of ECE/ATMECE, Mysuru Page 66

Verilog HDL [15EC53]

// carry lookahead computation

assign cl = g0 | (pO
c2 =gl | (pl & g0)
c3 =g2 | (p2 & gl)
cd = g3 | (p3 & g2)
(p3 & P2 & pl & PO &

// Compute Sum

assign sum[0] = p0 ~©
sum[1l] = pl * c1,
sum[2] = p2 * c2,

sum[3] = p3 "~ c3;

& c_in),

| (pl & pO & c_in),

// Assign carry output

assign c_out = c4;
endmodule

Ripple Counter

| (p2 & pl & g0) | (p2 & pl & PO & c _in),
| (pP3 & p2 & gl) | (p3 & p2 & pl & g0) |
c_in);
c in,
)
&gb
-]
éSp
<

Consider the design of a 4-bit ripple counter by using negative edge-triggered flipflops. This example was discussed

at a very abstract level, Hierarchical Modeling Concepts. We design it using Verilog dataflow statements and test it

with a stimulus module. The diagrams for the 4-bit ripple carry counter modules are show the counter being built

with four T-flipflops.

clear

Figure 3.11 4 bit ripple counter

Dept.of ECE/ATMECE, Mysuru

Page 67

Verilog HDL [15EC53]

el

reset

Figure 3.12 T-flipflop is built with one D-flipflop and an inverter gate

Figure 3.13 shows the D-flipflop constructed from basic Igg}% gates.

bs‘\ﬁ
r —
I I
| |
| |
I I
: |
clear — I
I q
| |
clk 4 |
| gbar
| |
| |
| |
I |
| |
d I |
| |

Figure 3.13 Negative Edge-Triggered D-flipflop with Clear

Given the above diagrams, we write the corresponding Verilog, using dataflow statements in a top-down fashion.

First we design the module counter. The code is shown in. The code contains instantiation of four T_FF modules.

Example: Verilog Code for Ripple Counter

// Ripple counter

Dept.of ECE/ATMECE, Mysuru Page 68

module counter(Q , clock, clear);
// 1/0 ports

output [3:0] Q;

input clock, clear;

// Instantiate the T flipflops

T FF t££f0(Q[0], clock, clear);

T FF tf£f1(Q[1], QI[0], clear);

T FF tf£f2(Q[2], QI[1l], clear);

T FF tf£3(Q[3], Q[2], clear);

endmodule

Example :Verilog Code for T-flipflop

// Edge-triggered T-flipflop. Toggles every clock

// cycle. 6§>
module T FF(q, clk, clear);
_ %&\K
// 1/0 ports 0\0
<

output qg;

input clk, clear;

// Instantiate the edge-triggered DFF

// Complement of output g is fed back.

// Notice gbar not needed. Unconnected port.
edge dff ffl(gq, ,~qgq, clk, clear);

endmodule

Verilog Code for Edge-Triggered D-flipflop

// Edge-triggered D flipflop

module edge dff (g, gbar, d, clk, clear);
// Inputs and outputs

output g, gbar;

input d, clk, clear;

// Internal variables

wire s, sbar, r, rbar,cbar;

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru

Page 69

Verilog HDL [15EC53]

// dataflow statements

//Create a complement of signal clear

assign cbar = ~clear;

// Input latches; A latch is level sensitive. An edge-sensitive
// flip-flop is implemented by using 3 SR latches.

assign sbar = ~(rbar & s),

)]
I

~(sbar & cbar & ~clk),

r ~(rbar & ~clk & s),
rbar = ~(r & cbar & d);

// Output latch

assign q = ~(s & gbar),
gbar = ~(q & r & cbar);
endmodule
)

Stimulus Module for Ripple Counter o

&

-]
// Top level stimulus module éﬁ?

<

module stimulus;

// Declare variables for stimulating input
reg CLOCK, CLEAR;

wire [3:0] Q;

initial

Smonitor ($time, " Count Q = %b Clear= %b", QI[3:0],CLEAR);
// Instantiate the design block counter
counter cl(Q, CLOCK, CLEAR);

// Stimulate the Clear Signal

initial

begin

CLEAR = 1'b1l;

#34 CLEAR = 1'b0;

#200 CLEAR = 1'bl;

#50 CLEAR = 1'bO;

Dept.of ECE/ATMECE, Mysuru Page 70

Verilog HDL [15EC53]

end

// Set up the clock to toggle every 10 time units
initial

begin

CLOCK = 1'bO0;

forever #10 CLOCK = ~CLOCK;

end

// Finish the simulation at time 400

initial

begin

#400 S$Sfinish;

end
endmodule
<

The output of the simulation is shown belowngote that the clear signal resets the count
to zero. &$

éb

A\
0 Count Q = 0000 Clear= 1 QQ
34 Count Q = 0000 Clear= 0
40 Count Q = 0001 Clear= O
60 Count Q = 0010 Clear= O
80 Count Q = 0011 Clear= 0

100 Count Q 0100 Clear= 0

120 Count Q 0101 Clear= O
140 Count Q = 0110 Clear= O
160 Count QO = 0111 Clear= O
180 Count Q = 1000 Clear= 0
200 Count Q = 1001 Clear= 0
220 Count Q = 1010 Clear= 0
234 Count Q = 0000 Clear=1
284 Count Q = 0000 Clear= 0
300 Count Q = 0001 Clear= 0

320 Count Q 0010 Clear= 0

Dept.of ECE/ATMECE, Mysuru Page 71

Verilog HDL [15EC53]

340 Count Q 0011 Clear= 0

360 Count Q 0100 Clear= 0

380 Count Q 0101 Clear= O

3.6: Outcomes
After completion of the module the students are able to:

> ldentify logic gate primitives provided in Verilog and Understand instantiation of gates, gate
symbols, and truth tables for and/or and buf/not type gates.

» Understand how to construct a Verilog description from the logic diagram of the circuit.

> Describe rise, fall, and turn-off delays in the gate-level design and Explain min, max, and typ delays
in the gate-level design

» Describe the continuous assignment (assign) statement, restrictions on the assign statement, and the
implicit continuous assignment statement.

> Explain assignment delay, implicit assignment delay, and net declaration delay for continuous
assignment statements and Define expressts, operators and operands.

» Use dataflow constructs to model practlgh}dlgltal circuits in Verilog

&®

N
3.7: Recommended questions

1. Write the truth table of all the basic gates. Input values consisting of <0°, ‘1°, ‘x’, ‘z’.

2. What are the primitive gates supported by Verilog HDL? Write the Verilog HDL statements to
instantiate all the primitive gates.

3. Use gate level description of Verilog HDL to design 4 to 1 multiplexer. Write truth table, top-level
block, logic expression and logic diagram. Also write the stimulus block for the same.

4. Explain the different types of buffers and not gates with the help of truth table, logic symbol, logic
expression

5. Use gate level description of Verilog HDL to describe the 4-bit ripple carry counter. Also write a
stimulus block for 4-bit ripple carry adder.

6. How to model the delays of a logic gate using Verilog HDL? Give examples. Also explain the
different delays associated with digital circuits.

7. Write gate level description to implement function y = a.b + ¢, with 5 and 4 time units of gate delay for
AND and OR gate respectively. Also write the stimulus block and simulation waveform.

8. With syntax describe the continuous assignment statement.

Dept.of ECE/ATMECE, Mysuru Page 72

Verilog HDL [15EC53]

9. Show how different delays associated with logic circuit are modelled using dataflow description.

10. Explain different operators supported by Verilog HDL.

11. What is an expression associated with dataflow description? What are the different types of operands
in an expression?

12. Discuss the precedence of operators.

13. Use dataflow description style of Verilog HDL to design 4:1 multiplexer with and without using
conditional operator.

14. Use dataflow description style of Verilog HDL to design 4-bitadder

using i. Ripple carry logic.

ii. Carry look ahead logic.

15. Use dataflow description style, gate level description of Verilog HDL to design 4-bit ripple carry
counter. Also write the stimulus block to verify the same.

