
., FUNDAMENTALS OF

FourthEdition DATABASE SYSTEMS

FUNDAMENTALS OF
Fourth Edition DATABASE SYSTEMS

Ramez Elmasri
Department of Computer Science Engineering
University of Texas at Arlington

Shamkant B. N avathe
College of Computing
Georgia Institute of Technology

•
•.~"-. .

Boston San Francisco New York

London Toronto Sydney Tokyo Singapore Madrid

Mexico City Munich Paris Cape Town Hong Kong Montreal

Sponsoring Editor:
Project Editor:
Senior Production Supervisor:
Production Services:
Cover Designer:
Marketing Manager:
Senior Marketing Coordinator:
Print Buyer:

Cover image © 2003 Digital Vision

Maite Suarez-Rivas
Katherine Harutunian
Juliet Silveri
Argosy Publishing
Beth Anderson
Nathan Schultz
Lesly Hershman
Caroline Fell

Access the latest information about Addison-Wesley titles from our World Wide Web site:
http://www.aw.com/cs

Figure 12.14 is a logical data model diagram definition in Rational Rose®. Figure 12.15 is a graphi
cal data model diagram in Rational Rose'", Figure 12.17 is the company database class diagram
drawn in Rational Rose®. IBM® has acquired Rational Rose®.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instructional
value. They have been tested with care, but are not guaranteed for any particular purpose. The pub
lisher does not offer any warranties or representations, nor does it accept any liabilities with respect
to the programs or applications.

Library of Congress Cataloging-in-Publication Data

Elmasri, Ramez.
Fundamentals of database systems / Ramez Elmasri, Shamkant B.

Navathe.--4th ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-12226-7
I. Database management. 1. Navathe, Sham. II. Title.

QA 76.9.03E57 2003
005.74--dc21

2003057734

ISBN 0-321-12226-7

For information on obtaining permission for the use of material from this work, please submit a writ
ten request to Pearson Education, Inc., Rights and Contracts Department, 75 Arlington St., Suite
300, Boston, MA 02116 or fax your request to 617-848-7047.

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or other
wise, without the prior written permission of the publisher. Printed in the United States of America.

1 2 3 4 5 6 7 8 9 lO-HT-06050403

To Amalia with love
R. E.

To my motherVijaya and wife Aruna
for their love and support

S. B.N.

Preface

This book introduces the fundamental concepts necessary for designing, using, and imple
menting database systems and applications. Our presentations stresses the fundamentals
of database modeling and design, the languages and facilities provided by the database
management systems, and system implementation techniques. The book is meant to be
used as a textbook for a one- or two-semester course in database systems at the junior,
senior or graduate level, and as a reference book. We assume that the readers are familiar
with elementary programming and data-structuring concepts and that they have had
some exposure to the basic computer organization.

We start in Part I with an introduction and a presentation of the basic concepts and
terminology, and database conceptual modeling principles. We conclude the book in
Parts 7 and 8 with an introduction to emerging technologies, such as data mining, XML,
security, and Web databases. Along the way-in Parts 2 through 6-we provide an in
depth treatment of the most important aspects of database fundamentals.

The following key features are included in the fourth edition:

• The entire book follows a self-contained, flexible organization that can be tailored to
individual needs.

• Coverage of data modeling now includes both the ER model and UML.

• A new advanced SQL chapter with material on SQL programming techniques, such as
]DBC and SQL/CLl.

VII

viii Preface

• Two examples running throughout the book-----called COMPANY and UNIVER
SITY-allow the reader to compare different approaches that use the same application.

• Coverage has been updated on security, mobile databases, GIS, and Genome data
management.

• A new chapter on XML and Internet databases.

• A new chapter on data mining.

• A significant revision of the supplements to include a robust set of materials for
instructors and students, and an online case study.

Main Differences from the Third Edition
There are several organizational changes in the fourth edition, as well as some important
new chapters. The main changes are as follows:

• The chapters on file organizations and indexing (Chapters 5 and 6 in the third edi
tion) have been moved to Part 4, and are now Chapters 13 and 14. Part 4 also
includes Chapters 15 and 16 on query processing and optimization, and physical
database design and tuning (this corresponds to Chapter 18 and sections 16.3-16.4 of
the third edition).

• The relational model coverage has been reorganized and updated in Part 2. Chapter
5 covers relational model concepts and constraints. The material on relational alge
bra and calculus is now together in Chapter 6. Relational database design using ER
to-relational and EER-to-relational mapping is in Chapter 7. SQL is covered in
Chapters 8 and 9, with the new material in SQL programming techniques in sections
9.3 through 9.6.

• Part 3 covers database design theory and methodology. Chapters 10 and lion normal
ization theory correspond to Chapters 14 and 15 of the third edition. Chapter 12 on
practical database design has been updated to include more UML coverage.

• The chapters on transactions, concurrency control, and recovery (19, 20, 21 in the
third edition) are now Chapters 17, 18, and 19 in Part 5.

• The chapters on object-oriented concepts, ODMG object model, and object-relational
systems (11,12,13 in the third edition) are now 20, 21, and 22 in Part 6. Chapter 22
has been reorganized and updated.

• Chapters 10 and 17 of the third edition have been dropped. The material on client
server architectures has been merged into Chapters 2 and 25.

• The chapters on security, enhanced models (active, temporal, spatial, multimedia), and
distributed databases (Chapters 22, 23, 24 in the third edition) are now 23, 24, and 25
in Part 7. The security chapter has been updated. Chapter 25 of the third edition on
deductive databases has been merged into Chapter 24, and is now section 24.4.

• Chapter 26 is a new chapter on XML (eXtended Markup Language), and how it is
related to accessing relational databases over the Internet.

• The material on data mining and data warehousing (Chapter 26 of the third edition)
has been separated into two chapters. Chaprer 27 on data mining has been expanded
and updated.

Contents of This Edition
Part 1 describes the basic concepts necessary for a good understanding of database design
and implementation, as well as the conceptual modeling techniques used in database sys
tems. Chapters 1 and 2 introduce databases, their typical users, and DBMS concepts, ter
minology, and architecture. In Chapter 3, the concepts of the Entity-Relationship (ER)
model and ER diagrams are presented and used to illustrate conceptual database design.
Chapter 4 focuses on data abstraction and semantic data modeling concepts and extends
the ER model to incorporate these ideas, leading to the enhanced-ER (EER) data model
and EER diagrams. The concepts presented include subclasses, specialization, generaliza
tion, and union types (categories). The notation for the class diagrams of UML are also
introduced in Chapters 3 and 4.

Part 2 describes the relational data model and relational DBMSs. Chapter 5 describes
the basic relational model, its integrity constraints and update operations. Chapter 6
describes the operations of the relational algebra and introduces the relational calculus.
Chapter 7 discusses relational database design using ER and EER-to-relational mapping.
Chapter 8 gives a detailed overview of the SQL language, covering the SQL standard,
which is implemented in most relational systems. Chapter 9 covers SQL programming
topics such as SQL], JDBC, and SQL/CLI.

Part 3 covers several topics related to database design. Chapters 10 and 11 cover the
formalisms, theories, and algorithms developed for the relational database design by nor
malization. This material includes functional and other types of dependencies and normal
forms of relarions. Step-by-step intuitive normalizarion is presented in Chapter 10, and
relational design algorithms are given in Chapter 11, which also defines other types of
dependencies, such as multivalued and join dependencies. Chapter 12 presents an over
view of the different phases of the database design process for medium-sized and large
applications, using UML.

I Part 4 starts with a description of the physical file structures and access methods used
in database systems. Chapter 13 describes primary methods of organizing files of records
on disk, including static and dynamic hashing. Chapter 14 describes indexing techniques
for files, including B-tree and B+-tree data structures and grid files. Chapter 15 introduces
the basics of query processing and optimization, and Chapter 16 discusses physical data
base design and tuning.

Part 5 discusses transaction processing, concurrency control, and recovery tech
niques, including discussions of how these concepts are realized in SQL.

Preface IIX

x I Preface

Part 6 gives a comprehensive introduction to object databases and object-relational
systems. Chapter 20 introduces object-oriented concepts. Chapter 21 gives a detailed
overview of the ODMG object model and its associated ODL and OQL languages. Chapter
22 describes how relational databases are being extended to include object-oriented con
cepts and presents the features of object-relational systems, as well as giving an overview
of some of the features of the SQL3 standard, and the nested relational data model.

Parts 7 and 8 cover a number of advanced topics. Chapter 23 gives an overview of
database security and authorization, including the SQL commands to GRANT and
REVOKE privileges, and expanded coverage on security concepts such as encryption,
roles, and flow control. Chapter 24 introduces several enhanced database models for
advanced applications. These include active databases and triggers, temporal, spatial, mul
timedia, and deductive databases. Chapter 25 gives an introduction to distributed data
bases and the three-tier client-server architecture. Chapter 26 is a new chapter on XML
(eXtended Markup Language). It first discusses the differences between structured, semi
structured, and unstructured models, then presents XML concepts, and finally compares
the XML model to traditional database models. Chapter 27 on data mining has been
expanded and updated. Chapter 28 introduces data warehousing concepts. Finally, Chap
ter 29 gives introductions to the topics of mobile databases, multimedia databases, GIS
(Geographic Information Systems), and Genome data management in bioinformatics.

Appendix A gives a number of alternative diagrammatic notations for displaying a con
ceptual ER or EER schema. These may be substituted for the notation we use, if the instructor
so wishes. Appendix C gives some important physical parameters of disks. Appendixes B, E,
and F are on the web site. Appendix B is a new case study that follows the design and imple
mentation of a bookstore's database. Appendixes E and F cover legacy database systems,
based on the network and hierarchical database models. These have been used for over
thirty years as a basis for many existing commercial database applications and transaction
processing systems and will take decades to replace completely. We consider it important to
expose students of database management to these long-standing approaches. Full chapters
from the third edition can be found on the web site for this edition.

Guidelines for Using This Book
There are many different ways to teach a database course. The chapters in Parts 1 through
5 can be used in an introductory course on database systems in the order that they are
given or in the preferred order of each individual instructor. Selected chapters and sec
tions may be left out, and the instructor can add other chapters from the rest of the book,
depending on the emphasis if the course. At the end of each chapter's opening section,
we list sections that are candidates for being left out whenever a less detailed discussion of
the topic in a particular chapter is desired. We suggest covering up to Chapter 14 in an
introductory database course and including selected parts of other chapters, depending on
the background of the students and the desired coverage. For an emphasis on system
implementation techniques, chapters from Parts 4 and 5 can be included.

Chapters 3 and 4, which cover conceptual modeling using the ER and EERmodels, are
important for a good conceptual understanding of databases. However, they may be par-

tially covered, covered later in a course, or even left out if the emphasis is on DBMS imple
mentation. Chapters 13 and 14 on file organizations and indexing may also be covered
early on, later, or even left out if the emphasis is on database models and languages. For
students who have already taken a course on file organization, parts of these chapters
could be assigned as reading material or some exercises may be assigned to review the
concepts.

A total life-cycle database design and implementation project covers conceptual
design (Chapters 3 and 4), data model mapping (Chapter 7), normalization (Chapter
10), and implementation in SQL (Chapter 9). Additional documentation on the specific
RDBMS would be required.

The book has been written so that it is possible to cover topics in a variety of orders.
The chart included here shows the major dependencies between chapters. As the diagram
illustrates, it is possible to start with several different topics following the first two intro
ductory chapters. Although the chart may seem complex, it is important to note that if
the chapters are covered in order, the dependencies are not lost. The chart can be con
sulted by instructors wishing to use an alternative order of presentation.

For a single-semester course based on this book, some chapters can be assigned as read
ing material. Parts 4,7, and 8 can be considered for such an assignment. The book can also

Preface I XI

xii Preface

\

be used for a two-semester sequence. The first course, "Introduction to Database Design/
Systems," at the sophomore, junior, or senior level, could cover most of Chapters 1 to 14.
The second course, "Database Design and Implementation Techniques," at the senior or
first-year graduate level, can cover Chapters 15 to 28. Chapters from Parts 7 and 8 can be
used selectively in either semester, and material describing the DBMS available to the stu
dents at the local institution can be covered in addition to the material in the book.

Supplemental Materials
The supplements to this book have been significantly revised. With Addison-Wesley's
Database Place there is a robust set of interactive reference materials to help students
with their study of modeling, normalization, and SQL. Each tutorial asks students to solve
problems (such as writing an SQL query, drawing an ER diagram or normalizing a rela
tion), and then provides useful feedback based on the student's solution. Addison
Wesley's Database Place helps students master the key concepts of all database courses.
For more information visit aw.corn/databaseplace.

In addition the following supplements are available to all readers of this book at
www.aw.com/cssupport.

• Additional content: This includes a new Case Study on the design and implementa
tion of a bookstore's database as well as chapters from previous editions that are not
included in the fourth edition.

• A set of PowerPoint lecture notes

A solutions manual is also available to qualified instructors. Please contact your local
Addison-Wesley sales representative, or send e-mail to aw.cseteaw.com, for information
on how to access it.

Acknowledgements
It is a great pleasure for us to acknowledge the assistance and contributions of a large num
ber of individuals to this effort. First, we would like to thank our editors, Maite Suarez
Rivas, Katherine Harutunian, Daniel Rausch, and Juliet Silveri. In particular we would like
to acknowledge the efforts and help of Katherine Harutunian, our primary contact for the
fourth edition. We would like to acknowledge also those persons who have contributed to
the fourth edition. We appreciated the contributions of the following reviewers: Phil Bern
hard, Florida Tech; Zhengxin Chen, University of Nebraska at Omaha; Jan Chomicki, Univer
sity of Buffalo; Hakan Ferhatosmanoglu, Ohio State University; Len Fisk, California State
University, Chico; William Hankley, Kansas State University; Ali R. Hurson, Penn State Uni
versitYi Vijay Kumar, University of Missouri-Kansas CitYi Peretz Shoval, Ben-Gurion Univer
sity, Israeli Jason T. L. Wang, New Jersey Institute of Technology; and Ed Omiecinski of
Georgia Tech, who contributed to Chapter 27.

Ramez Elmasri would like to thank his students Hyoil Han, Babak Hojabri, Jack Fu,
Charley Li, Ande Swathi, and Steven Wu, who contributed to the material in Chapter

26. He would also like to acknowledge the support provided by the University of Texas at
Arlington.

Sham Navathe would like to acknowledge Dan Forsythe and the following students
at Georgia Tech: Weimin Feng, Angshuman Guin, Abrar Ul-Haque, Bin Liu, Ying Liu,
Wanxia Xie and Waigen Yee.

We would like to repeat our thanks to those who have reviewed and contributed to
ptevious editions of Fundamentals of Database Systems. For the first edition these individu
als include Alan Apt (editor), Don Batory, Scott Downing, Dennis Heimbinger, Julia
Hodges, Yannis Ioannidis, Jim Larson, Dennis McLeod, Per-Ake Larson, Rahul Patel,
Nicholas Roussopoulos, David Stemple, Michael Stonebraker, Frank Tampa, and Kyu
Young Whang; for the second edition they include Dan [oraanstad (editor), Rafi Ahmed,
Antonio Albano, David Beech, Jose Blakeley, Panos Chrysanthis, Suzanne Dietrich, Vic
Ghorpadey, Goets Graefe, Eric Hanson, [unguk L. Kim, Roger King, Vram Kouramajian,
VijayKumar, John Lowther, Sanjay Manchanda, Toshimi Minoura, Inderpal Mumick, Ed
Omiecinski, Girish Pathak, Raghu Rarnakrishnan, Ed Robertson, Eugene Sheng, David
Stotts, Marianne Winslett, and Stan Zdonick. For the third edition they include Suzanne
Dietrich, Ed Omiecinski, Rafi Ahmed, Francois Bancilhon, Jose Blakeley, Rick Cattell,
Ann Chervenak, David W. Embley, Henry A. Edinger, Leonidas Fegaras, Dan Forsyth,
Farshad Fotouhi, Michael Franklin, Sreejith Gopinath, Goetz Craefe, Richard Hull,
Sushil [ajodia, Ramesh K. Kame, Harish Kotbagi, Vijay Kumar, Tarcisio Lima, Ramon A.
Mara-Toledo, Jack McCaw, Dennis McLeod, Rokia Missaoui, Magdi Morsi, M. Naraya
naswamy, Carlos Ordonez, Joan Peckham, Betty Salzberg, Ming-Chien Shan, [unping
Sun, Rajshekhar Sunderraman, Aravindan Veerasamy, and Emilia E. Villareal.

Last but not l,ast, we gratefully acknowledge the support, encouragement, and
patience of our families.

R.E.
S.B.N.

Preface I XIII

Contents

PART 1 INTRODUCTION AND CONCEPTUAL MODELING

CHA'1JTER 1 Databases and Database Users 3
1.1 Introduction 4
1.2 An Example 6
1.3 Characteristics of the Database Approach 8
1.4 Actors on the Scene 12
1.5 Workers behind the Scene 14
1.6 Advantages of Using the DBMS Approach 15
1.7 A Brief History of Database Applications 20
1.8 When Not to Use a DBMS 23
1.9 Summary 23

Review Questions 23
Exercises 24
Selected Bibliography 24

xv

xvi Contents

CHAPTER 2 Database System Concepts and
Architecture 25

2.1 Data Models, Schemas, and Instances 26
2.2 Three-Schema Architecture and Data Independence 29
2.3 Database Languages and Interfaces 32
2.4 The Database System Environment 35
2.5 Centralized and Client/Server Architectures for DBMSs 38
2.6 Classification of Database Management Systems 43
2.7 Summary 45

Review Questions 46
Exercises 46
Selected Bibliography 47

CHAPTER 3 Data Modeling Using the Entity..Relationship
Model 49

3.1 Using High-Level Conceptual Data Models for Database
Design 50

3.2 An Example Database Application 52
3.3 Entity Types, Entity Sets, Attributes, and Keys 53
3.4 Relationship Types, Relationship Sets, Roles, and Structural

Constraints 61
3.5 Weak Entity Types 68
3.6 Refining the ER Design for the COMPANY Database 69
3.7 ER Diagrams, Naming Conventions, and Design Issues 70
3.8 Notation for UML Class Diagrams 74
3.9 Summary 77

Review Questions 78
Exercises 78
Selected Bibliography 83

CHAPTER 4 Enhanced Entity..Relationship and UML

Modeling 85
4.1 Subclasses, Superclasses, and Inheritance 86
4.2 Specialization and Generalization 88
4.3 Constraints and Characteristics of Specialization and

Generalization 91
4.4 Modeling of UNION Types Using Categories 98
4.5 An Example UNIVERSITY EER Schema and Formal Definitions

for the EER Model 101

Contents I xvii

4.6 Representing Specialization/Generalization and Inheritance in UML

Class Diagrams 104
4.7 Relationship Types of Degree Higher Than Two 105
4.8 Data Abstraction, Knowledge Representation, and Ontology

Concepts 110
4.9 Summary 115

Review Questions 116
Exercises 117
Selected Bibliography 121

PART 2 RELATIONAL MODEL: CONCEPTS, CONSTRAINTS,
LANGUAGES, DESIGN, AND PROGRAMMING

CHAPTER 5 The Relational Data Model and
Relational Database Constraints 125

5.1 Relational Model Concepts 126
5.2 Relational Model Constraints and Relational Database

Schemas 132
5.3 Update Operations and Dealing with Constraint Violations 140
5.4 Summary 143

Review Questions 144
Exercist\ 144
Selected Bibliography 147

151
155

158

171

189

185

CHAPTER 6 The Relational Algebra and Relational
Calculus 149

6.1 Unary Relational Operations: SELECT and PROJECT

6.2 Relational Algebra Operations from Set Theory
6.3 Binary Relational Operations: JOIN and DIVISION

6.4 Additional Relational Operations 165
6.5 Examples of Queries in Relational Algebra
6.6 The Tuple Relational Calculus 173
6.7 The Domain Relational Calculus 181
6.8 Summary 184

Review Questions
Exercises 186
Selected Bibliography

xviii Contents

CHAPTER 7 Relational Database Design by
ER.. and EER..to ..Relational Mapping 191

7.1 Relational Database Design Using ER-to-Relational
Mapping 192

7.2 Mapping EER Model Constructs to Relations 199
7.3 Summary 203

Review Questions 204
Exercises 204
Selected Bibliography 205

CHAPTER 8 sQL..99: Schema Definition,
Basic Constraints, and Queries 207

8.1 SQL Data Definition and Data Types 209
8.2 Specifying Basic Constraints in SQL 213
8.3 Schema Change Statements in SQL 217
8.4 Basic Queries in SQL 218
8.5 More Complex SQL Queries 229
8.6 Insert, Delete, and Update Statements in SQL 245
8.7 Additional Features of SQL 248
8.8 Summary 249

Review Questions 251
Exercises 251
Selected Bibliography 252

CHAPTER 9 More SQL: Assertions, Views, and Programming
Techniques 255

9.1 Specifying General Constraints as Assertions 256
9.2 Views (Virtual Tables) in SQL 257
9.3 Database Programming: Issues and Techniques 261
9.4 Embedded SQL, Dynamic SQL, and SQL] 264
9.5 Database Programming with Function Calls: SQL/CLl and

]OBC 275
9.6 Database Stored Procedures and SQL/PSM 284
9.7 Summary 287

Review Questions 287
Exercises 287
Selected Bibliography 289

PART 3 DATABASE DESIGN THEORY AND METHODOLOGY

CHAPTER 10 Functional Dependencies and
Normalization for Relational Databases 293

10.1 Informal Design Guidelines for Relation Schemas 295
10.2 Functional Dependencies 304
10.3 Normal Forms Based on Primary Keys 312
10.4 General Definitions of Second and Third Normal Forms 320
10.5 Boyce-Codd Normal Form 324
10.6 Summary 326

Review Questions 327
Exercises 328
Selected Bibliography 331

Contents I xix

CHAPTER 11 Relational Database Design
Algorithms and Further Dependencies

11.1 Properties of Relational Decompositions 334
11.2 Algorithmsfor Relational Database Schema Design
11.3 Multivalued Dependencies and Fourth Normal Form
11.4 Join Dependencies and Fifth Normal Form 353
11.5 Inclusion Dependencies 354
11.6 Other Dependencies and Normal Forms 355
11.7 Summary 357

Review Questions 358
Exercises 358
Selected Bibliography 360

333

340
347

CHAPTER 12 Practical Database Design Methodology
and Use of UML Diagrams 361

12.1 The Role ofInformation Systems in Organizations 362
12.2 The Database Design and Implementation Process 366
12.3 Use ofUML Diagrams as an Aid to Database Design

Specification 385
12.4 Rational Rose, A UML Based Design Tool 395
12.5 Automated Database Design Tools 402
12.6 Summary 404

Review Questions 405
Selected Bibliography 406

xx I Contents

PART 4 DATA STORAGE, INDEXING, QUERY PROCESSING,
AND PHYSICAL DESIGN

443

430
431

422

415

454

450

CHAPTER 13 Disk Storage, Basic File Structures, and
Hashing 411

13.1 Introduction 412
13.2 Secondary Storage Devices
13.3 Buffering of Blocks 421
13.4 Placing File Records on Disk
13.5 Operations on Files 427
13.6 Files of Unordered Records (Heap Files)
13.7 Files of Ordered Records (Sorted Files)
13.8 Hashing Techniques 434
13.9 Other Primary File Organizations 442
13.10 Parallelizing Disk Access Using RAID Technology
13.11 Storage Area Networks 447
13.12 Summary 449

Review Questions
Exercises 451
Selected Bibliography

CHAPTER 14 Indexing Structures for Files 455
14.1 Types of Single-Level Ordered Indexes 456
14.2 Multilevel Indexes 464
14.3 Dynamic Multilevel Indexes Using B-Trees and W-Trees 469
14.4 Indexes on Multiple Keys 483
14.5 Other Types ofIndexes 485
14.6 Summary 486

Review Questions 487
Exercises 488
Selected Bibliography 490

CHAPTER 15 Algorithms for Query Processing
and Optimization 493

15.1 Translating SQL Queries into Relational Algebra 495
15.2 Algorithms for External Sorting 496
15.3 Algorithms for SELECT and JOIN Operations 498
15.4 Algorithms for PROJECT and SET Operations 508

15.5 Implementing Aggregate Operations and Outer Joins 509
15.6 Combining Operations Using Pipe lining 511
15.7 Using Heuristics in Query Optimization 512
15.8 Using Selectivity and Cost Estimates in Query Optimization 523
15.9 Overview of Query Optimization in ORACLE 532
15.10 Semantic Query Optimization 533
15.11 Summary 534

Review Questions 534
Exercises 535
Selected Bibliography 536

CHAPTER 16 Practical Database Design and Tuning 537
16.1 Physical Database Design in Relational Databases 537
16.2 An Overview of Database Tuning in Relational Systems 541
16.3 Summary 547

Review Questions 547
Selected Bibliography 548

PART 5 TRANSACTION PROCESSING CONCEPTS

Contents I XXI

CHAPTER 1 7 Introduction to Transaction
Processing Concepts and Theory

17.1 Introduction to Transaction Processing 552
17.2 Transaction and System Concepts 559
17.3 Desirable Properties of Transactions 562
17.4 Characterizing Schedules Based on Recoverability
17.5 Characterizing Schedules Based on Serializability
17.6 Transaction Support in SQL 576
17.7 Summary 578

Review Questions 579
Exercises 580
Selected Bibliography 581

551

563
566

CHAPTER 18 Concurrency Control Techniques 583
18.1 Two-Phase Locking Techniques for Concurrency Control 584
18.2 Concurrency Control Based on Timestamp Ordering 594
18.3 Multiversion Concurrency Control Techniques 596
18.4 Validation (Optimistic) Concurrency Control Techniques 599

XXII Contents

18.5 Granularity of Data Items and Multiple Granularity Locking 600
18.6 Using Locks for Concurrency Control in Indexes 605
18.7 Other Concurrency Control Issues 606
18.8 Summary 607

Review Questions 608
Exercises 609
Selected Bibliography 609

CHAPTER 19 Database Recovery Techniques 611
19.1 Recovery Concepts 612
19.2 Recovery Techniques Based on Deferred Update 618
19.3 Recovery Techniques Based on Immediate Update 622
19A Shadow Paging 624
19.5 The ARIES Recovery Algorithm 625
19.6 Recovery in Multidatabase Systems 629
19.7 Database Backup and Recovery from Catastrophic Failures 630
19.8 Summary 631

Review Questions 632
Exercises 633
Selected Bibliography 635

PART 6 OBJECT AND OBJECT-RELATIONAL DATABASES

CHAPTER 20 Concepts for Object Databases 639
20.1 Overview of Object-Oriented Concepts 641
20.2 Object Identity, Object Structure, and Type Constructors
20.3 Encapsulation of Operations, Methods, and Persistence
20A Type and Class Hierarchies and Inheritance 654
20.5 Complex Objects 657
20.6 Other Objected-Oriented Concepts 659
20.7 Summary 662

Review Questions 663
Exercises 664
Selected Bibliography 664

643
649

CHAPTER 21 Object Database Standards, Languages, and
Design 665

21.1 Overview of the Object Model of ODMG 666

Contents I XX/II

21.2 The Object Definition Language ODL 679
21.3 The Object Query Language OQL 684
21.4 Overview of the c++ Language Binding 693
21.5 Object Database Conceptual Design 694
21.6 Summary 697

Review Questions 698
Exercises 698
Selected Bibliography 699

702
709

725

728

CHAPTER 22 Object-Relational and Extended-Relational
Systems 701

22.1 Overview of SQL and Its Object-Relational Features
22.2 Evolution and Current Trends of Database Technology
22.3 The Informix Universal Server 711
22.4 Object-Relational Features of Oracle 8 721
22.5 Implementation and Related Issues for Extended Type

Systems 724
22.6 The Nested Relational Model
22.7 Summary 727

Selected Bibliography

PART 7 FURTHER TOPICS

CHAPTER 23 Database Security and Authorization 731
23.1 Introduction to Database Security Issues 732
23.2 Discretionary Access Control Based on Granting and Revoking

Privileges 735
23.3 Mandatory Access Control and

Role- Based Access Control for Multilevel Security 740
23.4 Introduction to Statistical Database Security 746
23.5 Introduction to Flow Control 747
23.6 Encryption and Public Key Infrastructures 749
23.7 Summary 751

Review Questions 752
Exercises 753
Selected Bibliography 753

XXIV Contents

CHAPTER 24 Enhanced Data Models for Advanced
Applications 755

24.1 Active Database Concepts and Triggers 757
24.2 Temporal Database Concepts 767
24.3 Multimedia Databases 780
24.4 Introduction to Deductive Databases 784
24.5 Summary 797

Review Questions 797
Exercises 798
Selected Bibliography 801

CHAPTER 25 Distributed Databases and
Client-Server Architectures 803

25.1 Distributed Database Concepts 804
25.2 Data Fragmentation, Replication, and

Allocation Techniques for Distributed Database Design 810
25.3 Types of Distributed Database Systems 815
25.4 Query Processing in Distributed Databases 818
25.5 Overview of Concurrency Control and Recovery in Distributed

Databases 824
25.6 An Overview of 3-Tier Client-Server Architecture 827
25.7 Distributed Databases in Oracle 830
25.8 Summary 832

Review Questions 833
Exercises 834
Selected Bibliography 835

PART 8 EMERGING TECHNOLOGIES

CHAPTER 26 XML and Internet Databases 841
26.1 Structured, Semistructured, and Unstructured Data 842
26.2 XML Hierarchical (Tree) Data Model 846
26.3 XML Documents, OTO, and XML Schema 848
26.4 XML Documents and Databases 855
26.5 XML Querying 862
26.6 Summary 865

Review Questions 865
Exercises 866
Selected Bibliography 866

CHAPTER 27 Data Mining Concepts 867
27.1 Overview of Data Mining Technology 868
27.2 Association Rules 871
27.3 Classification 882
27.4 Clustering 885
27.5 Approaches to Other Data Mining Problems 888
27.6 Applications of Data Mining 891
27.7 Commercial Data Mining Tools 891
27.8 Summary 894

Review Questions 894
Exercises 895
Selected Bibliography 896

CHAPTER 28 Overview of Data Warehousing and
OLAP 899

28.1 Introduction, Definitions, and Terminology 900
28.2 Characteristics of Data Warehouses 901
28.3 Data Modeling for Data Warehouses 902
28.4 Building a Data Warehouse 907
28.5 Typical Functionality of a Data Warehouse 910
28.6 Data Warehouse Versus Views 911
28.7 Problems and Open Issues in Data Warehouses 912
28.8 Summary 913

Review Questions 914
Selected Bibliography 914

CHAPTER 29 Emerging Database Technologies and
Applications 915

29.1 Mobile Databases 916
29.2 Multimedia Databases 923
29.3 Geographic Information Systems 930
29.4 Genome Data Management 936

Contents I xxv

xxvi I Contents

APPENDIX A Alternative Diagrammatic Notations 947

APPENDIX B Database Design and Application
Implementation Case Study-located on the WI

APPENDIX C Parameters of Disks 951

APPENDIX D Overview of the QBE Language 955

APPENDIX E Hierarchical Data Model-located on the web

APPENDIX F Network Data Model-located on the web

Selected Bibliography 963

Index 1009

INTRODUCTION AND

CONCEPTUAL MODELl NG

Databases and
Database Users

Databases and database systems have become an essential component of everyday life in
modern society. In the course of a day, most of us encounter several activities that involve
some interaction with a database. For example, if we go to the bank to deposit or with
draw funds, if we make a hotel or airline reservation, if we access a computerized library
catalog to search for a bibliographic item, or if we buy some item-such as a book, toy, or
computer-from an Internet vendor through its Web page, chances are that our activities
will involve someone or some computer program accessing a database. Even purchasing
items from a supermarket nowadays in many cases involves an automatic update of the
database that keeps the inventory of supermarket items.

These interactions are examples of what we may call traditional database
applications, in which most of the information that is stored and accessed is either
textual or numeric. In the past few years, advances in technology have been leading to
exciting new applications of database systems. Multimedia databases can now store
pictures, video clips, and sound messages. Geographic information systems (CIS) can
store and analyze maps, weather data, and satellite images. Data warehouses and online
analytical processing (ot.Ar) systems are used in many companies to extract and analyze
useful information from very large databases for decision making. Real-time and active
database technology is used in controlling industrial and manufacturing processes. And
database search techniques are being applied to the World Wide Web to improve the
search for information that is needed by users browsing the Internet.

3

4 I Chapter 1 Databases and Database Users

To understand the fundamentals of database technology, however, we must start from
the basics of traditional database applications. So, in Section 1.1 of this chapter we define
what a database is, and then we give definitions of other basic terms. In Section 1.2, we
provide a simple UNIVERSITY database example to illustrate our discussion. Section 1.3
describes some of the main characteristics of database systems, and Sections 1.4 and 1.5
categorize the types of personnel whose jobs involve using and interacting with database
systems. Sections 1.6, 1.7, and 1.8 offer a more thorough discussion of the various
capabilities provided by database systems and discuss some typical database applications.
Section 1.9 summarizes the chapter.

The reader who desires only a quick introduction to database systems can study
Sections 1.1 through 1.5, then skip or browse through Sections 1.6 through 1.8 and go on
to Chapter 2.

1.1 INTRODUCTION
Databases and database technology are having a major impact on the growing use of com
puters. It is fair to say that databases playa critical role in almost all areas where comput
ers are used, including business, electronic commerce, engineering, medicine, law,
education, and library science, to name a few. The word database is in such common use
that we must begin by defining what a database is. Our initial definition is quite general.

A database is a collection of related data. 1 By data, we mean known facts that can be
recorded and that have implicit meaning. For example, consider the names, telephone
numbers, and addresses of the people you know. You may have recorded this data in an
indexed address book, or you may have stored it on a hard drive, using a personal
computer and software such as Microsoft Access, or Excel. This is a collection of related
data with an implicit meaning and hence is a database.

The preceding definition of database is quite general; for example, we may consider
the collection of words that make up this page of text to be related data and hence to

constitute a database. However, the common use of the term database is usually more
restricted. A database has the following implicit properties:

• A database represents some aspect of the real world, sometimes called the miniworld
or the universe of discourse (DoD). Changes to the miniworld are reflected in the
database.

• A database is a logically coherent collection of data with some inherent meaning. A
random assortment of data cannot correctly be referred to as a database.

• A database is designed, built, and populated with data for a specific purpose. It has an
intended group of users and some preconceived applications in which these users are
interested.

1. We will use the word data as both singular and plural, as is common in database literature; con
text will determine whether it is singular or plural. In standard English, data is used only for plural;
datum is used fur singular.

1.1 Introduction I 5

In other words, a database has some source from which data is derived, some degree
of interaction with events in the real world, and an audience that is actively interested in
the contents of the database.

A database can be of any size and of varying complexity. For example, the list of
names and addresses referred to earlier may consist of only a few hundred records, each
with a simple structure. On the other hand, the computerized catalog of a large library
may contain half a million entries organized under different categories-by primary
author's last name, by subject, by book title-with each category organized in alphabetic
order. A database of even greater size and complexity is maintained by the Internal
Revenue Service to keep track of the tax forms filed by u.S. taxpayers. If we assume that
there are 100 million taxpayers and if each taxpayer files an average of five forms with
approximately 400 characters of information per form, we would get a database of 100 X

106 X 400 X 5 characters (bytes) of information. If the IRS keeps the past three returns for
each taxpayer in addition to the current return, we would get a database of 8 X 1011 bytes
(800 gigabytes). This huge amount of information must be organized and managed so that
users can search for, retrieve, and update the data as needed.

A database may be generated and maintained manually or it may be computerized.
For example, a library card catalog is a database that may be created and maintained
manually. A computerized database may be created and maintained either by a group of
application programs written specifically for that task or by a database management
system. Of course, we are only concerned with computerized databases in this book.

A database management system (DBMS) is a collection of programs that enables
users to create and maintain a database. The DBMS is hence a general-purpose software
system that facilitates the processes of defining, constructing, manipulating, and sharing
databases among various users and applications. Defining a database involves specifying
the data types, structures, and constraints for the data to be stored in the database.
Constructing the database is the process of storing the data itself on some storage
medium that is controlled by the DBMS. Manipulating a database includes such functions
as querying the database to retrieve specific data, updating the database to reflect changes
in the miniworld, and generating reports from the data. Sharing a database allows
multiple users and programs to access the database concurrently.

Other important functions provided by the DBMS include protecting the database and
maintaining it over a long period of time. Protection includes both system protection
against hardware or software malfunction (or crashes), and security protection against
unauthorized or malicious access. A typical large database may have a life cycle of many
years, so the DBMS must be able to maintain the database system by allowing the system to
evolve as requirements change over time.

It is not necessary to use general-purpose DBMS software to implement a
computerized database. We could write our own set of programs to create and maintain
the database, in effect creating our own special-purpose DBMS software. In either case
whether we use a general-purpose DBMS or not-we usually have to deploy a considerable
amount of complex software. In fact, most DBMSs are very complex software systems.

To complete our initial definitions, we will call the database and DBMS software
together a database system. Figure I. I illustrates some of the concepts we discussed so far.

6 I Chapter 1 Databases and Database Users

DATABASE
SYSTEM

UserS/Programmers

~
Application Programs/Queries

DBMS
SOFTWARE

Softwareto Process
Queries/Programs

Softwareto Access
StoredData

StoredDatabase
Definition

(Meta-Data)

Stored
Database

FIGURE 1.1 A simpl ified database system environment.

1.2 AN EXAMPLE
Let us consider a simple example that most readers may be familiar with: a UNIVERSITY

database for maintaining information concerning students, courses, and grades in a uni
versity environment. Figure 1.2 shows the database structure and a few sample data for
such a database. The database is organized as five files, each of which stores data records of
the same type. 2 The STUDENT file stores data on each student, the COURSE file stores data on
each course, the SECTION file stores data on each section of a course, the GRADE_REPORT file
stores the grades that students receive in the various sections they have completed, and
the PREREQUISITE file stores the prerequisites of each course.

To define this database, we must specify rhe structure of the records of each file by
specifying the different types of data dements to be stored in each record. In Figure 1.2,
each STUDENT record includes data to represent the student's Name, StudentNumber, Class

2. We use the term file informally here. At a conceptual level, a file is a collection of records that may
or may not be ordered.

1.2 An Example I 7

me I StudentNumber
.

Class Ma
..- j--..

ith 17 1 C
-- j-.-. .- -_.
wn 8 2 C

ISTUDENT f¥
, Bra
L.

-._-_._---~----_._---~_.._---_.._--~-_.__._,

FIGURE 1.2 A database that stores student and course information.

(freshman or 1, sophomore or 2, ...), and Major (mathematics or math, computer science
or CS, . . .}; each COURSE record includes data to represent the CourscNamc,
CourseNumber, CreditHours, and Department (the department that offers the course);
and so on. We must also specify a data type for each data clement within a record. For
example, we can specify that Name of STUDENT is a string of alphabetic characters,
StudentN umber of STUDENT is an integer, and Grade of GRADE.. REPORT is a single character
from the set lA, B, C, D, F, l}. We may also use a coding scheme to represent the values of

8 I Chapter 1 Databases and Database Users

a data item. For example, in Figure 1.2 we represent the Class of a STUDENT as 1 for
freshman, 2 for sophomore, 3 for junior, 4 for senior, and 5 for graduate student.

To construct the UNIVERSITY database, we store data to represent each student, course,
section, grade report, and prerequisite as a record in the appropriate file. Notice that
records in the various files may be related. For example, the record for "Smith" in the STU

DENT file is related to two records in the GRADE_REPORT file that specify Smith's grades in two
sections. Similarly, each record in the PREREQUISITE file relates two course records: one
representing the course and the other representing the prerequisite. Most medium-size
and large databases include many types of records and have many relationships among the
records.

Database manipulation involves querying and updating. Examples of queries are
"retrieve the transcript-a list of all courses and grades-of Smith," "list the names of
students who took the section of the Database course offered in fall 1999 and their grades
in that section," and "what are the prerequisites of the Database course!" Examples of
updates are "change the class of Smith to Sophomore," "create a new section for the
Database course for this semester," and "enter a grade of A for Smith in the Database
section of last semester." These informal queries and updates must be specified precisely in
the query language of the DBMS before they can be processed.

1.3 CHARACTERISTICS OF
THE DATABASE ApPROACH

A number of characteristics distinguish the database approach from the traditional
approach of programming with files. In traditional file processing, each user defines and
implements the files needed for a specific software application as part of programming the
application. For example, one user, the grade reporting office, may keep a file on students
and their grades. Programs to print a student's transcript and to enter new grades into the
file are implemented as part of the application. A second user, the accounting office, may
keep track of students' fees and their payments. Although both users are interested in data
about students, each user maintains separate files-and programs to manipulate these
files-because each requires some data not available from the other user's files. This
redundancy in defining and storing data results in wasted storage space and in redundant
efforts to maintain common data up to date.

In the database approach, a single repository of data is maintained that is defined
once and then is accessed by various users. The main characteristics of the database
approach versus the file-processing approach are the following:

• Self-describing nature of a database system

• Insulation between programs and data, and data abstraction

• Support of multiple views of the data

• Sharing of data and multiuser transaction procesing

We next describe each of these characteristics in a separate section. Additional
characteristics of database systems are discussed in Sections 1.6 through 1.8.

1.3 Characteristics of the Database Approach I 9

1.3.1 Self-Describing Nature of a Database System
A fundamental characteristic of the database approach is that the database system con
tains not only the database itself but also a complete definition or description of the data
base structure and constraints. This definition is stored in the DBMS catalog, which
contains information such as the structure of each file, the type and storage format of each
data item, and various constraints on the data. The information stored in the catalog is
called meta-data, and it describes the structure of the primary database (Figure 1.1).

The catalog is used by the DBMS software and also by database users who need
information about the database structure. A general-purpose DBMS software package is
not written for a specific database application, and hence it must refer to the catalog to
know the structure of the files in a specific database, such as the type and format of data it
will access. The DBMS software must work equally well with any number of database
applications-for example, a university database, a banking database, or a company
database-as long as the database definition is stored in the catalog.

In traditional file processing, data definition is typically part of the application
programs themselves. Hence, these programs are constrained to work with only one
specific database, whose structure is declared in the application programs. For example, an
application program written in c++ may have struct or class declarations, and a COBOL

program has Data Division statements to define its files. Whereas file-processing software
can access only specific databases, DBMS software can access diverse databases by
extracting the database definitions from the catalog and then using these definitions.

In the example shown in Figure 1.2, the DBMS catalog will store the definitions of all
the files shown. These definitions are specified by the database designer prior to creating
the actual database and are stored in the catalog. Whenever a request is made to access,
say, the Name of a STUDENT record, the DBMS software refers to the catalog to determine
the structure of the STUDENT file and the position and size of the Name data item within a
STUDENT record. By contrast, in a typical file-processing application, the file structure and,
in the extreme case, the exact location of Name within a STUDENT record are already coded
within each program that accesses this data item.

1.3.2 Insulation between Programs and Data, and Data
Abstraction

In traditional file processing, the structure of data files is embedded in the application pro
grams,so any changes to the structure of a file may require changing allprograms that access this
file. By contrast, DBMS access programs do not require such changes in most cases. The struc
ture of data files is stored in the DBMS catalog separately from the access programs. We call this
property program-data independence. For example, a file access program may be written in
such a way that it can access only STUDENT records of the structure shown in Figure 1.3. If we
want to add another piece of data to each STUDENT record, say the BirthDate, such a program
will no longer work and must be changed. By contrast, in a DBMSenvironment, we just need
to change the description of STUDENT records in the catalog to reflect the inclusion of the new
data item BirthDate; no programs are changed. The next time a DBMS program refers to the
catalog, the new structure of STUDENT records will be accessed and used.

10 I Chapter 1 Databases and Database Users

Data ItemName
Name

StudentNumber
Class
Major

Starting Position in Record
1

31
35
39

Length in Characters (bytes)
30
4
4
4

FIGURE 1.3 Internal storage format for a STUDENT record.

In some types of database systems, such as object-oriented and object-relational
systems (see Chapters 20 to 22), users can define operations on data as part of the
database definitions. An operation (also called a function or method) is specified in two
parts. The interface (or signature) of an operation includes the operation name and the
data types of its arguments (or parameters). The implementation (or method) of the
operation is specified separately and can be changed without affecting the interface. User
application programs can operate on the data by invoking these operations through their
names and arguments, regardless of how the operations are implemented. This may be
termed program-operation independence.

The characteristic that allows program-data independence and program-operation
independence is called data abstraction. A DBMS provides users with a conceptual
representation of data that does not include many of the details of how the data is stored or
how the operations are implemented. Informally, a data model is a type of data abstraction
that is used to provide this conceptual representation. The data model uses logical concepts,
such as objects, their properties, and their interrelationships, that may be easier for most
users to understand than computer storage concepts. Hence, the data model hides storage
and implementation details that are not of interest to most database users.

For example, consider again Figure 1.2. The internal implementation of a file may be
defined by its record length-the number of characters (bytes) in each record-and each data
item may be specified by its starting byte within a record and its length in bytes. The STUDENT

record would thus be represented as shown in Figure 1.3. But a typical database user is not
concerned with the location of each data item within a record or its length; rather, the
concern is that when a reference is made to Name of STUDENT, the correct value is returned. A
conceptual representation of the STUDENT records is shown in Figure 1.2. Many other details of
file storage organization-such as the access paths specified on a file---can be hidden from
database users by the DBMS; we discuss storage details in Chapters 13 and 14.

In the database approach, the detailed structure and organization of each file are
stored in the catalog. Database users and application programs refer to the conceptual
representation of the files, and the DBMS extracts the details of file storage from the
catalog when these are needed by the DBMS file access modules. Many data models can be
used to provide this data abstraction to database users. A major part of this book is
devoted to presenting various data models and the concepts they use to abstract the
representation of data.

In object-oriented and object-relational databases, the abstraction process includes
not only the data structure but also the operations on the data. These operations provide
an abstraction of miniworld activities commonly understood by the users. For example,

1.3 Characteristics of the Database Approach I 11

Sectionld I
Student Transcript

I Grade Semester
(a) ITRANSCRIPT i StudentName C-~-N~--b-'----'-----'---,----,-------I

ourse um er Year

Smith
C Fall

8 Fall

A Fall

119

112

85

Brown
A Fall

8 Spring
A Fall

92

102

135

(b) I PREREOUISITES CourseName CourseNumber Prerequisites

Database

FIGURE 1.4 Two views derived from the database in Figure 1.2. (a) The STUDENT TRANSCRIPT view.
(b) The COURSE PREREQUISITES view.

an operation CALCULATE_CPA can be applied to a STUDENT object to calculate the grade point
average. Such operations can be invoked by the user queries or application programs
without having to know the details of how the operations are implemented. In that sense,
an abstraction of the miniworld activity is made available to the user as an abstract
operation.

1.3.3 Support of Multiple Views of the Data
A database typically has many users, each of whom may require a different perspective or
view of the database. A view may be a subset of the database or it may contain virtual data
that is derived from the database files but is not explicitly stored. Some users may not need
to be aware of whether the data they refer to is stored or derived. A multiuser DBMS whose
users have a variety of distinct applications must provide facilities for defining multiple
views. For example, one user of the database of Figure 1.2 may be interested only in access
ing and printing the transcript of each student; the view for this user is shown in Figure
1.4a.A second user, who is interested only in checking that students have taken all the pre
requisites of each course for which they register, may require the view shown in Figure lAb.

1.3.4 Sharing of Data and Multiuser
Transaction Processing

A multiuser DBMS, as its name implies, must allow multiple users to access the database at
the same time. This is essential if data for multiple applications is to be integrated and

12 I Chapter 1 Databases and Database Users

maintained in a single database. The DBMS must include concurrency control software to
ensure that several users trying to update the same data do so in a controlled manner so
that the result of the updates is correct. For example, when several reservation clerks try
to assign a seat on an airline flight, the DBMS should ensure that each seat can be accessed
by only one clerk at a time for assignment to a passenger. These types of applications are
generally called online transaction processing (OLTP) applications. A fundamental role
of multiuser DBMS software is to ensure that concurrent transactions operate correctly.

The concept of a transaction has become central to many database applications. A
transaction is an executing program or process that includes one or more database accesses,
such as reading or updating of database records. Each transaction is supposed to execute a
logically correct database access if executed in its entirety without interference from
other transactions. The DBMS must enforce several transaction properties. The isolation
property ensures that each transaction appears to execute in isolation from other
transactions, even though hundreds of transactions may be executing concurrently. The
atomicity property ensures that either all the database operations in a transaction are
executed or none are. We discuss transactions in detail in Part V of the textbook.

The preceding characteristics are most important in distinguishing a DBMS from
traditional file-processing software. In Section 1.6 we discuss additional features that
characterize a DBMS. First, however, we categorize the different types of persons who work
in a database system environment.

1.4 ACTORS ON THE SCENE
For a small personal database, such as the list of addresses discussed in Section 1.1, one
person typically defines, constructs, and manipulates the database, and there is no shar
ing. However, many persons are involved in the design, use, and maintenance of a large
database with hundreds of users. In this section we identify the people whose jobs involve
the day-to-day use of a large database; we call them the "actors on the scene." In Section
1.5 we consider people who may be called "workers behind the scene"-those who work
to maintain the database system environment but who are not actively interested in the
database itself.

1.4.1 Database Administrators
In any organization where many persons use the same resources, there is a need for a chief
administrator to oversee and manage these resources. In a database environment, the pri
mary resource is the database itself, and the secondary resource is the DBMS and related
software. Administering these resources is the responsibility of the database administra
tor (DBA). The DBA is responsible for authorizing access to the database, for coordinating
and monitoring its use, and for acquiring software and hardware resources as needed. The
DBA is accountable for problems such as breach of security or poor system response time.
In large organizations, the DBA is assisted by a staff that helps carry out these functions.

1.4 Actors on the Scene I 13

1.4.2 Database Designers
Database designers are responsible for identifying the data to be stored in the database
and for choosing appropriate structures to represent and store this data. These tasks are
mostly undertaken before the database is actually implemented and populated with data.
It is the responsibility of database designers to communicate with all prospective database
users in order to understand their requirements, and to come up with a design that meets
these requirements. In many cases, the designers are on the staff of the DBA and may be
assigned other staff responsibilities after the database design is completed. Database
designers typically interact with each potential group of users and develop views of the
database that meet the data and processing requirements of these groups. Each view is
then analyzed and integrated with the views of other user groups. The final database design
must be capable of supporting the requirements of all user groups.

1.4.3 End Users
End users are the people whose jobs require access to the database for querying, updating,
and generating reports; the database primarily exists for their use. There are several cate
gories of end users:

• Casual end users occasionally access the database, but they may need different
information each time. They use a sophisticated database query language to specify
their requests and are typically middle- or high-level managers or other occasional
browsers.

• Naive or parametric end users make up a sizable portion of database end users. Their
main job function revolves around constantly querying and updating the database,
using standard types of queries and updates-called canned transactions-that have
been carefully programmed and tested. The tasks that such users perform are varied:

Bank tellers check account balances and post withdrawals and deposits.

Reservation clerks fur airlines, hotels, and car rental companies check availability for
a given request and make reservations.

Clerks at receiving stations for courier mail enter package identifications via bar
codes and descriptive information through buttons to update a central database of
received and in-transit packages.

• Sophisticated end users include engineers, scientists, business analysts, and others
who thoroughly familiarize themselves with the facilities of the DBMS so as to imple
ment their applications to meet their complex requirements.

• Stand-alone users maintain personal databases by using ready-made program packages
that provide easy-to-use menu-based or graphics-based interfaces. An example is the
user of a tax package that stores a variety of personal financial data for tax purposes.

A typical DBMS provides multiple facilities to access a database. Naive end users need
to learn very little about the facilities provided by the DBMS; they have to understand
only the user interfaces of the standard transactions designed and implemented for their

14 I Chapter 1 Databases and Database Users

use. Casual users learn only a few facilities that they may use repeatedly. Sophisticated
users try to learn most of the DBMS facilities in order to achieve their complex
requirements. Stand-alone users typically become very proficient in using a specific
software package.

1.4.4 System Analysts and Application Programmers
(Software Engineers)

System analysts determine the requirements of end users, especially naive and parametric
end users, and develop specifications for canned transactions that meet these require
ments. Application programmers implement these specifications as programs; then they
test, debug, document, and maintain these canned transactions. Such analysts and pro
grammers-commonly referred to as software engineers-should be familiar with the full
range of capabilities provided by the DBMS to accomplish their tasks.

1.5 WORKERS BEHIND THE SCENE
In addition to those who design, use, and administer a database, others are associated with
the design, development, and operation of the DBMS software and system environment.
These persons are typically not interested in the database itself. We call them the "work
ers behind the scene," and they include the following categories.

• DBMS system designers and implementers are persons who design and implement
the DBMS modules and interfaces as a software package. A DBMS is a very complex
software system that consists of many components, or modules, including modules
for implementing the catalog, processing query language, processing the interface,
accessing and buffering data, controlling concurrency, and handling data recovery
and security. The DBMS must interface with other system software, such as the operat
ing system and compilers for various programming languages.

• Tool developers include persons who design and implement tools-the software
packages that facilitate database system design and use and that help improve perfor
mance. Tools are optional packages that are often purchased separately. They include
packages for database design, performance monitoring, natural language or graphical
interfaces, prototyping, simulation, and test data generation. In many cases, indepen
dent software vendors develop and market these tools.

• Operators and maintenance personnel are the system administration personnel who
are responsible for the actual running and maintenance of the hardware and software
environment for the database system.

Although these categories of workers behind the scene are instrumental in making
the database system available to end users, they typically do not use the database for their
own purposes.

1.6 Advantages of Using the DBMS Approach I 15

1.6 ADVANTAGES OF USING THE DBMS
ApPROACH

In this section we discuss some of the advantages of using a DBMS and the capabilities that
a good DBMS should possess. These capabilities are in addition to the four main character
istics discussed in Section 1.3. The DBA must utilize these capabilities to accomplish a
variety of objectives related to the design, administration, and use of a large multiuser
database.

1.6.1 Controlling Redundancy
In traditional software development utilizing file processing, every user group maintains its
own files for handling its data-processing applications. For example, consider the UNIVERSITY

database example of Section 1.2; here, two groups of users might be the course registration
personnel and the accounting office. In the traditional approach, each group independently
keeps files on students. The accounting office also keeps data on registration and related
billing information, whereas the registration office keeps track of student courses and grades.
Much of the data is stored twice: once in the files of each user group. Additional user groups
may further duplicate some or all of the same data in their own files.

This redundancy in storing the same data multiple times leads to several problems.
First, there is the need to perform a single logical update-such as entering data on a new
student-multiple times: once for each file where student data is recorded. This leads to
duplication of effort. Second, storage space is wastedwhen the same data is stored repeatedly,
and this problem may be serious for large databases. Third, files that represent the same
data may become inconsistent. This may happen because an update is applied to some of
the files but not to others. Even if an update-such as adding a new student-is applied to
all the appropriate files, the data concerning the student may still be inconsistent because
the updates are applied independently by each user group. For example, one user group
may enter a student's birthdate erroneously as JAN-19-1984, whereas the other user groups
may enter the correct value of JAN-29-1984.

In the database approach, the views of different user groups are integrated during
database design. Ideally, we should have a database design that stores each logical data
item-such as a student's name or birth date-in only one place in the database. This
ensures consistency, and it saves storage space. However, in practice, it is sometimes
necessary to use controlled redundancy for improving the performance of queries. For
example, we may store Studentl-Jame and CourseN umber redundantly in a GRADE_REPORT

file (Figure 1.5a) because whenever we retrieve a GRADE_REPORT record, we want to
retrieve the student name and course number along with the grade, student number,
and section identifier. By placing all the data together, we do not have to search
multiple files to collect this data. In such cases, the DBMS should have the capability to
control this redundancy so as to prohibit inconsistencies among the files. This may be
done by automatically checking that the StudentName-StudentNumber values in any
GRADE_REPORT record in Figure 1.5a match one of the Name-StudentNumber values of a
STUDENT record (Figure 1.2). Similarly, the SectionIdentifier-CourseNumber values in

16 I Chapter 1 Databases and Database Users

"-_._--- -
SectionldentifierL~<:)~~~-~Numbe;ORT StudentNumber StudentName Grade

17 Smith 112 I MATH2410 BI
17 Smith 119 __~_CS1310 tt,_.-

8 Brown 85 MATH2410._._-
8 Brown 92 CS1310 A

f---

8 I Brown 102 CS3320 B
.~._._---

8 Brown 135 CS3380 A.,--- '--

(b) GRADE_REPORT StudentNumber StudentName Sectionldentifier ICourseNumber IGrade I
17 Brown 112 I -MATH2410 ' B I

FIGURE 1.5 Redundant storage of StudentName and CourseNumber in GRADE_REPORT. (a) Consistent
data. (b) Inconsistent record.

GRADE_REPORT can be checked against SECTION records. Such checks can be specified to

the DBMS during database design and automatically enforced by the DBMS whenever the
GRADE_REPORT file is updated. Figure 1.5b shows a GRADE3EPORT record that is inconsistent
with the STUDENT file of Figure 1.2, which may be entered erroneously if the redundancy
is not controlled.

1.6.2 Restricting Unauthorized Access
When multiple users share a large database, it is likely that most users will not be autho
rized to access all information in the database. For example, financial data is often consid
ered confidential, and hence only authorized persons are allowed to access such data. In
addition, some users may be permitted only to retrieve data, whereas others are allowed
both to retrieve and to update. Hence, the type of access operation-retrieval or
update-must also be controlled. Typically, users or user groups are given account num
bers protected by passwords, which they can use to gain access to the database. A DBMS
should provide a security and authorization subsystem, which the DBA uses to create
accounts and to specify account restrictions. The DBMS should then enforce these restric
tions automatically. Notice that we can apply similar controls to the DBMS software. For
example, only the DBA's staff may be allowed to use certain privileged software, such as
the software for creating new accounts. Similarly, parametric users may be allowed to
access the database only through the canned transactions developed for their use.

1.6.3 Providing Persistent Storage for Program Objects
Databases can be used to provide persistent storage for program objects and data struc
tures. This is one of the main reasons for object-oriented database systems. Programming
languages typically have complex data structures, such as record types in Pascal or class

1.6 Advantages of Using the DBMS Approach I 17

definitions in c++ or Java. The values of program variables are discarded once a program
terminates, unless the programmer explicitly stores them in permanent files, which often
involves converting these complex structures into a format suitable for file storage. When
the need arises to read this data once more, the programmer must convert from the file
format to the program variable structure. Object-oriented database systems are compati
ble with programming languages such as c++ and Java, and the DBMS software automati
cally performs any necessary conversions. Hence, a complex object in c++ can be stored
permanently in an object-oriented DBMS. Such an object is said to be persistent, since it
survives the termination of program execution and can later be directly retrieved by
another c+ + program.

The persistent storage of program objects and data structures is an important
function of database systems. Traditional database systems often suffered from the so
called impedance mismatch problem, since the data structures provided by the DBMS

were incompatible with the programming language's data structures. Object-oriented
database systems typically offer data structure compatibility with one or more object
oriented programming languages.

1.6.4 Providing Storage Structures for Efficient Query
Processing

Database systems must provide capabilities for efficiently executing queries and updates.
Because the database is typically stored on disk, the DBMS must provide specialized data
structures to speed up disk search for the desired records. Auxiliary files called indexes are
used for this purpose. Indexes are typically based on tree data structures or hash data struc
tures, suitably modified for disk search. In order to process the database records needed by a
particular query, those records must be copied from disk to memory. Hence, the DBMS often
has a buffering module that maintains parts of the database in main memory buffers. In
other cases, the DBMS may use the operating system to do the buffering of disk data.

The query processing and optimization module of the DBMS is responsible for
choosing an efficient query execution plan for each query based on the existing storage
structures. The choice of which indexes to create and maintain is part of physical database
design and tuning, which is one of the responsibilities of the DBA staff.

1.6.5 Providing Backup and Recovery
A DBMS must provide facilities for recovering from hardware or software failures. The
backup and recovery subsystem of the DBMS is responsible for recovery. For example, if
the computer system fails in the middle of a complex update transaction, the recovery
subsystem is responsible for making sure that the database is restored to the state it was in
before the transaction started executing. Alternatively, the recovery subsystem could
ensure that the transaction is resumed from the point at which it was interrupted so that
its full effect is recorded in the database.

18 I Chapter 1 Databases and Database Users

1.6.6 Providing Multiple User Interfaces
Because many types of users with varying levels of technical knowledge use a database, a
DBMS should provide a variety of user interfaces. These include query languages for casual
users, programming language interfaces for application programmers, forms and command
codes for parametric users, and menu-driven interfaces and natural language interfaces for
stand-alone users. Both forms-style interfaces and menu-driven interfaces are commonly
known as graphical user interfaces (GU Is). Many specialized languages and environ
ments exist for specifying GUls. Capabilities for providing Web GUl interfaces to a data
base-or Web-enabling a database-are also quite common.

1.6.7 Representing Complex Relationships among Data
A database may include numerous varieties of data that are interrelated in many ways.
Consider the example shown in Figure 1.2. The record for Brown in the STUDENT file is
related to four records in the GRADCREPDRT file. Similarly, each section record is related to
one course record as well as to a number of GRADE_REPDRT records-one for each student
who completed that section. A DBMS must have the capability to represent a variety of
complex relationships among the data as well as to retrieve and update related data easily
and efficiently.

1.6.8 Enforcing Integrity ~onstraints

Most database applications have certain integrity constraints that must hold for the data. A
DBMS should provide capabilities for defining and enforcing these constraints. The simplest
type of integrity constraint involves specifying a data type for each data item. For example,
in Figure 1.2, we may specify that the value of the Class data item within each STUDENT

record must be an integer between 1 and 5 and that the value of Name must be a string of
no more than 30 alphabetic characters. A more complex type of constraint that frequently
occurs involves specifying that a record in one file must be related to records in other files.
For example, in Figure 1.2, we can specify that "every section record must be related to a
course record." Another type of constraint specifies uniqueness on data item values, such as
"every course record must have a unique value for CourseNumber." These constraints are
derived from the meaning or semantics of the data and of the miniworld it represents. It is
the database designers' responsibility to identify integrity constraints during database
design. Some constraints can be specified to the DBMS and automatically enforced. Other
constraints may have to be checked by update programs or at the time of data entry.

A data item may be entered erroneously and still satisfy the specified integrity
constraints. For example, if a student receives a grade of A but a grade of C is entered in
the database, the DBMS cannot discover this error automatically, because C is a valid value
for the Grade data type. Such data entry errors can only be discovered manually (when
the student receives the grade and complains) and corrected later by updating the
database. However, a grade of Z can be rejected automatically by the DBMS, because Z is
not a valid value for the Grade data type.

1.6 Advantages of Usi ng the DBMS Approach I 19

1.6.9 Permitting Inferencing and Actions Using Rules
Some database systems provide capabilities for defining deduction rules for inferencing new
information from the stored database facts. Such systems are called deductive database
systems. For example, there may be complex rules in the miniworld application for deter
mining when a student is on probation. These can be specified declaratively as rules,
which when compiled and maintained by the DBMS can determine all students on proba
tion. In a traditional DBMS, an explicit procedural prof-,Jmm code would have to be written
to support such applications. But if the miniworld rules change, it is generally more con
venient to change the declared deduction rules than to recode procedural programs. More
powerful functionality is provided by active database systems, which provide active rules
that can automatically initiate actions when certain events and conditions occur.

1.6.10 Additional Implications of Using the Database
Approach

This section discusses some additional implications of using the database approach that
can benefit most organizations.

Potential for Enforcing Standards. The database approach permits the DBA to
define and enforce standards among database users in a large organization. This facilitates
communication and cooperation among various departments, projects, and users within
the organization. Standards can be defined for names and formats of data elements,
display formats, report structures, terminology, and so on. The DBA can enforce standards
in a centralized database environment more easily than in an environment where each
user group has control of its own files and software.

Reduced Application Development Time. A prime selling feature of the
database approach is that developing a new application-such as the retrieval of certain data
from the database for printing a new report-takes very little time. Designing and
implementing a new database from scratch may take more time than writing a single
specialized file application. However, once a database is up and running, substantially less time
isgenerally required to create new applications using DBMS facilities. Development time using
a DBMS is estimated to be one-sixth to one-fourth of that for a traditional file system.

FIexibiii ty. It may be necessary to change the structure of a database as requirements
change. For example, a new user group may emerge that needs information not currently
in the database. In response, it may be necessary to add a file to the database or to extend
the data elements in an existing file. Modern DBMSs allow certain types of evolutionary
changes to the structure of the database without affecting the stored data and the existing
application programs.

Availability of Up-to-Date Information. A DBMS makes the database available
to all users. As soon as one user's update is applied to the database, all other users can

20 I Chapter 1 Databases and Database Users

immediately see this update. This availability of up-to-date information is essential for
many transaction-processing applications, such as reservation systems or banking databases,
and it is made possible by the concurrency control and recovery subsystems of a DBMS.

Economies of Scale. The DBMS approach permits consolidation of data and
applications, thus reducing the amount of wasteful overlap between activities of data
processing personnel in different projects or departments. This enables the whole
organization to invest in more powerful processors, storage devices, or communication gear,
rather than having each department purchase its own (weaker) equipment. This reduces
overall costs of operation and management.

1.7 A BRIEF HISTORY OF DATABASE
ApPlICATIONS

We now give a brief historical overview of the applications that use DBMSs, and how these
applications provided the impetus for new types of database systems.

1.7.1 Early Database Applications Using Hierarchical
and Network Systems

Many early database applications maintained records in large organzations, such as corpo
rations, universities, hospitals, and banks. In many of these applications, there were large
numbers of records of similar structure. For example, in a university application, similar
information would be kept for each student, each course, each grade record, and so on.
There were also many types of records and many interrelationships among them.

One of the main problems with early database systems was the intermixing of
conceptual relationships with the physical storage and placement of records on disk. For
example, the grade records of a particular student could be physically stored next to the
student record. Although this provided very efficient access for the original queries and
transactions that the database was designed to handle, it did not provide enough
flexibility to access records efficiently when new queries and transactions were identified.
In particular, new queries that required a different storage organization for efficient
processing were quite difficult to implement efficiently. It was also quite difficult to
reorganize the database when changes were made to the requirements of the application.

Another shortcoming of early systems was that they provided only programming
language interfaces. This made it time-consuming and expensive to implement new
queries and transactions, since new programs had to be written, tested, and debugged.
Most of these database systems were implemented on large and expensive mainframe
computers starting in the mid-1960s and through the 1970s and 1980s. The main types of
early systems were based on three main paradigms: hierarchical systems, network model
based systems, and inverted file systems.

1.7 A Brief History of Database Applications I 21

1.7.2 Providing Application Flexibility with Relational
Databases

Relational databases were originally proposed to separate the physical storage of data from
its conceptual representation and to provide a mathematical foundation for databases.
The relational data model also introduced high-level query languages that provided an
alternative to programming language interfaces; hence, it was a lot quicker to write new
queries. Relational representation of data somewhat resembles the example we presented
in Figure 1.2. Relational systems were initially targeted to the same applications as earlier
systems, but were meant to provide flexibility to quickly develop new queries and to reor
ganize the database as requirements changed.

Early experimental relational systems developed in the late 1970s and the
commercial RDBMSs (relational database management systems) introduced in the early
1980s were quite slow, since they did not use physical storage pointers or record
placement to access related data records. With the development of new storage and
indexing techniques and better query processing and optimization, their performance
improved. Eventually, relational databases became the dominant type of database systems
for traditional database applications. Relational databases now exist on almost all types of
computers, from small personal computers to large servers.

1.7.3 Object-Oriented Applications and the Need for
More Complex Databases

The emergence of object-oriented programming languages in the 1980s and the need to
store and share complex-structured objects led to the development of object-oriented
databases. Initially, they were considered a competitor to relational databases, since they
provided more general data structures. They also incorporated many of the useful object
oriented paradigms, such as abstract data types, encapsulation of operations, inheritance,
and object identity. However, the complexity of the model and the lack of an early stan
dard contributed to their limited usc. They are now mainly used in specialized applica
tions, such as engineering design, multimedia publishing, and manufacturing systems.

1.7.4 Interchanging Data on the
Web for E-Commerce

The World Wide Web provided a large network of interconnected computers. Users
can create documents using a Web publishing language, such as HTML (HyperText
Markup Language), and store these documents on Web servers where other users (cli
ents) can access them. Documents can be linked together through hvpcrlinks, which
are pointers to other documents. In the 1990s, electronic commerce (e-commerce)
emerged as a major application on the Web. It quickly became apparent that parts of
the information on e-cornmerce Web pages were often dynamically extracted data from
DBMSs. A variety of techniques were developed to allow the interchange of data on the

22 I Chapter 1 Databases and Database Users

Web. Currently, XML (eXtended Markup Language) is considered to be the primary
standard for interchanging data among various types of databases and Web pages. XML

combines concepts from the models used in document systems with database modeling
concepts.

1.7.5 Extending Database Capabilities for New
Applications

The success of database systems in traditional applications encouraged developers of other
types of applications to attempt to use them. Such applications traditionally used their own
specialized file and data structures. The following are examples of these applications:

• Scientific applications that store large amounts of data resulting from scientific
experiments in areas such as high-energy physics or the mapping of the human
genome.

• Storage and retrieval of images, from scanned news or personal photographs to satel
lite photograph images and images from medical procedures such as X-rays or MRI

(magnetic resonance imaging).

• Storage and retrieval of videos, such as movies, or video clips from news or personal
digital cameras.

• Data mining applications that analyze large amounts of data searching for the occur
rences of specific patterns or relationships.

• Spatial applications that store spatial locations of data such as weather information
or maps used in geographical information systems.

• Time series applications that store information such as economic data at regular
points in time, for example, daily sales or monthly gross national product figures.

It was quickly apparent that basic relational systems were not very suitable for many of these
applications, usually for one or more of the following reasons:

• More complex data structures were needed for modeling the application than the
simple relational representation.

• New data types were needed in addition to the basic numeric and character string
types.

• New operations and query language constructs were necessary to manipulate the new
data types.

• New storage and indexing structures were needed.

This led DBMS developers to add functionality to their systems. Some functionality
was general purpose, such as incorporating concepts from object-oriented databases into
relational systems. Other functionality was special purpose, in the form of optional
modules that could be used for specific applications. For example, users could buy a time
series module to use with their relational DBMS for their time series application.

•

1.8 When Not to Use a DBMS I 23

1.8 WHEN NOT TO USE A DBMS
In spite of the advantages of using a DBMS, there are a few situations in which such a sys
tem may involve unnecessary overhead costs that would not be incurred in traditional file
processing. The overhead costs of using a DBMS are due to the following:

• High initial investment in hardware, software, and training

• The generality that a DBMS provides for defining and processing data

• Overhead for providing security, concurrency control, recovery, and integrity
functions

Additional problems may arise if the database designers and DBA do not properly
design the database or if the database systems applications are not implemented properly.
Hence, it may be more desirable to use regular files under the following circumstances:

• The database and applications are simple, well defined, and not expected to change.

• There are stringent real-time requirements for some programs that may not be met
because of DBMS overhead.

• Multiple-user access to data is not required.

1.9 SUMMARY
In this chapter we defined a database as a collection of related data, where data means
recorded facts. A typical database represents some aspect of the real world and is used for
specific purposes by one or more groups of users. A DBMS is a generalized software package
for implementing and maintaining a computerized database. The database and software
together form a database system. We identified several characteristics that distinguish the
database approach from traditional file-processing applications. We then discussed the
main categories of database users, or the "actors on the scene." We noted that, in addition
to database users, there are several categories of support personnel, or "workers behind the
scene," in a database environment.

We then presented a list of capabilities that should be provided by the DBMS software
to the DBA, database designers, and users to help them design, administer, and use a
database. Following this, we gave a brief historical perspective on the evolution of
database applications. Finally, we discussed the overhead costs of using a DBMS and
discussed some situations in which it may not be advantageous to use a DBMS.

Review Questions
1.1. Define the following terms: data, database, DBMS, database system, database catalog,

program-data independence, user view, DBA, end user, canned transaction, deductive
database system, persistent object, meta-data, transaction-processing application.

1.2. What three main types of actions involve databases! Briefly discuss each.

24 I Chapter 1 Databases and Database Users

1.3. Discuss the main characteristics of the database approach and how it differs from
traditional file systems.

1.4. What are the responsibilities of the DBA and the database designers?
1.5. What are the different types of database end users? Discuss the main activities of

each.
1.6. Discuss the capabilities that should be provided by a DBMS.

Exercises
1.7. Identify some informal queries and update operations that you would expect to

apply to the database shown in Figure 1.2.
1.8. What is the difference between controlled and uncontrolled redundancy? Illus

trate with examples.
1.9. Name all the relationships among the records of the database shown in Figure 1.2.

1.10. Give some additional views that may be needed by other user groups for the data
base shown in Figure 1.2.

1.11. Cite some examples of integrity constraints that you think should hold on the
database shown in Figure 1.2.

Selected Bibliography
The October 1991 issue of Communications of the ACM and Kim (1995) include several
articles describing next-generation DBMSs; many of the database features discussed in the
former are now commercially available. The March 1976 issue of ACM Computing Surveys
offers an early introduction to database systems and may provide a historical perspective
for the interested reader.

Database System
Concepts and
Architecture

The architecture of DBMS packages has evolved from the early monolithic systems, where
the whole DBMS software package was one tightly integrated system, to the modern DBMS

packages that are modular in design, with a client/server system architecture. This evolu
tion mirrors the trends in computing, where large centralized mainframe computers are
being replaced by hundreds of distributed workstations and personal computers con
nected via communications networks to various types of server mach ines-s-Web servers,
database servers, file servers, application servers, and so on.

In a basic client/server DBMS architecture, the system functionality is distributed
between two types of modules. 1 A client module is typically designed so that it will run
on a user workstation or personal computer. Typically, application programs and user
interfaces that access the database run in the client module. Hence, the client module
handles user interaction and provides the user-friendly interfaces such as forms- or menu
based CUls (Graphical User Interfaces). The other kind of module, called a server
module, typically handles data storage, access, search, and other functions. We discuss
client/server architectures in more detail in Section 2.S. First, we must study more basic
concepts that will give us a better understanding of modern database architectures.

In this chapter we present the terminology and basic concepts that will be used
throughout the book. We start, in Section 2.1, by discussing data models and defining the

1.As we shall see in Section 2.5, there are variations on this simple two-tier client/server architecture.

25

26 I Chapter 2 Database System Concepts and Architecture

concepts of schernas and instances, which are fundamental to the study of database systems.
We then discuss the three-schema DBMS architecture and data independence in Section
2.2; this provides a user's perspective on what a DBMS is supposed to do. In Section 2.3, we
describe the types of interfaces and languages that are typically provided by a DBMS. Section
2.4 discusses the database system software environment. Section 2.5 gives an overview of
various types of client/server architectures. Finally, Section 2.6 presents a classification of
the types of DBMS packages. Section 2.7 summarizes the chapter.

The material in Sections 2.4 through 2.6 provides more detailed concepts that may
be looked upon as a supplement to the basic introductory material.

2.1 DATA MODELS, SCHEMAS, AND INSTANCES
One fundamental characteristic of the database approach is that it provides some level of
data abstraction by hiding details of data storage that are not needed by most database
users. A data model-a collection of concepts that can be used to describe the structure
of a database-provides the necessary means to achieve this abstraction.i By structure of a
database, we mean the data types, relationships, and constraints that should hold for the
data. Most data models also include a set of basic operations for specifying retrievals and
updates on the database.

In addition to the basic operations provided by the data model, it is becoming more
common to include concepts in the data model to specify the dynamic aspect or behavior
of a database application. This allows the database designer to specify a set of valid user
defined operations that arc allowed on the database objects.:' An example of a user-defined
operation could be COMPUTE_GPA, which can be applied to a STUDENT object. On the other hand,
generic operations to insert, delete, modify, or retrieve any kind of object are often included
in the basic data model ojJerations. Concepts to specify behavior are fundamental to object
oriented data models (see Chapters 20 ami 21) but are also being incorporated in more
traditional data models. For example, object-relational models (see Chapter 22) extend the
traditional relational model to include such concepts, among others.

2.1.1 Categories of Data Models
Many data models have been proposed, which we can categorize according to the types of
concepts they use to describe the database structure. High-level or conceptual data mod
els provide concepts that are close to the way many users perceive data, whereas low-level
or physical data models provide concepts that describe the details of how data is stored in

2. Sometimes the word model is used to denote a specific database description, or schema-s-for
example, "the marketing data model." We will not use this interpretation.

3. The inclusion of concepts to describe behavior reflects a trend whereby database design and soft
ware design activities are increasingly being combined into a single activity. Traditionally, specify
ing behavior is associated with software design.

2.1 Data Models, Schemas, and Instances I 27

the computer. Concepts provided by low-level data models are generally meant for com
puter specialists, not for typical end users. Between these two extremes is a class of repre
sentational (or implementation) data models, which provide concepts that may be
understood by end users but that are not too far removed from the way data is organized
within the computer. Representational data models hide some details of data storage but
can be implemented on a computer system in a direct way.

Conceptual data models use concepts such as entities, attributes, and relationships.
An entity represents a real-world object or concept, such as an employee or a project,
that is described in the database. An attribute represents some property of interest that
further describes an entity, such as the employee's name or salary. A relationship among
two or more entities represents an association among two or more entities, for example, a
works-on relationship between an employee and a project. Chapter 3 presents the entity
relationship model-a popular high-level conceptual data model. Chapter 4 describes
additional conceptual data modeling concepts, such as generalization, specialization, and
categories.

Representational or implementation data models are the models used most frequently
in traditional commercial DBMSs. These include the widely used relational data model, as
wellas the so-called legacy data models-the network and hierarchical models-that have
been widely used in the past. Part 11 of this book is devoted to the relational data model, its
operations and languages, and some of the techniques for programming relational database
applications." The SQL standard for relational databases is described in Chapters 8 and 9.
Representational data models represent data by using record structures and hence are
sometimes called record-based data models.

We can regard object data models as a new family of higher-level implementation
data models that are closer to conceptual data models. We describe the general
characteristics of object databases and the ODM(j proposed standard in Chapters 20 and
21. Object data models are also frequently utilized as high-level conceptual models,
particularly in the software engineering domain.

Physical data models describe how data is stored as files in the computer by
representing information such as record formats, record orderings, and access paths. An
access path is a structure that makes the search for particular database records efficient.
We discuss physical storage techniques and access structures in Chapters 13 and 14.

2.1.2 Schemas, Instances, and Database State
In any data model, it is important to distinguish between the description of the database
and the database itself. The description of a database is called the database schema, which
is specified during database design and is not expected to change frcquentlv.? Most data

4. A summary of the network and hierarchical data models is includeJ in Appendices E and F. The
full chapters from the second edition of this book are accessible from the Web site.

5. Schema changes are usually needed as the requirements of the database applications change.
Newer database systems include operations for allowing schema changes, although the schema
change process is more involved than simple database updates.

28 I Chapter 2 Database System Concepts and Architecture

models have certain conventions for displaying schemas as diagrams." A displayed
schema is called a schema diagram. Figure 2.1 shows a schema diagram for the database
shown in Figure 1.2; the diagram displays the structure of each record type but not the
actual instances of records. We call each object in the schema-such as STUDENT or
COURSE-a schema construct.

A schema diagram displays only some aspects of a schema, such as the names of record
types and data items, and some types of constraints. Other aspects are not specified in the
schema diagram; for example, Figure 2.1 shows neither the data type of each data item nor
the relationships among the various files. Many types of constraints are not represented in
schema diagrams. A constraint such as "students majoring in computer science must take
CS1310 before the end of their sophomore year" is quite difficult to represent.

The actual data in a database may change quite frequently. For example, the database
shown in Figure 1.2 changes every time we add a student or enter a new grade for a
student. The data in the database at a particular moment in time is called a database state
or snapshot. It is also called the current set of occurrences or instances in the database. In
a given database state, each schema construct has its own current set of instances; for
example, the STUDENT construct will contain the set of individual student entities (records)
as its instances. Many database states can be constructed to correspond to a particular
database schema. Every time we insert or delete a record or change the value of a data
item in a record, we change one state of the database into another state.

The distinction between database schema and database state is very important.
When we define a new database, we specify its database schema only to the DBMS. At this

STUDENT
I Name I---:S'-tu-d---:e-n---:tN---:u-m---:b-e-r[Class I Major

COURSE

DepartmentI CourseName ICourseNumberI CreditHours I
----'-----------'

PREREQUISITE

I CourseNumber I PrerequisiteNumber

SECTION

I Sectionldentifier I CourseNumber I Semester I Year !Instruetor

I StudentNumber I Seetionldentifier I Grade

FIGURE 2.1 Schema diagram for the database in Figure 1.2.

6. It is customary in database parlance to use scliemas as the plural for schema, even though schemata
is the proper plural form. The word scheme is sometimes used for a schema.

2.2 Three-Schema Architecture and Data Independence I 29

point, the corresponding database state is the empty state with no data. We get the initial
state of the database when the database is first populated or loaded with the initial data.
From then on, every time an update operation is applied to the database, we get another
database state. At any point in time, the database has a current state.7 The DBMS is partly
responsible for ensuring that every state of the database is a valid state-s-that is, a state
that satisfies the structure and constraints specified in the schema. Hence, specifying a
correct schema to the DBMS is extremely important, and the schema must be designed
with the utmost care. The DBMS stores the descriptions of the schema constructs and
constraints-also called the meta-data-in the DBMS catalog so that DBMS software can
refer to the schema whenever it needs to. The schema is sometimes called the intension,
and a database state an extension of the schema.

Although, as mentioned earlier, the schema is not supposed to change frequently, it is
not uncommon that changes need to be occasionally applied to the schema as the
application requirements change. For example, we may decide that another data item
needs to be stored for each record in a file, such as adding the DateOfBirth to the STUDENT

schema in Figure 2.1. This is known as schema evolution. Most modern DBMSs include
some operations for schema evolution that can be applied while the database is
operational.

2.2 THREE-SCHEMA ARCHITECTURE AND
DATA INDEPENDENCE

Three of the four important characteristics of the database approach, listed in Section
1J, are (1) insulation of program:; and data (program-data and program-operation inde
pendence), (2) support of multiple user views, and (3) use of a catalog to store the data
base description (schema). In this section we specify an architecture for database systems,
called the three-schema architccture.i' that was proposed to help achieve and visualize
these characteristics. We then further discuss the concept of data independence.

2.2.1 The Three-Schema Architecture
The goal of the three-schema architecture, illustrated in Figure 2.2, is to separate the user
applications and the physical database. In this architecture, schemas can be defined at the
following three levels:

1. The internal level has an internal schema, which describes the physical storage
structure of the database. The internal schema uses a physical data model and
describes the complete details of data storage and access paths for the database.

7. The current state is also called the current snapshot of the database.

8. This is also known as the ANSI/SPARe architecture, after the committee that proposed it
(Tsichritzis and Klug 1978).

30 I Chapter 2 Database System Concepts and Architecture

EXTERNAL
LEVEL

external/conceptual
mapping

EXTERNAL
VIEW

END USERS

••• EXTERNAL
VIEW

CONCEPTUAL
LEVEL

conceptual/internal mapping

INTERNAL
LEVEL INTERNAL SCHEMA

STORED DATABASE

FIGURE 2.2 The three-schema architecture.

2. The conceptual level has a conceptual schema, which describes the structure of
the whole database for a community of users. The conceptual schema hides the
details of physical storage structures and concentrates on describing entities, data
types, relationships, user operations, and constraints. Usually, a representational
data model is used to describe the conceptual schema when a database system is
implemented. This implementation conceptual schema is often based on a conceptual
schemadesign in a high-level data model.

3. The external or view level includes a number of external schemas or user views.
Each external schema describes the part of the database that a particular user
group is interested in and hides the rest of the database from that user group. As
in the previous case, each external schema is typically implemented using a repre
sentational data model, possibly based on an external schema design in a high
level data model.

The three-schema architecture is a convenient tool with which the user can visualize
the schema levels in a database system. Most DBMSs do not separate the three levels
completely, but support the three-schema architecture to some extent. Some DBMSs may

2.2 Three-Schema Architecture and Data Independence I 31

include physical-level details in the conceptual schema. In most DBMSs that support user
views, external schernas are specified in the same data model that describes the
conceptual-level information. Some DBMSs allow different data models to be used at the
conceptual and external levels.

Notice that the three schernas are only descriptions of data; the only data that actually
exists is at the physical level. In a DBMS based on the three-schema architecture, each
user group refers only to its own external schema. Hence, the DBMS must transform a
request specified on an external schema into a request against the conceptual schema, and
then into a request on the internal schema for processing over the stored database. If the
request is a database retrieval, the data extracted from the stored database must be
reformatted to match the user's external view. The processes of transforming requests and
results between levels are called mappings. These mappings may be time-consuming, so
some DBMSs-especially those that are meant to support small databases-do not support
external views. Even in such systems, however, a certain amount of mapping is necessary
to transform requests between the conceptual and internal levels.

2.2.2 Data Independence
The three-schema architecture can be used to further explain the concept of data inde
pendence, which can be defined as the capacity to change the schema at one level of a
database system without having to change the schema at the next higher level. We can
define two types of data independence:

1. Logical data independence is the capacity to change the conceptual schema with
out having to change external schernas or application programs. We may change
the conceptual schema to expand the database (by adding a record type or data
item), to change constraints, or to reduce the database (by removing a record type
or data item). In the last case, external schemas that refer only to the remaining
data should not be affected. For example, the external schema of Figure l.4a
should not be affected by changing the GRADE_REPORT file shown in Figure 1.2 into
the one shown in Figure 1.5a. Only the view definition and the mappings need be
changed in a DBMS that supports logical data independence. After the conceptual
schema undergoes a logical reorganization, application programs that reference
the external schema constructs must work as before. Changes to constraints can
be applied to the conceptual schema without affecting the external schernas or
application programs.

2. Physical data independence is the capacity to change the internal schema with
out having to change the conceptual schema. Hence, the external schemas need
not be changed as well. Changes to the internal schema may be needed because
some physical files had to be reorganized-for example, by creating additional
access structures-to improve the performance of retrieval or update. If the same
data as before remains in the database, we should not have to change the concep
tual schema. For example, providing an access path to improve retrieval speed of
SECTION records (Figure 1.2) by Semester and Year should not require a query such
as "list all sections offered in fall 1998" to be changed, although the query would
be executed more efficiently by the DBMS by utilizing the new access path.

32 I Chapter 2 Database System Concepts and Architecture

Whenever we have a multiple-level DBMS, its catalog must be expanded to include
information on how to map requests and data among the various levels. The DBMS uses
additional software to accomplish these mappings by referring to the mapping
information in the catalog. Data independence occurs because when the schema is
changed at some level, the schema at the next higher level remains unchanged; only the
mappingbetween the two levels is changed. Hence, application programs referring to the
higher-level schema need not be changed.

The three-schema architecture can make it easier to achieve true data independence,
both physical and logical. However, the two levels of mappings create an overhead during
compilation or execution of a query or program, leading to inefficiencies in the DBMS.
Because of this, few DBMSs have implemented the full three-schema architecture.

2.3 DATABASE LANGUAGES AND INTERFACES
In Section 1.4 we discussed the variety of users supported by a DBMS. The DBMS must pro
vide appropriate languages and interfaces for each category of users. In this section we dis
cuss the types of languages ami interfaces provided by a DBMS and the user categories
targeted by each interface.

2.3.1 DBMS Languages
Once the design of a database is completed and a DBMS is chosen to implement the data
base, the first order of the day is to specify conceptual and internal schemas for the data
base and any mappings between the two. In many DBMSs where no strict separation of
levels is maintained, one language, called the data definition language (OOL), is used by
the DBA and by database designers to define both scheiuas. The DBMS will have a DDL
compiler whose function is to process LJDL statements in order to identify descriptions of
the schema constructs and to store the schema description in the DBMS catalog.

In DBMSs where a clear separation is maintained between the conceptual and
internal levels, the DDL is used to specify the conceptual schema only. Another language,
the storage definition language (SOL), is used to specify the internal schema. The
mappings between the two schemas may be specified in either one of these languages. For
a true three-schema architecture, we would need a third language, the view definition
language (VDL), to specify user views and their mappings to the conceptual schema, but
in most DBMSs the DDL is used to define both conceptual and external schemas.

Once the database schemas arc compiled and the database is populated with data,
users must have some means to manipulate the database. Typical manipulations include
retrieval, insertion, deletion, and modification of the data. The DBMS provides a set of
operations or a language called the data manipulation language (OML) for these purposes.

In current DBMSs, the preceding types of languages are usually not considered distinct
languages; rather, a comprehensive integrated language is used that includes constructs for
conceptual schema definition, view definition, ami data manipulation. Storage definition
is typically kept separate, since it is used for defining physical storage structures to fine-

2.3 Database Languages and Interfaces I 33

tune the performance of the database system, which is usually done by the DBA staff. A
typical example of a comprehensive database language is the SQL relational database
language (see Chapters 8 and 9), which represents a combination of DDL, VDL, and DML,
as well as statements for constraint specification, schema evolution, and other features.
The SDL was a component in early versions of SQL but has been removed from the
language to keep it at the conceptual and external levels only.

There are two main types of DMLs. A high-level or nonprocedural DML can be used
on its own to specify complex database operations in a concise manner. Many DBMSs
allow high-level DML statements either to be entered interactively from a display monitor
or terminal or to be embedded in a general-purpose programming language. In the latter
case, DML statements must be identified within the program so that they can be extracted
by a precompiler and processed by the DBMS. A low-level or procedural DML must be
embedded in a general-purpose programming language. This type of DML typically
retrieves individual records or objects from the database and processes each separately.
Hence, it needs to use programming language constructs, such as looping, to retrieve and
process each record from a set of records. Low-level DMLs are also called record-at-a-time
DMLs because of this property. High-level DMLs, such as SQL, can specify and retrieve
many records in a single DML statement and are hence called set-at-a-time or set-oriented
DMLs. A query in a high-level DML often specifies which data to retrieve rather than how to
retrieve it; hence, such languages are also called declarative.

Whenever DML commands, whether high level or low level, are embedded in a
general-purpose programming language, that language is called the host language and the
DML is called the data sublanguage." On the other hand, a high-level DML used in a
stand-alone interactive manner is called a query language. In general, both retrieval and
update commands of a high-level DML may be used interactively and are hence
considered part of the query language. to

Casual end users typically use a high-level query language to specify their requests,
whereas programmers use the DML in its embedded form. For naive and parametric users,
there usually are user-friendly interfaces for interacting with the database; these can also
be used by casual users or others who do not want to learn the details of a high-level query
language. We discuss these types of interfaces next.

2.3.2 DBMS Interfaces
User-friendly interfaces provided by a DBMS may include the following.

Menu-Based Interfaces for Web Clients or Browsing. These interfaces present
the user with lists of options, called menus, that lead the user through the formulation of

9. In object databases, the host and data sublanguages typically furm one integrated language-for
example, c++ with some extensions to support database functionality. Some relational systems also
provide integrated languages-> for example, oracle's PL/sQL.

10. According to the meaning of the word query in English, it should really be used to describe only
retrievals, not updates.

34 I Chapter 2 Database System Concepts and Architecture

a request. Menus do away with the need to memorize the specific commands and syntax of
a query language; rather, the query is composed step by step by picking options from a
menu that is displayed by the system. Pull-down menus are a very popular technique in
Web-based user interfaces. They are also often used in browsing interfaces, which allow
a user to look through the contents of a database in an exploratory and unstructured
manner.

Forms-Based Interfaces. A forms-based interface displays a form to each user.
Users can fill out all of the form entries to insert new data, or they fill out only certain
entries, in which case the DBMS will retrieve matching data for the remaining entries.
Forms are usually designed and programmed for naive users as interfaces to canned
transactions. Many DBMSs have forms specification languages, which are special
languages that help programmers specify such forms. Some systems have utilities that
define a form by letting the end user interactively construct a sample form on the
screen.

Graphical User Interfaces. A graphical interface (CUI) typically displays a schema
to the user in diagrammatic form. The user can then specify a query by manipulating the
diagram. In many cases, CUIs utilize both menus and forms. Most CUIs use a pointing
device, such as a mouse, to pick certain parts of the displayed schema diagram.

Natural Language Interfaces. These interfaces accept requests written in English
or some other language and attempt to "understand" them. A natural language interface
usually has its own "schema," which is similar to the database conceptual schema, as well
as a dictionary of important words. The natural language interface refers to the words in
its schema, as well as to the set of standard words in its dictionary, to interpret the request.
If the interpretation is successful, the interface generates a high-level query corresponding
to the natural language request and submits it to the DBMS for processing; otherwise, a
dialogue is started with the user to clarify the request.

Interfaces for Parametri c Users. Parametric users, such as bank tellers, often
have a small set of operations that they must perform repeatedly. Systems analysts and
programmers design and implement a special interface for each known class of naive
users. Usually, a small set of abbreviated commands is included, with the goal of
minimizing the number of keystrokes required for each request. For example, function
keys in a terminal can be programmed to initiate the various commands. This allows the
parametric user to proceed with a minimal number of keystrokes.

Interfaces for the DBA. Most database systems contain privileged commands that
can be used only by the DBA's staff. These include commands for creating accounts,
setting system parameters, granting account authorization, changing a schema, and
reorganizing the storage structures of a database.

2.4 The Database System Environment I 35

2.4 THE DATABASE SYSTEM ENVIRONMENT
A DBMS is a complex software system. In this section we discuss the types of software com
ponents that constitute a DBMS and the types of computer system software with which the
DBMS interacts.

2.4.1 DBMS Component Modules
Figure 2.3 illustrates, in a simplified form, the typical DBMS components. The database
and the DBMS catalog are usually stored on disk. Access to the disk is controlled primarily
by the operating system (OS), which schedules disk input/output. A higher-level stored
data manager module of the DBMS controls access to DBMS information that is stored on
disk, whether it is part of the database or the catalog. The dotted lines and circles marked

Parametric
users

COMPILED
(CANNED)

TRANSACTIONS

execution

Concurrency Cantrall
Backup/Recovery Subsystems

I

1

1

I

1

1

1

1

1

1

1

1

1

1

_________________________ 1

execution

Casual

ur
INTERACTIVE

QUERY

Stored
Data

Manager

DOLl Compiler

DBA staff

~~JI DOL PRIVILEGED
STATEMENTS COMMANDS

FIGURE 2.3 Component modules of a DBMS and their interactions.

36 I Chapter 2 Database System Concepts and Architecture

A, B, C, D, and E in Figure 2.3 illustrate accesses that are under the control of this stored
data manager. The stored data manager may use basic os services for carrying out low
level data transfer between the disk and computer main storage, but it controls other
aspects of data transfer, such as handling buffers in main memory. Once the data is in
main memory buffers, it can be processed by other DBMS modules, as well as by applica
tion programs. Some DBMSs have their own buffer manager module, while others use the
os for handling the buffering of disk pages.

The DDL compiler processes schema definitions, specified in the DOL, and stores
descriptions of the schemas (meta-data) in the DBMS catalog. The catalog includes
information such as the names and sizes of files, names and data types of data items,
storage details of each file, mapping information among schemas, and constraints, in
addition to many other types of information that are needed by the DBMS modules. DBMS
software modules then look up the catalog information as needed.

The runtime database processor handles database accesses at runtime; it receives
retrieval or update operations and carries them out on the database. Access to disk goes
through the stored data manager, and the buffer manager keeps track of the database
pages in memory. The query compiler handles high-level queries that are entered
interactively. It parses, analyzes, and compiles or interprets a query by creating database
access code, and then generates calls to the runtime processor for executing the code.

The precompiler extracts DML commands from an application program written in a
host programming language. These commands are sent to the DML compiler for
compilation into object code for database access. The rest of the program is sent to the
host language compiler. The object codes for the DML commands and the rest of the
program are linked, forming a canned transaction whose executable code includes calls to
the runtime database processor.

It is now common to have the client program that accesses the DBMS running on a
separate computer from the computer on which the database resides. The former is called
the client computer, and the latter is called the database server. In some cases, the client
accesses a middle computer, called the application server, which in turn accesses the
database server. We elaborate on this topic in Section 2.5.

Figure 2.3 is not meant to describe a specific DBMS; rather, it illustrates typical DBMS
modules. The DBMS interacts with the operating system when disk accesses-to the database
or to the catalog-are needed. If the computer system is shared by many users, the os will
schedule DBMS disk access requests and DBMS processing along with other processes. On the
other hand, if the computer system is mainly dedicated to running the database server, the
DBMS will control main memory buffering of disk pages. The DBMS also interfaces with
compilers for general-purpose host programming languages, and with application servers and
client programs running on separate machines through the system network interface.

2.4.2 Database System Utilities
In addition to possessing the software modules just described, most DBMSs have database
utilities that help the DBA in managing the database system. Common utilities have the
following types of functions:

2.4 The Database System Environment I 37

• Loading: A loading utility is used to load existing data files-such as text files or
sequential files-into the database. Usually, the current (source) format of the data
ti.le and the desired (target) database file structure are specified to the utility, which
then automatically reformats the data and stores it in the database. With the prolifer
ation of DBMSs, transferring data from one DBMS to another is becoming common in
many organizations. Some vendors are offering products that generate the appropri
ate loading programs, given the existing source and target database storage descrip
tions (internal schemas). Such tools are also called conversion tools.

• Backup: A backup utility creates a backup copy of the database, usually by dumping
the entire database onto tape. The backup copy can be used to restore the database in
case of catastrophic failure. Incremental backups are also often used, where only
changes since the previous backup are recorded. Incremental backup is more com
plex but saves space.

• File reorganization: This utility can be used to reorganize a database file into a differ
ent file organization to improve performance.

• Performance monitoring: Such a utility monitors database usage and provides statistics
to the DBA. The DBA uses the statistics in making decisions such as whether or not to
reorganize files to improve performance.

Other utilities may be available for sorting files, handling data compression,
monitoring access by users, interfacing with the network, and performing other functions.

2.4.3 Tools, Application Environments,
and Communications Facilities

Other tools are often available to database designers, users, and DBAs. CASE tools"! are
used in the design phase of database systems. Another tool that can be quite useful in
large organizations is an expanded data dictionary (or data repository) system. In addi
tion to storing catalog information about schemas and constraints, the data dictionary
stores other information, such as design decisions, usage standards, application program
descriptions, and user information. Such a system is also called an information reposi
tory. This information can be accessed directly by users or the DBA when needed. A data
dictionary utility is similar to the DBMS catalog, but it includes a wider variety of informa
tion and is accessed mainly by users rather than by the DBMS software.

Application development environments, such as the PowerBuilder (Sybase) or
JBuilder (Borland) system, are becoming quite popular. These systems provide an
environment for developing database applications and include facilities that help in
many facets of database systems, including database design, CUI development, querying
and updating, and application program development.

11. Althuugh CASE stands for computer-aided software engineering, many CASE tools are used pri
marily for database design.

38 I Chapter 2 Database System Concepts and Architecture

The DBMS also needs to interface with communications software, whose function is
to allow users at locations remote from the database system site to access the database
through computer terminals, workstations, or their local personal computers. These are
connected to the database site through data communications hardware such as phone
lines, long-haul networks, local area networks, or satellite communication devices. Many
commercial database systems have communication packages that work with the DBMS.
The integrated DBMS and data communications system is called a DB/DC system. In
addition, some distributed DBMSs are physically distributed over multiple machines. In
this case, communications networks are needed to connect the machines. These are often
local area networks (LANs), but they can also be other types of networks.

2.5 CENTRALIZED AND CLIENT/SERVER
ARCHITECTURES FOR DBMSS

2.5.1 Centralized DBMSS Architecture
Architectures for DBMSs have followed trends similar to those for general computer sys
tem architectures. Earlier architectures used mainframe computers to provide the main
processing for all functions of the system, including user application programs and user
interface programs, as well as all the DBMS functionality. The reason was that most users
accessed such systems via computer terminals that did not have processing power and
only provided display capabilities. So, all processing was performed remotely on the com
puter system, and only display information and controls were sent from the computer to
the display terminals, which were connected to the central computer via various types of
communications networks.

As prices of hardware declined, most users replaced their terminals with personal
computers (PCs) and workstations. At first, database systems used these computers in the
same way as they had used display terminals, so that the DBMS itself was still a centralized
DBMS in which all the DBMS functionality, application program execution, and user
interface processing were carried out on one machine. Figure 2.4 illustrates the physical
components in a centralized architecture. Gradually, DBMS systems started to exploit the
available processing power at the user side, which led to client/server DBMS architectures.

2.5.2 Basic Client/Server Architectures
We first discuss client/server architecture in general, then see how it is applied to DBMSs.
The client/server architecture was developed to deal with computing environments in
which a large number of rcs, workstations, file servers, printers, database servers, Web
servers, and other equipment are connected via a network. The idea is to define special
ized servers with specific functionalities. For example, it is possible to connect a number
of PCs or small workstations as clients to a file server that maintains the files of the client

2.5 Centralized and Client/Server Architectures for DBMSs I 39

TerminaIs
I

Display

I I
Display

I
...

I
Display

Imonitor monitor monitor

I I Network I
I

I

Application Terminal Text

Programs display control editors
...

L--_~__

I DBMS I ~mPilers-l ...
SOFTWARE

Operating System

System bus

1 [Controller I I Controller [I Controller I ...

\Cpu\

Me~my I G I

I
I/O devices
(printers, ...

tape drives ...)
HARDWARE/FIRMWARE

FIGURE 2.4 A physical centralized architecture.

machines. Another machine could be designated as a printer server by being connected
to various printers; thereafter, all print requests by the clients are forwarded to this
machine. Web servers or e-mail servers also fall into the specialized server category. In
this way, the resources provided by specialized servers can be accessed by many client
machines. The client machines provide the user with the appropriate interfaces to utilize
these servers, as well as with local processing power to run local applications. This con
cept can be carried over to software, with specialized software-such as a DBMS or a
CAl) (computer-aided design) package-being stored on specific server machines and
being made accessible to multiple clients. Figure 2.5 illustrates client/server architecture
at the logical level, and Figure 2.6 is a simplified diagram that shows how the physical

I c'f~] rc,,~
Netwo~L -----

iF;J
~r

FIGURE 2.5 Logical two-tier client/server architecture.

40 I Chapter 2 Database System Concepts and Architecture

architecture would look. Some machines would be only client sites (for example, diskless
workstations or workstations/PCs with disks that have only client software installed).
Other machines would be dedicated servers. Still other machines would have both client
and server functionality.

The concept of client/server architecture assumes an underlying framework that
consists of many PCs and workstations as well as a smaller number of mainframe machines,
connected via local area networks and other types of computer networks. A client in this
framework is typically a user machine that provides user interface capabilities and local
processing. When a client requires access to additional functionality-such as database
access-that does not exist at that machine, it connects to a server that provides the needed
functionality. A server is a machine that can provide services to the client machines, such
as file access, printing, archiving, or database access. In the general case, some machines
install only client software, others only server software, and still others may include both
client and server software, as illustrated in Figure 2.6. However, it is more common that
client and server software usually run on separate machines. Two main types of basic DBMS

architectures were created on this underlying client/server framework: two-tier and three
tier. 12 We discuss those next.

Client
Diskless client with disk Server Server and client

8 8 8
ISERVER I ISERVER I

ICLIENT I ICLIENT I ICLIENT I
Site 1 Site 2 Site 3 Site n

Communication
Network

FIGURE 2.6 Physical two-tier client-server architecture.

12. There are many other variations of client/server architectures. We only discuss the two most
basic ones here. In Chapter 25, we discuss additional client/server and distributed architectures.

2.5 Centralized and Client/Server Architectures for DBMSS I 41

2.5.3 Two-Tier Client/Server Architectures for DBMSS

The client/server architecture is increasingly being incorporated into commercial DBMS
packages. In relational DBMSs (RDBMSs), many of which started as centralized systems, the
system components that were first moved to the client side were the user interface and
application programs. Because SQL (see Chapters 8 and 9) provided a standard language
for RDBMSs, this created a logical dividing point between client and server. Hence, the
query and transaction functionality remained on the server side. In such an architecture,
the server is often called a query server or transaction server, because it provides these
two functionalities. In RDBMSs, the server is also often called an SQL server, since most
RDBMS servers are based on the SQL language and standard.

In such a client/server architecture, the user interface programs and application
programs can run on the client side. When DBMS access is required, the program
establishes a connection to the DBMS (which is on the server side); once the connection
is created, the client program can communicate with the DBMS. A standard called Open
Database Connectivity (ODBC) provides an application programming interface (API),
which allows client-side programs to call the DBMS, as long as both client and server
machines have the necessary software installed. Most DBMS vendors provide ODBC drivers
for their systems. Hence, a client program can actually connect to several RDBMSs and
send query and transaction requests using the ODBC API, which are then processed at the
server sites. Any query results are sent back to the client program, which can process or
display the results as needed. A related standard for the Java programming language,
called JDBC, has also been defined. This allows Java client programs to access the DBMS
through a standard interface.

The second approach to client/server architecture was taken by some object-oriented
DBMSs. Because many of these systems were developed in the era of client/server
architecture, the approach taken was to divide the software modules of the DBMS between
client and server in a more integrated way. For example, the server level may include the
part of the DBMS software responsible for handling data storage on disk pages, local
concurrency control and recovery, buffering and caching of disk pages, and other such
functions. Meanwhile, the client level may handle the user interface; data dictionary
functions; DBMS interactions with programming language compilers; global query
optimization, concurrency control, and recovery across multiple servers; structuring of
complex objects from the data in the buffers; and other such functions. In this approach,
the client/server interaction is more tightly coupled and is done internally by the DBMS
modules-some of which reside on the client and some on the server-rather than by the
users. The exact division of functionality varies from system to system. In such a client/
server architecture, the server has been called a data server, because it provides data in
disk pages to the client. This data can then be structured into objects for the client
programs by the client-side DBMS software itself.

The architectures described here are called two-tier architectures because the
software components are distributed over two systems: client and server. The advantages
of this architecture are its simplicity and seamless compatibility with existing systems.
The emergence of the World Wide Web changed the roles of clients and server, leading
to the three-tier architecture.

42 I Chapter 2 Database System Concepts and Architecture

2.5.4 Three-Tier Client/Server Architectures for Web
Applications

Many Web applications use an architecture called the three-tier architecture, which
adds an intermediate layer between the client and the database server, as illustrated in
Figure 2.7. This intermediate layer or middle tier is sometimes called the application
server and sometimes the Web server, depending on the application. This server plays an
intermediary role by storing business rules (procedures or constraints) that are used to
access data from the database server. It can also improve database security by checking a
client's credentials before forwarding a request to the database server. Clients contain GUI

interfaces and some additional application-specific business rules. The intermediate
server accepts requests from the client, processes the request and sends database com
mands to the database server, and then acts as a conduit for passing (partially) processed
data from the database server to the clients, where it may be processed further and filtered
to be presented to users in GUI format. Thus, the user interface, application rules, and data
access act as the three tiers.

Advances in encryption and decryption technology make it safer to transfer sensitive
data from server to client in encrypted form, where it will be decrypted. The latter can be
done by the hardware or by advanced software. This technology gives higher levels of
data security, but the network security issues remain a major concern. Various
technologies for data compression are also helping in transferring large amounts of data
from servers to clients over wired and wireless networks.

Client

Application Server
or

Web Server

Database
Server

GUI,
Web Interface

,

Application
Programs,

Web Pages

Database
Management

System

FIGURE 2.7 Logical three-tier client/server architecture.

2.6 Classification of Database Management Systems I 43

2.6 CLASSIFICATION OF DATABASE
MANAGEMENT SYSTEMS

Several criteria are normally used to classify DBMSs. The first is the data model on which
the DBMS is based. The main data model used in many current commercial DBMSs is the
relational data model. The object data model was implemented in some commercial sys
tems but has not had widespread use. Many legacy (older) applications still run on data
base systems based on the hierarchical and network data models. The relational DBMSs
are evolving continuously, and, in particular, have been incorporating many of the con
cepts that were developed in object databases. This has led to a new class of DBMSs called
object-relational DBMSs. We can hence categorize DBMSs based on the data model: rela
tional, object, object-relational, hierarchical, network, and other.

The second criterion used to classify DBMSs is the number of users supported by the
system. Single-user systems support only one user at a time and are mostly used with
personal computers. Multiuser systems, which include the majority of DBMSs, support
multiple users concurrently.

A third criterion is the number of sites over which the database is distributed. A
DBMS is centralized if the data is stored at a single computer site. A centralized DBMS can
support multiple users, but the DBMS and the database themselves reside totally at a single
computer site. A distributed DBMS (DDBMS) can have the actual database and DBMS
software distributed over many sites, connected by a computer network. Homogeneous
DDBMSs use the same DBMS software at multiple sites. A recent trend is to develop
software to access several autonomous preexisting databases stored under heterogeneous
llBMSs. This leads to a federated DBMS (or multidatabase system), in which the
participating DBMSs are loosely coupled and have a degree of local autonomy. Many
llDBMSs use a client-server architecture.

A fourth criterion is the cost of the DBMS. The majority of DBMS packages cost between
$10,000 and $100,000. Single-user low-end systems that work with microcomputers cost
between $100 and $3000. At the other end of the scale, a few elaborate packages cost more
than $100,000.

We can also classify a DBMS on the basis of the types of access path options for
storing files. One well-known family of DBMSs is based on inverted file structures. Finally,
a DBMS can be general purpose or special purpose. When performance is a primary
consideration, a special-purpose DBMS can be designed and built for a specific application;
such a system cannot be used for other applications without major changes. Many airline
reservations and telephone directory systems developed in the past are special purpose
DBMSs. These fall into the category of online transaction processing (OLTP) systems,
which must support a large number of concurrent transactions without imposing
excessive delays.

Let us briefly elaborate on the main criterion for classifying DBMSs: the data model.
The basic relational data model represents a database as a collection of tables, where each
table can be stored as a separate file. The database in Figure 1.2 is shown in a manner very
similar to a relational representation. Most relational databases use the high-level query
language called SQL and support a limited form of user views. We discuss the relational

44 I Chapter 2 Database System Concepts and Architecture

model, its languages and operations, and techniques for programming relational
applications in Chapters 5 through 9.

The object data model defines a database in terms of objects, their properties, and
their operations. Objects with the same structure and behavior belong to a class, and
classes are organized into hierarchies (or acyclic graphs). The operations of each class are
specified in terms of predefined procedures called methods. Relational DBMSs have been
extending their models to incorporate object database concepts and other capabilities;
these systems are referred to as object-relational or extended relational systems. We
discuss object databases and object-relational systems in Chapters 20 to 22.

Two older, historically important data models, now known as legacy data models, are
the network and hierarchical models. The network model represents data as record types
and also represents a limited type of l:N relationship, called a set type. Figure 2.8 shows a
network schema diagram for the database of Figure 1.2, where record types are shown as
rectangles and set types are shown as labeled directed arrows. The network model, also
known as the CODASYL DBTG model, l3 has an associated record-at-a-time language that
must be embedded in a host programming language. The hierarchical model represents
data as hierarchical tree structures. Each hierarchy represents a number of related records.
There is no standard language for the hierarchical model, although most hierarchical
DBMSs have record-at-a-time languages. We give a brief overview of the network and
hierarchical models in Appendices E and E 14

The XML (eXtended Markup Language) model, now considered the standard {or data
interchange over the Internet, also uses hierarchical tree structures. It combines database
concepts with concepts {rom document representation models. Data is represented as
elements, which can be nested to create complex hierarchical structures. This model

[COURSE

COURSE~OFFERINGS

STUDENT~GRADES

fiGURE 2.8 The schema of Figure 2.1 in network model notation

13. COOASYL OBTG stands for Conference on Data Systems Languages Data Base Task Group,
which is the committee that specified the network model and its language.

14. The full chapters on the network and hierarchical models from the second edition of this book
are available over the Internet from the Web site.

2.7 Summary I 45

conceptually resembles the object model, but uses different terminology. We discuss XML
and how it is related to databases in Chapter 26.

2.7 SUMMARY
In this chapter we introduced the main concepts used in database systems. We defined a
data model, and we distinguished three main categories of data models:

• High-level or conceptual data models (based on entities and relationships)

• Low-level or physical data models

• Representational or implementation data models (record-based, object-oriented)

We distinguished the schema, or description of a database, from the database itself.
The schema does not change very often, whereas the database state changes every time
data is inserted, deleted, or modified. We then described the three-schema DBMS
architecture, which allows three schema levels:

• An internal schema describes the physical storage structure of the database.

• A conceptual schema is a high-level description of the whole database.

• External schemas describe the views of different user groups.

A DBMS that cleanly separates the three levels must have mappings between the
schemas to transform requests and results from one level to the next. Most DBMSs do not
separate the three levels completely. We used the three-schema architecture to define the
concepts of logical and physical data independence.

We then discussed the main types of languages and interfaces that DBMSs support. A
data definition language (DOL) is used to define the database conceptual schema. In most
DBMSs, the DOL also defines user views and, sometimes, storage structures; in other DBMSs,
separate languages (VOL, SOL) may exist for specifying views and storage structures. The
DBMS compiles all schema definitions and stores their descriptions in the DBMS catalog. A
data manipulation language (DML) is used for specifying database retrievals and updates.
DMLs can be high level (set-oriented, nonprocedural) or low level (record-oriented,
procedural). A high-level OML can be embedded in a host programming language, or it
can be used as a stand-alone language; in the latter case it is often called a query language.

We discussed different types of interfaces provided by DBMSs, and the types of DBMS
users with which each interface is associated. We then discussed the database system
environment, typical DBMS software modules, and DBMS utilities for helping users and the
DBA perform their tasks. We then gave an overview of the two-tier and three-tier
architectures for database applications, which are now very common in most modem
applications, particularly Web database applications.

In the final section, we classified DBMSs according to several criteria: data model,
number of users, number of sites, cost, types of access paths, and generality. The main
classification of DBMSs is based on the data model. We briefly discussed the main data
models used in current commercial DBMSs.

46 I Chapter 2 Database System Concepts and Architecture

Review Questions
2.1. Define the following terms: data model, database schema, database state, internal

schema, conceptual schema, external schema, data independence, DOL, OML, SOL,

VOL, query language, host language, data sublanguage, database utility, catalog, client/
server architecture.

2.2. Discuss the main categories of data models.
2.3. What is the difference between a database schema and a database state?
2.4. Describe the three-schema architecture. Why do we need mappings between

schema levels? How do different schema definition languages support this archi
tecture?

2.5. What is the difference between logical data independence and physical data inde
pendence?

2.6. What is the difference between procedural and nonprocedural DMLs?
2.7. Discuss the different types of user-friendly interfaces and the types of users who

typically use each.
2.8. With what other computer system software does a DBMS interact?
2.9. What is the difference between the two-tier and three-tier client/server architec

tures?
2.10. Discuss some types of database utilities and tools and their functions.

Exercises
2.11. Think of different users for the database of Figure 1.2. What types of applications

would each user need? To which user category would each belong, and what type
of interface would each need?

2.12. Choose a database application with which you are familiar. Design a schema and
show a sample database for that application, using the notation of Figures 2.1 and
1.2. What types of additional information and constraints would you like to repre
sent in the schema? Think of several users for your database, and design a view for
each.

Selected Bibliography I 47

Selected Bibliography
Many database textbooks, including Date (2001), Silberschatz et a1. (2001), Ramakrishnan
and Gehrke (2002), Garcia-Molina et al (1999, 2001), and Abiteboul et a1. (1995), provide
a discussion of the various database concepts presented here. Tsichritzis and Lochovsky
(1982) is an early textbook on data models. Tsichritzis and Klug (1978) and Jardine (1977)
present the three-schema architecture, which was first suggested in the DBTG CODASYL

report (1971) and later in an American National Standards Institute (ANSI) report (1975).
An in-depth analysis of the relational data model and some of its possible extensions is
given in Codd (1992). The proposed standard for object-oriented databases is described in
Cattell (1997). Many documents describing XML are available on the Web, such as XML

(2003).
Examplesof database utilities are the ETI Extract Toolkit (www.eti.com) and the database

administration tool DB Artisan from Embarcadero Technologies (wwwembarcadero.com).

Data Modeling Using
the Entity-Relationsh ip
Model

Conceptual modeling is a very important phase in designing a successful database appli
cation. Generally, the term database application refers to a particular database and the
associated programs that implement the database queries and updates. For example, a BANK

database application that keeps track of customer accounts would include programs that
implement database updates corresponding to customers making deposits and withdraw,
also These programs provide user-friendly graphical user interfaces (GUls) utilizing forms
and menus for the end users of the application-the bank tellers, in this example. Hence,
part of the database application will require the design, implementation, and testing of
these application programs. Traditionally, the design and testing of application programs
has been considered to be more in the realm of the software engineering domain than in
the database domain. As database design methodologies include more of the concepts for
specifying operations on database objects, and as software engineering methodologies
specify in more detail the structure of the databases that software programs will use and
access, it is clear that these activities are strongly related. We briefly discuss some of the
concepts for specifying database operations in Chapter 4, and again when we discuss data,
base design methodology with example applications in Chapter 12 of this book.

In this chapter, we follow the traditional approach of concentrating on the database
structures and constraints during database design. We present the modeling concepts of
the Entity-Relationship (ER) model, which is a popular high, level conceptual data
model. This model and its variations are frequently used for the conceptual design of
database applications, and many database design tools employ its concepts. We describe

49

50 I Chapter 3 Data Modeling Using the Entity-Relationship Model

the basic data-structuring concepts and constraints of the ER model and discuss their use
in the design of conceptual schemas for database applications. We also present the
diagrammatic notation associated with the ER model, known as ER diagrams.

Object modeling methodologies such as UML (Universal Modeling Language) are
becoming increasingly popular in software design and engineering. These methodologies
go beyond database design to specify detailed design of software modules and their
interactions using various types of diagrams. An important part of these methodologies
namely, class diagrams I-are similar in many ways to the ER diagrams. In class diagrams,
operations on objects are specified, in addition to specifying the database schema structure.
Operations can be used to specify the functional requirements during database design, as
discussed in Section 3.1. We present some of the UML notation and concepts for class
diagrams that are particularly relevant to database design in Section 3.8, and briefly
compare these to ER notation and concepts. Additional UML notation and concepts are
presented in Section 4.6 and in Chapter 12.

This chapter is organized as follows. Section 3.1 discusses the role of high-level
conceptual data models in database design. We introduce the requirements for an example
database application in Section 3.2 to illustrate the use of concepts from the ER model.
This example database is also used in subsequent chapters. In Section 3.3 we present the
concepts of entities and attributes, and we gradually introduce the diagrammatic technique
for displaying an ER schema. In Section 3.4 we introduce the concepts of binary
relationships and their roles and structural constraints. Section 3.5 introduces weak entity
types. Section 3.6 shows how a schema design is refined to include relationships. Section
3.7 reviews the notation for ER diagrams, summarizes the issues that arise in schema design,
and discusses how to choose the names for database schema constructs. Section 3.8
introduces some UML class diagram concepts, compares them to ER model concepts, and
applies them to the same database example. Section 3.9 summarizes the chapter.

The material in Sections 3.8 may be left out of an introductory course if desired. On
the other hand, if more thorough coverage of data modeling concepts and conceptual
database design is desired, the reader should continue on to the material in Chapter 4 after
concluding Chapter 3. Chapter 4 describes extensions to the ER model that lead to the
Enhanced-ER (EER) model, which includes concepts such as specialization, generalization,
inheritance, and union types (categories). We also introduce some additional UML

concepts and notation in Chapter 4.

3.1 USING HIGH-LEVEL CONCEPTUAL DATA
MODELS FOR DATABASE DESIGN

Figure 3.1 shows a simplified description of the database design process. The first step shown is
requirements collection and analysis. Outing this step, the database designers interview pro
spective database users to understand and document their data requirements. The result of this

1. A class is similar to an entity type in many ways.

3.1 Using High-Level Conceptual Data Models for Database Design I 51

Miniworld

REQUIREMENTS
COLLECTION AND

ANALYSIS

1
I

Functional Requirements

High-level Transaction
Specification

DBMs-independent

DBMs-specific

DataRequirements

Conceptual Schema
(Ina high-level data model)

LOGICALDESIGN
(DATA MODELMAPPING)

Logical (Conceptual) Schema
(Inthe data modelof a specific DBMS)

APPLICATION PROGRAM
DESIGN

Application Programs

..

PHYSICALDESIGN

Internal Schema

FIGURE 3.1 A simplified diagram to illustrate the main phases of database design.

52 I Chapter 3 Data Modeling Using the Entity-Relationship Model

step is a concisely written set of users' requirements. These requirements should be specified in as
detailed and complete a fonn as possible. In parallel with specifying the data requirements, it is
useful to specify the known functional requirements of the application. These consist of the
user-defined operations (or transactions) that will be applied to the database, including both
retrievals and updates. In software design, it is common to use data flow diagrams, sequence dia
grams, scenarios, and other techniques for specifying functional requirements. We will not discuss
any of these techniques here because they are usually described in detail in software engineering
texts. We give an overview of some of these techniques in Chapter 12.

Once all the requirements have been collected and analyzed, the next step is to
create a conceptual schema for the database, using a high-level conceptual data model.
This step is called conceptual design. The conceptual schema is a concise description of
the data requirements of the users and includes detailed descriptions of the entity types,
relationships, and constraints; these are expressed using the concepts provided by the
high-level data model. Because these concepts do not include implementation details,
they are usually easier to understand and can be used to communicate with nontechnical
users. The high-level conceptual schema can also bc used as a reference to ensure that all
users' data requirements are met and that the requirements do not conflict. This approach
enables the database designers to concentrate on specifying the properties of the data,
without being concerned with storage details. Consequently, it is easier for them to come
up with a good conceptual database design.

During or after the conceptual schema design, the basic data model operations can be
used to specify the high-level user operations identified during functional analysis. This
also serves to confirm that the conceptual schema meets all the identified functional
requirements. Modifications to the conceptual schema can be introduced if some
functional requirements cannot be specified using the initial schema.

The next step in database design is the actual implementation of the database, using a
commercial DBMS. Most current commercial DBl\1Ss use an implementation data model
such as the relational or the object-relational database model-so the conceptual schema
is transformed from the high-level data model into the implementation data model. This
step is called logical design or data model mapping, and its result is a database schema in
the implementation data model of the DBMS.

The last step is the physical design phase, during which the internal storage
structures, indexes, access paths, and file organizations for the database files are specified.
In parallel with these activities, application programs are designed and implemented as
database transactions corresponding to the high-level transaction specifications. We
discuss the database design process in more detail in Chapter 12.

We present only the basic ER model concepts for conceptual schema design in this
chapter. Additional modeling concepts are discussed in Chapter 4, when we introduce
the EER model.

3.2 AN EXAMPLE DATABASE ApPLICATION
In this section we describe an example database application, called COMPANY, that serves to
illustrate the basic ER model concepts and their use in schema design. We list the data
requirements for the database here, and then create its conceptual schema step by step as

3.3 Entity Types, Entity Sets, Attributes, and Keys I 53

we introduce the modeling concepts of the ER model. The COMPANY database keeps track of
a company's employees, departments, and projects. Suppose that after the requirements
collection and analysis phase, the database designers provided the following description
of the "miniworld"-the part of the company to be represented in the database:

1. The company is organized into departments. Each department has a unique name,
a unique number, and a particular employee who manages the department. We
keep track of the start date when that employee began managing the department.
A department may have several locations.

2. A department controls a number of projects, each of which has a unique name, a
unique number, and a single location.

3. We store each employee's name, social security number.i address, salary, sex, and
birth date. An employee is assigned to one department but may work on several
projects, which are not necessarily controlled by the same department. We keep
track of the number of hours per week that an employee works on each project.
We also keep track of the direct supervisor of each employee.

4. We want to keep track of the dependents of each employee for insurance pur
poses. We keep each dependent's first name, sex, birth date, and relationship to
the employee.

Figure 3.2 shows how the schema for this database application can be displayed by
means of the graphical notation known as ER diagrams. We describe the step-by-step
process of deriving this schema from the stated requirements-and explain the ER

diagrammatic notation-as we introduce the ER model concepts in the following section.

3.3 ENTITY TYPES, ENTITY SETS,
ATTRIBUTES, AND KEYS

The ER model describes data as entities, relationships, and attributes. In Section 3.3.1 we
introduce the concepts of entities and their attributes. We discuss entity types and key
attributes in Section 3.3.2. Then, in Section 3.3.3, we specify the initial conceptual design
of the entity types for the COMPANY database. Relationships are described in Section 3.4.

3.3.1 Entities and Attributes
Entities and Their Attributes. The basic object that the ER model represents is an
entity, which is a "thing" in the real world with an independent existence. An entity may
be an object with a physical existence (for example, a particular person, car, house, or

2. The social security number, or SSN, is a unique nine-digit identifier assigned to each individual in
the United States to keep track of his or her employment, benefits, and taxes. Other countries may
have similar identification schemes, such as personal identification card numbers.

54 I Chapter 3 Data Modeling Using the Entity-Relationship Model

SUPERVISION N

N

Relationship

FIGURE 3.2 An ER schema diagram for the COMPANY database.

employee) or it may be an object with a conceptual existence (for example, a company, a
job, or a university course). Each entity has attributes-the particular properties that
describe it. For example, an employee entity may be described by the employee's name,
age, address, salary, and job. A particular entity will have a value for each of its attributes.
The attribute values that describe each entity become a major part of the data stored in
the database.

Figure 3.3 shows two entities and the values of their attributes. The employee entity
cJ has four attributes: Name, Address, Age, and HomePhone; their values are "John
Smith," "2311 Kirby, Houston, Texas 77001," "55," and "713-749-2630," respectively.
The company entity (1 has three attributes: Name, Headquarters, and President; their
values are "Sunco Oil," "Houston," and "John Smith," respectively.

Name = John Smith

3.3 Entity Types, Entity Sets, Attributes, and Keys I 55

Name = Sunco Oil

Address = 2311 Kirby,
Houston, Texas 77001

Age = 55

HomePhone = 713-749-2630

-- Headquarters =Houston

President = John Smith

FIGURE 3.3 Two entities, employee e1 and company c1' and their attributes.

Several types of attributes occur in the ER model: simple versus composite, single-valued
versus 1l1ultivalued, and stored versus derived. We first define these attribute types and
illustrate their use via examples. We then introduce the concept of a null value for an
attribute.

Composite versus Simple (Atomic) Attributes. Composite attributes can be
divided into smaller subparts, which represent more basic attributes with independent
meanings. For example, the Address attribute of the employee entity shown in Figure 3.3 can
be subdivided into StreetAddress, City, State, and Zip,3 with the values "2311 Kirby,"
"Houston," "Texas," and "77001." Attributes that are not divisible are called simple or atomic
attributes. Composite attributes can form a hierarchy; for example, StreetAddress can be
further subdivided into three simple attributes: Number, Street, and ApartmentNumber, as
shown in Figure 3.4.The value of a composite attribute is the concatenation of the values of
itsconstituent simple attributes.

Address

StreetAddress City State Zip

Number Street ApartmentNumber

FIGURE 3.4 A hierarchy of composite attributes.

3.The zipcude is the n.une used in the United States fur a 5-digit postal code.

56 I Chapter 3 Data Modeling Using the Entity-Relationship Model

Composite attributes are useful to model situations in which a user sometimes refers
to the composite attribute as a unit but at other times refers specifically to its components.
If the composite attribute is referenced only as a whole, there is no need to subdivide it
into component attributes. For example, if there is no need to refer to the individual
components of an address (zip code, street, and so on), then the whole address can be
designated as a simple attribute.

Single-Valued versus Multivalued Attributes. Most attributes have a single
value for a particular entity; such attributes are called single-valued. For example, Age is a
single-valued attribute of a person. In some cases an attribute can have a set of values for the
same entity-for example, a Colors attribute for a car, or a CollegeDegrees attribute for a
person. Cars with one color have a single value, whereas two-tone cars have two values for
Colors. Similarly, one person may not have a college degree, another person may have one,
and a third person may have two or more degrees; therefore, different persons can have
different numbers of values for the CollegeDegrees attribute. Such attributes are called
multivalued. A multivalued attribute may have lower and upper bounds to constrain the
number of values allowed for each individual entity. For example, the Colors attribute of a car
may have between one and three values, if we assume that a car can have at most three colors.

Stored versus Derived Attributes. In some cases, two (or more) attribute values
are related-for example, the Age and BirthDate attributes of a person. For a particular
person entity, the value of Age can be determined from the current (today's) date and the
value of that person's BirthDate. The Age attribute is hence called a derived attribute
and is said to be derivable from the BirthDate attribute, which is called a stored
attribute. Some attribute values can be derived from related entities; for example, an
attribute NumberOfEmployees of a department entity can be derived by counting the
number of employees related to (working for) that department.

Null Va Iues. In some cases a particular entity may not have an applicable value for
an attribute. For example, the ApartmentNumber attribute of an address applies only to
addresses that are in apartment buildings and not to other types of residences, such as
single-family homes. Similarly, a CollegeDegrees attribute applies only to persons with
college degrees. For such situations, a special value called null is created. An address of a
single-family home would have null for its ApartmentNumber attribute, and a person
with no college degree would have null for CollegeDegrees. Null can also be used if we do
not know the value of an attribute for a particular entity-for example, if we do not know
the home phone of "John Smith" in Figure 3.3. The meaning of the former type of null is
not applicable, whereas the meaning of the latter is unknown. The "unknown" category of
null can be further classified into two cases. The first case arises when it is known that the
attribute value exists but is missing-for example, if the Height attribute of a person is
listed as null. The second case arises when it is not known whether the attribute value
exists-for example, if the Homel'hone attribute of a person is null.

Complex Attributes. Notice that composite and multivalued attributes can be
nested in an arbitrary way. We can represent arbitrary nesting by grouping components of

3.3 Entity Types, Entity Sets, Attributes, and Keys I 57

(AddressPhone((Phone(AreaCode,PhoneNumber)},
Address(StreetAddress(Number,Street,ApartmentNumber),

City,State,Zip)) }

FIGURE 3.5 A complex attribute: AddressPhone.

a composite attribute between parentheses () and separating the components with
commas, and by displaying multivalued attributes between braces n. Such attributes are
called complex attributes. For example, if a person can have more than one residence
and each residence can have multiple phones, an attribute AddressPhone for a person can
be specifiedas shown in Figure 3.5. 4

3.3.2 Entity Types, Entity Sets, Keys, and Value Sets

Entity Types and Entity Sets. A database usually contains groups of entities that
are similar. For example, a company employing hundreds of employees may want to store
similar information concerning each of the employees. These employee entities share the
same attributes, but each entity has its own value(s) for each attribute. An entity type
defines a collection (or set) of entities that have the same attributes. Each entity type in the
database is described by its name and attributes. Figure 3.6 shows two entity types, named
EMPLOYEE and COMPANY, and a list of attributes for each. A few individual entities of each type
arealso illustrated, along with the values of their attributes. The collection of all entities
ofa particular entity type in the database at any point in time is called an entity set; the
entity set is usually referred to using the same name as the entity type. For example,
EMPLOYEE refers to both a type of entity as well as the current set of all employee entities in the
database.

An entity type is represented in ER diagrams (see Figure 3.2) as a rectangular box
enclosingthe entity type name. Attribute names are enclosed in ovals and are attached to
their entity type by straight lines. Composite attributes are attached to their component
attributes by straight lines. Multivalued attributes are displayed in double ovals.

An entity type describes the schema or intension for a set of entities that share the
same structure. The collection of entities of a particular entity type are grouped into an
entity set, which is also called the extension of the entity type.

Key Attributes of an Entity Type. An important constraint on the entities of an
entity type is the key or uniqueness constraint on attributes. An entity type usually has
an attribute whose values are distinct for each individual entity in the entity set. Such an
attribute is called a key attribute, and its values can be used to identify each entity

-----_._----- -----

4. For those familiar with XML, we should note here that complex attributes are similar to complex
elements in XML (see Chapter 26).

5. We are using a notation for ER diagrams that is close to the original proposed notation (Chen
1976). Unfortunately, many other notations are in use.We illustrate someof the other notations in
Appendix A and later in this chapter when we present UML classdiagrams.

58 I Chapter 3 Data Modeling Using the Entity-Relationship Model

ENTITVTVPE NAME:

ENTITVSET:

(EXTENSION)

EMPLOYEE

Name, Age,Salary

(JohnSmith, 55, 80k)

(Fred Brown, 40,30K)

(JudyClark, 25, 20K)

COMPANY

Name, Headquarters, President

(SuncoOil, Houston, John Smith)

(FastComputer, Dallas, Bob King)

FIGURE 3.6 Two entity types, EMPLOYEE and COMPANY, and some member entities of each.

uniquely. For example, the Name attribute is a key of the COMPANY entity type in Figure 3.6,
because no two companies are allowed to have the same name. For the PERSON entity type,
a typical key attribute is SocialSecurityNumber. Sometimes, several attributes together
form a key, meaning that the combination of the attribute values must be distinct for each
entity. If a set of attributes possesses this property, the proper way to represent this in the
ER model that we describe here is to define a composite attribute and designate it as a key
attribute of the entity type. Notice that such a composite key must be minimal; that is, all
component attributes must be included in the composite attribute to have the uniqueness
property," In ER diagrammatic notation, each key attribute has its name underlined inside
the oval, as illustrated in Figure 3.2.

Specifying that an attribute is a key of an entity type means that the preceding
uniqueness property must hold for every entity set of the entity type. Hence, it is a
constraint that prohibits any two entities from having the same value for the key attribute
at the same time. It is not the property of a particular extension; rather, it is a constraint
on all extensions of the entity type. This key constraint (and other constraints we discuss
later) is derived from the constraints of the miniworld that the database represents.

Some entity types have more thanone key attribute. For example, each of the VehicleID
and Registration attributes of the entity type CAR (Figure 3.7) is a key in its own right. The
Registration attribute is an example of a composite key formed from two simple component
attributes, RegistrationNumber and State, neither of which is a key on its own. An entity
type may also have no key, in which case it is called a weak entity type (see Section 3.5).

6. Superfluous attributes must not be included in a key; however, a superkey may include superflu
ous attributes, as explained in Chapter 5.

3.3 Entity Types, Entity Sets, Attributes, and Keys I 59

CAR
Registration(RegistrationNumber, State), VehiclelD, Make, Model, Year, {Color}

«ABC 123, TEXAS), TK629, Ford Mustang, convertible, 1998, {red, black})

«ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 1999, {blue})

«VSY 720, TEXAS), TD729 , Chrysler LeBaron, 4-door, 1995, {white, blue})

FIGURE 3.7 The CAR entity type with two key attributes, Registration and VehicielD.

Value Sets (Domains) of Attributes. Each simple attribute of an entity type is
associated with a value set (or domain of values), which specifies the set of values that
may be assigned to that attribute for each individual entity. In Figure 3.6, if the range of
ages allowed for employees is between 16 and 70, we can specify the value set of the Age
attribute of EMPLOYEE to be the set of integer numbers between 16 and 70. Similarly, we can
specify the value set for the Name attribute as being the set of strings of alphabetic
characters separated by blank characters, and so on. Value sets are not displayed in ER

diagrams. Value sets are typically specified using the basic data types available in most
programming languages, such as integer, string, boolean, float, enumerated type, subrange,
and so on. Additional data types to represent date, time, and other concepts are also
employed.

Mathematically, an attribute A of entity type E whose value set is V can be defined as
a function from E to the power see P(V) of V:

A: E -? P(V)

We refer to the value of attribute A for entity e as A(e). The previous definition
covers both single-valued and multivalued attributes, as well as nulls. A null value is
represented by the empty set. For single-valued attributes, A(e) is restricted to being a
singleton set for each entity e in E, whereas there is no restriction on multivalued
attributes.f For a composite attribute A, the value set V is the Cartesian product of P(V1) ,

7.The power set rev) of a set V is the set of all subsets of V.

8.A singleton set is a set with only one element (value).

60 I Chapter 3 Data Modeling Using the Entity-Relationship Model

P(Vz)' ... , P(Vn) , where Vi' Vz, ... , Vn are the value sets of the simple component
attributes that form A:

3.3.3 Initial Conceptual Design of the
COMPANY Database

We can now define the entity types for the COMPANY database, based on the requirements
described in Section 3.2. After defining several entity types and their attributes here, we
refine our design in Section 3.4 after we introduce the concept of a relationship. Accord
ing to the requirements listed in Section 3.2, we can identify four entity types-one cor
responding to each of the four items in the specification (see Figure 3.8):

1. An entity type DEPARTMENT with attributes Name, Number, Locations, Manager,
and ManagerStartDate. Locations is the only multivalued attribute. We can spec
ify that both Name and Number are (separate) key attributes, because each was
specified to be unique.

2. An entity type PROJECT with attributes Name, Number, Location, and Control
lingDepartment. Both Name and Number are (separate) key attributes.

3. An entity type EMPLOYEE with attributes Name, SSN (for social security number),
Sex, Address, Salary, BirthDate, Department, and Supervisor. Both Name and
Address may be composite attributes; however, this was not specified in the
requirements. We must go back to the users to see if any of them will refer to the
individual components of Name-FirstName, Middlelnitial, LastName-or of
Address.

4. An entity type DEPENDENT with attributes Employee, DependentName, Sex, Birth
Date, and Relationship (to the employee).

DEPARTMENT
Name, Number, {Locations}, Manager, ManagerStartDate

PROJECT
Name, Number, Location, ControllingDepartment

EMPLOYEE
Name(FName, Mlnit, LName), SSN,Sex, Address, Salary,

BirthDate, Department, Supervisor, {WorksOn (Project, Hours))

DEPENDENT
Employee, DependentName, Sex,BirthDate, Relationship

FIGURE 3.8 Preliminary design of entity types for the COMPANY database.

3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints I 61

So far, we have not represented the fact that an employee can work on several
projects, nor have we represented the number of hours per week an employee works on
each project. This characteristic is listed as part of requirement 3 in Section 3.2, and it
can be represented by a multivalued composite attribute of EMPLOYEE called WorksOn with
the simple components (Project, Hours). Alternatively, it can be represented as a
multivalued composite attribute of PROJECT called Workers with the simple components
(Employee, Hours). We choose the first alternative in Figure 3.8, which shows each of the
entity types just described. The Name attribute of EMPLOYEE is shown as a composite
attribute, presumably after consultation with the users.

3.4 RELATIONSHIP TYPES, RELATIONSHIP SETS,
ROLES, AND STRUCTURAL CONSTRAINTS

In Figure 3.8 there are several implicit relationships among the various entity types. In fact,
whenever an attribute of one entity type refers to another entity type, some relationship
exists. For example, the attribute Manager of DEPARTMENT refers to an employee who man
ages the department; the attribute ControllingDepartment of PROJECT refers to the depart
ment that controls the project; the attribute Supervisor of EMPLOYEE refers to another
employee (the one who supervises this employee); the attribute Department of EMPLOYEE

refers to the department for which the employee works; and so on. In the ER model, these
references should not be represented as attributes but as relationships, which are dis
cussed in this section. The COMPANY database schema will be refined in Section 3.6 to repre
sentrelationships explicitly. In the initial design of entity types, relationships are typically
captured in the form of attributes. As the design is refined, these attributes get converted
into relationships between entity types.

This section is organized as follows. Section 3.4.1 introduces the concepts of
relationship types, relationship sets, and relationship instances. We then define the
conceptsof relationship degree, role names, and recursive relationships in Section 3.4.2,
and discuss structural constraints on relationships-such as cardinality ratios and
existence dependencies-in Section 3.4.3. Section 3.4.4 shows how relationship types
can alsohave attributes.

3.4.1 Relationship Types, Sets, and Instances
A relationship type R among n entity types E1, E2, ••. , Endefines a set of associations
or a relationship set-among entities from these entity types. As for the case of entity
types and entity sets, a relationship type and its corresponding relationship set are cus
tomarily referred to by the same name, R. Mathematically, the relationship set R is a set of
relationship instances Ti, where each Ti associates n individual entities (e., e2' ... , en)' and
eachentity ej in Tj is a member of entity type Ej , 1 <: j <: n. Hence, a relationship type is a
mathematical relation on E1, E2, ••• ,En; alternatively, it can be defined as a subset of the
Cartesian product E1 X £2 X ... X En' Each of the entity types E1, E2, ... , En is said to

62 I Chapter 3 Data Modeling Using the Entity-Relationship Model

participate in the relationship type R; similarly, each of the individual entities el' e2' ... ,

en is said to participate in the relationship instance Tj = (e., e2' ..., en)'

Informally, each relationship instance Tj in R is an association of entities, where
the association includes exactly one entity from each participating entity type.
Each such relationship instance Tj represents the fact that the entities participating
in Ti are related in some way in the corresponding miniworld situation. For example,
consider a relationship type WORKS_FOR between the two entity types EMPLOYEE and
DEPARTMENT, which associates each employee with the department for which the
employee works. Each relationship instance in the relationship set WORKSJOR

associates one employee entity and one department entity. Figure 3.9 illustrates this
example, where each relationship instance Ti is shown connected to the employee
and department entities that participate in rio In the miniworld represented by
Figure 3.9, employees el' e3' and e6 work for department dl ; e2 and e4 work for d2;

and es and e7 work for d3·

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which
are connected by straight lines to the rectangular boxes representing the participat
ing entity types. The relationship name is displayed in the diamond-shaped box (see
Figure 3.2).

EMPLOYEE DEPARTMENT

FIGURE 3.9 Some instances in the WORKS_FOR relationship set, which represents a rela
tionship type WORKS_FOR between EMPLOYEE and DEPARTMENT.

3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints I 63

3.4.2 Relationship Degree, Role Names,
and Recursive Relationships

Degree of a Relationship Type. The degree of a relationship type is the number
of participating entity types. Hence, the WORKSJOR relationship is of degree two. A
relationship type of degree two is called binary, and one of degree three is called ternary.
An example of a ternary relationship is SUPPLY, shown in Figure 3.10, where each
relationship instance r j associates three entities-a supplier s, a part p, and a project j
whenever s supplies part p ro project j. Relationships can generally be of any degree, but
the ones most common are binary relationships. Higher-degree relationships are generally
more complex than binary relationships; we characterize them further in Section 4.7.

Relationships as Attributes. It is sometimes convenient to think of a relationship
type in terms of attributes, as we discussed in Section 3.3.3. Consider the WORKS_FOR

relationship type of Figure 3.9. One can think of an attribute called Department of the
EMPLOYEE entity type whose value for each employee entity is (a reference to) the department
entity that the employee works for. Hence, the value set for this Department attribute is the
set ofall DEPARTMENT entities, which is the DEPARTMENT entity set. This is what we did in Figure
3.8 when we specified the initial design of the entity type EMPLOYEE for the COMPANY database.
However, when we think of a binary relationship as an attribute, we always have two

SUPPLIER SUPPLY

FIGURE 3.10 Some relationship instances in the SUPPLY ternary relationship set.

64 I Chapter 3 Data Modeling Using the Entity-Relationship Model

options. In this example, the alternative is to think of a multivalued attribute Employees of
the entity type DEPARTMENT whose values for each department entity is the set of employee
entities who work for that department. The value set of this Employees attribute is the
power set of the EMPLOYEE entity set. Either of these two attributes-Department of EMPLOYEE

or Employees of DEPARTMENT--can represent the WORKS_FOR relationship type. If both are
represented, they are constrained to be inverses of each other,"

Role Names and Recursive Relationships. Each entity type that participates
in a relationship type plays a particular role in the relationship. The role name signifies
the role that a participating entity from the entity type plays in each relationship
instance, and helps to explain what the relationship means. For example, in the WORKS_FOR

relationship type, EMPLOYEE plays the role of employee or workerand DEPARTMENT plays the role
of department or employer.

Role names are not technically necessary in relationship types where all the
participating entity types are distinct, since each participating entity type name can be
used as the role name. However, in some cases the sameentity type participates more than
once in a relationship type in differentroles. In such cases the role name becomes essential
for distinguishing the meaning of each participation. Such relationship types are called
recursive relationships. Figure 3.11 shows an example. The SUPERVISION relationship type
relates an employee to a supervisor, where both employee and supervisor entities are
members of the same EMPLOYEE entity type. Hence, the EMPLOYEE entity type participates twice
in SUPERVISION: once in the role of supervisor (or boss), and once in the role of supervisee (or
subordinate). Each relationship instance ri in SUPERVISION associates two employee entities ej

and ek, one of which plays the role of supervisor and the other the role of supervisee. In
Figure 3.11, the lines marked "I" represent the supervisor role, and those marked "2"
represent the supervisee role; hence, el supervises ez and e3' e4 supervises e6 and e7' and es
supervises el and e4'

3.4.3 Constraints on Relationship Types
Relationship types usually have certain constraints that limit the possible combinations
of entities that may participate in the corresponding relationship set. These constraints
are determined from the miniworld situation that the relationships represent. For exam
ple, in Figure 3.9, if the company has a rule that each employee must work for exactly one
department, then we would like to describe this constraint in the schema. We can distin
guish two main types of relationship constraints: cardinality ratio and participation.

9. This concept of representing relationship types as attributes is used in a class of data models
called functional data models. In object databases (see Chapter 20), relationships can be repre
sented by reference attributes, either in one direction or in both directions as inverses. In rela
tional databases (see Chapter 5), foreign keys are a type of reference attribute used to represent
relationships.

3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints I 65

SUPERVISION
EMPLOYEE

e7~__ 1

2

FIGURE 3.11 A recursive relationship SUPERVISION between EMPLOYEE in the supervisor
role (1) and EMPLOYEE in the subordinate role (2).

Cardinality Ratios for Binary Relationships. The cardinality ratio for a binary
relationship specifies the maximum number of relationship instances that an entity can
participate in. For example, in the WORKS_FOR binary relationship type, DEPARTMENT: EMPLOYEE

is of cardinality ratio l:N, meaning that each department can be related to (that is,
employs) any number of ernployees.l" but an employee can be related to (work for) only
onedepartment. The possible cardinality ratios for binary relationship types are 1:1, l:N,
N:l, and M:N.

An example of a 1:1 binary relationship is MANAGES (Figure 3.12), which relates a
department entity to the employee who manages that department. This represents the
miniworld constraints that-at any point in time-an employee can manage only one
department and a department has only one manager. The relationship type WORKS_ON

(Figure 3.13) is of cardinality ratio M:N, because the miniworld rule is that an employee
canwork on several projects and a project can have several employees.

Cardinality ratios for binary relationships are represented on ER diagrams by
displaying 1, M, and N on the diamonds as shown in Figure 3.2.

10. N stands for any number of related entities (zero or more).

66 I Chapter 3 Data Modeling Using the Entity-Relationship Model

EMPLOYEE

MANAGES DEPARTMENT

L --\------~rd,

_---+-------i- d,

---+------:~:::::::::::::=-----+____lil_+-----\ d
3

e5 ..-

e6

e
7

•

FIGURE 3.12 A 1:1 relationship, MANAGES.

WORKS_ON
EMPLOYEE

PROJECT
e,

e, P,

'" P2

e,

'4
P3

'5
P,

FIGURE 3.13 An M:N relationship, WORKS_ON.

3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints I 67

Participation Constraints and Existence Dependencies. The participation con
straint specifies whether the existence of an entity depends on its being related to another
entityvia the relationship type. This constraint specifies the minimum number of relationship
instances that each entity can participate in, and is sometimes called the minimum
cardinality constraint. There are two types of participation constraints-total and partial
whichwe illustrate by example. If a company policy states that everyemployee must work for
a department, then an employee entity can exist only if it participates in at least one WORKS_

FOR relationship instance (Figure 3.9). Thus, the participation of EMPLOYEE in WORKS_FOR is
called total participation, meaning that every entity in "the total set" of employee entities
must be related to a department entity via WORKS_FOR. Total participation is also called
existence dependency. In Figure 3.12 we do not expect every employee to manage a
department, so the participation of EMPLOYEE in the MANAGES relationship type is partial,
meaning that some or "part of the set of" employee entities are related to some department
entity via MANAGES, but not necessarily all. We will refer to the cardinality ratio and
participation constraints, taken together, as the structural constraints of a relationship type.

In ER diagrams, total participation (or existence dependency) is displayed as a double
line connecting the participating entity type to the relationship, whereas partial
participation is represented by a single line (see Figure 3.2).

3.4.4 Attributes of Relationship Types
Relationship types can also have attributes, similar to those of entity types. For example,
to record the number of hours per week that an employee works on a particular project,
we can include an attribute Hours for the WORKS_ON relationship type of Figure 3.13.
Another example is to include the date on which a manager started managing a depart
ment via an attribute StartDate for the MANAGES relationship type of Figure 3.12.

Notice that attributes of 1:1 or I:N relationship types can be migrated to one of the
participating entity types. For example, the StartDate attribute for the MANAGES

relationship can be an attribute of either EMPLOYEE or OEPARTMENT, although conceptually it
belongs to MANAGES. This is because MANAGES is a 1:1 relationship, so every department or
employee entity participates in at most one relationship instance. Hence, the value of the
StartDate attribute can be determined separately, either by the participating department
entityor by the participating employee (manager) entity.

For a I:N relationship type, a relationship attribute can be migrated only to the entity
type on the N-side of the relationship. For example, in Figure 3.9, if the WORKS_FOR

relationship also has an attribute StartDate that indicates when an employee started
working for a department, this attribute can be included as an attribute of EMPLOYEE. This is
because each employee works for only one department, and hence participates in at most
one relationship instance in WORKS_FOR. In both 1:1 and I:N relationship types, the
decision as to where a relationship attribute should be placed-as a relationship type
attribute or as an attribute of a participating entity type-is determined subjectively by
theschema designer.

For M:N relationship types, some attributes may be determined by the combination of
participating entities in a relationship instance, not by any single entity. Such attributes

68 I Chapter 3 Data Modeling Using the Entity-Relationship Model

must be specified as relationship attributes. An example is the Hours attribute of the M:N
relationship WORKS_ON (Figure 3.13); the number of hours an employee works on a project is
determined by an employee-project combination and not separately by either entity.

3.5 WEAK ENTITY TYPES
Entity types that do not have key attributes of their own are called weak entity types. In
contrast, regular entity types that do have a key attribute-which include all the exam
ples we discussed so far-are called strong entity types. Entities belonging to a weak
entity type are identified by being related to specific entities from another entity type in
combination with one of their attribute values. We call this other entity type the identi
fying or owner entity type, II and we call the relationship type that relates a weak entity
type to its owner the identifying relationship of the weak entity type. 12 A weak entity
type always has a total participation constraint (existence dependency) with respect to its
identifying relationship, because a weak entity cannot be identified without an owner
entity. However, not every existence dependency results in a weak entity type. For exam
ple, a DRIVER_LICENSE entity cannot exist unless it is related to a PERSON entity, even though
it has its own key (LicenseNumber) and hence is not a weak entity.

Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep track of
the dependents of each employee via a l:N relationship (Figure 3.2). The attributes of
DEPENDENT are Name (the first name of the dependent), BirthDate, Sex, and Relationship
(to the employee). Two dependents of two distinct employees may, by chance, have the
same values for Name, BirthDate, Sex, and Relationship, but they are still distinct
entities. They are identified as distinct entities only after determining the particular
employee entity to which each dependent is related. Each employee entity is said to own
the dependent entities that are related to it.

A weak entity type normally has a partial key, which is the set of attributes that can
uniquely identify weak entities that are related to the same owner entity.13 In our example, if
we assume that no two dependents of the same employee ever have the same first name,
the attribute Name of DEPENDENT is the partial key. In the worst case, a composite attribute
of all the weak entity's attributes will be the partial key.

In ER diagrams, both a weak entity type and its identifying relationship are
distinguished by surrounding their boxes and diamonds with double lines (see Figure 3.2).
The partial key attribute is underlined with a dashed or dotted line.

Weak entity types can sometimes be represented as complex (composite, multivalued)
attributes. In the preceding example, we could specify a multivalued attribute Dependents
for EMPLOYEE, which is a composite attribute with component attributes Name, BirthDate,

11. The identifying entity type is also sometimes called the parent entity type or the dominant
entity type.

12. The weak entity type is also sometimes called the child entity type or the subordinate
entity type.
13. The partial key is sometimescalled the discriminator.

3.6 Refining the ER Design for the COMPANY Database I 69

Sex, and Relationship. The choice of which representation to use is made by the database
designer. One criterion that may be used is to choose the weak entity type representation if
there are many attributes. If the weak entity participates independently in relationship
types other than its identifying relationship type, then it should not be modeled as a
complex attribute.

In general, any number of levels of weak entity types can be defined; an owner entity
type may itself be a weak entity type. In addition, a weak entity type may have more than
one identifying entity type and an identifying relationship type of degree higher than two,
aswe illustrate in Section 4.7.

3.6 REFINING THE ER DESIGN
FOR THE COMPANY DATABASE

Wecan now refine the database design of Figure 3.8 by changing the attributes that repre
sent relationships into relationship types. The cardinality ratio and participation con
straintof each relationship type are determined from the requirements listed in Section
3.2. Ifsome cardinality ratio or dependency cannot be determined from the requirements,
the users must be questioned further to determine these structural constraints.

In our example, we specify the following relationship types:

1. MANAGES, a 1:1 relationship type between EMPLOYEE and DEPARTMENT. EMPLOYEE participation
ispartial. DEPARTMENT participation is not clear from the requirements. We question the
users, who say that a department must have a manager at all times, which implies total
participation. 14 The attribute StartDate is assigned to this relationship type.

2. WORKSJOR, a I:N relationship type between DEPARTMENT and EMPLOYEE. Both participa
tions are total.

3. CONTROLS, a I:N relationship type between DEPARTMENT and PROJECT. The participation
of PROJECT is total, whereas that of DEPARTMENT is determined to be partial, after con
sultation with the users indicates that some departments may control no projects.

4. SUPERVISION, a I:N relationship type between EMPLOYEE (in the supervisor role) and
EMPLOYEE (in the supervisee role). Both participations are determined to be partial,
after the users indicate that not every employee is a supervisor and not every
employee has a supervisor.

5. WORKS_ON, determined to be an M:N relationship type with attribute Hours, after
the users indicate that a project can have several employees working on it. Both
participations are determined to be total.

14. The rules in the miniworld that determine the constraints are sometimes called the business
rules, since they are determined by the "business" or organization that will utilize the database.

70 I Chapter 3 Data Modeling Using the Entity-Relationship Model

6. DEPENDENTS_OF, a l:N relationship type between EMPLOYEE and DEPENDENT, which is also
the identifying relationship for the weak entity type DEPENDENT. The participation
of EMPLOYEE is partial, whereas that of DEPENDENT is total.

After specifying the above six relationship types, we remove from the entity types in
Figure 3.8 all attributes that have been refined into relationships. These include Manager
and ManagerStartDate from DEPARTMENT; ControllingDepartment from PROJ ECT; Department,
Supervisor, and WorksOn from EMPLOYEE; and Employee from DEPENDENT. It is important to
have the least possible redundancy when we design the conceptual schema of a database. If
some redundancy is desired at the storage level or at the user view level, it can be
introduced later, as discussed in Section 1.6.1.

3.7 ER DIAGRAMS, NAMING CONVENTIONS,
AND DESIGN ISSUES

3.7.1 Summary of Notation for ER Diagrams
Figures 3.9 through 3.13 illustrate examples of the participation of entity types in rela
tionship types by displaying their extensions-the individual entity instances and rela
tionship instances in the entity sets and relationship sets. In ER diagrams the emphasis is
on representing the schemas rather than the instances. This is more useful in database
design because a database schema changes rarely, whereas the contents of the entity sets
change frequently. In addition, the schema is usually easier to display than the extension
of a database, because it is much smaller.

Figure 3.2 displays the CDMPANY ER database schema as an ER diagram. We now review
the full ER diagram notation. Entity types such as EMPLOYEE, DEPARTMENT, and PROJECT are
shown in rectangular boxes. Relationship types such as WORKSJOR, MANAGES, CONTROLS, and
WORKS_ON are shown in diamond-shaped boxes attached to the participating entity types
with straight lines. Attributes are shown in ovals, and each attribute is attached by a
straight line to its entity type or relationship type. Component attributes of a composite
attribute are attached to the oval representing the composite attribute, as illustrated by
the Name attribute of EMPLOYEE. Multivalued attributes are shown in double ovals, as
illustrated by the Locations attribute of DEPARTMENT. Key attributes have their names
underlined. Derived attributes are shown in dotted ovals, as illustrated by the
NumberOfEmployees attribute of DEPARTMENT.

Weak entity types are distinguished by being placed in double rectangles and by
having their identifying relationship placed in double diamonds, as illustrated by the
DEPENDENT entity type and the DEPENDENTS_OF identifying relationship type. The partial key of
the weak entity type is underlined with a dotted line.

In Figure 3.2 the cardinality ratio of each binary relationship type is specified by attaching
a I, M, or N on each participating edge. The cardinality ratio of DEPARTMENT: EMPLOYEE in MANAGES

is 1:1, whereas it is l:N for DEPARTMENT: EMPLOYEE in WORKS_FOR, and M:N for WORKS_ON. The

3.7 ER Diagrams, Naming Conventions, and Design Issues I 71

participation constraint is specified by a single line for partial participation and by double lines
for total participation (existence dependency).

In Figure 3.2 we show the role names for the SUPERVISION relationship type because the
EMPLOYEE entity type plays both roles in that relationship. Notice that the cardinality is l:N
from supervisor to supervisee because each employee in the role of supervisee has at most
one direct supervisor, whereas an employee in the role of supervisor can supervise zero or
more employees.

Figure3.14 summarizes the conventions for ER diagrams.

3.7.2 Proper Naming of Schema Constructs
When designing a database schema, the choice of names for entity types, attributes, rela
tionship types, and (particularly) roles is not always straightforward. One should choose
names that convey, as much as possible, the meanings attached to the different constructs
in the schema. We choose to use singular names for entity types, rather than plural ones,
because the entity type name applies to each individual entity belonging to that entity
type. In our ER diagrams, we will use the convention that entity type and relationship
type names are in uppercase letters, attribute names are capitalized, and role names are in
lowercase letters. We have already used this convention in Figure 3.2.

As a general practice, given a narrative description of the database requirements, the
nouns appearing in the narrative tend to give rise to entity type names, and the verbs tend
to indicate names of relationship types. Attribute names generally arise from additional
nouns that describe the nouns corresponding to entity types.

Another naming consideration involves choosing binary relationship names to make
the ER diagram of the schema readable from left to right and from top to bottom. We have
generally followed this guideline in Figure 3.2. To explain this naming convention
further, we have one exception to the convention in Figure 3.2-the DEPENDENTS_OF

relationship type, which reads from bottom to top. When we describe this relationship,
we can say that the DEPENDENT entities (bottom entity type) are DEPENDENTS_OF (relationship
name) an EMPLOYEE (top entity type). To change this to read from top to bottom, we could
rename the relationship type to HAS_DEPENDENTS, which would then read as follows: An
EMPLOYEE entity (top entity type) HAS_DEPENDENTS (relationship name) of type DEPENDENT

(bottom entity type). Notice that this issue arises because each binary relationship can be
described starting from either of the two participating entity types, as discussed in the
beginningof Section 3.4.

3.7.3 Design Choices for ER Conceptual Design
It isoccasionally difficult to decide whether a particular concept in the miniworld should
be modeled as an entity type, an attribute, or a relationship type. In this section, we give
some brief guidelines as to which construct should be chosen in particular situations.

72 I Chapter 3 Data Modeling Using the Entity-Relationship Model

Symbol

I I

II II

0
¢

---0
-Q

C)

'------<0:t==s= __

'--_-Jf---

1-<0N- - - - ----'

Meaning

ENTITY

WEAK ENTITY

RELATIONSHIP

IDENTIFYING RELATIONSHIP

ATIRIBUTE

KEY ATIRIBUTE

MULTIVALUED ATIRIBUTE

COMPOSITE ATTRIBUTE

DERIVED ATIRIBUTE

TOTAL PARTICIPATION OF E2 IN R

CARDINALITY RATIO 1: NFOR E,:E2IN R

STRUCTURAL CONSTRAINT (min, max)
ON PARTICIPATION OF EIN R

FIGURE 3.14 Summary of the notation for ER diagrams.

3.7 ER Diagrams, Naming Conventions, and Design Issues I 73

In general, the schema design process should be considered an iterative refinement
process, where an initial design is created and then iteratively refined until the most suitable
design is reached. Some of the refinements that are often used include the following;

• A concept may be first modeled as an attribute and then refined into a relationship
because it is determined that the attribute is a reference to another entity type. It is
often the case that a pair of such attributes that are inverses of one another are
refined into a binary relationship. We discussed this type of refinement in detail in
Section 3.6.

• Similarly, an attribute that exists in several entity types may be elevated or promoted
to an independent entity type. For example, suppose that several entity types in a
UNIVERSITY database, such as STUDENT, INSTRUCTOR, and COURSE, each has an attribute
Department in the initial design; the designer may then choose to create an entity
type DEPARTMENT with a single attribute DeptName and relate it to the three entity
types (STUDENT, INSTRUCTOR, and COURSE) via appropriate relationships. Other attributes/
relationships of DEPARTMENT may be discovered later.

• An inverse refinement to the previous case may be applied-for example, if an entity
type DEPARTMENT exists in the initial design with a single attribute DeptName and is
related to only one other entity type, STUDENT. In this case, DEPARTMENT may be reduced
or demoted to an attribute of STUDENT.

• In Chapter 4, we discuss other refinements concerning specialization/generalization
and relationships of higher degree. Chapter 12 discusses additional top-down and
bottom-up refinements that are common in large-scale conceptual schema design.

3.7.4 Alternative Notations for ER Diagrams
Thereare many alternative diagrammatic notations for displaying ER diagrams. Appendix
A gives some of the more popular notations. In Section 3.8, we introduce the Universal
Modeling Language (UML) notation for class diagrams, which has been proposed as a
standard for conceptual object modeling.

In this section, we describe one alternative ER notation for specifying structural
constraints on relationships. This notation involves associating a pair of integer numbers
(min, max) with each participation of an entity type E in a relationship type R, where 0 :=;

min :s max and max 2: 1. The numbers mean that for each entity e in E, e must
participate in at least min and at most max relationship instances in R at any point in time.
In this method, min = 0 implies partial participation, whereas min > 0 implies total
participation.

Figure 3.15 displays the COMPANY database schema using the (min, max) notation.P
Usually, one uses either the cardinality ratio/single-line/double-line notation or the (min,

15. In some notations, particularly those used in object modeling methodologies such as UML,
the (min, max) is placed on the opposite sides to the ones we have shown. For example, for the
WORKS_FOR relationship in Figure 3.15, the (1,1) would be on the DEPARTMENT side, and the (4,N)
would be on the EMPLOYEE side. Here we used the original notation from Abrial (1974).

74 I Chapter 3 Data Modeling Using the Entity-Relationship Model

(1,1)

employee

(D,1)

manager

(1,N)

worker

Hours

(1,1)

department
managed

(D,N)
controlling
department

CONTROLS

SUPERVISION (D,N)

employee (1,N)

project

controlled
project

(1,1)

dependent
(1,1)

I DEPENDENT

Relationship

FIGURE 3.15 ER diagrams for the COMPANY schema, with structural constraints specified using (min,
max) notation.

max) notation. The (min, max) notation is more precise, and we can use it easily to

specify structural constraints for relationship types of any degree. However, it is not
sufficient for specifying some key constraints on higher-degree relationships, as discussed
in Section 4.7.

Figure 3.15 also displays all the role names for the COMPANY database schema.

3.8 NOTATION FOR UML CLASS DIAGRAMS
The UML methodology is being used extensively in software design and has many types of
diagrams for various software design purposes. We only briefly present the basics of UML

3.8 Notation for UML Class Diagrams I 75

ML:

PART

MT:EMPLOYEE DEPARTMENT Multiplicity Notation in 0

4." WORKS_FOR 1..1
Name --- 1..1Name: NameDom

Fname Number • 0."1..1 0..1Minit add_employee
Lname I ----0 0..1

number_oCemployees
S5n I MANAGES I change_manager 0."Bdate:Date
Sex: {M,F} I StartDate I ... A

Address
1." 1..1Salary

1."
I

age . I WORKS ON I I LOCATION Ichange_department
change.J)rojects I Hours I

CONTROLS I Name Isupervisee..,
1..1IDependent NameI 1." .

0..1

? supervisor PROJECT 0."
Name k>Number

DEPENDENT add_employee
Sex: {M,F} add_project Aggregation Notation In U
BirthDate: Date change_manager
Relationship ... IWHOLE K> I
.. ,

'------.

FIGURE 3.16 The COMPANY conceptual schema in UML class diagram notation.

class diagrams here, and compare them with ER diagrams. In some ways, class diagrams
can be considered as an alternative notation to ER diagrams. Additional UML notation
andconcepts are presented in Section 4.6, and in Chapter 12. Figure 3.16 shows how the
COMPANY ERdatabase schema of Figure 3.15 can be displayed using UML class diagram nota
tion. The entity types in Figure 3.15 are modeled as classes in Figure 3.16. An entity in ER

corresponds to an object in UML.

In UML class diagrams, a class is displayed as a box (see Figure 3.16) that includes
three sections: The top section gives the class name, the middle section includes the
attributes for individual objects of the class; and the last section includes operations that
can be applied to these objects. Operations are not specified in ER diagrams. Consider the
EMPLOYEE class in Figure 3.16. Its attributes are Name, Ssn, Bdate, Sex, Address, and Salary.
The designer can optionally specify the domain of an attribute if desired, by placing a
colon (:) followed by the domain name or description, as illustrated by the Name, Sex,
and Bdate attributes of EMPLOYEE in Figure 3.16. A composite attribute is modeled as a
structured domain, as illustrated by the Name attribute of EMPLOYEE. A multivalued
attribute will generally be modeled as a separate class, as illustrated by the LOCATION class in
Figure 3.16.

Relationship types are called associations in UML terminology, and relationship
instances are called links. A binary association (binary relationship type) is represented
as a line connecting the participating classes (entity types), and may optionally have a

76 I Chapter 3 Data Modeling Using the Entity-Relationship Model

name. A relationship attribute, called a link attribute, is placed in a box that is
connected to the association's line by a dashed line. The (min, max) notation described
in Section 3.7.4 is used to specify relationship constraints, which are called multiplicities
in UML terminology. Multiplicities are specified in the form min..max, and an asterisk (*)
indicates no maximum limit on participation. However, the multiplicities are placed on
the opposite ends of the relationshiP when compared with the notation discussed in Section
3.7.4 (compare Figures 3.16 and 3.15). In UML, a single asterisk indicates a multiplicity of
0..*, and a single 1 indicates a multiplicity of 1..1. A recursive relationship (see Section
3.4.2) is called a reflexive association in UML, and the role names-like the
multiplicities-are placed at the opposite ends of an association when compared with the
placing of role names in Figure 3.15.

In UML, there are two types of relationships: association and aggregation. Aggregation is
meant to represent a relationship between a whole object and its component parts, and it has
a distinct diagrammatic notation. In Figure 3.16, we modeled the locations of a department
and the single location of a project as aggregations. However, aggregation and association do
not have different structural properties, and the choice as to which type of relationship to use
is somewhat subjective. In the ER model, both are represented as relationships.

UML also distinguishes between unidirectional and bidirectional associations (or
aggregations). In the unidirectional case, the line connecting the classes is displayed with
an arrow to indicate that only one direction for accessing related objects is needed. If no
arrow is displayed, the bidirectional case is assumed, which is the default. For example, if
we always expect to access the manager of a department starting from a DEPARTMENT object,
we would draw the association line representing the MANAGES association with an arrow
from DEPARTMENT to EMPLOYEE. In addition, relationship instances may be specified to be
ordered. For example, we could specify that the employee objects related to each
department through the WORKS_FOR association (relationship) should be ordered by their
Bdate attribute value. Association (relationship) names are optional in UML, and
relationship attributes are displayed in a box attached with a dashed line to the line
representing the association/aggregation (see StartDate and Hours in Figure 3.16).

The operations given in each class are derived from the functional requirements of
the application, as we discussed in Section 3.1. It is generally sufficient to specify the
operation names initially for the logical operations that are expected to be applied to
individual objects of a class, as shown in Figure 3.16. As the design is refined, more details
are added, such as the exact argument types (parameters) for each operation, plus a
functional description of each operation. UML has function descriptions and sequence
diagrams to specify some of the operation details, but these are beyond the scope of our
discussion. Chapter 12 will introduce some of these diagrams.

Weak entities can be modeled using the construct called qualified association (or
qualified aggregation) in UMLj this can represent both the identifying relationship and
the partial key, which is placed in a box attached to the owner class. This is illustrated by
the DEPENDENT class and its qualified aggregation to EMPLOYEE in Figure 3.16. The partial key
DependentName is called the discriminator in UML terminology, since its value
distinguishes the objects associated with (related to) the same EMPLOYEE. Qualified
associations are not restricted to modeling weak entities, and they can be used to model
other situations in UML.

3.9 Summary I 77

3.9 SUMMARY
In this chapter we presented the modeling concepts of a high-level conceptual data
model, the Entity-Relationship (ER) model. We started by discussing the role that a high
leveldata model plays in the database design process, and then we presented an example
set of database requirements for the COMPANY database, which is one of the examples that is
used throughout this book. We then defined the basic ER model concepts of entities and
their attributes. We discussed null values and presented the various types of attributes,
which can be nested arbitrarily to produce complex attributes:

• Simple or atomic

• Composite

• Multivalued

We also briefly discussed stored versus derived attributes. We then discussed the ER

modelconcepts at the schema or "intension" level:

• Entity types and their corresponding entity sets

• Key attributes of entity types

• Value sets (domains) of attributes

• Relationship types and their corresponding relationship sets

• Participation roles of entity types in relationship types

We presented two methods for specifying the structural constraints on relationship
types. The first method distinguished two types of structural constraints:

• Cardinality ratios (1:1, I:N, M:N for binary relationships)

• Participation constraints (total, partial)

We noted that, alternatively, another method of specifying structural constraints is to
specify minimum and maximum numbers (min, max) on the participation of each entity
type in a relationship type. We discussed weak entity types and the related concepts of
ownerentity types, identifying relationship types, and partial key attributes.

Entity-Relationship schemas can be represented diagrammatically as ER diagrams.
We showed how to design an ER schema for the COMPANY database by first defining the
entity types and their attributes and then refining the design to include relationship types.
We displayed the ER diagram for the COMPANY database schema. Finally, we discussed some
ofthe basic concepts of UML class diagrams and how they relate to ER model concepts.

The ER modeling concepts we have presented thus far-entity types, relationship
types, attributes, keys, and structural constraints-can model traditional business data
processing database applications. However, many newer, more complex applications
such as engineering design, medical information systems, or telecommunications
require additional concepts if we want to model them with greater accuracy. We discuss
these advanced modeling concepts in Chapter 4. We also describe ternary and higher
degree relationship types in more detail in Chapter 4, and discuss the circumstances
underwhich they are distinguished from binary relationships.

78 I Chapter 3 Data Modeling Using the Entity-Relationship Model

Review Questions
3.1. Discuss the role of a high-level data model in the database design process.
3.2. List the various cases where use of a null value would be appropriate.
3.3. Define the following terms: entity, attribute, attribute value, relationship instance,

composite attribute, multivalued attribute, derived attribute, complex attribute, key
attribute, valueset (domain).

3.4. What is an entity type? What is an entity set? Explain the differences among an
entity, an entity type, and an entity set.

3.5. Explain the difference between an attribute and a value set.
3.6. What is a relationship type? Explain the differences among a relationship

instance, a relationship type, and a relationship set.
3.7. What is a participation role? When is it necessary to use role names in the

description of relationship types?
3.8. Describe the two alternatives for specifying structural constraints on relationship

types. What are the advantages and disadvantages of each?
3.9. Under what conditions can an attribute of a binary relationship type be migrated

to become an attribute of one of the participating entity types?
3.10. When we think of relationships as attributes, what are the value sets of these

attributes? What class of data models is based on this concept?
3.11. What is meant by a recursive relationship type? Give some examples of recursive

relationship types.
3.12. When is the concept of a weak entity used in data modeling? Define the terms

owner entity type, weak entity type, identifying relationship type, and partial key.
3.13. Can an identifying relationship of a weak entity type be of a degree greater than

two? Give examples to illustrate your answer.
3.14. Discuss the conventions for displaying an ER schema as an ER diagram.
3.15. Discuss the naming conventions used for ER schema diagrams.

Exercises
3.16. Consider the following set of requirements for a university database that is used to

keep track of students' transcripts. This is similar but not identical to the database
shown in Figure 1.2:
a. The university keeps track of each student's name, student number, social

security number, current address and phone, permanent address and phone,
birthdare, sex, class (freshman, sophomore, ... , graduate), major department,
minor department (if any), and degree program (B.A., B.S., ... , Ph.D.). Some
user applications need to refer to the city, state, and zip code of the student's
permanent address and to the student's last name. Both social security number
and student number have unique values for each student.

b. Each department is described by a name, department code, office number,
office phone, and college. Both name and code have unique values for each
department.

c. Each course has a course name, description, course number, number of semes
ter hours, level, and offering department. The value of the course number is
unique for each course.

d. Each section has an instructor, semester, year, course, and section number. The
section number distinguishes sections of the same course that are taught dur
ing the same semester/year; its values are 1,2,3, ... , up to the number of sec
tions taught during each semester.

e. A grade report has a student, section, letter grade, and numeric grade (0, 1, 2,
3, or 4).

Design an ER schema for this application, and draw an ER diagram for that
schema. Specify key attributes of each entity type, and structural constraints on
each relationship type. Note any unspecified requirements, and make appropriate
assumptions to make the specification complete.

3.17. Composite and multivalued attributes can be nested to any number of levels. Sup
pose we want to design an attribute for a STUDENT entity type to keep track of previ
ous college education. Such an attribute will have one entry for each college
previously attended, and each such entry will be composed of college name, start
and end dates, degree entries (degrees awarded at that college, if any), and tran
script entries (courses completed at that college, if any). Each degree entry con
tains the degree name and the month and year the degree was awarded, and each
transcript entry contains a course name, semester, year, and grade. Design an
attribute to hold this information. Use the conventions of Figure 3.5.

3.18. Show an alternative design for the attribute described in Exercise 3.17 that uses
only entity types (including weak entity types, if needed) and relationship types.

3.19. Consider the ER diagram of Figure 3.17, which shows a simplified schema for an
airline reservations system. Extract from the ER diagram the requirements and
constraints that produced this schema. Try to be as precise as possible in your
requirements and constraints specification.

3.20. In Chapters 1 and 2, we discussed the database environment and database users.
We can consider many entity types to describe such an environment, such as
DBMS, stored database, DBA, and catalog/data dictionary. Try to specify all the
entity types that can fully describe a database system and its environment; then
specify the relationship types among them, and draw an ER diagram to describe
such a general database environment.

3.21. Design an ER schema for keeping track of information about votes taken in the
U.S. House of Representatives during the current two-year congressional session.
The database needs to keep track of each U.S. STATE'S Name (e.g., Texas, New
York, California) and include the Region of the state (whose domain is {North
east, Midwest, Southeast, Southwest, West}). Each CONGRESSPERSON in the House of
Representatives is described by his or her Name, plus the District represented, the
StartDate when the congressperson was first elected, and the political Party to
which he or she belongs (whose domain is {Republican, Democrat, Independent,
Other}). The database keeps track of each BILL (i.e., proposed law), including the
BillName, the DateONote on the bi.ll, whether the bill PassedOrFailed (whose
domain is {Yes, Nol), and the Sponsor (the congresspersonts) who sponsored-

Exercises I 79

80 I Chapter 3 Data Modeling Using the Entity-Relationship Model

M

CAN
LAND

TYPE

N

Total-no-of-seats

NOTES:
(1)A LEG (SEGMENT) ISA NONSTOPPORTIONOFA FLIGHT
(2)ALEG INSTANCE ISA PARTICULAR OCCURRENCE

OFA LEGON A PARTICULAR DATE

ScheduledDepTime

DEPARTURE
AIRPORT

instances

N

N
ASSIGNED >============1

Ne
1

FIGURE 3.17 An ER diagram for an AIRLINE database schema.

that is, proposed-the bill). The database keeps track of how each congressperson
voted on each bill (domain of vote attribute is {Yes, No, Abstain, Absent}). Draw
an ER schema diagram for this application. State clearly any assumptions you
make.

3.22. A database is being constructed to keep track of the teams and games of a sports
league. A team has a number of players, not all of whom participate in each game.
It is desired to keep track of the players participating in each game for each team,
the positions they played in that game, and the result of the game. Design an ER

schema diagram for this application, stating any assumptions you make. Choose
your favorite sport (e.g., soccer, baseball, football).

3.23. Consider the ER diagram shown in Figure 3.18 for part of a BANK database. Each
bank can have multiple branches, and each branch can have multiple accounts
and loans.
a. List the (nonweak) entity types in the ER diagram.
b. Is there a weak entity type? If so, give its name, partial key, and identifying

relationship.
c. What constraints do the partial key and the identifying relationship of the

weak entity type specify in this diagram?
d. List the names of all relationship types, and specify the (min, max) constraint

on each participation of an entity type in a relationship type. Justify your
choices.

e. List concisely the user requirements that led to this ER schema design.
f Suppose that every customer must have at least one account but is restricted

to at most two loans at a time, and that a bank branch cannot have more than
1000 loans. How does this show up on the (min, max) constraints?

'r-_-,----_j======13(~>N=======JLi==::;====:;'J
Addr

Exercises I 81

A-C

LOANS

N

FIGURE 3.18 An ER diagram for a BANK database schema.

82 I Chapter 3 Data Modeling Using the Entity-Relationship Model

3.24. Consider the ER diagram in Figure 3.19. Assume that an employee may work in up
to two departments or may not be assigned to any department. Assume that each
department must have one and may have up to three phone numbers. Supply
(min, max) constraints on this diagram. State clearly any additional assumptions you
make. Under what conditions would the relationship HAS_PHONE be redundant in
this example?