Dept.of ECE/ATMECE, Mysuru Page 73

Verilog HDL [15EC53]

MODULE -4

BEHAVIORAL MODELING

4.1 Objectives

» To Explain the significance of structured procedures always and initial in behavioral modeling.

« To Define blocking and nonblocking procedural assignments.

« To Understand delay-based timing control mechanism in behavioral modeling. Use regular delays,
intra-assignment delays, and zero delays.

» To Describe event-based timing control mechanism in behavioral modeling. Use regular event
control, named event control, and event OR control.

« To Use level-sensitive timing control mechanism in behavioral modeling.

» To Explain conditional statements using if and else.

» To Describe multiway branching, using cas%@%gsex, and casez statements.

* To Understand looping statements suc@éﬁNhile, for, repeat, and forever.

« To Define sequential and parallel blggks.

4.2 Structured Procedures

There are two structured procedure statements in Verilog: always and initial. These statements are the two most
basic statements in behavioral modeling. All other behavioral statements can appear only inside these structured
procedure statements. Verilog is a concurrent programming language unlike the C programming language,

which is sequential in nature.

Activity flows in Verilog run in parallel rather than in sequence. Each always and initial statement represents a
separate activity flow in Verilog. Each activity flow starts at simulation time 0. The statements always and
initial cannot be nested. The fundamental difference between the two statements is explained in the following

sections
4.2.1 Initial Statement

All statements inside an initial statement constitute an initial block. An initial block starts at time 0, executes
exactly once during a simulation, and then does not execute again. If there are multiple initial blocks, each

block starts to execute concurrently at time 0. Each block finishes execution independently of other blocks.

Dept.of ECE/ATMECE, Mysuru Page 74

Verilog HDL [15EC53]

Multiple behavioral statements must be grouped, typically using the keywords begin and end. If there is only
one behavioral statement, grouping is not necessary. This is similar to the begin-end blocks in Pascal
programming language or the { } grouping in the C programming language. Example 4.1 illustrates the use of

the initial statement.

Example 4.1:1Initial Statement

module stimulus;

reqg x,y, a,b, m;

initial

m = 1'b0; //single statement; does not need to be grouped
initial

begin

#5 a = 1'bl; //multiple statements; need to be grouped

#25 b = 1'b0; ‘{b
e
end &$
éb
initial o
N\
begin

#10 x = 1'b0;

#25 vy

Il
=
of
=
~

end

initial

128

#50 S$finish;

endmodule

In the above example, the three initial statements start to execute in parallel at time 0. If a delay #<delay> is
seen before a statement, the statement is executed <delay> time units after the current simulation time. Thus,
the execution sequence of the statements inside the initial blocks will be as follows.

time statement executed
Om= 1'b0;
5a=1"bl;

10 x = 1'b0;

Dept.of ECE/ATMECE, Mysuru Page 75

Verilog HDL [15EC53]

30 b = 1'b0;
35 vy = 1'bl;
50 $finish;

The initial blocks are typically used for initialization, monitoring, waveforms and other processes that must be
executed only once during the entire simulation run. The following subsections discussion how to initialize
values using alternate shorthand syntax. The use of such shorthand syntax has the same effect as an initial block

combined with a variable declaration.
Combined Variable Declaration and Initialization
Variables can be initialized when they are declared. Example 4-2 shows such a declaration.

Example 4-2 Initial Value Assignment

//The clock variable is defined first

reg clock;
<&

//The value of clock is set to 0 &Q)'

Q

gb&

¢
o

//Instead of the above method, clock variable

initial clock = 0;

//can be initialized at the time of declaration
//This is allowed only for variables declared
//at module level.

reg clock = 0;

Combined Port/Data Declaration and Initialization

The combined port/data declaration can also be combined with an initialization. Example 4-3 shows such a

declaration.

Example 4-3 Combined Port/Data Declaration and Variable Initialization

module adder (sum, co, a, b, ci);

output reg [7:0] sum = 0; //Initialize 8 bit output sum
output reg co = 0; //Initialize 1 bit output co

input [7:0] a, b;

input ci;

Dept.of ECE/ATMECE, Mysuru Page 76

Verilog HDL [15EC53]

endmodule

Combined ANSI C Style Port Declaration and Initialization

ANSI C style port declaration can also be combined with an initialization. Example 4-4 shows such a

declaration.

Example 4-4 Combined ANSI C Port Declaration and Variable Initialization

module adder (output reg [7:0] sum = 0, //Initialize 8 bit output
output reg co = 0, //Initialize 1 bit output co
input [7:0] a, b,

input ci

endmodule <

4.2.2 Always Statement

All behavioral statements inside an always statement constitute an always block. The always statement starts at
time 0 and executes the statements in the always block continuously in a looping fashion. This statement is used
to model a block of activity that is repeated continuously in a digital circuit. An example is a clock generator
module that toggles the clock signal every half cycle. In real circuits, the clock generator is active from time 0
to as long as the circuit is powered on. Example 4-5 illustrates one method to model a clock generator in
Verilog.

Example 4-5 always Statement

module clock gen (output reg clock);

//Initialize clock at time zero

initial

clock = 1'b0O;

//Toggle clock every half-cycle (time period = 20)

always

Dept.of ECE/ATMECE, Mysuru Page 77

Verilog HDL [15EC53]

#10 clock = ~clock;

initial

#1000 $finish;

endmodule

In Example 4-5, the always statement starts at time 0 and executes the statement clock = ~clock every 10 time
units. Notice that the initialization of clock has to be done inside a separate initial statement. If we put the
initialization of clock inside the always block, clock will be initialized every time the always is entered. Also,
the simulation must be halted inside an initial statement. If there is no $stop or $finish statement to halt the
simulation, the clock generator will run forever. C programmers might draw an analogy between the always

block and an infinite loop.

But hardware designers tend to view it as a continuously repeated activity in a digital circuit starting from
power on. The activity is stopped only by power off ($finish) or by an interrupt ($stop).

4.3 Procedural Assignments &
-
0

Procedural assignments update values of reg, mte%e,b‘ real, or time variables. The value placed on a variable will
remain unchanged until another procedural asQ%nment updates the variable with a different value. These are

unlike continuous assignments, Dataflow Modeling, where one assignment statement can cause the value of
the right-hand-side expression to be continuously placed onto the left-hand-side net. The

syntax for the simplest form of procedural assignment is shown below.

assignment ::= variable_lvalue = [delay_or_event_control] expression

The left-hand side of a procedural assignment <lvalue> can be one of the following:

* A reg, integer, real, or time register variable or a memory element

* A bit select of these variables (e.g., addr[0])

* A part select of these variables (e.g., addr[31:16])

* A concatenation of any of the above

The right-hand side can be any expression that evaluates to a value. In behavioral modeling, all operators can be

used in behavioral expressions.

Dept.of ECE/ATMECE, Mysuru Page 78

Verilog HDL [15EC53]

There are two types of procedural assignment statements: blocking and nonblocking.
4.3.1 Blocking Assignments

Blocking assignment statements are executed in the order they are specified in a sequential block. A blocking
assignment will not block execution of statements that follow in a parallel block. The = operator is used to
specify blocking assignments.

Example 4-6 Blocking Statements

reg x, y, zs
reg [15:0] reg a, reg b;
integer count;

//All behavioral statements must be inside an initial or always block

initial
begin
g &
®0
x =0; yv=1; z = 1; //Scalar assignmentsb;‘\g
. . D
count = 0; //Assignment to integer variggﬂes
<
reg a = 16'b0; reg b = reg a; //initialize vectors
#15 reg al2] = 1'bl; //Bit select assignment with delay
#10 reg b[15:13] = {x, y, z} //Assign result of concatenation to part select of a vector
count = count + 1; //Assignment to an integer (increment)

end

In Example 4-6, the statement y = 1 is executed only after x = 0 is executed. The behavior in a particular block
is sequential in a begin-end block if blocking statements are used, because the statements can execute only in
sequence. The statement count = count + 1 is executed last. The simulation times at which the statements are

executed are as follows:

* All statements x = 0 through reg b =reg a are executed at time 0
» Statement reg_a[2] = 0 at time = 15

* Statement reg _b[15:13] = {X, y, z} at time =25

 Statement count = count + 1 at time = 25

Dept.of ECE/ATMECE, Mysuru Page 79

Verilog HDL [15EC53]

« Since there is a delay of 15 and 10 in the preceding statements, count = count + 1 will be executed at time = 25

units

Note that for procedural assignments to registers, if the right-hand side has more bits than the register variable,
the right-hand side is truncated to match the width of the register variable. The least significant bits are selected
and the most significant bits are discarded. If the right-hand side has fewer bits, zeros are filled in the most

significant bits of the register variable.
4.3.2 Nonblocking Assignments

Nonblocking assignments allow scheduling of assignments without blocking execution of the statements that
follow in a sequential block. A <= operator is used to specify nonblocking assignments. Note that this operator
has the same symbol as a relational operator, less_than_equal_to. The operator <= is interpreted as a relational
operator in an expression and as an assignment operator in the context of a nonblocking assignment. To
illustrate the behavior of nonblocking statements and its difference from blocking statements, let us consider
Example 4-7, where we convert some blocking assign\gqents to nonblocking assignments, and observe the

- ®0
behavior. bi\&

)
]
Example 4-7 Nonblocking Assignments 06\

reqg x, Yy, Z;
reg [15:0] reg a, reg b;
integer count;

//All behavioral statements must be inside an initial or always block

initial

begin

x =0; y=1; z = 1; //Scalar assignments

count = 0; //Assignment to integer variables

reg a = 16'b0; reg b = reg a; //Initialize vectors

reg al2] <= #15 1'bl; //Bit select assignment with delay

reg b[15:13] <= #10 {x, y, z}; //Assign result of concatenation
//to part select of a vector

count <= count + 1; //Assignment to an integer (increment)

end

Dept.of ECE/ATMECE, Mysuru Page 80

Verilog HDL [15EC53]

In this example, the statements x = 0 through reg_b = reg_a are executed sequentially at time 0. Then the three

nonblocking assignments are processed at the same simulation time.
1. reg_a[2] = 0 is scheduled to execute after 15 units (i.e., time = 15)
2. reg_b[15:13] = {X, vy, z} is scheduled to execute after 10 time units (i.e., time = 10)

3. count = count + 1 is scheduled to be executed without any delay (i.e., time = 0) Thus, the simulator schedules
a nonblocking assignment statement to execute and continues to the next statement in the block without waiting

for the nonblocking statement to complete execution. Typically, nonblocking assignment statements are

executed last in the time step in which they are scheduled, that is, after all the blocking assignments in that time

step are executed.

In the example above, we mixed blocking and nonblocking assignments to illustrate their behavior. However, it
is recommended that blocking and nonblocking assignments not be mixed in the same always block.
Application of nonblocking assignments @\(\

Q:
Having described the behavior of nonblocking as&fﬁhments it is important to understand why they are used in
digital design. They are used as a method toQ%odeI several concurrent data transfers that take place after a
common event. Consider the following example where three concurrent data transfers take place at the positive

edge of clock.

always @ (posedge clock)

begin

regl <= #1 inl;

reg2 <= (@ (negedge clock) in2 *~ in3;

reg3 <= #1 regl; //The old value of regl

end

At each positive edge of clock, the following sequence takes place for the nonblocking assignments.

1. A read operation is performed on each right-hand-side variable, inl, in2, in3, and regl, at the positive edge of

clock. The right-hand-side expressions are evaluated, and the results are stored internally in the simulator.

2. The write operations to the left-hand-side variables are scheduled to be executed at the time specified by the
intra-assignment delay in each assignment, that is, schedule "write" to regl after 1 time unit, to reg2 at the next

negative edge of clock, and to reg3 after 1 time unit.

Dept.of ECE/ATMECE, Mysuru Page 81

Verilog HDL [15EC53]

3. The write operations are executed at the scheduled time steps. The order in which the write operations are
executed is not important because the internally stored right-hand-side expression values are used to assign to
the left-hand-side values. For example, note that reg3 is assigned the old value of regl that was stored after the
read operation, even if the write operation wrote a new value to regl before the write operation to reg3 was

executed.

Thus, the final values of regl, reg2, and reg3 are not dependent on the order in which the assignments are

processed.

To understand the read and write operations further, consider Example 4-8, which is intended to swap the
values of registers a and b at each positive edge of clock, using two concurrent always blocks.

Example 4-8 Nonblocking Statements to Eliminate Race Conditions

//Illustration 1: Two concurrent always blocks with blocking

//statements

always @ (posedge clock) Q;g‘
N
a = b; %bs&\
xQ
always @ (posedge clock) Qp
b = a;
135

//Illustration 2: Two concurrent always blocks with nonblocking

//statements

always @ (posedge clock)

a <= b;

always @ (posedge clock)

b <= a;

In Example 4-8, in Illustration 1, there is a race condition when blocking statements are used. Either a = b
would be executed before b = a, or vice versa, depending on the simulator implementation. Thus, values of

registers a and b will not be swapped. Instead, both registers will get the same value (previous value of a or b),

based on the Verilog simulator implementation.

However, nonblocking statements used in Illustration 2 eliminate the race condition. At the positive edge of
clock, the values of all right-hand-side variables are "read,” and the right-hand-side expressions are evaluated
and stored in temporary variables. During the write operation, the values stored in the temporary variables are

Dept.of ECE/ATMECE, Mysuru Page 82

Verilog HDL [15EC53]

assigned to the left-handside variables. Separating the read and write operations ensures that the values of
registers a and b are swapped correctly, regardless of the order in which the write operations are performed.
Example 4-9 shows how nonblocking assignments shown in Illustration 2 could be emulated using blocking

assignments.

Example 4-9 Implementing Nonblocking Assignments using Blocking Assignments

//Emulate the behavior of nonblocking assignments by
//using temporary variables and blocking assignments
always @ (posedge clock)

begin

//Read operation

//store values of right-hand-side expressions in temporary variables

temp a = a;

temp b = b; &

//Write operation %ga
>

//Assign values of temporary variablesé§g left-hand-side variables
<

a = temp b;

b = temp a;

end

For digital design, use of nonblocking assignments in place of blocking assignments is highly recommended in
places where concurrent data transfers take place after a common event. In such cases, blocking assignments
can potentially cause race conditions because the final result depends on the order in which the assignments are
evaluated. Nonblocking assignments can be used effectively to model concurrent data transfers because the
final result is not dependent on the order in which the assignments are evaluated. Typical applications of
nonblocking assignments include pipeline modeling and modeling of several mutually exclusive data transfers.
On the downside, nonblocking assignments can potentially cause degradation in the simulator performance and

increase in memory usage.
4.4 Timing Controls

Various behavioral timing control constructs are available in Verilog. In Verilog, if there are no timing control
statements, the simulation time does not advance. Timing controls provide a way to specify the simulation time

at which procedural statements will execute.

Dept.of ECE/ATMECE, Mysuru Page 83

Verilog HDL [15EC53]

There are three methods of timing control: delay-based timing control, event-based timing control, and level-

sensitive timing control.
4.4.1 Delay-Based Timing Control

Delay-based timing control in an expression specifies the time duration between when the statement is
encountered and when it is executed. We used delay-based timing control statements when writing few modules
in the preceding chapters but did not explain them in detail. In this section, we will discuss delay-based timing
control statements. Delays are specified by the symbol #. Syntax for the delay-based timing control statement is

shown below.

delay3 ::= # delay value | # (delay value [, delay value [,
delay value]])

delay2 ::= # delay_value | # (delay_value [, delay value])

delay value ::= Q}(\
$

%b‘

éSp
<

unsigned_number

| parameter_identifier

| specparam_identifier

| mintypmax_expression

Delay-based timing control can be specified by a number, identifier, or a mintypmax_expression. There are
three types of delay control for procedural assignments: regular delay control, intra-assignment delay control,

and zero delay control.
Regular delay control

Regular delay control is used when a non-zero delay is specified to the left of a procedural assignment. Usage of

regular delay control is shown in Example 4-10.