3.25. Consider the ER diagram in Figure 3.20. Assume that a course mayor may not use
a textbook, but that a text by definition is a book that is used in some course. A
course may not use more than five books. Instructors teach from two to four
courses. Supply (min, max) constraints on this diagram. State clearly any additional
assumptions you make. If we add the relationship ADOPTS between INSTRUCTOR and
TEXT, what (min, max) constraints would you put on it? Why?

3.26. Consider an entity type SECTION in a UNIVERSITY database, which describes the sec
tion offerings of courses. The attributes of SECTION are SectionNumber, Semester,
Year, CourseNumber, Instructor, RoomNo (where section is taught), Building
(where section is taught), Weekdays (domain is the possible combinations of
weekdays in which a section can be offered {MWF, MW, TT, etc.j), and Hours
(domain is all possible time periods during which sections are offered {9-9:50 A.M.,

10-10:50 A.M., ... , 3:30-4:50 P.M., 5:30-6:20 P.M., etc.}). Assume that Section-

PHONE

FIGURE 3.19 Part of an ER diagram for a COMPANY database.

INSTRUCTOR

FIGURE 3.20 Part of an ER diagram for a COURSES database.

I

Selected Bibliography I 83

Number is unique for each course within a particular semester/year combination
(that is, if a course is offered multiple times during a particular semester, its section
offerings are numbered 1, 2,3, etc.). There are several composite keys for SECTION,

and some attributes are components of more than one key. Identify three compos
ite keys, and show how they can be represented in an ER schema diagram.

Selected Bibliography
The Entity-Relationship model was introduced by Chen (1976), and related work
appears in Schmidt and Swenson (1975), Wiederhold and Elmasri (1979), and Senko
(1975). Since then, numerous modifications to the ER model have been suggested. We
have incorporated some of these in our presentation. Structural constraints on relation
ships are discussed in Abrial (1974), Elmasri and Wiederhold (1980), and Lenzerini and
Santucci (1983). Multivalued and composite attributes are incorporated in the ER model
inElmasri et al. (1985). Although we did not discuss languages for the entity-relationship
model and its extensions, there have been several proposals for such languages. Elmasri
andWiederhold (1981) proposed the GORDAS query language for the ER model. Another
ER query language was proposed by Markowitz and Raz (1983). Senko (1980) presented a
query language for Senko's DIAM model. A formal set of operations called the ER algebra
was presented by Parent and Spaccapietra (1985). Gogolla and Hohenstein (1991) pre
sented another formal language for the ER model. Campbell et al. (1985) presented a set
ofERoperations and showed that they are relationally complete. A conference for the dis
seminationof research results related to the ER model has been held regularly since 1979.
The conference, now known as the International Conference on Conceptual Modeling,
hasbeen held in Los Angeles (ER 1979, ER 1983, ER 1997), Washington, D.C. (ER 1981),
Chicago (ER 1985), Dijon, France (ER 1986), New York City (ER 1987), Rome (ER 1988),
Toronto (ER 1989), Lausanne, Switzerland (ER 1990), San Mateo, California (ER 1991),
Karlsruhe, Germany (ER 1992), Arlington, Texas (ER 1993), Manchester, England (ER

1994), Brisbane, Australia (ER 1995), Cottbus, Germany (ER 1996), Singapore (ER 1998),
SaltLake City, Utah (ER 1999), Yokohama, Japan (ER 2001), and Tampere, Finland (ER

2002). The next conference is scheduled for Chicago in October 2003.

Enhanced Entity
Relationship and UML

Modeling

The ER modeling concepts discussed in Chapter 3 are sufficient for representing many
database schemas for "traditional" database applications, which mainly include data
processing applications in business and industry. Since the late 1970s, however, designers
ofdatabase applications have tried to design more accurate database schemas that reflect
the data properties and constraints more precisely. This was particularly important for
newer applications of database technology, such as databases for engineering design and
manufacturing (CAD/CAMl) , telecommunications, complex software systems, and Geo
graphic Information Systems (GIs), among many other applications. These types of data
bases have more complex requirements than do the more traditional applications. This
led to the development of additional semantic data modeling concepts that were incorpo
rated into conceptual data models such as the ER model. Various semantic data models
have been proposed in the literature. Many of these concepts were also developed inde
pendently in related areas of computer science, such as the knowledge representation
area of artificial intelligence and the object modeling area in software engineering.

In this chapter, we describe features that have been proposed for semantic data
models, and show how the ER model can be enhanced to include these concepts, leading
to the enhanced ER, or EER, model.i We start in Section 4.1 by incorporating the

1. CAD/CAM stands for computer-aided design/computer-aided manufacturing.
2. EER has also been used to stand for Extended ER model.

85

86 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

concepts of class/subclass relationships and type inheritance into the ER model. Then, in
Section 4.2, we add the concepts of specialization and generalization. Section 4.3 discusses
the various types of constraints on specialization/generalization, and Section 4.4 shows
how the UNION construct can be modeled by including the concept of category in the EER

model. Section 4.5 gives an example UNIVERSITY database schema in the EER model and
summarizes the EER model concepts by giving formal definitions.

We then present the UML class diagram notation and concepts for representing
specialization and generalization in Section 4.6, and briefly compare these with EER

notation and concepts. This is a continuation of Section 3.8, which presented basic UML

class diagram notation.
Section 4.7 discusses some of the more complex issues involved in modeling of

ternary and higher-degree relationships. In Section 4.8, we discuss the fundamental
abstractions that are used as the basis of many semantic data models. Section 4.9
summarizes the chapter.

For a detailed introduction to conceptual modeling, Chapter 4 should be considered
a continuation of Chapter 3. However, if only a basic introduction to ER modeling is
desired, this chapter may be omitted. Alternatively, the reader may choose to skip some
or all of the later sections of this chapter (Sections 4.4 through 4.8).

4.1 SUBCLASSES, SUPERCLASSES,
AND INHERITANCE

The EER (Enhanced ER) model includes all the modeling concepts of the ER model that
were presented in Chapter 3. In addition, it includes the concepts of subclass and super
class and the related concepts of specialization and generalization (see Sections 4.2 and
4.3). Another concept included in the EER model is that of a category or union type (see
Section 4.4), which is used to represent a collection of objects that is the union of objects
of different entity types. Associated with these concepts is the important mechanism of
attribute and relationship inheritance. Unfortunately, no standard terminology exists for
these concepts, so we use the most common terminology. Alternative terminology is
given in footnotes. We also describe a diagrammatic technique for displaying these con
cepts when they arise in an EERschema. We call the resulting schema diagrams enhanced
ER or EER diagrams.

The first EER model concept we take up is that of a subclass of an entity type. As we
discussed in Chapter 3, an entity type is used to represent both a type of entity and the
entity set or collection of entities of that type that exist in the database. For example, the
entity type EMPLOYEE describes the type (that is, the attributes and relationships) of each
employee entity, and also refers to the current set of EMPLOYEE entities in the COMPANY

database. In many cases an entity type has numerous subgroupings of its entities that are
meaningful and need to be represented explicitly because of their significance to the
database application. For example, the entities that are members of the EMPLOYEE entity
type may be grouped further into SECRETARY, ENGINEER, MANAGER, TECHNICIAN, SALARIED_EMPLOYEE,

HOURLY_EMPLOYEE, and so on. The set of entities in each of the latter groupings is a subset of

4.1 Subclasses, Superclasses, and Inheritance I 87

the entities that belong to the EMPLOYEE entity set, meaning that every entity that is a
member of one of these subgroupings is also an employee. We call each of these
subgroupings a subclass of the EMPLOYEE entity type, and the EMPLOYEE entity type is called
the superclass for each of these subclasses. Figure 4.1 shows how to diagramaticallv
represent these concepts in EER diagrams.

We call the relationship between a superclass and anyone of its subclasses a
superclass/subclass or simply class/subclass relationship.! In our previous example,
EMPLOYEE/SECRETARY and EMPLOYEE/TECHNICIAN are two class/subclass relationships. Notice that
a member entity of the subclass represents the same real-world entity as some member of
the superclass; for example, a SECRETARY entity 'Joan Logano' is also the EMPLOYEE 'Joan
Lagana'. Hence, the subclass member is the same as the entity in the superclass, but in a
distinct specific role. When we implement a superclass/subclass relationship in the

Three specializations of EMPLOYEE:

{SECRETARY, TECHNICIAN, ENGINEER}

{MANAGER}

(HOURLY_EMPLOYEE, SALARIED_EMPLOYEE)

FIGURE 4.1 EER diagram notation to represent subclasses and specialization.

3. A class/subclass relationship is often called an IS-A (or IS-AN) relationship because of the way we
refer to the concept. We say "a SECRETARY is an EMPLOYEE,""a TECHNICIAN is an EMPLOYEE,"and so on.

88 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

database system, however, we may represent a member of the subclass as a distinct
database object-say, a distinct record that is related via the key attribute to its superclass
entity. In Section 7.2, we discuss various options for representing superclass/subclass
relationships in relational databases.

An entity cannot exist in the database merely by being a member of a subclass; it
must also be a member of the superclass. Such an entity can be included optionally as a
member of any number of subclasses. For example, a salaried employee who is also an
engineer belongs to the two subclasses ENGINEER and SALARIED_EMPLOYEE of the EMPLOYEE entity
type. However, it is not necessary that every entity in a superclass be a member of some
subclass.

An important concept associated with subclasses is that of type inheritance. Recall
that the type of an entity is defined by the attributes it possesses and the relationship types
in which it participates. Because an entity in the subclass represents the same real-world
entity from the superclass, it should possess values for its specific attributes as well as
values of its attributes as a member of the superclass. We say that an entity that is a
member of a subclass inherits all the attributes of the entity as a member of the superclass.
The entity also inherits all the relationships in which the superclass participates. Notice
that a subclass, with its own specific (or local) attributes and relationships together with
all the attributes and relationships it inherits from the superclass, can be considered an
entity type in its own right."

4.2 SPECIALIZATION AND GENERALIZATION

4.2.1 Specialization
Specialization is the process of defining a set of subclasses of an entity type; this entity type
is called the superclass of the specialization. The set of subclasses that form a specializa
tion is defined on the basis of some distinguishing characteristic of the entities in the
superclass. For example, the set of subclasses {SECRETARY, ENGINEER, TECHNICIAN} is a specializa
tion of the superclass EMPLOYEE that distinguishes among employee entities based on the job
type of each employee entity. We may have several specializations of the same entity type
based on different distinguishing characteristics. For example, another specialization of
the EMPLOYEE entity type may yield the set of subclasses {SALARIED_EMPLOYEE, HOURLY_EMPLOYEE};

this specialization distinguishes among employees based on the methodof pay.
Figure 4.1 shows how we represent a specialization diagrammatically in an EER

diagram. The subclasses that define a specialization are attached by lines to a circle that
represents the specialization, which is connected to the superclass. The subset symbol on
each line connecting a subclass to the circle indicates the direction of the superclass/
subclass relationship.i Attributes that apply only to entities of a particular subclass-such

-------- ----- ------------ ------- --- ---

4. In some object-oriented programming languages, a common restriction is that an entity (or
object) has only one type. This is generally too restrictive for conceptual database modeling.

5. There are many alternative notations for specialization; we present the UML notation in Section
4.6 and other proposednotations in Appendix A.

4.2 Specialization and Generalization I 89

as TypingSpeed of SECRETARY-are attached to the rectangle representing that subclass.
These are called specific attributes (or local attributes) of the subclass. Similarly, a
subclass can participate in specific relationship types, such as the HOURLY_EMPLOYEE subclass
participating in the BELONGS_TO relationship in Figure 4.1. We will explain the d symbol in
the circles of Figure 4.1 and additional EERdiagram notation shortly.

Figure 4.2 shows a few entity instances that belong to subclasses of the {SECRETARY, ENGI
NEER, TECHNICIAN} specialization. Again, notice that an entity that belongs to a subclass
represents the same real-world entity as the entity connected to it in the EMPLOYEE superclass,
even though the same entity is shown twice; for example, el is shown in both EMPLOYEE and
SECRETARY in Figure 4.2. As this figure suggests, a superclass/subclass relationship such as

SECRETARY

e,

e4

es

EMPLOYEE

e,

·2 ENGINEER

~

e,
e,

·5 e,

e,.,

TECHNICIAN

e,

e8

FIGURE 4.2 Instances of a specialization.

90 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

EMPLOYEE/SECRETARY somewhat resembles a 1:1 relationship at the instance level (see Figure 3.12).
The main difference is that in a 1:1 relationship two distinct entities are related, whereas in a
superclass/subclass relationship the entity in the subclass is the same real-world entity as the
entity in the superclass but is playing a specialized role-for example, an EMPLOYEE specialized in
the role of SECRETARY, or an EMPLOYEE specialized in the role of TECHNICIAN.

There are two main reasons for including class/subclass relationships and specializations
in a data model. The first is that certain attributes may apply to some but not all entities of
the superclass. A subclass is defined in order to group the entities to which these attributes
apply. The members of the subclass may still share the majority of their attributes with the
other members of the superclass. For example, in Figure 4.1 the SECRETARY subclass has the
specific attribute TypingSpeed, whereas the ENGINEER subclass has the specific attribute
EngType, but SECRETARY and ENGINEER share their other inherited attributes from the EMPLOYEE

entity type.
The second reason for using subclasses is that some relationship types may be

participated in only by entities that are members of the subclass. For example, if only
HOURLY_EMPLOYEES can belong to a trade union, we can represent that fact by creating the
subclass HOURLY_EMPLOYEE of EMPLOYEE and relating the subclass to an entity type TRADE_UNION

via the BELONGS_TO relationship type, as illustrated in Figure 4.1.
In summary, the specialization process allows us to do the following:

• Define a set of subclasses of an entity type

• Establish additional specific attributes with each subclass

• Establish additional specific relationship types between each subclass and other
entity types or other subclasses

4.2.2 Generalization
We can think of a reverse process of abstraction in which we suppress the differences among
several entity types, identify their common features, and generalize them into a single super
class of which the original entity types are special subclasses. For example, consider the entity
types CAR and TRUCK shown in Figure 4.3a. Because they have several common attributes, they
can be generalized into the entity type VEHICLE, as shown in Figure 4.3b. Both CAR and TRUCK are
now subclasses of the generalized superclass VEHICLE. We use the term generalization to refer
to the process of defining a generalized entity type from the given entity types.

Notice that the generalization process can be viewed as being functionally the inverse
of the specialization process. Hence, in Figure 4.3 we can view {cAR, TRUCK} as a specialization
of VEHICLE, rather than viewing VEHICLE as a generalization of CAR and TRUCK. Similarly, in
Figure 4.1 we can view EMPLOYEE as a generalization of SECRETARY, TECHNICIAN, and ENGINEER. A
diagrammatic notation to distinguish between generalization and specialization is used in
some design methodologies. An arrow pointing to the generalized superclass represents a
generalization, whereas arrows pointing to the specialized subclasses represent a
specialization. We will not use this notation, because the decision as to which process is
more appropriate in a particular situation is often subjective. Appendix A gives some of the
suggested alternative diagrammatic notations for schema diagrams and class diagrams.

4.3 Constraints and Characteristics of Specialization and Generalization I 91

(a)
NoOfPassengers

LicensePlateNo

Price

LicensePlateNo

(b)
LicensePlateNo

NoOfPassengers

FIGURE 4.3 Generalization. (a) Two entity types, CAR and TRUCK. (b) Generalizing CAR

and TRUCK into the superclass VEHICLE.

Sofar we have introduced the concepts of subclasses and superclass/subclass relationships,
as well as the specialization and generalization processes. In general, a superclass or subclass
represents a collection of entities of the same type and hence also describes an entity type; that
is why superclasses and subclasses are shown in rectangles in EER diagrams, like entity types.
We next discussin more detail the properties of specializations and generalizations.

4.3 CONSTRAINTS AND CHARACTERISTICS OF
SPECIALIZATION AND GENERALIZATION

Wefirst discuss constraints that apply to a single specialization or a single generalization.
For brevity, our discussion refers only to specialization even though it applies to both spe
cialization and generalization. We then discuss differences between specialization/gener
alization lattices (multiple inheritance) and hierarchies (single inheritance), and elaborate on
thedifferences between the specialization and generalization processes during conceptual
database schema design.

92 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

4.3.1 Constraints on Specialization and Generalization
In general, we may have several specializations defined on the same entity type (or super
class), as shown in Figure 4.1. In such a case, entities may belong to subclasses in each of the
specializations. However, a specialization may also consist of a single subclass only, such as
the {MANAGER} specialization in Figure 4.1; in such a case, we do not use the circle notation.

In some specializations we can determine exactly the entities that will become
members of each subclass by placing a condition on the value of some attribute of the
superclass. Such subclasses are called predicate-defined (or condition-defined) subclasses.
For example, if the EMPLOYEE entity type has an attribute]obType, as shown in Figure 4.4, we
can specify the condition of membership in the SECRETARY subclass by the condition
(JobType = 'Secretary'), which we call the defining predicate of the subclass. This
condition is a constraint specifying that exactly those entities of the EMPLOYEE entity type
whose attribute value for]obType is 'Secretary' belong to the subclass. We display a
predicate-defined subclass by writing the predicate condition next to the line that
connects the subclass to the specialization circle.

If all subclasses in a specialization have their membership condition on the same
attribute of the superclass, the specialization itself is called an attribute-defined
specialization, and the attribute is called the defining attribute of the specialization.P We
display an attribute-defined specialization by placing the defining attribute name next to

the arc from the circle to the superclass, as shown in Figure 4.4.

JobType

"Secretary"

TECHNICIAN

"Engineer"

FIGURE 4.4 EER diagram notation for an attribute-defined specialization on JobType.

6. Such an attribute is called a discriminator in UML terminology.

4.3 Constraints and Characteristics of Specialization and Generalization I 93

When we do not have a condition for determining membership in a subclass, the
subclass is called user-defined. Membership in such a subclass is determined by the
database users when they apply the operation to add an entity to the subclass; hence,
membership is specified individually for eachentity by the user, not by any condition that may
be evaluated automatically.

Two other constraints may apply to a specialization. The first is the disjointness
constraint, which specifies that the subclasses of the specialization must be disjoint. This
means that an entity can be a member of at most one of the subclasses of the specialization.
A specialization that is attribute-defined implies the disjointness constraint if the
attribute used to define the membership predicate is single-valued. Figure 4.4 illustrates
thiscase, where the d in the circle stands for disjoint. We also use the d notation to specify
the constraint that user-defined subclasses of a specialization must be disjoint, as
illustrated by the specialization {HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} in Figure 4.1. If the
subclasses are not constrained to be disjoint, their sets of entities may overlap; that is, the
same (real-world) entity may be a member of more than one subclass of the specialization.
This case, which is the default, is displayed by placing an 0 in the circle, as shown in
Figure 4.5.

The second constraint on specialization is called the completeness constraint, which
may be total or partial. A total specialization constraint specifies that every entity in the
superclass must be a member of at least one subclass in the specialization. For example, if
every EMPLOYEE must be either an HOURLY_EMPLOYEE or a SALARIEO_EMPLOYEE, then the
specialization {HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} of Figure 4.1 is a total specialization of
EMPLOYEE. This is shown in EERdiagrams by using a double line to connect the superclass to

the circle. A single line is used to display a partial specialization, which allows an entity
not to belong to any of the subclasses. For example, if some EMPLOYEE entities do not belong

SupplierName

FIGURE 4.5 EER diagram notation for an overlapping (nondisjoint) specialization.

94 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

to any of the subclasses {SECRETARY, ENGINEER, TECHNICIAN} of Figures 4.1 and 4.4, then that
specialization is partial. 7

Notice that the disjointness and completeness constraints are independent. Hence, we
have the following four possible constraints on specialization:

• Disjoint, total

• Disjoint, partial

• Overlapping, total

• Overlapping, partial

Of course, the correct constraint is determined from the real-world meaning that applies
to each specialization. In general, a superclass that was identified through the generaliza
tion process usually is total, because the superclass is derived from the subclasses and hence
contains only the entities that are in the subclasses.

Certain insertion and deletion rules apply to specialization (and generalization) as a
consequence of the constraints specified earlier. Some of these rules are as follows:

• Deleting an entity from a superclass implies that it is automatically deleted from all
the subclasses to which it belongs.

• Inserting an entity in a superclass implies that the entity is mandatorily inserted in all
predicate-defined (or attribute-defined) subclasses for which the entity satisfies the
defining predicate.

• Inserting an entity in a superclass of a total specialization implies that the entity is
mandatorily inserted in at least one of the subclasses of the specialization.

The reader is encouraged to make a complete list of rules for insertions and deletions
for the various types of specializations.

4.3.2 Specialization and Generalization
Hierarchies and Lattices

A subclass itself may have further subclasses specified on it, forming a hierarchy or a lat
tice of specializations. For example, in Figure 4.6 ENGINEER is a subclass of EMPLOYEE and is
also a superclass of ENGINEERING_MANAGER; this represents the real-world constraint that every
engineering manager is required to be an engineer. A specialization hierarchy has the
constraint that every subclass participates as a subclass in only one class/subclass relation
ship; that is, each subclass has only one parent, which results in a tree structure. In con
trast, for a specialization lattice, a subclass can be a subclass in more than one class/subclass
relationship. Hence, Figure 4.6 is a lattice.

Figure 4.7 shows another specialization lattice of more than one level. This may be
part of a conceptual schema for a UNIVERSITY database. Notice that this arrangement would

7. The notation of using single or double lines is similar to that for partial or total participation of
an entity type in a relationship type, as described in Chapter 3.

4.3 Constraints and Characteristics of Specialization and Generalization I 95

TECHNICIAN

FIGURE 4.6 A special ization lattice with shared subclass ENGINEERING_MANAGER.

have been a hierarchy except for the STUDENT_ASSISTANT subclass, which is a subclass in two
distinct class/subclass relationships. In Figure 4.7, all person entities represented in the
database are members of the PERSON entity type, which is specialized into the subclasses
{EMPLOYEE, ALUMNUS, STUDENT}. This specialization is overlapping; for example, an alumnus may
also be an employee and may also be a student pursuing an advanced degree. The subclass
STUDENT is the superclass for the specialization {GRADUATE_STUDENT, UNDERGRADUATE_STUDENT},

while EMPLOYEE is the superclass for the specialization {STUDENT_ASSISTANT, FACULTY, STAFF}.

Notice that STUDENT_ASSISTANT is also a subclass of STUDENT. Finally, STUDENT_ASSISTANT is the
superclass for the specialization into {RESEARCH_ASSISTANT, TEACHING_ASSISTANT}.

In such a specialization lattice or hierarchy, a subclass inherits the attributes not only
ofitsdirect superclass but also of all its predecessor superclasses all the way to the rootof the
hierarchy or lattice. For example, an entity in GRADUATE_STUDENT inherits all the attributes of
thatentity as a STUDENT and as a PERSON. Notice that an entity may exist in several leafnodes
ofthe hierarchy, where a leaf node is a class that has no subclasses of its own. For example,
amember of GRADUATE_STUDENT may also be a member of RESEARCH_ASSISTANT.

A subclass with more thanone superclass is called a shared subclass, such as ENGINEERING_

MANAGER in Figure 4.6. This leads to the concept known as multiple inheritance, where the
shared subclass ENGINEERING_MANAGER directly inherits attributes and relationships from
multiple classes. Notice that the existence of at least one shared subclass leads to a lattice
(and hence to multiple inheritance); if no shared subclasses existed, we would have a
hierarchy rather than a lattice. An important rule related to multiple inheritance can be
illustrated by the example of the shared subclass STUDENT_ASSISTANT in Figure 4.7, which

96 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

DegreeProgram

FIGURE 4.7 A specialization lattice with multiple inheritance for a UNIVERSITY database.

4.3 Constraints and Characteristics of Specialization and Generalization I 97

inherits attributes from both EMPLOYEE and STUDENT. Here, both EMPLOYEE and STUDENT inherit the
same attributes from PERSON. The rule states that if an attribute (or relationship) originating in
the same superclass (PERSON) is inherited more than once via different paths (EMPLOYEE and
STUDENT) in the lattice, then it should be included only once in the shared subclass (STUDENT_

ASSISTANT). Hence, the attributes of PERSON are inherited only once in the STUDENT_ASSISTANT

subclass of Figure 4.7.
It is important to note here that some models and languages do not allow multiple

inheritance (shared subclasses). In such a model, it is necessary to create additional
subclasses to cover all possible combinations of classes that may have some entity belong
to all these classes simultaneously. Hence, any overlapping specialization would require
multiple additional subclasses. For example, in the overlapping specialization of PERSON

into {EMPLOYEE, ALUMNUS, STUDENT} (or {E, A, s}for short), it would be necessary to create seven
subclasses of PERSON in order to cover all possible types of entities: E, A, S, E~A, E_S, A_S, and
E_A_S. Obviously, this can lead to extra complexity.

It is also important to note that some inheritance mechanisms that allow multiple
inheritance do not allow an entity to have multiple types, and hence an entity can be a
member of only one class. 8 In such a model, it is also necessary to create additional shared
subclasses as leaf nodes to cover all possible combinations of classes that may have some
entitybelong to all these classes simultaneously. Hence, we would require the same seven
subclasses of PERSON.

Although we have used specialization to illustrate our discussion, similar concepts
apply equally to generalization, as we mentioned at the beginning of this section. Hence,
we can also speak of generalization hierarchies and generalization lattices.

4.3.3 Utilizing Specialization and Generalization
in Refining Conceptual Schemas

We now elaborate on the differences between the specialization and generalization pro
cesses, and how they are used to refine conceptual schemas during conceptual database
design. In the specialization process, we typically start with an entity type and then define
subclasses of the entity type by successive specialization; that is, we repeatedly define more
specific groupings of the entity type. For example, when designing the specialization lattice
in Figure 4.7, we may first specify an entity type PERSON for a university database. Then we
discover that three types of persons will be represented in the database: university employ
ees, alumni, and students. We create the specialization {EMPLOYEE, ALUMNUS, STUDENT} for this
purpose and choose the overlapping constraint because a person may belong to more than
one of the subclasses. We then specialize EMPLOYEE further into {STAFF, FACULTY, STUDENT_

ASSISTANT}, and specialize STUDENT into {GRADUATE_STUDENT, UNDERGRADUATE_STUDENT}. Finally, we
specialize STUDENT_ASSISTANT into {RESEARCH_ASSISTANT, TEACHING~ASSISTANT}. This successive
specialization corresponds to a top-down conceptual refinement process during concep-

8.In some models, the class is further restricted to be a leafnode in the hierarchy or lattice.

98 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

tual schema design. So far, we have a hierarchy; we then realize that STUDENT_ASSISTANT is a
shared subclass, since it is also a subclass of STUDENT, leading to the lattice.

It is possible to arrive at the same hierarchy or lattice from the other direction. In such
a case, the process involves generalization rather than specialization and corresponds to a
bottom-up conceptual synthesis. In this case, designers may first discover entity types such
as STAFF, FACULTY, ALUMNUS, GRADUATE_STUDENT, UNDERGRADUATE_STUDENT, RESEARCH_ASSISTANT,

TEACHING_ASSISTANT, and so on; then they generalize {GRADUATE_STUDENT, UNDERGRADUATE_STUDENT}

into STUDENT; then they generalize {RESEARCH_ASSISTANT, TEACHING_ASSISTANT} into STUDENT_ASSIS

TANT; then they generalize {STAFF, FACULTY, STUDENT_ASSISTANT} into EMPLOYEE; and finally they
generalize {EMPLOYEE, ALUMNUS, STUDENT} into PERSON.

In structural terms, hierarchies or lattices resulting from either process may be
identical; the only difference relates to the manner or order in which the schema
superclasses and subclasses were specified. In practice, it is likely that neither the
generalization process nor the specialization process is followed strictly, but that a
combination of the two processes is employed. In this case, new classes are continually
incorporated into a hierarchy or lattice as they become apparent to users and designers.
Notice that the notion of representing data and knowledge by using superclass/subclass
hierarchies and lattices is quite common in knowledge-based systems and expert systems,
which combine database technology with artificial intelligence techniques. For example,
frame-based knowledge representation schemes closely resemble class hierarchies.
Specialization is also common in software engineering design methodologies that are
based on the object-oriented paradigm.

4.4 MODELING OF UNION TYPES
USING CATEGORIES

All of the superclass/subclass relationships we have seen thus far have a single superclass.
A shared subclass such as ENGINEERING_MANAGER in the lattice of Figure 4.6 is the subclass in
three distinct superclass/subclass relationships, where each of the three relationships has a
single superclass. It is not uncommon, however, that the need arises for modeling a single
superclass/subclass relationship with more than one superclass, where the superclasses rep
resent different entity types. In this case, the subclass will represent a collection of objects
that is a subset of the UNION of distinct entity types; we call such a subclass a union type
or a category,"

For example, suppose that we have three entity types: PERSON, BANK, and COMPANY. In a
database for vehicle registration, an owner of a vehicle can be a person, a bank (holding a
lien on a vehicle), or a company. We need to create a class (collection of entities) that
includes entities of all three types to play the role of vehicle owner. A category OWNER that is
a subclass of the UNION of the three entity sets of COMPANY, BANK, and PERSON is created for this
purpose. We display categories in an EERdiagram as shown in Figure 4.8. The superclasses

9. Our use of the term category is based on the EeR (Entity-Category-Relationship) model (Elmasri
et al. 1985).

4.4 Modeling of UNION Types Using Categories I 99

COMPANY, BANK, and PERSON are connected to the circle with the U symbol, which stands for
the set union operation. An arc with the subset symbol connects the circle to the (subclass)
OWNER category. If a defining predicate is needed, it is displayed next to the line from the

N

LicensePlateNo

REGISTERED_VEHICLE

FIGURE 4.8 Two categories (union types): OWNER and REGISTERED_VEHICLE.

100 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

superclass to which the predicate applies. In Figure 4.8 we have two categories: OWNER,

which is a subclass of the union of PERSON, BANK, and COMPANY; and REGISTERED_VEHICLE, which
is a subclass of the union of CAR and TRUCK.

A category has two or more superclasses that may represent distinct entity types,
whereas other superclass/subclass relationships always have a single superclass. We can
compare a category, such as OWNER in Figure 4.8, with the ENGINEERING_MANAGER shared
subclass of Figure 4.6. The latter is a subclass of each of the three superclasses ENGINEER,

MANAGER, and SALARIED_EMPLOYEE, so an entity that is a member of ENGINEERING_MANAGER must
exist in all three. This represents the constraint that an engineering manager must be an
ENGINEER, a MANAGER, and a SALARIED_EMPLOYEE; that is, ENGINEERING_MANAGER is a subset of the
intersection of the three subclasses (sets of entities). On the other hand, a category is a
subset of the union of its superclasses. Hence, an entity that is a member of OWNER must
exist in only one of the superclasses. This represents the constraint that an OWNER may be a
COMPANY, a BANK, or a PERSON in Figure 4.8.

Attribute inheritance works more selectively in the case of categories. For example,
in Figure 4.8 each OWNER entity inherits the attributes of a COMPANY, a PERSON, or a BANK,

depending on the superclass to which the entity belongs. On the other hand, a shared
subclass such as ENGINEERING_MANAGER (Figure 4.6) inherits all the attributes of its
superclasses SALARIED_EMPLOYEE, ENGINEER, and MANAGER.

It is interesting to note the difference between the category REGISTERED_VEHICLE

(Figure 4.8) and the generalized superclass VEHICLE (Figure 4.3b). In Figure 4.3b, every
car and every truck is a VEHICLE; but in Figure 4.8, the REGISTERED_VEHICLE category
includes some cars and some trucks but not necessarily all of them (for example, some
cars or trucks may not be registered). In general, a specialization or generalization such
as that in Figure 4.3b, if it were partial, would not preclude VEHICLE from containing
other types of entities, such as motorcycles. However, a category such as REGISTERED_

VEHICLE in Figure 4.8 implies that only cars and trucks, but not other types of entities,
can be members of REGISTERED_VEHICLE.

A category can be total or partial. A total category holds the union of all entities in
its superclasses, whereas a partial category can hold a subsetof the union. A total category
is represented by a double line connecting the category and the circle, whereas partial
categories are indicated by a single line.

The superclasses of a category may have different key attributes, as demonstrated by
the OWNER category of Figure 4.8, or they may have the same key attribute, as demonstrated
by the REGISTERED_VEHICLE category. Notice that if a category is total (not partial), it may be
represented alternatively as a total specialization (or a total generalization). In this case
the choice of which representation to use is subjective. If the two classes represent the
same type of entities and share numerous attributes, including the same key attributes,
specialization/generalization is preferred; otherwise, categorization (union type) is more
appropriate.

4.5 An Example UNIVERSITY EER Schema and Formal Definitions for the EER Model I 101

4.5 AN EXAMPLE UNIVERSITY EER SCHEMA AND
FORMAL DEFINITIONS FOR THE EER MODEL

In this section, we first give an example of a database schema in the EER model to illus
trate the use of the various concepts discussed here and in Chapter 3. Then, we summa
rize the EER model concepts and define them formally in the same manner in which we
formally defined the concepts of the basic ER model in Chapter 3.

4.5.1 The UNIVERSITY Database Example
For our example database application, consider a UNIVERSITY database that keeps track of
studentsand their majors, transcripts, and registration as well as of the university's course
offerings. The database also keeps track of the sponsored research projects of faculty and
graduate students. This schema is shown in Figure 4.9. A discussion of the requirements
that led to this schema follows.

For each person, the database maintains information on the person's Name [Name]'
social security number [Ssn], address [Address], sex [Sex], and birth date [BDate]. Two
subclasses of the PERSON entity type were identified: FACULTY and STUDENT. Specific attributes
of FACULTY are rank [Rank] (assistant, associate, adjunct, research, visiting, etc.), office
[FOfficeJ, office phone [FPhone], and salary [Salary]. All faculty members are related to
the academic department(s) with which they are affiliated [BELONGS] (a faculty member can
beassociated with several departments, so the relationship is M:N). A specific attribute of
STUDENT is [Class] (freshman = 1, sophomore = 2, ... , graduate student = 5). Each student
is alsorelated to his or her major and minor departments, if known ([MAJOR] and [MINORD, to
the course sections he or she is currently attending [REGISTERED], and to the courses
completed [TRANSCRIPT]. Each transcript instance includes the grade the student received
[Grade) in the course section.

GRAD_STUDENT is a subclass of STUDENT, with the defining predicate Class = 5. For each
graduate student, we keep a list of previous degrees in a composite, multivalued attribute
[Degrees). We also relate the graduate student to a faculty advisor [ADVISOR] and to a thesis
committee [COMMITIEE], if one exists.

An academic department has the attributes name [DName]' telephone [DPhone),
and office number [Office] and is related to the faculty member who is its chairperson
[cHAIRS) and to the college to which it belongs [co). Each college has attributes college
name [Cl-lame], office number [COffice], and the name of its dean [Dean).

A course has attributes course number [C#], course name [Cname], and course
description [CDesc]. Several sections of each course are offered, with each section having
the attributes section number [Sees] and the year and quarter in which the section was
offered ([Year) and [QtrD. lO Section numbers uniquely identify each section. The sections
being offered during the current quarter are in a subclass CURRENT_SECTION of SECTION, with

10. We assume that the quarter system rather than the semestersystem is used in this university.

102 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

FIGURE 4.9 An EER conceptual schema for a UNIVERSITY database.

4.5 An Example UNIVERSITY EER Schema and Formal Definitions for the EER Model I 103

the defining predicate Qtr = CurrentQtr and Year = CurrentYear. Each section is related
to the instructor who taught or is teaching it ([TEACH]), if that instructor is in the database.

The category INSTRUCTOR_RESEARCHER is a subset of the union of FACULTY and GRAD_STUDENT

and includes all faculty, as well as graduate students who are supported by teaching or
research. Finally, the entity type GRANT keeps track of research grants and contracts
awarded to the university. Each grant has attributes grant title [Title], grant number [No],
the awarding agency [Agency], and the starting date [StDate]. A grant is related to one
principal investigator [PI] and to all researchers it supports [SUPPORT]. Each instance of
supporthas as attributes the starting date of support [Start], the ending date of the support
(if known) [End], and the percentage of time being spent on the project [Time] by the
researcherbeing supported.

4.5.2 Formal Definitions for the EER Model Concepts
Wenow summarize the EER model concepts and give formal definitions. A class! is a set
or collection of entities; this includes any of the EER schema constructs that group enti
ties, such as entity types, subclasses, superclasses, and categories. A subclass 5 is a class
whose entities must always be a subset of the entities in another class, called the super
class C of the superclass/subclass (or IS-A) relationship. We denote such a relationship
by CIS. For such a superclass/subclass relationship, we must always have

S c: C

A specialization Z = {51' 52' ... , 5n} is a set of subclasses that have the same superclass
G; that is, G/5 j is a superclass/subclass relationship for i = 1, 2, ... , n, G is called a
generalized entity type (or the superclass of the specialization, or a generalization of the
subclasses {51' 52' ... , 5n}) . Z is said to be total if we always (at any point in time) have

n

Us = G
I

i = 1

Otherwise, Z is said to be partial. Z is said to be disjoint if we always have

Sj n Sj = 0 (empty set) for i oF j

Otherwise,Z is said to be overlapping.
A subclass 5 of C is said to be predicate-defined if a predicate p on the attributes of C

is used to specify which entities in C are members of 5; that is, 5 = C[p], where C[p] is the
set of entities in C that satisfy p. A subclass that is not defined by a predicate is called
user-defined.

11. The use of the word class here differs from its more common use in object-oriented programming
languages such as c++. In C++, a class is a structured type definition along with its applicable func
tions (operations).

104 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

A specialization Z (or generalization G) is said to be attribute-defined if a predicate
(A = c), where A is an attribute of G and Ci is a constant value from the domain of A, is
used to specify membership in each subclass Sj in Z. Notice that if ci 7:- cj for i 7:- j, and A is
a single-valued attribute, then the specialization will be disjoint.

A category T is a class that is a subset of the union of n defining superclasses01' 0z, ... ,
On'n > 1, and is formally specified as follows:

A predicate Pi on the attributes of D, can be used to specify the members of each Vi
that are members of T. If a predicate is specified on every 0i' we get

We should now extend the definition of relationship type given in Chapter 3 by
allowing any class-not only any entity type-to participate in a relationship. Hence, we
should replace the words entity type with class in that definition. The graphical notation of
EER is consistent with ER because all classes are represented by rectangles.

4.6 REPRESENTING SPECIALIZATION/
GENERALIZATION AND INHERITANCE
IN UML CLASS DIAGRAMS

We now discuss the UML notation for generalization/specialization and inheritance. We
already presented basic UML class diagram notation and terminology in Section 3.8. Fig
ure 4.10 illustrates a possible UML class diagram corresponding to the EER diagram in Fig
ure 4.7. The basic notation for generalization is to connect the subclasses by vertical lines
to a horizontal line, which has a triangle connecting the horizontal line through another
vertical line to the superclass (see Figure 4.10). A blank triangle indicates a specializa
tion/generalization with the disjoint constraint, and a filled triangle indicates an overlap
pingconstraint. The root superclass is called the base class, and leaf nodes are called leaf
classes. Both single and multiple inheritance are permitted.

The above discussion and example (and Section 3.8) give a brief overview of UML

class diagrams and terminology. There are many details that we have not discussed
because they are outside the scope of this book and are mainly relevant to software
engineering. For example, classes can be of various types:

• Abstract classes define attributes and operations but do not have objects correspond
ing to those classes. These are mainly used to specify a set of attributes and operations
that can be inherited.

• Concrete classes can have objects (entities) instantiated to belong to the class.

• Template classes specify a template that can be further used to define other classes.

4.7 Relationship Types of Degree Higher Than Two I 105

PERSON

Name
Ssn
BirthDate
Sex
Address

age
.-,

1
I I

EMPLOYEE ALUMNUS DEGREE STUDENT

Salary Year MajorDept

hire_emp new_alumnus~
Degree

change_majorMajor...

A 4 1I I I I I I
STAFF FACULTY STUDENT_ASSISTANT GRADUATE STUDENT UNDERGRADUATE_STUDENT
Position Rank PercentTime DegreeProgram Class
hire_staff promote hire_student change_degreeJ)rogram change_classification...

A
I I

RESEARCH_ASSISTANT TEACHING_ASSISTANT

Project Course

change_project assign_to_course
... ...

FIGURE 4.10 A UML class diagram corresponding to the EER diagram in Figure 4.7, illustrating UML

notation for special ization/general ization.

In database design, we are mainly concerned with specifying concrete classes whose
collections of objects are permanently (or persistently) stored in the database. The
bibliographic notes at the end of this chapter give some references to books that describe
complete details of UML. Additional material related to UML is covered in Chapter 12,
and object modeling in general is further discussed in Chapter 20.

4.7 RELATIONSHIP TYPES OF DEGREE
HIGHER THAN Two

InSection 3.4.2 we defined the degree of a relationship type as the number of participat
ing entity types and called a relationship type of degree two binary and a relationship type
ofdegree three ternary. In this section, we elaborate on the differences between binary

106 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

and higher-degree relationships, when to choose higher-degree or binary relationships,
and constraints on higher-degree relationships.

4.7.1 Choosing between Binary and Ternary
(or Higher-Degree> Relationships

The ER diagram notation for a ternary relationship type is shown in Figure 4.11a, which
displays the schema for the SUPPLY relationship type that was displayed at the instance
level in Figure 3.10. Recall that the relationship set of SUPPLY is a set of relationship
instances (s, j, p), where s is a SUPPLIER who is currently supplying a PAR-, p to a PROJECT j. In
general, a relationship type R of degree n will have n edges in an ER diagram, one con
necting R to each participating entity type.

Figure 4.11b shows an ER diagram for the three binary relationship types CAN_SUPPLY,

USES, and SUPPLIES. In general, a ternary relationship type represents different information
than do three binary relationship types. Consider the three binary relationship types CAN_

SUPPLY, USES, and SUPPLIES. Suppose that CAN_SUPPLY, between SUPPLIER and PART, includes an
instance (5, p) whenever supplier 5 can supplypart p (to any project); USES, between PROJECT

and PART, includes an instance (j, p) whenever project j uses part p; and SUPPLIES, between
SUPPLIER and PROJECT, includes an instance (s, j) whenever supplier 5 supplies some part to
project j. The existence of three relationship instances (5, p), (j, p), and (5, j) in CAN_SUPPLY,

USES, and SUPPLIES, respectively, does not necessarily imply that an instance (5, j, p) exists
in the ternary relationship SUPPLY, because the meaning is different. It is often tricky to
decide whether a particular relationship should be represented as a relationship type of
degree n or should be broken down into several relationship types of smaller degrees. The
designer must base this decision on the semantics or meaning of the particular situation
being represented. The typical solution is to include the ternary relationship plus one or
more of the binary relationships, if they represent different meanings and if all are needed
by the application.

Some database design tools are based on variations of the ER model that permit only
binary relationships. In this case, a ternary relationship such as SUPPLY must be represented
as a weak entity type, with no partial key and with three identifying relationships. The
three participating entity types SUPPLIER, PART, and PROJECT are together the owner entity
types (see Figure 4.11c). Hence, an entity in the weak entity type SUPPLY of Figure 4.11c is
identified by the combination of its three owner entities from SUPPLIER, PART, and PROJECT.

Another example is shown in Figure 4.12. The ternary relationship type OFFERS

represents information on instructors offering courses during particular semesters; hence
it includes a relationship instance (i, 5, c) whenever INSTRUCTOR i offers COURSE c during
SEMESTER s, The three binary relationship types shown in Figure 4.12 have the following
meanings: CAN_TEACH relates a course to the instructors who can teach that course, TAUGHT_

DURING relates a semester to the instructors who taught some course during that semester,
and OFFERED_DURING relates a semester to the courses offered during that semester by any
instructor. These ternary and binary relationships represent different information, but
certain constraints should hold among the relationships. For example, a relationship
instance (i, 5, c) should not exist in OFFERS unless an instance (i, 5) exists in TAUGHT_DURING,

(a)

4.7 Relationship Types of Degree Higher Than Two I 107

SUPPLY

(b)

M

M SUPPLIES
N

M

USES

N

(c)

N

~
I

~----,------- I PART

FIGURE 4.11 Ternary relationship types. (a) The SUPPLY relationship. (b) Three binary relationships not
equivalent to SUPPLY. (c) SUPPLY represented as a weak entity type.

108 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

INSTRUCTOR

TAUGHT_DURING

OFFERS

OFFERED_DURING

FIGURE 4.12 Another example of ternary versus binary relationship types.

an instance (s, c) exists in OFFERED_DURING, and an instance (i, c) exists in CAN_TEACH.

However, the reverse is not always true; we may have instances (i, s), (s, c), and (i, c) in
the three binary relationship types with no corresponding instance (i, s, c) in OFFERS. Note
that in this example, based on the meanings of the relationships, we can infer the
instances of TAUGHT_DURING and OFFERED_DURING from the instances in OFFERS, but we cannot
infer the instances of CAN_TEACH; therefore, TAUGHT_DURING and OFFERED_DURING are redundant
and can be left out.

Although in general three binary relationships cannot replace a ternary relationship,
they may do so under certain additional constraints. In our example, if the CAN_TEACH

relationship is 1:1 (an instructor can teach on~ course, and a course can be taught by only
one instructor), then the ternary relationship OFFERS can be left out because it can be
inferred from the three binary relationships CAN_TEACH, TAUGHT_DURING, and OFFERED_DURING.

The schema designer must analyze the meaning of each specific situation to decide which
of the binary and ternary relationship types are needed.

Notice that it is possible to have a weak entity type with a ternary (or n-ary)
identifying relationship type. In this case, the weak entity type can have several owner
entity types. An example is shown in Figure 4.13.

4.7.2 Constraints on Ternary (or Higher-Degree)
Relationships

There are two notations for specifying structural constraints on n-ary relationships, and
they specify different constraints. They should thus both be used if it is important to fully
specify the structural constraints on a ternary or higher-degree relationship. The first

4.7 Relationship Types of Degree Higher Than Two 1109

'__ ~----<.:~>--------1'----------'

Department

I INTERVIEW

FIGURE 4.13 A weak entity type INTERVIEW with a ternary identifying relationship type.

notation is based on the cardinality ratio notation of binary relationships displayed in Fig
ure 3.2. Here, a 1, M, or N is specified on each participation arc (both M and N symbols
stand for many or any number) .12 Let us illustrate this constraint using the SUPPLY relation
ship in Figure 4.11.

Recall that the relationship set of SUPPLY is a set of relationship instances (s, i, p),
where s is a SUPPLIER, j is a PROJECT, and p is a PART. Suppose that the constraint exists that
for a particular project-part combination, only one supplier will be used (only one
supplier supplies a particular part to a particular project). In this case, we place 1 on the
SUPPLIER participation, and M, N on the PROJECT, PART participations in Figure 4.11. This
specifies the constraint that a particular (j, p) combination can appear at most once in the
relationship set because each such (project, part) combination uniquely determines a
single supplier. Hence, any relationship instance (s, i, p) is uniquely identified in the
relationship set by its (j, p) combination, which makes (j, p) a key for the relationship set.
In this notation, the participations that have a one specified on them are not required to

bepart of the identifying key for the relationship set. 13

The second notation is based on the (min, max) notation displayed in Figure 3.15 for
binary relationships. A (min, max) on a participation here specifies that each entity is
related to at least min and at most max relationship instances in the relationship set.
These constraints have no bearing on determining the key of an n-ary relationship, where
n > 2,14 but specify a different type of constraint that places restrictions on how many
relationship instances each entity can participate in.

12. This notation allows us to determine the key of the relationship relation, as we discuss in Chapter 7.

13. This is also true for cardinality ratios of binary relationships.

14. The (min, max) constraints can determine the keys for binary relationships, though.

110 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

4.8 DATA ABSTRACTION, KNOWLEDGE
REPRESENTATION, AND ONTOLOGY CONCEPTS

In this section we discuss in abstract terms some of the modeling concepts that we
described quite specifically in our presentation of the ER and EERmodels in Chapter 3 and
earlier in this chapter. This terminology is used both in conceptual data modeling and in
artificial intelligence literature when discussing knowledge representation (abbreviated
as KR). The goal of KR techniques is to develop concepts for accurately modeling some
domain of knowledge by creating an ontologv'P that describes the concepts of the
domain. This is then used to store and manipulate knowledge for drawing inferences,
making decisions, or just answering questions. The goals of KR are similar to those of
semantic data models, but there are some important similarities and differences between
the two disciplines:

• Both disciplines use an abstraction process to identify common properties and impor
tant aspects of objects in the miniworld (domain of discourse) while suppressing
insignificant differences and unimportant details.

• Both disciplines provide concepts, constraints, operations, and languages for defining
data and representing knowledge.

• KR is generally broader in scope than semantic data models. Different forms of knowl
edge, such as rules (used in inference, deduction, and search), incomplete and default
knowledge, and temporal and spatial knowledge, are represented in KR schemes. Data
base models are being expanded to include some of these concepts (see Chapter 24).

• KR schemes include reasoning mechanisms that deduce additional facts from the
facts stored in a database. Hence, whereas most current database systems are limited
to answering direct queries, knowledge-based systems using KR schemes can answer
queries that involve inferences over the stored data. Database technology is being
extended with inference mechanisms (see Section 24.4).

• Whereas most data models concentrate on the representation of database schemas,
or meta-knowledge, KR schemes often mix up the schemas with the instances them
selves in order to provide flexibility in representing exceptions. This often results in
inefficiencies when these KR schemes are implemented, especially when compared
with databases and when a large amount of data (or facts) needs to be stored.

In this section we discuss four abstraction concepts that are used in both semantic
data models, such as the EER model, and KR schemes: (1) classification and instantiation,
(2) identification, (3) specialization and generalization, and (4) aggregation and
association. The paired concepts of classification and instantiation are inverses of one
another, as are generalization and specialization. The concepts of aggregation and
association are also related. We discuss these abstract concepts and their relation to the
concrete representations used in the EER model to clarify the data abstraction process and

15. An ontology is somewhat similar to a conceptual schema, but with more knowledge, rules, and
exceptions.

4.8 Data Abstraction, Knowledge Representation, and Ontology Concepts I 111

to improve our understanding of the related process of conceptual schema design. We
close the section with a brief discussion of the term ontology, which is being used widely in
recent knowledge representation research.

4.8.1 Classification and Instantiation
The process of classification involves systematically assigning similar objects/entities to
object classes/entity types. We can now describe (in DB) or reason about (in KR) the
classes rather than the individual objects. Collections of objects share the same types of
attributes, relationships, and constraints, and by classifying objects we simplify the pro
cess of discovering their properties. Instantiation is the inverse of classification and refers
to the generation and specific examination of distinct objects of a class. Hence, an object
instance is related to its object class by the IS-AN-INSTANCE-OF or IS-A-MEMBER-OF rela
tionship. Although UML diagrams do not display instances, the UML diagrams allow a
form of instantiation by permitting the display of individual objects. We did not describe
thisfeature in our introduction to UML.

In general, the objects of a class should have a similar type structure. However, some
objects may display properties that differ in some respects from the other objects of the
class; these exception objects also need to be modeled, and KR schemes allow more varied
exceptions than do database models. In addition, certain properties apply to the class as a
whole and not to the individual objects; KR schemes allow such class properties. UML

diagrams also allow specification of class properties.
In the EER model, entities are classified into entity types according to their basic

attributes and relationships. Entities are further classified into subclasses and categories
based on additional similarities and differences (exceptions) among them. Relationship
instances are classified into relationship types. Hence, entity types, subclasses, categories,
andrelationship types are the different types of classes in the EER model. The EER model
does not provide explicitly for class properties, but it may be extended to do so. In UML,

objects are classified into classes, and it is possible to display both class properties and
individual objects.

Knowledge representation models allow multiple classification schemes in which one
class is an instance of another class (called a meta-class). Notice that this cannot be
represented directly in the EER model, because we have only two levels-classes and
instances. The only relationship among classes in the EER model is a superclass/subclass
relationship, whereas in some KR schemes an additional class/instance relationship can be
represented directly in a class hierarchy. An instance may itself be another class, allowing
multiple-level classification schemes.

4.8.2 Identification
Identification is the abstraction process whereby classes and objects are made uniquely
identifiable by means of some identifier. For example, a class name uniquely identifies a
whole class. An additional mechanism is necessary for telling distinct object instances

112 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

apart by means of object identifiers. Moreover, it is necessary to identify multiple manifes
tations in the database of the same real-world object. For example, we may have a tuple
<Matthew Clarke, 610618, 376-9821> in a PERSON relation and another tuple <301-54
0836, CS, 3.8> in a STUDENT relation that happen to represent the same real-world entity.
There is no way to identify the fact that these two database objects (tuples) represent the
same real-world entity unless we make a provision at design time for appropriate cross
referencing to supply this identification. Hence, identification is needed at two levels:

• To distinguish among database objects and classes

• To identify database objects and to relate them to their real-world counterparts

In the EER model, identification of schema constructs is based on a system of unique
names for the constructs. For example, every class in an EER schema-whether it is an
entity type, a subclass, a category, or a relationship type-must have a distinct name. The
names of attributes of a given class must also be distinct. Rules for unambiguously
identifying attribute name references in a specialization or generalization lattice or
hierarchy are needed as well.

At the object level, the values of key attributes are used to distinguish among entities
of a particular entity type. For weak entity types, entities are identified by a combination
of their own partial key values and the entities they are related to in the owner entity
tvpets). Relationship instances are identified by some combination of the entities that
they relate, depending on the cardinality ratio specified.

4.8.3 Specialization and Generalization
Specialization is the process of classifying a class of objects into more specialized sub
classes. Generalization is the inverse process of generalizing several classes into a higher
level abstract class that includes the objects in all these classes. Specialization is concep
tual refinement, whereas generalization is conceptual synthesis. Subclasses are used in the
EER model to represent specialization and generalization. We call the relationship
between a subclass and its superclass an IS-A-SUBCLASS-OF relationship, or simply an IS-A

relationship.

4.8.4 Aggregation and Association
Aggregation is an abstraction concept for building composite objects from their compo
nent objects. There are three cases where this concept can be related to the EER model.
The first case is the situation in which we aggregate attribute values of an object to form
the whole object. The second case is when we represent an aggregation relationship as an
ordinary relationship. The third case, which the EER model does not provide for
explicitly, involves the possibility of combining objects that are related by a particular
relationship instance into a higher-level aggregate object. This is sometimes useful when the
higher-level aggregate object is itself to be related to another object. We call the relation-

4.8 Data Abstraction, Knowledge Representation, and Ontology Concepts I 113

shipbetween the primitive objects and their aggregate object IS-A-PART-OF; the inverse
iscalled IS-A-COMPONENT-OF. UML provides for all three types of aggregation.

The abstraction of association is used to associate objects from several independent
classes. Hence, it is somewhat similar to the second use of aggregation. It is represented in
the EER model by relationship types, and in UML by associations. This abstract
relationship is called IS-ASSOCIATED-WITH.

In order to understand the different uses of aggregation better, consider the ER

schema shown in Figure 4.14a, which stores information about interviews by job
applicants to various companies. The class COMPANY is an aggregation of the attributes (or
component objects) CName (company name) and CAddress (company address), whereas
JOB_APPLICANT is an aggregate of Ssn, Name, Address, and Phone. The relationship
attributes ContactName and ContactPhone represent the name and phone number of
the person in the company who is responsible for the interview. Suppose that some
interviews result in job offers, whereas others do not. We would like to treat INTERVIEW as a
class to associate it with JOB_OFFER. The schema shown in Figure 4.14b is incorrect because
it requires each interview relationship instance to have a job offer. The schema shown in
Figure 4.14c is not allowed, because the ER model does not allow relationships among
relationships (although UML does).

One way to represent this situation is to create a higher-level aggregate class composed
of COMPANY, JOB_APPLICANT, and INTERVIEW and to relate this class to JOB_OFFER, as shown in
Figure 4.14d. Although the EERmodel as described in this book does not have this facility,
some semantic data models do allow it and call the resulting object a composite or
molecular object. Other models treat entity types and relationship types uniformly and
hence permit relationships among relationships, as illustrated in Figure 4.14c.

To represent this situation correctly in the ER model as described here, we need to
create a new weak entity type INTERVIEW, as shown in Figure 4.14e, and relate it to JOB_
OFFER. Hence, we can always represent these situations correctly in the ER model by
creating additional entity types, although it may be conceptually more desirable to allow
direct representation of aggregation, as in Figure 4.14d, or to allow relationships among
relationships, as in Figure 4.14c.

The main structural distinction between aggregation and association is that when an
association instance is deleted, the participating objects may continue to exist. However,
if we support the notion of an aggregate object-for example, a CAR that is made up of
objects ENGINE, CHASSIS, and TIREs-then deleting the aggregate CAR object amounts to
deleting all its component objects.

4.8.5 Ontologies and the Semantic Web
Inrecent years, the amount of computerized data and information available on the Web
has spiraled out of control. Many different models and formats are used. In addition to the
database models that we present in this book, much information is stored in the form of
documents, which have considerably less structure than database information does. One
research project that is attempting to allow information exchange among computers on
the Web is called the Semantic Web, which attempts to create knowledge representation

114 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

(a)

(b) COMPANY INTERVIEW

(c)

(d)

(e)

COMPANY JOB_APPLICANT

G,:>------iL-_--=- --'

FIGURE 4.14 Aggregation. (a) The relationship type INTERVIEW. (b) Including JOB_OFFER

in a ternary relationship type (incorrect). (c) Having the RESULTS_IN relationship partic
ipate in other relationships (generally not allowed in ER). (d) Using aggregation and a
composite (molecular) object (generally not allowed in ER). (e) Correct representa
tion in ER.

4.9 Summary 1115

models that are quite general in order to to allow meaningful information exchange and
search among machines. The concept of ontology is considered to be the most promising
basis for achieving the goals of the Semantic Web, and is closely related to knowledge rep
resentation. In this section, we give a brief introduction to what an ontology is and how it
canbe used as a basis to automate information understanding, search, and exchange.

The study of ontologies attempts to describe the structures and relationships that are
possible in reality through some common vocabulary, and so it can be considered as a way
to describe the knowledge of a certain community about reality. Ontology originated in
the fields of philosophy and metaphysics. One commonly used definition of ontology is "a
specification of a conceptualization."16

In this definition, a conceptualization is the set of concepts that are used to represent
the part of reality or knowledge that is of interest to a community of users. Specification
refers to the language and vocabulary terms that are used to specify the conceptualization.
The ontology includes both specification and conceptualization. For example, the same
conceptualization may be specified in two different languages, giving two separate
ontologies. Based on this quite general definition, there is no consensus on what exactly an
ontology is. Some possible techniques to describe ontologies that have been mentioned are
as follows:

• A thesaurus (or even a dictionary or a glossary of terms) describes the relationships
between words (vocabulary) that represent various concepts.

• A taxonomy describes how concepts of a particular area of knowledge are related
usingstructures similar to those used in a specialization or generalization.

• A detailed database schema is considered by some to be an ontology that describes
the concepts (entities and attributes) and relationships of a miniworld from reality.

• A logical theory uses concepts from mathematical logic to try to define concepts and
their interrelationships.

Usually the concepts used to describe ontologies are quite similar to the concepts we
discussed in conceptual modeling, such as entities, attributes, relationships, specializations,
and so on. The main difference between an ontology and, say, a database schema is that
the schema is usually limited to describing a small subset of a miniworld from reality in
order to store and manage data. An ontology is usually considered to be more general in
that it should attempt to describe a part of reality as completely as possible.

4.9 SUMMARY
In this chapter we first discussed extensions to the ER model that improve its representa
tional capabilities. We called the resulting model the enhanced ER or EERmodel. The con
cept of a subclass and its superclass and the related mechanism of attribute/relationship
inheritance were presented. We saw how it is sometimes necessary to create additional

16. This definition is given in Gruber (1995).

116 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

classes of entities, either because of additional specific attributes or because of specific rela
tionship types. We discussed two main processes for defining superclass/subclass hierarchies
and lattices: specialization and generalization.

We then showed how to display these new constructs in an EER diagram. We also
discussed the various types of constraints that may apply to specialization or generalization.
The two main constraints are total/partial and disjoint/overlapping. In addition, a defining
predicate for a subclass or a defining attribute for a specialization may be specified. We
discussed the differences between user-defined and predicate-defined subclasses and
between user-defined and attribute-defined specializations. Finally, we discussed the
concept of a category or union type, which is a subset of the union of two or more classes,
and we gave formal definitions of all the concepts presented.

We then introduced some of the notation and terminology of UML for representing
specialization and generalization. We also discussed some of the issues concerning the
difference between binary and higher-degree relationships, under which circumstances each
should be used when designing a conceptual schema, and how different types of constraints
on n-ary relationships may be specified. In Section 4.8 we discussed briefly the discipline of
knowledge representation and how it is related to semantic data modeling. We also gave an
overview and summary of the types of abstract data representation concepts: classification
and instantiation, identification, specialization and generalization, and aggregation and
association. We saw how EER and UML concepts are related to each of these.

Review Questions
4.1. What is a subclass? When is a subclass needed in data modeling?
4.2. Define the following terms: superclass of a subclass, superclass/subclass relationship,

is-a relationship, specialization, generalization, category, specific (local) attributes) spe
cific relationships.

4.3. Discuss the mechanism of attribute/relationship inheritance. Why is it useful?
4.4. Discuss user-defined and predicate-defined subclasses, and identify the differences

between the two.
4.5. Discuss user-defined and attribute-defined specializations, and identify the differ

ences between the two.
4.6. Discuss the two main types of constraints on specializations and generalizations.
4.7. What is the difference between a specialization hierarchy and a specialization

lattice?
4.8. What is the difference between specialization and generalization? Why do we not

display this difference in schema diagrams?
4.9. How does a category differ from a regular shared subclass? What is a category used

for? Illustrate your answer with examples.
4.10. For each of the following UML terms (see Sections 3.8 and 4.6), discuss the corre

sponding term in the EERmodel, if any: object, class, association, aggregation, gener
alization, multiplicity, attributes, discriminator, link, linkattribute, reflexive association,
qualified association.

4.11. Discuss the main differences between the notation for EER schema diagrams and
UML class diagrams by comparing how common concepts are represented in each.

4.12. Discuss the two notations for specifying constraints on n-ary relationships, and
what each can be used for.

4.13. List the various data abstraction concepts and the corresponding modeling con
cepts in the EER model.

4.14. What aggregation feature is missing from the EER model? How can the EER model
be further enhanced to support it?

4.15. What are the main similarities and differences between conceptual database mod
eling techniques and knowledge representation techniques?

4.16. Discuss the similarities and differences between an ontology and a database
schema.

Exercises
4.17. Design an EER schema for a database application that you are interested in. Spec

ify all constraints that should hold on the database. Make sure that the schema
has at least five entity types, four relationship types, a weak entity type, a super
class/subclass relationship, a category, and an n-ary (n > 2) relationship type.

4.18. Consider the BANK ER schema of Figure 3.18, and suppose that it is necessary to
keep track of different types of ACCOUNTS (SAVINGS_ACCTS, CHECKING_ACCTS, •.•) and
LOANS (CAR_LOANS, HOME_LOANS, •••). Suppose that it is also desirable to keep track of
each account's TRANSACTIONS (deposits, withdrawals, checks, ...) and each loan's
PAYMENTS; both of these include the amount, date, and time. Modify the BANK

schema, using ER and EERconcepts of specialization and generalization. State any
assumptions you make about the additional requirements.

4.19. The following narrative describes a simplified version of the organization of
Olympic facilities planned for the summer Olympics. Draw an EER diagram that
shows the entity types, attributes, relationships, and specializations for this appli
cation. State any assumptions you make. The Olympic facilities are divided into
sports complexes. Sports complexes are divided into one-sport and multisporttypes.
Multisport complexes have areas of the complex designated for each sport with a
location indicator (e.g., center, NE corner, etc.). A complex has a location, chief
organizing individual, total occupied area, and so on. Each complex holds a series
of events (e.g., the track stadium may hold many different races). For each event
there is a planned date, duration, number of participants, number of officials, and
so on. A roster of all officials will be maintained together with the list of events
each official will be involved in. Different equipment is needed for the events
(e.g., goal posts, poles, parallel bars) as well as for maintenance. The two types of
facilities (one-sport and multisport) will have different types of information. For
each type, the number of facilities needed is kept, together with an approximate
budget.

4.20. Identify all the important concepts represented in the library database case study
described here. In particular, identify the abstractions of classification (entity
types and relationship types), aggregation, identification, and specialization/gen
eralization. Specify (min, max) cardinality constraints whenever possible. List

Exercises I 117

118 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

details that will affect the eventual design but have no bearing on the conceptual
design. List the semantic constraints separately. Draw an EER diagram of the
library database.

Case Study: The Georgia Tech Library (GTL) has approximately 16,000
members, 100,000 titles, and 250,000 volumes (or an average of 2.5 copies per
book). About 10 percent of the volumes are out on loan at anyone time. The
librarians ensure that the books that members want to borrow are available when
the members want to borrow them. Also, the librarians must know how many
copies of each book are in the library or out on loan at any given time. A catalog
of books is available online that lists books by author, title, and subject area. For
each title in the library, a book description is kept in the catalog that ranges from
one sentence to several pages. The reference librarians want to be able to access
this description when members request information about a book. Library staff is
divided into chief librarian, departmental associate librarians, reference librarians,
check-out staff, and library assistants.

Books can be checked out for 21 days. Members are allowed to have only five
books out at a time. Members usually return books within three to four weeks.
Most members know that they have one week of grace before a notice is sent to
them, so they try to get the book returned before the grace period ends. About 5
percent of the members have to be sent reminders to return a book. Most overdue
books are returned within a month of the due date. Approximately 5 percent of
the overdue books are either kept or never returned. The most active members of
the library are defined as those who borrow at least ten times during the year. The
top 1 percent of membership does 15 percent of the borrowing, and the top 10
percent of the membership does 40 percent of the borrowing. About 20 percent of
the members are totally inactive in that they are members but never borrow.

To become a member of the library, applicants fill out a form including their
SSN, campus and home mailing addresses, and phone numbers. The librarians
then issue a numbered, machine-readable card with the member's photo on it.
This card is good for four years. A month before a card expires, a notice is sent to
a member for renewal. Professors at the institute are considered automatic mem
bers. When a new faculty member joins the institute, his or her information is
pulled from the employee records and a library card is mailed to his or her campus
address. Professors are allowed to check out books for three-month intervals and
have a two-week grace period. Renewal notices to professors are sent to the cam
pus address.

The library does not lend some books, such as reference books, rare books,
and maps. The librarians must differentiate between books that can be lent and
those that cannot be lent. In addition, the librarians have a list of some books
they are interested in acquiring but cannot obtain, such as rare or out-of-print
books and books that were lost or destroyed but have not been replaced. The
librarians must have a system that keeps track of books that cannot be lent as well
as books that they are interested in acquiring. Some books may have the same
title; therefore, the title cannot be used as a means of identification. Every book is
identified by its International Standard Book Number (ISBN), a unique interna-

tional code assigned to all books. Two books with the same title can have different
ISBNs if they are in different languages or have different bindings (hard cover or
soft cover). Editions of the same book have different ISBNs.

The proposed database system must be designed to keep track of the mem
bers, the books, the catalog, and the borrowing activity.

4.21. Design a database to keep track of information for an art museum. Assume that
the following requirements were collected:
• The museum has a collection of ART_OBJECTS. Each ART_OBJECT has a unique

IdNo, an Artist (if known), a Year (when it was created, if known), a Title, and
a Description. The art objects are categorized in several ways, as discussed
below.

• ART_OBJECTS are categorized based on their type. There are three main types:
PAINTING, SCULPTURE, and STATUE, plus another type called OTHER to accommodate
objects that do not fall into one of the three main types.

• A PAINTING has a PaintType (oil, watercolor, etc.), material on which it is DrawnOn
(paper, canvas, wood, etc.), and Style (modem, abstract, erc.).

• A SCULPTURE or a STATUE has a Material from which it was created (wood, stone,
etc.), Height, Weight, and Style.

• An art object in the OTHER category has a Type (print, photo, etc.) and Style.
• ART_OBJECTS are also categorized as PERMANENT_COLLECTION, which are owned by the

museum (these have information on the DateAcquired, whether it is OnDis
play or stored, and Cost) or BORROWED, which has information on the Collection
(from which it was borrowed), DateBorrowed, and DateRetumed.

• ART_OBJECTS also have information describing their country/culture using infor
mation on country/culture of Origin (Italian, Egyptian, American, Indian,
etc.) and Epoch (Renaissance, Modem, Ancient, etc.).

• The museum keeps track of ARTIST'S information, if known: Name, DateBom (if
known), DateDied (if not living), CountryOfOrigin, Epoch, MainStyle, and
Description. The Name is assumed to be unique.

• Different EXHIBITIONS occur, each having a Name, StartDate, and EndDate.
EXHIBITIONS are related to all the art objects that were on display during the
exhibition.

• Information is kept on other COLLECTIONS with which the museum interacts,
including Name (unique), Type (museum, personal, etc.), Description, Address,
Phone, and current ContactPerson.

Draw an EERschema diagram for this application. Discuss any assumptions you
made, and that justify your EERdesign choices.

4.22. Figure 4.15 shows an example of an EER diagram for a small private airport data
base that is used to keep track of airplanes, their owners, airport employees, and
pilots. From the requirements for this database, the following information was
collected: Each AIRPLANE has a registration number [Reg#], is of a particular plane
type [OF_TYPE], and is stored in a particular hangar [STORED_IN]. Each PLANE_TYPEhas a
model number [Model], a capacity [Capacity], and a weight [Weight]. Each HANGAR

has a number [Number], a capacity [Capacity], and a location [Location]. The
database also keeps track of the OWNERS of each plane [OWNS] and the EMPLOYEES who

Exercises I 119

120 I Chapter 4 Enhanced Entity-Relationship and UML Modeling

N

N

N

FIGURE 4.15 EER schema for a SMALL AIRPORT database.

have maintained the plane [MAINTAIN]. Each relationship instance in OWNS relates an
airplane to an owner and includes the purchase date [Pdate]. Each relationship
instance in MAINTAIN relates an employee to a service record [SERVICE]. Each plane
undergoes service many times; hence, it is related by [PLANE_SERVICE] to a number of
service records. A service record includes as attributes the date of maintenance
[Date], the number of hours spent on the work [Hours], and the type of work done
[Workcode]. We use a weak entity type [SERVICE] to represent airplane service,

Selected Bibliography I 121

because the airplane registration number is used to identify a service record. An
owner is either a person or a corporation. Hence, we use a union type (category)
[OWNER] that is a subset of the union of corporation [CORPORATION] and person [PERSON]

entity types. Both pilots [PILOT] and employees [EMPLOYEE] are subclasses of PERSON.

Each pilot has specific attributes license number [Lic_Num] and restrictions
[Restr], each employee has specific attributes salary [Salary] and shift worked
[Shift]. All PERSON entities in the database have data kept on their social security
number [Ssn], name [Name], address [Address], and telephone number [Phone].
For CORPORATION entities, the data kept includes name [Name], address [Address],
and telephone number [Phone]. The database also keeps track of the types of
planes each pilot is authorized to fly [FLIES] and the types of planes each employee
can do maintenance work on [WORKS_ON]. Show how the SMALL AIRPORT EERschema of
Figure 4.15 may be represented in UML notation. (Note: We have not discussed
how to represent categories (union types) in UML, so you do not have to map the
categories in this and the following question.)

4.23. Show how the UNIVERSITY EER schema of Figure 4.9 may be represented in UML

notation.

Selected Bibliography
Many papers have proposed conceptual or semantic data models. We give a representa
tive list here. One group of papers, including Abrial (1974), Senko's DIAM model (1975),
theNIAM method (Verheijen and VanBekkum 1982), and Bracchi et al. (1976), presents
semantic models that are based on the concept of binary relationships. Another group of
early papers discusses methods for extending the relational model to enhance its model
ing capabilities. This includes the papers by Schmid and Swenson (1975), Navathe and
Schkolnick (1978), Codd's RM/T model (1979), Furtado (1978), and the structural model
ofWiederhold and Elmasri (1979).

The ERmodel was proposed originally by Chen (1976) and is formalized in Ng (1981).
Since then, numerous extensions of its modeling capabilities have been proposed, as in
Scheuermann et al. (1979), Dos Santos et al. (1979), Teorey et al. (1986), Gogolla and
Hohenstein (1991), and the entity-category-relationship (EeR) model of Elmasri et al.
(1985). Smith and Smith (1977) present the concepts of generalization and aggregation.
The semantic data model of Hammer and McLeod (1981) introduced the concepts of
class/subclass lattices, as well as other advanced modeling concepts.

A survey of semantic data modeling appears in Hull and King (1987). Eick (1991)
discusses design and transformations of conceptual schemas. Analysis of constraints for n
ary relationships is given in Soutou (1998). UML is described in detail in Booch,
Rumbaugh, and Jacobson (1999). Fowler and Scott (2000) and Stevens and Pooley
(2000) give concise introductions to UML concepts.

Fense! (2000) is a good reference on Semantic Web. Uschold and Gruninger (1996)
and Gruber (1995) discuss ontologies. A recent entire issue of Communications of the
ACM is devoted to ontology concepts and applications.

RELATIONAL MODEL: CONCEPTS,
CONSTRAINTS, LANGUAGES,
DESIGN, AND PROGRAMMING

The Relational Data
Model and Relational
Database Constraints

This chapter opens Part II of the book on relational databases. The relational model was first
introduced by Ted Codd of IBM Research in 1970 in a classic paper (Codd 1970), and
attracted immediate attention due to its simplicity and mathematical foundation. The model
uses the concept of a mathematical relation-which looks somewhat like a table of values-as
its basic building block, and has its theoretical basis in set theory and first-order predicate
logic. In this chapter we discuss the basic characteristics of the model and its constraints.

The first commercial implementations of the relational model became available in the
early 1980s, such as the Oracle DBMS and the SQL/DS system on the MVS operating system by
IBM. Since then, the model has been implemented in a large number of commercial systems.
Currentpopular relational DBMSs (RDBMSs) include DB2 and lnformix Dynamic Server (from
IBM), Oracle and Rdb (from Oracle), and SQL Server and Access (from Microsoft).

Because of the importance of the relational model, we have devoted all of Part II of
this textbook to this model and the languages associated with it. Chapter 6 covers the
operations of the relational algebra and introduces the relational calculus notation for
twotypes of calculi-tuple calculus and domain calculus. Chapter 7 relates the relational
modeldata structures to the constructs of the ER and EER models, and presents algorithms
fordesigning a relational database schema by mapping a conceptual schema in the ER or
EER model (see Chapters 3 and 4) into a relational representation. These mappings are
incorporated into many database design and CASEI tools. In Chapter 8, we describe the

1.CASEstands for computer-aided software engineering.

125

126 I Chapter 5 The Relational Data Model and Relational Database Constraints

SQL query language, which is the standard for commercial relational OBMSs. Chapter 9
discusses the programming techniques used to access database systems, and presents
additional topics concerning the SQL language-s-constraints, views, and the notion of
connecting to relational databases via OOBC and JOBC standard protocols. Chapters 10
and 11 in Part III of the book present another aspect of the relational model, namely the
formal constraints of functional and multivalued dependencies; these dependencies are
used to develop a relational database design theory based on the concept known as
normalization.

Data models that preceded rhe relational model include the hierarchical and
network models. They were proposed in the 1960s and were implemented in early
OBMSs during rhe 1970s and 1980s. Because of their historical importance and the large
existing user base for these OBMSs, we have included a summary of the highlights of
these models in appendices, which are available on the Web site for the book. These
models and systems will be with us for many years and are now referred to as legacy
database systems.

In this chapter, we concentrate on describing the basic principles of the relational
model of data. We begin by defining the modeling concepts and notation of the
relational model in Section 5.1. Section 5.2 is devoted to a discussion of relational
constraints that are now considered an important part of the relational model and are
automatically enforced in most relational OBMSs. Section 5.3 defines the update
operations of the relational model and discusses how violations of integriry constraints
are handled.

5.1 RELATIONAL MODEL CONCEPTS
The relational model represents the database as a collection of relations. Informally, each
relation resembles a table of values or, to some extent, a "flat" file of records. For example,
the database of files that was shown in Figure 1.2 is similar to the relational model repre
sentation. However, there are important differences between relations and files, as we
shall soon see.

When a relation is thought of as a table of values, each row in the table represents
a collection of related data values. We introduced entity types and relationship types as
concepts for modeling real-world data in Chapter 3. In the relational model, each row
in the table represents a fact that typically corresponds to a real-world entity or
relationship. The table name and column names are used to help in interpreting the
meaning of the values in each row. For example, the first table of Figure 1.2 is called
STUDENT because each row represents facts about a particular student entity. The column
names-Name, StudentNumber, Class, and Major-specify how to interpret the data
values in each row, based on the column each value is in. All values in a column are of
the same data type.

In the formal relational model terminology, a row is called a tuple, a column header is
called an attribute, and the table is called a relation. The data type describing the types of
values that can appear in each column is represented by a domain of possible values. We
now define these terms--domain, tuple, attribute, and relation-more precisely.

5.1 Relational Model Concepts I 127

5.1.1 Domains, Attributes, Tuples, and Relations
A domain D is a set of atomic values. By atomic we mean that each value in the domain
isindivisible as far as the relational model is concerned. A common method of specifying
a domain is to specify a data type from which the data values forming the domain are
drawn. It is also useful to specify a name for the domain, to help in interpreting its values.
Some examples of domains follow:

• uSA_phone_numbers: The set of ten-digit phone numbers valid in the United
States.

• Local_phone_numbers: The set of seven-digit phone numbers valid within a particu-
lar area code in the United States.

• Social_securiry_numbers: The set of valid nine-digit social security numbers.

• Names: The set of character strings that represent names of persons.

• Grade_paint_averages: Possible values of computed grade point averages; each must
be a real (floating-point) number between 0 and 4.

• Employee_ages: Possible ages of employees of a company; each must be a value
between 15 and 80 years old.

• Academicjiepartmentjiames: The set of academic department names in a univer
sity, such as Computer Science, Economics, and Physics.

• Academic_departmenccodes: The set of academic department codes, such as CS,
ECON, and PHYS.

The preceding are called logical definitions of domains. A data type or format is also
specified for each domain. For example, the data type for the domain uSA_phone_
numbers can be declared as a character string of the form (ddd)ddd-dddd, where each d is a
numeric (decimal) digit and the first three digits form a valid telephone area code. The
data type for Employee_ages is an integer number between 15 and 80. For Academic_
departmentjrames, the data type is the set of all character strings that represent valid
department names. A domain is thus given a name, data type, and format. Additional
information for interpreting the values of a domain can also be given; for example, a
numeric domain such as Person_weights should have the units of measurement, such as
pounds or kilograms.

A relation schema/ R, denoted by R(A I, Az, ... , An)' is made up of a relation name
Rand a list of attributes AI' A z, ..., An' Each attribute Ai is the name of a role played by
some domain D in the relation schema R. D is called the domain of Ai and is denoted by
dom(A). A relation schema is used to describe a relation; R is called the name of this
relation. The degree (or arity) of a relation is the number of attributes n of its relation
schema.

2. A relation schema is sometimes called a relation scheme.

128 I Chapter 5 The Relational Data Model and Relational Database Constraints

An example of a relation schema for a relation of degree seven, which describes
university students, is the following:

STUDENT(Name, SSN, HomePhone, Address, OfficePhone, Age, GPA)

Using the data type of each attribute, the definition is sometimes written as:

STUDENT(Name: string, SSN: string, HomePhone: string, Address: string, OfficePhone:
string, Age: integer, GPA: real)

For this relation schema, STUDENT is the name of the relation, which has seven
attributes. In the above definition, we showed assignment of generic types such as string
or integer to the attributes. More precisely, we can specify the following previously
defined domains for some of the attributes of the STUDENT relation: dom(Name) = Names;
dom(SSN) = Social_security_numbers; dom(HomePhone) = LocaLphone_numbers,3
dom(OfficePhone) = Localjphonejiumbers, and dom(GPA) = Gradepoint averages. It
is also possible to refer to attributes of a relation schema by their position within the
relation; thus, the second attribute of the STUDENT relation is SSN, whereas the fourth
attribute is Address.

A relation (or relation state)" r of the relation schema R(A I , Az, ... , An)' also
denoted by r(R), is a set of n-tuples r = {tl , tz, ... , tm}' Each n-tuple t is an ordered list of n
values t = <vI' VZ, ... , vn>, where each value Vi' 1 ::; i ::; n, is an element of dom(A) or is
a special null value. The ith value in tuple t, which corresponds to the attribute Ai' is
referred to as t[AJ (or t[i] if we use the positional notation). The terms relation intension
for the schema R and relation extension for a relation state r(R) are also commonly used.

Figure 5.1 shows an example of a STUDENT relation, which corresponds to the STUDENT
schema just specified. Each tuple in the relation represents a particular student entity. We

Relation name

I .>: ~
I STUDENT Name SSN HomePhone Address OfficePhone Age GPA

~
Benjamin Bayer 305-61-2435 373-1616 2918 Bluebonnet Lane null 19 3.21

Katherine Ashly 381-62-1245 375-4409 125 Kirby Road null 18 2.89

Dick Davidson 422-11-2320 null 3452 Elgin Road 749-1253 25 3.53

.- Charles Cooper 489-22-1100 376-9821 265 Lark Lane 749-6492 28 3.93------ Barbara Benson 533-69-1238 839-8461 7384 Fontana Lane null 19 3.25

Tuples

FIGURE 5.1 The attributes and tuples of a relation STUDENT.

3. With the large increase in phone numbers caused by rhe proliferation of mobile phones, some
metropolitan areas now have multiple area codes, so that seven-digit local dialing has been discon
tinued. In this case, we would use uSA_phone_numbers as the domain.

4. This has also been called a relation instance. We will not use this term because instance is also
used to refer to a single tuple or row.

5.1 Relational Model Concepts I 129

display the relation as a table, where each tuple is shown as a row and each attribute
corresponds to a column header indicating a role or interpretation of the values in that
column. Null values represent attributes whose values are unknown or do not exist for
some individual STUDENT tuple.

The earlier definition of a relation can be restated more formally as follows. A relation
(or relation state) r(R) is a mathematical relation of degree n on the domains dom(A1) ,

dom(Az), ... , domi.A}, which is a subset of the Cartesian product of the domains that
define R:

r(R) '= (dom(A1) X dom(Az) X ... X dom(An»
The Cartesian product specifies all possible combinations of values from the

underlying domains. Hence, if we denote the total number of values, or cardinality, in a
domain D by ID I (assuming that all domains are finite), the total number of tuples in the
Cartesian product is

Idom(A1) I X Idom(Az) I X ... X Idom(An) I

Of all these possible combinations, a relation state at a given time-the current
relation state-reflects only the valid tuples that represent a particular state of the real
world. In general, as the state of the real world changes, so does the relation, by being
transformed into another relation state. However, the schema R is relatively static and
does not change except very infrequently-for example, as a result of adding an attribute
to represent new information that was not originally stored in the relation.

It is possible for several attributes to have the same domain. The attributes indicate
different roles, or interpretations, for the domain. For example, in the STUDENT relation,
the same domain Local_phone_numbers plays the role of HomePhone, referring to the
"home phone of a student," and the role of OfficePhone, referring to the "office phone of
the student."

5.1.2 Characteristics of Relations
The earlier definition of relations implies certain characteristics that make a relation dif
ferent from a file or a table. We now discuss some of these characteristics.

Ordering of Tuples in a Relation. A relation is defined as a set of tuples. Mathe
matically, elements of a set have no order among them; hence, tuples in a relation do not
have any particular order. However, in a file, records are physically stored on disk (or in
memory), so there always is an order among the records. This ordering indicates first, sec
ond, ith, and last records in the file. Similarly, when we display a relation as a table, the
rows are displayed in a certain order.

Tuple ordering is not part of a relation definition, because a relation attempts to
represent facts at a logical or abstract level. Many logical orders can be specified on a
relation. For example, tuples in the STUDENT relation in Figure 5.1 could be logically
ordered by values of Name, or by SSN, or by Age, or by some other attribute. The
definition of a relation does not specify any order: There is no preference for one logical

130 I Chapter 5 The Relational Data Model and Relational Database Constraints

ordering over another. Hence, the relation displayed in Figure 5.2 is considered identical
to the one shown in Figure 5.1. When a relation is implemented as a file or displayed as a
table, a particular ordering may be specified on the records of the file or the rows of the
table.

Ordering of Values within a Tuple, and an Alternative Definition of a
Relation. According to the preceding definition of a relation, an n-tuple is an ordered
list of n values, so the ordering of values in a tuple-and hence of attributes in a relation
schema-is important. However, at a logical level, the order of attributes and their values
is not that important as long as the correspondence between attributes and values is main
tained.

An alternative definition of a relation can be given, making the ordering of values in
a tuple unnecessary. In this definition, a relation schema R = {AI' A2, ••• , An} is a set of
attributes, and a relation state r(R) is a finite set of mappings r = {tl , t2, •.• , tm }, where
each tuple ti is a mapping from R to D, and D is the union of the attribute domains; that
is, D = dom(Al) U dom(A2) U ... U dom(An). In this definition, t[AJ must be in
dom(A) for 1 ~ i ~ n for each mapping t in r. Each mapping ti is called a tuple.

According to this definition of tuple as a mapping, a tuple can be considered as a set of
«attribute>, <value» pairs, where each pair gives the value of the mapping from an
attribute Ai to a value Vi from dom(AJ The ordering of attributes is not important, because
the attribute name appears with its value. By this definition, the two tuples shown in Figure
5.3 are identical. This makes sense at an abstract or logical level, since there really is no
reason to prefer having one attribute value appear before another in a tuple.

When a relation is implemented as a file, the attributes are physically ordered as
fields within a record. We will generally use the first definition of relation, where the
attributes and the values within tuples are ordered, because it simplifies much of the
notation. However, the alternative definition given here is more general.l

Values and Nulls in the Tuples. Each value in a tuple is an atomic value; that is,
it is not divisible into components within the framework of the basic relational model.
Hence, composite and multivalued attributes (see Chapter 3) are not allowed. This

ISTUDENT Name SSN HomePhone Address OfficePhone Age GPA

Dick Davidson 422-11-2320 null 3452 Elgin Road 749-1253 25 3.53

Barbara Benson 533-69-1238 839-8461 7384 Fontana Lane null 19 3.25

Charles Cooper 489-22-1100 376-9821 265 Lark Lane 749-6492 28 3.93

Katherine Ashly 381-62-1245 375-4409 125 Kirby Road null 18 2.89

Benjamin Bayer 305-61-2435 373-1616 2918 Bluebonnet Lane null 19 3.21

FIGURE 5.2 The relation STUDENT from Figure 5.1 with a different order of tuples.

5. As we shall see, the alternative definition of relation is useful when we discuss query processing in
Chapters 15 and 16.

5.1 Relational Model Concepts I 131

t=< (Name, DickDavidson),(ssN, 422-11-2320),(HomePhone, null),(Address, 3452 ElginRoad),
(OfficePhone, 749-1253),(Age, 25),(GPA, 3.53»

t =< (Address, 3452ElginRoad),(Name, DickDavidson),(ssN, 422-11-2320),(Age, 25),
(OfficePhone,749-1253),(GPA, 3.53),(HomePhone, null»

FIGURE 5.3 Two identical tuples when the order of attributes and values is not part
of relation definition.

model is sometimes called the flat relational model. Much of the theory behind the rela
tional model was developed with this assumption in mind, which is called the first nor
mal form assumption.P Hence, multivalued attributes must be represented by separate
relations, and composite attributes are represented only by their simple component
attributes in the basic relational model. 7

An important concept is that of nulls, which are used to represent the values of
attributes that may be unknown or may not apply to a tuple. A special value, called null,
isusedfor these cases. For example, in Figure 5.1, some student tuples have null for their
office phones because they do not have an office (that is, office phone does not apply to
these students). Another student has a null for home phone, presumably because either
he does not have a home phone or he has one but we do not know it (value is unknown).
In general, we can have several meanings for null values, such as "value unknown," "value
exists but is not available," or "attribute does not apply to this tuple." An example of the
last type of null will occur if we add an attribute Visa_status to the STUDENT relation that
applies only to tuples that represent foreign students. It is possible to devise different
codes for different meanings of null values. Incorporating different types of null values
into the relational model operations (see Chapter 6) has proven difficult and is outside
the scope of our presentation.

Interpretation (Meaning) of a Relation. The relation schema can be interpreted
as a declaration or a type of assertion. For example, the schema of the STUDENT relation of
Figure 5.1 asserts that, in general, a student entity has a Name, SSN, HomePhone,
Address, OfficePhone, Age, and GPA. Each tuple in the relation can then be interpreted
asa fact or a particular instance of the assertion. For example, the first tuple in Figure 5.1
asserts the fact that there is a student whose name is Benjamin Bayer, SSN is 305-61
2435, Age is 19, and so on.

Notice that some relations may represent facts about entities, whereas other relations
may represent facts about relationships. For example, a relation schema MAJORS (StudentSSN,
DepartmentCode) asserts that students major in academic departments. A tuple in this

----------------- ----

6. Wediscuss this assumption in more detail in Chapter 10.

7.Extensions of the relational model remove these restrictions. For example, object-relational sys
tems allow complex-structured attributes, as do the non-first normal form or nested relational
models, as we shall see in Chapter 22.

132 I Chapter 5 The Relational Data Model and Relational Database Constraints

relation relates a student to his or her major department. Hence, the relational model
represents facts about both entities and relationships uniformly as relations. This sometimes
compromises understandability because one has to guess whether a relation represents an
entity type or a relationship type. The mapping procedures in Chapter 7 show how different
constructs of the ERand EER models get converted to relations.

An alternative interpretation of a relation schema is as a predicate; in this case, the
values in each tuple are interpreted as values that satisfy the predicate. This interpretation
is quite useful in the context of logic programming languages, such as Prolog, because it
allows the relational model to be used within these languages (see Section 24.4).

5.1.3 Relational Model Notation
We will use the following notation in our presentation:

• A relation schema R of degree n is denoted by R(A I , A z, ... ,An)'

• An n-tuple t in a relation r(R) is denoted by t = <VI' VZ, ••• ,vn>, where Vi is the value cor
responding to attribute Ai' The following notation refers to component values of tuples:

• Both t[AJ and t.Ai (and sometimes tUD refer to the value Vi in t for attribute Ai'

• Both t[Au' Au,' ... , A z] and t.(Au' Au,' ... , A), where Au, Au,' ... , Az is a list of
attributes from R, refer to the subtuple of values <v, Vu,' ••• , -> from t corre
sponding to the attributes specified in the list.

• The letters Q, R, S denote relation names.

• The letters q, r, s denote relation states.

• The letters t, u, V denote tuples.

• In general, the name of a relation schema such as STUDENT also indicates the current set
of tuples in that relation-the current relation state-whereas STUDENT(Name, SSN, ...)
refers only to the relation schema.

• An attribute A can be qualified with the relation name R to which it belongs by using
the dot notation R.A-for example, STUDENT.Name or STUDENT.Age. This is because the
same name may be used for two attributes in different relations. However, all
attribute names in a particular relation must be distinct.

As an example, consider the tuple t = <'Barbara Benson', '533-69-1238', '839-8461',
'7384 Fontana Lane', null, 19, 3.25> from the STUDENT relation in Figure 5.1; we have
t[Name] = <'Barbara Benson'>, and t[SSN, OPA, Age] = <'533-69-1238',3.25, 19>.

5.2 RELATIONAL MODEL CONSTRAINTS AND
RELATIONAL DATABASE SCHEMAS

So far, we have discussed the characteristics of single relations. In a relational database,
there will typically be many relations, and the tuples in those relations are usually related

5.2 Relational Model Constraints and Relational Database Schemas I 133

in various ways. The state of the whole database will correspond to the states of all its
relations at a particular point in time. There are generally many restrictions or con
straints on the actual values in a database state. These constraints are derived from the
rules in the miniworld that the database represents, as we discussed in Section 1.6.8.

In this section, we discuss the various restrictions on data that can be specified on a
relational database in the form of constraints. Constraints on databases can generally be
divided into three main categories:

1. Constraints that are inherent in the data model. We call these inherent model
based constraints.

2. Constraints that can be directly expressed in the schemas of the data model, typi
cally by specifying them in the DOL (data definition language, see Section 2.3.1).
We call these schema-based constraints.

3. Constraints that cannot be directly expressed in the schemas of the data model,
and hence must be expressed and enforced by the application programs. We call
these application-based constraints.

The characteristics of relations that we discussed in Section 5.1.2 are the inherent
constraints of the relational model and belong to the first category; for example, the
constraint that a relation cannot have duplicate tuples is an inherent constraint. The
constraints we discuss in this section are of the second category, namely, constraints that
can be expressed in the schema of the relational model via the DOL. Constraints in the
third category are more general and are difficult to express and enforce within the data
model, so they are usually checked within application programs.

Another important category of constraints is data dependencies, which include
functional dependencies and multivalued dependencies. They are used mainly for testing the
"goodness" of the design of a relational database and are utilized in a process called
normalization, which is discussed in Chapters 10 and 11.

We now discuss the main types of constraints that can be expressed in the relational
model-the schema-based constraints from the second category. These include domain
constraints, key constraints, constraints on nulls, entity integrity constraints, and
referential integrity constraints.

5.2.1 Domain Constraints
Domain constraints specify that within each tuple, the value of each attribute A must be
an atomic value from the domain dom(A). We have already discussed the ways in which
domains can be specified in Section 5.1.1. The data types associated with domains typi
cally include standard numeric data types for integers (such as short integer, integer, and
long integer) and real numbers (float and double-precision float). Characters, booleans,
fixed-length strings, and variable-length strings are also available, as are date, time, time
stamp, and, in some cases, money data types. Other possible domains may be described by
a subrange of values from a data type or as an enumerated data type in which all possible
values are explicitly listed. Rather than describe these in detail here, we discuss the data
types offered by the SQL-99 relational standard in Section 8.1.

134 I Chapter 5 The Relational Data Model and Relational Database Constraints

5.2.2 Key Constraints and Constraints on Null Values
A relation is defined as a set of tuples. By definition, all elements of a set are distinct;
hence, all tuples in a relation must also be distinct. This means that no two tuples can
have the same combination of values for all their attributes. Usually, there are other sub
sets of attributes of a relation schema R with the property that no two tuples in any rela
tion state r of R should have the same combination of values for these attributes. Suppose
that we denote one such subset of attributes by SKi then for any two distinct tuples t1 and t2
in a relation state r of R, we have the constraint that

t1[SK] oF- tz[SK]

Any such set of attributes SK is called a superkey of the relation schema R. A
superkey SK specifies a uniqueness constraint that no two distinct tuples in any state r of R
can have the same value for SK. Every relation has at least one default superkey-the set
of all its attributes. A superkey can have redundant attributes, however, so a more useful
concept is that of a key, which has no redundancy. A key K of a relation schema R is a
superkey of R with the additional property that removing any attribute A from K leaves a
set of attributes K' that is not a superkey of R any more. Hence, a key satisfies two
constraints:

1. Two distinct tuples in any state of the relation cannot have identical values for
(all) the attributes in the key.

2. It is a minimal superkey-that is, a superkey from which we cannot remove any
attributes and still have the uniqueness constraint in condition 1 hold.

The first condition applies to both keys and superkeys. The second condition is
required only for keys. For example, consider the STUDENT relation of Figure 5.1. The
attribute set {SSN} is a key of STUDENT because no two student tuples can have the same
value for SSN.8 Any set of attributes that includes SSN-for example, {SSN, Name,
Agel-is a superkey, However, the superkey {SSN, Name, Agel is not a key of STUDENT,

because removing Name or Age or both from the set still leaves us with a superkey. In
general, any superkey formed from a single attribute is also a key. A key with multiple
attributes must require all its attributes to have the uniqueness property hold.

The value of a key attribute can be used to identify uniquely each tuple in the
relation. For example, the SSN value 305-61-2435 identifies uniquely the tuple
corresponding to Benjamin Bayer in the STUDENT relation. Notice that a set of attributes
constituting a key is a property of the relation schema; it is a constraint that should hold
on every valid relation state of the schema. A key is determined from the meaning of the
attributes, and the property is time-invariant: It must continue to hold when we insert new
tuples in the relation. For example, we cannot and should not designate the Name
attribute of the STUDENT relation in Figure 5.1 as a key, because it is possible that two
students with identical names will exist at some point in a valid state,"

8. Note that SSN is also a superkey.

9. Names are sometimes used as keys, but then some artifact-such as appending an ordinal num
ber-must be used to distinguish between identical names.

5.2 Relational Model Constraints and Relational Database Schemas I 135

I CAR LicenseNumber EngineSenalNumber Make Model Year

Texas ABC-739 A69352 Ford Mustang 96

FloridaTVP-347 843696 Oldsmobile Cutlass 99

New York MPO-22 X83554 Oldsmobile Delta 95

Califomia 432-TFY C43742 Mercedes 19Q-D 93

California RSK-629 Y82935 Toyota Camry 98

Texas RSK-629 U028365 Jaguar XJS 98

FIGURE 5.4 The CAR relation, with two candidate keys: LicenseNumber and
EngineSerialNumber.

In general, a relation schema may have more than one key. In this case, each of the
keys is called a candidate key. For example, the CAR relation in Figure 5.4 has two
candidate keys: LicenseNumber and EngineSerialNumber. It is common to designate one
of the candidate keys as the primary key of the relation. This is the candidate key whose
values are used to identify tuples in the relation. We use the convention that the attributes
that form the primary key of a relation schema are underlined, as shown in Figure 5.4.
Notice that when a relation schema has several candidate keys, the choice of one to

become the primary key is arbitrary; however, it is usually better to choose a primary key
with a single attribute or a small number of attributes.

Another constraint on attributes specifies whether null values are or are not
permitted. For example, if every STUDENT tuple must have a valid, nonnull value for the
Name attribute, then Name of STUDENT is constrained to be NOT NULL.

5.2.3 Relational Databases and Relational
Database Schemas

The definitions and constraints we have discussed so far apply to single relations and their
attributes. A relational database usually contains many relations, with tuples in relations
that are related in various ways. In this section we define a relational database and a rela
tional database schema. A relational database schema S is a set of relation schemas S =

(R I , Rz, ... , Rm } and a set of integrity constraints IC. A relational database state'" DB of
S is a set of relation states DB = {r1, rz, ... , rm } such that each r j is a state of R, and such
that the r j relation states satisfy the integrity constraints specified in IC. Figure 5.5 shows a
relational database schema that we call COMPANY = {EMPLOYEE, DEPARTMENT, DEPT_LOCATIONS,

PROJECT, WORKS_ON, DEPENDENT}. The underlined attributes represent primary keys. Figure 5.6
shows a relational database state corresponding to the COMPANY schema. We will use this
schema and database state in this chapter and in Chapters 6 through 9 for developing
example queries in different relational languages. When we refer to a relational database,

10. A relational database state is sometimes called a relational database instance. However, as we
mentioned earlier, we will not use the term instance since it also applies to single tuples.

136 I Chapter 5 The Relational Data Model and Relational Database Constraints

EMPLOYEE

SUPERSSN

DEPARTMENT

DNAME I-D-N-U-M-S-ER-I MGRSSN I MGRSTARTDATE I

DEPT_LOCATIONS

DNUMSER I DLOCATION

PROJECT

PNAME I-P-NU-M-S-E-R-I PLOCATION I DNUM I

WORKS_ON

~-H-O-U-RS-

DEPENDENT

DEPENDENT_NAME RELATIONSHIP

FIGURE 5.5 Schema diagram for the COMPANY relational database schema.

we implicitly include both its schema and its current state. A database state that does not
obey all the integrity constraints is called an invalid state, and a state that satisfies all the
constraints in Ie is called a valid state.

In Figure 5.5, the DNUMBER attribute in both DEPARTMENT and DEPT_LOCATIONS stands for the
same real-world concept-the number given to a department. That same concept is called
DNO in EMPLOYEE and DNUM in PROJECT. Attributes that represent the same real-world concept
mayor may not have identical names in different relations. Alternatively, attributes that
represent different concepts may have the same name in different relations. For example,
we could have used the attribute name NAME for both PNAME of PROJ ECT and DNAME of DEPARTMENT;

in this case, we would have two attributes that share the same name but represent different
real-world concepts-project names and department names.

In some early versions of the relational model, an assumption was made that the
same real-world concept, when represented by an attribute, would have identical attribute
names in all relations. This creates problems when the same real-world concept is used in
different roles (meanings) in the same relation. For example, the concept of social
security number appears twice in the EMPLOYEE relation of Figure 5.5: once in the role of
the employee's social security number, and once in the role of the supervisor's social
security number. We gave them distinct attribute names-s-sss and SUPERSSN, respectively
in order to distinguish their meaning.

5.2 Relational Model Constraints and Relational Database Schemas 1137

I EMPLOYEE FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNO

John B Smith 123456789 1965-01-09 731 Fondren, Houston, TX M 30000 333445555 5

Franklin T Wong 333445555 1955-12-08 638 Voss, Houston, TX M 40000 888665555 5

Alicia J Zelaya 999887777 1968-01-19 3321 Castle, Spring, TX F 25000 987654321 4

Jennifer S Wallace 987654321 1941-06-20 291 Berry, Bellaire,TX F 43000 888665555 4

Ramesh K Narayan 666884444 1962-09-15 975 Fire Oak, Humble, TX M 38000 333445555 5

Joyce A English 453453453 1972-07·31 5631 Rice, Houston, TX F 25000 333445555 5

Ahmad V Jabbar 987987987 1969-03-29 980 Dallas, Houston, TX M 25000 987654321 4

James E Borg 888665555 1937-11-10 450 Stone, Houston, TX M 55000 null 1

I DEPT LOCATIONS DNUMBER DLOCATION

1 Houston

4 Stafford

5 Bellaire

5 Sugarland

Houston

I DEPARTMENT DNAME DNUMBER MGRSSN MGRSTARTDATE

Research 5 333445555 1988-05-22

Administration 4 987654321 1995-01-01

Headquarters 1 888665555 1981-06-19

I WORKS_ON ESSN PNO HOURS

123456789 1 32.5

123456789 2 7.5

666884444 3 40.0

453453453 1 20.0

453453453 2 20.0

333445555 2 10.0

333445555 3 10.0

333445555 10 10.0

333445555 20 10.0

999887777 30 30.0

999887777 10 10.0

987987987 10 35.0

987987987 30 5.0

987654321 30 20.0

987654321 20 15.0

888665555 20 null

I PROJECT PNAME PNUMBER PLOCATION DNUM

Product)(1 Bellaire 5

ProductY 2 Suaarland 5

ProductZ 3 Houston 5

Computerization 10 Stafford 4

Reoraanization 20 Houston 1

Newbenefits 30 Stafford 4

I DEPENDENT ESSN DEPENDENT NAME SEX BDATE RELATIONSHIP

333445555 Alice F 1986-04-05 DAUGHTER

333445555 Theodore M 1983-10-25 SON

333445555 Joy F 1958-05-03 SPOUSE

987654321 Abner M 1942-02-28 SPOUSE

123456789 Michael M 1988-01-04 SON

123456789 Alice F 1988-12-30 DAUGHTER

123456789 Elizabeth F 1967-05-05 SPOUSE

FIGURE 5.6 One possible database state for the COMPANY relational database schema.

Each relational DBMS must have a data definition language (DOL) for defining a
relational database schema. Current relational DBMSs are mostly using SQL for this
purpose. We present the SQL DOL in Sections 8.1 through 8.3.

Integrity constraints are specified on a database schema and are expected to hold on
every valid database state of that schema. In addition to domain, key, and NOT NULL

138 I Chapter 5 The Relational Data Model and Relational Database Constraints

constraints, two other types of constraints are considered part of the relational model:
entity integrity and referential integrity.

5.2.4 Entity Integrity, Referential Integrity,
and Foreign Keys

The entity integrity constraint states that no primary key value can be null. This is
because the primary key value is used to identify individual tuples in a relation. Having
null values for the primary key implies that we cannot identify some tuples. For example,
if two or more tuples had null for their primary keys, we might not be able to distinguish
them if we tried to reference them from other relations.

Key constraints and entity integrity constraints are specified on individual relations.
The referential integrity constraint is specified between two relations and is used to

maintain the consistency among tuples in the two relations. Informally, the referential
integrity constraint states that a tuple in one relation that refers to another relation must
refer to an existing tuple in that relation. For example, in Figure 5.6, the attribute DNO of
EMPLOYEE gives the department number for which each employee works; hence, its value in
every EMPLOYEE tuple must match the DNUMBER value of some tuple in the DEPARTMENT relation.

To define referential integrity more formally, we first define the concept of a foreign
key. The conditions for a foreign key, given below, specify a referential integrity
constraint between the two relation schemas R[and Rz. A set of attributes FK in relation
schema R[is a foreign key of R[that references relation Rz if it satisfies the following two
rules:

1. The attributes in FK have the same dornaints) as the primary key attributes PKof
Rz; the attributes FKare said to reference or refer to the relation Rz.

2. A value of FK in a tuple t[of the current state r[(R[) either occurs as a value of PK

for some tuple tz in the current state rz(Rz) or is null. In the former case, we have
t[[FK] = tz[PK]' and we say that the tuple t[references or refers to the tuple tz'

In this definition, R[is called the referencing relation and Rz is the referenced
relation. If these two conditions hold, a referential integrity constraint from R[to Rz is
said to hold. In a database of many relations, there are usually many referential integrity
constraints.

To specify these constraints, we must first have a clear understanding of the meaning
or role that each set of attributes plays in the various relation schemas of the database.
Referential integrity constraints typically arise from the relationships among the entities
represented by the relation schemas. For example, consider the database shown in Figure
5.6. In the EMPLOYEE relation, the attribute DNO refers to the department for which an
employee works; hence, we designate DNO to be a foreign key of EMPLOYEE referring to the
DEPARTMENT relation. This means that a value of DNa in any tuple t[of the EMPLOYEE relation
must match a value of the primary key of DEPARTMENT-the DNUMBER attribute-in some tuple
tz of the DEPARTMENT relation, or the value of DNO can be null if the employee does not belong

5.2 Relational Model Constraints and Relational Database Schemas I 139

to a department. In Figure 5.6 the tuple for employee 'John Smith' references the tuple for
the 'Research' department, indicating that 'John Smith' works for this department.

Notice that a foreign key can refer to its own relation. For example, the attribute
SUPERSSN in EMPLOYEE refers to the supervisor of an employee; this is another employee,
represented by a tuple in the EMPLOYEE relation. Hence, SUPERSSN is a foreign key that
references the EMPLOYEE relation itself. In Figure 5.6 the tuple for employee 'John Smith'
references the tuple for employee 'Franklin Wong,' indicating that 'Franklin Wong' is the
supervisor of 'John Smith.'

We can diagrammatically display referential integrity constraints by drawing a directed
arc from each foreign key to the relation it references. For clarity, the arrowhead may
point to the primary key of the referenced relation. Figure 5.7 shows the schema in Figure
5.5with the referential integrity constraints displayed in this manner.

All integrity constraints should be specified on the relational database schema if we
want to enforce these constraints on the database states. Hence, the DOL includes
provisions for specifying the various types of constraints so that the DBMS can
automatically enforce them. Most relational DBMSs support key and entity integrity

MGRSTARTDATE

PLOCATION

DLOCATIONDNUMBER

DEPT_LOCATIONS

PROJECT

DEPENDENT_NAME RELATIONSHIP

FIGURE 5.7 Referential integrity constraints displayed on the COMPANY relational database schema.

140 I Chapter 5 The Relational Data Model and Relational Database Constraints

constraints, and make provisions to support referential integrity. These constraints are
specified as a part of data definition.

5.2.5 Other Types of Constraints
The preceding integrity constraints do not include a large class of general constraints,
sometimes called semantic integrity constraints, that may have to be specified and enforced
on a relational database. Examples of such constraints are "the salary of an employee
should not exceed the salary of the employee's supervisor" and "the maximum number of
hours an employee can work on all projects per week is 56." Such constraints can be spec
ified and enforced within the application programs that update the database, or by using a
general-purpose constraint specification language. Mechanisms called triggers and asser
tions can be used. In sQL-99, a CREATE ASSERTION statement is used for this purpose (see
Chapters 8 and 9). It is more common to check for these types of constraints within the
application programs than to use constraint specification languages, because the latter are
difficult and complex to use correctly, as we discuss in Section 24.1.

Another type of constraint is the functional dependency constraint, which establishes
a functional relationship among two sets of attributes X and Y. This constraint specifies
that the value of X determines the value of Y in all states of a relation; it is denoted as a
functional dependency X ~ Y. We use functional dependencies and other types of
dependencies in Chapters 10 and 11 as tools to analyze the quality of relational designs
and to "normalize" relations to improve their quality.

The types of constraints we discussed so far may be called state constraints, because
they define the constraints that a valid state of the database must satisfy. Another type of
constraint, called transition constraints, can be defined to deal with state changes in the
database. I I An example of a transition constraint is: "the salary of an employee can only
increase." Such constraints are typically enforced by the application programs or specified
using active rules and triggers, as we discuss in Section 24.1.

5.3 UPDATE OPERATIONS AND DEALING WITH
CONSTRAINT VIOLATIONS

The operations of the relational model can be categorized into retrievals and updates. The
relational algebra operations, which can be used to specify retrievals, are discussed in
detail in Chapter 6. A relational algebra expression forms a new relation after applying a
number of algebraic operators to an existing set of relations; its main use is for querying a
database. The user formulates a query that specifies the data of interest, and a new rela
tion is formed by applying relational operators to retrieve this data. That relation

11. State constraints are sometimes called static constraints, and transition constraints are sometimes
called dynamic constraints.

5.3 Update Operations and Dealing with Constraint Violations 1141

becomes the answer to the user's query. Chapter 6 also introduces the language called
relational calculus, which is used to declaratively define the new relation without giving a
specific order of operations.

In this section, we concentrate on the database modification or update operations.
There are three basic update operations on relations: insert, delete, and modify. Insert is
used to insert a new tuple or tuples in a relation, Delete is used to delete tuples, and
Update (or Modify) is used to change the values of some attributes in existing tuples.
Whenever these operations are applied, the integrity constraints specified on the
relational database schema should not be violated. In this section we discuss the types of
constraints that may be violated by each update operation and the types of actions that
may be taken if an update does cause a violation. We use the database shown in Figure 5.6
for examples and discuss only key constraints, entity integrity constraints, and the
referential integrity constraints shown in Figure 5.7. For each type of update, we give
some example operations and discuss any constraints that each operation may violate.

5.3.1 The Insert Operation
The Insert operation provides a list of attribute values for a new tuple t that is to be
inserted into a relation R. Insert can violate any of the four types of constraints discussed
in the previous section. Domain constraints can be violated if an attribute value is given
that does not appear in the corresponding domain. Key constraints can be violated if a
key value in the new tuple t already exists in another tuple in the relation r(R). Entity
integrity can be violated if the primary key of the new tuple t is null. Referential integrity
can be violated if the value of any foreign key in t refers to a tuple that does not exist in
the referenced relation. Here are some examples to illustrate this discussion.

1. Insert <'Cecilia', 'F', 'Kolonsky', null, '1960-04-05', '6357 Windy Lane, Katy, TX',
F, 28000, null, 4> into EMPLOYEE.

• This insertion violates the entity integrity constraint (null for the primary key
SSN), so it is rejected.

2. Insert <'Alicia', 'I'. 'Zelaya', '999887777', '1960-04-05', '6357 Windy Lane, Katy,
TX', F, 28000, '987654321', 4> into EMPLOYEE.

• This insertion violates the key constraint because another tuple with the same
SSN value already exists in the EMPLOYEE relation, and so it is rejected.

3. Insert <Cecilia', 'F', 'Kolonskv', '677678989', '1960-04-05', '6357 Windswept,
Katy, TX', F, 28000, '987654321', 7> into EMPLOYEE.

• This insertion violates the referential integrity constraint specified on DNO

because no DEPARTMENT tuple exists with DNUMBER = 7.

4. Insert <Cecilia', 'F', 'Kolonsky', '677678989', '1960-04-05', '6357 Windy Lane,
Katv, TX', F, 28000, null, 4> into EMPLOYEE.

• This insertion satisfies all constraints, so it is acceptable.

142 I Chapter 5 The Relational Data Model and Relational Database Constraints

If an insertion violates one or more constraints, the default option is to reject the
insertion. In this case, it would be useful if the DBMS could explain to the user why the
insertion was rejected. Another option is to attempt to correct the reason for rejecting the
insertion, but this is typically not used for violations caused by Insert; rather, it is used
more often in correcting violations for Delete and Update. In operation 1 above, the
DBMS could ask the user to provide a value for SSN and could accept the insertion if a valid
SSN value were provided. In operation 3, the DBMS could either ask the user to change the
value of DNO to some valid value (or set ir to null), or it could ask the user to insert a
DEPARTMENT tuple with DNUMBER = 7 and could accept the original insertion only after such an
operation was accepted. Notice that in the latter case the insertion violation can cascade
back to the EMPLOYEE relation if the user attempts to insert a tuple for department 7 with a
value for MGRSSN that does not exist in the EMPLOYEE relation.

5.3.2 The Delete Operation
The Delete operation can violate only referential integrity, if the tuple being deleted is
referenced by the foreign keys from other tuples in the database. To specify deletion, a
condition on the attributes of the relation selects the tuple (or tuples) to be deleted. Here
are some examples.

1. Delete the WORKS_ON tuple with ESSN = '999887777' and PNO = 10.

• This deletion is acceptable.

2. Delete the EMPLOYEE tuple with SSN = '999887777'.

• This deletion is not acceptable, because tuples in WORKS_ON refer to this tuple.
Hence, if the tuple is deleted, referential integrity violations will result.

3. Delete the EMPLOYEE tuple with SSN = '333445555'.

• This deletion will result in even worse referential integrity violations, because
the tuple involved is referenced by tuples from the EMPLOYEE, DEPARTMENT, WORKS_ON,

and DEPENDENT relations.

Several options are available if a deletion operation causes a violation. The first
option is to reject the deletion. The second option is to attempt to cascade (or propagate) the
deletion by deleting tuples that reference the tuple that is being deleted. For example, in
operation 2, the DBMScould automatically delete the offending tuples from WORKS_ON with
ESSN = '999887777'. A third option is to modify the referencing attribute values that cause
the violation; each such value is either set to null or changed to reference another valid
tuple. Notice that if a referencing attribute that causes a violation is part of the primary
key, it cannot be set to null; otherwise, it would violate entity integrity.

Combinations of these three options are also possible. For example, to avoid having
operation 3 cause a violation, the DBMS may automatically delete all tuples from WORKS_ON

and DEPENDENT with ESSN = '333445555'. Tuples in EMPLOYEE with SUPERSSN = '333445555' and
the tuple in DEPARTMENT with MGRSSN = '333445555' can have their SUPERSSN and MGRSSN values
changed to other valid values or to null. Although it may make sense to delete

5.4 Summary 1143

automatically the WORKS_ON and DEPENDENT tuples that refer to an EMPLOYEE tuple, it may not
make sense to delete other EMPLOYEE tuples or a DEPARTMENT tuple.

In general, when a referential integrity constraint is specified in the DOL, the DBMS

will allow the user to specify which of the options applies in case of a violation of the
constraint. We discuss how to specify these options in the SQL-99 DOL in Chapter 8.

5.3.3 The Update Operation
The Update (or Modify) operation is used to change the values of one or more attributes
in a tuple (or tuples) of some relation R. It is necessary to specify a condition on the
attributes of the relation to select the tuple (or tuples) to be modified. Here are some
examples.

1. Update the SALARY of the EMPLOYEE tuple with SSN = '999887777' to 28000.

• Acceptable.

2. Update the DNO of the EMPLOYEE tuple with SSN = '999887777' to 1.

• Acceptable.

3. Update the DNO of the EMPLOYEE tuple with SSN = '999887777' to 7.

• Unacceptable, because it violates referential integrity.

4. Update the SSN of the EMPLOYEE tuple with SSN = '999887777' to '987654321'.

• Unacceptable, because it violates primary key and referential integrity
constraints.

Updating an attribute that is neither a primary key nor a foreign key usually causes
no problems; the DBMS need only check to confirm that the new value is of the correct
data type and domain. Modifying a primary key value is similar to deleting one tuple and
inserting another in its place, because we use the primary key to identify tuples. Hence,
the issues discussed earlier in both Sections 5.3.1 (Insert) and 5.3.2 (Delete) come into
play. If a foreign key attribute is modified, the DBMS must make sure that the new value
refers to an existing tuple in the referenced relation (or is null). Similar options exist to
deal with referential integrity violations caused by Update as those options discussed for
the Delete operation. In fact, when a referential integrity constraint is specified in the
DDL, the DBMS will allow the user to choose separate options to deal with a violation
causedby Delete and a violation caused by Update (see Section 8.2).

5.4 SUMMARY
In this chapter we presented the modeling concepts, data structures, and constraints pro
vided by the relational model of data. We started by introducing the concepts of domains,
attributes, and tuples. We then defined a relation schema as a list of attributes that
describe the structure of a relation. A relation, or relation state, is a set of tuples that con
forms to the schema.

144 I Chapter 5 The Relational Data Model and Relational Database Constraints

Several characteristics differentiate relations from ordinary tables or files. The first is
that tuples in a relation are not ordered. The second involves the ordering of attributes in
a relation schema and the corresponding ordering of values within a tuple. We gave an
alternative definition of relation that does not require these two orderings, but we
continued to use the first definition, which requires attributes and tuple values to be
ordered, for convenience. We then discussed values in tuples and introduced null values
to represent missing or unknown information.

We then classified database constraints into inherent model-based constraints,
schema-based constraints and application-based constraints. We then discussed the
schema constraints pertaining to the relational model, starting with domain constraints,
then key constraints, including the concepts of superkey, candidate key, and primary key,
and the NOT NULL constraint on attributes. We then defined relational databases and
relational database schemas. Additional relational constraints include the entity integrity
constraint, which prohibits primary key attributes from being null. The interrelation
referential integrity constraint was then described, which is used to maintain consistency
of references among tuples from different relations.

The modification operations on the relational model are Insert, Delete, and Update.
Each operation may violate certain types of constraints. These operations were discussed
in Section 5.3. Whenever an operation is applied, the database state after the operation is
executed must be checked to ensure that no constraints have been violated.

Review Questions
5.1. Define the following terms: domain, attribute, n-tuple, relation schema, relation

state, degree of a relation, relational database schema, relational database state.
5.2. Why are tuples in a relation not ordered?
5.3. Why are duplicate tuples not allowed in a relation?
5.4. What is the difference between a key and a superkey?
5.5. Why do we designate one of the candidate keys of a relation to be the primary key?
5.6. Discuss the characteristics of relations that make them different from ordinary

tables and files.
5.7. Discuss the various reasons that lead to the occurrence of null values in relations.
5.8. Discuss the entity integrity and referential integrity constraints. Why is each con

sidered important?
5.9. Define foreign key. What is this concept used for?

Exercises
5.10. Suppose that each of the following update operations is applied directly to the

database state shown in Figure 5.6. Discuss all integrity constraints violated by
each operation, if any, and the different ways of enforcing these constraints.
a. Insert <Robert', 'F', 'Scott', '943775543', '1952-06-21', '2365 Newcastle Rd,

Bellaire, TX', M, 58000, '888665555',1> into EMPLOYEE.

b. Insert <'ProductA', 4, 'Bellaire', 2> into PROJECT.

c. Insert <'Production', 4, '943775543', '1998-10-01'> into DEPARTMENT.

d. Insert <'677678989', null, '40.0'> into WORKS_ON.

e. Insert <'453453453', 'John', M, '1970-12-12', 'SPOUSE'> into DEPENDENT.

f. Delete the WORKS_ON tuples with ESSN = '333445555'.

g. Delete the EMPLOYEE tuple with SSN = '987654321'.

h. Delete the PROJECT tuple with PNAME = 'ProductX'.

i. Modify the MGRSSN and MGRSTARTDATE of the DEPARTMENT tuple with DNUMBER = 5 to

'123456789' and '1999-10-01', respectively.

j. Modify the SUPERSSN attribute of the EMPLOYEE tuple with SSN = '999887777' to

'943775543'.

k. Modify the HOURS attribute of the WORKS_ON tuple with ESSN = '999887777' and

PNO = 10 to '5.0'.

5.11. Consider the AIRLINE relational database schema shown in Figure 5.8, which

describes a database for airline flight information. Each FLIGHT is identified by a

flight NUMBER, and consists of one or more FLIGHT_LEGS with LEG_NUMBERS 1, 2, 3, and

so on. Each leg has scheduled arrival and departure times and airports and has

many LEG_IN STANCES-one for each DATE on which the flight travels. FARES are kept

for each flight. For each leg instance, SEAT_RESERVATIONS are kept, as are the AIRPLANE

used on the leg and the actual arrival and departure times and airports. An AIR

PLANE is identified by an AIRPLANE_ID and is of a particular AIRPLANE_TYPE. CAN_LAND

relates AIRPLANE_TYPES to the AIRPORTS in which they can land. An AIRPORT is identi

fied by an AIRPORT_CODE. Consider an update for the AIRLINE database to enter a res

ervation on a particular flight or flight leg on a given date.

a. Give the operations for this update.

b. What types of constraints would you expect to check?

c. Which of these constraints are key, entity integrity, and referential integrity

constraints, and which are not?

d. Specify all the referential integrity constraints that hold on the schema shown

in Figure 5.8.

5.12. Consider the relation CLASs(Course#, Univ Section«, InstructorName, Semester,

BuildingCode, Roome, TimePeriod, Weekdays, CreditHours). This represents

classes taught in a university, with unique Univ_Section#. Identify what you

think should be various candidate keys, and write in your own words the con

straints under which each candidate key would be valid.

5.13. Consider the following six relations for an order-processing database application

in a company:

CUSTOMER(Cust#, Cname, City)

ORDER(Order#, Odate, Custw, Ord Amt)

ORDER_ITEM(Order#, Item#, C2ty)

ITEM(Item#, Unicprice)

SHIPMENT(Order#, Warehouse#, Ship_date)

WAREHousE(Warehouse#, City)

Exercises I 145

146 I Chapter 5 The Relational Data Model and Relational Database Constraints

AIRPORT

IAIRPORT CODE INAME~I STATE I

FLIGHT

I NUMBER I AIRLINE I WEEKDAYS I

I FLIGHT NUMBER I LEG NUMBER I DEPARTURE_AIRPORT_CODE I SCHEDULED_DEPARTURE_TIME [

ARRIVAL_AIRPORT_CODE I SCHEDULED_ARRIVAL_TIME I

LEG_INSTANCE

IFLIGHT NUMBER ILEG NUMBER I~ NUMBER_OF_AVAILABLE_SEATS IAIRPLANE_ID [

DEPARTURE_AIRPORT_CODE I DEPARTURCTIME IARRIVAL_AIRPORT_CODE IARRIVAL_TIME

FARES

FLIGHT NUMBER I FARE CODE I AMOUNT I RESTRICTIONS I

I TYPE NAME I MAX_SEATS [COMPANY I

I AIRPLANE TYPE NAME I AIRPORT CODE I

AIRPLANE

I AIRPLANE 10 I TOTAL NUMBER OF SEATS I AIRPLANE_TYPE I

SEAT_RESERVATION

IFLIGHT NUMBER ILEG NUMBER I~ SEAT NUMBER ICUSTOMER NAME ICUSTOMER PHONE

FIGURE 5.8 The AIRLINE relational database schema.

Here, Ord_Amt refers to total dollar amount of an order; Odate is the date the
order was placed; Ship_date is the date an order is shipped from the warehouse.
Assume that an order can be shipped from several warehouses. Specify the foreign
keys for this schema, stating any assumptions you make.

5.14. Consider the following relations for a database that keeps track of business trips of
salespersons in a sales office:

SALESPERSON(SSN, Name, Start Year, DepcNo)

Selected Bibliography I 147

TRIP(SSN, From_City, To_City, Departure_Date, Return_Date, Trip ID)

EXPENsE(Trip ID, Accountg, Amount)

Specify the foreign keys for this schema, stating any assumptions you make.
5.15. Consider the following relations for a database that keeps track of student enroll

ment in courses and the books adopted for each course:

sTuDENT(SSN, Name, Major, Bdate)

COURSE(Course#, Cname, Dept)

ENROLL(SSN, Course#, Quarter, Grade)

BOOK_ADOPTION(Course#, Quarter, Book_ISBN)

TEXT(Book ISBN, BooLTitle, Publisher, Author)

Specify the foreign keys for this schema, stating any assumptions you make.
5.16. Consider the following relations for a database that keeps track of auto sales in a

car dealership (Option refers to some optional equipment installed on an auto):

cAR(Serial-No, Model, Manufacturer, Price)

OPTIoNs(Serial-No, Option-Name, Price)

sALEs(Salesperson-id, Serial-No, Date, Sale-price)

sALEsPERsoN(Salesperson-id, Name, Phone)

First, specify the foreign keys for this schema, stating any assumptions you make.
Next, populate the relations with a few example tuples, and then give an example
of an insertion in the SALES and SALESPERSON relations that violates the referential
integrity constraints and of another insertion that does not.

Selected Bibliography
The relational model was introduced by Codd (1970) in a classic paper. Codd also intro
duced relational algebra and laid the theoretical foundations for the relational model in a
series of papers (Codd 1971, 1972, 1972a, 1974); he was later given the Turing award, the
highest honor of the ACM, for his work on the relational model. In a later paper, Codd
(1979) discussed extending the relational model to incorporate more meta-data and
semantics about the relations; he also proposed a three-valued logic to deal with uncer
tainty in relations and incorporating NULLs in the relational algebra. The resulting model
is known as RM/T. Childs (1968) had earlier used set theory to model databases. Later,
Codd (1990) published a book examining over 300 features of the relational data model
and database systems.

Since Codd's pioneering work, much research has been conducted on various aspects
of the relational model. Todd (1976) describes an experimental DBMS called PRTV that
directly implements the relational algebra operations. Schmidt and Swenson (1975)
introduces additional semantics into the relational model by classifying different types of
relations. Chen's (1976) entity-relationship model, which is discussed in Chapter 3, is a
means to communicate the real-world semantics of a relational database at the
conceptual level. Wiederhold and Elmasri (1979) introduces various types of connections

148 I Chapter 5 The Relational Data Model and Relational Database Constraints

between relations to enhance its constraints. Extensions of the relational model are
discussed in Chapter 24. Additional bibliographic notes for other aspects of the relational
model and its languages, systems, extensions, and theory are given in Chapters 6 to 11,
15, 16, 17, and 22 to 25.

The Relational Algebra
and Relational Calculus

In this chapter we discuss the two formal languages for the relational model: the rela
tional algebra and the relational calculus. As we discussed in Chapter 2, a data model
must include a set of operations to manipulate the database, in addition to the data
model's concepts for defining database structure and constraints. The basic set of opera
tionsfor the relational model is the relational algebra. These operations enable a user to
specify basic retrieval requests. The result of a retrieval is a new relation, which may have
beenformed from one or more relations. The algebra operations thus produce new rela
tions, which can be further manipulated using operations of the same algebra. A sequence
of relational algebra operations forms a relational algebra expression, whose result will
also be a relation that represents the result of a database query (or retrieval request).

The relational algebra is very important for several reasons. First, it provides a formal
foundation for relational model operations. Second, and perhaps more important, it is used
as a basis for implementing and optimizing queries in relational database management
systems (RDBMSs), as we discuss in Part IV of the book. Third, some of its concepts are
incorporated into the SQL standard query language for RDBMSs.

Whereas the algebra defines a set of operations for the relational model, the
relational calculus provides a higher-level declarative notation for specifying relational
queries. A relational calculus expression creates a new relation, which is specified in
terms of variables that range over rows of the stored database relations (in tuple calculus)
or over columns of the stored relations (in domain calculus). In a calculus expression,
there is no order of operations to specify how to retrieve the query result-a calculus

149

150 I Chapter 6 The Relational Algebra and Relational Calculus

expression specifies only what information the result should contain. This is the main
distinguishing feature between relational algebra and relational calculus. The relational
calculus is important because it has a firm basis in mathematical logic and because the
SQL (standard query language) for RDBMSs has some of its foundations in the tuple
relational calculus. 1

The relational algebra is often considered to be an integral part of the relational data
model, and its operations can be divided into two groups. One group includes set
operations from mathematical set theory; these are applicable because each relation is
defined to be a set of tuples in the formal relational model. Set operations include UNION,
INTERSECTION, SET DIFFERENCE, and CARTESIAN PRODUCT. The other group consists of
operations developed specifically for relational databases-these include SELECT,
PROJECT, and JOIN, among others. We first describe the SELECT and PROJECT operations in
Section 6.1, because they are unary operations that operate on single relations. Then we
discuss set operations in Section 6.2. In Section 6.3, we discuss JOIN and other complex
binary operations, which operate on two tables. The COMPANY relational database shown in
Figure 5.6 is used for our examples.

Some common database requests cannot be performed with the original relational
algebra operations, so additional operations were created to express these requests. These
include aggregate functions, which are operations that can summarize data from the
tables, as well as additional types of JOIN and UNION operations. These operations were
added to the original relational algebra because of their importance to many database
applications, and are described in Section 6.4. We give examples of specifying queries
that use relational operations in Section 6.5. Some of these queries are used in subsequent
chapters to illustrate various languages.

In Sections 6.6 and 6.7 we describe the other main formal language for relational
databases, the relational calculus. There are two variations of relational calculus. The
tuple relational calculus is described in Section 6.6, and the domain relational calculus is
described in Section 6.7. Some of the SQL constructs discussed in Chapter 8 are based on
the tuple relational calculus. The relational calculus is a formal language, based on the
branch of mathematical logic called predicate calculus.r In tuple relational calculus,
variables range over tuples, whereas in domain relational calculus, variables range over
the domains (values) of attributes. In Appendix D we give an overview of the QBE
(Query-By-Example) language, which is a graphical user-friendly relational language
based on domain relational calculus. Section 6.8 summarizes the chapter.

For the reader who is interested in a less detailed introduction to formal relational
languages, Sections 6.4, 6.6, and 6.7 may be skipped.

--------~~----
1. SQL is based on tuple relational calculus, but also incorporates some of the operations from the
relational algebra and its extensions, as we shall see in Chapters 8 and 9.
2. In this chapter no familiarity with first-order predicate calculus-which deals with quantified
variables and values-is assumed.

6.1 Unary Relational Operations: SELECT and PROJECT I 151

6.1 UNARY RELATIONAL OPERATIONS:
SELECT AND PROJECT

6.1.1 The SELECT Operation
The SELECT operation is used to select a subset of the tuples from a relation that satisfy a
selection condition. One can consider the SELECT operation to be a filter that keeps only
those tuples that satisfy a qualifying condition. The SELECT operation can also be visual
ized as a horizontal partition of the relation into two sets of tuples-those tuples that satisfy
the condition and are selected, and those tuples that do not satisfy the condition and are
discarded. For example, to select the EMPLOYEE tuples whose department is 4, or those
whose salary is greater than $30,000, we can individually specify each of these two condi
tions with a SELECT operation as follows:

UDNO=4 (EMPLOYEE)

USALARY>30000(EMPLOYEE)

In general, the SELECT operation is denoted by

rr<selection condition> (R)

where the symbol IT (sigma) is used to denote the SELECT operator, and the selection con
dition is a Boolean expression specified on the attributes of relation R. Notice that R is
generally a relational algebra expression whose result is a relation-the simplest such
expression is just the name of a database relation. The relation resulting from the SELECT

operation has the same attributes as R.
The Boolean expression specified in <selection condition> is made up of a number of

clauses of the form

<attribute name> <comparison op> <constant value>,

or

<attribute name> <comparison op> <attribute name>

where <attribute name> is the name of an attribute of R, <comparison op> is normally
oneof the operators {=, <, :::;, >, 2:, ;t:}, and <constant value> is a constant value from the
attribute domain. Clauses can be arbitrarily connected by the Boolean operators AND, OR,

and NOT to form a general selection condition. For example, to select the tuples for all
employees who either work in department 4 and make over $25,000 per year, or work in
department 5 and make over $30,000, we can specify the following SELECT operation:

U(DNO=4 AND SALARY;>25000) OR (DNO=5 AND SALARY;> 30000)(EMPLOYEE)

The result is shown in Figure 6.1a.
Notice that the comparison operators in the set {=, <, -s, >, 2:, ;t:} apply to attributes

whose domains are ordered values, such as numeric or date domains. Domains of strings of
characters are considered ordered based on the collating sequence of the characters. If the
domain of an attribute is a set of unordered values, then only the comparison operators in
the set {=, :;t:} can be used. An example of an unordered domain is the domain Color = {red,

152 I Chapter 6 The Relational Algebra and Relational Calculus

(a) FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNO
Franklin T Wong 333445555 1955-12-08 638Voss,HouSlon,TX M 40000 888665555 5

Jennifer Wallace 987654321 1941-06-20 291 Berry,Beliaire,TX F 43000 888665555 4

Ramesh Narayan 666884444 1962-09-15 975 FireOak,Humble,TX M 38000 333445555 5

(b) LNAME FNAME SALARY
Smith John 30000

Wong Franklin 40000

Zelaya Alicia 25000

Wallace Jennifer 43000

Narayan Ramesh 38000

English Joyce 25000

Jabbar Ahmad 25000

Borg James 55000

(e) SEX SALARY
M 30000

M 40000

F 25000

F 43000

M 38000

M 25000

M 55000

FIGURE 6.1 Results of SELECT and PROJECT operations. (a) (J'(DNO~4 AND SALARY>25000) OR (DNO~5 AND

SALARY>30000)(EMPLOYEE). (b) "ITLNAME, FNAME, SALARy(EMPLOYEE). (c) "ITSEX, SALARy(EMPLOYEE).

blue, green, white, yellow, ...}where no order is specified among the various colors. Some
domains allow additional types of comparison operators; for example, a domain of
character strings may allow the comparison operator SUBSTRING_ OF.

In general, the result of a SELECT operation can be determined as follows. The
<selection condition> is applied independently to each tuple t in R. This is done by
substituting each occurrence of an attribute Ai in the selection condition with its value in
the tuple t[AJ If the condition evaluates to TRUE, then tuple t is selected. All the
selected tuples appear in the result of the SELECT operation. The Boolean conditions
AND, OR, and NOT have their normal interpretation, as follows:

• (condl AND cond2) is TRUE if both (cond l) and (cond2) are TRUE; otherwise, it is
FALSE.

• (cond l OR cond2) is TRUE if either (cond l) or (cond2) or both are TRUE; other
wise, it is FALSE.

• (NOT cond) is TRUE if cond is FALSE; otherwise, it is FALSE.

The SELECT operator is unary; that is, it is applied to a single relation. Moreover, the
selection operation is applied to eachtuple individually; hence, selection conditions cannot
involve more than one tuple. The degree of the relation resulting from a SELECT

operation-its number of attributes-is the same as the degree of R. The number of tuples
in the resulting relation is always less than or equal to the number of tuples in R. That is,
I (J'c (R) I :5 IR I for any condition C. The fraction of tuples selected by a selection

condition is referred to as the selectivity of the condition.
Notice that the SELECT operation is commutative; that is,

(J' <cond l >((J' <cond2>(R)) = (J' <cond2>((J' <condl>(R))

6.1 Unary Relational Operations: SELECT and PROJECT I 153

Hence, a sequence of SELECTs can be applied in any order. In addition, we can always
combine a cascade of SELECT operations into a single SELECT operation with a conjunc
tive (AND) condition; that is:

(J<condl>((J<cond2>(' .. (J<condn>(R» ... » = (J<cond l > AND <cund2> AND. . AND <condn>(R)

6.1.2 The PROJECT Operation
Ifwethink of a relation as a table, the SELECT operation selects some of the rows from the
table while discarding other rows. The PROJECT operation, on the other hand, selects cer
tain columns from the table and discards the other columns. If we are interested in only
certainattributes of a relation, we use the PROJECT operation to project the relation over
these attributes only. The result of the PROJECT operation can hence be visualized as a
vertical partition of the relation into two relations: one has the needed columns
(attributes) and contains the result of the operation, and the other contains the discarded
columns. For example, to list each employee's first and last name and sal-ary, we can use
the PROJECT operation as follows:

'ITLNAME, FNAME, SALARY(EMPLOYEE)

The resulting relation is shown in Figure 6.1 (b). The general form of the PROJECT opera
tion is

'IT<attribute list> (R)

where 'IT (pi) is the symbol used to represent the PROJECT operation, and <attribute list>
isthe desired list of attributes from the attributes of relation R. Again, notice that R is, in
general, a relational algebra expression whose result is a relation, which in the simplest case
isjust the name of a database relation. The result of the PROJECT operation has only the
attributes specified in <attribute list> in the same order as they appear in the list. Hence, its
degree is equal to the number of attributes in <attribute list>.

If the attribute list includes only nonkey attributes of R, duplicate tuples are likely to
occur. The PROJECT operation removes any duplicate tuples, so the result of the PROJECT
operation is a set of tuples, and hence a valid relation. ' This is known as duplicate
elimination. For example, consider the following PROJECT operation:

'ITSEX, SALARY(EMPLOYEE)

The result is shown in Figure 6.1c. Notice that the tuple <F, 25000> appears only once in
Figure 6.1c, even though this combination of values appears twice in the EMPLOYEE relation.

The number of tuples in a relation resulting from a PROJECT operation is always less
than or equal to the number of tuples in R. If the projection list is a superkey of R-that

---- -. ----~----- ----

3. If duplicates are not eliminated, the result would be a multiset or bag of tuples rather than a set.
Although this is not allowed in the formal relation model, it is permitted in practice. We shall see
in Chapter 8 that SQL allows the user to specify whether duplicates should be eliminated or not.

154 I Chapter 6 The Relational Algebra and Relational Calculus

is, it includes some key of R-the resulting relation has the same number of tuples as R.
Moreover,

'IT <Iist l > ('IT<list2>(R» = 'IT <listl>(R)

as long as <Iist Z> contains the attributes in <listl >; otherwise, the left-hand side is an
incorrect expression. It is also noteworthy that commutativity does not hold on PROJECT.

6.1.3 Sequences of Operations and the RENAME
Operation

The relations shown in Figure 6.1 do not have any names. In general, we may want to
apply several relational algebra operations one after the other. Either we can write the
operations as a single relational algebra expression by nesting the operations, or we can
apply one operation at a time and create intermediate result relations. In the latter case,
we must give names to the relations that hold the intermediate results. For example, to
retrieve the first name, last name, and salary of all employees who work in department
number 5, we must apply a SELECT and a PROJECT operation. We can write a single rela
tional algebra expression as follows:

'IT FNAME, LNAME, SALARY(<TONO.5 (EMPLOYEE)

Figure 6.2a shows the result of this relational algebra expression. Alternatively, we can
explicitly show the sequence of operations, giving a name to each intermediate relation:

DEPS_EMPSf-<TONO.5 (EMPLOYEE)

RESULT f-'IT FNAME, LNAME. SALARY (DEPS_EMPS)

(a)

(b)

FNAME LNAME SALARY

John Smith 30000

Franklin Wong 40000

Ramesh Narayan 38000

Joyce English 25000

I TEMP FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNO

John B Smith 123458789 1965-01-09 731 Fondren,Houston,TX M 30000 333445555 5

Franklin T Wong 333445555 1955-12-08 638 Voss,Houston,TX M 40000 888665555 5

Ramesh K Narayan 666884444 1962-09-15 975 Fire Oak,Humble,TX M 38000 333445555 5

Joyce A English 453453453 1972-07-31 5631 Rice,Houston,TX F 25000 333445555 5

I R FIRSTNAME LASTNAME SALARY

John Smith 30000

FrankHn Wong 40000

Ramesh Narayan 38000

Joyce English 25000

FIGURE 6.2 Results of a sequence of operations. (a) 'ITFNAME LNAME SALARy(<TONO=S(EMPLOYEE)). (b) Using inter
mediate relations and renaming of attributes. "

6.2 Relational Algebra Operations from Set Theory I 155

It is often simpler to break down a complex sequence of operations by specifying
intermediate result relations than to write a single relational algebra expression. We can
also use this technique to rename the attributes in the intermediate and result relations.
Thiscan be useful in connection with more complex operations such as UNION and JOIN,

as we shall see. To rename the attributes in a relation, we simply list the new attribute
names in parentheses, as in the following example:

TEMPf-(JDNOo5 (EMPLOYEE)

R(FIRSTNAME, LASTNAME, SALARY) f-1TFNAME. LNAME, SALARy(TEMP)

These two operations are illustrated in Figure 6.2b.
If no renaming is applied, the names of the attributes in the resulting relation of a

SELECT operation are the same as those in the original relation and in the same order. For a
PROJECT operation with no renaming, the resulting relation has the same attribute names as
those in the projection list and in the same order in which they appear in the list.

We can also define a formal RENAME operation-which can rename either the
relationname or the attribute names, or both-in a manner similar to the way we defined
SELECT and PROJECT. The general RENAME operation when applied to a relation R of
degree n is denoted by any of the following three forms

PS(Bl' B2- B)R) or Ps(R) or P(Bl'B2- ... ,B)R)

where the symbol P (rho) is used to denote the RENAME operator, S is the new relation
name, and Bl , B2, •• ., Bn are the new attribute names. The first expression renames both
the relation and its attributes, the second renames the relation only, and the third
renames the attributes only. If the attributes of R are (AI' A2, ••• , An) in that order, then
eachAi is renamed as Bj •

6.2 RELATIONAL ALGEBRA OPERATIONS FROM
SET THEORY

6.2.1 The UNION, INTERSECTION, and MINUS Operations
The next group of relational algebra operations are the standard mathematical operations
on sets. For example, to retrieve the social security numbers of all employees who either
work in department 5 or directly supervise an employee who works in department 5, we
can use the UNION operation as follows:

DEPS_EMPSf-(JDNOo5 (EMPLOYEE)

RESULTlf-1TSSN (DEPS_EMPS)

RESULT2 (SSN) f-1TSUPERSSN (DEPS_EMPS)

RESULTf-RESULrt U RESULT2

The relation RESULTl has the social security numbers of all employees who work in
department 5, whereas RESULT2 has the social security numbers of all employees who

156 I Chapter 6 The Relational Algebra and Relational Calculus

directly supervise an employee who works in department 5. The UNION operation
produces the tuples that are in either RESULT! or RESULT2 or both (see Figure 6.3). Thus, the
SSN value 333445555 appears only once in the result.

Several set theoretic operations are used to merge the elements of two sets in various
ways, including UNION, INTERSECTION, and SET DIFFERENCE (also called MINUS).

These are binary operations; that is, each is applied to two sets (of tuples). When these
operations are adapted to relational databases, the two relations on which any of these
three operations are applied must have the same type of tuples; this condition has been
called union compatibility. Two relations R(A1, Az, ... , An) and 5(B 1, Bz, ... , Bn) are said
to be union compatible if they have the same degree n and if dom(A) = dom(B) for 1 :::;
i :::; n. This means that the two relations have the same number of attributes, and each
corresponding pair of attributes has the same domain.

We can define the three operations UNION, INTERSECTION, and SET DIFFERENCE on
two union-compatible relations Rand 5 as follows:

• union: The result of this operation, denoted by R U S, is a relation that includes all
tuples that are either in R or in 5 or in both Rand 5. Duplicate tuples are eliminated.

• intersection: The result of this operation, denoted by R n 5, is a relation that
includes all tuples that are in both Rand 5.

• set difference (or MINUS): The result of this operation, denoted by R - 5, is a rela-
tion that includes all tuples that are in R but not in 5.

We will adopt the convention that the resulting relation has the same attribute names as
the first relation R. It is always possible to rename the attributes in the result using the
rename operator.

Figure 6,4 illustrates the three operations. The relations STUDENT and INSTRUCTOR

in Figure 6,4a are union compatible, and their tuples represent the names of students and
instructors, respectively. The result of the UNION operation in Figure 6,4b shows the
names of all students and instructors. Note that duplicate tuples appear only once in the
result. The result of the INTERSECTION operation (Figure 6,4c) includes only those who
are both students and instructors.

Notice that both UNION and INTERSECTION are commutative operations; that is,

R U 5 = 5 U R, and R n 5 = 5 n R

I RESULT1 SSN
123456789
333445555
666884444
453453453

I RESULT2 SSN

333445555
888665555

I RESULT SSN
123456789
333445555
666884444
453453453
888665555

FIGURE 6.3 Result of the UNION operation RESULT ~ RESULT! U RESULT2.

6.2 Relational Algebra Operations from Set Theory I 157

(a) I STUDENT FN LN
Susan Yao

Ramesh Shah

Johnny Kohler

Barbara Jones

Amy Ford

Jimmy Wang

Emest Gilbert

I INSTRUCTOR FNAME LNAME
John Smith

Ricardo Browne

Susan Yao

Francis Johnson

Ramesh Shah

(b)

(d)

FN LN

Susan Yao

Ramesh Shah

Johnny Kohler

Barbara Jones

Amy Ford

Jimmy Wang

Emest Gilbert

John Smith

Ricardo Browne

Francis Johnson

FN LN
Johnny Kohler

Barbara Jones

Amy Ford

Jimmy Wang

Emest Gilbert

(c)

(e)

FN LN

Susan Yao

Ramesh Shah

FNAME LNAME

John Smith

Ricardo Browne

Francis Johnson

FIGURE 6.4 The set operations UNION, INTERSECTION, and MINUS. (a) Two union
compatible relations. (b) STUDENT U INSTRUCTOR. (e) STUDENT n INSTRUCTOR. (d) STUDENT

INSTRUCTOR. (e) INSTRUCTOR - STUDENT.

Both UNION and INTERSECTION can be treated as n-ary operations applicable to

anynumber of relations because both are associative operations; that is,

R U (S U T) = (R U S) U T, and (R n S) n T = R n (S n T)

The MINUS operation is not commutative; that is, in general,

R-S*S-R

Figure 6.4d shows the names of students who are not instructors, and Figure 6.4e shows
the names of instructors who are not students.

158 I Chapter 6 The Relational Algebra and Relational Calculus

6.2.2 The CARTESIAN PRODUCT (or CROSS PRODUCT) Operation
Next we discuss the CARTESIAN PRODUCT operation-also known as CROSS PRODUCT
or CROSS JOIN-which is denoted by x. This is also a binary set operation, but the rela
tions on which it is applied do not have to be union compatible. This operation is used to
combine tuples from two relations in a combinatorial fashion. In general, the result of
R(A j , A z, ... , An) X S(Bj , Bz, ... , Bm) is a relation Q with degree n + m attributes Q(Aj ,

Az' ... , An' B j , Bz, ... , Bm), in that order. The resulting relation Q has one tuple for
each combination of tuples-one from R and one from S. Hence, if R has nR tuples
(denoted as IR I = nR), and Shas ns tuples, then R x Swill have nR * ns tuples.

The operation applied by itself is generally meaningless. It is useful when followed by
a selection that matches values of attributes coming from the component relations. For
example, suppose that we want to retrieve a list of names of each female employee's
dependents. We can do this as follows:

FEMALE_EMPSf-(TSEX=' F' (EMPLOYEE)

EMPNAMESf-'1TFNAME, LNAME, SSN (FEMALE_EMPS)

EMP_DEPENDENTSf-EMPNAMES X DEPENDENT

ACTUAL_DEPENDENTSf-(T SSN=ESSN (EMP_DEPENDENTS)

RESULTf-'1TFNAME. LNAME, DEPENDENLNAME (ACTUAL_DEPENDENTS)

The resulting relations from this sequence of operations are shown in Figure 6.5. The
EMP_DEPENDENTS relation is the result of applying the CARTESIAN PRODUCT operation to

EMPNAMES from Figure 6.5 with DEPENDENT from Figure 5.6. In EMP_DEPENDENTS, every tuple from
EMPNAMES is combined with every tuple from DEPENDENT, giving a result that is not very
meaningful. We want to combine a female employee tuple only with her particular
dependents-namely, the DEPENDENT tuples whose ESSN values match the SSN value of the
EMPLOYEE tuple. The ACTUAL_DEPENDENTS relation accomplishes this. The EMP_DEPENDENTS

relation is a good example of the case where relational algebra can be correctly applied to
yield results that make no sense at all. It is therefore the responsibility of the user to make
sure to apply only meaningful operations to relations.

The CARTESIAN PRODUCT creates tuples with the combined attributes of two
relations. We can then SELECT only related tuples from the two relations by specifying an
appropriate selection condition, as we did in the preceding example. Because this
sequence of CARTESIAN PRODUCT followed by SELECT is used quite commonly to identify
and select related tuples from two relations, a special operation, called JOIN, was created
to specify this sequence as a single operation. We discuss the JOIN operation next.

6.3 BINARY RELATIONAL OPERATIONS:
JOIN AND DIVISION

6.3.1 The JOIN Operation
The JOIN operation, denoted by :xl, is used to combine related tuples from two relations
into single tuples. This operation is very important for any relational database with more

6.3 Binary Relational Operations: JOIN and DIVISION I 159

I FEMALE_ FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNO
EMPS

Alicia J Zelaya 999887777 1968-07-19 3321 Castle,Spring,TX F 25000 987654321 4

Jennifer S Wallace 987654321 1941-06-20 291 Berry,Beliaire,TX F 43000 888665555 4

Joyce A English 453453453 1972-07-31 5631 Rice,Houston,TX F 25000 333445555 5

IEMPNAMES FNAME LNAME SSN

Alicia Zelaya 999887777

Jennifer Wallace 987654321

Joyce English 453453453

I EMP DEPENDENTS FNAME LNAME SSN ESSN DEPENDENT_NAME SEX BDATE ·..
Alicia Zelaya 999887777 333445555 Alice F 1986-04-05 ·..
Alicia Zelaya 999887777 333445555 Theodore M 1983-10-25 ·..
Alicia Zelaya 999887777 333445555 Joy F 1958-05-03 ·..
Alicia Zelaya 999887777 987654321 Abner M 1942-02-28 ·..
Alicia Zelaya 999887777 123456789 Michael M 1988-01-04 ·..
Alicia Zelaya 999887777 123456789 Alice F 1988-12-30 ·..
Alicia Zelaya 999887777 123456789 Elizabeth F 1967-05-05 ·..
Jennifer Wallace 987654321 333445555 Alice F 1986-04-05 ·..
Jennifer Wallace 987654321 333445555 Theodore M 1983-10-25 ·..
Jennifer Wallace 987654321 333445555 Joy F 1958-05-03 ·..
Jennifer Wallace 987654321 987654321 Abner M 1942-02-28 ·..
Jenniler Wallace 987654321 123456789 Michael M 1988-01-04 ·..
Jennifer Wallace 987654321 123456789 Alice F 1988-12-30 ·..
Jennifer Wallace 987654321 123456789 Elizabeth F 1967-05-05 ·..
Joyce English 453453453 333445555 Alice F 1986-04-05 ·..
Joyce English 453453453 333445555 Theodore M 1983-10-25 ·..
Joyce English 453453453 333445555 Joy F 1958-05-03 ·..
Joyce English 453453453 987654321 Abner M 1942-02-28 ...
Joyce English 453453453 123456789 Michael M 1988-01-04 ·..
Joyce English 453453453 123456789 Alice F 1988-12-30 ·..
Joyce English 453453453 123456789 Elizabeth F 1967-05-05 ·..

ACTUAL_DEPENDENTS DEPENDENT_NAME

Abner

DEPENDENT NAME

Abner

FIGURE 6.5 The CARTESIAN PRODUCT (CROSS PRODUCT) operation.

than a single relation, because it allows us to process relationships among relations. To
illustrate JOIN, suppose that we want to retrieve the name of the manager of each depart
ment. To get the manager's name, we need to combine each department tuple with the
employee tuple whose SSN value matches the MGRSSN value in the department tuple. We do

160 I Chapter 6 The Relational Algebra and Relational Calculus

this by using the JOIN operation, and then projecting the result over the necessary
attributes, as follows:

DEPT_MGR f- DEPARTMENT ><I MGRSSN=SSN EMPLOYEE

RESULTf-1TDNAME, LNAME, FNAME (DEPT_MGR)

The first operation is illustrated in Figure 6.6. Note that MGRSSN is a foreign key and that
the referential integrity constraint plays a role in having matching tuples in the refer
enced relation EMPLOYEE.

The JOIN operation can be stated in terms of a CARTESIAN PRODUCT followed by a
SELECT operation, However, JOIN is very important because it is used very frequently
when specifying database queries. Consider the example we gave earlier to illustrate
CARTESIAN PRODUCT, which included the following sequence of operations:

EMP_DEPENDENTS f- EMPNAMES X DEPENDENT

ACTUAL_DEPENDENTS f- (JSSN=ESSN (EMP_DEPENDENTS)

These two operations can be replaced with a single JOIN operation as follows:

ACTUAL_DEPENDENTS f- EMPNAMES t>< SSN=ESSN DEPENDENT

The general form of a JOIN operation on two relations" R(A I , Az, ... , An) and 5(B1,

Bz, ... , Bm) is

R i><1 <join condition>S

The result of the JOIN is a relation Q with n + m attributes Q(AI, Az, ... , An' BI, B2,

... , Bm) in that order; Q has one tuple for each combination of tuples-one from Rand
one from 5-whenever the combination satisfies the join condition. This is the main
difference between CARTESIAN PRODUCT and JOIN. In JOIN, only combinations of tuples
satisfying the join condition appear in the result, whereas in the CARTESIAN PRODUCT all
combinations of tuples are included in the result. The join condition is specified on
attributes from the two relations Rand 5 and is evaluated for each combination of tuples.
Each tuple combination for which the join condition evaluates to TRUE is included in
the resulting relation Q as a single combined tuple.

A general join condition is of the form

<condition> AND <condition> AND ... AND <condition>

I DEPT_MGR DNAME DNUMBER MGRSSN ·.. FNAME MINIT LNAME SSN ·..
Research 5 333445555 ·.. Franklin T Wong 333445555 ·..
Administration 4 987654321 · .. Jennifer S Wallace 987654321 · ..
Headquarters 1 888665555 · .. James E Borg 888665555 · ..

FIGURE 6.6 Result of the JOIN operation DEPT_MGR f- DEPARTMENT t><MGRSSN=SSN EMPLOYEE.

4. Again, notice that Rand S can be any relations that result fromgeneral relational algebra expressions.

6.3 Binary Relational Operations: JOIN and DIVISION I 161

where each condition is of the form Ai eBj , Ai is an attribute of R, Bj is an attribute of 5, Ai
and B] have the same domain, and e(theta) is one of the comparison operators {=, <, :::;, >,
2:, t}. A JOIN operation with such a general join condition is called a THETA JOIN. Tuples

whose join attributes are null do not appear in the result. In that sense, the JOIN operation

doesnotnecessarily preserve all of the information in the participating relations.

6.3.2 The EQUljOIN and NATURAL JOIN Variations of JOIN

The most common use of JOIN involves join conditions with equality comparisons only.

Such a JOIN, where the only comparison operator used is =, is called an EQUIJOIN. Both

examples we have considered were EQUI]OINs. Notice that in the result of an EQUI]OIN we

always have one or more pairs of attributes that have identical values in every tuple. For

example, in Figure 6.6, the values of the attributes MGRSSN and SSN are identical in every

tuple of DEPT_MGR because of the equality join condition specified on these two attributes.

Becauseone of each pair of attributes with identical values is superfluous, a new operation

called NATURAL JOIN-denoted by *-was created to get rid of the second (superfluous)

attribute in an EQUI]OIN condition.s The standard definition of NATURAL JOIN requires

that the two join attributes (or each pair of join attributes) have the same name in both

relations. If this is not the case, a renaming operation is applied first.

In the following example, we first rename the DNUMBER attribute of DEPARTMENT to DNUM-SO

that it has the same name as the DNUM attribute in PROJECT-and then apply NATURAL JOIN:

PROJ_DEPT f- PROJECT * P(DNAME,DNUM,MGRSSN,MGRSTARTDATE) (DEPARTMENT)

The same query can be done in two steps by creating an intermediate table DEPT as

follows:

DEPT f- P (DNAME, DNJM ,MGRSSN ,MGRSTARTDATE) (DEPARTMENT)

PROJ_DEPT f- PROJECT * DEPT

The attribute DNUM is called the join attribute. The resulting relation is illustrated in Figure

6.7a. In the PROJ_DEPT relation, each tuple combines a PROJECT tuple with the DEPARTMENT tuple for

thedepartment that controls the project, but only one joinattribute is kept.

If the attributes on which the natural join is specified already have the same names in
both relations, renaming is unnecessary. For example, to apply a natural join on the DNUMBER

attributes of DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write

DEPT_LOCS f- DEPARTMENT * DEPT_LOCATIONS

The resulting relation is shown in Figure 6.7b, which combines each department with its loca

tions and has one tuple for each location. In general, NATURAL JOIN is performed by equating

aU attribute pairs that have the same name in the two relations. There can be a list of join

attributes from each relation, and each corresponding pair must have the same name.

5.NATURAL JOIN is basically an EQUIJOIN followed by removal of the superfluous attributes.

162 I Chapter 6 The Relational Algebra and Relational Calculus

(a)

(b)

I PROJ DEPT PNAME PNUMBER PLOCATION DNUM DNAME MGRSSN MGRSTARTDATE

Productx 1 Bellaire 5 Research 333445555 1988-05-22

ProductY 2 Sugarland 5 Research 333445555 1988-05-22

ProductZ 3 Houston 5 Research 333445555 1988-05-22

Computerization 10 Stafford 4 Administration 987654321 1995-01-01

Reorganization 20 Houston 1 Headquarters 888665555 1981-06-19

Newbenefits 30 Stafford 4 Administration 987654321 1995-01-01

I DEPT_LOCS DNAME DNUMBER MGRSSN MGRSTARTDATE LOCATION

Headquarters 1 888665555 1981-06-19 Houston

Administration 4 987654321 1995-01-01 Stafford

Research 5 333445555 1988-05-22 Bellaire

Research 5 333445555 1988-05-22 Sugarland

Research 5 333445555 1988-05-22 Houston

FIGURE 6.7 Results of two NATURAL JOIN operations. (a) PROJ_DEPT f- PROJECT * DEPT. (b) DEPT_LOCS f

DEPARTMENT * DEPT_LOCATIONS.

A more general but nonstandard definition for NATURAL JOIN is

Q f- R *«listl».«!ist2»S

In this case, <Iistl> specifies a list of i attributes from R, and <list2> specifies a list of i
attributes from S. The lists are used to form equality comparison conditions between pairs
of corresponding attributes, and the conditions are then ANDed together. Only the list
corresponding to attributes of the first relation R-<Iistl >-is kept in the result Q.

Notice that if no combination of tuples satisfies the join condition, the result of a
JOIN is an empty relation with zero tuples. In general, if R has nR tuples and S has ns
tuples, the result of a JOINoperation R LX) <join conditlOn>S will have between zero and nR * ns
tuples. The expected size of the join result divided by the maximum size nR * ns leads to a
ratio called join selectivity, which is a property of each join condition. If there is no join
condition, all combinations of tuples qualify and the JOIN degenerates into a CARTESIAN
PRODUCT, also called CROSS PRODUCT or CROSS JOIN.

As we can see, the JOIN operation is used to combine data from multiple relations so
that related information can be presented in a single table. These operations are also
known as inner joins, to distinguish them from a different variation of join called outer
joins (see Section 6.4.3). Note that sometimes a join may be specified between a relation
and itself, as we shall illustrate in Section 6.4.2. The NATURAL JOIN or EQUIJOIN
operation can also be specified among multiple tables, leading to an n-way join. For
example, consider the following three-way join:

((PROJECT >< DNUM~DNUMBER DEPARTMENT) >1 MGRSSN~SSN EMPLOYEE)

This links each project to its controlling department, and then relates the department to
its manager employee. The net result is a consolidated relation in which each tuple con
tains this project-department-manager information.

6.3 Binary Relational Operations: JOIN and DIVISION I 163

6.3.3 A Complete Set of Relational Algebra Operations
It has been shown that the set of relational algebra operations {a, 'IT, U, -, x] is a com
pleteset; that is, any of the other original relational algebra operations can be expressed
asa sequence of operations from this set. For example, the INTERSECTION operation can be
expressed by using UNION and MINUS as follows:

R n 5 == (R U 5) - ((R - 5) U (5 - R))

Although, strictly speaking, INTERSECTION is not required, it is inconvenient to
specify this complex expression every time we wish to specify an intersection. As another
example, a JOIN operation can be specified as a CARTESIAN PRODUCT followed by a
SELECT operation, as we discussed:

R x <condition>5 == a <condition> (R X S)

Similarly, a NATURAL JOIN can be specified as a CARTESIAN PRODUCT preceded by
RENAME and followed by SELECT and PROJECT operations. Hence, the various JOIN

operations are also not strictly necessary for the expressive power of the relational algebra.
However, they are important to consider as separate operations because they are
convenient to use and are very commonly applied in database applications. Other
operations have been included in the relational algebra for convenience rather than
necessity. We discuss one of these-the DIVISION operation-in the next section.

6.3.4 The DIVISION Operation
The DIVISION operation, denoted by --;-, is useful for a special kind of query that some
times occurs in database applications. An example is "Retrieve the names of employees
who work on all the projects that 'John Smith' works on." To express this query using the
DIVISION operation, proceed as follows. First, retrieve the list of project numbers that
'JohnSmith' works on in the intermediate relation SMITH_PNOS:

SMITH f- a FNAME~' JOHN' AND LNAME~'SMITH' (EMPLOYEE)

SMITH_PNOS f- 'ITPNO(WORKS_ON IX1ESSN~SSN SMITH)

Next, create a relation that includes a tuple <PNO, ESSN> whenever the employee
whose social security number is ESSN works on the project whose number is PNO in the
intermediate relation SSN_PNOS:

SSN_PNOS f- 'ITESSN,PNO (WORKS_ON)

Finally, apply the DIVISION operation to the two relations, which gives the desired
employees' social security numbers:

SSNS (SSN) f- SSN_PNOS --;- SMITH_PNOS

RESULT f- 'ITFNAME, LNAME (SSNS 1, EMPLOYEE)

The previous operations are shown in Figure 6.8a.

164 I Chapter 6 The Relational Algebra and Relational Calculus

(a) I SSN PNOS ESSN PNO

123456789 1
123456789 2
666884444 3
453453453 1
453453453 2
333445555 2
333445555 3
333445555 10
333445555 20
999887777 30
999887777 10
987987987 10
987987987 30
987654321 30
987654321 20
888665555 20

I SMITH_PNOS PNO

1

2

I SSNS SSN

123456789
453453453

(b) I R A B

a1 b1
a2 b1
a3 b1
a4 b1
a1 b2
a3 b2
a2 b3
a3 b3
a4 b3
at b4

a2 b4

a3 b4

~
A

a1
a2

a3

~
B

b1
b4

FIGURE 6.8 The DIVISION operation. (a) Dividing SSN_PNOS by SMITH_PNOS.

(b) T f- R --;- S.

6.4 Additional Relational Operations I 165

In general, the DlVISION operation is applied to two relations R(Z) -7- S(X), where X
~ Z. Let Y = Z - X (and hence Z = X U Y); that is, let Y be the set of attributes of R that
are not attributes of S. The result of DIVISION is a relation T(Y) that includes a tuple t if
tuples tR appear in R with tR[Yl = t, and with tR[Xj = ts for every tuple ts in S. This means
that, for a tuple t to appear in the result T of the DlVISION, the values in t must appear in
Rin combination with every tuple in S. Note that in the formulation of the DIVISION

operation, the tuples in the denominator relation restrict the numerator relation by
selecting those tuples in the result that match all values present in the denominator. It is
notnecessary to know what those values are.

Figure 6.8b illustrates a DIVISION operation where X = {A}, Y = {B}, and Z = {A, B}.
Notice that the tuples (values) b j and b4 appear in R in combination with all three tuples
inS; that is why they appear in the resulting relation T. All other values of B in R do not
appear with all the tuples in S and are not selected: bzdoes not appear with az, and b3 does
notappear with aj'

The DIVISION operation can be expressed as a sequence of 1T, x, and - operations as
follows:

n f- 1TY(R)

T2 f- 1TY((S x T1) - R)

T f- T1 - T:

The DIVISION operation is defined for convenience for dealing with queries that
involve "universal quantification" (see Section 6.6.6) or the all condition. Most RDBMS

implementations with SQL as the primary query language do not directly implement division.
SQL has a roundabout way of dealing with the type of query illustrated above (see Section
8.5,4). Table6.1 lists the various basic relational algebra operations we have discussed.

6.4 ADDITIONAL RELATIONAL OPERATIONS
Some common database requests-which are needed in commercial query languages for
RDBMSs-cannot be performed with the original relational algebra operations described in
Sections 6.1 through 6.3. In this section we define additional operations to express these
requests. These operations enhance the expressive power of the original relational algebra.

6.4.1 Aggregate Functions and Grouping
Thefirst type of request that cannot be expressed in the basic relational algebra is to spec
ify mathematical aggregate functions on collections of values from the database. Exam
ples of such functions include retrieving the average or total salary of all employees or the
total number of employee tuples. These functions are used in simple statistical queries
that summarize information from the database tuples. Common functions applied to col
lections of numeric values include SUM, AVERAGE, MAXIMUM, and MINIMUM. The
COUNT function is used for counting tuples or values.

166 I Chapter 6 The Relational Algebra and Relational Calculus

TABLE 6.1 OPERATIONS OF RElATIONAL ALGEBRA

Operation

SELECT

PROJECT

THETA JOIN

EQUIJOIN

NATURAL JOIN

UNION

INTERSECTION

DIFFERENCE

CARTESIAN

PRODUCT

DIVISION

Purpose
Selects all tuples that satisfy the selection condition
from a relation R.
Produces a new relation with only some of the attributes
of R, and removes duplicate tuples.
Produces all combinations of tuples from R j and Rz that
satisfy the join condition.
Produces all the combinations of tuples from R j and Rz
that satisfy a join condition with only equality compar
isons.
Same as EQUIJOIN except that the join attributes of Rz
are not included in the resulting relation; if the join
attributes have the same names, they do not have to be
specified at all.
Produces a relation that includes all the tuples in R j or
Rz or both R j and Rz; R j and Rz must be union compat
ible.
Produces a relation that includes all the tuples in both
R j and Rz;R j and Rz must be union compatible.
Produces a relation that includes all the tuples in R j that
are not in Rz;R j and Rz must be union compatible.
Produces a relation that has the attributes of R j and Rz
and includes as tuples all possible combinations of tuples
from R j and Rz.
Produces a relation R(X) that includes all tuples t[Xj in
R j (2) that appear in R j in combination with every tuple
from Rz(Y), where 2 = X U Y.

Notation

a <SELECTION CONDITION> (R)

1T<ATTRIBUTE LIST> (R)

R 1 D<I <lOIN CONDITION>R2, OR

R11XI «JOIN ATTRIBUTES 1» ,

elOIN ATTRIBUTES 2» R2

R 1" <lOIN CONDITION>R2, OR

R1* «JOIN ATTRIBUTES 1» ,

«JOIN ATTRIBUTES 2» R2

OR R1 " R2

Another common type of request involves grouping the tuples in a relation by the
value of some of their attributes and then applying an aggregate function independently
to each group. An example would be to group employee tuples by DNO, so that each group
includes the tuples for employees working in the same department. We can then list each
DNO value along with, say, the average salary of employees within the department, or the
number of employees who work in the department.

We can define an AGGREGATE FUNCTION operation, using the symbol lJ (pro
nounced "script F"),6 to specify these types of requests as follows:

<grouping attributes> ~ <function list> (R)

6. There is no single agreed-upon notation for specifying aggregate functions. In some cases a "script
A" is used.

6.4 Additional Relational Operations 1167

where <grouping attributes> is a list of attributes of the relation specified in R, and <func
tion list> is a list of «function> <attribute» pairs. In each such pair, <function> is one
of the allowed functions-such as SUM, AVERAGE, MAXIMUM, MINIMUM, COUNT-and
<attribute> is an attribute of the relation specified by R. The resulting relation has the
grouping attributes plus one attribute for each element in the function list. For example,
to retrieve each department number, the number of employees in the department, and
theiraverage salary, while renaming the resulting attributes as indicated below, we write:

PR(DNO, NO_OF_EMPLOYEES, AVERAGE_SAL)(DNO~ COUNT SSN' AVERAGE SALARY (EMPLOYEE))

The result of this operation is shown in Figure 6.9a.
In the above example, we specified a list of attribute names-between parentheses in

the RENAME operation-for the resulting relation R. If no renaming is applied, then the
attributes of the resulting relation that correspond to the function list will each be the
concatenation of the function name with the attribute name in the form <function>
<artriburec-.j For example, Figure 6.9b shows the result of the following operation:

DNO ~ COUNT ' AVERAGE (EMPLOYEE)
SSN SALARY

If no grouping attributes are specified, the functions are applied to all the tuples in the
relation, so the resulting relation has a single tuple only. For example, Figure 6.9c shows
the result of the following operation:

~ COUNT ' AVERAGE (EMPLOYEE)SSN SALARY

(a)

(b)

IR DNO NO_OF_EMPLOYEES AVERAGE_SAL

5 4 33250

4 3 31000

1 1 55000

DNO COUNT_SSN AVERAGE_SALARY

5 4 33250
4 3 31000
1 1 55000

(c)

8 35125

FIGURE 6.9 The AGGREGATE FUNCTION operation. (a) PR(DNO, NO_Of_EMPLOYEES, AVERAGUAL)

"" b Cl>'(DND ~~ COUNT AVERAGE (EMPLOYEE)). () DNO ~~ COUNT AVERAGE (EMPLOYEE).
'" SSN' SALARY SSN' SALARY

(C) [~ COUNT AVERAGE (EMPLOYEE).
SSN' SALARY

7.Note that this is an arbitrary notation we are suggesting. There is no standard notation.

168 I Chapter 6 The Relational Algebra and Relational Calculus

It is important to note that, in general, duplicates are not eliminated when an
aggregate function is applied; this way, the normal interpretation of functions such as
SUM and AVERAGE is computed.f It is worth emphasizing that the result of applying an
aggregate function is a relation, not a scalar number-even if it has a single value. This
makes the relational algebra a closed system.

6.4.2 Recursive Closure Operations
Another type of operation that, in general, cannot be specified in the basic original rela
tional algebra is recursive closure. This operation is applied to a recursive relationship
between tuples of the same type, such as the relationship between an employee and a
supervisor. This relationship is described by the foreign key SUPERSSN of the EMPLOYEE rela
tion in Figures 5.5 and 5.6, and it relates each employee tuple (in the role of supervisee)
to another employee tuple (in the role of supervisor). An example of a recursive opera
tion is to retrieve all supervisees of an employee e at all levels-that is, all employees e'
directly supervised bye, all employees e" directly supervised by each employee e'; all
employees e'" directly supervised by each employee e"; and so on.

Although it is straightforward in the relational algebra to specify all employees supervised
bye at a specific level, it is difficult to specify all supervisees at all levels. For example, to specify
the SSNs of all employees e' directly supervised--at level one-by the employee e whose name
is 'James Borg' (see Figure 5.6), we can apply the following operation:

BORG_SSN ~ 'ITSSN (<J FNAME=' JAMES' AND LNAME=' BORG' (EMPLOYEE))

SUPERVISION(sSNi, SSN2) ~ 'ITSSN, SUPERSSN (EMPLOYEE)

RESULTi(SSN) ~ 'ITSSNI(SUPERVISION i><J SSN2=SSN BORG_SSN)

To retrieve all employees supervised by Borg at level 2-that is, all employees e"
supervised by some employee e' who is directly supervised by Borg-we can apply another
JOIN to the result of the first query, as follows:

RESULT2 (SSN) ~ 'ITSSNI(SUPERVISION I><I SSN2=SSN RESULrr)

To get both sets of employees supervised at levels 1 and 2 by 'James Borg,' we can
apply the UNION operation to the two results, as follows:

RESULT~ RESULT2 U RESULTi

The results of these queries are illustrated in Figure 6.10. Although it is possible to
retrieve employees at each level and then take their UNION, we cannot, in general,
specify a query such as "retrieve the supervisees of 'James Borg' at all levels" without
utilizing a looping mechanism." An operation called the transitive closure of relations has
been proposed to compute the recursive relationship as far as the recursion proceeds.

8. In SQL, the option of eliminating duplicates before applying the aggregate function is available by
including the keyword DISTINCT (see Section 8.4.4).
9. The SQU standard includes syntax for recursive closure.

6.4 Additional Relational Operations I 169

(Borg's SSNis888665555)

(SSN) (SUPERSSN)

I SUPERVISION SSN1 SSN2
123456789 333445555
333445555 888665555
999887777 987654321
987654321 888665555
666884444 333445555
453453453 333445555
987987987 987654321
888665555 null

(Supervised byBorg's subordinates)

I RESULT 1 SSN

333445555
987654321

(Supervised byBorg)

I RESULT2 SSN

123456789
999887777
666884444
453453453
987987987

I RESULT SSN

123456789
999887777
666884444
453453453
987987987
333445555
987654321

(RESULT1 u RESULT2)

FIGURE 6.10 A two-level recursive query.

6.4.3 OUTER JOIN Operations
We now discuss some extensions to the JOIN operation that are necessary to specify cer
tain types of queries. The JOIN operations described earlier match tuples that satisfy the
joincondition. For example, for a NATURAL JOIN operation R * 5, only tuples from R that
havematching tuples in 5-and vice versa-appear in the result. Hence, tuples without a
matching (or related) tuple are eliminated from the JOIN result. Tuples with null values in
the join attributes are also eliminated. This amounts to loss of information, if the result of
JOIN is supposed to be used to generate a report based on all the information in the com
ponent relations.

A set of operations, called outer joins, can be used when we want to keep all the
tuples in R, or all those in 5, or all those in both relations in the result of the JOIN,

regardless of whether or not they have matching tuples in the other relation. This satisfies
the need of queries in which tuples from two tables are to be combined by matching
corresponding rows, but without losing any tuples for lack of matching values. The join
operations we described earlier in Section 6.3, where only matching tuples are kept in the
result, are called inner joins.

170 I Chapter 6 The Relational Algebra and Relational Calculus

For example, suppose that we want a list of all employee names and also the name of
the departments they manage if they happen to manage a department; if they do not manage
any, we can so indicate with a null value. We can apply an operation LEFT OUTER JOIN,

denoted by Jxl, to retrieve the result as follows:

TEMP ~ (EMPLOYEE]X SSN=MGRSSN DEPARTMENT)

RESULT ~ 'ITFNAME. MINH. LNAME. DNAME (TEMP)

The LEFT OUTER JOIN operation keeps every tuple in the first, or left, relation R in R
fi S; if no matching tuple is found in S, then the attributes of S in the join result are filled
or "padded" with null values. The result of these operations is shown in Figure 6.11.

A similar operation, RIGHT OUTER JOIN, denoted by x, keeps every tuple in the
second, or right, relation S in the result of R)<[S. A third operation, FULL OUTER JOIN,

denoted by J><: keeps all tuples in both the left and the right relations when no matching
tuples are found, padding them with null values as needed. The three outer join
operations are part of the sQL2 standard (see Chapter 8).

6.4.4 The OUTER UNION Operation
The OUTER UNION operation was developed to take the union of tuples from two rela
tions if the relations are not union compatible. This operation will take the UNION of tuples
in two relations R(X, Y) and S(X, Z) that are partially compatible, meaning that only
some of their attributes, say X, are union compatible. The attributes that are union com
patible are represented only once in the result, and those attributes that are not union
compatible from either relation are also kept in the result relation T(X, Y, Z).

Two tuples t1 in Rand tz in S are said to match if t1[X]=tZ[X], and are considered to

represent the same entity or relationship instance. These will be combined (unioned) into a
single tuple in T. Tuples in either relation that have no matching tuple in the other relation
are padded with null values. For example, an OUTER UNION can be applied to two relations
whose schemas are STUDENT(Name, SSN, Department, Advisor) and INSTRuCToR(Name, SSN,
Department, Rank). Tuples from the two relations are matched based on having the same

I RESULT FNAME MINIT LNAME DNAME
John B Smith null

Franklin T Wong Research

Alicia J Zelaya null

Jennifer S Wallace Administration

Ramesh K Narayan null

Joyce A English null

Ahmad V Jabbar null

James E Borg Headquarters

FIGURE 6.11 The result of a LEFT OUTER JOIN operation.

6.5 Examples of Queries in Relational Algebra I 171

combination of values of the shared attributes-Name, SSN, Department. The result

relation, STUDENT_OR_INSTRUCTOR, will have the following attributes:

STUDENT_OR_INSTRuCToR(Name, SSN, Department, Advisor, Rank)

All the tuples from both relations are included in the result, but tuples with the same

(Name, SSN, Department) combination will appear only once in the result. Tuples

appearing only in STUDENT will have a null for the Rank attribute, whereas tuples appearing

only in INSTRUCTOR will have a null for the Advisor attribute. A tuple that exists in both
relations, such as a student who is also an instructor, will have values for all its attributes.l"

Notice that the same person may still appear twice in the result. For example, we

couldhave a graduate student in the Mathematics department who is an instructor in the

Computer Science department. Although the two tuples representing that person in STU

DENT and INSTRUCTOR will have the same (Narne, SSN) values, they will not agree on the

Department value, and so will not be matched. This is because Department has two

separate meanings in STUDENT (the department where the person studies) and INSTRUCTOR

(the department where the person is employed as an instructor). If we wanted to union
persons based on the same (Name, SSN) combination only, we should rename the

Department attribute in each table to reflect that they have different meanings, and

designate them as not being part of the union-compatible attributes.

Another capability that exists in most commercial languages (but not in the basic

relational algebra) is that of specifying operations on values after they are extracted from

the database. For example, arithmetic operations such as +, -, and * can be applied to

numeric values that appear in the result of a query.

6.5 EXAMPLES OF QUERIES IN RELATIONAL ALGEBRA
Wenow give additional examples to illustrate the use of the relational algebra operations.

All examples refer to the database of Figure 5.6. In general, the same query can be stated

in numerous ways using the various operations. We will state each query in one way and

leave it to the reader to come up with equivalent formulations.

QUERY 1

Retrieve the name and address of all employees who work for the 'Research' department.

RESEARCH_DEPT f- (J'DNAME=' RESEARCH' (DEPARTMENT)

RESEARCH_EMPS f- (RESEARCH_DEPT txJDNUMBER=DNOEMPLOYEE)

RESULT f- 'ITFNAME. LNAME, ADDRESS (RESEARCH_EMPS)

10. Notice that OUTER UNION is equivalent to a FULL OUTER JOIN if the join attributes are all the
commonattributes of the two relations.

172 I Chapter 6 The Relational Algebra and Relational Calculus

This query could be specified in other ways; for example, the order of the JOIN and
SELECT operations could be reversed, or the JOIN could be replaced by a NATURAL JOIN

after renaming one of the join attributes.

QUERY 2

For every project located in 'Stafford', list the project number, the controlling depart
ment number, and the department manager's last name, address, and birth date.

STAFFORO_PROJS f- (JPLOCATION=' STAFFORD' (PROJECT)

CONTR_DEPT f- (STAFFORD_PROJS N DNVM=DNVMBER DEPARTMENT)

PROJ_DEPT_MGR f- (CONTR_DEPT NMGRSSN=SSN EMPLOYEE)

RESULT f- 'IT PNUMBER, DNUM, LNAME, ADDRESS. BDATE (PROJ_DEPT_MGR)

QUERY 3

Find the names of employees who work on all the projects controlled by department
number 5.

DEPT5_PROJS (PNO) f- 'IT PNUMBER(JDNUM=5 (PROJECT))

EMP_PROJ(SSN, PNO) f- 'IT ESSN, PNO (WORKS_ON)

RESULT_EMP_SSNS f- EMP_PROJ -;- DEPT5_PROJS

RESULT f- 'IT LNAME, FNAME (RESULT_EMP_SSNS * EMPLDYEE)

QUERY 4

Make a list of project numbers for projects that involve an employee whose last name is
'Smith', either as a worker or as a manager of the department that controls the project.

SMITHS(ESSN) f- 'ITSSN(JLNAME=' SMITH' (EMPLOYEE))

SMITH_WORKER_PROJ f- 'IT PND(WORKS_ON * SMITHS)

MGRS f- 'IT LNAME, DNUMBER (EMPLOYEE >< SSN=MGRSSN DEPARTMENT)

SMITH_MANAGED_DEPTS (DNUM) f- 'IT DNUMBER(JLNAME=' SMITH' (MGRS))

SMITH_MGR_PROJS (PNO) f- 'IT PNUMBER (SMITH_MANAGED_DEPTS * PROJ ECT)

RESULT f- (SMITH_WORKER_PROJS U SMITH_MGR_PROJS)

QUERY 5

List the names of all employees with two or more dependents.

Strictly speaking, this query cannot be done in the basic (original) relational algebra. We
have to use the AGGREGATE FUNCTION operation with the COUNT aggregate function.
We assume that dependents of the sameemployee have distinct DEPENDENT_NAME values.

n(SSN, NO_OF_DEPTS) f- ESSN ~ COUNT (OEPENDENT)
DEPENDENT NAME

T 2 f- (JNO_OF_DEPS20:2 (Tl.)

RESULT f- 'ITLNAME, FNAME(T2 " EMPLOYEE)

6.6 The Tuple Relational Calculus I 173

QUERY 6

Retrieve the names of employees who have no dependents.

This is an example of the type of query that uses the MINUS (SET DIFFERENCE) opera
tion.

ALL_EMPS f- 'ITSSN (EMPLOYEE)

EMPS_WITH_DEPS (SSN) f- 'ITESSN (DEPENDENT)

EMPS_WITHOUT_DEPS f- (ALL_EMPS - EMPS_WITH_DEPS)

RESULT f- 'ITLNAME, FNAME (EMPS_WITHOUT_DEPS * EMPLOYEE)

QUERY 7

List the names of managers who have at least one dependent.

MGRS(SSN) f- 'ITMGRSSN(DEPARTMENT)

EMPS_WITH_DEPS (SSN) f- 'ITESSN (DEPENDENT)

MGRS_WITH_DEPS f- (MGRS n EMPS_WITH_DEPS)

RESULT f- 'ITLNAME, FNAME (MGRS_WITH_DEPS * EMPLOYEE)

As we mentioned earlier, the same query can in general be specified in many different
ways. For example, the operations can often be applied in various orders. In addition,
some operations can be used to replace others; for example, the INTERSECTION operation
in Query 7 can be replaced by a NATURAL JOIN. As an exercise, try to do each of the
above example queries using different operations. I I In Chapter 8 and in Sections 6.6 and
6,7, we show how these queries are written in other relational languages.

6.6 THE TUPLE RELATIONAL CALCULUS
In this and the next section, we introduce another formal query language for the rela
tional model called relational calculus. In relational calculus, we write one declarative
expression to specify a retrieval request, and hence there is no description of how to eval
uate a query. A calculus expression specifies what is to be retrieved rather than how to
retrieve it. Therefore, the relational calculus is considered to be a nonprocedural lan
guage. This differs from relational algebra, where we must write a sequence of operations to
specify a retrieval request; hence, it can be considered as a procedural way of stating a
query. It is possible to nest algebra operations to form a single expression; however, a cer
tain order among the operations is always explicitly specified in a relational algebra
expression. This order also influences the strategy for evaluating the query. A calculus
expression may be written in different ways, but the way it is written has no bearing on
howa query should be evaluated.

11.When queries are optimized (see Chapter 15), the system will choose a particular sequence of
operations that corresponds to an execution strategy that can be executed efficiently.

174 I Chapter 6 The Relational Algebra and Relational Calculus

It has been shown that any retrieval that can be specified in the basic relational
algebra can also be specified in relational calculus, and vice versa; in other words, the
expressive power of the two languages is identical. This led to the definition of the
concept of a relationally complete language. A relational query language L is considered
relationally complete if we can express in L any query that can be expressed in relational
calculus. Relational completeness has become an imporrant basis for comparing the
expressive power of high-level query languages. However, as we saw in Section 6,4,
cerrain frequently required queries in darabase applications cannor be expressed in basic
relational algebra or calculus. Most relational query languages are relationally complete
but have more expressive power than relational algebra or relational calculus because of
additional operations such as aggregate functions, grouping, and ordering.

In this section and the next, all our examples again refer to the database shown in
Figures 5.6 and 5.7. We will use the same queries that were used in Section 6.5. Sections
6.6.5 and 6.6.6 discuss dealing with universal quantifiers and may be skipped by students
interested in a general introduction to tuple calculus.

6.6.1 Tuple Variables and Range Relations
The tuple relational calculus is based on specifying a number of tuple variables. Each
tuple variable usually ranges over a parricular database relation, meaning that the variable
may take as its value any individual tuple from that relation. A simple tuple relational
calculus query is of the form

{t I COND(t)}

where t is a tuple variable and CONO(t) is a conditional expression involving t. The result
of such a query is the set of all tuples t that satisfy CONO(t). For example, to find all
employees whose salary is above $50,000, we can write the following tuple calculus
expression:

[r I EMPLOYEE(t) and t.SALARy>50000}

The condition EMPLOYEE(t) specifies that the range relation of tuple variable t is
EMPLOYEE. Each EMPLOYEE tuple t rhat satisfies the condition t.SALARy>50000 will be retrieved.
Notice that t.SALARY references attribute SALARY of tuple variable t; this notation resembles
how attribute names are qualified wirh relarion names or aliases in SQL, as we shall see in
Chapter 8. In the notation of Chapter 5, t.SALARY is the same as writing t[SALARyj.

The above query retrieves all attribute values for each selected EMPLOYEE tuple r. To
retrieve only some of the attributes-say, the first and last names-we write

{t.FNAME, t.LANME I EMPLOYEE(t) AND t.SALARy>50000}

Informally, we need to specify the following information in a tuple calculus expression:

• For each tuple variable t, the range relation R of t. This value is specified by a condi
tion of the form R(t).

6.6 The Tuple Relational Calculus I 175

• A condition to select particular combinations of tuples. As tuple variables range over
their respective range relations, the condition is evaluated for every possible combi
nation of tuples to identify the selected combinations for which the condition evalu
ates to TRUE.

• A set of attributes to be retrieved, the requested attributes. The values of these
attributes are retrieved for each selected combination of tuples.

Before we discuss the formal syntax of tuple relational calculus, consider another query.

QUERY 0

Retrieve the birth date and address of the employee (or employees) whose name is
'John B. Smith'.

QO: {t.BDATE, t.ADDRESS I EMPLOYEE(t) AND t.FNAME='John' AND t.MINIT='B' AND
t.LNAME='Smith'}

ln tuple relational calculus, we frrst specify the requested attributes t.BDATE and
t.ADDRESS for each selected tuple r. Then we specify the condition for selecting a tuple
following the bar (I)-namely, that t be a tuple of the EMPLOYEE relation whose FNAME, MINIT,
and LNAME attribute values are 'John', 'B', and 'Smith', respectively.

6.6.2 Expressions and Formulas in Tuple
Relational Calculus

Ageneral expression of the tuple relational calculus is of the form

{tl·Aj , tz·Ak, ••• ,tn·Am I COND(tl, tz, ... , tn' tn+ l , tn+Z' ••• , tn+m)}

where tl, tz, ... , tn' tn+I' ... , tn+m are tuple variables, each A j is an attribute of the relation
on which tj ranges, and COND is a condition or formula'< of the tuple relational calculus.
Aformula is made up of predicate calculus atoms, which can be one of the following:

1. An atom of the form R(t), where R is a relation name and tj is a tuple variable.
This atom identifies the range of the tuple variable ti as the relation whose name
is R.

2. An atom of the form tj.A op tj'B, where op is one of the comparison operators in
the set {=, <, :S, >, 2:, :t}, tj and tj are tuple variables, A is an attribute of the rela
tion on which t j ranges, and B is an attribute of the relation on which tj ranges.

3. An atom of the form ti.A op core op tj.B, where op is one of the comparison oper
ators in the set {=, <, :S, >, 2:, :t}, tj and tj are tuple variables, A is an attribute of
the relation on which t j ranges, B is an attribute of the relation on which tj ranges,
and c is a constant value.

12. Also called a well-formed formula, or wff, in mathernaticallogic.

176 I Chapter 6 The Relational Algebra and Relational Calculus

Each of the preceding atoms evaluates to either TRUE or FALSE for a specific
combination of tuples; this is called the truth value of an atom. In general, a tuple
variable t ranges over all possible tuples "in the universe." For atoms of the form R(t), if t
is assigned to a tuple that is a member of the specified relation R, the atom is TRUE;

otherwise, it is FALSE. In atoms of types 2 and 3, if the tuple variables are assigned to
tuples such that the values of the specified attributes of the tuples satisfy the condition,
then the atom is TRUE.

A formula (condition) is made up of one or more atoms connected via the logical
operators AND, OR, and NOT and is defined recursively as follows:

1. Every atom is a formula.

2. If F[and Fz are formulas, then so are (F[AND Fz)' (F[OR Fz), NOT(F[), and
NOT (Fz). The truth values of these formulas are derived from their component
formulas F[and Fz as follows:

a. (F[AND Fz) is TRUE if both F[and Fz are TRUE; otherwise, it is FALSE.

b. (F[OR Fz) is FALSE if both F[and Fz are FALSE; otherwise, it is TRUE.

c. NOT(F[) is TRUE if F[is FALSE; it is FALSE if F[is TRUE.

d. NOT(Fz) is TRUE if Fz is FALSE; it is FALSE if Fz is TRUE.

6.6.3 The Existential and Universal Quantifiers
In addition, two special symbols called quantifiers can appear in formulas; these are the
universal quantifier ('V) and the existential quantifier (3). Truth values for formulas
with quantifiers are described in rules 3 and 4 below; first, however, we need to define the
concepts of free and bound tuple variables in a formula. Informally, a tuple variable t is
bound if it is quantified, meaning that it appears in an (3 t) or ('rI t) clause; otherwise, it
is free. Formally, we define a tuple variable in a formula as free or bound according to the
following rules:

• An occurrence of a tuple variable in a formula F that is an atom is free in F.

• An occurrence of a tuple variable t is free or bound in a formula made up of logical
connectives-s-ff', ANd Fz), (F[OR Fz), NOT(F[), and NOT(Fz)-depending on
whether it is free or bound in F[or Fz (if it occurs in either). Notice that in a formula
of the form F = (F[AND Fz) or F = (F[OR Fz), a tuple variable may be free in F]
and bound in Fz, or vice versa; in this case, one occurrence of the tuple variable is
bound and the other is free in F.

• All free occurrences of a tuple variable t in F are bound in a formula F' of the form
F' = (3 t)(F) or F' = ('rI t)(F). The tuple variable is bound to the quantifier specified
in F'. For example, consider the following formulas:

FlO. DNAME=' RESEARCH'

F2 (3T) (D. DNUMBER=T. DNO)

F3 ('riD) (D. MGRSSN= , 333445555 ')

6.6 The Tuple Relational Calculus I 177

The tuple variable d is free in both F j and Fz, whereas it is bound to the (V)
quantifier in F3• Variable t is bound to the (3) quantifier in Fz.

We can now give rules 3 and 4 for the definition of a formula we started earlier:

3. If F is a formula, then so is (3 t)(F), where t is a tuple variable. The formula
(3 t)(F) is TRUE if the formula F evaluates to TRUE for some (at least one) tuple
assigned to free occurrences of tin F; otherwise, (3 t)(F) is FALSE.

4. If F is a formula, then so is (V t)(F), where t is a tuple variable. The formula
(V t)(F) is TRUE if the formula F evaluates to TRUE for every tuple (in the uni
verse) assigned to free occurrences of tin F; otherwise, (V t)(F) is FALSE.

The (3) quantifier is called an existential quantifier because a formula (3 t)(F) is
TRUE if "there exists" some tuple that makes F TRUE. For the universal quantifier, (V
t)(F) is TRUE if every possible tuple that can be assigned to free occurrences of t in F is
substituted for t, and F is TRUE for every such substitution. It is called the universal or "for
all" quantifier because every tuple in "the universe of" tuples must make F TRUE to make
thequantified formula TRUE.

6.6.4 Example Queries Using the Existential Quantifier
We will use some of the same queries from Section 6.5 to give a flavor of how the same que
ries are specified in relational algebra and in relational calculus. Notice that some queries
areeasier to specify in the relational algebra than in the relational calculus, and vice versa.

QUERY 1

Retrieve the name and address of all employees who work for the 'Research' department.

Ql: {t.FNAME, t.LNAME, t.ADDRESS I EMPLOYEE(t) AND (3d)
(DEPARTMENT(d) AND d.DNAME='Research' AND d.DNUMBER=t.DNO) }

The only free tuple variables in a relational calculus expression should be those that
appear to the left of the bar (I). In Ql, t is the only free variable; it is then bound
successively to each tuple. If a tuple satisfies the conditions specified in Ql, the attributes
FNAME, LNAME, and ADDRESS are retrieved for each such tuple. The conditions EMPLOYEE(t) and
DEPARTMENT(d) specify the range relations for t and d. The condition d.DNAME = 'Research' is a
selection condition and corresponds to a SELECT operation in the relational algebra,
whereas the condition d.DNUMBER = t.DNO is a join condition and serves a similar purpose to
the JOIN operation (see Section 6.3).

QUERY 2

Forevery project located in 'Stafford', list the project number, the controlling department
number, and the department manager's last name, birth date, and address.

Q2: {p.PNUMBER, p.DNUM, m.LNAME, m.BDATE, m.ADDRESS I PROJECT(p) AND
EMPLOYEE(m) AND p.PLOCATION='Stafford' AND
((3d)(DEPARTMENT(d) AND p.DNUM=d.DNUMBER AND d.MGRSSN=m.SSN)) }

178 I Chapter 6 The Relational Algebra and Relational Calculus

In Q2 there are two free tuple variables, p and rn. Tuple variable d is bound to the
existential quantifier. The query condition is evaluated for every combination of tuples
assigned to p and m; and out of all possible combinations of tuples to which p and mare
bound, only the combinations that satisfy the condition are selected.

Several tuple variables in a query can range over the same relation. For example, to
specify the query Q8-for each employee, retrieve the employee's first and last name and
the first and last name of his or her immediate supervisor-we specify two tuple variables
e and s that both range over the EMPLOYEE relation:

Q8: {e.FNAME, e.LNAME, s.FNAME, s.LNAME I EMPLOYEE(e) AND EMPLOYEE(s) AND
e.SUPERSSN=s.SSN}

QUERY 3'

Find the name of each employee who works on some project controlled by depart
ment number 5. This is a variation of query 3 in which "all" is changed to "some." In
this case we need two join conditions and two existential quantifiers.

Q3': {e. LNAME. e. FNAME I EMPLOYEE(e) AND ((3 x)(3 w)

(PROJECT(x) AND WORKS_ON(w) AND x.DNUM=5 AND w.ESSN=e.SSN AND
x.PNUMBER=w.PNO)) }

QUERY 4

Make a list of project numbers for projects that involve an employee whose last name
is 'Smith', either as a worker or as manager of the controlling department for the
project.

Q4: {p.PNUMBER I PROJECT(p) AND (((3 e)(3 w)(EMPLOYEE(e) AND WORKS_ON(w)
AND w.PNO=p.PNUMBER AND e.LNAME='Smith' AND e.SSN=w.ESSN))

or

((3 m)(3 d)(EMPLOYEE(m) AND DEPARTMENT(d) AND
p.DNUM=d.DNUMBER AND d.MGRSSN=m.SSN AND m.LNAME='Smith'))) }

Compare this with the relational algebra version of this query in Section 6.5. The
UNION operation in relational algebra can usually be substituted with an OR connective
in relational calculus. In the next section we discuss the relationship between the
universal and existential quantifiers and show how one can be transformed into the other.

6.6.5 Transforming the Universal and Existential
Quantifiers

We now introduce some well-known transformations from mathematical logic that relate
the universal and existential quantifiers. It is possible to transform a universal quantifier
into an existential quantifier, and vice versa, to get an equivalent expression. One general
transformation can be described informally as follows: Transform one type of quantifier

6.6 The Tuple Relational Calculus I 179

into the other with negation (preceded by NOT); AND and OR replace one another; a
negated formula becomes unnegated; and an unnegated formula becomes negated. Some
special cases of this transformation can be stated as follows, where the == symbol stands for
equivalent to:

('if x) (P(x)) fNOT (3 x) (NOT (P(x)))

(3 x) (P(x)) f NOT <,if x) (NOT (P(x)))

('if x) (P(x) AND Q(x)) f NOT (3 x) (NOT (P(x)) OR NOT (Q(x)))

(ifx) (P(x) OR Q(x)) f NOT (3 x) (NOT (P(x)) AND NOT «xo»
(3 x) (P(x)) OR Q(x)) f NOT <,if x) (NOT (P(x)) AND NOT (Q(x)))

(3 x) (P(x) AND Q(x)) f NOT <'if x) (NOT (P(x)) OR NOT (Q(x)))

Notice also that the following is TRUE, where the ~ symbol stands for implies:

('if x) (P(x)) ~ (3 x) (P(x))

NOT (3 x) (P(x)) ~ NOT ('V x) (P(x))

6.6.6 Using the Universal Quantifier
Wheneverwe use a universal quantifier, it is quite judicious to follow a few rules to ensure
thatour expression makes sense. We discuss these rules with respect to Query 3.

QUERY 3

Find the names of employees who work on all the projects controlled by department
number 5. One way of specifying this query is by using the universal quantifier as
shown.

Q3: {e.LNAME, e.FNAME I EMPLOYEE(e) AND (('V x)(NOT(PROJECT(x)) OR
NOT (x. DNUM=5)

OR ((3 w)(WORKS_ON(w) AND w.ESSN=e.SSN AND x.PNUMBER=w.PNO)))) }

We can break up Q3 into its basic components as follows:

Q3: {e.LNAME, e.FNAME I EMPLOYEE(e) AND F' }
F' = (('V x)(NOT(PROJECT(x)) OR FI))

FI = NOT(x.DNUM=5) OR Fz
Fz = ((3 w) (WORKS_ON (w) AND w. ESSN = e. SSN AND x. PNUMBER=w. PNO))

We want to make sure that a selected employee e works on all the projects controlled
by department 5, but the definition of universal quantifier says that to make the
quantified formula TRUE, the inner formula must be TRUE for all tuples in the universe.
The trick is to exclude from the universal quantification all tuples that we are not
interested in by making the condition TRUE for all such tuples. This is necessary because a
universally quantified tuple variable, such as x in Q3, must evaluate to TRUE for every
possible tuple assigned to it to make the quantified formula TRUE. The first tuples to

180 I Chapter 6 The Relational Algebra and Relational Calculus

exclude (by making them evaluate automatically to TRUE) are those that are not in the
relation R of interest. In Q3, using the expression NOT(PROJECT(x)) inside the
universally quantified formula evaluates to TRUE all tuples x that are not in the PROJECT

relation. Then we exclude the tuples we are not interested in from R itself. In Q3, using
the expression NOT(x.DNUM=5) evaluates to TRUE all tuples x that are in the PROJECT

relation but are not controlled by department 5. Finally, we specify a condition Fz that
must hold on all the remaining tuples in R. Hence, we can explain Q3 as follows:

1. For the formula F' = ('if x)(F) to be TRUE, we must have the formula F be TRUE

for all tuples in the universe that can be assigned to x. However, in Q3 we are only
interested in F being TRUE for all tuples of the PROJECT relation that are controlled
by department 5. Hence, the formula F is of the form (NOT(PROJECT(X)) OR F1).

The 'NOT(PROJECT(X)) OR ... ' condition is TRUE for all tuples not in the PROJECT

relation and has the effect of eliminating these tuples from consideration in the
truth value of Fl' For every tuple in the PROJECT relation, F I must be TRUE if F' is to
be TRUE.

2. Using the same line of reasoning, we do not want to consider tuples in the PROJECT

relation that are not controlled by department number 5, since we are only inter
ested in PROJECT tuples whose DNUM = 5. We can therefore write:

IF (x.DNUM=5) THEN Fz
which is equivalent to

(NOT (x.DNUM=5) OR Fz)

3. Formula FI , hence, is of the form NOT(x.DNuM=5) OR Fz. In the context ofQ3,
this means that, for a tuple x in the PROJECT relation, either its DNUM,t5 or it must
satisfy Fz.

4. Finally, Fz gives the condition that we want to hold for a selected EMPLOYEE tuple:
that the employee works on every PROJECT tuple that has not been excluded yet. Such
employee tuples are selected by the query.

In English, Q3 gives the following condition for selecting an EMPLOYEE tuple e: For
every tuple x in the PROJECT relation with X.DNUM = 5, there must exist a tuple w in WORKS_ON

such that W.ESSN = e.SSN and W.PNO = X.PNUMBER. This is equivalent to saying that EMPLOYEE e
works on every PROJECT x in DEPARTMENT number 5. (Whew!)

Using the general transformation from universal to existential quantifiers given in
Section 6.6.5, we can rephrase the query in Q3 as shown in Q3A:

Q3A: {e.LNAME, e.FNAME I EMPLOYEE(e) AND (NOT (3 x) (PROJECT(x)

AND (x.DNUM=5) AND

(NOT (3 w)(WORKS_ON(w) AND w.ESSN=e.SSN AND x.PNUMBER=w.PNO))))}

We now give some additional examples of queries that use quantifiers.

QUERY 6

Find the names of employees who have no dependents.

6.7 The Domain Relational Calculus 1181

Q6: {e. FNAME, e. LNAME I EMPLOYEE(e) AND (NOT (3d)(DEPENDENT(d) AND
e.SSN=d.ESSN))}

Using the general transformation rule, we can rephrase Q6 as follows:

Q6A: {e.FNAME, e.LNAME I EMPLOYEE(e) AND (('Vd) (NOT(DEPENDENT(d))

OR NOT (e. SSN=d.ESSN)))}

QUERY 7

List the names of managers who have at least one dependent.

Q7: {e.FNAME, e.LNAME I EMPLOYEE(e) AND ((3 d) (3 P)

(DEPARTMENTCd) AND DEPENDENT(P) AND e. SSN=d.MGRSSN AND
p.ESSN=e.SSN))}

This query is handled by interpreting "managers who have at least one dependent" as
"managers for whom there exists some dependent."

6.6.7 Safe Expressions
Whenever we use universal quantifiers, existential quantifiers, or negation of predicates
ina calculus expression, we must make sure that the resulting expression makes sense. A
safe expression in relational calculus is one that is guaranteed to yield a finite number of
tuples as its result; otherwise, the expression is called unsafe. For example, the expression

[r I NOT (EMPLOYEE(t))}

is unsafe because it yields all tuples in the universe that are not EMPLOYEE tuples, which are
infinitely numerous. If we follow the rules for Q3 discussed earlier, we will get a safe expres
sion when using universal quantifiers. We can define safe expressions more precisely by
introducing the concept of the domain of a tuple relational calculus expression: This is the set
ofall values that either appear as constant values in the expression or exist in any tuple in
the relations referenced in the expression. The domain of [t I NOT(EMPLOYEE(t))} is the set
ofall attribute values appearing in some tuple of the EMPLOYEE relation (for any attribute).
Thedomain of the expression Q3A would include all values appearing in EMPLOYEE, PROJECT,

and WORKS_ON (unioned with the value 5 appearing in the query itself).
An expression is said to be safe if all values in its result are from the domain of the

expression. Notice that the result of [t I NOT(EMPLOYEE(t))} is unsafe, since it will, in
general, include tuples (and hence values) from outside the EMPLOYEE relation; such values
are not in the domain of the expression. All of our other examples are safe expressions.

6.7 THE DOMAIN RELATIONAL CALCULUS
There is another type of relational calculus called the domain relational calculus, or sim
ply, domain calculus. While SQL (see Chapter 8), a language based on tuple relational
calculus, was being developed by IBM Research at San Jose, California, another language

182 I Chapter 6 The Relational Algebra and Relational Calculus

called QBE (Query-By-Example) that is related to domain calculus was being developed
almost concurrently at IBM Research at Yorktown Heights, New York. The formal specifi
cation of the domain calculus was proposed after the development of the QBE system.

Domain calculus differs from tuple calculus in the type of variables used in formulas:
Rather than having variables range over tuples, the variables range over single values
from domains of attributes. To form a relation of degree n for a query result, we must have
n of these domain variables-one for each attribute. An expression of the domain
calculus is of the form

{Xl' X2' ... 'Xn I COND(XI' X2' ... ,Xn' Xn+l' Xn+2' ... 'xn+m)}

where Xl' X2' ... , x", Xn+l' x,,+2' ... , x,,+m are domain variables that range over
domains (of attributes), and COND is a condition or formula of the domain relational
calculus.

A formula is made up of atoms. The atoms of a formula are slightly different from
those for the tuple calculus and can be one of the following:

1. An atom of the form R(XI' X2' ... , xj) , where R is the name of a relation of degreej
and each Xi' 1 ::::; i ::::; i. is a domain variable. This atom states that a list of values of
<Xl' X2' •.. , X? must be a tuple in the relation whose name is R, where Xi is the
value of the ith attribute value of the tuple. To make a domain calculus expression
more concise, we can drop the commas in a list of variables; thus, we can write

{Xl' X2' •.. 'Xn I R(XI X2 X3) AND ...}

instead of

{Xl' X2' ... 'Xn I R(Xj, X2' X3) AND ...}

2. An atom of the form Xi op xj ' where op is one of the comparison operators in the
set {=, <, ::::;, >, 2':, ;t}, and Xi and xj are domain variables.

3. An atom of the form Xi op core op xj ' where op is one of the comparison operators in
the set {=, <, ::::;, >, 2':, ;t},Xi and Xj are domain variables, and c is a constant value.

As in tuple calculus, atoms evaluate to either TRUE or FALSE for a specific set of
values, called the truth values of the atoms. In case 1, if the domain variables are assigned
values corresponding to a tuple of the specified relation R, then the atom is TRUE. In cases
2 and 3, if the domain variables are assigned values that satisfy the condition, then the
atom is TRUE.

In a similar way to the tuple relational calculus, formulas are made up of atoms,
variables, and quantifiers, so we will not repeat the specifications for formulas here. Some
examples of queries specified in the domain calculus follow. We will use lowercase letters
I, m, n, ... , x, y, z for domain variables.

QUERY 0

Retrieve the birthdate and address of the employee whose name is 'John B. Smith'.

QO: {uv I (3 q) (3 r) (3 s) (3 r) (3 w) (3 X) (3 y) (3 z)

(EMPLOYEE(qrstuvwxyz) AND q=' JOHN' AND r=' B' AND 5='SMITH')}

6.7 The Domain Relational Calculus I 183

We need ten variables for the EMPLOYEE relation, one to range over the domain of each
attribute in order. Of the ten variables q, r, s, ... , z, only u and v are free. We first specify
the requested attributes, BDATE and ADDRESS, by the free domain variables u for BDATE and v for
ADDRESS. Then we specify the condition for selecting a tuple following the bar (1)
namely, that the sequence of values assigned to the variables qrstuvwxyz be a tuple of the
EMPLOYEE relation and that the values for q (FNAME), r (MINH), and s (LNAME) be 'John', 'B', and
'Smith', respectively. For convenience, we will quantify only those variables actually

appearing in a condition (these would be q, r, and s in QO) in the rest of our examples.l '
An alternative shorthand notation, used in QBE, for writing this query is to assign the

constants 'John', 'B', and 'Smith' directly as shown in QOA. Here, all variables not
appearing to the left of the bar are implicitly existentially quantified.!"

QOA: {uv I EMPLOYEE('John','B','Smith',t,u,v,w,x,y,Z)}

QUERY 1

Retrieve the name and address of all employees who work for the 'Research' department.

Ql: {qsv I C3 z) C3 I) C3 m) CEMPLOYEECqrstuvwxyz) AND

DEPARTMENTClmno) AND 1=' RESEARCH' AND m=z)}

A condition relating two domain variables that range over attributes from two
relations, such as m = Z in Ql, is a join condition; whereas a condition that relates a
domain variable to a constant, such as I == 'Research', is a selection condition.

QUERY 2

For every project located in 'Stafford', list the project number, the controlling depart
ment number, and the department manager's last name, birth date, and address.

Q2: {iksuv I C3 j) C3 m) C3 n) C3 t) CPROJECTChijk) AND EMPLOYEECqrstuvwxyz)

AND DEPARTMENTClmno) AND k=m AND n=t AND j='STAFFORD')}

QUERY 6

Find the names of employees who have no dependents.

Q6: {qs I C3 t) CEMPLOYEECqrstuvwxyz) AND CNOTC3 I) CDEPENDENTClmnop)
AND t=l)))}

Query 6 can be restated using universal quantifiers instead of the existential
quantifiers, as shown in Q6A:

Q6A: {qs I (3 t) (EMPLOYEE(qrstuvwxyz) AND (("1/ l) (NOT(DEPENDENT(lmnop»
OR NOT(t=I»»}

-- - -~------

13. Note that the notation of quantifying only the domain variables actually used in conditions and
ofshowing a predicate such as EMPLOYEE(qrstuvwxyz) without separating domain variables with com
mas isan abbreviated notation used for convenience; it is not the correct formal notation.
14. Again, this is not formally accurate notation.

184 I Chapter 6 The Relational Algebra and Relational Calculus

QUERY 7

List the names of managers who have at least one dependent.

Q7: {sq I (3 t) (3 j) (3 I) (EMPLOYEE (qrstuvwxyz) AND DEPARTMENTChijk)
AND DEPENDENT(lmnop) AND t=j AND I=t)}

As we mentioned earlier, it can be shown that any query that can be expressed in the
relational algebra can also be expressed in the domain or tuple relational calculus. Also,
any safe expression in the domain or tuple relational calculus can be expressed in the
relational algebra.

The Query-By-Example (QBE) language was based on the domain relational calculus,
although this was realized later, after the domain calculus was formalized. QBE was one of
the first graphical query languages with minimum syntax developed for database systems.
It was developed at IBM Research and is available as an IBM commercial product as part of
the QMF (Query Management Facility) interface option to DB2. It has been mimicked by
several other commercial products. Because of its important place in the field of relational
languages, we have included an overview of QBE in Appendix D.

6.8 SUMMARY
In this chapter we presented two formal languages for the relational model of data. They
are used to manipulate relations and produce new relations as answers to queries. We dis
cussed the relational algebra and its operations, which are used to specify a sequence of
operations to specify a query. Then we introduced two types of relational calculi called
tuple calculus and domain calculus; they are declarative in that they specify the result of a
query without specifying how to produce the query result.

In Sections 6.1 through 6.3, we introduced the basic relational algebra operations
and illustrated the types of queries for which each is used. The unary relational operators
SELECT and PROJECT, as well as the RENAME operation, were discussed first. Then we
discussed binary set theoretic operations requiring that relations on which they are
applied be union compatible; these include UNION, INTERSECTION, and SET DIFFERENCE.
The CARTESIAN PRODUCT operation is a set operation that can be used to combine tuples
from two relations, producing all possible combinations. It is rarely used in practice;
however, we showed how CARTESIAN PRODUCT followed by SELECT can be used to define
matching tuples from two relations and leads to the JOIN operation. Different JOIN
operations called THETA JOIN, EQUIJOIN, and NATURAL JOIN were introduced.

We then discussed some important types of queries that cannot be stated with the
basic relational algebra operations but are important for practical situations. We
introduced the AGGREGATE FUNCTION operation to deal with aggregate types of requests.
We discussed recursive queries, for which there is no direct support in the algebra but
which can be approached in a step-by-step approach, as we demonstrated. We then
presented the OUTER JOIN and OUTER UNION operations, which extend JOIN and UNION
and allow all information in source relations to be preserved in the result.

Review Questions I 185

The last two sections described the basic concepts behind relational calculus, which
is based on the branch of mathematical logic called predicate calculus. There are two
types of relational calculi: (I) the tuple relational calculus, which uses tuple variables that
range over tuples (rows) of relations, and (2) the domain relational calculus, which uses
domain variables that range over domains (columns of relations). In relational calculus, a
query is specified in a single declarative statement, without specifying any order or
method for retrieving the query result. Hence, relational calculus is often considered to be
a higher-level language than the relational algebra because a relational calculus
expression states what we want to retrieve regardless of how the query may be executed.

We discussed the syntax of relational calculus queries using both tuple and domain
variables. We also discussed the existential quantifier (3) and the universal quantifier
(tI). We saw that relational calculus variables are bound by these quantifiers. We
described in detail how queries with universal quantification are written, and we discussed
the problem of specifying safe queries whose results are finite. We also discussed rules for
transforming universal into existential quantifiers, and vice versa. It is the quantifiers that
give expressive power to the relational calculus, making it equivalent to relational
algebra. There is no analog to grouping and aggregation functions in basic relational
calculus, although some extensions have been suggested.

Review Questions
6.1. List the operations of relational algebra and the purpose of each.
6.2. What is union compatibility? Why do the UNION, INTERSECTION, and DiFFER

ENCE operations require that the relations on which they are applied be union
compatible?

6.3. Discuss some types of queries for which renaming of attributes is necessary in
order to specify the query unambiguously.

6.4. Discuss the various types of inner join operations. Why is theta join required?
6.5. What role does the concept of foreign key play when specifying the most common

types of meaningful join operations?
6.6. What is the FUNCTION operation? What is it used for?
6.7. How are the OUTER JOIN operations different from the INNER JOIN opera

tions? How is the OUTER UNION operation different from UNION?
6.8. In what sense does relational calculus differ from relational algebra, and in what

sense are they similar?
6.9. How does tuple relational calculus differ from domain relational calculus?

6.10. Discuss the meanings of the existential quantifier (3) and the universal quantifier
(V).

6.11. Define the following terms with respect to the tuple calculus: tuple variable, range
relation, atom, formula, and expression.

6.12. Define the following terms with respect to the domain calculus: domain variable,
range relation, atom, formula, and expression.

6.13. What is meant by a safeexpression in relational calculus?
6.14. When is a query language called relationally complete?

186 I Chapter 6 The Relational Algebra and Relational Calculus

Exercises
6.15. Show the result of each of the example queries in Section 6.5 as it would apply to

the database state of Figure 5.6.
6.16. Specify the following queries on the database schema shown in Figure 5.5, using

the relational operators discussed in this chapter. Also show the result of each
query as it would apply to the database state of Figure 5.6.
a. Retrieve the names of all employees in department 5 who work more than 10

hours per week on the 'ProductX' project.
b. List the names of all employees who have a dependent with the same first

name as themselves.
c. Find the names of all employees who are directly supervised by 'Franklin

Wong'.
d. For each project, list the project name and the total hours per week (by all

employees) spent on that project.
e. Retrieve the names of all employees who work on every project.
f. Retrieve the names of all employees who do not work on any project.
g. For each department, retrieve the department name and the average salary of

all employees working in that department.
h. Retrieve the average salary of all female employees.
i. Find the names and addresses of all employees who work on at least one

project located in Houston but whose department has no location in Houston.
j. List the last names of all department managers who have no dependents.

6.17. Consider the AIRLINE relational database schema shown in Figure 5.8, which was
described in Exercise 5.11. Specify the following queries in relational algebra:
a. For each flight, list the flight number, the departure airport for the first leg of

the flight, and the arrival airport for the last leg of the flight.
b. List the flight numbers and weekdays of all flights or flight legs that depart

from Houston Intercontinental Airport (airport code 'IAH') and arrive in Los
Angeles International Airport (airport code 'LAX').

c. List the flight number, departure airport code, scheduled departure time,
arrival airport code, scheduled arrival time, and weekdays of all flights or flight
legs that depart from some airport in the city of Houston and arrive at some
airport in the city of Los Angeles.

d. List all fare information for flight number 'co197'.
e. Retrieve the number of available seats for flight number 'co197' on '1999-10-09'.

6.18. Consider the LIBRARY relational database schema shown in Figure 6.12, which is
used to keep track of books, borrowers, and book loans. Referential integrity con
straints are shown as directed arcs in Figure 6.12, as in the notation of Figure 5.7.
Write down relational expressions for the following queries:
a. How many copies of the book titled The Lost Tribe are owned by the library

branch whose name is 'Sharpstown'?
b. How many copies of the book titled The Lost Tribe are owned by each library

branch?
c. Retrieve the names of all borrowers who do not have any books checked out.

Exercises I 187

d. For each book that is loaned out from the 'Sharpstown' branch and whose
DueDate is today, retrieve the book title, the borrower's name, and the bor
rower's address.

e. For each library branch, retrieve the branch name and the total number of
books loaned out from that branch.

f. Retrieve the names, addresses, and number of books checked out for all bor
rowers who have more than five books checked out.

g. For each book authored (or coauthored) by 'Stephen King,' retrieve the title and
the number of copies owned by the library branch whose name is 'Central.'

6.19. Specify the following queries in relational algebra on the database schema given
in Exercise 5.13:
a. List the Order-s and Ship_date for all orders shipped from Warehouse number

'W2'.
b. List the Warehouse information from which the Customer named 'Jose Lopez'

was supplied his orders. Produce a listing: Order-s, Warehouse#.
c. Produce a listing CUSTNAME, #OFORDERS, AVG_ORDER_AMT, where the middle column is

the total number of orders by the customer and the last column is the average
order amount for that customer.

d. List the orders that were not shipped within 30 days of ordering.
e. List the Orders for orders that were shipped from all warehouses that the com

pany has in New York.
6.20. Specify the following queries in relational algebra on the database schema given

in Exercise 5.14:
a. Give the details (all attributes of TRIP relation) for trips that exceeded $2000

in expenses.

PublisherName

PUBLISHER
~--A-dd-re-ss--I Phone I

BOOK~LOANS

BranchName

BORROWER

I~ I-N-a-me-I Address I Phone I

FIGURE 6.12 A relational database schema for a LIBRARY database.

188 I Chapter 6 The Relational Algebra and Relational Calculus

b. Print the SSN of salesman who took trips to 'Honolulu'.
c. Print the total trip expenses incurred by the salesman with SSN = '234-56

7890'.
6.21. Specify the following queries in relational algebra on the database schema given

in Exercise 5.15:
a. List the number of courses taken by all students named 'John Smith' in Winter

1999 (i.e., Quarter = 'W99').
b. Produce a list of textbooks {include Courses, BooLISBN, Book, Title} for

courses offered by the 'CS' department that have used more than two books.
c. List any department that has all its adopted books published by 'AWL

Publishing' .
6.22. Consider the two tables T1 and T2 shown in Figure 6.13. Show the results of the

following operations:

a. T1 tx:Tl.P= T2.A T2
b. T1 tx:TLQ = T2.B T2
c. T1 :>1 Tl .P = T2.A T2
d. T1 i><I: Tl .Q ~ T2.B T2
e. T1 U T2

f. T1 >1 (Tl.P = T2.A AND Tl.R ~ Eel T2
6.23. Specify the following queries in relational algebra on the database schema of

Exercise 5.16:
a. For the salesperson named 'Jane Doe', list the following information for all the

cars she sold: Serial», Manufacturer, Sale-price.
b. List the Serials and Model of cars that have no options.
c. Consider the NATURAL JOIN operation between SALESPERSON and SALES.

What is the meaning of a left OUTER JOIN for these tables (do not change the
order of relations). Explain with an example.

d. Write a query in relational algebra involving selection and one set operation
and say in words what the query does.

6.24. Specify queries a, b, c, e, f, i, and j of Exercise 6.16 in both tuple and domain rela
tional calculus.

6.25. Specify queries a, b, c, and d of Exercise 6.17 in both tuple and domain relational
calculus.

6.26. Specify queries c, d, f, and g of Exercise 6.18 in both tuple and domain relational
calculus.

TableT1 TableT2

~ c:ITI:ITJ
10 a 5 10 b 6

15 b 8 25 c 3

25 a 6 10 b 5

FIGURE 6.13 A database state for the relations T1 and T2.

Selected Bibliography I 189

6.27. In a tuple relational calculus query with n tuple variables, what would be the typi
cal minimum number of join conditions? Why? What is the effect of having a
smaller number of join conditions?

6.28. Rewrite the domain relational calculus queries that followed QO in Section 6.7 in
the style of the abbreviated notation of QOA, where the objective is to minimize
the number of domain variables by writing constants in place of variables wher
ever possible.

6.29. Consider this query: Retrieve the SSNS of employees who work on at least those
projects on which the employee with SSN = 123456789 works. This may be stated
as (FORALL x) (IF P THEN Q), where

• x is a tuple variable that ranges over the PROJECT relation.
• P == employee with SSN = 123456789 works on project x.
• Q== employee e works on project x.

Express the query in tuple relational calculus, using the rules

• ('ifx)(P(x)) == NOT(3x)(NOT(P(x))).
• (IF P THEN Q) == (NOT(P) OR Q).

6.30. Show how you may specify the following relational algebra operations in both
tuple and domain relational calculus.
a. ITA=dR(A, B, C))
b. 1T<A B>(R(A, B, C))
c. R(A: B, C) * S(C, 0, E)
d. R(A, B, C) U S(A, B, C)
e. R(A, B, C) n S(A, B, C)
f. R(A, B, C) - S(A, B, C)
g. R(A, B, C) X S(O, E, F)
h. R(A, B) -7- S(A)

6.31. Suggest extensions to the relational calculus so that it may express the following
types of operations that were discussed in Section 6.4: (a) aggregate functions and
grouping; (b) OUTER JOIN operations; (c) recursive closure queries.

Selected Bibliography
Codd (1970) defined the basic relational algebra. Date (1983a) discusses outer joins.
Work on extending relational operations is discussed by Cadis (1986) and Ozsoyoglu et
al. (1985). Cammarata et al. (1989) extends the relational model integrity constraints
andjoins.

Codd (1971) introduced the language Alpha, which is based on concepts of tuple
relational calculus. Alpha also includes the notion of aggregate functions, which goes
beyond relational calculus. The original formal definition of relational calculus was given
by Codd (1972), which also provided an algorithm that transforms any tuple relational
calculus expression to relational algebra. The QUEL (Stonebraker et al, 1976) is based on
tuple relational calculus, with implicit existential quantifiers but no universal quantifiers,
and was implemented in the Ingres system as a commercially available language. Codd
defined relational completeness of a query language to mean at least as powerful as

190 I Chapter 6 The Relational Algebra and Relational Calculus

relational calculus. Ullman (1988) describes a formal proof of the equivalence of
relational algebra with the safe expressions of tuple and domain relational calculus.
Abiteboul et a1. (1995) and Atzeni and deAntonellis (1993) give a detailed treatment of
formal relational languages.

Although ideas of domain relational calculus were initially proposed in the QBE

language (Zloof 1975), the concept was formally defined by Lacroix and Pirotte (1977).
The experimental version of the Query-By-Example system is described in Zloof (1977).
The ILL (Lacroix and Pirotte 1977a) is based on domain relational calculus. Whang et al.
(1990) extends QBE with universal quantifiers. Visual query languages, of which QBE is an
example, are being proposed as a means of querying databases; conferences such as the
Visual Database Systems Workshop (e.g., Arisawa and Catarci (2000) or Zhou and Pu
(2002) have a number of proposals for such languages.

Relational Database
Design by ER- and
EER-to-Relational Mapping

We now focus on how to design a relational database schema based on a conceptual
schema design. This corresponds to the logical database design or data model mapping step
discussed in Section 3.1 (see Figure 3.1). We present the procedures to create a relational
schema from an entity-relationship (ER) or an enhanced ER (EER) schema. Our discussion
relates the constructs of the ER and EER models, presented in Chapters 3 and 4, to the con
structs of the relational model, presented in Chapters 5 and 6. Many CASE (computer-aided
software engineering) tools are based on the ERor EER models, or other similar models, as we
have discussed in Chapters 3 and 4. These computerized tools are used interactively by data
base designers to develop an ER or EER schema for a database application. Many tools use ER

or EER diagrams or variations to develop the schema graphically, and then automatically
convert it into a relational database schema in the DOL of a specific relational DBMS by
employing algorithms similar to the ones presented in this chapter.

We outline a seven-step algorithm in Section 7.1 to convert the basic ER model
constructs--entity types (strong and weak), binary relationships (with various structural
constraints), n-ary relationships, and attributes (simple, composite, and multivalued)-into
relations. Then, in Section 7.2, we continue the mapping algorithm by describing how to
map EER model constructs-specialization/generalization and union types (categories)
into relations.

191

192 I Chapter 7 Relational Database Design by ER- and EER-to-Relational Mapping

7.1 RELATIONAL DATABASE DESIGN USING
ER-TO-RELATIONAL MAPPING

7.1.1 ER-to-Relational Mapping Algorithm
We now describe the steps of an algorithm for ER-to-relational mapping. We will use the
COMPANY database example to illustrate the mapping procedure. The COMPANY ER schema is
shown again in Figure 7.1, and the corresponding COMPANY relational database schema is
shown in Figure 7.2 to illustrate the mapping steps.

Bdate

supetVisor

SUPERVISION

supervisee

N

N

CONTROLS

N

FIGURE 7.1 The ER conceptual schema diagram for the COMPANY database.

7.1 Relational Database Design Using ER-to-Relational Mapping I 193

MGRSTARTDATE

PLOCATION

DLOCATIONDNUMBER

DEPT_LOCATIONS

PROJECT

DEPENDENT_NAME RELATIONSHIP

FIGURE 7.2 Result of mapping the COMPANY ER schema into a relational database schema.

Step 1: Mapping of Regular Entity Types. For each regular (strong) entity type
Ein the ERschema, create a relation R that includes all the simple attributes of E. Include
only the simple component attributes of a composite attribute. Choose one of the key
attributes of E as primary key for R. If the chosen key of E is composite, the set of simple
attributes that form it will together form the primary key of R.

If multiple keys were identified for E during the conceptual design, the information
describing the attributes that form each additional key is kept in order to specify
secondary (unique) keys of relation R. Knowledge about keys is also kept for indexing
purposes and other types of analyses.

In our example, we create the relations EMPLOYEE, DEPARTMENT, and PROJECT in Figure 7.2
tocorrespond to the regular entity types EMPLOYEE, DEPARTMENT, and PROJ ECT from Figure 7.1.
The foreign key and relationship attributes, if any, are not included yet; they will be
added during subsequent steps. These include the attributes SUPERSSN and DNO of EMPLOYEE,

MGRSSN and MGRSTARTDATE of DEPARTMENT, and DNUM of PROJECT. In our example, we choose SSN,

DNUMBER, and PNUMBER as primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT,

194 I Chapter 7 Relational Database Design by ER- and EER-to-Relational Mapping

respectively. Knowledge that DNAME of DEPARTMENT and PNAME of PROJECT are secondary keys is
kept for possible use later in the design.

The relations that are created from the mapping of entity types are sometimes called
entity relations because each tuple (row) represents an entity instance.

Step 2: Mapping of Weak Entity Types. For each weak entity type W in the ER

schema with owner entity type E, create a relation R and include all simple attributes (or
simple components of composite attributes) of W as attributes of R. In addition, include
as foreign key attributes of R the primary key attributets) of the relationts) that corre
spond to the owner entity tvpets): this takes care of the identifying relationship type of
W The primary key of R is the combination of the primary keyts) of the ownerts) and the
partial key of the weak entity type W, if any.

If there is a weak entity type E2 whose owner is also a weak entity type E1, then E]
should be mapped before E2 to determine its primary key first.

Inour example, we create the relation DEPENDENT in this step to correspond to the weak
entity type DEPENDENT. We include the primary key SSN of the EMPLOYEE relation-which
corresponds to the owner entity type-as a foreign key attribute of DEPENDENT; we renamed
it ESSN, although this is not necessary. The primary key of the DEPENDENT relation is the
combination {ESSN, DEPENDENT_NAME} because DEPENDENT_NAME is the partial key of DEPENDENT.

It is common to choose the propagate (CASCADE) option for the referential triggered
action (see Section 8.2) on the foreign key in the relation corresponding to the weak
entity type, since a weak entity has an existence dependency on its owner entity. This can
be used for both ON UPDATE and ON DELETE.

Step 3: Mapping of Binary 1:1 Relationship Types. For each binary 1:1 rela
tionship type R in the ER schema, identify the relations 5 and T that correspond to the
entity types participating in R. There are three possible approaches: (1) the foreign key
approach, (2) the merged relationship approach, and (3) the cross-reference or relation
ship relation approach. Approach 1 is the most useful and should be followed unless spe
cial conditions exist, as we discuss below.

1. Foreign key approach: Choose one of the relations-5, say-and include as a for
eign key in 5 the primary key of T. It is better to choose an entity type with total

participation in R in the role of 5. Include all the simple attributes (or simple com
ponents of composite attributes) of the 1:1 relationship type R as attributes of S.

In our example, we map the 1:1 relationship type MANAGES from Figure 7.1 by
choosing the participating entity type DEPARTMENT to serve in the role of 5, because
its participation in the MANAGES relationship type is total (every department has a
manager). We include the primary key of the EMPLOYEE relation as foreign key in
the DEPARTMENT relation and rename it MGRSSN. We also include the simple attribute
STARTDATE of the MANAGES relationship type in the DEPARTMENT relation and rename it
MGRSTARTDATE.

Note that it is possible to include the primary key of 5 as a foreign key in T
instead. In our example, this amounts to having a foreign key attribute, say
DEPARTMENT_MANAGED in the EMPLOYEE relation, but it will have a null value for

7.1 Relational Database Design Using ER-to-Relational Mapping 1195

employee tuples who do not manage a department. If only 10 percent of employ
ees manage a department, then 90 percent of the foreign keys would be null in
this case. Another possibility is to have foreign keys in both relations Sand T
redundantly, but this incurs a penalty for consistency maintenance.

2. Merged relation option: An alternative mapping of a 1:1 relationship type is possi
ble by merging the two entity types and the relationship into a single relation.
This may be appropriate when bothparticipations are total.

3. Cross-reference or relationship relation option: The third alternative is to set up a
third relation R for the purpose of cross-referencing the primary keys of the two
relations Sand T representing the entity types. As we shall see, this approach is
required for binary M:N relationships. The relation R is called a relationship rela
tion, (or sometimes a lookup table), because each tuple in R represents a relation
ship instance that relates one tuple from S with one tuple of T.

Step 4: Mapping of Binary 1 :N Relationship Types. For each regular binary
l:N relationship type R, identify the relation S that represents the participating entity
type at the N-side of the relationship type. Include as foreign key in S the primary key of
therelation T that represents the other entity type participating in R; this is done because
each entity instance on the N-side is related to at most one entity instance on the I-side
ofthe relationship type. Include any simple attributes (or simple components of compos
iteattributes) of the I:N relationship type as attributes of S.

In our example, we now map the I:N relationship types WORKS_FOR, CONTROLS, and SUPER

VISION from Figure 7.1. For WORKS_FOR we include the primary key DNUMBER of the DEPARTMENT

relation as foreign key in the EMPLOYEE relation and call it DNO. For SUPERVISION we include
the primary key of the EMPLOYEE relation as foreign key in the EMPLOYEE relation itself
because the relationship is recursive-and call it SUPERSSN. The CONTROLS relationship is
mapped to the foreign key attribute DNUM of PROJECT, which references the primary key DNUM

BER ofthe DEPARTMENT relation.
An alternative approach we can use here is again the relationship relation (cross

reference) option as in the case of binary 1:1 relationships. We create a separate relation
Rwhose attributes are the keys of Sand T, and whose primary key is the same as the key
ofS. This option can be used if few tuples in S participate in the relationship to avoid
excessive null values in the foreign key.

Step 5: Mapping of Binary M:N Relationship Types. For each binary M:N
relationship type R, create a new relation S to represent R. Include as foreign key attributes
in S the primary keys of the relations that represent the participating entity types; their
combination will form the primary key of S. Also include any simple attributes of the M:N
relationship type (or simple components of composite attributes) as attributes of S. Notice
thatwe cannot represent an M:N relationship type by a single foreign key attribute in one
of the participating relations (as we did for 1:1 or I:N relationship types) because of the
M:N cardinality ratio; we must create a separate relationship relation S.

In our example, we map the M:N relationship type WORKS_ON from Figure 7.1 by
creating the relation WORKS_ON in Figure 7.2. We include the primary keys of the PROJECT

196 I Chapter 7 Relational Database Design by ER- and EER-to-Relational Mapping

and EMPLOYEE relations as foreign keys in WORKS_ON and rename them PNO and ESSN,
respectively. We also include an attribute HOURS in WORKS_ON to represent the HOURS attribute
of the relationship type. The primary key of the WORKS_ON relation is the combination of
the foreign key attributes {ESSN, PNO}.

The propagate (CASCADE) option for the referential triggered action (see Section
8.2) should be specified on the foreign keys in the relation corresponding to the
relationship R, since each relationship instance has an existence dependency on each of
the entities it relates. This can be used for both ON UPDATE and ON DELETE.

Notice that we can always map 1:1 or l:N relationships in a manner similar to M:N
relationships by using the cross-reference (relationship relation) approach, as we
discussed earlier. This alternative is particularly useful when few relationship instances
exist, in order to avoid null values in foreign keys. In this case, the primary key of the
relationship relation will be only one of the foreign keys that reference the participating
entity relations. For a l:N relationship, the primary key of the relationship relation will
be the foreign key that references the entity relation on the N -side. For a 1:1 relationship,
either foreign key can be used as the primary key of the relationship relation as long as no
null entries are present in that relation.

Step 6: Mapping of Multivalued Attributes. For each multivalued attribute A,
create a new relation R. This relation R will include an attribute corresponding to A, plus
the primary key attribute K-as a foreign key in R-of the relation that represents the
entity type or relationship type that has A as an attribute. The primary key of R is the
combination of A and K. If the multivalued attribute is composite, we include its simple
components.

In our example, we create a relation DEPT_LOCATIONS. The attribute DLOCATION represents
the multivalued attribute LOCATIONS of DEPARTMENT, while DNUMBER-as foreign key
represents the primary key of the DEPARTMENT relation. The primary key of DEPT_LOCATIONS is
the combination of {DNUMBER, DLOCATION}. A separate tuple will exist in DEPT_LOCATIONS for
each location that a department has.

The propagate (CASCADE) option for the referential triggered action (see Section
8.2) should be specified on the foreign key in the relation R corresponding to the
multivalued attribute for both ON UPDATE and ON DELETE. We should also note that
the key of R when mapping a composite, multivalued attribute requires some analysis of
the meaning of the component attributes. In some cases when a multivalued attribute is
composite, only some of the component attributes are required to be part of the key of Rj
these attributes are similar to a partial key of a weak entity type that corresponds to the
multivalued attribute (see Section 3.5).

Figure 7.2 shows the COMPANY relational database schema obtained through steps 1 to
6, and Figure 5.6 shows a sample database state. Notice that we did not yet discuss the
mapping of n-ary relationship types (n > 2), because none exist in Figure 7.1 j these are
mapped in a similar way to M:N relationship types by including the following additional
step in the mapping algorithm.

Step 7: Mapping of N-ary Relationship Types. For each n-ary relationship
type R, where n > 2, create a new relation S to represent R. Include as foreign key

7.1 Relational Database Design Using ER-to-Relational Mapping I 197

attributes in S the primary keys of the relations rhat represent rhe participating entity
types. Also include any simple attributes of the n-ary relationship type (or simple compo
nents of composite attributes) as attributes of S. The primary key of S is usually a combi
nation of all the foreign keys that reference the relations representing the participating
entity types. However, if the cardinality constraints on any of the entity types E partici
pating in R is 1, then the primary key of S should not include the foreign key attribute
thatreferences the relation E' corresponding to E (see Section 4.7).

For example, consider the relationship type SUPPLY of Figure 4.11a. This can be
mapped to the relation SUPPLY shown in Figure 7.3, whose primary key is the combination
ofthe three foreign keys {SNAME, PARTNO, PROJNAME}.

7.1.2 Discussion and Summary of Mapping
for Model Constructs

Table 7.1 summarizes the correspondences between ER and relational model constructs
and constraints.

One of the main points to note in a relational schema, in contrast to an ER schema, is
that relationship types are not represented explicitly; instead, they are represented by
having two attributes A and B, one a primary key and the other a foreign key (over the
same domain) included in two relations Sand T. Two tuples in Sand T are related when
they have the same value for A and B. By using the EQUI)OIN operation (or NATURAL

JOIN ifthe two join attributes have the same name) over S.A and T.B, we can combine all
pairs ofrelated tuples from Sand T and materialize the relationship. When a binary 1:1 or

SUPPLIER

I~

PROJECT

I PROJNAME

PART

I~

SUPPLY

QUANTITYPARTNOPROJNAMEI SNAME

FIGURE 7.3 Mapping the n-ary relationship type SUPPLY from Figure 4.11a.

198 I Chapter 7 Relational Database Design by ER- and EER-to-Relational Mapping

TABLE 7.1 CORRESPONDENCE BETWEEN ER AND RElATIONAL MODELS

ER MODEL

Entity type

1:1 or l:N relationship type

M:N relationship type

n-ary relationship type

Simple attribute

Composite attribute

Multivalued attribute

Value set

Key attribute

RELATIONAL MODEL

"Entity" relation

Foreign key (or "relationship" relation)

"Relationship" relation and two foreign keys

"Relationship" relation and n foreign keys

Attribute

Set of simple component attributes

Relation and foreign key

Domain

Primary (or secondary) key

l:N relationship type is involved, a single join operation is usually needed. For a binary
M:N relationship type, two join operations are needed, whereas for n-ary relationship
types, n joins are needed to fully materialize the relationship instances.

For example, to form a relation that includes the employee name, project name, and
hours that the employee works on each project, we need to connect each EMPLOYEE tuple to

the related PROJ ECT tuples via the WORKS_ON relation of Figure 7.2. Hence, we must apply the
EQUI]OlN operation to the EMPLOYEE and WORKS_ON relations with the join condition SSN =

ESSN, and then apply another EQUI]OIN operation to the resulting relation and the PROJECT

relation with join condition PNO = PNUMBER. In general, when multiple relationships need to
be traversed, numerous join operations must be specified. A relational database user must
always be aware of the foreign key attributes in order to use them correctly in combining
related tuples from two or more relations. This is sometimes considered to be a drawback
of the relational data model because the foreign key/primary key correspondences are not
always obvious upon inspection of relational schemas. If an equijoin is performed among
attributes of two relations that do not represent a foreign key/primary key relationship,
the result can often be meaningless and may lead to spurious (invalid) data. For example,
the reader can try joining the PROJECT and DEPT_LOCATIONS relations on the condition DLOCA

TION = PLaCATION and examine the result (see also Chapter 10).
Another point to note in the relational schema is that we create a separate relation for

each multivalued attribute. For a particular entity with a set of values for the multi valued
attribute, the key attribute value of the entity is repeated once for each value of the
multivalued attribute in a separate tuple. This is because the basic relational model does not
allow multiple values (a list, or a set of values) for an attribute in a single tuple. For example,
because department 5 has three locations, three tuples exist in the DEPT_LOCATIONS relation of
Figure 5.6; each tuple specifies one of the locations. In our example, we apply EQUIJOIN to

DEPT_LOCATIONS and DEPARTMENT on the DNUMBER attribute to get the values of all locations along
with other DEPARTMENT attributes. In the resulting relation, the values of the other department
attributes are repeated in separate tuples for every location that a department has.

7.2 Mapping EER Model Constructs to Relations 1199

The basic relational algebra does not have a NEST or COMPRESS operation that would
produce from the DEPT_LOCATIONS relation of Figure 5.6 a set of tuples of the form {<I,
Houston>, <4, Stafford>, <5, {Bellaire, Sugarland, Houston]»]. This is a serious drawback
ofthe basic normalized or "flat" version of the relational model. On this score, the object
oriented model and the legacy hierarchical and network models have better facilities
than does the relational model. The nested relational model and object-relational
systems (see Chapter 22) attempt to remedy this.

7.2 MAPPING EER MODEL CONSTRUCTS
TO RELATIONS

We now discuss the mapping of EER model constructs to relations by extending the Ek-to

relational mapping algorithm that was presented in Section 7.1.1.

7.2.1 Mapping of Specialization or Generalization
There are several options for mapping a number of subclasses that together form a special
ization (or alternatively, that are generalized into a superclass), such as the {SECRETARY,

TECHNICIAN, ENGINEER} subclasses of EMPLOYEE in Figure 4.4. We can add a further step to our
ER-to-relational mapping algorithm from Section 7.1.1, which has seven steps, to handle
the mapping of specialization. Step 8, which follows, gives the most common options;
other mappings are also possible. We then discuss the conditions under which each
option should be used. We use Attrs(R) to denote the attributes of relation R, and PK(R) to

denote the primary key of R.

Step 8: Options for Mapping Specialization or Generalization. Convert each
specialization with m subclasses {SI' S2' ..., Sm} and (generalized) superclass C, where the
attributes of Care {k, aI' ... an} and k is the (primary) key, into relation schemas using one
ofthe four following options:

• Option 8A: Multiple relations-Superclass and subclasses. Create a relation L for
C with attributes Attrs(L) = {k, aI' ... , an} and PK(L) = k. Create a relation L, for
each subclass Sj, 1 :::; i :::; m, with the attributes Attrs(L) = {k} U {attributes of SJ and
PK(L) = k. This option works for any specialization (total or partial, disjoint or over
lapping).

• Option 8B: Multiple relations-Subclass relations only. Create a relation Lj for each
subclassSj' 1 :::; i :::; rn, with the attributes Attrs(L j) = {attributes of SJ U {k, aI' ..., an}
and PK(L) = k. This option only works for a specialization whose subclasses are total
(every entity in the superclass must belong to (at least) one of the subclasses).

• Option 8e: Single relation with one type attribute. Create a single relation L with
attributes Attrs(L) = {k, aI' ... , an} U {attributes of 51} U ... U {attributes of Sm} U
It} and PK(L) = k. The attribute t is called a type (or discriminating) attribute that

200 I Chapter 7 Relational Database Design by ER- and EER-to-Relational Mapping

indicates the subclass to which each tuple belongs, if any. This option works only for
a specialization whose subclasses are disjoint, and has the potential for generating
many null values if many specific attributes exist in the subclasses.

• Option 8D: Single relation with multiple type attributes. Create a single relation
schema L with attributes Attrs(L) = {k, aI' ... , an} U {attributes of Sl} U ... U
{attributes of Sm} U ttl' t2, ••• , tm}and PK(L) =k. Each ti , 1 :::; i :::; m, is a Boolean type
attribute indicating whether a tuple belongs to subclass Sj.This option works for a
specialization whose subclasses are overlapping (but will also work for a disjoint spe
cialization).

Options 8A and 8B can be called the multiple-relation options, whereas options se
and 8D can be called the single-relation options. Option 8A creates a relation L for the
superclass C and its attributes, plus a relation L, for each subclass Si; each Li includes the
specific (or local) attributes of Sj, plus the primary key of the superclass C, which is
propagated to Lj and becomes its primary key. An EQUIJOIN operation on the primary key
between any Ljand L produces all the specific and inherited attributes of the entities in 5,.
This option is illustrated in Figure 7.4a for the EER schema in Figure 4.4. Option SA

(a)

SECRETARY

~ TypingSpeed

(b) CAR

TECHNICIAN

~ TGrade

ENGINEER
~I-En-g-l'-yp-e-

LicensePlateNo NoOfPassengers

UcensePlateNo

(c)

(d)

ManufactureDate SupplierName

FIGURE 7.4 Options for mapping specialization or generalization. (a) Mapping the EER schema in
Figure 4.4 using option 8A. (b) Mapping the EER schema in Figure 4.3b using option 8B. (c) Mapping
the EER schema in Figure 4.4 using option BC. (d) Mapping Figure 4.5 using option 80 with Boolean
type fields MFlag and PFlag.

7.2 Mapping EER Model Constructs to Relations I 201

works for any constraints on the specialization: disjoint or overlapping, total or partial.
Notice that the constraint

'IT<K)L) ~ 7T<K>(L)

must hold for each Li . This specifies a foreign key from each Li to L, as well as an inclusion
dependency Li.k < L.k (see Section 11.5).

In option 8B, the EQUIJOIN operation is built into the schema, and the relation L is
done awaywith, as illustrated in Figure 7.4b for the EER specialization in Figure 4.3b. This
option works well only when both the disjoint and total constraints hold. If the
specialization is not total, an entity that does not belong to any of the subclasses 5i is lost.
If the specialization is not disjoint, an entity belonging to more than one subclass will
have its inherited attributes from the superclass C stored redundantly in more than one
Li• With option 8B, no relation holds all the entities in the superclass C; consequently, we
must apply an OUTER UNION (or FULL OUTER JOIN) operation to the L, relations to
retrieve all the entities in C. The result of the outer union will be similar to the relations
under options 8C and 8D except that the type fields will be missing. Whenever we search
for an arbitrary entity in C, we must search all the m relations Li .

Options 8C and 8D create a single relation to represent the superclass C and all its
subclasses. An entity that does not belong to some of the subclasses will have null values
for the specific attributes of these subclasses. These options are hence not recommended if
many specific attributes are defined for the subclasses. If few specific subclass attributes
exist, however, these mappings are preferable to options 8A and 8B because they do away
with the need to specify EQUIJOIN and OUTER UNION operations and hence can yield a
more efficient implementation.

Option 8C is used to handle disjoint subclasses by including a single type (or image
ordiscriminating) attribute t to indicate the subclass to which each tuple belongs; hence,
the domain of t could be {I, 2, ... , m}. If the specialization is partial, t can have null
values in tuples that do not belong to any subclass. If the specialization is attribute
defined, that attribute serves the purpose of t and t is not needed; this option is illustrated
inFigure 7.4c for the EERspecialization in Figure 4.4.

Option 8D is designed to handle overlapping subclasses by including m Boolean type
fields, one for each subclass. It can also be used for disjoint subclasses. Each type field r, can
have a domain {yes, no}, where a value of yes indicates that the tuple is a member of
subclass 5i . If we use this option for the EER specialization in Figure 4.4, we would include
three types attributes-IsASecretary, IsAEngineer, and IsATechnician-instead of the
JobType attribute in Figure 7.4c. Notice that it is also possible to create a single type
attribute of m bits instead of the m type fields.

When we have a multilevel specialization (or generalization) hierarchy or lattice, we
do not have to follow the same mapping option for all the specializations. Instead, we can
use one mapping option for part of the hierarchy or lattice and other options for other
parts. Figure 7.5 shows one possible mapping into relations for the EER lattice of Figure
4.6. Here we used option 8A for PERSON/{EMPLOYEE, ALUMNUS, STUDENT}, option 8C for EMPLOYEE/

{STAFF, FACULTY, STUDENT_ASSISTANT}, and option 8D for STUDENT_ASSISTANT/{RESEARCH_ASSISTANT,

TEACHING_ASSISTANT}, STUDENT/STUDENT_ASSISTANT (in STUDENT), and STUDENT/{GRADUATE_STUDENT,

UNDERGRADUATE_STUDENT}. In Figure 7.5, all attributes whose names end with 'Type' or 'Flag'
are type fields.

202 I Chapter 7 Relational Database Design by ER- and EER-to-Relational Mapping

PERSON
~I-N-a-m-e---rl-B-irt-h-D-a-te-~ Address I

EmployeeType PercentTIme

ALUMNUS

ISSN I
ALUMNUS_DEGREES

~Degree~

UndergradFlag DegreeProgram StudAssistFlag

FIGURE 7.5 Mapping the EER specialization lattice in Figure 4.6 using multiple options.

7.2.2 Mapping of Shared Subclasses (Multiple
Inheritance)

A shared subclass, such as ENGINEERING_MANAGER of Figure 4.6, is a subclass of several super
classes, indicating multiple inheritance. These classes must all have the same key attribute;
otherwise, the shared subclass would be modeled as a category. We can apply any of the
options discussed in step 8 to a shared subclass, subject to the restrictions discussed in step8
of the mapping algorithm. In Figure 7.5, both options 8C and 8D are used for the shared
subclass STUDENT_ASSISTANT. Option 8C is used in the EMPLOYEE relation (EmployeeType
attribute) and option 8D is used in the STUDENT relation (StudAssistFlag attribute).

7.2.3 Mapping of Categories (Union Types)
We now add another step to the mapping procedure-step 9-to handle categories. A
category (or union type) is a subclass of the union of two or more superclasses that can
have different keys because they can be of different entity types. An example is the OWNER

category shown in Figure 4.7, which is a subset of the union of three entity types PERSON,

BANK, and COMPANY. The other category in that figure, REGISTERED_VEHICLE, has two superclasses
that have the same key attribute.

Step 9: Mapping of Union Types (Categories). For mapping a category whose
defining superclasses have different keys, it is customary to specify a new key attribute,
called a surrogate key, when creating a relation to correspond to the category. This is
because the keys of the defining classes are different, so we cannot use anyone of them
exclusively to identify all entities in the category. In our example of Figure 4.7, we can
create a relation OWNER to correspond to the OWNER category, as illustrated in Figure 7.6, and
include any attributes of the category in this relation. The primary key of the OWNER relation

7.3 Summary I 203

PERSON

SSN DriverLicenseNo

BANK

I~ I BAddress Ownerld

COMPANY
~~-C-A-dd-r-es-s-[Ownerld I

OWNER

I~I

REGISTERED VEHICLE

I~ I LicensePlateNumber

CAR

I~ CStyie I CMake CModel CYear

TRUCK

I~ TMake I TModel I Tonnage ITYear I

PurchaseDate LienOrRegular

FIGURE 7.6 Mapping the EER categories (union types) in Figure 4.7 to relations.

is thesurrogate key, which we called Ownerld. We also include the surrogate key attribute
Ownerld as foreign key in each relation corresponding to a superclass of the category, to
specify the correspondence in values between the surrogate key and the key of each
superclass. Notice that if a particular PERSON (or BANK or COMPANY) entity is not a member of
OWNER, it would have a null value for its Ownerld attribute in its corresponding tuple in the
PERSON (or BANK or COMPANY) relation, and it would not have a tuple in the OWNER relation.

For a category whose superclasses have the same key, such as VEHICLE in Figure 4.7,
there is no need for a surrogate key. The mapping of the REGISTERED_VEHICLE category,
which illustrates this case, is also shown in Figure 7.6.

7.3 SUMMARY
InSection7.1, we showed how a conceptual schema design in the ER model can be mapped to
arelational database schema. An algorithm for ER-to-relationaI mapping was given and illus
trated by examples from the COMPANY database. Table 7.1 summarized the correspondences
between the ER and relational model constructs and constraints. We then added additional
steps to the algorithm in Section 7.2 for mapping the constructs from the EER model into the

204 I Chapter 7 Relational Database Design by ER- and EER-to-Relational Mapping

relational model. Similar algorithms are incorporated into graphical database design tools to

automatically create a relational schema from a conceptual schema design.

Review Questions
7.1. Discuss the correspondences between the ER model constructs and the relational

model constructs. Show how each ER model construct can be mapped to the rela
tional model, and discuss any alternative mappings.

7.2. Discuss the options for mapping EER model constructs to relations.

Exercises
7.3. Try to map the relational schema of Figure 6.12 into an ER schema. This is part of

a process known as reverse engineering, where a conceptual schema is created for
an existing implemented database. State any assumptions you make.

7.4. Figure 7.7 shows an ER schema for a database that may be used to keep track of
transport ships and their locations for maritime authorities. Map this schema into
a relational schema, and specify all primary keys and foreign keys.

7.5. Map the BANK ER schema of Exercise 3.23 (shown in Figure 3.17) into a relational
schema. Specify all primary keys and foreign keys. Repeat for the AIRLINE schema

Date

TYPE

ON

N

(0:)

N

~
1

~(1,1)

~
(0:)

\--F~===",~====c.--N0~1 --~ ---!

FIGURE 7.7 An ER schema for a SHIP_TRACKING database.

Selected Bibliography I 205

(Figure 3.16) of Exercise 3.19 and for the other schemas for Exercises 3.16
through 3.24.

7.6. Map the EER diagrams in Figures 4.10 and 4.17 into relational schemas. Justify
your choice of mapping options.

Selected Bibliography
The original ER-to-relational mapping algorithm was described in Chen's classic paper
(Chen 1976) that presented the original ER model.

sQL-99: Schema
Definition, Basic
Constraints, and Queries

The SQL language may be considered one of the major reasons for the success of rela
tional databases in the commercial world. Because it became a standard for relational
databases, users were less concerned about migrating their database applications from
other types of database systems-for example, network or hierarchical systems-to rela
tional systems.The reason is that even if users became dissatisfied with the particular rela
tional DBMS product they chose to use, converting to another relational DBMS product
would not be expected to be too expensive and time-consuming, since both systems
would follow the same language standards. In practice, of course, there are many differ
ences between various commercial relational DBMS packages. However, if the user is dili
gent in using only those features that are part of the standard, and if both relational
systems faithfully support the standard, then conversion between the two systems should
be muchsimplified. Another advantage of having such a standard is that users may write
statements in a database application program that can access data stored in two or more
relational DBMSs without having to change the database sublanguage (SQL) if both rela
tional DBMSs support standard SQL.

This chapter presents the main features of the SQL standard for commercial relational
DBMSs, whereas Chapter 5 presented the most important concepts underlying the formal
relational data model. In Chapter 6 (Sections 6.1 through 6.5) we discussed the relational
algebra operations, which are very important for understanding the types of requests that
may be specified on a relational database. They are also important for query processing and
optimization in a relational DBMS, as we shall see in Chapters 15 and 16. However, the

207

208 I Chapter 8 sQL-99: Schema Definition, Basic Constraints, and Queries

relational algebra operations are considered to be too technical for most commercial DBMS

users because a query in relational algebra is written as a sequence of operations that, when
executed, produces the required result. Hence, the user must specify how-that is, in what
order-to execute the query operations. On the other hand, the SQL language providesa
higher-level declarative language interface, so the user only specifies what the result is to be,
leaving the actual optimization and decisions on how to execute the query to the DBMS.

Although SQL includes some features from relational algebra, it is based to a greater extent
on the tuple relational calculus, which we described in Section 6.6. However, the SQL syntax
is more user-friendly than either of the two formal languages.

The name SQL is derived from Structured Query Language. Originally, SQL was called
SEQUEL (for Structured English QUEry Language) and was designed and implemented at
IBM Research as the interface for an experimental relational database system called
SYSTEM R. SQL is now the standard language for commercial relational DBMSs. A joint
effort by ANSI (the American National Standards Institute) and ISO (the International
Standards Organization) has led to a standard version of SQL (ANSI 1986), called sQL-86
or SQLl. A revised and much expanded standard called sQL2 (also referred to as sQL-92)
was subsequently developed. The next version of the standard was originally called SQL3,
but is now called sQL-99. We will try to cover the latest version of SQL as much as
possible.

SQL is a comprehensive database language: It has statements for data definition,
query, and update. Hence, it is both a DOL and a DML. In addition, it has facilities for
defining views on the database, for specifying security and authorization, for defining
integrity constraints, and for specifying transaction controls. It also has rules for
embedding SQL statements into a general-purpose programming language such as Java or
COBOL or C/C+ +.1 We will discuss most of these topics in the following subsections.

Because the specification of the SQL standard is expanding, with more features in
each version of the standard, the latest SQL-99 standard is divided into a core
specification plus optional specialized packages. The core is supposed to be implemented
by all RDBMS vendors that are sQL-99 compliant. The packages can be implemented as
optional modules to be purchased independently for specific database applications such as
data mining, spatial data, temporal data, data warehousing, on-line analytical processing
(OLAP), multimedia data, and so on. We give a summary of some of these packages-and
where they are discussed in the book-at the end of this chapter.

Because SQL is very important (and quite large) we devote two chapters to its basic
features. In this chapter, Section 8.1 describes the SQL DOL commands for creating
schemas and tables, and gives an overview of the basic data types in SQL. Section 8.2
presents how basic constraints such as key and referential integrity are specified. Section
8.3 discusses statements for modifying schernas, tables, and constraints. Section 8,4
describes the basic SQL constructs for specifying retrieval queries, and Section 8.5 goes
over more complex features of SQL queries, such as aggregate functions and grouping.
Section 8.6 describes the SQL commands for insertion, deletion, and updating of data.

---- ---_..__...-----,,--_.__._-"

1. Originally, SQL had statements for creating and dropping indexeson the files that representrela
tions, but these have been dropped from the SQL standard for some time.

8.1 SQL Data Definition and Data Types I 209

Section 8.7 lists some SQL features that are presented in other chapters of the book; these
include transaction control in Chapter 17, security/authorization in Chapter 23, active
databases (triggers) in Chapter 24, object-oriented features in Chapter 22, and OLAP (Online
Analytical Processing) features in Chapter 28. Section 8.8 summarizes the chapter.

In the next chapter, we discuss the concept of views (virtual tables), and then
describe how more general constraints may be specified as assertions or checks. This is
followed by a description of the various database programming techniques for
programming with SQL.

For the reader who desires a less comprehensive introduction to SQL, parts of Section
8.5 may be skipped.

8.1 SQL DATA DEFINITION AND DATA TYPES
SQL uses the terms table, row, and column for the formal relational model terms relation,
tuple, and attribute, respectively. We will use the corresponding terms interchangeably.
The main SQL command for data definition is the CREATE statement, which can be used
to create schemas, tables (relations), and domains (as well as other constructs such as
views, assertions, and triggers). Before we describe the relevant CREATE statements, we
discuss schema and catalog concepts in Section 8.1.1 to place our discussion in perspec
tive. Section 8.1.2 describes how tables are created, and Section 8.1.3 describes the most
important data types available for attribute specification. Because the SQL specification is
very large, we give a description of the most important features. Further details can be
found in the various SQL standards documents (see bibliographic notes).

8.1.1 Schema and Catalog Concepts in SQL

Early versions of SQL did not include the concept of a relational database schema; all
tables (relations) were considered part of the same schema. The concept of an SQL

schema was incorporated starting with sQL2 in order to group together tables and other
constructs that belong to the same database application. An SQL schema is identified by a
schema name, and includes an authorization identifier to indicate the user or account
who owns the schema, as well as descriptors for each element in the schema. Schema ele
ments include tables, constraints, views, domains, and other constructs (such as authori
zation grants) that describe the schema. A schema is created via the CREATE SCHEMA

statement, which can include all the schema elements' definitions. Alternatively, the
schema can be assigned a name and authorization identifier, and the elements can be
defined later. Forexample, the following statement creates a schema called COMPANY, owned
by theuserwith authorization identifier JSMITH:

CREATE SCHEMA COMPANY AUTHORIZATION JSMITH;

In general, not all users are authorized to create schemas and schema elements. The
privilege to create schemas, tables, and other constructs must be explicitly granted to the
relevant user accounts by the system administrator or DBA.

210 I Chapter 8 sQL-99: Schema Definition, Basic Constraints, and Queries

In addition to the concept of a schema, sQL2 uses the concept of a cataIog-a named
collection of schemas in an SQL environment. An SQL environment is basically an
installation of an SQL-compliant RDBMS on a computer sysrem.i A catalog always
contains a special schema called INFORMATION_SCHEMA, which provides information on
all the schemas in the catalog and all the element descriptors in these schemas. Integrity
constraints such as referential integrity can be defined between relations only if they exist
in schemas within the same catalog. Schemas within the same catalog can also share
certain elements, such as domain definitions.

8.1.2 The CREATE TABLE Command in SQL

The CREATE TABLE command is used to specify a new relation by giving it a name and
specifying its attributes and initial constraints. The attributes are specified first, and each
attribute is given a name, a data type to specify its domain of values, and any attribute
constraints, such as NOT NULL. The key, entity integrity, and referential integrity con
straints can be specified within the CREATE TABLE statement after the attributes are
declared, or they can be added later using the ALTER TABLE command (see Section 8.3).
Figure 8.1 shows sample data definition statements in SQL for the relational database
schema shown in Figure 5.7.

Typically, the SQL schema in which the relations are declared is implicitly specified in
the environment in which the CREATE TABLE statements are executed. Alternatively, we
can explicitly attach the schema name to the relation name, separated by a period. For
example, by writing

CREATE TABLE COMPANY.EMPLOYEE ...

rather than

CREATE TABLE EMPLOYEE . . .

as in Figure 8.1, we can explicitly (rather than implicitly) make the EMPLOYEE table part of
the COMPANY schema.

The relations declared through CREATE TABLE statements are called base tables (or
base relations); this means that the relation and its tuples are actually created and stored
as a file by the DBMS. Base relations are distinguished from virtual relations, created
through the CREATE VIEW statement (see Section 9.2), which mayor may not correspond
to an actual physical file. In SQL the attributes in a base table are considered to be ordered
in the sequence in which they are specified in the CREATE TABLE statement. However, rows
(tuples) are not considered to be ordered within a relation.

-------- --_._-----------

2. SQL also includes the concept of a cluster of catalogs within an environment, but it is not very
clear if so many levels of nesting are required in most applications.

8.1 SQL Data Definition and Data Types I 211

NOT NULL ,

NOT NULL ,
NOT NULL ,

NOT NULL ,

NOT NULL ,
NOT NULL ,
NOT NULL,

NOT NULL ,
NOT NULL ,

NOT NULL ,
NOT NULL ,

NOT NULL ,
NOT NULL ,
NOT NULL ,

NOT NULL ,

NOT NULL ,
NOT NULL ,

VARCHAR(15)
CHAR,
VARCHAR(15)
CHAR(9)
DATE,
VARCHAR(30) ,
CHAR,
DECIMAL(10,2) ,
CHAR(9) ,
INT

(a)
CREATE TABLE EMPLOYEE

(FNAME
MINIT
LNAME
SSN
BDATE
ADDRESS
SEX
SALARY
SUPERSSN
DNO

PRIMARY KEY (SSN) ,
FOREIGN KEY (SUPERSSN) REFERENCES EMPLOYEE(SSN) ,
FOREIGN KEY (DNO) REFERENCES DEPARTMENT(DNUMBER)) ;

CREATE TABLE DEPARTMENT
(DNAME VARCHAR(15)

DNUMBER INT
MGRSSN CHAR(9)
MGRSTARTDATE DATE,

PRIMARY KEY(DNUMBER) ,
UNIQUE (DNAME) ,
FOREIGN KEY(MGRSSN) REFERENCES EMPLOYEE(SSN)) ;

CREATE TABLE DEPT_LOCATIONS
(DNUMBER INT

DLOCATION VARCHAR(15)
PRIMARY KEY(DNUMBER, DLOCATION) ,
FOREIGN KEY (DNUMBER) REFERENCES DEPARTMENT(DNUMBER)) ;

CREATETABLE PROJECT
(PNAME VARCHAR(15)

PNUMBER INT
PLOCATION VARCHAR(15),
DNUM INT

PRIMARY KEY(PNUMBER) ,
UNIQUE (PNAME) ,
FOREIGN KEY(DNUM) REFERENCES DEPARTMENT(DNUMBER)) ;

CREATETABLEWORKS_ON
(ESSN CHAR(9)

PNO INT
HOURS DECIMAL(3,1)

PRIMARY KEY(ESSN, PNO) ,
FOREIGN KEY(ESSN) REFERENCES EMPLOYEE(SSN) ,
FOREIGN KEY(PNO) REFERENCES PROJECT(PNUMBER)) ;

CREATETABLE DEPENDENT
(ESSN CHAR(9)

DEPENDENT_NAME VARCHAR(15)
SEX CHAR,
BDATE DATE,
RELATIONSHIP VARCHAR(8) ,

PRIMARY KEY(ESSN, DEPENDENT_NAME) ,
FOREIGN KEY(ESSN) REFERENCES EMPLOYEE(SSN)) ;

FIGURE 8.1 SQL CREATE TABLE data defin ition statements for defin ing the COMPANY

schema from Figure 5.7

212 I Chapter 8 SQL-99: Schema Definition, Basic Constraints, and Queries

8.1.3 Attribute Data Types and Domains in SQL

The basic data types available for attributes include numeric, character string, bit string,
boolean, date, and time.

• Numeric data types include integer numbers of various sizes (INTEGER or INT, and
SMALLINT) and floating-point (real) numbers of various precision (FLOAT or REAL,
and DOUBLE PRECISION). Formatted numbers can be declared by using DECIMAL(i,j)
or DEC(i,j) or NUMERIC(i,j)-where i, the precision, is the total number of decimal dig
its and j, the scale, is the number of digits after the decimal point. The default for scale
is zero, and the default for precision is implementation-defined.

• Character-string data types are either fixed length--eHAR(n) or CHARACTER(n),
where n is the number of characters-or varying length-VARCHAR(n) or CHAR
VARYING(n) or CHARACTER VARYING(n), where n is the maximum number of char
acters. When specifying a literal string value, it is placed between single quotation
marks (apostrophes), and it is case sensitive (a distinction is made between uppercase
and lowercase l.l For fixed-length strings, a shorter string is padded with blank char
acters to the right. For example, if the value 'Smith' is for an attribute of type
CHAR(lO), it is padded with five blank characters to become 'Smith ' if needed.
Padded blanks are generally ignored when strings are compared. For comparison pur
poses, strings are considered ordered in alphabetic (or lexicographic) order; if a string
str1 appears before another string str2 in alphabetic order, then str1 is considered to
be less than str2.4 There is also a concatenation operator denoted by I I (double
vertical bar) that can concatenate two strings in SQL. For example, 'abc' I I 'XYZ'
results in a single string 'abcXYZ'.

• Bit-string data types are either of fixed length n-BIT(n)-or varying length-BIT
VARYING(n), where n is the maximum number of bits. The default for n, the length
of a character string or bit string, is 1. Literal bit strings are placed between single
quotes but preceded by a B to distinguish them from character strings; for example,
B'10101,.5

• A boolean data type has the traditional values of TRUE or FALSE. In SQL, because of
the presence of NULL values, a three-valued logic is used, so a third possible value for
a boolean data type is UNKNOWN. We discuss the need for UNKNOWN and the three
valued logic in Section 8.5.1.

• New data types for date and time were added in sQLI. The DATE data type has ten
positions, and its components are YEAR, MONTH, and DAY in the form YYYY-MM-DD.
The TIME data type has at least eight positions, with the components HOUR, MINUTE,
and SECOND in the form HH:MM:SS. Only valid dates and times should be allowed by

-~- --------- ._-_.

3. This is not the case with SQL keywords, such as CREATE or CHAR. With keywords, SQL is case
insensitive, meaning that SQL treats uppercase and lowercase letters as equivalent in keywords.

4. For nonalphabetic characters, there is a defined order.

5. Bit strings whose length is a multiple of 4 can also be specified in hexadecimal notation, where the
literal string is preceded by X and each hexadecimal character represents 4 bits.

8.2 Specifying Basic Constraints in SQL I 213

the SQL implementation. The < (less than) comparison can be used with dates or
times-an earlier date is considered to be smaller than a later date, and similarly with
time. Literal values are represented by single-quoted strings preceded by the keyword
DATE or TIME; for example, DATE '2002-09-27' or TIME '09: 12:47'. In addition, a data
typeTIME(i), where i is called time fractional seconds precision, specifies i + 1 additional
positions for TIME-one position for an additional separator character, and i positions
for specifying decimal fractions of a second. A TIME WITH TIME ZONE data type
includes an additional six positions for specifying the displacement from the standard
universal time zone, which is in the range +13:00 to -12:59 in units of
HOURS:MINUTES. If WITH TIME ZONE is not included, the default is the local time
zone for the SQL session.

• A timestamp data type (TIMESTAMP) includes both the DATE and TIME fields, plus a
minimum of six positions for decimal fractions of seconds and an optional WITH TIME
ZONE qualifier. Literal values are represented by single-quoted strings preceded by the
keyword TIMESTAMP, with a blank space between data and time; for example, TIME
STAMP '2002-09-2709:12:47648302'.

• Another data type related to DATE, TIME, and TIMESTAMP is the INTERVAL data type.
This specifies an interval-a relative value that can be used to increment or decre
ment an absolute value of a date, time, or timestamp. Intervals are qualified to be
either YEAR/MONTH intervals or DAY/TIME intervals.

• The format of DATE, TIME, and TIMESTAMP can be considered as a special type of
string. Hence, they can generally be used in string comparisons by being cast (or
coerced or converted) into the equivalent strings.

It is possible to specify the data type of each attribute directly, as in Figure 8.1;
alternatively, a domain can be declared, and the domain name used with the attribute
specification. This makes it easier to change the data type for a domain that is used by
numerous attributes in a schema, and improves schema readability. For example, we can
create a domain SSN_TYPE by the following statement:

CREATE DOMAIN SSN_TYPE AS CHAR(9);

We can use SSN_TYPE in place of CHAR(9) in Figure 8.1 for the attributes SSN and
SUPERSSN of EMPLOYEE, MGRSSN of DEPARTMENT, ESSN of WORKS_ON, and ESSN of DEPENDENT. A domain
can also have an optional default specification via a DEFAULT clause, as we discuss later
for attributes.

8.2 SPECIFYING BASIC CONSTRAINTS IN SQl
We now describe the basic constraints that can be specified in SQL as part of table cre
ation. These include key and referential integrity constraints, as well as restrictions on
attribute domains and NULLs, and constraints on individual tuples within a relation. We
discuss the specification of more general constraints, called assertions, in Secion 9.1.

214 I Chapter 8 sQL-99: Schema Definition, Basic Constraints, and Queries

8.2.1 Specifying Attribute Constraints
and Attribute Defaults

Because SQL allows NULLs as attribute values, a constraint NOT NULL may be specified if
NULL is not permitted for a particular attribute. This is always implicitly specified for the
attributes that are part of the primary key of each relation, but it can be specified for any
other attributes whose values are required not to be NULL, as shown in Figure 8.1.

It is also possible to define a default value for an attribute by appending the clause
DEFAULT <value> to an attribute definition. The default value is included in any new
tuple if an explicit value is not provided for that attribute. Figure 8.2 illustrates an
example of specifying a default manager for a new department and a default department
for a new employee. If no default clause is specified, the default default value is NULL for
attributes that do not have the NOT NULL constraint.

Another type of constraint can restrict attribute or domain values using the CHECK

clause following an attribute or domain definition.6 For example, suppose that
department numbers are restricted to integer numbers between 1 and 20; then, we can
change the attribute declaration of DNUMBER in the DEPARTMENT table (see Figure 8.1) to the
following:

DNUMBER INT NOT NULL CHECK (DNUMBER > 0 AND DNUMBER < 21);

The CHECK clause can also be used in conjunction with the CREATE DOMAIN

statement. For example, we can write the following statement:

CREATE DOMAIN D_NUM AS INTEGER CHECK
(D_NUM > 0 AND D_NUM < 21);

We can then use the created domain D_NUM as the attribute type for all attributes that referto
department numbers in Figure 8.1, such as DNUMBER of DEPARTMENT, DNUM of PROJECT, DNO of
EMPLOYEE, and so on.

8.2.2 Specifying Key and Referential
Integrity Constraints

Because keys and referential integrity constraints are very important, there are special
clauses within the CREATE TABLE statement to specify them. Some examples to illustrate
the specification of keys and referential integrity are shown in Figure 8.1.7 The PRIMARY

KEY clause specifies one or more attributes that make up the primary key of a relation. Ifa
primary key has a single attribute, the clause can follow the attribute directly. For example,

6. The CHECK clause can also be used for other purposes, as we shall see.

7. Key and referential integrity constraints were not included in early versions of SQL. In some earlier
implementations, keys were specified implicitly at the intemallevel via the CREATE INDEX command.

8.2 Specifying Basic Constraints in SQL I 215

CREATETABLE EMPLOYEE
(... ,

DNO INT NOTNULL DEFAULT 1,
CONSTRAINT EMPPK

PRIMARY KEY (SSN) ,
CONSTRAINT EMPSUPERFK

FOREIGN KEY (SUPERSSN) REFERENCES EMPLOYEE(SSN)
ON DELETE SETNULL ON UPDATE CASCADE,

CONSTRAINT EMPDEPTFK
FOREIGN KEY (DNO) REFERENCES DEPARTMENT(DNUMBER)

ON DELETE SETDEFAULT ON UPDATE CASCADE);

CREATE TABLE DEPARTMENT
(... ,
MGRSSN CHAR(9) NOTNULLDEFAULT '888665555' ,

CONSTRAINT DEPTPK
PRIMARY KEY (DNUMBER) ,

CONSTRAINT DEPTSK
UNIQUE (DNAME),

CONSTRAINT DEPTMGRFK
FOREIGN KEY (MGRSSN) REFERENCES EMPLOYEE(SSN)

ON DELETE SETDEFAULT ON UPDATE CASCADE);

CREATETABLE DEPLLOCATIONS
(... ,
PRIMARY KEY (DNUMBER, DLOCATION),
FOREIGN KEY (DNUMBER) REFERENCES DEPARTMENT(DNUMBER)

ONDELETE CASCADE ON UPDATE CASCADE) ;

FIGURE 8.2 Example illustrating how default attribute values and referential trig
gerred actions are specified in SQL

the primary key of DEPARTMENT can be specified as follows (instead of the way it is specified in
Figure 8.1):

DNUMBER INT PRIMARY KEY;

The UNIQUE clause specifies alternate (secondary) keys, as illustrated in the DEPARTMENT

and PRO] ECT table declarations in Figure 8.1.
Referential integrity is specified via the FOREIGN KEY clause, as shown in Figure 8.1.

As we discussed in Section 5.2.4, a referential integrity constraint can be violated when
tuples are inserted or deleted, or when a foreign key or primary key attribute value is
modified. The default action that SQL takes for an integrity violation is to reject the
update operation that will cause a violation. However, the schema designer can specify an
alternative action to be taken if a referential integrity constraint is violated, by attaching
a referential triggered action clause to any foreign key constraint. The options include

216 I Chapter 8 SQL-99: Schema Definition, Basic Constraints, and Queries

SET NULL, CASCADE, and SET DEFAULT. An option must be qualified with either ON

DELETE or ON UPDATE. We illustrate this with the examples shown in Figure 8.2. Here,
the database designer chooses SET NULL ON DELETE and CASCADE ON UPDATE for the
foreign key SUPERSSN of EMPLOYEE. This means that if the tuple for a supervising employee is
deleted, the value of SUPERSSN is automatically set to NULL for all employee tuples that were
referencing the deleted employee tuple. On the other hand, if the SSN value for a
supervising employee is updated (say, because it was entered incorrectly), the new value is
cascaded to SUPERSSN for all employee tuples referencing the updated employee tuple.

In general, the action taken by the DBMS for SET NULL or SET DEFAULT is the same for
both ON DELETE or ON UPDATE: The value of the affected referencing attributes is
changed to NULL for SET NULL, and to the specified default value for SET DEFAULT. The
action for CASCADE ON DELETE is to delete all the referencing tuples, whereas the action
for CASCADE ON UPDATE is to change the value of the foreign key to the updated (new)
primary key value for all referencing tuples. It is the responsibility of the database designer
to choose the appropriate action and to specify it in the database schema. As a general
rule, the CASCADE option is suitable for "relationship" relations (see Section 7.1), such as
WORKS_ON; for relations that represent multivalued attributes, such as DEPT_LOCATIONS; and for
relations that represent weak entity types, such as DEPENDENT.

8.2.3 Giving Names to Constraints
Figure 8.2 also illustrates how a constraint may be given a constraint name, following the
keyword CONSTRAINT. The names of all constraints within a particular schema must be
unique. A constraint name is used to identify a particular constraint in case the constraint
must be dropped later and replaced with another constraint, as we discuss in Section 8.3.
Giving names to constraints is optional.

8.2.4 Specifying Constraints on Tuples Using CHECK

In addition to key and referential integrity constraints, which are specified by special
keywords, other table constraints can be specified through additional CHECK clauses at
the end of a CREATE TABLE statement. These can be called tuple-based constraints
because they apply to each tuple individually and are checked whenever a tuple is
inserted or modified. For example, suppose that the DEPARTMENT table in Figure 8.1 had an
additional attribute DEPT_CREATE_DATE, which stores the date when the department was
created. Then we could add the following CHECK clause at the end of the CREATE

TABLE statement for the DEPARTMENT table to make sure that a manager's start date is later
than the department creation date:

CHECK (DEPT_CREATE_DATE < MGRSTARTDATE);

The CHECK clause can also be used to specify more general constraints using the
CREATE ASSERTION statement of SQL. We discuss this in Section 9.1 because it requires
the full power of queries, which are discussed in Sections 8.4 and 8.5.

8.3 Schema Change Statements in SQL I 217

8.3 SCHEMA CHANGE STATEMENTS IN SQL
In this section, we give an overview of the schema evolution commands available in SQL,
which can be used to alter a schema by adding or dropping tables, attributes, constraints,
and other schema elements.

8.3.1 The DROP Command
The DROP command can be used to drop named schema elements, such as tables,
domains, or constraints. One can also drop a schema. For example, if a whole schema is
not needed any more, the DROP SCHEMA command can be used. There are two drop
behavior options: CASCADE and RESTRICT. For example, to remove the COMPANY database
schema and all its tables, domains, and other elements, the CASCADE option is used as
follows:

DROP SCHEMA COMPANY CASCADE;

If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only if
ithasno elements in it; otherwise, the DROP command will not be executed.

If a base relation within a schema is not needed any longer, the relation and its
definition can be deleted by using the DROP TABLE command. For example, if we no
longer wish to keep track of dependents of employees in the COMPANY database of Figure 8.1,
we can get rid of the DEPENDENT relation by issuing the following command:

DROPTABLE DEPENDENT CASCADE;

If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is
not referenced in any constraints (for example, by foreign key definitions in another
relation) or views (see Section 9.2). With the CASCADE option, all such constraints and
views that reference the table are dropped automatically from the schema, along with the
table itself.

The DROP command can also be used to drop other types of named schema elements,
such asconstraints or domains.

8.3.2 The ALTER Command
The definition of a base table or of other named schema elements can be changed by
using the ALTER command. For base tables, the possible alter table actions include adding
ordropping a column (attribute), changing a column definition, and adding or dropping
table constraints. For example, to add an attribute for keeping track of jobs of employees
tothe EMPLOYEE base relations in the COMPANY schema, we can use the command

ALTER TABLE COMPANYEMPLOYEE ADD JOB VARCHAR(12);

We must still enter a value for the new attribute JOB for each individual EMPLOYEE tuple.
This can be done either by specifying a default clause or by using the UPDATE command
(see Section 8.6). If no default clause is specified, the new attribute will have NULLs in all

218 I Chapter 8 sQL-99: Schema Definition, Basic Constraints, and Queries

the tuples of the relation immediately after the command is executed; hence, the NOT

NULL constraint is not allowed in this case.
To drop a column, we must choose either CASCADE or RESTRICT for drop behavior. If

CASCADE is chosen, all constraints and views that reference the column are dropped
automatically from the schema, along with the column. If RESTRICT is chosen, the
command is successful only if no views or constraints (or other elements) reference
the column. For example, the following command removes the attribute ADDRESS from the
EMPLOYEE base table:

ALTER TABLE COMPANY. EMPLOYEE DROP ADDRESS CASCADE;

It is also possible to alter a column definition by dropping an existing default clause
or by defining a new default clause. The following examples illustrate this clause:

ALTER TABLE COMPANY. DEPARTMENT ALTER MGRSSN DROP
DEFAULT;

ALTER TABLE COMPANY.DEPARTMENT ALTER MGRSSN SET DEFAULT
"333445555";

One can also change the constraints specified on a table by adding or dropping a
constraint. To be dropped, a constraint must have been given a name when it was
specified. For example, to drop the constraint named EMPSUPERFK in Figure 8.2 from the
EMPLOYEE relation, we write:

ALTER TABLE COMPANY.EMPLOYEE

DROP CONSTRAINT EMPSUPERFK CASCADE;

Once this is done, we can redefine a replacement constraint by adding a new
constraint to the relation, if needed. This is specified by using the ADD keyword in the
ALTER TABLE statement followed by the new constraint, which can be named or
unnamed and can be of any of the table constraint types discussed.

The preceding subsections gave an overview of the schema evolution commands of
SQL. There are many other details and options, and we refer the interested reader to the
SQL documents listed in the bibliographical notes. The next two sections discuss the
querying capabilities of SQL.

8.4 BASIC QUERIES IN SQL
SQL has one basic statement for retrieving information from a database: the SELECT state
ment. The SELECT statement has no relationshiP to the SELECT operation of relational alge
bra, which was discussed in Chapter 6. There are many options and flavors to the SELECT

statement in SQL, so we will introduce its features gradually. We will use example queries
specified on the schema of Figure 5.5 and will refer to the sample database state shown in
Figure 5.6 to show the results of some of the example queries.

8.4 Basic Queries in SQL I 219

Before proceeding, we must point out an important distinction between SQL and the
formal relational model discussed in Chapter 5: SQL allows a table (relation) to have two
or more tuples that are identical in all their attribute values. Hence, in general, an SQL

table is not a set of tuples, because a set does not allow two identical members; rather, it is
a multiset (sometimes called a bag) of tuples. Some SQL relations are constrained to be sets
because a key constraint has been declared or because the DISTINCT option has been used
with the SELECT statement (described later in this section). We should be aware of this
distinctionas we discuss the examples.

8.4.1 The SElECT-fROM-WHERE Structure
of Basic SQl Queries

Queries in SQL can be very complex. We will start with simple queries, and then progress
to more complex ones in a step-by-step manner. The basic form of the SELECT statement,
sometimes called a mapping or a select-from-where block, is formed of the three clauses
SELECT, FROM, and WHERE and has the following form:

SELECT

FROM

WHERE

where

<attribute list>

<table list>

<condition>;

• <attribute list> is a list of attribute names whose values are to be retrieved by the query.

• <table list> is a list of the relation names required to process the query.

• <condition> is a conditional (Boolean) expression that identifies the tuples to be
retrieved by the query.

In SQL, the basic logical comparison operators for comparing attribute values with
one another and with literal constants are =, <, <=, >, >=, and <>. These correspond to
the relational algebra operators =, <, ~, >, ~, and *, respectively, and to the c{c++
programming language operators =, <, <=, >, >=, and !=. The main difference is the not
equal operator. SQL has many additional comparison operators that we shall present
gradually as needed.

We now illustrate the basic SELECT statement in SQL with some example queries. The
queries are labeled here with the same query numbers that appear in Chapter 6 for easy
cross reference.

QUERY 0

Retrieve the birthdate and address of the ernploveeis) whose name is 'John B. Smith'.

QO: SELECT

FROM

WHERE

BDATE, ADDRESS

EMPLOYEE

FNAME='John' AND MINIT='B' AND LNAME='Smith';

220 I Chapter 8 sQL-99: Schema Definition, Basic Constraints, and Queries

This query involves only the EMPLOYEE relation listed in the FROM clause. The query
selects the EMPLOYEE tuples that satisfy the condition of the WHERE clause, then projects the
result on the BDATE and ADDRESS attributes listed in the SELECT clause. QO is similar to
the following relational algebra expression, except that duplicates, if any, would not be
eliminated:

1tBDATE,ADDRESS(C>FNAME=' John' AND MINH=' B' AND LNAME=' Smith' (EMPLOYEE))

Hence, a simple SQL query with a single relation name in the FROM clause is similar
to a SELECT-PROJECT pair of relational algebra operations. The SELECT clause of SQL

specifies the projection attributes, and the WHERE clause specifies the selection condition.
The only difference is that in the SQL query we may get duplicate tuples in the result,
because the constraint that a relation is a set is not enforced. Figure 8.3a shows the result
of query QO on the database of Figure 5.6.

The query QO is also similar to the following tuple relational calculus expression,
except that duplicates, if any, would again not be eliminated in the SQL query:

QO: {t.BDATE, t.ADDRESS I EMPLOYEE(t) AND t.FNAME='John' AND t.MINH='B' AND
t. LNAME='Smith'}

Hence, we can think of an implicit tuple variable in the SQL query ranging over each
tuple in the EMPLOYEE table and evaluating the condition in the WHERE clause. Only those
tuples that satisfy the condition-that is, those tuples for which the condition evaluates
to TRUE after substituting their corresponding attribute values-are selected.

QUERY 1

Retrieve the name and address of all employees who work for the 'Research' department.

Ql: SELECT

FROM

WHERE

FNAME,LNAME,ADDRESS

EMPLOYEE,DEPARTMENT

DNAME='Research' AND DNUMBER=DNO;

Query Ql is similar to a SELECT-PROJECT-JOIN sequence of relational algebra
operations. Such queries are often called select-project-join queries. In the WHERE clauseof
Ql, the condition DNAME = 'Research' is a selection condition and corresponds to a SELECT

operation in the relational algebra. The condition DNUMBER = DNO is a join condition, which
corresponds to a JOIN condition in the relational algebra. The result of query Ql is shown in
Figure 8.3b. In general, any number of select and join conditions may be specified in a single
SQL query. The next example is a select-project-join query with two join conditions.

QUERY2

For every project located in 'Stafford', list the project number, the controlling department

number, and the department manager's last name, address, and birthdate.

Q2: SELECT PNUMBER, DNUM, LNAME, ADDRESS, BDATE

FROM PROJECT, DEPARTMENT, EMPLOYEE

8.4 Basic Queries in SQL I 221

(a) BDATE ADDRESS (b) FNAME LNAME ADDRESS

1965-01-09 731 Fondren, Houston, TX John Smith 731 Fondren, Houston, TX
Franklin Wong 638 Voss, Houston, TX
Ramesh Narayan 975 FireOak,Humble, TX
Joyce English 5631 Rice,Houston, TX

(e) PNUMBER DNUM LNAME ADDRESS BDATE

10 4 Wallace 291 Berry, Bellaire, TX 1941-06-20
30 4 Wallace 291 Berry, Bellaire, TX 1941-06-20

(d) E.FNAME E.LNAME S.FNAME S.LNAME (I) SSN DNAME

John Smith Franklin Wong 123456789 Research
Franklin Wong James Borg 333445555 Research
Alicia Zelaya Jennifer Wallace 999887777 Research
Jennifer Wallace James Borg 987654321 Research
Ramesh Narayan Franklin Wong 666884444 Research
Joyce English Franklin Wong 453453453 Research
Ahmad Jabbar Jennifer Wallace 987987987 Research

888665555 Research
123456789 Administration

(e) SSN 333445555 Administration
999887777 Administration

123456789 987654321 Administration
333445555 666884444 Administration
999887777 453453453 Administration
987654321 987987987 Administration
666884444 888665555 Administration
453453453 123456789 Headquarters
987987987 333445555 Headquarters
888665555 999887777 Headquarters

987654321 Headquarters
666884444 Headquarters
453453453 Headquarters
987987987 Headquarters
888665555 Headquarters

(g) FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNO

John B Smith 123456789 1965-09-01 731 Fondren, Houston, TX M 30000 333445555 5
Franklin T Wong 333445555 1955-12-08 638 Voss,Houston, TX M 40000 888665555 5
Ramesh K Narayan 666884444 1962-09-15 975 FireOak,Humble, TX M 38000 333445555 5
Joyce A English 453453453 1972-07-31 5631 Rice, Houston, TX F 25000 333445555 5

FIGURE 8.3 Results of SQL queries when applied to the COMPANY database state shown in Figure 5.6. (a)
QQ. (b) Ql. (c) Q2. (d) Q8. (e) Q9. (f) Ql O. (g) Ql C

WHERE DNUM=DNUMBER AND MGRSSN=SSN AND

PLOCATION='Stafford';

The join condition DNUM = DNUMBER relates a project to its controlling department,
whereas the join condition MGRSSN = SSN relates the controlling department to the
employee who manages that department. The result of query Q2 is shown in Figure 8.3c.

222 I Chapter 8 sQL-99: Schema Definition, Basic Constraints, and Queries

8.4.2 Ambiguous Attribute Names, Aliasing,
and Tuple Variables

In SQL the same name can be used for two (or more) attributes as long as the attributes are
in different relations. If this is the case, and a query refers to two or more attributes with the
same name, we must qualify the attribute name with the relation name to prevent ambigu
ity. This is done by prefixing the relation name to the attribute name and separating the
two by a period. To illustrate this, suppose that in Figures 5.5 and 5.6 the DNO and LNAME

attributes of the EMPLOYEE relation were called DNUMBER and NAME, and the DNAME attribute of
DEPARTMENT was also called NAME; then, to prevent ambiguity, query Ql would be rephrased as
shown in QIA. We must prefix the attributes NAME and DNUMBER in QIA to specify which
ones we are referring to, because the attribute names are used in both relations:

Q1A: SELECT

FROM

WHERE

FNAME, EMPLOYEE.NAME, ADDRESS

EMPLOYEE,DEPARTMENT

DEPARTMENT.NAME='Research' AND

DEPARTMENT.DNUMSER=EMPLOYEE.DNUMSER;

Ambiguity also arises in the case of queries that refer to the same relation twice, as in
the following example.

QUERY 8

For each employee, retrieve the employee's first and last name and the first and last name
of his or her immediate supervisor.

Q8: SELECT

FROM

WHERE

E.FNAME, E.LNAME, S.FNAME, S.LNAME

EMPLOYEE AS E, EMPLOYEE AS S

E.SUPERSSN=S.SSN;

In this case, we are allowed to declare alternative relation names E and 5, called
aliases or tuple variables, for the EMPLOYEE relation. An alias can follow the keyword AS, as
shown in Q8, or it can directly follow the relation name-for example, by writing EMPLOYEE

E, EMPLOYEE 5 in the FROM clause of Q8. It is also possible to rename the relation attributes
within the query in SQL by giving them aliases. For example, if we write

EMPLOYEE AS E(FN, MI, LN, SSN, SD, ADDR, SEX, SAL, SSSN, DNO)

in the FROM clause, FN becomes an alias for FNAME, MI for MINH, LN for LNAME, and so on.
In Q8, we can think of E and 5 as two different copies of the EMPLOYEE relation; the first, E,

represents employees in the role of supervisees; the second, S, represents employees in the
role of supervisors. We can now join the two copies. Of course, in reality there is only one
EMPLOYEE relation, and the join condition is meant to join the relation with itself by
matching the tuples that satisfy the join condition E. SUPER55N = 5. 55N. Notice that this is an
example of a one-level recursive query, as we discussed in Section 6.4.2. In earlier versions
of SQL, as in relational algebra, it was not possible to specify a general recursive query, with

8.4 Basic Queries in SQL I 223

an unknown number of levels, in a single SQL statement. A construct for specifying
recursive queries has been incorporated into sQL-99, as described in Chapter 22.

The result of query Q8 is shown in Figure 8.3d. Whenever one or more aliases are
given to a relation, we can use these names to represent different references to that
relation. This permits multiple references to the same relation within a query. Notice
that, if we want to, we can use this alias-naming mechanism in any SQL query to specify
tuple variables for every table in the WHERE clause, whether or not the same relation
needs to be referenced more than once. In fact, this practice is recommended since it
results in queries that are easier to comprehend. For example, we could specify query Q1A
as in Q1B:

Q1B: SELECT

FROM

WHERE

E.FNAME, E.NAME, E.ADDRESS

EMPLOYEE E, DEPARTMENT D

D.NAME='Research' AND D.DNUMBER=E.DNUMBER;

Ifwe specify tuple variables for every table in the WHERE clause, a select-project-join
query in SQL closely resembles the corresponding tuple relational calculus expression
(except for duplicate elimination). For example, compare Q1B with the following tuple
relational calculus expression:

Ql: {e.FNAME, e.LNAME, e.ADDRESS I EMPLOYEE(e) AND (3d)

(DEPARTMENT(d) AND d.DNAME='Research' AND d.DNuMBER=e.DNo)

Notice that the main difference-other than syntax-is that in the SQL query, the exis
tential quantifier is not specified explicitly.

8.4.3 Unspecified WHERE Clause and Use of the Asterisk
We discuss two more features of SQL here. A missing WHERE clause indicates no condi
tion on tuple selection; hence, all tuples of the relation specified in the FROM clause
qualify and are selected for the query result. If more than one relation is specified in
theFROM clause and there is no WHERE clause, then the CROSS PRODUCT-all possible
tuple combinations-of these relations is selected. For example, Query 9 selects all
EMPLOYEE SSNS (Figure 8.3e), and Query 10 selects all combinations of an EMPLOYEE SSN and
a DEPARTMENT DNAME (Figure 8.3f).

QUERIES 9 AND 10

Select all EMPLOYEE SSNS (Q9), and all combinations of EMPLOYEE SSN and DEPARTMENT

DNAME (Q10) in the database.

Q9: SELECT

FROM

QlO: SELECT

FROM

SSN

EMPLOYEE;

SSN, DNAME

EMPLOYEE, DEPARTMENT;

224 I Chapter 8 sQL-99: Schema Definition, Basic Constraints, and Queries

It is extremely important to specify every selection and join condition in the WHERE
clause; if any such condition is overlooked, incorrect and very large relations may result.
Notice that QI0 is similar to a CROSS PRODUCT operation followed by a PROJECT
operation in relational algebra. If we specify all the attributes of EMPLOYEE and OEPARTMENT in
QlO, we get the CROSS PRODUCT (except for duplicate elimination, if any).

To retrieve all the attribute values of the selected tuples, we do not have to list the
attribute names explicitly in SQL; we just specify an asterisk (*), which stands for all the
attributes. For example, query QIC retrieves all the attribute values of any EMPLOYEE who
works in DEPARTMENT number 5 (Figure 8.3g), query QID retrieves all the attributes of an
EMPLOYEE and the attributes of the DEPARTMENT in which he or she works for every employee
of the 'Research' department, and QlOA specifies the CROSS PRODUCT of the EMPLOYEE and
DEPARTMENT relations.

QIC: SELECT *

FROM EMPLOYEE

WHERE DNO=5;

QID: SELECT *

FROM EMPLOYEE, DEPARTMENT

WHERE DNAME='Research' AND DNO=DNUMBER;

QlOA: SELECT *

FROM EMPLOYEE, DEPARTMENT;

8.4.4 Tables as Sets in SQl

As we mentioned earlier, SQL usually treats a table not as a set but rather as a multiset;
duplicate tuples can appear more thanonce in a table, and in the result of a query. SQL does not
automatically eliminate duplicate tuples in the results of queries, for the following reasons:

• Duplicate elimination is an expensive operation. One way to implement it is to sort
the tuples first and then eliminate duplicates.

• The user may want to see duplicate tuples in the result of a query.

• When an aggregate function (see Section 8.5.7) is applied to tuples, in most cases we
do not want to eliminate duplicates.

An SQL table with a key is restricted to being a set, since the key value must be dis
tinct in each tuple.f If we do want to eliminate duplicate tuples from the result of an SQL

query, we use the keyword DISTINCT in the SELECT clause, meaning that only distinct
tuples should remain in the result. In general, a query with SELECT DISTINCT eliminates
duplicates, whereas a query with SELECT ALL does not. Specifying SELECT with neither
ALL nor DISTINCT-as in our previous examples-is equivalent to SELECT ALL. For

---~--~..--_.~.---~---_.._--~._--~~~.---

8. In general, an SQL table is not required to have a key, although in most cases there will be one.

8.4 Basic Queries in SQL I 225

example, Query 11 retrieves the salary of every employee; if several employees have the
same salary, that salary value will appear as many times in the result of the query, as shown
in Figure 8Aa. If we are interested only in distinct salary values, we want each value to
appear only once, regardless of how many employees earn that salary. By using the
keyword DISTINCT as in QIIA, we accomplish this, as shown in Figure 8Ab.

QUERY 11

Retrieve the salary of every employee (Qll) and all distinct salary values (QllA).

Qll:

QIIA:

SELECT

FROM

SELECT

FROM

ALL SALARY

EMPLOYEE;

DISTINCT SALARY

EMPLOYEE;

SQL has directly incorporated some of the set operations of relational algebra. There
are set union (UNION), set difference (EXCEPT), and set intersection (INTERSECT)

operations. The relations resulting from these set operations are sets of tuples; that is,
duplicate tuples are eliminated from the result. Because these set operations apply only to
union-compatible relations, we must make sure that the two relations on which we apply
theoperation have the same attributes and that the attributes appear in the same order in
both relations. The next example illustrates the use of UNION.

QUERY 4

Make a list of all project numbers for projects that involve an employee whose last
name is 'Smith', either as a worker or as a manager of the department that controls

the project.

Q4: (SELECT DISTINCT PNUMBER

FROM PROJECT, DEPARTMENT, EMPLOYEE

(b) SALARY(a) SALARY

30000
40000
25000
43000
38000
25000
25000
55000

(c) FNAME LNAME

30000
40000
25000
43000
38000
55000

(d) FNAME LNAME

James Borg

FIGURE 8.4 Results of additional SQL queries when applied to the COMPANY database
state shown in Figure 5.6. (a) Q'll . (b) Q'll A. (c) Q16. (d) Q18.

226 I Chapter 8 SQL-99: Schema Definition, Basic Constraints, and Queries

WHERE DNUM=DNUMBER AND MGRSSN=SSN AND LNAME='Smith')

UNION

(SELECT DISTINCT PNUMBER

FROM PROJECT, WORKS_ON, EMPLOYEE

WHERE PNUMBER=PNO AND ESSN=SSN AND LNAME='Smith');

The first SELECT query retrieves the projects that involve a 'Smith' as manager of the
department that controls the project, and the second retrieves the projects that involve a
'Smith' as a worker on the project. Notice that if several employees have the last name
'Smith', the project names involving any of them will be retrieved. Applying the UNION

operation to the two SELECT queries gives the desired result.
SQL also has corresponding multiset operations, which are followed by the keyword

ALL (UNION ALL, EXCEPT ALL, INTERSECT ALL). Their results are multisets (duplicates are
not eliminated). The behavior of these operations is illustrated by the examples in Figure
8.5. Basically, each tuple-whether it is a duplicate or not-is considered as a different
tuple when applying these operations.

8.4.5 Substring Pattern Matching
and Arithmetic Operators

In this section we discuss several more features of SQL. The first feature allows comparison
conditions on only parts of a character string, using the LIKE comparison operator. This

(a)

1
s A

a1 a1
a2 a2

a2 a4
a3 a5

(b) T A (')~ (~~
a1 a1
a1 a3 a2

a2

a2

a2

a3
a4
a5

FIGURE 8.5 The results of SQL multiset operations. (a) Two tables, R(A) and S(A).
(b) R(A) UNION ALL S(A). (c) R(A) EXCEPT ALL SiAl. (d) R(A) INTERSECT ALL S(A).

8.4 Basic Queries in SQL I 227

canbe used for string pattern matching. Partial strings are specified using two reserved
characters: % replaces an arbitrary number of zero or more characters, and the underscore
U replacesa single character. For example, consider the following query.

QUERY 12

Retrieve all employees whose address is in Houston, Texas.

Q12: SELECT

FROM

WHERE

FNAME, LNAME

EMPLOYEE

ADDRESS LIKE '%Houston,TX%';

To retrieve all employees who were born during the 1950s, we can use Query 12A.
Here, '5' must be the third character of the string (according to our format for date), so we
use the value '__ 5 ', with each underscore serving as a placeholder for an
arbitrary character.

QUERY 12A

Find all employees who were born during the 1950s.

Q12A: SELECT

FROM

WHERE

FNAME, LNAME

EMPLOYEE

BDATE LIKE '__ 5 ';

If an underscore or % is needed as a literal character in the string, the character
should be preceded by an escape character, which is specified after the string using the
keyword ESCAPE. For example, 'AB_CD\%EF' ESCAPE '\' represents the literal string
'AB_CD%EF', because \ is specified as the escape character. Any character not used in
the string can be chosen as the escape character. Also, we need a rule to specify
apostrophes or single quotation marks (") if they are to be included in a string, because
they are used to begin and end strings. If an apostrophe (') is needed, it is represented as
two consecutive apostrophes (") so that it will not be interpreted as ending the string.

Another feature allows the use of arithmetic in queries. The standard arithmetic
operators for addition (+), subtraction (-), multiplication (*), and division (/) can be applied
tonumeric values or attributes with numeric domains. For example, suppose that we want to
see the effect of giving all employees who work on the 'ProductX' project a 10 percent raise;
we can issue Query 13 to see what their salaries would become. This example also shows how
we canrename an attribute in the query result using AS in the SELECT clause.

QUERY 13

Show the resulting salaries if every employee working on the 'ProductX' project is
given a 10 percent raise.

Q13: SELECT FNAME, LNAME, 1.1*SALARY AS INCREASED_SAL

FROM EMPLOYEE, WORKS_ON, PROJECT

228 I Chapter 8 SQL-99: Schema Definition, Basic Constraints, and Queries

WHERE SSN=ESSN AND PNO=PNUMBER AND

PNAME='ProductX';

For string data types, the concatenate operator I I can be used in a query to append
two string values. For date, time, timestamp, and interval data types, operators include
incrementing (+) or decrementing (-) a date, time, or timestamp by an interval. In
addition, an interval value is the result of the difference between two date, time, or
timestamp values. Another comparison operator that can be used for convenience is
BETWEEN, which is illustrated in Query 14.

QUERY 14

Retrieve all employees in department 5 whose salary is between $30,000 and

$40,000.

Q14: SELECT *

FROM EMPLOYEE

WHERE (SALARY BETWEEN 30000 AND 40000) AND DNO =5;

The condition (SALARY BETWEEN 30000 AND 40000) in Q14 is equivalent to
the condition ((SALARY >= 30000) AND (SALARY <= 40000».

8.4.6 Ordering of Query Results
SQL allows the user to order the tuples in the result of a query by the values of one or more
attributes, using the ORDER BY clause. This is illustrated by Query 15.

QUERY 15

Retrieve a list of employees and the projects they are working on, ordered by depart
ment and, within each department, ordered alphabetically by last name, first name.

Q15: SELECT

FROM

WHERE

ORDER BY

DNAME, LNAME, FNAME, PNAME

DEPARTMENT, EMPLOYEE, WORKS_ON, PROJECT

DNUMBER=DNO AND SSN=ESSN AND PNO=PNUMBER

DNAME, LNAME, FNAME;

The default order is in ascending order of values. We can specify the keyword DESC if
we want to see the result in a descending order of values. The keyword ASC can be used to

specify ascending order explicitly. For example, if we want descending order on DNAME and
ascending order on LNAME, FNAME, the ORDER BY clause of Q15 can be written as

ORDER BY DNAME DESC, LNAME ASC, FNAME ASC

8.5 More Complex SQL Queries I 229

8.5 MORE COMPLEX SQL QUERIES
In the previous section, we described some basic types of queries in SQL. Because of the
generality and expressive power of the language, there are many additional features that
allow users to specify more complex queries. We discuss several of these features in this
section.

8.5.1 Comparisons Involving NULL

and Three-Valued Logic
SQL has various rules for dealing with NULL values. Recall from Section 5.1.2 that NULL is
used to represent a missing value, but that it usually has one of three different interpreta
tions-value unknown (exists but is not known), value not available (exists but is pur
posely withheld), or attribute not applicable (undefined for this tuple). Consider the
following examples to illustrate each of the three meanings of NULL.

1. Unknown value: A particular person has a date of birth but it is not known, so it is
represented by NULL in the database.

2. Unavailable or withheld value: A person has a home phone but does not want it to
be listed, so it is withheld and represented as NULL in the database.

3. Not applicable attribute: An attribute LastCollegeDegree would be NULL for a per
son who has no college degrees, because it does not apply to that person.

It is often not possible to determine which of the three meanings is intended; for
example, a NULL for the home phone of a person can have any of the three meanings.
Hence, SQLdoes not distinguish between the different meanings of NULL.

In general, each NULL is considered to be different from every other NULL in the
database. When a NULL is involved in a comparison operation, the result is considered to
be UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL uses a three-valued logic
with values TRUE, FALSE, and UNKNOWN instead of the standard two-valued logic with
values TRUE or FALSE. It is therefore necessary to define the results of three-valued logical
expressions when the logical connectives AND, OR, and NOT are used. Table 8.1 shows the
resulting values.

In select-project-join queries, the general rule is that only those combinations of
tuples that evaluate the logical expression of the query to TRUE are selected. Tuple
combinations that evaluate to FALSE or UNKNOWN are not selected. However, there are
exceptions to that rule for certain operations, such as outer joins, as we shall see.

SQL allows queries that check whether an attribute value is NULL. Rather than using
= or<> to compare an attribute value to NULL, SQL uses IS or IS NOT. This is because SQL

considers each NULL value as being distinct from every other NULL value, so equality
comparison is not appropriate. It follows that when a join condition is specified, tuples
with NULL values for the join attributes are not included in the result (unless it is an
OUTER JOIN;see Section 8.5.6). Query 18 illustrates this; its result is shown in Figure 8Ad.

230 I Chapter 8 SQL-99: Schema Definition, Basic Constraints, and Queries

TABLE 8.1 LOGICAL CONNECTIVES IN THREE-VALUED LOGIC

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

NOT

TRUE FALSE
FALSE TRUE
UNKNOWN UNKNOWN

QUERY 18

Retrieve the names of all employees who do not have supervisors.

Q18: SELECT

FROM

WHERE

FNAME, LNAME

EMPLOYEE

SUPERSSN IS NULL;

8.5.2 Nested Queries, Tuples, and Set/Multiset
Comparisons

Some queries require that existing values in the database be fetched and then used ina
comparison condition. Such queries can be conveniently formulated by using nested que
ries, which are complete select-from-where blocks within the WHERE clause of another
query. That other query is called the outer query. Query 4 is formulated in Q4 withouta
nested query, but it can be rephrased to use nested queries as shown in Q4A. Q4A intro
duces the comparison operator IN, which compares a value v with a set (or multiset) of
values V and evaluates to TRUE if v is one of the elements in V

Q4A: SELECT

FROM

WHERE

DISTINCT PNUMBER

PROJECT

PNUMBERIN (SELECT

FROM

WHERE

PNUMBER

PROJECT, DEPARTMENT,
EMPLOYEE

DNUM=DNUMBER AND

8.5 More Complex SQL Queries I 231

MGRSSN=SSN AND

LNAME='Smith')

OR

PNUMBERIN (SELECT

FROM

WHERE

PNO

WORKS_ON, EMPLOYEE

ESSN=SSN AND

LNAME='Smith');

The first nested query selects the project numbers of projects that have a 'Smith'
involved as manager, while the second selects the project numbers of projects that have a
'Smith' involved as worker. In the outer query, we use the OR logical connective to retrieve
a PROJECT tuple if the PNUMBER value of that tuple is in the result of either nested query.

Ifa nested query returns a single attribute and a single tuple, the query result will be a
single (scalar) value. In such cases, it is permissible to use = instead of IN for the
comparison operator. In general, the nested query will return a table (relation), which is a
set or multiset of tuples.

SQL allows the use of tuples of values in comparisons by placing them within
parentheses. To illustrate this, consider the following query:

SELECT DISTINCT ESSN

FROM WORKS_ON

WHERE (PNO, HOURS) IN (SELECT PNO, HOURS FROM WORKS_ON

WHERE SSN='123456789');

This query will select the social security numbers of all employees who work the same
(project, hours) combination on some project that employee 'John Smith' (whose SSN =

'123456789') works on. In this example, the IN operator compares the subtuple of values
in parentheses (PNO, HOURS) for each tuple in WORKS_ON with the set of union-compatible
tuples produced by the nested query.

In addition to the IN operator, a number of other comparison operators can be used to
compare a single value v (typically an attribute name) to a set or multiset V (typically a
nested query). The = ANY (or = SOME) operator returns TRUE if the value v is equal to
some value in the set V and is hence equivalent to IN. The keywords ANY and SOME have
thesame meaning. Other operators that can be combined with ANY (or SOME) include >,
>=, <, <=, and < >. The keyword ALL can also be combined with each of these operators.
For example, the comparison condition (v > ALL V) returns TRUE if the value v is greater
than all the values in the set (or multiset) V. An example is the following query, which
returns the names of employees whose salary is greater than the salary of all the employees
indepartment 5:

SELECT

FROM

WHERE

LNAME, FNAME

EMPLOYEE

SALARY> ALL (SELECT SALARY FROM EMPLOYEE
WHERE DNO=5);

232 I Chapter 8 sQL-99: Schema Definition, Basic Constraints, and Queries

In general, we can have several levels of nested queries. We can once again be faced
with possible ambiguity among attribute names if attributes of the same name exist-one
in a relation in the FROM clause of the outer query, and another in a relation in the FROM

clause of the nested query. The rule is that a reference to an unqualified attribute refers to
the relation declared in the innermost nested query. For example, in the SELECT clause
and WHERE clause of the first nested query of Q4A, a reference to any unqualified
attribute of the PROJECT relation refers to the PROJECT relation specified in the FROM clause
of the nested query. To refer to an attribute of the PROJECT relation specified in the outer
query, we can specify and refer to an alias (tuple variable) for that relation. These rules are
similar to scope rules for program variables in most programming languages that allow
nested procedures and functions. To illustrate the potential ambiguity of attribute names
in nested queries, consider Query 16, whose result is shown in Figure 8.4c.

QUERY 16

Retrieve the name of each employee who has a dependent with the same first name

and same sex as the employee.

Q16: SELECT

FROM

WHERE

E.FNAME, E.LNAME

EMPLOYEE AS E

E.SSN IN (SELECT

FROM

WHERE

ESSN

DEPENDENT

E.FNAME=DEPENDENT_NAME
AND E.SEX=SEX);

In the nested query of Q16, we must qualify E. SEXbecause it refers to the SEXattribute
of EMPLOYEE from the outer query, and DEPENDENT also has an attribute called SEX. All
unqualified references to SEX in the nested query refer to SEX of DEPENDENT. However, we do
not have to qualify FNAME and SSN because the DEPENDENT relation does not have attributes
called FNAME and SSN, so there is no ambiguity.

It is generally advisable to create tuple variables (aliases) for all the tables referenced in
an SQL query to avoid potential errors and ambiguities.

8.5.3 Correlated Nested Queries
Whenever a condition in the WHEREclause of a nested query references some attribute of a
relation declared in the outer query, the two queries are said to be correlated. We can
understand a correlated query better by considering that the nested queryisevaluated once for
each tuple (or combination of tuples) in the outerquery. For example, we can think of Q16 as
follows: For each EMPLOYEE tuple, evaluate the nested query, which retrieves the ESSN values for
all DEPENDENT tuples with the same sex and name as that EMPLOYEE tuple; if the SSN value of the
EMPLOYEE tuple is in the result of the nested query, then select that EMPLOYEE tuple.

In general, a query written with nested select-from-where blocks and using the = or
IN comparison operators can always be expressed as a single block query. For example,
Q16 may be written as in Q16A:

Q16A: SELECT

FROM

WHERE

8.5 More Complex SQL Queries I 233

E.FNAME, E.LNAME

EMPLOYEE AS E, DEPENDENT AS D

E.SSN=D.ESSN AND E.SEX=D.SEX AND

E.FNAME=D.DEPENDENT_NAME;

The original SQL implementation on SYSTEM R also had a CONTAINS comparison
operator, which was used to compare two sers or multisets. This operator was subsequently
dropped from the language, possibly because of the difficulty of implementing it
efficiently. Most commercial implementations of SQL do not have this operator. The
CONTAINS operator compares two sets of values and returns TRUE if one set contains all
values in the other set. Query 3 illustrates the use of the CONTAINS operator.

QUERY 3

Retrieve the name of each employee who works on all the projects controlled by
department number 5.

Q3: SELECT

FROM

WHERE

FNAME, LNAME

EMPLOYEE

((SELECT

FROM

WHERE

CONTAINS

(SELECT

FROM

WHERE

PNO

WORKS_ON

SSN=ESSN)

PNUMBER

PROJECT

DNUM=5));

In Q3, the second nested query (which is not correlated with the outer query)
retrieves the project numbers of all projects controlled by department 5. For each
employee tuple, the first nested query (which is correlated) retrieves the project numbers
onwhich the employee works; if these contain all projects controlled by department 5,
theemployee tuple is selected and the name of that employee is retrieved. Notice that the
CONTAINS comparison operator has a similar function to the DIVISION operation of the
relational algebra (see Section 6.3.4) and to universal quantification in relational calculus
(see Section 6.6.6). Because the CONTAINS operation is not part of SQL, we have to use
other techniques, such as the EXISTS function, to specify these types of queries, as
described in Section 8.5.4.

8.5.4 The EXISTS and UNIQUE Functions in SQL

The EXISTS function in SQL is used to check whether the result of a correlated nested
query is empty (contains no tuples) or not. We illustrate the use of EXISTS-and NOT

234 I Chapter 8 SQL-99: Schema Definition, Basic Constraints, and Queries

EXISTS-with some examples. First, we formulate Query 16 in an alternative form that
uses EXISTS. This is shown as QI6B:

Q16B:SELECT
FROM

WHERE

E.FNAME, E.LNAME

EMPLOYEE AS E

EXISTS (SELECT *

FROM DEPENDENT

WHERE E.SSN=ESSN AND E.SEX=SEX
AND E.FNAME=DEPENDENT_NAME);

EXISTS and NOT EXISTS are usually used in conjunction with a correlated nested query.
In QI6B, the nested query references the SSN, FNAME, and SEX attributes of the EMPLOYEE

relation from the outer query. We can think of Q16B as follows: For each EMPLOYEE tuple,
evaluate the nested query, which retrieves all DEPENDENT tuples with the same social security
number, sex, and name as the EMPLOYEE tuple; if at least one tuple EXISTS in the result of the
nested query, then select that EMPLOYEE tuple. In general, EXISTS(Q) returns TRUE if there is
at least one tuple in the result of the nested query Q, and it returns FALSE otherwise. On the
other hand, NOT EXISTS(Q) returns TRUE if there are no tuples in the result of nested query
Q, and it returns FALSE otherwise. Next, we illustrate the use of NOT EXISTS.

QUERY 6

Retrieve the names of employees who have no dependents.

Q6: SELECT

FROM

WHERE

FNAME, LNAME

EMPLOYEE

NOT EXISTS (SELECT *

FROM DEPENDENT

WHERE SSN=ESSN);

In Q6, the correlated nested query retrieves all DEPENDENT tuples related to a particular
EMPLOYEE tuple. If none exist, the EMPLOYEE tuple is selected. We can explain Q6 as follows:
For each EMPLOYEE tuple, the correlated nested query selects all DEPENDENT tuples whose ESSN

value matches the EMPLOYEE SSN; if the result is empty, no dependents are related to the
employee, so we select that EMPLOYEE tuple and retrieve its FNAME and LNAME.

QUERY 7

List the names of managers who have at least one dependent.

Q7: SELECT

FROM

WHERE

FNAME, LNAME

EMPLOYEE

EXISTS (SELECT *

FROM DEPENDENT

WHERE SSN=ESSN)

AND

EXISTS

8.5 More Complex SQL Queries I 235

(SELECT *

FROM DEPARTMENT

WHERE SSN=MGRSSN);

One way to write this query is shown in Q7, where we specify two nested correlated
queries; the first selects all DEPENDENT tuples related to an EMPLOYEE, and the second selects all
DEPARTMENT tuples managed by the EMPLOYEE. If at least one of the first and at least one of the
second exists, we select the EMPLOYEE tuple. Can you rewrite this query using only a single
nested query or no nested queries?

Query 3 ("Retrieve the name of each employee who works on all the projects
controlled by department number 5," see Section 8.5.3) can be stated using EXISTS and
NOTEXISTS in SQL systems. There are two options. The first is to use the well-known set
theory transformation that (51 CONTAINS 52) is logically equivalent to (52 EXCEPT 51) is
emptv,'' This option is shown as Q3A.

Q3A: SELECT

FROM

WHERE

(

EXCEPT

FNAME, LNAME

EMPLOYEE

NOT EXISTS

(SELECT PNUMBER

FROM PROJECT

WHERE DNUM=5)

(SELECT

FROM

WHERE

PNO

WORKS_ON

SSN=ESSN));

In Q3A, the first subquery (which is not correlated) selects all projects controlled by
department 5, and the second subquery (which is correlated) selects all projects that the
particular employee being considered works on. If the set difference of the first subquery
MINUS (EXCEPT) the second subquery is empty, it means that the employee works on all
theprojects and is hence selected.

The second option is shown as Q3B. Notice that we need two-level nesting in Q3B
and that this formulation is quite a bit more complex than Q3, which used the CONTAINS

comparison operator, and Q3A, which uses NOT EXISTS and EXCEPT. However, CONTAINS

is not part of SQL, and not all relational systems have the EXCEPT operator even though it
is part of sQL-99.

Q3B: SELECT LNAME, FNAME

FROM EMPLOYEE

9.Recall that EXCEPT is the set difference operator.

236 I Chapter 8 SQL-99: Schema Definition, Basic Constraints, and Queries

WHERE NOT EXISTS

(SELECT *
FROM WORKS_ON B

WHERE (B.PNO IN (SELECT

FROM

WHERE

PNUMBER

PROJECT

DNUM=5))

AND
NOT EXISTS (SELECT *

FROM WORKS_ON C

WHERE C.ESSN=SSN

AND C.PNO=B.PNO));

In Q3B, the outer nested query selects any WORKS_ON (B) tuples whose PNO is of a
project controlled by department 5, if there is not a WORKS_ON (C) tuple with the same PNO

and the same SSN as that of the EMPLOYEE tuple under consideration in the outer query. Ifno
such tuple exists, we select the EMPLOYEE tuple. The form of Q3B matches the following
rephrasing of Query 3: Select each employee such that there does not exist a project
controlled by department 5 that the employee does not work on. It corresponds to the
way we wrote this query in tuple relation calculus in Section 6.6.6.

There is another SQL function, UNIQUE(Q), which returns TRUE if there are no
duplicate tuples in the result of query Q; otherwise, it returns FALSE. This can be used to
test whether the result of a nested query is a set or a multiset.

8.5.5 Explicit Sets and Renaming of Attributes in SQL

We have seen several queries with a nested query in the WHERE clause. It is also possible
to use an explicit set of values in the WHERE clause, rather than a nested query. Such a set
is enclosed in parentheses in SQL.

QUERY 17

Retrieve the social security numbers of all employees who work on project numbers
1,2, or 3.

Q17: SELECT

FROM

WHERE

DISTINCT ESSN

WORKS_ON

PNO IN (1, 2, 3);

In SQL, it is possible to rename any attribute that appears in the result of a query by
adding the qualifier AS followed by the desired new name. Hence, the AS construct can be
used to alias both attribute and relation names, and it can be used in both the SELECTand
FROM clauses. For example, Q8A shows how query Q8 can be slightly changed to retrieve
the last name of each employee and his or her supervisor, while renaming the resulting

8.5 More Complex SQL Queries I 237

attribute names as EMPLOYEE_NAME and SUPERVISOR_NAME. The new names will appear as
column headers in the query result.

Q8A: SELECT

FROM

WHERE

E.LNAME AS EMPLOYEE_NAME, S.LNAME AS
SUPERVISOR_NAME

EMPLOYEE AS E, EMPLOYEE AS S

E.SUPERSSN=S.SSN;

8.5.6 Joined Tables in SQL

The concept of a joined table (or joined relation) was incorporated into SQL to permit
users to specify a table resulting from a join operation in the FROM clause of a query. This
construct may be easier to comprehend than mixing together all the select and join con
ditions in the WHERE clause. For example, consider query Ql, which retrieves the name
and address of every employee who works for the 'Research' department. It may be easier
first to specify the join of the EMPLOYEE and DEPARTMENT relations, and then to select the
desired tuples and attributes. This can be written in SQL as in QIA:

QIA: SELECT

FROM

WHERE

FNAME, LNAME, ADDRESS

(EMPLOYEE JOIN DEPARTMENT ON DNO=DNUMBER)

DNAME='Research';

The FROM clause in Q IA contains a single joinedtable. The attributes of such a table
are all the attributes of the first table, EMPLOYEE, followed by all the attributes of the second
table, DEPARTMENT. The concept of a joined table also allows the user to specify different
types of join, such as NATURAL JOIN and various types of OUTER JOIN. In a NATURAL JOIN

ontwo relations Rand S, no join condition is specified; an implicit equijoin condition for
each pair of attributes with the same name from Rand S is created. Each such pair of
attributes is included only once in the resulting relation (see Section 6.4.3).

Ifthe names of the join attributes are not the same in the base relations, it is possible
to rename the attributes so that they match, and then to apply NATURAL JOIN. In this
case, the AS construct can be used to rename a relation and all its attributes in the FROM

clause. This is illustrated in QIB, where the DEPARTMENT relation is renamed as DEPT and its
attributes are renamed as DNAME, DNO (to match the name of the desired join attribute DNO in
EMPLOYEE), MSSN, and MSDATE. The implied join condition for this NATURAL JOIN is
EMPLOYEE. DNO = DEPT. DNO, because this is the only pair of attributes with the same name after
renaming.

Q1B: SELECT FNAME, LNAME, ADDRESS

FROM (EMPLOYEE NATURAL JOIN
(DEPARTMENT AS DEPT (DNAME, DNO, MSSN, MSDATE)))

WHERE DNAME='Research;

The default type of join in a joined table is an inner join, where a tuple is included in
the result only if a matching tuple exists in the other relation. For example, in query

238 I Chapter 8 sQL-99: Schema Definition, Basic Constraints, and Queries

Q8A, only employees that have a supervisor are included in the result; an EMPLOYEE tuple
whose value for SUPERSSN is NULL is excluded. If the user requires that all employees be
included, an OUTER JOIN must be used explicitly (see Section 6.4.3 for the definition of
OUTER JOIN). In SQL, this is handled by explicitly specifying the OUTER JOIN in a joined
table, as illustrated in Q8B:

Q8B: SELECT E.LNAME AS EMPLOYEE_NAME,
S.LNAME AS SUPERVISOR_NAME

FROM (EMPLOYEE AS E LEFT OUTER JOIN EMPLOYEE AS S

ON E.SUPERSSN=S.SSN);

The options available for specifying joined tables in SQL include INNER JOIN (same as
JOIN), LEFT OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN. In the latter three
options, the keyword OUTER may be omitted. If the join attributes have the same name,
one may also specify the natural join variation of outer joins by using the keyword
NATURAL before the operation (for example, NATURAL LEFT OUTER JOIN). The keyword
CROSS JOIN is used to specify the Cartesian product operation (see Section 6.2.2),
although this should be used only with the utmost care because it generates all possible
tuple combinations.

It is also possible to nest join specifications; that is, one of the tables in a join may
itself be a joined table. This is illustrated by Q2A, which is a different way of specifying
query Q2, using the concept of a joined table:

Q2A: SELECT

FROM

WHERE

PNUMBER, DNUM, LNAME, ADDRESS, BDATE

((PROJECT JOIN DEPARTMENT ON DNUM=DNUMBER)
JOIN EMPLOYEE ON MGRSSN=SSN)

PLOCATION='Stafford';

8.5.7 Aggregate Functions in SQL

In Section 6.4.1, we introduced the concept of an aggregate function as a relational opera
tion. Because grouping and aggregation are required in many database applications, SQL

has features that incorporate these concepts. A number of built-in functions exist: COUNT,

SUM, MAX, MIN, and AVG. lOThe COUNT function returns the number of tuples or values
as specified in a query. The functions SUM, MAX, MIN, and AVG are applied to a set or mul
tiset of numeric values and return, respectively, the sum, maximum value, minimum value,
and average (mean) of those values. These functions can be used in the SELECT clause or in
a HAVING clause (which we introduce later). The functions MAX and MIN can also be used
with attributes that have nonnumeric domains if the domain values have a total ordering
among one another. I I We illustrate the use of these functions with example queries.

10. Additionalaggregate functions formoreadvanced statistical calculation have been addedin sQL·99.

11.Total order means that for any two values in the domain, it can be determined that one appears
before the other in the definedorder; for example, DATE, TIME, and TIMESTAMP domainshave total
orderingson their values, as do alphabetic strings.

8.5 More Complex SQL Queries I 239

QUERY 19

Find the sum of the salaries of all employees, the maximum salary, the minimum sal
ary, and the average salary.

Q19: SELECT SUM (SALARY), MAX (SALARY), MIN (SALARY),
AVG (SALARY)

FROM EMPLOYEE;

If we want to get the preceding function values for employees of a specific
department-say, the 'Research' department-we can write Query 20, where the EMPLOYEE

tuples are restricted by the WHERE clause to those employees who work for the 'Research'
department.

QUERY 20

Findthe sum of the salaries of all employees of the 'Research' department, as well as
the maximum salary, the minimum salary, and the average salary in this department.

Q20: SELECT

FROM

WHERE

SUM (SALARY), MAX (SALARY), MIN (SALARY),

AVG (SALARY)

(EMPLOYEE JOIN DEPARTMENT ON DNO=DNUMBER)

DNAME='Research' ;

QUERIES 21 AND 22

Retrieve the total number of employees in the company (Q21) and the number of

employees in the 'Research' department (Q22).

Q21: SELECT

FROM

Q22: SELECT

FROM

WHERE

COUNT (*)

EMPLOYEE;

COUNT (*)

EMPLOYEE,DEPARTMENT

DNO=DNUMBER AND DNAME='Research';

Herethe asterisk (*) refers to the rows (tuples), so COUNT (*) returns the number of
rows in the result of the query. We may also use the COUNT function to count values in a
column rather than tuples, as in the next example.

QUERY 23

Count the number of distinct salary values in the database.

Q23: SELECT COUNT (DISTINCT SALARY)

FROM EMPLOYEE;

240 I Chapter 8 SQL-99: Schema Definition, Basic Constraints, and Queries

If we write COUNT(SALARY) instead of COUNT(orSTINCT SALARY) in Q23, then
duplicate values will not be eliminated. However, any tuples with NULL for SALARY will
not be counted. In general, NULL values are discarded when aggregate functions are
applied to a particular column (attribute).

The preceding examples summarize a whole relation (QI9, Q21, Q23) or a selected
subset of tuples (Q20, Q22), and hence all produce single tuples or single values. They
illustrate how functions are applied to retrieve a summary value or summary tuple from the
database. These functions can also be used in selection conditions involving nested
queries. We can specify a correlated nested query with an aggregate function, and then use
the nested query in the WHERE clause of an outer query. For example, to retrieve the names
of all employees who have two or more dependents (Query 5), we can write the following:

Q5: SELECT

FROM

WHERE

LNAME, FNAME

EMPLOYEE

(SELECT COUNT (*)

FROM DEPENDENT

WHERE SSN=ESSN) >= 2',

The correlated nested query counts the number of dependents that each employee has;if
this is greater than or equal to two, the employee tuple is selected.

8.5.8 Grouping: The GROUP BY and HAVING Clauses
In many cases we want to apply the aggregate functions to subgroups of tuples in a relation,
where the subgroups are based on some attribute values. For example, we may want to

find the average salary of employees in each department or the number of employees who
work on eachproject. In these cases we need to partition the relation into nonoverlapping
subsets (or groups) of tuples. Each group (partition) will consist of the tuples that have
the same value of some attributcf s), called the grouping attributets). We can then apply
the function to each such group independently. SQL has a GROUP BY clause for this pur
pose. The GROUP BY clause specifies the grouping attributes, which should also appear in
the SELECT clause, so that the value resulting from applying each aggregate function to a
group of tuples appears along with the value of the grouping attributels).

QUERY 24

For each department, retrieve the department number, the number of employees in

the department, and their average salary.

Q24: SELECT

FROM

GROUP BY

DNa, COUNT (*), AVG (SALARY)

EMPLOYEE

DNa;

In Q24, the EMPLOYEE tuples are partitioned into groups-each group having the same
value for the grouping attribute DNO. The COUNT and AVG functions are applied to each

8.5 More Complex SQL Queries I 241

such group of tuples. Notice that the SELECT clause includes only the grouping attribute
and the functions to be applied on each group of tuples. Figure 8.6a illustrates how
grouping works on Q24j it also shows the result of Q24.

IfNULLs exist in the grouping attribute, then a separate group is created for all tuples
with a NULL value in the grouping attribute. For example, if the EMPLOYEE table had some
tuples that had NULL for the grouping attribute DNa, there would be a separate group for
those tuples in the result of Q24.

QUERY 25

Foreach project, retrieve the project number, the project name, and the number of

employees who work on that project.

Q25: SELECT

FROM

WHERE

GROUP BY

PNUMBER, PNAME, COUNT (*)

PROJECT, WORKS_ON

PNUMBER=PNO

PNUMBER, PNAME;

Q25 shows how we can use a join condition in conjunction with GROUP BY. In this
case, the grouping and functions are applied after the joining of the two relations.
Sometimes we want to retrieve the values of these functions only for groups that satisfy
certain conditions. For example, suppose that we want to modify Query 25 so that only
projects with more than two employees appear in the result. SQL provides a HAVING
clause, which can appear in conjunction with a GROUP BY clause, for this purpose.
HAVING provides a condition on the group of tuples associated with each value of the
grouping attributes. Only the groups that satisfy the condition are retrieved in the result
ofthequery. This is illustrated by Query 26.

QUERY 26

Foreach project on whichmore chan two employees work, retrieve the project number,
the project name, and the number of employees who work on the project.

Q26: SELECT PNUMBER, PNAME, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO

GROUP BY PNUMBER, PNAME

HAVING COUNT (*) > 2;

Notice that, while selection conditions in the WHERE clause limit the tuples to which
functions are applied, the HAVING clause serves to choose whole groups. Figure 8.6b
illustrates the use of HAVING and displays the result of Q26.

242 I Chapter B SQL-99: Schema Definition, Basic Constraints, and Queries

(a)

FNAME MINIT LNAME SSN . .. SALARY SUPERSSN DNO

John B Smith 123456789 30000 333445555 5

Franklin T Wong 333445555 40000 888665555 5

Ramesh K Narayan 666884444 38000 333445555 5

Joyce A English 453453453 .. . 25000 333445555 5

Alicia J Zelaya 999887777 25000 987654321 4

Jennifer S Wallace 987654321 43000 888665555 4

Ahmad V Jabbar 987987987 25000 987654321 4

James E Bong 888665555 55000 null 1

DNO COUNT(") AVG (SALARY)

5 4 33250

4 3 31000

1 1 55000

Result of 024.

Grouping EMPLOYEE tuplesby thevalueof DNa.

(b)

PNAME PNUMBER ESSN PNO HOURS
ProductX 1 123456789 1 32.5

Productx 1 453453453 1 20.0
ProductY 2 123456789 2 7.5
ProductY 2 453453453 2 20.0
ProductY 2 333445555 2 10.0
ProductZ 3 666884444 3 40.0
ProductZ 3 333445555 3 10.0
Computerization 10 ... 333445555 10 10.0

Computerization 10 999887777 10 10.0

Computerization 10 987987987 10 35.0

Reorganization 20 333445555 20 10.0

Reorganization 20 987654321 20 15.0

Reorganization 20 888665555 20 null
Newbenefits 30 987987987 30 5.0

Newbenefits 30 987654321 30 20.0

Newbenefits 30 999887777 30 30.0

r.} .> Thesegroupsarenot

}
~ selectedby the HAVING

condition of026.

}
}
}

Afterapplying the WHERE clausebutbeforeapplying HAVING

Result of 026
(PNUMBER notshown).

PNAME PNUMBER ESSN PNO HOURS
ProductY 2 123456789 2 7.5

ProductY 2 453453453 2 20.0

ProductY 2 333445555 2 10.0

Computerization 10 ... 333445555 10 10.0

Computerization 10 999887777 10 10.0

Computerization 10 987987987 10 35.0

Reorganization 20 333445555 20 10.0

Reorganization 20 987654321 20 15.0

Reorganization 20 888665555 20 null

Newbenefits 30 987987987 30 5.0

Newbenefits 30 987654321 30 20.0

Newbenefits 30 999887777 30 30.0
}

PNAME
ProductY

Computerization

Reorganization

Newbenefits

COUNT(")
3

3

3

3

Afterapplying the HAVING clauseconoition.

FIGURE 8.6 Results of GROUP BY and HAVING. (a) Q24. (b) Q26.

8.5 More Complex SQL Queries I 243

QUERY 27

Foreach project, retrieve the project number, the project name, and the number of

employees from department 5 who work on the project.

Q27: SELECT PNUMBER, PNAME, COUNT (*)

FROM PROJECT, WORKS_ON, EMPLOYEE

WHERE PNUMBER=PNO AND SSN=ESSN AND DNO=5

GROUP BY PNUMBER, PNAME;

Herewe restrict the tuples in the relation (and hence the tuples in each group) to those
that satisfy the condition specified in the WHERE clause-namely, that they work in
department number 5. Notice that we must be extra careful when two different conditions
apply (one to the function in the SELECT clause and another to the function in the HAVING

clause). For example, suppose that we want to count the total number of employees whose
salaries exceed $40,000 in each department, but only for departments where more than five
employees work. Here, the condition (SALARY> 40000) applies only to the COUNT function
intheSELECT clause. Suppose that we write the following incorrect query:

SELECT

FROM
WHERE

GROUP BY

HAVING

DNAME, COUNT (*)

DEPARTMENT, EMPLOYEE

DNUMBER=DNO AND SALARY>40000

DNAME

COUNT (*) > 5;

This is incorrect because it will select only departments that have more than five
employees whoeach earn more than$40,000. The rule is that the WHERE clause is executed
first, to select individual tuples; the HAVING clause is applied later, to select individual
groups of tuples. Hence, the tuples are already restricted to employees who earn more
than $40,000, before the function in the HAVING clause is applied. One way to write this
query correctly is to use a nested query, as shown in Query 28.

QUERY 28

Foreach department that has more than five employees, retrieve the department

number and the number of its employees who are making more than $40,000.

Q28: SELECT DNUMBER, COUNT (*)

FROM DEPARTMENT, EMPLOYEE

WHERE DNUMBER=DNO AND SALARY>40000 AND

DNO IN (SELECT DNO

FROM EMPLOYEE

GROUP BY DNO

HAVING COUNT (*) > 5)

GROUP BY DNUMBER;

244 I Chapter 8 sQL-99: Schema Definition, Basic Constraints, and Queries

8.5.9 Discussion and Summary of SQL Queries
A query in SQL can consist of up to six clauses, but only the first two-SELECT and
FROM-are mandatory. The clauses are specified in the following order, with the clauses
between square brackets [...] being optional:

SELECT <ATTRIBUTE AND FUNCTION LIST>

FROM <TABLE LIST>

[WHERE <CONDITION>]

[GROUP BY <GROUPING ATTRIBUTE(S»]

[HAVING <GROUP CONDITION>]

[ORDER BY <ATTRIBUTE LIST>];

The SELECT clause lists the attributes or functions to be retrieved. The FROM clause
specifies all relations (tables) needed in the query, including joined relations, but not
those in nested queries. The WHERE clause specifies the conditions for selection of tuples
from these relations, including join conditions if needed. GROUP BY specifies grouping
attributes, whereas HAVING specifies a condition on the groups being selected rather than
on the individual tuples. The built-in aggregate functions COUNT, SUM, MIN, MAX, and
AVG are used in conjunction with grouping, but they can also be applied to all the
selected tuples in a query without a GROUP BY clause. Finally, ORDER BY specifies an order
for displaying the result of a query.

A query is evaluated conceptually12 by first applying the FROM clause (to identify all
tables involved in the query or to materialize any joined tables), followed by the WHERE
clause, and then by GROUP BY and HAVING. Conceptually, ORDER BY is applied at the end
to sort the query result. If none of the last three clauses (GROUP BY, HAVING, and ORDER
BY) are specified, we can think conceptually of a query as being executed as follows: For each
combination of tuples-one from each of the relations specified in the FROM clause
evaluate the WHERE clause; if it evaluates to TRUE, place the values of the attributes
specified in the SELECT clause from this tuple combination in the result of the query. Of
course, this is not an efficient way to implement the query in a real system, and each
DBMS has special query optimization routines to decide on an execution plan that is
efficient. We discuss query processing and optimization in Chapters 15 and 16.

In general, there are numerous ways to specify the same query in SQL. This flexibility
in specifying queries has advantages and disadvantages. The main advantage is that users
can choose the technique with which they are most comfortable when specifying a query.
For example, many queries may be specified with join conditions in the WHERE clause, or
by using joined relations in the FROM clause, or with some form of nested queries and the
IN comparison operator. Some users may be more comfortable with one approach,
whereas others may be more comfortable with another. From the programmer's and the

--~--~----~-------~----

12.The actual order of query evaluation is implementation dependent; this is just a wayto concep
tuallv view a query in order to correctly formulate it.

8.6 Insert, Delete, and Update Statements in SQL I 245

system's point of view regarding query optimization, it is generally preferable to write a
query with as little nesting and implied ordering as possible.

The disadvantage of having numerous ways of specifying the same query is that this
may confuse the user, who may not know which technique to use to specify particular
types of queries. Another problem is that it may be more efficient to execute a query
specified in one way than the same query specified in an alternative way. Ideally, this
should not be the case: The DBMS should process the same query in the same way
regardless of how the query is specified. But this is quite difficult in practice, since each
DBMS has different methods for processing queries specified in different ways. Thus, an
additional burden on the user is to determine which of the alternative specifications is the
most efficient. Ideally, the user should worry only about specifying the query correctly. It
is the responsibility of the DBMS to execute the query efficiently. In practice, however, it
helps if the user is aware of which types of constructs in a query are more expensive to
process than others (see Chapter 16).

8.6 INSERT, DELETE, AND UPDATE
STATEMENTS IN SQL

In SQL, three commands can be used to modify the database: INSERT, DELETE, and
UPDATE. We discuss each of these in turn.

8.6.1 The INSERT Command
In its simplestform, INSERT is used to add a single tuple to a relation. We must specify the
relation name and a list of values for the tuple. The values should be listed in the same
order in which the corresponding attributes were specified in the CREATE TABLE com
mand. For example, to add a new tuple to the EMPLOYEE relation shown in Figure 5.5 and
specified in the CREATE TABLE EMPLOYEE ••• command in Figure 8.1, we can use U1:

VI: INSERT INTO

VALUES

EMPLOYEE

('Richard', 'K', 'Marini', '653298653', '1962-12-30', '98

Oak Forest,Katy,TX', 'M', 37000, '987654321', 4);

A second form of the INSERT statement allows the user to specify explicit attribute
names that correspond to the values provided in the INSERT command. This is useful if a
relation has many attributes but only a few of those attributes are assigned values in the
new tuple. However, the values must include all attributes with NOT NULL specification
and no default value. Attributes with NULL allowed or DEFAULT values are the ones that
can be left out. For example, to enter a tuple for a new EMPLOYEE for whom we know only
the FNAME, LNAME, DNa, and SSN attributes, we can use U1A:

VIA: INSERT INTO

VALUES

EMPLOYEE (FNAME, LNAME, DNO, SSN)

('Richard', 'Marini', 4, '653298653');

246 I Chapter 8 SQL-99: Schema Definition, Basic Constraints, and Queries

Attributes not specified in U lA are set to their DEFAULT or to NULL, and the values
are listed in the same order as the attributes are listed in the INSERT command itself. It is
also possible to insert into a relation multiple tuples separated by commas in a single
INSERT command. The attribute values forming each tuple are enclosed in parentheses.

A DBMS that fully implements sQL-99 should support and enforce all the integrity
constraints that can be specified in the DOL. However, some DBMSs do not incorporate all
the constraints, in order to maintain the efficiency of the DBMS and because of the
complexity of enforcing all constraints. If a system does not support some constraint-say,
referential integrity-the users or programmers must enforce the constraint. For example,
if we issue the command in U2 on the database shown in Figure 5.6, a DBMS not
supporting referential integrity will do the insertion even though no DEPARTMENT tuple
exists in the database with DNUMBER = 2. It is the responsibility of the user to check that any
such constraints whose checks are not implemented by the DBMS are not violated. However,
the DBMS must implement checks to enforce all the SQL integrity constraints it supports.
A DBMS enforcing NOT NULL will reject an INSERT command in which an attribute
declared to be NOT NULL does not have a value; for example, U2A would be rejected
because no SSN value is provided.

U2: INSERT INTO EMPLOYEE (FNAME, LNAME, SSN, DNO)

VALUES ('Robert', 'Hatcher', '980760540', 2);

(* U2 is rejected if referential integrity checking is provided by dbms *)

U2A: INSERT INTO EMPLOYEE (FNAME, LNAME, DNO)

VALUES ('Robert', 'Hatcher', 5);

(* U2A is rejected if not null checking is provided by dbms *)

A variation of the INSERT command inserts multiple tuples into a relation in
conjunction with creating the relation and loading it with the result of a query. For
example, to create a temporary table that has the name, number of employees, and total
salaries for each department, we can write the statements in U3A and U3B:

U3A: CREATE TABLE

(DEPT_NAME

NO_OF_EMPS

TOTAL_SAL

U3B: INSERT INTO

SELECT

FROM

GROUP BY

DEPTS_INFO

VARCHAR(15),

INTEGER,

INTEGER);

DEPTS_INFO (DEPT_NAME, NO_OF_EMPS,

TOTAL_SAL)

DNAME, COUNT (*), SUM (SALARY)

(DEPARTMENT JOIN EMPLOYEE ON
DNUMBER=DNO)

DNAME;

A table DEPTS_INFO is created by U3A and is loaded with the summary information
retrieved from the database by the query in U3B. We can now query DEPTS_INFO as we

8.6 Insert, Delete, and Update Statements in SQL I 247

would any other relation; when we do not need it any more, we can remove it by using
theDROP TABLE command. Notice that the DEPTS_INFO table may not be up to date; that is,
if we update either the DEPARTMENT or the EMPLOYEE relations after issuing U3B, the
information in DEPTS_INFO becomes outdated. We have to create a view (see Section 9.2) to
keep such a table up to date.

8.6.2 The DELETE Command
The DELETE command removes tuples from a relation. It includes a WHERE clause, similar
to that used in an SQL query, to select the tuples to be deleted. Tuples are explicitly
deleted from only one table at a time. However, the deletion may propagate to tuples in
other relations if referential triggered actions are specified in the referential integrity con
straints of the DOL (see Section 8.2.2).13 Depending on the number of tuples selected by
the condition in the WHERE clause, zero, one, or several tuples can be deleted by a single
DELETE command. A missing WHERE clause specifies that all tuples in the relation are to
be deleted; however, the table remains in the database as an empty table.l" The DELETE

commands in U4A to U4D, if applied independently to the database of Figure 5.6, will
delete zero, one, four, and all tuples, respectively, from the EMPLOYEE relation:

U4A: DELETE FROM EMPLOYEE

WHERE LNAME='Brown';

U4B: DELETE FROM

WHERE

U4C: DELETE FROM

WHERE

U4D: DELETE FROM

EMPLOYEE

SSN='123456789';

EMPLOYEE

DNO IN (SELECT

FROM

WHERE

EMPLOYEE;

DNUMBER

DEPARTMENT

DNAME='Research');

8.6.3 The UPDATE Command
The UPDATE command is used to modify attribute values of one or more selected tuples.
As in the DELETE command, a WHERE clause in the UPDATE command selects the tuples
tobemodified from a single relation. However, updating a primary key value may propa
gate to the foreign key values of tuples in other relations if such a referential triggered action
is specified in the referential integrity constraints of the DOL (see Section 8.2.2). An addi
tional SET clause in the UPDATE command specifies the attributes to be modified and

13. Other actions can be automatically applied through triggers (see Section 24.1) and other
mechanisms.
14. We must use the DROP TABLE command to remove the table definition (see Section 8.3.1).

248 I Chapter 8 SQL-99: Schema Definition, Basic Constraints, and Queries

their new values. For example, to change the location and controlling department num
ber of project number 10 to 'Bellaire' and 5, respectively, we use US:

U5: UPDATE

SET

WHERE

PROJECT

PLOCATION = 'Bellaire', DNUM = 5

PNUMBER=10;

Several tuples can be modified with a single UPDATE command. An example is to
give all employees in the 'Research' department a 10 percent raise in salary, as shown in
U6. In this request, the modified SALARY value depends on the original SALARY value in each
tuple, so two references to the SALARY attribute are needed. In the SET clause, the reference
to the SALARY attribute on the right refers to the old SALARY value before modification, and
the one on the left refers to the new SALARY value aftermodification:

U6: UPDATE

SET

WHERE

EMPLOYEE

SALARY = SALARY *1.1

DNO IN (SELECT DNUMBER

FROM DEPARTMENT

WHERE DNAME='Research');

It is also possible to specify NULL or DEFAULT as the new attribute value. Notice that
each UPDATE command explicitly refers to a single relation only. To modify multiple
relations, we must issue several UPDATE commands.

8.7 ADDITIONAL FEATURES OF SQL
SQL has a number of additional features that we have not described in this chapter but
discuss elsewhere in the book. These are as follows:

• SQL has the capability to specify more general constraints, called assertions, using the
CREATE ASSERTION statement. This is described in Section 9.1.

• SQL has language constructs for specifying views, also known as virtual tables, using
the CREATE VIEW statement. Views are derived from the base tables declared through
the CREATE TABLE statement, and are discussed in Section 9.2.

• SQL has several different techniques for writing programs in various programming
languages that can include SQL statements to access one or more databases. These
include embedded (and dynamic) SQL, SQL/CLI (Call Language Interface) and its pre·
decessor ODBC (Open Data Base Connectivity), and SQL/PSM (Program Stored Mod
ules). We discuss the differences among these techniques in Section 9.3, then discuss
each technique in Sections 9.4 through 9.6. We also discuss how to access SQL data
bases through the Java programming language using]DBe and SQL].

• Each commercial RDBMS will have, in addition to the SQL commands, a set of corn
mands for specifying physical database design parameters, file structures for relations,
and access paths such as indexes. We called these commands a storage definition lan·

8.8 Summary I 249

guage (SOL) in Chapter 2. Earlier versions of SQL had commands for creating indexes,
but these were removed from the language because they were not at the conceptual
schema level (see Chapter 2).

• SQL has transaction control commands. These are used to specify units of database
processing for concurrency control and recovery purposes. We discuss these com
mands in Chapter 17 after we discuss the concept of transactions in more detail.

• SQL has language constructs for specifying the granting and revoking of privileges to
users. Privileges typically correspond to the right to use certain SQL commands to
access certain relations. Each relation is assigned an owner, and either the owner or
the DBA staff can grant to selected users the privilege to use an SQL statement-such
asSELECT, INSERT, DELETE, or UPDATE-to access the relation. In addition, the DBA
staff can grant the privileges to create schemas, tables, or views to certain users.
These SQL commands-called GRANT and REVOKE-are discussed in Chapter 23
where we discuss database security and authorization.

• SQL has language constructs for creating triggers. These are generally referred to as
active database techniques, since they specify actions that are automatically trig
gered by events such as database updates. We discuss these features in Section 24.1,
where we discuss active database concepts.

• SQL has incorporated many features from object-oriented models to have more pow
erful capabilities, leading to enhanced relational systems known as object-relational.
Capabilities such as creating complex-structured attributes (also called nested rela
tions), specifying abstract data types (called DDTs or user-defined types) for attributes
and tables, creating object identifiers for referencing tuples, and specifying opera
tions on types are discussed in Chapter 22.

• SQL and relational databases can interact with new technologies such as XML
(eXtended Markup Language; see Chapter 26) and OLAP (On Line Analytical Pro
cessing for Data Warehouses; see Chapter 28).

8.8 SUMMARY
In thischapter we presented the SQL database language. This language or variations of it
have been implemented as interfaces to many commercial relational DBMSs, including
Oracle, IBM's DB2 and SQL/DS, Microsoft's SQL Server and ACCESS, INGRES, INFORMIX,
and SYBASE. The original version of SQL was implemented in the experimental DBMS
called SYSTEM R, which was developed at IBM Research. SQL is designed to be a compre
hensive language that includes statements for data definition, queries, updates, view defi
nition, and constraint specification. We discussed many of these in separate sections of
this chapter. In the final section we discussed additional features that are described else
where in the book. Our emphasis was on the sQL-99 standard.

Table 8.2 summarizes the syntax (or structure) of various SQL statements. This
summary is not meant to be comprehensive nor to describe every possible SQL construct;
rather, it is meant to serve as a quick reference to the major types of constructs available

250 I Chapter 8 sQL-99: Schema Definition, Basic Constraints, and Queries

TABLE 8.2 SUMMARY OF SQL SYNTAX

CREATE TABLE <table name> (ccolumn name> <column type> [<attribute constraint>}

{, <column name> <column type> [<attribute consrraint»] }

[ctable constraint> {,<table constraint>}])

DROP TABLE <table name>

ALTER TABLE <table name> ADD <column name> <column type>

SELECT [DISTINCT] <attribute list>

FROM «table name> { <alias>} I<joined table» {, «table name> { <alias»] I<joined table» }

[WHERE <condition>}

IoRoup BY <grouping attributes> [HAVING <group selection condition>))

[ORDER BY <column name> [corder> {,<column name> [corder»] }]

<attribute list>::= (* I (<column name> I <function>«[DIsTINCT]<column name> I *»))
{,(<column name> I <function>«(DIsTINCT} <column name> I *» }))

<grouping attributes>::= <column name> { , <column name»]

<order>::= (ASC I DESC)

INSERT INTO <table name> «<column name>{, <column name>})]

(VALUES (<constant value> , { <constant value>} H,(<constant value>{,<constant value>})}

I <select statement»

DELETE FROM <table name>

[WHERE <selection condition»

UPDATE <table name>

SET <column name>=<value expression> { • <column name>=<value expression> }

[WHERE <selection condition»

CREATE [UNIQUE) INDEX <index name>

ON <table name> (<column name> [<order> I { . <column name> [<order>) })

[CLUSTER)

DROP INDEX <index name>

CREATE VIEW <view name> [(<column name> { • <column name> }))

AS <select statement>

DROP VIEW <view name>

*The last two commands are not part of standard sQL2.

inSQL. We use BNF notation, where nonterminaI symbols are shown in angled brackets
< >,optional parts are shown in square brackets [], repetitions are shown in braces
{ j,and alternatives are shown in parentheses (I ... I ...).15

Review Questions
8.1. How do the relations (tables) in SQL differ from the relations defined formally in

Chapter 5? Discuss the other differences in terminology. Why does SQL allow
duplicate tuples in a table or in a query result?

8.2. List the data types that are allowed for SQL attributes.
8.3. How does SQL allow implementation of the entity integrity and referential integ

rity constraints described in Chapter 5? What about referential triggered actions?
8.4. Describe the six clauses in the syntax of an SQL query, and show what type of con

structs can be specified in each of the six clauses. Which of the six clauses are
required and which are optional?

8.5. Describe conceptually how an SQL query will be executed by specifying the con
ceptual order of executing each of the six clauses.

8.6. Discuss how NULLs are treated in comparison operators in SQL. How are NULLs
treated when aggregate functions are applied in an SQL query? How are NULLs
treated if they exist in grouping attributes?

Exercises
8.7. Consider the database shown in Figure 1.2, whose schema is shown in Figure 2.1.

What are the referential integrity constraints that should hold on the schema?
Write appropriate SQL DDL statements to define the database.

8.8. Repeat Exercise 8.7, but use the AIRLINE database schema of Figure 5.8.
8.9. Consider the LIBRARY relational database schema of Figure 6.12. Choose the appro

priate action (reject, cascade, set to null, set to default) for each referential integ
rity constraint, both for deletion of a referenced tuple, and for update of a primary
key attribute value in a referenced tuple. Justify your choices.

8.10. Write appropriate SQL DDL statements for declaring the LIBRARY relational database
schema of Figure 6.12. Specify appropriate keys and referential triggered actions.

8.11. Write SQL queries for the LIBRARY database queries given in Exercise 6.18.
8.12. How can the key and foreign key constraints be enforced by the DBMS? Is the

enforcement technique you suggest difficult to implement? Can the constraint
checks be executed efficiently when updates are applied to the database?

8.13. Specify the queries of Exercise 6.16 in SQL. Show the result of each query if it is
applied to the COMPANY database of Figure 5.6.

8.14. Specify the following additional queries on the database of Figure 5.5 in SQL.
Show the query results if each query is applied to the database of Figure 5.6.

15. Thefull syntax of sQL-99 is described in many voluminous documents of hundreds of pages.

Exercises I 251

252 I Chapter 8 sQL-99: Schema Definition, Basic Constraints, and Queries

a. For each department whose average employee salary is more than $30,000,
retrieve the department name and the number of employees working for that
department.

b. Suppose that we want the number of male employees in each department
rather than all employees (as in Exercise 8.14a). Can we specify this query in
SQL? Why or why not?

8.15. Specify the updates of Exercise 5.10, using the SQL update commands.
8.16. Specify the following queries in SQL on the database schema of Figure 1.2.

a. Retrieve the names of all senior students majoring in 'cs' (computer science).
b. Retrieve the names of all courses taught by Professor King in 1998 and 1999.
e. For each section taught by Professor King, retrieve the course number, semes

ter, year, and number of students who took the section.
d. Retrieve the name and transcript of each senior student (Class = 5) majoring

in CS. A transcript includes course name, course number, credit hours, semes
ter, year, and grade for each course completed by the student.

e. Retrieve the names and major departments of all straight-A students (students
who have a grade of A in all their courses).

f. Retrieve the names and major departments of all students who do not have a
grade of A in any of their courses.

8.17. Write SQL update statements to do the following on the database schema shown
in Figure 1.2.
a. Insert a new student, <'Johnson', 25,1, 'MATH'>, in the database.
b. Change the class of student 'Smith' to 2.
c. Insert a new course, <Knowledge Engineering', 'cs4390', 3, 'Cs'>.
d. Delete the record for the student whose name is 'Smith' and whose student

number is 17.
8.18. Specify the queries and updates of Exercises 6.17 and 5.11, which refer to the

AIRLINE database (see Figure 5.8), in SQL.
8.19. a. Design a relational database schema for your database application.

b. Declare your relations, using the SQL DDL.
e. Specify a number of queries in SQL that are needed by your database application.
d. Based on your expected use of the database, choose some attributes that

should have indexes specified on them.
e. Implement your database, if you have a DBMS that supports SQL.

8.20. Specify the answers to Exercises 6.19 through 6.21 and Exercise 6.23 in SQL.

Selected Bibliography
The SQL language, originally named SEQUEL, was based on the language SQUARE (Speci
fying Queries as Relational Expressions), described by Boyce et a1. (1975). The syntax of
SQUARE was modified into SEQUEL (Chamberlin and Boyce 1974) and then into SEQUEL
2 (Chamberlin et a1. 1976), on which SQL is based. The original implementation of
SEQUEL was done at IBM Research, San Jose, California.

Reisner (1977) describes a human factors evaluation of SEQUEL in which she found
that users have some difficulty with specifying join conditions and grouping correctly.

Selected Bibliography I 253

Date (1984b) contains a critique of the SQL language that points out its strengths and
shortcomings. Date and Darwen (1993) describes sQL2. ANSI (1986) outlines the original
SQL standard, and ANSI (1992) describes the sQL2 standard. Various vendor manuals
describe the characteristics of SQL as implemented on DB2, SQL/DS, Oracle, INGRES,
INFORMIX, and other commercial DBMS products. Melton and Simon (1993) is a compre
hensive treatment of SQL2. Horowitz (1992) discusses some of the problems related to ref
erential integrity and propagation of updates in sQL2.

The question of view updates is addressed by Dayal and Bernstein (1978), Keller
(1982), and Langerak (1990), among others. View implementation is discussed in Blake
ley et at. (1989). Negri et al. (1991) describes formal semantics of SQL queries.

More SQL: Assertions,
Views, and
Programming
Techniques

Intheprevious chapter, we described several aspects of the SQL language, the standard for
relational databases. We described the SQL statements for data definition, schema modifi
cation, queries, and updates. We also described how common constraints such as key and
referential integrity are specified. In this chapter, we present several additional aspects of
SQL. We start in Section 9.1 by describing the CREATE ASSERTION statement, which
allows the specification of more general constraints on the database. Then, in Section
9.2, we describe the SQL facilities for defining views on the database. Views are also called
virtual or derived tables because they present the user with what appear to be tables; how
ever, the information in those tables is derived from previously defined tables.

The next several sections of this chapter discuss various techniques for accessing
databases from programs. Most database access in practical situations is through software
programs that implement database applications. This software is usually developed in a
general-purpose programming language such as JAVA, COBOL, or C/C++. Recall from
Section 2.3.1 that when database statements are included in a program, the general
purpose programming language is called the host language, whereas the database
language-SQL, in our case-is called the data sublanguage. In some cases, special database
programming languages are developed specifically for writing database applications.
Although many of these were developed as research prototypes, some notable database
programming languages have widespread use, such as ORACLE's PL/SQL (Programming
Language/SQL) .