Example 4-10 Regular Delay Control

//define parameters
parameter latency = 20;

parameter delta = 2;

Dept.of ECE/ATMECE, Mysuru Page 84

Verilog HDL [15EC53]

//define register variables

reqg x, Y, 2z, P, 4

initial

begin

x = 0; // no delay control

#10 v = 1; // delay control with a number. Delay execution of
// vy =1 by 10 units

#latency z = 0; // Delay control with identifier. Delay of 20
units

(latency + delta) p = 1; // Delay control with expression

#y x = x + 1; // Delay control with identifier. Take value of y.
#(4:5:6) g = 0; // Minimum, typical and maximum delay values.
//Discussed in gate-level modeling chapter.

end Q?§>

N
B
In Example 4-10, the execution of a procedural@?ﬂgnment is delayed by the number specified by the delay

control. For begin-end groups, delay is alwaysﬁ'\elatlve to time when the statement is encountered. Thus, y =1 is

executed 10 units after it is encountered in the activity flow.
Intra-assignment delay control

Instead of specifying delay control to the left of the assignment, it is possible to assign a delay to the right of the
assignment operator. Such delay specification alters the flow of activity in a different manner. Example 4-11

shows the contrast between intra-assignment delays and regular delays.

Example 4-11 Intra-assignment Delays

//define register variables
reg x, Y, z;

//intra assignment delays
initial

begin

x =0; z = 0;

y = #5 x + z; //Take value of x and z at the time=0, evaluate

Dept.of ECE/ATMECE, Mysuru Page 85

Verilog HDL [15EC53]

//x + z and then wait 5 time units to assign value to y.
end

//Equivalent method with temporary variables and regular delay control

initial

begin

x =0; z = 0;
temp xz = x + z;

#5 y = temp xz; //Take value of x + z at the current time and

//store it in a temporary variable. Even though x and z might change between 0 and 5,
//the value assigned to y at time 5 is unaffected.

end

Note the difference between intra-assignment delays and regular delays. Regular delays defer the execution of
the entire assignment. Intra-assignment delays compute the righthand- side expression at the current time and

defer the assignment of the computed value to the left- t‘@?!d side variable. Intra-assignment delays are like using

regular delays with a temporary variable to store the,bse\lrrent value of a right-hand-side expression.

&®

Zero delay control N

Procedural statements in different always-initial blocks may be evaluated at the same simulation time. The order
of execution of these statements in different always-initial blocks is nondeterministic. Zero delay control is a
method to ensure that a statement is executed last, after all other statements in that simulation time are executed.
This is used to eliminate race conditions. However, if there are multiple zero delay statements, the order
between them is nondeterministic. Example 4-12 illustrates zero delay control.

Example 4-12 Zero Delay Control
initial

begin

x = 0;

y = 0;

end

initial

begin

#0 x = 1; //zero delay control

Dept.of ECE/ATMECE, Mysuru Page 86

Verilog HDL [15EC53]

#0 v = 1;

end

In Example 4-12, four statements?x =0,y =0, x = 1, y = 1?are to be executed at simulation time 0. However,
since x =1 and y = 1 have #0, they will be executed last. Thus, at the end of time 0, x will have value 1 and y

will have value 1. The order in which x =1 and y = 1 are executed is not deterministic. The above example was

used as an illustration. However, using #0 is not a recommended practice.

4.4.2 Event-Based Timing Control

An event is the change in the value on a register or a net. Events can be utilized to trigger execution of a
statement or a block of statements. There are four types of event-based timing control: regular event control,

named event control, event OR control, and level sensitive timing control.

Regular event control
\°

The @ symbol is used to specify an event control. S&s‘é’ments can be executed on changes in signal value or at a
positive or negative transition of the signal vatg@' The keyword posedge is used for a positive transition, as

shown in Example 4-13.

Example 4-13 Regular Event Control

@(clock) g = d; //gq = d is executed whenever signal clock changes value
@ (posedge clock) q = d; //q = d is executed whenever signal clock does
//a positive transition (0 to 1,x or z,

// x to 1, z to 1)

@ (negedge clock) g = d; //q = d is executed whenever signal clock does
//a negative transition (1 to 0,x or z,

//x to 0, z to 0)

q = @(posedge clock) d; //d is evaluated immediately and assigned

//to g at the positive edge of clock

Named event control

Dept.of ECE/ATMECE, Mysuru Page 87

Verilog HDL [15EC53]

Verilog provides the capability to declare an event and then trigger and recognize the occurrence of that event
(see Example 4-14). The event does not hold any data. A named event is declared by the keyword event. An

event is triggered by the symbol ->. The triggering of the event is recognized by the symbol @.

Example 4-14 Named Event Control

//This is an example of a data buffer storing data after the
//last packet of data has arrived.

event received data; //Define an event called received data
always @ (posedge clock) //check at each positive clock edge

begin

if (last_data packet) //If this is the last data packet

->received data; //trigger the event received data

end

always @ (received data) //Await triggering of‘syent received data
//When event is triggered, store all fou{gﬁgéb
//packets of received data in data bu§§§%
//use concatenation operator { }

data buf = {data pkt[0], data pkt[l], data pkt[2],

data pkt[3]};

Event OR Control

Sometimes a transition on any one of multiple signals or events can trigger the execution of a statement or a
block of statements. This is expressed as an OR of events or signals. The list of events or signals expressed as
an OR is also known as a sensitivity list. The keyword or is used to specify multiple triggers, as shown in

Example 4-15.

Example 4-15 Event OR Control (Sensitivity List)

//A level-sensitive latch with asynchronous reset
always @(reset or clock or d)
//Wait for reset or clock or d to

change

Dept.of ECE/ATMECE, Mysuru Page 88

Verilog HDL [15EC53]

begin

if (reset) //if reset signal is high, set g to O.
qg = 1'00;

else if (clock) //if clock is high, latch input

q = d;

end

Sensitivity lists can also be specified using the "," (comma) operator instead of the or operator. Example 4-16
shows how the above example can be rewritten using the comma operator. Comma operators can also be

applied to sensitivity lists that have edge-sensitive triggers.

Example 4-16 Sensitivity List with Comma Operator

//BA level-sensitive latch with asynchronous reset

always @(reset, clock, d) é§>
<O
S
//Wait for reset or clock or d to 2
xQ
<§)
change
begin

if (reset) //if reset signal is high, set g to O.

g = 1'b0;

else if(clock) //if clock is high, latch input

q=4d;

end

//A positive edge triggered D flipflop with asynchronous falling
//reset can be modeled as shown below

always @ (posedge clk, negedge reset) //Note use of comma operator
if (!reset)

q <=0;

else

Dept.of ECE/ATMECE, Mysuru Page 89

Verilog HDL [15EC53]

q <=d;

When the number of input variables to a combination logic block are very large, sensitivity lists can become
very cumbersome to write. Moreover, if an input variable is missed from the sensitivity list, the block will not
behave like a combinational logic block. To solve this problem, Verilog HDL contains two special symbols: @*
and @(*). Both symbols exhibit identical behavior. These special symbols are sensitive to a change on any
signal that may be read by the statement group that follows this symbol

Example 4-17 shows an example of this special symbol for combinational logic sensitivity lists.

IEEE Standard Verilog Hardware Description Language document for details and restrictions on the @* and
@(*) symbols.

Example 4-17 Use of @* Operator

//Combination logic block using the or operator

//Cumbersome to write and it is easy to miss one input to the block
N

@0
always @(a or b or ¢ or d or e or £ or g %§gﬁ or p or m)
)

¢
o

begin
d Q

outl a ? b+c : d+te;

out2 = £ ? g+h : p+m;

end

//Instead of the above method, use Q(*) symbol
//Alternately, the @* symbol can be used

//A1ll input variables are automatically included in the
//sensitivity list.

always @ (*)

begin

outl

a ? b+tc : d+te;

out2 = £ ? g+h : p+m;

end

Dept.of ECE/ATMECE, Mysuru Page 90

Verilog HDL [15EC53]

4.4.3 Level-Sensitive Timing Control

Event control discussed earlier waited for the change of a signal value or the triggering of an event. The symbol
@ provided edge-sensitive control. Verilog also allows level sensitive timing control, that is, the ability to wait
for a certain condition to be true before a statement or a block of statements is executed. The keyword wait is

used for level sensitive constructs.
always
wait (count_enable) #20 count = count + 1;

In the above example, the value of count_enable is monitored continuously. If count_enable is 0, the statement
is not entered. If it is logical 1, the statement count = count + 1 is executed after 20 time units. If count_enable

stays at 1, count will be incremented every 20 time units.