255

256 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

We start our presentation of database programming in Section 9.3 with an overview
of the different techniques developed for accessing a database from programs. Then, in
Section 9.4, we discuss the rules for embedding SQL statements into a general-purpose
programming language, generally known as embedded SQL. This section also briefly
discusses dynamic SQL, in which queries can be dynamically constructed at runtime, and
presents the basics of the SQLJ variation of embedded SQL that was developed specifically
for the programming language JAVA. In Section 9.5, we discuss the technique known as
SQL/CLI (Call Level Interface), in which a library of procedures and functions is provided
for accessing the database. Various sets of library functions have been proposed. The SQL!CLl

set of functions is the one given in the SQL standard. Another library of functions isOOBC

(Open Data Base Connectivity). We do not describe ODBC because it is considered to be
the predecessor to SQL/CLI. A third library of functions-which we do describe-is lOBe;

this was developed specifically for accessing databases from JAVA. Finally, in Section 9.6,
we discuss SQL/PSM (Persistent Stored Modules), which is a part of the SQL standard that
allows program modules-procedures and functions-to be stored by the DBMS and
accessed through SQL. Section 9.7 summarizes the chapter.

9.1 SPECIFYING GENERAL
CONSTRAINTS AS ASSERTIONS

In SQL, users can specify general constraints-those that do not fall into any of the catego
ries described in Section S.2-via declarative assertions, using the CREATE ASSERTION

statement of the DOL. Each assertion is given a constraint name and is specified via a condi
tion similar to the WHERE clause of an SQL query. For example, to specify the constraint that
"the salary of an employee must not be greater than the salary of the manager of the depart
ment that the employee works for" in SQL, we can write the following assertion:

CREATE ASSERTION SALARY_CONSTRAINT

CHECK (NOT EXISTS
(SELECT *
FROM EMPLOYEE E, EMPLOYEE M, DEPARTMENT D
WHERE E.SALARY>M.SALARY AND

E.DNO=:D.DNUMBER AND
D.MGRSSN=:M.SSN));

The constraint name SALARY_CONSTRAINT is followed by the keyword CHECK, which is
followed by a condition in parentheses that must hold true on every database state forthe
assertion to be satisfied. The constraint name can be used later to refer to the constraint
or to modify or drop it. The DBMS is responsible for ensuring that the condition is not
violated. Any WHERE clause condition can be used, but many constraints can be specified
using the EXISTS and NOT EXISTS style of SQL conditions. Whenever some tuples in the
database cause the condition of an ASSERTION statement to evaluate to FALSE, the
constraint is violated. The constraint is satisfied by a database state if no combination of
tuples in that database state violates the constraint.

9.2 Views (Virtual Tables) in SQL I 257

The basic technique for writing such assertions is to specify a query that selects any
tuples that violate the desired condition. By including this query inside a NOT EXISTS clause,
the assertion will specify that the result of this query must be empty. Thus, the assertion is
violated if the result of the query is not empty. In our example, the query selects all
employees whose salaries are greater than the salary of the manager of their department. If
the result of the query is not empty, the assertion is violated.

Note that the CHECK clause and constraint condition can also be used to specify
constraints on attributes and domains (see Section 8.2.1) and on tuples (see Section
8.2.4). A major difference between CREATE ASSERTION and the other two is that the
CHECK clauses on attributes, domains, and tuples are checked in SQL only when tuples are
inserted or updated. Hence, constraint checking can be implemented more efficiently by
the DBMS in these cases. The schema designer should use CHECK on attributes, domains,
and tuples only when he or she is sure that the constraint can only be violated by insertion
or updating of tuples. On the other hand, the schema designer should use CREATE
ASSERTION only in cases where it is not possible to use CHECK on attributes, domains, or
tuples, so that checks are implemented more effic.iently by the DBMS.

Another statement related to CREATE ASSERTION in SQL is CREATE TRIGGER, but
triggers are used in a different way. In many cases it is convenient to specify the type of
action to be taken when certain events occur and when certain conditions are satisfied.
Rather than offering users only the option of aborting an operation that causes a
violation-as with CREATE ASSERTION-the DBMS should make other options available.
For example, it may be useful to specify a condition that, if violated, causes some user to
be informed of the violation. A manager may want to be informed if an employee's travel
expenses exceed a certain limit by receiving a message whenever this occurs. The action
that the DBMS must take in this case is to send an appropriate message to that user. The
condition is thus used to monitor the database. Other actions may be specified, such as
executing a specific stored procedure or triggering other updates. The CREATE TRIGGER
statement is used to implement such actions in SQL. A trigger specifies an event (such as
aparticular database update operation), a condition, and an action. The action is to be
executed automatically if the condition is satisfied when the event occurs. We discuss
triggers in detail in Section 24.1 when we describe activedatabases.

9.2 VIEWS (VIRTUAL TABLES) IN SQL
In this section we introduce the concept of a view in SQL. We then show how views are
specified, and we discuss the problem of updating a view, and how a view can be imple
mented by the DBMS.

9.2.1 Concept of a View in SQL

Aview in SQL terminology is a single table that is derived from other tables.' These other
tables could be base tables or previously defined views. A view does not necessarily exist in

1. As used in SQL, the term view is more limited than the term user view discussed in Chapters 1 and
1, since a user view would possibly include many relations.

258 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

physical form; it is considered a virtual table, in contrast to base tables, whose tuples are
actually stored in the database. This limits the possible update operations that can be
applied to views, but it does not provide any limitations on querying a view.

We can think of a view as a way of specifying a table that we need to reference
frequently, even though it may not exist physically. For example, in Figure 5.5 we may
frequently issue queries that retrieve the employee name and the project names that the
employee works on. Rather than having to specify the join of the EMPLOYEE, WORKS_ON, and
PROJECT tables every time we issue that query, we can define a view that is a result of these
joins. We can then issue queries on the view, which are specified as single-table retrievals
rather than as retrievals involving two joins on three tables. We call the EMPLOYEE, WORKS_ON,

and PROJECT tables the defining tables of the view.

9.2.2 Specification of Views in SQL

In SQL, the command to specify a view is CREATE VIEW. The view is given a (virtual)
table name (or view name), a list of attribute names, and a query to specify the contents
of the view. If none of the view attributes results from applying functions or arithmetic
operations, we do not have to specify attribute names for the view, since they wouldbe
the same as the names of the attributes of the defining tables in the default case. The
views in VI and V2 create virtual tables whose schemas are illustrated in Figure 9.1 when
applied to the database schema of Figure 5.5.

V1: CREATE VIEW

AS SELECT

FROM

WHERE

V2: CREATE VIEW

AS SELECT

FROM

WHERE

GROUP BY

WORKS_ON1

FNAME, LNAME, PNAME, HOURS

EMPLOYEE, PROJECT, WORKS_ON

SSN=ESSN AND PNO=PNUMBER;

DEPTJNFO(DEPT_NAME,NO_OF_EMPS,TOTAL_ SAL)

DNAME, COUNT (*), SUM (SALARY)

DEPARTMENT, EMPLOYEE

DNUMBER=DNO

DNAME;

WORKS_ON1

I FNAME I-L-N-AM-E-j PNAME I HOURS I

FIGURE 9.1 Two views specified on the database schema of Figure 5.5.

9.2 Views (Virtual Tables) in SQL I 259

In VI, we did not specify any new attribute names for the view WORKS_ONI (although
we could have); in this case, WORKS_ONI inherits the names of the view attributes from the
defining tables EMPLOYEE, PROJECT, and WORKS_ON. View V2 explicitly specifies new attribute
names for the view DEPT_INFO, using a one-to-one correspondence between the attributes
specified in the CREATE VIEW clause and those specified in the SELECT clause of the query
that defines the view.

We can now specify SQL queries on a view-or virtual table-in the same way we
specify queries involving base tables. For example, to retrieve the last name and first name
ofallemployees who work on 'ProjectX', we can utilize the WORKS_ONI view and specify the
query as in QVI:

aV1: SELECT

FROM

WHERE

FNAME, LNAME

WORKS_ON1

PNAME='ProjectX';

The same query would require the specification of two joins if specified on the base rela
tions; one of the main advantages of a view is to simplify the specification of certain que
ries. Views are also used as a security and authorization mechanism (see Chapter 23).

A view is supposed to be always up to date; if we modify the tuples in the base tables
onwhich the view is defined, the view must automatically reflect these changes. Hence,
the view is not realized at the time of view definition but rather at the time we specify a
query on the view. It is the responsibility of the DBMS and not the user to make sure that
the view is up to date.

Ifwe do not need a view any more, we can use the DROP VIEW command to dispose
of it. Forexample, to get rid of the view VI, we can use the SQL statement in VIA:

V1A: DROP VIEW WORKS_ON 1;

9.2.3 View Implementation and View Update
The problem of efficiently implementing a view for querying is complex. Two main
approaches have been suggested. One strategy, called query modification, involves modi
~ing the view query into a query on the underlying base tables. For example, the query
QVI would be automatically modified to the following query by the DBMS:

SELECT

FROM

WHERE

FNAME, LNAME

EMPLOYEE, PROJECT, WORKS_ON

SSN=ESSN AND PNO=PNUMBER

AND PNAME='ProjectX';

The disadvantage of this approach is that it is inefficient for views defined via
complex queries that are time-consuming to execute, especially if multiple queries are
applied to the view within a short period of time. The other strategy, called view
materialization, involves physically creating a temporary view table when the view is first
queried and keeping that table on the assumption that other queries on the view will
follow. In this case, an efficient strategy for automatically updating the view table when

260 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

the base tables are updated must be developed in order to keep the view up to date.
Techniques using the concept of incremental update have been developed for this
purpose, where it is determined what new tuples must be inserted, deleted, or modified in
a materialized view table when a change is applied to one of the defining base tables. The
view is generally kept as long as it is being queried. If the view is not queried for a certain
period of time, the system may then automatically remove the physical view table and
recompute it from scratch when future queries reference the view.

Updating of views is complicated and can be ambiguous. In general, an update on a
view defined on a single table without any aggregate functions can be mapped to an update on
the underlying base table under certain conditions. For a view involving joins, an update
operation may be mapped to update operations on the underlying base relations in multip~

ways. To illustrate potential problems with updating a view defined on multiple tables,
consider the WORKS_aNI view, and suppose that we issue the command to update the PNAME

attribute of 'John Smith' from 'ProductX' to 'ProductY'. This view update is shown in UVl:

UV1: UPDATE

SET

WHERE

WORKS_ON1

PNAME = 'ProductY'

LNAME='Smith' AND FNAME='John' AND

PNAME='ProductX';

This query can be mapped into several updates on the base relations to give the
desired update effect on the view. Two possible updates, (a) and (b), on the base relations
corresponding to UVI are shown here:

WORKS_ON

PNO = (SELECT

FROM

WHERE

ESSN IN (SELECT

FROM

WHERE

(a): UPDATE

SET

WHERE

AND

PNO= (SELECT

FROM

PNUMBER

PROJECT

PNAME='ProductY')

SSN

EMPLOYEE

LNAME='Smith'AND FNAME='John')

PNUMBER

PROJECT

(b): UPDATE

WHERE

WHERE PNAME='ProductX');

PROJECT SET PNAME = 'ProductY'

PNAME = 'ProductX';

Update (a) relates 'John Smith' to the 'ProductY' PROJECT tuple in place of the
'ProductX' PROJECT tuple and is the most likely desired update. However, (b) would also
give the desired update effect on the view, but it accomplishes this by changing the name
of the 'ProductX' tuple in the PROJECT relation to 'ProductY'. It is quite unlikely that the

9.3 Database Programming: Issues and Techniques I 261

user who specified the view update UVI wants the update to be interpreted as in (b),
since it also has the side effect of changing all the view tuples with PNAME = 'ProductX'.

Some view updates may not make much sense; for example, modifying the TOTAL_SAL

attribute of the DEPT_INFO view does not make sense because TOTAL_SAL is defined to be the
sum ofthe individual employee salaries. This request is shown as UV2:

UV2: UPDATE

SET

WHERE

DEPT_INFO

TOTAL_SAL=100000

DNAM E='Research';

Alarge number of updates on the underlying base relations can satisfy this view update.
A view update is feasible when only one possible update on the base relations can

accomplish the desired update effect on the view. Whenever an update on the view can
be mapped to more than one update on the underlying base relations, we must have a
certain procedure for choosing the desired update. Some researchers have developed
methods for choosing the most likely update, while other researchers prefer to have the
user choose the desired update mapping during view definition.

Insummary, we can make the following observations:

• A view with a single defining table is updatable if the view attributes contain the pri
mary key of the base relation, as well as all attributes with the NOT NULL constraint
that donot havedefault values specified.

• Views defined on multiple tables using joins are generally not updatable.

• Views defined using grouping and aggregate functions are not updatable.

In SQL, the clause WITH CHECK OPTION must be added at the end of the view
definition if a view is to be updated. This allows the system to check for view updatabilitv
and to plan an execution strategy for view updates.

9.3 DATABASE PROGRAMMING:
ISSUES AND TECHNIQUES

We now turn our attention to the techniques that have been developed for accessing
databases from programs and, in particular, to the issue of how to access SQL databases
from application programs. Our presentation of SQL so far has focused on the language
constructs for various database operations-from schema definition and constraint speci
fication to querying, to updating, and the specification of views. Most database systems
have an interactive interface where these SQL commands can be typed directly into a
monitor and input to the database system. For example, in a computer system where the
ORACLE RDBMS is installed, the command SQLPLUS will start the interactive interface.
The user can type SQL commands or queries directly over several lines, ended by a semi
colon and the Enter key (that is, H; <cr>"). Alternatively, a file of commands can be cre
ated and executed through the interactive interface by typing @<filename>. The system
will execute the commands written in the file and display the results, if any.

262 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

The interactive interface is quite convenient for schema and constraint creation or
for occasional ad hoc queries. However, the majority of database interactions in practice
are executed through programs that have been carefully designed and tested. These
programs are generally known as application programs or database applications, and are
used as canned transactions by the end users, as discussed in Section 1.4.3. Another very
common use of database programming is to access a database through an application
program that implements a Web interface, for example, for making airline reservationsor
department store purchases. In fact, the vast majority of Web electronic commerce
applications include some database access commands.

In this section, we first give an overview of the main approaches to database
programming. Then we discuss some of the problems that occur when trying to access a
database from a general-purpose programming language, and discuss the typical sequence
of commands for interacting with a database from a software program.

9.3.1 Approaches to Database Programming
Several techniques exist for including database interactions in application programs. The
main approaches for database programming are the following:

1. Embedding database commands in a general-purpose programming language: In this
approach, database statements are embedded into the host programming lan
guage, but they are identified by a special prefix. For example, the prefix for
embedded SQL is the string EXEC SQL, which precedes all SQL commands in a host
language program.i A precompiler or preproccessor first scans the source program
code to identify database statements and extract them for processing by the DBMS.

They are replaced in the program by function calls to the DBMS-generated code.

2. Using a library of database functions: A library of functions is made available to

the host programming language for database calls. For example, there couldbe
functions to connect to a database, execute a query, execute an update, and soon.
The actual database query and update commands, and any other necessary infor
mation, are included as parameters in the function calls. This approach provides
what is known as an Application Programming Interface (API) for accessing a
database from application programs.

3. Designing a brand-new language: A database programming language is designed
from scratch to be compatible with the database model and query language. Addi
tional programming structures such as loops and conditional statements are added
to the database language to convert it into a full-fledged programming language.

In practice, the first two approaches are more common, since many applications are
already written in general-purpose programming languages but require some database
access. The third approach is more appropriate for applications that have intensive
database interaction. One of the main problems with the first two approaches is impedance
mismatch, which does not occur in the third approach. We discuss this next.

2. Other prefixes are sometimes used, but this is the most common one.

9.3 Database Programming: Issues and Techniques I 263

9.3.2 Impedance Mismatch
Impedance mismatch is the term used to refer to the problems that occur because of dif
ferences between the database model and the programming language model. For example,
the practical relational model has three main constructs: attributes and their data types,
tuples (records), and tables (sets or multisets of records). The first problem that may occur
is that the data types of the programming language differ from the attribute data types in
thedata model. Hence, it is necessary to have a binding for each host programming lan
guage that specifies for each attribute type the compatible programming language types. It
is necessary to have a binding for each programming language because different languages
have different data types; for example, the data types available in C and JAVA are differ
ent, and both differ from the SQLdata types.

Another problem occurs because the results of most queries are sets or multisets of
tuples, and each tuple is formed of a sequence of attribute values. In the program, it is
often necssary to access the individual data values within individual tuples for printing or
processing. Hence, a binding is needed to map the query result data structure, which is a
table, to an appropriate data structure in the programming language. A mechanism is
needed to loop over the tuples in a query result in order to access a single tuple at a time
and to extract individual values from the tuple. A cursor or iterator variable is used to
loop over the tuples in a query result. Individual values within each tuple are typically
extracted into distinct program variables of the appropriate type.

Impedance mismatch is less of a problem when a special database programming
language is designed that uses the same data model and data types as the database model.
One example of such a language is ORACLE's PL/SQL. For object databases, the object data
model (see Chapter 20) is quite similar to the data model of the JAVA programming
language, so the impedance mismatch is greatly reduced when JAVA is used as the host
language for accessing a JAVA-compatible object database. Several database programming
languages have been implemented as research prototypes (see bibliographic notes).

9.3.3 Typical Sequence of Interaction
in Database Programming

When a programmer or software engineer writes a program that requires access to a database,
itis quite common for the program to be running on one computer system while the database
is installed on another. Recall from Section 2.5 that a common architecture for database
access isthe client/server model, where a client program handles the logic of a software appli
cation, but includes some calls to one or more database servers to access or update the data.'
When writingsuch a program, a common sequence of interaction is the following:

1. When the client program requires access to a particular database, the program
must first establish or open a connection to the database server. Typically, this

3. As we discussed in Section 2.5, there are two-tier and three-tier architectures; to keep our discus
sion simple, we will assume a two-tier client/server architecture here. We discuss additional varia
tions ofthese architectures in Chapter 25.

264 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

involves specifying the Internet address (URL) of the machine where the database
server is located, plus providing a login account name and password for database
access.

2. Once the connection is established, the program can interact with the database
by submitting queries, updates, and other database commands. In general, most
types of SQL statements can be included in an application program.

3. When the program no longer needs access to a particular database, it should termi
nate or close the connection to the database.

A program can access multiple databases if needed. In some database programming
approaches, only one connection can be active at a time, whereas in other approaches
multiple connections can be established at the same time.

In the next three sections, we discuss examples of each of the three approaches to
database programming. Section 9.4 describes how SQL is embedded into a programming
language. Section 9.5 discusses how function calls are used to access the database, and
Section 9.6 discusses an extension to SQL called SQLjPSM that allows general-purpose
programming constructs for defining modules (procedures and functions) that are stored
within the database system."

9.4 EMBEDDED SQL, DYNAMIC SQL, AND SQLJ

9.4.1 Retrieving Single Tuples with Embedded SQl

In this section, we give an overview of how SQL statements can be embedded in a general
purpose programming language such as C, ADA, COBOL, or PASCAL. The programming
language is called the host language. Most SQL statements-including data or constraint
definitions, queries, updates, or view definitions-can be embedded in a host language
program. An embedded SQL statement is distinguished from programming language state
ments by prefixing it with the keywords EXEC SQL so that a preprocessor (or precompiler)
can separate embedded SQL statements from the host language code. The SQL statements
can be terminated by a semicolon (;) or a matching END-EXEC.

To illustrate the concepts of embedded SQL, we will use C as the host
programming language. Within an embedded SQL command, we may refer to specially
declared C program variables. These are called shared variables because they are used
in both the C program and the embedded SQL statements. Shared variables are
prefixed by a colon (:) when they appear in an SQL statement. This distinguishes
program variable names from the names of database schema constructs such as
attributes and relations. It also allows program variables to have the same names as
attribute names, since they are distinguishable by the ":" prefix in the SQL statement.

4. Although SQL/PSM is not considered to be a full-fledged programminglanguage, it illustrates how
typical general-purpose programmingconstructs-such as loops and conditional structures---ean be
incorporated into SQL.

9.4 Embedded SQL, Dynamic SQL, and SQLJ I 265

Names of database schema constructs-such as attributes and relations-can only be
used within the SQL commands, but shared program variables can be used elsewhere
in the C program without the ":" prefix.

Suppose that we want to write C programs to process the COMPANY database of Figure
5.5. We need to declare program variables to match the types of the database attributes
that the program will process. The programmer can choose the names of the program
variables; they mayor may not have names that are identical to their corresponding
attributes. We will use the C program variables declared in Figure 9.2 for all our examples,
and wewill show C program segments without variable declarations. Shared variables are
declared within a declare section in the program, as shown in Figure 9.2 (lines 1 through
7).5 A few of the common bindings of C types to SQL types are as follows. The SQL types
INTEGER, SMALLINT, REAL, and DOUBLE are mapped to the C types long, short, float,
and double, respectively. Fixed-length and varying-length strings (CHAR[i], VARCHAR[i])

inSQL can be mapped to arrays of characters (char [i+ 1], varchar [i+ 1]) in C that are one
character longer than the SQL type, because strings in C are terminated by a "\ 0" (null)
character, which is not part of the character string itself. 6

Notice that the only embedded SQL commands in Figure 9.2 are lines 1 and 7, which
tell the precompiler to take note of the C variable names between BEGIN DECLARE and
END DECLARE because they can be included in embedded SQL statements-as long as they
are preceded by a colon (:). Lines 2 through 5 are regular C program declarations. The C

program variables declared in lines 2 through 5 correspond to the attributes of the
EMPLOYEE and DEPARTMENT tables from the COMPANY database of Figure 5.5 that was declared by
the SQL DOL in Figure 8.1. The variables declared in line 6-SQLCODE and SQLSTATE

are used to communicate errors and exception conditions between the database system
and the program. Line 0 shows a program variable loop that will not be used in any
embedded SQL statements, so it is declared outside the SQL declare section.

0) int loop ;
1) EXEC SQL BEGIN DECLARE SECTION
2) varchar dname [16J. fname [16J. lname [16J, address [31J
3) char ssn [10J. bdate [l1J. sex [2J. mi ni t [2J ;
4) float salary, rai se ;
5) int dna. dnumber ;
6) int SQLCODE ; char SQLSTATE [6J
7) EXEC SQL END DECLARE SECTION ;

FIGURE 9.2 c program variables used in the embedded SQL examples E1 and E2.

5. We use line numbers in our code segments for easy reference; these numbers are not part of the
actual code.

6. SQL strings can also be mapped to char* types in C.

266 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

Connecting to the Database. The SQL command for establishing a connection to
a database has the following form:

CONNECTTO <server name> AS <connection name>

AUTHORIZATION <user account name and password> ;

In general, since a user or program can access several database servers, several
connections can be established, but only one connection can be active at any point in
time. The programmer or user can use the <connection name> to change from the
currently active connection to a different one by using the following command:

SET CONNECTION <connection name> ;

Once a connction is no longer needed, it can be terminated by the following
command:

DISCONNECT <connection name> ;

In the examples in this chapter, we assume that the appropriate connection has
already been established to the COMPANY database, and that it is the currently active
connection.

Communicating between the Program and the DBMS Using SQLCODE and
SQLSTATE. The two special communication variables that are used by the DBMS to

communicate exception or error conditions to the program are SQLCODE and SQLSTATE.

The SQLCODE variable shown in Figure 9.2 is an integer variable. After each database
command is executed, the DBMS returns a value in SQLCODE. A value of 0 indicates that
the statement was executed successfully by the DBMS. If SQLCODE > 0 (or, more
specifically, if SQLCODE = 100), this indicates that no more data (records) are available in
a query result. If SQLCODE < 0, this indicates some error has occurred. In some systems
for example, in the ORACLE RDBMS-SQLCODE is a field in a record structure called
SQLCA (SQL communication area), so it is referenced as SQLCA.SQLCODE. In this case, the
definition of SQLCA must be included in the C program by including the following line:

EXEC SQL include SQLCA ;

In later versions of the SQL standard, a communication variable called SQLSTATE was
added, which is a string of five characters. A value of "00000" in SQLSTATE indicates no
error or exception; other values indicate various errors or exceptions. For example, "02000"
indicates "no more data" when using SQLSTATE. Currently, both SQLSTATE and SQLCODE

are available in the SQL standard. Many of the error and exception codes returned in
SQLSTATE are supposed to be standardized for all SQL vendors and platforms," whereas the
codes returned in SQLCODE are not standardized but are defined by the DBMS vendor.
Hence, it is generally better to use SQLSTATE, because this makes error handling in the
application programs independent of a particular DBMS. As an exercise, the reader should
rewrite the examples given later in this chapter using SQLSTATE instead of SQLCODE.

---- - --- ----

7. In particular, SQLSTATE codes starting with the characters 0 through 4 or A through H are sup
posed to be standardized, whereas other values can be implementation-defined.

9.4 Embedded SQL, Dynamic SQL, and SQLJ I 267

Example of Embedded SQL Programming. Our first example to illustrate
embedded SQL programming is a repeating program segment (loop) that reads a social
security number of an employee and prints out some information from the corresponding
EMPLOYEE record in the database. The C program code is shown as program segment El in
Figure 9.3. The program reads (inputs) a social security number value and then retrieves
the EMPLOYEE tuple with that social security number from the database via the embedded
SQL command. The INTO clause (line 5) specifies the program variables into which
attribute values from the database are retrieved. C program variables in the INTO clause
are prefixed with a colon (:), as we discussed earlier.

Line 7 in El illustrates the communication between the database and the program
through the special variable SQLCODE. If the value returned by the DBMS in SQLCODE is 0,
the previous statement was executed without errors or exception conditions. Line 7 checks
this and assumes that if an error occurred, it was because no EMPLOYEE tuple existed with the
given socialsecurity number; it therefore outputs a message to that effect (line 8).

In El a single tuple is selected by the embedded SQL query; that is why we are able to
assign its attribute values directly to C program variables in the INTO clause in line 5. In
general, an SQL query can retrieve many tuples. In that case, the C program will typically
go through the retrieved tuples and process them one at a time. A cursor is used to allow
tuple-at-a-time processing by the host language program. We describe cursors next.

9.4.2 Retrieving Multiple Tuples with
Embedded SQL Using Cursors

We can think of a cursor as a pointer that points to a single tuple (row) from the result of a
query that retrieves multiple tuples. The cursor is declared when the SQL query command
is declared in the program. Later in the program, an OPEN CURSOR command fetches the
query result from the database and sets the cursor to a position before the first row in the

//Program Segment E1:
0) loop = 1 ;
1) while (loop) {
2) prompt("Enter a Social Security Number: ", ssn)
3) EXEC SQL
4) select FNAME, MINIT, LNAME, ADDRESS, SALARY
5) into :fname, :minit, :lname, :address, :salary
6) from EMPLOYEE where SSN = :ssn ;
7) if (SQLCODE == 0) printf(fname, minit, lname, address, salary)
8) else printf("Social Security Number does not exist: ", ssn) ;
9) prompt("More Social Security Numbers (enter 1 for Yes, 0 for No):" loop)
10) }

FIGURE 9.3 Program segment E1, a c program segment with embedded SQL.

268 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

result of the query. This becomes the current row for the cursor. Subsequently, FETCH

commands are issued in the program; each FETCH moves the cursor to the next row in
the result of the query; making it the current row and copying its attribute values into
the C (host language) program variables specified in the FETCH command by an INTO

clause. The cursor variable is basically an iterator that iterates (loops) over the tuples
in the query result-one tuple at a time. This is similar to traditional record-at-a-time
file processing.

To determine when all the tuples in the result of the query have been processed, the
communication variable SQLCODE (or, alternatively, SQLSTATE) is checked. If a FETCH

command is issued that results in moving the cursor past the last tuple in the result of the
query, a positive value (SQLCODE > 0) is returned in SQLCODE, indicating that no data
(tuple) was found (or the string "02000" is returned in SQLSTATE). The programmer uses
this to terminate a loop over the tuples in the query result. In general, numerous cursors
can be opened at the same time. A CLOSE CURSOR command is issued to indicate that we
are done with processing the result of the query associated with that cursor.

An example of using cursors is shown in Figure 9.4, where a cursor called EMF is
declared in line 4. We assume that appropriate C program variables have been declared as
in Figure 9.2. The program segment in E2 reads (inputs) a department name (line 0),
retrieves its department number (lines 1 to 3), and then retrieves the employees who

//Program Segment E2:
0) prompt("Enter the Department Name: " dname)
1) EXEC SQL
2) select DNUMBER into :dnumber
3) from DEPARTMENT where DNAME = :dname ;
4) EXEC SQL DECLARE EMP CURSOR FOR
5) select SSN, FNAME, MINIT, LNAME, SALARY
6) from EMPLOYEE where DNO = :dnumber
7) FOR UPDATE OF SALARY ;
8) EXEC SQL OPEN EMP ;
9) EXEC SQL FETCH from EMP into :ssn, :fname, :minit, :lname, :salary
10) while (SQLCODE == 0) {
11) printf("Employee name is:", fname, minit, lname)
12) prompt("Enter the rai se amount: rai se)
13) EXEC SQL
14) update EMPLOYEE
15) set SALARY = SALARY + :raise
16) where CURRENT OF EMP ;
17) EXEC SQL FETCH from EMP into :ssn, :fname, :minit, :lname, :salary
18) }
19) EXEC SQL CLOSE EMP ;

FIGURE 9.4 Program segment E2, a c program segment that uses cursors with
embedded SQL for update purposes.

9.4 Embedded SQL, Dynamic SQL, and SQLJ I 269

work in that department via a cursor. A loop (lines 10 to 18) then iterates over each
employee record, one at a time, and prints the employee name. The program then reads a
raise amount for that employee (line 12) and updates the employee's salary in the
database by the raise amount (lines 14 to 16).

When a cursor is defined for rows that are to be modified (updated), we must add the
clause FOR UPDATE OF in the cursor declaration and list the names of any attributes that
will beupdated by the program. This is illustrated in line 7 of code segment E2. If rows are
to be deleted, the keywords FOR UPDATE must be added without specifying any
attributes. In the embedded UPDATE (or DELETE) command, the condition WHERE

CURRENT OF <cursor name> specifies that the current tuple referenced by the cursor is
the one to be updated (or deleted), as in line 16 of E2.

Notice that declaring a cursor and associating it with a query (lines 4 through 7 in
E2) does not execute the query; the query is executed only when the OPEN <cursor
name> command (line 8) is executed. Also notice that there is no need to include the
FOR UPDATE OF clause in line 7 of E2 if the results of the query are to be used for retrieval
purposes only (no update or delete).

Severaloptions can be specified when declaring a cursor. The general form of a cursor
declaration is as follows:

DECLARE <cursor name> [INSENSITIVE] [SCROLL] CURSOR

[WITH HOLD] FOR <query specification>

[ORDER BY <ordering specification>]

[FOR READ ONLY I FOR UPDATE [OF <attribute list>]] ;

We already briefly discussed the options listed in the last line. The default is that the
query is for retrieval purposes (FOR READ ONLY). If some of the tuples in the query result
are to be updated, we need to specify FOR UPDATE OF <attribute list> and list the
attributes that may be updated. If some tuples are to be deleted, we need to specify FOR

UPDATE without any attributes listed.
When the optional keyword SCROLL is specified in a cursor declaration, it is possible

to position the cursor in other ways than for purely sequential access. A fetch orientation
can be added to the FETCH command, whose value can be one of NEXT, PRIOR, FIRST,

LAST, ABSOLUTE i, and RELATIVE i. In the latter two commands, i must evaluate to an
integer value that specifies an absolute tuple position or a tuple position relative to the
current cursor position, respectively. The default fetch orientation, which we used in our
examples, is NEXT. The fetch orientation allows the programmer to move the cursor
around the tuples in the query result with greater flexibility, providing random access by
position or access in reverse order. When SCROLL is specified on the cursor, the general
form ofa FETCH command is as follows, with the parts in square brackets being optional:

FETCH [[<fetch orientation>] FROM] <cursor name> INTO <fetch target list> ;

The ORDER BY clause orders the tuples so that the FETCH command will fetch them
in the specified order. It is specified in a similar manner to the corresponding clause for
SQL queries (see Section 8.4.6). The last two options when declaring a cursor
(INSENSITIVE and WITH HOLD) refer to transaction characteristics of database programs,
which wediscuss in Chapter 17.

270 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

9.4.3 Specifying Queries at Runtime Using Dynamic SQL

In the previous examples, the embedded SQL queries were written as part of the host pro
gram source code. Hence, any time we want to write a different query, we must write a
new program, and go through all the steps involved (compiling, debugging, testing, and
so on). In some cases, it is convenient to write a program that can execute different SQL

queries or updates (or other operations) dynamically at runtime. For example, we may want
to write a program that accepts an SQL query typed from the monitor, executes it, and dis
plays its result, such as the interactive interfaces available for most relational DBMSs.
Another example is when a user-friendly interface generates SQL queries dynamically for
the user based on point-and-click operations on a graphical schema (for example, a QBE

like interface; see Appendix D). In this section, we give a brief overview of dynamic SQL,

which is one technique for writing this type of database program, by giving a simple
example to illustrate how dynamic SQL can work.

Program segment E3 in Figure 9.5 reads a string that is input by the user (that string
should be an SQL update command) into the string variable sql updatestri ng in line lit
then prepares this as an SQL command in line 4 by associating it with the SQL variable
sql command. Line 5 then executes the command. Notice that in this case no syntax check
or other types of checks on the command are possible at compile time, since the command
is not available until runtime. This contrasts with our previous examples of embedded
SQL, where the query could be checked at compile time because its text was in the
program source code.

Although including a dynamic update command is relatively straightforward in
dynamic SQL, a dynamic query is much more complicated. This is because in the general
case we do not know the type or the number of attributes to be retrieved by the SQL query
when we are writing the program. A complex data structure is sometimes needed to allow
for different numbers and types of attributes in the query result if no prior information is
known about the dynamic query. Techniques similar to those that we discuss in Section
9.5 can be used to assign query results (and query parameters) to host program variables.

In E3, the reason for separating PREPARE and EXECUTE is that if the command is to be
executed multiple times in a program, it can be prepared only once. Preparing the
command generally involves syntax and other types of checks by the system, as well as

jjProgram Segment E3:
0) EXEC SQL BEGIN DECLARE SECTION
1) varchar sqlupdatestring [256] ;
2) EXEC SQL END DECLARE SECTION ;

3) prompt("Enter the Update Command: ", sqlupdatestring)
4) EXEC SQL PREPARE sqlcommand FROM :sqlupdatestring ;
5) EXEC SQL EXECUTE sqlcommand

FIGURE 9.5 Program segment E3, a c program segment that uses dynamic SQL for updating a table.

9.4 Embedded SQL, Dynamic SQL, and SQLj I 271

generating the code for executing it. It is possible to combine the PREPARE and EXECUTE

commands (lines 4 and 5 in E3) into a single statement by writing

EXEC SQL EXECUTE IMMEDIATE :sqlupdatestring ;

This isuseful if the command is to be executed only once. Alternatively, one can separate
thetwoto catch any errors after the PREPARE statement, if any.

9.4.4 SQLJ: Embedding SQL Commands in JAVA

Inthe previous sections, we gave an overview of how SQL commands can be embedded in
a traditional programming language, using the C language in our examples. We now turn
our attention to how SQL can be embedded in an object-oriented programming language,S
inparticular, the)AVA language. SQL) is a standard that has been adopted by several ven
dors for embedding SQL in)AVA. Historically, SQL) was developed after)DBC, which is
used for accessing SQL databases from)AVA using function calls. We discuss)DBC in Sec
tion 9.5.2. In our discussion, we focus on SQL) as it is used in the ORACLE RDBMS. An SQL)

translator will generally convert SQL statements into)AVA, which can then be executed
through the)DBC interface. Hence, it is necessary to install a]DBC driver when using
SQLJ,9 In this section, we focus on how to use SQL) concepts to write embedded SQL in a
JAVA program.

Before being able to process SQL) with)AVA in ORACLE, it is necessary to import
several class libraries, shown in Figure 9.6. These include the)DBC and 10 classes (lines 1
and 2),plus the additional classes listed in lines 3, 4, and 5. In addition, the program must
first connect to the desired database using the function call getConnecti on, which is one
ofthemethods of the oracl e class in line 5 of Figure 9.6. The format of this function call,
which returns an object of type default context, 10 is as follows:

public static DefaultContext
get(onnection(String url, String user, String password, Boolean
auto(ommit)
throws SQLException ;

For example, we can write the statements in lines 6 through 8 in Figure 9.6 to
connect to an ORACLE database located at the URL <uri name> using the login of <user
name> and <password> with automatic commitment of each command, 11 and then set
this connection as the default context for subsequent commands.

8, This section assumes familiaritywith object-oriented concepts and basic JAVA concepts. If read
ers lack thisfamiliarity, they should postpone this section until after reading Chapter 20.

9. We discuss JOBe drivers in Section 9.5.2.

10, Adefault context, when set, applies to subsequentcommandsin the program until it ischanged.

11. Automatic commitment roughly means that each command is applied to the database after it is
executed. The alternative is that the programmer wants to execute several related database com
mands and then commit them together. We discuss commit concepts in Chapter 17 when we
describe database transactions.

272 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

1) import java.sql.* ;
2) import java.io.* ;
3) import sqlj.runtime.*
4) import sqlj.runtime.ref.*
5) import oracle.sqlj.runtime.*

6) DefaultContext cntxt =
7) oracle.getConnection("<url name>", "<user name>", "<password>", true)
8) DefaultContext.setDefaultContext(cntxt);

FIGURE 9.6 Importing classes needed for including SQLj in JAVA programs in ORACLE, and estab
lishing a connection and default context.

In the following examples, we will not show complete JAVA classes or programs since
it is not our intention to teach]AVA. Rather, we will show program segments that
illustrate the use of SQLJ. Figure 9.7 shows the JAVA program variables used in our

examples. Program segment j l in Figure 9.8 reads an employee's social security number
and prints some of the employee's information from the database.

Notice that because JAVA already uses the concept of exceptions for error handling, a
special exception called SQLException is used to return errors or exception conditions after
executing an SQL database command. This plays a similar role to SQLCODE and SQLSTATE in
embedded SQL. JAVA has many types of predefined exceptions. Each JAVA operation
(function) must specify the exceptions that can be thrown-that is, the exception
conditions that may occur while executing the JAVA code of that operation. If a defined
exception occurs, the system transfers control to the JAVA code specified for exception
handling. In]1, exception handling for an SQLException is specified in lines 7 and 8.
Exceptions that can be thrown by the code in a particular operation should be specifiedas
part of the operation declaration or interface-for example, in the following format:

<operation return type> <operation name>«parameters» throws
SQLException, IOException ;

In SQLJ, the embedded SQL commands within a JAVA program are preceded by #sq1,
as illustrated in]1 line 3, so that they can be identified by the preprocessor. SQL] usesan
INTO clause-similar to that used in embedded SQL-to return the attribute values
retrieved from the database by an SQL query into JAVA program variables. The program
variables are preceded by colons (:) in the SQL statement, as in embedded SQL.

1) string dname, ssn , fname, fn, lname, In, bdate, address
2) char sex, minit, mi ;
3) double salary, sal ;
4) integer dna, dnumber ;

FIGURE 9.7 JAVA program variables used in SQLj examples j1 and J2.

9.4 Embedded SQL, Dynamic SQL, and SQLj I 273

//Program Segment J1:
1) ssn = readEnt ry (" Enter a Socia1 Securi ty Numbe r : ")
2) try {
3) #sql{select FNAME, MINIT, LNAME, ADDRESS, SALARY
4) into :fname , :minit, :lname, :address, :salary
5) from EMPLOYEE where SSN = :ssn} ;
~ } catch (SQLException se) {
7) System.out.println("Social Security Number does not exist: " + ssn)
8) Return ;
9) }
10) System.out.println(fname + " " + minit + " " + lname + " " + address + " " +

salary)

FIGURE 9.8 Program segment J1, a JAVA program segment with SQLj.

In 11 a single tuple is selected by the embedded SQL) query; that is why we are able to
assign its attribute values directly to JAVA program variables in the INTO clause in line 4.
For queries that retrieve many tuples, SQLJ uses the concept of an iterator, which is
somewhat similar to a cursor in embedded SQL.

9.4.5 Retrieving Multiple Tuples in SQLJ Using Iterators
In SQL], an iterator is a type of object associated with a collection (set or mulriset) of
tuples in a query result. II The iterator is associated with the tuples and attributes that
appear in a query result. There are two types of iterators:

1. A named iterator is associated with a query result by listing the attribute names
andtypes that appear in the query result.

2. A positional iterator lists only the attribute types that appear in the query result.

In both cases, the list should be in the same order as the attributes that are listed in the
SELECT clause of the query. However, looping over a query result is different for the two
types of iterators, as we shall see. First, we show an example of using a named iterator in
Figure 9.9, program segment J2A. Line 9 in Figure 9.9 shows how a named iterator type Emp

is declared. Notice that the names of the attributes in a named iterator type must match the
names of the attributes in the SQL query result. Line 10 shows how an iterator object e of
type Emp is created in the program and then associated with a query (lines 11 and 12).

When the iterator object is associated with a query (lines 11 and 12 in Figure 9.9),
the program fetches the query result from the database and sets the iterator to a position
before the first row in the result of the query. This becomes the current row for the iterator,
Subsequently, next operations are issued on the iterator; each moves the iterator to the
next row in the result of the query, making it the current row. If the row exists, the

12. We discuss iterators in more detail in Chapter 21 when we discuss object databases.

274 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

jjProgram Segment J2A:
0) dname = readEntryC"Enter the Department Name: ")
1) try {
2) #sql{select DNUMBER into :dnumber
3) from DEPARTMENT where DNAME = :dname}
4) } catch CSQLException se) {
5) System.out.printlnC"Department does not exist: " + dname)
6) Return ;
7) }
8) System.out.printlineC"Employee information for Department: " + dname) ;
9) #sql iterator EmpCString ssn, String fname, String minit, String 1name ,

double salary) ;
10) Emp e = null ;
11) #sql e = {select ssn, fname, mlnlt, lname, salary
12) from EMPLOYEE where DNO :dnumber}
13) while Ce.nextC)) {
14) System.out.printlineCe.ssn + " " + e.fname + " " + e.minit + " " +

e.lname + " " + e.salary)
15) } ;
16) e.closeO ;

FIGURE 9.9 Program segment J2A, a JAVA program segment that uses a named iterator to print
employee information in a particular department.

operation retrieves the attribute values for that row into the corresponding program
variables. If no more rows exist, the next operation returns null, and can thus be usedto
control the looping.

In Figure 9.9, the command (e. nextO) in line 13 performs two functions: It gets the
next tuple in the query result and controls the while loop. Once we are done with the
query result, the command e.closeO (line 16) closes the iterator.

Next, consider the same example using positional iterators as shown in Figure 9.10
(program segment]2B). Line 9 in Figure 9.10 shows how a positional iterator type Emppos

is declared. The main difference between this and the named iterator is that there are no
attribute names in the positional iterator-only attribute types. They still must be
compatible with the attribute types in the SQL query result and in the same order. Line 10
shows how a positional iterator variable e of type Emppos is created in the program and
then associated with a query (lines 11 and 12).

The positional iterator behaves in a manner that is more similar to embedded SQL

(see Section 9.4.2). A fetch <iterator variable> into <program variables> command is
needed to get the next tuple in a query result. The first time fetch is executed, it gets the
first tuple (line 13 in Figure 9.10). Line 16 gets the next tuple until no more tuples exist
in the query result. To control the loop, a positional iterator function e. endFetchO is
used. This function is set to a value of TRUE when the iterator is initially associated with
an SQL query (line 11), and is set to FALSE each time a fetch command returns a valid
tuple from the query result. It is set to TRUE again when a fetch command does not find
any more tuples. Line 14 shows how the looping is controlled by negation.

9.5 Database Programming with Function Calls: SQL/cU and JDBC I 275

/ /Program Segment J 2B:
0) dname = readEntry("Enter the Department Name: ")
1) try {
2) #sql{select DNUMBER into :dnumber
3) from DEPARTMENT where DNAME = :dname}
~ } catch (SQLException se) {
5) System.out.println("Department does not exist: " + dname)
6) Return ;
7) }
8) System.out.printline("Employee information for Department: " + dname)
9) #sql iterator Emppos(String, String, String, String, double)
10) Emppos e = null ;
11) #sql e ={select ssn, fname, minit, lname, salary
12) from EMPLOYEE where DNO = : dnumber} ;
13) #sql {fetch :e into :ssn, :fn, :mi, :In, :sal}
14) while (!e.endFetchO) {
15) System.out.printline(ssn + " " + fn + " " + mi + " " + In + " " + sal)
16) #sql {fetch :e into :ssn, :fn, :mi, :In, :sal}
17) };
18) e.closeO ;

FIGURE 9.10 Program segment)28, a JAVA program segment that uses a positional iterator to
print employee information in a particular department.

9.5 DATABASE PROGRAMMING WITH
FUNCTION CALLS: SQL/CLI AND JDBC

Embedded SQL (see Section 9.4) is sometimes referred to as a static database program
ming approach because the query text is written within the program and cannot be
changed without recompiling or reprocessing the source code. The use of function calls is
amore dynamic approach for database programming than embedded SQL. We already saw
one dynamic database programming technique-dynamic SQL-in Section 9.4.3. The
techniques discussed here provide another approach to dynamic database programming.
Alibrary of functions, also known as an application programming interface (API), is
used to access the database. Although this provides more flexibility because no preproces
sor isneeded, one drawback is that syntax and other checks on SQL commands have to be
done at runtime. Another drawback is that it sometimes requires more complex program
ming to access query results because the types and numbers of attributes in a query result
may not be known in advance.

In this section, we give an overview of two function call interfaces. We first discuss
SQL/CLI (Call Level Interface), which is part of the SQL standard. This was developed as a
follow-up to the earlier technique know as ODBC (Open Data Base Connectivity). We use
C as the host language in our SQL/CLI examples. Then we give an overview of JOBe,

which is the call function interface for accessing databases from JAVA. Although it is
commonly assumed that JDBC stands for Java Data Base Connectivity, JDBC is just a
registered trademark of Sun Microsystems, not an acronym.

276 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

The main advantage of using a function call interface is that it makes it easier to
access multiple databases within the same application program, even if they are stored
under different DBMS packages. We discuss this further in Section 9.5.2 when we discuss
JAVA database programming with JDBC, although this advantage also applies to database
programming with SQL/CLI and ODBC (see Section 9.5.1).

9.5.1 Database Programming with SQL/CLI

Using C as the Host Language
Before using the function calls in SQL/CLI, it is necessary to install the appropriate library
packages on the database server. These packages are obtained from the vendor of the
DBMS being used. We now give an overview of how SQL/CLI can be used in a C program.
We shall illustrate our presentation with the example program segment CLII shown in
Figure 9.11.

When using SQL/CLI, the SQL statements are dynamically created and passed as string
parameters in the function calls. Hence, it is necessary to keep track of the information
about host program interactions with the database in runtime data structures, because the
database commands are processed at runtime. The information is kept in four types of

jjProgram CLI1:
0) #include sqlcli.h
1) void printSal() {
2) SQLHSTMT stmtl
3) SQLHDBC conI ;
4) SQLHENV envl ;
5) SQLRETURN retl, ret2, ret3, ret4 ;
6) retl = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &envl) ;
7) if (!retl) ret2 = SQLAllocHandle(SQL_HANDLE_DBC, envl, &conl) else exit
8) if (! ret2) ret3 = SQLConnect(conl, "dbs", SQL_NTS, "js", SQL_NTS, "xyz", SQL_NTS)
else exit;
9) if (!ret3) ret4 = SQLAllocHandle(SQL_HANDLE_STMT, conI, &stmtl) else exit;
10) SQLPrepare(stmtl, "select LNAME, SALARY from EMPLOYEE where SSN = 7", SQL_NTS)
11) prompt("Enter a Social Security Number: ", ssn) ;
12) SQLBindParameter(stmtl, 1, SQL_CHAR, &ssn, 9, &fetchlenl) ;
13) retl = SQLExecute(stmtl) ;
14) if (!retl) {
15) SQLBindCol(stmtl, 1, SQL_CHAR, &1 name, 15, &fetchlenl) ;
16) SQLBindCol(stmtl, 2, SQL_FLOAT, &salary, 4, &fetchlen2) ;
17) ret2 = SQLFetch(stmtl) ;
18) if (!ret2) printf(ssn, lname, salary)
19) else printf("Social Security Number does not exist: " ssn)
20) }
21) }

FIGURE 9.11 Program segment CLil , a C program segment with SQL/CLI.

9.5 Database Programming with Function Calls: SQL/CLI and JDBC I 277

records, represented as structs in C data types. An environment record is used as a
container to keep track of one or more database connections and to set environment
information. A connection record keeps track of the information needed for a particular
database connection. A statement record keeps track of the information needed for one
SQL statement. A description record keeps track of the information about tuples or
parameters-for example, the number of attributes and their types in a tuple, or the
number and types of parameters in a function call.

Each record is accessible to the program through a C pointer variable-called a
handle to the record. The handle is returned when a record is first created. To create a
record and return its handle, the following SQL/CLI function is used:

SQLAllocHandle«handle_type>, <handle_1>, <handle_2»

In this function, the parameters are as follows:

• <handle_type> indicates the type of record being created. The possible values for
this parameter are the keywords SQL_HANDLE_ENV, SQL_HANDLE_DBC, SQL_HANDLE_STMT, or SQL_

HANDLE_DESC, for an environment, connection, statement, or description record,
respectively.

• «handl e_1> indicates the container within which the new handle is being created.
For example, for a connection record this would be the environment within which
the connection is being created, and for a statement record this would be the con
nection for that statement.

• chandle_2> is the pointer (handle) to the newly created record of type -chandl e_type>.

When writing a C program that will include database calls through SQL/CLI, the
following are the typical steps that are taken. We illustrate the steps by referring to the
example CLII in Figure 9.11, which reads a social security number of an employee and
prints the employee's last name and salary.

1. The library of functions comprising SQL/CLI must be included in the C program.
This is called sq 1cl i . h, and is included using line 0 in Figure 9.11.

2. Declare handle variables of types SQLHSTMT, SQLHDBC, SQLHENV, and SQLHDESC for the state
ments, connections, environments, and descriptions needed in the program,
respectively (lines 2 to 4).13 Also declare variables of type SQLRETURN (line 5) to
hold the return codes from the SQL/CLI function calls. A return code of 0 (zero)
indicates successful execution of the function call.

3. An environment record must be set up in the program using SQLA11ocHandl e. The
function to do this is shown in line 6. Because an environment record is not con
tained in any other record, the parameter -chand l e_1> is the null handle SQL_
NULL_HANDLE (null pointer) when creating an environment. The handle (pointer)
to the newly created environment record is returned in variable env1 in line 6.

4. A connection record is set up in the program using SQLA11ocHandl e. In line 7, the
connection record created has the handle con1 and is contained in the environ-

13. Wewill not show description records here, to keep our presentation simple.

278 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

ment envl. A connection is then established in cont to a particular server data
base using the SQLConnect function of SQL/CLI (line 8). In our example, the
database server name we are connecting to is "dbs", and the account name and
password for login are "js" and "xvz", respectively.

5. A statement record is set up in the program using SQLAllocHandle. In line 9, the
statement record created has the handle stmtl and uses the connection conl..

6. The statement is prepared using the SQL/CLI function SQLPrepare. In line 10,
this assigns the SQL statement string (the query in our example) to the state
ment handle stmtl. The question mark (?) symbol in line 10 represents a state
ment parameter, which is a value to be determined at runtime-typically by
binding it to a C program variable. In general, there could be several parameters.
They are distinguished by the order of appearance of the question marks in the
statement (the first? represents parameter 1, the second ? represents parameter
2, and so on). The last parameter in SQLPrepare should give the length of the
SQL statement string in bytes, but if we enter the keyword SQL_NTS, this indicates
that the string holding the query is a null-terminated stringso that SQL can calcu
late the string length automatically. This also applies to other string parameters
in the function calls.

7. Before executing the query, any parameters should be bound to program variables
using the SQL/CLI function SQLBindParameter. In Figure 9.11, the parameter
(indicated by?) to the prepared query referenced by stmtl is bound to the C pro
gram variable ssn in line 12. If there are n parameters in the SQL statement, we
should have n SQLBi ndParameter function calls, each with a different parameter
position (1, 2, ... , n).

8. Following these preparations, we can now execute the SQL statement referenced
by the handle stmtl using the function SQLExecute (line 13). Notice that
although the query will be executed in line 13, the query results have not yet been
assigned to any C program variables.

9. In order to determine where the result of the query is returned, one common
technique is the bound columns approach. Here, each column in a query result is
bound to a C program variable using the SQLBi ndCo1 function. The columns are
distinguished by their order of appearance in the SQL query. In Figure 9.11 lines
15 and 16, the two columns in the query (LNAME and SALARY) are bound to the C

program variables 1name and salary, respectivelv.!"

10. Finally, in order to retrieve the column values into the C program variables, the
function SQLFetch is used (line 17). This function is similar to the FETCH com
mand of embedded SQL. If a query result has a collection of tuples, each
SQLFetch call gets the next tuple and returns its column values into the bound

---- ----~----_.-----~ ------ ---------

14. An alternative technique known as unbound columns uses different SQL/CLI functions, namely
SQLGetCo1 or SQLGetData, to retrieve columns from the query result without previously binding
them; these are applied after the SQLFetch command in step 17.

9.5 Database Programming with Function Calls: SQL!cLI and JDBC I 279

program variables. SQLFetch returns an exception (nonzero) code if there are no
more tuples. IS

As we can see, using dynamic function calls requires a lot of preparation to set up
theSQLstatements and to bind parameters and query results to the appropriate program
variables.

In CUI a single tuple is selected by the SQL query. Figure 9.12 shows an example of
retrieving multiple tuples. We assume that appropriate C program variables have been
declared as in Figure 9.12. The program segment in CU2 reads (inputs) a department
number and then retrieves the employees who work in that department. A loop then
iterates over each employee record, one at a time, and prints the employee's last name
and salary.

9.5.2 JDBC: SQL Function Calls for JAVA Programming
We now turn our attention to how SQL can be called from the JAVA object-oriented pro
gramming language.l? The function libraries for this access are known as JDBC.17 The
JAVA programming language was designed to be platform independent-that is, a pro
gram should be able to run on any type of computer system that has a JAVA interpreter
installed. Because of this portability, many RDBMS vendors provide JDBC drivers so that it
is possible to access their systems via JAVA programs. A JDBC driver is basically an imple
mentation of the function calls specified in the JDBC API (Application Programming
Interface) for a particular vendor's RDBMS. Hence, a JAVA program with JDBC function
calls can access any RDBMS that has a JDBC driver available.

Because JAVA is object-oriented, its function libraries are implemented as classes.
Before being able to process JDBC function calls with JAVA, it is necessary to import the
JDBe class libraries, which are called java. sql .1'. These can be downloaded and
installed via the Web. IS

JDBe is designed to allow a single JAVA program to connect to several different
databases. These are sometimes called the data sources accessed by the JAVA
program. These data sources could be stored using RDBMSs from different vendors and
could reside on different machines. Hence, different data source accesses within the
same JAVA program may require JDBC drivers from different vendors. To achieve this
flexibility, a special JDBC class called the driver manag~r class is employed, which
keeps track of the installed drivers. A driver should be registered with the driver

15. Ifunbound program variables are used, SQLFetch returns the tuple into a temporary program
area. Each subsequentSQLGetCol (or SQLGetData) returns one attribute value in order.

16. This sectionassumesfamiliarity with object-oriented concepts and basic JAVA concepts. If read
ers lack thisfamiliarity, they should postpone this section until after reading Chapter 20.

17. As we mentioned earlier, JDBe is a registered trademark of Sun Microsystems, although it is
commonly thought to be an acronym for Java Data BaseConnectivity.

18. These areavailable from several Web sites-for example, through the Web site at the URL http:
//industry.java.sun.com/products/jdbc/drivers.

280 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

manager before it is used. The operations (methods) of the driver manager class include
getDriver, registerDriver, and deregisterDriver. These can be used to add and
remove drivers dynamically. Other functions set up and close connections to data sources,
as we shall see.

To load a JOBC driver explicitly, the generic JAVA function for loading a class can be
used. For example, to load the JOBC driver for the ORACLE ROBMS, the following
command can be used:

Class.forNameC"oracle.jdbc.driver.OracleDriver")

This will register the driver with the driver manager and make it available to the program.
It is also possible to load and register the driver(s) needed in the command line that runs
the program, for example, by including the following in the command line:

-Djdbc.drivers = oracle.jdbc.driver

The following are typical steps that are taken when writing a JAVA application
program with database access through JOBC function calls. We illustrate the steps by
referring to the example JDBCl in Figure 9.13, which reads a social security number of an
employee and prints the employee's last name and salary.

//Program Segment CLI2:
0) #include sqlcli.h ;
1) void printDepartmentEmps() {
2) SQLHSTMT stmtl
3) SQLHDBC conI ;
4) SQLHENV envl ;
5) SQLRETURN retl, ret2, ret3, ret4 ;
6) retl = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &envl) ;
7) if (!retl) ret2 = SQLAllocHandle(SQL_HANDLE_DBC, envl, &conl) else exit;
8) if (!ret2) ret3 = SQLConnect(conl, "dbs", SQL_NTS, "js", SQL_NTS, "xyz", SQL_NTS)
else exit;
9) if (!ret3) ret4 = SQLAllocHandle(SQL_HANDLE_STMT, conI, &stmtl) else exit;
10) SQLPrepare(stmtl, "select LNAME, SALARY from EMPLOYEE where DNO = 7", SQL_NTS)
11) prompt("Enter the Department Number: ", dno) ;
12) SQLBindParameter(stmtl, 1, SQL_INTEGER, &dno, 4, &fetchlen1) ;
13) ret1 = SQLExecute(stmt1) ;
14) if (! retl) {
15) SQLBindCol(stmt1, 1, SQL_CHAR, &lname, 15, &fetchlen1) ;
16) SQLBindCol(stmt1, 2, SQL_FLOAT, &salary, 4, &fetchlen2) ;
17) ret2 = SQLFetch(stmt1) ;
18) while (! ret2) {
19) printf(lname, salary)
20) ret2 = SQLFetch(stmtl) ;
21) }
22) }
23) }

FIGURE 9.12 Program segment CU2, a C program segment that uses SQL/CLI for a query with a
collection of tuples in its result.

9.5 Database Programming with Function Calls: SQL!cLl and JDBe I 281

1. The JDBC library of classes must be imported into the JAVA program. These classes
are called java. sq1 . *, and can be imported using line 1 in Figure 9.13. Any addi
tional JAVA class libraries needed by the program must also be imported.

2. Load the JOBC driver as discussed previously (lines 4 to 7). The JAVA exception in
line 5 occurs if the driver is not loaded successfully.

3. Create appropriate variables as needed in the JAVA program (lines 8 and 9).

4. A connection object is created using the getConnecti on function of the
DriverManager class ofJOBC. In lines 12 and 13, the connection object is created by
using the function call getConnecti on (u r1 stri ng), where ur1 stri ng has the form

jdbc:orac1e:<driverType>:<dbaccount>/<password>

An alternative form is

getConnection(ur1, dbaccount, password)

Various properties can be set for a connection object, but they are mainly related
to transactional properties, which we discuss in Chapter 17.

5. A statement object is created in the program. In JOBC, there is a basic statement
class, Statement, with two specialized subclasses: PreparedStatement and
Ca11ab1 eStatement. This example illustrates how PreparedStatement objects
are created and used. The next example (Figure 9.14) illustrates the other type
of Statement objects. In line 14, a query string with a single parameter
indicated by the "I" symbol-is created in the variable stmtl. In line 15, an
object p of type PreparedStatement is created based on the query string in
stmtl and using the connection object conn. In general, the programmer should
use PreparedStatement objects if a query is to be executed multiple times, since
it would be prepared, checked, and compiled only once, thus saving this cost for
the additional executions of the query.

6. The question mark (?) symbol in line 14 represents a statement parameter, which
is a value to be determined at runtime, typically by binding it to a JAVA program
variable. In general, there could be several parameters, distinguished by the order
of appearance of the question marks (first? represents parameter 1, second? repre
sents parameter 2, and so on) in the statement, as discussed previously.

7. Before executing a PreparedStatement query, any parameters should be
bound to program variables. Depending on the type of the parameter, func
tions such as setSt ri ng, setlntege r , setDoub1e, ana so on are applied to the
PreparedStatement object to set its parameters. In Figure 9.13, the parameter
(indicated by?) in object p is bound to the JAVA program variable ssn in line
18. If there are n parameters in the SQL statement, we should have n Set...
functions, each with a different parameter position 0, 2, ... , n). Generally, it
is advisable to clear all parameters before setting any new values (line 17).

8. Following these preparations, we can now execute the SQL statement referenced
by the object p using the function executeQuery (line 19). There is a generic
function execute in JOBC, plus two specialized functions: executeUpdate and
executeQue ry. executeUpdate is used for SQL insert, delete, or update statements,

282 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

jjProgram JDBC1:
0) import java.io.*
1) import java.sql.*

2) class getEmplnfo {
3) public static void main (String args []) throws SQLException, IOException {
4) try { Class.forName("oracle.jdbc.driver.OracleDriver")
5) } catch (ClassNotFoundException x) {
6) System.out.println ("Driver could not be loaded") ;
7) }
8) String dbacct, passwrd, ssn, lname
9) Double salary ;
10) dbacct = readentry("Enter database account:")
11) passwrd = readentry("Enter pasword:") ;
12) Connection conn = DriverManager.getConnection
13) ("jdbc:oracle:oci8:" + dbacct + "/" + passwrd)
14) String stmtl = "select LNAME, SALARY from EMPLOYEE where SSN 7"
15) PreparedStatement p = conn.prepareStatement(stmt1) ;
16) ssn = readentry("Enter a Social Security Number: ") ;
17) p.clearParameters() ;
18) p.setString(l, ssn) ;
19) ResultSet r = p.executeQuery()
20) while (r.next()) {
21) lname = r.getString(l) ;
22) salary = r.getDouble(2) ;
23) system.out.printline(lname + salary)
24) }}
25) }

FIGURE 9.13 Program segment JDSC1, a JAVA program segment with JOBe.

and returns an integer value indicating the number of tuples that were affected.
executeQue ry is used for SQL retrieval statements, and returns an object of type
ResultSet, which we discuss next.

9. In line 19, the result of the query is returned in an object r of type ResultSet.
This resembles a two-dimensional array or a table, where the tuples are the rows
and the attributes returned are the columns. A ResultSet object is similar to a
cursor in embedded SQL and an iterator in SQL]. In our example, when the queryis
executed, r refers to a tuple before the first tuple in the query result. The
r.nextO function (line 20) moves to the next tuple (row) in the ResultSet
object and returns null if there are no more objects. This is used to control the
looping. The programmer can refer to the attributes in the current tuple using
various get... functions that depend on the type of each attribute (for example,
getStri ng, getInteger, getDoubl e, and so on). The programmer can either use
the attribute positions 0, 2) or the actual attribute names ("LNAME", "SALARY")

9.5 Database Programming with Function Calls: SQL/CLI and JOBC I 283

with the get... functions. In our examples, we used the positional notation in
lines 21 and 22.

In general, the programmer can check for SQL exceptions after each JOBC function call.
Notice that JOBC does not distinguish between queries that return single tuples and

those that return multiple tuples, unlike some of the other techniques. This is justifiable
because a single tuple result set is just a special case.

In example JDBC1, a single tuple is selected by the SQL query, so the loop in lines 20
to 24 is executed at most once. The next example, shown in Figure 9.14, illustrates the
retrieval of multiple tuples. The program segment in JDBC2 reads (inputs) a department
number and then retrieves the employees who work in that department. A loop then
iterates over each employee record, one at a time, and prints the employee's last name
and salary. This example also illustrates how we can execute a query directly, without
having to prepare it as in the previous example. This technique is preferred for queries

//Program Segment JDBC2:
0) import java. io.'~ ;
1) import java. sql .~,

2) class printDepartmentEmps {
3) public static void main (String args [J) throws SQLException, IOException {
4) try { Class. forName("oracl e. jdbc ,driver .Oracl eDriver")
5) } catch (ClassNotFoundException x) { ,
6) System.out.println ("Driver could not be loaded")
7) }
8) Stri ng dbacct, passwrd, 1name ;
9) Double salary;
10) Integer dno ;
11) dbacct = readentry("Enter database account: ")
12) passwrd = readentry("Enter pasword: ") ;
13) Connection conn = DriverManager.getConnection
14) ("jdbc:oracle:oci8:" + dbacct + "I" + passwrd)
15) dno = readentry("Enter a Department Number: ") ;
16) Stri ng q = "sel ect LNAME, SALARY from EMPLOYEE where DNO "+

dno.tostringO ;
17) Statement s = conn. c reateStatement0
18) ResultSet r = s. executeQuery(q)
1~ while (r.next()) {
20) 1name = r. getStri ng(l) ;
21) salary = r.getDouble(2) ;
22) system.out.printline(lname + salary)
23) }}
24) }

FIGURE 9.14 Program segment JDBC2, a JAVA program segment that uses JOBC for a query with
acollection of tuples in its result.

284 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

that will be executed only once, since it is simpler to program. In line 17 of Figure 9.14,
the programmer creates a Statement object (instead of PreparedStatement, as in the
previous example) without associating it with a particular query string. The query string q

is passed to the statement object 5 when it is executed in line 18.
This concludes our brief introduction to]DBC. The interested reader is referred to the

Web site http://java.sun.com/docs/books/tutorialfjdbc/, which contains many further
details on]DBC.

9.6 DATABASE STORED PROCEDURES AND SQLjPSM
We conclude this chapter with two additional topics related to database programming. In
Section 9.6.1, we discuss the concept of stored procedures, which are program modules that
are stored by the DBMS at the database server. Then in Section 9.6.2, we discuss the exten
sions to SQL that are specified in the standard to include general-purpose programming con
structs in SQL. These extensions are known as SQL/PSM (SQL/Persistent Stored Modules)
and can be used to write stored procedures. SQL/PSM also serves as an example of a database
programming language that extends a database model and language-namely, SQL-with
some programming constructs, such as conditional statements and loops.

9.6.1 Database Stored Procedures and Functions
In our presentation of database programming techniques so far, there was an implicit
assumption that the database application program was running on a client machine that is
different from the machine on which the database server-and the main part of the DBMS

software package-is located. Although this is suitable for many applications, it is some
times useful to create database program modules-procedures or functions-that are stored
and executed by the DBMS at the database server. These are historically known as database
stored procedures, although they can be functions or procedures. The term used in the SQL

standard for stored procedures is persistent stored modules, because these programs are
stored persistently by the DBMS, similarly to the persistent data stored by the DBMS.

Stored procedures are useful in the following circumstances:

• If a database program is needed by several applications, it can be stored at the server
and invoked by any of the application programs. This reduces duplication of effort
and improves software modularity.

• Executing a program at the server can reduce data transfer and hence cornrnunica
tion cost between the client and server in certain situations.

• These procedures can enhance the modeling power provided by views by allowing
more complex types of derived data to be made available to the database users. In
addition, they can be used to check for complex constraints that are beyond the spec
ification power of assertions and triggers.

In general, many commercial DBMSs allow stored procedures and functions to be
written in a general-purpose programming language. Alternatively, a stored procedure can

9.6 Database Stored Procedures and SQL/PSM I 285

be made of simple SQL commands such as retrievals and updates. The general form of
declaring a stored procedures is as follows:

CREATE PROCEDURE <procedure name> (<parameters>)

<localdeclarations>

<procedure body> ;

The parameters and local declarations are optional, and are specified only if needed.
For declaringa function, a return type is necessary, so the declaration form is

CREATE FUNCTION <function name> (<parameters>)

RETURNS <return type>

<local declarations>

<function body> ;

If the procedure (or function) is written in a general-purpose programming language,
it is typical to specify the language, as well as a file name where the program code is
stored. For example, the following format can be used:

CREATE PROCEDURE <procedure name> (<parameters>)

LANGUAGE <programming language name>

EXTERNAL NAME <file path name> ;

In general, each parameter should have a parameter type that is one of the SQL data
types. Each parameter should also have a parameter mode, which is one of IN, OUT, or
INOUT. These correspond to parameters whose values are input only, output (returned)
only, or both input and output, respectively.

Because the procedures and functions are stored persistently by the DBMS, it should
bepossible to call them from the various SQL interfaces and programming techniques.
The CALL statement in the SQL standard can be used to invoke a stored procedure
either from an interactive interface or from embedded SQL or SQL]. The format of the
statement is as follows:

CALL <procedure or function name> (<argument list>) ;

If this statement is called from]OBe, it should be assigned to a statement object of type
CallableStatement (see Section 9.5.2).

9.6.2 SQL/PSM: Extending SQL for Specifying Persistent
Stored Modules

SQL!rSM is the part of the SQL standard that specifies how to write persistent stored modules.
Itincludes the statements to create functions and procedures that we described in the previ
ous section. It also includes additional programming constructs to enhance the power of SQL

for thepurpose of writing the code (or body) of stored procedures and functions.
In this section, we discuss the SQL!PSM constructs for conditional (branching)

statements and for looping statements. These will give a flavor of the type of constructs

286 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

that SQL/PSM has incorporated.l" Then we give an example to illustrate how these
constructs can be used.

The conditional branching statement in SQL/PSM has the following form:

IF <condition> THEN <statement list>

ELSEIF <condition> THEN <statement list>

ELSEIF <condition> THEN <statement list>

ELSE <statement list>

END IF;

Consider the example in Figure 9.15, which illustrates how the conditional branch
structure can be used in an SQL/PSM function. The function returns a string value (line 1)
describing the size of a department based on the number of employees. There is one IN

integer parameter, deptno, which gives a department number. A local variable NoOfEmps

is declared in line 2. The query in lines 3 and 4 returns the number of employees in the
department, and the conditional branch in lines 5 to 8 then returns one of the values
{"HUGE", "LARGE", "MEDIUM", "SMALL"} based on the number of employees.

SQL/PSM has several constructs for looping. There are standard while and repeat
looping structures, which have the following forms:

WHILE <condition> DO

<statement list>

END WHILE ;

//Function PSM1:
0) CREATE FUNCTION DeptSize(IN deptno INTEGER)
1) RETURNS VARCHAR [7]
2) DECLARE NoOfEmps INTEGER ;
3) SELECT COUNT(*) INTO NoOfEmps
4) FROM EMPLOYEE WHERE DNO = deptno
5) IF NoOfEmps > 100 THEN RETURN "HUGE"
6) ELSEIF NoOfEmps > 25 THEN RETURN "LARGE"
7) ELSEIF NoOfEmps > 10 THEN RETURN "MEDIUM"
8) ELSE RETURN "SMALL"
9) END IF ;

FIGURE 9.15 Declaring a function in SQL/PSM.

19. We only give a brief introduction to SQL/PSM here. There are many other features in the SQL!
PSM standard.

9.7 Summary I 287

REPEAT

<statement list>

UNTIL <condition>

END REPEAT;

There is also a cursor-based looping structure. The statement list in such a loop is
executed once for each tuple in the query result. This has the following form:

FOR <loop name> AS <cursor name> CURSOR FOR <query> DO

<statement list>

END FOR;

Loops can have names, and there is a LEAVE <loop name> statement to break a loop
when a condition is satisfied. SQL/PSM has many other features, but they are outside the
scope ofour presentation.

9.7 SUMMARY
In this chapter we presented additional features of the SQL database language. In particular,
we presented an overview of the most important techniques for database programming. We
started in Section 9.1 by presenting the features for specifying general constraints as asser
tions. Then we discussed the concept of a view in SQL. We then discussed the various
approaches to database application programming in Sections 9.3 to 9.6.

Review Questions
9.1. How does SQL allow implementation of general integrity constraints?
9.2. What is a view in SQL, and how is it defined? Discuss the problems that may arise

when one attempts to update a view. How are views typically implemented?
9.3. List the three main approaches to database programming. What are the advan

tagesand disadvantages of each approach?
9.4. What is the impedance mismatch problem? Which of the three programming

approaches minimizes this problem?
9.5. Describe the concept of a cursor and how it is used in embedded SQL.

9.6. What is SQLJ used for? Describe the two types of iterators available in SQLJ.

Exercises
9.7. Consider the database shown in Figure 1.2, whose schema is shown in Figure 2.1.

Write a program segment to read a student's name and print his or her grade point
average, assuming that A=4, B=3, C=2, and 0=1 points. Use embedded SQL with
C as the host language.

9.8. Repeat Exercise 9.7, but use SQLJ with JAVA as the host language.

288 I Chapter 9 More SQL: Assertions, Views, and Programming Techniques

9.9. Consider the LIBRARY relational database schema of Figure 6.12. Write a program
segment that retrieves the list of books that became overdue yesterday and that

prints the book title and borrower name for each. Use embedded SQL with C as
the host language.

9.10. Repeat Exercise 9.9, but use SQL] with]AVA as the host language.
9.11. Repeat Exercises 9.7 and 9.9, but use SQL/CLI with C as the host language.
9.12. Repeat Exercises 9.7 and 9.9, but use]DBC with]AVA as the host language.
9.13. Repeat Exercise 9.7, but write a function in SQL/rSM.
9.14. Specify the following views in SQL on the COMPANY database schema shown in

Figure 5.5.
a. A view that has the department name, manager name, and manager salaryfor

every department.
b. A view that has the employee name, supervisor name, and employee salaryfor

each employee who works in the 'Research' department.
c. A view that has the project name, controlling department name, number of

employees, and total hours worked per week on the project for each project.
d. A view that has the project name, controlling department name, number of

employees, and total hours worked per week on the project for each project
with more than one employee working on it.

9.15. Consider the following view, DEPT_SUMMARY, defined on the COMPANY database of Fig·
ure 5.6:

CREATE VIEW

AS SELECT

FROM

GROUP BY

DEPT_SUMMARY (0, C, TOTAL_S, AVERAGE_S)

DNO, COUNT (*), SUM (SALARY), AVG (SALARY)

EMPLOYEE

DNO;

State which of the following queries and updates would be allowed on the view.
If a query or update would be allowed, show what the corresponding query or
update on the base relations would look like, and give its result when appliedto
the database of Figure 5.6.
a. SELECT *

FROM DEPT_SUMMARY;

b. SELECT 0, C
FROM DEPT_SUMMARY

WHERE TOTAL_S > 100000;

c. SELECT D, AVERAGE_S
FROM DEPT_SUMMARY

WHERE C > (SELECT C FROM DEPT_SUMMARY WHERE D=4);

d. UPDATE DEPT_SUMMARY
SET D=3

WHERE D=4;

e. DELETE FROM DEPT_SUMMARY
WHERE C > 4;

Selected Bibliography I 289

Selected Bibliography
The question of view updates is addressed by Dayal and Bernstein (1978), Keller (1982),
and Langerak (1990), among others. View implementation is discussed in Blakeley et al.
(1989). Negri et a1. (1991) describes formal semantics of sql queries.

3
DATABASE DESIGN THEORY
AND METHODOLOGY

Functional Dependencies
and Normal ization for
Relational Databases

In Chapters 5 through 9, we presented various aspects of the relational model and the
languages associated with it. Each relation schema consists of a number of attributes, and
the relational database schema consists of a number of relation schernas. So far, we have
assumed that attributes are grouped to form a relation schema by using the common sense
of thedatabase designer or by mapping a database schema design from a conceptual data
model such as the ER or enhanced ER (EER) or some other conceptual data model. These
models make the designer identify entity types and relationship types and their respective
attributes, which leads to a natural and logical grouping of the attributes into relations
when the mapping procedures in Chapter 7 are followed. However, we still need some
formal measure of why one grouping of attributes into a relation schema may be better
than another. So far in our discussion of conceptual design in Chapters 3 and 4 and its
mapping into the relational model in Chapter 7, we have not developed any measure of
appropriateness or "goodness" to measure the quality of the design, other than the intu
ition of the designer. In this chapter we discuss some of the theory that has been devel
oped withthe goal of evaluating relational schemas for design quality-that is, to measure
formally why one set of groupings of attributes into relation schemas is better than
another.

There are two levels at which we can discuss the "goodness" of relation schemas. The
first is the logical (or conceptual) level-how users interpret the relation schemas and the
meaning of their attributes. Having good relation schemas at this level enables users to
understand clearly the meaning of the data in the relations, and hence to formulate their

293

294 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

queries correctly. The second is the implementation (or storage) level-how the tuples in
a base relation are stored and updated. This level applies only to schemas of base
relations-which will be physically stored as files-whereas at the logical level we are
interested in schemas of both base relations and views (virtual relations). The relational
database design theory developed in this chapter applies mainly to base relations, although
some criteria of appropriateness also apply to views, as shown in Section 10.l.

As with many design problems, database design may be performed using two
approaches: bottom-up or top-down. A bottom-up design methodology (also called design
by synthesis) considers the basic relationships among individual attributes as the starting
point and uses those to construct relation schemas. This approach is not very popular in
practice! because it suffers from the problem of having to collect a large number of binary
relationships among attributes as the starting point. In contrast, a top-down design
methodology (also called design by analysis) starts with a number of groupings of attributes
into relations that exist together naturally, for example, on an invoice, a form, or a report.
The relations are then analyzed individually and collectively, leading to further
decomposition until all desirable properties are met. The theory described in this chapter
is applicable to both the top-down and bottom-up design approaches, but is more
practical when used with the top-down approach.

We start this chapter by informally discussing some criteria for good and bad relation
schemas in Section 10.1. Then in Section 10.2 we define the concept of functional
dependency, a formal constraint among attributes that is the main tool for formally
measuring the appropriateness of attribute groupings into relation schemas. Properties of
functional dependencies are also studied and analyzed. In Section 10.3 we show how
functional dependencies can be used to group attributes into relation schemas that arein
a normal form. A relation schema is in a normal form when it satisfies certain desirable
properties. The process of normalization consists of analyzing relations to meet
increasingly more stringent normal forms leading to progressively better groupings of
attributes. Normal forms are specified in terms of functional dependencies-which are
identified by the database designer-and key attributes of relation schemas. In Section
lOA we discuss more general definitions of normal forms that can be directly applied to
any given design and do not require step-by-step analysis and normalization.

Chapter 11 continues the development of the theory related to the design of good
relational schemas. Whereas in Chapter 10 we concentrate on the normal forms for single
relation schemas, in Chapter 11 we will discuss measures of appropriateness for a whole
set of relation schemas that together form a relational database schema. We specify two
such properties-the nonadditive (lossless) join property and the dependency
preservation property-and discuss bottom-up design algorithms for relational database
design that start off with a given set of functional dependencies and achieve certain
normal forms while maintaining the aforementioned properties. A general algorithm that
tests whether or not a decomposition has the lossless join property (Algorithm 11.1) is

1. An exception in which this approach is used in practice is based on a model called the binary
relational model. An example is the NIAM methodology (Verheijen and VanBekkum 1982).

10.1 Informal Design Guidelines for Relation Schemas I 295

also presented. In Chapter 11 we also define additional types of dependencies and
advanced normal forms that further enhance the "goodness" of relation schemas.

For the reader interested in only an informal introduction to normalization, Sections
10.2.3, 10.2.4, and 10.2.5 may be skipped. If Chapter 11 is not covered in a course, we
recommend a quick introduction to the desirable properties of decomposition from
Section 11.1 and a discussion of Property LJ1 in addition to Chapter 10.

10.1 INFORMAL DESIGN GUIDELINES FOR
RELATION SCHEMAS

We discuss four informal measures of quality for relation schema design in this section:

• Semanticsof the attributes

• Reducing the redundant values in tuples

• Reducing the null values in tuples

• Disallowing the possibility of generating spurious tuples

These measures are not always independent of one another, as we shall see.

10.1.1 Semantics of the Relation Attributes
Whenever we group attributes to form a relation schema, we assume that attributes
belonging to one relation have certain real-world meaning and a proper interpretation
associated with them. In Chapter 5 we discussed how each relation can be interpreted as
aset of facts or statements. This meaning, or semantics, specifies how to interpret the
attribute values stored in a tuple of the relation-in other words, how the attribute values
in a tuple relate to one another. If the conceptual design is done carefully, followed by a
systematic mapping into relations, most of the semantics will have been accounted for
and the resulting design should have a clear meaning.

In general, the easier it is to explain the semantics of the relation, the better the
relation schema design will be. To illustrate this, consider Figure 10.1, a simplified version
of the COMPANY relational database schema of Figure 5.5, and Figure 10.2, which presents an
example of populated relation states of this schema. The meaning of the EMPLOYEE relation
schema isquite simple: Each tuple represents an employee, with values for the employee's
name (ENAMEl. social security number (SSN), birth date (BDATE), and address (ADDRESS), and
the number of the department that the employee works for (DNUMBER). The DNUMBER

attribute is a foreign key that represents an implicit relationship between EMPLOYEE and
DEPARTMENT. The semantics of the DEPARTMENT and PROJECT schemas are also straightforward:
Each DEPARTMENT tuple represents a department entity, and each PROJECT tuple represents a
project entity. The attribute DMGRSSN of DEPARTMENT relates a department to the employee
who is its manager, while DNUM of PROJECT relates a project to its controlling department;
both are foreign key attributes. The ease with which the meaning of a relation's atributes
can be explained is an informalmeasure of how well the relation is designed.

296 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

EMPLOYEE f.k.

I ENAME SSN BDATE ADDRESS DNUMBER

p.k.

DEPARTMENT I.k.

I DNAME DNUMBER DMGRSSN

p.k.

DEPT_LOCATIONS

I.k.

DNUMBER DLOCATION

y

p.k.

PROJECT f.k.

I PNAME PNUMBER PLOCATION DNUM

p.k.

WORKS_ON

f.k. I.k.

~ PNUMBER

~--~y~--~

I HOURS

p.k.

FIGURE 10.1 A simplified COMPANY relational database schema.

The semantics of the other two relation schemas in Figure 10.1 are slightly more
complex. Each tuple in DEPT_LOCATIONS gives a department number (DNUMBER) and one of the
locations of the department (DLOCATION). Each tuple in WORKS_ON gives an employee social
security number (SSN), the project number of one of the projects that the employee works on
(PNUMBER), and the number of hours per week that the employee works on that project (HOURS).

However, both schemas have a well-defined and unambiguous interpretation. The schema
DEPT_LOCATIONS represents a multivalued attribute of DEPARTMENT, whereas WORKS_ON representsan
M:N relationship between EMPLOYEE and PROJ ECT.Hence, all the relation schemas in Figure 10.1
may be considered as easy to explain and hence good from the standpoint of having clear
semantics. We can thus formulate the following informal design guideline.

GUIDELI NE 1. Design a relation schema so that it is easy to explain its meaning. Do
not combine attributes from multiple entity types and relationship types into a single
relation. Intuitively, if a relation schema corresponds to one entity type or one relation-

10.1 Informal Design Guidelines for Relation Schemas I 297

EMPLOYEE

ENAME SSN BDATE ADDRESS DNUMBER

123456789
333445555
999887777
987654321
666884444
453453453
987987987
888665555

5
5
4
4
5
5
4
1

DEPT_LOCATIONS

Smith,John B.
Wong,Franklin T.
Zelaya,Alicia J.
Wallace,Jennifer S.
Narayan,Remesh K.
English,Joyce A.
Jabbar,Ahmad V.
Borg,James E.

DEPARTMENT

I DNAME I DNUMBER

Research 5
Administration 4
Headquarters 1

DMGRSSN

333445555
987654321
888665555

1965-01-09
1955-12-08
1968-07-19
1941-06-20
1962-09-15
1972-07-31
1969-03-29
1937-11-10

731 Fondren,Houston,TX
638 Voss,Houston,TX
3321 Castle,Spring,TX
291 Berry,Beliaire,TX
975 FireOak,Humble,TX
5631 Rice,Houston,TX
980 Dallas,Houston,TX
450 Stone,Houston,TX

DNUMBER

1
4
5
5
5

DLOCATION

Houston
Stafford
Bellaire
Sugarland
Houston

1 32.5
2 7.5 ProductX 1 Bellaire 5

3 40.0 ProductY 2 Sugarland 5

1 20.0 ProductZ 3 Houston 5

2 20.0 Computerization 10 Stafford 4

2 10.0 Reorganization 20 Houston 1

3 10.0 Newbenefits 30 Stafford 4

10 10.0
20 10.0
30 30.0
10 10.0
10 35.0
30 5.0
30 20.0
20 15.0
20 null

WORKS_ON

[~ PNUMBER I HOURS

123456789
123456789
666884444
453453453
453453453
333445555
333445555
333445555
333445555
99988m7
999887m
987987987
987987987
987654321
987654321
888665555

PROJECT

PNAME PNUMBER PLOCATION DNUM

FIGURE 10.2 Example database state for the relational database schema of Figure 10.1.

ship type, it is straightforward to explain its meaning. Otherwise, if the relation corre
sponds to a mixture of multiple entities and relationships, semantic ambiguities will result
and the relation cannot be easily explained.

The relation schemas in Figures 1O.3a and lO.3b also have clear semantics. (The
reader should ignore the lines under the relations for now; they are used to illustrate
functional dependency notation, discussed in Section 10.2.) A tuple in the EMP_DEPT

298 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

(a) EMP_DEPT

DMGRSSN

'---- t
(b) EMP_PROJ

PLaCATION

FD2

FD3

______t
____t__t

FIGURE 10.3 Two relation schemas suffering from update anomalies.

relation schema of Figure 10.3a represents a single employee but includes additional
information-namely, the name (DNAME) of the department for which the employee works
and the social security number (DMGRSSN) of the department manager. For the EMP_PROJ

relation of Figure 10.3b, each tuple relates an employee to a project but also includes the
employee name (ENAME), project name (PNAME), and project location (PLOCATION). Although
there is nothing wrong logically with these two relations, they are considered poor designs
because they violate Guideline 1 by mixing attributes from distinct real-world entities;
EMP_DEPT mixes attributes of employees and departments, and EMP_PRO] mixes attributes of
employees and projects. They may be used as views, but they cause problems when usedas
base relations, as we discuss in the following section.

10.1.2 Redundant Information in Tuples and
Update Anomalies

One goal of schema design is to minimize the storage space used by the base relations
(and hence the corresponding files). Grouping attributes into relation schemas has a sig
nificant effect on storage space. For example, compare the space used by the two base
relations EMPLOYEE and DEPARTMENT in Figure 10.2 with that for an EMP_DEPT base relation in
Figure lOA, which is the result of applying the NATURAL JOIN operation to EMPLOYEE and
DEPARTMENT. In EMP_DEPT, the attribute values pertaining to a particular department (DNUMBER,

DNAME, DMGRSSN) are repeated for every employee who works for that department. In contrast,
each department's information appears only once in the DEPARTMENT relation in Figure 10.2.
Only the department number (DNUMBER) is repeated in the EMPLOYEE relation for each
employee who works in that department. Similar comments apply to the EMP_PRO] relation
(Figure lOA), which augments the WORKS_ON relation with additional attributes from
EMPLOYEE and PRO]ECT.

10.1 Informal Design Guidelines for Relation Schemas I 299

redundancy

~

ENAME SSN ADDRESS

Smith,John B.
Wong,Franklin T.
Zelaya, Alicia J.
Wallace,Jennifer S.
Narayan,Ramesh K.
English,Joyce A.
Jabbar,Ahmad V.
Borg,James E.

123456789
333445555
999887777
987654321
666884444
453453453
987987987
888665555

1965-01-09
1955-12-08
1968-07-19
1941-06-20
1962-09-15
1972-07-31
1969-03-29
1937-11-10

731 Fondren,Houston,TX
638Voss,Houston,TX
3321 Castle,Spring,TX
291 Berry,Beliaire,TX
975 FireOak,Humble,TX
5631 Rice,Houston,TX
980 Dallas,Houston,TX
450 Stone,Houston,TX

5
5
4
4
5
5
4
1

Research
Research
Administration
Administration
Research
Research
Administration
Headquarters

333445555
333445555
987654321
987654321
333445555
333445555
987654321
888665555

redundancy

ENAME PLaCATION

123456789 1 32.5 Smith,John B. ProductX Bellaire
123456789 2 7.5 Smith,John B. ProductY Sugarland
666884444 3 40.0 Narayan,Ramesh K. ProductZ Houston
453453453 1 20.0 English,Joyce A. ProductX Bellaire
453453453 2 20.0 English,Joyce A. ProductY Sugarland
333445555 2 10.0 Wong,Franklin T. ProductY Sugarland
333445555 3 10.0 Wong,Franklin T. ProductZ Houston
333445555 10 10.0 Wong,Frankiin T. Computerization Stafford
333445555 20 10.0 Wong,Franklin T. Reorganization Houston
999887777 30 30.0 Zelaya,Alicia J. Newbenefits Stafford
999887777 10 10.0 Zelaya,Alicia J. Computerization Stafford
987987987 10 35.0 Jabbar,Ahmad V. Computerization Stafford
987987987 30 5.0 Jabbar,Ahmad V. Newbenefits Stafford
987654321 30 20.0 Wallace,Jennifer S. Newbenefits Stafford
987654321 20 15.0 Wallace,Jennifer S. Reorganization Houston
888665555 20 null Borg,James E. Reorganization Houston

FIGURE 10.4 Example states for EMP_DEPT and EMP_PRO] resulting from applying NATURAL JOIN to the
relations in Figure 10.2. These may be stored as base relations for performance reasons.

Another serious problem with using the relations in Figure lOA as base relations is
the problem of update anomalies. These can be classified into insertion anomalies,
deletion anomalies, and modification anomalies.i

Insertion Anomal ies. Insertion anomalies can be differentiated into two types,
illustrated by the following examples based on the EMP_DEPT relation:

• To insert a new employee tuple into EMP_DEPT, we must include either the attribute values
for the department that the employee works for, or nulls (if the employee does not work
for a department as yet). For example, to insert a new tuple for an employee who works in
department number 5, we must enter the attribute values of department 5 correctly so

2. These anomalies were identified by Codd (1972a) to justify the need for normalization of rela
tions, as we shalldiscuss in Section 10.3.

300 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

that they are consistent with values for department 5 in other tuples in EMP_DEPT. In the
design of Figure 10.2, we do not have to worry about this consistency problem becausewe
enter only the department number in the employee tuple; all other attribute values of
department 5 are recorded only once in the database, as a single tuple in the DEPARTMENT

relation.

• It is difficult to insert a new department that has no employees as yet in the EMP_DEPT

relation. The only way to do this is to place null values in the attributes for employee.
This causes a problem because SSN is the primary key of EMP_DEPT, and each tuple is
supposed to represent an employee entity-not a department entity. Moreover, when
the first employee is assigned to that department, we do not need this tuple with null
values any more. This problem does not occur in the design of Figure 10.2, because a
department is entered in the DEPARTMENT relation whether or not any employees work
for it, and whenever an employee is assigned to that department, a corresponding
tuple is inserted in EMPLOYEE.

Deletion AnomaJ ies. The problem of deletion anomalies is related to the second
insertion anomaly situation discussed earlier. If we delete from EMP_DEPT an employee tuple
that happens to represent the last employee working for a particular department, the
information concerning that department is lost from the database. This problem does not
occur in the database of Figure 10.2 because DEPARTMENT tuples are stored separately.

Modification Anomalies. In EMP_DEPT, if we change the value of one of the attributes
of a particular department-say, the manager of department 5-we must update the tuples
of all employees who work in that department; otherwise, the database will become
inconsistent. If we fail to update some tuples, the same department will be shown to have
two different values for manager in different employee tuples, which would be wrong.'

Based on the preceding three anomalies, we can state the guideline that follows.

GUIDELINE 2. Design the base relation schemas so that no insertion, deletion, or
modification anomalies are present in the relations. If any anomalies are present, note them
clearly and make sure that the programs that update the database will operate correctly.

The second guideline is consistent with and, in a way, a restatement of the first
guideline. We can also see the need for a more formal approach to evaluating whether a
design meets these guidelines. Sections 10.2 through lOA provide these needed formal
concepts. It is important to note that these guidelines may sometimes have to be violated in
order to improve the performance of certain queries. For example, if an important query
retrieves information concerning the department of an employee along with employee
attributes, the EMP_DEPT schema may be used as a base relation. However, the anomalies in
EMP_DEPT must be noted and accounted for (for example, by using triggers or stored
procedures that would make automatic updates) so that, whenever the base relation is
updated, we do not end up with inconsistencies. In general, it is advisable to use anomaly.
free base relations and to specify views that include the joins for placing together the

3. This is not as serious as the other problems, because all tuples ~an be updated by a single SQL query.

10.1 Informal Design Guidelines for Relation Schemas I 301

attributes frequently referenced in important queries. This reduces the number of JOIN

terms specified in the query, making it simpler to write the query correctly, and in many
cases it improves the performance."

10.1.3 Null Values in Tuples
Insome schema designs we may group many attributes together into a "fat" relation. If many
ofthe attributes do not apply to all tuples in the relation, we end up with many nulls in
those tuples. This can waste space at the storage level and may also lead to problems with
understanding the meaning of the attributes and with specifying JOIN operations at the log
icalleveJ.S Another problem with nulls is how to account for them when aggregate opera
tions suchas COUNT or SUM are applied. Moreover, nulls can have multiple interpretations,
such asthe following:

• The attribute does not apply to this tuple.

• The attribute value for this tuple is unknown.

• The value is known but absent; that is, it has not been recorded yet.

Having the same representation for all nulls compromises the different meanings
they may have. Therefore, we may state another guideline.

GUIDELINE 3. As far as possible, avoid placing attributes in a base relation whose
values may frequently be null. If nulls are unavoidable, make sure that they apply in
exceptional cases only and do not apply to a majority of tuples in the relation.

Using space efficiently and avoiding joins are the two overriding criteria that
determine whether to include the columns that may have nulls in a relation or to have a
separate relation for those columns (with the appropriate key columns). For example, if
only 10percent of employees have individual offices, there is little justification for including
an attribute OFFICE_NUMBER in the EMPLOYEE relation; rather, a relation EMP_OFFICES (ESSN, OFFICE_

NUMBER) can be created to include tuples for only the employees with individual offices.

10.1.4 Generation of Spurious Tuples
Consider the two relation schemas EMP_LOCS and EMP_PROJl in Figure 10.5a, which can be
used instead of the single EMP_PROJ relation of Figure 10.3b. A tuple in EMP_LOCS means that
the employee whose name is ENAME works on someproject whose location is PLaCATION. A tuple

4. The performance of a query specified on a view that is the join of several base relations depends
on how the DBMS implements the view. Many RDBMSS materialize a frequently used view so that
they do nothave to perform the joins often. The DBMS remains responsible for updating the materi
alized view (either immediately or periodically) whenever the base relations are updated.

5. This is because inner and outer joins produce different results when nulls are involved in joins.
The users must thus be aware of the different meanings of the various types of joins. Although this
is reasonable for sophisticated users, it may be difficult for others.

302 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

(a)

ENAME PLOCATION

~------y~-----~

p.k.

~ PNUMBER HOURS I PNAME PLOCATION

~----y~---~

p.k.

(b)

ENAME PLOCATION

Smith,JohnB. Bellaire
Smith, John B. Sugarland
Narayan, Ramesh K. Houston
English, JoyceA. Bellaire
English, JoyceA. Sugarland
Wong, Franklin T. Sugarland
Wong,Franklin T. Houston

___ YY?!'9! .F!~I]~I~n. T· ~l?~~~ .
Zelaya,AliciaJ. Stafford
Jabbar, AhmadV. Stafford
Wallace, JenniferS. Stafford
Wallace, JenniferS. Houston
Borg,James E. Houston

SSN PNUMBER HOURS PNAME PLOCATION

123456789 1 32.5 Product X Bellaire
123456789 2 7.5 Product Y Sugarland
666884444 3 40.0 Product Z Houston
453453453 1 20.0 Product X Bellaire
453453453 2 20.0 Product Y Sugarland
333445555 2 10.0 Product Y Sugarland
333445555 3 10.0 Product Z Houston
333445555 10 10.0 Computerization Stafford

_____~~??? ?9 1_'1.·9 13~~~l:!n.i?~~~n. }j~LJ~t?!1 _
999887777 30 30.0 Newbenefits Stafford
999887m 10 10.0 Computerization Stafford
987987987 10 35.0 Computerization Stafford
987987987 30 5.0 Newbenefits Stafford
987654321 30 20.0 Newbenefits Stafford
987654321 20 15.0 Reorganization Houston
888665555 20 null Reorganization Houston

FIGURE 10.5 Particularly poor design for the EMP_PROJ relation of Figure 10.3b. (a) The two rela
tion schemas EMP_LOCS and EMP_PROJ1. (b) The result of projecting the extension of EMP_PROJ from
Figure 10.4 onto the relations EMP_LOCS and EMP_PROJI.

10.1 Informal Design Guidelines for Relation Schemas I 303

in EMP_PROJ! means that the employee whose social security number is SSN works HOURS per
week on the project whose name, number, and location are PNAME, PNUMBER, and PLaCATION. fig
ure lO.5b shows relation states of EMP_LaCS and EMP_PROJ! corresponding to the EMP_PROJ rela
tion ofFigure lOA, which are obtained by applying the appropriate PROJECT ('IT) operations
toEMP_PROJ (ignore the dotted lines in Figure 1O.5bfor now).

Suppose that we used EMP_PROJ! and EMP_LaCS as the base relations instead of EMP_PROJ.

This produces a particularly bad schema design, because we cannot recover the
information that was originally in EMP_PROJ from EMP_PROJ! and EMP_LaCS. If we attempt a
NATURALJOIN operation on EMP_PROJ! and EMP_LaCS, the result produces many more tuples
than the original set of tuples in EMP_PROJ. In Figure 10.6, the result of applying the join to
only the tuples above the dotted lines in Figure lO.5b is shown (to reduce the size of the
resulting relation). Additional tuples that were not in EMP_PROJ are called spurious tuples
because they represent spurious or wrong information that is not valid. The spurious
tuples are marked by asterisks (*) in Figure 10.6.

Decomposing EMP_PROJ into EMP_LaCS and EMP_PROJ! is undesirable because, when we
JOIN them back using NATURAL JOIN, we do not get the correct original information. This
is because in this case PLaCATION is the attribute that relates EMP_LaCS and EMP_PROJ!, and
PLaCATION is neither a primary key nor a foreign key in either EMP_LaCS or EMP_PROJ!. We can
now informally state another design guideline.

Smith,John B.
English,Joyce A.
Smith,John B.
English,Joyce A.
Wong,Franklin T.
Narayan,Ramesh K.
Wong,Franklin T.
Smith,John B.
English,Joyce A.
Smith,John B.
English,Joyce A.
Wong,Franklin T.
Smith,John B.
English,Joyce A.
Wong,Franklin T.
Narayan,Ramesh K.
Wong,Franklin T.
Wong,Franklin T.
Narayan,Ramesh K.
Wong,Franklin T.

ENAME

Bellaire
Bellaire
Sugarland
Sugarland
Sugarland
Houston
Houston
Bellaire
Bellaire
Sugarland
Sugarland
Sugarland
Sugarland
Sugarland
Sugarland
Houston
Houston
Stafford
Houston
Houston

PLaCATIONPNAME

ProductX
ProductX
ProductY
ProductY
ProductY
ProductZ
ProductZ
ProductX
ProductX
ProductY
ProductY
ProductY
ProductY
ProductY
ProductY
ProductZ
ProductZ
Computerization
Reorganization
Reorganization

32.5
32.5
7.5
7.5
7.5

40.0
40.0
20.0
20.0
20.0
20.0
20.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

HOURSSSN___IPNUMBER I
1
1
2
2
2
3
3
1
1
2
2
2
2
2
2
3
3

10
20
20

123456789
123456789
123456789
123456789
123456789
666884444
666884444
453453453
453453453
453453453
453453453
453453453
333445555
333445555
333445555
333445555
333445555
333445555
333445555
333445555

FIGURE 10.6 Result of applying NATURAL JOIN to the tuples above the dotted lines in EMP_PROJ! and
EMUOCS of Figure 10.5. Generated spurious tuples are marked by asterisks.

304 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

GUIDELINE 4. Design relation schemas so that they can be joined with equality
conditions on attributes that are either primary keys or foreign keys in a way that
guarantees that no spurious tuples are generated. Avoid relations that contain matching
attributes that are not (foreign key, primary key) combinations, because joining on such
attributes may produce spurious tuples.

This informal guideline obviously needs to be stated more formally. In Chapter 11 we
discuss a formal condition, called the nonadditive (or lossless) join property, that guarantees
that certain joins do not produce spurious tuples.

10.1.5 Summary and Discussion of Design Guidelines
In Sections 10.1.1 through 10.1.4, we informally discussed situations that lead to prob
lematic relation schemas, and we proposed informal guidelines for a good relational
design. The problems we pointed out, which can be detected without additional tools of
analysis, are as follows:

• Anomalies that cause redundant work to be done during insertion into and modifica
tion of a relation, and that may cause accidental loss of information during a deletion
from a relation

• Waste of storage space due to nulls and the difficulty of performing aggregation oper
ations and joins due to null values

• Generation of invalid and spurious data during joins on improperly related base
relations

In the rest of this chapter we present formal concepts and theory that may be used to
define the "goodness" and "badness" of individual relation schemas more precisely. We first
discuss functional dependency as a tool for analysis. Then we specify the three normal
forms and Boyce-Codd normal form (BCNF) for relation schemas. In Chapter 11, we define
additional normal forms that which are based on additional types of data dependencies
called multivalued dependencies and join dependencies.

10.2 FUNCTIONAL DEPENDENCIES
The single most important concept in relational schema design theory is that of a tunc
tional dependency. In this section we formally define the concept, and in Section lOJ we
see how it can be used to define normal forms for relation schemas.

10.2.1 Definition of Functional Dependency
A functional dependency is a constraint between two sets of attributes from the database.
Suppose that our relational database schema has n attributes AI' A2, ••• , An; let us think
of the whole database as being described by a single universal relation schema R = lAt.

10.2 Functional Dependencies I 305

AI' ... , An}·6We do not imply that we will actually store the database as a single univer
sal table; we use this concept only in developing the formal theory of data dependencies.I

Definition. A functional dependency, denoted by X ~ Y, between two sets of
attributes X and Y that are subsets of R specifies a constrainton the possible tuples that can
form a relation state r of R. The constraint is that, for any two tuples t l and t2 in r that
have tdX] = t2[X], they must also have tI[Y] = t2[y] .

This means that the values of the Y component of a tuple in r depend on, or are
determined by, the values of the X component; alternatively, the values of the X component
of a tuple uniquely (or functionally) determine the values of the Y component. We also say
that thereisa functional dependency from X to Y, or that Y is functionally dependent on X.
The abbreviationfor functional dependency is FD or f.d. The set of attributes X is called the
left-hand side of the FD, and Y is called the right-hand side.

Thus, X functionally determines Y in a relation schema R if, and only if, whenever
two tuples of r(R) agree on their X-value, they must necessarily agree on their Y-value.
Note the following:

• Ifa constraint on R states that there cannot be more than one tuple with a given X
value in any relation instance r(R)-that is, X is a candidate key of R-this implies
that X~ Y for any subset of attributes Y of R (because the key constraint implies that
notwo tuples in any legal state r(R) will have the same value of X).

• IfX~ Y in R, this does not say whether or not Y ~ X in R.

A functional dependency is a property of the semantics or meaning of the attributes.
The database designers will use their understanding of the semantics of the attributes of
R-that is, how they relate to one another-to specify the functional dependencies that
should hold on all relation states (extensions) r of R. Whenever the semantics of two sets
of attributes in R indicate that a functional dependency should hold, we specify the
dependency as a constraint. Relation extensions r(R) that satisfy the functional
dependency constraints are called legal relation states (or legal extensions) of R. Hence,
the main use of functional dependencies is to describe further a relation schema R by
specifying constraints on its attributes that must hold at all times. Certain FDs can be
specified without referring to a specific relation, but as a property of those attributes. For
example, {STATE, DRIVER_LICENSE_NUMBER} ~ SSN should hold for any adult in the United
States. It is also possible that certain functional dependencies may cease to exist in the
real world if the relationship changes. For example, the FD ZIP_CODE ~ AREA_CODE used to
exist as a relationship between postal codes and telephone number codes in the United
States, but with the proliferation of telephone area codes it is no longer true.

6. This concept of a universal relation is important when we discuss the algorithms for relational
database design in Chapter 11.

7. This assumption implies that every attribute in the database should have a distinct name. In
Chapter 5we prefixed attribute names by relation names to achieve uniquenesswhenever attributes
indistinct relations had the same name.

306 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

Consider the relation schema EMP_PRO] in Figure 1O.3b; from the semantics of the
attributes, we know that the following functional dependencies should hold:

a. SSN ~ ENAME

b. PNUMBER ~ {PNAME, PLOCATION}

C. {SSN, PNUMBER} ~ HOURS

These functional dependencies specify that (a) the value of an employee's social
security number (SSN) uniquely determines the employee name (ENAME), (b) the value of a
project's number (PNUMBER) uniquely determines the project name (PNAME) and location
(PLOCATION), and (c) a combination of SSN and PNUMBER values uniquely determines the
number of hours the employee currently works on the project per week (HOURS).

Alternatively, we say that ENAME is functionally determined by (or functionally dependent
on) SSN, or "given a value of SSN, we know the value of ENAME," and so on.

A functional dependency is a property of the relation schema R, not of a particular legal
relation state r of R. Hence, an FD cannot be inferred automatically from a given relation
extension r but must be defined explicitly by someone who knows the semantics of the
attributes of R. For example, Figure 10.7 shows a particular state of the TEACH relation
schema. Although at first glance we may think that TEXT~ COURSE, we cannot confirm this
unless we know that it is true for all possible legal states of TEACH. It is, however, sufficient to

demonstrate a single counterexample to disprove a functional dependency. For example,
because 'Smith' teaches both 'Data Structures' and 'Data Management', we can conclude
that TEACHER does not functionally determine COURSE.

Figure 10.3 introduces a diagrammatic notation for displaying FDs: Each FD is
displayed as a horizontal line. The left-hand-side attributes of the FD are connected by
vertical lines to the line representing the FD, while the right-hand-side attributes are
connected by arrows pointing toward the attributes, as shown in Figures lO.3a and lO.3b.

10.2.2 Inference Rules for Functional Dependencies
We denote by F the set of functional dependencies that are specified on relation schema
R. Typically, the schema designer specifies the functional dependencies that are sernzmn
cally obvious; usually, however, numerous other functional dependencies hold in all legal
relation instances that satisfy the dependencies in F. Those other dependencies can be
inferred or deduced from the FDs in F.

COURSE

DataStruetures
DataManagement
Compilers
DataStructures

TEACH

TEACHER

Smith
Smith
Hall
Brown

[TEXT

Bartram
Al-Nour
Hoffman
Augenthaler

FIGURE 10.7 A relation state of TEACH with a possible functional dependency TEXT

~ COURSE. However, TEACHER ~ COURSE is ruled out.

10.2 Functional Dependencies I 307

In real life, it is impossible to specify all possible functional dependencies for a given
situation. For example, if each department has one manager, so that DEPT_NO uniquely
determines MANAGER_SSN (DEPT~NO ~ MGR_SSN), and a Manager has a unique phone number
called MGR_PHONE (MGR_SSN ~ MGR_PHONE), then these two dependencies together imply that
DEPT_NO --7 MGR_PHONE. This is an inferred FO and need not be explicitly stated in addition to
the two given FOS. Therefore, formally it is useful to define a concept called closure that
includes all possible dependencies that can be inferred from the given set F.

Definition. Formally, the set of all dependencies that include F as well as all
dependencies that can be inferred from F is called the closure of F; it is denoted by P+.

For example, suppose that we specify the following set F of obvious functional
dependencies on the relation schema of Figure 10.3a:

F = {SSN~ {ENAME, BDATE, ADDRESS, DNUMBER},

DNUMBER ~ {DNAME, DMGRSSN}}

Some of the additional functional dependencies that we can inferfrom F are the following:

SSN --7 {DNAME, DMGRSSN}

SSN --7 SSN

DNUMBER ~ DNAME

An FDX~ Y is inferred from a set of dependencies F specified on R if X~ Y holds in
every legalrelation state r of R; that is, whenever r satisfies all the dependencies in F, X~ Y
also holds in r. The closure P+ of F is the set of all functional dependencies that can be
inferred from F. To determine a systematic way to infer dependencies, we must discover a set
of inference rules that can be used to infer new dependencies from a given set of
dependencies. We consider some of these inference rules next. We use the notation F F X
-1 Y to denote that the functional dependency X ~ Y is inferred from the set of functional
dependencies F.

In the following discussion, we use an abbreviated notation when discussing
functional dependencies. We concatenate attribute variables and drop the commas for
convenience. Hence, the FD {X,¥} ~ Z is abbreviated to XY~ Z, and the FD {X, Y, Z} ~
(U, V} is abbreviated to XYZ~ UV The following six rules IRI through IR6 are well
known inference rules for functional dependencies:

IRI (reflexive rule''}: If X :2 Y, then X~Y.

IR2 (augmentation rule"): {X ~ Y} F XZ ~ YZ.

IR3 (transitive rule): {X ~ Y, Y~ Z} F X ~ Z.

IR4 (decomposition, or projective, rule): {X ~ YZ} F X ~ Y.

8. The reflexive rule can also be stated as X --7 X; that is, any set of attributes functionally deter
mines itself.
9. The augmentationrule can also be stated as {X --7 Y} F XZ --7 Y; that is, augmenting the left
hand side attributes of an FD producesanother valid FD.

308 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

IRS (union, or additive, rule): {X ~ Y, X~ 2} F X ~ Y2.
IR6 (pseudotransitive rule): {X ~ Y, WY~ 2} F WX ~ 2.

The reflexive rule (IR1) states that a set of attributes always determines itself or any of
its subsets, which is obvious. Because IRl generates dependencies that are always true, such
dependencies are called triviaL Formally, a functional dependency X ~ Yis trivial if X d 1';
otherwise, it is nontrivial. The augmentation rule (IR2) says that adding the same set of
attributes to both the left- and right-hand sides of a dependency results in another valid
dependency. According to IR3, functional dependencies are transitive. The decomposition
rule (IR4) says that we can remove attributes from the right-hand side of a dependency;
applying this rule repeatedly can decompose the FD X ~ {A), Az, , An} into the set of
dependencies {X~ A), X ~ Az, ,X ~ An}' The union rule (IRS) allows us to do the
opposite; we can combine a set of dependencies {X~ A), X ~ Az, ,X~ An} into the
single FD X~ {A), Az, ,An}'

One cautionary note regarding the use of these rules. Although X ~ A and X ~ B
implies X ~ AB by the union rule stated above, X ~ A, and Y~ B does not imply that
XY~ AB. Also, XY~ A does not necessarily imply either X ~ A or Y~ A.

Each of the preceding inference rules can be proved from the definition of functional
dependency, either by direct proof or by contradiction. A proof by contradiction assumes
that the rule does not hold and shows that this is not possible. We now prove that the first
three rules IRl through IR3 are valid. The second proof is by contradiction.

PROOF OF IRl

Suppose that X d Yand that two tuples t) and tz exist in some relation instance r of

R such that t) [Xl = tz [Xl. Then tdY] = tz[Y] because X d Y; hence, X~ Ymust hold
in r.

PROOF OF IR2 (BY CONTRADICTION)

Assume that X ~ Y holds in a relation instance r of R but that X2 ~ Y2 does not
hold. Then there must exist two tuples t) and tz in r such that (1) t) [X] = tz [X], (2) t[

[Y] = tz [Y], (3) t) [X2l = tz [X2], and (4) t) [Y2l *' tz [Y2l. This is not possible because
from (1) and (3) we deduce (S) t) [2l = tz [21, and from (2) and (S) we deduce (6) t)

[Y2l = tz [Y21, contradicting (4).

PROOF OF IR3

Assume that (1) X ~ Yand (2) Y~ 2 both hold in a relation r. Then for any two
tuples t) and tz in r such that t) [X] = tz [Xl. we must have (3) t) [Y] = tz [Y], from
assumption (1); hence we must also have (4) t) [2l = tz [2], from (3) and assumption

(2); hence X ~ 2 must hold in r.

Using similar proof arguments, we can prove the inference rules IR4 to IR6 and any
additional valid inference rules. However, a simpler way to prove that an inference rule
for functional dependencies is valid is to prove it by using inference rules that have

10.2 Functional Dependencies I 309

already been shown to be valid. For example, we can prove IR4 through IR6 by using IRI
through IR3 as follows.

PROOF OF IR4 (USING IRl THROUGH IR3)

1. X~ YZ (given).

2. YZ ~ Y (using IRI and knowing that YZ d Y).

3. X~ Y (using IR3 on 1 and 2).

PROOF OF IR5 (USING IRl THROUGH IR3)

1. X~Y (given).

2. X~ Z (given).

3. X~ XY (using IR2 on 1 by augmenting with X; notice that XX = X).

4. XY~ YZ (using IR2 on 2 by augmenting with Y).

5. X~ YZ (using lR3 on 3 and 4).

PROOF OF IR6 (USING IRl THROUGH IR3)

1. X~ Y (given).

2. WY~ Z (given).

3. WX~ WY (using IR2 on 1 by augmenting with W).

4. WX~ Z (using IR3 on 3 and 2).

It has been shown by Armstrong (1974) that inference rules IRl through IR3 are
sound and complete. By sound, we mean that given a set of functional dependencies F
specified on a relation schema R, any dependency that we can infer from F by using IRI
through IR3 holds in every relation state r of R that satisfies the dependencies in F. By
complete, we mean that using IRI through IR3 repeatedly to infer dependencies until no
more dependencies can be inferred results in the complete set of all possible dependencies
that can be inferred from F. In other words, the set of dependencies P+, which we called
the closure of F, can be determined from F by using only inference rules IRI through IR3.
Inference rules IR1 through IR3 are known as Armstrong's inference rules. 10

Typically, database designers first specify the set of functional dependencies F that can
easily be determined from the semantics of the attributes of R; then IRl, IR2, and IR3 are used
to infer additional functional dependencies that will also hold on R. A systematic way to
determine these additional functional dependencies is first to determine each set of attributes
Xthatappearsas a left-hand side of some functional dependency in F and then to determine
the setof all attributes that are dependent on X. Thus, for each such set of attributes X, we
determine the set X+ of attributes that are functionally determined by X based on F; X+ is
called the closure of X under F. Algorithm 10.1 can be used to calculate X+.

----~-----------

10. They are actually known as Armstrong's axioms. In the strict mathematical sense, the axioms
(given facts) are the functional dependencies in F, since we assume that they are correct, whereas
IRI through IR3 are the inference rules for inferring new functional dependencies (new facts).

310 I Chapter 10 Functional Dependencies and Normal ization for Relational Databases

Algorithm 10.1: Determining X+, the Closure of X under F

X+;= X;

repeat
oldx" ;= X+;
for each functional dependency Y~ Z in F do
ifX+ :2 Y then X+ ;= X+ U Z;

until (X+ = oldx"),

Algorithm 10.1 starts by setting X+ to all the attributes in X. By IRI, we know that all
these attributes are functionally dependent on X. Using inference rules IR3 and IR4, we
add attributes to X+, using each functional dependency in F. We keep going through all
the dependencies in F (the repeat loop) until no more attributes are added to X+ during a
complete cycle (of the for loop) through the dependencies in F. For example, consider the
relation schema EMP_PROJ in Figure 10.3b; from the semantics of the attributes, we speci~

the following set F of functional dependencies that should hold on EMP_PROJ;

F = {SSN ~ ENAME,

PNUMBER ~ {PNAME, PLOCATION},

{SSN, PNUMBER}~ HOURS}

Using Algorithm 10.1, we calculate the following closure sets with respect to F;

{SSN }+ = {SSN, ENAME}

{PNUMBER }+ = {PNUMBER, PNAME, PLOCATION}

{SSN, PNUMBER}+ = {SSN, PNUMBER, ENAME, PNAME, PLOCATION, HOURS}

Intuitively, the set of attributes in the right-hand side of each line represents all those
attributes that are functionally dependent on the set of attributes in the left-hand side
based on the given set F.

10.2.3 Equivalence of Sets of Functional Dependencies
In this section we discuss the equivalence of two sets of functional dependencies. First,we
give some preliminary definitions.

Definition. A set of functional dependencies F is said to cover another set 01
functional dependencies E if every FD in E is also in P; that is, if every dependency inE
can be inferred from F; alternatively, we can say that E is covered by F.

Definition. Two sets of functional dependencies E and F are equivalent if P = P.
Hence, equivalence means that every FD in E can be inferred from F, and every FDinF
can be inferred from E; that is, E is equivalent to F if both the conditions E covers F and
F covers E hold.

We can determine whether F covers E by calculating X+ with respect to F for each FD

X ~ Yin E, and then checking whether this X+ includes the attributes in Y. If this is the

10.2 Functional Dependencies I 311

case for every FD in E, then F covers E. We determine whether E and F are equivalent by
checking that E covers F and F covers E.

10.2.4 Minimal Sets of Functional Dependencies
Informally, a minimal cover of a set of functional dependencies E is a set of functional
dependencies F that satisfies the property that every dependency in E is in the closure P
ofF. In addition, this property is lost if any dependency from the set F is removed; F must
have no redundancies in it, and the dependencies in E are in a standard form. To satisfy
these properties, we can formally define a set of functional dependencies F to be minimal
ifit satisfies the following conditions;

1. Every dependency in F has a single attribute for its right-hand side.

2. We cannot replace any dependency X~ A in F with a dependency Y~ A, where
Y is a proper subset of X, and still have a set of dependencies that is equivalent
toE

3. We cannot remove any dependency from F and still have a set of dependencies
that is equivalent to E

We can think of a minimal set of dependencies as being a set of dependencies in a standard
or canonical form and with no redundancies. Condition 1 just represents every dependency in
acanonical form with a single attribute on the right-hand side. l1 Conditions 2 and 3 ensure
that there are no redundancies in the dependencies either by having redundant attributes
on the left-hand side of a dependency (Condition 2) or by having a dependency that can be
inferred from the remaining FDs in F (Condition 3). A minimal cover of a set offunctional
dependencies E is a minimal set of dependencies F that is equivalent to E. There can be sev
eral minimal covers for a set of functional dependencies. We can always find at !east one
minimal cover F for any set of dependencies E using Algorithm 10.2.

If several sets of FDs qualify as minimal covers of E by the definition above, it is
customary to use additional criteria for "minimality." For example, we can choose the
minimal set with the smallest number of dependencies or with the smallest total length (the
total length of a set of dependencies is calculated by concatenating the dependencies and
treating them as one long character string).

Algorithm 10.2: Finding a Minimal Cover F for a Set of Functional Dependencies E

1. Set F;= E.

2. Replace each functional dependency X ~ {AI' A z, ... , An} in F by the n func
tional dependencies X ~ AI' X ~ Az' ... ,X ~ An.

3. For each functional dependency X ~ A in F

11. This isa standard form to simplify the conditions and algorithms that ensure no redundancy exists
in F. By using the inference rule IR4, we can convert a single dependency with multiple attributes on
the right-handside into a set of dependencies with single attributes on the right-hand side.

312 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

for each attribute B that is an element of X

if {{F - {X --7 A} } U {(X - {B}) --7 A} } is equivalent to F,

then replace X --7 A with (X - {B}) --7 A in F.

4. For each remaining functional dependency X --7 A in F

if { F - {X --7 A} } is equivalent to F,

then remove X --7 A from F.
In Chapter 11 we will see how relations can be synthesized from a given set of

dependencies E by first finding the minimal cover F for E.

10.3 NORMAL FORMS BASED ON PRIMARY KEYS
Having studied functional dependencies and some of their properties, we are now ready to

use them to specify some aspects of the semantics of relation schemas. We assume that a
set of functional dependencies is given for each relation, and that each relation has a des
ignated primary key; this information combined with the tests (conditions) for normal
forms drives the normalization process for relational schema design. Most practical rela
tional design projects take one of the following two approaches:

• First perform a conceptual schema design using a conceptual model such as ER or EER

and then map the conceptual design into a set of relations.

• Design the relations based on external knowledge derived from an existing imple
mentation of files or forms or reports.

Following either of these approaches, it is then useful to evaluate the relations for
goodness and decompose them further as needed to achieve higher normal forms, using
the normalization theory presented in this chapter and the next. We focus in this section
on the first three normal forms for relation schemas and the intuition behind them, and
discuss how they were developed historically. More general definitions of these normal
forms, which take into account all candidate keys of a relation rather than just the
primary key, are deferred to Section 10.4.

We start by informally discussing normal forms and the motivation behind their
development, as well as reviewing some definitions from Chapter 5 that are needed here.
We then discuss first normal form (lNF) in Section 10.3.4, and present the definitions of
second normal form (2NF) and third normal form (3NF), which are based on primary keys,
in Sections 10.3.5 and 10.3.6 respectively.

10.3.1 Normalization of Relations
The normalization process, as first proposed by Codd (l972a), takes a relation schema
through a series of tests to "certify" whether it satisfies a certain normal form. The pro
cess, which proceeds in a top-down fashion by evaluating each relation against the crite
ria for normal forms and decomposing relations as necessary, can thus be considered as

10.3 Normal Forms Based on Primary Keys I 313

relational design by analysis. Initially, Codd proposed three normal forms, which he called
first, second, and third normal form. A stronger definition of 3NF-called Boyce-Codd
normal form (BCNF)-was proposed later by Boyce and Codd. All these normal forms are
based on the functional dependencies among the attributes of a relation. Later, a fourth
normal form (4NF) and a fifth normal form (5NF) were proposed, based on the concepts of
multivalued dependencies and join dependencies, respectively; these are discussed in
Chapter 11. At the beginning of Chapter 11, we also discuss how 3NF relations may be
synthesized from a given set of FDs. This approach is called relational design by synthesis.

Normalization of data can be looked upon as a process of analyzing the given
relation schemas based on their FDs and primary keys to achieve the desirable properties
of (1) minimizing redundancy and (2) minimizing the insertion, deletion, and update
anomalies discussed in Section 10.1.2. Unsatisfactory relation schemas that do not meet
certain conditions-the normal form tests-are decomposed into smaller relation
schemas that meet the tests and hence possess the desirable properties. Thus, the
normalization procedure provides database designers with the following:

• A formal framework for analyzing relation schemas based on their keys and on the
functional dependencies among their attributes

• A series of normal form tests that can be carried out on individual relation schemas
so that the relational database can be normalized to any desired degree

The normal form of a relation refers to the highest normal form condition that it
meets, and hence indicates the degree to which it has been normalized. Normal forms,
when considered in isolation from other factors, do not guarantee a good database design.
It isgenerally not sufficient to check separately that each relation schema in the database
is, say, in BCNF or 3NF. Rather, the process of normalization through decomposition must
also confirm the existence of additional properties that the relational schemas, taken
together, should possess. These would include two properties:

• The lossless join or nonadditive join property, which guarantees that the spurious
tuple generation problem discussed in Section 10.1.4 does not occur with respect to
the relation schemas created after decomposition

• The dependency preservation property, which ensures that each functional depen
dency is represented in some individual relation resulting after decomposition

The nonadditive join property is extremely critical and must be achieved at any cost,
whereas the dependency preservation property, although desirable, is sometimes
sacrificed, as we discuss in Section 11.1.2. We defer the presentation of the formal
concepts and techniques that guarantee the above two properties to Chapter 11.

10.3.2 Practical Use of Normal Forms
Most practical design projects acquire existing designs of databases from previous designs,
designs in legacy models, or from existing files. Normalization is carried out in practice so
that the resulting designs are of high quality and meet the desirable properties stated
previously. Although several higher normal forms have been defined, such as the 4NF and

314 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

5NF that we discuss in Chapter 11, the practical utility of these normal forms becomes
questionable when the constraints on which they are based are hard to understand or to

detect by the database designers and users who must discover these constraints. Thus,
database design as practiced in industry today pays particular attention to normalization
only up to 3NF, BCNF, or 4NF.

Another point worth noting is that the database designers need not normalize to the
highest possible normal form. Relations may be left in a lower normalization status, such
as 2NF, for performance reasons, such as those discussed at the end of Section 10.1.2.The
process of storing the join of higher normal form relations as a base relation-which is in
a lower normal form-is known as denormalization.

10.3.3 Definitions of Keys and Attributes Participating
in Keys

Before proceeding further, let us look again at the definitions of keys of a relation schema
from Chapter 5.

Definition. A superkey of a relation schema R = {AI' Az, ... , An} is a set of
attributes S ~ R with the property that no two tuples t l and tz in any legal relation state r
of R will have tl[S] = tz[S]. A key K is a superkey with the additional property that
removal of any attribute from K will cause K not to be a superkey any more.

The difference between a key and a superkey is that a key has to be minimal; that is, if
we have a key K = {AI' Az, ... , Ad of R, then K - {A;l is not a key of R for any Ai' 1 :5 i
:5 k. In Figure 10.1, {SSN} is a key for EMPLOYEE, whereas {SSN}, {SSN, ENAMEl, {SSN, ENAME, BOATEl,

and any set of attributes that includes SSN are all superkeys.
If a relation schema has more than one key, each is called a candidate key. One of

the candidate keys is arbitrarily designated to be the primary key, and the others are
called secondary keys. Each relation schema must have a primary key. In Figure 10.1, {SSN}

is the only candidate key for EMPLOYEE, so it is also the primary key.

Definition. An attribute of relation schema R is called a prime attribute of R if it is a
member of some candidate key of R. An attribute is called nonprime if it is not a prime
attribute-that is, if it is not a member of any candidate key.

In Figure 10.1 both SSN and PNUMBER are prime attributes of WORKS_ON, whereas other
attributes of WORKS_ON are nonprime.

We now presenr the first three normal forms: 1NF, 2NF, and 3NF. These were
proposed by Codd (l972a) as a sequence to achieve the desirable state of 3NF relations
by progressing through the intermediate states of 1NF and 2NF if needed. As we shall
see, 2NF and 3NF attack different problems. However, for historical reasons, it is
customary to follow them in that sequence; hence we will assume that a 3NF relation
already satisfies 2NF.

10.3 Normal Forms Based on Primary Keys I 315

10.3.4 First Normal Form
First normal form (INF) is now considered to be part of the formal definition of a rela
tionin the basic (flat) relational model;12 historically, it was defined to disallow multival
ued attributes, composite attributes, and their combinations. It states that the domain of
anattribute must include only atomic (simple, indivisible) valuesand that the value of any
attribute in a tuple must be a single value from the domain of that attribute. Hence, INF

disallows having a set of values, a tuple of values, or a combination of both as an attribute
value for a single tuple. In other words, I NF disallows "relations within relations" or "rela
tions as attribute values within tuples." The only attribute values permitted by lNF are
single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema shown in Figure 10.1, whose primary key is
DNUMBER, and suppose that we extend it by including the DLOCATIONS attribute as shown in
Figure 10.8a. We assume that each department can have a number of locations. The
DEPARTMENT schema and an example relation state are shown in Figure 10.8. As we can see,

DLOCATIONS

Bellaire
Sugarland
Houston
Stafford
Houston

{Bellaire, Sugarland, Houston}
{Stafford}
{Houston}

DLOCATION

333445555
987654321
888665555

333445555
333445555
333445555
987654321
888665555

DMGRSSN

DMGRSSN

_=~=~_L-=D.:.:.M:.::G~R=SS:::N~_I DLOCATIONS

______~ i j

(a) DEPARTMENT

DNAME
I

DNUMBER

t
(b) DEPARTMENT

DNAME I DNUMBER

Research 5
Administration 4
Headquarters 1

(e) DEPARTMENT

DNAME
I

DNUMBER

Research 5
Research 5
Research 5
Administration 4
Headquarters 1

FIGURE 10.8 Normalization into 1NF. (a) A relation schema that is not in 1NF.

(b) Example state of relation DEPARTMENT. (c) 1NF version of same relation with
redundancy.

12. This condition is removed in the nested relational model and in object-relational systems
(ORDBMSs), both of which allow unnormalized relations (see Chapter 22).

316 I Chapter 10 Functional Dependencies and Normal ization for Relational Databases

this is not in 1NF because DLOCATIONS is not an atomic attribute, as illustrated by the first
tuple in Figure 1O.8b. There are two ways we can look at the DLOCATIONS attribute:

• The domain of DLOCATIONS contains atomic values, but some tuples can have a set of
these values. In this case, DLOCATIONS is not functionally dependent on the primary key
DNUMBER.

• The domain of DLOCATIONS contains sets of values and hence is nonatomic. In this case,
DNUMBER ~ DLOCATIONS, because each set is considered a single member of the attribute
domain. 13

In either case, the DEPARTMENT relation of Figure 10.8 is not in 1NF; in fact, it does not
even qualify as a relation according to our definition of relation in Section 5.1. There are
three main techniques to achieve first normal form for such a relation:

1. Remove the attribute DLOCATIONS that violates 1NF and place it in a separate rela
tion DEPT_LOCATIONS along with the primary key DNUMBER of DEPARTMENT. The primary
key of this relation is the combination {DNUMBER, DLOCATION},as shown in Figure 10.2.
A distinct tuple in DEPT_LOCATIONS exists for each location of a department. This
decomposes the non-1NF relation into two 1NFrelations.

2. Expand the key so that there will be a separate tuple in the original DEPARTMENT

relation for each location of a DEPARTMENT, as shown in Figure 10.8c. In this case,
the primary key becomes the combination {DNUMBER, DLOCATION}. This solution has
the disadvantage of introducing redundancy in the relation.

3. If a maximum number of values is known for the attribute-for example, if it is
known that at most three locations can exist for a department-replace the DLOCA·

TIONS attribute by three atomic attributes: DLOCATIONl, DLOCATION2, and DLOCATION3.

This solution has the disadvantage of introducing null values if most departments
have fewer than three locations. It further introduces a spurious semantics about
the ordering among the location values that is not originally intended. Querying
on this attribute becomes more difficult; for example, consider how you would
write the query: "List the departments that have "Bellaire" as one of their loca
tions" in this design.

Of the three solutions above, the first is generally considered best because it does not
suffer from redundancy and it is completely general, having no limit placed on a
maximum number of values. In fact, if we choose the second solution, it will be
decomposed further during subsequent normalization steps into the first solution.

First normal form also disallows multivalued attributes that are themselves
composite. These are called nested relations because each tuple can have a relation
within it. Figure 10.9 shows how the EMP_PRO) relation could appear if nesting is allowed.
Each tuple represents an employee entity, and a relation PRO)S(PNUMBER, HOURS) within each

13. In this case we can consider the domain of OLOCATIONS to be the power set of the set of single
locations; that is, the domain is made up of all possible subsets of the set of single locations.

10.3 Normal Forms Based on Primary Keys I 317

PROJS
SSN ENAME

PNUMBER !HOURS

SSN ENAME I PNUMBER I HOURS I

.. _-------_ .. _---------- _------------------

888665555 Borg,James E.

Smith,John B.

Wong,Franklin T.

Zelaya,Alicia J.

Jabbar,Ahmad V.

Wallace,Jennifer S.

999887777

123456789

333445555

987987987

987654321

1 32.5

2 L~ .
..~~~ f\J.a.ray1l.I1!BCI~~.~.~.~· 3 4:Q:Q .
453453453 English,JoyceA. 1 20.0

... ?- ?Q:Q .
2 10.0
3 10.0

10 10.0

............2.Q 1.Q,Q .
30 30.0

.......1.Q .1Q,Q .
10 35.0

..:3Q 5:Q .
30 20.0

20 J~:.Q .
20 null

(c) EMP_PROJ1

SSN I ENAME

EMP_PROJ2

§§tLJ PNUMBER HOURS I

FIGURE 10.9 Normalizing nested relations into 1NF. (a) Schema of the EMP_PROJ

relation with a "nested relation" attribute PROJS. (b) Example extension of the
EMUROJ relation showing nested relations within each tuple. (c) Decomposition
of EMP_PROJ into relations EMP_PROJI and EMP_PROJ2 by propagating the primary key.

tuple represents the employee's projects and the hours per week that employee works on
each project. The schema of this EMP_PROJ relation can be represented as follows:

EMP_PROJ (SSN, ENAME, {PROJS(PNUMBER, HOURS)})

The set braces { } identify the attribute PROJS as multivalued, and we list the
component attributes that form PROJS between parentheses (). Interestingly, recent trends
for supporting complex objects (see Chapter 20) and XMLdata (see Chapter 26) using the
relational model attempt to allow and formalize nested relations within relational
database systems, which were disallowed early on by iNF.

318 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

Notice that SSN is the primary key of the EMP_PROJ relation in Figures 10.9a and b,
while PNUMBER is the partial key of the nested relation; that is, within each tuple, the nested
relation must have unique values of PNUMBER. To normalize this into INF, we remove the
nested relation attributes into a new relation and propagate the primary key into it; the
primary key of the new relation will combine the partial key with the primary key of the
original relation. Decomposition and primary key propagation yield the schemas EMP_

PROJl and EMP_PROJ2 shown in Figure 10.9c.
This procedure can be applied recursively to a relation with multiple-level nesting to

unnest the relation into a set of INF relations. This is useful in converting an
unnormalized relation schema with many levels of nesting into INF relations. The
existence of more than one multivalued attribute in one relation must be handled
carefully. As an example, consider the following non-lNF relation:

PERSON (ss#, {CAR_LIC#}, {PHONE#})

This relation represents the fact that a person has multiple cars and multiple phones. If a
strategy like the second option above is followed, it results in an all-key relation:

PERSON_IN_INF (ss#, CAR_LIC#, PHONE#)

To avoid introducing any extraneous relationship between CAR_LIC# and PHONE#, all
possible combinations of values are represented for every 55#. giving rise to redundancy.
This leads to the problems handled by multivalued dependencies and 4NF, which we
discuss in Chapter 11. The right way to deal with the two multivalued attributes in PERSON

above is to decompose it into two separate relations, using strategy 1 discussed above:
Pl(55#, CAR_LIC#) and P2(55#, PHONE#).

10.3.5 Second Normal Form
Second normal form (2NF) is based on the concept of full functional dependency. A func
tional dependency X -7 Y is a full functional dependency if removal of any attribute A
from X means that the dependency does not hold any more; that is, for any attribute A E

X, (X - {A}) does not functionally determine Y. A functional dependency X -7 Y is a par
tial dependency if some attribute A E X can be removed from X and the dependency still
holds; that is, for some A E X, (X - {A}) -7 Y. In Figure lO.3b, {SSN, PNUMBER} -7 HOURS is a
full dependency (neither SSN -7 HOURS nor PNUMBER -7 HOURS holds). However, the depen
dency {SSN, PNUMBER} -7 ENAME is partial because SSN -7 ENAME holds.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully
functionally dependent on the primary key of R.

The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key. If the primary key contains a single attribute, the
test need not be applied at all. The EMP_PROJ relation in Figure 10.3b is in INF but is not in
2NF. The nonprime attribute ENAME violates 2NF because of FD2, as do the nonprime
attributes PNAME and PLOCATION because of FD3. The functional dependencies FD2 and FD3
make ENAME, PNAME, and PLOCATION partially dependent on the primary key {SSN, PNUMBER} of
EMP_PROJ, thus violating the 2NF test.

10.3 Normal Forms Based on Primary Keys I 319

Ifa relation schema is not in 2NF, it can be "second normalized" or "2NFnormalized" into
a number of 2NF relations in which nonprime attributes are associated only with the part of
the primary key on which they are fully functionally dependent. The functional dependencies
FDI, m2, and FD3 in Figure IO.3b hence lead to the decomposition of EMP_PRO] into the three
relation schemas EPl, EP2, and EP3 shown in Figure 10.lOa, each of which is in 2NF.

10.3.6 Third Normal Form
Third normal form (3NF) is based on the concept of transitive dependency. A functional
dependency X ~ Y in a relation schema R is a transitive dependency if there is a set of

(a)

PLOCATION

____t_t
'------- tFD2

FD3

J} 2NF '-'lRMAUZATION

ED1

J1- 3NF '-'lRMAUZATION

ED2

FIGURE 10.10 Normalizing into 2NF and 3NF. (a) Normalizing EMP_PRO] into 2NF
relations. (b) Normalizing EMP_DEPT into 3NF relations.

320 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

attributes Z that is neither a candidate key nor a subset of any key of R,14 and both X -7 Z
and Z -7 Y hold. The dependency SSN -7 DMGRSSN is transitive through DNUMBER in EMP_DEPTof
Figure 1O.3a because both the dependencies SSN -7 DNUMBER and DNUMBER -7 DMGRSSN hold and
DNUMBER is neither a key itself nor a subset of the key of EMP_DEPT. Intuitively, we can see that
the dependency of DMGRSSN on DNUMBER is undesirable in EMP_DEPT since DNUMBER is not a key of
EMP_DEPT.

Definition. According to Codd's original definition, a relation schema R is in 3NF if it
satisfies 2NFandno nonprime attribute of R is transitively dependent on the primary key.

The relation schema EMP_DEPT in Figure lO.3a is in 2NF, since no partial dependencies
on a key exist. However, EMP_DEPT is not in 3NF because of the transitive dependency of
DMGRSSN (and also DNAME) on SSN via DNUMBER. We can normalize EMP_DEPT by decomposing it
into the two 3NF relation schemas EDl and ED2 shown in Figure 10.lOb. Intuitively, we see
that EDl and ED2 represent independent entity facts about employees and departments. A
NATURAL JOIN operation on EDI and ED2 will recover the original relation EMP_DEPT without
generating spurious tuples.

Intuitively, we can see that any functional dependency in which the left-hand side is
part (proper subset) of the primary key, or any functional dependency in which the left
hand side is a nonkey attribute is a "problematic" FD. 2NF and 3NF normalization remove
these problem FDs by decomposing the original relation into new relations. In terms of
the normalization process, it is not necessary to remove the partial dependencies before
the transitive dependencies, but historically, 3NF has been defined with the assumption
that a relation is tested for 2NF first before it is tested for 3NF. Table 10.1 informally
summarizes the three normal forms based on primary keys, the tests used in each case, and
the corresponding "remedy" or normalization performed to achieve the normal form.

10.4 GENERAL DEFINITIONS OF SECOND AND
THIRD NORMAL FORMS

In general, we want to design our relation schemas so that they have neither partial nor
transitive dependencies, because these types of dependencies cause the update anomalies
discussed in Section 10.1.2. The steps for normalization into 3NF relations that we have
discussed so far disallow partial and transitive dependencies on the primary key. These
definitions, however, do not take other candidate keys of a relation, if any, into account.
In this section we give the more general definitions of 2NFand 3NF that take all candidate
keys of a relation into account. Notice that this does not affect the definition of 1NF,
since it is independent of keys and functional dependencies. As a general definition of
prime attribute, an attribute that is part of any candidate key will be considered as prime.

--~-------------------- ------------------- ---

14.This is the general definition of transitive dependency. Because we are concerned only with pri
marykeysin this section, we allow transitive dependencies where X is the primarykey but Z maybe
(a subsetof) a candidate key.

10.4 General Definitions of Second and Third Normal Forms I 321

TABLE 10.1 SUMMARY OF NORMAL FORMS BASED ON PRIMARY KEYS AND CORRESPONDING

NORMALIZATION

NORMAL FORM TEST REMEDY (NORMALIZATION)

First (lNF)

Second (2NF)

Third (3NF)

Relation should have no nonatomic
attributes or nested relations.
For relations where primary key contains
multiple attributes, no nonkey attribute
should be functionally dependent on a part
of the primary key.

Relation should not have a nonkey attribute
functionally determined by another nonkey
attribute (or by a set of nonkey attributes.)
That is, there should be no transitive depen
dency of a nonkey attribute on the primary
key.

Form new relations for each nonatomic
attribute or nested relation.
Decompose and set up a new relation for
each partial key with its dependent
attributets). Make sure to keep a relation
with the original primary key and any
attributes that are fully functionally
dependent on it.
Decompose and set up a relation that
includes the nonkey attributets) that
functionally determinets) other nonkey
attributets).

Partial and full functional dependencies and transitive dependencies will now be consid
ered with respect to all candidate keys of a relation.

10.4.1 General Definition of Second Normal Form

Definition. A relation schema R is in second normal form (2NF) if every nonprime
attribute A in R is not partially dependent on any key of R.15

The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key. If the primary key contains a single attribute, the
test neednot be applied at all. Consider the relation schema LOTS shown in Figure 10.11a,
which describes parcels of land for sale in various counties of a state. Suppose that there
are two candidate keys: PROPERTY_ID# and {COUNTY_NAME, LOT#}; that is, lot numbers are
unique only within each county, but PROPERTY_ID numbers are unique across counties for
the entire state.

Based on the two candidate keys PROPERTY_ID# and {cOUNTY_NAME, LOT#}, we know that
thefunctional dependencies FD1 and FD2 of Figure 1O.11a hold. We choose PROPERTY_ID#

as the primary key, so it is underlined in Figure 10.11a, but no special consideration will

15. This definition can be restated as follows: A relation schema R is in 2NF if every nonprime
attribute A in R isfullyfunctionally dependent on every key of R.

322 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

(a) LOTS

FD2 t t t t
FD3 t

FD4 t
(b) LOTS1

FD2 t t
FD4 t

LOTS2

COUNTY NAME TAX_RATE

FD3 t
(c) LOTS1A LOTS1B

AREA PRICE

FD4 I t
FD2

(d) LOTS 1NF

/ -,
LOTS1 LOTS2 2NF

/~ I
LOTS1A LOTS1B LOTS2 3NF

FIGURE 10.11 Normalization into 2NF and 3NF. (a) The LOTS relation with its func
tional dependencies FDl through FD4. (b) Decomposing into the 2NF relations
LOTsl and LOTS2. (c) Decomposing LOTsl into the 3NF relations LOTsIA and LOTsIB. (d)
Summary of the progressive normal ization of LOTS.

10.4 General Definitions of Second and Third Normal Forms I 323

be given to this key over the other candidate key. Suppose that the following two
additionalfunctional dependencies hold in LOTS:

FD3: COUNTY_NAME ~ TAX_RATE

FD4: AREA ~ PRICE

In words, the dependency FD3 says that the tax rate is fixed for a given county (does
not vary lot by lot within the same county), while FD4 says that the price of a lot is
determined by its area regardless of which county it is in. (Assume that this is the price of
thelot for tax purposes.)

The LOTS relation schema violates the general definition of 2NF because TAX_RATE is
partially dependent on the candidate key {COUNTY_NAME, LOT#}, due to FD3. To normalize LOTS

into 2NF, we decompose it into the two relations LOTSl and LOTS2, shown in Figure 10.11b.
We construct LOTSl by removing the attribute TAX_RATE that violates 2NF from LOTS and
placing it with COUNTCNAME (the left-hand side of FD3 that causes the partial dependency)
into another relation LOTS2. Both LOTSl and LOTS2 are in 2NF. Notice that FD4 does not
violate 2NF and is carried over to LOTSl.

10.4.2 General Definition of Third Normal Form

Definition. A relation schema R is in third normal form (3NF) if, whenever a
nontrivial functional dependency X ~ A holds in R, either (a) X is a superkey of R, or (b)
A isa prime attribute of R.

According to this definition, LOTS2 (Figure lO.l1b) is in 3NF. However, FD4 in LOTSl

violates 3NF because AREA is not a superkey and PRICE is not a prime attribute in LOTSl. To
normalize LOTSl into 3NF, we decompose it into the relation schemas LOTSlA and LOTSlB

shown in Figure 10.11e. We construct LOTSlA by removing the attribute PRICE that violates
3NF from LOTSl and placing it with AREA (the left-hand side of FD4 that causes the
transitive dependency) into another relation LOTSlB. Both LOTSlA and LOTSlB are in 3NF.

Two points are worth noting about this example and the general definition of 3NF:

I LOTSl violates 3NF because PRICE is transitively dependent on each of the candidate
keys of LOTSl via the nonprime attribute AREA.

I This general definition can be applied directly to test whether a relation schema is in
3NF; it does not have to go through 2NF first. If we apply the above 3NF definition to
LOTS with the dependencies FD1 through FD4, we find that both FD3 and FD4 violate
3NF. We could hence decompose LOTS into LOTSlA, LOTSlB, and LOTS2 directly. Hence
the transitive and partial dependencies that violate 3NF can be removed in any order.

10.4.3 Interpreting the General Definition of
Third Normal Form

A relation schema R violates the general definition of 3NF if a functional dependency X
--tA holds in R that violates both conditions (a) and (b) of 3NF. Violating (b) means that

324 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

A is a nonprime attribute. Violating (a) means that X is not a superset of any key of R;
hence, X could be nonprime or it could be a proper subset of a key of R. If X is nonprime,
we typically have a transitive dependency that violates 3NF, whereas if X is a proper sub
set of a key of R, we have a partial dependency that violates 3NF (and also 2NF). Hence,
we can state a general alternative definition of 3NF as follows: A relation schema R is in
3NF if every nonprime attribute of R meets both of the following conditions:

• It is fully functionally dependent on every key of R.

• It is nontransitively dependent on every key of R.

10.5 BOYCE-CODD NORMAL FORM
Bovce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was found
to be stricter than 3NF. That is, every relation in BCNF is also in 3NF; however, a relation
in 3NF is not necessarily in BCNF. Intuitively, we can see the need for a stronger normal
form than 3NF by going back to the LOTS relation schema of Figure 1O.11a with its four
functional dependencies Fol through Fo4. Suppose that we have thousands oflots in the
relation but the lots are from only two counties: Dekalb and Fulton. Suppose also that lot
sizes in Dekalb County are only 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 acres, whereas lot sizes in
Fulton County are restricted to 1.1, 1.2, ... , 1.9, and 2.0 acres. In such a situation we
would have the additional functional dependency FD5: AREA --7 COUNTY_NAME. If we add this
to the other dependencies, the relation schema LOTSIA still is in 3NF because COUNTY_NAME is
a prime attribute.

The area of a lot that determines the county, as specified by Fo5, can be represented
by 16 tuples in a separate relation R(AREA, COUNTCNAME), since there are only 16 possible
AREA values. This representation reduces the redundancy of repeating the same
information in the thousands of LOTSIA tuples. BCNF is a stronger normal form that would
disallow LOTslA and suggest the need for decomposing it.

Definition. A relation schema R is in BCNF if whenever a nontrivial functional
dependency X --7 A holds in R, then X is a superkey of R.

The formal definition of BCNF differs slightly from the definition of 3NF. The only
difference between the definitions of BCNF and 3NF is that condition (b) of 3NF, which
allows A to be prime, is absent from BCNF. In our example, Fo5 violates BCNF in LOTsIA

because AREA is not a superkey of LOTslA. Note that Fo5 satisfies 3NF in LOTSIA because
COUNTY_NAME is a prime attribute (condition b), but this condition does not exist in the
definition of BCNF. We can decompose LOTSIA into two BCNF relations LOTSlAX and LOTS lAy,

shown in Figure 10.12a. This decomposition loses the functional dependency Fo2 because
its attributes no longer coexist in the same relation after decomposition.

In practice, most relation schemas that are in 3NF are also in BCNF. Only if X -1 A
holds in a relation schema R with X not being a superkey and A being a prime attribute
will R be in 3NF but not in BCNF. The relation schema R shown in Figure lO.l2b
illustrates the general case of such a relation. Ideally, relational database design should
strive to achieve BCNF or 3NF for every relation schema. Achieving the normalization

10.5 Boyce-Codd Normal Form I 325

(a) LOTS1A

FD5

PROPERTY ID# COUNTY_NA_M_E ~

FD1 I t ~
+ I I t

; I

FD2

LOTS1AX LOTS1AY

PROPERTY ID# AREA LOT#

(b) R

~
FD1 ! I

FD2 't-.J

FIGURE 10.12 Boyce-Codd normal form. (a) BCNF normal ization of LOTS1A with the
functional dependency FD2 being lost in the decomposition. (b) A schematic
relation with FDS; it is in 3NF, but not in BCNF.

status of just 1NF or 2NF is not considered adequate, since they were developed
historically as stepping stones to 3NF and BCNF.

As another example, consider Figure 10.13, which shows a relation TEACH with the
following dependencies:

FDl: {STUDENT, COURSE} ~ INSTRUCTOR

FD2: 16 INSTRUCTOR ~ COURSE

Note that {STUOENT, COURSE} is a candidate key for this relation and that the
dependencies shown follow the pattern in Figure 10.12b, with STUDENT as A, COURSE as B,
and INSTRUCTOR as C. Hence this relation is in 3NF but not BCNF. Decomposition of this
relation schema into two schemas is not straightforward because it may be decomposed
into one of the three following possible pairs:

1. {STUDENT, INSTRUCTOR} and {STUDENT, COURSE}.

2. {COURSE. INSTRUCTOR} and {COURSE, STUDENT}.

3. {INSTRUCTOR. COURSE} and {INSTRUCTOR, STUDENT}.

16. Thisdependency means that "each instructor teaches one course" is a constraint for this application.

326 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

TEACH

[iTUDENT COURSE INSTRUCTOR

Narayan Database Mark

Smith Database Navathe

Smith OperatingSystems Ammar

Smith Theory Schulman

Wallace Database Mark

Wallace OperatingSystems Ahamad

Wong Database Omiecinski

Zelaya Database Navathe

FIGURE 10.13 A relation TEACH that is in 3NF but not BCNF.

All three decompositions "lose" the functional dependency F01. The desirable
decomposition of those just shown is 3, because it will not generate spurious tuples after a join.

A test to determine whether a decomposition is nonadditive (lossless) is discussed in
Section 11.1.4 under Property L] 1. In general, a relation not in BCNF should be
decomposed so as to meet this property, while possibly forgoing the preservation of all
functional dependencies in the decomposed relations, as is the case in this example.
Algorithm 11.3 does that and could be used above to give decomposition 3 for TEACH.

10.6 SUMMARY
In this chapter we first discussed several pitfalls in relational database design using intui
tive arguments. We identified informally some of the measures for indicating whether a
relation schema is "good" or "bad," and provided informal guidelines for a good design.
We then presented some formal concepts that allow us to do relational design in a top
down fashion by analyzing relations individually. We defined this process of design by
analysis and decomposition by introducing the process of normalization.

We discussed the problems of update anomalies that occur when redundancies are
present in relations. Informal measures of good relation schemas include simple and clear
attribute semantics and few nulls in the extensions (states) of relations. A good
decomposition should also avoid the problem of generation of spurious tuples as a result of
the join operation.

We defined the concept of functional dependency and discussed some of its
properties. Functional dependencies specify semantic constraints among the attributes of
a relation schema. We showed how from a given set of functional dependencies,
additional dependencies can be inferred using a set of inference rules. We defined the
concepts of closure and cover related to functional dependencies. We then defined

Review Questions I 327

minimal cover of a set of dependencies, and provided an algorithm to compute a minimal
cover. We also showed how to check whether two sets of functional dependencies are
equivalent.

We then described the normalization process for achieving good designs by testing
relations for undesirable types of "problematic" functional dependencies. We provided a
treatment of successive normalization based on a predefined primary key in each relation,
thenrelaxed this requirement and provided more general definitions of second normal form
(2NF) and third normal form (3NF) that take all candidate keys of a relation into account.
We presented examples to illustrate how by using the general definition of 3NF a given
relation may be analyzed and decomposed to eventually yield a set of relations in 3NF.

Finally, we presented Boyce-Codd normal form (BCNF) and discussed how it is a
stronger form of 3NF. We also illustrated how the decomposition of a non-BCNF relation
must be done by considering the nonadditive decomposition requirement.

Chapter 11 presents synthesis as well as decomposition algorithms for relational
database design based on functional dependencies. Related to decomposition, we discuss
the concepts of lossless (nonadditive) join and dependency preservation, which are enforced
by some of these algorithms. Other topics in Chapter 11 include multivalued
dependencies, join dependencies, and fourth and fifth normal forms, which take these
dependencies into account.

Review Questions
10.1. Discuss attribute semantics as an informal measure of goodness for a relation

schema.
10.2. Discuss insertion, deletion, and modification anomalies. Why are they considered

bad? Illustrate with examples.
10.3. Why should nulls in a relation be avoided as far as possible? Discuss the problem

of spurious tuples and how we may prevent it.
lOA. State the informal guidelines for relation schema design that we discussed. Illus

trate how violation of these guidelines may be harmful.
10.5. What is a functional dependency? What are the possible sources of the informa

tion that defines the functional dependencies that hold among the attributes of a
relation schema?

10.6. Why can we not infer a functional dependency automatically from a particular
relation state?

10.7. What role do Armstrong's inference rules-the three inference rules IRI through
IR3-play in the development of the theory of relational design?

10.8. What is meant by the completeness and soundness of Armstrong's inference rules?
10.9. What is meant by the closure of a set of functional dependencies? Illustrate with

an example.
10.10. When are two sets of functional dependencies equivalent? How can we determine

their equivalence?
10.11. What is a minimal set of functional dependencies? Does every set of dependencies

have a minimal equivalent set? Is it always unique?

328 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

10.12. What does the term unnormalized relation refer to? How did the normal forms
develop historically from first normal form up to Boyce-Codd normal form?

10.13. Define first, second, and third normal forms when only primary keys are consid
ered. How do the general definitions of 2NFand 3NF, which consider all keys of a
relation, differ from those that consider only primary keys?

10.14. What undesirable dependencies are avoided when a relation is in 2NF?
10.15. What undesirable dependencies are avoided when a relation is in 3NF?
10.16. Define Boyce-Codd normal form. How does it differ from 3NF?Why is it consid

ered a stronger form of 3NF?

Exercises
10.17. Suppose that we have the following requirements for a university database that is

used to keep track of students' transcripts:
a. The university keeps track of each student's name (SNAME), student number

(SNUM), social security number (SSN), current address (SCADDR) and phone
(SCPHONE), permanent address (SPADDR) and phone (SPPHoNE), birth date (BOATE),

sex (SEX), class (CLASS) (freshman, sophomore, ... , graduate), major depart
ment (MAJORCODE), minor department (MINORCOOE) (if any), and degree program
(PROG) (B. A., B. S • , ••• , PH. D•). Both SSSN and student number have unique val
ues for each student.

b. Each department is described by a name (DNAME), department code (DCOOE),

office number (DOFFICE), office phone (DPHONE), and college (OCOLLEGE). Both
name and code have unique values for each department.

c. Each course has a course name (CNAME), description (CDESC), course number
(CNUM), number of semester hours (CREDIT), level (LEVEL), and offering depart
ment (CDEPT). The course number is unique for each course.

d. Each section has an instructor (INAME), semester (SEMESTER), year (YEAR), course
(SECCOURSE), and section number (SECNUM). The section number distinguishes
different sections of the same course that are taught during the same semester/
year; its values are 1, 2, 3, ... , up to the total number of sections taught during
each semester.

e. A grade record refers to a student (SSN), a particular section, and a grade (GRADE).

Design a relational database schema for this database application. First show all
the functional dependencies that should hold among the attributes. Then design
relation schemas for the database that are each in 3NF or BCNF. Specify the key
attributes of each relation. Note any unspecified requirements, and make
appropriate assumptions to render the specification complete.

10.18. Prove or disprove the following inference rules for functional dependencies. A
proof can be made either by a proof argument or by using inference rules lRl
through IR3. A disproof should be performed by demonstrating a relation instance
that satisfies the conditions and functional dependencies in the left-hand side of
the inference rule but does not satisfy the dependencies in the right-hand side.
a. {W -7 Y, X -7 Z} F {WX -7 Y}
b. {X -7 Y} and Y :2 Z F {X -7 Z}

c. {X -7 Y, X -7 \v, WY -7 Z} F {X -7 Z}
d. {XY -7 Z, Y -7 W} F {XW -7 Z}
e. {X -7 Z, Y -7 Z} F {X -7 Y}
f. {X -7 Y, XY -7 Z} F {X -7 Z}
g. IX -7 Y, Z -7 W} F {XZ -7 YW}
h. {XY -7 Z, Z -7 X} F {Z -7 Y}
i. {X -7 Y, Y -7 Z} F {X -7 YZ}
j. {XY -7 Z, Z -7 W} F {X -7 W}

10.19. Consider the following two sets of functional dependencies: F = {A -7 C, AC -7
D, E -7 AD, E -7 H} and G = {A -7 CD, E -7 AH}. Check whether they are
equivalent.

10.20. Consider the relation schema EMP_DEPT in Figure lO.3a and the following set G of
functional dependencies on EMP_DEPT: G = {SSN -7 {ENAME, BDATE, ADDRESS, DNUMBER},

DNUMBER -7 {DNAME, DMGRSSNn. Calculate the closures {SSN}+ and {DNUMBER}+ with respect
toG.

10.21. Is the set of functional dependencies G in Exercise 10.20 minimal? If not, try to
find a minimal set offunctional dependencies that is equivalent to G. Prove that
your set is equivalent to G.

10.22. What update anomalies occur in the EMP_PROJ and EMP_DEPT relations of Figures
10.3 and lOA?

10.23. In what normal form is the LOTS relation schema in Figure 1O.11a with respect to
the restrictive interpretations of normal form that take only the primary key into
account? Would it be in the same normal form if the general definitions of normal
form were used?

10.24. Prove that any relation schema with two attributes is in BCNF.
10.25. Why do spurious tuples occur in the result of joining the EMP_PROJI and EMP_ LaCS

relations of Figure 10.5 (result shown in Figure 1O.6)?
10,26. Consider the universal relation R = {A, B, C, D, E, F, G, H, I,}} and the set of func

tional dependencies F = HA, B} -7 {C}, {A} -7 {D, E}, {B} -7 {F}, {F} -7 {G, H},{D}-7
{I, }n. What is the key for R? Decompose R into 2NFand then 3NFrelations.

10,27. Repeat Exercise 10.26 for the following different set of functional dependencies
G = HA, B} -7 {C}, {B, D} -7 {E, F}, {A, D} -7 {G, H}, {A} -7 {l}, {H} -7 {l}}.

10,28, Consider the following relation:

A B C TUPLE#

10 b1 c1 #1
10 b2 c2 #2
11 b4 c1 #3
12 b3 c4 #4
13 b1 c1 #5
14 b3 c4 #6

Exercises I 329

330 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

a. Given the previous extension (state), which of the following dependencies
may hold in the above relation? If the dependency cannot hold, explain why by
specifying the tuples that cause the violation.

i. A ~ B, ii. B~ C, iii. C ~ B, iv. B~ A, v. C ~ A

b. Does the above relation have a potential candidate key? If it does, what is it? If
it does not, why not?

10.29. Consider a relation R(A, B, C, D, E) with the following dependencies:

AB ~ C, CD ~ E, DE ~ B

Is AB a candidate key of this relation? If not, is ABD? Explain your answer.
10.30. Consider the relation R, which has attributes that hold schedules of courses and

sections at a university; R = {CourseNo, SecNo, OfferingDept, Credit-Hours,
CourseLevel, InstructorSSN, Semester, Year, Days_Hours, RoomNo, NoOfStu
dents}. Suppose that the following functional dependencies hold on R:

{CourseNo} ~ {OfferingDept, CreditHours, CourseLevel}

{CourseNo, SecNo, Semester, Year} ~ {Days_Hours, RoomNo, NoOfStudents,
InstructorSSN}

{RoomNo, Days_Hours, Semester, Year} ~ [Instructorssn, CourseNo, SecNo}

Try to determine which sets of attributes form keys of R. How would you
normalize this relation?

10.31. Consider the following relations for an order-processing application database at
ABC, Inc.

ORDER (0#, Odate, Cust», Totaljimount)

ORDER-ITEM(O#, 1#, Qty_ordered, Totaljprice, Discount%)

Assume that each item has a different discount. The TOTAL_PRICE refers to one
item, OOATE is the date on which the order was placed, and the TOTAL_AMOUNT is the
amount of the order. If we apply a natural join on the relations ORDER-ITEM and
ORDER in this database, what does the resulting relation schema look like? What
will be its key? Show the FDs in this resulting relation. Is it in 2NF? Is it in 3NF!
Why or why not? (State assumptions, if you make any.)

10.32. Consider the following relation:

CAR_SALE(Car#, Date_sold, Salesmans, Commission%, Discountjamt)

Assume that a car may be sold by multiple salesmen, and hence {CAR#, SALESMAN#}

is the primary key. Additional dependencies are

Date_sold ~ Discountjimt

and

Salesman# ~ Commission%

Based on the given primary key, is this relation in INF, 2NF, or 3NF? Why or why
not? How would you successively normalize it completely?

Selected Bibliography I 331

10.33. Consider the following relation for published books:

BOOK (Book_title, Authorname, Booktvpe, Listprice, Author_affil, Publisher)

Author_affil refers to the affiliation of author. Suppose the following dependencies
exist:

Book_title ~ Publisher, Book_type

Book_type ~ Listprice

Authorname ~ Author-affil

a. What normal form is the relation in? Explain your answer.
b. Apply normalization until you cannot decompose the relations further. State

the reasons behind each decomposition.

Selected Bibliography
Functional dependencies were originally introduced by Codd (1970). The original defini
tions of first, second, and third normal form were also defined in Codd (1972a), where a
discussion on update anomalies can be found. Boyce-Codd normal form was defined in
Codd (1974). The alternative definition of third normal form is given in Ullman (1988),
as is the definition of BCNF that we give here. Ullman (1988), Maier (1983), and Atzeni
and De Antonellis (1993) contain many of the theorems and proofs concerning func
tional dependencies.

Armstrong (1974) shows the soundness and completeness of the inference rules IRI

through IR3. Additional references to relational design theory are given in Chapter 11.

Relational Database
Design Algorithms and
Further Dependencies

In thischapter, we describe some of the relational database design algorithms that utilize
functional dependency and normalization theory, as well as some other types of depen
dencies. In Chapter 10, we introduced the two main approaches for relational database
design. The first approach utilizes a top-down design technique, and is currently used
most extensively in commercial database application design. This involves designing a
conceptual schema in a high-level data model, such as the EER model, and then mapping
the conceptual schema into a set of relations using mapping procedures such as the ones
discussed in Chapter 7. Following this, each of the relations is analyzed based on the func
tional dependencies and assigned primary keys. By applying the normalization procedure
inSection 10.3, we can remove any remaining partial and transitive dependencies from
the relations. In some design methodologies, this analysis is applied directly during con
ceptual design to the attributes of the entity types and relationship types. In this case,
undesirable dependencies are discovered during conceptual design, and the relation sche
mas resulting from the mapping procedures would automatically be in higher normal
forms, so there would be no need for additional normalization.

The second approach utilizes a bottom-up design technique, and is a more purist
approach that views relational database schema design strictly in terms of functional and
other types of dependencies specified on the database attributes. It is also known as relational
synthesis. After the database designer specifies the dependencies, a normalization algorithm
is applied to synthesize the relation schemas. Each individual relation schema should possess
the measures of goodness associated with 3NF or BCNF or with some higher normal form.

333

334 I Chapter 11 Relational Database Design Algorithms and Further Dependencies

In this chapter, we describe some of these normalization algorithms as well as the
other types of dependencies. We also describe the two desirable properties of nonadditive
(lossless) joins and dependency preservation in more detail. The normalization
algorithms typically start by synthesizing one giant relation schema, called the universal
relation, which is a theoretical relation that includes all the database attributes. We then
perform decomposition-breaking up into smaller relation schemas-until it is no longer
feasible or no longer desirable, based on the functional and other dependencies specified
by the database designer.

We first describe in Section 11.1 the two desirable properties of decompositions,
namely, the dependency preservation property and the lossless (or nonadditive) join
property, which are both used by the design algorithms to achieve desirable decompositions.
It is important to note that it is insufficient to test the relation schemas independently of one
another for compliance with higher normal forms like 2NF, 3NF, and BCNF. The resulting
relations must collectively satisfy these two additional properties to qualify as a good design.
Section 11.2 presents several normalization algorithms based on functional dependencies
alone that can be used to design 3NF and BCNF schemas.

We then introduce other types of data dependencies, including multivalued
dependencies and join dependencies, that specify constraints that cannot be expressed by
functional dependencies. Presence of these dependencies leads to the definition of fourth
normal form (4NF) and fifth normal form (SNF), respectively. We also define inclusion
dependencies and template dependencies (which have not led to any new normal forms
so far). We then briefly discuss domain-key normal form (OKNF), which is considered the
most general normal form.

It is possible to skip some or all of Sections 11.4, U.S, and 11.6 in an introductory
database course.

11.1 PROPERTIES OF RELATIONAL
DECOMPOSITIONS

In Section 11.1.1 we give examples to show that looking at an individual relation to test
whether it is in a higher normal form does not, on its own, guarantee a good design;
rather, a setof relations that together form the relational database schema must possess cer
tain additional properties to ensure a good design. In Sections 11.1.2 and 11.1.3 we dis
cuss two of these properties; the dependency preservation property and the lossless or
nonadditive join property. Section 11.1.4 discusses binary deecompositions, and Section
11.1.5 discusses successive nonadditive join decompositions.

11.1.1 Relation Decomposition and
Insufficiency of Normal Forms

The relational database design algorithms that we present in Section 11.2 start from a sin
gle universal relation schema R = {AI' A2, ••. , An} that includes all the attributes of the

11.1 Properties of Relational Decompositions I 335

database. We implicitly make the universal relation assumption, which states that every
attribute name is unique. The set F of functional dependencies that should hold on the
attributes of R is specified by the database designers and is made available to the design
algorithms. Using the functional dependencies, the algorithms decompose the universal
relation schema R into a set of relation schemas D = {R1, Rz' ... , Rm } that will become
therelational database schema; D is called a decomposition of R.

We must make sure that each attribute in R will appear in at least one relation
schema Ri in the decomposition so that no attributes are "lost"; formally, we have

m

U R. R
I

i = 1

This iscalled the attribute preservation condition of a decomposition.
Another goal is to have each individual relation Ri in the decomposition D be in

BCNF or 3NF. However, this condition is not sufficient to guarantee a good database design
onits own. We must consider the decomposition of the universal relation as a whole, in
addition to looking at the individual relations. To illustrate this point, consider the EMP_

LOCS(ENAME, PLOCATION) relation of Figure 10.5, which is in 3NF and also in BCNF. In fact,
any relation schema with only two attributes is automatically in BCNF. 1 Although EMP_

LOCS is in BCNF, it still gives rise to spurious tuples when joined with EMP_PROJ (SSN, PNUM

BER, HOURS, PNAME, PLOCATION), which is not in BCNF (see the result of the natural join in
Figure 10.6). Hence, EMP_LOCS represents a particularly bad relation schema because of its
convoluted semantics by which PLOCATION gives the location of one of the projects on which
an employee works. Joining EMP_LOCS with PROJECT(PNAME, PNUMBER, PLOCATION, DNUM) of
Figure lO.2-which is in BCNF-also gives rise to spurious tuples. This underscores the
need for other criteria that, together with the conditions of 3NF or BCNF, prevent such
bad designs. In the next three subsections we discuss such additional conditions that
should hold on a decomposition D as a whole.

11.1.2 Dependency Preservation
Property of a Decomposition

It would be useful if each functional dependency X ---> Y specified in F either appeared
directly in one of the relation schemas Rj in the decomposition D or could be inferred
from the dependencies that appear in some Ri . Informally, this is the dependency preserva
tion condition. We want to preserve the dependencies because each dependency in F rep
resents a constraint on the database. If one of the dependencies is not represented in some
individual relation R, of the decomposition, we cannot enforce this constraint by dealing
with an individual relation; instead, we have to join two or more of the relations in the
decomposition and then check that the functional dependency holds in the result of the
JOIN operation. This is clearly an inefficient and impractical procedure.

I.Asan exercise, the reader should prove that this statement is true.

336 I Chapter 11 Relational Database Design Algorithms and Further Dependencies

It is not necessary that the exact dependencies specified in F appear themselves in
individual relations of the decomposition D. It is sufficient that the union of the
dependencies that hold on the individual relations in D be equivalent to F. We now
define these concepts more formally.

Definition. Given a set of dependencies F on R, the projection of F on Ri , denoted by
'lTR(F) where Ri is a subset of R, is the set of dependencies X ---.. Y in P+ such that the
attributes in X U Yare all contained in Ri• Hence, the projection of F on each relation
schema Ri in the decomposition D is the set of functional dependencies in P+, the closure
of F, such that all their left- and right-hand-side attributes are in Ri• We say that a
decomposition D '= {R[, Rz, ... , Rm} of R is dependency-preserving with respect to F if
the union of the projections of F on each Ri in D is equivalent to F; that is,

(('lTR (F» U ... U ('lTR (F)W '= P+
1 m

If a decomposition is not dependency-preserving, some dependency is lost in the
decomposition. As we mentioned earlier, to check that a lost dependency holds, we must
take the JOIN of two or more relations in the decomposition to get a relation that includes
all left- and right-hand-side attributes of the lost dependency, and then check that the
dependency holds on the result of the JOIN-an option that is not practical.

An example of a decomposition that does not preserve dependencies is shown in
Figure 10.12a, in which the functional dependency FD2 is lost when LOTSIA is decomposed
into {LOTSIAX, LOTSIAY}. The decompositions in Figure 10.11, however, are dependency.
preserving. Similarly, for the example in Figure 10.13, no matter what decomposition is
chosen for the relation TEACH (STUDENT, COURSE, INSTRUCTOR) from the three provided in the
text, one or both of the dependencies originally present are lost. We state a claim below
related to this property without providing any proof.

CLAIM 1

It is always possible to find a dependency-preserving decomposition D with respect to
F such that each relation Ri in D is in 3NF.

In Section 11.2.1, we describe Algorithm 11.2, which creates a dependency.
preserving decomposition D = {R[, Rz, ... , Rm} of a universal relation R based on a set of
functional dependencies F, such that each Ri in D is in 3NF.

11.1.3 lossless (Nonadditive) Join
Property of a Decomposition

Another property that a decomposition D should possess is the lossless join or nonaddi
tive join property, which ensures that no spurious tuples are generated when a NATURAL
JOIN operation is applied to the relations in the decomposition. We already illustrated this
problem in Section 10.1.4 with the example of Figures 10.5 and 10.6. Because this isa
property of a decomposition of relation schemm, the condition of no spurious tuples

11.1 Properties of Relational Decompositions I 337

should hold on every legal relation state-that is, every relation state that satisfies the func
tional dependencies in F. Hence, the lossless join property is always defined with respect
toa specificset F of dependencies.

Definition. Formally, a decomposition 0 = {R1, R2, .•• , Rml of R has the lossless
(nonadditive) join property with respect to the set of dependencies F on R if, for every
relation state r of R that satisfies F, the following holds, where * is the NATURAL JOIN of
all the relations in 0:

* (7TR (r), ... , '1TR (r» = r
1 m

The word loss in loss less refers to loss of information, not to loss of tuples. If a
decomposition does not have the lossless join property, we may get additional spurious
tuples after the PROJECT (7T) and NATURAL JOIN (*) operations are applied; these
additional tuples represent erroneous information. We prefer the term nonadditive join
because it describes the situation more accurately. If the property holds on a
decomposition, we are guaranteed that no spurious tuples bearing wrong information are
added to the result after the project and natural join operations are applied.

The decomposition of EMP_PRO] (SSN, PNUMBER, HOURS, ENAME, PNAME, PLOCATION) from
Figure 10.3 into EMP_LOCS(ENAME , PLOCATION) and EMP_PRO] 1 (SSN , PNUMBER, HOURS, PNAME,

PLOCATION) in Figure 10.5 obviously does not have the lossless join property, as illustrated
by Figure 10.6. We will use a general procedure for testing whether any decomposition 0
of a relation into n relations is lossless (nonadditive) with respect to a set of given
functional dependencies F in the relation; it is presented as Algorithm 11.1 below. It is
possible to apply a simpler test to check if the decomposition is nonadditive for binary
decompositions; that test is described in Section 11.1.4.

Algorithm 11.1: Testing for Lossless (nonadditive) Join Property

Input: A universal relation R, a decomposition 0 = {R1, R2, ..• , Rml of R, and a set F
offunctional dependencies.

1. Create an initial matrix S with one row i for each relation Ri in 0, and one col
umn j for each attribute Aj in R.

2. Set S(i, j):= bij for all matrix entries.
(* each bjj is a distinct symbol associated with indices (i, j) *)

3. For each row i representing relation schema Rj

{for each column j representing attribute Aj

{if (relation R, includes attribute Aj) then set SO, j):= aj ;};};

(* each aj is a distinct symbol associated with index (j) *)

4. Repeat the following loop until a complete loop executionresults in no changes to S

{foreach functional dependency X ~ Yin F

{for all rows in S that have the same symbols in the columns corresponding to
attributes in X

{make the symbols in each column that correspond to an attribute in Y be the
same in all these rows as follows: If any of the rows has an "a" symbol for the

338 I Chapter 11 Relational Database Design Algorithms and Further Dependencies

column, set the other rows to that same "a" symbol in the column. If no "a"
symbol exists for the attribute in any of the rows, choose one of the "b" symbols
that appears in one of the rows for the attribute and set the other rows to that
same "b" symbol in the column ;};};};

5. If a row is made up entirely of "a" symbols, then the decomposition has the loss
less join property; otherwise, it does not.

Given a relation R that is decomposed into a number of relations R1, Rz, ... , Rm,

Algorithm 11.1 begins the matrix S that we consider to be some relation state r of R. Row
i in S represents a tuple tj (corresponding to relation R) that has "a" symbols in the
columns that correspond to the attributes of Rj and "b" symbols in the remaining columns.
The algorithm then transforms the rows of this matrix (during the loop of step 4) so that
they represent tuples that satisfy all the functional dependencies in F. At the end of step
4, any two rows in S-which represent two tuples in r-that agree in their values for the
left-hand-side attributes X of a functional dependency X ~ Y in F will also agree in their
values for the right-hand-side attributes Y. It can be shown that after applying the loop of
step 4, if any row in S ends up with all "a" symbols, then the decomposition D has the
lossless join property with respect to F.

If, on the other hand, no row ends up being all "a" symbols, D does not satisfy the
lossless join property. In this case, the relation state r represented by S at the end of the
algorithm will be an example of a relation state r of R that satisfies the dependencies in F
but does not satisfy the lossless join condition. Thus, this relation serves as a
counterexample that proves that D does not have the lossless join property with respect
to F. Note that the "a" and "b" symbols have no special meaning at the end of the
algorithm

Figure ILIa shows how we apply Algorithm 11.1 to the decomposition of the EMP_

PROJ relation schema from Figure 1O.3b into the two relation schemas EMP_PROJl and EMP_

LOCS of Figure lO.5a. The loop in step 4 of the algorithm cannot change any "b"symbols to
"a" symbols; hence, the resulting matrix S does not have a row with all "a" symbols, and
so the decomposition does not have the lossless join property.

Figure 11.1b shows another decomposition of EMP_PROJ (into EMP, PROJECT, and WORKS_

ON) that does have the lossless join property, and Figure 11.1c shows how we apply the
algorithm to that decomposition. Once a row consists only of "a" symbols, we know that
the decomposition has the lossless join property, and we can stop applying the functional
dependencies (step 4 of the algorithm) to the matrix S.

11.1.4 Testing Binary Decompositions for the
Nonadditive Join Property

Algorithm 11.1 allows us to test whether a particular decomposition D into n relations
obeys the lossless join property with respect to a set of functional dependencies F. There is
a special case of a decomposition called a binary decomposition-decomposition of a
relation R into two relations. We give an easier test to apply than Algorithm 11.1, but
while it is very handy to use, it is limited to binary decompositions only.

11.1 Properties of Relational Decompositions I 339

(a) R={SSN, ENAME, PNUMBER, PNAME, PLOCATION, HOURS}
R1 =EMP_LOCS={ENAME, PLOCATION}
R2=EMP_PROJ1={SSN, PNUMBER, HOURS, PNAME, PLOCATION}

F={SSN....ENAME;PNUMBER....{PNAME, PLOCATION} ;{SSN,PNUMBER}....HOURS}

SSN ENAME PNUMBER PNAME PLOCATION HOURS

R1 b 11 a
2

b
13

b
14

a
5

b
16

R2 a
1

b
22

a
3

a
4

a
5

a
6

(nochanges to matrixafterapplying functional dependencies)

(b)

EMP PROJECT WORKS_ON

~ ENAME I I PNUMBER I PNAME I PLOCATION ~ PNUMBER I HOURS I

(c) R={SSN, ENAME, PNUMBER, PNAME, PLOCATION, HOURS}
R1=EMP={SSN, ENAME}
R2=PROJ={PNUMBER, PNAME, PLOCATION}
R3=WORKS_ON={SSN, PNUMBER, HOURS}

F={SSN....{ENAME;PNUMBER....{PNAME, PLOCATION} ;{SSN,PNUMBER}....HOURS}

SSN ENAME PNUMBER PNAME PLOCATION HOURS

R1 a
1

a
2 b

13
b

14 b
15

b
16

R2 b
21

b
22 a

3
a

4
a

5
b

26

R3 a
1

b
32 a

3
b

34
b

35
a

6

.'(original matrixS at startof algorithm)

SSN ENAME PNUMBER PNAME PLOCATION HOURS

R1 a
1

a
2 b

13
b

14 b
15

b
16

R2 b
21

b
22 a

3
a

4
a

5
b

26

R3 a
1 ~2 a

3 ~4 ~ a 5 a
6

(matrix S afterapplying the firsttwofunctional dependencies -
lastrowis all "a"symbols, so we stop)

FIGURE 11.1 Lossless (nonadditive) join test for n-ary decompositions. (a) Case
1:Decomposition of EMP_PROJ into EMP_PROJl and EMP_LOCS fails test. (b) A decompo
sition of EMP_PROJ that has the lossless join property. (c) Case 2: Decomposition
ofEMP_PROJ into EMP, PROJECT, and WORKS_ON satisfies test.

340 I Chapter 11 Relational Database Design Algorithms and Further Dependencies

PROPERTY ut (LOSSLESS JOIN TEST FOR BINARY DECOMPOSITIONS)

A decomposition 0 = {R\, Rz} of R has the lossless (nonadditive) join property with
respect to a set of functional dependencies F on R if and only if either

• The FD ((R\ n Rz) ---7 (R\ - Rz)) is in P, or

• The FD ((R] n Rz) ---7 (Rz - Rj)) is in P

You should verify that this property holds with respect to our informal successive
normalization examples in Sections 10.3 and lOA.

11.1.5 Successive Lossless (Nonadditive)
Join Decompositions

We saw the successive decomposition of relations during the process of second and third
normalization in Sections 10.3 and lOA. To verify that these decompositions are nonad
ditive, we need to ensure another property, as set forth in Claim 2.

CLAIM 2 (Preservation of Nonadditivity in Successive Decompositions)

If a decomposition 0 = {R\, Rz, ... , Rm } of R has the nonadditive (lossless) join
property with respect to a set of functional dependencies F on R, and if a
decomposition OJ = {Q\, Qz, ... , Qd of Rj has the nonadditive join property with
respect to the projection of F on Rj , then the decomposition Oz = {R\, Rz, ... , R,.!,
Q\, Qz, ... , Qk' Ri+\ , ... , Rm} of R has the nonadditive join property with respect to F.

11.2 ALGORITHMS FOR RELATIONAL
DATABASE SCHEMA DESIGN

We now give three algorithms for creating a relational decomposition. Each algorithm
has specific properties, as we discuss below.

11.2.1 Dependency-Preserving Decomposition into 3NF

Schemas
Algorithm 11.2 creates a dependency-preserving decomposition 0 = {R\, Rz, ... , Rm} ofa
universal relation R based on a set of functional dependencies F, such that each R, in 0 is
in 3NF. It guarantees only the dependency-preserving property; it does not guarantee the
lossless join property. The first step of Algorithm 11.2 is to find a minimal cover G forF;
Algorithm 10.2 can be used for this step.

Algorithm 11.2: Relational Synthesis into 3NF with Dependency Preservation

Input: A universal relation R and a set of functional dependencies F on the attributes ofR.

11.2 Algorithms for Relational Database Schema Design I 341

1. Find a minimal cover G for F (use Algorithm 10.2);

2. For each left-hand-side X of a functional dependency that appears in G, create a
relation schema in 0 with attributes {X U {AI} U {Az}... U {Ad}, where X ~ AI'
X~ Az, ... , X ~ Ak are the only dependencies in G with X as the left-hand-side
(X is the key of this relation);

3. Place any remaining attributes (that have not been placed in any relation) in a
single relation schema to ensure the attribute preservation property.

CLAIM 3

Every relation schema created by Algorithm 11.2 is in 3NF. (We will not provide a
formal proof here;z the proof depends on G being a minimal set of dependencies.)

It isobvious that all the dependencies in G are preserved by the algorithm because each
dependency appears in one of the relations Ri in the decomposition D. Since G is equivalent
to F, all the dependencies in F are either preserved directly in the decomposition or are
derivable using the inference rules from Section 10.2.2 from those in the resulting relations,
thus ensuring the dependency preservation property. Algorithm 11.2 is called the relational
synthesis algorithm, because each relation schema Ri in the decomposition is synthesized
(constructed) from the set of functional dependencies in G with the same left-hand-side X.

11.2.2 Lossless (Nonadditive) Join Decomposition
into BCNF Schemas

The next algorithm decomposes a universal relation schema R = {Aj , A z, ... , An} into a
decomposition 0 = {RI' Rz' ... , Rm } such that each Ri is in BCNF and the decomposition 0
has the lossless join property with respect to F. Algorithm 11.3 utilizes Property LJ 1 and
Claim 2 (preservation of nonadditivity in successive decompositions) to create a nonad
ditive join decomposition 0 = {Rj , Rz, ... , Rm } of a universal relation R based on a set of
functional dependencies F, such that each Ri in 0 is in BCNF.

Algorithm 11.3: Relational Decomposition into BCNF with Nonadditive Join Property

Input: A universal relation R and a set of functional dependencies F on the attributes of R.

1. Set 0 := {R};

2. While there is a relation schema Q in 0 that is not in BCNFdo

choose a relation schema Q in 0 that is not in BCNF;

find a functional dependency X ~ Y in Q that violates BCNFj

replace Q in 0 by two relation schemas (Q - Y) and (X U Y);

};

2, See Maier (1983) or Ullman (1982) for a proof.

342 I Chapter 11 Relational Database Design Algorithms and Further Dependencies

Each time through the loop in Algorithm 11.3, we decompose one relation schema Q
that is not in BCNF into two relation schemas. According to Property LJl for binary
decompositions and Claim 2, the decomposition D has the nonadditive join property. At
the end of the algorithm, all relation schemas in D will be in BCNF. The reader can check
that the normalization example in Figures 10.11 and 10.12 basically follows this
algorithm. The functional dependencies Fo3, Fo4, and later FD5 violate BCNF, so the LOTS

relation is decomposed appropriately into BCNF relations, and the decomposition then
satisfies the nonadditive join property. Similarly, if we apply the algorithm to the TEACH

relation schema from Figure 10.13, it is decomposed into TEACH1(INSTRUCTOR, STUDENT) and
TEACH2(INSTRUCTOR, COURSE) because the dependency Fo2: INSTRUCTOR -> COURSE violates BCNF.

In step 2 of Algorithm 11.3, it is necessary to determine whether a relation schema Q
is in BCNF or not. One method for doing this is to test, for each functional dependency X
-> Y in Q, whether X+fails to include all the attributes in Q, thereby determining whether
or not X is a (superlkev in Q. Another technique is based on an observation that
whenever a relation schema Q violates BCNF, there exists a pair of attributes A and B inQ
such that {Q - {A, Bll -> A; by computing the closure {Q - {A, BW for each pair of
attributes {A, B} of Q, and checking whether the closure includes A (or B), we can
determine whether Q is in BCNF.

11.2.3 Dependency-Preserving and Nonadditive
(Lossless) Join Decomposition into 3NF Schemas

If we want a decomposition to have the nonadditive join property and to preserve depen
dencies, we have to be satisfied with relation schemas in 3NF rather than BCNF. A simple
modification to Algorithm 11.2, shown as Algorithm 11.4, yields a decomposition D ofR

that does the following;

• Preserves dependencies

• Has the nonadditive join property

• Is such that each resulting relation schema in the decomposition is in 3NF

Algorithm 11.4: Relational Synthesis into 3NF with Dependency Preservation and
Nonadditive (Lossless) Join Property

Input: A universal relation R and a set of functional dependencies F on the
attributes of R.

1. Find a minimal cover G for F (use Algorithm 10.2).

2. For each left-hand-side X of a functional dependency that appears in G create
a relation schema in D with attributes {X U {AI} U {A2} ..• U {Ad}, where
X~ AI' X ~ A2, ••. , X~ Ak are the only dependencies in G with X as left·
hand-side (X is the key of this relation).

3. If none of the relation schemas in D contains a key of R, then create one more
relation schema in D that contains attributes that form a key of R.

11.2 Algorithms for Relational Database Schema Design I 343

It can be shown that the decomposition formed from the set of relation schemas
created by the preceding algorithm is dependency-preserving and has the nonadditive
join property. In addition, each relation schema in the decomposition is in 3NF. This
algorithm is an improvement over Algorithm 11.2 in that the former guaranteed only
dependency preservation.r'

Step 3 of Algorithm 11.4 involves identifying a key K of R. Algorithm II.4a can be
used to identify a key K of R based on the set of given functional dependencies F. We start
by setting K to all the attributes of R; we then remove one attribute at a time and check
whether the remaining attributes still form a superkey. Notice that the set of functional
dependencies used to determine a key in Algorithm 11.4a could be either F or G, since
they are equivalent. Notice, too, that Algorithm 11.4a determines only one key out of the
possible candidate keys for R; the key returned depends on the order in which attributes
are removed from R in step 2.

Algorithm 11.4a: Finding a Key K for R Given a set F of Functional Dependencies

Input: A universal relation R and a set of functional dependencies F on the
attributes of R.

1. Set K:= R.

2. For each attribute A in K

{compute (K - A)+ with respect to F;

If (K - A)+ contains all the attributes in R, then set K := K - {A}};

It is important to note that the theory of nonadditive join decompositions is based on
the assumption that no null values are allowed for the join attributes. The next section
discusses some of the problems that nulls may cause in relational decompositions.

11.2.4 Problems with Null Values and Dangling Tuples
We must carefully consider the problems associated with nulls when designing a rela
tional database schema. There is no fully satisfactory relational design theory as yet that
includes null values. One problem occurs when some tuples have null values for attributes
that will be used to join individual relations in the decomposition. To illustrate this, con
sider the database shown in Figure 11.2a, where two relations EMPLOYEE and DEPARTMENT are
shown. The last two employee tuples-Berger and Benitez-represent newly hired
employees who have not yet been assigned to a department (assume that this does not
violate any integrity constraints). Now suppose that we want to retrieve a list of (ENAME,
DNAME) values for all the employees. If we apply the NATURAL JOIN operation on EMPLOYEE
andoEPARTMENT (Figure 11.2b), the two aforementioned tuples will not appear in the result.

3. Step 3 ofAlgorithm 11.2 is not needed in Algorithm 11.4 to preserve attributes because the key
will include any unplaced attributes; these are the attributes that do not participate in any func
tional dependency.

344 I Chapter 11 Relational Database Design Algorithms and Further Dependencies

(a) EMPLOYEE

ENAME SSN BDATE ADDRESS DNUM

Smith,John B. 123456789 1965-01-09 731 Fondren, Houston,TX 5
Wong,Franklin T. 333445555 1955-12-08 638 Voss,Houston,TX 5
Zelaya,AliciaJ. 999887777 1968-07-19 3321 Castle,Spring,TX 4
Wallace, JenniferS. 987654321 1941-06-20 291 Berry, Bellaire, TX 4
Narayan, RameshK. 666884444 1962-09-15 975 FireOak, Humble,TX 5
English, JoyceA. 453453453 1972-07-31 5631 Rice,Houston, TX 5
Jabbar, AhmadV. 987987987 1969-03-29 980 Dallas,Houston,TX 4
Borg,James E. 888665555 1937-11-10 450 Stone,Houston,TX 1
Berger, AndersC. 999775555 1965-04-26 6530Braes,Bellaire, TX null
Benitez, CarlosM. 888664444 1963-01-09 7654 Beech,Houston, TX null

DEPARTMENT

DNAME DNUM DMGRSSN

Research 5 333445555
Administration 4 987654321
Headquarters 1 888665555

(b)

ENAME ADDRESS DNAME DMGRSSN

Smith,John B. 123456789 1965-01-09 731 Fondren, Houston, TX 5 Research 333445555
Wong, Franklin T. 333445555 1955-12-08 638 Voss,Houston, TX 5 Research 333445555
Zelaya,AliciaJ. 999887777 1968-07-19 3321 Castle,Spring,TX 4 Administration 987654321
Wallace, JenniferS. 987654321 1941-06-20 291 Berry, Bellaire, TX 4 Administration 987654321
Narayan, RameshK. 666884444 1962-09-15 975 FireOak, Humble,TX 5 Research 333445555
English, JoyceA. 453453453 1972-07-31 5631 Rice,Houston, TX 5 Research 333445555
Jabbar, AhmadV. 987987987 1969-03-29 980 Dallas,Houston,TX 4 Administration 987654321
Borg,James E. 888665555 1937-11-10 450 Stone,Houston,TX 1 Headquarters 888665555

(c)

ENAME ADDRESS DNAME DMGRSSN

Smith,John B. 123456789 1965-01-09 731 Fondren, Houston, TX 5 Research 333445555
Wong,Franklin T. 333445555 1955-12-08 638 Voss,Houston,TX 5 Research 333445555
Zelaya,AliciaJ. 999887777 1968-07-19 3321 Castle,Spring,TX 4 Administration 987654321
Wallace, JenniferS. 987654321 1941-06-20 291 Berry, Bellaire, TX 4 Administration 987654321
Narayan, RameshK. 666884444 1962-09-15 975 FireOak, Humble,TX 5 Research 333445555
English, JoyceA. 453453453 1972-07-31 5631 Rice,Houston,TX 5 Research 333445555
Jabbar, AhmadV. 987987987 1969-03-29 980 Dallas, Houston, TX 4 Administration 987654321
Borg,JamesE. 888665555 1937-11-10 450 Stone,Houston,TX 1 Headquarters 888665555
Berger, AndersC. 999775555 1965-04-26 6530Braes,Bellaire, TX null null null
Benitez, CarlosM. 888664444 1963-01-09 7654 Beech,Houston, TX null null null

FIGURE 11.2 Issueswith null-value joins. (a) Some EMPLOYEE tuples have null for the join attribute
DNUM. (b) Result of applying NATURAL JOIN to the EMPLOYEE and DEPARTMENT relations. (c) Result of
applying LEFT OUTER JOIN to EMPLOYEE and DEPARTMENT.

11.2 Algorithms for Relational Database Schema Design I 345

The OUTER JOIN operation, discussed in Chapter 6, can deal with this problem. Recall
that if we take the LEFT OUTER JOIN of EMPLOYEE with DEPARTMENT, tuples in EMPLOYEE that
have null for the join attribute will still appear in the result, joined with an "imaginary"
tuple in DEPARTMENT that has nulls for all its attribute values. Figure 11.2c shows the result.

In general, whenever a relational database schema is designed in which two or more
relations are interrelated via foreign keys, particular care must be devoted to watching for
potential null values in foreign keys. This can cause unexpected loss of information in
queries that involve joins on that foreign key. Moreover, if nulls occur in other attributes,
such as SALARY, their effect on built-in functions such as SUM and AVERAGE must be carefully
evaluated.

A related problem is that of dangling tuples, which may occur if we carry a
decomposition too far. Suppose that we decompose the EMPLOYEE relation of Figure 11.2a
further into EMPLOYEE_l and EMPLOYEE_2, shown in Figure 11.3a and 11.3b. 4 If we apply the
NATURAL JOIN operation to EMPLOYEE_l AND EMPLOYEE_2, we get the original EMPLOYEE

relation. However, we may use the alternative representation, shown in Figure 11.3c,
where we do not include a tuple in EMPLOYEE_3 if the employee has not been assigned a
department (instead of including a tuple with null for DNUM as in EMPLOYEE_2). If we use
EMPLOYEC3 instead of EMPLOYEE_2 and apply a NATURAL JOIN on EMPLOYEE_l and EMPLOYEE_3,

the tuples for Berger and Benitez will not appear in the result; these are called dangling
tuples because they are represented in only one of the two relations that represent
employees and hence are lost if we apply an (INNER) JOIN operation.

11.2.5 Discussion of Normalization Algorithms
One of the problems with the normalization algorithms we described is that the data
base designer must first specify all the relevant functional dependencies among the
database attributes. This is not a simple task for a large database with hundreds of
attributes. Failure to specify one or two important dependencies may result in an unde
sirable design. Another problem is that these algorithms are not deterministic in general.
For example, the synthesis algorithms (Algorithms 11.2 and 11,4) require the specifica
tion of a minimal cover G for the set of functional dependencies F. Because there may
be ingeneral many minimal covers corresponding to F, the algorithm can give different
designs depending on the particular minimal cover used. Some of these designs may not
be desirable. The decomposition algorithm (Algorithm 11.3) depends on the order in
which the functional dependencies are supplied to the algorithm to check for BCNF vio
lation. Again, it is possible that many different designs may arise corresponding to the
same set of functional dependencies, depending on the order in which such dependen
cies are considered for violation of BCNF. Some of the designs may be quite superior,
whereas others may be undesirable .

. -----------_•..._ .._-----

4. Thissometimes happens when we apply vertical fragmentation to a relation in the conrext of a
distributed database (see Chapter 25).

346 I Chapter 11 Relational Database Design Algorithms and Further Dependencies

(a) EMPLOYEE_1

ENAME SSN BDATE ADDRESS

Smith,John B. 123456789 1965-01-09 731 Fondren, Houston, TX
Wong,Franklin T. 333445555 1955-12-08 638 Voss, Houston, TX
Zelaya, AliciaJ. 999887777 1968-07-19 3321 Castle, Spring, TX
Wallace, JenniferS. 987654321 1941-06-20 291 Berry, Bellaire, TX
Narayan, RameshK. 666884444 1962-09-15 975 FireOak,Humble, TX
English, JoyceA. 453453453 1972-07-31 5631 Rice,Houston, TX
Jabbar, AhmadV. 987987987 1969-03-29 980 Dallas, Houston, TX
Borg,James E. 888665555 1937-11-10 450 Stone,Houston, TX
Berger, AndersC. 999775555 1965-04-26 6530 Braes,Bellaire, TX
Benitez, CarlosM. 888664444 1963-01-09 7654 Beech,Houston, TX

(b) EMPLOYEE_2 (c) EMPLOYEE_3

SSN DNUM SSN DNUM

123456789 5 123456789 5
333445555 5 333445555 5
999887777 4 999887777 4
987654321 4 987654321 4
666884444 5 666884444 5
453453453 5 453453453 5
987987987 4 987987987 4
888665555 1 888665555 1
999775555 null
888664444 null

FIGURE 11.3 The "dangling tuple" problem. (a) The relation EMPLOYEE_l (includes
all attributes of EMPLOYEE from Figure 11.2a except DNUM). (b) The relation EMPLOYEE_2

(includes DNUM attribute with null values). (c) The relation EMPLOYEE_3 (includes DNUM

attribute but does not include tuples for which DNUM has null values).

It is not always possible to find a decomposition into relation schemas that
preserves dependencies and allows each relation schema in the decomposition to be in
BCNF (instead of 3NF as in Algorithm 11.4). We can check the 3NF relation schemas in
the decomposition individually to see whether each satisfies BCNF. If some relation
schema Rj is not in BCNF, we can choose to decompose it further or to leave it as it is in
3NF (with some possible update anomalies). The fact that we cannot always find a
decomposition into relation schemas in BCNF that preserves dependencies can be
illustrated by the examples in Figures 10.12 and 10.13. The relations LOTS1A (Figure
10.12a) and TEACH (Figure 10.13) are not in BCNF but are in 3NF. Any attempt to
decompose either relation further into BCNF relations results in loss of the dependency
Fo2: {COUNTY_NAME, LOT#} ~ {PROPERTY_ID#, AREA} in LOTS1A or loss of rot. {STUDENT,

COURSE} ~ INSTRUCTOR in TEACH.

Table 11.1 summarizes the properties of the algorithms discussed in this chapter so far.

11.3 Multivalued Dependencies and Fourth Normal Form I 347

TABLE 11.1 SUMMARY OF THE ALGORITHMS DISCUSSED IN SECTIONS 11.1 AND 11.2

ALGORITHM INPUT OUTPUT PROPERTI ES/PURPOSE REMARKS

11.1 A decomposition Boolean result: yes Testing for See a simpler test in
D of R and a set F or no for nonaddi- nonadditive join Section 11.1.4 for
of functional tive join property decomposition binary decompositions
dependencies

11.2 Set of functional A set of relations in Dependency No guarantee of
dependencies F 3NF preservation satisfying lossless join

property

11.3 Set of functional A set of relations in Nonadditive join No guarantee of
dependencies F BCNF decomposition dependency

preservation

11,4 Set of functional A set of relations in Nonadditive join May not achieve
dependencies F 3NF AND dependency- BCNF

preserving
decomposition

11.4a Relation schema Key K ofR To find a key K The entire relation R is
R with a set of func- (that is a subset of R) always a default
tional dependencies F superkey

11.3 MULTIVALUED DEPENDENCIES AND
FOURTH NORMAL FORM

So far wehave discussed only functional dependency, which is by far the most important
type ofdependency in relational database design theory. However, in many cases relations
have constraints that cannot be specified as functional dependencies. In this section, we
discuss the concept of multivalued dependency (MVD) and define fourth normalform, which
is based on this dependency. Multivalued dependencies are a consequence of first normal
form (lNF) (see Section 10.304), which disallows an attribute in a tuple to have a set of
values. If we have two or more multivalued independent attributes in the same relation
schema, we get into a problem of having to repeat every value of one of the attributes
with everyvalue of the other attribute to keep the relation state consistent and to main
tain the independence among the attributes involved. This constraint is specified by a
multivalueddependency.

For example, consider the relation EMP shown in Figure llo4a. A tuple in this EMP

relation represents the fact that an employee whose name is ENAME works on the project
whose name is PNAME and has a dependent whose name is DNAME. An employee may work on
several projects and may have several dependents, and the employee's projects and

348 I Chapter 11 Relational Database Design Algorithms and Further Dependencies

DNAMEPNAME

(a) EMP
'-E-N-A-M-E---,-----,---------,

Smith
Smith
Smith
Smith

x
Y
X
Y

John
Anna
Anna
John

(b) EMP_DEPENDENTS

ENAME PNAME ENAME DNAME

Smith
Smith

X
Y

Smith
Smith

John
Anna

(c) SUPPLY

I SNAME PARTNAME PROJNAME

Smith Bolt ProjX
Smith Nut ProjY
Adamsky Bolt ProjY
Walton Nut ProjZ

_ ~d~~~ ~a~ P~oj~ _
Adamsky Bolt ProjX
Smith Bolt ProjY

(d) R1

SNAME

R2

PARTNAME I I SNAME

R3

PROJNAME I IPARTNAME PROJNAME

Smith
Smith
Adamsky
Walton
Adamsky

Bolt
Nut
Bolt
Nut
Nail

Smith
Smith
Adamsky
Walton
Adamsky

ProjX
ProjY
ProjY
ProjZ
ProjX

Bolt
Nut
Bolt
Nut
Nail

ProjX
ProjY
ProjY
ProjZ
ProjX

FIGURE 11.4 Fourth and fifth normal forms. (a) The EMP relation with two MVDs: ENAME ---* PNAME and
ENAME ---* DNAME. (b) Decomposing the EMP relation into two 4NF relations EMP_PROJECTS and EMP_DEPENDENTS.

(c) The relation SUPPLY with no MVDS is in 4NF but not in 5NF if it has the JD(RI, R2, R3). (d) Decom
posing the relation SUPPLY into the 5NF relations RI, R2, R3.

dependents are independent of one another' To keep the relation state consistent, we

must have a separate tuple to represent every combination of an employee's dependent
and an employee's project. This constraint is specified as a multivalued dependency on
the EMP relation. Informally, whenever two independent l:N relationships AB and AC are

mixed in the same relation, an MVD may arise.

5. In an ER diagram, each would be represented as a multivalued attribute or as a weak entity type
(see Chapter 3).

11.3 Multivalued Dependencies and Fourth Normal Form I 349

11.3.1 Formal Definition of Multivalued Dependency

Definition. A multivalued dependency X ---* Y specified on relation schema R,
where X and Yare both subsets of R, specifies the following constraint on any relation
state r of R: If two tuples t) and tz exist in r such that t)[X] = tz[Xj, then two tuples t3 and
t4should also exist in r with the following properties.f where we use Z to denote (R
(XUy)):7

• t3[Xj = t4[Xj = t)[Xj = tz[Xj.

• t3[y] = t)[¥] and t4[¥] = tz[¥] .

• t3[Zj = tz[Zj and t4[Zj = tdZj.

Whenever X ---* Y holds, we say that X multidetermines Y. Because of the symmetry
in the definition, whenever X ---* Y holds in R, so does X ---* Z. Hence, X ---* Y
implies X --1? Z, and therefore it is sometimes written as X ---* Y IZ.

The formal definition specifies that given a particular value of X, the set of values of Y
determined by this value of X is completely determined by X alone and does not depend on
the values of the remaining attributes Z of R. Hence, whenever two tuples exist that have
distinct values of Y but the same value of X, these values of Y must be repeated in separate
tuples with every distinct value of Z that occurs with that same value of X. This informally
corresponds to Y being a multivalued attribute of the entities represented by tuples in R.

In Figure 11.4a the MVDs ENAME --1? PNAME and ENAME --1? DNAME (or ENAME --1? PNAME IDNAME)
hold in the EMP relation. The employee with ENAME 'SMITH' works on projects with PNAME 'X'

and 'V' and has two dependents with DNAME 'John' and' Anna' . If we stored only the first two
tuples in EMP «'Smith', 'X', 'John'> and <'Smith', 'Y', 'Anna'», we would
incorrectly show associations between project' X' and' John' and between project' Y' and
'Anna' ; these should not be conveyed, because no such meaning is intended in this relation.
Hence, we must store the other two tuples «' Smith', 'X', 'Anna' > and <' Smith', 'y',
'John'» to show that] ' X', 'Y'} and {' John', 'Anna'} are associated only with 'Snrith ' ; that
is, there is no association between PNAME and DNAME-which means that the two attributes are
independent.

An MVD X --1? Yin R is called a trivial MVD if (a) Y is a subset of X, or (b) X U Y =
R. For example, the relation EMP_PROJECTS in Figure 11.4b has the trivial MVD ENAME
""* PNAME. An MVD that satisfies neither (a) nor (b) is called a nontrivial MVD. A trivial
MVD will hold in any relation state r of R; it is called trivial because it does not specify any
significant or meaningful constraint on R.

If we have a nontrivial MVD in a relation, we may have to repeat values redundantly
in the tuples. In the EMP relation of Figure II,4a, the values 'X' and 'Y' of PNAME are
repeated with each value of DNAME (or, by symmetry, the values' John' and' Anna' of DNAME
are repeated with each value of PNAME). This redundancy is clearly undesirable. However,
the EMP schema is in BCNF because no functional dependencies hold in EMP. Therefore, we

6. The tuples t1' t 2, t 3, and t4 are not necessarily distinct.

7. Zis shorthand for the attributes remaining in R after the attributes in (X U Y) are removed
&omR.

350 I Chapter 11 Relational Database Design Algorithms and Further Dependencies

need to define a fourth normal form that is stronger than BCNF and disallows relation
schemas such as EMP. We first discuss some of the properties of MVDs and consider how
they are related to functional dependencies. Notice that relations containing nontrivial
MVDs tend to be all-key relations-that is, their key is all their attributes taken together.

11.3.2 Inference Rules for Functional and Multivalued
Dependencies

As with functional dependencies (FDs), inference rules for multivalued dependencies
(MVDs) have been developed. It is better, though, to develop a unified framework that
includes both FDs and MVDs so that both types of constraints can be considered together.
The following inference rules IRI through IRS form a sound and complete set for inferring
functional and multivalued dependencies from a given set of dependencies. Assume that
all attributes are included in a "universal" relation schema R = {AI' Az, ... , An} and that
X, Y, Z, and Ware subsets of R.

IRl (reflexive rule for FDs): If X :! Y, then X -> Y.

IR2 (augmentation rule for FDs): {X -> Y} F XZ -> YZ.

IR3 (transitive rule for FDs): {X -> Y, Y -> Z} F X -> Z.

IR4 (complementation rule for MVDs): {X --* Y} F {X --* (R - (X U Y»)}.

IRS (augmentation rule for MVDs): If X --* Yand W:! Z, then WX --* YZ.

IR6 (transitive rule for MVDs): {X --* Y, Y --* Z} F X --* (Z - Y).

IR7 (replication rule for FD to MVD): {X -> Y} F X --* Y.

IRS (coalescence rule for FDs and MVDs): If X --* Y and there exists W with the
properties that (a) W n Y is empty, (b) W -> Z, and (c) Y :2 Z, then X -> Z.

IRI through IR3 are Armstrong's inference rules for FDs alone. IR4 through IR6 are
inference rules pertaining to MVDs only. IR7 and IRS relate FDs and MVDs. In particular,
IR7 says that a functional dependency is a special case of a multivalued dependency; that
is, every FD is also an MVD because it satisfies the formal definition of an MVD. However,
this equivalence has a catch: An FDX -> Y is an MVD X --* Y with the additional implicit
restriction that at most one value of Y is associated with each value of X.8 Given a set Fof
functional and multivalued dependencies specified on R = {AI' Az, ... , An}, we can use
IRl through IRS to infer the (complete) set of all dependencies (functional or
multivalued) P that will hold in every relation state r of R that satisfies F. We again call
P the closure of F.

8. That is, the set of values of Y determined by a value of X is restricted to being a singleton setwith
only one value. Hence, in practice, we never view an FD as an MVD.

11.3 Multivalued Dependencies and Fourth Normal Form I 351

11.3.3 Fourth Normal Form
We now present the definition of fourth normal form (4NF), which is violated when a
relation has undesirable multivalued dependencies, and hence can be used to identify and
decompose such relations.

Definition. A relation schema R is in 4NF with respect to a set of dependencies F
(that includes functional dependencies and multivalued dependencies) if, for every
nontrivial multivalued dependency X~ Yin P, X is a superkey for R.

The EMP relation of Figure II.4a is not in 4NF because in the nontrivial MVDs ENAME

""* PNAME and ENAME ~ DNAME, ENAME is not a superkey of EMP. We decompose EMP into EMP_

PROJECTS and EMP_DEPENDENTS, shown in Figure 11.4b. Both EMP_PROJECTS and EMP_DEPENDENTS

are in 4NF, because the MVDs ENAME ~ PNAME in EMP_PROJECTS and ENAME ~ DNAME in EMP_

DEPENDENTS are trivial MVDs. No other nontrivial MVDs hold in either EMP_PROJECTS or EMP

DEPENDENTS. No FDs hold in these relation schemas either.
To illustrate the importance of 4NF, Figure 11.5a shows the EMP relation with an

additional employee, 'Brown', who has three dependents ('Jim', 'Joan', and 'Bob') and
works on four different projects ('W', 'X', 'Y', and 'Z'). There are 16 tuples in EMP in Figure
11.5a. If we decompose EMP into EMP_PROJECTS and EMP_DEPENDENTS, as shown in Figure 11.5b,
we need to store a total of only 11 tuples in both relations. Not only would the
decomposition save on storage, but the update anomalies associated with multivalued
dependencies would also be avoided. For example, if Brown starts working on a new

(a) EMP (b) EMP_PROJECTS

I ENAME PNAME DNAME I ENAME PNAME

Smith X John Smith X

Smith y Anna Smith y

Smith X Anna Brown W
Smith y John Brown X

Brown W Jim Brown Y

Brown X Jim Brown Z

Brown Y Jim
Brown Z Jim EMP_DEPENDENTS
Brown W Joan

I I
Brown X Joan ENAME DNAME
Brown y Joan
Brown Z Joan Smith Anna
Brown W Bob Smith John
Brown X Bob Brown Jim
Brown Y Bob Brown Joan
Brown Z Bob Brown Bob

FIGURE 11.5 Decomposing a relation state of EMP that is not in 4NF. (a) EMP

relation with additional tuples. (b) Two corresponding 4NF relations EMP_

PROJECTS and EMP_DEPENDENTS.

352 I Chapter 11 Relational Database Design Algorithms and Further Dependencies

project P, we must insert three tuples in EMP-one for each dependent. If we forget to insert
anyone of those, the relation violates the MVD and becomes inconsistent in that it
incorrectly implies a relationship between project and dependent.

If the relation has nontrivial MVDs, then insert, delete, and update operations on
single tuples may cause additional tuples besides the one in question to be modified. If the
update is handled incorrectly, the meaning of the relation may change. However, after
normalization into 4NF, these update anomalies disappear. For example, to add the
information that Brown will be assigned to project P, only a single tuple need be inserted
in the 4NF relation EMP_PROJECTS.

The EMP relation in Figure 11.4a is not in 4NF because it represents two independent
I:N relationships-one between employees and the projects they work on and the other
between employees and their dependents. We sometimes have a relationship among three
entities that depends on all three participating entities, such as the SlJPPLy relation shown
in Figure l1Ac. (Consider only the tuples in Figure l1Ac above the dotted line for now.)
In this case a tuple represents a supplier supplying a specific part to a particular project, so
there are no nontrivial MVDs. The SlJPPLy relation is already in 4NF and should not be
decomposed.

11.3.4 Lossless (Nonadditive) Join
Decomposition into 4NF Relations

Whenever we decompose a relation schema R into R[= (X U Y) and Rz = (R - Y) based
on an MVD X -* Y that holds in R, the decomposition has the nonadditive join prop
erty. It can be shown that this is a necessary and sufficient condition for decomposing a
schema into two schemas that have the nonadditive join property, as given by property
LJ l ' which is a further generalization of Property LJ 1 given earlier. Property LJ 1 dealt with
FDs only, whereas LJ1' deals with both FDs and MVDs (recall that an FD is also an MVO).

PROPERTY LJ1 '

The relation schemas R[and Rz form a nonadditive join decomposition of R with
respect to a set F of functional and multivalued dependencies if and only if

or, by symmetry, if and only if

We can use a slight modification of Algorithm 11.3 to develop Algorithm 11.5,
which creates a nonadditive join decomposition into relation schemas that are in 4NF

(rather than in BCNF). As with Algorithm 11.3, Algorithm 11.5 does not necessarily
produce a decomposition that preserves FDs.

11.4 Join Dependencies and Fifth Normal Form I 353

Algorithm 11.5: Relational Decomposition into 4NF Relations with Nonadditive
Join Property

Input: A universal relation R and a set of functional and multivalued dependencies F.

1. Set D := { R };

2. While there is a relation schema Q in D that is not in 4NF, do

{choose a relation schema Q in D that is not in 4NF;

find a nontrivial MVD X~ Yin Q that violates 4NF;

replace Q in D by two relation schemas (Q - Y) and (X U Y);

};

11.4 JOIN DEPENDENCIES AND
FIFTH NORMAL FORM

We sawthat L)1 and L)1' give the condition for a relation schema R to be decomposed
into two schemas R1 and Rz, where the decomposition has the nonadditive join prop
erty. However, in some cases there may be no nonadditive join decomposition of R into
two relation schemas, but there may be a nonadditive (lossless) join decomposition into
more than two relation schemas. Moreover, there may be no functional dependency in R
that violates any normal form up to BCNF, and there may be no nontrivial MVD present
in Reither that violates 4NF. We then resort to another dependency called the join
dependency and, if it is present, carry out a multiway decomposition into fifth normal form
(5NF). It is important to note that such a dependency is a very peculiar semantic con
straint that is very difficult to detect in practice; therefore, normalization into 5NF is
very rarely done in practice.

Definition. A join dependency (JD), denoted by JD(R1, Rz, ... , Rn) , specified on
relation schema R, specifies a constraint on the states r of R. The constraint states that
every legal state r of R should have a nonadditive join decomposition into R1, Rz, ... , Rn ;

that is, for every such r we have

* (TIR (r), 7TR (r), ..., 7TR (r)) = r
I 2 n

Notice that an MVD is a special case of a JD where n = 2. That is, a JD denoted as
JD(R j , Rz) implies an MVD (R1 n Rz) ~ (R1 - Rz) (or, by symmetry, (R1 n Rz)
-1t (R2 - R1)) . A join dependency JD(R1, Rz, ... , R,), specified on relation schema R, is
atrivial JD if one of the relation schemas Ri in JD(R1, Rz, ... , Rn) is equal to R. Such a
dependency is called trivial because it has the nonadditive join property for any relation
state r of R and hence does not specify any constraint on R. We can now define fifth
normal form, which is also called project-join normal form.

354 I Chapter 11 Relational Database Design Algorithms and Further Dependencies

Definition. A relation schema R is in fifth normal form (5NF) (or project-join
normal form [PJNF]) with respect to a set F of functional, multivalued, and join
dependencies if, for every nontrivial join dependency Jo(RI, Rz, ... , Rn) in P (that is,
implied by F), every Ri is a superkey of R.

For an example of a JO, consider once again the SUPPLY all-key relation of Figure 11.4c.
Suppose that the following additional constraint always holds: Whenever a supplier 5

supplies part p, and a project j uses part p, and the supplier s supplies at least one part to
project i, then supplier s will also be supplying part p to project j. This constraint can be
restated in other ways and specifies a join dependency JO(Rl, R2, R3) among the three
projections Rl(SNAME, PARTNAME), R2 (SNAME, PROJNAME) , and R3 (PARTNAME, PROJNAME) of sup
PLY. If this constraint holds, the tuples below the dotted line in Figure II.4c must exist in
any legal state of the SUPPLY relation that also contains the tuples above the dotted line.
Figure 11.4d shows how the SUPPLY relation with the join dependency is decomposed into
three relations Rl, R2, and R3 that are each in 5NF. Notice that applying a natural join to
any two of these relations produces spurious tuples, but applying a natural join to all three
together does not. The reader should verify this on the example relation of Figure 11.4c
and its projections in Figure 11.4d. This is because only the JO exists, but no MVOs are
specified. Notice, too, that the JO(Rl, R2, R3) is specified on all legal relation states, not
just on the one shown in Figure 11.4c.

Discovering JOs in practical databases with hundreds of attributes is next to impossible.
It can be done only with a great degree of intuition about the data on the part of the
designer. Hence, the current practice of database design pays scant attention to them.

11.5 INCLUSION DEPENDENCIES
Inclusion dependencies were defined in order to formalize two types of interrelational
constraints:

• The foreign key (or referential integrity) constraint cannot be specified as a func
tional or multivalued dependency because it relates attributes across relations.

• The constraint between two relations that represent a class/subclass relationship (see
Chapter 4 and Section 7.2) also has no formal definition in terms of the functional,
multivalued, and join dependencies.

Definition. An inclusion dependency R.X < S.Y between two sets of attributes-X of
relation schema R, and Y of relation schema S-specifies the constraint that, at any
specific time when r is a relation state of Rand s a relation state of S, we must have

'lTx(r(R)) ~ 'lTy(s(S))

The ~ (subset) relationship does not necessarily have to be a proper subset.
Obviously, the sets of attributes on which the inclusion dependency is specified-X of R
and Y of S-must have the same number of attributes. In addition, the domains for each
pair of corresponding attributes should be compatible. For example, if X = {AI' A z, ... ,An)

11.6 Other Dependencies and Normal Forms I 355

and Y ={B], Bz, ... , Bn }, one possible correspondence is to have dom(A) Compatible With
dom(B,) for 1 :S i :S n. In this case, we say that A; corresponds to Bi .

For example, we can specify the following inclusion dependencies on the relational
schema in Figure 10.1:

DEPARTMENT. DMGRSSN < EMPLOYEE. SSN

WORKS_ON. SSN < EMPLOYEE. SSN

EMPLOYEE. DNUMBER < DEPARTMENT. DNUMBER

PROJECT. DNUM < DEPARTMENT. DNUMBER

WORKS_ON. PNUMBER < PROJ ECT• PNUMBER

DEPT_LOCATIONS.DNUMBER < DEPARTMENT.DNUMBER

All the preceding inclusion dependencies represent referential integrity constraints.
We can also use inclusion dependencies to represent class/subclass relationships. For
example, in the relational schema of Figure 7.5, we can specify the following inclusion
dependencies:

EMPLOYEE. SSN < PERSON. SSN

ALUMNUS. SSN < PERSON. SSN

STUDENT. SSN < PERSON. SSN

As with other types of dependencies, there are inclusion dependency inference rules
(lDIRs). The following are three examples:

!DIRl (reflexivity): R.X < R.X.

IDIR2 (attribute correspondence): If R.X < S.Y, where X = {A], Az, ... , An} and
Y = {B l , Bz, ... , Bn} and A j Corresponds to Bi , then R.Aj < S.B; for 1 :S i :S n.

IDIR3 (transitivity): If R.X < S.Yand S.Y< T.Z, then R.X < T.Z.

The preceding inference rules were shown to be sound and complete for inclusion
dependencies. So far, no normal forms have been developed based on inclusion dependencies.

11.6
11.6.1

OTHER DEPENDENCIES AND NORMAL FORMS
Template Dependencies

Template dependencies provide a technique for representing constraints in relations that typi
cally have no easy and formal definitions. No matter how many types of dependencies we
develop, some peculiar constraint may come up based on the semantics of attributes within
relations that cannot be represented by any of them. The idea behind template dependencies
is tospecify a template- or example-that defines each constraint or dependency.

There are two types of templates: tuple-generating templates and constraint-generating
templates. A template consists of a number of hypothesis tuples that are meant to show an
example of the tuples that may appear in one or more relations. The other part of the
template is the template conclusion. For tuple-generating templates, the conclusion is a set

356 I Chapter 11 Relational Database Design Algorithms and Further Dependencies

of tuples that must also exist in the relations if the hypothesis tuples are there. For
constraint-generating templates, the template conclusion is a condition that must hold on
the hypothesis tuples.

Figure 11.6 shows how we may define functional, multivalued, and inclusion
dependencies by templates. Figure 11.7 shows how we may specify the constraint that "an

X={C,D}

Y={E,F}

X={A,B}

Y={C,D}

X={A,B}

Y={C}

S={E,F,G}

(a) R={A,B,C,D}

hypothesis
a

1
b

1
c

1

a
1

b
1

c
2

conclusion c1 = c 2 and d1= d2

(b) R={A,B,C,D}

hypothesis
a

1
b

1
c

1
d

1

a
1

b
1

c
2

d
2

conclusion a
1

b
1

c
2

d
1

a
1

b
1

c
1

d
2

(c) R={A,B,C,D}

hypothesis a
1

b
1

c
1

d
1

conclusion c 1 d 1 9

FIGURE 11.6 Templates for some common type of dependencies. (a) Template
for functional dependency X ~ Y. (b) Template for the multivalued dependency
X --* Y. (c) Template for the inclusion dependency R.X < S.Y.

EMPLOYEE ={NAME, SSN, ... ,SALARY, SUPERVISORSSN }

abc d

hypothesis e d 9

conclusion c < f

FIGURE 11.7 Templates for the constraint that an employee's salary must be
less than the supervisor's salary.

11.7 Summary I 357

employee's salary cannot be higher than the salary of his or her direct supervisor" on the
relation schema EMPLOYEE in Figure 5.5.

11.6.2 Domain-Key Normal Form
There is no hard and fast rule about defining normal forms only up to 5NF. Historically,
the process of normalization and the process of discovering undesirable dependencies was
carried through 5NF, but it has been possible to define stricter normal forms that take into
account additional types of dependencies and constraints. The idea behind domain-key
normal form (DKNF) is to specify (theoretically, at least) the "ultimate normal form" that
takes into account all possible types of dependencies and constraints. A relation schema
is said to be in DKNF if all constraints and dependencies that should hold on the valid
relation states can be enforced simply by enforcing the domain constraints and key con
straints on the relation. For a relation in DKNF, it becomes very straightforward to enforce
all database constraints by simply checking that each attribute value in a tuple is of the
appropriate domain and that every key constraint is enforced.

However, because of the difficulty of including complex constraints in a DKNF relation,
its practical utility is limited, since it may be quite difficult to specify general integrity
constraints. For example, consider a relation CAR (MAKE, VIN#) (where VIN# is the vehicle
identification number) and another relation MANUFACTURE (VIN# , COUNTRY) (where COUNTRY is the
country of manufacture). A general constraint may be of the following form: "If the MAKE is
either Toyota or Lexus, then the first character of the VIN# is a "T' if the country of
manufacture is Japan; if the MAKE is Honda or Acura, the second character of the VIN# is a "T'
if the country of manufacture is Japan." There is no simplified way to represent such
constraints short of writing a procedure (or general assertions) to test them.

11.7 SUMMARY
In this chapter we presented several normalization algorithms. The relational synthesis
algorithms create 3NF relations from a universal relation schema based on a given set of
functional dependencies that has been specified by the database designer. The relational
decomposition algorithms create BCNF (or 4NF) relations by successive nonadditive
decomposition of unnormalized relations into two component relations at a time. We first
discussed two important properties of decompositions: the lossless (nonadditive) join
property, and the dependency-preserving property. An algorithm to test for lossless
decomposition, and a simpler test for checking the losslessness of binary decompositions,
were described. We saw that it is possible to synthesize 3NF relation schemas that meet
both of the above properties; however, in the case of BCNF, it is possible to aim only for
the nonadditiveness of joins-dependency preservation cannot be necessarily guaranteed.
Ifonehas to aim for one of these two, the nonadditive join condition is an absolute must.

We then defined additional types of dependencies and some additional normal forms.
Multivalued dependencies, which arise from an improper combination of two or more
independent multivalued attributes in the same relation, are used to define fourth normal

358 I Chapter 11 Relational Database Design Algorithms and Further Dependencies

form (4NF). Join dependencies, which indicate a lossless multiway decomposition of a
relation, lead to the definition of fifth normal form (5NF), which is also known as project
join normal form (P]NF). We also discussed inclusion dependencies, which are used to

specify referential integrity and class/subclass constraints, and template dependencies,
which can be used to specify arbitrary types of constraints. We concluded with a brief
discussion of the domain-key normal form (OKNF).

Review Questions
11.1. What is meant by the attribute preservation condition on a decomposition?
11.2. Why are normal forms alone insufficient as a condition for a good schema design)
11.3. What is the dependency preservation property for a decomposition? Why is it

important?
11.4. Why can we not guarantee that BCNF relation schemas will be produced by

dependency-preserving decompositions of non-BCNF relation schemas? Give a
counterexample to illustrate this point.

11.5. What is the lossless (or nonadditive) join property of a decomposition? Why isit
important?

11.6. Between the properties of dependency preservation and losslessness, which one
must definitely be satisfied? Why?

11.7. Discuss the null value and dangling tuple problems.
11.8. What is a multivalued dependency? What type of constraint does it specify)

When does it arise?
11.9. Illustrate how the process of creating first normal form relations may lead to mul

tivalued dependencies. How should the first normalization be done properly so
that MVOs are avoided?

11.10. Define fourth normal form. When is it violated? Why is it useful?
11.11. Define join dependencies and fifth normal form. Why is 5NF also called project·

join normal form (P]NF)?
11.12. What types of constraints are inclusion dependencies meant to represent?
11.13. How do template dependencies differ from the other types of dependencies we

discussed?
11.14. Why is the domain-key normal form (OKNF) known as the ultimate normal form!

Exercises
11.15. Show that the relation schemas produced by Algorithm 11.2 are in 3NF.
11.16. Show that, if the matrix S resulting from Algorithm 11.1 does not have a rowthat

is all "a" symbols, projecting S on the decomposition and joining it back will
always produce at least one spurious tuple.

11.17. Show that the relation schemas produced by Algorithm 11.3 are in BCNF.
11.18. Show that the relation schemas produced by Algorithm 11.4 are in 3NF.
11.19. Specify a template dependency for join dependencies.
11.20. Specify all the inclusion dependencies for the relational schema of Figure 5.5.

11.21. Prove that a functional dependency satisfies the formal definition of multivalued
dependency.

11.22. Consider the example of normalizing the LOTS relation in Section 10,4. Determine
whether the decomposition of LOTS into {LOTSIAX, LOTSIAY, LOTSIB, LOTS21 has the
lossless join property, by applying Algorithm 11.1 and also by using the test under
Property LJ 1.

11.23. Show how the MVDs ENAME --* PNAME and ENAME --* DNAME in Figure 11.4a may arise
during normalization into INF of a relation, where the attributes PNAME and DNAME
are multivalued.

11.24. Apply Algorithm 11.4a to the relation in Exercise 10.26 to determine a key for R.
Create a minimal set of dependencies G that is equivalent to F,and apply the syn
thesis algorithm (Algorithm 11,4) to decompose R into 3NF relations.

11.25. Repeat Exercise 11.24 for the functional dependencies in Exercise 10.27.
11.26. Apply the decomposition algorithm (Algorithm 11.3) to the relation R and the

set of dependencies F in Exercise 10.26. Repeat for the dependencies G in Exer
cise 10.27.

11.27. Apply Algorithm 11.4a to the relations in Exercises 10.29 and 10.30 to determine
a key for R. Apply the synthesis algorithm (Algorithm 11,4) to decompose R into
3NFrelations and the decomposition algorithm (Algorithm 11.3) to decompose R
into BCNF relations.

11.28. Write programs that implement Algorithms 11.3 and 11,4.
11.29. Consider the following decompositions for the relation schema R of Exercise

10.26. Determine whether each decomposition has (i) the dependency preserva
tion property, and (ii) the lossless join property, with respect to F. Also determine
which normal form each relation in the decomposition is in.
a. 0) = {R)l Rz' R3, R4, Rs}; R) = {A, B, C}, Rz = {A, 0, E}, R3 = {B, Fl, R4 = {F, G,

H}, Rs = {D, I,]}
b. 0z = {R), Rz, R3}; R) = {A, B, C, 0, E}, Rz = {B, F, G, H}, R3 = {D, I,]}
c. 03 = {R), Rz' R3, R4, Rs}; R) = {A, B, C, O}, Rz = lV, E], R3 = {B, Fl, R4 = {F, G,

H}, Rs = {V, 1,]1
11.30. Consider the relation REFRIG (MODEL#, YEAR l PRICE, MANUF_PLANT, COLOR), which is

abbreviated as REFRIG (M, Y, P, MP, C), and the following set F of
functional dependencies: F = {M ~ MP, {M, Y} ~ P, MP ~ C}
a. Evaluate each of the following as a candidate key for REFRIG, giving reasons

why it can or cannot be a key: {M}, {M, Y}, {M, C}.
b. Based on the above key determination, state whether the relation REFRIG is in

3NF and in BCNF, giving proper reasons.
c. ConsiderthedecompositionofREFRIGintoD = {Rl(M, Y, P), R2(M, MP, C)}.

Is this decomposition lossless? Show why. (You may consult the test under
Property L]1 in Section 11.1.4.)

Exercises I 359

360 I Chapter 11 Relational Database Design Algorithms and Further Dependencies

Selected Bibliography
The books by Maier (1983) and Atzeni and De Antonellis (1992) include a comprehen
sive discussion of relational dependency theory. The decomposition algorithm (Algo
rithm 11.3) is due to Bernstein (1976). Algorithm 11.4 is based on the normalization
algorithm presented in Biskup et al. (1979). Tsou and Fischer (1982) give a polynomial
time algorithm for BCNF decomposition.

The theory of dependency preservation and lossless joins is given in Ullman (1988),
where proofs of some of the algorithms discussed here appear. The lossless join property is
analyzed in Aho et al. (1979). Algorithms to determine the keys of a relation from
functional dependencies are given in Osborn (1976); testing for BCNF is discussed in
Osborn (1979). Testing for 3NF is discussed in Tsou and Fischer (1982). Algorithms for
designing BCNF relations are given in Wang (1990) and Hernandez and Chan (1991).

Multivalued dependencies and fourth normal form are defined in Zaniolo (1976) and
Nicolas (1978). Many of the advanced normal forms are due to Fagin: the fourth normal
form in Fagin (1977), PJNF in Fagin (1979), and DKNF in Fagin (1981). The set of sound
and complete rules for functional and multivalued dependencies was given by Beeri et al.
(1977). Join dependencies are discussed by Rissanen (1977) and Aho et al. (1979).
Inference rules for join dependencies are given by Sciore (1982). Inclusion dependencies
are discussed by Casanova et al. (1981) and analyzed further in Cosmadakis et al. (1990).
Their use in optimizing relational schemas is discussed in Casanova et al. (1989).
Template dependencies are discussed by Sadri and Ullman (1982). Other dependencies
are discussed in Nicolas (1978), Furtado (1978), and Mendelzon and Maier (1979).
Abiteboul et al. (1995) provides a theoretical treatment of many of the ideas presented in
this chapter and Chapter 10.

Practical Database
Design Methodology and
Use of
UML Diagrams

In this chapter we move from the theory to the practice of database design. We have
already described in several chapters material that is relevant to the design of actual data
bases for practical real-world applications. This material includes Chapters 3 and 4 on
database conceptual modeling; Chapters 5 through 9 on the relational model, the SQL
language, relational algebra and calculus, mapping a high-level conceptual ER or EER
schema into a relational schema, and programming in relational systems (RDBMSs); and
Chapters 10 and 11 on data dependency theory and relational normalization algorithms.

The overall database design activity has to undergo a systematic process called the
design methodology, whether the target database is managed by an RDBMS, object
database management systems (ODBMS), or object relational database management
systems (ORDBMS). Various design methodologies are implicit in the database design tools
currently supplied by vendors. Popular tools include Designer 2000 by Oracle; ERWin,
BPWin, and Paradigm Plus by Platinum Technology; Sybase Enterprise Application
Studio; ER Studio by Embarcadero Technologies; and System Architect by Popkin
Software, among many others. Our goal in this chapter is to discuss not one specific
methodology but rather database design in a broader context, as it is undertaken in large
organizations for the design and implementation of applications catering to hundreds or
thousands of users.

Generally, the design of small databases with perhaps up to 20 users need not be very
complicated. But for medium-sized or large databases that serve several diverse
application groups, each with tens or hundreds of users, a systematic approach to the

361

362 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

overall database design activity becomes necessary. The sheer size of a populated database
does not reflect the complexity of the design; it is the schema that is more important. Any
database with a schema that includes more than 30 or 40 entity types and a similar
number of relationship types requires a careful design methodology.

Using the term large database for databases with several tens of gigabytes of data and
a schema with more than 30 or 40 distinct entity types, we can cover a wide array of
databases in government, industry, and financial and commercial institutions. Service
sector industries, including banking, hotels, airlines, insurance, utilities, and communica
tions, use databases for their day-to-day operations 24 hours a day, 7 days a week-known
in industry as 24 by 7 operations. Application systems for these databases are called
transaction processing systems due to the large transaction volumes and rates that are
required. In this chapter we will be concentrating on the database design for such
medium- and large- scale databases where transaction processing dominates.

This chapter has a variety of objectives. Section 12.1 discusses the information system
life cycle within organizations with a particular emphasis on the database system. Section
12.2 highlights the phases of a database design methodology in the organizational context.
Section 12.3 introduces UML diagrams and gives details on the notations of some of them
that are particularly helpful in collecting requirements, and performing coneptual and
logical design of databases. An illustrative partial example of designing a university database
is presented. Section 12,4 introduces the popular software development tool called Rational
Rose which has UML diagrams as its main specification technique. Features of Rational
Rose that are specific to database requirements modeling and schema design are
highlighted. Section 12.5 briefly discusses automated database design tools.

12.1 THE ROLE OF INFORMATION SYSTEMS
IN ORGANIZATIONS

12.1.1 The Organizational Context for Using
Database Systems

Database systems have become a part of the information systems of many organizations.
In the 1960s information systems were dominated by file systems, but since the early
1970s organizations have gradually moved to database systems. To accommodate such sys
tems, many organizations have created the position of database administrator (DBA) or

even database administration departments to oversee and control database life-cycle
activities. Similarly, information technology (IT), and information resource management
(IRM) have been recognized by large organizations to be a key to successful management
of the business. There are several reasons for this:

• Data is regarded as a corporate resource, and its management and control is consid
ered central to the effective working of the organization.

• More functions in organizations are computerized, increasing the need to keep large
volumes of data available in an up-to-the-minute current state.

12.1 The Role of Information Systems in Organ izations I 363

• As the complexity of the data and applications grows, complex relationships among
the data need to be modeled and maintained.

• There is a tendency toward consolidation of information resources in many organizations.

• Many organizations are reducing their personnel costs by letting the end-user perform
business transactions. This is evident in the form of travel services, financial services,
online retail goods outlet and customer-to-business electronic commerce examples
such as amazon.com or Ebay. In these instances, a publicly accessible and updatable
operational database must be designed and made available for these transactions.

Database systems satisfy the preceding requirements in large measure. Two additional
characteristics of database systems are also very valuable in this environment:

• Data independence protects application programs from changes in the underlying logi
cal organization and in the physical access paths and storage structures.

• External schemas (views) allow the same data to be used for multiple applications,
with each application having its own view of the data.

New capabilities provided by database systems and the following key features that
they offer have made them integral components in computer-based information systems:

• Integration of data across multiple applications into a single database.

• Simplicity of developing new applications using high-level languages like SQL.

• Possibility of supporting casual access for browsing and querying by managers while
supporting major production-level transaction processing.

From the early 1970s through the mid-1980s, the move was toward creating large
centralized repositories of data managed by a single centralized DBMS. Over the last 10 to
15 years, this trend has been reversed because of the following developments:

1. Personal computers and database system-like software products, such as EXCEL,
FOXPRO, ACCESS (all of Microsoft), or SQL Anywhere (of Sybase), and public
domain products such as MYSQL are being heavily utilized by users who previ
ously belonged to the category of casual and occasional database users. Many
administrators, secretaries, engineers, scientists, architects, and the like belong to
this category. As a result, the practice of creating personal databases is gaining
popularity. It is now possible to check out a copy of part of a large database from a
mainframe computer or a database server, work on it from a personal workstation,
and then re-store it on the mainframe. Similarly, users can design and create their
own databases and then merge them into a larger one.

2. The advent of distributed and client-server DBMSs (see Chapter 25) is opening up
the option of distributing the database over multiple computer systems for better
local control and faster local processing. At the same time, local users can access
remote data using the facilities provided by the DBMS as a client, or through the
Web. Application development tools such as Power Builder or Developer 2000 (by
Oracle) are being used heavily with built-in facilities to link applications to mul
tiple back-end database servers.

364 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

3. Many organizations now use data dictionary systems or information repositories,
which are mini DBMSs that manage metadata-that is, data that describes the
database structure, constraints, applications, authorizations, and so on. These are
often used as an integral tool for information resource management. A useful data
dictionary system should store and manage the following types of information:

a. Descriptions of the schemas of the database system.
b. Detailed information on physical database design, such as storage structures,

access paths, and file and record sizes.
c. Descriptions of the database users, their responsibilities, and their access rights.
d. High-level descriptions of the database transactions and applications and of

the relationships of users to transactions.
e. The relationship between database transactions and the data items referenced

by them. This is useful in determining which transactions are affected when
certain data definitions are changed.

f. Usage statistics such as frequencies of queries and transactions and access
counts to different portions of the database.

This metadata is available to DBAs, designers, and authorized users as online system
documentation. This improves the control of DBAs over the information system and the
users' understanding and use of the system. The advent of data warehousing technology
has highlighted the importance of metadata.

When designing high-performance transaction processing systems, which require
around-the-clock nonstop operation, performance becomes critical. These databases are
often accessed by hundreds of transactions per minute from remote and local terminals.
Transaction performance, in terms of the average number of transactions per minute and
the average and maximum transaction response time, is critical. A careful physical database
design that meets the organization's transaction processing needs is a must in such systems.

Some organizations have committed their information resource management to certain
DBMS and data dictionary products. Their investment in the design and implementation of
large and complex systems makes it difficult for them to change to newer DBMS products,
which means that the organizations become locked in to their current DBMS system. With
regard to such large and complex databases, we cannot overemphasize the importance of a
careful design that takes into account the need for possible system modificarions-i-called
tuning-to respond to changing requirements. We will discuss tuning in conjunction with
query optimization in Chapter 16. The cost can be very high if a large and complex system
cannot evolve, and it becomes necessary to move to other DBMS products.

12.1.2 The Information System Life Cycle
In a large organization, the database system is typically part of the information system,
which includes all resources that are involved in the collection, management, use, and
dissemination of the information resources of the organization. In a computerized envi
ronment, these resources include the data itself, the DBMS software, the computer system
hardware and storage media, the personnel who use and manage the data (DBA, end users,

12.1 The Role of Information Systems in Organ izations I 365

parametric users, and so on), the applications software that accesses and updates the data,
and the application programmers who develop these applications. Thus the database sys
tem ispart of a much larger organizational information system.

In this section we examine the typical life cycle of an information system and how
the database system fits into this life cycle. The information system life cycle is often
called the macro life cycle, whereas the database system life cycle is referred to as the
micro life cycle. The distinction between these two is becoming fuzzy for information
systems where databases are a major integral component. The macro life cycle typically
includes the following phases:

1. Feasibility analysis: This phase is concerned with analyzing potential application
areas, identifying the economics of information gathering and dissemination, per
forming preliminary cost-benefit studies, determining the complexity of data and
processes, and setting up priorities among applications.

2. Requirements collection and analysis: Detailed requirements are collected by inter
acting with potential users and user groups to identify their particular problems
and needs. Interapplication dependencies, communication, and reporting proce
dures are identified.

3. Design: This phase has two aspects: the design of the database system, and the
design of the application systems (programs) that use and process the database.

4. Implementation: The information system is implemented, the database is loaded,
and the database transactions are implemented and tested.

5. Validation and acceptance testing: The acceptability of the system in meeting users'
requirements and performance criteria is validated. The system is tested against
performance criteria and behavior specifications.

6. Deployment, operation and maintenance: This may be preceded by conversion of
users from an older system as well as by user training. The operational phase starts
when all system functions are operational and have been validated. As new
requirements or applications crop up, they pass through all the previous phases
until they are validated and incorporated into the system. Monitoring of system
performance and system maintenance are important activities during the opera
tional phase.

12.1.3 The Database Application System Life Cycle
Activities related to the database application system (micro) life cycle include the following:

1. System definition: The scope of the database system, its users, and its applications
are defined. The interfaces for various categories of users, the response time con
straints, and storage and processing needs are identified.

2. Database design: At the end of this phase, a complete logical and physical design
of the database system on the chosen DBMS is ready.

366 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

3. Database implementation: This comprises the process of specifying the conceptual,
external, and internal database definitions, creating empty database files, and
implementing the software applications.

4. Loading or data conversion: The database is populated either by loading the data
directly or by converting existing files into the database system format.

5. Application conversion: Any software applications from a previous system are con
verted to the new system.

6. Testing and validation: The new system is tested and validated.

7. Operation: The database system and its applications are put into operation. Usu
ally, the old and the new systems are operated in parallel for some time.

8. Monitoring and maintenance: During the operational phase, the system is con
stantly monitored and maintained. Growth and expansion can occur in both data
content and software applications. Major modifications and reorganizations may
be needed from time to time.

Activities 2, 3, and 4 together are part of the design and implementation phases of
the larger information system life cycle. Our emphasis in Section 12.2 is on activities 2
and 3, which cover the database design and implementation phases. Most databases in
organizations undergo all of the preceding life-cycle activities. The conversion activities
(4 and 5) are not applicable when both the database and the applications are new. When
an organization moves from an established system to a new one, activities 4 and 5 tend to
be the most time-consuming and the effort to accomplish them is often underestimated.
In general, there is often feedback among the various steps because new requirements
frequently arise at every stage. Figure 12.1 shows the feedback loop affecting the
conceptual and logical design phases as a result of system implementation and tuning.

12.2 THE DATABASE DESIGN AND
IMPLEMENTATION PROCESS

We now focus on activities 2 and 3 of the database application system life cycle, which
are database design and implementation. The problem of database design can be stated as
follows:

DESIGN THE LUGICAL AND PHYSICAL STRUCTURE OF ONE OR MORE DATABASES TO ACCOMMODATE THE

INFORMA TION NEEDS Of THE USERS IN AN ORGANIZATION fOR A DEfINED SET Of APPLlCA T10NS.

The goals of database design are multiple:

• Satisfy the information content requirements of the specified users and applications.

• Provide a natural and easy-to-understand structuring of the information.

• Support processing requirements and any performance objectives, such as response
time, processing time, and storage space.

12.2 The Database Design and Implementation Process I 367

These goals are very hard to accomplish and measure, and they involve an inherent
tradeoff: if one attempts to achieve more "naturalness" and "understandability" of the
model, it may be at the cost of performance. The problem is aggravated because the
database design process often begins with informal and poorly defined requirements. In
contrast, the result of the design activity is a rigidly defined database schema that cannot
easily be modified once the database is implemented. We can identify six main phases of
theoverall database design and implementation process:

1. Requirements collection and analysis.

2. Conceptual database design.

3. Choice of a DBMS.

4. Data model mapping (also called logical database design).

5. Physical database design.

6. Database system implementation and tuning.

The design process consists of two parallel activities, as illustrated in Figure 12.1. The
first activity involves the design of the data content and structure of the database; the
second relates to the design of database applications. To keep the figure simple, we have
avoided showing most of the interactions among these two sides, but the two activities
are closely intertwined. For example, by analyzing database applications, we can identify
data items that will be stored in the database. In addition, the physical database design
phase, during which we choose the storage structures and access paths of database files,
depends on the applications that will use these files. On the other hand, we usually
specify the design of database applications by referring to the database schema constructs,
which are specified during the first activity. Clearly, these two activities strongly influence
one another. Traditionally, database design methodologies have primarily focused on the
first of these activities whereas software design has focused on the second; this may be
called data-driven versus process-driven design. It is rapidly being recognized by database
designers and software engineers that the two activities should proceed hand in hand, and
design tools are increasingly combining them.

The six phases mentioned previously do not have to proceed strictly in sequence. In
many cases we may have to modify the design from an earlier phase during a later phase.
These feedback loops among phases-and also within phases-are common. We show
only a couple of feedback loops in Figure 12.1, but many more exist between various pairs
ofphases. We have also shown some interaction between the data and the process sides of
the figure; many more interactions exist in reality. Phase 1 in Figure 12.1 involves
collecting information about the intended use of the database, and Phase 6 concerns
database implementation and redesign. The heart of the database design process
comprises Phases 2, 4, and 5; we briefly summarize these phases:

• Conceptual database design (Phase 2): The goal of this phase is to produce a conceptual
schema for the database that is independent of a specific DBMS. We often use a high
level data model such as the ER or EER model (see Chapters 3 and 4) during this
phase. In addition, we specify as many of the known database applications or transac
tions as possible, using a notation that is independent of any specific DBMS. Often,

368 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

Phase 1: REQUIREMENTS
COLLECTION
AND ANALYSIS

Phase 2: CONCEPTUAL
DATABASE
DESIGN

Phase 3: CHOICE
OF DBMS

Phase 4: DATAMODEL
MAPPING
(LOGICAL DESIGN)

Phase 5: PHYSICAL
DESIGN

Phase 6: SYSTEM
IMPLEMENTATION
AND TUNING

DATA CONTENT
AND STRUCTURE

DATA
REQUIREMENTS

j
CONCEPTUAL

SCHEMA DESIGN
(DBMS-independent)

LOGICAL SCHEMA
AND VIEW DESIGN
(DBMS-dependent)

j
INTERNAL

SCHEMA DESIGN
(DBMS-dependent)

1
DOL statements
SOL statements

DATABASE
APPLICATIONS

PROCESSING
REQUIREMENTS

j
TRANSACTION AND

APPPLICATION DESIGN
(DBMS-independent)

frequencies
performance
constraints

TRANSACTION AND
APPLICATION

IMPLEMENTATION

FIGURE 12.1 Phases of database design and implementation for large databases.

the DBMS choice is already made for the organization; the intent of conceptual design
is still to keep it as free as possible from implementation considerations.

• Data modelmapping (Phase 4): During this phase, which is also called logical database
design, we map (or transform) the conceptual schema from the high-level data
model used in Phase 2 into the data model of the chosen DBMS. We can start this
phase after choosing a specific type of DBMS-for example, if we decide to use some
relational DBMS but have not yet decided on which particular one. We call the latter
system-independent (but data model-dependent) logical design. In terms of the three-

12.2 The Database Design and Implementation Process I 369

level DBMS architecture discussed in Chapter 2, the result of this phase is a conceptual
schema in the chosen data model. In addition, the design of externalschemas (views)
for specific applications is often done during this phase.

• Physical database design (Phase 5): During this phase, we design the specifications for
the stored database in terms of physical storage structures, record placement, and
indexes. This corresponds to designing the internal schema in the terminology of the
three-level DBMSarchitecture.

• Database system implementation and tuning (Phase 6): During this phase, the database
and application programs are implemented, tested, and eventually deployed for ser
vice. Various transactions and applications are tested individually and then in con
junction with each other. This typically reveals opportunities for physical design
changes, data indexing, reorganization, and different placement of data-an activity
referred to as database tuning. Tuning is an ongoing activity-a part of system main
tenance that continues for the life cycle of a database as long as the database and
applications keep evolving and performance problems are detected.

In the following subsections we discuss each of the six phases of database design in
more detail.

12.2.1 Phase 1: Requirements Collection and Analysis"
Before we can effectively design a database, we must know and analyze the expectations
ofthe users and the intended uses of the database in as much detail as possible. This pro
cess iscalled requirements collection and analysis. To specify the requirements, we must
first identify the other parts of the information system that will interact with the database
system. These include new and existing users and applications, whose requirements are
then collected and analyzed. Typically, the following activities are part of this phase:

1. The major application areas and user groups that will use the database or whose
work will be affected by it are identified. Key individuals and committees within
each group are chosen to carry out subsequent steps of requirements collection
and specification.

2. Existing documentation concerning the applications is studied and analyzed.
Other documentation-policy manuals, forms, reports, and organization charts
is reviewed to determine whether it has any influence on the requirements collec
tion and specification process.

3. The current operating environment and planned use of the information is stud
ied. This includes analysis of the types of transactions and their frequencies as
well as of the flow of information within the system. Geographic characteristics
regarding users, origin of transactions, destination of reports, and so forth, are
studied. The input and output data for the transactions are specified.

1. A part of this section has been contributed by Colin Potts.

370 I Chapter 12 Practical Database Design Methodology and Use of UMl Diagrams

4. Written responses to sets of questions are sometimes collected from the potential
database users or user groups. These questions involve the users' priorities and the
importance they place on various applications. Key individuals may be inter
viewed to help in assessing the worth of information and in setting up priorities.

Requirement analysis is carried out for the final users, or "customers," of the database
system by a team of analysts or requirement experts. The initial requirements are likely to be
informal, incomplete, inconsistent, and partially incorrect. Much work therefore needs to
be done to transform these early requirements into a specification of the application that
can be used by developers and testers as the starting point for writing the implementation
and test cases. Because the requirements reflect the initial understanding of a system that
does not yet exist, they will inevitably change. It is therefore important to use techniques
that help customers converge quickly on the implementation requirements.

There is a lot of evidence that customer participation in the development process
increases customer satisfaction with the delivered system. For this reason, many
practitioners now use meetings and workshops involving all stakeholders. One such
methodology of refining initial system requirements is called Joint Application Design
(JAD). More recently, techniques have been developed, such as Contextual Design, that
involve the designers becoming immersed in the workplace in which the application is to
be used. To help customer representatives better understand the proposed system, it is
common to walk through workflow or transaction scenarios or to create a mock-up
prototype of the application.

The preceding modes help structure and refine requirements but leave them still in
an informal state. To transform requirements into a better structured form, requirements
specification techniques are used. These include OOA (object-oriented analysis), DFDs
(data flow diagrams), and the refinement of application goals. These methods use
diagramming techniques for organizing and presenting information-processing require
ments. Additional documentation in the form of text, tables, charts, and decision
requirements usually accompanies the diagrams. There are techniques that produce a
formal specification that can be checked mathematically for consistency and "what-if'
symbolic analyses. These methods are hardly used now but may become standard in the
future for those parts of information systems that serve mission-critical functions and
which therefore must work as planned. The model-based formal specification methods, of
which the Z-notation and methodology is the most prominent, can be thought of as
extensions of the ER model and are therefore the most applicable to information system
design.

Some computer-aided techniques-called "Upper CASE" tools-have been proposed
to help check the consistency and completeness of specifications, which are usually stored
in a single repository and can be displayed and updated as the design progresses. Other
tools are used to trace the links between requirements and other design entities, such as
code modules and test cases. Such traceability databases are especially important in
conjunction with enforced change-management procedures for systems where the
requirements change frequently. They are also used in contractual projects where the
development organization must provide documentary evidence to the customer that all
the requirements have been implemented.

12.2 The Database Design and Implementation Process I 371

The requirements collection and analysis phase can be quite time-consuming, but it
is crucial to the success of the information system. Correcting a requirements error is
much more expensive than correcting an error made during implementation, because the
effects of a requirements error are usually pervasive, and much more downstream work has
tobe re-implemented as a result. Not correcting the error means that the system will not
satisfy the customer and may not even be used at all. Requirements gathering and analysis
have been the subject of entire books.

12.2.2 Phase 2: Conceptual Database Design
The second phase of database design involves two parallel activities.2 The first activity,
conceptual schema design, examines the data requirements resulting from Phase 1 and
produces a conceptual database schema. The second activity, transaction and application
design, examines the database applications analyzed in Phase 1 and produces high-level
specifications for these applications.

Phase 2a: Conceptual Schema Design. The conceptual schema produced by
this phase is usually contained in a DBMS-independent high-level data model for the
following reasons:

1. The goal of conceptual schema design is a complete understanding of the data
base structure, meaning (semantics), interrelationships, and constraints. This is
best achieved independently of a specific DBMS because each DBMS typically has
idiosyncrasies and restrictions that should not be allowed to influence the concep
tual schema design.

2. The conceptual schema is invaluable as a stable description of the database con
tents. The choice of DBMS and later design decisions may change without chang
ing the DBMS-independent conceptual schema.

3. A good understanding of the conceptual schema is crucial for database users and
application designers. Use of a high-level data model that is more expressive and
general than the data models of individual DBMSs is hence quite important.

4. The diagrammatic description of the conceptual schema can serve as an excellent
vehicle of communication among database users, designers, and analysts. Because
high-level data models usually rely on concepts that are easier to understand than
lower-level DBMS-specific data models, or syntactic definitions of data, any com
munication concerning the schema design becomes more exact and more
straightforward.

In this phase of database design, it is important to use a conceptual high-level data
model with the following characteristics:

2. Thisphase of design is discussed in great detail in the first seven chapters of Batini et al. (1992);
we summarize that discussion here.

372 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

1. Expressiveness: The data model should be expressive enough to distinguish differ
ent types of data, relationships, and constraints.

2. Simplicity and understandability: The model should be simple enough for typical
nonspecialist users to understand and use its concepts.

3. Minimality: The model should have a small number of basic concepts that are dis
tinct and nonoverlapping in meaning.

4. Diagrammatic representation: The model should have a diagrammatic notation for
displaying a conceptual schema that is easy to interpret.

5. Formality: A conceptual schema expressed in the data model must represent a for
mal unambiguous specification of the data. Hence, the model concepts must be
defined accurately and unambiguously.

Many of these requirements-the first one in particular-sometimes conflict with
other requirements. Many high-level conceptual models have been proposed for database
design (see the selected bibliography for Chapter 4). In the following discussion, we will
use the terminology of the Enhanced Entity-Relationship (EER) model presented in
Chapter 4, and we will assume that it is being used in this phase. Conceptual schema
design, including data modeling, is becoming an integral part of object-oriented analysis
and design methodologies. The UML has class diagrams that are largely based on
extensions of the EERmodel.

Approaches to Conceptual Schema Design. For conceptual schema design, we must
identify the basic components of the schema: the entity types, relationship types, and
attributes. We should also specify key attributes, cardinality and participation constraints
on relationships, weak entity types, and specialization/generalization hierarchies/lattices.
There are two approaches to designing the conceptual schema, which is derived from the
requirements collected during Phase 1.

The first approach is the centralized (or one-shot) schema design approach, in
which the requirements of the different applications and user groups from Phase 1 are
merged into a single set of requirements before schema design begins. A single schema
corresponding to the merged set of requirements is then designed. When many users and
applications exist, merging all the requirements can be an arduous and time-consuming
task. The assumption is that a centralized authority, the DBA, is responsible for deciding
how to merge the requirements and for designing the conceptual schema for the whole
database. Once the conceptual schema is designed and finalized, external schemas for the
various user groups and applications can be specified by the DBA.

The second approach is the view integration approach, in which the requirements
are not merged. Rather a schema (or view) is designed for each user group or application
based only on its own requirements. Thus we develop one high-level schema (view) for
each such user group or application. During a subsequent view integration phase, these
schemas are merged or integrated into a global conceptual schema for the entire
database. The individual views can be reconstructed as external schemas after view
integration.

12.2 The Database Design and Implementation Process I 373

The main difference between the two approaches lies in the manner and stage in
which multiple views or requirements of the many users and applications are reconciled
and merged. In the centralized approach, the reconciliation is done manually by the DBA's
staff prior to designing any schemas and is applied directly to the requirements collected
in Phase 1. This places the burden to reconcile the differences and conflicts among user
groups on the DBA's staff. The problem has been typically dealt with by using external
consultants/design experts to bring in their own ways of resolving these conflicts. Because
of the difficulties of managing this task, the view integration approach is now gaining
more acceptance.

In the view integration approach, each user group or application actually designs its
own conceptual (EER) schema from its requirements. Then an integration process is
applied to these schemas (views) by the DBA to form the global integrated schema.
Although view integration can be done manually, its application to a large database
involving tens of user groups requires a methodology and the use of automated tools to
help in carrying out the integration. The correspondences among the attributes, entity
types, and relationship types in various views must be specified before the integration can
be applied. In addition, problems such as integrating conflicting views and verifying the
consistency of the specified interschema correspondences must be dealt with.

Strategies for Schema Design. Given a set of requirements, whether for a single user or
for a large user community, we must create a conceptual schema that satisfies these
requirements. There are various strategies for designing such a schema. Most strategies
follow an incremental approach- that is, they start with some schema constructs derived
from the requirements and then they incrementally modify, refine, or build on them. We
now discuss some of these strategies:

1. Top-down strategy: We start with a schema containing high-level abstractions and
then apply successive top-down refinements. For example, we may specify only a
few high-level entity types and then, as we specify their attributes, split them into
lower-level entity types and relationships. The process of specialization to refine
an entity type into subclasses that we illustrated in Sections 4.2 and 4.3 (see Fig
ures 4.1,4.4, and 4.5) is another example of a top-down design strategy.

2. Bottom-up strategy: Start with a schema containing basic abstractions and then
combine or add to these abstractions. For example, we may start with the
attributes and group these into entity types and relationships. We may add new
relationships among entity types as the design progresses. The process of general
izing entity types into higher-level generalized superclasses (see Sections 4.2 and
4.3, Figure 4.3) is another example of a bottom-up design strategy.

3. Inside-out strategy: This is a special case of a bottom-up strategy, where attention is
focused on a central set of concepts that are most evident. Modeling then spreads
outward by considering new concepts in the vicinity of existing ones. We could
specify a few clearly evident entity types in the schema and continue by adding
other entity types and relationships that are related to each.

374 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

4. Mixed strategy: Instead of following any particular strategy throughout the design,
the requirements are partitioned according to a top-down strategy, and part of the
schema is designed for each partition according to a bottom-up strategy. The vari
ous schema parts are then combined.

Figures 12.2 and 12.3 illustrate top-down and bottom-up refinement, respectively.
An example of a top-down refinement primitive is decomposition of an entity type into
several entity types. Figure 12.2(a) shows a COURSE being refined into COURSE and SEMINAR,

and the TEACHES relationship is correspondingly split into TEACHES and OFFERS. Figure 12.2(b)
shows a COURSE_OFFERING entity type being refined into two entity types (COURSE and INSTRUC

TOR) and a relationship between them. Refinement typically forces a designer to ask more
questions and extract more constraints and details: for example, the (min, max)
cardinality ratios between COURSE and INSTRUCTOR are obtained during refinement. Figure
12.3(a) shows the bottom-up refinement primitive of generating new relationships among

(a) (1,N)

~
(1.3)

FACULTY

~

(1,N)
(1,1)

TEACHES

FACULTY

(1,5) OFFERS
(1,3)

COURSE

COURSE

SEMINAR

(b)

(1,N)
INSTRUCTOR

FIGURE 12.2 Examples of top-down refinement. (a) Generating a new entity type.
(b) Decomposing an entity type into two entity types and a relationship type.

12.2 The Database Design and Implementation Process I 375

~_E_N_T_-J

ADVISES

FACULTY

STUDENT

COMMITTEE_
CHAIR_OF

(b)

STAFF

FIGURE 12.3 Examples of bottom-up refinement. (a) Discovering and adding new relation
ships. (b) Discovering a new category (union type) and relating it.

entity types. The bottom-up refinement using categorization (union type) is illustrated in
Figure 12.3(b), where the new concept of VEHICLCOWNER is discovered trom the existing
entity types FACUL TY, STAFF, and STUDENT; this process ofcreating a category and the related
diagrammatic notation follows what we introduced in Section 4.4.

i

iSchema (View) Integration. For large databases with many expected users and
applications, the view integration approach of designing individual schemas and then
merging them can be used. Because the individual views can be kept relatively small,
design of the schemas is simplified. However, a methodology for integrating the views
into a global database schema is needed. Schema integration can be divided into the
following subtasks:

376 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

1. Identifying correspondences and conflicts among the schemas: Because the schemas are
designed individually, it is necessary to specify constructs in the schemas that rep
resent the same real-world concept. These correspondences must be identified
before integration can proceed. During this process, several types of conflicts
among the schemas may be discovered:

a. Naming conflicts: These are of two types: synonyms and homonyms. A syn
onym occurs when two schemas use different names to describe the same con
cept; for example, an entity type CUSTOMER in one schema may describe the
same concept as an entity type CLIENT in another schema. A homonym occurs
when two schemas use the same name to describe different concepts; for exam
ple, an entity type PART may represent computer parts in one schema and furni
ture parts in another schema.

b. Type conflicts: The same concept may be represented in two schemas by differ
ent modeling constructs. For example, the concept of a DEPARTMENT may be an
entity type in one schema and an attribute in another.

c. Domain (value set) conflicts: An attribute may have different domains in two
schemas. For example, SSN may be declared as an integer in one schema and as
a character string in the other. A conflict of the unit of measure could occur if
one schema represented WEIGHT in pounds and the other used kilograms.

d. Conflicts among constraints: Two schemas may impose different constraints; for
example, the key of an entity type may be different in each schema. Another
example involves different structural constraints on a relationship such as
TEACHES; one schema may represent it as l:N (a course has one instructor),
while the other schema represents it as M:N (a course may have more than one
instructor) .

2. Modifyingviews to conform to one another: Some schemas are modified so that they
conform to other schemas more closely. Some of the conflicts identified in the first
subtask are resolved during this step.

3. Merging of views: The global schema is created by merging the individual schemas.
Corresponding concepts are represented only once in the global schema, and
mappings between the views and the global schema are specified. This is the most
difficult step to achieve in real-life databases involving hundreds of entities and
relationships. It involves a considerable amount of human intervention and nego
tiation to resolve conflicts and to settle on the most reasonable and acceptable
solutions for a global schema.

4. Restructuring: As a final optional step, the global schema may be analyzed and
restructured to remove any redundancies or unnecessary complexity.

Some of these ideas are illustrated by the rather simple example presented in Figures
12.4 and 12.5. In Figure 12.4, two views are merged to create a bibliographic database.
During identification of correspondences between the two views, we discover that
RESEARCHER and AUTHOR are synonyms (as far as this database is concerned), as are
CONTRIBUTED_BY and WRITTEN_BY. Further, we decide to modify VIEW 1 to include a SUBJECT for
ARTICLE, as shown in Figure 12.4, to conform to VIEW 2. Figure 12.5 shows the result of
merging MODIFIED VIEW 1 with VIEW 2. We generalize the entity types ARTICLE and BOOK into

12.2 The Database Design and Implementation Process I 377

CONTRIBUTED_BY

VIEW 1

BELONGS_TO

VIEW2

Classificationld

MODIFIED VIEW 1
-_._~-~-------

Classificationld

FIGURE 12.4 Modifying views to conform before integration.

378 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

BELONGS_TO

AUTHOR

FIGURE 12.5 Integrated schema after merging views 1 and 2.

the entity type PUBLICATION, with their common attribute Ti tl e. The relationships
CONTRIBUTED_BY and WRITTEN_BY are merged, as are the entity types RESEARCHER and AUTHOR. The
attribute Publ i sher applies only to the entity type BOOK, whereas the attribute Si ze and
the relationship type PUBLISHED_IN apply only to ARTICLE.

The above example illustrates the complexity of the merging process and how the
meaning of the various concepts must be accounted for in simplifying the resultant
schema design. For real-life designs, the process of schema integration requires a more
disciplined and systematic approach. Several strategies have been proposed for the view
integration process (Figure 12.6):

1. Binary ladder integration: Two schemas that are quite similar are integrated first.
The resulting schema is then integrated with another schema, and the process is
repeated until all schemas are integrated. The ordering of schemas for integration
can be based on some measure of schema similarity. This strategy is suitable for
manual integration because of its step-by-step approach.

2. N-ary integration: All the views are integrated in one procedure after an analysis
and specification of their correspondences. This strategy requires computerized
tools for large design problems. Such tools have been built as research prototypes
but are not yet commercially available.

3. Binary balanced strategy: Pairs of schemas are integrated first; then the resulting
schemas are paired for further integration; the procedure is repeated until a final
global schema results.

4. Mixed strategy: Initially, the schemas are partitioned into groups based on their
similarity, and each group is integrated separately. The intermediate schemas are
grouped again and integrated, and so on.

Phase 2b: Transaction Design. The purpose of Phase 2b, which proceeds in
parallel with Phase 2a, is to design the characteristics of known database transactions
(applications) in a DBMS-independent way. When a database system is being designed,

12.2 The Database Design and Implementation Process I 379

Integrated schema

Intermediate
integrated~

schemas \

J

Binary Ladder Integration

Integrated schema

Binary Balanced Integration

Integrated schema

N-ary Integration

Integrated schema

Mixed Integration

FIGURE 12.6 Different strategies for the view integration process.

thedesigners are aware of many known applications (or transactions) that will run on the
database once it is implemented. An important part of database design is to specify the
functional characteristics of these transactions early on in the design process. This
ensures that the database schema will include all the information required by these
transactions. In addition, knowing the relative importance of the various transactions
and the expected rates of their invocation plays a crucial part in physical database design
(Phase 5). Usually, only some of the database transactions are known at design time; after
the database system is implemented, new transactions are continuously identified and
implemented. However, the most important transactions are often known in advance of
system implementation and should be specified at an early stage. The informal "80-20
rule" typically applies in this context: 80 percent of the workload is represented by 20
percent of the most frequently used transactions, which govern the design. In
applications that are of the ad-hoc querying or batch processing variety, queries and
applications that process a substantial amount of data must be identified.

A common technique for specifying transactions at a conceptual level is to identify
their input/output and functional behavior. By specifying the input and output

380 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

parameters (arguments), and internal functional flow of control, designers can specify a
transaction in a conceptual and system-independent way. Transactions usually can be
grouped into three categories: (1) retrieval transactions, which are used to retrieve data
for display on a screen or for production of a report; (2) update transactions, which are
used to enter new data or to modify existing data in the database; (3) mixed transactions.
which are used for more complex applications that do some retrieval and some update.
For example, consider an airline reservations database. A retrieval transaction could list
all morning flights on a given date between two cities. An update transaction could be to
book a seat on a particular flight. A mixed transaction may first display some data, such as
showing a customer reservation on some flight, and then update the database, such as
canceling the reservation by deleting it, or by adding a flight segment to an existing
reservation. Transactions (applications) may originate in a front-end tool such as
PowerBuilder 9.0 (from Sybase) or Developer 2000 (from Oracle), which collect
parameters on-line and then send a transaction to the DBMS as a backend.'

Several techniques for requirements specification include notation for specifying
processes, which in this context are more complex operations that can consist of several
transactions. Process modeling tools like BPWin as well as workflow modeling tools are
becoming popular to identify information flows in organizations. The UML language,
which provides for data modeling via class and object diagrams, has a variety of process
modeling diagrams including state transition diagrams, activity diagrams, sequence
diagrams, and collaboration diagrams. All of these refer to activities, events, and
operations within the information system, the inputs and outputs of the processes, and
the sequencing or synchronization requirements, and other conditions. It is possible to
refine these specifications and extract individual transactions from them. Other proposals
for specifying transactions include TAXIS, GALILEO, and GORDAS (see the selected
bibliography at the end of this chapter). Some of these have been implemented into
prototype systems and tools. Process modeling still remains an active area of research.

Transaction design is just as important as schema design, but it is often considered to
be part of software engineering rather than database design. Many current design
methodologies emphasize one over the other. One should go through Phases 2a and 2b in
parallel, using feedback loops for refinement, until a stable design of schema and
transactions is reached."

12.2.3 Phase 3: Choice of a DBMS

The choice of a DBMS is governed by a number of factors-some technical, others eco
nomic, and still others concerned with the politics of the organization. The technical tac
tors are concerned with the suitability of the DBMS for the task at hand. Issues to consider

3. This philosophy has been followed for over 20 years in popular products like CICS, which serves
as a tool to generate transactions for legacy DBMSs like [MS.
4. High-level transaction modeling is covered in Batini et at. (1992, chaps. 8, 9, and 11). The joint
functional and data analysis philosophy is advocated throughout that book.

12.2 The Database Design and Implementation Process I 381

here are the type of DBMS (relational, object-relational, object, other), the storage struc
tures and access paths that the DBMS supports, the user and programmer interfaces avail
able, the types of high-level query languages, the availability of development tools, ability
to interface with other DBMSs via standard interfaces, architectural options related to cli
ent-server operation, and so on. Nontechnical factors include the financial status and the
supportorganization of the vendor. In this section we concentrate on discussing the eco
nomic and organizational factors that affect the choice of DBMS. The following costs must
beconsidered:

1. Software acquisition cost: This is the "up-front" cost of buying the software, includ
ing language options, different interface options such as forms, menu, and Web
based graphic user interface (our) tools, recovery/backup options, special access
methods, and documentation. The correct DBMS version for a specific operating
system must be selected. Typically, the development tools, design tools, and addi
tionallanguage support are not included in basic pricing.

2. Maintenance cost: This is the recurring cost of receiving standard maintenance
service from the vendor and for keeping the DBMS version up to date.

3. Hardware acquisition cost: New hardware may be needed, such as additional mem
ory, terminals, disk drives and controllers, or specialized DBMS storage and archi
val storage.

4. Database creation and conversion cost: This is the cost of either creating the data
base system from scratch or converting an existing system to the new DBMS soft
ware. In the latter case it is customary to operate the existing system in parallel
with the new system until all the new applications are fully implemented and
tested. This cost is hard to project and is often underestimated.

5. Personnel cost: Acquisition of DBMS software for the first time by an organization is
often accompanied by a reorganization of the data-processing department. Posi
tions of DBA and staff exist in most companies that have adopted DBMSs.

6. Training cost: Because DBMSs are often complex systems, personnel must often be
trained to use and program the DBMS. Training is required at all levels, including
programming, application development, and database administration.

7. Operating cost: The cost of continued operation of the database system is typically
not worked into an evaluation of alternatives because it is incurred regardless of
the DBMS selected.

The benefits of acquiring a DBMS are not so easy to measure and quantify. A DBMS has
several intangible advantages over traditional file systems, such as ease of use,
consolidation of company-wide information, wider availability of data, and faster access
to information. With Web-based access, certain parts of the data can be made globally
accessible to employees as well as external users. More tangible benefits include reduced
application development cost, reduced redundancy of data, and better control and
security. Although databases have been firmly entrenched in most organizations, the
decision of whether to move an application from a file-based to a database-centered
approach comes up frequently. This move is generally driven by the following factors:

382 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

1. Data complexity: As data relationships become more complex, rhe need for a DBMS
is felt more strongly.

2. Sharing among applications: The grearer the sharing among applications, the more
the redundancy among files, and hence the greater rhe need for a DBMS.

3. Dynamically evolving or growing data: If rhe data changes constantly, it is easier to

cope with these changes using a DBMS than using a file system.

4. Frequency of ad hoc requests for data: File systems are not at all suitable for ad hoc
retrieval of data.

5. Data volume and need for control: The sheer volume of data and the need to con
trol it sometimes demands a DBMS.

It is difficult to develop a generic set of guidelines for adopting a single approach to
data management within an organization-whether relational, object-oriented, or
object-relational. If the data to be stored in the database has a high level of complexity
and deals with multiple data types, the typical approach may be to consider an object or
object-relational DBMS.s Also, the benefits of inheritance among classes and the
corresponding advantage of reuse favor these approaches. Finally, several economic and
organizational factors affect the choice of one DBMS over another:

1. Organization-wide adoption of a certain philosophy: This is often a dominant factor
affecting the acceptability of a certain data model (for example, relational versus
object), a certain vendor, or a certain development methodology and tools (for
example, use of an object-oriented analysis and design tool and methodology may
be required of all new applications).

2. Familiarity of personnel with the system: If the programming staff within the organi
zation is familiar with a particular DBMS, it may be favored to reduce training cost
and learning time.

3. Availability of vendorservices: The availability of vendor assistance in solving prob
lems with the system is important, since moving from a non-DBMS to a DBMS
environment is generally a major undertaking and requires much vendor assis
tance at the start.

Another factor to consider is the DBMS portability among different types of hardware.
Many commercial DBMSs now have versions that run on many hardware/software
configurations (or platforms). The need of applications for backup, recovery,
performance, integrity, and security must also be considered. Many DBMSs are currently
being designed as total solutions to the information-processing and information resource
management needs within organizations. Most DBMS vendors are combining their
products with the following options or built-in features:

• Text editors and browsers.

• Report generators and listing utilities.

• Communication software (often called teleprocessing monitors).

5. See the discussion in Chapter 22 concerning this issue.

12.2 The Database Design and Implementation Process I 383

• Data entry and display features such as forms, screens, and menus with automatic
editing features.

• Inquiry and access tools that can be used on the World Wide Web (Web enabling tools).

• Graphical database design tools.

A large amount of "third-party" software is available that provides added
functionality to a DBMS in each of the above areas. In rare cases it may be preferable to
develop in-house software rather than use a DBMS- for example, if the applications are
very well defined and are all known beforehand. Under such circumstances, an in-house
custom-designed system may be appropriate to implement the known applications in the
most efficient way. In most cases, however, new applications that were not foreseen at
design time come up after system implementation. This is precisely why DBMSs have
become very popular: They facilitate the incorporation of new applications with only
incremental modifications to the existing design of a database. Such design evolution--or
schema evolution-is a feature present to various degrees in commercial OBMSs.

12.2.4 Phase 4: Data Model Mapping (logical Database
Design)

The next phase of database design is to create a conceptual schema and external
schemas in the data model of the selected DBMS by mapping those schemas produced in
Phase 2a. The mapping can proceed in two stages:

1. System-independent mapping: In this stage, the mapping does not consider any spe
cific characteristics or special cases that apply to the DBMS implementation of the
data model. We already discussed DBMS-independent mapping of an ER schema to
a relational schema in Section 7.1 and of EER schemas to relational schemas in
Section 7.2.

2. Tailoring the schemas to a specific DBMS: Different DBMSs implement a data model
by using specific modeling features and constraints. We may have to adjust the
schemas obtained in Step 1 to conform to the specific implementation features of
a data model as used in the selected DBMS.

The result of this phase should be DOL statements in the language of the chosen
DBMS that specify the conceptual and external level schemas of the database system. But
if the DOL statements include some physical design parameters, a complete DOL
specification must wait until after the physical database design phase is completed. Many
automated CASE (computer-assisted software engineering) design tools (see Section 12.5)
can generate DOL for commercial systems from a conceptual schema design.

12.2.5 Phase 5: Physical Database Design
Physical database design is the process of choosing specific storage structures and
access paths for the database files to achieve good performance for the various database

384 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

applications. Each DBMS offers a variety of options for file organization and access
paths. These usually include various types of indexing, clustering of related records
on disk blocks, linking related records via pointers, and various types of hashing.
Once a specific DBMS is chosen, the physical database design process is restricted to

choosing the most appropriate structures for the database files from among the
options offered by that DBMS. In this section we give generic guidelines for physical
design decisions; they hold for any type of DBMS. The following criteria are often used
to guide the choice of physical database design options:

1. Response time: This is the elapsed time between submitting a database transaction
for execution and receiving a response. A major influence on response time that is
under the control of the DBMS is the database access time for data items refer
enced by the transaction. Response time is also influenced by factors not under
DBMS control, such as system load, operating system scheduling, or communica
tion delays.

2. Space utilization: This is the amount of storage space used by the database files and
their access path structures on disk, including indexes and other access paths.

3. Transaction throughput: This is the average number of transactions that can be pro
cessed per minute; it is a critical parameter of transaction systems such as those
used for airline reservations or banking. Transaction throughput must be mea
sured under peak conditions on the system.

Typically, average and worst-case limits on the preceding parameters are specified as
part of the system performance requirements. Analytical or experimental techniques,
which can include prototyping and simulation, are used to estimate the average and
worst-case values under different physical design decisions, to determine whether they
meet the specified performance requirements.

Performance depends on record size and number of records in the file. Hence, we
must estimate these parameters for each file. In addition, we should estimate the update
and retrieval patterns for the file cumulatively from all the transactions. Attributes used
for selecting records should have primary access paths and secondary indexes constructed
for them. Estimates of file growth, either in the record size because of new attributes or in
the number of records, should also be taken into account during physical database design.

The result of the physical database design phase is an initial determination of storage
structures and access paths for the database files. It is almost always necessary to modify
the design on the basis of its observed performance after the database system is
implemented. We include this activity of database tuning in the next phase and cover it
in the context of query optimization in Chapter 16.

12.2.6 Phase 6: Database System Implementation
and Tuning

After the logical and physical designs are completed, we can implement the database sys
tem. This is typically the responsibility of the DBA and is carried out in conjunction with

12.3 Use of UML Diagrams as an Aid to Database Design Specification I 385

the database designers. Language statements in the DOL (data definition language) includ
ing the SOL(storage definition language) of the selected DBMS are compiled and used to cre
ate the database schernas and (empty) database files. The database can then be loaded
(populated) with the data. If data is to be converted from an earlier computerized system,
conversion routines may be needed to reformat the data for loading into the new database.

Database transactions must be implemented by the application programmers by
referring to the conceptual specifications of transactions, and then writing and testing
program code with embedded DML commands. Once the transactions are ready and the
data is loaded into the database, the design and implementation phase is over and the
operational phase of the database system begins.

Most systems include a monitoring utility to collect performance statistics, which are
kept in the system catalog or data dictionary for later analysis. These include statistics on
the number of invocations of predefined transactions or queries, input/output activity
against files, counts of file pages or index records, and frequency of index usage. As the
database system requirements change, it often becomes necessary to add or remove
existing tables and to reorganize some files by changing primary access methods or by
dropping old indexes and constructing new ones. Some queries or transactions may be
rewrittenfor better performance. Database tuning continues as long as the database is in
existence, as long as performance problems are discovered, and while the requirements
keep changing.

12.3 USE OF UML DIAGRAMS AS AN AID TO
DATABASE DESIGN SPECIFICATION6

12.3.1 UML As a Design Specification Standard
Inthe first section of this chapter, we discussed in detail how organizations work with infor
mation systems and elaborated the various activities in the information system life cycle.
Databases are an integral part of information systems in most organizations. The phases of
database design starting with requirements analysis up to system implementation and tun
ing were introduced at the end of Section 12.1 and discussed in detail in Section 12.2.
Industry is always in the need of some standard approaches to cover this entire spectrum of
requirements analysis, modeling, design, implementation and deployment. The approach
thatisreceiving a wide attention and acceptability and that is also proposed as a standard by
the OMG (Object Management Group) is the Unified Modeling Language (UML)
approach. It provides a mechanism in the form of diagrammatic notation and associated
language synatx to cover the entire lifecycle. Presently UML is used by software developers,
data modelers, data designers, database architects, etc. to define the detailed specification of
anapplication. They also use it to specify the environment consisting of software, commu
nications and hardware to implement and deploy the application.

6. The contribution of Abrar Ul-Haquc to the UML and Rational Rose sections is much appreciated.

386 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

UML combines commonly accepted concepts from many 00 methods and
methodologies (see bibliographic notes for the contributing methodologies that led to
UML). It is applicable to any domain, and is language- and platform-independent; so
software architects can model any type of application, running on any operating system,
programming language or network in UML. That has made the approach very widely
applicable. Tools like Rational Rose are currently popular for drawing UML diagrams
they enable software developers to develop clear and easy-to-understand models for
specifying, visualizing, constructing and documenting components of software systems.
Since the scope of UML extends to software and application development at large, we
will not cover all aspects of UML here. Our goal is to show some relevant UML notations
that are commonly used in the requirements collection and analysis as well as the
conceptual design phases (phases 1 and 2 in Figure 12.1). A detailed application
development methodology using UML is outside the scope of this book and may be found
in various textbooks devoted to object-oriented design, software engineering, and UML
(see bibliographic notes).

Class diagrams, which are the end result of conceptual database design have already
been discussed in Sections 3.8 and 4.6. To arrive at the class diagrams, the information
may be gathered and specified using use case diagrams, sequence diagrams and state chart
diagrams. In the rest of this section we will first introduce the different types of UML
diagrams briefly to give the reader an idea of the scope of UML. Then we will present a
small sample application to illustrate the use of use case, sequence and statechart
diagrams and show how they lead to the eventual class diagram as the final conceptual
design. The diagrams presented in this section pertain to the standard UML notation and
have been drawn using the tool Rational Rose. Section 12.4 will be devoted to a general
discussion of the use of Rational Rose in database application design.

12.3.2 UML for Database Application Design
The database community has started embracing UML, and now many database designers
and developers are using UML for data modeling as well as for subsequent phases of data
base design. The advantage of UML is that even though its concepts are based on
object-oriented techniques, the resulting models of structure and behavior can be used to
design both relational, object-oriented and object-relational databases (see Chapters 20
to 22 for definition of object databases and object-relational databases). We already intro
duced UML Class Diagrams, which are similar to the ER and EER diagrams in Sections
3.8 and 4.6, respectively. They give a structural specification of the database schemas in
an object-oriented sense by showing the name, attributes and operations of each class.
Their normal use is to describe the collections of data objects and their inter-relationships
which is consistent with the goal of conceptual database design.

One of the major contributions of the UML approach has been to bring the
traditional database modelers, analysts and designers together with the software
application developers. In Figure 12.1 we showed the phases of database design and
implementation and how they apply to these two groups. UML has been able to proposea
common notation or a meta model that can be adopted by both of these communities and

12.3 Use of UML Diagrams as an Aid to Database Design Specification I 387

tailored to their needs. Whereas we dwelt solely on the structural aspect of modeling in
Chapters 3 and 4, UML also allows us to do behavioral or/and dynamic modeling by
introducing various types of diagrams. This results in a more complete specification/
description of the overall database application. In the next sections we will first
summarize the different UML diagrams and then give an example of the use case,
sequence and statechart diagrams in a sample application. A complete case study of a
database application development is presented in Appendix B.

12.3.3 Different Diagrams in UML

UML defines nine types of diagrams divided into two categories.

Structural Diagrams. These describe the structural or static relationships among
components. They include Class Diagram, Object Diagram, Component Diagram, and
Deployment Diagram.

Behavioral Diagrams. Their purpose is to describe the behavioral or dynamic
relationships among components. They include Use Case Diagram, Sequence Diagram,
Collaboration Diagram, Statechart Diagram, and Activity Diagram.

We introduce the nine types briefly below. The structural diagrams include:

A.Class Diagrams

Class diagrams capture the static structure of the system and act as foundation for other
models. They show Classes, Interfaces, Collaborations, Dependencies, Generalizations,
Association and other relationships. Class diagrams are a very useful way to model the
conceptual database schema. We showed examples of class diagrams for the company
database schema in Figure 3.16 and for a generalization hierarchy in Figure 4.10.

Package Diagrams. Package diagrams are a subset of class diagrams. They
organize elements of the system into related groups called packages. A package may
be a collection of related classes and the relationships between them. Package
diagrams help minimize dependencies in a system.

B. Object Diagrams

Object diagrams show a set of objects and their relationships. They correspond to what
we called instance diagrams in chapters 3 and 4. They give a static view of a system at a
particular time and are normally used to test class diagrams for accuracy.

C. Component Diagrams

Component diagrams illustrate the organizations and dependencies among software
components. A component diagram typically consists of components, interfaces and
dependency relationships. A component may be a source code component, a run-time
component or an executable component. It is a physical building block in the system and is

388 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

represented as a rectangle with two small rectangles or tabs overlaid on its left side. An
interface is a group of operations used or created by a component and is usually represented
by a small circle. Dependency relationship is used to model the relationship between two
components is represented by a dotted arrow pointing from a component to the component
it depends on. For databases, component diagrams stand for stored data such as tablespaces
or partitions. Interfaces refer to applications that use the stored data.

D. Deployment Diagrams

Deployment diagrams represent the distribution of components (executables, libraries,
tables, files) across the hardware topology. They depict the physical resources in a system,
including nodes, components and connections, and are basically used to show the
configuration of run-time processing elements (the nodes) and the software processes that
reside on them (the threads).

Now we will describe the behavioral diagrams and expand on those that are of
particular interest.

E. Use Case Diagrams

Use case diagrams are used to model the functional interactions between users and the
system. A scenario is a sequence of steps describing an interaction between a user and a
system. A use case is a set of scenarios that have a common goal. The use case diagram
was introduced by Jacobson7 to visualize use cases. The use case diagram shows actors
interacting with use cases and can be understood easily without the knowledge of any
notation. An individual use case is shown as an oval and stands for a specific task
performed by the system. An actor, shown with a stick person symbol, represents an
external user, which may be a human user, a representative group of users, a certain role of
a person in the organization, or anything external to the system. The use case diagram
shows possible interactions of the system (in our case, a database system) and describes as
use cases the specific tasks the system performs. Since they do not specify any
implementation detail and are very easy to understand, they are a good vehicle for
communicating between the end users and developers and help in easier user validation
at an early stage. Test plans can also be easily generated using use cases diagrams. Figure
12.7 shows the use case diagram notation. The include relationship is used to factor out
some common behavior from two or more of the original use cases - it is a form of reuse.
For example, in a university environment shown in Figure 12.8, the use cases "register for
courses" and "enter grades" in which actors student and professor are involved, include a
common use case called "validate user." If a use case incorporates two or more
significantly different scenarios, based on circumstances or varying conditions, the extend
relationship is used to show the subcases attached to the base case (see Figure 12.7)

Interaction diagrams. Interaction diagrams are used to model the dynamic
aspects of a system. They basically consist of a set of messages exchanged between a set
of Objects. There are two types of interaction diagrams, Sequence and Collaboration.

7. See Jacobson et at. (1992)

12.3 Use of UML Diagrams as an Aid to Database Design Specification I 389

«include»

~:o
................ Included Use Case

«include»

Use Case

«extend» .>0
.... Extended Use Case

Actor_3

FIGURE 12.7 The use-case diagram notation.

F. Sequence Diagrams

Sequence diagrams describe the interactions between various objects over time. They
basically give a dynamic view of the system by showing the flow of messages between
objects. Within the sequence diagram, an object or an actor is shown as a box at the top
ofa dashed vertical line, which is called the object's lifeline. For a database, this object is
typically something physical (like a book in the warehouse) that would be contained in
thedatabase, an external document or form such as an order form, or an external visual
screen which may be part of a user interface. The lifeline represents the existence of
object over time. Activation, which indicates when an object is performing an action, is
represented as a rectangular box on a lifeline. Each message is represented as an arrow
between the lifelines of two objects. A message bears a name and may have arguments
and control information to explain the nature of the interaction. The order of messages is
read from top to bottom. A sequence diagram also gives the option of self-call, which is

390 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

~:o
Validate User

«include»

«include»

~---+Q
Apply for Aid A

~------+l
Register for Course

Student

Professor

Financial Aid
Officer

FIGURE 12.8 An example use case diagram for a University Database.

basically just a message from an object to itself. Condition and Iteration markers can also
be shown in sequence diagrams to specify when the message should be sent and to specify
the condition to send multiple markers. A return dashed line shows a return from the
message and is optional unless it carries a special meaning. Object deletion is shown with
a large X. Figure 12.9 explains the notation of the sequence diagram.

G. Collaboration Diagrams

Collaboration diagrams represent interactions between objects as a series of sequenced
messages. In Collaboration Diagrams the emphasis is on the structural organization of the
objects that send and receive messages whereas in Sequence Diagrams the emphasis is on
the time-ordering of the messages. Collaboration diagrams show objects as icons and
number the messages; numbered messages represent an ordering. The spatial layout of
collaboration diagrams allows linkages among objects that show their structural
relationships. Use of collaboration and sequence diagrams to represent interactions is a
matter of choice; we will hereafter use only sequence diagrams.

H. Statechart Diagram

Statechart diagrams describe how an object's state changes in response to external events.
To describe the behavior of an object, it is common in most object-oriented

techniques to draw a state diagram to show all the possible states an object can get into in

12.3 Use of UML Diagrams as an Aid to Database Design Specification I 391

ObjectClass or
Actor

o
I
I Lifetime

ObjectClass or
Actor

o
I

I message

ObjectClass or
Actor

o
I

I

, , ,

Message to Self
Focus of Control/Activation

I

I
I
I

I
I

I
Ir ----------------:- ----------------0

*,-
,

,-
,-

,-
,-

,-

Object
DeconstructionlTermination

FIGURE 12.9 The sequence diagram notation.

itslifetime. The UML statecharts are based on David Harel's8 statecharts. They basically
show a state machine consisting of states, transitions, events and actions and are very
useful in the conceptual design of the application that works against the database of
stored objects.

The important elements of a statechart diagram shown in Figure 12.10 are as follows.

• States: shown as boxes with rounded corners, represent situations in the lifetime of
an object.

• Transitions: shown as solid arrows between the states, they represent the paths
between different states of an object. They are labeled by the eventname [guard]
faction; the event triggers the transition and the action results from it. The guard
is an additional and optional condition that specifies a condition under which
the change of state may not occur.

• Start/Initial State: shown by a solid circle with an outgoing arrow to a state.

• Stop/Final State: shown as a double-lined filled circle with an arrow pointing into it
from a state.

8. See Hare! (I987).

392 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

Start/Initial State

State

State 3

transition

State 2

State consists of
three parts

•

Stop/Accepting/
Final State

Name
dol Action

"""""

Name
Activities
Embedded Machine

Activities and Embedded
Machine are optional

FIGURE 12.10 The statechart diagram notation.

Statechart diagrams are useful in specifying how an object's reaction to a message
depends on its state. An event is something done to an object such as being sent a
message; an action is something that an object does such as sending a message.

I. Activity Diagrams

Activity diagrams present a dynamic view of the system by modeling the flow of control
from activity to activity. They can be considered as flowcharts with states. An activity isa
state of doing something, which could be a real-world process or an operation on some
class in the database. Typically, activity diagrams are used to model workflow and internal
business operations for an application.

12.3 Use of UML Diagrams as an Aid to Database Design Specification I 393

12.3.4 A Modeling and Design Example: University
Database

In this section we will briefly illustrate the use of the UML diagrams we presented above
todesign a sample relational database in a university setting. A large number of details are
left out to conserve space; only a stepwise use of these diagrams that leads towards a con
ceptual design and the design of program components is illustrated. As we indicated
before, the eventual DBMS on which this database gets implemented may be relational,
object-oriented or object-relational. That will not change the stepwise analysis and mod
eling of the application using the UML diagrams.

Imagine a scenario with students enrolling in courses which are offered by professors.
Theregistrar's office is in charge of maintaining a schedule of courses in a course catalog.
They have the authority to add and delete courses and to do schedule changes. They also
set enrollment limits on courses. The financial aid office is in charge of processing
student's aid applications for which the students have to apply. Assume that we have to
design a database that maintains the data about students, professors, courses, aid, etc. We
also want to design the application that enables us to do the course registration, financial
aid application processing, and maintaining of the university-wide course catalog by the
registrar's office. The above requirements may be depicted by a series of UML diagrams as
shown below.

As mentioned previously one of the first steps involved in designing a database is to
gather customer requirements and the best way to do this is by using use case diagrams.
Suppose one of the requirements in the University Database is to allow the professors to
enter grades for the courses they are teaching and for the students to be able to register for
courses and apply for financial aid. The use case diagram corresponding to these use cases
can be drawn as shown in Figure 12.8.

Another helpful thing while designing a system is to graphically represent some of
the states the system can be in. This helps in visualizing the various states the system
can be in during the course of the application. For example, in our university database
the various states which the system goes through when the registration for a course with
50 seats is opened can be represented by the statechart diagram in Figure 12.11. Note
that it shows the states of a course while enrollment is in process. During the enrolling
state, the "Enroll Student" transition continues as long as the count of enrolled
students is less than 50.

Now having made the use case and state chart diagram we can make a sequence
diagram to visualize the execution of the use cases. For the university database, the
sequence diagram corresponding to the use case: student requests to register and selects a
particular course to register is shown in Figure 12.12. The prerequisites and course
capacity are then checked and the course is then added to the student's schedule if the
prerequisites are met and there is space in the course.

The above UML diagrams are not the complete specification of the University
database. There will be other use cases with the Registrar as the actor or the student

394 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

Course Enrollment
do/Enroll Students

cancel

Cancelled

Enroll Student/set count =a

cancel

Enroll Student [count < 50]

count =50

Section Closing
exit/'closesection

FIGURE 12.11 An example statechart diagram for the University Database.

appearing for a test for a course and receiving a grade in the course, etc. A complete
methodology for how to arrive at the class diagrams from the various diagrams we
illustrated above is outside our scope here. It is explained further in the case study
(Appendix B). Design methodologies remain a matter of judgement, personal
preferences, etc. However, we can make sure that the class diagram will account for
all the specifications that have been given in the form of the use cases, statechart and
sequence diagrams. The class diagram in Figure 12.13 shows the classes with the
structural relationships and the operations within the classes that are derived from
these diagrams. These classes will need to be implemented to develop the Universiy
Database and together with the operations, it will implement the complete class
schedule/enrollment/aid application. For clear understanding only some of the
important attributes are shown in classes with certain methods that originate from
the shown diagrams. It is conceivable that these class diagrams can be constantly
upgraded as more details get specified and more functions evolve in the University
Application.

12.4 Rational Rose, A UML Based Design Tool I 395

1:'0'&"'00 IIC~'Og I
I I
I I

I I
I I

I I

requestRegistration I getCourseListing I
I I

:Student
I

I
I

I

[getSeatsLeft - Truej/updateSchedule

~-------- --------

selectCourse
:r

addCpurse
getPreReq

getSeatsLeft

I
I

I I getPreq = true && UI '- -

FIGURE 12.12 A sequence diagram for the University Database.

12.4 RATIONAL ROSE, A UML BASED
DESIGN TOOL

12.4.1 Rational Rose for Database Design
Rational Rose is one of the most important modeling tools used in the industry to develop
information systems. As we pointed out in the first two sections of this chapter, database
is a central component of most information systems, and hence, Rational Rose provides
the initial specification in UML that eventually leads to the database development. Many
extensions have been made in the latest versions of Rose for data modeling and now
Rational Rose provides support for conceptual, logical and physical database modeling
and design.

12.4.2 Rational Rose Data Modeler
Rational Rose Data Modeler is a visual modeling tool for designing databases. One of the
reasons for its popularity is that unlike other data modeling tools it is UML based; it

396 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

EMPLOYEE

DEPARTMENT

MANAGES ~ «PK» PK_DEPARTMENT1 0
0..1* ~ «FK» FK_DEPARTMENT70

~ «Unique» TC_DEPARTMENT240

0..1*

1 «Non-Identifying»

El Number: INTEGER
«Non-Identifying» D Name: CHAR(15)c __

WORKS_FOR-----'D Location: CHAR(15)

1..* 1 D NumberOfEmployees: INTEGER

D MgrSsn : INTEGER

D MgrStartDate : DATE

~ Ssn : INTEGER

D Fname: CHAR(15)

D Minit: CHAR(l)

D Lname : CHAR(15)

D Sex: CHAR(l)

D Salary: INTEGER

D Address: CHAR(20)

~ Ssn : INTEGER

D Bdate: DATE

~ Number: INTERGER

~ PROJECT_Number: INTEGER H--=..:.:...:.:.:...==~::.:.--t::;;;---::::-:---::~=::-:===-::--1
~ Name: CHAR(15)

~ EMPLOYEE Ssn: INTEGER

~ «PK» PK_PROJECT20

~ «FK» FK_PROJECT30

El Number; INTEGER

El Name: CHAR(15)

D Location: CHAR(15)

~ DEPARTMENT_Number: INTEGER

D Hours: TIME(2)

I 0..*

DEPENDENT
ITO

El Name: CHAR(15)

D SEX: CHAR(l)

D BirthDate : DATE

D Relationship: CHAR(15)

10 Ssn : INETGER

~ «PK» PK_DEPENDENT30

~ «FK» FK_DEPENDENT10

~ «PK» PK_T_000

~ «FK» EMPLOYEE20

~ «FK» EMPLOYEE60

~ «FK» EMPLOYEE100

I ...

11

«Identifying»

HAS_DEPENDENTS

~
«NON-Identifying»

SUPERVISION-,
«Identifying»

WORKS_ON

1

«NON-Identifying»

CONTROLS

0..*

PROJECT

FIGURE 12.13 A graphical data model diagram in Rational Rose.

provides a common tool and language to bridge the communication gap between data
base designers and application developers. It makes it possible for database designers,
developers and analysts to work together, capture and share business requirements and
track them as they change throughout the process. Also, by allowing the designers to

12.4 Rational Rose, A UML Based Design Tool I 397

model and design all specifications on the same platform using the same notation it
improves the design process and reduces the risk of errors.

Another major advantage of Rose is its process modeling capabilities that allow the
modeling of the behavior of database as we saw in the short example above in the form of
use cases, sequence diagrams, and statechart diagrams. There is the additional machinery
ofcollaboration diagrams to show interactions between objects and activity diagrams to
model the flow of control which we did not elaborate upon. The eventual goal is to
generate the database specification and application code as much as possible. With the
Rose Data Modeler we can capture triggers, stored procedures etc. (see Chapter 24 where
active databases contain these features) explicitly on the diagram rather than representing
them with hidden tagged values behind the scenes. The Data Modeler also provides the
capability to forward engineer a database in terms of constantly changing requirements
and reverse engineer an existing implemented database into its conceptual design.

12.4.3 Data Modeling Using Rational Rose Data
Modeler

There are many tools and options available in Rose Data Modeler for data modeling.
Rational Rose Data Modeler allows creating a data model based on the database structure
orcreating a database based on the data model.

Reverse Engineering. Reverse Engineering of the database allows the user to

create a data model based on the database structure. If we have an existing DBMS
database or DDL file we can use the reverse engineering wizard in Rational Rose Data
Modeler to generate a conceptual data model. The reverse engineering wizard basically
reads the schema in the database or DDL file, and recreates it in a data model. While
doing so, it also includes the names of all quoted identifier entities.

Forward Engineering and DDL Generation. We can also create a data model''
directly from scratch in Rational Rose. Having created the data model we can also use it
to generate the DDL in a specific DBMS from the data model. There is a Forward
Engineering Wizard in Modeler, which reads the schema in the data model or reads both
the schema in the data model and the tablespaces in the data storage model and generates
the appropriate DDL code in a DDL file. The wizard also provides the option of
generating a database by executing the generated DDL file.

Conceptual Design in UML Notation. As mentioned earlier, one of the major
advantages of Rose is that it allows modeling of databases using UML notation. ER

9.The term data model used by Rational Rose Modelre corresponds to our notion of an application
model.

398 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

diagrams most often used in the conceptual design of databases can be easily built using
the UML notation as class diagrams in Rational Rose, e.g. the ER schema of our company
example in Chapter 3 can be redrawn in Rational Rose using UML notation as follows.

This can then be converted into a graphical form by using the data model diagram
option in Rose.

The above diagrams correspond partly to a relational (logical) schema although they
are at a conceptual level. They show the relationships among tables via the primary key
(PK)-foreign key (FK) relationships. Identifying relationships specify that a child table
cannot exist without the parent table (Dependent tables), whereas non-identifying
relationships specify a regular association between two independent tables. For better and
clear understanding, foreign keys automatically appear as one of the attributes in the child
entities. It is possible to update the schemas directly in their text or graphical form. For
example, the relationship between the EMPLOYEE and PROJECT called WORKS-ON
may be deleted and Rose automatically takes care of all the foreign keys, etc. in the table.

Supported Databases. Some of the DBMSs that are currently supported by Rational
Rose include the following:

• IBM DB2 versions MVS and UDB S.x, 6.x, and 7.0.

• Oracle DBMS versions 7.x and S,x.

• SQL Server QL Server DBMS versions 6.5,7.0 & 2000.

• Sybase Adaptive Server version 12.x.

The SQL 92 Data Modeler does not reverse engineer ANSI SQL 92 DDLs, however
it can forward engineer SQL 92 data models to DDLs.

Converting Logical Data Model to Object Model and Vice Versa. Rational
Rose Data Modeler also provides the option of converting a logical database design to an
object model design and vice versa. For example the logical data model shown in Figure
12.14 can be converted to an object model. This sort of mapping allows a deep
understanding of the relationships between the logical model and database and helps in
keeping them both up to date with changes made during the development process. Figure
12.16 shows the Employee table after converting it to a class in an object model. The
various tabs in the window can then be used to enter/display different types of
information. They include operations, attributes and relationships for that class.

Synchronization Between the Conceptual Design and the Actual Database.
Rose Data Modeler allows keeping the data model and database synchronized. It allows
visualizing both the data model and the database and then, based on the differences, it
gives the option to update the model or change the database.

Extensive Domain Support. The Data Modeler allows database designers to
create a standard set of user-defined data types and assign them to any column in the data

12.4 Rational Rose, A UML Based Design Tool I 399

fig1
£CJUseCase View
:.::: D Logical View

" ill Global DataTypes
,'J tli:l Schemes

d tfl.] :<ochema)} COMPANY
my[ornpan,YD atamodelDlagrdin

DEPARTMENT
Number

Name

Location
NlJmberOIEnli,.ilo!r'ee~

Mgr~;m

MglStartDate

• <,PK: J P,_DEPARTMENT1
DEPENDENT

Name
Se»

B"thDale
Relationship

• «PKn PK_DEPENDENT3
EMPLOYEE

Fname
Minit
Lnene
Sex
Salary
Address

PI(3m
Bdale

•),PK·: PK T 00
[-ffiJJ-, --

fli(Number
PK Name

Location

Hour,
• «PK» PK PROJECT2

~ ..Associ -

FIGURE 12.14 A logical data model diagram definition in Rational Rose.

model. Properties of the domain are then cascaded to assigned columns. These domains
can then be maintained by a standard group and deployed to all modelers when they
begin creating new models by using the Rational Rose Framework.

Easy Communication Among Design Teams. As mentioned earlier, using a
common tool allows easy communication between teams. In Data Modeler an application
developer can access both the object and data models and see how they are related and
thus make informed and better choices about how to build data access methods. There is
also the option of using Rational Rose Web Publisher to allow the models and the
metadata beneath these models to be available to everyone on the team.

~..
t

r:

400 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

Person FinancialAid

~ name

~ Ssn

~

~ aidType

~ aidAmount

~ assignAidO

Catalog

~

~ enterGradesO

~ offerCourseO

~ ····0

~
~ getPreReqO

/

~ getSeatsLeftO

~ getCourseListingO

~ ····0
L..-__.......,_-__.../

~

~ requestRegistrationO

~ applyAidO

~ ·····0

CourseRegistration

~

~ findCourseAddO

~ cancelCourseO

~ addCourseO

~ viewScheduleO

~0

Schedule

~

~ updateScheduleO
I-------i

~ showScheduleO

[J0

~ time

~ classroom

~ seats

~

~ oropcourset)

~ addCourseO

~ ·..·0

FIGURE 12.15 The design of the university database as a class diagram.

What we have described above is a partial description of the capabilities of the tool
as it related to the conceptual and logical design phases in Figure 12.1. The entire range
of UML diagrams we described in Section 12.3 can be developed and maintained in Rose.
For further details the reader is referred to the product literature. Appendix B developsa
full case study with the help of UML diagrams and shows the progression of design
through different phases. Figure 12.17 gives a version of the class diagram in Figure 3.16
drawn using Rational Rose.

12.5 Automated Database Design Tools I 401

FIGURE 12.16 The class OM_EMPLOYEE corresponding to the table Employee in
Figure 12.14.

12.5 AUTOMATED DATABASE DESIGN TOOLS
The database design activity predominantly spans Phase 2 (conceptual design), Phase 4
(data model mapping, or logical design) and Phase 5 (physical database design) in the
design process that we discussed in Section 12.2. Discussion of Phase 5 is deferred to
Chapter 16 in the context of query optimization. We discussed Phases 2 and 4 in detail
with the use of the UML notation in Section 12.3 and pointed out the features of the tool
Rational Rose, which support these phases. As we pointed out before, Rational Rose is
more than just a database design tool. It is a software development tool and does database
modeling and schema design in the form of class diagrams as part of its overall object
oriented application development methodology. In this section, we summarize the fea
tures and shortcomings of the set of commercial tools that are focussed on automating the
process of conceptual, logical and physical design of databases.

When database technology was first introduced, most database design was carried out
manually by expert designers, who used their experience and knowledge in the design
process. However, at least two factors indicated that some form of automation had to be
utilized if possible:

1. As an application involves more and more complexity of data in terms of rela
tionships and constraints, the number of options or different designs to model the
same information keeps increasing rapidly. It becomes difficult to deal with this
complexity and the corresponding design alternatives manually.

402 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

WORKSJOR
EMPLOYEE

~ Fname

~ Minit

~ Lname

~ Ssn

~ Bdate

~ Sex

~ Address

~ Salary

~ age()

~ change_department()

~ change_projects()

DEPENDENT

n +supervi ee

MANAGES

~ StartDate

~ Name

~ Number

0..1

DEPARTMENT

~ Name

~ Number

~ add_employee()

~ number_oCemployeeO

~ change_major()

1 O..n

1..n

LOCATION

~ Sex

~ BirthDate

~ Relationship

WORKS-ON

~ Hours

[':'I add_employee()

~ add_project()

~ change_manager()

FIGURE 12.17 The Company Database Class Diagram (Fig.3.16) drawn in Rational Rose.

2. The sheer size of some databases runs into hundreds of entity types and relation
ship types making the task of manually managing these designs almost impossible.
The meta information related to the design process we described in Section 12.2
yields another database that must be created, maintained, and queried as a data
base in its own right.

The above factors have given rise to many tools on the market that come under the
general category of CASE (Computer-Aided Software Engineering) tools for database
design. Rational Rose is a good example of a modern CASE tool. Typically these tools
consist of a combination of the following facilities:

1. Diagramming: This allows the designer to draw a conceptual schema diagram, in
some tool-specific notation. Most notations include entity types, relationship types
that are shown either as separate boxes or simply as directed or undirected lines,car
dinality constraints shown alongside the lines or in terms of the different types of

12.5 Automated Database Design Tools I 403

arrowheads or min/max constraints, attributes, keys, and so on. lO Some tools display
inheritance hierarchies and use additional notation for showing the partial versus
total and disjoint versus overlapping nature of the generalizations. The diagrams are
internally stored as conceptual designs and are available for modification as well as
generation of reports, cross reference listings, and other uses.

2. Model mapping: This implements mapping algorithms similar to the ones we pre
sented in Sections 9.1 and 9.2. The mapping is system-specific-most tools gener
ate schemas in SQL DDL for Oracle, DB2, Informix, Sybase, and other RDBMSs.
This part of the tool is most amenable to automation. The designer can edit the
produced DDL files if needed.

3. Design normalization: This utilizes a set of functional dependencies that are sup
plied at the conceptual design or after the relational schemas are produced during
logical design. The design decomposition algorithms from Chapter 15 are applied
to decompose existing relations into higher normal form relations. Typically, tools
lack the approach of generating alternative 3NF or BCNF designs and allowing the
designer to select among them based on some criteria like the minimum number
of relations or least amount of storage.

Most tools incorporate some form of physical design including the choice of indexes.
Awhole range of separate tools exists for performance monitoring and measurement. The
problem of tuning a design or the database implementation is still mostly handled as a
human decision-making activity. Out of the phases of design described in this chapter,
one area where there is hardly any commercial tool support is view integration (see
Section 12.2.2).

We will not survey database design tools here, but only mention the following
characteristics that a good design tool should possess:

1. An easy-to-use interface: This is critical because it enables designers to focus on the
task at hand, not on understanding the tool. Graphical and point and click inter
faces are commonly used. A few tools like the SECS! tool from France use natural
language input. Different interfaces may be tailored to beginners or to expert
designers.

2. Analytical components: Tools should provide analytical components for tasks that
are difficult to perform manually, such as evaluating physical design alternatives
or detecting conflicting constraints among views. This area is weak in most cur
rent tools.

3. Heuristic components: Aspects of the design that cannot be precisely quantified
can be automated by entering heuristic rules in the design tool to evaluate design
alternatives.

10. We showed the ER, EER, and UML classdiagramnotations in Chapters 3 and 4. See Appendix A
for anidea of the different typesof diagrammatic notations used.

404 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

4. Trade-off analysis: A tool should present the designer with adequate comparative
analysis whenever it presents multiple alternatives to choose from. Tools should
ideally incorporate an analysis of a design change at the conceptual design level
down to physical design. Because of the many alternatives possible for physical
design in a given system, such tradeoff analysis is difficult to carry out and most
current tools avoid it.

5. Display of design results: Design results, such as schemas, are often displayed in dia
grammatic form. Aesthetically pleasing and well laid out diagrams are not easy to
generate automatically. Multipage design layouts that are easy to read are another
challenge. Other types of results of design may be shown as tables, lists, or reports
that can be easily interpreted.

6. Design verification: This is a highly desirable feature. Its purpose is to verify that
the resulting design satisfies the initial requirements. Unless toe requirements are
captured and internally represented in some analyzable form, the verification can
not be attempted.

Currently there is increasing awareness of the value of design tools, and they are
becoming a must for dealing with large database design problems. There is also an
increasing awareness that schema design and application design should go hand in hand,
and the current trend among CASE tools is to address both areas. The popularity of
Rational Rose is due to the fact that it approaches the two arms of the design process
shown in Figure 12.1 concurrently, approaching database design and application design as
a unified activity. Some vendors like Platinum provide a tool for data modeling and
schema design (ERWin) and another for process modeling and functional design
(BPWin). Other tools (for example, SECSI) use expert system technology to guide the
design process by including design expertise in the form of rules. Expert system
technology is also useful in the requirements collection and analysis phase, which is
typically a laborious and frustrating process. The trend is to use both metadata
repositories and design tools to achieve better designs for complex databases. Without a
claim of being exhaustive, Table 12.1 lists some popular database design and application
modeling tools. Companies in the table are listed in alphabetical order.

12.6 SUMMARY
We started this chapter by discussing the role of information systems in organizations;
database systems are looked upon as a part of information systems in large-scale applica
tions. We discussed how databases fit within an information system for information
resource management in an organization and the life cycle they go through. We then dis
cussed the six phases of the design process. The three phases commonly included as a part
of database design are conceptual design, logical design (data model mapping), and phys
ical design. We also discussed the initial phase of requirements collection and analysis,
which is often considered to be a predesign phase. In addition, at some point during the
design, a specific DBMS package must be chosen. We discussed some of the organizational

12.6 Summary I 405

TABLE 12.1 SOME OF THE CURRENTlY AVAILABLE AUTOMATED DATABASE DESIGN TOOLS

TOOlCOMPANY FUNCTIONALITY----_.._------------------------- ----------

Embarcadero Technologies

Oracle

Popkin Software

Platinum Technology

Persistence Inc.

Rational

Rogue Ware

Resolution Ltd.

Sybase

Visio

ER Studio

DB Artisan

Developer 2000 and Designer 2000

System Architect 2001

Platinum Enterprise Modeling
Suite: ERwin, BPWin, Paradigm
Plus

Powertier

Rational Rose

RWMetro

XCase

Enterprise Application Suite

Visio Enterprise

Database Modeling in ER and
IDEFlx

Database administration and
space and security manage
ment

Database modeling, application
development

Data modeling, object model
ing, process modeling, struc
tured analysis/design

Data, process, and business com
ponent modeling

Mapping from 0-0 to relational
model

Modeling in UML and applica
tion generation in c++ and
JAVA

Mapping from 0-0 to relational
model

Conceptual modeling up to code
maintenance

Data modeling, business logic
modeling

Data modeling, design and
reengineering Visual Basic
and Visual c+ +

criteria that come into play in selecting a DBMS. As performance problems are detected,
and as new applications are added, designs have to be modified. The importance of
designing both the schema and the applications (or transactions) was highlighted. We
discussed different approaches to conceptual schema design and the difference between
centralized schema design and the view integration approach.

We introduced UML diagrams as an aid to the specification of database models and
designs. We introduced the entire range of structural and behavioral diagrams and then
described the notational detail about the following types of diagrams: use case, sequence,
statechart. Class diagrams have already been discussed in Sections 3.8 and 4.6,
respectively. We showed how requirements for a university database are specified using
these diagrams and can be used to develop the conceptual design of the database. Only

406 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

illustrative details and not the complete specification were supplied. Appendix B
develops a complete case study of the design and implementation of a database. Then we
discussed the currently popular software development tool-Rational Rose and the Rose
Data Modeler-that provides support for the conceptual design and logical design phases
of database design. Rose is a much broader tool for design of information systems at large.
Finally, we briefly discussed the functionality and desirable features of commercial
automated database design tools that are more focussed on database design as opposed to
Rose. A tabular summary of features was pesented.

Review Questions
12.1. What are the six phases of database design? Discuss each phase.
12.2. Which of the six phases are considered the main activities of the database design

process itself? Why?
12.3. Why is it important to design the schemas and applications in parallel?
12.4. Why is it important to use an implementation-independent data model during

conceptual schema design? What models are used in current design tools? Why!
12.5. Discuss the importance of Requirements Collection and Analysis.
12.6. Consider an actual application of a database system of interest. Define the

requirements of the different levels of users in terms of data needed, types of
queries, and transactions to be processed.

12.7. Discuss the characteristics that a data model for conceptual schema design should
possess.

12.8. Compare and contrast the two main approaches to conceptual schema design.
12.9. Discuss the strategies for designing a single conceptual schema from its

requirements.
12.10. What are the steps of the view integration approach to conceptual schema

design? What are the difficulties during each step?
12.11. How would a view integration tool work? Design a sample modular architecture

for such a too!'
12.12. What are the different strategies for view integration.
12.13. Discuss the factors that influence the choice of a DBMS package for the

information system of an organization.
12.14. What is system-independent data model mapping? How is it different from

system-dependent data model mapping?
12.15. What are the important factors that influence physical database design?
12.16. Discuss the decisions made during physical database design.
12.17. Discuss the macro and micro life cycles of an information system.
12.18. Discuss the guidelines for physical database design in RDBMSs.
12.19. Discuss the types of modifications that may be applied to the logical database

design of a relational database.
12.20. What functions do the typical database design tools provide?
12.21. What type of functionality would be desirable in automated tools to support

optimal design of large databases?

Selected Bibliography I 407

Selected Bibliography
There is a vast amount of literature on database design. We first list some of the books
thataddress database design. Batini et al. (1992) is a comprehensive treatment of concep
tual and logical database design. Wiederhold (1986) covers all phases of database design,
with an emphasis on physical design. O'Neil (1994) has a detailed discussion of physical
design and transaction issues in reference to commercial RDBMSs. A large body of work on
conceptual modeling and design was done in the eighties. Brodie et al. (1984) gives a col
lection of chapters on conceptual modeling, constraint specification and analysis, and
transactiondesign. Yao (1985) is a collection of works ranging from requirements specifi
cation techniques to schema restructuring. Teorey (1998) emphasizes EER modeling and
discusses various aspects of conceptual and logical database design. McFadden and Hoffer
(1997) is a good introduction to the business applications issues of database management.

Navathe and Kerschberg (1986) discuss all phases of database design and point out
theroleof data dictionaries. Goldfine and Konig (1988) and ANSI (1989) discuss the role
ofdata dictionaries in database design. Rozen and Shasha (1991) and Carlis and March
(1984) present different models for the problem of physical database design. Object
oriented database design is discussed in Schlaer and Mellor (1988), Rumbaugh et al.
(1991), Martin and Odell (1991), and Jacobson (1992). Recent books by Blaha and
Premerlani (1998) and Rumbaugh et al. (1999) consolidate the existing techniques in
object-oriented design. Fowler and Scott (1997) is a quick introduction to UML.

Requirements collection and analysis is a heavily researched topic. Chatzoglu et al.
(1997) and Lubars et al. (1993) present surveys of current practices in requirements
capture, modeling, and analysis. Carroll (1995) provides a set of readings on the use of
scenarios for requirements gathering in early stages of system development. Wood and
Silver (1989) gives a good overview of the official Joint Application Design (lAD)
process. Potter et al. (1991) describes the Z notation and methodology for formal
specification of software. Zave (1997) has classified the research efforts in requirements
engineering.

A large body of work has been produced on the problems of schema and view
integration, which is becoming particularly relevant now because of the need to integrate
avariety of existing databases. Navathe and Gadgil (1982) defined approaches to view
integration. Schema integration methodologies are compared in Batini et al. (1986).
Detailed work on n-ary view integration can be found in Navathe et al. (1986), Elmasri et
al. (1986), and Larson et al. (1989). An integration tool based on Elmasri et al. (1986) is
described in Sheth et al. (1988). Another view integration system is discussed in Hayne
and Ram (1990). Casanova et al. (1991) describes a tool for modular database design.
Motro (1987) discusses integration with respect to preexisting databases. The binary
balanced strategy to view integration is discussed in Teorey and Fry (1982). A formal
approach to view integration, which uses inclusion dependencies, is given in Casanova
and Vidal (1982). Ramesh and Ram (1997) describe a methodology for integration of
relationships in schemas utilizing the knowledge of integrity constraints; this extends the
previous work of Navathe et al. (1984a). Sheth at al. (1993) describe the issues of
building global schemas by reasoning about attribute relationships and entity
equivalences. N avathe and Savasere (1996) describe a practical approach to building

408 I Chapter 12 Practical Database Design Methodology and Use of UML Diagrams

global schemas based on operators applied to schema components. Santucci (1998)
provides a detailed treatment of refinement of EER schemas for integration. Castano et al.
(1999) present a comprehensive survey of conceptual schema analysis techniques.

Transaction design is a relatively less thoroughly researched topic. Mylopoulos et at.
(1980) proposed the TAXIS language, and Albano et al. (1987) developed the GALILEO

system, both of which are comprehensive systems for specifying transactions. The
GORDAS language for the ECR model (Elmasri et al. 1985) contains a transaction
specification capability. Navathe and Balaraman (1991) and Ngu (1991) discuss
transaction modeling in general for semantic data models. Elmagarmid (1992) discusses
transaction models for advanced applications. Batini et al. (1992, chaps. 8, 9, and 11)
discuss high level transaction design and joint analysis of data and functions. Shasha
(1992) is an excellent source on database tuning.

Information about some well-known commercial database design tools can be found
at the Web sites of the vendors (see company names in Table 12.1). Principles behind
automated design tools are discussed in Batini et al. (1992, chap. 15). The SEeSI tool from
France is described in Metais et al. (1998). DKE (1997) is a special issue on natural
language issues in databases.

DATA STORAGE, INDEXING,
QUERY PROCESSING,
AND PHYSICAL DESIGN

Disk Storage, Basic File
Structures, and Hashing

Databases are stored physically as files of records, which are typically stored on magnetic
disks. This chapter and the next deal with the organization of databases in storage and the
techniques for accessing them efficiently using various algorithms, some of which require
auxiliary data structures called indexes. We start in Section 13.1 by introducing the con
cepts of computer storage hierarchies and how they are used in database systems. Section
13.2 is devoted to a description of magnetic disk storage devices and their characteristics,
and we also briefly describe magnetic tape storage devices. Having discussed different
storage technologies, we then turn our attention to the methods for organizing data on
disks. Section 13.3 covers the technique of double buffering, which is used to speed
retrieval of multiple disk blocks. In Section 13.4 we discuss various ways of formatting
and storing records of a file on disk. Section 13.5 discusses the various types of operations
thatare typically applied to records of a file. We then present rhree primary methods for
organizing records of a file on disk: unordered records, discussed in Section 13.6; ordered
records, in Section 13.7; and hashed records, in Section 13.8.

Section 13.9 very briefly discusses files of mixed records and other primary methods
for organizing records, such as B-trees. These are particularly relevant for storage of
object-oriented databases, which we discuss later in Chapters 20 and 21. Section 13.9
describes RAID (Redundant Arrays of Inexpensive (or Independent) Disks)-a data
storage system architecture that is used commonly in large organizations for better
reliability and performance. Finally, in Section 13.10 we describe storage area networks, a
more recent approach for managing stored data on networks. In Chapter 14 we discuss

411

412 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

techniques for creating auxiliary data structures, called indexes, that speed up the search
for and retrieval of records. These techniques involve storage of auxiliary data, called
index files, in addition to the file records themselves.

Chapters 13 and 14 may be browsed through or even omitted by readers who have
already studied file organizations. The material covered here is necessary for understanding
Chapters 15 and 16 that deal with query processing and query optimization.

13.1 INTRODUCTION
The collection of data that makes up a computerized database must be stored physically
on some computer storage medium. The DBMS software can then retrieve, update, and
process this data as needed. Computer storage media form a storage hierarchy that includes
two main categories:

• Primary storage. This category includes storage media that can be operated on
directly by the computer central processing unit (CPU), such as the computer main
memory and smaller but faster cache memories. Primary storage usually provides fast
access to data but is of limited storage capacity.

• Secondary storage. This category includes magnetic disks, optical disks, and rapes.
These devices usually have a larger capacity, cost less, and provide slower access to

data than do primary storage devices. Data in secondary storage cannot be processed
directly by the CPU; it must first be copied into primary storage.

We will first give an overview of the various storage devices used for primary and
secondary storage in Section 13.1.1 and will then discuss how databases are typically
handled in the storage hierarchy in Section 13.1.2.

13.1.1 Memory Hierarchies and Storage Devices
In a modem computer system data resides and is rransported throughour a hierarchy of
storage media. The highest-speed memory is the most expensive and is therefore available
with the least capacity. The lowest-speed memory is offline tape storage, which is essen
tially available in indefinite storage capacity.

At the primary storage level, the memory hierarchy includes at the most expensive
end cache memory, which is a static RAM (Random Access Memory). Cache memory is
typically used by the CPU to speed up execution of programs. The next level of primary
storage is DRAM (Dynamic RAM), which provides the main work area for the CPU for
keeping programs and data and is popularly called main memory. The advantage of DRAM

is its low cost, which continues to decrease; the drawback is its volatility! and lower speed
compared with static RAM. At the secondary storage level, the hierarchy includes magnetic
disks, as well as mass storage in the form of CD-ROM (Compact Disk-Read-Only

----------~._-----

1. Volatile memory typically loses its contents in case of a power outage, whereas nonvolatile mem
ory does not.

13.1 Introduction I 413

Memory) devices, and finally tapes at the least expensive end of the hierarchy. The
storage capacity is measured in kilobytes (Kbyte or 1000 bytes), megabytes (Mbyte or 1
million bytes), gigabytes (Gbyte or 1 billion bytes), and even terabytes (1000 Gbvtes).

Programs reside and execute in DRAM. Generally, large permanent databases reside
on secondary storage, and portions of the database are read into and written from buffers
in main memory as needed. Now that personal computers and workstations have
hundreds of megabytes of data in DRAM, it is becoming possible to load a large fraction of
the database into main memory. Eight to 16 gigabytes of RAM on a single server are
becoming commonplace. In some cases, entire databases can be kept in main memory
(with a backup copy on magnetic disk), leading to main memory databases; these are
particularlyuseful in real-time applications that require extremely fast response times. An
example is telephone switching applications, which store databases that contain routing
and line information in main memory.

Between DRAM and magnetic disk storage, another form of memory, flash memory, is
becoming common, particularly because it is nonvolatile. Flash memories are high
density, high-performance memories using EEPROM (Electrically Erasable Programmable
Read-Only Memory) technology. The advantage of flash memory is the fast access speed;
thedisadvantage is that an entire block must be erased and written over at a time.i Flash
memory cards are appearing as the data storage medium in appliances with capacities
ranging from a few megabytes to a few gigabytes. These are appearing in cameras, MP3
players, USB storage accessories, etc.

CD-ROM disks store data optically and are read by a laser. CD-ROMs contain prerecorded
data that cannot be overwritten. WORM (Write-Once-Read-Many) disks are a form of optical
storage used for archiving data; they allow data to be written once and read any number of
times without the possibility of erasing. They hold about half a gigabyte of data per disk and
last much longer than magnetic disks. Optical juke box memories use an array of CD-ROM
platters, which are loaded onto drives on demand. Although optical juke boxes have
capacities in the hundreds of gigabytes, their retrieval times are in the hundreds of
milliseconds, quite a bit slower than magnetic disks.3 This. type of storage is continuing to
decline because of the rapid decrease in cost and increase in capacities of magnetic disks. The
DVD (Digital Video Disk) is a recent standard for optical disks allowing 4.5 to 15 gigabytes of
storage per disk. Most personal computer disk drives now read CD-ROM and DVD disks.

Finally, magnetic tapes are used for archiving and backup storage of data. Tape
jukeboxes-which contain a bank of tapes that are catalogued and can be automatically
loaded onto tape drives-are becoming popular as tertiary storage to hold terabytes of
data. For example, NASA's EOS (Earth Observation Satellite) system stores archived
databases in this fashion.

Many large organizations are already finding it normal to have terabyte-sized
databases. The term very large database cannot be defined precisely any more because

2. For example, the INTEL DD28F032sA is a 32-megabit capacity flash memory with 70-nanosecond
access speed, and 430 KB/second write transfer rate.

3. Their rotational speedsare lower (around 400 rpm), giving higher latency delaysand low transfer
rates (around 100 to 200 KB /second).

414 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

disk storage capacities are on the rise and costs are declining. It may very soon be reserved
for databases containing tens of terabytes.

13.1.2 Storage of Databases
Databases typically store large amounts of data that must persist over long periods of time.
The data is accessed and processed repeatedly during this period. This contrasts with the
notion of transientdata structures that persist for only a limited time during program exe
cution. Most databases are stored permanently (or persistently) on magnetic disk second
ary storage, for the following reasons:

• Generally, databases are too large to fit entirely in main memory.

• The circumstances that cause permanent loss of stored data arise less frequently for
disk secondary storage than for primary storage. Hence, we refer to disk-and other
secondary storage devices-as nonvolatile storage, whereas main memory is often
called volatile storage.

• The cost of storage per unit of data is an order of magnitude less for disk than for pri
mary storage.

Some of the newer technologies-such as optical disks, DVDs, and tape jukeboxes
are likely to provide viable alternatives to the use of magnetic disks. Databases in the
future may therefore reside at different levels of the memory hierarchy from those
described in Section 13.1.1. However, it is anticipated that magnetic disks will continue
to be the medium of primary choice for large databases for years to come. Hence, it is
important to study and understand the properties and characteristics of magnetic disks
and the way data files can be organized on disk in order to design effective databases with
acceptable performance.

Magnetic tapes are frequently used as a storage medium for backing up the database
because storage on tape costs even less than storage on disk. However, access to data on tape
is quite slow. Data stored on tapes is offline; that is, some intervention by an operator-c-or
an automatic loading device-to load a tape is needed before this data becomes available.
In contrast, disks are online devices that can be accessed directly at any time.

The techniques used to store large amounts of structured data on disk are important
for database designers, the DBA, and implementers of a DBMS. Database designers and the
DBA must know the advantages and disadvantages of each storage technique when they
design, implement, and operate a database on a specific DBMS. Usually, the DBMS has
several options available for organizing the data, and the process of physical database
design involves choosing from among the options the particular data organization
techniques that best suit the given application requirements. DBMS system implementers
must study data organization techniques so that they can implement them efficiently and
thus provide the DBA and users of the DBMS with sufficient options.

Typical database applications need only a small portion of the database at a time for
processing. Whenever a certain portion of the data is needed, it must be located on disk,
copied to main memory for processing, and then rewritten to the disk if the data is
changed. The data stored on disk is organized as files of records. Each record is a

13.2 Secondary Storage Devices I 415

collection of data values that can be interpreted as facts about entities, their attributes,
and their relationships. Records should be stored on disk in a manner that makes it
possible to locate them efficiently whenever they are needed.

There are several primary file organizations, which determine how the records of a
file are physically placed on the disk, and hence how therecords can be accessed. A heap file (or
unordered file) places the records on disk in no particular order by appending new records
at the end of the file, whereas a sorted file (or sequential file) keeps the records ordered by
the value of a particular field (called the sort key). A hashed file uses a hash function
applied to a particular field (called the hash key) to determine a record's placement on
disk. Other primary file organizations, such as B-trees, use tree structures. We discuss
primary file organizations in Sections 13.6 through 13.9. A secondary organization or
auxiliary access structure allows efficient access to the records of a file based on alternate
fields than those that have been used for the primary file organization. Most of these exist
as indexes and will be discussed in Chapter 14.

13.2 SECONDARY STORAGE DEVICES
In this section we describe some characteristics of magnetic disk and magnetic tape stor
age devices. Readers who have studied these devices already may just browse through this
section.

13.2.1 Hardware Description of Disk Devices
Magnetic disks are used for storing large amounts of data. The most basic unit of data on
thedisk is a single bit of information. By magnetizing an area on disk in certain ways, one
can make it represent a bit value of either 0 (zero) or 1 (one). To code information, bits
are grouped into bytes (or characters). Byte sizes are typically 4 to 8 bits, depending on
thecomputer and the device. We assume that one character is stored in a single byte, and
we use the terms byte and character interchangeably. The capacity of a disk is the number
ofbytes it can store, which is usually very large. Small floppy disks used with microcom
puters typically hold from 400 Kbytes to 1.5 Mbytes; hard disks for micros typically hold
from several hundred Mbytes up to a few Gbytes; and large disk packs used with servers
and mainframes have capacities that range up to a few tens or hundreds of Gbytes. Disk
capacities continue to grow as technology improves.

Whatever their capacity, disks are all made of magnetic material shaped as a thin
circular disk (Figure 13.1a) and protected by a plastic or acrylic cover. A disk is single
sided if it stores information on only one of its surfaces and double-sided if both surfaces
are used. To increase storage capacity, disks are assembled into a disk pack (Figure 13.1b),
which may include many disks and hence many surfaces. Information is stored on a disk
surface in concentric circles of small width,4 each having a distinct diameter. Each circle is

4. Insome disks, the circles are now connected into a kind of continuous spiral.

416 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

(a)

track

actuator
movement

cylinder
of tracks

(imaginary)

spindle

arm

\

-

actuator

\F===~~v(b)

FIGURE 13.1 (a) A single-sided disk with read/write hardware. (b) A disk pack
with read/write hardware.

called a track. For disk packs, the tracks with the same diameter on the various surfaces
are called a cylinder because of the shape they would form if connected in space. The
concept of a cylinder is important because data stored on one cylinder can be retrieved
much faster than if it were distributed among different cylinders.

The number of tracks on a disk ranges from a few hundred to a few thousand, and the
capacity of each track typically ranges from tens of Kbytes to 150 Kbvtes. Because a track
usually contains a large amount of information, it is divided into smaller blocks or sectors.
The division of a track into sectors is hard-coded on the disk surface and cannot be
changed. One type of sector organization calls a portion of a track that subtends a fixed
angle at the center as a sector (Figure 13.2a). Several other sector organizations are
possible, one of which is to have the sectors subtend smaller angles at the center as one
moves away, thus maintaining a uniform density of recording (Figure 13.2b). A technique
called ZBR (Zone Bit Recording) allows a range of cylinders to have the same number of

13.2 Secondary Storage Devices I 417

sector (arc of a track)
(a) track

(b)

three sectors
two sectors

--~- one sector

FIGURE 13.2 Different sector organizations on disk. (a) Sectors subtending a
fixed angle. (b) Sectors maintaining a uniform recording density.

sectors per arc. For example, cylinders 0-99 may have one sector per track, 100-199 may
have two per track, etc. Not all disks have their tracks divided into sectors.

The division of a track into equal-sized disk blocks (or pages) is set by the operating
system during disk formatting (or initialization). Block size is fixed during initialization
and cannot be changed dynamically. Typical disk block sizes range from 512 to 4096
bytes. A disk with hard-coded sectors often has the sectors subdivided into blocks during
initialization. Blocks are separated by fixed-size interblock gaps, which include specially
coded control information written during disk initialization. This information is used to
determine which block on the track follows each interblock gap. Table 13.1 represents
specifications of a typical disk.

There is continuous improvement in the storage capacity and transfer rates associated
with disks; they are also progressively getting cheaper-eurrently costing only a fraction of
adollarper megabyte of disk storage. Costs are going down so rapidly that costs as low 0.1
cent/MB which translates to $1/GB and $IK/TB are not too far away.

A disk is a random access addressable device. Transfer of data between main memory
and disk takes place in units of disk blocks. The hardware address of a block-a
combination of a cylinder number, track number (surface number within the cylinder
onwhich the track is located), and block number (within the track) is supplied to the
disk r/o hardware. In many modern disk drives, a single number called LBA (Logical Block
Address) which is a number between 0 and n (assuming the total capacity of the disk is
n+l blocks), is mapped automatically to the right block by the disk drive controller. The
address of a buffer-a contiguous reserved area in main storage that holds one block-is
also provided. For a read command, the block from disk is copied into the buffer; whereas
for a write command, the contents of the buffer are copied into the disk block.

418 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

TABLE 13.1 SPECIFICATIONS OF TYPICAL HIGH-END CHEETAH DISKS FROM SEAGATE

Description

Model Number
Form Factor (width)
Height
Width
Weight

Capacity/Interface
Formatted Capacity
Interface Type

Configuration
Number of disks (physical)
Number of heads (physical)
Number of Cylinders
Bytes per Sector
Areal Density
Track Density
Recording Density

Performance
Transfer Rates
Internal Transfer Rate (min)
Internal Transfer Rate (max)
Formatted Int. Transfer Rate (min)
Formatted Int. Transfer Rate (max)
External I/O Transfer Rate (max)

Seek Times
Avg. Seek Time (Read)
Avg. Seek Time (Write)
Track-to-track Seek, Read
Track-to-track Seek, Write
Average Latency

Other
Default Buffer (cache) size
Spindle Speed

Cheetah XI5 36LP

ST336732LC
3.5 inch
25.4 mm
101.6mm
0.68 Kg

36.7 Gbytes
80-pin

4
8
18,479
512
N/A
N/A
N/A

522 Mbits/sec
709 Mbits/sec
51 MBytes/sec
69 MBytes/sec
320 MBytes/sec

3.6 msec (typical)
4.2 msec (typical)
0.5 msec (typical)
0.8 msec (typical)
2 msec

8,192 Kbytes
15K rpm

Cheetah 1OK.6

ST3146807LC
3.5 inch
25.4 mm
101.6mm
0.73 Kg

146.8 Gbytes
80-pin

4
8
49,854
512
36,000 Mbits/sq.inch
64,000 Tracks/inch
570,000 bits/inch

475 Mbits/sec
840 Mbits/sec
43 MBytes/sec
78 MBytes/sec
320 MBytes/sec

4.7 msec (typical)
5.2 msec (typical)
0.3 msec (typical)
0.5 msec (typical)
2.99 msec

8,000 Kbytes
10K rpm

13.2 Secondary Storage Devices I 419

TABLE 13.1 SPECIFICATIONS OF TYPICAL HIGH-END CHEETAH DISKS FROM SEAGATE (continued)

Reliability
MeanTime Between Failure (MTBF)
Recoverable Read Errors
Nonrecoverable Read Errors
Seek Errors
(courtesy Seagar« Technology)

1,200,000 Hours
10 per 1012 bits
1 per 1015 bits
10 per 108 bits

1,200,000 Hours
10 per 1012 bits
1 per 1015 bits
10 per 108 bits

Sometimes several contiguous blocks, called a cluster, may be transferred as a unit. In this
case the buffer size is adjusted to match the number of bytes in the cluster.

The actual hardware mechanism that reads or writes a block is the disk read/write
head, which is part of a system called a disk drive. A disk or disk pack is mounted in the
disk drive, which includes a motor that rotates the disks. A read/write head includes an
electronic component attached to a mechanical arm. Disk packs with multiple surfaces
are controlled by several read/write heads-one for each surface (see Figure B.lb). All
arms are connected to an actuator attached to another electrical motor, which moves the
read/write heads in unison and positions them precisely over the cylinder of tracks
specified in a block address.

Disk drives for hard disks rotate the disk pack continuously at a constant speed
(typically ranging between 5400 and 15,000 rpm). For a floppy disk, the disk drive begins
to rotate the disk whenever a particular read or write request is initiated and ceases
rotationsoon after the data transfer is completed. Once the read/write head is positioned
onthe right track and the block specified in the block address moves under the read/write
head, the electronic component of the read/write head is activated to transfer the data.
Some disk units have fixed read/write heads, with as many heads as there are tracks.
These are called fixed-head disks, whereas disk units with an actuator are called movable
head disks. For fixed-head disks, a track or cylinder is selected by electronically switching
to the appropriate read/write head rather than by actual mechanical movement;
consequently, it is much faster. However, the cost of the additional read/write heads is
quite high, so fixed-head disks are not commonly used.

A disk controller, typically embedded in the disk drive, controls the disk drive and
interfaces it to the computer system. One of the standard interfaces used today for disk drives
onPCand workstations is called SCSI (Small Computer Storage Interface). The controller
accepts high-level I/O commands and takes appropriate action to position the arm and
causes the read/write action to take place. To transfer a disk block, given its address, the disk
controller must first mechanically position the read/write head on the correct track. The
time required to do this is called the seek time. Typical seek times are 7 to 10 msec on
desktops and 3 to 8 msecs on servers. Following that, there is another delay--ealled the
rotational delay or latency-while the beginning of the desired block rotates into position
under the read/write head. It depends on the rpm of the disk. For example, at 15,000 rpm,
the time per rotation is 4 msec and the average rotational delay is the time per half
revolution, or 2 msec. Finally, some additional time is needed to transfer the data; this is
called the block transfer time. Hence, the total time needed to locate and transfer
anarbitrary block, given its address, is the sum of the seek time, rotational delay, and block

420 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

transfer time. The seek time and rotational delay are usually much larger than the
block transfer time. To make the transfer of multiple blocks more efficient, it is common to
transfer several consecutive blocks on the same track or cylinder. This eliminates the seek
time and rotational delay for all but the first block and can result in a substantial saving of
time when numerous contiguous blocks are transferred. Usually, the disk manufacturer
provides a bulk transfer rate for calculating the time required to transfer consecutive blocks.
Appendix B contains a discussion of these and other disk parameters.

The time needed to locate and transfer a disk block is in the order of milliseconds,
usually ranging from 12 to 60 msec. For contiguous blocks, locating the first block takes
from 12 to 60 msec, but transferring subsequent blocks may take only 1 to 2 msec each.
Many search techniques take advantage of consecutive retrieval of blocks when searching
for data on disk. In any case, a transfer time in the order of milliseconds is considered
quite high compared with the time required to process data in main memory by current
crus. Hence, locating data on disk is a major bottleneck in database applications. The file
structures we discuss here and in Chapter 14 attempt to minimize the number of block
transfers needed to locate and transfer the required data from disk to main memory.

13.2.2 Magnetic Tape Storage Devices
Disks are random access secondary storage devices, because an arbitrary disk block may
be accessed "at random" once we specify its address. Magnetic tapes are sequential access
devices; to access the nth block on tape, we must first scan over the preceding n - I
blocks. Data is stored on reels of high-capacity magnetic tape, somewhat similar to audio
or videotapes. A tape drive is required to read the data from or to write the data to a tape
reel. Usually, each group of bits that forms a byte is stored across the tape, and the bytes
themselves are stored consecutively on the tape.

A read/write head is used to read or write data on tape. Data records on tape are also
stored in blocks-although the blocks may be substantially larger than those for disks,
and interblock gaps are also quite large. With typical tape densities of 1600 to 6250 bytes
per inch, a typical interblock gapS of 0.6 inches corresponds to 960 to 3750 bytes of
wasted storage space. For better space utilization it is customary to group many records
together in one block.

The main characteristic of a tape is its requirement that we access the data blocks in
sequential order. To get to a block in the middle of a reel of tape, the tape is mounted and
then scanned until the required block gets under the read/write head. For this reason,
tape access can be slow and tapes are not used to store online data, except for some
specialized applications. However, tapes serve a very important function-that of backing
up the database. One reason for backup is to keep copies of disk files in case the data is
lost because of a disk crash, which can happen if the disk read/write head touches the disk
surface because of mechanical malfunction. For this reason, disk files are copied
periodically to rape. For many online critical applications such as airline reservation

--------- ~-- --~-------

5. Called interrecord gaps in tape terminology.

13.3 Buffering of Blocks I 421

systems, to avoid any downtime, mirrored systems are used keeping three sets of identical
disks-two in online operation and one as backup. Here, offline disks become a backup
device. The three are rotated so that they can be switched in case there is a failure on one
of the live disk drives. Tapes can also be used to store excessively large database files.
Finally, database files that are seldom used or are outdated but are required for historical
record keeping can be archived on tape. Recently, smaller 8-mm magnetic tapes (similar
to those used in camcorders) that can store up to 50 Gbytes, as well as 4-mm helical scan
data cartridges and writable CDs and OVOs have become popular media for backing up
datafiles from workstations and personal computers. They are also used for storing images
andsystem libraries. Backing up enterprise databases so that no transaction information is
lost is a major undertaking. Currently tape libraries with slots for several hundred
cartridges are used with Digital and Superdigital Linear Tapes (OLTs and SOLTs) having
capacities in hundreds of gigabytes that record data on linear tracks. Robotic arms are
used to write on multiple cartridges in parallel using multiple tape drives with automatic
labeling software to identify the backup cartridges. An example of a giant library is the
L5500 model of Storage Technology that can scale up to 13.2 Petabytes (Petabyte = 1000
TB) with a thruput rate of 55TB/hour. We defer the discussion of disk storage technology
called RAID, and of storage area networks, to the end of the chapter.

13.3 BUFFERING OF BLOCKS
When several blocks need to be transferred from disk to main memory and all the block
addresses are known, several buffers can be reserved in main memory to speed up the
transfer. While one buffer is being read or written, the CPU can process data in the other
buffer. This is possible because an independent disk I/O processor (controller) exists that,
once started, can proceed to transfer a data block between memory and disk independent
ofand in parallel to CPU processing.

Figure 13.3 illustrates how two processes can proceed in parallel. Processes A and B
are running concurrently in an interleaved fashion, whereas processes C and Dare
running concurrently in a parallel fashion. When a single CPU controls multiple
processes, parallel execution is not possible. However, the processes can still run
concurrently in an interleaved way. Buffering is most useful when processes can run
concurrently in a parallel fashion, either because a separate disk [/0 processor is available
orbecause multiple CPU processors exist.

Figure 13.4 illustrates how reading and processing can proceed in parallel when the
time required to process a disk block in memory is less than the time required to read the
nextblock and fill a buffer. The CPUcan start processing a block once its transfer to main
memory is completed; at the same time the disk I/O processor can be reading and
transferring the next block into a different buffer. This technique is called double
buffering and can also be used to write a continuous stream of blocks from memory to the
disk. Double buffering permits continuous reading or writing of data on consecutive disk
blocks, which eliminates the seek time and rotational delay for all but the first block
transfer. Moreover, data is kept ready for processing, thus reducing the waiting time in the
programs.

422 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

Interleaved concurrency
ofoperations Aand B.

Parallel execution of
operations CandO.

1

I

I

A I

r-l

+
t 1

A

I
1

B I B
II
I ,,
1 I

I

I ,,
I ,,

+ ++ ~

t 2 t 3 t 4 Time

FIGURE 13.3 Interleaved concurrency versus parallel execution.

I I I I I
disk bIod<: i I i+ 1 I i+2 I 1+3 I i+4 I

fillA I fillS I !iliA I filiB I !iliA I
110: ~ "I~ "I~ "I~ .I~ "I

I I I I I

I I I I I

I I I 1 I
disk block: I I i+1 I i+2 1 1+3 I 1+4

I processA I process B I process A I processB I proeessA
PROCESSING: I~ .. I ... • I~ • I~ .. I~ ..

I I I I I

I I I I I

I I I I I

I I I I I

..
Time

FIGURE 13.4 Use of two buffers, A and B, for reading from disk.

13.4 PLACING FILE RECORDS ON DISK
In this section we define the concepts of records, record types, and files. We then discuss
techniques for placing file records on disk.

13.4.1 Records and Record Types
Data is usually stored in the form of records. Each record consists of a collection of
related data values or items, where each value is formed of one or more bytes and corre-

13.4 Placing File Records on Disk I 423

sponds to a particular field of the record. Records usually describe entities and their
attributes. For example, an EMPLOYEE record represents an employee entity, and each field
value in the record specifies some attribute of that employee, such as NAME, BIRTHDATE, SAL

ARY, or SUPERVISOR. A collection of field names and their corresponding data types consti
tutes a record type or record format definition. A data type, associated with each field,
specifies the types of values a field can take.

The data type of a field is usually one of the standard data types used in programming.
These include numeric (integer, long integer, or floating point), string of characters
(fixed-length or varying), Boolean (having 0 and 1 or TRUE and FALSE values only), and
sometimes specially coded date and time data types. The number of bytes required for
eachdata type is fixed for a given computer system. An integer may require 4 bytes, a long
integer 8 bytes, a real number 4 bytes, a Boolean 1 byte, a date 10 bytes (assuming a
format of YYYY-MM-DD), and a fixed-length string of k characters k bytes. Variable
length strings may require as many bytes as there are characters in each field value. For
example, an EMPLOYEE record type may be defined-using the c programming language
notation-as the following structure:

struct employee{
char name[30];
char ssn[9];
int salary;
int jobcode;
char department[20];

} ;

In recent database applications, the need may arise for storing data items that consist
oflarge unstructured objects, which represent images, digitized video or audio streams, or
free text. These are referred to as BLOBs (Binary Large Objects). A BLOB data item is
typically stored separately from its record in a pool of disk blocks, and a pointer to the
BLOB is included in the record.

13.4.2 Files, Fixed-length Records, and
Variable-length Records

A file is a sequence of records. In many cases, all records in a file are of the same record
type. If every record in the file has exactly the same size (in bytes), the file is said to be
made up of fixed-length records. If different records in the file have different sizes, the file
is said to be made up of variable-length records. A file may have variable-length records
for several reasons:

• The file records are of the same record type, but one or more of the fields are of vary
ing size (variable-length fields). For example, the NAME field of EMPLOYEE can be a vari
able-length field.

• The file records are of the same record type, but one or more of the fields may have
multiple values for individual records; such a field is called a repeating field and a
group of values for the field is often called a repeating group.

424 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

• The file records are of the same record type, but one or more of the fields are
optional; that is, they may have values for some but not all of the file records
(optional fields).

• The file contains records of different record types and hence of varying size (mixed
file). This would occur if related records of different types were clustered (placed
together) on disk blocks; for example, the GRADCREPORT records of a particular student
may be placed following that STUDENT'S record.

The fixed-length EMPLOYEE records in Figure 13.5a have a record size of 71 bytes.
Every record has the same fields, and field lengths are fixed, so the system can identify
the starting byte position of each field relative to the starting position of the record.
This facilitates locating field values by programs that access such files. Notice that it
is possible to represent a file that logically should have variable-length records as a
fixed-length records file. For example, in the case of optional fields we could have
every field included in every file record but store a special null value if no value exists
for that field. For a repeating field, we could allocate as many spaces in each record as

(a) NAME SSN

31 404448

HIRE-DATE

68

(b)

NAME

ISmith, John

1

(c)

JOBCODE

SALARY ;,

SSN + DEPARTMENT

1r-1-23456--7-89-.....,1~ Computer I
12 21 25 29

I
separator
characters

Separator Characters
separates fieldname
from fieldvalue

INAME=Smith, John I SSN=123456789 I DEPARTMENT=Computer I separates fields

~ terminates record

FIGURE 13.5 Three record storage formats. (a) A fixed-length record with six fields and size of
71 bytes. (b) A record with two variable-length fields and three fixed-length fields. (c) A vari
able-field record with three types of separator characters.

13.4 Placing File Records on Disk I 425

the maximum number of values that the field can take. In either case, space is wasted
when certain records do not have values for all the physical spaces provided in each
record. We now consider other options for formatting records of a file of variable
length records.

For variable-length fields, each record has a value for each field, but we do not
know the exact length of some field values. To determine the bytes within a
particular record that represent each field, we can use special separator characters
(such as ?or % or $)-which do not appear in any field value-to terminate variable
length fields (Figure 13.5b), or we can store the length in bytes of the field in the
record, preceding the field value.

A file of records with optional fields can be formatted in different ways. If the total
numberof fields for the record type is large but the number of fields that actually appear
in a typical record is small, we can include in each record a sequence of <field-name,
field-value> pairs rather than just the field values. Three types of separator characters
are used in Figure 13.7c, although we could use the same separator character for the first
two purposes-separating the field name from the field value and separating one field
from the next field. A more practical option is to assign a short field type code-say, an
integer number-to each field and include in each record a sequence of <field-type,
field-value> pairs rather than <field-name, field-value> pairs.

A repeating field needs one separator character to separate the repeating values of the
field and another separator character to indicate termination of the field. Finally, for a file
that includes records of different types, each record is preceded by a record type indicator.
Understandably, programs that process files of variable-length records-which are usually
part of the file system and hence hidden from the typical programmers-need to be more
complex than those for fixed-length records, where the starting position and size of each
field are known and fixed.6

13.4.3 Record Blocking and Spanned Versus
Unspanned Records

The records of a file must be allocated to disk blocks because a block is the unit of data
transfer between disk and memory. When the block size is larger than the record size, each
block will contain numerous records, although some files may have unusually large
records that cannot fit in one block. Suppose that the block size is B bytes. For a file of
fixed-length records of size R bytes, with B 2: R, we can fit bfr = LB/RJ records per block,
where the L(x)J (floor function) rounds down the number x to an integer. The value bfr is
called the blocking factor for the file. In general, R may not divide B exactly, so we have
some unused space in each block equal to

B - (bfr * R) bytes

6. Other schemes are also possible for representing-variable-length records.

426 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

To utilize this unused space, we can store part of a record on one block and the rest on
another. A pointer at the end of the first block points to the block containing the
remainder of the record in case it is not the next consecutive block on disk. This
organization is called spanned, because records can span more than one block. Whenever
a record is larger than a block, we must use a spanned organization. If records are not
allowed to cross block boundaries, the organization is called unspanned. This is used with
fixed-length records having B > R because it makes each record start at a known location
in the block, simplifying record processing. For variable-length records, either a spanned or
an unspanned organization can be used. If the average record is large, it is advantageous to

use spanning to reduce the lost space in each block. Figure 13.6 illustrates spanned versus
unspanned organization.

For variable-length records using spanned organization, each block may store a
different number of records. In this case, the blocking factor bfr represents the average
number of records per block for the file. We can use bfr to calculate the number of blocks
b needed for a file of r records:

b = ICr/bfr)l blocks

where the I Cx) l (ceiling function) rounds the value x up to the next integer.

13.4.4 Allocating File Blocks on Disk
There are several standard techniques for allocating the blocks of a file on disk. In contig
uous allocation the file blocks are allocated to consecutive disk blocks. This makes read
ing the whole file very fast using double buffering, but it makes expanding the file
difficult. In linked allocation each file block contains a pointer to the next file block. This
makes it easy to expand the file but makes it slow to read the whole file. A combination of
the two allocates clusters of consecutive disk blocks, and the clusters are linked. Clusters

(a)
b10cki record1 record 2 I record 3

record 6record 5record 4blocki+ 1 IL.- -'- ---J~

(b)
bIocki

blocki + 1

record1

record 4 (rest)

record 2

record 5

record 3

record 6

FIGURE 13.6 Types of record organization. (a) Unspanned. (b) Spanned.

13.5 Operations on Files I 427

aresometimes called file segments or extents. Another possibility is to use indexed allo
cation, where one or more index blocks contain pointers to the actual file blocks. It is
also common to use combinations of these techniques.

13.4.5 File Headers
A file header or file descriptor contains information about a file that is needed by the sys
tem programs that access the file records. The header includes information to determine the
disk addresses of the file blocks as well as to record format descriptions, which may include
field lengths and order of fields within a record for fixed-length unspanned records and field
type codes, separator characters, and record type codes for variable-length records.

To search for a record on disk, one or more blocks are copied into main memory
buffers. Programs then search for the desired record or records within the buffers, using
the information in the file header. If the address of the block that contains the desired
record is not known, the search programs must do a linear search through the file blocks.
Each file block is copied into a buffer and searched either until the record is located or all
the file blocks have been searched unsuccessfully. This can be very time consuming for a
large file. The goal of a good file organization is to locate the block that contains a desired
record with a minimal number of block transfers.

13.5 OPERATIONS ON FILES
Operations on files are usually grouped into retrieval operations and update operations.
Theformer do not change any data in the file, but only locate certain records so that their
field values can be examined and processed. The latter change the file by insertion or dele
tionof records or by modification of field values. In either case, we may have to select one
or more records for retrieval, deletion, or modification based on a selection condition (or
filtering condition), which specifies criteria that the desired record or records must satisfy.

Consider an EMPLOYEE file with fields NAME, SSN, SALARY, JOBCODE, and DEPARTMENT. A simple
selection condition may involve an equality comparison on some field value-for
example, (SSN = '123456789') or (DEPARTMENT = 'Research'). More complex conditions can
involve other types of comparison operators, such as > or 2:j an example is (SALARY 2:

30000). The general case is to have an arbitrary Boolean expression on the fields of the
file as the selection condition.

Search operations on files are generally based on simple selection conditions. A
complex condition must be decomposed by the DBMS (or the programmer) to extract a
simple condition that can be used to locate the records on disk. Each located record is then
checked to determine whether it satisfies the full selection condition. For example, we may
extract the simple condition (DEPARTMENT = 'Research') from the complex condition ((SALARY

2: 30000) AND (DEPARTMENT = 'Research'I): each record satisfying (DEPARTMENT = 'Research') is
located and then tested to see if it also satisfies (SALARY 2: 30000).

When several file records satisfy a search condition, the first record-with respect to
the physical sequence of file records-is initially located and designated the current

428 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

record. Subsequent search operations commence from this record and locate the next
record in the file that satisfies the condition.

Actual operations for locating and accessing file records vary from system to system.
Below, we present a set of representative operations. Typically, high-level programs, such
as DBMS software programs, access the records by using these commands, so we sometimes
refer to program variables in the following descriptions:

• Open: Prepares the file for reading or writing. Allocates appropriate buffers (typically
at least two) to hold file blocks from disk, and retrieves the file header. Sets the file
pointer to the beginning of the file.

• Reset: Sets the file pointer of an open file to the beginning of the file.

• Find (or Locate): Searches for the first record that satisfies a search condition. Trans
fers the block containing that record into a main memory buffer (if it is not already
there). The file pointer points to the record in the buffer and it becomes the current
record. Sometimes, different verbs are used to indicate whether the located record is
to be retrieved or updated.

• Read (or Get): Copies the current record from the buffer to a program variable in the
user program. This command may also advance the current record pointer to the
next record in the file, which may necessitate reading the next file block from disk.

• FindNext: Searches for the next record in the file that satisfies the search condition.
Transfers the block containing that record into a main memory buffer (if it is not
already there). The record is located in the buffer and becomes the current record.

• Delete: Deletes the current record and (eventually) updates the file on disk to reflect
the deletion.

• Modify: Modifies some field values for the current record and (eventually) updates
the file on disk to reflect the modification.

• Insert: Inserts a new record in the file by locating the block where the record is to be
inserted, transferring that block into a main memory buffer (if it is not already there),
writing the record into the buffer, and (eventually) writing the buffer to disk to
reflect the insertion.

• Close: Completes the file access by releasing the buffers and performing any other
needed cleanup operations.

The preceding (except for Open and Close) are called record-at-a-time operations,
because each operation applies to a single record. It is possible to streamline the
operations Find, FindNext, and Read into a single operation, Scan, whose description is
as follows:

• Scan: If the file has just been opened or reset, Scan returns the first record; otherwise
it returns the next record. If a condition is specified with the operation, the retumed
record is the first or next record satisfying the condition.

In database systems, additional set-at-a-time higher-level operations may be applied
to a file. Examples of these are as follows:

13.5 Operations on Files I 429

• FindAll: Locates all the records in the file that satisfy a search condition.

• Find (or Locate) n: Searches for the first record that satisfies a search condition and then
continues to locate the next n - 1 records satisfying the same condition. Transfers the
blocks containing the n records to the main mamory buffer (if not already there).

• FindOrdered: Retrieves all the records in the file in some specified order.

• Reorganize: Starts the reorganization process. As we shall see, some file organizations
require periodic reorganization. An example is to reorder the file records by sorting
them on a specified field.

At this point, it is worthwhile to note the difference between the terms file
organization and access method. A file organization refers to the organization of the data of
a file into records, blocks, and access structures; this includes the way records and blocks
are placed on the storage medium and interlinked. An access method, on the other hand,
provides a group of operations-such as those listed earlier-that can be applied to a file.
Ingeneral, it is possible to apply several access methods to a file organization. Some access
methods, though, can be applied only to files organized in certain ways. For example, we
cannot apply an indexed access method to a file without an index (see Chapter 6).

Usually, we expect to use some search conditions more than others. Some files may
bestatic, meaning that update operations are rarely performed; other, more dynamic files
may change frequently, so update operations are constantly applied to them. A successful
file organization should perform as efficiently as possible the operations we expect to apply
frequently to the file. For example, consider the EMPLOYEE file (Figure 13.5a), which stores
the records for current employees in a company. We expect to insert records (when
employees are hired), delete records (when employees leave the company), and modify
records (say, when an employee's salary or job is changed). Deleting or modifying a record
requires a selection condition to identify a particular record or set of records. Retrieving
oneor more records also requires a selection condition.

If users expect mainly to apply a search condition based on SSN, the designer must
choose a file organization that facilitates locating a record given its SSN value. This may
involve physically ordering the records by SSN value or defining an index on SSN (see
Chapter 6). Suppose that a second application uses the file to generate employees'
paychecks and requires that paychecks be grouped by department. For this application, it
is best to store all employee records having the same department value contiguously,
clustering them into blocks and perhaps ordering them by name within each department.
However, this arrangement conflicts with ordering the records by SSN values. If both
applications are important, the designer should choose an organization that allows both
operations to be done efficiently. Unfortunately, in many cases there may not be an
organization that allows all needed operations on a file to be implemented efficiently. In
such cases a compromise must be chosen that takes into account the expected importance
and mix of retrieval and update operations.

In the following sections and in Chapter 6, we discuss methods for organizing records
ofa file on disk. Several general techniques, such as ordering, hashing, and indexing, are
used to create access methods. In addition, various general techniques for handling
insertions and deletions work with many file organizations.