4.5 Conditional Statements

O
Conditional statements are used for making demsmn& gased upon certain conditions. These conditions are used

to decide whether or not a statement should bgefxecuted. Keywords if and else are used for conditional

statements. There are three types of conditionak\%tements. Usage of conditional statements is shown below.
/[Type 1 conditional statement. No else statement.
//Statement executes or does not execute.

if (<expression>) true_statement ;

/[Type 2 conditional statement. One else statement
/[Either true_statement or false_statement is evaluated
if (<expression>) true_statement ; else false_statement ;
/[Type 3 conditional statement. Nested if-else-if.
//IChoice of multiple statements. Only one is executed.
if (<expression1>) true_statementl ;

else if (<expression2>) true_statement?2 ;

else if (<expression3>) true_statement3 ;

Dept.of ECE/ATMECE, Mysuru Page 91

Verilog HDL [15EC53]

else default_statement ;

The <expression> is evaluated. If it is true (1 or a non-zero value), the true_statement is executed. However, if it
is false (zero) or ambiguous (x), the false_statement is executed. The <expression> can contain any operators.
Each true_statement or false_statement can be a single statement or a block of multiple statements. A block

must be grouped, typically by using keywords begin and end. A single statement need not be grouped.

Example 4-18 Conditional Statement Examples
//Type 1 statements

if(!lock) buffer = data;

if (enable) out = in;

//Type 2 statements

if (number queued < MAX Q DEPTH)

begin)
eo
gga
data queue = data; Q?
éSp
number queued = number queued + 1; <
end
else

$display ("Queue Full. Try again");

//Type 3 statements

//Execute statements based on ALU control signal.
if (alu control == 0)

y = X + z;

else if (alu control == 1)
Yy = X - Z;

else if (alu control == 2)
y:X*Z;

else

$display("Invalid ALU control signal");

Dept.of ECE/ATMECE, Mysuru Page 92

Verilog HDL [15EC53]

4.6 Multiway Branching

Conditional Statements, there were many alternatives, from which one was chosen. The nested if-else-if can
become unwieldy if there are too many alternatives. A shortcut to achieve the same result is to use the case

statement.
4.6.1 case Statement

The keywords case, endcase, and default are used in the case statement..
case (expression)

alternativel: statementl;

alternative2: statement2;

alternative3: statement3;

default: default_statement;
endcase

Each of statementl, statement2 , default_statement can be a single statement or a block of multiple statements.
A block of multiple statements must be grouped by keywords begin and end. The expression is compared to the
alternatives in the order they are written. For the first alternative that matches, the corresponding statement or
block is executed. If none of the alternatives matches, the default_statement is executed. The default_statement
is optional. Placing of multiple default statements in one case statement is not allowed. The case statements can

be nested. The following Verilog code implements the type 3 conditional statement in Example 4-18.
//Execute statements based on the ALU control signal

reg [1:0] alu control;

case (alu control)
2'd0 : y = x + z;

2'dl vy = x - z;

Dept.of ECE/ATMECE, Mysuru Page 93

Verilog HDL [15EC53]

2'd2 1y = x * z;
default : S$display("Invalid ALU control signal");

endcase

The case statement can also act like a many-to-one multiplexer. To understand this, let us model the 4-to-1
multiplexer, using case statements. The I/O ports are unchanged. Notice that an 8-to-1 or 16-to-1 multiplexer

can also be easily implemented by case statements.

Example 4-19 4-to-1 Multiplexer with Case Statement
module mux4 to 1 (out, i0, il, 12, i3, sl, s0);
// Port declarations from the I/0 diagram
output out;

input 10, i1, i2, i3;

input s1, s0; ‘§}
S‘\&QJ

0%

S

always @(sl or sO or 10 or il or 12 or'i3)

reg out;

case ({sl, s0}) //Switch based on concatenation of control signals
2'd0 : out = 1i0;

2'dl : out = 1il;

2'd2 : out = 12;

2'd3 : out = 1i3;

default: $display("Invalid control signals");

endcase

endmodule

The case statement compares 0, 1, X, and z values in the expression and the alternative bit for bit. If the
expression and the alternative are of unequal bit width, they are zero filled to match the bit width of the widest
of the expression and the alternative. In Example 4- 20, we will define a 1-to-4 demultiplexer for which outputs

are completely specified, that is, definitive results are provided even for x and z values on the select signal.

Dept.of ECE/ATMECE, Mysuru Page 94

Verilog HDL [15EC53]

Example 4-20 Case Statement with x and z

module demultiplexerl to 4 (outO, outl, out2, out3, in, sl, s0);
// Port declarations from the I/O diagram

output outO, outl, out2, out3;

reg out0, outl, out2, out3;

input in;

input sl, sO0;

always @ (sl or s0O or in)

case ({sl, s0}) //Switch based on control signals

2'b00 : begin out0 = in; outl = 1'bz; out2 = 1'bz; out3 =

1'bz; end
<&
2'p01 : begin out0 = 1'bz; outl = in; out2 2@"bz; out3 =
&
1'bz; end 0\0(0
N\

2'b10 : begin out0 = 1'bz; outl = 1'bz; out2 = in; out3 =

1'bz; end

2'bll : begin out0 = 1'bz; outl = 1'bz; out2 = 1'bz; out3 =

in; end

//Account for unknown signals on select. If any select signal is
//then outputs are x. If any select signal is z, outputs are z.
//If one is x and the other is z, x gets higher priority.
2'bx0, 2'bxl, 2'bxz, 2'bxx, 2'b0x, 2'blx, 2'bzx

begin

out0 = 1'bx; outl = 1'bx; out2 = 1'bx; out3 = 1'bx;

end

2'bz0, 2'bzl, 2'bzz, 2'b0z, 2'blz

begin

Dept.of ECE/ATMECE, Mysuru

Page 95

Verilog HDL [15EC53]

out0 = 1'bz; outl = 1'bz; out2 = 1'bz; out3 = 1'bz;
end

default: $display("Unspecified control signals");
endcase

endmodule

In the demultiplexer shown above, multiple input signal combinations such as 2'bz0, 2'bz1, 2,bzz, 2'b0z, and

2'b1z that cause the same block to be executed are put together with a comma (,) symbol.
4.6.2 casex, casez Keywords

There are two variations of the case statement. They are denoted by keywords, casex and casez.

» casez treats all z values in the case alternatives or the case expression as don't cares. All bit positions with z

can also represented by ? in that position.
&

D
» casex treats all x and z values in the case item or thb‘% e expression as don't cares.

)
: g o :
The use of casex and casez allows comparlson@only non-x or -z positions in the case expression and the case

alternatives. Example 4-21 illustrates the decoding of state bits in a finite state machine using a casex statement.

The use of casez is similar. Only one bit is considered to determine the next state and the other bits are ignored.
Example 4-21 casex Use

reg [3:0] encoding;

integer state;

casex (encoding) //logic value x represents a don't care bit.

4'blxxx : next state = 3;
4'bxlxx : next state = 2;
4'bxx1x : next state = 1;
4'bxxx1l : next state = 0;

default : next state = 0;

endcase

Thus, an input encoding = 4'b10xz would cause next_state = 3 to be executed.

Dept.of ECE/ATMECE, Mysuru Page 96

Verilog HDL [15EC53]

4.7 Loops

There are four types of looping statements in Verilog: while, for, repeat, and forever. The syntax of these loops
is very similar to the syntax of loops in the C programming language. All looping statements can appear only

inside an initial or always block. Loops may contain delay expressions.
4.7.1 While Loop

The keyword while is used to specify this loop. The while loop executes until the while expression is not true. If
the loop is entered when the while-expression is not true, the loop is not executed at all. Each expression can
contain the operators. Any logical expression can be specified with these operators. If multiple statements are to
be executed in the loop, they must be grouped typically using keywords begin and end. Example 4-22 illustrates

the use of the while loop.

Example 4-22 While Loop

//Illustration 1: Increment count from 0 to lZ&} Exit at count 128.

<

gg&

//Display the count variable. q?
xQ

. ®)
integer count; N\
initial
begin
count = 0;

while (count < 128) //Execute loop till count is 127.

//exit at count 128

begin

$display ("Count = %d", count);

count = count + 1;

end

end

//Illustration 2: Find the first bit with a value 1 in flag (vector

variable)

Dept.of ECE/ATMECE, Mysuru Page 97

Verilog HDL [15EC53]

'define TRUE 1'bl';

'define FALSE 1'bO;

reg [15:0] flag;

integer 1i; //integer to keep count
reg continue;

initial

begin

flag = 16'b 0010 _0000_0000_0000;
i=20;

continue = 'TRUE;

148

<

while((i < 16) && continue) //Multiple COH%§§1OHS using operators.
&
=]

begin %
o
<

if (flag[il)
begin
Sdisplay ("Encountered a TRUE bit at element number %d", 1i);

continue = 'FALSE;

4.7.2 for Loop

The keyword for is used to specify this loop. The for loop contains three parts:
* An initial condition

* A check to see if the terminating condition is true

* A procedural assignment to change value of the control variable

Dept.of ECE/ATMECE, Mysuru Page 98

Verilog HDL [15EC53]

The counter described in Example 4-22 can be coded as a for loop (Example 4-23). The initialization condition
and the incrementing procedural assignment are included in the for loop and do not need to be specified
separately. Thus, the for loop provides a more compact loop structure than the while loop. Note, however, that
the while loop is more general-purpose than the for loop. The for loop cannot be used in place of the while loop

in all situations.

Example 4-23 For Loop

integer count;

initial

for (count=0; count < 128; count = count + 1)

Sdisplay ("Count = %d", count);

for loops can also be used to initialize an array or memory, as shown below.

//Initialize array elements
)
'defi MAX STATES 32 o
efine - g§

integer state [0: 'MAX STATES-1]; //IQ§§%Zr array state with elements
0:31

integer 1i;

initial

begin

for(i = 0; 1 < 32; 1 i+ 2) //initialize all even locations with 0
state[i] = 0;
for(i =1; 1 < 32; 1 =1 + 2) //initialize all odd locations with 1

state[i] = 1;

end

for loops are generally used when there is a fixed beginning and end to the loop. If the loop is simply looping on

a certain condition, it is better to use the while loop.

Dept.of ECE/ATMECE, Mysuru Page 99

Verilog HDL [15EC53]

4.7.3 Repeat Loop

The keyword repeat is used for this loop. The repeat construct executes the loop a fixed number of times. A
repeat construct cannot be used to loop on a general logical expression. A while loop is used for that purpose. A
repeat construct must contain a number, which can be a constant, a variable or a signal value. However, if the

number is a variable or signal value, it is evaluated only when the loop starts and not during the loop execution.
The counter in Example 4-22 can be expressed with the repeat loop, as shown in

Ilustration 1 in Example 4-24. Illustration 2 shows how to model a data buffer that latches data at the positive
edge of clock for the next eight cycles after it receives a data start signal.

Example 4-24 Repeat Loop
//Illustration 1 : increment and display count from 0 to 127

integer count;

initial &
)
&
begin (o
éSp
N\
count = 0;
repeat (128)
begin

$display ("Count = %d", count);

count = count + 1;

end

end

//Illustration 2 : Data buffer module example
//After it receives a data start signal.
//Reads data for next 8 cycles.

module data buffer (data start, data, clock);
parameter cycles = §;

input data start;

Dept.of ECE/ATMECE, Mysuru Page 100

Verilog HDL [15EC53]

input [15:0] data;

input clock;

reg [15:0] buffer [0:7];

integer 1i;

150

always @ (posedge clock)

begin

if (data start) //data start signal is true
begin

i=0;

repeat (cycles) //Store data at the posedge of next 8 clock

<&
//cycles Q"
ggb
X
begin Qéb
@)
<
@ (posedge clock) buffer[i] = data; //waits till next

// posedge to latch data

end
end
end

endmodule

4.7.4 Forever loop

The keyword forever is used to express this loop. The loop does not contain any expression and executes

forever until the $finish task is encountered. The loop is equivalent to a while loop with an expression that

always evaluates to true, e.g., while (1). A forever loop can be exited by use of the disable statement.

Dept.of ECE/ATMECE, Mysuru

Page 101

Verilog HDL [15EC53]

A forever loop is typically used in conjunction with timing control constructs. If timing control constructs are
not used, the Verilog simulator would execute this statement infinitely without advancing simulation time and

the rest of the design would never be executed. Example 4-25 explains the use of the forever statement.

Example 4-25 Forever Loop

//Example 1: Clock generation

//Use forever loop instead of always block
reg clock;

initial

begin

clock = 1'b0;

forever #10 clock = ~clock; //Clock with period of 20 units
end ‘§}
Q@
S
//Example 2: Synchronize two register v%a s at every positive edge of
S
//clock

reg clock;

reg x, yi

initial

forever @ (posedge clock) x = y;

4.8 Sequential and Parallel Blocks

Block statements are used to group multiple statements to act together as one. In previous examples, we used
keywords begin and end to group multiple statements. Thus, we used sequential blocks where the statements in
the block execute one after another. In this section we discuss the block types: sequential blocks and parallel
blocks. We also discuss three special features of blocks: named blocks, disabling named blocks, and nested
blocks.

4.8.1 Block Types

There are two types of blocks: sequential blocks and parallel blocks.

Dept.of ECE/ATMECE, Mysuru Page 102

Verilog HDL [15EC53]

Sequential blocks
The keywords begin and end are used to group statements into sequential blocks.
Sequential blocks have the following characteristics:

* The statements in a sequential block are processed in the order they are specified. A statement is executed
only after its preceding statement completes execution (except for nonblocking assignments with intra-

assignment timing control).

« If delay or event control is specified, it is relative to the simulation time when the previous statement in the

block completed execution.

We have used numerous examples of sequential blocks in this book. Two more examples of sequential blocks
are given in Example 4-26. Statements in the sequential block execute in order. In lllustration 1, the final values
are x=0,y=1,z=1, w=2 at simulation time 0. In Illustration 2, the final values are the same except that the
simulation time is 35 at the end of the block.
)
®0
Example 4-26 Sequential Blocks bﬂ*

. . . 9
//Illustration 1: Sequential block w1tQ§g% delay
<

reg x, y;
reg [1:0] z, w;
initial

begin

N
Il
X
=

=
I
=
X

end

//Illustration 2: Sequential blocks with delay.
reqg x, y;

reg [1:0] z, w;

initial

begin

Dept.of ECE/ATMECE, Mysuru Page 103

Verilog HDL [15EC53]

x = 1'b0; //completes at simulation time 0

#5 yv = 1'bl; //completes at simulation time 5

#10 =z

{x, y}:; //completes at simulation time 15
#20 w = {y, x}; //completes at simulation time 35

end
Parallel blocks

Parallel blocks, specified by keywords fork and join, provide interesting simulation features. Parallel blocks

have the following characteristics:
« Statements in a parallel block are executed concurrently.
* Ordering of statements is controlled by the delay or event control assigned to each statement.

« If delay or event control is specified, it is relative to the time the block was entered.
\

Notice the fundamental difference between sequer@a? and parallel blocks. All statements in a parallel block
start at the time when the block was entered. Tl‘@? the order in which the statements are written in the block is

not |mportant.

Let us consider the sequential block with delay in Example 4-26 and convert it to a parallel block. The
converted Verilog code is shown in Example 4-27. The result of simulation remains the same except that all

statements start in parallel at time 0. Hence, the block finishes at time 20 instead of time 35.