430 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

13.6 FILES Of UNORDERED RECORDS
(HEAP FILES)

In this simplest and most basic type of organization, records are placed in the file in the
order in which they are inserted, so new records are inserted at the end of the file. Such
an organization is called a heap or pile file.7 This organization is often used with addi
tional access paths, such as the secondary indexes discussed in Chapter 6. It is also used to
collect and store data records for future use.

Inserting a new record is very efficient: the last disk block of the file is copied into a
buffer; the new record is added; and the block is then rewritten back to disk. The address of
the last file block is kept in the file header. However, searching for a record using any search
condition involves a linear search through the file block by block-an expensive
procedure. If only one record satisfies the search condition, then, on the average, a program
will read into memory and search half the file blocks before it finds the record. For a file of b
blocks, this requires searching (bI2) blocks, on average. If no records or several records
satisfy the search condition, the program must read and search all b blocks in the file.

To delete a record, a program must first find its block, copy the block into a buffer,
then delete the record from the buffer, and finally rewrite the block back to the disk. This
leaves unused space in the disk block. Deleting a large number of records in this way results
in wasted storage space. Another technique used for record deletion is to have an extra
byte or bit, called a deletion marker, stored with each record. A record is deleted by setting
the deletion marker to a certain value. A different value of the marker indicates a valid
(not deleted) record. Search programs consider only valid records in a block when
conducting their search. Both of these deletion techniques require periodic reorganization
of the file to reclaim the unused space of deleted records. During reorganization, the file
blocks are accessed consecutively, and records are packed by removing deleted records.
After such a reorganization, the blocks are filled to capacity once more. Another
possibility is to use the space of deleted records when inserting new records, although this
requires extra bookkeeping to keep track of empty locations.

We can use either spanned or unspanned organization for an unordered file, and it
may be used with either fixed-length or variable-length records. Modifying a variable
length record may require deleting the old record and inserting a modified record, because
the modified record may not fit in its old space on disk.

To read all records in order of the values of some field, we create a sorted copy of the
file. Sorting is an expensive operation for a large disk file, and special techniques for
external sorting are used (see Chapter 15).

For a file of unordered fixed-length records using unspanned blocks and contiguous
allocation, it is straightforward to access any record by its position in the file. If the file
records are numbered 0,1,2, ... ,r - 1 and the records in each block are numbered 0,1,
... , bfr - 1, where bfr is the blocking factor, then the ith record of the file is located in
block l(iibfr)J and is the (i mod bfr)th record in that block. Such a file is often called a
relative or direct file because records can easily be accessed directly by their relative

7. Sometimes this organization is called a sequential file.

13.7 Files of Ordered Records (Sorted Files) I 431

positions. Accessing a record by its position does not help locate a record based on a
search condition; however, it facilitates the construction of access paths on the file, such
as the indexes discussed in Chapter 6.

13.7 FILES OF ORDERED RECORDS (SORTED FILES)
We can physically order the records of a file on disk based on the values of one of their
fields-called the ordering field. This leads to an ordered or sequential file.s If the order
ing field is also a key field of the file-a field guaranteed to have a unique value in each
record-then the field is called the ordering key for the file. Figure 13.7 shows an ordered
file with NAME as the ordering key field (assuming that employees have distinct names).

Ordered records have some advantages over unordered files. First, reading the records
in order of the ordering key values becomes extremely efficient, because no sorting is
required. Second, finding the next record from the current one in order of the ordering
key usually requires no additional block accesses, because the next record is in the same
block as the current one (unless the current record is the last one in the block). Third,
using a search condition based on the value of an ordering key field results in faster access
when the binary search technique is used, which constitutes an improvement over linear
searches, although it is not often used for disk files.

A binary search for disk files can be done on the blocks rather than on the records.
Suppose that the file has b blocks numbered 1, 2, ... , b; the records are ordered by
ascending value of their ordering key field; and we are searching for a record whose
ordering key field value is K. Assuming that disk addresses of the file blocks are available
inthe file header, the binary search can be described by Algorithm 13.1. A binary search
usually accesses logz(b) blocks, whether the record is found or not-an improvement over
linear searches, where, on the average, (bI2) blocks are accessed when the record is found
and bblocks are accessed when the record is not found.

Algorithm 13.1: Binary search on an ordering key of a disk file.

7 f- 1; U f--- b; (* b is the number of file blocks*)
while (u $ 7) do

begi n i f--- (7 + u) di v 2;
read block i of the file into the buffer;
if K < (ordering key field value of the first record in block i)
then u f--- i 2 1
else if K > (ordering key field value of the 7ast record in block i)

then 7 f--- i + 1
else if the record with ordering key field value = K is in the buffer

then goto found
else goto notfound;

end;
gato notfound;

8. The termsequential file has also been used to refer to unordered files.

432 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

NAME SSN BIRTHDATE JOB SALARY SEX

block 1

block2

bJock3

block4

block5

block6

Aaron, Ed I I I I I
Abbott, Diane I I I I I···
Acosta, Marc I I I I I

Adams,John I I I I I
Adams, Robin I I I I I···
Akers, Jan I I I I I

Alexander, Ed I I j I I
Alfred, Bob I I I I I···
AIIen,Sam I I I I I

Allen, Troy I I I I I
Anders, Keith I I I I I···
Anderson, Rob I I I I I

Anderson, zach I I I I I
Anaeli,Joe I I I I I···
Archer, Sue I I I I I

Amold,Mack
, I , , I

Arnold, Steven I I I I I···
Atkins, Timothv I I I I I

blockn-1

I

Wong,James

~;Wood, Donald

Woods, Manny

blockn Wright, Pam I I I I I
Wyatt, Charles I I I I I···
Zimmer, Bvron I I I I I

FIGURE 13.7 Some blocks of an ordered (sequential) file of EMPLOYEE records
with NAME as the ordering key field.

13.7 Files of Ordered Records (Sorted Files) I 433

A search criterion involving the conditions .>, <, 2, and :s:; on the ordering field is
quite efficient, since the physical ordering of records means that all records satisfying the
condition are contiguous in the file. For example, referring to Figure 13.9, if the search
criterion is (NAME < 'G')-where < means alphabetically before-the records satisfying the
search criterion are those from the beginning of the file up to the first record that has a
NAME value starting with the letter G.

Ordering does not provide any advantages for random or ordered access of the
records based on values of the other nonordering fields of the file. In these cases we do a
linear search for random access. To access the records in order based on a nonordering
field, it is necessary to create another sorted copy-in a different order-of the file.

Inserting and deleting records are expensive operations for an ordered file because
the records must remain physically ordered. To insert a record, we must find its correct
position in the file, based on its ordering field value, and then make space in the file to
insert the record in that position. For a large file this can be very time consuming because,
on the average, half the records of the file must be moved to make space for the new
record. This means that half the file blocks must be read and rewritten after records are
moved among them. For record deletion, the problem is less severe if deletion markers
and periodic reorganization are used.

One option for making insertion more efficient is to keep some unused space in each
block for new records. However, once this space is used up, the original problem
resurfaces. Another frequently used method is to create a temporary unordered file called
anoverflow or transaction file. With this technique, the actual ordered file is called the
main or master file. New records are inserted at the end of the overflow file rather than in
their correct position in the main file. Periodically, the overflow file is sorted and merged
with the master file during file reorganization. Insertion becomes very efficient, but at the
cost of increased complexity in the search algorithm. The overflow file must be searched
using a linear search if, after the binary search, the record is not found in the main file.
For applications that do not require the most up-to-date information, overflow records
can be ignored during a search.

Modifying a field value of a record depends on two factors: (1) the search
condition to locate the record and (2) the field to be modified. If the search condition
involves the ordering key field, we can locate the record using a binary search;
otherwise we must do a linear search. A nonordering field can be modified by
changing the record and rewriting it in the same physical location on disk-assuming
fixed-length records. Modifying the ordering field means that the record can change
its position in the file, which requires deletion of the old record followed by insertion
ofthe modified record.

Reading the file records in order of the ordering field is quite efficient if we ignore
the records in overflow, since the blocks can be read consecutively using double
buffering. To include the records in overflow, we must merge them in their correct
positions; in this case, we can first reorganize the file, and then read its blocks
sequentially. To reorganize the file, first sort the records in the overflow file, and then
merge them with the master file. The records marked for deletion are removed during
thereorganization.

434 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

TABLE 13.2 AVERAGE ACCESS TIMES FOR BASIC FILE ORGANIZATIONS

TYPE OF ORGANIZATION ACCESS/SEARCH METHOD AVERAGE TIME TO ACCESS

A SPECIFIC RECORD

Heap (Unordered)

Ordered
Ordered

Sequential scan (Linear
Search)
Sequential scan
Binary Search

b/2

b/2
logz b

Table 13.2 summarizes the average access time in block accesses to find a specific
record in a file with b blocks.

Ordered files are rarely used in database applications unless an additional access
path, called a primary index, is used; this results in an indexed.sequential file. This
further improves the random access time on the ordering key field. We discuss
indexes in Chapter 14.

13.8 HASHING TECHNIQUES
Another type of primary file organization is based on hashing, which provides very fast
access to records on certain search conditions. This organization is usually called a hash
file.9 The search condition must be an equality condition on a single field, called the hash
field of the file. In most cases, the hash field is also a key field of the file, in which case it is
called the hash key. The idea behind hashing is to provide a function h, called a hash
function or randomizing function, that is applied to the hash field value of a record and
yields the address of the disk block in which the record is stored. A search for the record
within the block can be carried out in a main memory buffer. For most records, we need
only a single-block access to retrieve that record.

Hashing is also used as an internal search structure within a program whenever a
group of records is accessed exclusively by using the value of one field. We describe the
use of hashing for internal files in Section 13.9.1; then we show how it is modified to store
external files on disk in Section 13.9.2. In Section 13.9.3 we discuss techniques for
extending hashing to dynamically growing files.

13.8.1 Internal Hashing
For internal files, hashing is typically implemented as a hash table through the use of an
array of records. Suppose that the array index range is from 0 to M - 1 (Figure 13.8a)i
then we have M slots whose addresses correspond to the array indexes. We choose a hash
function that transforms the hash field value into an integer between 0 and M - 1.One
common hash function is the h(K) = K mod M function, which returns the remainder of

9. A hash file has also been called a direct file.

13.8 Hashing Techniques I 435

(a) NAME SSN JOB SALARY

o
1

2

3

···
M-2

M-1

datafields(b) overflow pointer

;I--ILIL
M+4

I:?': I
overflow
space

r----------+---Il

M-2

M-1

M

M+1

M+2

M+O-2

M+O-1

• nullpointer = -1 .
• overflow pointer refers to position ofnextrecord in linked list.

FIGURE 13.8 Internal hashing data structures. (a) Array of M positions for use in internal hashing.
(b) Collision resolution by chaining records.

an integer hash field value K after division by M; this value is then used for the record
address.

Noninteger hash field values can be transformed into integers before the mod
function is applied. For character strings, the numeric (ASCII) codes associated with
characters can be used in the transformation-for example, by multiplying those code
values. For a hash field whose data type is a string of 20 characters, Algorithm 13.2a can
be used to calculate the hash address. We assume that the code function returns the

436 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

numeric code of a character and that we are given a hash field value K of type K: array
[1..20] of char (in PASCAL) or charK[20] (in C).

Algorithm 13.2 Two simple hashing algorithms. (a) Applying the mod hash func
tion to a character string K. (b) Collision resolution by open addressing.

(a) temp (,- 1;
for i (,- 1 to 20 do temp (,- temp * code(K[i]) mod M;
hash_address (,- temp mod M;

(b) i (,- hash_address (K); a (,- i;
if location i is occupied

then begin i (,- (i + 1) mod M;
while (i fi a) and location i is occupied

do i (,- (i + 1) mod M;
if (i = a) then all positions are full

else new_hash_address (,- i;
end;

Other hashing functions can be used. One technique, called folding, involves
applying an arithmetic function such as addition or a logical function such as exclusive or
to different portions of the hash field value to calculate the hash address. Another
technique involves picking some digits of the hash field value-for example, the third,
fifth, and eighth digits-to form the hash address. to The problem with most hashing
functions is that they do not guarantee that distinct values will hash to distinct addresses,
because the hash field space-the number of possible values a hash field can take-is
usually much larger than the address space-the number of available addresses for
records. The hashing function maps the hash field space to the address space.

A collision occurs when the hash field value of a record that is being inserted hashes
to an address that already contains a different record. In this situation, we must insert the
new record in some other position, since its hash address is occupied. The process of
finding another position is called collision resolution. There are numerous methods for
collision resolution, including the following:

• Open addressing: Proceeding from the occupied position specified by the hash address,
the program checks the subsequent positions in order until an unused (empty) posi
tion is found. Algorithm 13.2b may be used for this purpose.

• Chaining: For this method, various overflow locations are kept, usually by extending
the array with a number of overflow positions. In addition, a pointer field is addedto
each record location. A collision is resolved by placing the new record in an unused
overflow location and setting the pointer of the occupied hash address location to the
address of that overflow location. A linked list of overflow records for each hash
address is thus maintained, as shown in Figure 13.8b.

• Multiple hashing: The program applies a second hash function if the first results ina
collision. If another collision results, the program uses open addressing or applies a
third hash function and then uses open addressing if necessary.

10. A detailed discussion of hashing functions is outside the scopeof our presentation.

13.8 Hashing Techniques I 437

Each collision resolution method requires its own algorithms for insertion, retrieval,
anddeletion of records. The algorithms for chaining are the simplest. Deletion algorithms
for open addressing are rather tricky. Data structures textbooks discuss internal hashing
algorithms in more detail.

The goal of a good hashing function is to distribute the records uniformly over the
address space so as to minimize collisions while not leaving many unused locations.
Simulation and analysis studies have shown that it is usually best to keep a hash table
between 70 and 90 percent full so that the number of collisions remains low and we do
not waste too much space. Hence, if we expect to have r records to store in the table, we
should choose M locations for the address space such that (riM) is between 0.7 and 0.9. It
may also be useful to choose a prime number for M, since it has been demonstrated that
this distributes the hash addresses better over the address space when the mod hashing
function is used. Other hash functions may require M to be a power of 2.

13.8.2 External Hashing for Disk Files
Hashing for disk files is called external hashing. To suit the characteristics of disk storage,
the target address space is made of buckets, each of which holds multiple records. A
bucket is either one disk block or a cluster of contiguous blocks. The hashing function
maps a key into a relative bucket number, rather than assign an absolute block address to
the bucket. A table maintained in the file header converts the bucket number into the
correspondingdisk block address, as illustrated in Figure 13.9.

The collision problem is less severe with buckets, because as many records as will fit
ina bucket can hash to the same bucket without causing problems. However, we must
make provisions for the case where a bucket is filled to capacity and a new record being
inserted hashes to that bucket. We can use a variation of chaining in which a pointer is
maintained in each bucket to a linked list of overflow records for the bucket, as shown in

block
address
ondisk

bucket
number

0f----_-l
1
2f-----~

M-2
f-------l

M-1 '--- ---J

FIGURE 13.9 Matching bucket numbers to disk block addresses.

D
D
D

438 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

Figure 13.10. The pointers in the linked list should be record pointers, which include
both a block address and a relative record position within the block.

Hashing provides the fastest possible access for retrieving an arbitrary record given
the value of its hash field. Although most good hash functions do not maintain records in
order of hash field values, some functions-ealled order preserving-do. A simple
example of an order preserving hash function is to take the leftmost three digits of an
invoice number field as the hash address and keep the records sorted by invoice number
within each bucket. Another example is to use an integer hash key directly as an index to
a relative file, if the hash key values fill up a particular interval; for example, if employee
numbers in a company are assigned as 1, 2, 3, ... up to the total number of employees, we
can use the identity hash function that maintains order. Unfortunately, this only works if
keys are generated in order by some application.

The hashing scheme described is called static hashing because a fixed number of
buckets M is allocated. This can be a serious drawback for dynamic files. Suppose that we
allocate M buckets for the address space and let m be the maximum number of records that
can fit in one bucket; then at most (rn * M) records will fit in the allocated space. If the

main
buckets

null

null

overflow
buckets

null

3401
4601

I record pointer
~

"::'

v:
981 record pointer 1321

record pointer
761

182 record pointer
91

I record pointer ·
(··

22 652 record pointer r172 record pointer

522 record pointer
I record pointer

bucket0

bucket1

bucket 2

(pointers areto records
within the overflow blocks)

3991
89 1

I record pointer '1

bucket9

"::' null

FIGURE 13.10 Handling overflow for buckets by chaining.

13.8 Hashing Techniques I 439

numberof records turns out to be substantially fewer than (rn * M), we are left with a lot of
unused space. On the other hand, if the number of records increases to substantially more
than (m * M), numerous collisions will result and retrieval will be slowed down because of
the long lists of overflow records. In either case, we may have to change the number of
blocks M allocated and then use a new hashing function (based on the new value of M) to
redistribute the records. These reorganizations can be quite time consuming for large files.
Newer dynamic file organizations based on hashing allow the number of buckets to vary
dynamically with only localized reorganization (see Section 13.8.3).

When using external hashing, searching for a record given a value of some field other
than the hash field is as expensive as in the case of an unordered file. Record deletion can
be implemented by removing the record from its bucket. If the bucket has an overflow
chain, we can move one of the overflow records into the bucket to replace the deleted
record. If the record to be deleted is already in overflow, we simply remove it from the
linked list. Notice that removing an overflow record implies that we should keep track of
empty positions in overflow. This is done easily by maintaining a linked list of unused
overflow locations.

Modifying a record's field value depends on two factors: (1) the search condition to
locate the record and (2) the field to be modified. If the search condition is an equality
comparison on the hash field, we can locate the record efficiently by using the hashing
function; otherwise, we must do a linear search. A nonhash field can be modified by
changing the record and rewriting it in the same bucket. Modifying the hash field means
that the record can move to another bucket, which requires deletion of the old record
followed by insertion of the modified record.

13.8.3 Hashing Techniques That Allow Dynamic
File Expansion

Amajor drawback of the static hashing scheme just discussed is that the hash address
space is fixed. Hence, it is difficult to expand or shrink the file dynamically. The schemes
described in this section attempt to remedy this situation. The first scheme-extendible
hashing-stores an access structure in addition to the file, and hence is somewhat similar
to indexing (Chapter 6). The main difference is that the access structure is based on the
values that result after application of the hash function to the search field. In indexing,
theaccessstructure is based on the values of the search field itself. The second technique,
called linear hashing, does not require additional access structures.

These hashing schemes take advantage of the fact that the result of applying a
hashing function is a nonnegative integer and hence can be represented as a binary
number. The access structure is built on the binary representation of the hashing
function result, which is a string of bits. We call this the hash value of a record. Records
are distributed among buckets based on the values of the leading bits in their hash values.

Extendible Hashing. In extendible hashing, a type of directory-an array of 2d

bucket addresses-is maintained, where d is called the global depth of the directory. The
integer value corresponding to the first (high-order) d bits of a hash value is used as an

440 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

DATA FILEBUCKETS
localdepth 01
each bucket

bucket for records
whose hash values
startwith110

bucket lor records
whose hash values
startwith10

bucket lor records
whosehashvalues
startwith001

bucket lor records
whose hashvalues
startwith000

bucket for records
whose hash values
startwith01

Id'=3

d'-3 I I I

DIRECTORY

~ d'=2

•....
......-

d'=2

....

....

Id'=3 I r I
I

Id'=3

000
001

010

011
100

101

110

111

globaldepth
d=3

bucket lor records
whose hash values
startwith111

FIGVRE 13.11 Structure of the extendible hashing scheme.

index to the array to determine a directory entry, and the address in that entry determines
the bucket in which the corresponding records are stored. However, there does not have
to be a distinct bucket for each of the 2d directory locations. Several directory locations
with the same first d' bits for their hash values may contain the same bucket address if all
the records that hash to these locations fit in a single bucket. A local depth d'-stored
with each bucket-specifies the number of bits on which the bucket contents are based.
Figure 13.13 shows a directory with global depth d = 3.

The value of d can be increased or decreased by one at a time, thus doubling or
halving the number of entries in the directory array. Doubling is needed if a bucket,
whose local depth d' is equal to the global depth d, overflows. Halving occurs if d > d' for
all the buckets after some deletions occur. Most record retrievals require two block
accesses-one to the directory and the other to the bucket.

To illustrate bucket splitting, suppose that a new inserted record causes overflow in
the bucket whose hash values start with OI-the third bucket in Figure 13.13. The

13.8 Hashing Techniques I 441

records will be distributed between two buckets: the first contains all records whose hash
values start with 010, and the second all those whose hash values start with OIl. Now the
two directory locations for 010 and 011 point to the two new distinct buckets. Before the
split, they pointed to the same bucket. The local depth d' of the two new buckets is 3,
which is one more than the local depth of the old bucket.

If a bucket that overflows and is split used to have a local depth d' equal to the global
depth d of the directory, then the size of the directory must now be doubled so that we can
use an extra bit to distinguish the two new buckets. For example, if the bucket for records
whose hash values start with 111 in Figure 13.11 overflows, the two new buckets need a
directory with global depth d = 4, because the two buckets are now labeled 1110 and
1111, and hence their local depths are both 4. The directory size is hence doubled, and
each of the other original locations in the directory is also split into two locations, both of
which have the same pointer value as did the original location.

The main advantage of extendible hashing that makes it attractive is that the
performance of the file does not degrade as the file grows, as opposed to static external
hashing where collisions increase and the corresponding chaining causes additional
accesses. In addition, no space is allocated in extendible hashing for future growth, but
additional buckets can be allocated dynamically as needed. The space overhead for the
directory table is negligible. The maximum directory size is 2k, where k is the number of
bits in the hash value. Another advantage is that splitting causes minor reorganization in
most cases, since only the records in one bucket are redistributed to the two new buckets.
The only time a reorganization is more expensive is when the directory has to be doubled
(or halved). A disadvantage is that the directory must be searched before accessing the
buckets themselves, resulting in two block accesses instead of one in static hashing. This
performance penalty is considered minor and hence the scheme is considered quite
desirable for dynamic files.

Linear Hashing. The idea behind linear hashing is to allow a hash file to expand and
shrink its number of buckets dynamically without needing a directory. Suppose that the
file starts with M buckets numbered 0, 1, ... , M - 1 and uses the mod hash function
h(K) = K mod M; this hash function is called the initial hash function hi' Overflow
because of collisions is still needed and can be handled by maintaining individual
overflow chains for each bucket. However, when a collision leads to an overflow record in
any file bucket, the first bucket in the file-bucket O-is split into two buckets: the
original bucket 0 and a new bucket M at the end of the file. The records originally in
bucket 0 are distributed between the two buckets based on a different hashing function
hi+t(K) = K mod 2M. A key property of the two hash functions hi and h i+1 is that any
records that hashed to bucket 0 based on hi will hash to either bucket 0 or bucket M based
on hi+I; this is necessary for linear hashing to work.

Asfurther collisions lead to overflow records, additional buckets are split in the linear
order 1, 2, 3, If enough overflows occur, all the original file buckets 0, 1, ... , M - 1
will have been split, so the file now has 2M instead of M buckets, and all buckets use the
hash function hi+I' Hence, the records in overflow are eventually redistributed into
regular buckets, using the function h i+1 via a delayed split of their buckets. There is no
directory; only a value n-which is initially set to 0 and is incremented by 1 whenever a

442 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

split occurs-is needed to determine which buckets have been split. To retrieve a record
with hash key value K, first apply the function hi to K; if hj(K) < n, then apply the
function h j+ 1 on K because the bucket is already split. Initially, n = 0, indicating that the
function h j applies to all buckets; n grows linearly as buckets are split.

When n = M after being incremented, this signifies that all the original buckets have
been split and the hash function h j+1 applies to all records in the file. At this point, n is
reset to 0 (zero), and any new collisions that cause overflow lead to the use of a new
hashing function hi+ 2(K) =K mod 4M. In general, a sequence of hashing functions hi+/K)
= K mod (2iM) is used, where j = 0, 1, 2, ... ; a new hashing function h i+i+ 1 is needed
whenever all the buckets 0, 1, ... , (2iM) - 1 have been split and n is reset to O. The
search for a record with hash key value K is given by Algorithm 13.3.

Splitting can be controlled by monitoring the file load factor instead of by splitting
whenever an overflow occurs. In general, the file load factor 1can be defined as 1= rf(bfr *
N), where r is the current number of file records, bfr is the maximum number of records that
can fit in a bucket, and N is the current number of file buckets. Buckets that have been split
can also be recombined if the load of the file falls below a certain threshold. Blocks are
combined linearly, and N is decremented appropriately. The file load can be used to trigger
both splits and combinations; in this manner the file load can be kept within a desired
range. Splits can be triggered when the load exceeds a certain threshold-say, 0.9-and
combinations can be triggered when the load falls below another threshold-say, 0.7.

Algorithm 13.3: The search procedure for linear hashing.

if n = 0
then m f- hj (K) ('" m is the hash value of reco rd with hash key K I,)
else begin

m f- hj(K);
if m < n then m f- hj +1 (K)
end;

search the bucket whose hash value is m (and its overflow, if any);

13.9 OTHER PRIMARY FILE ORGANIZATIONS

13.9.1 Files of Mixed Records
The file organizations we have studied so far assume that all records of a particular fileare
of the same record type. The records could be of EMPLOYEES, PROJECTS, STUDENTS, or DEPARTMENTS,

but each file contains records of only one type. In most database applications, we encoun
ter situations in which numerous types of entities are interrelated in various ways, as we
saw in Chapter 3. Relationships among records in various files can be represented by con
necting fields. I I For example, a STUDENT record can have a connecting field MAJORDEPT whose

11. The concept offoreign keys in the relational model (Chapter 5) and references among objects
in object-oriented models (Chapter 20) are examplesof connecting fields.

13.10 Parallelizing Disk Access Using RAID Technology I 443

value gives the name of the DEPARTMENT in which the student is majoring. This MAJOROEPT

field refers to a DEPARTMENT entity, which should be represented by a record of its own in the
DEPARTMENT file. If we want to retrieve field values from two related records, we must
retrieve one of the records first. Then we can use its connecting field value to retrieve the
related record in the other file. Hence, relationships are implemented by logical field ref
erences among the records in distinct files.

File organizations in object DBMSs, as well as legacy systems such as hierarchical
and network DBMSs, often implement relationships among records as physical
relationships realized by physical contiguity (or clustering) of related records or by
physical pointers. These file organizations typically assign an area of the disk to hold
records of more than one type so that records of different types can be physically
clustered on disk. If a particular relationship is expected to be used very frequently,
implementing the relationship physically can increase the system's efficiency at
retrieving related records. For example, if the query to retrieve a DEPARTMENT record and
all records for STUDENTS majoring in that department is very frequent, it would be
desirable to place each DEPARTMENT record and its cluster of STUDENT records contiguously
on disk in a mixed file. The concept of physical clustering of object types is used in
object DBMSs to store related objects together in a mixed file.

To distinguish the records in a mixed file, each record has-in addition to its field
values-a record type field, which specifies the type of record. This is typically the
first field in each record and is used by the system software to determine the type of
record it is about to process. Using the catalog information, the DBMS can determine
the fields of that record type and their sizes, in order to interpret the data values in
the record.

13.9.2 B-Trees and Other Data Structures as
Primary Organization

Otherdata structures can be used for primary file organizations. For example, if both the
record size and the number of records in a file are small, some DBMSs offer the option of a
B-tree data structure as the primary file organization. We will describe B-trees in Section
14.3.1, when we discuss the use of the B-tree data structure for indexing. In general, any
data structure that can be adapted to the characteristics of disk devices can be used as a
primary file organization for record placement on disk.

13.10 PARALLELIZING DISK ACCESS USING
RAID TECHNOLOGY

With the exponential growth in the performance and capacity of semiconductor devices
and memories, faster microprocessors with larger and larger primary memories are contin
ually becoming available. To match this growth, it is natural to expect that secondary

444 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

storage technology must also take steps to keep up in performance and reliability with
processor technology.

A major advance in secondary storage technology is represented by the development
of RAID, which originally stood for Redundant Arrays of Inexpensive Disks. Lately, the
"I" in RAID is said to stand for Independent. The RAID idea received a very positive
endorsement by industry and has been developed into an elaborate set of alternative RAID

architectures (RAID levels 0 through 6). We highlight the main features of the technology
below.

The main goal of RAID is to even out the widely different rates of performance
improvement of disks against those in memory and microprocessors.l/ While RAM

capacities have quadrupled every two to three years, disk access timesare improving at less
than 10 percent per year, and disk transfer rates are improving at roughly 20 percent per
year. Disk capacities are indeed improving at more than 50 percent per year, but the speed
and access time improvements are of a much smaller magnitude. Table 13.3 shows trends
in disk technology in terms of 1993 parameter values and rates of improvement, as well as
where these parameters are in 2003.

A second qualitative disparity exists between the ability of special microprocessors
that cater to new applications involving processing of video, audio, image, and spatial
data (see Chapters 24 and 29 for details of these applications), with corresponding lackof
fast access to large, shared data sets.

The natural solution is a large array of small independent disks acting as a single
higher-performance logical disk. A concept called data striping is used, which utilizes
parallelism to improve disk performance. Data striping distributes data transparently over
multiple disks to make them appear as a single large, fast disk. Figure 13.12 shows a file
distributed or striped over four disks. Striping improves overall I/O performance by

TABLE 13.3 TRENDS IN DISK TECHNOLOGY

Areal density
Linear density
Inter-track density
Capacity

(3.5" form factor)
Transfer rate
Seek time

1993 PARAMETER VALUES'

50-150 Mbits/sq. inch
40,000-60,000 bits/inch
1500-3000 tracks/inch
100-2000 MB

3-4 MB/s
7-20 ms

HISTORICAL RATE OF

IMPROVEMENT PER

YEAR (%)"

27
13
10
27

22
8

CURRENT (2003)
VALUES"

36 Gbits/sq. inch
570 Kbits/inch
64,000 tracks/inch
146 GB

43-78 MB/sec
3.5-6 msec

*Source: From Chen, Lee, Gibson, Katz, and Patterson (1994), ACM Computing Surveys, Vol. 26, No.2 (June 1994).
Reprinted by permission.

**Source: IBM Ultrastar 36XP and ISZX hard disk drives.

-------_._..--...-._.-------------------- ----

12. This was predicted by Gordon Bell to be about 40 percent every year between 1974 and 1984
and is now supposed to exceed 50 percent per year.

13.10 Parallelizing Disk Access Using RAID Technology I 445

disk 0 disk 1 disk 2 disk 3

FIGURE 13.12 Data striping. File A is striped across four disks.

allowing multiple I/Os to be serviced in parallel, thus providing high overall transfer rates.
Data striping also accomplishes load balancing among disks. Moreover, by storing
redundant information on disks using parity or some other error correction code,
reliability can be improved. In Sections 13.3.1 and 13.3.2, we discuss how RAID achieves
the two important objectives of improved reliability and higher performance. Section
13.3.3 discusses RAID organizations.

13.10.1 Improving Reliability with RAID

For an array of n disks, the likelihood of failure is n times as much as that for one disk.
Hence, if the MTTF (Mean Time To Failure) of a disk drive is assumed to be 200,000 hours
orabout 22.8 years (typical times range up to 1 million hours), that of a bank of 100 disk
drives becomes only 2000 hours or 83.3 days. Keeping a single copy of data in such an
array of disks will cause a significant loss of reliability. An obvious solution is to employ
redundancy of data so that disk failures can be tolerated. The disadvantages are many:
additional I/O operations for write, extra computation to maintain redundancy and to do
recovery from errors, and additional disk capacity to store redundant information.

One technique for introducing redundancy is called mirroring or shadowing. Data is
written redundantly to two identical physical disks that are treated as one logical disk.
When data is read, it can be retrieved from the disk with shorter queuing, seek, and
rotational delays. If a disk fails, the other disk is used until the first is repaired. Suppose
the mean time to repair is 24 hours, then the mean time to data loss of a mirrored disk
system using 100 disks with MTTF of 200,000 hours each is (200,000)2/(2 * 24) = 8.33 *
108 hours, which is 95,028 vears.l ' Disk mirroring also doubles the rate at which read
requests are handled, since a read can go to either disk. The transfer rate of each read,
however, remains the same as that for a single disk.

Another solution to the problem of reliability is to store extra information that is not
normally needed but that can be used to reconstruct the lost information in case of disk
failure. The incorporation of redundancy must consider two problems: (1) selecting a
technique for computing the redundant information, and (2) selecting a method of
distributing the redundant information across the disk array. The first problem is
addressed by using error correcting codes involving parity bits, or specialized codes such as

13. The formulas for MTIF calculations appear in Chen et al. (1994).

446 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

Hamming codes. Under the parity scheme, a redundant disk may be considered as having
the sum of all the data in the other disks. When a disk fails, the missing information can
be constructed by a process similar to subtraction.

For the second problem, the two major approaches are either to store the redundant
information on a small number of disks or to distribute it uniformly across all disks. The
latter results in better load balancing. The different levels of RAID choose a combination
of these options to implement redundancy, and hence to improve reliability.

13.10.2 Improving Performance with RAID

The disk arrays employ the technique of data striping to achieve higher transfer rates. Note
that data can be read or written only one block at a time, so a typical transfer contains 512
bytes. Disk striping may be applied at a finer granularity by breaking up a byte of data into
bits and spreading the bits to different disks. Thus, bit-level data striping consists of split
ting a byte of data and writing bit j to ther disk. With 8-bit bytes, eight physical disks may
be considered as one logical disk with an eightfold increase in the data transfer rate. Each
disk participates in each I/O request and the total amount of data read per request is eight
times as much. Bit-level striping can be generalized to a number of disks that is either a mul
tiple or a factor of eight. Thus, in a four-disk array, bit n goes to the disk which is (n mod 4).

The granularity of data interleaving can be higher than a bit; for example, blocks of a
file can be striped across disks, giving rise to block-level striping. Figure 13.12 shows block
level data striping assuming the data file contained four blocks. With block-level striping,
multiple independent requests that access single blocks (small requests) can be serviced in
parallel by separate disks, thus decreasing the queuing time of I/O requests. Requests that
access multiple blocks (large requests) can be parallelized, thus reducing their response time.
In general, the more the number of disks in an array, the larger the potential performance
benefit. However, assuming independent failures, the disk array of 100 disks collectively has
a 1/100rh the reliability of a single disk. Thus, redundancy via error-correcting codes and
disk mirroring is necessary to provide reliability along with high performance.

13.10.3 RAID Organizations and levels
Different RAID organizations were defined based on different combinations of the two fac
tors of granularity of data interleaving (striping) and pattern used to compute redundant
information. In the initial proposal, levels 1 through 5 of RAID were proposed, and two
additionallevels-O and 6-were added later.

RAID level 0 uses data striping, has no redundant data and hence has the best write
performance since updates do not have to be duplicated. However, its read performance is
not as good as RAID level 1, which uses mirrored disks. In the latter, performance
improvement is possible by scheduling a read request to the disk with shortest expected
seek and rotational delay. RAID level 2 uses memory-style redundancy by using Hamming
codes, which contain parity bits for distinct overlapping subsets of components. Thus, in
one particular version of this level, three redundant disks suffice for four original disks
whereas, with mirroring-as in level I-four would be required. Level 2 includes both

13.11 Storage Area Networks I 447

error detection and correction, although detection is generally not required because
brokendisks identify themselves.

RAID level 3 uses a single parity disk relying on the disk controller to figure out which
disk has failed. Levels 4 and 5 use block-level data striping, with level 5 distributing data
and parity information across all disks. Finally, RAID level 6 applies the so-called P + Q
redundancy scheme using Reed-Soloman codes to protect against up to two disk failures
by using just two redundant disks. The seven RAID levels (0 through 6) are illustrated in
Figure 13.13 schematically.

Rebuilding in case of disk failure is easiest for RAID level 1. Other levels require the
reconstruction of a failed disk by reading multiple disks. Level 1 is used for critical
applications such as storing logs of transactions. Levels 3 and 5 are preferred for large
volume storage, with level 3 providing higher transfer rates. Most popular use of RAID
technologycurrently uses level 0 (with striping), level 1 (with mirroring) and levelS with
an extra drive for parity. Designers of a RAID setup for a given application mix have to
confront many design decisions such as the level of RAID, the number of disks, the choice
ofparity schemes, and grouping of disks for block-level striping. Detailed performance
studies on small reads and writes (referring to I/O requests for one striping unit) and large
reads and writes (referring to I/O requests for one stripe unit from each disk in an error
correction group) have been performed.

13.11 STORAGE AREA NETWORKS
With the rapid growth of electronic commerce, Enterprise Resource Planning (ERr) sys
tems that integrate application data across organizations, and data warehouses that keep
historical aggregate information (see Chapter 27), the demand for storage has gone up
substantially. For today's internet-driven organizations it has become necessary to move
from a static fixed data center oriented operation to a more flexible and dynamic infra
structure for their information processing requirements. The total cost of managing all
data is growing so rapidly that in many instances the cost of managing server attached
storage exceeds the cost of the server itself. Furthermore, the procurement cost of storage
is only a small fraction-typically, only 10 to 15 percent of the overall cost of storage
management. Many users of RAID systems cannot use the capacity effectively because it
has to be attached in a fixed manner to one or more servers. Therefore, large organiza
tions are moving to a concept called Storage Area Networks (SANs). In a SAN, online
storage peripherals are configured as nodes on a high-speed network and can be attached
and detached from servers in a very flexible manner. Several companies have emerged as
SAN providers and supply their own proprietary topologies. They allow storage systems to
be placed at longer distances from the servers and provide different performance and con
nectivity options. Existing storage management applications can be ported into SAN con
figurations using Fiber Channel networks that encapsulate the legacy SCSI protocol. As a
result, the SAN-attached devices appear as SCSI devices.

Current architectural alternatives for SAN include the following: point-to-point
connections between servers and storage systems via fiber channel, use of a fiber-channel-

448 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

Non-Redundant (RAID Level 0)

Mirrored (RAID Level 1)

Memory-Style ECC (RAID Level 2)

Bit-Interleaved Parity (RAID Level 3)

Block-Interleaved Parity (RAID Level 4)

Block-Interleaved Distribution-Parity (RAID Level 5)

P+Q Redundancy (RAID Level 6)

FIGURE 13.13 Multiple levels of RAID. From Chen, Lee, Gibson, Katz, and
Patterson (1994), ACM Computing Survey, Vol. 26, No.2 (June 1994). Reprinted
with permisson.

13.12 Summary I 449

switch to connect multiple RAID systems, tape libraries, etc. to servers, use of fiber channel
hubs and switches to connect servers and storage systems in different configurations.
Organizations can slowly move up from simpler topologies to more complex ones by adding
servers and storage devices as needed. We do not provide further details here because they
vary among vendors of SANs. The main advantages claimed are the following:

• Flexible many-to-many connectivity among servers and storage devices using fiber
channel hubs and switches

• Up to 10 km separation between a server and a storage system using appropriate fiber
optic cables.

• Better isolation capabilities allowing nondisruptive addition of new peripherals and
servers.

SANs are growing very rapidly, but are still faced with many problems such as combining
storage options from multiple vendors and dealing with evolving standards of storage
management software and hardware. Most major companies are evaluating SAN as a via
ble option for database storage.

13.12 SUMMARY
We began this chapter by discussing the characteristics of memory hierarchies and then
concentrated on secondary storage devices. In particular, we focused on magnetic disks
because they are used most often to store online database files.

Dataon disk is stored in blocks; accessing a disk block is expensive because of the seek
time, rotational delay, and block transfer time. Double buffering can be used when accessing
consecutive disk blocks, to reduce the average block access time. Other disk parameters are
discussed in Appendix B. We presented different ways of storing records of a file on disk.
Records of a file are grouped into disk blocks and can be of fixed length or variable length,
spanned or unspanned, and of the same record type or mixed types. We discussed the file
header, which describes the record formats and keeps track of the disk addresses of the file
blocks. Information in the file header is used by system software accessing the file records.

Wethen presented a set of typical commands for accessing individual file records and
discussed the concept of the current record of a file. We discussed how complex record
search conditions are transformed into simple search conditions that are used to locate
records in the file.

Three primary file organizations were then discussed: unordered, ordered, and
hashed. Unordered files require a linear search to locate records, but record insertion is
very simple. We discussed the deletion problem and the use of deletion markers.

Ordered files shorten the time required to read records in order of the ordering field.
The time required to search for an arbitrary record, given the value of its ordering key
field, isalso reduced if a binary search is used. However, maintaining the records in order
makes insertion very expensive; thus the technique of using an unordered overflow file to
reduce the cost of record insertion was discussed. Overflow records are merged with the
master fileperiodically during file reorganization.

450 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

Hashing provides very fast access to an arbitrary record of a file, given the value of its
hash key. The most suitable method for external hashing is the bucket technique, with
one or more contiguous blocks corresponding to each bucket. Collisions causing bucket
overflow are handled by chaining. Access on any nonhash field is slow, and so is ordered
access of the records on any field. We then discussed two hashing techniques for files that
grow and shrink in the number of records dynamically-namely, extendible and linear
hashing.

We briefly discussed other possibilities for primary file organizations, such as B-trees,
and files of mixed records, which implement relationships among records of different
types physically as part of the storage structure. Finally, we reviewed the recent advances
in disk technology represented by RAID (Redundant Arrays of Inexpensive [Independent]
Disks).

Review Questions
13.1. What is the difference between primary and secondary storage?
13.2. Why are disks, not tapes, used to store online database files?
13.3. Define the following terms: disk, disk pack, track, block, cylinder, sector, interblock

gap, read/write head.
13.4. Discuss the process of disk initialization.
13.5. Discuss rhe mechanism used to read data from or write data to the disk.
13.6. What are the components of a disk block address?
13.7. Why is accessing a disk block expensive? Discuss the time components involved

in accessing a disk block.
13.8. Describe the mismatch between processor and disk technologies.
13.9. What are the main goals of the RAID technology? How does it achieve them?

13.10. How does disk mirroring help improve reliability? Give a quantitative example.
13.11. What are the techniques used to improve performance of disks in RAID?
13.12. What characterizes the levels in RAID organization?
13.13. How does double buffering improve block access time?
13.14. What are the reasons for having variable-length records? What types of separator

characters are needed for each?
13.15. Discuss the techniques for allocating file blocks on disk.
13.16. What is the difference between a file organization and an access method?
13.17. What is the difference between static and dynamic files?
13.18. What are the typical record-at-a-time operations for accessing a file? Which of

these depend on the current record of a file?
13.19. Discuss the techniques for record deletion.
13.20. Discuss the advantages and disadvantages of using (a) an unordered file, (b) an

ordered file, and (c) a static hash file with buckets and chaining. Which opera
tions can be performed efficiently on each of these organizations, and which oper
ations are expensive?

13.21. Discuss the techniques for allowing a hash file to expand and shrink dynamically.
What are the advantages and disadvantages of each?

13.22. What are mixed files used for? What are other types of primary file organizations!

Exercises
13.23. Consider a disk with the following characteristics (these are not parameters of any

particular disk unit): block size B = 512 bytes; interblock gap size G = 128 bytes;
number of blocks per track = 20; number of tracks per surface = 400. A disk pack
consists of 15 double-sided disks.
a. What is the total capacity of a track, and what is its useful capacity (excluding

interblock gaps)?
b. How many cylinders are there?
c. What are the total capacity and the useful capacity of a cylinder?
d. What are the total capacity and the useful capacity of a disk pack?
e. Suppose that the disk drive rotates the disk pack at a speed of 2400 rpm (revo

lutions per minute); what are the transfer rate (rr) in bytes/msec and the block
transfer time (btt) in msec? What is the average rotational delay (rd) in msec?
What is the bulk transfer rate? (See Appendix B.)

f. Suppose that the average seek time is 30 msec. How much time does it take
(on the average) in msec to locate and transfer a single block, given its block
address?

g. Calculate the average time it would take to transfer 20 random blocks, and
compare this with the time it would take to transfer 20 consecutive blocks
using double buffering to save seek time and rotational delay.

13.24. A file has r = 20,000 STUDENT records of fixed length. Each record has the following
fields: NAME (30 bytes), SSN (9 bytes), ADDRESS (40 bytes), PHDNE (9 bytes), BIRTHDATE

(8 bytes), SEX (l byte), MAJORDEPTCODE (4 bytes), MINORDEPTCODE (4 bytes), CLASSCODE

(4 bytes, integer), and DEGREEPROGRAM (3 bytes). An additional byte is used as a dele
tion marker. The file is stored on the disk whose parameters are given in Exercise
13.23.
a. Calculate the record size R in bytes.
b. Calculate the blocking factor bfr and the number of file blocks b, assuming an

unspanned organization.
c. Calculate the average time it takes to find a record by doing a linear search on

the file if (i) the file blocks are stored contiguously, and double buffering is
used; (ii) the file blocks are not stored contiguously.

d. Assume that the file is ordered by SSN; calculate the time it takes to search for a
record given its SSN value, by doing a binary search.

13.25. Suppose that only 80 percent of the STUDENT records from Exercise 13.24 have a
value for PHONE, 85 percent for MAJORDEPTCODE, 15 percent for MINORDEPTCODE, and 90
percent for DEGREEPROGRAM; and suppose that we use a variable-length record file.
Each record has a l-byte field type for each field in the record, plus the I-byte dele
tion marker and a I-byte end-at-record marker. Suppose that we use a spanned
record organization, where each block has a 5-byte pointer to the next block (this
space is not used for record storage).
a. Calculate the average record length R in bytes.
b. Calculate the number of blocks needed for the file.

Exercises I 451

452 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

13.26. Suppose that a disk unit has the following parameters: seek time s = 20 msec; rota
tional delay rd = 10 msec; block transfer time bu = 1 msec; block size B = 2400
bytes; interblock gap size G = 600 bytes. An EMPLOYEE file has the following fields:
SSN, 9 bytes; LASTNAME, 20 bytes; FIRSTNAME, 20 bytes; MIDDLE INIT, 1 byte; BIRTHDATE, 10
bytes; ADDRESS, 35 bytes; PHONE, 12 bytes; SUPERVISORSSN, 9 bytes; DEPARTMENT, 4 bytes;
JOBCODE, 4 bytes; deletion marker, 1 byte. The EMPLOYEE file has r = 30,000 records,
fixed-length format, and unspanned blocking. Write appropriate formulas andcal
culate the following values for the above EMPLOYEE file:
a. The record size R (including the deletion marker), the blocking factor bfr, and

the number of disk blocks b.
b. Calculate the wasted space in each disk block because of the unspanned orga

nization.
c. Calculate the transfer rate tr and the bulk transfer rate btr for this disk unit

(see Appendix B for definitions of tr and btr).
d. Calculate the average number of blockaccesses needed to search for an arbitrary

record in the file, using linear search.
e. Calculate in msec the average time needed to search for an arbitrary record in

the file, using linear search, if the file blocks are stored on consecutive disk
blocks and double buffering is used.

f. Calculate in msec the average time needed to search for an arbitrary record in
the file, using linear search, if the file blocks are not stored on consecutive disk
blocks.

g. Assume that the records are ordered via some key field. Calculate the average
number of block accesses and the average time needed to search for an arbitrary
record in the file, using binary search.

13.27. A PARTS file with Parts as hash key includes records with the following Parts val
ues: 2369,3760,4692,4871, 5659, 1821, 1074, 7115, 1620, 2428,3943,4750,
6975, 4981, 9208. The file uses eight buckets, numbered 0 to 7. Each bucket is
one disk block and holds two records. Load these records into the file in the given
order, using the hash function h(K) = K mod 8. Calculate the average number of
block accesses for a random retrieval on Parts.

13.28. Load the records of Exercise 13.27 into expandable hash files based on extendible
hashing. Show the structure of the directory at each step, and the global and local
depths. Use the hash function h(K) = K mod 128.

13.29. Load the records of Exercise 13.27 into an expandable hash file, using linear hash
ing. Start with a single disk block, using the hash function ho = K mod 2°, and
show how the file grows and how the hash functions change as the records are
inserted. Assume that blocks are split whenever an overflow occurs, and showthe
value of n at each stage.

13.30. Compare the file commands listed in Section 13.6 to those available on a file
access method you are familiar with.

13.31. Suppose that we have an unordered file of fixed-length records that uses an
unspanned record organization. Outline algorithms for insertion, deletion, and
modification of a file record. State any assumptions you make.

13.32. Suppose that we have an ordered file of fixed-length records and an unordered
overflow file to handle insertion. Both files use unspanned records. Outline algo
rithms for insertion, deletion, and modification of a file record and for reorganiz
ing the file. State any assumptions you make.

13.33. Can you think of techniques other than an unordered overflow file that can be
used to make insertions in an ordered file more efficient?

13.34. Suppose that we have a hash file of fixed-length records, and suppose that over
flow is handled by chaining. Outline algorithms for insertion, deletion, and modi
fication of a file record. State any assumptions you make.

13.35. Can you think of techniques other than chaining to handle bucket overflow in
external hashing?

13.36. Write pseudocode for the insertion algorithms for linear hashing and for extend
ible hashing.

13.37. Write program code to access individual fields of records under each of the follow
ing circumstances. For each case, state the assumptions you make concerning
pointers, separator characters, and so forth. Determine the type of information
needed in the file header in order for your code to be general in each case.
a. Fixed-length records with unspanned blocking.
b. Fixed-length records with spanned blocking.
c. Variable-length records with variable-length fields and spanned blocking.
d. Variable-length records with repeating groups and spanned blocking.
e. Variable-length records with optional fields and spanned blocking.
f. Variable-length records that allow all three cases in parts c, d, and e.

13.38. Suppose that a file initially contains r = 120,000 records of R = 200 bytes each in
an unsorted (heap) file. The block size B = 2400 bytes, the average seek time s =
16 ms, the average rotational latency rd = 8.3 ms and the block transfer time bu =

0.8 ms. Assume that 1 record is deleted for every 2 records added until the total
number of active records is 240,000.
a. How many block transfers are needed to reorganize the file?
b. How long does it take to find a record right before reorganization?
c. How long does it take to find a record right after reorganization?

13.39. Suppose we have a sequential (ordered) file of 100,000 records where each record
is 240 bytes. Assume that B = 2400 bytes, s = 16 ms, rd = 8.3 ms, and btt = 0.8 ms.
Suppose we want to make X independent random record reads from the file. We
could make X random block reads or we could perform one exhaustive read of the
entire file looking for those X records. The question is to decide when it would be
more efficient to perform one exhaustive read of the entire file than to perform X
individual random reads. That is, what is the value for X when an exhaustive read
of the file is more efficient than random X reads? Develop this as a function of X.

13.40. Suppose that a static hash file initially has 600 buckets in the primary area and
that records are inserted that create an overflow area of 600 buckets. If we reorga
nize the hash file, we can assume that the overflow is eliminated. If the cost of
reorganizing the file is the cost of the bucket transfers (reading and writing all of
the buckets) and the only periodic file operation is the fetch operation, then how

Exercises I 453

454 I Chapter 13 Disk Storage, Basic File Structures, and Hashing

many times would we have to perform a fetch (successfully) to make the reorgani
zation cost-effective? That is, the reorganization cost and subsequent search cost
are less than the search cost before reorganization. Support your answer. Assume
s = 16 ms, rd = 8.3 ms, bts = 1 ms.

13.41. Suppose we want to create a linear hash file with a file load factor of 0.7 and a block
ing factor of 20 records per bucket, which is to contain 112,000 records initially.
a. How many buckets should we allocate in the primary area?
b. What should be the number of bits used for bucket addresses?

Selected Bibliography
Wiederhold (1983) has a detailed discussion and analysis of secondary storage devicesand
file organizations. Optical disks are described in Berg and Roth (1989) and analyzed in
Ford and Christodoulakis 1991. Flash memory is discussed by Dippert and Levy (1993).
Ruemmler and Wilkes (1994) present a survey of the magnetic-disk technology. Most
textbooks on databases include discussions of the material presented here. Most data
structures textbooks, including Knuth (1973), discuss static hashing in more detail;
Knuth has a complete discussion of hash functions and collision resolution techniques, as
well as of their performance comparison. Knuth also offers a detailed discussion of tech
niques for sorting external files. Textbooks on file structures include Claybrook (1983),
Smith and Barnes (1987), and Salzberg (1988); they discuss additional file organizations
including tree structured files, and have detailed algorithms for operations on files. Addi
tional textbooks on file organizations include Miller (1987), and Livadas (1989). Salzberg
et a1. (1990) describe a distributed external sorting algorithm. File organizations with a
high degree of fault tolerance are described by Bitton and Gray (1988) and by Gray et a1.
(1990). Disk striping is proposed in Salem and Garcia Molina (1986). The first paperon
redundant arrays of inexpensive disks (RAID) is by Patterson et a1. (1988). Chen and
Patterson (1990) and the excellent survey of RAID by Chen et a1. (1994) are additional
references. Grochowski and Hoyt (1996) discuss future trends in disk drives. Various for
mulas for the RAID architecture appear in Chen et a1. (1994).

Morris (1968) is an early paper on hashing. Extendible hashing is described in Fagin
et a1. (1979). Linear hashing is described by Litwin (1980). Dynamic hashing, which we
did not discuss in detail, was proposed by Larson (1978)- There are many proposed varia
tions for extendible and linear hashing; for examples, see Cesarini and Soda (1991), Du
and Tong (1991), and Hachem and Berra (1992).

Details of disk storage devices can be found at manufacturer sites: e.g.,
www.seagate.com, www.ibm.com, www.storagetek.com. IBM has a storage technology
research center at IBM Almaden (www.almaden.Ibm.com/sstj').

Indexing Structures
for Fi les

In this chapter, we assume that a file already exists with some primary organization such
as the unordered, ordered, or hashed organizations that were described in Chapter 13.
We will describe additional auxiliary access structures called indexes, which are used to
speed up the retrieval of records in response to certain search conditions. The index struc
tures typically provide secondary access paths, which provide alternative ways of access
ing the records without affecting the physical placement of records on disk. They enable
efficient access to records based on the indexing fields that are used to construct the
index. Basically, any field of the file can be used to create an index and multiple indexes on
different fields can be constructed on the same file. A variety of indexes are possible; each
ofthem uses a particular data structure to speed up the search. To find a record or records
inthe file based on a certain selection criterion on an indexing field, one has to initially
access the index, which points to one or more blocks in the file where the required
records are located. The most prevalent types of indexes are based on ordered files (single
level indexes) and tree data structures (multilevel indexes, B+-trees). Indexes can also be
constructedbased on hashing or other search data structures.

We describe different types of single-level ordered indexes-primary, secondary, and
clustering-in Section 14.1. By viewing a single-level index as an ordered file, one can
develop additional indexes for it, giving rise to the concept of multilevel indexes. A
popular indexing scheme called [SAM (Indexed Sequential Access Method) is based on
this idea. We discuss multilevel indexes in Section 14.2. In Section 14.3 we describe B
trees and B+-trees, which are data structures that are commonly used in DBMSs to

455

456 I Chapter 14 Indexing Structures for Files

implement dynamically changing multilevel indexes. W -trees have become a commonly
accepted default structure for generating indexes on demand in most relational DBMSs.
Section 14.4 is devoted to the alternative ways of accessing data based on a combination
of multiple keys. In Section 14.5, we discuss how other data structures-such as
hashing-can be used to construct indexes. We also briefly introduce the concept of
logical indexes, which give an additional level of indirection from physical indexes,
allowing for the physical index to be flexible and extensible in its organization. Section
14.6 summarizes the chapter.

14.1 TYPES OF SINGLE-LEVEL ORDERED INDEXES
The idea behind an ordered index access structure is similar to that behind the index used
in a textbook, which lists important terms at the end of the book in alphabetical order
along with a list of page numbers where the term appears in the book. We can search an
index to find a list of addresses-page numbers in this case-and use these addresses to

locate a term in the textbook by searching the specified pages. The alternative, if no other
guidance is given, would be to sift slowly through the whole textbook word by word to
find the term we are interested in; this corresponds to doing a linear search on a file. Of
course, most books do have additional information, such as chapter and section titles,
that can help us find a term without having to search through the whole book. However,
the index is the only exact indication of where each term occurs in the book.

For a file with a given record structure consisting of several fields (or attributes), an
index access structure is usually defined on a single field of a file, called an indexing field
(or indexing attribute). 1 The index typically stores each value of the index field along
with a list of pointers to all disk blocks that contain records with that field value. The
values in the index are ordered so that we can do a binary search on the index. The index
file is much smaller than the data file, so searching the index using a binary search is
reasonably efficient. Multilevel indexing (see Section 14.2) does away with the need for a
binary search at the expense of creating indexes to the index itself.

There are several types of ordered indexes. A primary index is specified on the
ordering key field of an ordered file of records. Recall from Section 13.7 that an ordering
key field is used to physically order the file records on disk, and every record has a unique
value for that field. If the ordering field is not a key field-that is, if numerous records in
the file can have the same value for the ordering field-another type of index, called a
clustering index, can be used. Notice that a file can have at most one physical ordering
field, so it can have at most one primary index or one clustering index, but not both. A
third type of index, called a secondary index, can be specified on any nonordering field of
a file. A file can have several secondary indexes in addition to its primary access method.
In the next three subsections we discuss these three types of single-level indexes.

----_._----_.--_._-- -

1. We will use the terms field and attribute interchangeably in this chapter.

14.1 Types of Single-Level Ordered Indexes I 457

14.1.1 Primary Indexes
A primary index is an ordered file whose records are of fixed length with two fields. The
first field is of the same data type as the ordering key field-called the primary key-of
the data file, and the second field is a pointer to a disk block (a block address). There is
one index entry (or index record) in the index file for each block in the data file. Each
index entry has the value of the primary key field for the first record in a block and a
pointer to that block as its two field values. We will refer to the two field values of index
entry i as <Ku), P(i».

To create a primary index on the ordered file shown in Figure 13.7, we use the NAME

field as primary key, because that is the ordering key field of the file (assuming that each
value of NAME is unique). Each entry in the index has a NAME value and a pointer. The first
three index entries are as follows:

<K(l) = (Aaron,Ed), P(l) = address of block 1>

<K(2) = (Adams.john), P(2) = address of block 2>

<K(3) = (Alexander,Ed), P(3) = address of block 3>

Figure 14.1 illustrates this primary index. The total number of entries in the index is
thesame as the number of disk blocks in the ordered data file. The first record in each block
ofthe data file is called the anchor record of the block, or simply the block anchor. Z

Indexes can also be characterized as dense or sparse. A dense index has an index entry for
every search key value (and hence every record) in the data file. A sparse (or nondense) index,
onthe other hand, has index entries for only some of the search values. A primary index is
hence a nondense (sparse) index, since it includes an entry for each disk block of the data file
and the keys of its anchor record rather than for every search value (or every record).

The index file for a primary index needs substantially fewer blocks than does the data
file, for two reasons. First, there are fewer index entries than there are records in the data
file. Second, each index entry is typically smaller in size than a data record because it has
only two fields; consequently, more index entries than data records can fit in one block. A
binary search on the index file hence requires fewer block accesses than a binary search
on the data file. Referring back to Table 13.2, note that the binary search for an ordered
data file required logzb block accesses. But if the primary index file contains b, blocks,
then to locate a record with a search key value requires a binary search of that index and
access to the block containing that record: a total of logzbi +1 accesses.

A record whose primary key value is K lies in the block whose address is P(i), where
Kii) :::; K < K(i + 1). The ith block in the data file contains all such records because of
the physical ordering of the file records on the primary key field. To retrieve a record,
given the value K of its primary key field, we do a binary search on the index file to find
theappropriate index entry i, and then retrieve the data file block whose address is P(i).3

2.Wecan use a scheme similar to the one described here, with the last record in each block (rather
thanthe first) as the block anchor. This slightly improves the efficiency of the search algorithm.

3. Notice that the above formula would not be correct if the data file were ordered on a nonkey field;
in that case the same index value in the block anchor could be repeated in the last records of the
previous block.

458 I Chapter 14 Indexing Structures for Files

(PRIMARY
KEYFIELD)

NAME SSN

DATAFILE

BIRTHDATE JOB SALARY SEX

Aaron,Ed I I I I I
Abbott, Diane I I I I I

Acosta, Marc I I I I I

Adams, John I I I I I
Adams,Robin I I I I I

INDEXFILE
«K(i), P(i» entries)

Akers,Jan I I I I I

BLOCK
ANCHOR

v~-"~
I I I I I

PRIMARY Alfred, Bob I I I I I
KEY BLOCK

VALUE POINTER
.- Allen, Sam I I I I I

Aaron,Ed

Adams,John
rf~ Allen,Troy I I I I IAlexander, Ed
: Anders, Keith I I I I I

Allen, Troy

Anderson, Zach

~~
Anderson, Rob I I I I I

Arnold, Mack

~
Anderson, Zach I I I I I
Angeli, Joe I I I I I

Archer, Sue I I I I I

Arnold, Mack I I I I I
Arnold, Steven I I I I I

Wong, James ~

Wright, Pam Atkins, Timothy I I I I I

Wong,James

Wood,Donald

Woods,Manny

Wright, Pam

Wyatt,Charles

Zimmer, Byron

FIGURE 14.1 Primary index on the ordering key field of the file shown in Figure 13.7.

14.1 Types of Single-Level Ordered Indexes I 459

Example 1 illustrates the saving in block accesses that is attainable when a primary index
is used to search for a record.

EXAMPLE 1: Suppose that we have an ordered file with r = 30,000 records stored on a
disk with block size B = 1024 bytes. File records are of fixed size and are unspanned, with
record length R = 100 bytes. The blocking factor for the file would be bfr = L(B/R) J =

LO024/100) J = 10 records per block. The number of blocks needed for the file is b =
i(r/bfr)l = r (30,000/1O)l = 3000 blocks. A binary search on the data file would need
approximately rlogz b l = r (log z3000) l = 12 block accesses.

Now suppose that the ordering key field of the file is V = 9 bytes long, a block pointer
is P = 6 bytes long, and we have constructed a primary index for the file. The size of each
index entry is R, = (9 + 6) = 15 bytes, so the blocking factor for the index is bfr, =
L(B/R j) J = L(1024/15) J = 68 entries per block. The total number of index entries ri is
equal to the number of blocks in the data file, which is 3000. The number of index blocks
is hence b, = i(rJbfri)l = r(3000/68)l = 45 blocks. To perform a binary search on the
index file would need i (logz bi)l = r (logz45)l = 6 block accesses. To search for a record
using the index, we need one additional block access to the data file for a total of 6 + 1 = 7 block
accesses--an improvement over binary search on the data file,which required 12 block accesses.

A major problem with a primary index-as with any ordered file-is insertion and
deletion of records. With a primary index, the problem is compounded because, if we
attempt to insert a record in its correct position in the data file, we have to not only move
records to make space for the new record but also change some index entries, since
moving records will change the anchor records of some blocks. Using an unordered
overflow file, as discussed in Section 13.7, can reduce this problem. Another possibility is
tousea linked list of overflow records for each block in the data file. This is similar to the
method of dealing with overflow records described with hashing in Section 13.8.2.
Records within each block and its overflow linked list can be sorted to improve retrieval
time. Record deletion is handled using deletion markers.

14.1.2 Clustering Indexes
Ifrecords of a file are physically ordered on a nonkey field-which does not have a distinct
value for each record-that field is called the clustering field. We can create a different
type of index, called a clustering index, to speed up retrieval of records that have the
same value for the clustering field. This differs from a primary index, which requires that
the ordering field of the data file have a distinct value for each record.

A clustering index is also an ordered file with two fields; the first field is of the same
type as the clustering field of the data file, and the second field is a block pointer. There is
one entry in the clustering index for each distinct value of the clustering field, containing
the value and a pointer to the first block in the data file that has a record with that value
for its clustering field. Figure 14.2 shows an example. Notice that record insertion and
deletion still cause problems, because the data records are physically ordered. To alleviate
the problem of insertion, it is common to reserve a whole block (or a cluster of contiguous
blocks) for each value of the clustering field; all records with that value are placed in the

460 I Chapter 14 Indexing Structures for Files

DATA FILE

(CLUSTERING
FIELD)

DEPTNUMBER NAME SSN JOB BIRTHDATE SALARY

.J 1

1

1

2

2
INDEX FILE 3

(<K(i), P(i» entries)
3

3
LUSTERING BLOCK
JELDVALUE POINTER

-/

~
3

1
3-/2
4

.-'3 4....----4

5

;

I m I I

5
6 <, 5
8 -, 5

5

6

6

6

6

6

8

8

8

C
F

FIGURE 14.2 A clustering index on the DEPTNUMBER ordering nonkey field of an EMPLOYEE file.

block (or block cluster). This makes insertion and deletion relatively straightforward.
Figure 14.3 shows this scheme.

A clustering index is another example of a nondense index, because it has an entry for
every distinct value of the indexing field which is a nonkey by definition and hence has
duplicate values rather than for every record in the file. There is some similarity between
Figures 14.1 to 14.3, on the one hand, and Figure 13.11, on the other. An index is
somewhat similar to the directory structures used for extendible hashing, described in
Section 13.8.3. Both are searched to find a pointer to the data block containing the

DATA FILE
(CLUSTERING

FIELD)

DEPTNUMBER NAME SSN JOB BIRTHDATE SALARY

nullpointer

nullpointer

nullpointer

nullpointer

nullpointer

nullpointer

nullpointer

1

1

1

~blockpointer .---

E i.
~blockpointer-

3
3
3
3

INDEX FILE blockpointer -«K(i), P(i»entries) ..J-,
3

LUSTERING BLOCK
IELDVALUE POINTER

1 '/ ~2 " blockpointer .---
3 " --- 4
4

4
5
6 -,

~8 ~ ~blockpointer .---
5
5
5
5

~blockpointer .---
" 6

6
6
6

blockpointer -.J-,
6

.---~blockpointer

8

8
8

~blockoointer .---

C
F

FIGURE 14.3 Clustering index with a separate block cluster for each group of records that
share the same value for the clustering field.

461

462 I Chapter 14 Indexing Structures for Files

desired record. A main difference is that an index search uses the values of the search field
itself, whereas a hash directory search uses the hash value that is calculated by applying
the hash function to the search field.

14.1.3 Secondary Indexes
A secondary index provides a secondary means of accessing a file for which some primary
access already exists. The secondary index may be on a field which is a candidate key and
has a unique value in every record, or a nonkey with duplicate values. The index is an
ordered file with two fields. The first field is of the same data type as some nonordering field of
the data file that is an indexing field. The second field is either a block pointer or a record
pointer. There can be many secondary indexes (and hence, indexing fields) for the same file.

We first consider a secondary index access structure on a key field that has a distinct
value for every record. Such a field is sometimes called a secondary key. In this case there
is one index entry for each record in the data file, which contains the value of the
secondary key for the record and a pointer either to the block in which the record is
stored or to the record itself. Hence, such an index is dense.

We again refer to the two field values of index entry i as <K(i), P(i». The entries are
ordered by value of Kti), so we can perform a binary search. Because the records of the data file
are not physically ordered by values of the secondary key field, we cannot use block anchors.
That iswhy an index entry is created for each record in the data file, rather than for each block,
as in the case of a primary index. Figure 14.4 illustrates a secondary index in which the pointers
PO) in the index entries are block pointers, not record pointers. Once the appropriate block is
transferred to main memory, a search for the desired record within the block can be carried out.

A secondary index usually needs more storage space and longer search time than doesa
primary index, because of its larger number of entries. However, the improvement in search
time for an arbitrary record is much greater for a secondary index than for a primary index,
since we would have to do a linear search on the data file if the secondary index did not exist.
For a primary index, we could still use a binary search on the main file, even if the index did
not exist. Example 2 illustrates the improvement in number of blocks accessed.

EXAMPLE 2: Consider the file of Example 1 with r = 30,000 fixed-length records of size
R = 100 bytes stored on a disk with block size B = 1024 bytes. The file has b = 3000
blocks, as calculated in Example 1. To do a linear search on the file, we would require biZ
= 3000/2 = 1500 block accesses on the average. Suppose that we construct a secondary
index on a nonordering key field of the file that is V = 9 bytes long. As in Example 1, a
block pointer is P = 6 bytes long, so each index entry is R, = (9 + 6) = 15 bytes, and the
blocking factor for the index is bfr, = L(B/R j) J = L0024/15) J = 68 entries per block. In
a dense secondary index such as this, the total number of index entries ri is equal to the
number of records in the data file, which is 30,000. The number of blocks needed for the
index is hence b, = I (rJbfr) l = 1(30,000/68) l = 442 blocks.

A binary search on this secondary index needs I (log , b i) l = I (logz442) l = 9 block
accesses. To search for a record using the index, we need an additional block access to the
data file for a total of 9 + 1 = 10 block accesses-a vast improvement over the 1500 block
accesses needed on the average for a linear search, but slightly worse than the seven block
accesses required for the primary index.

14.1 Types of Single-Level Ordered Indexes I 463

DATA FILE

INDEXING
FIELD

(SECONDARY
KEYFIELD)

~ 9
INDEX FILE ~ 5

«K(i), P(i» entries) 13

INDEX 8
FIELD BLOCK
VALUE POINTER 6

1 • 15

2 .. 3

3 .. L 17

4 ..
5 • 21
6 .. .J 11
7 .. 16
8 • 2

9 " 24
10

~
10

11 .. 20
12 • 1
13 "14 4
15 =v .J 23
16 18

14
17 Ii

18 • 12
19

~
7

20 • 19
21 Ii 22
22 •
23 •
24 •

FIGURE 14.4 A dense secondary index (with block pointers) on a nonordering key field of a file.

We can also create a secondary index on a nonkey field of a file. In this case, numerous
records in the data file can have the same value for the indexing field. There are several
options for implementing such an index:

• Option 1 is to include several index entries with the same K(i) value-one for each
record. This would be a dense index.

464 I Chapter 14 Indexing Structures for Files

• Option 2 is to have variable-length records for the index entries, with a repeating
field for the pointer. We keep a list of pointers <Pfi.l), ... , P(i,k» in the index
entry for K(i)-one pointer to each block that contains a record whose indexing field
value equals K(i). In either option 1 or option 2, the binary search algorithm on the
index must be modified appropriately.

• Option 3, which is more commonly used, is to keep the index entries themselves at a
fixed length and have a single entry for each index field value but to create an extra
level of indirection to handle the multiple pointers. In this nondense scheme, the
pointer P(i) in index entry <K(i), Pti) points to a block of record pointers; each
record pointer in that block points to one of the data file records with value Kti) for
the indexing field. If some value Kf i) occurs in too many records, so that their record
pointers cannot fit in a single disk block, a cluster or linked list of blocks is used. This
technique is illustrated in Figure 14.5. Retrieval via the index requires one or more
additional block accesses because of the extra level, but the algorithms for searching
the index and (more importantly) for inserting of new records in the data file are
straightforward. In addition, retrievals on complex selection conditions may be han
dled by referring to the record pointers, without having to retrieve many unnecessary
file records (see Exercise 14.19).

Notice that a secondary index provides a logical ordering on the records by the
indexing field. If we access the records in order of the entries in the secondary index, we
get them in order of the indexing field.

14.1.4 Summary
To conclude this section, we summarize the discussion on index types in two tables. Table
14.1 shows the index field characteristics of each type of ordered single-level index dis
cussed-primary, clustering, and secondary. Table 14.2 summarizes the properties of each
type of index by comparing the number of index entries and specifying which indexes are
dense and which use block anchors of the data file.

14.2 MULTILEVEL INDEXES
The indexing schemes we have described thus far involve an ordered index file. A binary
search is applied to the index to locate pointers to a disk block or to a record (or records)
in the file having a specific index field value. A binary search requires approximately
(loglbJ block accesses for an index with b, blocks, because each step of the algorithm
reduces the part of the index file that we continue to search by a factor of 2. This is why
we take the log function to the base 2. The idea behind a multilevel index is to reduce
the part of the index that we continue to search by bfr, the blocking factor for the index,
which is larger than 2. Hence, the search space is reduced much faster. The value bfr. is
called the fan-out of the multilevel index, and we will refer to it by the symbol fo,
Searching a multilevel index requires approximately (loginb,) block accesses, which is a
smaller number than for binary search if the fan-out is larger than 2.

14.2 Multilevel Indexes I 465

DATAFILE

(INDEXING
FIELD)

DEPTNUMBER NAME SSN JOB BIRTHDATE SALARY

3
BLOCKS OF .: 5

RECORD

eo,,,,,,~ .: 1
6

-T -';'1 ..

:~ 2
~ 3

INDEX FILE
~ ·x 4

(<K(i), P(i» entries)
4 8

FIELD
x

BLOCK -1 .-r ..VALUE POINTER 6, ,[."1 8

« \~'1~2 4
3 .-----1 e1 ectT " 1
4 :: Iv5 6
6 e.--. .1" 5
8

-, ~ "' 2
5

~ -I ~/~
~A ~ 5

I N 1
/ 6

I -\ -\ e-.L 3

6
3
8
3

FIGURE 14.5 A secondary index (with record pointers) on a non key field implemented using
one level of indirection so that index entries are of fixed length and have unique field values.

TABLE 14.1 TYPES OF INDEXES BASED ON THE PROPERTIES OF THE INDEXING FIELD

Indexing field is key
Indexing field is nonkey

INDEX FIELD USED FOR

ORDERING THE FILE

Primary index
Clustering index

INDEX FiElD NOT USED FOR

ORDERING THE FILE

Secondary index (Key)
Secondary index (N onKey)

A multilevel index considers the index file, which we will now refer to as the first (or
base) level of a multilevel index, as an ordered file with a distinct value for each K(i).
Hence we can create a primary index for the first level; this index to the first level is

466 I Chapter 14 Indexing Structures for Files

TABLE 14.2 PROPERTIES OF INDEX TYPES

TYPE

OF

INDEX

NUMBER OF (FIRST-LEVEL)

INDEX ENTRIES

DENSE OR

NON DENSE

BLOCKANCHORING ON

THE DATA FILE

Primary Number of blocks in Nondense
data file

Clustering Number of distinct index Nondense
field values

Secondary Number of records in Dense
(key) data file
Secondary Number of records" or Dense or
(nonkev) Number of distinct index field values" Nondense
"Yes ifevery distinct value of the ordering field starts a new block; no otherwise.
bFor option l.
eFor options 2 and 3.

Yes

Yes/noa

No

No

called the second level of the multilevel index. Because the second level is a primary
index, we can use block anchors so that the second level has one entry for each block of
the first leveL The blocking factor bfr, for the second level-and for all subsequent
levels-is the same as that for the first-level index, because all index entries are the same
size; each has one field value and one block address. If the first level has r) entries, and the
blocking factor-which is also the fan-aut-for the index is bfr, = fa, then the first level
needs 1(r)/fo) l blocks, which is therefore the number of entries r1 needed at the second
level of the index.

We can repeat this process for the second leveL The third level, which is a primary
index for the second level, has an entry for each second-level block, so the number of
third-level entries is r3 = 1(r2/fo) l. Notice that we require a second level only if the first
level needs more than one block of disk storage, and, similarly, we require a third level
only if the second level needs more than one block. We can repeat the preceding process
until all the entries of some index level t fit in a single block. This block at the tth level is
called the top index leveL4 Each level reduces the number of entries at the previous level
by a factor of fa-the index fan-aut-so we can use the formula 1 ::5 (r)/((fo)t» to
calculate t. Hence, a multilevel index with r) first-level entries will have approximately t
levels, where t = 1(logfo(r)) l·

The multilevel scheme described here can be used on any type of index, whether it is
primary, clustering, or secondary-as long as the first-level index has distinct values for K(i)
and fixed-length entries. Figure 14.6 shows a multilevel index built over a primary index.
Example 3 illustrates the improvement in number of blocks accessed when a multilevel
index is used to search for a record.

4. The numbering scheme for index levels used here is the reverseof the way levels are commonly
defined for tree data structures. In tree data structures, t is referred to as level 0 (zero), t - 1 is level
1, etc.

SECOND (TOP)
LEVEL

2

35
55
85

1WO-LEVEL INDEX

FIRST(BASE)
LEVEL

I" J

14.2 Multilevel Indexes I 467

DATA FILE
PRIMARY

KEY
FIELD

EB'-----'gr-------tB
f----------Ig B

FIGURE 14.6 A two-level primary index resembling ISAM (Indexed Sequential Access Method)
organization.

EXAMPLE 3: Suppose that the dense secondary index of Example 2 is converted into a
multilevel index. We calculated the index blocking factor bfr, = 68 index entries per
block, which is also the fan-out fo for the multilevel index; the number of first-level
blocks bl = 442 blocks was also calculated. The number of second-level blocks will be bz
= I(bI/fo)l = [" (442/68)l = 7 blocks, and the number of third-level blocks will be b, =

I(bz/fo)l = [" (7/68)l = 1 block. Hence, the third level is the top level ofthe index, and
t =3. To access a record by searching the multilevel index, we must access one block at

468 I Chapter 14 Indexing Structures for Files

each level plus one block from the data file, so we need t + 1 = 3 + 1 = 4 block accesses.
Compare this to Example 2, where 10 block accesses were needed when a single-level
index and binary search were used.

Notice that we could also have a multilevel primary index, which would be
nondense. Exercise 14.14(c) illustrates this case, where we must access the data block
from the file before we can determine whether the record being searched for is in the file.
For a dense index, this can be determined by accessing the first index level (without
having to access a data block), since there is an index entry for every record in the file.

A common file organization used in business data processing is an ordered file witha
multilevel primary index on its ordering key field. Such an organization is called an
indexed sequential file and was used in a large number of early IBM systems. Insertion is
handled by some form of overflow file that is merged periodically with the data file. The
index is re-created during file reorganization. IBM's ISAM organization incorporates a two
level index that is closely related to the organization of the disk. The first level is a
cylinder index, which has the key value of an anchor record for each cylinder of a disk
pack and a pointer to the track index for the cylinder. The track index has the key value
of an anchor record for each track in the cylinder and a pointer to the track. The track
can then be searched sequentially for the desired record or block.

Algorithm 14.1 outlines the search procedure for a record in a data file that uses a
nondense multilevel primary index with t levels. We refer to entry i at level j of the index
as <Kj(i), Pj(i», and we search for a record whose primary key value is K. We assume
that any overflow records are ignored. If the record is in the file, there must be some entry
at level 1 with KI (i) :s K < KI (i + 1) and the record will be in the block of the data file
whose address is Pl(i). Exercise 14.19 discusses modifying the search algorithm for other
types of indexes.

Algorithm 14.1: Searching a nondense multilevel primary index with t levels.

P f- address of top level block of index;
for j f- t step - 1 to 1 do

begin
read the index block (at jth index level) whose address is p;
search block p for entry i such that Kj(i) # K , Kj (i + 1) (if KjCi)

is the last entry in the block, it is sufficient to satisfy Kj(i)
K);

p f- Pj(i) (* picks appropriate pointer at jth index level *)
end;
read the data file block whose address is p;

search block p for record with key = K;

As we have seen, a multilevel index reduces the number of blocks accessed when
searching for a record, given its indexing field value. We are still faced with the problems
of dealing with index insertions and deletions, because all index levels are physically
ordered files. To retain the benefits of using multilevel indexing while reducing index
insertion and deletion problems, designers adopted a multilevel index that leaves some

14.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees I 469

space in each of its blocks for inserting new entries. This is called a dynamic multilevel
index and is often implemented by using data structures called B-trees and B+-trees,
which we describe in the next section.

14.3 DYNAMIC MULTILEVEL INDEXES USING
B-TREES AND B+-TREES

B-trees and B+-trees are special cases of the well-known tree data structure. We introduce
very briefly the terminology used in discussing tree data structures. A tree is formed of
nodes. Each node in the tree, except for a special node called the root, has one parent
node and several-zero or more--child nodes. The root node has no parent. A node that
does not have any child nodes is called a leaf node; a nonleaf node is called an internal
node. The level of a node is always one more than the level of its parent, with the level of
the root node being zero.s A subtree of a node consists of that node and all its descendant
nodes-its child nodes, the child nodes of its child nodes, and so on. A precise recursive
definition of a subtree is that it consists of a node n and the subtrees of all the child nodes
ofn. Figure 14.7 illustrates a tree data structure. In this figure the root node is A, and its
child nodes are B, C, and D. Nodes E,], C, 0, H, and K are leaf nodes.

Usually, we display a tree with the root node at the top, as shown in Figure 14.7. One
way to implement a tree is to have as many pointers in each node as there are child nodes

__..-- nodesat
level1

0) nodesat

~ level2

~ nodesat
~level3

A
SUBTREE FORNODEB

(nodesE,J,C,G,H, andK areleaf nodesof the tree)

..

FIGURE 14.7 A tree data structure that shows an unbalanced tree.

5. This standard definition of the level of a tree node, which we use throughout Section 14.3, is dif
ferent from the one we gave for multilevel indexes in Section 14.2.

470 I Chapter 14 Indexing Structures for Files

of that node. In some cases, a parent pointer is also stored in each node. In addition to

pointers, a node usually contains some kind of stored information. When a multilevel
index is implemented as a tree structure, this information includes the values of the file's
indexing field that are used to guide the search for a particular record.

In Section 14.3.1, we introduce search trees and then discuss B-trees, which can be
used as dynamic multilevel indexes to guide the search for records in a data file. B-tree
nodes are kept between 50 and 100 percent full, and pointers to the data blocks are stored
in both internal nodes and leaf nodes of the B-tree structure. In Section 14.3.2 we discuss
B+-trees, a variation of B-trees in which pointers to the data blocks of a file are stored only
in leaf nodes; this can lead to fewer levels and higher-capacity indexes.

14.3.1 Search Trees and B-Trees
A search tree is a special type of tree that is used to guide the search for a record, given
the value of one of the record's fields. The multilevel indexes discussed in Section 14.2
can be thought of as a variation of a search tree; each node in the multilevel index can
have as many as fa pointers and fa key values, where fa is the index fan-out. The index
field values in each node guide us to the next node, until we reach the data file block that
contains the required records. By following a pointer, we restrict our search at each level
to a subtree of the search tree and ignore all nodes not in this subtree.

Search Trees. A search tree is slightly different from a multilevel index. A search
tree of order p is a tree such that each node contains at most p - 1 search values and p
pointers in the order <PI' K l , Pz, Kz' ... , Pq- l , Kq_ l , pq> , where q :S p; each Pi is a
pointer to a child node (or a null pointer); and each K, is a search value from some
ordered set of values. All search values are assumed to be unique." Figure 14.8 illustrates a
node in a search tree. Two constraints must hold at all times on the search tree:

1. Within each node, K, < Kz < ... < Kq_ l .

FIGURE 14.8 A node in a search tree with pointers to subtrees below it.

6. This restriction can be relaxed. If the index is on a nonkey field, duplicate search values may
exist and the node structure and the navigation rules for the tree may be modified.

14.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees I 471

2. For all values X in the subtree pointed at by Pi' we have Ki- 1 < X < K, for 1 < i <
q; X < K, for i = 1; and Ki- 1 < X for i = q (see Figure 14.8).

Whenever we search for a value X, we follow the appropriate pointer Pi according to
the formulas in condition 2 above. Figure 14.9 illustrates a search tree of order p = 3 and
integer search values. Notice that some of the pointers Pi in a node may be null pointers.

We can use a search tree as a mechanism to search for records stored in a disk file.
The values in the tree can be the values of one of the fields of the file, called the search
field (which is the same as the index field if a multilevel index guides the search). Each
key value in the tree is associated with a pointer to the record in the data file having that
value. Alternatively, the pointer could be to the disk block containing that record. The
search tree itself can be stored on disk by assigning each tree node to a disk block. When
a new record is inserted, we must update the search tree by inserting an entry in the tree
containing the search field value of the new record and a pointer to the new record.

Algorithms are necessary for inserting and deleting search values into and from the
search tree while maintaining the preceding two constraints. In general, these algorithms do
not guarantee that a search tree is balanced, meaning that all of its leaf nodes are at the
same leveL? The tree in Figure 14.7 is not balanced because it has leaf nodes at levels 1, 2,
and3. Keeping a search tree balanced is important because it guarantees that no nodes will
beat very high levels and hence require many block accesses during a tree search. Keeping
the tree balanced yields a uniform search speed regardless of the value of the search key.
Another problem with search trees is that record deletion may leave some nodes in the tree
nearly empty, thus wasting storage space and increasing the number of levels. The B-tree
addresses both of these problems by specifying additional constraints on the search tree.

B-Trees. The B-tree has additional constraints that ensure that the tree is always
balanced and that the space wasted by deletion, if any, never becomes excessive. The

BTreenodepointer

oNulltreepointer

FIGURE 14.9 A search tree of order p = 3.

7.The definition of balanced is different for binary trees. Balanced binary trees are known as AVL trees.

472 I Chapter 14 Indexing Structures for Files

algorithms for insertion and deletion, though, become more complex in order to maintain
these constraints. Nonetheless, most insertions and deletions are simple processes; they
become complicated only under special circumstances-namely, whenever we attempt an
insertion into a node that is already full or a deletion from a node that makes it less than
half full. More formally, a Bvtree of order p, when used as an access structure on a key field
to search for records in a data file, can be defined as follows:

1. Each internal node in the B-tree (Figure 14.10a) is of the form

<PI' <KI, PrI>' P2, <K2, Pr2>" .. , <Kg_I' Prg_I>, Pg>

where q ::5 p. Each Pi is a tree pointer-a pointer to another node in the B-tree.
Each Prj is a data pointerf-s-a pointer to the record whose search key field value is
equal to K, (or to the data file block containing that record).

2. Within each node, KI < K2 < ... < Kg_I'

3. For all search key field values X in the subtree pointed at by Pj (the ith subtree, see
Figure 14.10a), we have:

Kj_I < X < K, for 1 < i < q; X < K, for i = 1; and Kj_I < X for i = q.

4. Each node has at most p tree pointers.

5. Each node, except the root and leaf nodes, has at least r(pj2) l tree pointers. The
root node has at least two tree pointers unless it is the only node in the tree.

6. A node with q tree pointers, q ::5 p, has q - 1 search key field values (and hence
has q - 1 data pointers).

7. All leaf nodes are at the same level. Leaf nodes have the same structure as inter
nal nodes except that all of their tree pointers P, are null.

Figure 14.lOb illustrates a B-tree of order p = 3. Notice that all search values K in the
B-tree are unique because we assumed that the tree is used as an access structure on a key
field. If we use a B-tree on a nonkey field, we must change the definition of the file pointers
Prj to point to a block-or cluster of blocks-that contain the pointers to the file records.
This extra level of indirection is similar to Option 3, discussed in Section 14.1.3, for
secondary indexes.

A Bvtree starts with a single root node (which is also a leaf node) at level 0 (zero).
Once the root node is full with p - 1 search key values and we attempt to insert another
entry in the tree, the root node splits into two nodes at level 1. Only the middle value is
kept in the root node, and the rest of the values are split evenly between the other two
nodes. When a nonroot node is full and a new entry is inserted into it, that node is split
into two nodes at the same level, and the middle entry is moved to the parent node along
with two pointers to the new split nodes. If the parent node is full, it is also split. Splitting
can propagate all the way to the root node, creating a new level if the root is split. We do
not discuss algorithms for B-trees in detail here; rather, we outline search and insertion
procedures for B+-trees in the next section.

8. A data pointer is either a block address, or a record address; the latter is essentially a block
address and a record offsetwithin the block.

14.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees I 473

(a)

(b)

X<K,

GTree node pointer

BDatapointeroNulltreepointer

FIGURE 14.10 B-tree structures. (a) A node in a B-tree with q - 1 search values.
(b) A B-tree of order p = 3. The values were inserted in the order 8,5, 1, 7, 3, 12,9,6.

If deletion of a value causes a node to be less than half full, it is combined with its
neighboring nodes, and this can also propagate all the way to the root. Hence, deletion
can reduce the number of tree levels. It has been shown by analysis and simulation that,
after numerous random insertions and deletions on a B-tree, the nodes are approximately
69 percent full when the number of values in the tree stabilizes. This is also true of W
trees. If this happens, node splitting and combining will occur only rarely, so insertion
and deletion become quite efficient. If the number of values grows, the tree will expand
without a problem-although splitting of nodes may occur, so some insertions will take
more time. Example 4 illustrates how we calculate the order p of a B-tree stored on disk.

EXAMPLE 4: Suppose the search field is V = 9 bytes long, the disk block size is B = 512
bytes, a record (data) pointer is P, = 7 bytes, and a block pointer is P = 6 bytes. Each B
treenode can have at most p tree pointers, p - 1 data pointers, and p - 1 search key field
values (see Figure 14.10a). These must fit into a single disk block if each B-tree node is to
correspond to a disk block. Hence, we must have:

(p * P) + ((p - 1) * (P, + V»:s B

(p * 6) + ((p - 1) * (7 + 9» :s 512

(22 * p) :s 528

We can choose p to be a large value that satisfies the above inequality, which gives p = 23
(p = 24 is not chosen because of the reasons given next).

474 I Chapter 14 Indexing Structures for Files

In general, a B-tree node may contain additional information needed by the algo
rithms that manipulate the tree, such as the number of entries q in the node and a pointer
to the parent node. Hence, before we do the preceding calculation for p, we should
reduce the block size by the amount of space needed for all such information. Next, we
illustrate how to calculate the number of blocks and levels for a B-tree.

EXAMPLE 5: Suppose that the search field of Example 4 is a nonordering key field, and
we construct a B-tree on this field. Assume that each node of the B-tree is 69 percent full.
Each node, on the average, will have p * 0.69 = 23 * 0.69 or approximately 16 pointers
and, hence, 15 search key field values. The average fan-out fa =16. We can start at the
root and see how many values and pointers can exist, on the average, at each subsequent
level:

Root:
Levell:
Level 2:
Level 3:

1 node
16 nodes
256 nodes
4096 nodes

15 entries
240 entries
3840 entries
61,440 entries

16 pointers
256 pointers
4096 pointers

At each level, we calculated the number of entries by multiplying the total number of
pointers at the previous level by 15, the average number of entries in each node. Hence,
for the given block size, pointer size, and search key field size, a two-level B-tree holds
3840 + 240 + 15 = 4095 entries on the average; a three-level B-tree holds 65,535 entries
on the average.

B-trees are sometimes used as primary file organizations. In this case, whole records are
stored within the B-tree nodes rather than just the <search key, record pointer> entries.
This works well for files with a relatively small number of records, and a small record size.
Otherwise, the fan-out and the number of levels become too great to permit efficient access.

In summary, B-trees provide a multilevel access structure that is a balanced tree
structure in which each node is at least half full. Each node in a B-tree of order p can
have at most p-1 search values.

14.3.2 B+-Trees
Most implementations of a dynamic multilevel index use a variation of the B-tree data
structure called a B+-tree. In a B-tree, every value of the search field appears once at some
level in the tree, along with a data pointer. In a B+-tree, data pointers are stored onlyat the
leafnodes of the tree; hence, the structure of leaf nodes differs from the structure of inter
nal nodes. The leaf nodes have an entry for every value of the search field, along with a
data pointer to the record (or to the block that contains this record) if the search field isa
key field. For a nonkey search field, the pointer points to a block containing pointers to

the data file records, creating an extra level of indirection.
The leaf nodes of the W -tree are usually linked together to provide ordered accesson

the search field to the records. These leaf nodes are similar to the first (base) level of an
index. Internal nodes of the B+-tree correspond to the other levels of a multilevel index.
Some search field values from the leaf nodes are repeated in the internal nodes of the W-

14.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees I 475

tree to guide the search. The structure of the internal nodes of a W -tree of order p (Figure
14.11a) is as follows:

1. Each internal node is of the form

<PI' KI, Pz' Kz, ... , Pg_I, Kg_I' Pg>

where q ::5 P and each Pi is a tree pointer.

2. Within each internal node, KI < K, < ... < Kg_I'

3. For all search field values X in the subtree pointed at by Pi' we have Ki - I < X ::5 K,
for 1 < i < q; X ::5 K, for i = 1; and Ki_ 1 < X for i = q (see Figure 14.11a).9

4. Each internal node has at most p tree pointers.

5. Each internal node, except the root, has at least r(p/Z)"] tree pointers. The root
node has at least two tree pointers if it is an internal node.

6. An internal node with q pointers, q ::5 p, has q - 1 search field values.

The structure of the leaf nodes of a W -tree of order p (Figure 14.11 b) is as follows:

1. Each leaf node is of the form

(a)

tree
pointer

tree

8
(b)~~ E[E] ~ p~ J ~ pOOm'lfltree'node

rtonext--"'-r~ ... T U

~-,-------,-_y--- leafn<

data data data data
pointer pointer pointer pointer

FIGURE 14.11 The nodes of a B+-tree. (a) Internal node of a B+-tree with q - 1
search values. (b) Leaf node of a W-tree with q-1 search values and q-l data
pointers.

-----------------------------~----

9. Ourdefinition follows Knuth (1973). One can define a W-tree differently by exchanging the <
and zs symbols (Kj_ 1 :S X < Kj ; X < K j ; Kq_ 1 :S X), but the principlesremain the same.

476 I Chapter 14 Indexing Structures for Files

where q :s; p, each Pr, is a data pointer, and Pnext points to the next leafnodeof the
B+-tree.

2. Within each leaf node, K1 < Kz < ... < Kq_1, q :s; p.

3. Each Pr, is a data pointer that points to the record whose search field value is K, or
to a file block containing the record (or to a block of record pointers that point to
records whose search field value is K, if the search field is not a key).

4. Each leaf node has at least I (p/2) l values.

5. All leaf nodes are at the same level.

The pointers in internal nodes are tree pointers to blocks that are tree nodes, whereas
the pointers in leaf nodes are data pointers to the data file records or blocks-except for
the Pnext pointer, which is a tree pointer to the next leaf node. By starting at the leftmost
leaf node, it is possible to traverse leaf nodes as a linked list, using the Pnext pointers. This
provides ordered access to the data records on the indexing field. A Pprevious pointer can
also be included. For a W -tree on a nonkey field, an extra level of indirection is needed
similar to the one shown in Figure 14.5, so the Pr pointers are block pointers to blocks
that contain a set of record pointers to the actual records in the data file, as discussed in
Option 3 of Section 14.1.3.

Because entries in the internal nodes of a B+-tree include search values and tree
pointers without any data pointers, more entries can be packed into an internal node ofa
B+-tree than for a similar B-tree. Thus, for the same block (node) size, the order p willbe
larger for the B+-tree than for the B-tree, as we illustrate in Example 6. This can lead to

fewer B+-tree levels, improving search time. Because the structures for internal and for
leaf nodes of a B+-tree are different, the order p can be different. We will use p to denote
the order for internal nodes and Pleaf to denote the order for leaf nodes, which we define as
being the maximum number of data pointers in a leaf node.

EXAMPLE 6: To calculate the order p of a W -tree, suppose that the search key field is
V = 9 bytes long, the block size is B = 512 bytes, a record pointer is P, = 7 bytes, and a
block pointer is P = 6 bytes, as in Example 4. An internal node of the W-tree can have up
to p tree pointers and p - 1 search field values; these must fit into a single block. Hence,
we have:

(p * P) + ((p - 1) * V) s B

(p * 6) + ((p - 1) * 9) s 512

(l5*p)s521

We can choose p to be the largest value satisfying the above inequality, which gives
p = 34. This is larger than the value of 23 for the B-tree, resulting in a larger fan-out and
more entries in each internal node of a B+-tree than in the corresponding B-tree. The leaf
nodes of the B+-tree will have the same number of values and pointers, except that the
pointers are data pointers and a next pointer. Hence, the order Pleaf for the leaf nodes can
be calculated as follows:

(Pleaf * (P, + V)) + P s B

14.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees I 477

(Pleaf* (7 + 9)) + 6:5 512

(16 * Pleaf) :5 506

It follows that each leaf node can hold up to Pleaf '" 31 key value/data pointer combina
tions, assuming that the data pointers are record pointers.

As with the B-tree, we may need additional information-to implement the
insertion and deletion algorithms-in each node. This information can include the type
ofnode (internal or leaf), the number of current entries q in the node, and pointers to the
parent and sibling nodes. Hence, before we do the above calculations for p and Pleaf' we
should reduce the block size by the amount of space needed for all such information. The
nextexample illustrates how we can calculate the number of entries in a B+-tree.

EXAMPLE 7: Suppose that we construct a W -tree on the field of Example 6. To calculate
theapproximate number of entries of the B+-tree, we assume that each node is 69 percent
full. On the average, each internal node will have 34 * 0.69 or approximately 23 pointers,
and hence 22 values. Each leaf node, on the average, will hold 0.69 * Pleaf = 0.69 * 31 or
approximately 21 data record pointers. A W -tree will have the following average number
ofentries at each level:

Root: 1 node
Level 1: 23 nodes
Level 2: 529 nodes
Leaf level: 12,167 nodes

22 entries 23 pointers
506 entries 529 pointers
11,638 entries 12,167 pointers
255,507 record pointers

For the block size, pointer size, and search field size given above, a three-level B+-tree
holds up to 255,507 record pointers, on the average. Compare this to the 65,535 entries
for the corresponding B-tree in Example 5.

Search, Insertion, and Deletion with Bt-Trees. Algorithm 14.2 outlines the
procedure using the B+-tree as access structure to search for a record. Algorithm 14.3
illustrates the procedure for inserting a record in a file with a B+-tree access structure.
These algorithms assume the existence of a key search field, and they must be modified
appropriately for the case of a W -tree on a nonkey field. We now illustrate insertion and
deletion with an example.

Algorithm 14.2: Searching for a record with search key field value K, using a W -tree.

n ~ block containing root node of B+-tree;
read block n;
while (n is not a leaf node of the B+-tree) do

begi n
q ~ number of tree pointers in node n;
if K # n.K1 (*n.K; refers to the i t h search field value in node n*)

then n ~ n'P1 (*n.P; refers to the i t h tree pointer in node n*)
else if K > n.Kq _ 1

then n ~ n, Pq

478 I Chapter 14 Indexing Structures for Files

else begin
search node n for an entry such that n.Ki_l < K # n.K;;
n r n.P,
end;

read block n
end;

search block n for entry (Ki,Pri) with K = Ki; (* search leaf node *)
if found

then read data file block with address Prj and retrieve record
else record with search field value K is not in the data file;

Algorithm 14.3: Inserting a record with search key field value K in a W-tree of
order p.

n r block containing root node of B+-tree;
read block n; set stack S to empty;
while (n is not a leaf node of the B+-tree) do

begin
push address of n on stack S;

(*stack S holds parent nodes that are needed in case of split*)
q r number of tree pointers in node n;
if K # n.Kl (*n.Ki refers to the i t h search field value in node n*)

then n r n'Pl (*n.P j refers to the i t h tree pointer in node n*)
else if K > n. Kq _ l

then n r n.P,
else begin
search node n for an entry such that n. Ki- l < K # n. Ki ;
n r n .P,
end;

read block n
end;

search block n for entry (Ki,Pri) with K = Kj ; (*search leaf node n*)
if found

then record already in file-cannot insert
else (*insert entry in B+-tree to point to record*)
begin
create entry (K,Pr) where Pr points to the new record;
if leaf node n is not full
then insert entry (K, Pr) in correct position in leaf node n
else
begin (*leaf node n is full with Pluf record pointers-is split*)
copy n to temp (*temp is an oversize leaf node to hold extra

entry1') ;
insert entry (K, Pr) in temp in correct position;

(*temp now holds Pleaf + 1 entries of the form (K;, Pri)*)
new r a new empty leaf node for the tree; new'Pnext r n.P next ;

j r r(Pleaf + 1)/2l ;
n r first j entries in temp (up to entry (Kj,Prj)); n'Pnext r new;
new r remaining entries in temp; K r Kj;

14.3 Dynamic Multilevel Indexes Using B-Trees and Bt-Trees I 479

(*now we must move (K,new) and insert in parent internal node
-however, if parent is full, split may propagate*)

finished f- false;
repeat
if stack 5 is empty

then (*no parent node-new root node is created for the tree*)
begin
root f- a new empty internal node for the tree;
root f- <n, K, new>; finished f- true;

end
else

begin
n f- pop stack 5;
if internal node n is not full

then
begin (*parent node not full-no split*)

insert (K, new) in correct position in internal node n;
finished f- true
end
else

begin (*internal node n is full with p tree pointers-is split*)
copy n to temp (*temp is an oversize internal node*);
insert (K,new) in temp in correct position;

(*temp now has p+l tree pointers*)
new f- a new empty internal node for the tree;
j f- L((p + 1)/2)J;
n f- entries up to tree pointer Pj in temp;

(*n contains <Pl , Kl , P2 , K2 , ..• , Pj - l , Kj _l , Pj >")
new f- entries from tree pointer Pj +l in temp;

(*new contains < Pj +l , Kj +l , ... , Kp_l , Pp , Kp , Pp+l >*)
K f- Kj

(*now we must move (K,new) and insert in parent internal node*)
end

end
until finished

end;
end;

Figure 14.12 illustrates insertion of records in a W-tree of order p = 3 and Pleaf = 2.
First, we observe that the root is the only node in the tree, so it is also a leaf node. As
soon as more than one level is created, the tree is divided into internal nodes and leaf
nodes. Notice that every key value must exist at the leaf level, because all data pointers
are at the leaf level. However, only some values exist in internal nodes to guide the
search. Notice also that every value appearing in an internal node also appears as the
rightmost value in the leaf level of the subtree pointed at by the tree pointer to the left
of the value.

When a leaf node is full and a new entry is inserted there, the node overflows and
mustbe split. The first j = i((Pleaf + l)/2)l entries in the original node are kept there,

480

INSERTION SEQUENCE: 8, 5, 1,7, 3, 12,9, 6

I[I]Q][§]Q]I~rt 1: overtlow(newlevel)

BTreenodepointer

oDatapointer

oNulltreepointer

Insert3: overtlow(split)

Insert6: overflow
(split, propagates)

FIGURE 14.12 An example of insertion in a B+-tree with p = 3 and Pleaf= 2.

14.3 Dynamic Multilevel Indexes Using B-Trees and W-Trees I 481

and the remaining entries are moved to a new leaf node. The jth search value is replicated
inthe parent internal node, and an extra pointer to the new node is created in the parent.
These must be inserted in the parent node in their correct sequence. If the parent
internal node is full, the new value will cause it to overflow also, so it must be split. The
entries in the internal node up to Pj-the jth tree pointer after inserting the new value
and pointer, where j = L((p + 1)/2) J-are kept, while the jth search value is moved to the
parent, not replicated. A new internal node will hold the entries from Pj+ 1 to the end of
theentries in the node (see Algorithm 14.3). This splitting can propagate all the way up
tocreate a new root node and hence a new level for the B+-tree.

Figure 14.13 illustrates deletion from a W -tree. When an entry is deleted, it is always
removed from the leaf level. If it happens to occur in an internal node, it must also be
removed from there. In the latter case, the value to its left in the leaf node must replace it
in the internal node, because that value is now the rightmost entry in the subtree.
Deletion may cause underflow by reducing the number of entries in the leaf node to
below the minimum required. In this case we try to find a sibling leaf node-a leaf node
directly to the left or to the right of the node with underflow-and redistribute the
entries among the node and its sibling so that both are at least half full; otherwise, the
node is merged with its siblings and the number of leaf nodes is reduced. A common
method is to try redistributing entries with the left sibling; if this is not possible, an
attempt to redistribute with the right sibling is made. If this is not possible either, the
three nodes are merged into two leaf nodes. In such a case, underflow may propagate to
internal nodes because one fewer tree pointer and search value are needed. This can
propagate and reduce the tree levels.

Notice that implementing the insertion and deletion algorithms may require parent
and sibling pointers for each node, or the use of a stack as in Algorithm 14.3. Each node
should also include the number of entries in it and its type (leaf or internal). Another
alternative is to implement insertion and deletion as recursive procedures.

Variations of B-Trees and B+-Trees. To conclude this section, we briefly mention
some variations of B-trees and B+-trees. In some cases, constraint 5 on the B-tree (or B+-tree},
which requires each node to be at least half full, can be changed to require each node to be at
least two-thirds full. In this case the B-tree has been called a B*-tree. In general, some systems
allow the user to choose a fill factor between 0.5 and 1.0, where the latter means that the B
tree (index) nodes are to be completely full. It is also possible to specify two fill factors for a W
tree: one for the leaf level and one for the internal nodes of the tree. When the index is first
constructed, each node is filled up to approximately the fill factors specified. Recently,
investigators have suggested relaxing the requirement that a node be half full, and instead
allow a node to become completely empty before merging, to simplify the deletion algorithm.
Simulation studies show that this does not waste too much additional space under randomly
distributed insertions and deletions.

482 I Chapter 14 Indexing Structures for Files

DELETION SEQUENCE: 5, 12, 9

Delete 5

FIGURE 14.13 An example of deletion from a B+-tree.

~D
Delete 9: underflow (merge with

left. still underflow, collapse levels)

14.4 Indexes on Multiple Keys I 483

14.4 INDEXES ON MULTIPLE KEYS
In our discussion so far, we assumed that the primary or secondary keys on which files
were accessed were single attributes (fields). In many retrieval and update requests, mul
tiple attributes are involved. If a certain combination of attributes is used very frequently,
it is advantageous to set up an access structure to provide efficient access by a key value
that is a combination of those attributes.

Forexample, consider an EMPLOYEE file containing attributes aNa (department number), AGE,
STREET, CITY, ZIPCODE, SALARY and SKILL_CODE, with the key of SSN (social security number).
Consider the query: "List the employees in department number 4 whose age is 59." Note that
both DNa and AGE are nonkey attributes, which means that a search value for either of these will
point to multiple records. The following alternative search strategies may be considered:

1. Assuming DNa has an index, but AGE does not, access the records having DNa = 4
using the index then select from among them those records that satisfy AGE = 59.

2. Alternately, if AGE is indexed but DNa is not, access the records having AGE = 59
using the index then select from among them those records that satisfy DNa = 4 .

3. If indexes have been created on both DNa and AGE, both indexes may be used; each
gives a set of records or a set of pointers (to blocks or records). An intersection of
these sets of records or pointers yields those records that satisfy both conditions,
those records that satisfy both conditions, or the blocks in which records satisfy
ing both conditions are located.

All of these alternatives eventually give the correct result. However, if the set of records
that meet each condition (DNa = 4 or AGE = 59) individually are large, yet only a few records
satisfy the combined condition, then none of the above is a very efficient technique for the
given search request. A number of possibilities exist that would treat the combination <DNa,
AGE>, or <AGE, DNa> as a search key made up of multiple attributes. We briefly outline these
techniques below. We will refer to keys containing multiple attributes as composite keys.

14.4.1 Ordered Index on Multiple Attributes
All the discussion in this chapter so far still applies if we create an index on a search key
field that is a combination of <DNa, AGE>. The search key is a pair of values <4, 59> in
the above example. In general, if an index is created on attributes <AI' A z, ... , An>'
thesearch key values are tuples with n values: <v.. vz,...... ·, vn>.

A lexicographic ordering of these tuple values establishes an order on this composite
search key. For our example, all of department keys for department number 3 precede
those for department 4. Thus <3, n> precedes <4, m> for any values of m and n. The
ascending key order for keys with DNa = 4 would be <4, 18>, <4, 19>, <4,20>, and so
on. Lexicographic ordering works similarly to ordering of character strings. An index on a
composite key of n attributes works similarly to any index discussed in this chapter so far.

14.4.2 Partitioned Hashing
Partitioned hashing is an extension of static external hashing (Section 13.8.2) that allows
access on multiple keys. It is suitable only for equality comparisons; range queries are not

484 I Chapter 14 Indexing Structures for Files

supported. In partitioned hashing, for a key consistmg of n components, the hash
function is designed to produce a result with n separate hash addresses. The bucket
address is a concatenation of these n addresses. It is then possible to search for the
required composite search key by looking up the appropriate buckets that match the parts
of the address in which we are interested.

For example, consider the composite search key <DNO, AGE>. If DNO and AGE are hashed
into a 3-bit and 5-bit address respectively, we get an 8-bit bucket address. Suppose that
DNO = 4 has a hash address "100" and AGE = 59 has hash address "10101". Then to search
for the combined search value, DNO = 4 and AGE = 59, one goes to bucket address 100
10101; just to search for all employees with AGE = 59, all buckets (eight of them) will be
searched whose addresses are "000 10101", "001 10101", ... etc. An advantage of
partitioned hashing is that it can be easily extended to any number of attributes. The
bucket addresses can be designed so that high order bits in the addresses correspond to

more frequently accessed attributes. Additionally, no separate access structure needs to be
maintained for the individual attributes. The main drawback of partitioned hashing is
that it cannot handle range queries on any of the component attributes.

14.4.3 Grid Files
Another alternative is to organize the EMPLOYEE file as a grid file. If we want to access a file
on two keys, say DNO and AGE as in our example, we can construct a grid array with one lin
ear scale (or dimension) for each of the search attributes. Figure 14.14 shows a grid array
for the EMPLOYEE file with one linear scale for DNO and another for the AGE attribute. The
scales are made in a way as to achieve a uniform distribution of that attribute. Thus, in
our example, we show that the linear scale for DNO has DNO = 1, 2 combined as one value a
on the scale, while DNO = 5 corresponds to the value 2 on that scale. Similarly, AGE is
divided into its scale of 0 to 5 by grouping ages so as to distribute the employees uniformly
by age. The grid array shown for this file has a total of 36 cells. Each cell points to some

r--·· ,,
, 1·,, ,·· .
~

••__ 01

r: :
· ,,, ,,
, ,, ,

----'"

Dno

0 12
1 34
2 5
3 67
4 8
5 910

Linear SCale
for Ono

5

4

3

2

1

o

Employee File:
Bucket Pool

D
Bucket Pool

D

o 2 3 4 5

LinearScale for Age

~
~

FIGURE 14.14 Example of a grid array on DNO and AGE attributes.

14.5 Other Types of Indexes I 485

bucket address where the records corresponding to that cell are stored. Figure 14.14 also
shows assignment of cells to buckets (only partially).

Thus our request for DNO = 4 and AGE = 59 maps into the cell (1, 5) corresponding to
the grid array. The records for this combination will be found in the corresponding
bucket. This method is particularly useful for range queries that would map into a set of
cells corresponding to a group of values along the linear scales. Conceptually, the grid file
concept may be applied to any number of search keys. For n search keys, the grid array
would have n dimensions. The grid array thus allows a partitioning of the file along the
dimensions of the search key attributes and provides an access by combinations of values
along those dimensions. Grid files perform well in terms of reduction in time for multiple
key access. However, they represent a space overhead in terms of the grid array structure.
Moreover, with dynamic files, a frequent reorganization of the file adds to the
maintenance cost. 10

14.5 OTHER TYPES OF INDEXES

14.5.1 Using Hashing and Other Data Structures
as Indexes

it is also possible to create access structures similar to indexes that are based on hashing.
The index entries <K, Pr> (or <K, P» can be organized as a dynamically expandable
hash file, using one of the techniques described in Section 13.8.3; searching for an entry
uses the hash search algorithm on K. Once an entry is found, the pointer Pr (or P) is used
to locate the corresponding record in the data file. Other search structures can also be
used as indexes.

14.5.2 Logical versus Physical Indexes
So far, we have assumed that the index entries <K, Pr> (or <K, P» always include a
physical pointer Pr (or P) that specifies the physical record address on disk as a block
number and offset. This is sometimes called a physical index, and it has the disadvantage
that the pointer must be changed if the record is moved to another disk location. For
example, suppose that a primary file organization is based on linear hashing or extendible
hashing; then, each time a bucket is split, some records are allocated to new buckets and
hence have new physical addresses. If there was a secondary index on the file, the pointers
to those records would have to be found and updated-a difficult task.

To remedy this situation, we can use a structure called a logical index, whose index
entries are of the form <K, Kp>. Each entry has one value K for the secondary indexing
field matched with the value Kp of the field used for the primary file organization. By

10. Insertion/deletion algorithmsfor grid files maybe found in Nievergelt [1984].

486 I Chapter 14 lndexing Structures for Files

searching the secondary index on the value of K, a program can locate the corresponding
value of Kp and use this to access the record through the primary file organization. Logical
indexes thus introduce an additional level of indirection between the access structure and
the data. They are used when physical record addresses are expected to change frequently.
The cost of this indirection is the extra search based on the primary file organization.

14.5.3 Discussion
In many systems, an index is not an integral part of the data file but can be created and
discarded dynamically. That is why it is often called an access structure. Whenever we
expect to access a file frequently based on some search condition involving a particular
field, we can request the DBMS to create an index on that field. Usually, a secondary index
is created to avoid physical ordering of the records in the data file on disk.

The main advantage of secondary indexes is that-theoretically, at least-they can
be created in conjunction with virtually any primary record organization. Hence, a
secondary index could be used to complement other primary access methods such as
ordering or hashing, or it could even be used with mixed files. To create a W-tree
secondary index on some field of a file, we must go through all records in the file to create
the entries at the leaf level of the tree. These entries are then sorted and filled according
to the specified fill facror; simultaneously, the other index levels are created. It is more
expensive and much harder to create primary indexes and clustering indexes dynamically,
because the records of the data file must be physically sorted on disk in order of the
indexing field. However, some systems allow users to create these indexes dynamically on
their files by sorting the file during index creation.

It is common to use an index to enforce a key constraint on an attribute. While
searching the index to insert a new record, it is straightforward to check at the same time
whether another record in the file-and hence in the index tree-has the same key
attribute value as the new record. If so, the insertion can be rejected.

A file that has a secondary index on every one of its fields is often called a fully inverted
file. Because all indexes are secondary, new records are inserted at the end of the file;
therefore, the data file itself is an unordered (heap) file. The indexes are usually implemented
as B+-trees, so they are updated dynamically to reflect insertion or deletion of records. Some
commercial DBMSs, such as ADABAS of Software-AG, use this method extensively.

We referred to the popular IBM file organization called ISAM in Section 14.2.
Another IBM method, the virtual storage access method (VSAM), is somewhat similar to
the B+-tree access structure.

14.6 SUMMARY
In this chapter we presented file organizations that involve additional access structures,
called indexes, to improve the efficiency of retrieval of records from a data file. These
access structures may be used in conjunction with the primary file organizations discussed in
Chapter 13, which are used to organize the file records themselves on disk.

Review Questions I 487

Three types of ordered single-level indexes were introduced: (l) primary, (2)
clustering, and (3) secondary. Each index is specified on a field of the file. Primary and
clustering indexes are constructed on the physical ordering field of a file, whereas
secondary indexes are specified on nonordering fields. The field for a primary index must
also be a key of the file, whereas it is a nonkey field for a clustering index. A single-level
index is an ordered file and is searched using a binary search. We showed how multilevel
indexes can be constructed to improve the efficiency of searching an index.

We then showed how multilevel indexes can be implemented as B-trees and W -trees,
which are dynamic structures that allow an index to expand and shrink dynamically. The
nodes (blocks) of these index structures are kept between half full and completely full by
the insertion and deletion algorithms. Nodes eventually stabilize at an average occupancy
of69 percent full, allowing space for insertions without requiring reorganization of the
index for the majority of insertions. W-trees can generally hold more entries in their
internal nodes than can B-trees, so they may have fewer levels or hold more entries than
does a corresponding B-tree.

We gave an overview of multiple key access methods, and showed how an index can
beconstructed based on hash data structures. We then introduced the concept of a logical
index, and compared it with the physical indexes we described before. Finally, we
discussed how combinations of the above organizations can be used. For example,
secondary indexes are often used with mixed files, as well as with unordered and ordered
files. Secondary indexes can also be created for hash files and dynamic hash files.

Review Questions
14.1. Define the following terms: indexing field, primary key field, clustering field, secondary

key field, bl.ock anchor, dense index, and nondense (sparse) index.
14.2. What are the differences among primary, secondary, and clustering indexes? How

do these differences affect the ways in which these indexes are implemented?
Which of the indexes are dense, and which are not?

14.3. Why can we have at most one primary or clustering index on a file, but several
secondary indexes?

14.4. How does multilevel indexing improve the efficiency of searching an index file?
14.5. What is the order p of a B-tree? Describe the structure ofB-tree nodes.
14.6. What is the order p of a B+-tree? Describe the structure of both internal and leaf

nodes of a B+-tree.
14.7. How does a B-tree differ from a W -tree? Why is a W -tree usually preferred as an

access structure to a data file?
14.8. Explain what alternative choices exist for accessing a file based on multiple search

keys.
14.9. What is partitioned hashing? How does it work? What are its limitations?

14.10. What is a grid file? What are its advantages and disadvantages?
14.11. Show an example of constructing a grid array on two attributes on some file.
14.12. What is a fully inverted file? What is an indexed sequential file?
14.13. How can hashing be used to construct an index? What is the difference between a

logical index and a physical index?

488 I Chapter 14 Indexing Structures for Files

Exercises
14.14. Consider a disk with block size B "" 512 bytes. A block pointer is P "" 6 bytes long,

and a record pointer is PR "" 7 bytes long. A file has r "" 30,000 EMPLOYEE records
of fixed length. Each record has the following fields: NAME (30 bytes), SSN (9 bytes),
DEPARTMENTCODE (9 bytes), ADDRESS (40 bytes), PHONE (9 bytes), BIRTHDATE (8 bytes), SEX

(l byte), JOBCODE (4 bytes), SALARY (4 bytes, real number). An additional byte is
used as a deletion marker.
a. Calculate the record size R in bytes.
b. Calculate the blocking factor bfr and the number of file blocks b, assuming an

unspanned organization.
c. Suppose that the file is ordered by the key field SSN and we want to construct a

primary index on SSN. Calculate (i) the index blocking factor bfri (which is also
the index fan-out fa); (ii) the number of first-level index entries and the num
ber of first-level index blocks; (iii) the number of levels needed if we make it
into a multilevel index; (iv) the total number of blocks required by the multi
level index; and (v) the number of block accesses needed to search for and
retrieve a record from the file-given its SSN value-using the primary index.

d. Suppose that the file is not ordered by the key field SSN and we want to con
struct a secondary index on SSN. Repeat the previous exercise (part c) for the
secondary index and compare with the primary index.

e. Suppose that the file is not ordered by the nonkey field DEPARTMENTCODE and we
want to construct a secondary index on DEPARTMENTCODE, using option 3 of Section
14.1.3, with an extra level of indirection that stores record pointers. Assume
there are 1000 distinct values of DEPARTMENTCODE and that the EMPLOYEE records are
evenly distributed among these values. Calculate (0 the index blocking factor
bfr, (which is also the index fan-out fa); (ii) the number of blocks needed by
the level of indirection that stores record pointers; (iii) the number of first
level index entries and the number of first-level index blocks; (iv) the number
of levels needed if we make it into a multilevel index; (v) the total number of
blocks required by the multilevel index and the blocks used in the extra level
of indirection; and (vi) the approximate number of block accesses needed to
search for and retrieve all records in the file that have a specific DEPARTMENTCODE

value, using the index.
f. Suppose that the file is ordered by the nonkey field DEPARTMENTCODE and we want

to construct a clustering index on DEPARTMENTCODE that uses block anchors (every
new value of DEPARTMENTCODE starts at the beginning of a new block). Assume
there are 1000 distinct values of DEPARTMENTCODE and that the EMPLOYEE records are
evenly distributed among these values. Calculate (i) the index blocking factor
bfr, (which is also the index fan-out fa); (ii) the number of first-level index
entries and the number of first-level index blocks; (iii) the number of levels
needed if we make it into a multilevel index; (iv) the total number of blocks
required by the multilevel index; and (v) the number of block accesses needed
to search for and retrieve all records in the file that have a specific DEPARTMENT~

CODE value, using the clustering index (assume that multiple blocks in a cluster
are contiguous).

g. Suppose that the file is not ordered by the key field SSN and we want to con
struct a B+-tree access structure (index) on SSN. Calculate (i) the orders p and
Pleof of the W -tree: (ii) the number of leaf-level blocks needed if blocks are
approximately 69 percent full (rounded up for convenience); (iii) the number
of levels needed if internal nodes are also 69 percent full (rounded up for con
venience); (iv) the total number of blocks required by the W -tree; and (v) the
number of block accesses needed to search for and retrieve a record from the
file-given its SSN value-using the B+-tree.

h. Repeat part g, but for a B-tree rather than for a B+-tree. Compare your results
for the B-tree and for the W -tree.

14.15. A PARTS file with Part# as key field includes records with the following Part# val
ues: 23,65,37,60,46,92,48, 71,56,59,18,21,10,74,78,15,16,20,24,28,39,
43,47,50,69,75,8,49,33,38. Suppose that the search field values are inserted
in the given order in a W -tree of order p = 4 and Pleaf = 3; show how the tree will
expand and what the final tree will look like.

14.16. Repeat Exercise 14.15, but use a B-tree of order p = 4 instead of a W-tree.
14.17. Suppose that the following search field values are deleted, in the given order, from

the W-tree of Exercise 14.15; show how the tree will shrink and show the final
tree. The deleted values are 65, 75,43, 18,20,92,59,37.

14.18. Repeat Exercise 14.17, but for the B-tree of Exercise 14.16.
14.19. Algorithm 14.1 outlines the procedure for searching a nondense multilevel primary

index to retrieve a file record. Adapt the algorithm for each of the following cases:
a. A multilevel secondary index on a nonkey nonordering field of a file. Assume

that option 3 of Section 14.1.3 is used, where an extra level of indirection stores
pointers to the individual records with the corresponding index field value.

b. A multilevel secondary index on a nonordering key field of a file.
c. A multilevel clustering index on a nonkey ordering field of a file.

14.20. Suppose that several secondary indexes exist on nonkey fields of a file, implemented
using option 3 of Section 14.1.3; for example, we could have secondary indexes on
the fields DEPARTMENTCODE, JOBCODE, and SALARY of the EMPLOYEE file of Exercise 14.14.
Describe an efficient way to search for and retrieve records satisfying a complex
selection condition on these fields, such as (DEPARTMENTCODE = 5 AND JOBCODE = 12 AND

SALARY = 50,000), using the record pointers in the indirection level.
14.21. Adapt Algorithms 14.2 and 14.3, which outline search and insertion procedures

for a B+-tree, to a B-tree.
14.22. It is possible to modify the W -tree insertion algorithm to delay the case where a

new level is produced by checking for a possible redistribution of values among the
leaf nodes. Figure 14.15 illustrates how this could be done for our example in Fig
ure 14.12; rather than splitting the leftmost leaf node when 12 is inserted, we do a
left redistribution by moving 7 to the leaf node to its left (if there is space in this
node). Figure 14.15 shows how the tree would look when redistribution is consid
ered. It is also possible to consider right redistribution. Try to modify the W -tree
insertion algorithm to take redistribution into account.

14.23. Outline an algorithm for deletion from a W-tree.
14.24. Repeat Exercise 14.23 for a B-tree.

Exercises I 489

490 I Chapter 14 Indexing Structures for Files

I[IE] ernB---j~ [ili]8--1~11~ert 9: overflow (new level)

7

Insert 6: overflow (split)

I~
FIGURE 14.15 B+-tree insertion with left redistribution.

Selected Bibliography
Bayer and McCreight (1972) introduced B-trees and associated algorithms. Comer
(1979) provides an excellent survey of B-trees and their history, and variations of B-trees.
Knuth (1973) provides detailed analysis of many search techniques, including B-trees and
some of their variations. N ievergelt (1974) discusses the use of binary search trees for file
organization. Textbooks on file structures including Wirth (1972), Claybrook (1983),
Smith and Barnes (1987), Miller (1987), and Salzberg (1988) discuss indexing in detail
and may be consulted for search, insertion, and deletion algorithms for B-trees and W
trees. larson (1981) analyzes index-sequential files, and Held and Stonebraker (1978)

Selected Bibliography I 491

compare static multilevel indexes with B-tree dynamic indexes. Lehman and Yao (1981)
and Srinivasan and Carey (1991) did further analysis of concurrent access to B-trees. The
books by Wiederhold (1983), Smith and Barnes (1987), and Salzberg (1988), among oth
ers, discuss many of the search techniques described in this chapter. Grid files are intro
duced in Nievergelt (1984). Partial-match retrieval, which uses partitioned hashing, is
discussed in Burkhard (1976,1979).

New techniques and applications of indexes and B+-trees are discussed in Lanka and
Mays (1991), Zobel et al. (1992), and Faloutsos and Jagadish (1992). Mohan and Narang
(1992) discuss index creation. The performance of various B-tree and W -tree algorithms
is assessed in Baeza-Yates and Larson (1989) and Johnson and Shasha (1993). Buffer
management for indexes is discussed in Chan et al. (1992).

Algorithms for
Query Processing
and Optimization

In this chapter we discuss the techniques used by a DBMS to process, optimize, and execute
high-level queries. A query expressed in a high-level query language such as SQL must first
be scanned, parsed, and validated. 1 The scanner identifies the language tokens-such as
SQL keywords, attribute names, and relation names-in the text of the query, whereas the
parserchecks the query syntax to determine whether it is formulated according to the syn
tax rules (rules of grammar) of the query language. The query must also be validated, by
checking that all attribute and relation names are valid and semantically meaningful names
in the schema of the particular database being queried. An internal representation of the
query is then created, usually as a tree data structure called a query tree. It is also possible to

represent the query using a graph data structure called a query graph. The DBMS must then
devise an execution strategy for retrieving the result of the query from the database files. A
query typically has many possible execution strategies, and the process of choosing a suit
able one for processing a query is known as query optimization.

Figure 15.1 shows the different steps of processing a high-level query. The query optimizer
module has the task of producing an execution plan, and the code generator generates the code
toexecute that plan. The runtime database processor has the task of running the query code,

l. We will not discuss the parsing and syntax-checking phase of query processing here; this material
s discussed in compiler textbooks.

493

494 I Chapter 15 Algorithms for Query Processing and Optimization

Queryin a high-level language

SCANNING,
PARSING, AND

VALIDATING

Intermediate formof query

Execution plan

QUERYCODE
GENERATOR

Codecanbe:

Codeto execute thequery

RUNTIME DATABASE
PROCESSOR

Result of query

o Executed directly (interpreted mode)
o Stored andexecuted laterwhenever

needed(compiled mode)

FIGURE 15.1 Typical steps when processing a high-level query.

whether in compiled or interpreted mode, to produce the query result. If a runtime error results,
an error message is generared by the runtime darabase processor.

The term optimization is actually a misnomer because in some cases the chosen
execution plan is not the optimal (best) strategy-it is just a reasonably efficientstrategy for
executing the query. Finding the optimal strategy is usually too time-consuming except
for the simplest of queries and may require information on how the files are implemented
and even on the contents of the files-information that may not be fully available in the
DBMS catalog. Hence, planning of an executionstrategy may be a more accurate description
than query optimization.

For lower-level navigational database languages in legacy systems-such as the
network DML or the hierarchical HDML (see Appendixes E and F)-the programmer must

15.1 Translating SQL Queries into Relational Algebra I 495

choose the query execution strategy while writing a database program. If a DBMS provides
only a navigational language, there is limited need or opportunity for extensive query
optimization by the DBMS; instead, the programmer is given the capability to choose the
"optimal" execution strategy. On the other hand, a high-level query language-such as
SQL for relational DBMSs (RDBMSs) or OQL (see Chapter 21) for object DBMSs (ODBMSs)
is more declarative in nature because it specifies what the intended results of the query are,
rather than identifying the details of how the result should be obtained. Query
optimization is thus necessary for queries that are specified in a high-level query language.

We will concentrate on describing query optimization in the context of an RDBMS
because many of the techniques we describe have been adapted for ODBMSs. 2 A relational
DBMS must systematically evaluate alternative query execution strategies and choose a
reasonably efficient or optimal strategy. Each DBMS typically has a number of general
database access algorithms that implement relational operations such as SELECT or JOIN or
combinations of these operations. Only execution strategies that can be implemented by
the DBMS access algorithms and that apply to the particular query and particular physical
database design can be considered by the query optimization module.

We start in Section 15.1 with a general discussion of how SQL queries are typically
translated into relational algebra queries and then optimized. We then discuss algorithms
for implementing relational operations in Sections 15.2 through 15.6. Following this, we
give an overview of query optimization strategies. There are two main techniques for
implementing query optimization. The first technique is based on heuristic rules for
ordering the operations in a query execution strategy. A heuristic is a rule that works well
in most cases but is not guaranteed to work well in every possible case. The rules typically
reorder the operations in a query tree. The second technique involves systematically
estimating the cost of different execution strategies and choosing the execution plan with
the lowest cost estimate. The two techniques are usually combined in a query optimizer.
We discuss heuristic optimization in Section 15.7 and cost estimation in Section 15.8.
We then provide a brief overview of the factors considered during query optimization in
the ORACLE commercial RDBMS in Section 15.9. Section 15.10 introduces the topic of
semantic query optimization, in which known constraints are used to devise efficient
query execution strategies.

15.1 TRANSLATING SQL QUERIES INTO
RELATIONAL ALGEBRA

In practice, SQL is the query language that is used in most commercial RDBMSs. An SQL
query is first translated into an equivalent extended relational algebra expression-repre
sented as a query tree data structure-that is then optimized. Typically, SQL queries are
decomposed into query blocks, which form the basic units that can be translated into the

----- -----------

2.There are some query optimization problems and techniques that are pertinent only to ODBMSs.
However, we do not discuss these here as we can give only an introduction to queryoptimization.

496 I Chapter 15 Algorithms for Query Processing and Optimization

MAX (SALARY)
EMPLOYEE
DNO=5);

(SELECT
FROM
WHERE

algebraic operators and optimized. A query block contains a single SELECT-FROM-WHERE
expression, as well as GROUP BY and HAVING clauses if these are part of the block. Hence,
nested queries within a query are identified as separate query blocks. Because SQL includes
aggregate operators-such as MAX, MIN, SUM, and COUNT-these operators must also be
included in the extended algebra, as we discussed in Section 6.4.

Consider the following SQL query on the EMPLOYEE relation in Figure 5.5:

SELECT LNAME, FNAME
FROM EMPLOYEE
WHERE SALARY >

This query includes a nested subquery and hence would be decomposed into two
blocks. The inner block is

(SELECT MAX (SALARY)
FROM EMPLOYEE
WHERE DNO=5)

and the outer block is

SELECT LNAME, FNAME
FROM EMPLOYEE
WHERE SALARY > C

where c represents the result returned from the inner block. The inner block could be
translated into the extended relational algebra expression

ISMAX SALARY (crONO=5 (EMPLOYEE))

and the outer block into the expression

1TLNAME. FNAME (crSALARY>C (EMPLOYEE))

The query optimizer would then choose an execution plan for each block. We should
note that in the above example, the inner block needs to be evaluated only once to
produce the maximum salary, which is then used-as the constant (-by the outer block.
We called this an uncorrelated nestedquery in Chapter 8. It is much harder to optimize the
more complex correlated nested queries (see Section 8.5), where a tuple variable from the
outer block appears in the WHERE-clause of the inner block.

15.2 ALGORITHMS FOR EXTERNAL SORTI NG
Sorting is one of the primary algorithms used in query processing. For example, whenever
an SQL query specifies an ORDER BY-clause, the query result must be sorted. Sorting is also
a key component in sort-merge algorithms used for JOIN and other operations (such as
UNION and INTERSECTION), and in duplicate elimination algorithms for the PROJECT
operation (when an SQL query specifies the DISTINCT option in the SELECT clause). We
will discuss one of these algorithms in this section. Note that sorting may be avoided if an
appropriate index exists to allow ordered access to the records.

15.2 Algorithms for External Sorting I 497

External sorting refers to sorting algorithms that are suitable for large files of records
stored on disk that do not fit entirely in main memory, such as most database files.3 The
typical external sorting algorithm uses a sort-merge strategy, which starts by sorting small
subfiles-called runs-of the main file and then merges the sorted runs, creating larger
sorted subfiles that are merged in turn. The sort-merge algorithm, like other database
algorithms, requires buffer space in main memory, where the actual sorting and merging of
theruns is performed. The basic algorithm, outlined in Figure 15.2, consists of two phases:
(1) the sorting phase and (2) the merging phase.

In the sorting phase, runs (portions or pieces) of the file that can fit in the available
buffer space are read into main memory, sorted using an internal sorting algorithm, and
written back to disk as temporary sorted subfiles (or runs). The size of a run and number
ofinitial runs (nR) is dictated by the number of file blocks (b) and the available buffer

set i +---1;
j..- b; {size of the file in blocks}
k+---ns; {size of buffer in blocks}

m«- Rj/k~;
(Sort Phase}
while (i<= m)

do {
read next k blocks of the file into the buffer or if there are less than k blocks remaining,

then read in the remaining blocks;
sort the records in the buffer and write as a temporary subfile;
i..-i+1;
}

{Merge Phase: merge subfiles until only 1 remains}
set i..-1;

p..-IiOgk_1n1] ; {p is the number of passes for the merging phase}
j..-m;

while (i <= p)
do {

n..-1;
q..-fUI (k-1)51; {number of subfiles to write in this pass}
while (n <= q)

do {
read next k-1 subfiles or remaining subfiles (from previous pass) one block at a time;
merge and write as new subfile one block at a time;
n..-n + 1;

FIGURE 15.2 Outline of the sort-merge algorithm for external sorting.

3.Internal sorting algorithms are suitable for sorting data structures that can fie entirely in memory.

498 I Chapter 15 Algorithms for Query Processing and Optimization

space (nB)' For example, if nB = 5 blocks and the size of the file b = 1024 blocks, then
nR = ["" (b/nB) l , or 205 initial runs each of size 5 blocks (except the last run which will
have 4 blocks). Hence, after the sort phase, 205 sorted runs are stored as temporary
subfiles on disk.

In the merging phase, the sorted runs are merged during one or more passes. The degree
of merging (dM) is the number of runs that can be merged together in each pass. In each pass,
one buffer block is needed to hold one block from each of the runs being merged, and one
block is needed for containing one block of the merge result. Hence, dM is the smaller of (ns
1) and nR' and the number of passes is I (logdM(nR»l . In our example, dM = 4 (four-way
merging), so the 205 initial sorted runs would be merged into 52 at the end of the first pass,
which are then merged into 13, then 4, then 1 run, which means that four passes are needed.
The minimum dM of 2 gives the worst-case performance of the algorithm, which is

(2 * b) + (2 * (b * (logz b»)

The first term represents the number of block accesses for the sort phase, since each
file block is accessed twice-once for reading into memory and once for writing the
records back to disk after sorting. The second term represents the number of block
accesses for the merge phase, assuming the worst-case dM of 2. In general, the log is taken
to the base dM and the expression for number of block accesses becomes

(2 * b) + (2 * (b * (logdM nR»)

15.3 ALGORITHMS FOR SELECT AN D
JOIN OPERATIONS

15.3.1 Implementing the SELECT Operation
There are many options for executing a SELECToperation; some depend on the file having
specific access paths and may apply only to certain types of selection conditions. We discuss
some of the algorithms for implementing SELECT in this section. We will use the following
operations, specified on the relational database of Figure 5.5, to illustrate our discussion:

(opl): aSSN~'123456789'(EMPLOYEE)

(op2): aDNUMBER>5(DEPARTMENT)

(op3): aDNO~5 (EMPLOYEE)

(op4): aDNO~5 ANO SALARY>30000 AND SEX~' F' (EMPLOYEE)

(OpS): aESSN~'123456789' AND PNO~10 (WORKS_ON)

Search Methods for Simple Selection. A number of search algorithms are
possible for selecting records from a file. These are also known as file scans, because they
scan the records of a file to search for and retrieve records that satisfy a selection condition.'

4. A selection operation is sometimes called a filter, since it filters out the records in the file that do
not satisfy the selection condition.

15.3 Algorithms for SELECT and JOIN Operations I 499

If the search algorithm involves the use of an index, the index search is called an index
scan. The following search methods (SI through S6) are examples of some of the search
algorithms that can be used to implement a select operation:

• 51. Linear search (brute force): Retrieve every record in the file, and test whether its
attribute values satisfy the selection condition.

• 52. Binary search: If the selection condition involves an equality comparison on a
key attribute on which the file is ordered, binary search-which is more efficient
than linear search-can be used. An example is ort if SSN is the ordering
attribute for the EMPLOYEE file.5

• 53. Using a primary index (or hash key): If the selection condition involves an equal
ity comparison on a key attribute with a primary index (or hash key)-for
example, SSN = '123456789' in apI-use the primary index (or hash key) to
retrieve the record. Note that this condition retrieves a single record (at most).

• 54. Using a primary index to retrieve multiple records: If the comparison condition is >,
>=, <', or <= on a key field with a primary index-for example, ONUMBER > 5 in
oP2-use the index to find the record satisfying the corresponding equality con
dition (DNUMBER = 5), then retrieve all subsequent records in the (ordered) file. For
the condition DNUMBER < 5, retrieve all the preceding records.

• 55. Using a clustering index to retrieve multiple records: If the selection condition
involves an equality comparison on a non-key attribute with a clustering
index-for example, DNO = 5 in oP3-use the index to retrieve all the records sat
isfying the condition.

• 56. Using a secondary (B+-tree) index on an equality comparison: This search method
can be used to retrieve a single record if the indexing field is a key (has unique
values) or to retrieve multiple records if the indexing field is not a key. This can
also be used for comparisons involving .>, >=, <, or <=.

In Section 15.8, we discuss how to develop formulas that estimate the access cost of
these search methods in terms of number of block accesses and access time. Method SI
applies to any file, but all the other methods depend on having the appropriate access
path on the attribute used in the selection condition. Methods S4 and S6 can be used to
retrieve records in a certain range-for example, 30000<=SALARY<=35000. Queries
involving such conditions are called range queries.

Search Methods for Complex Selection. If a condition of a SELECT operation is a
conjunctive condition-that is, if it is made up of several simple conditions connected
with the AND logical connective such as op4 above-the DBMS can use the following
additional methods to implement the operation:

• S7. Conjunctive selection using an individual index: If an attribute involved in any
single simple condition in the conjunctive condition has an access path that

5. Generally, binary search is not used in database search because ordered files are not used unless
they also have a corresponding primary index.

500 I Chapter 15 Algorithms for Query Processing and Optimization

permits the use of one of the Methods 52 to 56, use that" condition to retrieve
the records and then check whether each retrieved record satisfies the remaining
simple conditions in the conjunctive condition.

• 58. Conjunctive selection using a composite index: If two or more attributes are
involved in equality conditions in the conjunctive condition and a composite
index (or hash structure) exists on the combined fields-for example, if an index
has been created on the composite key (ESSN, PNO) of the WORKS_ON file for oP5-we
can use the index directly.

• 59. Conjunctive selection by intersection of record pointers:6 If secondary indexes (or
other access paths) are available on more than one of the fields involved in sim
ple conditions in the conjunctive condition, and if the indexes include record
pointers (rather than block pointers), then each index can be used to retrieve
the set of record pointers that satisfy the individual condition. The intersection
of these sets of record pointers gives the record pointers that satisfy the conjunc
tive condition, which are then used to retrieve those records directly. If only
some of the conditions have secondary indexes, each retrieved record is further
tested to determine whether it satisfies the remaining conditions.I

Whenever a single condition specifies the selection-such as ort. orz, or or3-we
can only check whether an access path exists on the attribute involved in that condition.
If an access path exists, the method corresponding to that access path is used; otherwise,
the brute force linear search approach of method 5 I can be used. Query optimization for a
SELECT operation is needed mostly for conjunctive select conditions whenever more than
one of the attributes involved in the conditions have an access path. The optimizer should
choose the access path that retrieves the fewest records in the most efficient way by
estimating the di{{erent costs (see Section 15.8) and choosing the method with the least
estimated cost.

When the optimizer is choosing between multiple simple conditions in a conjunctive
select condition, it typically considers the selectivity of each condition. The selectivity
(s) is defined as the ratio of the number of records (tuples) that satisfy the condition to

the total number of records (tuples) in the file (relation), and thus is a number between
zero and I-zero selectivity means no records satisfy the condition and I means all
the records satisfy the condition. Although exact selectivities of all conditions may not
be available, estimates of selectivities are often kept in the DBMS catalog and are used by
the optimizer. For example, for an equality condition on a key attribute of relation r(R),
s = II Ir(R) I, where Ir(R) I is the number of tuples in relation r(R). For an equality
condition on an attribute with i distinct values, s can be estimated by (Ir(R) Ili)1Ir(R) I or

6. A record pointer uniquely identifies a record and provides the address of the record on disk;
hence, it is also called the record identifier or record id.

7. The technique can have many variations-for example, if the indexes are logical indexes that
store primary key values instead of record pointers.

15.3 Algorithms for SELECT and JOIN Operations I 501

Iii, assuming that the records are evenly distributed among the distinct values/' Under
this assumption, Ir(R) I Ii records will satisfy an equality condition on this attribute. In
general, the number of records satisfying a selection condition with selectivity s is
estimated to be Ir(R) I * s. The smaller this estimate is, the higher the desirability of
using that condition first to retrieve records.

Compared to a conjunctive selection condition, a disjunctive condition (where
simple conditions are connected by the OR logical connective rather than by AND) is
muchharder to process and optimize. For example, consider op4':

(op49): (J"DND~5 OR SALARY>300DD OR SEX~' F' (EMPLOYEE)

With such a condition, little optimization can be done, because the records satisfying the
disjunctive condition are the union of the records satisfying the individual conditions.
Hence, if anyone of the conditions does not have an access path, we are compelled to use
the brute force linear search approach. Only if an access path exists on every condition
can we optimize the selection by retrieving the records satisfying each condition-or
their record ids-and then applying the union operation to eliminate duplicates.

A DBMS will have available many of the methods discussed above, and typically
many additional methods. The query optimizer must choose the appropriate one for
executing each SELECT operation in a query. This optimization uses formulas that
estimate the costs for each available access method, as we shall discuss in Section 15.8.
The optimizer chooses the access method with the lowest estimated cost.

15.3.2 Implementing the JOIN Operation
The JOIN operation is one of the most time-consuming operations in query processing. Many
ofthe join operations encountered in queries are of the EQUIjOIN and NATURAL JOIN varieties,
sowe consider only these two here. For the remainder of this chapter, the term join refers to
an EQUljOIN (or NATURAL JOIN). There are many possible ways to implement a two-way join,
whichis a join on two files.Joins involving more than two files are called multiway joins. The
number of possible ways to execute multiway joins grows very rapidly. In this section we dis
cuss techniques for implementing only two-way joins. To illustrate our discussion, we refer to
the relational schema of Figure 5.5 once more-specifically, to the EMPLOYEE, DEPARTMENT, and
PROJECT relations. The algorithms we consider are for join operations of the form

R ~ A~B 5

where A and B are domain-compatible attributes of Rand 5, respectively. The methods
we discuss can be extended to more general forms of join. We illustrate four of the most
common techniques for performing such a join, using the following example operations:

(op6): EMPLOYEE ~ DNO~DNUMBER DEPARTMENT

(op?): DEPARTMENT ~ MGRSSN~SSN EMPLOYEE

8. In more sophisticated optimizers, histograms representing the distribution of the records among
the different attribute values can be kept in the catalog.

502 I Chapter 15 Algorithms for Query Processing and Optimization

Methods for Implementing Joins

• J1. Nested-loop join (brute force): For each record t in R (outer loop), retrieve every
record s from 5 (inner loop) and test whether the two records satisfy the join
condition t[A] = s[Bj.9

• J2. 5ingle-loop join (using an access structure to retrieve the matching records): If an
index (or hash key) exists for one of the two join attributes-say, B of S
retrieve each record t in R, one at a time (single loop), and then use the access
structure to retrieve directly all matching records s from 5 that satisfy ~[B] =t[Aj.

• J3. 5ort-merge join: If the records of Rand 5 are physically sorted (ordered) by valueof
the join attributes A and B, respectively, we can implement the join in the most
efficient way possible. Both files are scanned concurrently in order of the join
attributes, matching the records that have the same values for A and B. If the
files are not sorted, they may be sorted first by using external sorting (see Section
15.2). In this method, pairs of file blocks are copied into memory buffers in order
and the records of each file are scanned only once each for matching with the
other file-unless both A and Bare nonkey attributes, in which case the method
needs to be modified slightly. A sketch of the sort-merge join algorithm is given
in Figure 15.3a. We use R(i) to refer to the ith record in R. A variation of the
sort-merge join can be used when secondary indexes exist on both join
attributes. The indexes provide the ability to access (scan) the records in order
of the join attributes, but the records themselves are physically scattered all over
the file blocks, so this method may be quite inefficient, as every record access
may involve accessing a different disk block.

•]4. Hash-join: The records of files Rand 5 are both hashed to the same hash file,
using the same hashing function on the join attributes A of Rand B of 5 as hash
keys. First, a single pass through the file with fewer records (say, R) hashes its
records to the hash file buckets; this is called the partitioning phase, since the
records of R are partitioned into the hash buckets. In the second phase, called
the probing phase, a single pass through the other file (5) then hashes each ofits
records to probe the appropriate bucket, and that record is combined with all
matching records from R in that bucket. This simplified description of hash-join
assumes that the smaller of the two files fits entirely into memory buckets after the
first phase. We will discuss variations of hash-join that do not require this
assumption below.

In practice, techniques J1 to]4 are implemented by accessing whole disk blocks ofa
file, rather than individual records. Depending on the available buffer space in memory,
the number of blocks read in from the file can be adjusted.

.-----_..._-----------------

9. For disk files, it is obvious that the loops will be over disk blocks so this technique has also been
called nested-block join.

15.3 Algorithms for SELECT and JOIN Operations I 503

(a) sort the tuples in R on attribute A; ('assume R has n tuples (records) ')
sort the tuples in 8 on attribute B; ('assume 8 has m tuples (records) ')
set i.-1,j.-1;
while (i s n) and (j';; m)
dol if R(I)[A] > 8(;)[B]

then set j. j+ 1
elseif R(I)[A] < 8(;)[B]

then set i.- i+ 1
else { (' R(I)[A] = 8(J)[B], so we output a matched tuple')

output the combined tuple <R(i), 8(j» to T;
('output other tuples that match R(i), if any')
set l..-j+1;
while (/,;; m) and (R(i)[A] '= 8(/)[B])
do (output the combined tuple <R(i), 8(/» to T;

set /<-/+1
}

('output other tuples that match 8(j), if any')
set k...-i+1;
while (k';; n) and (R(k)[A] '= 8(;)[B])
do (output the combined tuple <R(k), 8(j» to T;

set k.- k+ 1
}

set i.- i+1, j.-j+1

(b) create a tuple I[<attribute lisb-] in T' for each tuple tin R;
('T' contains the projection result before duplicate elimination')

if <attribute list> includes a key of R
then T.- T'
else { sort the tuples in T';

set i.-1, j.- 2;
while i,;; n

do output the tuple T'[i] to T;
while T'[i] =T'[j] and j ,;; n do j.- j+ 1; ('eliminate duplicates')
i.- j; l": i+1

}
(' T contains the projection result after duplicate elimination ')

FIGURE 15.3 Implementing JOIN, PROJECT, UNION, INTERSECTION, and SET DIFFERENCE by
using sort-merge, where R has n tuples and 5 has m tuples. (a) Implementing the operation
Tf- R~A=BS. (b) Implementing the operation T~ 'IT<attribute list>(R).

Effects of Available Buffer Space and Join Selection Factor on Join
Performance. The buffer space available has an important effect on the various join
algorithms. First, let us consider the nested-loop approach (Jl). Looking again at the
operation or6 above, assume that the number of buffers available in main memory for
implementing the join is nB = 7 blocks (buffers). For illustration, assume that the DEPART

MENT file consists of tt: = 50 records stored in bD = 10 disk blocks and that the EMPLOYEE file

504 I Chapter 15 Algorithms for Query Processing and Optimization

(e) sort the tuples in Rand S using the same unique sort attributes;
set i+--1.j+--1;
while (i ~ n) and U~ m)
do { if R(i) > S(j)

then { output S(j) to T;
set j.-j+ 1

)
elseif R(i) < S(j)
then (output R{ i) to T;

set t-- i+1
}

else setj+--j+1 (*R(i)",S(j). so we skip one of the duplicate tuples*}
}

if (i ~ n) then add tuples R(i) to R(n) to T;

if (j ~ m) then add tuples S(j) to S{ m) to T;

(d) sort the tuples in Rand S using the same unique sort attributes;
set i+--1.j+--1;
while (i s n) and Us; m)
do { if R(i) > S(j)

then setj+--j+1
elseif R(i) < S(j)
then set i+-- i+1
else output R(i) to T; (* R(i)=S(j), so we output the tuple *)

set i+--i+1,j+--j+1

(e) sort the tuples in Rand S using the same unique sort attributes;
set i+--1.j+--1;
while (i~ n) and U~ m)
do { if R(i) > S(j)

then set j+-- j+ 1
elseif R(i) < S(j)
then { output R(i)to T; (* R(i) has no matchingS(j). so output R(i)*)

set i+--i+1

else set i+-- i+1, j +--j+1
}

if (i ~ n) then add tuples R(i) to R(n) to T;

FIGURE 15*3(cONTINUED) Implementing JOIN, PROJECT, UNION, INTERSECTION,

and SET DIFFERENCE by using sort-merge, where R has n tuples and 5 has m tuples. (e)
Implementing the operation T f-- R U S. (d) Implementing the operation T f-- R n S.
(e) Implementing the operation T f-- R - S.

consists of rE = 6000 records stored in bE = 2000 disk blocks. It is advantageous to read as
many blocks as possible at a time into memory from the file whose records are used for the
outer loop (that is, nB - 2 blocks). The algorithm can then read one block at a time for
the inner-loop file and use its records to probe (that is, search) the outer loop blocks in
memory for matching records. This reduces the total number of block accesses. An extra
buffer block is needed to contain the resulting records after they are joined, and the con-

15.3 Algorithms for SELECT and JOIN Operations I 505

tents of this buffer block are appended to the result file-the disk file that contains the
join result-whenever it is filled. This buffer block is then is reused to hold additional
result records.

In the nested-loop join, it makes a difference which file is chosen for the outer loop
andwhich for the inner loop. If EMPLOYEE is used for the outer loop, each block of EMPLOYEE is
read once, and the entire DEPARTMENT file (each of its blocks) is read once for each time we
read in (nB - 2) blocks of the EMPLOYEE file. We get the following:

Total number of blocks accessed for outer file = bE

Number of times (nB - 2) blocks of outer file are loaded = ibEf<nB - 2) l
Total number of blocks accessed for inner file = bD * ibE/(nB - 2) l

Hence, we get the following total number of block accesses:

bE + (ibE/(nB - 2) l * bD) = 2000 + (I(2000/5) l * 10) = 6000 block accesses

On the other hand, if we use the OEPARTMENT records in the outer loop, by symmetry we get
thefollowing total number of block accesses:

bD + (ibo/CnB - 2) l * bE) = 10 + (I(l0/5) l * 2000) = 4010 block accesses

The join algorithm uses a buffer to hold the joined records of the result file. Once the
buffer is filled, it is written to disk and reused. 10 If the result file of the join operation has
bRES disk blocks, each block is written once, so an additional bRES block accesses should be
added to the preceding formulas in order to estimate the total cost of the join operation.
The same holds for the formulas developed later for other join algorithms. As this
example shows, it is advantageous to use the file with fewer blocks as the outer-loop file in
thenested-loop join.

Another factor that affects the performance of a join, particularly the single-loop
methodJ2, is the percentage of records in a file that will be joined with records in the
other file. We call this the join selection factor!' of a file with respect to an equijoin
condition with another file. This factor depends on the particular equijoin condition
between the two files. To illustrate this, consider the operation op7, which joins each
DEPARTMENT record with the EMPLOYEE record for the manager of that department. Here, each
DEPARTMENT record (there are 50 such records in our example) is expected to be joined with
asingle EMPLOYEE record, but many EMPLOYEE records (the 5950 of them that do not manage a
department) will not be joined.

Suppose that secondary indexes exist on both the attributes SSN of EMPLOYEE and MGRSSN

ofDEPARTMENT, with the number of index levels X SSN = 4 and XMGRSSN = 2, respectively. We have
two options for implementing method J2. The first retrieves each EMPLOYEE record and then
uses the index on MGRSSN of DEPARTMENT to find a matching DEPARTMENT record. In this case, no

10. Ifwe reserve two buffers for the result file, double buffering can be used to speed the algorithm
(see Section 13.3).

11. This is different from the join selectivity, which we shall discuss in Section 15.8.

506 I Chapter 15 Algorithms for Query Processing and Optimization

matching record will be found for employees who do not manage a department. The
number of block accesses for this case is approximately

bE + (rE * (XMCRSSN + 1)) = 2000 + (6000 * 3) = 20,000 block accesses

The second option retrieves each DEPARTMENT record and then uses the index on SSNof
EMPLDYEE to find a matching manager EMPLOYEE record. In this case, every DEPARTMENT record
will have one matching EMPLOYEE record. The number of hlock accesses for this case is
approximately

bo + (ro * (XSSN + 1)) = 10 + (50 * 5) = 260 block accesses

The second option is more efficient because the join selection factor of DEPARTMENT

with respect to the join condition SSN = MGRSSN is 1, whereas the join selection factor of
EMPLOYEE with respect to the same join condition is (50/6000), or 0.008. For method J2,
either the smaller file or the file that has a match for every record (that is, the file with the
high join selection factor) should be used in the (outer) join loop. It is also possible to
create an index specifically for performing the join operation if one does not already exist.

The sort-merge join J3 is quite efficient if both files are already sorted by their join
attribute. Only a single pass is made through each file. Hence, the number of blocks
accessed is equal to the sum of the numbers of blocks in both files. For this method, both
op6 and op7 would need bE + bo = 2000 + 10 = 2010 block accesses. However, both files
are required to be ordered by the join attributes; if one or both are not, they may be sorted
specifically for performing the join operation. If we estimate the cost of sorting an
external file by (b log2b) block accesses, and if both files need to be sorted, the total cost of
a sort-merge join can be estimated by (bE + bo + bE log2bE + bD log2bo).12

Partition Hash Join and Hybrid Hash Join. The hash-join method J4 is also
quite efficient. In this case only a single pass is made through each file, whether or not the
files are ordered. If the hash table for the smaller of the two files can be kept entirely in
main memory after hashing (partitioning) on its join attribute, the implementation is
straightforward. If, however, parts of the hash file must be stored on disk, the method
becomes more complex, and a number of variations to improve the efficiency have been
proposed. We discuss two techniques: partition hash join and a variation called hybrid
hash join, which has been shown to be quite efficient.

In the partition hash join algorithm, each file is first partitioned into M partitions using
a partitioning hash function on the join attributes. Then, each pair of partitions is joined.
For example, suppose we are joining relations Rand 5 on the join attributes R.A and 5.B:

R ~A=B 5

In the partitioning phase, R is partitioned into the M partitions R1, R2, ... , RM , and
5 into the M partitions 51' 52' ... , 5M. The property of each pair of corresponding
partitions Rj , 5 j is that records in R, only need to be joinedwith records in 5 j , and vice versa.
This property is ensured by using the same hash function to partition both files on their

----- "----------------"--------

12. We can use the more accurate formulas from Section 15.2 if we know the number of available
buffers for sorting.

15.3 Algorithms for SELECT and JOIN Operations I 507

join attributes-attribute A for R and attribute B for S. The minimum number of in
memory buffers needed for the partitioning phase is M + 1. Each of the files Rand S are
partitioned separately. For each of the partitions, a single in-memory buffer-whose size is
one disk block-is allocated to store the records that hash to this partition. Whenever
the in-memory buffer for a partition gets filled, its contents are appended to a disk subfile
that stores this partition. The partitioning phase has two iterations. After the iirst
iteration, the first file R is partitioned into the subfiles R], Rz, ... , RM , where all the
records that hashed to the same buffer are in the same partition. After the second
iteration, the second file S is similarly partitioned.

In the second phase, called the joining or probing phase, M iterations are needed.
During iteration i, the two partitions Rj and Sj are joined. The minimum number of
buffers needed for iteration i is the number of blocks in the smaller of the two partitions,
say Rj , plus two additional buffers. If we use a nested loop join during iteration i, the
records from the smaller of the two partitions Rj are copied into memory buffers; then all
blocks from the other partition Sj are read-one at a time-and each record is used to
probe (that is, search) partition Rj for matching record(s). Any matching records are
joinedand written into the result file. To improve the efficiency of in-memory probing, it
is common to use an in-memory hash table for storing the records in partition Rj by using a
different hash function from the partitioning hash function. 13

We can approximate the cost of this partition hash-join as 3 * (bR + bs) + bRES for our
example, since each record is read once and written back to disk once during the
partitioning phase. During the joining (probing) phase, each record is read a second time
to perform the join. The main difficulty of this algorithm is to ensure that the partitioning
hash function is uniform-that is, the partition sizes are nearly equal in size. If the
partitioning function is skewed (nonuniform), then some partitions may be too large to
&t in the available memory space for the second joining phase.

Notice that if the available in-memory buffer space nB > (bR + 2), where bR is
the number of blocks for the smaller of the two files being joined, say R, then there is no
reason to do partitioning since in this case the join can be performed entirely in memory
using some variation of the nested-loop join based on hashing and probing. For
il1ustration, assume we are performing the join operation ore, repeated below:

(op6): EMPLOYEE ~ DND=DNUMBER DEPARTMENT

In this example, the smaller file is the DEPARTMENT file; hence, if the number of available
memory buffers nB > (bD + 2), the whole DEPARTMENT file can be read into main memory
andorganized into a hash table on the join attribute. Each EMPLOYEE block is then read into
abuffer, and each EMPLOYEE record in the buffer is hashed on its join attribute and is used to
probe the corresponding in-memory bucket in the DEPARTMENT hash table. If a matching
record is found, the records are joined, and the result recordts) are written to the result
buffer and eventually to the result file on disk. The cost in terms of block accesses is
hence (bD + bE)' plus bREs-the cost of writing the result file.

13. Ifthe hash function usedfor partitioning is used again, all records in a partition will hash to the
same bucket again.

508 I Chapter 15 Algorithms for Query Processing and Optimization

The hybrid hash-join algorithm is a variation of partition hash join, where the
joining phase for one of the partitions is included in the partitioning phase. To illustrate
this, let us assume that the size of a memory buffer is one disk block; that nB such buffers
are available; and that the hash function used is h(K) = K mod M so that M partitions
are being created, where M < nB' For illustration, assume we are performing the join
operation ore. In the first pass of the partitioning phase, when the hybrid hash-join
algorithm is partitioning the smaller of the two files (DEPARTMENT in ore), the algorithm
divides the buffer space among the M partitions such that all the blocks of the first
partition of DEPARTMENT completely reside in main memory. For each of the other
partitions, only a single in-memory buffer-whose size is one disk block-is allocated;
the remainder of the partition is written to disk as in the regular partition hash join.
Hence, at the end of the first pass of the partitioning phase, the first partition of DEPARTMENT

resides wholly in main memory, whereas each of the other partitions of DEPARTMENT

resides in a disk subtile.
For the second pass of the partitioning phase, the records of the second file being

joined-the larger file, EMPLOYEE in oP6-are being partitioned. If a record hashes to
the first partition, it is joined with the matching record in DEPARTMENT and the joined
records are written to the result buffer (and eventually to disk). If an EMPLOYEE record
hashes to a partition other than the first, it is partitioned normally. Hence, at the end
of the second pass of the partitioning phase, all records that hash to the first partition
have been joined. Now there are M - 1 pairs of partitions on disk. Therefore, during
the second joining or probing phase, M - 1 iterations are needed instead of M. The
goal is to join as many records during the partitioning phase so as to save rhe cost of
storing those records back to disk and rereading them a second time during the
joining phase.

15.4 ALGORITHMS FOR PROJECT AND
SET OPERATIONS

A PROJECT operation 'IT<attribute list> (R) is straightforward to implement if <attribute list>
includes a key of relation R, because in this case the result of the operation will have the
same number of tuples as R, but with only the values for the attributes in <attribute list>
in each tuple. If <attribute list> does not include a key of R, duplicate tuples must be elim
inated. This is usually done by sorting the result of the operation and then eliminating
duplicate tuples, which appear consecutively after sorting. A sketch of the algorithm is
given in Figure 15.3b. Hashing can also be used to eliminate duplicates: as each record is
hashed and inserted into a bucket of the hash file in memory, it is checked against those
already in the bucket; if it is a duplicate, it is not inserted. It is useful to recall here that in
SQL queries, the default is not to eliminate duplicates from the query result; only if the
keyword DISTINCT is included are duplicates eliminated from the query result.

Set operations-UNION, INTERSECTION, SET DIFFERENCE, and CARTESIAN PRODUCT
are sometimes expensive to implement. In particular, the CARTESIAN PRODUCT operation

. R X S is quite expensive, because its result includes a record for each combination of

15.5 Implementing Aggregate Operations and Outer Joins I 509

records from Rand S. In addition, the attributes of the result include all attributes of R
and S. If R has n records and j attributes and S has m records and k attributes, the result
relation will have n * m records and j + k attributes. Hence, it is important to avoid the
CARTESIAN PRODUCT operation and to substitute other equivalent operations during
query optimization (see Sectio~ 15.7).

The other three set operations-UNION, INTERSECTION, and SET DIFFERENCE14

apply only to union-compatible relations, which have the same number of attributes and
the same attribute domains. The customary way to implement these operations is to use
variations of the sort-merge technique: the two relations are sorted on the same attri
butes, and, after sorting, a single scan through each relation is sufficient to produce the
result. For example, we can implement the UNION operation, R U S, by scanning and
merging both sorted files concurrently, and whenever the same tuple exists in both
relations, only one is kept in the merged result. For the INTERSECTION operation, R n S,
wekeep in the merged result only those tuples that appear in both relations. Figure 15.3c
to (e) sketches the implementation of these operations by sorting and merging. Some of
the details are not included in these algorithms.

Hashing can also be used to implement UNION, INTERSECTION, and SET DIFFERENCE.
One table is partitioned and the other is used to probe the appropriate partition. For
example, to implement R U S, first hash (partition) the records of R; then, hash (probe)
the records of S, but do not insert duplicate records in the buckets. To implement R n S,
first partition the records of R to the hash file. Then, while hashing each record of S,
probe to check if an identical record from R is found in the bucket, and if so add the
record to the result file. To implement R - S, first hash the records of R to the hash file
buckets. While hashing (probing) each record of S, if an identical record is found in the
bucket, remove that record from the bucket.

15.5 IMPLEMENTING AGGREGATE OPERATIONS
AND OUTER JOINS

15.5.1 Implementing Aggregate Operations
The aggregate operators (MIN, MAX, COUNT, AVERAGE, SUM), when applied to an entire
table, can be computed by a table scan or by using an appropriate index, if available. For
example, consider the following SQL query:

SELECT MAXCSALARY)
FROM EMPLOYEE;

If an (ascending) index on SALARY exists for the EMPLOYEE relation, then the optimizer
can decide on using the index to search for the largest value by following the rightmost
pointer in each index node from the root to the rightmost leaf. That node would include

14. SETDIFFERENCE is called EXCEPT in SQL.

510 I Chapter 15 Algorithms for Query Processing and Optimization

the largest SALARY value as its last entry. In most cases, this would be more efficient than a
full table scan of EMPLOYEE, since no actual records need to be retrieved. The MIN aggregate
can be handled in a similar manner, except that the leftmost pointer is followed from the
root to leftmost leaf. That node would include the smallest SALARY value as its first entry.

The index could also be used for the COUNT, AVERAGE, and SUM aggregates, but only
if it is a dense index-that is, if there is an index entry for every record in the main file. In
this case, the associated computation would be applied to the values in the index. For a
nondense index, the actual number of records associated with each index entry must be
used for a correct computation (except for COUNT DISTINCT, where the number of
distinct values can be counted from the index itself).

When a GROUP BY clause is used in a query, the aggregate operator must be applied
separately to each group of tuples. Hence, the table must first be partitioned into subsets
of tuples, where each partition (group) has the same value for the grouping attributes. In
this case, the computation is more complex. Consider the following query:

SELECT DNO, AVG(SALARY)
FROM EMPLOYEE
GROUP BY DNO;

The usual technique for such queries is to first use either sorting or hashing on the
grouping attributes to partition the file into the appropriate groups. Then the algorithm
computes the aggregate function for the tuples in each group, which have the same
grouping attriburets) value. In the example query, the set of tuples for each department
number would be grouped together in a partition and the average salary computed for
each group.

Notice that if a clustering index (see Chapter 13) exists on the grouping attributels),
then the records are already partitioned (grouped) into the appropriate subsets. In this case,
it is only necessary to apply the computation to each group.

15.5.2 Implementing Outer Join
In Section 6,4, the outerjoin operation was introduced, with its three variations: left outer
join, right outer join, and full outer join. We also discussed in Chapter 8 how these oper
ations can be specified in SQL. The following is an example of a left outer join operation
inSQL:

SELECT LNAME, FNAME, DNAME
FROM (EMPLOYEE LEFT OUTER JOIN DEPARTMENT ON DNO=DNUMBER);

The result of this query is a table of employee names and their associated
departments. It is similar to a regular (inner) join result, with the exception that if an
EMPLOYEE tuple (a tuple in the left relation) does not have an associated department, the
employee's name will still appear in the resulting table, but the department name would
be null for such tuples in the query result.

Outer join can be computed by modifying one of the join algorithms, such as nested
loop join or single-loop join. For example, to compute a left outer join, we use the left
relation as the outer loop or single-loop because every tuple in the left relation must

15.6 Combining Operations Using Pipelining I 511

appear in the result. If there are matching tuples in the other relation, the joined tuples
areproduced and saved in the result. However, if no matching tuple is found, the tuple is
still included in the result but is padded with null valuers). The sort-merge and hash-join
algorithms can also be extended to compute outer joins.

Alternatively, outer join can be computed by executing a combination of relational
algebra operators. For example, the left outer join operation shown above is equivalent to
the following sequence of relational operations:

1. Compute the (inner) JOIN of the EMPLOYEE and DEPARTMENT tables.

TEMPI f- 'ITLNAME. FNAME. DNAME (EMPLOYEE~DNO=DNUMBER DEPARTMENT)

2. Find the EMPLOYEE tuples that do not appear in the (inner) JOIN result.

TEMP2 f- 'lTlNAME. FNAME (EMPLOYEE) - 'ITLNAME. FNAME (TEMPI)

3. Pad each tuple in TEMP2 with a null DNAME field.

TEMP2 f- TEMP2 X 'NULL'

4. Apply the UNION operation to TEMPI, TEMP2 to produce the LEFT OUTER JOIN result.

RESULT f- TEMPI U TEMP2

The cost of the outer join as computed above would be the sum of the costs of the
associated steps (inner join, projections, and union). However, note that step 3 can be
done as the temporary relation is being constructed in step 2; that is, we can simply pad
each resulting tuple with a null. In addition, in step 4, we know that the two operands of
the union are disjoint (no common tuples), so there is no need for duplicate elimination.

15.6 COMBINING OPERATIONS
USING PIPELINING

A query specified in SQL will typically be translated into a relational algebra expression
that is a sequence of relational operations. If we execute a single operation at a time, we
must generate temporary files on disk to hold the results of these temporary operations,
creating excessive overhead. Generating and storing large temporary files on disk is time
consuming and can be unnecessary in many cases, since these files will immediately be
used as input to the next operation. To reduce the number of temporary files, it is
common to generate query execution code that correspond to algorithms for combina
tions of operations in a query.

For example, rather than being implemented separately, a JOIN can be combined with
two SELECT operations on the input files and a final PROJECT operation on the resulting
file; all this is implemented by one algorithm with two input files and a single output file.
Rather than creating four temporary files, we apply the algorithm directly and get just one
result file. In Section 15.7.2 we discuss how heuristic relational algebra optimization can
group operations together for execution. This is called pipelining or stream-based
processing.

.
512 I Chapter 15 Algorithms for Query Processing and Optimization

It is common to create the query execution code dynamically to implement multiple
operations. The generated code for producing the query combines several algorithms that
correspond to individual operations. As the result tuples from one operation are produced,
they are provided as input for subsequent operations. For example, if a join operation
follows two select operations on base relations, the tuples resulting from each select are
provided as input for the join algorithm in a stream or pipeline as they are produced.

15.7 USING HEURISTICS IN QUERY
OPTIMIZATION

In this section we discuss optimization techniques that apply heuristic rules to modify the
internal representation of a query-which is usually in the form of a query tree or a query
graph data structure-to improve its expected performance. The parser of a high-level
query first generates an initial internal representation, which is then optimized according to
heuristic rules. Following that, a query execution plan is generated to execute groups of
operations based on the access paths available on the files involved in the query.

One of the main heuristic rules is to apply SELECT and PROJECT operations before
applying the JOIN or other binary operations. This is because the size of the file resulting

. from a binary operation-such as JOIN-is usually a multiplicative function of the sizesof
the input files. The SELECT and PROJECT operations reduce the size of a file and hence
should be applied before a join or other binary operation.

We start in Section 15.7.1 by introducing the query tree and query graph notations.
These can be used as the basis for the data structures that are used for internal
representation of queries. A query tree is used to represent a relational algebra or extended
relational algebra expression, whereas a query graph is used to represent a relational calculus
expression. We then show in Section 15.7.2 how heuristic optimization rules are applied to
convert a query tree into an equivalent query tree, which represents a different relational
algebra expression that is more efficient to execute but gives the same result as the original
one. We also discuss the equivalence of various relational algebra expressions. Finally,
Section 15.7.3 discusses the generation of query execution plans.

15.7.1 Notation for Query Trees and Query Graphs
A query tree is a tree data structure that corresponds to a relational algebra expression. It
represents the input relations of the query as leafnodes of the tree, and represents the rela
tional algebra operations as internal nodes. An execution of the query tree consists of
executing an internal node operation whenever its operands are available and then
replacing that internal node by the relation that results from executing the operation.
The execution terminates when the root node is executed and produces the result rela
tion for the query.

Figure 15.4a shows a query tree for query Q2 of Chapters 5 to 8: For every project
located in 'Stafford', retrieve the project number, the controlling department number,

(a)

15.7 Using Heuristics in Query Optimization I 513

1t P.PNUMBER, P.DNUM,E.LNAME,E.ADDRESS, E.BDATE

(3)

~ D.MGRSSN=E.SSN

MPDNU~~D~ ~
OPPLOCA~:~ -.

~
(b) 1t P.PNUMBER,P.DNUM,E.LNAME,E.ADDRESS,E.BDATE

I
a P.DNUM=D.DNUMBER ANDD.MGRSSN=E.SSN ANDP.PLOCATION='Stafford'

I
X

,/~

c/~
FIGURE 15.4 Two query trees for the query Q2. (a) Query tree corresponding to the
relational algebra expression for Q2. (b) Initial (canonical) query tree for SQL query Q2.

and the department manager's last name, address, and birthdate. This query is specified
on the relational schema of Figure 5.5 and corresponds to the following relational algebra
expression:

'lTPNUMBER,DNUM.LNAME.ADDRESS,BDATE (((<TPLOCATION~'STAFFORO'(PROJECT))

~DNUM~DNUMBER(DEPARTMENT)) ~MGRSSN~SSN(EMPLOYEE))

514 I Chapter 15 Algorithms for Query Processing and Optimization

(e) [P.PNUMBER,P.DNUMI

P:DNUM=D.DNUMBER

[E.LNAME,E.ADDRESS,E.BDATEI

D.MGRSSN=E.SSN
Pi-----------jDl-----------\

P.PLOCATION='Stafford'

FIGURE 15.4(CONTINUED) (c) Query graph for Q2.

E

This corresponds to the following SQL query:

Q2: SELECT P.PNUMBER, P.DNUM, E.LNAME, E.ADDRESS, E.BDATE
FROM PROJECT AS P, DEPARTMENT AS D, EMPLOYEE AS E
WHERE P.DNUM=D.DNUMBER AND D.MGRSSN=E.SSN AND

P. PLOCATION=' STAFFORD' ;

In Figure 15.4a the three relations PROJECT, DEPARTMENT, and EMPLOYEE are represented by
leaf nodes P, D, and E, while the relational algebra operations of the expression are
represented by internal tree nodes. When this query tree is executed, the node marked
(1) in Figure 15.4a must begin execution before node (2) because some resulting tuples of
operation (l) must be available before we can begin executing operation (2). Similarly,
node (2) must begin executing and producing results before node (3) can start execution,
and so on.

As we can see, the query tree represents a specific order of operations for executing a
query. A more neutral representation of a query is the query graph notation. Figure 15.4c
shows the query graph for query Q2. Relations in the query are represented by relation
nodes, which are displayed as single circles. Constant values, typically from the query
selection conditions, are represented by constant nodes, which are displayed as double
circles or ovals. Selection and join conditions are represented by the graph edges, as
shown in Figure 15.4c. Finally, the attributes to be retrieved from each relation are
displayed in square brackets above each relation.

The query graph representation does not indicate an order on which operations to
perform first. There is only a single graph corresponding to each query.l? Although some
optimization techniques were based on query graphs, it is now generally accepted that
query trees are preferable because, in practice, the query optimizer needs to show the
order of operations for query execution, which is not possible in query graphs.

15. Hence, a query graph corresponds to a relational calculus expression (see Chapter 6).

15.7 Using Heuristics in Query Optimization I 515

15.7.2 Heuristic Optimization of Query Trees
In general, many different relational algebra expressions-and hence many different
query trees-can be equivalent; that is, they can correspond to the same query.16 The
queryparser will typically generate a standard initial query tree to correspond to an SQL

query, without doing any optimization. For example, for a select-project-join query, such
asQ2, the initial tree is shown in Figure 15.4b. The CARTESIAN PRODUCT of the relations
specified in the FROM clause is first applied; then the selection and join conditions of the
WHERE clause are applied, followed by the projection on the SELECT clause attributes.
Such a canonical query tree represents a relational algebra expression that is very ineffi
cient if executed directly, because of the CARTESIAN PRODUCT (X) operations. For exam
ple, if the PROJECT, DEPARTMENT, and EMPLOYEE relations had record sizes of 100, 50, and 150
bytes and contained 100, 20, and 5000 tuples, respectively, the result of the CARTESIAN

PRODUCT would contain 10 million tuples of record size 300 bytes each. However, the
querytree in Figure 15.4b is in a simple standard form that can be easily created. It is now
the job of the heuristic query optimizer to transform this initial query tree into a final
query tree that is efficient to execute.

The optimizer must include rules for equivalence among relational algebra
expressions that can be applied to the initial tree. The heuristic query optimization rules
then utilize these equivalence expressions to transform the initial tree into the final,
optimized query tree. We first discuss informally how a query tree is transformed by using
heuristics. Then we discuss general transformation rules and show how they may be used
in an algebraic heuristic optimizer.

Example of Transforming a Query. Consider the following query Q on the
database of Figure 5.5: "Find the last names of employees born after 1957 who work on a
project named 'Aquarius'." This query can be specified in SQL as follows:

Q: SELECT LNAME
FROM EMPLOYEE, WORKS_ON, PROJECT
WHERE PNAME='AQUARIUS' AND PNUMBER=PNO AND ESSN=SSN

AND BDATE > '1957-12-31';

The initial query tree for Q is shown in Figure 15.5a. Executing this tree directly first
creates a very large file containing the CARTESIAN PRODUCT of the entire EMPLOYEE, WORKS_

ON, and PROJ EeT files. However, this query needs only one record from the PROJ ECTrelation
for the 'Aquarius' project-and only the EMPLOYEE records for those whose date of birth is
after '1957-12-31'. Figure 15.5b shows an improved query tree that first applies the
SELECT operations to reduce the number of tuples that appear in the CARTESIAN

PRODUCT.

A further improvement is achieved by switching the positions of the EMPLOYEE and
PROJECT relations in the tree, as shown in Figure 15.5c. This uses the information that
PNUMBER is a key attribute of the project relation, and hence the SELECT operation on the

-----------------------------~----

16. A query may also be stated in various ways in a high-level query language such as SQL (see
Chapter 8).

516 I Chapter 15 Algorithms for Query Processing and Optimization

(a) ltLNAME

I
apNAME='Aquarius' ANDPNUMBER=PNO ANDESSN=SSN ANDBDATE>'1957·12·31'

I
X

x/~
~Z; ~KS_~

(b) lt LNAME

I
aPNUMBER=PNO

I
X

/~
a ESSN=SSN a PNAME='Aquarius'

l~
.~.'~~ ~~~
~-

FIGURE 15.5 Steps in converting a query tree during heuristic optimization.
(a) Initial (canonical) query tree for SQL query Q. (b) Moving SELECT operations
down the query tree.

(c)

15.7 Using Heuristics in Query Optimization I 517

1tLNAME

I
(JESSN=SSN

I

(d) 1tLNAME

I
~ESSN=SSN

.r':
~ PNUMBER=PNO

"?NAME"~ ~s_~
~

(JBDATE>'1957-12-31'

cIM1ED

FIGURE 15.5(cONTINUED) Steps in converting a query tree during heuristic
optimization. (c) Applying the more restrictive SELECT operation first.
(d) Replacing CARTESIAN PRODUCT and SELECT with JOIN operations.

·518 I Chapter 15 Algorithms for Query Processing and Optimization

(e) ltLNAME

M I
ESSN=SSN

.:>:
lt ESSN ltSSN,LNAME

txJ PNUMBER=PNO o BDATE>'1957·12·31,

'PNur ~N~O JOYEV

"PNAMEe'A",,",'~
4

FIGURE 15.5(cONTINUED) Steps in converting a query tree during heuristic
optimization. (e) Moving PROJECT operations down the query tree.

PROJECT relation will retrieve a single record only. We can further improve the query tree
by replacing any CARTESIAN PRODUCT operation that is followed by a join condition
with a JOIN operation, as shown in Figure IS.Sd. Another improvement is to keep only
the attributes needed by subsequent operations in the intermediate relations, by including
PROJECT (7r) operations as early as possible in the query tree, as shown in Figure I5.Se. This
reduces the attributes (columns) of the intermediate relations, whereas the SELECT

operations reduce the number of tuples (records).
As the preceding example demonstrates, a query tree can be transformed step by step

into another query tree that is more efficient to execute. However, we must make sure
that the transformation steps always lead to an equivalent query tree. To do this, the
query optimizer must know which transformation rules preserve this equivalence. We
discuss some of these transformation rules next.

General Transformation Rules for Relational Algebra Operations. There are
many rules for transforming relational algebra operations into equivalent ones. Here we are
interested in the meaning of the operations and the resulting relations. Hence, if two
relations have the same set of attributes in a different order but the two relations represent

15.7 Using Heuristics in Query Optimization I 519

the same information, we consider the relations equivalent. In Section 5.1.2 we gave an
alternative definition of relation that makes order of attributes unimportant; we will use this
definition here. We now state some transformation rules that are useful in query
optimization, without proving them:

1. Cascade of rr: A conjunctive selection condition can be broken up into a cascade
(that is, a sequence) of individual U operations:

U elANDeZAND ... ANDcn(R) == uel (ueZ (... (ucn(R)) ...))

2. Commutativity of rr: The U operation is commutative:

Uel (uez(R)) == uez (uel(R))

3. Cascade of 7T: In a cascade (sequence) of 7T operations, all but the last one can be
ignored:

7TUstl (7TUstZ (.. ·(7TUstn(R)) .. .)) == 7TUstl(R)

4. Commuting U with 7T: If the selection condition c involves only those attributes
AI, ..., An in the projection list, the two operations can be commuted:

7TAI,AZ, ... ,An (ue (R)) == u e (7TAI,AZ,.,An (R))

5. Commutativiry ofM (and X): The Moperation is commutative, as is the X operation:

R Me S == S Me R
RxS==SxR

Notice that, although the order of attributes may not be the same in the relations
resulting from the two joins (or two cartesian products), the "meaning" is the
same because order of attributes is not important in the alternative definition of
relation.

6. Commuting U with M (or X): If all the attributes in the selection condition c
involve only the attributes of one of the relations being joined-say, R-the two
operations can be commuted as follows:

Alternatively, if the selection condition c can be written as (c1 AND c2), where
condition cI involves only the attributes of R and condition c2 involves only the
attributes of S, the operations commute as follows:

The same rules apply if the Mis replaced by a X operation.

7. Commuting 7T with M(or x). Suppose that the projection list is L = {AI' ... , An'
BI, ... , Bm} , where AI' ... ,An are attributes of Rand BI, ... , Bm are attributes of
S. If the join condition c involves only attributes in L, the two operations can be
commuted as follows:

7TL (R Me S) == (7TAI, ... ,An (R)) Me (7TBl,. ,Bm (S))

520 I Chapter 15 Algorithms for Query Processing and Optimization

If the join condition c contains additional attributes not in L, these must be added
to the projection list, and a final rr operation is needed. For example, if attributes
An+1, ... ,An+k of Rand Bm+1, ... , Bm+p of 5 are involved in the join condition c
but are not in the projection list L, the operations commute as follows:

7l"L (R ~c 5) == 7l"L ((7l"Al, ... ,An,An+l, ... ,An+k(R)) ~c (7l"Bl, ... ,Bm,Bm+l, . . ,Bm+p (5)))

For X, there is no condition c, so the first transformation rule always applies by
replacing ~c with x.

8. Commutativity of set operations: The set operations U and n are commutative
but - is not.

9. Associativity of ec, X, U, and n: These four operations are individually associa
tive; that is, if e stands for anyone of these four operations (throughout the
expression), we have:

(R e5) eT == R e (5 eT)

10. Commuting IT with set operations: The IT operation commutes with U, n, and-.
If e stands for anyone of these three operations (throughout the expression), we
have:

ITc (R e5) == (ITc (R)) e (ITc (5))

11. The rr operation commutes with U:

7l"L (R U 5) == (7l"L (R)) U (7l"L (5))

12. Converting a (IT, X) sequence into ~: If the condition c of a IT that follows a X
corresponds to a join condition, convert the (IT, X) sequence into a ~ as follows:

There are other possible transformations. For example, a selection or join condition c can
be converted into an equivalent condition by using the following rules (DeMorgan's laws):

NOT (e1 AND e2) == (NOT e1) OR (NOT e2)
NOT (e1 OR e2) == (NOT e1) AND (NOT e2)

Additional transformations discussed in Chapters 5 and 6 are not repeated here. We
discuss next how transformations can be used in heuristic optimization.

Outline of a Heuristic Algebraic Optimization Algorithm. We can now outline
the steps of an algorithm that utilizes some of the above rules to transform an initial query
tree into an optimized tree that is more efficient to execute (in most cases). The
algorithm will lead to transformations similar to those discussed in our example of Figure
15.5. The steps of the algorithm are as follows:

1. Using Rule 1, break up any SELECT operations with conjunctive conditions into a
cascade of SELECT operations. This permits a greater degree of freedom in moving
SELECT operations down different branches of the tree.

15.7 Using Heuristics in Query Optimization I 521

2. Using Rules 2, 4, 6, and 10 concerning the commutativity of SELECT with other
operations, move each SELECT operation as far down the query tree as is permitted
by the attributes involved in the select condition,

3. Using Rules 5 and 9 concerning commutativity and associativity of binary opera
tions, rearrange the leaf nodes of the tree using the following criteria. First, posi
tion the leaf node relations with the most restrictive SELECT operations so they
are executed first in the query tree representation. The definition of most restrictive
SELECT can mean either the ones that produce a relation with the fewest tuples or
with the smallest absolute sizeY Another possibility is to define the most restric
tive SELECT as the one with the smallest selectivity; this is more practical because
estimates of selectivities are often available in the DBMS catalog. Second, make
sure that the ordering of leaf nodes does not cause CARTESIAN PRODUCT opera
tions; for example, if the two relations with the most restrictive SELECT do not
have a direct join condition between them, it may be desirable to change the
order of leaf nodes to avoid Cartesian products. 18

4. Using Rule 12, combine a CARTESIAN PRODUCT operation with a subsequent
SELECT operation in the tree into a JOIN operation, if the condition represents a
join condition.

5. Using Rules 3, 4, 7, and 11 concerning the cascading of PROJECT and the com
muting of PROJECT with other operations, break down and move lists of projec
tion attributes down the tree as far as possible by creating new PROJECT operations
as needed. Only those attributes needed in the query result and in subsequent
operations in the query tree should be kept after each PROJECT operation.

6. Identify subtrees that represent groups of operations that can be executed by a sin
gle algorithm.

In our example, Figure 15.5(b) shows the tree of Figure 15.5(a) after applying steps 1
and 2 of the algorithm; Figure 15.5(c) shows the tree after step 3; Figure 15.5(d) after step
4; and Figure 15.5(e) after step 5. In step 6 we may group together the operations in the
subtree whose root is the operation '1TESSN into a single algorithm. We may also group the
remaining operations into another subtree, where the tuples resulting from the first
algorithm replace the subtree whose root is the operation '1TESSN, because the first grouping
means that this subtree is executed first.

Summary of Heuristics for Algebraic Optimization. We now summarize
the basic heuristics for algebraic optimization. The main heuristic is to apply first the
operations that reduce the size of intermediate results. This includes performing as early
as possible SELECT operations to reduce the number of tuples and PROJECT operations to
reduce the number of attributes. This is done by moving SELECT and PROJECT operations

17. Either definition can be used, since these rules are heuristic.
18, Note that a Cartesian product is acceptable in some cases-for example, if each relation has
onlya single tuple because each had a previousselect condition on a key field,

522 I Chapter 15 Algorithms for Query Processing and Optimization

as far down the tree as possible. In addition, the SELECT and JOIN operations that are most
restrictive-that is, result in relations with the fewest tuples or with the smallest absolute
size-should be executed before other similar operations. This is done by reordering the
leaf nodes of the tree among themselves while avoiding Cartesian products, and adjusting
the rest of the tree appropriately.

15.7.3 Converting Query Trees into Query Execution Plans
An execution plan for a relational algebra expression represented as a query tree includes
information about the access methods available for each relation as well as the algorithms
to be used in computing the relational operators represented in the tree. As a simple
example, consider query Ql from Chapter 5, whose corresponding relational algebra
expression is

71'FNAME, LNAME, ADDRESS ((J"DNAME=' RESEARCH' (DEPARTMENT) ~DNUMBER=DNO EMPLOYEE)

The query tree is shown in Figure 15.6. To convert this into an execution plan, the
optimizer might choose an index search for the SELECT operation (assuming one exists), a
table scan as access method for EMPLOYEE, a nested-loop join algorithm for the join, and a
scan of the JOIN result for the PROJECT operator. In addition, the approach taken for
executing the query may specify a materialized or a pipelined evaluation.

With materialized evaluation, the result of an operation is stored as a temporary
relation (that is, the result is physically materialized). For instance, the join operation can
be computed and the entire result stored as a temporary relation, which is then read as
input by the algorithm that computes the PROJECT operation, which would produce the
query result table. On the other hand, with pipelined evaluation, as the resulting tuples of
an operation are produced, they are forwarded directly to the next operation in the query
sequence. For example, as the selected tuples from DEPARTMENT are produced by the SELECT

operation, they are placed in a buffer; the JOIN operation algorithm would then consume

iFNAME,U<AME,ADDRESS

~ DNUMBER=DNO

/~
(J DNAME='Research' EMPLOYEE

I
DEPARTMENT

FIGURE 15.6 A query tree for query Ql.

15.8 Using Selectivity and Cost Estimates in Query Optimization I 523

the tuples from the buffer, and those tuples that result from the JOIN operation are
pipelined to the projection operation algorithm. The advantage of pipelining is the cost
savings in not having to write the intermediate results to disk and not having to read
them back for the next operation.

15.8 USING SELECTIVITY AND COST
ESTIMATES IN QUERY OPTIMIZATION

A query optimizer should not depend solely on heuristic rules; it should also estimate and
compare the costs of executing a query using different execution strategies and should
choose the strategy with the lowest cost estimate. For this approach to work, accurate cost
estimates are required so that different strategies are compared fairly and realistically. In
addition, we must limit the number of execution strategies to be considered; otherwise,
too much time will be spent making cost estimates for the many possible execution strat
egies. Hence, this approach is more suitable for compiled queries where the optimization
isdone at compile time and the resulting execution strategy code is stored and executed
directly at runtime. For interpreted queries, where the entire process shown in Figure
15.1 occurs at runtime, a full-scale optimization may slow down the response time. A
more elaborate optimization is indicated for compiled queries, whereas a partial, less time
consuming optimization works best for interpreted queries.

We call this approach cost-based query optimization.l" and it uses traditional
optimization techniques that search the solution space to a problem for a solution that
minimizes an objective (cost) function. The cost functions used in query optimization are
estimates and not exact cost functions, so the optimization may select a query execution
strategy that is not the optimal one. In Section 15.8.1 we discuss the components of query
execution cost. In Section 15.8.2 we discuss the type of information needed in cost
functions. This information is kept in the DBMS catalog. In Section 15.8.3 we give
examples of cost functions for the SELECT operation, and in Section 15.8,4 we discuss cost
functions for two-way JOIN operations. Section 15.8.5 discusses multiway joins, and
Section 15.8.6 gives an example.

15.8.1 Cost Components for Query Execution
The cost of executing a query includes the following components:

1. Access cost to secondary storage: This is the cost of searching for, reading, and writ
ing data blocks that reside on secondary storage, mainly on disk. The cost of
searching for records in a file depends on the type of access structures on that file,
such as ordering, hashing, and primary or secondary indexes. In addition, factors

19.This approach was first used in the optimizer for the SYSTEM R experimental DBMS developed at IBM.

524 I Chapter 15 Algorithms for Query Processing and Optimization

such as whether the file blocks are allocated contiguously on the same disk cylin
der or scattered on the disk affect the access cost.

2. Storage cost: This is the cost of storing any intermediate files that are generated by
an execution strategy for the query.

3. Computation cost: This is the cost of performing in-memory operations on the data
buffers during query execution. Such operations include searching for and sorting
records, merging records for a join, and performing computations on field values.

4. Memory usage cost: This is the cost pertaining to the number of memory buffers
needed during query execution.

5. Communication cost: This is the cost of shipping the query and its results from the
database site to the site or terminal where the query originated.

For large databases, the main emphasis is on minimizing the access cost to secondary
storage. Simple cost functions ignore other factors and compare different query execution
strategies in terms of the number of block transfers between disk and main memory. For
smaller databases, where most of the data in the files involved in the query can be
completely stored in memory, the emphasis is on minimizing computation cost. In
distributed databases, where many sites are involved (see Chapter 25), communication
cost must be minimized also. It is difficult to include all the cost components in a
(weighted) cost function because of the difficulty of assigning suitable weights to the cost
components. That is why some cost functions consider a single factor only-disk access.
In the next section we discuss some of the information that is needed for formulating cost
functions.

15.8.2 Catalog Information Used in Cost Functions
To estimate the costs of various execution strategies, we must keep track of any informa
tion that is needed for the cost functions. This information may be stored in the DBMS

catalog, where it is accessed by the query optimizer. First, we must know the size of each
file. For a file whose records are all of the same type, the number of records (tuples) (r),
the (average) record size (R), and the number of blocks (b) (or close estimates of them)
are needed. The blocking factor (bfr) for the file may also be needed. We must also keep
track of the primary access method and the primary access attributes for each file. The file
records may be unordered, ordered by an attribute with or without a primary or clustering
index, or hashed on a key attribute. Information is kept on all secondary indexes and
indexing attributes. The number of levels (x) of each multilevel index (primary, second
ary, or clustering) is needed for cost functions that estimate the number of block accesses
that occur during query execution. In some cost functions the number of first-level index
blocks (bIl) is needed.

Another important parameter is the number of distinct values (d) of an attribute
and its selectivity (sl), which is the fraction of records satisfying an equality condition on
the attribute. This allows estimation of the selection cardinality (s = sl * r) of an
attribute, which is the average number of records that will satisfy an equality selection
condition on that attribute. For a key attribute, d = r, sl = lfr and s = 1. For a nonkey

15.8 Using Selectivity and Cost Estimates in Query Optimization I 525

attribute, by making an assumption that the d distinct values are uniformly distributed
among the records, we estimate sl = (lid) and so s = (rld).2o

Information such as the number of index levels is easy to maintain because it does
not change very often. However, other information may change frequently; for example,
the number of records r in a file changes every time a record is inserted or deleted. The
query optimizer will need reasonably close but not necessarily completely up-to-the
minute values of these parameters for use in estimating the cost of various execution
strategies. In the next two sections we examine how some of these parameters are used in
cost functions for a cost-based query optimizer.

15.8.3 Examples of Cost Functions for SELECT

We now give cost functions for the selection algorithms Sl to S8 discussed in Section
15.3.1 in terms of number of block transfers between memory and disk. These cost func
tions are estimates that ignore computation time, storage cost, and other factors. The cost
formethod Si is referred to as CSi block accesses.

• Sl. Linear search (brute force) approach: We search all the file blocks to retrieve all
records satisfying the selection condition; hence, CS1a = b. For an equality condi
tion on a key, only half the file blocks are searched on the average before finding
the record, so CS1b = (bI2) if the record is found; if no record satisfies the condi
tion, CS1b = b.

• S2. Binary search: This search accesses approximately CS2 = log2b + I (slbfr) l - 1
file blocks. This reduces to log2b if the equality condition is on a unique (key)
attribute, because s = 1 in this case.

• S3. Using a primary index (S3a) or hash key (S3b) to retrieve a single record: For a pri
mary index, retrieve one more block than the number of index levels; hence,
CS3a = X + 1. For hashing, the cost function is approximately CS3b = 1 for static
hashing or linear hashing, and it is 2 for extendible hashing (see Chapter 13).

• S4. Using an ordering index to retrieve multiple records: If the comparison condition is
>, >=, <', or <= on a key field with an ordering index, roughly half the file
records will satisfy the condition. This gives a cost function of CS4 = x + (bI2).
This is a very rough estimate, and although it may be correct on the average, it
may be quite inaccurate in individual cases.

• S5. Using a clustering index to retrieve multiple records: Given an equality condition, s
records will satisfy the condition, where s is the selection cardinality of the
indexing attribute. This means that I (slbfr) l file blocks will be accessed, giving
CS5 = x + I (slbfr)l.

• S6. Usinga secondary (B+-tree) index: On an equality comparison, s records will satisfy
the condition, where s is the selection cardinality of the indexing attribute.

20. As we mentioned earlier, more accurate optimizers may store histograms of the distribution of
records over the data valuesfor an attribute.

526 I Chapter 15 Algorithms for Query Processing and Optimization

However, because the index is nonclustering, each of the records may reside on a
different block, so the (worst case) cost estimate is CS6a = X+ s. This reduces to
x + 1 for a key indexing attribute. If the comparison condition is >, >=, <, or

< = and half the file records are assumed to satisfy the condition, then (very
roughly) half the first-level index blocks are accessed, plus half the file records via
the index. The cost estimate for this case, approximately, is CS6b = X+ (bn/2) +
(r/2). The r/2 factor can be refined if better selectivity estimates are available.

• 57. Conjunctive selection: We can use either 51 or one of the methods 52 to 56 dis
cussed above. In the latter case, we use one condition to retrieve the records and
then check in the memory buffer whether each retrieved record satisfies the
remaining conditions in the conjunction.

• 58. Conjunctive selection using a composite index: Same as S3a, S5, or S6a, depending
on the type of index.

Example of Using the Cost Functions. In a query optimizer, it is common to
enumerate the various possible strategies for executing a query and to estimate the costs
for different strategies. An optimization technique, such as dynamic programming, may
be used to find the optimal (least) cost estimate efficiently, without having to consider all
possible execution strategies. We do not discuss optimization algorithms here; rather, we
use a simple example to illustrate how cost estimates may be used. Suppose that the
EMPLOYEE file of Figure 5.5 has rE = 10,000 records stored in bE = 2000 disk blocks with
blocking factor bfrE = 5 records/block and the following access paths:

1. A clustering index on SALARY, with levels X,ALARY = 3 and average selection cardinal
ity S,ALARY = 20.

2. A secondary index on the key attribute SSN, with X"N = 4 (S"N = 1).

3. A secondary index on the nonkey attribute DNa, with XDNO= 2 and first-level index
blocks bIlDNO= 4. There are dDNo = 125 distinct values for DNa, so the selection cardi
nality of DNa is SDNO = (rE/dDNo) = 80.

4. A secondary index on SEX, with Xm = 1. There are d'Ex = 2 values for the sex
attribute, so the average selection cardinality is S,EX = (rE/dsEJ = 5000.

We illustrate the use of cost functions with the following examples:

(orI) : <TSSN='123456789' (EMPLOYEE)

(op2): <TDNO>5 (EMPLOYEE)

(op3): <TDNO=5 (EMPLOYEE)

(op4): <TDNO=5 AND SALARY>30000 AND SEX='F' (EMPLOYEE)

The cost of the brute force (linear search) option Sl will be estimated as C S1a = bE =

2000 (for a selection on a nonkey attribute) or CS1b = (bE/2) = 1000 (average cost for a
selection on a key attribute). For orr we can use either method Sl or method S6a; the
cost estimate for S6a is C S6a = XS,N + 1 = 4 + 1 = 5, and it is chosen over Method Sl,
whose average cost is CS1b = 1000. For orz we can use either method Sl (with estimated
cost CS1a = 2000) or method S6b (with estimated cost CS6b = XDNO + (bIl DNoI2) + (rE/2) = 2

15.8 Using Selectivity and Cost Estimates in Query Optimization I 527

+ (4/2)+ 00,000/2) = 5004), so we choose the brute force approach for orz. For op3 we
can use either method SI (with estimated cost CS1a = 2000) or method S6a (with
estimated cost CS6a = XDNO + SDND = 2 + 80 = 82), so we choose method S6a.

Finally, consider op4, which has a conjunctive selection condition. We need to
estimate the cost of using anyone of the three components of the selection condition to
retrieve the records, plus the brute force approach. The latter gives cost estimate CS1a =

2000. Using the condition (DND = 5) first gives the cost estimate CS6a = 82. Using the
condition (SALARY> 30,000) first gives a cost estimate C S4 = XSALARY + (bE/2) = 3 + (2000/2)
= 1003. Using the condition (SEX = 'F') first gives a cost estimate CS6a = XSEX + SSEX = 1 +
5000 = 5001. The optimizer would then choose method S6a on the secondary index on
DND because it has the lowest cost estimate. The condition (DNO = 5) is used to retrieve the
records, and the remaining part of the conjunctive condition (SALARY> 30,000 AND SEX =
'F) ischecked for each selected record after it is retrieved into memory.

15.8.4 Examples of Cost Functions for JOIN

To develop reasonably accurate cost functions for JOIN operations, we need to have an
estimate for the size (number of tuples) of the file that results after the JOIN operation.
This is usually kept as a ratio of the size (number of tuples) of the resulting join file to the
size of the Cartesian product file, if both are applied to the same input files, and it is called
the join selectivity (js). If we denote the number of tuples of a relation R by IR I , we
have

js = I (R ~c 5) I / I (R X 5) I = I (R ~c 5) I / (IR I * 151)

If there is no join condition c, thenjs = 1 and the join is the same as the CARTESIAN

PRODUCT. If no tuples from the relations satisfy the join condition, then js =O. In general,
0:5 js :5 1. For a join where the condition c is an equality comparison R.A = 5.B, we get
thefollowing two special cases:

1. If A is a key of R, then I (R ~c 5) I :5 15 I , so js :5 0/ IR I).

2. If B is a key of 5, then I (R ~c 5) I :5 IR I , so js :5 0/ I5 I).

Having an estimate of the join selectivity for commonly occurring join conditions
enables the query optimizer to estimate the size of the resulting file after the join
operation, given the sizes of the two input files, by using the formula I (R ~c 5) I = js *
IRI * 15 I. We can now give some sample approximate cost functions for estimating the
cost of some of the join algorithms given in Section 15.3.2. The join operations are of the
form

R~A=B 5

where A and B are domain-compatible attributes of Rand 5, respectively. Assume that R
has bR blocks and that 5 has bs blocks:

• J1. Nested-loop join: Suppose that we use R for the outer loop; then we get the fol
lowing cost function to estimate the number of block accesses for this method,

528 I Chapter 15 Algorithms for Query Processing and Optimization

assuming three memory buffers. We assume that the blocking factor for the result
ing file is bfrRS and that the join selectivity is known:

C j l = bR + (bR* bs) + ((js * IR I * 15 I)/bfrRs)

The last part of the formula is the cost of writing the resulting file to disk. This
cost formula can be modified to take into account different numbers of memory
buffers, as discussed in Section 15.3.2.

• J2. 5ingle-Ioop join (using an access structure to retrieve the matching record(s»: If an
index exists for the join attribute B of 5 with index levels XB' we can retrieve each
record s in R and then use the index to retrieve all the matching records t fromS
that satisfy t[B] = s[A]. The cost depends on the type of index. For a secondary
index where Sa is the selection cardinality for the join attribute B of 5,21 we get

Cj 2a = bR + (IR I * (xB + sa» + (Us * IR I * 15 I)/bfrRS)

For a clustering index where SB is the selection cardinality of B, we get

For a primary index, we get

Cj 2c = bR + (IR I * (xa + 1) + (Os * IR I * 151)/bfrd

If a hash key exists for one of the two join attributes-say, B of 5-we get

Cj 2d = bR + (IR I * h) + (Us * IR I * 15 I)/bfrRS)

where h 2: 1 is the average number of block accesses to retrieve a record, given
its hash key value.

• J3. Sort-merge join: If the files are already sorted on the join attributes, the cost func
tion for this method is

C]3a = bR + bs + (Us * IRI * 15 I)/bfrRS)

If we must sort the files, the cost of sorting must be added. We can use the formu
las from Section 15.2 to estimate the sorting cost.

Example of Using the Cost Functions. Suppose that we have the EMPLOYEE file
described in the example of the previous section, and assume that the DEPARTMENT file of
Figure 5.5 consists of "t: = 125 records stored in bo = 13 disk blocks. Consider the join
operations

(op6): EMPLOYEE ~DND=DNUMBER DEPARTMENT

(op7): DEPARTMENT ~MGRSSN=SSN EMPLOYEE

21. Selection cardinality was defined as the average number of records that satisfy an equality condi
tion on an attribute, which is the average number of records that have the same value for the
attribute and hence will be joined to a single record in the other file.

15.8 Using Selectivity and Cost Estimates in Query Optimization I 529

Suppose that we have a primary index on DNUMBER of DEPARTMENT with XDNUMBER = 1 level
and a secondary index on MGRSSN of DEPARTMENT with selection cardinality SMGRSSN = 1
andlevels XMGRSSN = 2. Assume that the join selectivity for ore is jSOP6 = (1/ I DEPARTMENT I) =
1/125 because DNUMBER is a key of DEPARTMENT. Also assume that the blocking factor for the
resulting join file bfrED = 4 records per block. We can estimate the worst case costs for the
JOIN operation or6 using the applicable methods J1 and J2 as follows:

1. Using Method J1 with EMPLOYEE as outer loop:

Cl l = bE + (bE * bo) + «(jsOP6 * rE * ro)/bfrED)
= 2000 + (2000 * 13) + «(1/125) * 10,000 * 125)/4) = 30,500

2. Using Method [I with DEPARTMENT as outer loop:

Cl l = bo + (bE * bo) + «(jsOP6 * rE * ro)/bfrEO)
= 13 + (13 * 2000) + «(1/125) * 10,000 * 125/4) = 28,513

3. Using Method J2 with EMPLOYEE as outer loop:

Cl l c = bE + (rE * (XDNUMBER + 1)) + «jsoP6 * rE * ro)/bfrED
= 2000 + (10,000 * 2) + «(1/125) * 10,000 * 125/4) = 24,500

4. Using Method J2 with DEPARTMENT as outer loop:

Cl l a = bo + (ro * (XONO+ SONO)) + «jsOP6 * rE * ro)/bfrED)

= 13 + (125 * (2 + 80)) + «(1/125) * 10,000 * 125/4) = 12,763

Case 4 has the lowest cost estimate and will be chosen. Notice that if 15 memory
buffers (or more) were available for executing the join instead of just three, 13 of them
could be used to hold the entire DEPARTMENT relation in memory, one could be used as buffer
for the result, and the cost for Case 2 could be drastically reduced to just bE + bo + «jsOP6
*rE * ro)/bfrED) or 4513, as discussed in Section 15.3.2. As an exercise, the reader should
perform a similar analysis for or7.

15.8.5 Multiple Relation Queries and Join Ordering
The algebraic transformation rules in Section 15.7.2 include a commutative rule and an
associative rule for the join operation. With these rules, many equivalent join expressions
can be produced. As a result, the number of alternative query trees grows very rapidly as
the number of joins in a query increases. In general, a query that joins n relations will
have n - 1 join operations, and hence can have a large number of different join orders.
Estimating the cost of every possible join tree for a query with a large number of joins will
require a substantial amount of time by the query optimizer. Hence, some pruning of the
possible query trees is needed. Query optimizers typically limit the structure of a (join)
query tree to that ofleft-deep (or right-deep) trees. A left-deep tree is a binary tree where
the right child of each nonleaf node is always a base relation. The optimizer would choose
the particular left-deep tree with the lowest estimated cost. Two examples of left-deep
trees are shown in Figure 15.7. (Note that the trees in Figure 15.5 are also left-deep trees.)

530 I Chapter 15 Algorithms for Query Processing and Optimization

~

/\
~ R4

/\
~ R3

/\

1\
~ R1

/\
~ R2

/\
R1 R2 R4 R3

FIGURE 15.7 Two left-deep (join) query trees.

With left-deep trees, the right child is considered to be the inner relation when
executing a nested-loop join. One advantage of left-deep (or right-deep) trees is that
they are amenable to pipelining, as discussed in Section 15.6. For instance, consider the
first left-deep tree in Figure 15.7 and assume that the join algorithm is the single-loop
method; in this case, a disk page of tuples of the outer relation is used to probe the inner
relation for matching tuples. As a resulting block of tuples is produced from the join of
Rl and R2, it could be used to probe R3. Likewise, as a resulting page of tuples is
produced from this join, it could be used to probe R4. Another advantage of left-deep
(or right-deep) trees is that having a base relation as one of the inputs of each join
allows the optimizer to utilize any access paths on that relation that may be useful in
executing the join.

If materialization is used instead of pipelining (see Section 15.6), the join results
could be materialized and stored as temporary relations. The key idea from the optimizer's
standpoint with respect to join ordering is to find an ordering that will reduce the size of
the temporary results, since the temporary results (pipelined or materialized) are used by
subsequent operators and hence affect the execution cost of those operators.

15.8.6 Example to Illustrate Cost-Based
Query Optimization

We will consider query Q2 and its query tree shown in Figure 15.4a to illustrate cost
based query optimization:

Q2: SELECT PNUMBER, DNUM, LNAME, ADDRESS, BDATE
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM=DNUMBER AND MGRSSN=SSN AND PLOCATION='STAFFORO';

Suppose we have the statistical information about the relations shown in Figure 15.8.
The LOW_VALUE and HIGH_VALUE statistics have been normalized for clarity. The tree in Figure
15.4a is assumed to represent the result of the algebraic heuristic optimization process and
the start of cost-based optimization (in this example, we assume that the heuristic
optimizer does not push the projection operations down the tree).

15.8 Using Selectivity and Cost Estimates in Query Optimization I 531

(a) TABLE_NAME COLUMN_NAME NUM_DISTINCT LOW_VALUE HIGH_VALUE

PROJECT PLOCATION 200 200
PROJECT PNUMBER 2000 2000
PROJECT DNUM 50 50
DEPARTMENT DNUMBER 50 50
DEPARTMENT MGRSSN 50 50
EMPLOYEE SSN 10000 10000
EMPLOYEE DNO 50 50
EMPLOYEE SALARY 500 500

(b) TABLE_NAME NUM_ROWS BLOCKS

PROJECT 2000 100
DEPARTMENT 50 5
EMPLOYEE 10000 2000

LEAF DISTINCT
(e) INDEX_NAME UNIQUENES BLEVEL* BLOCKS KEYS

PROJ_PLOC NONUNIQUE 4 200
EMP_SSN UNIQUE 50 10000
EMP_SAL NONUNIQUE 50 500

*BLEVEL is the numberof levelswithoutthe leaf level.

FIGURE 15.8 Sample statistical information for relations in Q2. (a) Column
information. (b) Table information. (c) Index information.

The first cost-based optnmzanon to consider is join ordering. As previously
mentioned, we assume the optimizer considers only left-deep trees, so the potential join
orders-without Cartesian product-are

1. PROJ ECT IXI DEPARTMENT IXI EMPLOYEE

2 •DEPARTMENT IXI PROJ ECT IXI EMPLOYEE

3. DEPARTMENT IXI EMPLOYEE IXI PROJ ECT

4. EMPLOYEE IXI DEPARTMENT IXI PROJ ECT

Assume that the selection operation has already been applied to the PROJ ECT relation. If we
assume a materialized approach, then a new temporary relation is created after each join
operation. To examine the cost of join order (1), the first join is between PROJECT and DEPARTMENT.

Both the join method and the access methods for the input relations must be determined.
Since DEPARTMENT has no index according to Figure 15.8, the only available access method is a
table scan (that is, a linear search). The PROJECT relation will have the selection operation
performed before the join, so two options exist: table scan (linear search) or utilizing its PROL

PLOC index, so the optimizer must compare their estimated costs. The statistical infonnation
on the PROLPLOC index (see Figure 15.8) shows the number of index levels x = 2 (root plus
leaf levels). The index is nonunique (because PLOCATION is not a key of PROJECT), so the optimizer

532 I Chapter 15 Algorithms for Query Processing and Optimization

assumes a uniform data distribution and estimates the number of record pointers for each PLO

CATION value to be 10. This is computed from the tables in Figure 15.8 by multiplying
SELECTIVITY * NUM_ROWS, where SELECTIVITY is estimated by l/NUM_DISTINCT. So the cost
of using the index and accessing the records is estimated to be 12 block accesses (2 for the
index and 10 for the data blocks). The cost of a table scan is estimated to be 100 block
accesses, so the index access is more efficient as expected.

In the materialized approach, a temporary file TEMPl of size 1 block is created to hold
the result of the selection operation. The file size is calculated by determining the
blocking factor using the formula NUM_ROWS/BLOCKS, which gives 2000/100 or 20 rows
per block. Hence, the 10 records selected from the PROJECT relation will fit into a single
block. Now we can compute the estimated cost of the first join. We will consider only the
nested-loop join method, where the outer relation is the temporary file, TEMP1, and the
inner relation is DEPARTMENT. Since the entire TEMPl file fits in the available buffer space, we
need to read each of the DEPARTMENT table's five blocks only once, so the join cost is six
block accesses plus the cost of writing the temporary result file, TEMP2. The optimizer
would have to determine the size of TEMP2. Since the join attribute DNUMBER is the key for
DEPAR.TMENT, any DNUM value from TEMPl will join with at most one record from DEPARTMENT, so
the number of rows in TEMP2 will be equal to the number of rows in TEMP1, which is 10. The
optimizer would determine the record size for TEMP2 and the number of blocks needed to
store these 10 rows. For brevity, assume that the blocking factor for TEMP2 is five rows per
block, so a total of two blocks are needed to store TEMP2.

Finally, the cost of the last join needs to be estimated. We can use a single-loop join
on TEMP2 since in this case the index EMP_SSN (see Figure 15.8) can be used to probe and
locate matching records from EMPLOYEE. Hence, the join method would involve reading in
each block of TEMP2 and looking up each of the five MGRSSN values using the EMP_SSN index.
Each index lookup would require a root access, a leaf access, and a data block access (x+I,
where the number of levels x is 2). So, 10 lookups require 30 block accesses. Adding the
two block accesses for TEMP2 gives a total of 32 block accesses for this join.

For the final projection, assume pipe lining is used to produce the final result, which
does not require additional block accesses, so the total cost for join order (1) is estimated
as the sum of the previous costs. The optimizer would then estimate costs in a similar
manner for the other three join orders and choose the one with the lowest estimate. We
leave this as an exercise for the reader.

15.9 OVERVIEW OF QUERY
OPTIMIZATION IN ORACLE

The ORACLE DBMS (Version 7) provides two different approaches to query optimization:
rule-based and cost-based. With the rule-based approach, the optimizer chooses execu
tion plans based on heuristically ranked operations. ORACLE maintains a table of 15
ranked access paths, where a lower ranking implies a more efficient approach. The access
paths range from table access by ROWID (most efficient)-where ROWID specifies the
record's physical address that includes the data file, data block, and row offset within the

15.10 Semantic Query Optimization I 533

block-to a full table scan (least efficient)-where all rows in the table are searched by
doing multiblock reads. However, the rule-based approach is being phased out in favor of
thecost-based approach, where the optimizer examines alternative access paths and oper
atoralgorithms and chooses the execution plan with lowest estimated cost. The estimated
query cost is proportional to the expected elapsed time needed to execute the query with
the given execution plan. The ORACLE optimizer calculates this cost based on the esti
mated usage of resources, such as rio, CPU time, and memory needed. The goal of cost
based optimization in ORACLE is to minimize the elapsed time to process the entire query.

An interesting addition to the ORACLE query optimizer is the capability for an
application developer to specify hints to the optimizer. 22 The idea is that an application
developer might know more information about the data than the optimizer. For example,
consider the EMPLOYEE table shown in Figure 5.5. The SEXcolumn of that table has only two
distinctvalues. If there are 10,000 employees, then the optimizer would estimate that half
are male and half are female, assuming a uniform data distribution. If a secondary index
exists, it would more than likely not be used. However, if the application developer knows
that there are only 100 male employees, a hint could be specified in an SQL query whose
WHERE-clause condition is SEX = 'M' so that the associated index would be used in
processing the query. Various hints can be specified, such as:

• The optimization approach for an SQL statement.

• The access path for a table accessed by the statement.

• The join order for a join statement.

• A particular join operation in a join statement.

The cost-based optimization of ORACLE 8 is a good example of the sophisticated
approach taken to optimize SQL queries in commercial RDBMSs.

15.10 SEMANTIC QUERY OPTIMIZATION
A different approach to query optimization, called semantic query optimization, has
been suggested. This technique, which may be used in combination with the techniques
discussed previously, uses constraints specified on the database schema-such as unique
attributes and other more complex constraints-in order to modify one query into
another query that is more efficient to execute. We will not discuss this approach in detail
butonly illustrate it with a simple example. Consider the SQL query:

SELECT E.LNAME, M.LNAME
FROM EMPLOYEE AS E, EMPLOYEE AS M
WHERE E.SUPERSSN=M.SSN AND E.SALARY > M.SALARY

This query retrieves the names of employees who earn more than their supervisors.
Suppose that we had a constraint on the database schema that stated that no employee

22. Suchhints have also been called queryannotations.

534 I Chapter 15 Algorithms for Query Processing and Optimization

can earn more than his or her direct supervisor. If the semantic query optimizer checks for
the existence of this constraint, it need not execute the query at all because it knows that
the result of the query will be empty. This may save considerable time if the constraint
checking can be done efficiently. However, searching through many constraints to find
those that are applicable to a given query and that may semantically optimize it can also
be quite time-consuming. With the inclusion of active rules in database systems (see Chapter
24), semantic query optimization techniques may eventually be fully incorporated into the
DBMSs of the future.

15.11 SUMMARY
In this chapter we gave an overview of the techniques used by DBMSs in processing and
optimizing high-level queries. We first discussed how SQLqueries are translated into rela
tional algebra and then how various relational algebra operations may be executed by a
DBMS. We saw that some operations, particularly SELECT and JOIN, may have many execu
tion options. We also discussed how operations can be combined during query processing
to create pipelined or stream-based execution instead of materialized execution.

Following that, we described heuristic approaches to query optimization, which use
heuristic rules and algebraic techniques to improve the efficiency of query execution. We
showed how a query tree that represents a relational algebra expression can be heuristically
optimized by reorganizing the tree nodes and transforming it into another equivalent query
tree that is more efficient to execute. We also gave equivalence-preserving transformation
rules that may be applied to a query tree. Then we introduced query execution plans for SQL

queries, which add method execution plans to the query tree operations.
We then discussed the cost-based approach to query optimization. We showed how

cost functions are developed for some database access algorithms and how these cost
functions are used to estimate the costs of different execution strategies. We presented an
overview of the ORACLE query optimizer, and we mentioned the technique of semantic
query optimization.

Review Questions
15.1. Discuss the reasons for converting SQL queries into relational algebra queries

before optimization is done.
15.2. Discuss the different algorithms for implementing each of the following rela

tional operators and the circumstances under which each algorithm can be
used: SELECT, JOIN, PROJECT, UNION, INTERSECT, SET DIFFERENCE, CARTESIAN
PRODUCT.

15.3. What is a query execution plan?
15,4. What is meant by the term heuristic optimization? Discuss the main heuristics that

are applied during query optimization.

15.5. How does a query tree represent a relational algebra expression? What is meant by
an execution of a query tree? Discuss the rules for transformation of query trees,
and identify when each rule should be applied during optimization.

15.6. How many different join orders are there for a query that joins 10 relations?
15.7. What is meant by cost-based query optimization?
15.8. What is the difference between pipelining and materialization?
15.9. Discuss the cost components for a cost function that is used to estimate query exe

cution cost. Which cost components are used most often as the basis for cost
functions?

15.10. Discuss the different types of parameters that are used in cost functions. Where is
this information kept?

15.11. List the cost functions for the SELECT and JOIN methods discussed in Section 15.8.
15.12. What is meant by semantic query optimization? How does it differ from other

query optimization techniques?

Exercises
15.13. Consider SQL queries Ql, Q8, QIB, Q4, and Q27 from Chapter 8.

a. Draw at least two query trees that can represent each of these queries. Under
what circumstances would you use each of your query trees?

b. Draw the initial query tree for each of these queries, then show how the query
tree is optimized by the algorithm outlined in Section 15.7.

c. For each query, compare your own query trees of part (a) and the initial and
final query trees of part (b).

15.14. A file of 4096 blocks is to be sorted with an available buffer space of 64 blocks.
How many passes will be needed in the merge phase of the external sort-merge
algorithm?

15.15. Develop cost functions for the PROJECT, UNION, INTERSECTION, SETDIFFERENCE,
and CARTESIAN PRODUCT algorithms discussed in Section 15.4.

15.16. Develop cost functions for an algorithm that consists of two SELECTs, a JOIN, and
a final PROJECT, in terms of the cost functions for the individual operations.

15.17. Can a nondense index be used in the implementation of an aggregate operator?
Why or why not?

15.18. Calculate the cost functions for different options of executing the JOIN operation
or? discussed in Section 15.3.2.

15.19. Develop formulas for the hybrid hash join algorithm for calculating the size of the
buffer for the first bucket. Develop more accurate cost estimation formulas for the
algorithm.

15.20. Estimate the cost of operations ore and or", using the formulas developed in
Exercise 15.9.

15.21. Extend the sort-merge join algorithm to implement the left outer join operation.
15.22. Compare the cost of two different query plans for the following query:

(TSALARY> 40000 (EMPLOYEE I><lDND~DNUMBERDEPARTMENT)

Use the database statistics in Figure 15.8.

Exercises I 535

536 I Chapter 15 Algorithms for Query Processing and Optimization

Selected Bibliography
A survey by Graefe (1993) discusses query execution in database systems and includes an
extensive bibliography. A survey paper by]arke and Koch (1984) gives a taxonomy of
query optimization and includes a bibliography of work in this area. A detailed algorithm
for relational algebra optimization is given by Smith and Chang (1975). The Ph.D. thesis
of Kooi (1980) provides a foundation for query processing techniques.

Whang (1985) discusses query optimization in GBE (Office-By-Example), which is a
system based on QBE. Cost-based optimization was introduced in the SYSTEM R experi
mental DBMS and is discussed in Astrahan et a1. (1976). Selinger et a1. (1979) discuss the
optimization of multiway joins in SYSTEM R. Join algorithms are discussed in Gotlieb
(1975), Blasgen and Eswaran (1976), and Whang et a1. (1982). Hashing algorithms for
implementing joins are described and analyzed in DeWitt et a1. (1984), Bratbergsengen
(1984), Shapiro (1986), Kitsuregawa et a1. (1989), and Blakeley and Martin (1990),
among others. Approaches to finding a good join order are presented in Ioannidis and
Kang (1990) and in Swami and Gupta (1989). A discussion of the implications of left
deep and bushy join trees is presented in Ioannidis and Kang (1991). Kim (1982) dis
cusses transformations of nested SQL queries into canonical representations. Optimization
of aggregate functions is discussed in Klug (1982) and Muralikrishna (1992). Salzberg et
a1. (1990) describe a fast external sorting algorithm. Estimating the size of temporary rela
tions is crucial for query optimization. Sampling-based estimation schemes are presented
in Haas et al. (1995) and in Haas and Swami (1995). Lipton et a1. (1990) also discuss
selectivity estimation. Having the database system store and use more detailed statistics
in the form of histograms is the topic of Muralikrishna and DeWitt (1988) and Poosala et
a1. (1996).

Kim et a1. (1985) discuss advanced topics in query optimization. Semantic query
optimization is discussed in King (1981) and Malley and Zdonick (1986). More recent
work on semantic query optimization is reported in Chakravarthy et a1. (1990), Shenoy
and Ozsoyoglu (1989), and Siegel et a1. (1992).

Practical Database
Design and Tuning

In this chapter, we first discuss the issues that arise in physical database design in Section
16.1. Then, we discuss how to improve database performance through database tuning in
Section 16.2.

16.1 PHYSICAL DATABASE DESIGN IN
RELATIONAL DATABASES

In this section we first discuss the physical design factors that affect the performance of
applications and transactions; we then comment on the specific guidelines for RDBMSs.

16.1.1 Factors That Influence Physical Database Design
Physical design is an activity where the goal is not only to come up with the appropriate
structuring of data in storage but to do so in a way that guarantees good performance. For
a given conceptual schema, there are many physical design alternatives in a given DBMS.
It is not possible to make meaningful physical design decisions and performance analyses
until we know the queries, transactions, and applications that are expected to run on the
database. We must analyze these applications, their expected frequencies of invocation,

537

538 I Chapter 16 Practical Database Design and Tuning

any time constraints on their execution, and the expected frequency of update opera
tions. We discuss each of these factors next.

A. Analyzing the Database Queries and Transactions. Before undertaking physical
database design, we must have a good idea of the intended use of the database by defining the
queries and transactions that we expect to run on the database in a high-level form. For each
query, we should specify the following:

1. The files that will be accessed by the query. 1

2. The attributes on which any selection conditions for the query are specified.

3. The attributes on which any join conditions or conditions to link multiple tables
or objects for the query are specified.

4. The attributes whose values will be retrieved by the query.

The attributes listed in items 2 and 3 above are candidates for definition of access
structures. For each update transaction or operation, we should specify the following:

1. The files that will be updated.

2. The type of operation on each file (insert, update, or delete).

3. The attributes on which selection conditions for a delete or update are specified.

4. The attributes whose values will be changed by an update operation.

Again, the attributes listed previously in item 3 are candidates for access structures.
On the other hand, the attributes listed in item 4 are candidates for avoiding an access
structure, since modifying them will require updating the access structures.

B. Analyzing the Expected Frequency of Invocation of Queries and
Transactions. Besides identifying the characteristics of expected queries and transac
tions, we must consider their expected rates of invocation. This frequency information,
along with the attribute information collected on each query and transaction, is used to
compile a cumulative list of expected frequency of use for all queries and transactions.
This is expressed as the expected frequency of using each attribute in each file as a selec
tion attribute or a join attribute, over all the queries and transactions. Generally, for large
volumes of processing, the informal "80-20 rule" applies, which states that approximately
80 percent of the processing is accounted for by only 20 percent of the queries and trans
actions. Therefore, in practical situations it is rarely necessary to collect exhaustive statis
tics and invocation rates on all the queries and transactions; it is sufficient to determine
the 20 percent or so most important ones.

C. Analyzing the Time Constraints of Queries and Transactions. Some queries
and transactions may have stringent performance constraints. For example, a transaction
may have the constraint that it should terminate within 5 seconds on 95 percent of the

1. For simplicitywe use the term files. This can be substituted by tables or classes or objects.

16.1 Physical Database Design in Relational Databases I 539

occasions when it is invoked and that it should never take more than 20 seconds. Such
performance constraints place further priorities on the attributes that are candidates for
access paths. The selection attributes used by queries and transactions with time con
straintsbecome higher-priority candidates for primary access structures.

D. Analyzing the Expected Frequencies of Update Operations. A rrurumum

number of access paths should be specified for a file that is updated frequently, because
updating the access paths themselves slows down the update operations.

E. Analyzing the Uniqueness Constraints on Attributes. Access paths should
bespecified on all candidate key attributes-or sets of attributes-that are either the pri
mary key or constrained to be unique. The existence of an index (or other access path)
makes it sufficient to search only the index when checking this constraint, since all values
ofthe attribute will exist in the leaf nodes of the index.

Once we have compiled the preceding information, we can address the physical
databasedesign decisions, which consist mainly of deciding on the storage structures and
access paths for the database files.

16.1.2 Physical Database Design Decisions
Most relational systems represent each base relation as a physical database file. The
access path options include specifying the type of file for each relation and the
attributes on which indexes should be defined. At most one of the indexes on each file
may be a primary or clustering index. Any number of additional secondary indexes can
becreated.2

Design Decisions about Indexing. The attributes whose values are required in
equality or range conditions (selection operation) and those that are keys or that
participate in join conditions (join operation) require access paths.

The performance of queries largely depends upon what indexes or hashing schemes
exist to expedite the processing of selections and joins. On the other hand, during insert,
delete, or update operations, existence of indexes adds to the overhead. This overhead
must be justified in terms of the gain in efficiency by expediting queries and transactions.

The physical design decisions for indexing fall into the following categories:

1. Whether to index an attribute: The attribute must be a key, or there must be some
query that uses that attribute either in a selection condition (equality or range of
values) or in a join. One factor in favor of setting up many indexes is that some
queries can be processed by just scanning the indexes without retrieving any data.

2. The reader should review the various types of indexes described in Section 13.1. For a clearer
understanding of this discussion, it is also useful to be familiar with the algorithms for query process
ingdiscussed in Chapter 15.

540 I Chapter 16 Practical Database Design and Tuning

2. What attribute or attributes to index on: An index can be constructed on one or
multiple attributes. If multiple attributes from one relation are involved together
in several queries, (for example, (garment_style_#, color) in a garment inven
tory database), a multiattribute index is warranted. The ordering of attributes
within a multiattribute index must correspond to the queries. For example, the
above index assumes that queries would be based on an ordering of colors within a
garment_styl e_# rather than vice versa.

3. Whether to set up a clustered index: At most one index per table can be a primary or
clustering index, because this implies that the file be physically ordered on that
attribute. In most RDBMSs, this is specified by the keyword CLUSTER. (If the
attribute is a key, a primary index is created, whereas a clustering index is created
if the attribute is not a key.) If a table requires several indexes, the decision about
which one should be a clustered index depends upon whether keeping the table
ordered on that attribute is needed. Range queries benefit a great deal from clus
tering. If several attributes require range queries, relative benefits must be evalu
ated before deciding which attribute to cluster on. If a query is to be answered by
doing an index search only (without retrieving data records), the corresponding
index should not be clustered, since the main benefit of clustering is achieved
when retrieving the records themselves.

4. Whether to use a hash index over a tree index: In general, RDBMSs use B+ -trees for
indexing. However, [SAM and hash indexes are also provided in some systems (see
Chapter 14). W -trees support both equality and range queries on the attribute
used as the search key. Hash indexes work well with equality conditions, particu
larly during joins to find a matching recordls).

5. Whether to use dynamic hashing for the file: For files that are very volatile-that is,
those that grow and shrink continuously-one of the dynamic hashing schemes
discussed in Section 13.9 would be suitable. Currently, they are not offered by
most commercial RDBMSs.

Denormalization as a Design Decision for Speeding Up Queries. The ultimate
goal during normalization (see Chapters 10 and 11) was to separate the logically related
attributes into tables to minimize redundancy, and thereby avoid the update anomalies
that lead to an extra processing overhead to maintain consistency in the database.

The above ideals are sometimes sacrificed in favor of faster execution of frequently
occurring queries and transactions. This process of storing the logical database design
(which may be in BCNF or 4NF) in a weaker normal form, say 2NF or 1NF, is called
denormalization. Typically, the designer adds to a table attributes that are needed for
answering queries or producing reports so that a join with another table, which contains
the newly added attribute, is avoided. This reintroduces a partial functional dependency
or a transitive dependency into the table, thereby creating the associated redundancy
problems (see Chapter 10).

Other forms of denormalization consist of storing extra tables to maintain original
functional dependencies that are lost during a BCNF decomposition. For example, Figure
10.13 showed the TEACH(STUDENT, COURSE, INSTRUCTOR) relation with the functional

16.2 An Overview of Database Tuning in Relational Systems I 541

dependencies {{STUDENT, COURSE} ~ INSTRUCTOR, INSTRUCTOR ~ COURSE}. A lossless decomposi
tionof TEACH into T1 (STUDENT, INSTRUCTOR) and T2 (INSTRUCTOR, COURSE) does not allow queries
ofthe form "what course did student Smith take from Instructor N avathe" to be answered
without joining T1 and T2. Therefore, storing T1, T2, and TEACH may be a possible solution,
which reduces the design from BCNF to 3NF. Here, TEACH is a materialized join of the other
two tables, representing an extreme redundancy. Any updates to T1 and T2 would have to
beapplied to TEACH. An alternate strategy is to consider T1 and T2 as updatable base tables
whereas TEACH can be created as a view.

16.2 AN OVERVIEW OF DATABASE TUNING IN
RELATIONAL SYSTEMS

After a database is deployed and is in operation, actual use of the applications, transac
tions, queries, and views reveals factors and problem areas that may not have been
accounted for during the initial physical design. The inputs to physical design listed in
Section 16.1.1 can be revised by gathering actual statistics about usage patterns. Resource
utilization as well as internal DBMS processing-such as query optimization-can be mon
itored to reveal bottlenecks, such as contention for the same data or devices. Volumes of
activityand sizes of data can be better estimated. It is therefore necessary to monitor and
revise the physical database design constantly. The goals of tuning are as follows:

• To make applications run faster.

• To lower the response time of queries/transactions.

• To improve the overall throughput of transactions.

The dividing line between physical design and tuning is very thin. The same design
decisions that we discussed in Section 16.1.3 are revisited during the tuning phase,
which is a continued adjustment of design. We give only a brief overview of the tuning
process below.' The inputs to the tuning process include statistics related to the factors
mentioned in Section 16.1.1. In particular, DBMSs can internally collect the following
statistics:

• Sizes of individual tables.

• Number of distinct values in a column.

• The number of times a particular query or transaction is submitted/executed in an
interval of time.

• The times required for different phases of query and transaction processing (for a
given set of queries or transactions).

3. Interested readers should consult Shasha (1992) for a detailed discussion of tuning.

542 I Chapter 16 Practical Database Design and Tuning

These and other statistics create a profile of the contents and use of the database.
Other information obtained from monitoring the database system activities and processes
includes the following:

• Storage statistics: Data about allocation of storage into tablespaces, indexspaces, and
buffer ports.

• I/O and device performance statistics: Total read/write activity (paging) on disk extents
and disk hot spots.

• Query/transaction processing statistics: Execution times of queries and transactions,
optimization times during query optimization.

• Locking/logging related statistics: Rates of issuing different types of locks, transaction
throughput rates, and log records activity."

• Index statistics: Number of levels in an index, number of noncontiguous leaf pages, etc.

Many of the above statistics relate to transactions, concurrency control, and
recovery, which are to be discussed in Chapters 17 through 19 . Tuning a database
involves dealing with the following types of problems:

• How to avoid excessive lock contention, thereby increasing concurrency among
transactions.

• How to minimize overheard of logging and unnecessary dumping of data.

• How to optimize buffer size and scheduling of processes.

• How to allocate resources such as disks, RAM, and processes for most efficient utilization.

Most of the previously mentioned problems can be solved by setting appropriate
physical DBMS parameters, changing configurations of devices, changing operating system
parameters, and other similar activities. The solutions tend to be closely tied to specific
systems. The DBAs are typically trained to handle these problems of tuning for the specific
DBMS. We briefly discuss the tuning of various physical database design decisions below.

16.2.1 Tuning Indexes
The initial choice of indexes may have to be revised for the following reasons:

• Certain queries may take too long to run for lack of an index.

• Certain indexes may not get utilized at all.

• Certain indexes may be causing excessive overhead because the index is on an
attribute that undergoes frequent changes.

Most DBMSs have a command or trace facility, which can be used by the DBA to ask
the system to show how a query was executed-what operations were performed in what
order and what secondary access structures were used. By analyzing these execution plans,

4. The reader will need to look ahead and reviewChapters 17-19 for explanation of these terms.

16.2 An Overview of Database Tuning in Relational Systems I 543

it ispossible to diagnose the causes of the above problems. Some indexes may be dropped
and some new indexes may be created based on the tuning analysis.

The goal of tuning is to dynamically evaluate the requirements, which sometimes
fluctuate seasonally or during different times of the month or week, and to reorganize the
indexes to yield the best overall performance. Dropping and building new indexes is an
overhead that can be justif1ed in terms of performance improvements. Updating of a table
is generally suspended while an index is dropped or created; this loss of service must be
accounted for. Besides dropping or creating indexes and changing from a nonclustered to a
clustered index and vice versa, rebuilding the index may improve performance. Most
RDBMSs use B+-trees for an index. If there are many deletions on the index key, index pages
may contain wasted space, which can be claimed during a rebuild operation. Similarly, too
many insertions may cause overflows in a clustered index that affect performance.
Rebuilding a clustered index amounts to reorganizing the entire table ordered on that key.

The available options for indexing and the way they are defined, created, and
teorganized varies from system to system. Just for illustration, consider the sparse and dense
indexes of Chapter 14. Sparse indexes have one index pointer for each page (disk block) in
the data file; dense indexes have an index pointer for each record. Sybase provides
clustering indexes as sparse indexes in the form of B+-trees whereas INGRES provides sparse
clustering indexes as ISAM files, and dense clustering indexes as B+-trees. In some versions
ofOracle and DB2, the option of setting up a clustering index is limited to a dense index
(with many more index entries), and the DBA has to work with this limitation.

16.2.2 Tuning the Database Design
We already discussed in Section 16.1.2 the need for a possible denormalization, which is a
departure from keeping all tables as BCNF relations. If a given physical database design
does not meet the expected objectives, we may revert to the logical database design, make
adjustments to the logical schema, and remap it to a new set of physical tables and
indexes.

As we pointed out the entire database design has to be driven by the processing
requirements as much as by data requirements. If the processing requirements are
dynamically changing, the design needs to respond by making changes to the conceptual
schema if necessary and to reflect those changes into the logical schema and physical
design. These changes may be of the following nature:

• Existing tables may be joined (denormalized) because certain attributes from two or
more tables are frequently needed together: This reduces the normalization level
from BCNF to 3NF, 2NF, or INF.5

• For the given set of tables, there may be alternative design choices, all of which
achieve 3NF or BCNF. One may be replaced by the other.

----~-------~------------

5. Note that 3NF and 2NF address different typesof problem dependencies which are independent of
each other; hence the normalization (or denormalization) order between them is arbitrary.

544 I Chapter 16 Practical Database Design and Tuning

• A relation of the form RCK,A, B, C, D, ...) -with Kas a set of key attributes
that is in BCNF can be stored into multiple tables that are also in BCNF-for example,
RICK, A, B),R2CK, c. D,), R3CK, ...)-byreplicatingthekeyKineachtable.
Each table groups sets of attributes that are accessed together. For example, the table
EMPLOYEECSSN, Name, Phone, Grade, Salary) may be split into two tables
EMPI CSSN, Name, Phone) and EMP2 (SSN, Grade, Salary). If the original table had a
very large number of rows (say 100,000) and queries about phone numbers and salary
information are totally distinct, this separation of tables may work better. This is also
called vertical partitioning.

• Artributets) from one table may be repeated in another even though this creates redun
dancy and a potential anomaly. For example, Partname may be replicated in tables wher
ever the Part# appears (as foreign key), but there may be one master table called PART_

MAsTER(Part#, Partname, ...) where the Partname is guaranteed to be up-to-date.

• Just as vertical partitioning splits a table vertically into multiple tables, horizontal
partitioning takes horizontal slices of a table and stores them as distinct tables. For
example, product sales data may be separated into ten tables based on ten product
lines. Each table has the same set of columns (attributes) but contains a distinct set
of products (tuples). If a query or transaction applies to all product data, it may have
to run against all the tables and the results may have to be combined.

These types of adjustments designed to meet the high volume queries or transactions,
with or without sacrificing the normal forms, are commonplace in practice.

16.2.3 Tuning Queries
We already discussed how query performance is dependent upon appropriate selection of
indexes and how indexes may have to be tuned after analyzing queries that give poor
performance by using the commands in the RDBMS that show the execution plan of the
query. There are mainly two indications that suggest that query tuning may be needed:

1. A query issues too many disk accesses (for example, an exact match query scans
an entire table).

2. The query plan shows that relevant indexes are not being used.

Some typical instances of situations prompting query tuning include the following:

1. Many query optimizers do not use indexes in the presence of arithmetic expres
sions (such as SALARY/365 > 10.50), numerical comparisons of attributes of differ
ent sizes and precision (such as AQTY = BQTY where AQTY is of type INTEGER and BQTY is
of type SMALLINTEGER), NULL comparisons (such as BDATE IS NULL), and substring com
parisons (such as LNAME LIKE "%MANN").

2. Indexes are often not used for nested queries using IN; for example, the query:

SELECT SSN FROM EMPLOYEE
WHERE DNO IN (SELECT DNUMBER FROM DEPARTMENT

WHERE MGRSSN = '333445555');

16.2 An Overview of Database Tuning in Relational Systems I 545

may not use the index on DNO in EMPLOYEE, whereas using DNO = DNUMBER in the WHERE

clause with a single block query may cause the index to be used.

3. Some DISTINCTS may be redundant and can be avoided without changing the result.
A DISTINCT often causes a sort operation and must be avoided as far as possible.

4. Unnecessary use of temporary result tables can be avoided by collapsing multiple
queries into a single query unless the temporary relation is needed for some inter
mediate processing.

5. In some situations involving use of correlated queries, temporaries are useful.
Consider the query:

SELECT SSN
FROM EMPLOYEE E
WHERE SALARY = SELECT MAX (SALARY)

FROM EMPLOYEE AS M
WHERE M.DNO = E.DNO;

This has the potential danger of searching all of the inner EMPLOYEE table Mfor each
tuple from the outer EMPLOYEE table E. To make it more efficient, it can be broken
into two queries where the first query just computes the maximum salary in each
department as follows:

SELECT MAX (SALARY) AS HIGHSALARY, DNO INTO TEMP
FROM EMPLOYEE
GROUP BY DNO;

SELECT SSN
FROM EMPLOYEE, TEMP
WHERE SALARY = HIGHSALARY AND EMPLOYEE.DNO = TEMP.DNO;

6. If multiple options for join condition are possible, choose one that uses a cluster
ing index and avoid those that contain string comparisons. For example, assuming
that the NAME attribute is a candidate key in EMPLOYEE and STUDENT, it is better to use
EMPLOYEE. SSN STUDENT. SSN as a join condition rather than EMPLOYEE. NAME

STUDENT. NAME if SSN has a clustering index in one or both tables.

7. One idiosyncrasy with query optimizers is that the order of tables in the FROM

clause may affect the join processing. If that is the case, one may have to switch
this order so that the smaller of the two relations is scanned and the larger rela
tion is used with an appropriate index.

8. Some query optimizers perform worse on nested queries compared to their equiva
lent unnested counterparts. There are four types of nested queries:

• Uncorrelated subqueries with aggregates in inner query.

• Uncorrelated subqueries without aggregates.

• Correlated subqueries with aggregates in inner query.

• Correlated subqueries without aggregates.

Out of the above four types, the first one typically presents no problem, since most
query optimizers evaluate the inner query once. However, for a query of the

546 I Chapter 16 Practical Database Design and Tuning

second type, such as the example in (2) above, most query optimizers may not use
an index on DNO in EMPLOYEE. The same optimizers may do so if the query is written
as an unnested query. Transformation of correlated subqueries may involve setting
temporary tables. Detailed examples are outside our scope here.6

9. Finally, many applications are based on views that define the data of interest to

those applications. Sometimes, these views become an overkill, because a query
may be posed directly against a base table, rather than going through a view that
is defined by a join.

16.2.4 Additional Query Tuning Guidelines
Additional techniques for improving queries apply in certain situations:

1. A query with multiple selection conditions that are connected via OR may not be
prompting the query optimizer to use any index. Such a query may be split up and
expressed as a union of queries, each with a condition on an attribute that causes
an index to be used. For example,

SELECT FNAME, LNAME, SALARY, AGE 7

FROM EMPLOYEE
WHERE AGE> 45 OR SALARY < 50000;

may be executed using sequential scan giving poor performance. Splitting it up as

SELECT FNAME, LNAME, SALARY, AGE
FROM EMPLOYEE
WHERE AGE > 45

UNION
SELECT FNAME, LNAME, SALARY, AGE
FROM EMPLOYEE
WHERE SALARY < 50000;

may utilize indexes on AGE as well as on SALARY.

2. To help in expediting a query, the following transformations may be tried:

• NOT condition may be transformed into a positive expression.

• Embedded SELECT blocks using IN, = ALL, = ANY, and = SOME may be replaced by
joins.

• If an equality join is set up between two tables, the range predicate (selection
condition) on the joining attribute set up in one table may be repeated for the
other table.

------- -------------------------------

6. For further details, see Shasha (1992).

7. We modified the schema and used AGE in EMPLOYEE instead of BDATE.

16.3 Summary I 547

3. WHERE conditions may be rewritten to utilize the indexes on multiple columns. For
example,

SELECT REGION#, PROD_TYPE, MONTH, SALES
FROM SALES_STATISTICS
WHERE REGION# = 3 AND ((PRODUCT_TYPE BETWEEN 1 AND 3) OR (PRODUCT_
TYPE BETWEEN 8 AND 10));

may use an index only on REGION#and search through all leaf pages of the index for
a match on PRODUCT_TYPE. Instead, using

SELECT REGION#, PROD_TYPE, MONTH, SALES
FROM SALES_STATISTICS
WHERE (REGION# = 3 AND (PRODUCT_TYPE BETWEEN 1 AND 3)) OR (REGION#
3 AND (PRODUCT_TYPE BETWEEN 8 AND 10));

can use a composite index on (REGION#, PRODUCT_TYPE) and work much more
efficiently.

We have covered in this section most of the common opporturuties where
inefficiency of a query may be corrected by some simple corrective action such as using a
temporary, avoiding certain types of constructs, or avoiding use of views. The problems
and the remedies will depend upon the workings of a query optimizer within an RDBMS.
Detailed literature exists in terms of individual manuals on database tuning guidelines for
database administration by the RDBMS vendors.

16.3 SUMMARY
In this chapter we discussed the factors that affect physical database design decisions and
provided guidelines for choosing among physical design alternatives. We discussed
changes to logical design, modifications of indexing, and changes to queries as a part of
database tuning.

Review Questions
16.1. What are the important factors that influence physical database design?
16.2. Discuss the decisions made during physical database design.
16.3. Discuss the guidelines for physical database design in RDBMSs.
16.4. Discuss the types of modifications that may be applied to the logical database

design of a relational database.
16.5. Under what situations would denormalization of a database schema be used? Give

examples of denormalization.
16.6. Discuss the tuning of indexes for relational databases.
16.7. Discuss the considerations for reevaluating and modifying SQL queries.
16.8. Illustrate the types of changes to SQL queries that may be worth considering for

improving the performance during database tuning.
16.9. What functions do the typical database design tools provide?

548 I Chapter 16 Practical Database Design and Tuning

Selected Bibliography
Wiederhold (1986) covers all phases of database design, with an emphasis on physical
design. O'Neil (1994) has a detailed discussion of physical design and transaction issues
in reference to commercial RDBMSs.

Navathe and Kerschberg (1986) discuss all phases of database design and point out
the role of data dictionaries. Rozen and Shasha (1991) and Carlis and March (1984)
present different models for the problem of physical database design.

Introduction to
Transaction Processing

552 I Chapter 17 Introduction to Transaction Processing Concepts and Theory

The two subsequent chapters continue with more details on the techniques used to
support transaction processing. Chapter 18 describes the basic concurrency control
techniques, and Chapter 19 presents an overview of recovery techniques.

17.1 INTRODUCTION TO TRANSACTION
PROCESSING

In this section we informally introduce the concepts of concurrent execution of trans
actions and recovery from transaction failures. Section 17.1.1 compares single-user and
multiuser database systems and demonstrates how concurrent execution of transactions
can take place in multiuser systems. Section 17.1.2 defines the concept of transaction
and presents a simple model of transaction execution, based on read and write database
operations, that is used to formalize concurrency control and recovery concepts. Sec
tion 17.1.3 shows by informal examples why concurrency control techniques are
needed in multiuser systems. Finally, Section 17.1.4 discusses why techniques are
needed to permit recovery from failure by discussing the different ways in which trans
actions can fail while executing.

17.1.1 Single-User Versus Multiuser Systems
One criterion for classifying a database system is according to the number of users who
can use the system concurrently-that is, at the same time. A DBMS is single-user if at
most one user at a time can use the system, and it is multiuser if many users can use the
system-and hence access the database-concurrently. Single-user DBMSs are mostly
restricted to personal computer systems; most other DBMSs are multiuser. For example,
an airline reservations system is used by hundreds of travel agents and reservation clerks
concurrently. Systems in banks, insurance agencies, stock exchanges, supermarkets, and
the like are also operated on by many users who submit transactions concurrently to the
system.

Multiple users can access databases-and use computer systems-simultaneously
because of the concept of multiprogramming, which allows the computer to execute
multiple programs-or processes-at the same time. If only a single central processing
unit (CPU) exists, it can actually execute at most one process at a time. However,
multiprogramming operating systems execute some commands from one process, then
suspend that process and execute some commands from the next process, and so on. A
process is resumed at the point where it was suspended whenever it gets its turn to use the
CPU again. Hence, concurrent execution of processes is actually interleaved, as illustrated
in Figure 17.1, which shows two processes A and B executing concurrently in an
interleaved fashion. Interleaving keeps the CPU busy when a process requires an input or

output (r/o) operation, such as reading a block from disk. The CPU is switched to execute
another process rather than remaining idle during r/o time. Interleaving also prevents a
long process from delaying other processes.

I

I
I

A I

II
I
I

I
I B

A

I
I

I B
II

17.1 Introduction to Transaction Processing I 553

C
CPU1

D
CPU2

t t ..
t3 t4 Time

FIGURE 17.1 Interleaved processing versus parallel processing of concurrent
transactions.

If the computer system has multiple hardware processors (crus), parallel processing
ofmultiple processes is possible, as illustrated by processes C and D in Figure 17.1. Most of
the theory concerning concurrency control in databases is developed in terms of
interleaved concurrency, so for the remainder of this chapter we assume this model. In a
multiuser DBMS, the stored data items are the primary resources that may be accessed
concurrently by interactive users or application programs, which are constantly retrieving
information from and modifying the database.

17.1.2 Transactions, Read and Write Operations, and
DBMS Buffers

A transaction is an executing program that forms a logical unit of database processing.
A transaction includes one or more database access operations-these can include
insertion, deletion, modification, or retrieval operations. The database operations that
form a transaction can either be embedded within an application program or they can
bespecified interactively via a high-level query language such as SQL. One way of spec
ifying the transaction boundaries is by specifying explicit begin transaction and end
transaction statements in an application program; in this case, all database access oper
ations between the two are considered as forming one transaction. A single application
program may contain more than one transaction if it contains several transaction
boundaries. If the database operations in a transaction do not update the database but
only retrieve data, the transaction is called a read-only transaction.

The model of a database that is used to explain transaction processing concepts is
muchsimplified. A database is basically represented as a collection of named data items.
The size of a data item is called its granularity, and it can be a field of some record in the
database, or it may be a larger unit such as a record or even a whole disk block, but the
concepts we discuss are independent of the data item granularity. Using this simplified

554 I Chapter 17 Introduction to Transaction Processing Concepts and Theory

database model, the basic database access operations that a transaction can include are as
follows:

• read_i tem(X): Reads a database item named X into a program variable. To simplify
our notation, we assume that the program variable is also named X.

• write_item(X): Writes the value of program variable X into the database item
namedX.

As we discussed in Chapter 13, the basic unit of data transfer from disk to main
memory is one block. Executing a read_i tem(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if that disk block is not
already in some main memory buffer).

3. Copy item X from the buffer to the program variable named X.

Executing a wri te_i tem(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if that disk block is not
already in some main memory buffer).

3. Copy item X from the program variable named X into its correct location in the
buffer.

4. Store the updated block from the buffer back to disk (either immediately or at
some later point in time).

Step 4 is the one that actually updates the database on disk. In some cases the buffer
is not immediately stored to disk, in case additional changes are to be made to the buffer.
Usually, the decision about when to store back a modified disk block that is in a main
memory buffer is handled by the recovery manager of the DBMS in cooperation with the
underlying operating system. The DBMS will generally maintain a number of buffers in
main memory that hold database disk blocks containing the database items being
processed. When these buffers are all occupied, and additional database blocks must be
copied into memory, some buffer replacement policy is used to choose which of the
current buffers is to be replaced. If the chosen buffer has been modified, it must be written
back to disk before it is reused. [

A transaction includes read_item and wri te_item operations to access and update
the database. Figure 17.2 shows examples of two very simple transactions. The read-set
of a transaction is the set of all items that the transaction reads, and the write-set is the
set of all items that the transaction writes. For example, the read-set of T[in Figure
17.2 is {X, Y} and its write-set is also {X, Y}.

Concurrency control and recovery mechanisms are mainly concerned with the
database access commands in a transaction. Transactions submitted by the various users may

1. We will not discuss buffer replacement policies here as these are typically discussed in operating
systems textbooks.

(a)

read_item (X);
X:=X-N;
writejtem (X);
readjtem (Y);
Y:=Y+N;
write_item (Y);

(b)

read item (X);
X:=X+M;
writejtern (X);

17.1 Introduction to Transaction Processing I 555

FIGURE 17.2 Two sample transactions. (a) Transaction Tl . (b) Transaction Tz.

execute concurrently and may access and update the same database items. If this concurrent
execution is uncontrolled, it may lead to problems, such as an inconsistent database. In the
nextsection we informally introduce some of the problems that may occur.

17.1.3 Why Concurrency Control Is Needed
Several problems can occur when concurrent transactions execute in an uncontrolled
manner. We illustrate some of these problems by referring to a much simplified airline res
ervations database in which a record is stored for each airline flight. Each record includes
the number of reserved seats on that flight as a named data item, among other information.
Figure 17.2a shows a transaction T j that transfers N reservations from one flight whose
number of reserved seats is stored in the database item named X to another flight whose
number of reserved seats is stored in the database item named Y. Figure 17.2b shows a sim
pler transaction Tz that just reserves M seats on the first flight (X) referenced in transac
tion T j .2 To simplify our example, we do not show additional portions of the transactions,
such as checking whether a flight has enough seats available before reserving additional
seats.

When a database access program is written, it has the flight numbers, their dates, and
the number of seats to be booked as parameters; hence, the same program can be used to
execute many transactions, each with different flights and numbers of seats to be booked.
For concurrency control purposes, a transaction is a particular execution of a program on a
specific date, flight, and number of seats. In Figure 17.2a and b, the transactions T j and Tz
are specific executions of the programs that refer to the specific flights whose numbers of
seats are stored in data items X and Y in the database. We now discuss the types of
problems we may encounter with these two transactions if they run concurrently.

The Lost Update Problem. This problem occurs when two transactions that access
the same database items have their operations interleaved in a way that makes the value of
some database items incorrect. Suppose that transactions T j and Tz are submitted at
approximately the same time, and suppose that their operations are interleaved as shown

----~- ~------

2. A similar, more commonly used example assumes a bank database, with one transaction doing a
transfer of fundsfrom account X to account Yand the other transaction doing a deposit to account X.

556 I Chapter 17 Introduction to Transaction Processing Concepts and Theory

in Figure 17.3a; then the final value of item X is incorrect, because Tz reads the value ofX
before T j changes it in the database, and hence the updated value resulting from T j is lost.
For example, if X = 80 at the start (originally there were 80 reservations on the flight), N =

5 (T) transfers 5 seat reservations from the flight corresponding to X to the flight
corresponding to Y), and M = 4 (Tz reserves 4 seats on X), the final result should be X =

79; but in the interleaving of operations shown in Figure 17.3a, it is X = 84 because the
update in T j that removed the five seats from X was lost.

The Temporary Update (or Dirty Read) Problem. This problem occurs when
one transaction updates a database item and then the transaction fails for some reason (see
Section 17.1.4). The updated item is accessed by another transaction before it is changed

(a)

read_item(X);
X:=X-N;

readjtem(X);
X:=X+M;

Time

(b)

write_item(X);
readjtem(Y);

Y:=Y+N;
write_item(Y);

writejtem(X);_--
ItemX hasan incorrect valuebecause
itsupdate by T1 is "lost" (overwritten)

read_item(X);
X:=X-N;
writejtem(X);

Time
read_item(X);
X:=X+M;
writejtem(X);

readjtem(Y);

Transaction T1 failsand mustchangethevalue
of X backto itsoldvalue; meanwhile T2
has readthe'temporary"incorrect valueof X.

FIGURE 17.3 Some problems that occur when concurrent execution is uncon
trolled. (a) The lost update problem. (b) The temporary update problem.

17.1 Introduction to Transaction Processing I 557

(e)

sum:=O;
readjtem(A);
sum:=sum-»;

readjtem(X);
X:=X-N;
writejtem(X);

read_item(Y);
Y:=Y+N;
write_item(Y);

readjtem(X);
sum:=sum-X;
readjtem(y);
sum:=sum- Y;

T 3 readsX afterN is subtracted andreads
Ybefore N is added; a wrongsummary
is the result(offby N).

"

FIGURE 17.3(CONTINUED) Some problems that occur when concurrent execution
is uncontrolled. (c) The incorrect summary problem.

back to its original value. Figure 17.3b shows an example where T 1 updates item X and
thenfails before completion, so the system must change X back to its original value. Before
it can do so, however, transaction T 2 reads the "temporary" value of X, which will not be
recorded permanently in the database because of the failure of T r-The value of item X that
is read by T 2 is called dirty data, because it has been created by a transaction that has not
completed and committed yet; hence, this problem is also known as the dirty read problem.

The Incorrect Summary Problem. If one transaction is calculating an aggregate
summary function on a number of records while other transactions are updating some of
these records, the aggregate function may calculate some values before they are updated
and others after they are updated. For example, suppose that a transaction T} is
calculating the total number of reservations on all the flights; meanwhile, transaction T 1
is executing. If the interleaving of operations shown in Figure 17.3c occurs, the result of
T3 will be off by an amount N because T} reads the value of X after N seats have been
subtractedfrom it but reads the value of Y before those N seats have been added to it.

Another problem that may occur is called unrepeatable read, where a transaction T
reads an item twice and the item is changed by another transaction T' between the two
reads. Hence, T receives different values for its two reads of the same item. This may occur,
for example, if during an airline reservation transaction, a customer is inquiring about
seat availability on several flights. When the customer decides on a particular flight, the
transaction then reads the number of seats on that flight a second time before completing
the reservation.

558 I Chapter 17 Introduction to Transaction Processing Concepts and Theory

17.1.4 Why Recovery Is Needed
Whenever a transaction is submitted to a DBMS for execution, the system is responsible
for making sure that either (1) all the operations in the transaction are completed suc
cessfully and their effect is recorded permanently in the database, or (2) the transaction
has no effect whatsoever on the database or on any other transactions. The DBMS must
not permit some operations of a transaction T to be applied to the database while other
operations of T are not. This may happen if a transaction fails after executing some of its
operations but before executing all of them.

Types of Failures. Failures are generally classified as transaction, system, and media
failures. There are several possible reasons for a transaction to fail in the middle of
execution:

1. A computerfailure (system crash): A hardware, software, or network error occurs in
the computer system during transaction execution. Hardware crashes are usually
media failures-for example, main memory failure.

2. A transaction or system error: Some operation in the transaction may cause it to
fail, such as integer overflow or division by zero. Transaction failure may also
occur because of erroneous parameter values or because of a logical programming
error. ' In addition, the user may interrupt the transaction during its execution.

3. Local errors or exception conditions detected by the transaction: During transaction
execution, certain conditions may occur that necessitate cancellation of the
transaction. For example, data for the transaction may not be found. Notice that
an exception condition," such as insufficient account balance in a banking data
base, may cause a transaction, such as a fund withdrawal, to be canceled. This
exception should be programmed in the transaction itself, and hence would not
be considered a failure.

4. Concurrency control enforcement: The concurrency control method (see Chapter
18) may decide to abort the transaction, to be restarted later, because it violates
serializability (see Section 17.5) or because several transactions are in a state of
deadlock.

5. Disk failure: Some disk blocks may lose their data because of a read or write mal
function or because of a disk read/write head crash. This may happen during a
read or a write operation of the transaction.

6. Physical problems and catastrophes: This refers to an endless list of problems that
includes power or air-conditioning failure, fire, theft, sabotage, overwriting disks
or tapes by mistake, and mounting of a wrong tape by the operator.

3. In general, a transaction should be thoroughly tested to ensure that it has no bugs (logical pro
grammingerrors).
4. Exception conditions, if programmed correctly, do not constitute transaction failures.

17.2 Transaction and System Concepts I 559

Failures of types 1, 2, 3, and 4 are more common than those of types 5 or 6.
Whenever a failure of type 1 through 4 occurs, the system must keep sufficient
information to recover from the failure. Disk failure or other catastrophic failures of type
5 or 6 do not happen frequently; if they do occur, recovery is a major task. We discuss
recovery from failure in Chapter 19.

The concept of transaction is fundamental to many techniques for concurrency
control and recovery from failures.

17.2 TRANSACTION AND SYSTEM CONCEPTS
In this section we discuss additional concepts relevant to transaction processing. Section
17.2.1 describes the various states a transaction can be in, and discusses additional rele
vantoperations needed in transaction processing. Section 17.2.2 discusses the system log,
which keeps information needed for recovery. Section 17.2.3 describes the concept of
commitpoints of transactions, and why they are important in transaction processing.

17.2.1 Transaction States and Additional Operations
A transaction is an atomic unit of work that is either completed in its entirety or not
done at all. For recovery purposes, the system needs to keep track of when the transaction
starts, terminates, and commits or aborts (see Section 17.2.3). Hence, the recovery man
ager keeps track of the following operations:

• BEGIN_TRANSACTION: This marks the beginning of transaction execution.

• READ DR WRITE: These specify read or write operations on the database items that are
executed as part of a transaction.

• END_TRANSACTION: This specifies that READ and WRITE transaction operations have ended
and marks the end of transaction execution. However, at this point it may be neces
sary to check whether the changes introduced by the transaction can be permanently
applied to the database (committed) or whether the transaction has to be aborted
because it violates serializability (see Section 17.5) or for some other reason.

• COMMIT_TRANSACTION: This signals a successful end of the transaction so that any changes
(updates) executed by the transaction can be safely committed to the database and
will not be undone.

• ROLLBACK (OR ABORT): This signals that the transaction has ended unsuccessfully, so that
any changes or effects that the transaction may have applied to the database must be
undone.

Figure 17.4 shows a state transition diagram that describes how a transaction moves
through its execution states. A transaction goes into an active state immediately after it
startsexecution, where it can issue READ and WRITE operations. When the transaction ends,
it moves to the partially committed state. At this point, some recovery protocols need to
ensure that a system failure will not result in an inability to record the changes of the

560 I Chapter 17 Introduction to Transaction Processing Concepts and Theory

READ,
WRITE

BEGIN
TRANSACTION
-----J..~{ ACTIVE

END
TRANSACTION

ABORT

COMMIT

ABORT

COMMITIED

TERMINATED

FIGURE 17.4 State transition diagram illustrating the states for transaction execution,

transaction permanently (usually by recording changes in the system log, discussed in the
next sectionj.P Once this check is successful, the transaction is said to have reached its
commit point and enters the committed state. Commit points are discussed in more
detail in Section 17.2.3. Once a transaction is committed, it has concluded its execution
successfully and all its changes must be recorded permanently in the database.

However, a transaction can go to the failed state if one of the checks fails or if the
transaction is aborted during its active state. The transaction may then have to be rolled
back to undo the effect of its WRITE operations on the database. The terminated state
corresponds to the transaction leaving the system. The transaction information that is
maintained in system tables while the transaction has been running is removed when the
transaction terminates. Failed or aborted transactions may be restarted later-either
automatically or after being resubmitted by the user-as brand new transactions.

17.2.2 The System Log
To be able to recover from failures that affect transactions, the system maintains a log6 to
keep track of all transaction operations that affect the values of database items. This
information may be needed to permit recovery from failures. The log is kept on disk, so it
is not affected by any type of failure except for disk or catastrophic failure. In addition,
the log is periodically backed up to archival storage (tape) to guard against such cata
strophic failures. We now list the types of entries-called log records-that are written to
the log and the action each performs. In these entries, T refers to a unique transaction-id
that is generated automatically by the system and is used to identify each transaction:

1. [star-t jt.ransacti on.T]: Indicates that transaction T has started execution.

5. Optimistic concurrency control (see Section 18.4) also requires that certain checks be made at
this point to ensure that the transaction did not interfere with other executing transactions.

6. The log has sometimes been called the DBMS journal.

17.2 Transaction and System Concepts I 561

2. [wri te_i tem,T,X,olcCvalue,new_value]: Indicates that transaction T has changed
the value of database item X from old_value to new_value.

3. [read_i tem,T,X]: Indicates that transaction T has read the value of database item X.

4. [commi t,T]: Indicates that transaction T has completed successfully, and affirms
that its effect can be committed (recorded permanently) to the database.

5. [abort.T]: Indicates that transaction T has been aborted.

Protocols for recovery that avoid cascading rollbacks (see Section 17.4.2)-which
include nearly all practical protocols-do not require that READ operations be written
to the system log. However, if the log is also used for other purposes-such as auditing
(keeping track of all database operarions)-then such entries can be included. In
addition, some recovery protocols require simpler WRITE entries that do not include new_
value (see Section 17.4.2).

Notice that we assume here that all permanent changes to the database occur within
transactions, so the notion of recovery from a transaction failure amounts to either
undoing or redoing transaction operations individually from the log. If the system crashes,
we can recover to a consistent database state by examining the log and using one of the
techniques described in Chapter 19. Because the log contains a record of every WRITE

operation that changes the value of some database item, it is possible to undo the effect of
these WRITE operations of a transaction T by tracing backward through the log and
resetting all items changed by a WRITE operation of T to their old_values. Redoing the
operationsof a transaction may also be needed if all its updates are recorded in the log but
a failure occurs before we can be sure that all these new_values have been written
permanently in the actual database on disk." Redoing the operations of transaction T is
applied by tracing forward through the log and setting all items changed by a WRITE

operation of T to their new_values.

17.2.3 Commit Point of a Transaction
A transaction T reaches its commit point when all its operations that access the data
base have been executed successfully and the effect of all the transaction operations on
the database have been recorded in the log. Beyond the commit point, the transaction
issaid to be committed, and its effect is assumed to be permanently recorded in the data
base. The transaction then writes a commit record [commi t,T] into the log. If a system
failure occurs, we search back in the log for all transactions T that have written a
[start_transacti on,T] record into the log but have not written their [commi t,T]
record yet; these transactions may have to be rolled back to undo their effect on the
database during the recovery process. Transactions that have written their commit
record in the log must also have recorded all their WRITE operations in the log, so their
effect on the database can be redone from the log records.

7. Undo and redo are discussed more fully in Chapter 19.

562 I Chapter 17 Introduction to Transaction Processing Concepts and Theory

Notice that the log file must be kept on disk. As discussed in Chapter 13, updating
a disk file involves copying the appropriate block of the file from disk to a buffer in main
memory, updating the buffer in main memory, and copying the buffer to disk. It is
common to keep one or more blocks of the log file in main memory buffers until they are
filled with log entries and then to write them back to disk only once, rather than writing
to disk every time a log entry is added. This saves the overhead of multiple disk writes of
the same log file block. At the time of a system crash, only the log entries that have been
written back to disk are considered in the recovery process because the contents of main
memory may be lost. Hence, before a transaction reaches its commit point, any portion of
the log that has not been written to the disk yet must now be written to the disk. This
process is called force-writing the log file before committing a transaction.

17.3 DESIRABLE PROPERTIES OF TRANSACTIONS
Transactions should possess several properties. These are often called the ACID proper
ties, and they should be enforced by the concurrency control and recovery methods of the
DBMS. The following are the ACID properties:

1. Atomicity: A transaction is an atomic unit of processing; it is either performed in
its entirety or not performed at all.

2. Consistency preservation: A transaction is consistency preserving if its complete
execution rakejs) the database from one consistent state to another.

3. Isolation: A transaction should appear as though it is being executed in isolation
from other transactions. That is, the execution of a transaction should not be
interfered with by any other transactions executing concurrently.

4. Durability or permanency: The changes applied to the database by a committed
transaction must persist in the database. These changes must not be lost because
of any failure.

The atomicity property requires that we execute a transaction to completion. It is the
responsibility of the transaction recovery subsystem of a DBMS to ensure atomicity. If a
transaction fails to complete for some reason, such as a system crash in the midst of
transaction execution, the recovery technique must undo any effects of the transaction
on the database.

The preservation of consistency is generally considered to be the responsibility of the
programmers who write the database programs or of the DBMS module that enforces
integrity constraints. Recall that a database state is a collection of all the stored data
items (values) in the database at a given point in time. A consistent state of the database
satisfies the constraints specified in the schema as well as any other constraints that
should hold on the database. A database program should be written in a way that
guarantees that, if the database is in a consistent state before executing the transaction, it
will be in a consistent state after the complete execution of the transaction, assuming that
no interference with othertransactions occurs.

17.4 Characterizing Schedules Based on Recoverability I 563

Isolation is enforced by the concurrency control subsystem of the DBMS.s If every
transaction does not make its updates visible to other transactions until it is committed,
oneform of isolation is enforced that solves the temporary update problem and eliminates
cascading rollbacks (see Chapter 19). There have been attempts to define the leve! of
isolation of a transaction. A transaction is said to have level 0 (zero) isolation if it does not
overwrite the dirty reads of higher-level transactions. Level 1 (one) isolation has no lost
updates; and level 2 isolation has no lost updates and no dirty reads. Finally, level 3
isolation (also called true isolation) has, in addition to degree 2 properties, repeatable
reads.

Finally, the durability property is the responsibility of the recovery subsystem of the
DBMS. We will discuss how recovery protocols enforce durability and atomicity in
Chapter 19.

17.4 CHARACTERIZING SCHEDULES
BASED ON RECOVERABILITY

When transactions are executing concurrently in an interleaved fashion, then the order
ofexecution of operations from the various transactions is known as a schedule (or his
tory). In this section, we first define the concept of schedule, and then we characterize
the types of schedules that facilitate recovery when failures occur. In Section 17.5, we
characterize schedules in terms of the interference of participating transactions, leading
to the concepts of serializability and serializable schedules.

17.4.1 Schedules (Histories) of Transactions
Aschedule (or history) S of n transactions TI , Tz, ... , Tn is an ordering of the operations
ofthe transactions subject to the constraint that, for each transaction T, that participates
in 5, the operations of T, in S must appear in the same order in which they occur in T;
Note, however, that operations from other transactions Tj can be interleaved with the
operations of T, in S. For now, consider the order of operations in S to be a total ordering,
although it is possible theoretically to deal with schedules whose operations form partial
orders (as we discuss later).

For the purpose of recovery and concurrency control, we are mainly interested in the
read, i tern and wri te_i tern operations of the transactions, as well as the commi t and
abort operations. A shorthand notation for describing a schedule uses the symbols r, w, c,
and a for the operations read_item, wri te_item, commi t, and abort, respectively, and
appends as subscript the transaction id (transaction number) to each operation in the
schedule. In this notation, the database item 'X that is read or written follows the rand w

8.We will discuss concurrency control protocols in Chapter 18.

564 I Chapter 17 Introduction to Transaction Processing Concepts and Theory

operations in parentheses. For example, the schedule of Figure 17.3(a), which we shall
call Sa' can be written as follows in this notation:

Sa: rj(X); r2(X); Wj(X); rj(Y); w2(X); Wj(Y);

Similarly, the schedule for Figure 17.3(b), which we call Sb' can be written as follows,
if we assume that transaction T I aborted after its read_i tem(Y) operation:

Sb: rl (X); wI (X); r2(X); w2(X); rl (Y); al;

Two operations in a schedule are said to conflict if they satisfy all three of the
following conditions: (l) they belong to different transactions; (2) they access the same
item X; and (3) at least one of the operations is a write_item(X). For example, in
schedule Sa' the operations r l (X) and w2(X) conflict, as do the operations r2(X) and
WI (X), and the operations wI (X) and W2(X). However, the operations r l (X) and r2(X) do
not conflict, since they are both read operations; the operations W2(X) and WI (Y) do not
conflict, because they operate on distinct data items X and Y; and the operations rl (X)
and WI (X) do not conflict, because they belong to the same transaction.

A schedule S of n transactions T I , T2, ••• , Tn' is said to be a complete schedule if the
following conditions hold:

1. The operations in S are exactly those operations in T I , T2, •.• , Tn' including
a commit or abort operation as the last operation for each transaction in the
schedule.

2. For any pair of operations from the same transaction T i , their order of appearance
in S is the same as their order of appearance in T;

3. For any two conflicting operations, one of the two must occur before the other in
the schedule."

The preceding condition (3) allows for two nonconflicting operations to occur in the
schedule without defining which occurs first, thus leading to the definition of a schedule
as a partial order of the operations in the n transactions.l'' However, a total order mustbe
specified in the schedule for any pair of conflicting operations (condition 3) and for any
pair of operations from the same transaction (condition 2). Condition I simply states that
all operations in the transactions must appear in the complete schedule. Since every
transaction has either committed or aborted, a complete schedule will not contain any
active transactions at the end of the schedule.

In general, it is difficult to encounter complete schedules in a transaction processing
system, because new transactions are continually being submitted to the system. Hence, it
is useful to define the concept of the committed projection CIS) of a schedule 5, which
includes only the operations in S that belong to committed transactions-that is,
transactions T, whose commit operation cj is in S.

-----~-------~~--~. ~----~----

9. Theoretically, it is not necessary to determine an order between pairs of nonconflicting operations.

10. In practice, most schedules have a total order of operations. If parallel processing is employed,it
is theoretically possible to have schedules with partially-ordered nonconflicting operations.

17.4 Characterizing Schedules Based on Recoverability I 565

17.4.2 Characterizing Schedules Based on Recoverability
For some schedules it is easy to recover from transaction failures, whereas for other sched
ules the recovery process can be quite involved. Hence, it is important to characterize the
types of schedules for which recovery is possible, as well as those for which recovery is rel
atively simple. These characterizations do not actually provide the recovery algorithm but
instead only attempt to theoretically characterize the different types of schedules.

First, we would like to ensure that, once a transaction T is committed, it should never
benecessary to roll back T. The schedules that theoretically meet this criterion are called
recoverable schedules and those that do not are called nonrecoverable, and hence should
not be permitted. A schedule S is recoverable if no transaction T in S commits until all
transactions T' that have written an item that T reads have committed. A transaction T
reads from transaction T' in a schedule S if some item X is first written by T' and later
read by T. In addition, T' should not have been aborted before T reads item X, and there
should be no transactions that write X after T' writes it and before T reads it (unless those
transactions, if any, have aborted before T reads X).

Recoverable schedules require a complex recovery process as we shall see, but if
sufficient information is kept (in the log), a recovery algorithm can be devised. The
(partial) schedules Sa and Sb from the preceding section are both recoverable, since they
satisfy the above definition. Consider the schedule Sa' given below, which is the same as
schedule Sa except that two commit operations have been added to Sa:

Sa': TI(X); TZ(X); WI(X); TI(Y); Wz(X); Cz; wl(Y); c1;

Sa' is recoverable, even though it suffers from the lost update problem. However,
consider the two (partial) schedules Sc and Sd that follow:

Sc: rl(X); WI(X); rz(X); r1(Y); wz(X); Cz; al;

Sd: rl (X); WI (X); rz(X); rl (Y); wz(X); WI(Y); CI; Cz;

Se: rl(X); WI(X); TZ(X); rl(Y); Wz(X); WI(Y); ali az;

Sc is not recoverable, because T z reads item X from T I , and then Tz commits before
TI commits. IfTI aborts after the Cz operation in Sc' then the value of X that Tz read is no
longer valid and Tz must be aborted after it had been committed, leading to a schedule
that is not recoverable. For the schedule to be recoverable, the Cz operation in Sc must be
postponed until after T I commits, as shown in Sd; if T I aborts instead of committing, then
Tzshould also abort as shown in Se' because the value of X it read is no longer valid.

In a recoverable schedule, no committed transaction ever needs to be rolled back.
However, it is possible for a phenomenon known as cascading rollback (or cascading
abort) to occur, where an uncommitted transaction has to be rolled back because it read an
itemfrom a transaction that failed. This is illustrated in schedule Se' where transaction T i

has to be rolled back because it read item X from T I , and T I then aborted.
Because cascading rollback can be quite time-consuming-since numerous trans

actions can be rolled back (see Chapter 19)-it is important to characterize the schedules
where this phenomenon is guaranteed not to occur. A schedule is said to be cascadeless, or
toavoid cascading rollback, if every transaction in the schedule reads only items that were

566 I Chapter 17 Introduction to Transaction Processing Concepts and Theory

written by committed transactions. In this case, all items read will not be discarded, so no
cascading rollback will occur. To satisfy this criterion, the r2(X) command in schedules Sd
and Se must be postponed until after T) has committed (or aborted), thus delaying T2 but
ensuring no cascading rollback if T) aborts.

Finally, there is a third, more restrictive type of schedule, called a strict schedule, in
which transactions can neither read nor write an item X until the last transaction that
wrote X has committed (or aborted). Strict schedules simplify the recovery process. In a
strict schedule, the process of undoing a wri te_i tem(X) operation of an aborted
transaction is simply to restore the before image (old_value or BFIM) of data item X. This
simple procedure always works correctly for strict schedules, but it may not work for
recoverable or cascadeless schedules. For example, consider schedule Sf:

S(Wj (X, 5); w2(X, 8); aj;

Suppose that the value of X was originally 9, which is the before image stored in the
system log along with the W) (X, 5) operation. If T) aborts, as in Sf' the recovery procedure
that restores the before image of an aborted write operation will restore the value of X to 9,
even though it has already been changed to 8 by transaction T2, thus leading to potentially
incorrect results. Although schedule Sf is cascadeless, it is not a strict schedule, since it
permits T2 to write item X even though the transaction T) that last wrote X had not yet
committed (or aborted). A strict schedule does not have this problem.

We have now characterized schedules according to the following terms: (1)
recoverabilitv, (2) avoidance of cascading rollback, and (3) strictness. We have thus seen
that those properties of schedules are successively more stringent conditions. Thus
condition (2) implies condition (1), and condition (3) implies both (2) and (1). Thus, all
strict schedules are cascadeless, and all cascadeless schedules are recoverable.

17.5 CHARACTERIZING SCHEDULES
BASED ON SERIALIZABILITY

In the previous section, we characterized schedules based on their recoverability proper
ties. We now characterize the types of schedules that are considered correct when concur
rent transactions are executing. Suppose that two users-two airline reservation clerks
submit to the DBMS transactions T) and T2 of Figure 17.2 at approximately the same time.
If no interleaving of operations is permitted, there are only two possible outcomes:

1. Execute all the operations of transaction T) (in sequence) followed by all the
operations of transaction T 2 (in sequence).

2. Execute all the operations of transaction T 2 (in sequence) followed by all the
operations of transaction T) (in sequence).

These alternatives are shown in Figure 17.5a and b, respectively. If interleaving of
operations is allowed, there will be many possible orders in which the system can
execute the individual operations of the transactions. Two possible schedules are shown

17.5 Characterizing Schedules Based on Serializability I 567

(a) T, T2 (b) T, T2

read_~em(X); read_nem(X);

r_ j
X:=X-N; X:=X+M;
wme_~em(X);

Time 1
wmejtem(X);

read_~em(Y); read_nem(X);
Y:=Y+N; X:=X-N;
wme_~em(V); wme_~em(X);

read_~em(X); read_~em(Y);

X:=X+M; Y:=Y+N;

wmejtem(X); wme_~em(Y);

Schedule A Schedule 8

(c) r; T2 T1 T2

read_~em(X); read_item(X);
X:=X-N; X:=X-N;

readjtem(X);
wme_item(X);

X:=X+M; read_item(X);

Time wme_~em(X); X:=X+M;

readjtem(y); wme_nem(X);

write_item(X);
read_item(V);
Y:=Y+N;

Y:=Y+N; wmejtem(Y);
wme_item(V);

Schedule C Schedule D

FIGURE 17.5 Examples of serial and nonserial schedules involving transactions T1

and T2• (a) Serial schedule A: T1 followed by T2 . (b) Serial schedule B: T2 followed
by T1• (c) Two nonserial schedules C and 0 with interleaving of operations.

in Figure 17.5c. The concept of serializability of schedules is used to identify which
schedules are correct when transaction executions have interleaving of their operations
in the schedules. This section defines serializability and discusses how it may be used in
practice.

17.5.1 Serial, Nonserial, and Conflict-Serializable Schedules
Schedules A and B in Figure 17.5a and b are called serial because the operations of each
transaction are executed consecutively, without any interleaved operations from the
other transaction. In a serial schedule, entire transactions are performed in serial order:
T1 and then T 2 in Figure 17.5a, and T 2 and then T 1 in Figure 17.5b. Schedules C and 0

568 I Chapter 17 Introduction to Transaction Processing Concepts and Theory

in Figure 17.5c are called nonserial because each sequence interleaves operations from the
two transactions.

Formally, a schedule S is serial if, for every transaction T participating in the
schedule, all the operations of T are executed consecutively in the schedule; otherwise,
the schedule is called nonserial. Hence, in a serial schedule, only one transaction at a
time is active-the commit (or abort) of the active transaction initiates execution of the
next transaction. No interleaving occurs in a serial schedule. One reasonable assumption
we can make, if we consider the transactions to be independent, is that every serial
schedule is considered correct. We can assume this because every transaction is assumed
to be correct if executed on its own (according to the consistency preservation property of
Section 17.3). Hence, it does not matter which transaction is executed first. As long as
every transaction is executed from beginning to end without any interference from the
operations of other transactions, we get a correct end result on the database. The problem
with serial schedules is that they limit concurrency or interleaving of operations. In a
serial schedule, if a transaction waits for an [/0 operation to complete, we cannot switch
the CPU processor to another transaction, thus wasting valuable CPU processing time. In
addition, if some transaction T is quite long, the other transactions must wait for T to
complete all its operations before commencing. Hence, serial schedules are generally
considered unacceptable in practice.

To illustrate our discussion, consider the schedules in Figure 17.5, and assume that
the initial values of database items are X = 90 and Y = 90 and that N = 3 and M = 2. After
executing transactions T j and T z, we would expect the database values to be X = 89 and
Y = 93, according to the meaning of the transactions. Sure enough, executing either of
the serial schedules A or B gives the correct results. Now consider the nonserial schedules
C and D. Schedule C (which is the same as Figure 17.3a) gives the results X = 92 and Y=
93, in which the X value is erroneous, whereas schedule D gives the correct results.

Schedule C gives an erroneous result because of the lost update problem discussed in
Section 17.1.3; transaction T z reads the value of X before it is changed by transaction Tl ,

so only the effect of Tz on X is reflected in the database. The effect of T] on X is lost,
overwritten by T z, leading to the incorrect result for item X. However, some nonserial
schedules give the correct expected result, such as schedule D. We would like to
determine which of the nonserial schedules always give a correct result and which may
give erroneous results. The concept used to characterize schedules in this manner is that
of serializability of a schedule.

A schedule S of n transactions is serializable if it is equivalent to some serial schedule of
the same n transactions. We will define the concept of equivalence of schedules shortly.
Notice that there are n! possible serial schedules of n transactions and many more possible
nonserial schedules. We can form two disjoint groups of the nonserial schedules: those
that are equivalent to one (or more) of the serial schedules, and hence are serializable;
and those that are not equivalent to any serial schedule and hence are not serializable.

Saying that a nonserial schedule S is serializable is equivalent to saying that it is
correct, because it is equivalent to a serial schedule, which is considered correct. The
remaining question is: When are two schedules considered "equivalent"? There are
several ways to define equivalence of schedules. The simplest, but least satisfactory,
definition of schedule equivalence involves comparing the effects of the schedules on the

17.5 Characterizing Schedules Based on Serializability I 569

database. Two schedules are called result equivalent if they produce the same final state
of the database. However, two different schedules may accidentally produce the same
final state. For example, in Figure 17.6, schedules 51 and 52 will produce the same final
database state if they execute on a database with an initial value of X = 100; but for other
initial values of X, the schedules are not result equivalent. In addition, these two
schedules execute different transactions, so they definitely should not be considered
equivalent. Hence, result equivalence alone cannot be used to define equivalence of
schedules. The safest and most general approach to defining schedule equivalence is not
to make any assumption about the types of operations included in the transactions. For
two schedules to be equivalent, the operations applied to each data item affected by the
schedules should be applied to that item in both schedules in the same order. Two
definitions of equivalence of schedules are generally used: conflict equivalence and view
equivalence. We discuss conflict equivalence next, which is the more commonly used
definition.

Two schedules are said to be conflict equivalent if the order of any two conflicting
operations is the same in both schedules. Recall from Section 17.4.1 that two operations in
a schedule are said to conflict if they belong to different transactions, access the same
database item, and at least one of the two operations is a wri te_i tern operation. If two
conflicting operations are applied in different orders in two schedules, the effect can be
different on the database or on other transactions in the schedule, and hence the
schedules are not conflict equivalent. For example, if a read and write operation occur in
the order r l (X), w2(X) in schedule 51' and in the reverse order W2(X), rl (X) in schedule
Sz, the value read by rl (X) can be different in the two schedules. Similarly, if two write
operations occur in the order WI (X), W2(X) in 51' and in the reverse order w2(X), WI(X)
in S2' the next r(X) operation in the two schedules will read potentially different values;
or if these are the last operations writing item X in the schedules, the final value of item X
in the database will be different.

Using the notion of conflict equivalence, we define a schedule S to be conflict
serializable l l if it is (conflict} equivalent to some serial schedule S'. In such a case, we
can reorder the nonconflicting operations in S until we form the equivalent serial schedule
5'. According to this definition, schedule D of Figure 17.5c is equivalent to the serial

readjtem(X);
X=X+10;
writejtem (X);

readjtem(X);
X:=X*1.1;
writejtem (X);

FIGURE 17.6 Two schedules that are result equivalent for the initial value of
X= 100 but are not result equivalent in general.

---.._--_. _.----

11. We will use serializable to mean conflict serializable. Another definition of serializable used in
practice (see Section 17.6) is to have repeatable reads, no dirty reads, and no phantom records (see
Section 18.7.1 for a discussion on phantoms).

570 I Chapter 17 Introduction to Transaction Processing Concepts and Theory

schedule A of Figure 17.sa. In both schedules, the read_i tern(X) of T z reads the value of
X written by T l' while the other read_item operations read the database values from the
initial database state. In addition, T 1 is the last transaction to write Y, and T i is the last
transaction to write X in both schedules. Because A is a serial schedule and schedule D is
equivalent to A, D is a serializable schedule. Notice that the operations r1(Y) and w1(Y) of
schedule D do not conflict with the operations rz(X) and wz(X), since they access
different data items. Hence, we can move r1(Y), WI (Y) before rz(X), wz(X), leading to the
equivalent serial schedule T 1, T;

Schedule C of Figure 17.5c is not equivalent to either of the two possible serial
schedules A and B, and hence is not serializable. Trying to reorder the operations of
schedule C to find an equivalent serial schedule fails, because rz(X) and WI (X) conflict,
which means that we cannot move rz(X) down to get the equivalent serial schedule T l ,

T z. Similarly, because WI (X) and wz(X) conflict, we cannot move wI (X) down to get the
equivalent serial schedule T z, T i-

Another, more complex definition of equivalence-called view equivalence, which
leads to the concept of view serializability-is discussed in Section 17.5.4.

17.5.2 Testing for Conflict Serializability of a Schedule
There is a simple algorithm for determining the conflict serializability of a schedule. Most
concurrency control methods do not actually test for serializability. Rather protocols, or
rules, are developed that guarantee that a schedule will be serializable. We discuss the
algorithm for testing conflict serializability of schedules here to gain a better understand
ing of these concurrency control protocols, which are discussed in Chapter 18.

Algorithm 17.1 can be used to test a schedule for conflict serializability. The
algorithm looks at only the read_item and wri te_i tern operations in a schedule to
construct a precedence graph (or serialization graph), which is a directed graph G = (N,
E) that consists of a set of nodes N = {T1, Tz, ... , Tn} and a set of directed edges E ={el'
ez, ... , em}' There is one node in the graph for each transaction T, in the schedule. Each
edge ej in the graph is of the form (Tj --7 Tk) , 1 ::; j ::; n , 1 ::; k ::; n, where T j is the
starting node of ej and Tk is the ending node of ej • Such an edge is created if one of the
operations in T} appears in the schedule before some conflicting operation in T k'

Algorithm 17.1: Testing conflict serializability of a schedule S.

1. For each transaction T j participating in schedule S, create a node labeled Ti in the
precedence graph.

2. For each case in S where T} executes a read_i tem(X) after T, executes a wri te_
i tem(X), create an edge (Tj --7 T) in the precedence graph.

3. For each case in S where Tj executes a wri te_i tem(X) after T, executes a read_
i tern(X) , create an edge (Tj --7 T j) in the precedence graph.

4. For each case in S where T j executes a wri te_i tem(X) after T j executes a wri te_
i tem(X), create an edge (T i --7 T) in the precedence graph.

5. The schedule S is serializable if and only if the precedence graph has no cycles.

17.5 Characterizing Schedules Based on Serializability I 571

FIGURE 17.7 Constructing the precedence graphs for schedules A to 0 from Fig
ure17.5 to test for conflict serializability. (a) Precedence graph for serial schedule A.
(b) Precedence graph for serial schedule B. (c) Precedence graph for schedule C
(not serializable). (d) Precedence graph for schedule 0 (serializable, equivalent to
schedule A).

The precedence graph is constructed as described in Algorithm 17.1. If there is a
cycle in the precedence graph, schedule S is not (conflict) serializable; if there is no cycle,
Sis serializable. A cycle in a directed graph is a sequence of edges C = «Tj ---7 Tk) , (Tk ---7

Tp), ••• , (Tj ---7 T)) with the property that the starting node of each edge-except the
first edge-is the same as the ending node of the previous edge, and the starting node of
the first edge is the same as the ending node of the last edge (the sequence starts and ends
at the same node).

In the precedence graph, an edge from Ti to Tj means that transaction T, must come
before transaction Tj in any serial schedule that is equivalent to S, because two conflicting
operations appear in the schedule in that order. If there is no cycle in the precedence
graph, we can create an equivalent serial schedule S' that is equivalent to S, by ordering
the transactions that participate in S as follows: Whenever an edge exists in the
precedence graph from T, to T j , T, must appear before T j in the equivalent serial schedule
S'Y Notice that the edges (Ti ---7 T) in a precedence graph can optionally be labeled by
the namets) of the data iternts) that led to creating the edge. Figure 17.7 shows such
labels on the edges.

In general, several serial schedules can be equivalent to S if the precedence graph for
S has no cycle. However, if the precedence graph has a cycle, it is easy to show that we
cannot create any equivalent serial schedule, so S is not serializable. The precedence graphs
created for schedules A to 0, respectively, of Figure 17.5 appear in Figure 17.7a to d. The

12. This processof ordering the nodes of an acyclicgraph is known as topologicalsorting.

572 I Chapter 17 Introduction to Transaction Processing Concepts and Theory

graph for schedule C has a cycle, so it is not serializable. The graph for schedule D has no
cycle, so it is serializable, and the equivalent serial schedule is T j followed by Tz. The
graphs for schedules A and B have no cycles, as expected, because the schedules are serial
and hence serializable.

Another example, in which three transactions participate, is shown in Figure 17.8.
Figure 17.8a shows the read_item and write_item operations in each transaction. Two
schedules E and F for these transactions are shown in Figure 17.8b and c, respectively,
and the precedence graphs for schedules E and F are shown in parts d and e. Schedule E is
not serializable, because the corresponding precedence graph has cycles. Schedule F is
serializable, and the serial schedule equivalent to F is shown in Figure 17.8e. Although
only one equivalent serial schedule exists for F, in general there may be more than one
equivalent serial schedule for a serializable schedule. Figure 17.8f shows a precedence graph
representing a schedule that has two equivalent serial schedules.

17.5.3 Uses of Serializability
As we discussed earlier, saying that a schedule S is (conflict) serializable-that is, S is (con
flict) equivalent to a serial schedule-is tantamount to saying that S is correct. Being serializ
able is distinct from being serial, however. A serial schedule represents inefficient processing
because no interleaving of operations from different transactions is permitted. This can lead
to low CPU utilization while a transaction waits for disk I/O, or for another transaction to ter
minate, thus slowing down processing considerably. A serializable schedule gives the benefits
of concurrent execution without giving up any correctness. In practice, it is quite difficult to
test for the serializability of a schedule. The interleaving of operations from concurrent
transactions-which are usually executed as processes by the operating system-is typically
determined by the operating system scheduler, which allocates resources to all processes.
Factors such as system load, time of transaction submission, and priorities of processes con
tribute to the ordering of operations in a schedule. Hence, it is difficult to determine how the
operations of a schedule will be interleaved beforehand to ensure serializability,

If transactions are executed at will and then the resulting schedule is tested for
serializability, we must cancel the effect of the schedule if it turns out not to be
serializable. This is a serious problem that makes this approach impractical. Hence, the
approach taken in most practical systems is to determine methods that ensure
serializability, without having to test the schedules themselves. The approach taken in
most commercial DBMSs is to design protocols (sets of rules) that-if followed by every
individual transaction or if enforced by a DBMS concurrency control subsystem-will
ensure serializabilirv of all schedules in whichthe transactions participate.

Another problem appears here: When transactions are submitted continuously to the
system, it is difficult to determine when a schedule begins and when it ends. Serializability
theory can be adapted to deal with this problem by considering only the committed
projection of a schedule S. Recall from Section 17.4.1 that the committed projection C(S)
of a schedule S includes only the operations in S that belong to committed transactions.
We can theoretically define a schedule S to be serializable if its committed projection
C(S) is equivalent to some serial schedule, since only committed transactions are
guaranteed by the DBMS.

17.5 Characterizing Schedules Based on Serializability I 573

(a)
transaction r;

read_item (X);
write_item (X);
read_item (Y);
write_item (Y);

read_item (Z);
read_item (Y);
write_item (Y);
read_item (X);
write_item (X);

transaction T3

read_item (Y);
read_item (Z);
write_item (Y);
write_item (Z);

(b) transaction T1 transaction T2

read_item (Z);
read_item (Y);
write_item (Y);

-j read_item (X);
write_item (X);

read_item (X);

read_item (Y);
write_item (Y);

write_item (X);

Schedule E

(c) transaction r; transaction T2

transaction T3

read_item (Y);
read_item (Z);

write_item (Y);
write_item (Z);

transaction T3

read_item (X);
write_item (X);

read_item (Y);
write_item (Y);

read_item (Y);
read_item (Z);

write_item (Y);
write_item (Z);

read_item (Z);

read_item (Y);
write_item (Y);
read_item (X);
write_item (X);

ScheduieF

FIGURE 17.8 Another example of serializability testing. (a) The READ and WRITE opera
tions of three transactions T1, T2, and T3• (b) Schedule E. (c) Schedule F.

574 I Chapter 17 Introduction to Transaction Processing Concepts and Theory

(d)

(e)

(f)

Y

Y

Y

x

X,Y

Y,Z

Y,Z

Equivalent serial schedules

None

Reason

cycleX (7; -> T2), Y(72 --+7;)
cycleX(7; --+T2) , YZ(T2--+T3) , Y(T3->T1)

Equivalent serial schedules

Equivalent serial schedules

T3 - 7;- T2

FIGURE 17.8(cONTINUED) Another example of serializability testing. (d) Prece
dence graph for schedule E. (e) Precedence graph for schedule F. (f) Precedence
graph with two equivalent serial schedules.

In Chapter 18, we discuss a number of different concurrency control protocols that
guarantee serializability. The most common technique, called two-phase locking, is based
on locking data items to prevent concurrent transactions from interfering with one
another, and enforcing an additional condition that guarantees serializability. This is used
in the majority of commercial DBMSs. Other protocols have been proposed.P these

13. These other protocols have not been used much in practice so far; most systems use some varia
tion of the two-phase locking protocol.

17.5 Characterizing Schedules Based on Serializability I 575

include timestamp ordering, where each transaction is assigned a unique timestamp and
the protocol ensures that any conflicting operations are executed in the order of the
transaction timestamps; multiversion protocols, which are based on maintaining multiple
versions of data items; and optimistic (also called certification or validation) protocols, which
check for possible serializability violations after the transactions terminate but before
they are permitted to commit.

17.5.4 View Equivalence and View Serializability
In Section 17.5.1, we defined the concepts of conflict equivalence of schedules and con
flict serializability. Another less restrictive definition of equivalence of schedules is called
view equivalence. This leads to another definition of serializability called view serializability.
Two schedules Sand S' are said to be view equivalent if the following three conditions
hold:

1. The same set of transactions participates in Sand S', and Sand S' include the
same operations of those transactions.

2. For any operation rj(X) of T, in S, if the value of X read by the operation has been
written by an operation w/X) of Tj (or if it is the original value of X before the
schedule started), the same condition must hold for the value of X read by opera
tion ri(X) of T, in S'.

3. If the operation wk(Y) of Tk is the last operation to write item Y in S, then Wk(Y)
ofTk must also be the last operation to write item Y in S'.

The idea behind view equivalence is that, as long as each read operation of a
transaction reads the result of the same write operation in both schedules, the write
operations of each transaction must produce the same results. The read operations are
hence said to see the same view in both schedules. Condition 3 ensures that the final write
operation on each data item is the same in both schedules, so the database state should be
the same at the end of both schedules. A schedule S is said to be view serializable if it is
viewequivalent to a serial schedule.

The definitions of conflict serializability and view serializability are similar if a
condition known as the constrained write assumption holds on all transactions in the
schedule. This condition states that any write operation wj(X) in T, is preceded by a r/X)
in Tj and that the value written by wi(X) in Ti depends only on the value of X read by
ri(X). This assumes that computation of the new value of X is a function f(X) based on
the old value of X read from the database. However, the definition of view serializability is
less restrictive than that of conflict serializability under the unconstrained write
assumption, where the value written by an operation wi(X) in T, can be independent of
its old value from the database. This is called a blind write, and it is illustrated by the
following schedule Sgof three transactions T I: rl oo, wI (X); Tz: wz(X)j and T 3: w3(X):

Sg: rl (X); wz(X)j WI(X)j W3(X); CI;ezj C3;

In Sg the operations wz(X) and W3(X) are blind writes, since Tz and T3 do not read
the value of X. The schedule Sgis view serializable, since it is view equivalent to the serial

576 I Chapter 17 Introduction to Transaction Processing Concepts and Theory

schedule T j , Tz, T3. However, Sg is not conflict serializable, since it is not conflict
equivalent to any serial schedule. It has been shown that any conflict-serializable
schedule is also view serializable but not vice versa, as illustrated by the preceding
example. There is an algorithm to test whether a schedule S is view serializable or not.
However, the problem of testing for view serializability has been shown to be NP-hard,
meaning that finding an efficient polynomial time algorithm for this problem is highly
unlikely.

17.5.5 Other Types of Equivalence of Schedules
Serializability of schedules is sometimes considered to be too restrictive as a condition for
ensuring the correctness of concurrent executions. Some applications can produce sched
ules that are correct by satisfying conditions less stringent than either conflict serializabil
ity or view serializability. An example is the type of transactions known as debit-credit
transactions-for example, those that apply deposits and withdrawals to a data item whose
value is the current balance of a bank account. The semantics of debit-credit operations is
that they update the value of a data item X by either subtracting from or adding to the
value of the data item. Because addition and subtraction operations are commutative
that is, they can be applied in any order-it is possible to produce correct schedules that
are not serializable. For example, consider the following two transactions, each of which
may be used to transfer an amount of money between two bank accounts:

T i: rj(X); X:= X -10; Wi (X); rl(Y); Y:= Y + 10j wj(Y);

Tz: rz(Y); Y := Y - 20;wz(Y); rz(X); X := X + 20;wz(X);

Consider the following nonserializable schedule Sh for the two transactions:

Sh: rj (X); wi (X); rz(Y); wz(Y); ri (Y); Wi(Y); rz(X); wz(X);

With the additional knowledge, or semantics, that the operations between each rJI)
and wi(I) are commutative, we know that the order of executing the sequences consisting
of (read, update, write) is not important as long as each (read, update, write) sequence by
a particular transaction Ti on a particular item I is not interrupted by conflicting
operations. Hence, the schedule Sh is considered to be correct even though it is not
serializable. Researchers have been working on extending concurrency control theory to

deal with cases where serializability is considered to be too restrictive as a condition for
correctness of schedules.

17.6 TRANSACTION SUPPORT IN SQL
The definition of an SQL-transaction is similar to our already defined concept of a transac
tion. That is, it is a logical unit of work and is guaranteed to be atomic. A single SQL
statement is always considered to be atomic-either it completes execution without error
or it fails and leaves the database unchanged.

17.6 Transaction Support in SQL I 577

With SQL, there is no explicit Begi n_Transacti on statement. Transaction initiation
is done implicitly when particular SQL statements are encountered. However, every
transaction must have an explicit end statement, which is either a COMMIT or a ROLLBACK.
Every transaction has certain characteristics attributed to it. These characteristics are
specified by a SET TRANSACTION statement in SQL. The characteristics are the access mode, the
diagnostic area size, and the isolation level.

The access mode can be specified as READ ONLY or READ WRITE. The default is READ WRITE,
unless the isolation level of READ UNCOMMITIED is specified (see below), in which case READ
ONLY is assumed. A mode of READ WRITE allows update, insert, delete and create commands
to be executed. A mode of READ ONLY, as the name implies, is simply for data retrieval.

The diagnostic area size option, DIAGNOSTIC SIZE n, specifies an integer value n,
indicating the number of conditions that can be held simultaneously in the diagnostic
area. These conditions supply feedback information (errors or exceptions) to the user or
program on the most recently executed SQL statement.

The isolation level option is specified using the statement ISOLATION LEVEL
<isolation>, where the value for <isolation> can be READ UNCOMMITTED, READ COMMITTED,
REPEATABLE READ, or SERIALIZABLE. 14 The default isolation level is SERIALIZABLE, although some
systems use as READ COMMITIED their default. The use of the term SERIALIZABLE here is based
on not allowing violations that cause dirty read, unrepeatable read, and phanroms.l? and
it is thus not identical to the way serializability was defined earlier in Section 17.5. If a
transaction executes at a lower isolation level than SERIALIZABLE, then one or more of the
following three violations may occur:

1. Dirty read: A transaction T I may read the update of a transaction T z, which has
not yet committed. If Tzfails and is aborted, then T I would have read a value that
does not exist and is incorrect.

2. Nonrepeatable read: A transaction T I may read a given value from a table. If
another transaction Tz later updates that value and TI reads that value again, TI

will see a different value.

3. Phantoms: A transaction T I may read a set of rows from a table, perhaps based on
some condition specified in the SQL WHERE-clause. Now suppose that a transaction
Tz inserts a new row that also satisfies the WHERE-clause condition used in TI , inro
the table used by TI' If T I is repeated, then T I will see a phantom, a row that pre
viously did not exist.

Table 17.1 summarizes the possible violations for the differenr isolation levels. An
entry of "yes" indicates that a violation is possible and an entry of "no" indicates that it is
not possible.

14.These are similar to the isolation levels discussed briefly at the end of Section 17.3.

15.The dirty read and unrepeatable read problems were discussed in Section 17.1.3. Phantoms are
discussed in Section 18.6.1.

578 I Chapter 17 Introduction to Transaction Processing Concepts and Theory

Possible Violations Based on Isolation
Levels as Defined in SQL

Typeof Violation

Isolation Dirty
level read

READUNCOMMITTTED yes
READCOMMITIED no
REPEATABLE READ no
SERIALIZABLE no

Nonrepeatable
read Phantom

yes yes
yes yes
no yes
no no

A sample SQL transaction might look like the following:

EXEC SQL WHENEVER SQLERROR GOTO UNDO;
EXEC SQL SET TRANSACTION

READ WRITE
DIAGNOSTIC SIZE 5
ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT INTO EMPLOYEE (FNAME, LNAME, SSN, DNO, SALARY)
VALUES ('ROBERT', 'SMITH', '991004321',2,35000);

EXEC SQL UPDATE EMPLOYEE
SET SALARY = SALARY * 1.1 WHERE DNO = 2;

EXEC SQL COMMIT;
GOTO THE_END;
UNDO: EXEC SQL ROLLBACK;
THE_END: ... ;

The above transaction consists of first inserting a new row in the EMPLOYEE table and
then updating the salary of all employees who work in department 2. If an error occurs on
any of the SQL statements, the entire transaction is rolled back. This implies that any
updated salary (by this transaction) would be restored to its previous value and that the
newly inserted row would be removed.

As we have seen, SQL provides a number of transaction-oriented features. The DBA or
database programmers can take advantage of these options to try improving transaction
performance by relaxing serializability if that is acceptable for their applications.

17.7 SUMMARY
In this chapter we discussed DBMS concepts for transaction processing. We introduced the
concept of a database transaction and the operations relevant to transaction processing.
We compared single-user systems to multiuser systems and then presented examples of
how uncontrolled execution of concurrent transactions in a multiuser system can lead to
incorrect results and database values. We also discussed the various types of failures that
may occur during transaction execution.

Review Questions I 579

We then introduced the typical states that a transaction passes through during
execution, and discussed several concepts that are used in recovery and concurrency
control methods. The system log keeps track of database accesses, and the system uses this
information to recover from failures. A transaction either succeeds and reaches its
commit point or it fails and has to be rolled back. A committed transaction has its
changes permanently recorded in the database. We presented an overview of the desirable
properties of transactions-namely, atomicity, consistency preservation, isolation, and
durability-which are often referred to as the ACID properties.

We then defined a schedule (or history) as an execution sequence of the operations
ofseveral transactions with possible interleaving. We characterized schedules in terms of
their recoverability. Recoverable schedules ensure that, once a transaction commits, it
never needs to be undone. Cascadeless schedules add an additional condition to ensure
that no aborted transaction requires the cascading abort of other transactions. Strict
schedules provide an even stronger condition that allows a simple recovery scheme
consisting of restoring the old values of items that have been changed by an aborted
transaction.

We then defined equivalence of schedules and saw that a serializable schedule is
equivalent to some serial schedule. We defined the concepts of conflict equivalence and
view equivalence, which led to definitions for conflict serializability and view
serializability. A serializable schedule is considered correct. We then presented algorithms
for testing the (conflict) serializability of a schedule. We discussed why testing for
serializability is impractical in a real system, although it can be used to define and verify
concurrency control protocols, and we briefly mentioned less restrictive definitions of
schedule equivalence. Finally, we gave a brief overview of how transaction concepts are
used in practice within SQL.

We will discuss concurrency control protocols in Chapter 18, and recovery protocols
in Chapter 19.

Review Questions
17.1. What is meant by the concurrent execution of database transactions in a mul

tiuser system? Discuss why concurrency control is needed, and give informal
examples.

17.2. Discuss the different types of failures. What is meant by catastrophic failure?
17.3. Discuss the actions taken by the read_i tern and wri te_i tern operations on a

database.
17.4. Draw a state diagram, and discuss the typical states that a transaction goes

through during execution.
17.5. What is the system log used for? What are the typical kinds of records in a system

log? What are transaction commit points, and why are they important?
17.6. Discuss the atomicity, durability, isolation, and consistency preservation proper

ties of a database transaction.
17.7. What is a schedule (history)? Define the concepts of recoverable, cascadeless, and

strict schedules, and compare them in terms of their recoverability.

580 I Chapter 17 Introduction to Transaction Processing Concepts and Theory

17.8. Discuss the different measures of transaction equivalence. What is the difference
between conflict equivalence and view equivalence?

17.9. What is a serial schedule? What is a serializable schedule? Why is a serial schedule
considered correct? Why is a serializable schedule considered correct?

17.10. What is the difference between the constrained write and the unconstrained
write assumptions? Which is more realistic?

17.11. Discuss how serializability is used to enforce concurrency control in a database
system. Why is serializability sometimes considered too restrictive as a measure of
correctness for schedules?

17.12. Describe the four levels of isolation in SQL.

17.13. Define the violations caused by each of the following: dirty read, nonrepeatable
read, and phantoms.

Exercises
17.14. Change transaction T z in Figure 17.2b to read

read_; tem(X) ;
X:= X+M;
if X > 90 then exit
else wr;te_;tem(X);

Discuss the final result of the different schedules in Figure 17.3(a) and (b), where
M = 2 and N = 2, with respect to the following questions. Does adding the above
condition change the final outcome? Does the outcome obey the implied consis
tency rule (that the capacity of X is 90)?

17.15. Repeat Exercise 17.14, adding a check in T[so that Y does not exceed 90.
17.16. Add the operation commit at the end of each of the transactions T[and Tz from

Figure 17.2; then list all possible schedules for the modified transactions. Deter
mine which of the schedules are recoverable, which are cascadeless, and which
are strict.

17.17. List all possible schedules for transactions T[and T z from Figure 17.2, and deter
mine which are conflict serializable (correct) and which are not.

17.18. How many serial schedules exist for the three transactions in Figure 17.8(a)?
What are they? What is the total number of possible schedules?

17.19. Write a program to create all possible schedules for the three transactions in Fig
ure 17.8(a), and to determine which of those schedules are conflict serializable
and which are not. For each conflict serializable schedule, your program should
print the schedule and list all equivalent serial schedules.

17.20. Why is an explicit transaction end statement needed in SQL but not an explicit
begin statement?

17.21. Describe situations where each of the different isolation levels would be useful for
transaction processing.

17.22. Which of the following schedules is (conflict) serializable? For each serializable
schedule, determine the equivalent serial schedules.

Selected Bibliography I 581

a. rl(X); r3(X); WI(X); r2(X); W3(X);

b. r l (X); r3(X); W3(X); WI (X); r2(X);

c. r3(X); r2(X); W3(X); r l (X); WI (X);
d. r3(X); r2(X); rl (X); W3(X); WI (X);

17.23. Consider the three transactions T I, T 2, and T3, and the schedules 51 and 52 given
below. Draw the serializability (precedence) graphs for 51 and 52' and state
whether each schedule is serializable or not. If a schedule is serializable, write
down the equivalent serial schedule(s).

T I: rl (X); r l (2); WI (X);

T 2: r2 (2); r2 (Y); W2 (2); W2 (Y);

T 3: r3 (X); r3 (Y); W3 (Y);

51: rl (X); r2 (2); rl (2); r3 (X); r3 (Y); WI (X); W3 (Y); r2 (Y); W2 (2); W2 (Y);

52: rl (X); r2 (2); r3 (X); rl (2); r2 (Y); r3 (Y); WI (X); W2 (2); W3 (Y); W2 (Y);

17.24. Consider schedules 53' 54' and 55 below. Determine whether each schedule is
strict, cascadeless, recoverable, or nonrecoverable. (Determine the strictest recov
erability condition that each schedule satisfies.)

53: rl (X); r2 (2); rl (2); r3 (X); r3 (Y); WI (X); CI; W3 (Y); C3; r2 (Y); W2 (2); W2 (Y); c2;

54: rl (X); r2 (2); r l (2); r3 (X); r3 (Y); WI (X); W3 (Y); r2 (Y); W2 (2); W2 (Y); CI; C2; c3;

55: rl (X); r2 (2); r3 (X); rl (2); r2 (Y); r3 (Y); WI (X); CI; W2 (2); W3 (Y); W2 (Y); C3; C2;

Selected Bibliography
The concept of transaction is discussed in Gray (1981). Bernstein, Hadzilacos, and Good
man (1987) focus on concurrency control and recovery techniques in both centralized
and distributed database systems; it is an excellent reference. Papadimitriou (1986) offers
a more theoretical perspective. A large reference book of more than a thousand pages by
Grayand Reuter (1993) offers a more practical perspective of transaction processing con
cepts and techniques. Elmagarmid (1992) and Bhargava (1989) offer collections of
research papers on transaction processing. Transaction support in SQL is described in Date
and Darwen (1993). The concepts of serializability are introduced in Gray et a1. (1975).
View serializabilirv is defined in Yannakakis (1984). Recoverability of schedules is dis
cussed in Hadzilacos (1983, 1988).

Concurrency Control
Techniques

In this chapter, we discuss a number of concurrency control techniques that are used to
ensure the noninterference or isolation property of concurrently executing transactions.
Most of these techniques ensure serializability of schedules (see Section 17.5), using pro
tocols (that is, sets of rules) that guarantee serializabiliry, One important set of protocols
employs the technique of locking data items to prevent multiple transactions from access
ing the items concurrently; a number of locking protocols are described in Section 18.1.
Locking protocols are used in most commercial DBMSs. Another set of concurrency con
trol protocols use timestamps. A timestamp is a unique identifier for each transaction,
generated by the system. Concurrency control protocols that use timestamp ordering to
ensure serializability are described in Section 18.2. In Section 18.3, we discuss multiver
sion concurrency control protocols that use multiple versions of a data item. In Section
18.4, we present a protocol based on the concept of validation or certification of a trans
action after it executes its operations; these are sometimes called optimistic protocols.

Another factor that affects concurrency control is the granularity of the data items
that is, what portion of the database a data item represents. An item can be as small as a
single attribute (field) value or as large as a disk block, or even a whole file or the entire
database. We discuss granularity of items in Section 18.5. In Section 18.6, we discuss
concurrency control issues that arise when indexes are used to process transactions. Finally,
in Section 18.7 we discuss some additional concurrency control issues.

583

584 I Chapter 18 Concurrency Control Techniques

It is sufficient to cover Sections 18.1, 18.5, 18.6, and 18.7, and possibly 18.3.2, if the
main emphasis is on introducing the concurrency control techniques that are used most
often in practice. The other techniques are mainly of theoretical interest.

18.1 TWO-PHASE LOCKING TECHNIQUES
FOR CONCURRENCY CONTROL

Some of the main techniques used to control concurrent execution of transactions are
based on the concept of locking data items. A lock is a variable associated with a data
item that describes the status of the item with respect to possible operations that can be
applied to it. Generally, there is one lock for each data item in the database. Locks are
used as a means of synchronizing the access by concurrent transactions to the database
items. In Section 18.1.1 we discuss the nature and types oflocks. Then, in Section 18.1.2,
we present protocols that use locking to guarantee serializability of transaction schedules.
Finally, in Section 18.1.3 we discuss two problems associated with the use of locks
namely, deadlock and starvation-and show how these problems are handled.

18.1.1 Types of Locks and System Lock Tables
Several types of locks are used in concurrency control. To introduce locking concepts grad
ually, we first discuss binary locks, which are simple but restrictive and so are not used in
practice. We then discuss shared/exclusive locks, which provide more general locking capa
bilities and are used in practical database locking schemes. In Section 18.3.2, we describe a
certify lock and show how it can be used to improve performance of locking protocols.

Binary Locks. A binary lock can have two states or values: locked and unlocked (or
1 and 0, for simplicity). A distinct lock is associated with each database item X. If the
value of the lock on X is 1, item 'X cannot be accessed by a database operation that requests
the item. If the value of the lock on X is 0, the item can be accessed when requested. We
refer to the current value (or state) of the lock associated with item X as LOCK(X).

Two operations, lock_item and unlock_item, are used with binary locking. A

transaction requests access to an item X by first issuing a lock_item(X) operation. If
LOCK(X) = 1, the transaction is forced to wait. If LOCK(X) = 0, it is set to 1 (the
transaction locks the item) and the transaction is allowed to access item X. When the
transaction is through using the item, it issues an un1ock_i tem(X) operation, which sets
LOCK(X) to °(unlocks the item) so that 'X may be accessed by other transactions. Hence,
a binary lock enforces mutual exclusion on the data item. A description of the lock_
item(X) and unlock_item(X) operations is shown in Figure 18.1.

Notice that the lock_item and unlock_item operations must be implemented as
indivisible units (known as critical sections in operating systems); that is, no interleaving
should be allowed once a lock or unlock operation is started until the operation
terminates or the transaction waits. In Figure 18.1, the wait command within the lock_

18.1 Two-Phase Locking Techniques for Concurrency Control I 585

lockjtem(X):

B:ifLOCK(X)=O (* itemis unlocked *)
then LOCK(X)+-1 (*lockthe item*)
elsebegin

wait (until lock(X)=O and
the lockmanager wakes up thetransaction);

gotoB
end;

unlock_item (X):

LOCK (X)+-O; (* unlock the item*)
ifanytransactions arewaiting
then wakeup oneof the waiting transactions;

FIGURE 18.1 Lock and unlock operations for binary locks.

itern(X) operation is usually implemented by putting the transaction on a waiting queue
for item X until X is unlocked and the transaction can be granted access to it. Other
transactions that also want to access X are placed on the same queue. Hence, the wait
command is considered to be outside the 1ock_i tern operation.

Notice that it is quite simple to implement a binary lock; all that is needed is a binary
valued variable, LOCK, associated with each data item X in the database. In its simplest form,
each lock can be a record with three fields: <data item name, LOCK, locking transaction>
plus a queue for transactions that are waiting to access the item. The system needs to maintain
only these records for the items that are currently locked in a lock table, which could be
organized as a hash file. Items not in the lock table are considered to be unlocked. The DBMS

hasa lock manager subsystem to keep track of and control access to locks.
If the simple binary locking scheme described here is used, every transaction must

obeythe following rules:

1. A transaction T must issue the operation 1ock_i tem(X) before any read_i tem(X)
or wri te_i tem(X) operations are performed in T.

2. A transaction T must issue the operation unl ock_i tem(X) after all read_i tem(X)
and wri te_i tem(X) operations are completed in T.

3. A transaction T will not issue a 1ock_i tem(X) operation if it already holds the
lock on item X. I

4. A transaction T will not issue an unl ock_i tern(X) operation unless it already
holds the lock on item X.

These rules can be enforced by the lock manager module of the DBMS. Between the
lock_item(X) and unlock_itern(X) operations in transaction T, T is said to hold the

1. This rule may be removed if we modify the lockjtemi'X) operation in Figure 18.1 so that if the
item is currently locked by the requesting transaction, the lock is granted.

586 I Chapter 18 Concurrency Control Techniques

lock on item X. At most one transaction can hold the lock on a particular item. Thus no
two transactions can access the same item concurrently.

Shared/Exclusive (or Read/VVrite) Locks. The preceding binary locking scheme
is too restrictive for database items, because at most one transaction can hold a lock on a
given item. We should allow several transactions to access the same item X if they all
access X for reading purposes only. However, if a transaction is to write an item X, it must
have exclusive access to X. For this purpose, a different type of lock called a multiple
mode lock is used. In this scheme-called shared/exclusive or read/write locks-there
are three locking operations: read_1ock(X), write_lock(X), and unlock(X). A lock
associated with an item X, LOCK(X), now has three possible states: "read-locked," "write
locked," or "unlocked." A read-locked item is also called share-locked, because other
transactions are allowed to read the item, whereas a write-locked item is called
exclusive-locked, because a single transaction exclusively holds the lock on the item.

One method for implementing the preceding three operations on a read/write lock is
to keep track of the number of transactions that hold a shared (read) lock on an item in
the lock table. Each record in the lock table will have four fields: <data item name, LOCK,
no_oCreads, lockmgjransacrionfs)>. Again, to save space, the system need maintain
lock records only for locked items in the lock table. The value (state) of LOCK is either
read-locked or write-locked, suitably coded (if we assume no records are kept in the lock
table for unlocked items). If LOCK(X)=write-locked, the value of lockingjransactionis]
is a single transaction that holds the exclusive (write) lock on X. If LOCK(X)=read
locked, the value of locking transactionts) is a list of one or more transactions that hold
the shared (read) lock on X. The three operations read_lock(X), write_lock(X), and
unlock(X) are described in Figure 18.2. 2 As before, each of the three operations should be
considered indivisible; no interleaving should be allowed once one of the operations is
started until either the operation terminates by granting the lock or the transaction is
placed on a waiting queue for the item.

When we use the shared/exclusive locking scheme, the system must enforce the
following rules:

1. A transaction T must issue the operation read_lock(X) or wri te_l ock(X) before
any read_i tem(X) operation is performed in T.

2. A transaction T must issue the operation wri te_l ock(X) before any wri te_
i tem(X) operation is performed in T.

3. A transaction T must issue the operation unlock(X) after all read_i tem(X) and
wri te_i tem(X) operations are completed in T.3

4. A transaction T will not issue a read_lock(X) operation if it already holds a read
(shared) lock or a write (exclusive) lock on item X. This rule may be relaxed, as
we discuss shortly.

2. These algorithms do not allow upgrading or downgrading of locks, as described later in this section.
The reader can extend the algorithms to allow these additional operations.

3. This rule may be relaxed to allow a transaction to unlock an item, then lock it again later.

18.1 Two-Phase Locking Techniques for Concurrency Control I 587

readJock (X):

B:ifLOCK(X)="unlocked"
then begin LOCK(X)+- "read-locked";

no_oCreacts(X)<-1
end

elseif LOCK(X)="read-Iocked"
then no_oCreacts(X)<- no_of_reacts(X) + 1
else beginwait(until LOCK(X)="unlocked" and

the loci< manager wakesupthe transaction);
gotoS

end;

writeJock (X):

B:ifLOCK(X)="unlocked"
then LOCK(X)+- ''write-locked''
elsebegin

wait (until LOCK(X)="unlocl<ed" and
the lockmanager wakes up thetransaction);

go to 8
end;

unlock (X):

ifLOCK (X)="write-Iocked"
then beginLOCK(X)..-"unlocked;"

wakeup oneof the waiting transactions, ifany
end

else if LOCK(X)="read-locked"
then begin

no_oUeads(X)+- no_oUeads(X) - 1;
if no_oUeacts(X)=O

thenbeginLOCK(X)="unlocked";
wakeup oneof the waiting transactions, ifany
end

end;

FIGURE 18.2 Locking and unlocking operations for two-mode (read-write or
shared-exclusive) locks.

5. A transaction T will not issue a wri te_l ock(X) operation if it already holds a
read (shared) lock or write (exclusive) lock on item X. This rule may be relaxed,
as we discuss shortly.

6. A transaction T will not issue an unlock(X) operation unless it already holds a
read (shared) lock or a write (exclusive) lock on item X.

Conversion of Locks. Sometimes it is desirable to relax conditions 4 and 5 in the
preceding list in order to allow lock conversion; that is, a transaction that already holds a
lock on item X is allowed under certain conditions to convert the lock from one locked

588 I Chapter 18 Concurrency Control Techniques

state to another. For example, it is possible for a transaction T to issue a read_lock(X)
and then later on to upgrade the lock by issuing a wri te_l ock(X) operation. If T is the
only transaction holding a read lock on X at the time it issues the wri te_l ock(X)
operation, the lock can be upgraded; otherwise, the transaction must wait. It is also
possible for a transaction T to issue a wri te_l ock(X) and then later on to downgrade the
lock by issuing a read_lock(X) operation. When upgrading and downgrading of locks is
used, the lock table must include transaction identifiers in the record structure for each
lock (in the lockmgjransactionfs) field) to store the information on which transactions
hold locks on the item. The descriptions of the read_lock(X) and wri te_l ock(X)
operations in Figure 18.2 must be changed appropriately. We leave this as an exercise for
the reader.

Using binary locks or read/write locks in transactions, as described earlier, does not
guarantee serializability of schedules on its own. Figure 18.3 shows an example where the
preceding locking rules are followed but a nonserializable schedule may result. This is
because in Figure 18.3a the items Yin T[and X in T 2 were unlocked too early. This allows
a schedule such as the one shown in Figure 18.3c to occur, which is not a serializable
schedule and hence gives incorrect results. To guarantee serializability, we must follow an
additional protocol concerning the positioning of locking and unlocking operations in
every transaction. The best known protocol, two-phase locking, is described in the next
section.

18.1.2 Guaranteeing Serializability
by Two-Phase locking

A transaction is said to follow the two-phase locking protocol if all locking operations
(read_lock, wri te_l ock) precede the first unlock operation in the transaction.' Such a
transaction can be divided into two phases: an expanding or growing (first) phase, during
which new locks on items can be acquired but none can be released; and a shrinking (sec
ond) phase, during which existing locks can be released but no new locks can be acquired.
If lock conversion is allowed, then upgrading of locks (from read-locked to write-locked)
must be done during the expanding phase, and downgrading of locks (from write-locked to
read-locked) must be done in the shrinking phase. Hence, a read_lock(X) operation that
downgrades an already held write lock on X can appear only in the shrinking phase.

Transactions T[and T 2 of Figure 18.3a do not follow the two-phase locking protocol.
This is because the wr;te_lock(X) operation follows the unlock(Y) operation in T[, and
similarly the wr;te_lock(Y) operation follows the unlock(X) operation in T2• If we
enforce two-phase locking, the transactions can be rewritten as T [' and T/' as shown in
Figure 18.4. Now, the schedule shown in Figure 18.3(c) is not permitted for Tt' and Tz'
(with their modified order of locking and unlocking operations) under the rules of locking
described in Section 18.1.1. This is because T[' will issue its wr;te_lock(X) before it

4. This is unrelated to the two-phase commit protocol for recovery in distributed databases (see
Chapter 25).

18.1 Two-Phase Locking Techniques for Concurrency Control I 589

(b) Initial values: X=20, Y=30
Result of serialschedule T1 followed byT2 :

X=50, Y=80
Result of serialschedule T2 followed byT, :

X=70, Y=50

(a) T, T2

readJock(Y); read_lock(X);
read_item(Y); read_item(X);
unlock(Y); unlock(X);
write_lock(X); write_lock(Y);
read_item(X); read_item(Y);
X=X+Y; Y:=X+Y;
write_item(X); writejtem(y);
unlock(X); unlock(Y);

(e)
T,

read_lock(Y);
read_item(Y);
unlock(Y);

Time

writeJock(X);
readjtem(X);
X:=X+Y;
write_item(X);
unlock(X);

readJock(X);
read_item(X);
unlock(X);
writeJock(Y);
readjtem(Y);
Y:=X+Y;
writejtem(Y);
unlock(y);

Result of schedule S:
X=50, Y=50
(nonserializable)

FIGURE 18.3 Transactions that do not obey two-phase locking. (a) Two transactions
T1 and T2. (b) Results of possible serial schedules of T1 and T2. (c) A nonserializable
schedule 5 that uses locks.

readlock (Y);
read_item (Y);
writeJock (X);
unlock (Y);
read_item (X);
X:=X+Y;
write_item (X);
unlock (X);

read_lock (X);
read_item (X);
writeJock (Y);
unlock(X);
readjtern (Y);
Y:=X+Y;
writejtem (Y);
unlock (Y);

FIGURE 18.4 Transactions T1 ' and T2 ' , which are the same as T1 and T2 of Figure
18.3 but which follow the two-phase locking protocol. Note that they can produce a
deadlock.

590 I Chapter 18 Concurrency Control Techniques

unlocks item Y; consequently, when T z' issues its read_lock(X), it is forced to wait until
T j ' releases the lock by issuing an unlock (X) in the schedule.

It can be proved that, if every transaction in a schedule follows the two-phase locking
protocol, the schedule is guaranteed to be serializable, obviating the need to test for
serializability of schedules any more. The locking mechanism, by enforcing two-phase
locking rules, also enforces serializability.

Two-phase locking may limit the amount of concurrency that can occur in a
schedule. This is because a transaction T may not be able to release an item X after it is
through using it if T must lock an additional item Y later on; or conversely, T must lock
the additional item Y before it needs it so that it can release X. Hence, X must remain
locked by T until all items that the transaction needs to read or write have been locked;
only then can X be released by T. Meanwhile, another transaction seeking to access X
may be forced to wait, even though T is done with X; conversely, if Y is locked earlier
than it is needed, another transaction seeking to access Y is forced to wait even though T
is not using Y yet. This is the price for guaranteeing serializability of all schedules without
having to check the schedules themselves.

Basic, Conservative, Strict, and Rigorous Two-Phase Locking. There are a
number of variations of two-phase locking (2PL). The technique just described is known as
basic 2pL. A variation known as conservative 2PL (or static 2PL) requires a transaction to
lock all the items it accesses before the transaction begins execution, by predeclaring its read
set and write-set. Recall from Section 17.1.2 that the read-set of a transaction is the set of
all items that the transaction reads, and the write-set is the set of all items that it writes. If
any of the predeclared items needed cannot be locked, the transaction does not lock any
item; instead, it waits until all the items are available for locking. Conservative 2PL is a
deadlock-free protocol, as we shall see in Section 18.1.3 when we discuss the deadlock
problem. However, it is difficult to use in practice because of the need to predeclare the
read-set and write-set, which is not possible in most situations.

In practice, the most popular variation of 2PL is strict 2PL, which guarantees strict
schedules (see Section 17.4). In this variation, a transaction T does not release any of its
exclusive (write) locks until after it commits or aborts. Hence, no other transaction can
read or write an item that is written by T unless T has committed, leading to a strict
schedule for recoverability. Strict 2PL is not deadlock-free. A more restrictive variation of
strict 2PL is rigorous 2PL, which also guarantees strict schedules. In this variation, a
transaction T does not release any of its locks (exclusive or shared) until after it commits
or aborts, and so it is easier to implement than strict 2pL. Notice the difference between
conservative and rigorous 2PL; the former must lock all its items before it starts so once the
transaction starts it is in its shrinking phase, whereas the latter does not unlock any of its
items until after it terminates (by committing or aborting) so the transaction is in its
expanding phase until it ends.

In many cases, the concurrency control subsystem itself is responsible for generating
the read_lock and wri te_l ock requests. For example, suppose the system is to enforce
the strict 2PL protocol. Then, whenever transaction T issues a read_i tem(X), the system
calls the read_lock(X) operation on behalf of T. If the state of LOCK(X) is write_locked
by some other transaction T', the system places T on the waiting queue for item X;

18.1 Two-Phase Locking Techniques for Concurrency Control I 591

otherwise, it grants the read_l ock(X) request and permits the read_i tern (X) operation of
T to execute. On the other hand, if transaction T issues a wri te_i tern(X), the system
calls the wri te_l ock(X) operation on behalf of T. If the state of LOCK(X) is write_locked
or read_locked by some other transaction T', the system places T on the waiting queue
for item X; if the state of LOCK(X) is read_locked and T itself is the only transaction
holding the read lock on X, the system upgrades the lock to write_locked and permits the
write_i tern(X) operation by T; finally, if the state of LOCK(X) is unlocked, the system
grants the wri te_l ock(X) request and permits the wri te_i tern (X) operation to execute.
After each action, the system must update its lock table appropriately.

Although the two-phase locking protocol guarantees serializabiliry (that is, every
schedule that is permitted is serializable), it does not permit all possible serializable
schedules (that is, some serializable schedules will be prohibited by the protocol). In
addition, the use of locks can cause two additional problems: deadlock and starvation. We
discuss these problems and their solutions in the next section.

18.1.3 Dealing with Deadlock and Starvation
Deadlock occurs when each transaction T in a set of two or more transactions is waiting for
some item that is locked by some other transaction T' in the set. Hence, each transaction
in the set is on a waiting queue, waiting for one of the other transactions in the set to
release the lock on an item. A simple example is shown in Figure 18.5a, where the two
transactions T I' and Tz' are deadlocked in a partial schedule; T I' is on the waiting queue
for X, which is locked by T2" while T2' is on the waiting queue for Y, which is locked by
TI ' . Meanwhile, neither T I ' nor Tz' nor any other transaction can access items X and Y.

Deadlock Prevention Protocols. One way to prevent deadlock is to use a
deadlock prevention protocol.P One deadlock prevention protocol, which is used in
conservative two-phase locking, requires that every transaction lockall the items it needs in

(a) Tj ' 1:'2

T~ 1
read_lock(Y);
read_item(Y);

readJock(X);
read_item(X);

writeJock(X);
writeJock(Y);

FIGURE 18.5 Illustrating the deadlock problem. (a)A partial schedule of T.: and Tz'
that is in a state of deadlock. (b) A wait-for graph for the partial schedule in (a).

5. These protocols are not generally used in practice, either because of unrealistic assumptions or
because of their possibleoverhead. Deadlock detection and timeouts (see below) are more practical.

592 I Chapter 18 Concurrency Control Techniques

advance (which is generally not a practical assumption)-if any of the items cannot be
obtained, none of the items are locked. Rather, the transaction waits and then tries again
to lock all the items it needs. This solution obviously further limits concurrency. A
second protocol, which also limits concurrency, involves ordering all the items in the
database and making sure that a transaction that needs several items will lock them
according to that order. This requires that the programmer (or the system) be aware of the
chosen order of the items, which is also not practical in the database context.

A number of other deadlock prevention schemes have been proposed that make a
decision about what to do with a transaction involved in a possible deadlock situation:
Should it be blocked and made to wait or should it be aborted, or should the transaction
preempt and abort another transaction? These techniques use the concept of transaction
timestamp TS(T), which is a unique identifier assigned to each transaction. The
timestamps are typically based on the order in which transactions are started; hence, if
transaction T[starts before transaction T z, then TS(T[) < TS(Tz). Notice that the older
transaction has the smaller timestamp value. Two schemes that prevent deadlock are
called wait-die and wound-wait. Suppose that transaction T j tries to lock an item X but is
not able to because X is locked by some other transaction T j with a conflicting lock. The
rules followed by these schemes are as follows:

• Wait-die: IfTS(T) < TS (Tj) , then (Tj older than T j) T j is allowed to wait; otherwise
(Tj younger than T) abort T j (T, dies) and restart it later with the same timestamp.

• Wound-wait: IfTS(T) < TS(T
j

) , then (T, older than T j) abort T j (T, wounds T j) and
restart it later with the same timestamp; otherwise (T, younger than T) T j is allowed to
wait.

In wait-die, an older transaction is allowed to wait on a younger transaction, whereas
a younger transaction requesting an item held by an older transaction is aborted and
restarted. The wound-wait approach does the opposite: A younger transaction is allowed
to wait on an older one, whereas an older transaction requesting an item held by a
younger transaction preempts the younger transaction by aborting it. Both schemes end up
aborting the youngerof the two transactions that may be involved in a deadlock. It can be
shown that these two techniques are deadlock-free, since in wait-die, transactions only
wait on younger transactions so no cycle is created. Similarly, in wound-wait, transactions
only wait on older transactions so no cycle is created. However, both techniques may
cause some transactions to be aborted and restarted needlessly, even though those
transactions may never actually causea deadlock.

Another group of protocols that prevent deadlock do not require timestamps. These
include the no waiting (NW) and cautious waiting (CW) algorithms. In the no waiting
algorithm, if a transaction is unable to obtain a lock, it is immediately aborted and then
restarted after a certain time delay without checking whether a deadlock will actually
occur or not. Because this scheme can cause transactions to abort and restart needlessly,
the cautious waiting algorithm was proposed to try to reduce the number of needless
aborts/restarts. Suppose that transaction T j tries to lock an item X but is not able to do so
because X is locked by some other transaction T j with a conflicting lock. The cautious
waiting rules are as follows:

18.1 Two-Phase Locking Techniques for Concurrency Control I 593

• Cautious waiting: IfTj is not blocked (not waiting for some other locked item), then
Tj is blocked and allowed to wait; otherwise abort T j •

It can be shown that cautious waiting is deadlock-free, by considering the time b(T)
at which each blocked transaction T was blocked. If the two transactions T j and T

J
above

both become blocked, and T j is waiting on T j , then b(T) < b(T), since T j can only wait
on T

J
at a time when T j is not blocked. Hence, the blocking times form a total ordering

on all blocked transactions, so no cycle that causes deadlock can occur.

Deadlock Detection and Timeouts. A second-more practical-approach to
dealing with deadlock is deadlock detection, where the system checks if a state of
deadlock actually exists. This solution is attractive if we know there will be little
interference among the transactions-that is, if different transactions will rarely access
the same items at the same time. This can happen if the transactions are short and each
transaction locks only a few items, or if the transaction load is light. On the other hand, if
transactions are long and each transaction uses many items, or if the transaction load is
quiteheavy, it may be advantageous to use a deadlock prevention scheme.

A simple way to detect a state of deadlock is for the system to construct and
maintain a wait-for graph. One node is created in the wait-for graph for each
transaction that is currently executing. Whenever a transaction T j is waiting to lock an
item X that is currently locked by a transaction T j , a directed edge (T, ~ T j) is created
in the wait-for graph. When T, releases the lockts) on the items that T j was waiting for,
the directed edge is dropped from the wait-for graph. We have a state of deadlock if and
only if the wait-for graph has a cycle. One problem with this approach is the matter of
determining when the system should check for a deadlock. Criteria such as the number
ofcurrently executing transactions or the period of time several transactions have been
waiting to lock items may be used. Figure IS.5b shows the wait-for graph for the
(partial) schedule shown in Figure IS.5a. If the system is in a state of deadlock, some of
the transactions causing the deadlock must be aborted. Choosing which transactions to
abort is known as victim selection. The algorithm for victim selection should generally
avoid selecting transactions that have been running for a long time and that have
performed many updates, and it should try instead to select transactions that have not
made many changes.

Another simple scheme to deal with deadlock is the use of timeouts, This method is
practical because of its low overhead and simplicity. In this method, if a transaction waits
for a period longer than a system-defined timeout period, the system assumes that the
transaction may be deadlocked and aborts it-regardless of whether a deadlock actually
exists or not.

Starvation. Another problem that may occur when we use locking is starvation,
which occurs when a transaction cannot proceed for an indefinite period of time while
other transactions in the system continue normally. This may occur if the waiting scheme
for locked items is unfair, giving priority to some transactions over others. One solution
for starvation is to have a fair waiting scheme, such as using a first-come-first-served
queue; transactions are enabled to lock an item in the order in which they originally

594 I Chapter 18 Concurrency Control Techniques

requested the lock. Another scheme allows some transactions to have priority over others
but increases the priority of a transaction the longer it waits, until it eventually gets the
highest priority and proceeds. Starvation can also occur because of victim selection if the
algorithm selects the same transaction as victim repeatedly, thus causing it to abort and
never finish execution. The algorithm can use higher priotities for transactions that have
been aborted multiple times to avoid this problem. The wait-die and wound-wait schemes
discussed previously avoid starvation.

18.2 CONCURRENCY CONTROL BASED ON
TIMESTAMP ORDERING

The use of locks, combined with the 2PL protocol, guarantees serializability of schedules.
The serializable schedules produced by 2PL have their equivalent serial schedules based
on the order in which executing transactions lock the items they acquire. If a transaction
needs an item that is already locked, it may be forced to wait until the item is released. A
different approach that guarantees serializability involves using transaction timestamps to
order transaction execution for an equivalent serial schedule. In Section 18.2.1 we discuss
timestamps and in Section 18.2.2 we discuss how serializability is enforced by ordering
transactions based on their timestamps.

18.2.1 Timestamps
Recall that a timestamp is a unique identifier created by the DBMS to identify a transac
tion. Typically, timestamp values are assigned in the order in which the transactions are
submitted to the system, so a timestamp can be thought of as the transaction start time. We
will refer to the timestamp of transaction T as TS(T). Concurrency control techniques
based on timestamp ordering do not use locks; hence, deadlocks cannot occur.

Timestamps can be generated in several ways. One possibility is to use a counter that
is incremented each time its value is assigned to a transaction. The transaction
timestamps are numbered 1, 2, 3, ... in this scheme. A computer counter has a finite
maximum value, so the system must periodically reset the counter to zero when no
transactions are executing for some short period of time. Another way to implement
timestamps is to use the current date/time value of the system clock and ensure that no
two timestamp values are generated during the same tick of the clock.

18.2.2 The Timestamp Ordering Algorithm
The idea for this scheme is to order the transactions based on their timestamps. A sched
ule in which the transactions participate is then serializable, and the equivalent serial
schedule has the transactions in order of their timestamp values. This is called timestamp
ordering (TO). Notice how this differs from 2PL, where a schedule is serializable by being
equivalent to some serial schedule allowed by the locking protocols. In timestamp order-

18.2 Concurrency Control Based on Timestamp Ordering I 595

ing, however, the schedule is equivalent to the particular serial ordercorresponding to the
order of the transaction timestamps. The algorithm must ensure that, for each item
accessed by conflicting operations in the schedule, the order in which the item is accessed
does not violate the serializability order. To do this, the algorithm associates with each
database item X two timestamp (TS) values:

1. Read_TS(X): The read timestamp of item Xi this is the largest timestamp among
all the timestamps of transactions that have successfully read item X-that is, read_
TS(X) = TS(T), where T is the youngest transaction that has read X successfully.

2. Write_TS(X): The write timestamp of item Xi this is the largest of all the times
tamps of transactions that have successfully written item X-that is, write_TS(X)
= TS(T), where T is the youngest transaction that has written X successfully.

Basic Timestamp Ordering. Whenever some transaction T tnes to issue a read
item(X) or a wr i te_; tem(X) operation, the basic TO algorithm compares the timestamp
ofT with read_TS(X) and write_TS(X) to ensure that the timestamp order of transaction
execution is not violated. If this order is violated, then transaction T is aborted and
resubmitted to the system as a new transaction with a new timestamp. If T is aborted and
rolled back, any transaction T 1 that may have used a value written by T must also be
rolled back. Similarly, any transaction T z that may have used a value written by T 1 must
also be rolled back, and so on. This effect is known as cascading rollback and is one of the
problems associated with basic TO, since the schedules produced are not guaranteed to be
recoverable. An additional protocol must be enforced to ensure that the schedules are
recoverable, cascadeless, or strict. We first describe the basic TO algorithm here. The
concurrency control algorithm must check whether conflicting operations violate the
timestamp ordering in the following two cases:

1. Transaction T issues a wri te_; tem(X) operation:

a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back
T and reject the operation. This should be done because some younger transac
tion with a timestamp greater than TS(T)-and hence after T in the times
tamp ordering-has already read or written the value of item X before T had a
chance to write X, thus violating the timestamp ordering.

b. If the condition in part (a) does not occur, then execute the wri te_; tem(X)
operation ofT and set write_TS(X) to TS(T).

2. Transaction T issues a read_; tem(X) operation:

a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation.
This should be done because some younger transaction with timestamp greater
than TS(T)-and hence after T in the timestamp ordering-has already writ
ten the value of item X before T had a chance to read X.

b. If write_TS(X) :s; TS(T), then execute the read_item(X) operation of T and
set read_TS(X) to the larger of TS(T) and the current read_TS(X).

Hence, whenever the basic TO algorithm detects two conflicting operations that occur
in the incorrect order, it rejects the later of the two operations by aborting the transaction
that issued it. The schedules produced by basic TO are hence guaranteed to be conflict

596 I Chapter 18 Concurrency Control Techniques

serializable, like the 2PL protocol. However, some schedules are possible under each
protocol that are not allowed under the other. Hence, neither protocol allows all possible
serializable schedules. As mentioned earlier, deadlock does not occur with timestamp
ordering. However, cyclic restart (and hence starvation) may occur if a transaction is
continually aborted and restarted.

Strict Timestamp Ordering. A variation of basic TO called strict TO ensures that
the schedules are both strict (for easy recoverabilitv) and (conflict) serializable. In this
variation, a transaction T that issues a read_item(X) or write_item(X) such that TS(T) >
write_TS(X) has its read or write operation delayed until the transaction T' that wrote the
value of X (hence TS(T') = write_TS(X)) has committed or aborted. To implement this
algorithm, it is necessary to simulate the locking of an item X that has been written by
transaction T' until T' is either committed or aborted. This algorithm does not cause
deadlock, since T waits for T' only if TS(T) > TS(T').

Thomas's Write Rule. A modification of the basic TO algorithm, known as
Thomas's write rule, does not enforce conflict serializability; but it rejects fewer write
operations, by modifying the checks for the wri te_i tem(X) operation as follows:

1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.

2. If write_TS(X) > TS(T), then do not execute the write operation but continue
processing. This is because some transaction with timestamp greater than
TS(T)-and hence after T in the timestamp ordering-has already written the
value of X. Hence, we must ignore the wri te_i tem(X) operation of T because it is
already outdated and obsolete. Notice that any conflict arising from this situation
would be detected by case (l).

3. If neither the condition in part (1) nor the condition in part (2) occurs, then exe
cute the wri te_i tem(X) operation of T and set write_TS(X) to TS(T).

18.3 MUlTIVERSION CONCURRENCY
CONTROL TECHNIQUES

Other protocols for concurrency control keep the old values of a data item when the item
is updated. These are known as multiversion concurrency control, because several ver
sions (values) of an item are maintained. When a transaction requires access to an item,
an appropriate version is chosen to maintain the serializability of the currently executing
schedule, if possible. The idea is that some read operations that would be rejected in other
techniques can still be accepted by reading an older version of the item to maintain serial
izability. When a transaction writes an item, it writes a new version and the old version of
the item is retained. Some multiversion concurrency control algorithms use the concept
of view serializability rather than conflict serializability.

An obvious drawback of multiversion techniques is that more storage is needed to
maintain multiple versions of the database items. However, older versions may have to be

18.3 Multiversion Concurrency Control Techniques I 597

maintained anyway-for example, for recovery purposes. In addition, some database
applications require older versions to be kept to maintain a history of the evolution of
data item values. The extreme case is a temporal database (see Chapter 24), which keeps
track of all changes and the times at which they occurred. In such cases, there is no
additional storage penalty for multiversion techniques, since older versions are already
maintained.

Several multiversion concurrency control schemes have been proposed. We discuss
two schemes here, one based on timestamp ordering and the other based on 2pL.

18.3.1 Multiversion Technique Based on
Timestamp Ordering

In this method, several versions XI' Xz, ... , Xk of each data item X are maintained. For
each version, the value of version Xi and the following two timestamps are kept:

1. read_TS(X): The read timestamp of Xi is the largest of all the timestamps of
transactions that have successfully read version Xi'

2. write_TS(X): The write timestamp of X, is the timestamp of the transaction
that wrote the value of version Xi'

Whenever a transaction T is allowed to execute a wri te_i tem(X) operation, a new
version Xk+ I of item X is created, with both the write_TS(X k+ I) and the read_TS(Xk+ I)
set to TS(T). Correspondingly, when a transaction T is allowed to read the value of
version Xi' the value of read_TS(X) is set to the larger of the current read_TS(X) and
TS(T).

To ensure serializability, the following two rules are used:

1. If transaction T issues a wri te_i tem(X) operation, and version i of X has the
highest write_TS(X) of all versions of X that is also less than or equal to TS(T),
and read_TS(X) > TS(T), then abort and roll back transaction T; otherwise, cre
ate a new version Xj of X with read_TS(Xj) = write_TS(X) = TS(T).

2. If transaction T issues a read_i tem(X) operation, find the version i of X that has
the highest write_TS(X) of all versions of X that is also less than or equal to

TS(T); then return the value of Xi to transaction T, and set the value of read_
TS(X) to the larger of TS(T) and the current read_TS(XJ

As we can see in case 2, a read_i tem(X) is always successful, since it finds the
appropriate version Xi to read based on the write_TS of the various existing versions of X.
In case 1, however, transaction T may be aborted and rolled back. This happens if T is
attempting to write a version of X that should have been read by another transaction T'
whose timestamp is read_TS(Xi); however, T' has already read version X" which was
written by the transaction with timestamp equal to write_TS(XJ If this conflict occurs,
T is rolled back; otherwise, a new version of X, written by transaction T, is created.
Notice that, if T is rolled back, cascading rollback may occur. Hence, to ensure
recoverability, a transaction T should not be allowed to commit until after all the
transactions that have written some version that T has read have committed.

598 I Chapter 18 Concurrency Control Techniques

18.3.2 Multiversion Two-Phase Locking Using
Certify Locks

In this multiple-mode locking scheme, there are three locking modes for an item: read,
write, and certify, instead of just the two modes (read, write) discussed previously. Hence,
the state of LOCK(X) for an item X can be one of read-locked, write-locked, certify
locked, or unlocked. In the standard locking scheme with only read and write locks (see
Section 18.1.1), a write lock is an exclusive lock. We can describe the relationship
between read and write locks in the standard scheme by means of the lock compatibility
table shown in Figure 18.6a. An entry of yes means that, if a transaction T holds the type
of lock specified in the column header on item X and if transaction T' requests the type of
lock specified in the row header on the same item X, then T' can obtain the lock because
the locking modes are compatible. On the other hand, an entry of no in the table indi
cates that the locks are not compatible, so T' must wait until T releases the lock.

In the standard locking scheme, once a transaction obtains a write lock on an item,
no other transactions can access that item. The idea behind multiversion 2PL is to allow
other transactions T' to read an item X while a single transaction T holds a write lock on
X. This is accomplished by allowing two versions for each item X; one version must always
have been written by some committed transaction. The second version X' is created
when a transaction T acquires a write lock on the item. Other transactions can continue
to read the committed version of X while T holds the write lock. Transaction T can write
the value of X' as needed, without affecting the value of the committed version X.
However, once T is ready to commit, it must obtain a certify lock on all items that it

(a)

Read

Write

Read

yes

no

Write

no

no

(b)
Write CertifyRead

Read yes yes no

Write yes no no

Certify no no no

FIGURE 18.6 Lock compatibility tables. (a) A compatibility table for read/write lock
ing scheme. (b) A compatibility table for read/write/certify locking scheme.

18.4 Validation (Optimistic) Concurrency Control Techniques I 599

currently holds write locks on before it can commit. The certify lock is not compatible
with read locks, so the transaction may have to delay its commit until all its write-locked
items are released by any reading transactions in order to obtain the certify locks. Once
the certify locks-which are exclusive locks-are acquired, the committed version X of
the data item is set to the value of version X', version X' is discarded, and the certify locks
arethen released. The lock compatibility table for this scheme is shown in Figure 18.6b.

In this multiversion 2PL scheme, reads can proceed concurrently with a single write
operation-an arrangement not permitted under the standard 2PL schemes. The cost is
that a transaction may have to delay its commit until it obtains exclusive certify locks
on all the items it has updated. It can be shown that this scheme avoids cascading aborts,
since transactions are only allowed to read the version X that was written by a
committed transaction. However, deadlocks may occur if upgrading of a read lock to a
write lock is allowed, and these must be handled by variations of the techniques
discussed in Section 18.1.3.

18.4 VALIDATION (OPTIMISTIC) CONCURRENCY
CONTROL TECHNIQUES

In all the concurrency control techniques we have discussed so far, a certain degree of
checking is done before a database operation can be executed. For example, in locking, a
check is done to determine whether the item being accessed is locked. In timestamp
ordering, the transaction timestamp is checked against the read and write timestamps of
the item. Such checking represents overhead during transaction execution, with the
effect of slowing down the transactions.

In optimistic concurrency control techniques, also known as validation or
certification techniques, no checking is done while the transaction is executing. Several
proposed concurrency control methods use the validation technique. We will describe
only one scheme here. In this scheme, updates in the transaction are not applied directly
to the database items until the transaction reaches its end. During transaction execution,
allupdates are applied to local copies of the data items that are kept for the transaction.6

At the end of transaction execution, a validation phase checks whether any of the
transaction's updates violate serializability. Certain information needed by the validation
phase must be kept by the system. If serializability is not violated, the transaction is
committed and the database is updated from the local copies; otherwise, the transaction is
abortedand then restarted later.

There are three phases for this concurrency control protocol:

1. Read phase: A transaction can read values of committed data items from the
database. However, updates are applied only to local copies (versions) of the data
items kept in the transaction workspace.

6. Note that this can be considered as keeping multiple versionsof items!

600 I Chapter 18 Concurrency Control Techniques

2. Validation phase: Checking is performed to ensure that serializability will not be
violated if the transaction updates are applied to the database.

3. Write phase: If the validation phase is successful, the transaction updates are
applied to the database; otherwise, the updates are discarded and the transaction
is restarted.

The idea behind optimistic concurrency control is to do all the checks at once;
hence, transaction execution proceeds with a minimum of overhead until the validation
phase is reached. If there is little interference among transactions, most will be validated
successfully. However, if there is much interference, many transactions that execute to
completion will have their results discarded and must be restarted later. Under these
circumstances, optimistic techniques do not work well. The techniques are called
"optimistic" because they assume that little interference will occur and hence that there
is no need to do checking during transaction execution.

The optimistic protocol we describe uses transaction timestamps and also requires that
the wri te_sets and read_sets of the transactions be kept by the system. In addition, start
and end times for some of the three phases need to be kept for each transaction. Recall that
the write_set of a transaction is the set of items it writes, and the read_set is the set of
items it reads. In the validation phase for transaction ~, the protocol checks that T; does
not interfere with any committed transactions or with any other transactions currently in
their validation phase. The validation phase for Ti checks that, for each such transaction T

J

that is either committed or is in its validation phase, one of the following conditions holds:

1. Transaction T j completes its write phase before T; starts its read phase.

2. T j starts its write phase after T j completes its write phase, and the read_set of T,
has no items in common with the wri te_set ofTj .

3. Both the read_set and wri te_set of T, have no items in common with the write_
set of T, and Tj completes its read phase before ~ completes its read phase.

When validating transaction T j , the first condition is checked first for each transaction
T j , since (1) is the simplest condition to check. Only if condition (1) is false is condition (2)
checked, and only if (2) is false is condition (3)-the most complex to evaluate--ehecked.
If anyone of these three conditions holds, there is no interference and T; is validated
successfully. Ifnone of these three conditions holds, the validation of transaction T j fails and
it is aborted and restarted later because interference may have occurred.

18.5 GRANULARITY OF DATA ITEMS AND
MULTIPLE GRANULARITY LOCKING

All concurrency control techniques assumed that the database was formed of a number of
named data items. A database item could be chosen to be one of the following:

• A database record.

• A field value of a database record.

18.5 Granularity of Data Items and Multiple Granularity Locking I 601

• A disk block.

• A whole file.

• The whole database.

The granularity can affect the performance of concurrency control and recovery. In
Section 18.5.1, we discuss some of the tradeoffs with regard to choosing the granularity
level used for locking, and, in Section 18.5.2, we discuss a multiple granularity locking
scheme, where the granularity level (size of the data item) may be changed dynamically.

18.5.1 Granularity Level Considerations for Locking
The size of data items is often called the data item granularity. Fine granularity refers to
small item sizes, whereas coarse granularity refers to large item sizes. Several tradeoffs must
be considered in choosing the data item size. We shall discuss data item size in the con
text of locking, although similar arguments can be made for other concurrency control
techniques.

First, notice that the larger the data item size is, the lower the degree of concurrency
permitted. For example, if the data item size is a disk block, a transaction T that needs to
lock a record B must lock the whole disk block X that contains B because a lock is
associated with the whole data item (block). Now, if another transaction S wants to lock
a different record C that happens to reside in the same block X in a conflicting lock
mode, it is forced to wait. If the data item size was a single record, transaction S would be
ableto proceed, because it would be locking a different data item (record).

On the other hand, the smaller the data item size is, the more the number of items in
the database. Because every item is associated with a lock, the system will have a larger
number of active locks to be handled by the lock manager. More lock and unlock
operations will be performed, causing a higher overhead. In addition, more storage space
will be required for the lock table. For timestamps, storage is required for the read_TS and
write_TS for each data item, and there will be similar overhead for handling a large
number of items.

Given the above tradeoffs, an obvious question can be asked: What is the best item
size? The answer is that it depends on the types of transactions involved. If a typical
transaction accesses a small number of records, it is advantageous to have the data item
granularity be one record. On the other hand, if a transaction typically accesses many
records in the same file, it may be better to have block or file granularity so that the
transaction will consider all those records as one (or a few) data items.

18.5.2 Multiple Granularity Level Locking
Since the best granularity size depends on the given transaction, it seems appropriate that
adatabase system support multiple levels of granularity, where the granularity level can be
different for various mixes of transactions. Figure 18.7 shows a simple granularity hierar
chywith a database containing two files, each file containing several pages, and each page
containing several records. This can be used to illustrate a multiple granularity level 2PL

602 I Chapter 18 Concurrency Control Techniques

/
db

\
'1 '2

/ I \ / I
P11 P12 P 1n P21 P22

/\ /\ /\ /\ /\
'111 ••• '111 '121 ... '12j '1n1 ... '1nj '211 ... '21k '221 ... '22k

FIGURE 18.7 A granularity hierarchy for illustrating multiple granularity level locking.

protocol, where a lock can be requested at any level. However, additional types of locks
will be needed to efficiently support such a protocol.

Consider the following scenario, with only shared and exclusive lock types, that
refers to the example in Figure 18.7. Suppose transaction T 1 wants to update all the records
in file fl' and T 1 requests and is granted an exclusive lock for fl' Then all of t. 's pages (Pll
through Pln)-and the records contained on those pages-are locked in exclusive mode.
This is beneficial for T 1 because setting a single file-level lock is more efficient than
setting n page-level locks or having to lock each individual record. Now suppose another
transaction T z only wants to read record rln] from page PIn of file fl; then Tz would request
a shared record-level lock on r Inj: However, the database system (that is, the transaction
manager or more specifically the lock manager) must verify the compatibility of the
requested lock with already held locks. One way to verify this is to traverse the tree from
the leaf rlnj to PIn to fl to db. If at any time a conflicting lock is held on any of those items,
then the lock request for rlnj is denied and T z is blocked and must wait. This traversal
would be fairly efficient.

However, what if transaction Tz's request came before transaction TI's request? In this
case, the shared record lock is granted to T z for rIn]' but when T 1's file-level lock is
requested, it is quite difficult for the lock manger to check all nodes (pages and records)
that are descendants of node f1 for a lock conflict. This would be very inefficient and
would defeat the purpose of having multiple granularity level locks.

To make multiple granularity level locking practical, additional types of locks, called
intention locks, are needed. The idea behind intention locks is for a transaction to
indicate, along the path from the root to the desired node, what type of lock (shared or
exclusive) it will require from one of the node's descendants. There are three types of
intention locks:

1. Intention-shared (IS) indicates that a shared lockts) will be requested on some
descendant nodets).

2. Intention-exclusive (IX) indicates that an exclusive lock(s) will be requested on
some descendant nodets).

3. Shared-intention-exclusive (SIX) indicates that the current node is locked in
shared mode but an exclusive lockfs) will be requested on some descendant
nodeis).

18.5 Granularity of Data Items and Multiple Granularity Locking I 603

The compatibility table of the three intention locks, and the shared and exclusive
locks, is shown in Figure 18.8. Besides the introduction of the three types of intention
locks, an appropriate locking protocol must be used. The multiple granularity locking
(MGL) protocol consists of the following rules:

1. The lock compatibility (based on Figure 18.8) must be adhered to.

2. The root of the tree must be locked first, in any mode.

3. A node N can be locked by a transaction T in S or IS mode only if the parent
node N is already locked by transaction T in either IS or IX mode.

4. A node N can be locked by a transaction T in X, IX, or SIX mode only if the par
ent of node N is already locked by transaction T in either IX or SIX mode.

5. A transaction T can lock a node only if it has not unlocked any node (to enforce
the 2PL protocol).

6. A transaction T can unlock a node, N, only if none of the children of node N are
currently locked by T.

Rule 1 simply states that conflicting locks cannot be granted. Rules 2, 3, and 4 state
the conditions when a transaction may lock a given node in any of the lock modes. Rules
5 and 6 of the MGL protocol enforce 2PL rules to produce serializable schedules. To
illustrate the MGL protocol with the database hierarchy in Figure 18.7, consider the
following three transactions:

1. T 1 wants to update record r III and record r211.

2. T 2 wants to update all records on page P12'
3. T 3 wants to read record rllj and the entire f2 file.

Figure 18.9 shows a possible serializable schedule for these three transactions. Only
the lock operations are shown. The notation <1ock_type>«;tem» is used to display the
locking operations in the schedule.