Example 4-27 Parallel Blocks

//Example 1: Parallel blocks with delay.

reg x, y;

reg [1:0] z, w;

initial

fork

x = 1'b0; //completes at simulation time 0

#5 y = 1'bl; //completes at simulation time 5

#10 z = {x, y}; //completes at simulation time 10

Dept.of ECE/ATMECE, Mysuru Page 104

Verilog HDL [15EC53]

#20 w = {y, x}; //completes at simulation time 20
join

Parallel blocks provide a mechanism to execute statements in parallel. However, it is important to be careful
with parallel blocks because of implicit race conditions that might arise if two statements that affect the same
variable complete at the same time. Shown below is the parallel version of Illustration 1 from Example 4-26.

Race conditions have been deliberately introduced in this example. All statements start at simulation time O.

The order in which the statements will execute is not known. Variables z and w will get values 1 and 2 if x =
1'b0 and y = 1'b1 execute first. Variables z and w will get values 2'bxx and 2'bxx if x = 1'b0 and y = 1'b1
execute last. Thus, the result of z and w is nondeterministic and dependent on the simulator implementation. In
simulation time, all statements in the fork-join block are executed at once. However, in reality, CPUs running
simulations can execute only one statement at a time. Different simulators execute statements in different order.

Thus, the race condition is a limitation of today's simulators, not of the fork-join block.

//Parallel blocks with deliberate race copgétion
\)

®0
reg x, y; bi\&
(o

xQ
reg [1:0] z, w; QQ

initial

fork

z = {x, vy}

=
Il

{y, x}7
join

The keyword fork can be viewed as splitting a single flow into independent flows. The keyword join can be

seen as joining the independent flows back into a single flow. Independent flows operate concurrently.

Dept.of ECE/ATMECE, Mysuru Page 105

Verilog HDL [15EC53]

4.8.2 Special Features of Blocks

We discuss three special features available with block statements: nested blocks, named blocks, and disabling of

named blocks.

Nested blocks

Blocks can be nested. Sequential and parallel blocks can be mixed, as shown in Example 4-28.
Example 4-28 Nested Blocks

//Nested blocks

initial

begin

x = 1'b0;

154 &

fork

#5 y = 1'bl;

#10 z

{x, v};
join
#20 w = {y, x}7

end

Named blocks

Blocks can be given names.

* Local variables can be declared for the named block.

* Named blocks are a part of the design hierarchy. Variables in a named block can be accessed by using

hierarchical name referencing.
» Named blocks can be disabled, i.e., their execution can be stopped.

Example 4-29 shows naming of blocks and hierarchical naming of blocks.

Dept.of ECE/ATMECE, Mysuru Page 106

Verilog HDL [15EC53]

Example 4-29 Named Blocks

//Named blocks

module top;

initial

begin: blockl //sequential block named blockl
integer 1; //integer i is static and local to blockl

// can be accessed by hierarchical name, top.blockl.i

end
initial)
ol
$
fork: block2 //parallel block named %%kckZ
A\
O

reg i; // register i is static and local to block2

// can be accessed by hierarchical name, top.block2.i

join
Disabling named blocks

The keyword disable provides a way to terminate the execution of a named block. Disable can be used to get
out of loops, handle error conditions, or control execution of pieces of code, based on a control signal. Disabling
a block causes the execution control to be passed to the statement immediately succeeding the block. For C

programmers, this is very similar to the break statement used to exit a loop.

Dept.of ECE/ATMECE, Mysuru Page 107

Verilog HDL [15EC53]

4.9: Outcomes
After completion of the module the students are able to:

» Explain the significance of structured procedures always and initial in behavioral modeling.

» Define blocking and nonblocking procedural assignments.

» Understand delay-based timing control mechanism in behavioral modeling. Use regular delays, intra-
assignment delays, and zero delays.

» Describe event-based timing control mechanism in behavioral modeling. Use regular event control,
named event control, and event OR control.

» Use level-sensitive timing control mechanism in behavioral modeling.

» Explain conditional statements using if and else.

» Describe multiway branching, using case, casex, and casez statements.

» Understand looping statements such as while, for, repeat, and forever.

» Define sequential and parallel blocks.

-
. »
4.10: Recommended Questions o
1. Describe the following statements with an ex@})le initial and always

2. What are blocking and non-blocking asan@nent statements? Explain with examples.

3. With syntax explain conditional, branching and loop statements available in Verilog HDL behavioural
description.

Describe sequential and parallel blocks of Verilog HDL.

Write Verilog HDL program of 4:1 mux using CASE statement.

Write Verilog HDL program of 4:1 mux using If-else statement.

Write Verilog HDL program of 4-bit synchronous up counter.

Write Verilog HDL program of 4-bit asynchronous down counter.

© © N o g M

Write Verilog HDL program to simulate traffic signal controller

Dept.of ECE/ATMECE, Mysuru Page 108

Filter Design Techniques

- Filter

- Filter is a system that passes certain
frequency components and totally
rejects all o’rhers

- Stages of the desugn filter

- Specification of the desired properties
of the system

- Approximation of the specification using
a causal discrete-time system

- Realization of the system

—~

49‘

Review of discrete-
time systems

Frequency response :

« periodic : period = 27

« for areal impulse response h[k]
Magnitude response ‘H (es\“"\‘)‘ is even function
Phase response /H (e’”l\ 1s odd function

« example :
O: | | / Nyquist frequency
J I/\Z O 2/\|/4 LL-11,-11,..
s — JU /.
N S

Review of discrete-
time systems

“Popular’ frequency responses for filter design :

low-pass (LP) high-pass (HP) band-pass (BP)
A A 0§\ A
%&\\0
1 - ‘ - -
T T 7T
band-stop multi-band
= - - -

) @9- T T T

Review of discrete-
time systems

FIR filters” (finite impulse response):
B(2)

ZN

- N

H(2) =

-1
:b0+gg + ...+ Dbz

O
S‘\\Q)

* “Moving average filters” fMA filters)
N poles at the origin z=0 (hence guaranteed stability)
e N zeros (zeros of B(z)), “all zero” filters
« corresponds to difference equation
y[k] = b,u[k]+ byu[k —1]+ ... + byu[k — N]
impulse response

h[0] = b,,h[1] =b,,..., ([N]=b,,h[N +1] = 0,...
i§§9‘

Linear Phase FIR Filters

Non-causal zero-phase filters :

example: symmetric impulse response
h[-L].....n[-1],h[O]h[1].... A[L]

N

hKERLKL kelL

frequency response is L
+L L
H(e'*)= > hlk]e** =..=> a, cos(ak)
k=L k=0

- i.e. real-valued (=zero-phase) transfer function
- causal implementation by introducing (group) delay

f‘@'

(

Linear Phase FIR Filters

 Causal linear-phase filters = non-causal zero-phase +
delay

example: symmetric impulse response & N even
h[01,h[1],.... h[N] « | |
N=2L (even) &
h{k]=h{N-k], k=0.L 0 N K
frequency response is

: N _ L
H(e'*)=> hlk]le"™ =...=e7 "> a, cos(ak)
=0 0

= i.e. causal implementation of zero-phase filter, by

~ __infroducing (group) delay ,-L _ g el

4@‘

(

z=el?

Linear Phase FIR Filters

- Type-1 -~ Type-2 | iType-3 IType-4
 N=2L=even | | N=2L+l=o0dd N=2L=even 'N=2L+lzodd |
~ symmetric | | symmetric mn’rl symme’rr'lc anti-symmetric |

- h[KI=h[N-K] h[k] h[N- k] »‘é‘ h[k] -h[N-k] h[k] -h[N-k]

e ij/ZZa COS(a)k) e JmN/zcos(_)Zak cos(a)k) je JaN/zsm(a))zakCOS@k Je JwN/ZSIn(E)Zak cos(a)li(

- izeroat@ =7 | | zeroa’ra)zo’”ii zeroat @ =0 4

LP/HP/BP | | LP/BP Hp

Linear Phase FIR Filters

ulk]
{AF—{ AT A A

o efficient direct-form realization.
example: (A AT AR

N OO RO RONC

bo ! bl! b2!. b3. b4l
%) % % X X
yikl —H—E—E——

« PS:TIR filters can NEVER have linear-phase property |

49'

(41
>
T

Filter Specification

Ex: LOW"PGSSl.z

Passband Ripple
1
— R
P e
0.8} %
(\o‘@ a)P a)s

0.6 Passband Cutoff ->|<- Stopband Cutoff
0.-4¢ Stopband Ripple 158
N \/\

O . ! ! L L !

0 0.5 1 1.5 2 2.5 3

Filter Design Problem %(

» Design of filters is a problem of
function approximation

Q
e;‘a3
$

- For FIR filter, it implies polynomial
approximation

* For IIR filter, it implies
approximation by a rational function
of z

4@‘

Filter Design by Optimization

(I) Weighted Least Squares Design :

 select one of the basic forms that yield linear phase
L

eg. Type-l 1y gioy = g-ien * X8, cos(awk) = """ A(w)
k=0

« specify desired frequeng@@%?esponse (LP,HP,BP,...)
H, () =& N2 A, (o)

 optimization criterion is

a9,y ¢ Ay,

where \W (@) > 0 is a weighting function

Filter Design by Optimization

F (aoj,.\..,aL)

« ...this is equivalent to mxin{xTQX—ZXT D+ 4}

x'=la, a .. a

%&6@60:]{W (w)c(w)c' (w)dw

Q

p=[W(0)A (0)c(w)do

c"(w)=[1 cos(w) .. cos(Lw)]
u= ..
=standard ‘Quadratic Optimization’ problem

~ XOPT:Q_lp

49'

Filter Design by
Optimization

« Example: Low-pass design

A (w) =1, ‘a)‘ < wp (pass - band) 0.8}
A (@) =0,04 < ‘a)‘ <7z (stop- ba@,‘gﬁ\ 0.6}

S
B
S
xQ

optimization functioh is

®p +z 0 '
F @) = [JA@) -1 do+7. [Ao} =..
0 g

/

1

0.4}

0.2}

Passband Ripple

Passband Cutoff ->

<- Stopband Cutoff]

Stopband Ripple 7

RN

1 1.5

pass - band \ stop - band J

l.e.

W(w)=...

—~

49'

2 2.5 3

Filter Design by Optimization

« asimpler problem is obtained by replacing the F(..) by...

_ N 2
a0
2
F(aga) = 2 W (@)|Al@) - A (@) =2 W(@)cT(@)] © |-Ala);
i ,\&Q} i a|_
v . - -
where the w/s are a set of n samg® frequencies
The quadratic optimization problem is then equivalent to a least-squares
problem
i 2 i
min[Ax — b’ = min{x A"A x-2x"A'b+b'b}
x 2 X — —— =
2 W (@)c(@)e (o) 22
_(A' A\ LATH Compare to p.12
+++ . simple XLS _(A A) A b " "

--- : unpredictable behavior in between sample frequencies.

Filter Design by Optimization

 ...then dll this is often supplemented with
additional constraints

Example: Low-pass (LPQ%esngn (continued)
pass-band rlpple control :

A(@) -1 <6,,|0|<w, (5 ispass-band ripple)

stop-band ripple control :
|A(@)| < 85,05 <|w|< 7 (& isstop-band ripple)

49'

Filter Design by Optimization

Example: Low-pass (LP) design (continued)

a realistic way to implement these constraints, is to impose
the constraints (only) on a set of sample frequencies

Wp; Wpy;eeey a)Pm d\(ﬁ the pass- -band
and @5y, Dgyyeeny @%n in the stop- -band
Q
The resulting optimization problem is :

minimize : F(g ,...,a,)=...

XT:[ao a .. aL]

subject to A,x<b, (pass-band constraints)

A X < b (stop-band constraints)
= " Quadratic Linear Programming’ problem

49'

(

Filter Design by Optimization

(IT) " Minimax’ Design:
 select one of the basic forms that yield linear phase
e.g. Type-l |y pioy_¢ ’“’N’Zg\a[k]cos(wk) e 1N A\ ()
0
 specify desired frequeng@@response (LP,HPBP,...)
H, (@) = 12 A, (o)

* optimization cr'l‘rer'lon IS
min maxW(w)\H(eiw)—Hd(w)_ min max\W ()| A(@) - A, (@)

ao aL nggﬂ' L 0< <r

where W(w) >0 is a weighting function

f‘@'

(

Filter Design by Optimization

e Conclusion:
(I) weighted least squares design
(IT) minimax design o

provide general fran}é\l\/ork procedures to
translate filter design problems into standard
optimization problems

e Inpractice (and in textbooks):
emphasis on specific (ad-hoc) procedures :
- filter design based on ‘windows’
- equi-ripple design

49‘

Filter Design using ‘Windows’

Example : Low-pass filter design .
* ideal low-pass filter is

{1 ‘a)‘<a)C

H, () = Q

0 a)C<L‘ <7 i -
9

. : P :
* hence ideal time-domain impulse response is T

h, [K] = — jHd(eiw)e"“-kda)=...=a5'”(a’ck)
27 * @, K

« truncate hy[K] to N+1 samples : Non-causal and infinitely long

h, [k - N/2<k<N/2

otherwise
« add (group) delay to turn into causal filter

49‘

(

Filter Design using ‘Windows’

Example : Low-pass filter design (continued)

« note: it can be shown that time-domain truncation corresponds to
solving a weighted least-squares optimization problem with the
given Hy, and weighting function yy () =1

5
. < .
* truncation corresponds to ggplying a ‘rectangular window’ :

h[k] = hy[kIwik]

1 ~-N/2<k<N/2
wlk] = :
0 otherwise

« +++ simple procedure (also for HP,BP,...)
e ---:truncation in the time-domain results in ‘Gibbs effect’ in the

frequency domain, i.e. large ripple in pass-band and stop-band,
which cannot be reduced by increasing the filter order N.
:‘@'

(

Filter Design using ‘Windows’

Remedy : apply windows other than rectangular window:

« time-domain multiplication with a window function w[k]
corresponds to frequency domain convolution with W(z) :
&

hkl=h [KIWk] &

Q

H(z)=H,(2)*W(z)

« candidate windows : Han, Hamming, Blackman, Kaiser.,.... (see
textbooks)

« window choice/design = trade-off between side-lobe levels
(define peak pass-/stop-band ripple) and width main-lobe
(defines transition bandwidth)

:‘@'

(

Windowing Effect

W (e) H, (') H(eja))
H (") " 3
\ /\ /\/ N
N
’\\/\ /\VF > _{r" /"
. Vo | 77 6 V'V V Vo

Gibbs phenomenon

Windowing

Hamming

/Hanmng
— Bartlett
|_Blackman
I, > n
20log,[7(e™)|
0 4 Rectangular
N | Bartlett .
N 13de‘,‘ are Hanning
WA
i f\ \
'40|| "‘.‘ Hamming
-60+—
Blackman
-801—
-100
' A I L AN IR) l
027 047 067 087 7

Equiripple Design

* Starting point is minimax criterion, e.g.
min maxW (o)|A(w) — A, (@)| = min max

a.o aL 0<w<rw ao a|_ 0<w<rx

E(a))‘

» Based on theory of Chebyshev approximation and the ‘alternation
theorem’, which (roughly) statg® that the optimal as are such that
the ‘max’ (maximum weigh’rgﬁ’%approxima‘rion error) is obtained at
L+2 extremal frequencies...

max|E ()| = |E(@)| fori=1.,L+2

0<w<r

...That hence will exhibit the same maximum ripple (‘equiripple’)

« Tterative procedure for computing extremal frequencies, etc.
(Remez exchange algorithm, Parks-McClellan algorithm)

« Very flexible, etc., available in many software packages
e Details omitted here (see textbooks)
4@'

(

Software

FIR Filter design abundantly available in
commercial software

* Matlab: o0

@
b=firl(n,Wn,type window), C!,@4>ndow<ad linear-phase FIR design,
nis fll’rer order, Wn defines band-edges, type is
“high’,” stop’,.

b=fir2(n,f,m,window), windowed FIR design based on inverse
Fourier transform with frequency points f and
corresponding magnitude response m

b=remez(n,f,m), equiripple linear-phase FIR design with
Parks-McClellan (Remez exchange) algorithm

49‘

(