IS IX S SIX X

IS yes yes yes yes no

IX yes yes no no no

S yes no yes no no

SIX yes no no no no

X no no no no no

FIGURE 18.8 Lock compatibility matrix for multiple granularity locking.

604 I Chapter 18 Concurrency Control Techniques

T1 T2 Ta

IX(db)

IX(f1)
IX(db)

IS(db)

IS(f1)
IS(P11)

IX(P11)
X(r111)

IX(f1)

X(P12)
8(r11)

IX(f2)

IX(P2')
X(r211)

unlock(r211)
unlock(P21)
unlock(f2)

8(9
unlock(P12)
unlock(f1)
unlock(db)

unlock(r111)

unlock(P11)
unlock(f1)
unlock(db)

unlock(r11)
unlock(P11)
unlock(f1)
unlock(f2)
unlock(db)

FIGURE 18.9 Lock operations to illustrate a serializable schedule.

The multiple granularity level protocol is especially suited when ptocessing a mix of
transactions that include: (l) short transactions that access only a few items (records or
fields), and (2) long transactions that access entire files. In this environment, less
transaction blocking and less locking overhead is incurred by such a protocol when
compared to a single level granularity locking approach.

18.6 Using Locks for Concurrency Control in Indexes I 605

18.6 USING LOCKS FOR CONCURRENCY
CONTROL IN INDEXES

Two-phase locking can also be applied to indexes (see Chapter 14), where the nodes of an
index correspond to disk pages. However, holding locks on index pages until the shrink
ing phase of 2PL could cause an undue amount of transaction blocking. This is because
searching an index always starts at the root, so if a transaction wants to insert a record
(write operation), the root would be locked in exclusive mode, so all other conflicting
lockrequests for the index must wait until the transaction enters its shrinking phase. This
blocks all other transactions from accessing the index, so in practice other approaches to

lockingan index must be used.
The tree structure of the index can be taken advantage of when developing a

concurrency control scheme. For example, when an index search (read operation) is
being executed, a path in the tree is traversed from the root to a leaf. Once a lower-level
node in the path has been accessed, the higher-level nodes in that path will not be used
again. So once a read lock on a child node is obtained, the lock on the parent can be
released. Second, when an insertion is being applied to a leaf node (that is, when a key
and a pointer are inserted), then a specific leaf node must be locked in exclusive mode.
However, if that node is not full, the insertion will not cause changes to higher-level
indexnodes, which implies that they need not be locked exclusively.

A conservative approach for insertions would be to lock the root node in exclusive
mode and then to access the appropriate child node of the root. If the child node is not
full, then the lock on the root node can be released. This approach can be applied all the
way down the tree to the leaf, which is typically three or four levels from the root.
Although exclusive locks are held, they are soon released. An alternative, more
optimistic approach would be to request and hold shared locks on the nodes leading to

the leaf node, with an exclusive lock on the leaf. If the insertion causes the leaf to split,
insertion will propagate to a higher level nodets). Then, the locks on the higher level
nodets) can be upgraded to exclusive mode.

Another approach to index locking is to use a variant of the W -tree, called the
B-link tree. In a B-link tree, sibling nodes on the same level are linked together at every
level. This allows shared locks to be used when requesting a page and requires that the
lock be released before accessing the child node. For an insert operation, the shared lock
on a node would be upgraded to exclusive mode. If a split occurs, the parent node must be
relocked in exclusive mode. One complication is for search operations executed
concurrently with the update. Suppose that a concurrent update operation follows the
same path as the search, and inserts a new entry into the leaf node. In addition, suppose
that the insert causes that leaf node to split. When the insert is done, the search process
resumes, following the pointer to the desired leaf, only to find that the key it is looking for
isnot present because the split has moved that key into a new leaf node, which would be
the right sibling of the original leaf node. However, the search process can still succeed if it
follows the pointer (link) in the original leaf node to its right sibling, where the desired
key has been moved.

606 I Chapter 18 Concurrency Control Techniques

Handling the deletion case, where two or more nodes from the index tree merge, is
also part of the B-link tree concurrency protocol. In this case, locks on the nodes to be
merged are held as well as a lock on the parent of the two nodes to be merged.

18.7 OTHER CONCURRENCY CONTROL ISSUES
In this section, we discuss some other issues relevant to concurrency control. In Section
18.7.1, we discuss problems associated with insertion and deletion of records and the so
called phantom problem, which may occur when records are inserted. This problem was
described as a potential problem requiring a concurrency control measure in Section 17.6.
Then, in Section 18.7.2, we discuss problems that may occur when a transaction outputs
some data to a monitor before it commits, and then the transaction is later aborted.

18.7.1 Insertion, Deletion, and Phantom Records
When a new data item is inserted in the database, it obviously cannot be accessed until
after the item is created and the insert operation is completed. In a locking environment,
a lock for the item can be created and set to exclusive (write) mode; the lock can be
released at the same time as other write locks would be released, based on the concur
rency control protocol being used. For a timestamp-based protocol, the read and write
timestamps of the new item are set to the timestamp of the creating transaction.

Next, consider deletion operation that is applied on an existing data item. For
locking protocols, again an exclusive (write) lock must be obtained before the transaction
can delete the item. For timestamp ordering, the protocol must ensure that no later
transaction has read or written the item before allowing the item to be deleted.

A situation known as the phantom problem can occur when a new record that is
being inserted by some transaction T satisfies a condition that a set of records accessed by
another transaction T' must satisfy. For example, suppose that transaction T is inserting a
new EMPLOYEE record whose DNO = 5, while transaction T' is accessing all EMPLOYEE

records whose DNO = 5 (say, to add up all their SALARY values to calculate the personnel
budget for department 5). If the equivalent serial order is T followed by T', then T' must
read the new EMPLOYEE record and include its SALARY in the sum calculation. For the
equivalent serial order T' followed by T, the new salary should not be included. Notice
that although the transactions logically conflict, in the latter case there is really no record
(data item) in common between the two transactions, since T' may have locked all the
records with DNO = 5 before T inserted the new record. This is because the record that
causes the conflict is a phantom record that has suddenly appeared in the database on
being inserted. If other operations in the two transactions conflict, the conflict due to the
phantom record may not be recognized by the concurrency control protocol.

One solution to the phantom record problem is to use index locking, as discussed in
Section 18.6. Recall from Chapter 14 that an index includes entries that have an
attribute value, plus a set of pointers to all records in the file with that value. For example,
an index on DNO of EMPLOYEE would include an entry for each distinct DNO value, plusa

18.8 Summary I 607

set of pointers to all EMPLOYEE records with that value. If the index entry is locked before
the record itself can be accessed, then the conflict on the phantom record can be
detected. This is because transaction T' would request a read lock on the index entry for
DNO = 5, and T would request a write lock on the same entry before they could place the
locks on the actual records. Since the index locks conflict, the phantom conflict would be
detected.

A more general technique, called predicate locking, would lock access to all records
that satisfy an arbitrary predicate (condition) in a similar manner; however predicate locks
have proved to be difficult to implement efficiently.

18.7.2 Interactive Transactions
Another problem occurs when interactive transactions read input and write output to an
interactive device, such as a monitor screen, before they are committed. The problem is
that a user can input a value of a data item to a transaction T that is based on some value
written to the screen by transaction T', which may not have committed. This depen
dency between T and T' cannot be modeled by the system concurrency control method,
since it is only based on the user interacting with the two transactions.

An approach to dealing with this problem is to postpone output of transactions to
the screen until they have committed.

18.7.3 latches
Locks held for a short duration are typically called latches. Latches do not follow the
usual concurrency control protocol such as two-phase locking. For example, a latch can
beused to guarantee the physical integrity of a page when that page is being written from
the buffer to disk. A latch would be acquired for the page, the page written to disk, and
then the latch is released.

18.8 SUMMARY
In this chapter we discussed DBMS techniques for concurrency control. We started by dis
cussing lock-based protocols, which are by far the most commonly used in practice. We
described the two-phase locking (2PL) protocol and a number of its variations: basic 2PL,

strict 2PL, conservative 2PL, and rigorous 2pL. The strict and rigorous variations are more
common because of their better recoverability properties. We introduced the concepts of
shared (read) and exclusive (write) locks, and showed how locking can guarantee serializ
ability when used in conjunction with the two-phase locking rule. We also presented var
ious techniques for dealing with the deadlock problem, which can occur with locking. In
practice, it is common to use timeouts and deadlock detection (wait-for graphs).

We then presented other concurrency control protocols that are not used often in
practice but are important for the theoretical alternatives they show for solving this

608 I Chapter 18 Concurrency Control Techniques

problem. These include the timestamp ordering protocol, which ensures serializability
based on the order of transaction timestamps. Timestamps are unique, system-generated
transaction identifiers. We discussed Thomas's write rule, which improves performance
but does not guarantee conflict serializability. The strict timestamp ordering protocol was
also presented. We then discussed two multiversion protocols, which assume that older
versions of data items can be kept in the database. One technique, called multiversion
two-phase locking (which has been used in practice), assumes that two versions can exist
for an item and attempts to increase concurrency by making write and read locks
compatible (at the cost of introducing an additional certify lock mode). We also
presented a multiversion protocol based on timestamp ordering. We then presented an
example of an optimistic protocol, which is also known as a certification or validation
protocol.

We then turned our attention to the important practical issue of data item granularity.
We described a multigranularity locking protocol that allows the change of granularity
(item size) based on the current transaction mix, with the goal of improving the
performance of concurrency control. An important practical issue was then presented,
which is to develop locking protocols for indexes so that indexes do not become a
hindrance to concurrent access. Finally, we introduced the phantom problem and
problems with interactive transactions, and briefly described the concept of latches and
how it differs from locks.

In the next chapter, we give an overview of recovery techniques.

Review Questions
18.1. What is the two-phase locking protocol? How does it guarantee serializability!
18.2. What are some variations of the two-phase locking protocol? Why is strict or rig

orous two-phase locking often preferred?
18.3. Discuss the problems of deadlock and starvation, and the different approaches to

dealing with these problems.
18.4. Compare binary locks to exclusive/shared locks. Why is the latter type of locks

preferable?
18.5. Describe the wait-die and wound-wait protocols for deadlock prevention.
18.6. Describe the cautious waiting, no waiting, and timeout protocols for deadlock

prevention.
18.7. What is a timestamp? How does the system generate timestamps?
18.8. Discuss the timestamp ordering protocol for concurrency control. How does strict

timestamp ordering differ from basic timestamp ordering?
18.9. Discuss two multiversion techniques for concurrency control.

18.10. What is a certify lock? What are the advantages and disadvantages of using certify
locks?

18.11. How do optimistic concurrency control techniques differ from other concurrency
control techniques! Why are they also called validation or certification tech
niques? Discuss the typical phases of an optimistic concurrency control method.

18.12. How does the granularity of data items affect the performance of concurrency
control? What factors affect selection of granularity size for data items!

Selected Bibliography I 609

18.13. What type of locks are needed for insert and delete operations?
18.14. What is multiple granularity locking? Under what circumstances is it used?
18.15. What are intention locks?
18.16. When are latches used?
18.17. What is a phantom record? Discuss the problem that a phantom record can cause

for concurrency control.
18.18. How does index locking resolve the phantom problem?
18.19. What is a predicate lock?

Exercises
18.20. Prove that the basic two-phase locking protocol guarantees conflict serializability

of schedules. (Hint: Show that, if a serializability graph for a schedule has a cycle,
then at least one of the transactions participating in the schedule does not obey
the two-phase locking protocol.)

18.21. Modify the data structures for multiple-mode locks and the algorithms for read_
lock(X), write_lock(X), and unlock(X) so that upgrading and downgrading of
locks are possible. (Hint: The lock needs to check the transaction id(s) that hold
the lock, if any.)

18.22. Prove that strict two-phase locking guarantees strict schedules.
18.23. Prove that the wait-die and wound-wait protocols avoid deadlock and starvation.
18.24. Prove that cautious waiting avoids deadlock.
18.25. Apply the timestamp ordering algorithm to the schedules of Figure 17.8(b) and (c),

and determine whether the algorithm will allow the execution of the schedules.
18.26. Repeat Exercise 18.25, but use the multiversion timestamp ordering method.
18.27. Why is two-phase locking not used as a concurrency control method for indexes

such as B+-trees?
18.28. The compatibility matrix of Figure 18.8 shows that IS and IX locks are compati

ble. Explain why this is valid.
18.29. The MOL protocol states that a transaction T can unlock a node N, only if none of

the children of node N are still locked by transaction T. Show that without this
condition, the MOL protocol would be incorrect.

Selected Bibliography
The two-phase locking protocol, and the concept of predicate locks was first proposed by
Eswaran et al. (1976). Bernstein et al. (1987), Gray and Reuter (1993), and Papadimi
triou (1986) focus on concurrency control and recovery. Kumar (1996) focuses on perfor
mance of concurrency control methods. Locking is discussed in Gray et al. (1975), Lien
and Weinberger (1978), Kedem and Silbershatz (1980), and Korth (1983). Deadlocks
and wait-for graphs were formalized by Holt (1972), and the wait-wound and wound-die
schemes are presented in Rosenkrantz et al. (1978). Cautious waiting is discussed in Hsu
et al. (1992). Helal et al. (1993) compares various locking approaches. Timestamp-based
concurrency control techniques are discussed in Bernstein and Goodman (1980) and
Reed (1983). Optimistic concurrency control is discussed in Kung and Robinson (1981)

610 I Chapter 18 Concurrency Control Techniques

and Bassiouni (1988). Papadimitriou and Kanellakis (1979) and Bernstein and Goodman
(1983) discuss multiversion techniques. Multiversion timestamp ordering was proposed in
Reed (1978, 1983), and multiversion two-phase locking is discussed in Lai and Wilkinson
(1984). A method for multiple locking granularities was proposed in Gray et al. (1975),
and the effects of locking granularities are analyzed in Ries and Stonebraker (1977).
Bhargava and Reidl (1988) presents an approach for dynamically choosing among various
concurrency control and recovery methods. Concurrency control methods for indexes are
presented in Lehman and Yao (1981) and in Shasha and Goodman (1988). A perfor
mance study of various B+ tree concurrency control algorithms is presented in Srinivasan
and Carey (1991).

Other recent work on concurrency control includes semantic-based concurrency
control (Badrinath and Ramamritham, 1992), transaction models for long running
activities (Dayal et al., 1991), and multilevel transaction management (Hasse and
Weikum, 1991).

Database Recovery
Techniques

In this chapter we discuss some of the techniques that can be used for database recovery
from failures. We have already discussed the different causes of failure, such as system
crashes and transaction errors, in Section 17.1,4. We have also covered many of the con
cepts that are used by recovery processes, such as the system log and commit points, in
Section 17.2.

We start Section 19.1 with an outline of a typical recovery procedures and a categor
ization of recovery algorithms, and then discuss several recovery concepts, including write
ahead logging, in-place versus shadow updates, and the process of rolling back (undoing)
the effect of an incomplete or failed transaction. In Section 19.2, we present recovery
techniques based on deferred update, also known as the NO-UNDO/REDO technique. In
Section 19.3, we discuss recovery techniques based on immediate update; these include the
UNDO/REDO and UNDO/NO-REDO algorithms. We discuss the technique known as
shadowing or shadow paging, which can be categorized as a NO-UNDO/NO-REDO algorithm
inSection 19,4. An example of a practical DBMS recovery scheme, called ARIES, is presented
in Section 19.5. Recovery in rnultidatabases is briefly discussed in Section 19.6. Finally,
techniques for recovery from catastrophic failure are discussed in Section 19.7.

Our emphasis is on conceptually describing several different approaches to recovery.
For descriptions of recovery features in specific systems, the reader should consult the
bibliographic notes and the user manuals for those systems. Recovery techniques are often
intertwined with the concurrency control mechanisms. Certain recovery techniques are
bestused with specific concurrency control methods. We will attempt to discuss recovery

611

612 I Chapter 19 Database Recovery Techniques

concepts independently of concurrency control mechanisms, but we will discuss the
circumstances under which a particular recovery mechanism is best used with a certain
concurrency control protocol.

19.1 RECOVERY CONCEPTS

19.1.1 Recovery Outline and Categorization of
Recovery Algorithms

Recovery from transaction failures usually means that the database is restored to the most
recent consistent state just before the time of failure. To do this, the system must keep
information about the changes that were applied to data items by the various transac
tions. This information is typically kept in the system log, as we discussed in Section
17.2.2. A typical strategy for recovery may be summarized informally as follows:

1. If there is extensive damage to a wide portion of the database due to catastrophic
failure, such as a disk crash, the recovery method restores a past copy of the data
base that was backed up to archival storage (typically tape) and reconstructs a
more current state by reapplying or redoing the operations of committed transac
tions from the backed up log, up to the time of failure.

2. When the database is not physically damaged but has become inconsistent due to
noncatastrophic failures of types 1 through 4 of Section 17.1.4, the strategy is to
reverse any changes that caused the inconsistency by undoingsome operations. It
may also be necessary to redo some operations in order to restore a consistent state
of the database, as we shall see. In this case we do not need a complete archival
copy of the database. Rather, the entries kept in the online system log are con
sulted during recovery.

Conceptually, we can distinguish two main techniques for recovery from noncata
strophic transaction failures: (l) deferred update and (2) immediate update. The deferred
update techniques do not physically update the database on disk until after a transaction
reaches its commit point; then the updates are recorded in the database. Before reaching
commit, all transaction updates are recorded in the local transaction workspace (or buffers).
During commit, the updates are first recorded persistently in the log and then written to the
database. If a transaction fails before reaching its commit point, it will not have changed the
database in any way, so UNDO is not needed. It may be necessary to REDO the effect of the
operations of a committed transaction from the log, because their effect may not yet have
been recorded in the database. Hence, deferred update is also known as the NO-UNDO/

REDO algorithm. We discuss this technique in Section 19.2.
In the immediate update techniques, the database may be updated by some

operations of a transaction before the transaction reaches its commit point. However,
these operations are typically recorded in the log on disk by force writing before they are
applied to the database. making recovery still possible. If a transaction fails after recording
some changes in the database but before reaching its commit point, the effect of its

19.1 Recovery Concepts I 613

operations on the database must be undone; that is, the transaction must be rolled back.
In the general case of immediate update, both undo and redo may be required during
recovery. This technique, known as the UNDO/REDO algorithm, requires both operations,
and is used most often in practice. A variation of the algorithm where all updates are
recorded in the database before a transaction commits requires undo only, so it is known
as the UNDO/NO-REDO algorithm. We discuss these techniques in Section 19.3.

19.1.2 Caching (Buffering) of Disk Blocks
The recovery process is often closely intertwined with operating system functions-in
particular, the buffering and caching of disk pages in main memory. Typically, one or more
diskpages that include the data items to be updated are cached into main memory buffers
and then updated in memory before being written back to disk. The caching of disk pages
is traditionally an operating system function, but because of its importance to the effi
ciency of recovery procedures, it is handled by the DBMS by calling low-level operating
systems routines.

In general, it is convenient to consider recovery in terms of the database disk pages
(blocks). Typically a collection of in-memory buffers, called the DBMS cache, is kept
under the control of the DBMS for the purpose of holding these buffers. A directory for
the cache is used to keep track of which database items are in the buffers.' This can be a
table of <disk page address, buffer location> entries. When the DBMS requests
action on some item, it first checks the cache directory to determine whether the disk
page containing the item is in the cache. If it is not, then the item must be located on
disk, and the appropriate disk pages are copied into the cache. It may be necessary to
replace (or flush) some of the cache buffers to make space available for the new item.
Some page-replacement strategy from operating systems, such as least recently used (LRU)
or first-in-first-out (FIFO), can be used to select the buffers for replacement.

Associated with each buffer in the cache is a dirty bit, which can be included in the
directory entry, to indicate whether or not the buffer has been modified. When a page is
first read from the database disk into a cache buffer, the cache directory is updated with the
new disk page address, and the dirty bit is set to a (zero). As soon as the buffer is modified,
the dirty bit for the corresponding directory entry is set to 1 (one). When the buffer
contents are replaced (flushed) from the cache, the contents must first be written back to
the corresponding disk page only if its dirty bit is 1. Another bit, called the pin-unpin bit, is
alsoneeded-a page in the cache is pinned (bit value 1 (one» if it cannot be written back
to disk as yet.

Two main strategies can be employed when flushing a modified buffer back to disk.
The first strategy, known as in-place updating, writes the buffer back to the same original
disk location, thus overwriting the old value of any changed data items on disk,z Hence, a
single copy of each database disk block is maintained. The second strategy, known as
shadowing, writes an updated buffer at a different disk location, so multiple versions of

1.This is somewhat similar to the concept of page tables used by the operating system.
2. In-place updating is used in most systems in practice.

614 I Chapter 19 Database Recovery Techniques

data items can be maintained. In general, the old value of the data item before updating is
called the before image (BFIM), and the new value after updating is called the after image
(AFIM). In shadowing, both the BFIM and the AFIM can be kept on disk; hence, it is not
strictly necessary to maintain a log for recovering. We briefly discuss recovery based on
shadowing in Section 19.4.

19.1.3 Write-Ahead Logging, Steal/No-Steal, and
Force/No-Force

When in-place updating is used, it is necessary to use a log for recovery (see Section
17.2.2). In this case, the recovery mechanism must ensure that the BFIM of the data item
is recorded in the appropriate log entry and that the log entry is flushed to disk before the
BFIM is overwritten with the AFIM in the database on disk. This process is generally
known as write-ahead logging. Before we can describe a protocol for write-ahead logging,
we need to distinguish between two types of log entry information included for a write
command: (1) the information needed for UNDO and (2) that needed for REDO. A REDO

type log entry includes the new value (AFIM) of the item written by the operation since
this is needed to redo the effect of the operation from the log (by setting the item value in
the database to its AFIM). The UNDO-type log entries include the old value (BFIM) of the
item since this is needed to undo the effect of the operation from the log (by setting the
item value in the database back to its BFIM). In an UNDO/REDO algorithm, both types of
log entries are combined. In addition, when cascading rollback is possible, read_item

entries in the log are considered to be UNDO-type entries (see Section 19.1.5).
As mentioned, the DBMS cache holds the cached database disk blocks, which include

not only data blocks but also index blocks and logblocks from the disk. When a log record is
written, it is stored in the current log block in the DBMS cache. The log is simply a
sequential (append-only) disk file and the DBMS cache may contain several log blocks (for
example, the last n log blocks) that will be written to disk. When an update to a data
block-stored in the DBMS cache-is made, an associated log record is written to the last
log block in the DBMS cache. With the write-ahead logging approach, the log blocks that
contain the associated log records for a particular data block update must first be written
to disk before the data block itself can be written back to disk.

Standard DBMS recovery terminology includes the terms steal/no-steal and force/no
force, which specify when a page from the database can be written to disk from the cache:

1. If a cache page updated by a transaction cannot be written to disk before the trans
action commits, this is called a no-steal approach. The pin-unpin bit indicates if
a page cannot be written back to disk. Otherwise, if the protocol allows writing an
updated buffer before the transaction commits, it is called steal. Steal is used when
the DBMS cache (buffer) manager needs a buffer frame for another transaction and
the buffer manager replaces an existing page that had been updated but whose
transaction has not committed.

2. If all pages updated by a transaction are immediately written to disk when the trans
action commits, this is called a force approach. Otherwise, it is called no-force.

19.1 Recovery Concepts I 615

The deferred update recovery scheme in Section 19.2 follows a no-steal approach.
However, typical database systems employ a steal/no-force strategy. The advantage of steal
isthat it avoids the need for a very large buffer space to store all updated pages in memory.
The advantage of no-force is that an updated page of a committed transaction may still be
in the buffer when another transaction needs to update it, thus eliminating the I/O cost to
read that page again from disk. This may provide a substantial saving in the number of I/O
operations when a specific page is updated heavily by multiple transactions.

To permit recovery when in-place updating is used, the appropriate entries required
for recovery must be permanently recorded in the logon disk before changes are applied to
the database. For example, consider the following write-ahead logging (WAL) protocol
for a recovery algorithm that requires both UNDO and REDO:

1. The before image of an item cannot be overwritten by its after image in the data
base on disk until all UNDO-type log records for the updating transaction-up to
this point in time-have been force-written to disk.

2. The commit operation of a transaction cannot be completed until all the REDO-type
and UNDO-type log records for that transaction have been force-written to disk.

To facilitate the recovery process, the DBMS recovery subsystem may need to maintain
a number of lists related to the transactions being processed in the system. These include a
list for active transactions that have started but not committed as yet, and it may also
include lists of all committed and aborted transactions since the last checkpoint (see next
section). Maintaining these lists makes the recovery process more efficient.

19.1.4 Checkpoints in the System log and
Fuzzy Checkpointing

Another type of entry in the log is called a checkpoint.l A [checkpoi nt] record is writ
ten into the log periodically at that point when the system writes out to the database on
disk all DBMS buffers that have been modified. As a consequence of this, all transactions
that have their [commi t, T] entries in the log before a [checkpoi nt] entry do not need to
have their WRITE operations redone in case of a system crash, since all their updates will
be recorded in the database on disk during checkpointing.

The recovery manager of a DBMS must decide at what intervals to take a checkpoint.
The interval may be measured in time-say, every m minutes-or in the number t of
committed transactions since the last checkpoint, where the values of m or t are system
parameters. Taking a checkpoint consists of the following actions:

1. Suspend execution of transactions temporarily.

2. Force-write all main memory buffers that have been modified to disk.

3. Write a [checkpoi nt] record to the log, and force-write the log to disk.

4. Resume executing transactions.

--- --------- ------- --~---~----

3. The term checkpoint has been used to describe more restrictive situations in somesystems, such as
DB2. It has also been used in the literature to describe entirely different concepts.

616 I Chapter 19 Database Recovery Techniques

As a consequence of step 2, a checkpoint record in the log may also include
additional information, such as a list of active transaction ids, and the locations
(addresses) of the first and most recent (last) records in the log for each active
transaction. This can facilitate undoing transaction operations in the event that a
transaction must be rolled back.

The time needed to force-write all modified memory buffers may delay transaction
processing because of step 1. To reduce this delay, it is common to use a technique called
fuzzy checkpointing in practice. In this technique, the system can resume transaction
processing after the [checkpoi nt] record is written to the log without having to wait for
step 2 to finish. However, until step 2 is completed, the previous [checkpoi nt] record
should remain valid. To accomplish this, the system maintains a pointer to the valid
checkpoint, which continues to point to the previous [checkpoi nt] record in the log. Once
step 2 is concluded, that pointer is changed to point to the new checkpoint in the log.

19.1.5 Transaction Rollback
If a transaction fails for whatever reason after updating the database, it may be necessary to
roll back the transaction. If any data item values have been changed by the transaction and
written to the database, they must be restored to their previous values (BFIMs). The undo
type log entries are used to restore the old values of data items that must be rolled back.

If a transaction T is rolled back, any transaction S that has, in the interim, read the
value of some data item X written by T must also be rolled back. Similarly, once S is rolled
back, any transaction R that has read the value of some data item Y written by S must also
be rolled back; and so on. This phenomenon is called cascading rollback, and can occur
when the recovery protocol ensures recoverable schedules but does not ensure strict or
cascadeless schedules (see Section 17.4.2). Cascading rollback, understandably, can be
quite complex and time-consuming. That is why almost all recovery mechanisms are
designed such that cascading rollback is never required.

Figure 19.1 shows an example where cascading rollback is required. The read and
write operations of three individual transactions are shown in Figure 19.1a. Figure 19.1b
shows the system log at the point of a system crash for a particular execution schedule of
these transactions. The values of data items A, B, C, and 0, which are used by the
transactions, are shown to the right of the system log entries. We assume that the original
item values, shown in the first line, are A = 30, B = 15, C = 40, and 0 = 20. At the point
of system failure, transaction T 3 has not reached its conclusion and must be rolled back.
The WRITE operations of T3 , marked by a single * in Figure 19.1b, are the T3 operations
that are undone during transaction rollback. Figure 19.1c graphically shows the
operations of the different transactions along the time axis.

We must now check for cascading rollback. From Figure 19.1c we see that
transaction T z reads the value of item B that was written by transaction T3; this can also
be determined by examining the log. Because T3 is rolled back, Tz must now be rolled
back, too. The WRITE operations of T z, marked by ** in the log, are the ones that are
undone. Note that only write_item operations need to be undone during transaction
rollback; read_item operations are recorded in the log only to determine whether
cascading rollback of additional transactions is necessary.

(a) T1

read_item(A)
read_item(O)
write_item(O)

T2

read_item(B)
write_item(B)
read_item(O)
write_item(O)

T~ __
read_item(C)
write3em(B)
read_item(A)
write_item(A)

19.1 Recovery Concepts I 617

(b) A B
30 15

C
40

o
20

[startjransactlon, T3]

[read_item, T3,C]
[write_item, T3,B, 15,12]
[starttransaction, T2]

[read_item, T2,B]

[write_item, T2,B,12,18]
[starUransaction,1;]
[read_item, T1,A]

[read_item, 1;,0]
[write_item, T1,O,20,25]

[read_item, T2,0]

[write_item, T2,O,25,26]

[read_item,T3,A]

12

18

25

26

f- system crash

'T« is rolled back because it did not reach its commit point.
"T2 is rolled back because it reads the value of item 8 written by Ts.

(c)

READ(C)
I I

TS1 I
BEGIN

WRITE(B)
I
I

I

I RE~D(A)
T1 1 I
BEGIN

I I

READ(A)
I
I

~Time

system crash

FIGURE 19.1 Illustrating cascading rollback (a process that never occurs in strict or
cascadeless schedules). (a) The read and write operations of three transactions.
(b) System log at point of crash. (c) Operations before the crash.

In practice, cascading rollback of transactions is never required because practical
recovery methods guarantee cascadeless or strict schedules. Hence, there is also no need
to record any read_item operations in the log, because these are needed only for
determining cascading rollback.

618 I Chapter 19 Database Recovery Techniques

19.2 RECOVERY TECHNIQUES BASED ON
DEFERRED UPDATE

The idea behind deferred update techniques is to defer or postpone any actual updates to
the database until the transaction completes its execution successfully and reaches its
commit point." During transaction execution, the updates are recorded only in the log
and in the cache buffers. After the transaction reaches its commit point and the log is
force-written to disk, the updates are recorded in the database. If a transaction fails before
reaching its commit point, there is no need to undo any operations, because the transac
tion has not affected the database on disk in any way. Although this may simplify recov
ery, it cannot be used in practice unless transactions are short and each transaction
changes few items. For other types of transactions, there is the potential for running out
of buffer space because transaction changes must be held in the cache buffers until the
commit point.

We can state a typical deferred update protocol as follows:

1. A transaction cannot change the database on disk until it reaches its commit point.

2. A transaction does not reach its commit point until all its update operations are
recorded in the log and the log is force-written to disk.

Notice that step 2 of this protocol is a restatement of the write-ahead logging (WAL)
protocol. Because the database is never updated on disk until after the transaction
commits, there is never a need to UNDO any operations. Hence, this is known as the NO

UNDO/REDO recovery algorithm. REDO is needed in case the system fails after a
transaction commits but before all its changes are recorded in the database on disk. In this
case, the transaction operations are redone from the log entries.

Usually, the method of recovery from failure is closely related to the concurrency
control method in multiuser systems. First we discuss recovery in single-user systems,
where no concurrency control is needed, so that we can understand the recovery process
independently of any concurrency control method. We then discuss how concurrency
control may affect the recovery process.

19.2.1 Recovery Using Deferred Update in a
Single-User Environment

In such an environment, the recovery algorithm can be rather simple. The algorithm RDU_S

(Recovery using Deferred Update in a Single-user environment) uses a REDO procedure,
given subsequently, for redoing certain wri te_item operations; it works as follows:

PROCEDURE RDU_S: Use two lists of transactions: the committed transactions since
the last checkpoint, and the active transactions (at most one transaction will fall in
this category, because the system is single-user). Apply the REDO operation to all the

4. Hence deferred updare can generally be characrerized as a no-stealapproach.

19.2 Recovery Techniques Based on Deferred Update I 619

WRITE_ITEM operations of the committed transactions from the log in the order in
which they were written to the log. Restart the active transactions.

The REDO procedure is defined as follows:

REDO(WRITE_OP): Redoing a wri te_i tern operation WRITE_OP consists of examining
its log entry [write_itern,T,X,new_value] and setting the value of item X in the
database to new_val ue, which is the after image (AFIM).

The REDO operation is required to be idempotent-that is, executing it over and over
is equivalent to executing it just once. In fact, the whole recovery process should be
idempotent. This is so because, if the system were to fail during the recovery process, the
next recovery attempt might REDO certain wri te_i tern operations that had already been
redone during the first recovery process. The result of recovery from a system crash during
recovery should be the same as the result of recovering when there is no crash during recovery!

Notice that the only transaction in the active list will have had no effect on the
database because of the deferred update protocol, and it is ignored completely by the
recovery process because none of its operations were reflected in the database on disk.
However, this transaction must now be restarted, either automatically by the recovery
process or manually by the user.

Figure 19.2 shows an example of recovery in a single-user environment, where the
first failure occurs during execution of transaction Tv as shown in Figure 19.2b. The
recovery process will redo the [wri te_i tern, T1, D, 20] entry in the log by resetting the
valueof item D to 20 (its new value). The [wri te, T2, ...] entries in the log are ignored
by the recovery process because T 2 is not committed. If a second failure occurs during
recovery from the first failure, the same recovery process is repeated from start to finish,
with identical results.

T1
------ ------

read_item(A)
read_item(D)
write3em(D)

(a)

(b)

T2

read_item(B)
write_item(B)
read_item(D)
write_item(D)

[startjransaction, T1]

[write_item, T1,D,20]

[commit, T11
[start jransacnon, T21
[write_item, T2 , B,10]
[write_item, T2,D,25] +-system crash

The [write_item,...] operations of T1 are redone.
T2 log entries are ignored by the recovery process.

FIGURE 19.2 An example of recovery using deferred update in a single-user envi
ronment. (a) The READ and WRITE operations of two transactions. (b) The system log at
the point of crash.

620 I Chapter 19 Database Recovery Techniques

19.2.2 Deferred Update with Concurrent
Execution in a Multiuser Environment

For multiuser systems with concurrency control, the recovery process may be more com
plex, depending on the protocols used for concurrency control. In many cases, the con
currency control and recovery processes are interrelated. In general, the greater the
degree of concurrency we wish to achieve, the more time consuming the task of recovery
becomes.

Consider a system in which concurrency control uses strict two-phase locking, so the
locks on items remain in effect until the transaction reaches its commit point. After that, the
locks can be released. This ensures strict and serializable schedules. Assuming that
[checkpoi nt] entries are included in the log, a possible recovery algorithm for this case,
which we call RDU_M (Recovery using Deferred Update in a Multiuser environment), is
given next. This procedure uses the REDO procedure defined earlier.

PROCEDURE RDU_M (WITH CHECKPOINTS): Use two lists of transactions main
tained by the system: the committed transactions T since the last checkpoint (com
mit list), and the active transactions T' (active list). REDO all the WRITE operations
of the committed transactions from the log, in the order in which they were written into
the log. The transactions that are active and did not commit are effectively canceled
and must be resubmitted.

Figure 19.3 shows a possible schedule of executing transactions. When the check
point was taken at time t), transaction T) had committed, whereas transactions T3 and T4
had not. Before the system crash at time t2, T 3 and T 2 were committed but not T4 and Ts.
According to the RDU_M method, there is no need to redo the wri te_i tern operations of
transaction T I-or any transactions committed before the last checkpoint time t). Wri re_
i tern operations of T 2 and T 3 must be redone, however, because both transactions reached

T2 - - - - - -

T3 ------+------

T4 ---+----------------------1

Ts 1

j 11

checkpoint~

12 j

system crash~

Time

FIGURE 19.3 An example of recovery in a multiuser environment.

19.2 Recovery Techniques Based on Deferred Update I 621

their commit points after the last checkpoint. Recall that the log is force-written before
committing a transaction. Transactions T 4 and T 5 are ignored: They are effectively
canceled or rolled back because none of their wri te_i tern operations were recorded in
the database under the deferred update protocol. We will refer to Figure 19.3 later to

illustrate other recovery protocols.
We can make the NO-UNDO/REDO recovery algorithm more efficientby noting that, if

a data item X has been updated-as indicated in the log entries-more than once by
committed transactions since the last checkpoint, it is only necessary to REDO the last
update of X from the log during recovery. The other updates would be overwritten by this
last REDO in any case. In this case, we start from the end of the log; then, whenever an item
isredone, it is added to a list of redone items. Before REDO is applied to an item, the list is
checked; if the item appears on the list, it is not redone again, since its last value has
already been recovered.

If a transaction is aborted for any reason (say, by the deadlock detection method), it
is simply resubmitted, since it has not changed the database on disk. A drawback of the
method described here is that it limits the concurrent execution of transactions because
all items remain locked until the transaction reaches its commit point. In addition, it may
require excessive buffer space to hold all updated items until the transactions commit.
The method's main benefit is that transaction operations never need to be undone, for two
reasons:

1. A transaction does not record any changes in the database on disk until after it
reaches its commit point-that is, until it completes its execution successfully.
Hence, a transaction is never rolled back because of failure during transaction
execution.

2. A transaction will never read the value of an item that is written by an uncom
mitted transaction, because items remain locked until a transaction reaches its
commit point. Hence, no cascading rollback will occur.

Figure 19.4 shows an example of recovery for a multiuser system that utilizes the
recovery and concurrency control method just described.

19.2.3 Transaction Actions That Do Not Affect
the Database

In general, a transaction will have actions that do not affect the database, such as generat
ing and printing messages or reports from information retrieved from the database. If a
transaction fails before completion, we may not want the user to get these reports, since
the transaction has failed to complete. If such erroneous reports are produced, part of the
recovery process would have to inform the user that these reports are wrong, since the
user may take an action based on these reports that affects the database. Hence, such
reports should be generated only after the transaction reaches its commit point. A common
method of dealing with such actions is to issue the commands that generate the reports
but keep them as batch jobs, which are executed only after the transaction reaches its
commit point. If the transaction fails, the batch jobs are canceled.

622 I Chapter 19 Database Recovery Techniques

T1

(a) read_item(A)
read_item(D)
write_item(D)

T2

read_item(B)
write_item(B)
read_item(D)
write_item(D)

T3

read_item(A)
write_item(A)
read_item(C)

write_item(C)

T4

read_item(B)
write_item(B)
read_item(A)

write_item(A)

(b) [start_transaction, T1i
[write_item, T1,D,20j

[commit,T1]

[checkpoint]

[start_transaction, T4]

[write_item, h B,15]

[write_item, T4,A,20]

[commit, T4]

[start_transaction, T2]

[write_item, T2, B,12]

[startjransaction, T3]

[write_item, T3,A,30]

[write_item, T2,D,25] system crash

Tz and T3 are ignored because they did not reach their commit points.
~ is redone because its commit point is after the last system checkpoint.

FIGURE 19.4 An example of recovery using deferred update with concurrent trans
actions. (a) The READ and WRITE operations of four transactions. (b) System log at the
point of crash.

19.3 RECOVERY TECHNIQUES BASED ON
IMMEDIATE UPDATE

In these techniques, when a transaction issues an update command, the database can be
updated "immediately," without any need to wait for the transaction to reach its commit
point. In these techniques, however, an update operation must still be recorded in the log
(on disk) before it is applied to the database-using the write-ahead logging protocol-so
that we can recover in case of failure.

Provisions must be made for undoing the effect of update operations that have been
applied to the database by a failed transaction. This is accomplished by rolling back the
transaction and undoing the effect of the transaction's wri te_i tern operations. Theoretically,
we can distinguish two main categories of immediate update algorithms. If the recovery
technique ensures that all updates of a transaction are recorded in the database on disk before
the transaction commits, there is never a need to REDO any operations of committed trans
actions. This is called the UNDO!NO-REDO recovery algorithm. On the other hand, if the

19.3 Recovery Techniques Based on Immediate Update I 623

transaction is allowed to commit before all its changes are written to the database, we have
the most general case, known as the UNDO/REDO recovery algorithm. This is also the most
complex technique. Next, we discuss two examples of UNDO/REDO algorithms and leave it as
an exercise for the reader to develop the UNDO/NO-REDO variation. In Section 19.5, we
describe a more practical approach known as the ARIES recovery technique.

19.3.1 UNDO/REDO Recovery Based on Immediate
Update in a Single-User Environment

In a single-user system, if a failure occurs, the executing (active) transaction at the time
of failure may have recorded some changes in the database. The effect of all such opera
tions must be undone. The recovery algorithm RIU_S (Recovery using Immediate Update
in a Single-user environment) uses the REDO procedure defined earlier, as well as the
UNDO procedure defined below.

PROCEDURE RIU_S

1. Use two lists of transactions maintained by the system: the committed transac
tions since the last checkpoint and the active transactions (at most one transac
tion will fall in this category, because the system is single-user).

2. Undo all the wri te_i tern operations of the active transaction from the log, using
the UNDO procedure described below.

3. Redo the wr i te_; tern operations of the committed transactions from the log, in the
order in which they were written in the log, using the REDO procedure described earlier.

The UNDO procedure is defined as follows:

UNDO(WRITE_OP): Undoing a wri te_i tern operation wri te_op consists of examin
ing its log entry [write_;tern,T,X,01d_va1ue,new_va1ue] and setting the value of
item X in the database to 01d_va1 ue which is the before image (BFIM). Undoing a num
ber of wri te_; tern operations from one or more transactions from the log must proceed
in the reverse order from the order in which the operations were written in the log.

19.3.2 UNDO/REDO Recovery Based on Immediate
Update with Concurrent Execution

When concurrent execution is permitted, the recovery process again depends on the pro
tocols used for concurrency control. The procedure RIU_M (Recovery using Immediate
Updates for a Multiuser environment) outlines a recovery algorithm for concurrent trans
actions with immediate update. Assume that the log includes checkpoints and that the
concurrency control protocol produces strict schedules-as, for example, the strict two
phase locking protocol does. Recall that a strict schedule does not allow a transaction to
read or write an item unless the transaction that last wrote the item has committed (or
aborted and rolled back). However, deadlocks can occur in strict two-phase locking, thus

624 I Chapter 19 Database Recovery Techniques

requiring abort and UNDO of transactions. For a strict schedule, UNDO of an operation
requires changing the item back to its old value (BFIM).

PROCEDURE RIU_M

1. Use two lists of transactions maintained by the system: the committed transac
tions since the last checkpoint and the active transactions.

2. Undo all the wri te_item operations of the active (uncommitted) transactions,
using the UNDO procedure. The operations should be undone in the reverse of the
order in which they were written into the log.

3. Redo all the wri te_item operations of the committed transactions from the log, in
the order in which they were written into the log.

As we discussed in Section 19.2.2, step 3 is more efficiently done by starting from the
end of the logand redoing only the last update of each item X. Whenever an item is redone,
it is added to a list of redone items and is not redone again. A similar procedure can be
devised to improve the efficiency of step 2.

19.4 SHADOW PAGING
This recovery scheme does not require the use of a log in a single-user environment. In a
multiuser environment, a log may be needed for the concurrency control method. Shadow
paging considers the database to be made up of a number of fixed-size disk pages (or disk
blocks)-say, n-for recovery purposes. A directory with n entries' is constructed, where the
ith entry points to the ith database page on disk. The directory is kept in main memory if it is
not too large, and all references-reads or writes-to database pages on disk go through it.
When a transaction begins executing, the current directory-whose entries point to the
most recent or current database pages on disk-is copied into a shadow directory. The
shadow directory is then saved on disk while the current directory is used by the transaction.

During transaction execution, the shadow directory is never modified. When a wri te_
item operation is performed, a new copy of the modified database page is created, but the
old copy of that page is not overwritten. Instead, the new page is written elsewhere-on
some previously unused disk block. The current directory entry is modified to point to the
new disk block, whereas the shadow directory is not modified and continues to point to the
old unmodified disk block. Figure 19.5 illustrates the concepts of shadow and current
directories. For pages updated by the transaction, two versions are kept. The old version is
referenced by the shadow directory, and the new version by the current directory.

To recover from a failure during transaction execution, it is sufficient to free the
modified database pages and to discard the current directory. The state of the database
before transaction execution is available through the shadow directory, and that state is
recovered by reinstating the shadow directory. The database thus is returned to its state

5. The directory is similar to the page table maintained by the operating system for each process.

19.5 The ARIES Recovery Algorithm I 625

database disk blocks (pages)

current directory
(afterupdating pages 2, 5)

1

2

3

4

5

6

page 5
(old)

shadow directory
(not updated)

r-_-=:::"~:--~--11
f-- -----j2

--~k------i3
f-'<:- -----j4

1- -1:=:;---1 5

f-------j '- --' 6

page 2
(new)

page 5
(new)

FIGURE 19.5 An example of shadow paging.

prior to the transaction that was executing when the crash occurred, and any modified
pages are discarded. Committing a transaction corresponds to discarding the previous
shadow directory. Since recovery involves neither undoing nor redoing data items, this
technique can be categorized as a NO-UNDO/NO-REDO technique for recovery.

In a multiuser environment with concurrent transactions, logs and checkpoints must be
incorporated into the shadow paging technique. One disadvantage of shadow paging is that
the updated database pages change location on disk. This makes it difficult to keep related
database pages close together on disk without complex storage management strategies.
Furthermore, if the directory is large, the overhead of writing shadow directories to disk as
transactions commit is significant. A further complication is how to handle garbage collection
when a transaction commits. The old pages referenced by the shadow directory that have
been updated must be released and added to a list of free pages for future use. These pages are
no longer needed after the transaction commits. Another issue is that the operation to migrate
between current and shadow directories must be implemented as an atomic operation.

19.5 TH EARl ES RECOVERY ALGORITHM
We now describe the ARIES algorithm as an example of a recovery algorithm used in data
base systems. ARIES uses a steal/no-force approach for writing, and it is based on three
concepts: (l) write-ahead logging, (2) repeating history during redo, and (3) logging

626 I Chapter 19 Database Recovery Techniques

changes during undo. We already discussed write-ahead logging in Section 19.1.3. The
second concept, repeating history, means that ARIES will retrace all actions of the data
base system prior to the crash to reconstruct the database state when the crash occurred.
Transactions that were uncommitted at the time of the crash (active transactions) are
undone. The third concept, logging during undo, will prevent ARIES from repeating the
completed undo operations if a failure occurs during recovery, which causes a restart of
the recovery process.

The ARIES recovery procedure consists of three main steps: (1) analysis, (2) REDO and
(3) UNDO. The analysis step identifies the dirty (updated) pages in the buffer," and the
set of transactions active at the time of the crash. The appropriate point in the log where
the REDO operation should start is also determined. The REDO phase actually reapplies
updates from the log to the database. Generally, the REDO operation is applied to only
committed transactions. However, in ARIES, this is not the case. Certain information in
the ARIES log will provide the start point for REDO, from which REDO operations are
applied until the end of the log is reached. In addition, information stored by ARIES and
in the data pages will allow ARIES to determine whether the operation to be redone has
actually been applied to the database and hence need not be reapplied. Thus only the
necessary REDO operations are applied during recovery. Finally, during the UNDO phase,
the log is scanned backwards and the operations of transactions that were active at the
time of the crash are undone in reverse order. The information needed for ARIES to
accomplish its recovery procedure includes the log, the Transaction Table, and the Dirty
Page Table. In addition, checkpointing is used. These two tables are maintained by the
transaction manager and written to the log during checkpointing.

In ARIES, every log record has an associated log sequence number (LSN) that is
monotonically increasing and indicates the address of the log record on disk. Each LSN

corresponds to a specific change (action) of some transaction. In addition, each data page
will store the LSN of the latest logrecord corresponding to a change for that page. A log record
is written for any of the following actions: updating a page (write), committing a
transaction (commit), aborting a transaction (abort), undoing an update (undo), and
ending a transaction (end). The need for including the first three actions in the log has
been discussed, but the last two need some explanation. When an update is undone, a
compensation log record is written in the log. When a transaction ends, whether by
committing or aborting, an end logrecord is written.

Common fields in all log records include: (1) the previous LSN for that transaction,
(2) the transaction ID, and (3) the type of log record. The previous LSN is important
because it links the log records (in reverse order) for each transaction. For an update
(write) action, additional fields in the log record include: (4) the page ID for the page that
includes the item, (5) the length of the updated item, (6) its offset from the beginning of
the page, (7) the before image of the item, and (8) its after image.

6. The actual buffers may be lost during a crash, since they are in main memory. Additional tables
stored in the log during checkpointing (Dirty Page Table, Transaction Table) allow ARIES to iden
tify this information (see next page).

19.5 The ARIES Recovery Algorithm I 627

Besides the log, two tables are needed for efficient recovery: the Transaction Table
and the Dirty Page Table, which are maintained by the transaction manager. When a
crash occurs, these tables are rebuilt in the analysis phase of recovery. The Transaction
Table contains an entry for each active transaction, with information such as the
transaction ID, transaction status, and the LSN of the most recent log record for the
transaction. The Dirty Page Table contains an entry for each dirty page in the buffer,
which includes the page ID and the LSN corresponding to the earliest update to that page.

Checkpointing in ARIES consists of the following: (1) writing a begi n_checkpoi nt
record to the log, (2) writing an end_checkpoi nt record to the log, and (3) writing the
LSN of the begi n_checkpoi nt record to a special file. This special file is accessed during
recovery to locate the last checkpoint information. With the end_checkpoi nt record, the
contents of both the Transaction Table and Dirty Page Table are appended to the end of
the log. To reduce the cost, fuzzy checkpointing is used so that the DBMS can continue to
execute transactions during checkpointing (see Section 19.1.4). In addition, the contents
of the DBMS cache do not have to be flushed to disk during checkpoint, since the
Transaction Table and Dirty Page Table-which are appended to the log on disk
contain the information needed for recovery. Notice that if a crash occurs during
checkpointing, the special file will refer to the previous checkpoint, which is used for
recovery.

After a crash, the ARIES recovery manager takes over. Information from the last
checkpoint is first accessed through the special file. The analysis phase starts at the
begin_checkpoi nt record and proceeds to the end of the log. When the end_checkpoi nt
record is encountered, the Transaction Table and Dirty Page Table are accessed (recall
that these tables were written in the log during checkpointing). During analysis, the log
records being analyzed may cause modifications to these two tables. For instance, if an
end log record was encountered for a transaction T in the Transaction Table, then the
entry for T is deleted from that table. If some other type of log record is encountered for a
transaction T', then an entry for T' is inserted into the Transaction Table, if not already
present, and the last LSN field is modified. If the log record corresponds to a change for
page P, then an entry would be made for page P (if not present in the table) and the
associated LSN field would be modified. When the analysis phase is complete, the
necessary information for REDO and UNDO has been compiled in the tables.

The REDO phase follows next. To reduce the amount of unnecessary work, ARIES

starts redoing at a point in the log where it knows (for sure) that previous changes to dirty
pages have already been applied to the database on disk. It can determine this by finding the
smallest LSN, M, of all the dirty pages in the Dirty Page Table, which indicates the log
position where ARIES needs to start the REDO phase. Any changes corresponding to a LSN

< M, for redoable transactions, must have already been propagated to disk or already
been overwritten in the buffer; otherwise, those dirty pages with that LSN would be in the
buffer (and the Dirty Page Table). SO, REDO starts at the log record with LSN = M and
scans forward to the end of the log. For each change recorded in the log, the REDO

algorithm would verify whether or not the change has to be reapplied. For example, if a
change recorded in the log pertains to page P that is not in the Dirty Page Table, then this
change is already on disk and need not be reapplied. Or, if a change recorded in the log
(with LSN = N, say) pertains to page P and the Dirty Page Table contains an entry for P

628 I Chapter 19 Database Recovery Techniques

with LSN greater than N, then the change is already present. If neither of these two
conditions hold, page P is read from disk and the LSN stored on that page, LSN(P), is
compared with N. If N < LSN(P), then the change has been applied and the page need
not be rewritten to disk.

Once the REDOphase is finished, the database is in the exact state that it was in when the
crash occurred. The set of active transactions---ealled the undo_set-has been identified in
the Transaction Table during the analysis phase. Now, the UNDO phase proceeds by scanning
backward from the end of the log and undoing the appropriate actions. A compensating log
record is written for each action that is undone. The UNDO reads backward in the log until
every action of the set of transactions in the undo_set has been undone. When this is
completed, the recovery process is finished and normal processing can begin again.

Consider the recovery example shown in Figure 19.6. There are three transactions:
T j , r; and T3• T j updates page C, r, updates pages Band C, and T 3 updates page A.
Figure 19.6 (a) shows the partial contents of the log and (b) shows the contents of the
Transaction Table and Dirty Page Table. Now, suppose that a crash occurs at this point.

(a)
LSN LAST_LSN TRAN_ID TYPE PAGE_ID OTHER INFORMATION

1 0 T1 update C
2 0 T2 update B
3 1 T1 commit
4 begin checkpoint
5 end checkpoint
6 0 T3 update A
7 2 T2 update C
8 7 T2 commit

(b)
TRANSACTION TABLE DIRTY PAGE TABLE

TRANSACTION ID LASTLSN STATUS PAGE fD LSN

T1 3 commit C 1
T2 2 in progress B 2

(c)
TRANSACTION TABLE DIRTY PAGE TABLE

TRANSACTION ID LAST LSN STATUS PAGE ID LSN

T1 3 commit C 1
T2 8 commit B 2
T3 6 in progress A 6

FIGURE 19.6 An example of recovery in ARIES. (a) The log at point of crash. (b) The
Transaction and Dirty Page Tables at time of checkpoint. (c) The Transaction and
Dirty Page Tables after the analysis phase.

19.6 Recovery in Multidatabase Systems I 629

Since a checkpoint has occurred, the address of the associated begi n_checkpoi nt record
isretrieved, which is location 4. The analysis phase starts from location 4 until it reaches
the end. The end_checkpoi nt record would contain the Transaction Table and Dirty
Page table in Figure 19.6b, and the analysis phase will further reconstruct these tables.
When the analysis phase encounters log record 6, a new entry for transaction T 3 is made
in the Transaction Table and a new entry for page A is made in the Dirty Page table. After
log record 8 is analyzed, the status of transaction Tz is changed to committed in the
Transaction Table. Figure 19.6c shows the two tables after the analysis phase.

For the REDO phase, the smallest LSN in the Dirty Page table is 1. Hence the REDO
will start at log record 1 and proceed with the REDO of updates. The LSNs {I, 2, 6, 7}
corresponding to the updates for pages C, B, A, and C, respectively, are not less than the
LSNs of those pages (as shown in the Dirty Page table). So those data pages will be read
again and the updates reapplied from the log (assuming the actual LSNs stored on those
data pages are less then the corresponding log entry). At this point, the REDO phase is
finished and the UNDO phase starts. From the Transaction Table (Figure 19.6c), UNDO is
applied only to the active transaction T3 . The UNDO phase starts at log entry 6 (the last
update for T3) and proceeds backward in the log. The backward chain of updates for
transaction T3 (only log record 6 in this example) is followed and undone.

19.6 RECOVERY IN MULTIDATABASE SYSTEMS
So far, we have implicitly assumed that a transaction accesses a single database. In some
cases a single transaction, called a multidatabase transaction, may require access to mul
tipledatabases. These databases may even be stored on different types of DBMSs; for exam
ple, some DBMSs may be relational, whereas others are object-oriented, hierarchical, or
network DBMSs. In such a case, each DBMS involved in the multidatabase transaction may
have its own recovery technique and transaction manager separate from those of the
other DBMSs. This situation is somewhat similar to the case of a distributed database man
agement system (see Chapter 25), where parts of the database reside at different sites that
are connected by a communication network.

To maintain the atomicity of a multidatabase transaction, it is necessary to have a
two-level recovery mechanism. A global recovery manager, or coordinator, is needed to
maintain information needed for recovery, in addition to the local recovery managers and
the information they maintain (log, tables). The coordinator usually follows a protocol
called the two-phase commit protocol, whose two phases can be stated as follows:

• Phase 1: When all participating databases signal the coordinator that the part of the
multidatabase transaction involving each has concluded, the coordinator sends a
message "prepare for commit" to each participant to get ready for committing the
transaction. Each participating database receiving that message will force-write all
log records and needed information for local recovery to disk and then send a "ready
to commit" or "OK" signal to the coordinator. If the force-writing to disk fails or the
local transaction cannot commit for some reason, the participating database sends a
"cannot commit" or "not OK" signal to the coordinator. If the coordinator does not

630 I Chapter 19 Database Recovery Techniques

receive a reply from a database within a certain time out interval, it assumes a "not
OK" response.

• Phase 2: If all participating databases reply "OK," and the coordinator's vote is also
"OK," the transaction is successful, and the coordinator sends a "commit" signal for
the transaction to the participating databases. Because all the local effects of the
transaction and information needed for local recovery have been recorded in the logs
of the participating databases, recovery from failure is now possible. Each participat
ing database completes transaction commit by writing a [commit] entry for the trans
action in the log and permanently updating the database if needed. On the other
hand, if one or more of the participating databases or the coordinator have a "not
OK" response, the transaction has failed, and the coordinator sends a message to "toll
back" or UNDO the local effect of the transaction to each participating database. This
is done by undoing the transaction operations, using the log.

The net effect of the two-phase commit protocol is that either all participating
databases commit the effect of the transaction or none of them do. In case any of the
participants-or the coordinator-fails, it is always possible to recover to a state where
either the transaction is committed or it is rolled back. A failure during or before Phase 1
usually requires the transaction to be rolled back, whereas a failure during Phase 2 means
that a successful transaction can recover and commit.

19.7 DATABASE BACKUP AND RECOVERY FROM
CATASTROPHIC FAILURES

So far, all the techniques we have discussed apply to noncatastrophic failures. A key
assumption has been that the system log is maintained on the disk and is not lost as a
result of the failure. Similarly, the shadow directory must be stored on disk to allow recov
ery when shadow paging is used. The recovery techniques we have discussed use the
entries in the system log or the shadow directory to recover from failure by bringing the
database back to a consistent state.

The recovery manager of a DBMS must also be equipped to handle more catastrophic
failures such as disk crashes. The main technique used to handle such crashes is that of
database backup. The whole database and the log are periodically copied onto a cheap
storage medium such as magnetic tapes. In case of a catastrophic system failure, the latest
backup copy can be reloaded from the tape to the disk, and the system can be restarted.

To avoid losing all the effects of transactions that have been executed since the last
backup, it is customary to back up the system log at more frequent intervals than full
database backup by periodically copying it to magnetic tape. The system log is usually
substantially smaller than the database itself and hence can be backed up more frequently.
Thus users do not lose all transactions they have performed since the last database
backup. All committed transactions recorded in the portion of the system log that has
been backed up to tape can have their effect on the database redone. A new log is started

19.8 Summary I 631

after each database backup. Hence, to recover from disk failure, the database is first
recreated on disk from its latest backup copy on tape. Following that, the effects of all the
committed transactions whose operations have been recorded in the backed-up copies of
the system log are reconstructed.

19.8 SUMMARY
In this chapter we discussed the techniques for recovery from transaction failures. The
main goal of recovery is to ensure the atomicity property of a transaction. If a transaction
fails before completing its execution, the recovery mechanism has to make sure that the
transaction has no lasting effects on the database. We first gave an informal outline for a
recovery process and then discussed system concepts for recovery. These included a dis
cussion of caching, in-place updating versus shadowing, before and after images of a data
item, UNDO versus REDO recovery operations, steal/no-steal and force/no-force policies,
systemcheckpointing, and the write-ahead logging protocol.

Next we discussed two different approaches to recovery: deferred update and
immediate update. Deferred update techniques postpone any actual updating of the
database on disk until a transaction reaches its commit point. The transaction force
writes the log to disk before recording the updates in the database. This approach, when
used with certain concurrency control methods, is designed never to require transaction
rollback, and recovery simply consists of redoing the operations of transactions
committed after the last checkpoint from the log. The disadvantage is that too much
buffer space may be needed, since updates are kept in the buffers and are not applied to
diskuntil a transaction commits. Deferred update can lead to a recovery algorithm known
as NO-UNDO/REDO. Immediate update techniques may apply changes to the database on
disk before the transaction reaches a successful conclusion. Any changes applied to the
database must first be recorded in the log and force-written to disk so that these
operations can be undone if necessary. We also gave an overview of a recovery algorithm
for immediate update known as UNDO/REDO. Another algorithm, known as UNDO/NO

REDO, can also be developed for immediate update if all transaction actions are recorded
in the database before commit.

We discussed the shadow paging technique for recovery, which keeps track of old
database pages by using a shadow directory. This technique, which is classified as NO

UNDO/NO-REDO, does not require a log in single-user systems but still needs the log for
multiuser systems. We also presented ARIES, a specific recovery scheme used in some of
IBM's relational database products. We then discussed the two-phase commit protocol,
which is used for recovery from failures involving multidatabase transactions. Finally,
we discussed recovery from catastrophic failures, which is typically done by backing up
the database and the log to tape. The log can be backed up more frequently than the
database, and the backup log can be used to redo operations starting from the last
database backup.

632 I Chapter 19 Database Recovery Techniques

Review Questions
19.1. Discuss the different types of transaction failures. What is meant by catastrophic

failure?
19.2. Discuss the actions taken by the read_item and write_item operations on a

database.
19.3. (Review from Chapter 17) What is the system log used for? What are the typical

kinds of entries in a system log? What are checkpoints, and why are they impor
tant? What are transaction commit points, and why are they important?

19.4. How are buffering and caching techniques used by the recovery subsystem?
19.5. What are the before image (BFIM) and after image (AFIM) of a data item? What is

the difference between in-place updating and shadowing, with respect to their
handling of BFIM and AFIM?

19.6. What are UNDO-type and REDO-type log entries?
19.7. Describe the write-ahead logging protocol.
19.8. Identify three typical lists of transactions that are maintained by the recovery sub

system.
19.9. What is meant by transaction rollback? What is meant by cascading rollback?

Why do practical recovery methods use protocols that do not permit cascading
rollback? Which recovery techniques do not require any rollback?

19.10. Discuss the UNDO and REDO operations and the recovery techniques that use each.
19.11. Discuss the deferred update technique of recovery. What are the advantages and

disadvantages of this technique? Why is it called the NO-UNDO/REDO method?
19.12. How can recovery handle transaction operations that do not affect the database,

such as the printing of reports by a transaction?
19.13. Discuss the immediate update recovery technique in both single-user and mul

tiuser environments. What are the advantages and disadvantages of immediate
update?

19.14. What is the difference between the UNDO/REDO and the UNDO/NO-REDO algo
rithms for recovery with immediate update? Develop the outline for an UNDO/NO
REDO algorithm.

19.15. Describe the shadow paging recovery technique. Under what circumstances does
it not require a log?

19.16. Describe the three phases of the ARIES recovery method.
19.17. What are log sequence numbers (LSNs) in ARIES? How are they used? What infor

mation does the Dirty Page Table and Transaction Table contain? Describe how
fuzzy checkpointing is used in ARIES.

19.18. What do the terms steal/no-steal and force/no-force mean with regard to buffer
management for transaction processing.

19.19. Describe the two-phase commit protocol for multidatabase transactions.
19.20. Discuss how recovery from catastrophic failures is handled.

Exercises
19.21. Suppose that the system crashes before the [read_item,T3,A] entry is written to

the log in Figure 19.1b. Will that make any difference in the recovery process?
19.22. Suppose that the system crashes before the [write_item,T2,D,25,26] entry is

written to the log in Figure 19.1b. Will that make any difference in the recovery
process?

19.23. Figure 19.7 shows the log corresponding to a particular schedule at the point of a
system crash for four transactions T I , Tz, T3, and T4. Suppose that we use the
immediate update protocol with checkpointing. Describe the recovery process from
the system crash. Specify which transactions are rolled back, which operations in
the log are redone and which (if any) are undone, and whether any cascading
rollback takes place.

19.24. Suppose that we use the deferred update protocol for the example in Figure 19.7.
Show how the log would be different in the case of deferred update by removing
the unnecessary log entries; then describe the recovery process, using your modi
fied log. Assume that only REDO operations are applied, and specify which opera
tions in the log are redone and which are ignored.

19.25. How does checkpointing in ARIES differ from checkpointing as described in Sec
tion 19.1.4?

19.26. How are log sequence numbers used by ARIES to reduce the amount of REDO work
needed for recovery? Illustrate with an example using the information shown in Fig
ure 19.6. You can make your own assumptions as to when a page is written to disk.

[start_transaction, T1]

[read_item, T1,A]
[read_item, T1,0]

[write_item, T1,0, 20, 25]

[commit,Td

[checkpoint]

[start_transaction, T2]

[read Item, T2,B]

[writejtem, T2,B, 12,18]

[starttransaction, T4]

[read_item, T4,D]

[write_item, T4,D, 25,15]

[start_transaction, T31
[write_item, T3,C, 30,40]

[read_item, T4,A]

[write_item, hA. 30, 20]

[commit, T41
[read_item, T2,D]

[write_item, T2,D, 15, 25]f- system crash

FIGURE 19.7 An example schedule and its corresponding log.

Exercises I 633

634 I Chapter 19 Database Recovery Techniques

19.27. What implications would a no-steal/force buffer management policy have on
checkpointing and recovery?

Choose the correct answer for each of the following multiple-choice questions:
19.28. Incremental logging with deferred updates implies that the recovery system must

necessarily
a. store the old value of the updated item in the log.
b. store the new value of the updated item in the log.
e. store both the old and new value of the updated item in the log.
d. store only the Begin Transaction and Commit Transaction records in the log.

19.29. The write ahead logging (WAL) protocol simply means that
a. the writing of a data item should be done ahead of any logging operation.
b. the log record for an operation should be written before the actual data is

written.
e. all log records should be written before a new transaction begins execution.
d. the log never needs to be written to disk.

19.30. In case of transaction failure under a deferred update incremental logging scheme,
which of the following will be needed:
a. an undo operation.
b. a redo operation.
e. an undo and redo operation.
d. none of the above.

19.31. For incremental logging with immediate updates, a log record for a transaction
would contain:
a. a transaction name, data item name, old value of item, new value of item.
b. a transaction name, data item name, old value of item.
e. a transaction name, data item name, new value of item.
d. a transaction name and a data item name.

19.32. For correct behavior during recovery, undo and redo operations must be
a. commutative.
b. associative.
e. idempotent.
d. distributive.

19.33. When a failure occurs, the log is consulted and each operation is either undone or

redone. This is a problem because
a. searching the entire log is time consuming.
b. many redo's are unnecessary.
e. both (a) and (b).
d. none of the above.

19.34. When using a log based recovery scheme, it might improve performance as well as
providing a recovery mechanism by
a. writing the log records to disk when each transaction commits.
b. writing the appropriate log records to disk during the transaction's execution.
c. waiting to write the log records until multiple transactions commit and writ

ing them as a batch.
d. never writing the log records to disk.

Selected Bibliography I 635

19.35. There is a possibility of a cascading rollback when
a. a transaction writes items that have been written only by a committed trans

action.
b. a transaction writes an item that is previously written by an uncommitted

transaction.
c. a transaction reads an item that is previously written by an uncommitted

transaction.
d. both (b) and (c).

19.36. To cope with media (disk) failures, it is necessary
a. for the DBMS to only execute transactions in a single user environment.
b. to keep a redundant copy of the database.
c. to never abort a transaction.
d. all of the above.

19.37. If the shadowing approach is used for flushing a data item back to disk, then
a. the item is written to disk only after the transaction commits.
b. the item is written to a different location on disk.
c. the item is written to disk before the transaction commits.
d. the item is written to the same disk location from which it was read.

Selected Bibliography
The books by Bernstein et al. (1987) and Papadimitriou (1986) are devoted to the theory
andprinciples of concurrency control and recovery. The book by Gray and Reuter (1993) is
an encyclopedic work on concurrency control, recovery, and other transaction-processing
issues.

Verhofstad (1978) presents a tutorial and survey of recovery techniques in database
systems. Categorizing algorithms based on their UNDO/REDO characteristics is discussed in
Haerder and Reuter (1983) and in Bernstein et al. (1983). Gray (1978) discusses recov
ery, along with other system aspects of implementing operating systems for databases. The
shadow paging technique is discussed in Lorie (1977), Verhofstad (1978), and Reuter
(1980). Gray et al. (1981) discuss the recovery mechanism in SYSTEM R. Lockeman and
Knutsen (1968), Davies (1972), and Bjork (1973) are early papers that discuss recovery.
Chandy et al. (1975) discuss transaction rollback. Lilien and Bhargava (1985) discuss the
concept of integrity block and its use to improve the efficiency of recovery.

Recovery using write-ahead logging is analyzed in [hingran and Khedkar (1992) and
isused in the ARIES system (Mohan et al. 1992a). More recent work on recovery includes
compensating transactions (Korth et al. 1990) and main memory database recovery
(Kumar 1991). The ARIES recovery algorithms (Mohan et al. 1992) have been quite suc
cessful in practice. Franklin et al. (1992) discusses recovery in the EXODUS system. Two
recent books by Kumar and Hsu (1998) and Kumar and Son (1998) discuss recovery in
detail and contain descriptions of recovery methods used in a number of existing rela
tional database products.

OBJECT AND
OBJECT-RELATIONAL

DATABASES

Concepts for
Object Databases

In this chapter and the next, we discuss object-oriented data models and database sys
terns.' Traditional data models and systems, such as relational, network, and hierarchical,
have been quite successful in developing the database technology required for many tradi
tional business database applications. However, they have certain shortcomings when
more complex database applications must be designed and implemented-for example,
databases for engineering design and manufacturing (CAD/CAM and CIM2), scientific
experiments, telecommunications, geographic information systems, and rnultimedia'
These newer applications have requirements and characteristics that differ from those of
traditional business applications, such as more complex structures for objects, longer
duration transactions, new data types for storing images or large textual items, and the
need to define nonstandard application-specific operations. Object-oriented databases
were proposed to meet the needs of these more complex applications. The object
oriented approach offers the flexibility to handle some of these requirements without

1. These darabases are often referred to as Object Databases and the systems are referred to as
Object Database Management Systems (ODBMS). However, because this chapter discusses many
general object-oriented concepts, we will use the term object-oriented instead of just object.

2. Computer-Aided Design/Computer-Aided Manufacturing and Computer-Integrated Manufac
turing.

3. Multimedia databases must store various types of multimedia objects, such as video, audio,
images,graphics, and documents (see Chapter 24).

639

640 I Chapter 20 Concepts for Object Databases

being limited by the data types and query languages available in traditional database sys
tems. A key feature of object-oriented databases is the power they give the designer to

specify both the structure of complex objects and the operations that can be applied to
these objects.

Another reason for the creation of object-oriented databases is the increasing use of
object-oriented programming languages in developing software applications. Databases
are now becoming fundamental components in many software systems, and traditional
databases were difficult to use with object-oriented software applications that are
developed in an object-oriented programming language such as C++, SMALLTALK, or
JAVA. Object-oriented databases are designed so they can be directly-or seamlessly
integrated with software that is developed using object-oriented programming languages.

The need for additional data modeling features has also been recognized by relational
DBMS vendors, and newer versions of relational systems are incorporating many of the
features that were proposed for object-oriented databases. This has led to systems that are
characterized as object-relational or extendedrelational DBMSs (see Chapter 22). The latest
version of the SQL standard for relational DBMSs includes some of these features.

Although many experimental prototypes and commercial object-oriented database
systems have been created, they have not found widespread use because of the popularity
of relational and object-relational systems. The experimental prototypes included the
ORION system developed at MCC,4 OPENOODB at Texas Instruments, the IRIS system at
Hewlett-Packard laboratories, the ODE system at AT&T Bell Labs.? and the ENCORE!
ObServer project at Brown University. Commercially available systems included
GEMSTONE/OPAL of GemStone Systems, ONTOS of Ontos, Objectivity of Objectivity Inc.,
Versant of Versant Object Technology, ObjectStore of Object Design, ARDENT of
ARDENT Software," and POET of POET Software. These represent only a partial list of the
experimental prototypes and commercial object-oriented database systems that were
created.

As commercial object-oriented DBMSs became available, the need for a standard
model and language was recognized. Because the formal procedure for approval of
standards normally takes a number of years, a consortium of object-oriented DBMS
vendors and users, called ODMG,7 proposed a standard that is known as the ODMG-93
standard, which has since been revised. We will describe some features of the ODMG
standard in Chapter 21.

Object-oriented databases have adopted many of the concepts that were developed
originally for object-oriented programming languages.f In Section 20.1, we examine the
origins of the object-oriented approach and discuss how it applies to database systems.
Then, in Sections 20.2 through 20.6, we describe the key concepts utilized in many object-

4. Microelectronics and Computer Technology Corporation, Austin, Texas.

5. Now called Lucent Technologies.

6. Formerly 02 of 02 Technology.

7. Object Database Management Group.

8. Similar concepts were also developed in the fields of semantic data modeling and knowledge
representation.

20.1 Overview of Object-Oriented Concepts I 641

oriented database systems. Section 20.2 discusses object identity, object structure, and type
constructors. Section 20.3 presents the concepts of encapsulation of operations and definition
of methods as part of class declarations, and also discusses the mechanisms for storing
objects in a database by making them persistent. Section 2004 describes type and class
hierarchies and inheritance in object-oriented databases, and Section 20.5 provides an
overview of the issues that arise when complex objects need to be represented and stored.
Section 20.6 discusses additional concepts, including polymorphism, operator overloading,
dynamic binding, multiple and selective inheritance, and versioning and configuration of objects.

This chapter presents the general concepts of object-oriented databases, whereas
Chapter 22 will present the ODMG standard. The reader may skip Sections 20.5 and 20.6
ofthis chapter if a less detailed introduction to the topic is desired.

20.1 OVERVIEW OF OBJECT-ORIENTED
CONCEPTS

This section gives a quick overview of the history and main concepts of object-oriented
databases, or OODBs for short. The OODB concepts are then explained in more detail in
Sections 20.2 through 20.6. The term object-oriented-abbreviated by 00 or O-O-has its
origins in 00 programming languages, or OOPLs. Today 00 concepts are applied in the
areas of databases, software engineering, knowledge bases, artificial intelligence, and com
puter systems in general. OOPLs have their roots in the SIMULA language, which was pro
posed in the late 1960s. In SIMULA, the concept of a class groups together the internal
data structure of an object in a class declaration. Subsequently, researchers proposed the
concept of abstractdata type, which hides the internal data structures and specifies all pos
sible external operations that can be applied to an object, leading to the concept of encap
sulation. The programming language SMALLTALK, developed at Xerox PARC9 in the
1970s, was one of the first languages to explicitly incorporate additional 00 concepts,
suchas message passing and inheritance. It is known as a pure 00 programming language,
meaning that it was explicitly designed to be object-oriented. This contrasts with hybrid
00 programming languages, which incorporate 00 concepts into an already existing lan
guage. An example of the latter is C++, which incorporates 00 concepts into the popular
cprogramming language.

An object typically has two components; state (value) and behavior (operations).
Hence, it is somewhat similar to a program variable in a programming language, except
that it will typically have a complex data structure as well as specific operations defined by
the programmer. 10 Objects in an OOPL exist only during program execution and are hence
called transient objects. An 00 database can extend the existence of objects so that they
are stored permanently, and hence the objects persist beyond program termination and
can be retrieved later and shared by other programs. In other words, 00 databases store

9. Palo Alto Research Center, Palo Alto, California.

10.Objects have many other characteristics, as we discuss in the rest of this chapter.

642 I Chapter 20 Concepts for Object Databases

persistent objects permanently on secondary storage, and allow the sharing of these objects
among multiple programs and applications. This requires the incorporation of other well
known features of database management systems, such as indexing mechanisms,
concurrency control, and recovery. An 00 database system interfaces with one or more
00 programming languages to provide persistent and shared object capabilities.

One goal of 00 databases is to maintain a direct correspondence between real-world
and database objects so that objects do not lose their integrity and identity and can easily
be identified and operated upon. Hence, 00 databases provide a unique system-generated
object identifier (OID) for each object. We can compare this with the relational model where
each relation must have a primary key attribute whose value identifies each tuple uniquely.
In the relational model, if the value of the primary key is changed, the tuple will have a
new identity, even though it may still represent the same real-world object. Alternatively,
a real-world object may have different names for key attributes in different relations,
making it difficult to ascertain that the keys represent the same object (for example, the
object identifier may be represented as EMP_ID in one relation and as SSN in another).

Another feature of 00 databases is that objects may have an object structure of
arbitrary complexity in order to contain all of the necessary information that describes the
object. In contrast, in traditional database systems, information about a complex object is
often scattered over many relations or records, leading to loss of direct correspondence
between a real-world object and its database representation.

The internal structure of an object in OOPLs includes the specification of instance
variables, which hold the values that define the internal state of the object. Hence, an
instance variable is similar to the concept of an attribute in the relational model, except
that instance variables may be encapsulated within the object and thus are not
necessarily visible to external users. Instance variables may also be of arbitrarily complex
data types. Object-oriented systems allow definition of the operations or functions
(behavior) that can be applied to objects of a particular type. In fact, some 00 models
insist that all operations a user can apply to an object must be predefined. This forces a
complete encapsulation of objects. This rigid approach has been relaxed in most 00 data
models for several reasons. First, the database user often needs to know the attribute
names so they can specify selection conditions on the attributes to retrieve specific
objects. Second, complete encapsulation implies that any simple retrieval requires a
predefined operation, thus making ad hoc queries difficult to specify on the fly.

To encourage encapsulation, an operation is defined in two parts. The first part,
called the signature or interface of the operation, specifies the operation name and
arguments (or parameters). The second part, called the method or body, specifies the
implementation of the operation. Operations can be invoked by passing a message to an
object, which includes the operation name and the parameters. The object then executes
the method for that operation. This encapsulation permits modification of the internal
structure of an object, as well as the implementation of its operations, without the need to
disturb the external programs that invoke these operations. Hence, encapsulation
provides a form of data and operation independence (see Chapter 2).

Another key concept in 00 systems is that of type and class hierarchies and inheritance.
This permits specification of new types or classes that inherit much of their structure and/or
operations from previously defined types or classes. Hence, specification of object types can

20.2 Object Identity, Object Structure, and Type Constructors I 643

proceed systematically. This makes it easier to develop the data types of a system
incrementally, and to reuse existing type definitions when creating new types of objects.

One problem in early 00 database systems involved representing relationships among
objects. The insistence on complete encapsulation in early 00 data models led to the
argument that relationships should not be explicitly represented, but should instead be
described by defining appropriate methods that locate related objects. However, this
approach does not work very well for complex databases with many relationships, because
it is useful to identify these relationships and make them visible to users. The ODMG
standard has recognized this need and it explicitly represents binary relationships via a
pairof inverse references-that is, by placing the OIDs of related objects within the objects
themselves, and maintaining referential integrity, as we shall describe in Chapter 21.

Some 00 systems provide capabilities for dealing with multiple versions of the same
object-a feature that is essential in design and engineering applications. For example, an
old version of an object that represents a tested and verified design should be retained
until the new version is tested and verified. A new version of a complex object may
include only a few new versions of its component objects, whereas other components
remain unchanged. In addition to permitting versioning, 00 databases should also allow
for schema evolution, which occurs when type declarations are changed or when new types
or relationships are created. These two features are not specific to OODBs and should
ideally be included in all types of DBMSs. 11

Another 00 concept is operator overloading, which refers to an operation's ability to
be applied to different types of objects; in such a situation, an operation name may refer to
several distinct implementations, depending on the type of objects it is applied to. This
feature is also called operator polymorphism. For example, an operation to calculate the
area of a geometric object may differ in its method (implementation), depending on
whether the object is of type triangle, circle, or rectangle. This may require the use of late
binding of the operation name to the appropriate method at run-time, when the type of
object to which the operation is applied becomes known.

This section provided an overview of the main concepts of 00 databases. In Sections
20.2 through 20.6, we discuss these concepts in more detail.

20.2 OBJECT IDENTITY, OBJECT STRUCTURE,
AND TYPE CONSTRUCTORS

In this section we first discuss the concept of object identity, and then we present the typ
ical structuring operations for defining the structure of the state of an object. These
structuring operations are often called type constructors. They define basic data-structuring
operations that can be combined to form complex object structures.

------ ------ -----

11.Several schema evolution operations, such as ALTER TABLE, are already defined in the relational
SQL standard (see Section 8.3).

644 I Chapter 20 Concepts for Object Databases

20.2.1 Object Identity
An 00 database system provides a unique identity to each independent object stored in the
database. This unique identity is typically implemented via a unique, system-generated object
identifier, or DID. The value of an OID is not visible to the external user, but it is used
internally by the system to identify each object uniquely and to create and manage inter
object references. The OlD can be assigned to program variables of the appropriate type
when needed.

The main property required of an OID is that it be immutable; that is, the OlDvalue
of a particular object should not change. This preserves the identity of the real-world
object being represented. Hence, an 00 database system must have some mechanism for
generating OIDs and preserving the immutability property. It is also desirable that each
OID be used only once; that is, even if an object is removed from the database, its OID
should not be assigned to another object. These two properties imply that the OID
should not depend on any attribute values of the object, since the value of an attribute
may be changed or corrected. It is also generally considered inappropriate to base the
OID on the physical address of the object in storage, since the physical address can
change after a physical reorganization of the database. However, some systems do use the
physical address as OID to increase the efficiency of object retrieval. If the physical
address of the object changes, an indirect pointer can be placed at the former address,
which gives the new physical location of the object. It is more common to use long
integers as OIDs and then to use some form of hash table to map the OID value to the
current physical address of the object in storage.

Some early 00 data models required that everything-from a simple value to a
complex object-be represented as an object; hence, every basic value, such as an integer,
string, or Boolean value, has an OID. This allows two basic values to have different OIDs,
which can be useful in some cases. For example, the integer value 50 can be used sometimes
to mean a weight in kilograms and at other times to mean the age of a person. Then, two
basic objects with distinct OIDs could be created, but both objects would represent the
integer value 50. Although useful as a theoretical model, this is not very practical, since it
may lead to the generation of too many OIDs. Hence, most 00 database systems allow for
the representation of both objects and values. Every object must have an immutable OID,
whereas a value has no OIDand just stands for itself. Hence, a value is typically stored within
an object and cannot be referenced from other objects. In some systems, complex structured
values can also be created without having a corresponding OID if needed.

20.2.2 Object Structure
In 00 databases, the state (current value) of a complex object may be constructed from
other objects (or other values) by using certain type constructors. One formal way of rep
resenting such objects is to view each object as a triple (i, c, v), where i is a unique object
identifier (the OlD), c is a type constructor12 (that is, an indication of how the object state is

12. This is different from the constructor operation that is used in c++ and other OOPLs to create
new objects.

20.2 Object Identity, Object Structure, and Type Constructors I 645

constructed), and v is the object state (or current value). The data model will typically
include several type constructors. The three most basic constructors are atom, tuple, and
set. Other commonly used constructors include list, bag, and array. The atom construc
tor is used to represent all basic atomic values, such as integers, real numbers, character
strings, Booleans, and any other basic data types that the system supports directly.

The object state v of an object (i, c, v) is interpreted based on the constructor c. If c =
atom, the state (value) v is an atomic value from the domain of basic values supported by
the system. If c = set, the state v is a set of objectidentifiers {iI' iz, ... , in}, which are the OIDs
for a set of objects that are typically of the same type. If c = tuple, the state v is a tuple of
the form <al:il, az:iz, ... , an:in>, where each aj is an attribute namel ' and each ij is an OID.
If c = list, the value v is an ordered list [iI' iz, ... , in] of OIDs of objects of the same type. A
list is similar to a set except that the OIDs in a list are ordered, and hence we can refer to
the first, second, or lh object in a list. For c = array, the state of the object is a single
dimensional array of object identifiers. The main difference between array and list is that
a list can have an arbitrary number of elements whereas an array typically has a maximum
size. The difference between set and bagl4 is that all elements in a set must be distinct
whereasa bag can have duplicate elements.

This model of objects allows arbitrary nesting of the set, list, tuple, and other
constructors. The state of an object that is not of type atom will refer to other objects by
their object identifiers. Hence, the only case where an actual value appears is in the state
of an object of type atom. IS

The type constructors set, list, array, and bag are called collection types (or bulk
types), to distinguish them from basic types and tuple types. The main characteristic of a
collection type is that the state of the object will be a collection of objects that may be
unordered (such as a set or a bag) or ordered (such as a list or an array). The tuple type
constructor is often called a structured type, since it corresponds to the struct construct
in the C and c++ programming languages.

EXAMPLE 1: A Complex Object

We now represent some objects from the relational database shown in Figure 5.6, using
the preceding model, where an object is defined by a triple (OID, type constructor, state)
and the available type constuctors are atom, set, and tuple. We use ii' iz, i3, ••• to stand for
unique system-generated object identifiers. Consider the following objects:

01 = (ii' atom, 'Houston')

Oz = (iz, atom, 'Bellaire')

03 = (i3, atom, 'Sugarland')

13. Alsocalled an instance variable name in 00 terminology.

14. Also called a multiset.
15. As we noted earlier, it is not practical to generate a unique system identifier for every value, so
real systems allowfor both Olfrs and structured value, which can be structured by usingthe same type
constructors as objects, except that a value does not have an aID.

646 I Chapter 20 Concepts for Object Databases

04 = (i 4, atom, 5)

05 = (is, atom, 'Research')

06 = (i6, atom, '1988-05-22')

07 = (i7, set, {iI' iz, i3})

Os = (is, tuple, <DNAME:is, DNUMBER:i4, MGR:i9, LOCATIONS:i7, EMPLOYEES:ilO,

PROJECTS:i l l »

09 = (i9, tuple, <MANAGER:i12, MANAGER_START_DATE:i6»

010 = (i1O' set, {in, i13, i14})

011 = (ill' set filS' i16, in})

0lZ = (in, tuple, <FNAME:i lS' MINIT:i19, LNAME:i 20, SSN:iZl , ... , SALARY:i z6,
SUPERVISOR:in , DEPT:i s»

The first six objects (01-06) listed here represent atomic values. There will be many
similar objects, one for each distinct constant atomic value in the database. 16 Object 07

is a set-valued object that represents the set of locations for department 5; the set {iI' iz,
i3} refers to the atomic objects with values {'Houston', 'Bellaire', 'Sugarland'}. Object Os
is a tuple-valued object that represents department 5 itself, and has the attributes DNAME,

DNUMBER, MGR, LOCATIONS, and so on. The first two attributes DNAME and DNUMBER have atomic
objects Os and 04 as their values. The MGR attribute has a tuple object 09 as its value,
which in turn has two attributes. The value of the MANAGER attribute is the object whose
OID is in, which represents the employee 'John B. Smith' who manages the department,
whereas the value of MANAGER_START_DATE is another atomic object whose value is a date. The
value of the EMPLOYEES attribute of Os is a set object with OID = i lO , whose value is the set of
object identifiers for the employees who work for the DEPARTMENT (objects in, plus i13 and i14,

which are not shown). Similarly, the value of the PROJECTS attribute of Os is a set object with
OID = ill' whose value is the set of object identifiers for the projects that are controlled by
department number 5 (objects ilS' i16, and in' which are not shown). The object whose OID

= in represents the employee 'John B. Smith' with all its atomic attributes (FNAME, MINH,

LNAME, SSN, ••• , SALARY, that are referencing the atomic objects ilS' i19, iZG' iZl' ..., iZ6' respect
ively (not shown» plus SUPERVISOR which references the employee object with OID = in (this
represents 'James E. Borg' who supervises 'John B. Smith' but is not shown) and DEPT which
references the department object with OID = is (this represents department number 5 where
'John B. Smith' works).

In this model, an object can be represented as a graph structure that can be constructed
by recursively applying the type constructors. The graph representing an object 0i can be
constructed by first creating a node for the object 0i itself. The node for 0i is labeled with the
OID and the object constructor c. We also create a node in the graph for each basic atomic

16. These atomic objects are the ones that may cause a problem, due to the use of too many object
identifiers, if this model is implemented directly.

20.2 Object Identity, Object Structure, and Type Constructors I 647

value. If an object 0i has an atomic value, we draw a directed arc from the node representing
0i to the node representing its basic value. If the object value is constructed, we draw
directed arcs from the object node to a node that represents the constructed value. Figure
20.1 shows the graph for the example DEPARTMENT object Os given earlier.

The preceding model permits two types of definitions in a comparison of the states of
two objects for equality. Two objects are said to have identical states (deep equality) if the
graphs representing their states are identical in every respect, including the OIDs at every
level. Another, weaker definition of equality is when two objects have equal states
(shallow equality). In this case, the graph structures must be the same, and all the
corresponding atomic values in the graphs should also be the same. However, some
corresponding internal nodes in the two graphs may have objects with different OIDs.

EXAMPLE 2: Identical Versus Equal Objects

A example can illustrate the difference between the two definitions for comparing object
statesfor equality. Consider the following objects OJ' 0z, 03' 04' 0S, and 06:

OJ = (i j , tuple, <aj:i4, az:i6»

Oz = (iz, tuple, <aj:is, az:i6»

03 = (i3, tuple, <aj:i4, az:i6»

04 = (i4, atom, 10)

as = (is, atom, 10)

06 = (i6, atom, 20)

The objects OJ and 0z have equal states, since their states at the atomic level are the
same but the values are reached through distinct objects 04 and 05. However, the states of
objects OJ and 03 are identical, even though the objects themselves are not because they
have distinct OIDs. Similarly, although the states of 04 and 05 are identical, the actual
objects 04 and 05 are equal but not identical, because they have distinct OIDs.

20.2.3 Type Constructors
An object definition language (ODL)j? that incorporates the preceding type constructors
can be used to define the object types for a particular database application. In Chapter 21,
we shall describe the standard ODL of ODMG, but we first introduce the concepts gradually
in this section using a simpler notation. The type constructors can be used to define the
data structures for an 00 database schema. In Section 20.3 we will see how to incorporate
the definition of operations (or methods) into the 00 schema. Figure 20.2 shows how we
may declare Employee and Department types corresponding to the object instances shown

17. This would correspond to the DDL (Data Definition Language) of the database system (see
Chapter 2).

648 I Chapter 20 Concepts for Object Databases

in:'"
tuple

PROJECTSEMPLOYEES

i3:~3atom

v3

Sugarland

is: as)+----------------------,
tuple

"r "~
11 : 1 12: 2

atom atom

V 1 v2

Houston Bellaire

;'f ;'r i3 : i10 : 0 10

atom atom tuple set

V5 v4 Vg v10

Research 5

LEGEND: 0 object

C) tuple

c::::::::J set

MANAGER MANAGERSTARTDATE

1988-05-22

FNAME MINIT LNAME DEPT

FIGURE 20.1 Representation of a DEPARTMENT complex object as a graph.

in Figure 20.1. In Figure 20.2, the Date type is defined as a tuple rather than an atomic
value as in Figure 20.1. We use the keywords tuple, set, and list for the type constructors,
and the available standard data types (integer, string, float, and so on) for atomic types.

20.3 Encapsulation of Operations, Methods, and Persistence I 649

definetype Employee:
tuple (fname:

minit:
Iname:
ssn:
birthdate:
address:
sex:
salary:
supervisor:
dept:

definetype Date
tuple (year:

month:
day:

definetype Department
tuple (dname:

dnumber:
mgr:

locations:
employees:
projects

string;
char;
string;
string;
Date;
string;
char;
float;
Employee;
Department;);

integer;
integer;
integer;);

string;
integer;
tuple (manager:

startdate:
set(string);
set(Employee) ;
set(Project););

Employee;
Date;);

FIGURE 20.2 Specifying the object types Employee, Date, and Department using
type constructors.

Attributes that refer to other objects-such as dept of Employee or projects of
Department-are basically references to other objects and hence serve to represent
relationships among the object types. For example, the attribute dept of Employee is of type
Department, and hence is used to refer to a specific Department object (where the
Employee works). The value of such an attribute would be an OID for a specific Department
object. A binary relationship can be represented in one direction, or it can have an inverse
reference. The latter representation makes it easy to traverse the relationship in both
directions. For example, the attribute employees of Department has as its value a set of
references (that is, a set of OIDs) to objects of type Employee; these are the employees who
work for the department. The inverse is the reference attribute dept of Employee. We will
see in Chapter 21 how the ODMG standard allows inverses to be explicitly declared as
relationship attributes to ensure that inverse references are consistent.

20.3 ENCAPSULATION OF OPERATIONS,
METHODS, AND PERSISTENCE

The concept of encapsulation is one of the main characteristics of 00 languages and sys
tems. It is also related to the concepts of abstract data types and information hiding in pro
gramming languages. In traditional database models and systems, this concept was not

650 I Chapter 20 Concepts for Object Databases

applied, since it is customary to make the structure of database objects visible to users and
external programs. In these traditional models, a number of standard database operations
are applicable to objects of all types. For example, in the relational model, the operations
for selecting, inserting, deleting, and modifying tuples are generic and may be applied to

any relation in the database. The relation and its attributes are visible to users and to
external programs that access the relation by using these operations.

20.3.1 Specifying Object Behavior via Class Operations
The concepts of information hiding and encapsulation can be applied to database objects.
The main idea is to define the behavior of a type of object based on the operations that
can be externally applied to objects of that type. The internal structure of the object is
hidden, and the object is accessible only through a number of predefined operations.
Some operations may be used to create (insert) or destroy (delete) objects; other opera
tions may update the object state; and others may be used to retrieve parts of the object
state or to apply some calculations. Still other operations may perform a combination of
retrieval, calculation, and update. In general, the implementation of an operation can be
specified in a general-purpose programming language that provides flexibility and power in
defining the operations.

The external users of the object are only made aware of the interface of the object
type, which defines the name and arguments (parameters) of each operation. The
implementation is hidden from the external users; it includes the definition of the
internal data structures of the object and the implementation of the operations that
access these structures. In 00 terminology, the interface part of each operation is called
the signature, and the operation implementation is called a method. Typically, a method
is invoked by sending a message to the object to execute the corresponding method.
Notice that, as part of executing a method, a subsequent message to another object may
be sent, and this mechanism may be used to return values from the objects to the external
environment or to other objects.

For database applications, the requirement that all objects be completely
encapsulated is too stringent. One way of relaxing this requirement is to divide the
structure of an object into visible and hidden attributes (instance variables). Visible
attributes may be directly accessed for reading by external operators, or by a high-level
query language. The hidden attributes of an object are completely encapsulated and can
be accessed only through predefined operations. Most OODBMSs employ high-level query
languages for accessing visible attributes. In Chapter 21, we will describe the OQL query
language that is proposed as a standard query language for OODBs.

In most cases, operations that update the state of an object are encapsulated. This isa
way of defining the update semantics of the objects, given that in many 00 data models,
few integrity constraints are predefined in the schema. Each type of object has its integrity
constraints programmed into the methods that create, delete, and update the objects by
explicitly writing code to check for constraint violations and to handle exceptions. In
such cases, all update operations are implemented by encapsulated operations. More
recently, the ODL for the ODMG standard allows the specification of some common

20.3 Encapsulation of Operations, Methods, and Persistence I 651

constraints such as keys and inverse relationships (referential integrity) so that the system
can automatically enforce these constraints (see Chapter 21).

The term class is often used to refer to an object type definition, along with the
definitions of the operations for that type. IS Figure 20.3 shows how the type definitions of
Figure 20.2 may be extended with operations to define classes. A number of operations
aredeclared for each class, and the signature (interface) of each operation is included in
the class definition. A method (implementation) for each operation must be defined
elsewhere, using a programming language. Typical operations include the object
constructor operation, which is used to create a new object, and the destructor
operation, which is used to destroy an object. A number of object modifier operations can

define class Employee:
type tuple(fname:

minit:
Iname:
ssn:
birthdate:
address:
sex:
salary:
supervisor:
dept:

operations age:
create_emp:
destroy_emp:

end Employee;

string;
char;
string;
string;
Date;
string;
char;
float;
Employee;
Department;
integer;
Employee;
boolean;

);

define class Department
type tuple(dname: string;

dnumber: integer;
mgr: tuple (manager: Employee;

startdate: Date;);
locations: set(string);
employees: set(Employee);
projects: set(Project););

operations no_oCemps: integer;
create_dept: Department;
destroy-dept: boolean;
assign_emp(e: Employee): boolean;

(* adds an employee to the department *)
remove_emp(e: Employee): boolean;

(* removes an employee from the department *)
endDepartment;

FIGURE 20.3 Adding operations to the definitions of Employee and Department.

18. This definition of class is similar to how it is used in the popular c++ programming language.
The ODMG standard uses the word interface in addition to class (see Chapter 21). In the EER model,
the term class was used to refer to an object type, along with the set of all objects of that type (see
Chapter 4).

652 I Chapter 20 Concepts for Object Databases

also be declared to modify the states (values) of various attributes of an object. Additional
operations can retrieve information about the object.

An operation is typically applied to an object by using the dot notation. For example,
if d is a reference to a department object, we can invoke an operation such as no_oCemps
by writing d.no_oCemps. Similarly, by writing d.destroy_dept, the object referenced byd
is destroyed (deleted). The only exception is the constructor operation, which returns a
reference to a new Department object. Hence, it is customary to have a default name for
the constructor operation that is the name of the class itself, although this was not usedin
Figure 20.3.19 The dot notation is also used to refer to attributes of an object-for
example, by writing d.dnumber or d.mgr.startdate.

20.3.2 Specifying Object Persistence via Naming
and Reachability

An OODBMS is often closely coupled with an OOPL. The OOPL is used to specify the
method implementations as well as other application code. An object is typically created
by some executing application program, by invoking the object constructor operation.
Not all objects are meant to be stored permanently in the database. Transient objects
exist in the executing program and disappear once the program terminates. Persistent
objects are stored in the database and persist after program termination. The typical
mechanisms for making an object persistent are naming and reachability.

The naming mechanism involves giving an object a unique persistent name through
which it can be retrieved by this and other programs. This persistent object name can be
given via a specific statement or operation in the program, as illustrated in Figure 20.4. All
such names given to objects must be unique within a particular database. Hence, the named
persistent objects are used as entry points to the database through which users and
applications can start their database access. Obviously, it is not practical to give names to all
objects in a large database that includes thousands of objects, so most objects are made
persistent by using the second mechanism, called reachability. The reachability mechanism
works by making the object reachable from some persistent object. An object B is said to be
reachable from an object A if a sequence of references in the object graph lead from object
A to object B. For example, all the objects in Figure 20.1 are reachable from object os;
hence, if 08 is made persistent, all the other objects in Figure 20.1 also become persistent.

If we first create a named persistent object N, whose state is a set or list of objects of
some class C, we can make objects of C persistent by adding them to the set or list, and
thus making them reachable from N. Hence, N defines a persistent collection of objects
of class C. For example, we can define a class DepartmentSet (see Figure 2004) whose
objects are of type set(Department).20 Suppose that an object of type DepartmentSet is

19. Default names for the constructor and destructor operations exist in the c++ programming lan
guage. For example, for class Employee, the default constructor name is Employee and the default
destructor name is - Employee. It is also common to use the new operation to create new objects.

20. As we shall see in Chapter 21, the ODMG ODL syntax uses set<Department> instead of
setf Department).

20.3 Encapsulation of Operations, Methods, and Persistence I 653

defineclass DepartmentSet:
type set(Department);
operations add_dept(d: Department): boolean;

(* adds a department to the DepartmentSet object *)
remove_dept(d: Department): boolean;

(* removes a department from the DepartmentSet object *)
createjieptset: DepartmentSet;
destroydept set: boolean;

endDepartmentSet;

persistent name AllDepartments: DepartmentSet;
(' AIiDepartments is a persistent named object of type DepartmentSet *)

d:= create_dept;
(' create a new Department object in the variable d *)

b:= AIiDepartments.add_dept(d);
(' maked persistent by adding it to the persistent set AllDepartments *)

FIGURE 20.4 Creating persistent objects by naming and reachability.

created, and suppose that it is named AllDepartments and thus made persistent, as
illustrated in Figure 2004. Any Department object that is added to the set of
AllDepartments by using the add_dept operation becomes persistent by virtue of its being
reachable from AllDepartments. The AllDepartments object is often called the extent of
theclass Department, as it will hold all persistent objects of type Department. As we shall
see in Chapter 21, the ODMG ODL standard gives the schema designer the option of
naming an extent as part of class definition.

Notice the difference between traditional database models and 00 databases in this
respect. In traditional database models, such as the relational model or the EER model, all
objects are assumed to be persistent. Hence, when an entity type or class such as EMPLOYEE
is defined in the EER model, it represents both the type declaration for EMPLOYEE and a
persistent set of all EMPLOYEE objects. In the 00 approach, a class declaration of EMPLOYEE
specifies only the type and operations for a class of objects. The user must separately
define a persistent object of type set(EMPLOYEE) or list(EMPLOYEE) whose value is the collection
of references to all persistent EMPLOYEE objects, if this is desired, as illustrated in Figure
20.4.21 This allows transient and persistent objects to follow the same type and class
declarations of the ODL and the OOPL. In general, it is possible to define several persistent
collections for the same class definition, if desired.

21. Some systems, such as POET, automatically create the extent for a class.

654 I Chapter 20 Concepts for Object Databases

20.4 TYPE AND CLASS HIERARCHIES AND
INHERITANCE

Another main characteristic of 00 database systems is that they allow type hierarchies
and inheritance. Type hierarchies in databases usually imply a constraint on the extents
corresponding to the types in the hierarchy. We first discuss type hierarchies (in Section
20.4.1), and then the constraints on the extents (in Section 20.4.2). We use a different
00 model in this section-a model in which attributes and operations are treated
uniformly-since both attributes and operations can be inherited. In Chapter 21, we will
discuss the inheritance model of the ODMG standard, which differs from the model dis
cussed here.

20.4.1 Type Hierarchies and Inheritance
In most database applications, there are numerous objects of the same type or class.
Hence, 00 databases must provide a capability for classifying objects based on their type,
as do other database systems. But in 00 databases, a further requirement is that the system
permit the definition of new types based on other predefined types, leading to a type (or
class) hierarchy.

Typically, a type is defined by assigning it a type name and then defining a number of
attributes (instance variables) and operations (methods) for the type. 22 In some cases, the
attributes and operations are together called functions, since attributes resemble functions
with zero arguments. A function name can be used to refer to the value of an attribute or
to refer to the resulting value of an operation (method). In this section, we use the term
function to refer to both attributes andoperations of an object type, since they are treated
similarly in a basic introduction to inheritance.v'

A type in its simplest form can be defined by giving it a type name and then listing
the names of its visible (public) functions. When specifying a type in this section, we use
the following format, which does not specify arguments of functions, to simplify the
discussion:

TYPE_NAME: funct i on, func t i on, ... , funct i on

For example, a type that describes characteristics of a PERSON may be defined as follows:

PERSON: Name, Address, B;rthdate, Age, SSN

In the PERSON type, the Name, Address, SSN, and Birthdate functions can be implemented
as stored attributes, whereas the Age function can be implemented as a method that calculates
the Age from the value of the Birthdate attribute and the current date.

22. In this section, we will use the terms type and class as meaning the same thing-namely, the
attributes andoperations of some type of object.

23. We will see in Chapter 21 that types with functions are similar to the interfaces used in ODMG
ODL.

20A Type and Class Hierarchies and Inheritance I 655

The concept of subtype is useful when the designer or user must create a new type
that is similar but not identical to an already defined type. The subtype then inherits all
the functions of the predefined type, which we shall call the supertype. For example,
suppose that we want to define two new types EMPLOYEE and STUDENT as follows:

EMPLOYEE: Name, Address, Birthdate, Age, SSN, Salary, HireDate, Seniority
STUDENT: Name, Address, Birthdate, Age, SSN, Major, GPA

Since both STUDENT and EMPLOYEE include all the functions defined for PERSON plus some
additional functions of their own, we can declare them to be subtypes of PERSON. Each will
inherit the previously defined functions of PERsoN-namely, Name, Address, Birthdate,
Age, and SSN. For STUDENT, it is only necessary to define the new (local) functions Major
and CPA, which are not inherited. Presumably, Major can be defined as a stored attribute,
whereas GPA may be implemented as a method that calculates the student's grade point
average by accessing the Grade values that are internally stored (hidden) within each
STUDENT object as private attributes. For EMPLOYEE, the Salary and HireDate functions may be
stored attributes, whereas Seniority may be a method that calculates Seniority from the
value of HireDate.

The idea of defining a type involves defining all of its functions and implementing
them either as attributes or as methods. When a subtype is defined, it can then inherit all
of these functions and their implementations. Only functions that are specific or local to
the subtype, and hence are not specified in the supertype, need to be defined and
implemented. Therefore, we can declare EMPLOYEE and STUDENT as follows:

EMPLOYEE subtype-of PERSON: Salary, HireDate, Seniority

STUDENT subtype-of PERSON: Major, GPA

In general, a subtype includes all of the functions that are defined for its supertype
plussome additional functions that are specific only to the subtype. Hence, it is possible
to generate a type hierarchy to show the supertype/subtype relationships among all the
types declared in the system.

As another example, consider a type that describes objects in plane geometry, which
may be defined as follows:

GEOMETRY_OBJECT: Shape, Area, ReferencePoint

For the GEOMETRY_OBJECT type, Shape is implemented as an attribute (its domain can be
an enumerated type with values 'triangle', 'rectangle', 'circle', and so on), and Area is a
method that is applied to calculate the area. ReferencePoint specifies the coordinates of a
point that determines the object location. Now suppose that we want to define a number
ofsubtypes for the GEOMETRY_OBJECT type, as follows:

RECTANGLE subtype-of GEOMETRY_OBJECT: Width, Height

TRIANGLE subtype-of GEOMETRY_OBJECT: Sidel, Side2, Angle

CIRCLE subtype-of GEOMETRY_OBJECT: Radius

Notice that the Area operation may be implemented by a different method for
each subtype, since the procedure for area calculation is different for rectangles,

656 I Chapter 20 Concepts for Object Databases

triangles, and circles. Similarly, the attribute ReferencePoint may have a different
meaning for each subtype; it might be the center point for RECTANGLE and CIRCLE objects,
and the vertex point between the two given sides for a TRIANGLE object. Some 00

database systems allow the renaming of inherited functions in different subtypes to

reflect the meaning more closely.
An alternative way of declaring these three subtypes is to specify the value of the

Shape attribute as a condition that must be satisfied for objects of each subtype:

RECTANGLE subtype-of GEOMETRY_OBJECT (Shape='rectangle'): Width,
Height

TRIANGLE subtype-of GEOMETRY_OBJECT (Shape='triangle'): Sidel, Side2,
Angle

CIRCLE subtype-of GEOMETRY_OBJECT (Shape='circle'): Radius

Here, only GEOMETRY_OBJECT objects whose Shape='rectangle' are of the subtype
RECTANGLE, and similarly for the other two subtypes. In this case, all functions of the
GEOMETRY_OBJECT supertype are inherited by each of the three subtypes, but the value of the
Shape attribute is restricted to a specific value for each.

Notice that type definitions describe objects but do not generate objects on their own.
They are just declarations of certain types; and as part of that declaration, the
implementation of the functions of each type is specified. In a database application, there
are many objects of each type. When an object is created, it typically belongs to one or
more of these types that have been declared. For example, a circle object is of type CIRCLE

and GEOMETRY_OBJECT (by inheritance). Each object also becomes a member of one or more
persistent collections of objects (or extents), which are used to group together collections
of objects that are meaningful to the database application.

20.4.2 Constraints on Extents Corresponding to a Type
Hierarchy>

In most 00 databases, the collection of objects in an extent has the same type or class.
However, this is not a necessary condition. For example, SMALLTALK, a so-called typeless 00

language, allows a collection of objects to contain objects of different types. This can alsobe
the case when other non-object-oriented typeless languages, such as LISP,are extended with
00 concepts. However, since the majority of 00 databases support types, we will assume
that extents are collections of objects of the same type for the remainder of this section.

It is common in database applications that each type or subtype will have an extent
associated with it, which holds the collection of all persistent objects of that type or
subtype. In this case, the constraint is that every object in an extent that corresponds to a
subtype must also be a member of the extent that corresponds to its supertype. Some 00

database systems have a predefined system type (called the ROOT class or the OBJECT class)

24. In the second edition of this book, we used the title Class Hierarchies to describe these extent
constraints. Because the word class has too many different meanings, extent is used in this edition.
This is also more consistent with ODMG terminology (see Chapter 2I).

20.5 Complex Objects I 657

whose extent contains all the objects in the system. 25 Classification then proceeds by
assigning objects into additional subtypes that are meaningful to the application, creating
a type hierarchy or class hierarchy for the system. All extents for system- and user
defined classes are subsets of the extent corresponding to the class OBJECT, directly or
indirectly. In the ODMG model (see Chapter 21), the user mayor may not specify an
extent for each class (type), depending on the application.

In most 00 systems, a distinction is made between persistent and transient objects
and collections. A persistent collection holds a collection of objects that is stored
permanently in the database and hence can be accessed and shared by multiple programs.
A transient collection exists temporarily during the execution of a program but is not
kept when the program terminates. For example, a transient collection may be created in
a program to hold the result of a query that selects some objects from a persistent
collection and copies those objects into the transient collection. The transient collection
holds the same type of objects as the persistent collection. The program can then
manipulate the objects in the transient collection, and once the program terminates, the
transient collection ceases to exist. In general, numerous collections-transient or
persistent-may contain objects of the same type.

Notice that the type constructors discussed in Section 20.2 permit the state of one
object to be a collection of objects. Hence, collection objects whose types are based on
the set constructor can define a number of collections-one corresponding to each object.
The set-valued objects themselves are members of another collection. This allows for
multilevel classification schemes, where an object in one collection has as its state a
collection of objects of a different class.

As we shall see in Chapter 21, the ODMG model distinguishes between type
inheritance-called interface inheritance and denoted by the ":" symbol-and the extent
inheritance constraint-denoted by the keyword EXTEND.

20.5 COMPLEX OBJECTS
A principal motivation that led to the development of 00 systems was the desire to repre
sent complex objects. There are two main types of complex objects; structured and
unstructured. A structured complex object is made up of components and is defined by
applying the available type constructors recursively at various levels. An unstructured
complex object typically is a data type that requires a large amount of storage, such as a
data type that represents an image or a large textual object.

20.5.1 Unstructured Complex Objects and
Type Extensibility

An unstructured complex object facility provided by a DBMS permits the storage and
retrieval of large objects that are needed by the database application. Typical examples of

25. This is called OBJECT in the ODMG model (see Chapter 21).

658 I Chapter 20 Concepts for Object Databases

such objects are bitmap images and long text strings (such as documents); they are also
known as binary large objects, or BLOBs for short. Character strings are also known as
character large objects, or CLOBs for short. These objects are unstructured in the sense
that the DBMS does not know what their structure is---only the application that uses them
can interpret their meaning. For example, the application may have functions to display
an image or to search for certain keywords in a long text string. The objects are considered
complex because they require a large area of storage and are not part of the standard data
types provided by traditional DBMSs. Because the object size is quite large, a DBMS may
retrieve a portion of the object and provide it to the application program before the whole
object is retrieved. The DBMS may also use buffering and caching techniques to prefetch
portions of the object before the application program needs to access them.

The DBMS software does not have the capability to directly process selection
conditions and other operations based on values of these objects, unless the application
provides the code to do the comparison operations needed for the selection. In an
OODBMS, this can be accomplished by defining a new abstract data type for the
uninterpreted objects and by providing the methods for selecting, comparing, and
displaying such objects. For example, consider objects that are two-dimensional bitmap
images. Suppose that the application needs to select from a collection of such objects only
those that include a certain pattern. In this case, the user must provide the pattern
recognition program as a method on objects of the bitmap type. The OODBMS then
retrieves an object from the database and runs the method for pattern recognition on it to
determine whether the object includes the required pattern.

Because an OODBMS allows users to create new types, and because a type includes
both structure and operations, we can view an OODBMS as having an extensible type
system. We can create libraries of new types by defining their structure and operations,
including complex types. Applications can then use or modify these types, in the latter
case by creating subtypes of the types provided in the libraries. However, the DBMS
internals must provide the underlying storage and retrieval capabilities for objects that
require large amounts of storage so that the operations may be applied efficiently. Many
OODBMSs provide for the storage and retrieval of large unstructured objects such as
character strings or bit strings, which can be passed "as is" to the application program for
interpretation. Recently, relational and extended relational DBMSs have also been able to
provide such capabilities. Special indexing techniques are also being developed.

20.5.2 Structured Complex Objects
A structured complex object differs from an unstructured complex object in that the
object's structure is defined by repeated application of the type constructors provided by
the OODBMS. Hence, the object structure is defined and known to the OODBMS. As an
example, consider the DEPARTMENT object shown in Figure 20.1. At the first level, the object
has a tuple structure with six attributes: DNAME, DNUMBER, MGR, LOCATIONS, EMPLOYEES, and PROJECTS.
However, only two of these attributes-namely, DNAME and DNUMBER-have basic values; the
other four have complex structure and hence build the second level of the complex object
structure. One of these four (MGR) has a tuple structure, and the other three (LOCATIONS,
EMPLOYEES, PROJECTS) have set structures. At the third level, for a MGR tuple value, we have one

20.6 Other Objected-Oriented Concepts I 659

basic attribute (MANAGERSTARTDATE) and one attribute (MANAGER) that refers to an employee
object, which has a tuple structure. For a LOCATIONS set, we have a set of basic values, but for
both the EMPLOYEES and the PROJECTS sets, we have sets of tuple-structured objects.

Two types of reference semantics exist between a complex object and its components at
each level. The first type, which we can call ownership semantics, applies when the sub
objects of a complex object are encapsulated within the complex object and are hence
considered part of the complex object. The second type, which we can call reference
semantics, applies when the components of the complex object are themselves
independent objects but may be referenced from the complex object. For example, we may
consider the DNAME, DNUMBER, MGR, and LOCATIONS attributes to be owned by a DEPARTMENT, whereas
EMPLOYEES and PROJECTS are references because they reference independent objects. The first
type is also referred to as the is-part-of or is-component-of relationship; and the second type is
called the is-associated-with relationship, since it describes an equal association between two
independent objects. The is-part-of relationship (ownership semantics) for constructing
complex objects has the property that the component objects are encapsulated within the
complex object and are considered part of the internal object state. They need not have
object identifiers and can only be accessed by methods of that object. They are deleted if the
object itself is deleted. On the other hand, referenced components are considered as
independent objects that can have their own identity and methods. When a complex
object needs to access its referenced components, it must do so by invoking the appropriate
methods of the components, since they are not encapsulated within the complex object.
Hence, reference semantics represents relationships among independent objects. In addition,
a referenced component object may be referenced by more than one complex object and
hence is not automatically deleted when the complex object is deleted.

An OODBMS should provide storage options for clustering the component objects of
a complex object together on secondary storage in order to increase the efficiency of
operations that access the complex object. In many cases, the object structure is stored on
disk pages in an un interpreted fashion. When a disk page that includes an object is
retrieved into memory, the OODBMS can build up the structured complex object from the
information on the disk pages, which may refer to additional disk pages that must be
retrieved. This is known as complex object assembly.

20.6 OTHER OBJECTED-ORIENTED CONCEPTS
In this section we give an overview of some additional 00 concepts, including polymor
phism (operator overloading), multiple inheritance, selective inheritance, versioning,
and configurations.

20.6.1 Polymorphism (Operator Overloading)
Another characteristic of 00 systems is that they provide for polymorphism of opera
tions, which is also known as operator overloading. This concept allows the same opera
tor name or symbol to be bound to two or more different implementations of the operator,

660 I Chapter 20 Concepts for Object Databases

depending on the type of objects to which the operator is applied. A simple example from
programming languages can illustrate this concept. In some languages, the operator sym
bol "+" can mean different things when applied to operands (objects) of different types. If
the operands of "+" are of type integer, the operation invoked is integer addition. If the
operands of "+" are of type floating point, the operation invoked is floating point addition.
If the operands of "+" are of type set, the operation invoked is set union. The compiler
can determine which operation to execute based on the types of operands supplied.

In 00 databases, a similar situation may occur. We can use the GEOMETRY_OBJECT

example discussed in Section 20.4 to illustrate polvmorphism'P in 00 databases. Suppose
that we declare GEOMETRY_OBJECTand its subtypes as follows:

GEOMETRY_OBJECT: Shape, Area, ReferencePoint

RECTANGLE subtype-of GEOMETRY_OBJECT CShape='rectangle'): Width,
Height

TRIANGLE subtype-of GEOMETRY_OBJECT CShape='triangle'): Sidel, Side2,
Angle

CIRCLE subtype-of GEOMETRY_OBJECT CShape='circle'): Radius

Here, the function Area is declared for all objects of type GEOMETRY_OBJECT. However,
the implementation of the method for Area may differ for each subtype of GEOMETRCOBJECT.

One possibility is to have a general implementation for calculating the area of a
generalized GEOMETRY_OBJECT (for example, by writing a general algorithm to calculate the
area of a polygon) and then to rewrite more efficient algorithms to calculate the areas of
specific types of geometric objects, such as a circle, a rectangle, a triangle, and so on. In
this case, the Area function is overloaded by different implementations.

The OODBMS must now select the appropriate method for the Area function based
on the type of geometric object to which it is applied. In strongly typed systems, this can
be done at compile time, since the object types must be known. This is termed early (or
static) binding. However, in systems with weak typing or no typing (such as SMALLTALK

and LISP), the type of the object to which a function is applied may not be known until
runtime. In this case, the function must check the type of object at runtime and then
invoke the appropriate method. This is often referred to as late (or dynamic) binding.

20.6.2 Multiple Inheritance and Selective Inheritance
Multiple inheritance in a type hierarchy occurs when a certain subtype T is a subtype of
two (or more) types and hence inherits the functions (attributes and methods) of both
supertypes. For example, we may create a subtype ENGINEERING_MANAGER that is a subtype of
both MANAGER and ENGINEER. This leads to the creation of a type lattice rather than a type
hierarchy. One problem that can occur with multiple inheritance is that the supertypes
from which the subtype inherits may have distinct functions of the same name, creating

26. In programming languages, there are several kinds of polymorphism. The interested reader is
referred to the bibliographic notes for works that include a more thorough discussion.

20.6 Other Objected-Oriented Concepts I 661

an ambiguity. For example, both MANAGER and ENGINEER may have a function called Salary. If
the Salary function is implemented by different methods in the MANAGER and ENGINEER super
types, an ambiguity exists as to which of the two is inherited by the subtype ENGINEERING_

MANAGER. It is possible, however, that both ENGINEER and MANAGER inherit Salary from the same
supertype (such as EMPLOYEE) higher up in the lattice. The general rule is that if a function
is inherited from some common supertype, then it is inherited only once. In such a case,
there is no ambiguity; the problem only arises if the functions are distinct in the two
supertypes.

There are several techniques for dealing with ambiguity in multiple inheritance. One
solution is to have the system check for ambiguity when the subtype is created, and to let
the user explicitly choose which function is to be inherited at this time. Another solution
is to use some system default. A third solution is to disallow multiple inheritance
altogether if name ambiguity occurs, instead forcing the user to change the name of one
ofthe functions in one of the supertypes. Indeed, some 00 systems do not permit multiple
inheritance at all.

Selective inheritance occurs when a subtype inherits only some of the functions of a
supertype. Other functions are not inherited. In this case, an EXCEPT clause may be used
to list the functions in a supertype that are not to be inherited by the subtype. The
mechanism of selective inheritance is not typically provided in 00 database systems, but
it is used more frequently in artificial intelligence applications.i"

20.6.3 Versions and Configurations
Many database applications that use 00 systems require the existence of several versions of
the same object.28 For example, consider a database application for a software engineering
environment that stores various software artifacts, such as design modules, source code mod
ules, and configuration infonnation to describe which modules should be linked together to
forma complex program, and testcases for testing the system. Commonly, maintenance activ
ities are applied to a software system as its requirements evolve. Maintenance usually
involves changing some of the design and implementation modules. If the system is already
operational, and if one or more of the modules must be changed, the designer should create
a new version of each of these modules to implement the changes. Similarly, new versions
ofthe test cases may have to be generated to test the new versions of the modules. However,
the existing versions should not be discarded until the new versions have been thoroughly
tested and approved; only then should the new versions replace the older ones.

Notice that there may be more than two versions of an object. For example, consider
two programmers working to update the same software module concurrently. In this case,
two versions, in addition to the original module, are needed. The programmers can
update their own versions of the same software module concurrently. This is often

27. In the ODMG model, type inheritance refers to inheritance of operations only,not attributes (see
Chapter 21).

28. Versioning is not a problem that is unique to OODBs and it can be applied to relational or other
types of DBMSs.

662 I Chapter 20 Concepts for Object Databases

referred to as concurrent engineering. However, it eventually becomes necessary to
merge these two versions together so that the new (hybrid) version can include the
changes made by both programmers. During merging, it is also necessary to make sure
that their changes are compatible. This necessitates creating yet another version of the
object: one that is the result of merging the two independently updated versions.

As can be seen from the preceding discussion, an OODBMS should be able to store and
manage multiple versions of the same conceptual object. Several systems do provide this
capability, by allowing the application to maintain multiple versions of an object and to
refer explicitly to particular versions as needed. However, the problem of merging and
reconciling changes made to two different versions is typically left to the application
developers, who know the semantics of the application. Some DBMSs have certain
facilities that can compare the two versions with the original object and determine
whether any changes made are incompatible, in order to assist with the merging process.
Other systems maintain a version graph that shows the relationships among versions.
Whenever a version VI originates by copying another version v, a directed arc can be
drawn from V to VI' Similarly, if two versions Vz and V3 are merged to create a new version
v4' directed arcs are drawn from Vz and V3 to v4' The version graph can help users
understand the relationships among the various versions and can be used internally by
the system to manage the creation and deletion of versions.

When versioning is applied to complex objects, further issues arise that must be
resolved. A complex object, such as a software system, may consist of many modules. When
versioning is allowed, each of these modules may have a number of different versions and a
version graph. A configuration of the complex object is a collection consisting of one
version of each module arranged in such a way that the module versions in the
configuration are compatible and together form a valid version of the complex object. A
new version or configuration of the complex object does not have to include new versions
for every module. Hence, certain module versions that have not been changed may belong
to more than one configuration of the complex object. Notice that a configuration is a
collection of versions of different objects that together make up a complex object, whereas
the version graph describes versions of the same object. A configuration should follow the
type structure of a complex object; multiple configurations of the same complex object are
analogous to multiple versions of a component object.

20.7 SUMMARY
In this chapter we discussed the concepts of the object-oriented approach to database sys
tems, which was proposed to meet the needs of complex database applications and to add
database functionality to object-oriented programming languages such as c++. We first
discussed the main concepts used in 00 databases, which include the following:

• Object identity: Objects have unique identities that are independent of their attribute
values.

• Type constructors: Complex object structures can be constructed by recursively apply
ing a set of basic constructors, such as tuple, set, list, and bag.

Review Questions I 663

• Encapsulation of operations: Both the object structure and the operations that can be
applied to objects are included in the object class definitions.

• Programming language compatibility: Both persistent and transient objects are handled
seamlessly. Objects are made persistent by being attached to a persistent collection or
by explicit naming.

• Type hierarchies and inheritance: Object types can be specified by using a type hierar
chy, which allows the inheritance of both attributes and methods of previously
defined types. Multiple inheritance is allowed in some models.

• Extents: All persistent objects of a particular type can be stored in an extent. Extents
corresponding to a type hierarchy have set/subset constraints enforced on them.

• Supportfor complex objects: Both structured and unstructured complex objects can be
stored and manipulated.

• Polymorphism and operator overloading: Operations and method names can be over
loaded to apply to different object types with different implementations.

• Versioning: Some 00 systems provide support for maintaining several versions of the
same object.

In the next chapter, we show how some of these concepts are realized in the ODMG

standard.

Review Questions
20.1. What are the origins of the object-oriented approach?
20.2. What primary characteristics should an OID possess?
20.3. Discuss the various type constructors. How are they used to create complex object

structures?
20.4. Discuss the concept of encapsulation, and tell how it is used to create abstract

data types.
20.5. Explain what the following terms mean in object-oriented database terminology:

method, signature, message, collection, extent.
20.6. What is the relationship between a type and its subtype in a type hierarchy? What

is the constraint that is enforced on extents corresponding to types in the type
hierarchy?

20.7. What is the difference between persistent and transient objects? How is persis
tence handled in typical 00 database systems?

20.8. How do regular inheritance, multiple inheritance, and selective inheritance
differ?

20.9. Discuss the concept of polymorphism/operator overloading.
20.10. What is the difference between structured and unstructured complex objects?
20.11. What is the difference between ownership semantics and reference semantics in

structured complex objects?

664 I Chapter 20 Concepts for Object Databases

20.12. What is versioning? Why is it important? What is the difference between versions
and configurations?

Exercises
20.13. Convert the example of GEOMETRY_OBJECTS given in Section 2004.1 from the func

tional notation to the notation given in Figure 20.3 that distinguishes between
attributes and operations. Use the keyword INHERIT to show that one class inher
its from another class.

20.14. Compare inheritance in the EER model (see Chapter 4) to inheritance in the 00

model described in Section 2004.
20.15. Consider the UNIVERSITY EER schema of Figure 4.10. Think of what operations are

needed for the entity types/classes in the schema. Do not consider constructor and
destructor operations.

20.16. Consider the COMPANY ER schema of Figure 3.2. Think of what operations are
needed for the entity types/classes in the schema. Do not consider constructor and
destructor operations.

Selected Bibliography
Object-oriented database concepts are an amalgam of concepts from 00 programming
languages and from database systems and conceptual data models. A number of textbooks
describe 00 programming languages-for example, Stroustrup (1986) and Pohl (1991)
for C++, and Goldberg (1989) for SMALLTALK. Recent books by Cattell (1994) and
Lausen and Vossen (1997) describe 00 database concepts.

There is a vast bibliography on 00 databases, so we can only provide a representative
sample here. The October 1991 issue of CACM and the December 1990 issue of IEEE
Computer describe object-oriented database concepts and systems. Dittrich (1986) and
Zaniolo et al. (1986) survey the basic concepts of object-oriented data models. An early
paper on object-oriented databases is Baroody and DeWitt (1981). Su et al. (1988) pre
sents an object-oriented data model that is being used in CAD/CAM applications.
Mitschang (1989) extends the relational algebra to cover complex objects. Query lan
guages and graphical user interfaces for 00 are described in Gyssens et al. (1990), Kim
(1989), Alashqur et al. (1989), Bertino et al. (1992), Agrawal et al. (1990), and Cruz
(1992).

Polymorphism in databases and object-oriented programming languages is discussed
in Osborn (1989), Atkinson and Buneman (1987), and Danforth and Tomlinson (1988).
Object identity is discussed in Abiteboul and Kanellakis (1989). 00 programming lan
guages for databases are discussed in Kent (1991). Object constraints are discussed in Del
cambre et at. (1991) and Elmasri et at. (1993). Authorization and security in 00

databases are examined in Rabitti et al. (1991) and Bertino (1992).
Additional references will be given at the end of Chapter 21.

Object Database
Standards, Languages,
and Design

As we discussed at the beginning of Chapter 8, having a standard for a particular type of
database system is very important, because it provides support for portability of database
applications. Portability is generally defined as the capability to execute a particular
application program on different systems with minimal modifications to the program
itself. In the object database field.' portability would allow a program written to access
one Object Database Management System (ODBMS) package to access another ODBMS

package as long as both packages support the standard faithfully. This is important to

database users because they are generally wary of investing in a new technology if the dif
ferent vendors do not adhere to a standard. To illustrate why portability is important, sup
posethat a particular user invests thousands of dollars in creating an application that runs
on a particular vendor's product and is then dissatisfied with that product for some rea
son-say the performance does not meet their requirements. If the application was writ
ten using the standard language constructs, it is possible for the user to convert the
application to a different vendor's product-which adheres to the same language stan
dards but may have better performance for that user's application-without having to do
major modifications that require time and a major monetary investment.

1. In this chapter, we will use objectdatabase instead of object-oriented database (as in the previous
chapter), since this is now more commonly accepted terminology.

665

666 I Chapter 21 Object Database Standards, Languages, and Design

A second potential advantage of having and adhering to standards is that it helps in
achieving interoperability, which generally refers to the ability of an application to access
multiple distinct systems. In database terms, this means that the same application
program may access some data stored under one ODBMS package, and other data stored
under another package. There are different levels of interoperability. For example, the
DBMSs could be two distinct DBMS packages of the same type-for example, two object
database systems-or they could be two DBMS packages of different types-say one
relational DBMS and one object DBMS. A third advantage of standards is that it allows
customers to compare commercial products more easily by determining which parts of the
standard are supported by each product.

As we discussed in the introduction to Chapter 8, one of the reasons for the success of
commercial relational DBMSs is the SQL standard. The lack of a standard for ODBMSs for
several years may have caused some potential users to shy away from converting to this new
technology. Subsequently, a consortium of ODBMS vendors, called ODMG (Object Data
Management Group), proposed a standard that is known as the ODMG-93 or ODMG 1.0
standard. This was revised into ODMG 2.0, which we will describe in this chapter. The
standard is made up of several parts: the object model, the object definition language
(ODL), the object query language (OQL), and the bindings to object-oriented programming
languages. Language bindings have been specified for several object-oriented programming
languages including c+ +, SMALLTALK, and JAVA. Some vendors only offer specific language
bindings, without offering the full capabilities of ODL and OQL. We will describe the ODMG
object model in Section 21.1, ODL in Section 21.2, OQL in Section 21.3, and the c++
language binding in Section 21.4. Examples of how to use ODL, OQL, and the c++ language
binding will use the UNIVERSITY database example introduced in Chapter 4. In our
description, we will follow the ODMG 2.0 object model as described in Cattell et al. (1997).2
It is important to note that many of the ideas embodied in the ODMG object model are
based on two decades of research into conceptual modeling and object-oriented databases
by many researchers.

Following the description of the ODMG model, we will describe a technique for object
database conceptual design in Section 21.5. We will discuss how object-oriented
databases differ from relational databases and show how to map a conceptual database
design in the EER model to the ODL statements of the ODMG model.

The reader may skip Sections 21.3 through 21.7 if a less detailed introduction to the
topic is desired.

21.1 OVERVIEW OF THE OBJECT MODEL OF ODMG
The ODMG object model is the data model upon which the object definition language
(ODL) and object query language (OQL) are based. In fact, this object model provides the
data types, type constructors, and other concepts that can be utilized in the ODL to specify
object database schemas. Hence, it is meant to provide a standard data model for object
oriented databases, just as SQL describes a standard data model for relational databases. It

2. The earlier version of the object model was published in 1993.

21.1 Overview of the Object Model of ODMG I 667

also provides a standard terminology in a field where the same terms were sometimes used
to describe different concepts. We will try to adhere to the ODMG terminology in this
chapter. Many of the concepts in the ODMG model have already been discussed in Chap
ter 20, and we assume the reader has already gone through Sections 20.1 through 20.5.
We will point out whenever the ODMG terminology differs from that used in Chapter 20.

21.1.1 Objects and Literals
Objects and literals are the basic building blocks of the object model. The main differ
ence between the two is that an object has both an object identifier and a state (or cur
rent value), whereas a literal has only a value but no object identifier. 3 In either case, the
value can have a complex structure. The object state can change over time by modifying
the object value. A literal is basically a constant value, possibly having a complex struc
ture, that does not change.

An object is described by four characteristics: (1) identifier, (2) name, (3) lifetime,
and (4) structure. The object identifier is a unique system-wide identifier (or OBJECT_ID).4

Every object must have an object identifier. In addition to the OBJECT_ID, some objects
may optionally be given a unique name within a particular database-this name can be
used to refer to the object in a program, and the system should be able to locate the object
given that name.I Obviously, not all individual objects will have unique names. Typically,
a few objects, mainly those that hold collections of objects of a particular object type
such as extents-will have a name. These names are used as entry points to the database;
that is, by locating these objects by their unique name, the user can then locate other
objects that are referenced from these objects. Other important objects in the application
may also have unique names. All such names within a particular database must be unique.
The lifetime of an object specifies whether it is a persistent object (that is, a database
object) or transientobject (that is, an object in an executing program that disappears after
the program terminates). Finally, the structure of an object specifies how the object is
constructed by using the type constructors. The structure specifies whether an object is
atomic or a collection object. 6 The term atomic object is different than the way we defined
the atom constructor in Section 20.2.2, and it is quite different from an atomic literal (see
below). In the ODMG model, an atomic object is any object that is not a collection, so this
also covers structured objects created using the struct constructor.' We will discuss
collection objects in Section 21.1.2 and atomic objects in Section 21.1.3. First, we define
the concept of a literal.

In the object model, a literal is a value that does not havean object identifier. However,
the value may have a simple or complex structure. There are three types of literals: (1)

3. We will use the terms value and state interchangeably here.

4. Corresponds to the aID of Chapter 20.

5. This corresponds to the naming mechanism described in Section 20.3.

6. In the ODMG model, atomic objects do not correspond to objects whose values are basic data types.
All basic values (integers, reals, etc.) are considered to be literals.

7. The struct construct corresponds to the tuple constructorof Chapter 20.

668 I Chapter 21 Object Database Standards, Languages, and Design

atomic, (2) collection, and (3) structured. Atomic literals'' correspond to the values of basic
data types and are predefined. The basic data types of the object model include long, short,
and unsigned integer numbers (these are specified by the keywords Long, Short, Unsigned
Long, Unsigned Short in ODL), regular and double precision floating point numbers (Float,
Double), boolean values (Boolean), single characters (Char), character strings (String), and
enumeration types (Enum), among others. Structured literals correspond roughly to values
that are constructed using the tuple constructor described in Section 20.2.2. They include
Date, Interval, Time, and Timestamp as built-in structures (see Figure 21.1b), as well as any
additional user-defined type structures as needed by each application." User-defined
structures are created using the Struct keyword in ODL, as in the C and c++ programming
languages. Collection literals specify a value that is a collection of objects or values but the
collection itself does not have an OBJECT_ID. The collections in the object model are SET<T>,

BAG<T>, LIST<T>, and ARRAY<T>, where t is the type of objects or values in the collection.to
Another collection type is Dictionary <K, V>, which is a collection of associations <K, v»
where each K is a key (a unique search value) associated with a value v; this can be usedto
create an index on a collection of values.

Figure 21.1 gives a simplified view of the basic components of the object model. The
notation of ODMG uses the keyword interface where we had used the keywords type and
class in Chapter 20. In fact, interface is a more appropriate term, since it describes the
interface of types of objects-namely, their visible attributes, relationships, and
operations. I I These interfaces are typically noninstantiable (that is, no objects are created
for an interface) but they serve to define operations that can be inherited by the user
defined objects for a particular application. The keyword class in the object model is
reserved for user-specified class declarations that form a database schema and are usedfor
creating application objects. Figure 21.1 is a simplified version of the object model. For
the full specifications, see Cattell et al. (1997). We will describe the constructs shown in
Figure 21.1 as we describe the object model.

interface Object {

boolean
Object
void

};

same3s(in Object other_object);
copYO;
deleteO;

FIGURE 21.1A Overview of the interface definitions for part of the ODMG object
model. The basic Object interface, inherited by all objects.

8. The use of the word atomic in atomic literal does correspond to the waywe usedatom constructor
in Section 20.2.2.

9. The structures for Date, Interval, Time, and Timestampcan be used to create either literal values
or objects with identifiers.
10. These are similar to the corresponding type constructors described in Section 20.2.2.

11. Interface is also the keyword used in the CORBA standard (see Section 21.5) and the JAVA pro·
gramming language.

interface Date: Object {
enum Weekday
{Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday};
enum Month
{January, February, March, April, May, June, July, August, September, October, November, December};
unsigned short yeart):
unsigned short montht):
unsigned short dayt):

};

boolean
boolean

is_equal(in Date other_Date);
iS--9reater(in Date other_Date);

interface Time: Object {

};

unsigned short
unsigned short
unsigned short
unsigned short

boolean
boolean

Time
Time
Interval

houri):
minuter);
sscondt):
rnillisecondt):

is_equal(in Time other_Time);
is_greater(in Time other_Time);

add_interval(in Interval some_Interval);
subtracUnterva\(in Interval some_Interval);
subtractjlmeun Time other_Time);

interface Timestamp: Object (

);

unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short

Timestamp
Timestamp
boolean
boolean

yean):
rnontht):
dayt):
hourt):
mlnutet):
secondt);
millisecondf):

plus(in Interval some_Interval);
minus(in Interval some_Interval);
is_equal(in Timestamp other_Timestamp);
is_greater(in Timestamp other_Timestamp);

interface Interval: Object {
unsigned short dayt):
unsigned short hourt):
unsigned short minuter):
unsigned short seccndt):
unsigned short rnillisecondt);

Interval
Interval
Interval
Interval
boolean
boolean

plus(in Interval some_Interval);
minus(in Interval some_Interval);
product(in long some_value);
quotient(in long some_value);
is_equal(in Interval otherInterval):
is_greater(in Interval other_Interval);

};

FIGURE 21.1 B Overview of the interface definitions for part of the ODMG object
model. Some standard interfaces for structured literals.

669

670 I Chapter 21 Object Database Standards, Languages, and Design

interface Collection: Object {

exception
unsigned long
boolean

boolean
void
void

Iterator

};

interface Iterator {
exception

boolean
boolean
void
any
void

};

ElementNotFound{any element; };
cardlnalltyt):
is_emptyO;

contains_element(in any element);
inserCelement(in any element);
rernoveelernenttln any element)

raises(ElementNotFound);
create_iterator(in boolean stable);

NoMoreElementsO;

is_stableO;
aCendO;
resstr):
geCelementO raises(NoMoreElements);
nextposltioru) raises(NoMoreElements);

interface Set : Collection (
Set create_union(in Set other_set);

boolean

};

interface Bag: Collection {
unsigned long occurrences_of(in any element);
Bag create_union (in Bag other_bag);

};

interface List: Collection {
exception Invalid_lndex{unsignedJong index; };
any remove_elemenCat(in unsigned long position)

raises(lnvalidlndex) ;
any retrieve_element_at(in unsigned long position)

raises(Invalidlndex);
void replacaelement attln any element, in unsigned long position)

raises(lnvalidlndex) ;
void insert_elemenCafter(in any element, in unsigned long position)

raises(InvalidIndex);

void

any

any

List
void

};

insert_elemenUirst(in any element);

remove_first_elementO raises(lnvalidlndex);

retrieve_first3lementO raises(InvalidIndex);

concat(in List otherjlst):
append(in List otherjist):

FIGURE 21.1 C Overview of the interface definitions for part of the ODMG object
model. Interface definitions for collection objects.

void

any

void
};

21.1 Overview of the Object Model of ODMG I 671

interface Array: Collection {
exception Invalid_lndex{unsigned_long index;};
any removeelement attln unsigned long index)

raises(lnvalidlndex);
retrieve_elemenCat(in unsigned long index)

raises(lnvalidlndex) ;
replace_element_at(in unsigned long index, in any element)

raises(lnvalidlndex);
resize(in unsigned longnew_size);

structAssociation {anykey;any value;};

interface Dictionary: Collection {
exception KeyNotFound{any key;};
void bind(in any key, in any value);
void unbind(in any key) raises(KeyNotFound);
any lookup(in any key) raises(KeyNotFound);
boolean contains_key(in any key);

};

FIGURE 21.1c (CONTINUED)

In the object model, all objects inherit the basic interface of Object, shown in figure
21.1a. Hence, the basic operations that are inherited by all objects (from the Object
interface) are copy (creates a new copy of the object), delete (deletes the object), and
same_as (compares the object's identity to another object)Y In general, operations are
applied to objects using the dot notation. For example, given an object 0, to compare it
with another object p, we write

o.same_as(p)

The result returned by this expression is Boolean and would be true if the identity of p is
the same as that of 0, and false otherwise. Similarly, to create a copy p of object 0, we write

p = o , copyO

An alternative to the dot notation is the arrow notation: o->same_as (p) or o-o-copyr).
Type inheritance, which is used to define type/subtype relationships, is specified in

the object model using the colon (:) notation, as in the c++ programming language.
Hence, in Figure 21.1, we can see that all interfaces, such as Collection, Date, and Time,
inherit the basic Object interface. In the object model, there are two main types of
objects: (1) collection objects, described in Section 21.1.2, and (2) atomic (and
structured) objects, described in Section 21.1.3.

12. Additional operations are defined on objects for locking purposes, which are not shown in Figure
21.1. We discuss locking concepts for databases in Chapter 20.

672 I Chapter 21 Object Database Standards, Languages, and Design

21.1.2 Built-in Interfaces for Collection Objects
Any collection object inherits the basic Collection interface shown in Figure 21.1c,
which shows the operations for all collection objects. Given a collection object 0, the
o. cardi na1i tyO operation returns the number of elements in the collection. The opera
tion o , i s_emptyO returns true if the collection 0 is empty, and false otherwise. The oper
ations o. i nsert_el ement(e) and o. remove_el ement(e) insert or remove an element e
from the collection o. Finally, the operation o. contai ns_e1ement (e) returns true if the
collection 0 includes element e, and returns false otherwise. The operation i
o , create_i teratorO creates an iterator object i for the collection object 0, which can
iterate over each element in the collection. The interface for iterator objects is also
shown in Figure 21.1c. The i . reset 0 operation sets the iterator at the first element in a
collection (for an unordered collection, this would be some arbitrary element), and
i .next_positionO sets the iterator to the next element. The i .get_elementO
retrieves the current element, which is the element at which the iterator is currently
positioned.

The ODMG object model uses exceptions for reporting errors or particular conditions.
For example, the ElementNotFound exception in the Coll eeti on interface would be
raised by the o , remove_e 1ement (e) operation if e is not an element in the collection o.
The NoMoreEl ements exception in the iterator interface would be raised by the i . next_
posi ti on 0 operation if the iterator is currently positioned at the last element in the
collection, and hence no more elements exist for the iterator to point to.

Collection objects are further specialized into Set, List, Bag, Array, and
Dieti onary, which inherit the operations of the Coll eeti on interface. A Set<t> object
type can be used to create objects such that the value of object 0 is a set whose elements are
of type t. The Set interface includes the additional operation p = o.create_union(s)
(see Figure 21.1c), which returns a new object p of type Set<t> that is the union of the
two sets 0 and s. Other operations similar to create_uni on (not shown in Figure 21.1c)
are c reate_i nte rsecti on (5) and create_di ffe renee (5). Operations for set
comparison include the o. i s_subset_of(s) operation, which returns true if the set
object 0 is a subset of some other set object 5, and returns false otherwise. Similar
operations (not shown in Figure 21.1c) are is_proper_subset_of(s), is_superset_
of(s), and is_proper_superset_of(s). The Bag<t> object type allows duplicate elements
in the collection and also inherits the Co11eeti on interface. It has three operations
ereate_union(b), ereate_interseetion(b), and ereate_differenee(b)-that all
return a new object of type Bag<t>. For example, p = o. c reate_uni on (b) returns a Bag
object p that is the union of 0 and b (keeping duplicates). The o. occu rrenees_of(e)
operation returns the number of duplicate occurrences of element e in bag o.

ALi s t-ct» object type inherits the Coll eeti on operations and can be used to
create collections where the order of the elements is important. The value of each such
object 0 is an ordered list whose elements are of type t. Hence, we can refer to the first,
last, and i th element in the list. Also, when we add an element to the list, we must
specify the position in the list where the element is inserted. Some of the List
operations are shown in Figure 21.1c. If 0 is an object of type Li st<t>, the operation

21.1 Overview of the Object Model of ODMG I 673

o. insert_element_fi rst(e) (see Figure 21.1c) inserts the element e before the first
element in the list 0, so that e becomes the first element in the list. A similar operation
(not shown) is o.insert_element_last(e). The operation o.insert_element_
afte r (e , i) in Figure 21.1c inserts the element e after the i th element in the list 0 and
will raise the exception Inva1i dlndex if no i th element exists in o. A similar operation
(not shown) is o. i nsert_el ement_before(e, i). To remove elements from the list, the
operations are e = o. remove_fi rst_element(), e = o. remove_last_element(), and e
= o. remove_e 1ement_at (i); these operations remove the indicated element from the
list and return the element as the operation's result. Other operations retrieve an
element without removing it from the list. These are eo. retri eve_fi rst
element(), e = o. retrieve_last_element(), and e = o. retrieve_element_at(i).
Finally, two operations to manipulate lists are defined. These are p = o.concat(l),
which creates a new list p that is the concatenation of lists 0 and 1 (the elements in list
o followed by those in list 1), and o. append (l), which appends the elements of list 1 to

the end of list 0 (without creating a new list object).
The Array<t> object type also inherits the Collection operations. It is similar to a

list except that an array has a fixed number of elements. The specific operations for an
Array object 0 are o. replace_element_at(i ,e), which replaces the array element at
position i with element e; e = o. remove_el ement_at(i), which retrieves the i th

element and replaces it with a null value; and e = o. ret ri eve_e1ement jat (i), which
simply retrieves the i th element of the array. Any of these operations can raise the
exception Inva1i dlndex if i is greater than the array's size. The operati on
o. resi ze (n) changes the number of array elements to n.

The last type of collection objects are of type Dicti onary-ck , v», This allows the
creation of a collection of association pairs -ck , v», where all k (key) values are unique. This
allows for associative retrieval of a particular pair given its key value (similar to an index). If
o is a collection object of type Dicti onary-ck ,v», then o. bi nd(k ,v) binds value v to the
key k as an association -ck ,v» in the collection, whereas o. unbi nd(k) removes the
association with key k from 0, and v = 0.1 ookup (k) returns the value v associated with key
k in o. The latter two operations can raise the exception KeyNotFound. Finally,
o. contai ns_key(k) returns true if key k exists in 0, and returns false otherwise.

Figure 21.2 is a diagram that illustrates the inheritance hierarchy of the built-in
constructs of the object model. Operations are inherited from the supertype to the
subtype. The collection object interfaces described above are not directly instantiable;
that is, one cannot directly create objects based on these interfaces. Rather, the
interfaces can be used to specify user-defined collection objects-of type Set, Bag,
List, Array, or Dictionary-for a particular database application. When a user designs
a database schema, they will declare their own object interfaces and classes that are
relevant to the database application. If an interface or class is one of the collection
objects, say a Set, then it will inherit the operations of the Set interface. For
example, in a UNIVERSITY database application, the user can specify a class for
Set<Student>, whose objects would be sets of Student objects. The programmer can
then use the operations for Set<t> to manipulate an object of type Set<Student>.
Creating application classes is typically done by utilizing the object definition
language ODL (see Section 21.2).

674 I Chapter 21 Object Database Standards, Languages, and Design

Iterator

Dictionary

FIGURE 21.2 Inheritance hierarchy for the built-in interfaces of the object model.

It is important to note that all objects in a particular collection must be of the same
type. Hence, although the keyword any appears in the specifications of collection
interfaces in Figure 21.1c, this does not mean that objects of any type can be intermixed
within the same collection. Rather, it means that any type can be used when specifying
the type of elements for a particular collection (including other collection typesl).

21.1.3 Atomic (User-Defined) Objects
The previous section described the built-in collection types of the object model. We
now discuss how object types for atomic objects can be constructed. These are specified
using the keyword class in ODL. In the object model, any user-defined object that is not
a collection object is called an atomic object.l ' For example, in a UNIVERSITY database
application, the user can specify an object type (class) for Student objects. Most such
objects will be structured objects; for example, a Student object will have a complex
structure, with many attributes, relationships, and operations, but it is still considered
atomic because it is not a collection. Such a user-defined atomic object type is defined
as a class by specifying its properties and operations. The properties define the state of
the object and are further distinguished into attributes and relationships. In this sub
section, we elaborate on the three types of components-attributes, relationships, and
operations-that a user-defined object type for atomic (structured) objects can include.
We illustrate our discussion with the two classes Employee and Department shown in
Figure 21.3.

13. As mentioned earlier, this definition of atomic object in the ODMG object model is different from
the definition of atom constructor given in Chapter 20, which is the definition used in much of the
object-oriented database literature.

attribute
attribute

attribute
attribute
attribute

21.1 Overview of the Object Model of ODMG I 675

class Employee
(extent all_employees

key ssn)

attribute string name;
attribute string ssn;
attribute date birthdate;
attribute enum Gender{M, F} sex;
attribute short age;
relationship Department works_for

inverse Department::has_emps;
void reassign_emp(instring new_dname)

raises(dnarnejict, valid);
};

class Department
(extent all_departments

key dname, dnumber

string dname;
short dnumber;
struct Dept_Mgr {Employee manager, date startdate}

mgr;
sekstring> locations;
struct Projs{string projname, time weekly_hours}

projs;
relationship set<Employee> has_emps inverse Employee::works_for;
void add_emp(in string new_enamel raises(ename_not_valid);
void change_manager(in string new_mgr_name; in date startdate);

};

FIGURE 21.3 The attributes, relationships, and operations in a class definition.

An attribute is a property that describes some aspect ot an object. Attributes have
values, which are typically literals having a simple or complex structure, that are stored
within the object. However, attribute values can also be ObjecClds of other objects.
Attribute values can even be specified via methods that are used to calculate the attribute
value. In Figure 21.3,14 the attributes for Employee are name, ssn, bi rthdate, sex, and
age, and those for Department are dname, dnumber, mgr, locations, and projs. The mgr
and proj s attributes of Department have complex structure and are defined via struct,
which corresponds to the tupleconstructor of Chapter 20. Hence, the value of mgr in each
Department object will have two components: manager, whose value is an Object_Id
that references the Employee object that manages the Department, and startdate, whose
value is a date. The locations attribute of Department is defined via the set constructor,
since each Department object can have a set of locations.

14. We are using the Object Definition Language (OOL) notation in Figure 21.3, which will be dis
cussed in more detail in Section 21.2.

676 I Chapter 21 Object Database Standards, Languages, and Design

A relationship is a property that specifies that two objects in the database are related
together. In the object model of ODMG, only binary relationships (see Chapter 3) are
explicitly represented, and each binary relationship is represented by a pair of inverse
references specified via the keyword relationship. In Figure 21.3, one relationship exists
that relates each Employee to the Department in which he or she works-the works_for
relationship of Employee. In the inverse direction, each Department is related to the set
of Emp 1oyees that work in the Department-the has_emps relationship of Department.
The keyword inverse specifies that these two properties specify a single conceptual
relationship in inverse directions. IS By specifying inverses, the database system can
maintain the referential integrity of the relationship automatically. That is, if the value of
works_for for a particular Employee e refers to Department d, then the value of has_
emps for Department d must include a reference to e in its set of Employee references. If
the database designer desires to have a relationship to be represented in only one direction,
then it has to be modeled as an attribute (or operation). An example is the manager
component of the mgr attribute in Department.

In addition to attributes and relationships, the designer can include operations in
object type (class) specifications. Each object type can have a number of operation
signatures, which specify the operation name, its argument types, and its returned value,
if applicable. Operation names are unique within each object type, but they can be
overloaded by having the same operation name appear in distinct object types. The
operation signature can also specify the names of exceptions that can occur during
operation execution. The implementation of the operation will include the code to raise
these exceptions. In Figure 21.3, the Employee class has one operation, reassign_emp,
and the Department class has two operations, add_emp and change_manager.

21.1.4 Interfaces, Classes, and Inheritance
In the ODMG object model, two concepts exist for specifying object types: interfaces and
classes. In addition, two types of inheritance relationships exist. In this section, we discuss
the differences and similarities among these concepts. Following the ODMG terminology,
we use the word behavior to refer to operations, and state to refer to properties (attributes
and relationships).

An interface is a specification of the abstract behavior of an object type, which
specifies the operation signatures. Although an interface may have state properties
(attributes and relationships) as part of its specifications, these cannot be inherited from
the interface, as we shall see. An interface also is noninstantiable-that is, one cannot
create objects that correspond to an interface definition.16

A class is a specification of both the abstract behavior and abstract state of an object
type, and is instantiable-that is, one can create individual object instances corresponding

15.Chapter 3 discussed how a relationshipcan be representedby two attributes in inverse directions.

16. This is somewhat similar to the concept of abstract class in the c++ programming language.

21.1 Overview of the Object Model of ODMG I 677

to a class definition. Because interfaces are noninstantiable, they are mainly used to specify
abstract operations that can be inherited by classes or by other interfaces. This is called
behavior inheritance and is specified by the ":" symbol.l" Hence, in the ODMG object
model, behavior inheritance requires the supertype to be an interface, whereas the subtype
could be either a class or another interface.

Another inheritance relationship, called EXTENDS and specified by the extends
keyword, is used to inherit both state and behavior strictly among classes. In an EXTENDS

inheritance, both the supertype and the subtype must be classes. Multiple inheritance via
EXTENDS is not permitted. However, multiple inheritance is allowed for behavior
inheritance via ":", Hence, an interface may inherit behavior from several other
interfaces. A class may also inherit behavior from several interfaces via ":", in addition to
inheriting behavior and state from at most one other class via EXTENDS. We will give
examples in Section 21.2 of how these two inheritance relationships-":" and EXTENDS

may be used.

21.1.5 Extents, Keys, and Factory Objects
In the ODMG object model, the database designer can declare an extent for any object
type that is defined via a class declaration. The extent is given a name, and it will con
tain all persistent objects of that class. Hence, the extent behaves as a set object that
holds all persistent objects of the class. In Figure 21.3, the Employee and Department
classes have extents called all_emp1oyees and all_departments, respectively. This is
similar to creating two objects-one of type Set<Employee> and the second of type
Set<Department>-and making them persistent by naming them all_employees and
all_departments. Extents are also used to automatically enforce the set/subset relation
ship between the extents of a supertype and its subtype. If two classes A and B have
extents a11_A and a11_B, and class Bis a subtype of class A (that is, class BEXTENDS class
A), then the collection of objects in all_B must be a subset of those in all_A at any
point in time. This constraint is automatically enforced by the database system.

A class with an extent can have one or more keys. A key consists of one or more
properties (attributes or relationships) whose values are constrained to be unique for each
object in the extent. For example, in Figure 21.3, the Employee class has the ssn attribute
as key (each Employee object in the extent must have a unique ssn value), and the
Department class has two distinct keys: dname and dnumber (each Department must have
a unique dname and a unique dnumber). For a composite keyl8 that is made of several
properties, the properties that form the key are contained in parentheses. For example, if
a class Vehicle with an extent all_vehicles has a key made up of a combination of two

17. The ODMG report also calls interface inheritance as type/subtype, is-a, and generalization/spe
cialization relationships, although, in the literature, these terms have been used to describe inherit
ance of both state and operations (see Chapters 4 and 20).

18.A composite key is called a compound key in the ODMG report.

678 I Chapter 21 Object Database Standards, Languages, and Design

attributes state and license_number, they would be placed in parentheses as (state,

1i cense_number) in the key declaration.
Next, we present the concept of factory object-an object that can be used to

generate or create individual objects via its operations. Some of the interfaces of factory
objects that are part of the ODMG object model are shown in Figure 21.4. The interface
ObjectFactory has a single operation, new() , which returns a new object with an
Obj eet_Id. By inheriting this interface, users can create their own factory interfaces for
each user-defined (atomic) object type, and the programmer can implement the
operation new differently for each type of object. Figure 21.4 also shows a DateFactory

interface, which has additional operations for creating a new calendar_date, and for
creating an object whose value is the current_date, among other operations (not shown
in Figure 21.4). As we can see, a factory object basically provides the constructor
operations for new objects.

Finally, we discuss the concept of a database. Because a ODBMS can create many
different databases, each with its own schema, the ODMG object model has interfaces for
DatabaseFactory and Database objects, as shown in Figure 21.4. Each database has its
own database name, and the bind operation can be used to assign individual unique names
to persistent objects in a particular database. The lookup operation returns an object from
the database that has the specified cbj ec t jname, and the unbind operation removes the
name of a persistent named object from the database.

interface ObjectFactory {
Object newt):

};

interface DateFactory : ObjectFactory {
exception InvalidDate{};

};

Date

Date

calendar_date(in unsigned short year,
in unsigned short month,
in unsigned short day)

raises(lnvalidDate);

currentt):

interface DatabaseFactory (
Database newf):

};

interface Database {
void open(in string database_name);
void closet);
void bind(in any some_object, in string object name):
Object unbind(in string name);
Object lookup(in string object narne)

raises(ElementNotFound);

};

FIGURE 21.4 Interfaces to illustrate factory objects and database objects.

21.2 The Object Definition Language ODL I 679

21.2 THE OBJECT DEFINITION LANGUAGE DOL
After our overview of the ODMG object model in the previous section, we now show how
these concepts can be utilized to create an object database schema using the object defini
tion language ODL. 19 The ODL is designed to support the semantic constructs of the ODMG

object model and is independent of any particular programming language. Its main use is to
create object specifications-that is, classes and interfaces. Hence, ODL is not a full pro
gramming language. A user can specify a database schema in ODL independently of any pro
gramming language, then use the specific language bindings to specify how ODL constructs
can be mapped to constructs in specific programming languages, such as C++, SMALLTALK,

andJAVA. We will give an overview of the c++ binding in Section 21.4.
Figure 21.5b shows a possible object schema for part of the UNIVERSITY database, which

was presented in Chapter 4. We will describe the concepts of ODL using this example, and
the one in Figure 21.7. The graphical notation for Figure 21.5b is shown in Figure 21.5a
and can be considered as a variation of EER diagrams (see Chapter 4) with the added
concept of interface inheritance but without several EER concepts, such as categories
(union types) and attributes of relationships.

Figure 21.6 shows one possible set of ODL class definitions for the UNIVERSITY

database. In general, there may be several possible mappings from an object schema
diagram (or EER schema diagram) into ODL classes. We will discuss these options further
in Section 21.5.

Figure 21.6 shows the straightforward way of mapping part of the UNIVERSITY database
from Chapter 4. Entity types are mapped into ODL classes, and inheritance is done using
EXTENDS. However, there is no direct way to map categories (union types) or to do
multiple inheritance. In Figure 21.6, the classes Person, Faculty, Student, and
GradStudent have the extents pe rsons, faculty, students, and grad_students,
respectively. Both Faculty and Student EXTENDS Person, and GradStudent EXTENDS

Student. Hence, the collection of students (and the collection of faculty) will be
constrained to be a subset of the collection of pe rsons at any point in time. Similarly, the
collection of grad_students will be a subset of students. At the same time, individual
Student and Facul ty objects will inherit the properties (attributes and relationships) and
operations of Person, and individual GradStudent objects will inherit those of Student.

The classes Department, Course, Section, and CurrSection in Figure 21.6 are
straightforward mappings of the corresponding entity types in Figure 21.5b. However, the
class Grade requires some explanation. The Grade class corresponds to the M:N

relationship between Student and Secti on in Figure 21.5b. The reason it was made into a
separate class (rather than as a pair of inverse relationships) is because it includes the
relationship attribute grade.20 Hence, the M:N relationship is mapped to the class Grade,
and a pair of I:N relationships, one between Student and Grade and the other between

19. The ODl syntax and data types are meant to be compatible with the Interface Definition Lan
guage (IDl) of CORBA (Common Object Request Broker Architecture), with extensions for rela
tionshipsand other database concepts.

20. We will discuss alternative mappings for attributes of relationships in Section 21.5.

680 I Chapter 21 Object Database Standards, Languages, and Design

Interface C=:::erson-0

Class I Student I

Relationships 1.1

.... l:N

....)- .. M:N

Inheritance

~
Interface (is-a) t Class
inheritance inheritance
using ":" using extends

(a)

students

offers

Department

registered_students

majors_in

completed_sections

committtee

advisor

(b)

FIGURE 21.5 An example of a database schema. (a) Graphical notation for representing ODL sche
mas. (b) A graphical object database schema for part of the UNIVERSITY database.

21.2 The Object Definition Language ODL I 681

class Person
(extent persons

key ssn)

struet Pname {string fname, string mname, string Iname}
name;
ssn;
birthdate;
sex;

string
date
enum Gender{M, Fl
struct Address
{short no, string street, short aptno, string city, string state, short zip}

address;

attribute

attribute
attrfbute
attrfbute
attrfbute

short age();
};

class Faculty extends Person
(extent faculty)
{

attribute string rank;
attribute float salal)';
attrfbute string office;
attribute string phone;
relationship Department works_in Inverse Department::has_faculty;
relationship set<GradStudent> advises inverse GradStudent::advisor;
relationship aet<GradStudent> on_committee_of

Inverse GradStudent: :committee;
void give_raise(ln float raise);
void promote(ln string new_rank);

};

class Grade
(extent grades
{

attrfbute enum GradeValues{A,B,C,D,F,I,P}
grade;

relationship section section inverse Section::students;
relationship Student student Inverse Student::completed_sections;

};

class Student extends Person
(extent students)
{

attribute string class;
attribute Department minors_in;
relationship Department majors_in Inverse Department: :has_majors;
relatlonshlpaet<Grade> completed_sections Inverse Grade::student;
relationship aet<Curr5ection> registered_in

Inverse CurrSection::registered_students;
void change_major(ln string dname) relses(dname_nocvalid);
float gpa();
void register(ln short secno) ralses(section_nocvalid);
void assign-9rade(ln short secno; In GradeValue grade)

ralses(section_nocvalid,grade_noCvalid);

FIGURE 21.6 Possible ODL schema for the UNIVERSITY database of Figure 21.5(b).

class Degree
{

attribute
attribute
attribute

};

string
string
string

college;
degree;
year;

682

class GradStudentextends Student
(extent grad_students)
(

attribute set<Degree> degrees;
relationship Facultyadvisor Inverse Faculty::advises;
relatlonshlpset<Faculty> committeeInverse Faculty::on_committee_of;
void assign_advisor(lnstring Iname;In string fname)

ralaes(faculty.not,valid);
void assign_committee_member(ln string Iname;In string fname)

ralses(faculty_noCvalid);
};

class Department
(extent departmentskey dname
{

attribute string dname;
attribute string dphone;
attribute string doffice;
attribute string college;
attribute Faculty chair;
ralatlonshlp set<Faculty> has_facultyInverse Faculty::works_in;
relationship set<Student> has_majorsInverse Student::majors_in;
relationship set<Course> offers Inverse Course::offered_by;

};

class Course
(extent courses key cno
{

attribute string cname;
attribute string cno;
attribute string description;
relatlonshlpS8t<Section> has_sections Inve..... Section::oCcourse;
relationship Departmentoffered~by Inverse Department::offers;

};

class Section
(extent sections
{

attribute short secno;
attribute string year;
attribute enum Quarter{Fall, Winter, Spring, Summer}qtr;
relatlonshlpS8t<Grade> students Inverse Grade::section;
relationship CourseoCcourse Inverse Course::has_sections;

};

class CurrSection extends Section
(extent currenCsections)
(

relationship set<Student> registered_students Inverse Student::registered_in
void register_student(ln string ssn)

ralses(studenCnoCvalid, section_full);
};

FIGURE 21.6 (CONTINUED)

21.2 The Object Definition Language ODL I 683

GeometryObject

Triangle Circle

FIGURE 21.7A An illustration of interface inheritance via /1:/1. Graphical schema
representation.

Secti on and Grade.21 These two relationships are represented by the following
relationship properties: compl eted_secti ons of Student; secti on and student of Grade;
and students of Secti on (see Figure 21.6). Finally, the class Degree is used to represent
the composite, multivalued attribute degrees of GradStudent (see Figure 4.10).

Because the previous example did not include any interfaces, only classes, we now
utilize a different example to illustrate interfaces and interface (behavior) inheritance.
Figure 21.7 is part of a database schema for storing geometric objects. An interface
GeometryObject is specified, with operations to calculate the perimeter and area of a
geometric object, plus operations to transl ate (move) and rotate an object. Several
classes (Rectangle, Triangle, Ci rcle, ...) inherit the GeometryObject interface. Since
GeometryObj ect is an interface, it is noninstantiable-that is, no objects can be created
based on this interface directly. However, objects of type Rectangl e, Tri angl e, Ci rcl e,
... can be created, and these objects inherit all the operations of the GeometryObject
interface. Note that with interface inheritance, only operations are inherited, not
properties (attributes, relationships). Hence, if a property is needed in the inheriting
class, it must be repeated in the class definition, as with the refe renee_poi nt attribute in
Figure 21.7. Notice that the inherited operations can have different implementations in
each class. For example, the implementations of the area and perimeter operations may
be different for Rectangl e, Tri angl e, and Ci rcl e.

Multiple inheritance of interfaces by a class is allowed, as is multiple inheritance of
interfaces by another interface. However, with the EXTENDS (class) inheritance, multiple
inheritance is not permitted. Hence, a class can inherit via EXTENDS from at most one class
(in addition to inheriting from zero or more interfaces).

21. This is similar to how an M:N relationship is mapped in the relational model (see Chapter 7)
and in the legacy network model (see Appendix C).

684 I Chapter 21 Object Database Standards, Languages, and Design

interface GeometryObject
{

attribute enum Shape{Rectangle,Triangle,Circle, ...} shape;
attribute struct Point {short x, short y} referencejioint;
float perlrneten):
float areat):
void translate(in short x_translation; in short y-translation);
void rotate(in float angle_oUotation);

};

class Rectangle: GeometryObject
(extent rectangles)
{

};

attribute
attribute
attribute
attribute

struct Point {short x, short y} reference_point;
short length;
short height;
float orientation_angle;

class Triangle: GeometryObject
(extent triangles)
{

};

attribute
attribute
attribute
attribute
attribute

struct Point {short x, short y} reference_point;
short side_1 ;
short side_2;
float side1_side2_angle;
float side1_orientation_angle;

class Circle : GeometryObject
(extent circles)
{

};

attribute
attribute

struct Point {short x, short y}
short radius;

reterencepotnt:

FIGURE 21.78 An illustration of interface inheritance via ":", Corresponding inter
face and class definitions in OOl.

21.3 THE OBJECT QUERY LANGUAGE OQL
The object query language (OQL) is the query language proposed for the OOMO object
model. It is designed to work closely with the programming languages for which an OOMO

binding is defined, such as c++, SMALLTALK, and]AVA. Hence, an OQL query embedded
into one of these programming languages can return objects that match the type system of
that language. In addition, the implementations of class operations in an OOMO schema
can have their code written in these programming languages. The OQL syntax for queries
is similar to the syntax of the relational standard query language SQL, with additional fea
tures for OOMO concepts, such as object identity, complex objects, operations, inherit
ance, polymorphism, and relationships.

21.3 The Object Query Language OQL I 685

We will first discuss the syntax of simple OQL queries and the concept of using named
objects or extents as database entry points in Section 21.3.1. Then in Section 21.3.2, we
discuss the structure of query results and the use of path expressions to traverse
relationships among objects. Other OQL features for handling object identity, inheritance,
polymorphism, and other object oriented concepts are discussed in Section 21.3.3. The
examples to illustrate OQL queries are based on the UNIVERSITY database schema given in
Figure 21.6.

21.3.1 Simple OQL Queries, Database Entry Points, and
Iterator Variables

The basic OQL syntax is a select ... from ... where ... structure, as for SQL. For example,
the query to retrieve the names of all departments in the college of 'Engineering' can be
written as follows:

QO: SELECT

FROM
WHERE

d.dname
d in departments
d.co11ege = 'Engineering';

In general, an entry point to the database is needed for each query, which can be any
named persistent object. For many queries, the entry point is the name of the extent of a class.
Recall that the extent name is considered to be the name of a persistent object whose type
isa collection (in most cases, a set) of objects from the class. Looking at the extent names in
Figure 21.6, the named object departments is of type set<Department>; pe rsons is of type
set-Per-son»: facu1 ty is of type set eFacu l t y»: and so on.

The use of an extent name-departments in QO-as an entry point refers to a
persistent collection of objects. Whenever a collection is referenced in an OQL query, we
should define an iterator variable22-d in QO-that ranges over each object in the
collection. In many cases, as in QO, the query will select certain objects from the
collection, based on the conditions specified in the where-clause. In QO, only persistent
objects d in the collection of departments that satisfy the condition d. co11ege =

'Engi nee ri ng' are selected for the query result. For each selected object d, the value of
d. dname is retrieved in the query result. Hence, the type of the result for QO is
baq-cs t r i nqs-, because the type of each dname value is string (even though the actual
result is a set because dname is a key attribute). In general, the result of a query would be of
type bagfor se1 ect ... from ... and of type set for se1 ect di sti nct ... from ... , as in
SQL (adding the keyword di sti nct eliminates duplicates).

Using the example in QO, there are three syntactic options for specifying iterator
variables:

d in departments

departments d

departments as d

22. This is similar to the tuple variables that range over tuples in SQL queries.

686 I Chapter 21 Object Database Standards, Languages, and Design

We will use the first construct in our examples. 23

The named objects used as database entry points for OQL queries are not limited to
the names of extents. Any named persistent object, whether it refers to an atomic (single)
object or to a collection object can be used as a database entry point.

21.3.2 Query Results and Path Expressions
The result of a query can in general be of any type that can be expressed in the ODMG

object model. A query does not have to follow the select ... from ... where ... struc
ture; in the simplest case, any persistent name on its own is a query, whose result is a refer
ence to that persistent object. For example, the query

Ql: departments;

returns a reference to the collection of all persistent department objects, whose type is
set<Department>. Similarly, suppose we had given (via the database bind operation, see
Figure 21.4) a persistent name csdepartment to a single department object (the computer
science department); then, the query:

Qla: csdepartment;

returns a reference to that individual object of type Department. Once an entry point is
specified, the concept of a path expression can be used to specify a path to related
attributes and objects. A path expression typically starts at a persistent object name, or at
the iterator variable that ranges over individual objects in a collection. This name will be
followed by zero or more relationship names or attribute names connected using the dot
notation. For example, referring to the UNIVERSITY database of Figure 21.6, the following are
examples of path expressions, which are also valid queries in OQL:

Q2: csdepartment.chair;
Q2a: csdepartment.chair.rank;
Q2b: csdepartment.has_faculty;

The first expression Q2 returns an object of type Facul ty, because that is the type of
the attribute chai r of the Department class. This will be a reference to the Faculty
object that is related to the department object whose persistent name is csdepartment
via the attribute chai r; that is, a reference to the Facul ty object who is chairperson of
the computer science department. The second expression Q2a is similar, except that it
returns the rank of this Faculty object (the computer science chair) rather than the
object reference; hence, the type returned by Q2a is string, which is the data type for the
rank attribute of the Facul ty class.

Path expressions Q2 and Q2a return single values, because the attributes chai r (of
Department) and rank (of Faculty) are both single-valued and they are applied to a
single object. The third expression Q2b is different; it returns an object of type
set<Facul ty» even when applied to a single object, because that is the type of the
relationship has_facul ty of the Department class. The collection returned will include

23. Note that the latter two options are similar to the syntax for specifying tuple variables in SQL
queries.

21.3 The Object Query Language OQL I 687

references to all Faculty objects that are related to the department object whose
persistent name is csdepartment via the telationship has_facul ty; that is, references to
all Facul ty objects who are working in the computer science department. Now, to
return the ranks of computer science faculty, we cannot write

Q3': csdepartment.has_faculty.rank;

This is because it is not clear whether the object returned would be of type
set-est ri ng> or baq-cs t ri ng> (the latter being more likely, since multiple faculty may
share the same rank). Because of this type of ambiguity problem, OQL does not allow
expressions such as Q3'. Rather, one must use an iterator variable over these collections,
as in Q3a or Q3b below:

Q3a: select f.rank
from f in csdepartment.has_faculty;

Q3b: select distinct f. rank
from f in csdepartment.has_faculty;

Here, Q3a returns baq-cst r i ng> (duplicate rank values appear in the result), whereas
Q3b returns set<stri ng> (duplicates are eliminated via the di sti nct keyword). Both
Q3a and Q3b illustrate how an iterator variable can be defined in the from-clause to
range over a restricted collection specified in the query. The variable f in Q3a and Q3b
ranges over the elements of the collection csdepartment. has_facul t.y, which is of type
set<Facul t.y», and includes only those faculty that are members of the computer science
department.

In general, an OQL query can return a result with a complex structure specified in the
query itself by utilizing the struct keyword. Consider the following two examples:

Q4: csdepartment.chair.advises;
Q4a: select struct (name:struct(last_name: s.name.lname,

first_name: s.name.fname),
degrees: (select struct (deg: d.degree,

yr: d.year,
college: d.college)

from d in s.degrees)
from s in csdepartment.chair.advises;

Here, Q4 is straightforward, returning an object of type set<GradStudent> as its
result; this is the collection of graduate students that are advised by the chair of the
computer science department. Now, suppose that a query is needed to retrieve the last
and first names of these graduate students, plus the list of previous degrees of each.
This can be written as in Q4a, where the variable s ranges over the collection of
graduate students advised by the chairperson, and the variable d ranges over the
degrees of each such student s. The type of the result of Q4a is a collection of (first
level) structs where each struct has two components: name and degrees. 24 The name
component is a further struct made up of 1ast_name and fi rst_name, each being a
single string. The degrees component is defined by an embedded query and is itself a

24. As mentioned earlier, struct correspondsto the tuple constructor discussed in Chapter 20.

688 I Chapter 21 Object Database Standards, Languages, and Design

collection of further (second level) structs, each with three string components: deg,
yr, and college.

Note that OQL is orthogonal with respect to specifying path expressions. That is,
attributes, relationships, and operation names (methods) can be used interchangeably
within the path expressions, as long as the type system of OQL is not compromised. For
example, one can write the following queries to retrieve the grade point average of all
senior students majoring in computer science, with the result ordered by gpa, and within
that by last and first name:

Q5a: select struct (last_name: s.name.lname, first_name:
s.name.fname, gpa: s.gpa)

from s in csdepartment.has_majors
where s.class = 'senior'
order by gpa desc, last_name asc, first_name asc;

Q5b: select struct (last_name: s.name.lname, first_name:
s.name.fname, gpa: s.gpa)

from s in students
where s.majors_in.dname = 'Computer Science' and

s.class = 'senior'
order by gpa desc, last_name asc, first_name asc;

Q5a used the named entry point csdepartment to directly locate the reference to the
computer science department and then locate the students via the relationship has_
majors, whereas Q5b searches the students extent to locate all students majoring in that
department. Notice how attribute names, relationship names, and operation (method)
names are all used interchangeably (in an orthogonal manner) in the path expressions:
gpa is an operation; majors_in and has_majors are relationships; and class, name,
dname, 1name, and fname are attributes. The implementation of the gpa operation
computes the grade point average and returns its value as a float type for each selected
student.

The order by clause is similar to the corresponding SQL construct, and specifies in
which order the query result is to be displayed. Hence, the collection returned by a query
with an order by clause is of type list.

21.3.3 Other Features of OQl

Specifying Views as Named Queries. The view mechanism in OQL uses the
concept of a named query. The define keyword is used to specify an identifier of the
named query, which must be a unique name among all named objects, class names,
method names, or function names in the schema. If the identifier has the same name as
an existing named query, then the new definition replaces the previous definition. Once
defined, a query definition is persistent until it is redefined or deleted. A view can also
have parameters (arguments) in its definition.

21.3 The Object Query Language OQL I 689

For example, the following view VI defines a named query has_mi nors to retrieve
the set of objects for students minoring in a given department:

VI: define has_minors(deptname) as
select s
from s in students
where s.minors in.dname = deptname;

Because the OOL schema in Figure 21.6 only provided a unidirectional mi nors_in
attribute for a Student, we can use the above view to represent its inverse without having
to explicitly define a relationship. This type of view can be used to represent inverse
relationships that are not expected to be used frequently. The user can now utilize the
above view to write queries such as

has_minors('Computer Science');

which would return a bag of students minoring in the Computer Science department.
Note that in Figure 21.6, we did define has_majors as an explicit relationship, presum
ablybecause it is expected to be used more often.

Extracting Single Elements from Singleton Collections. An OQL query will,
in general, return a collection as its result, such as a bag, set (if distinct is specified), or list
(if the order by clause is used). If the user requires that a query only return a single
element, there is an element operator in OQL that is guaranteed to return a single element
e from a singleton collection c that contains only one element. If c contains more than
one element or if c is empty, then the element operator raises an exception. For example,
Q6 returns the single object reference to the computer science department:

Q6: element (select d
from d in departments
where d.dname = 'Computer Science');

Since a department name is unique across all departments, the result should be one
department. The type of the result is d: Department.

Collection Operators (Aggregate Functions, Quantifiers). Because many query
expressions specify collections as their result, a number of operators have been defined
that are applied to such collections. These include aggregate operators as well as
membership and quantification (universal and existential) over a collection.

The aggregate operators (min, max, count, sum, and avg) operate over a collection.P
The operator count returns an integer type. The remaining aggregate operators (min, max,
sum, avg) return the same type as the type of the operand collection. Two examples
follow. The query Q7 returns the number of students minoring in 'Computer Science,'
while Q8 returns the average gpa of all seniors majoring in computer science.

25. These correspond to aggregate functions in SQL.

690 I Chapter 21 Object Database Standards, Languages, and Design

Q7: count (s in has_minors('Computer Science'));
Q8: avg (select s.gpa

from s in students
where s.majors_in.dname = 'Computer Science' and

s.class = 'senior');

Notice that aggregate operations can be applied to any collection of the appropriate
type and can be used in any part of a query. For example, the query to retrieve all
department names that have more that 100 majors can be written as in Q9:

Q9: select d.dname
from d in departments
where count (d. has_majors) > 100;

The membership and quantification expressions return a boolean type-that is, true or
false. Let v be a variable, c a collection expression, b an expression of type boolean (that
is, a boolean condition), and e an element of the type of elements in collection c. Then:

(e in c) returns true if element e is a member of collection c.

(for all v in c: b) returns true if all the elements of collection c satisfy b.

(exists v in c: b) returns true if there is at least one element in c satisfying b.

To illustrate the membership condition, suppose we want to retrieve the names ofall
students who completed the course called 'Database Systems I'. This can be written as in
QlO, where the nested query returns the collection of course names that each student 5

has completed, and the membership condition returns true if 'Database Systems l' is in
the collection for a particular student s:

Q10: select s.name.lname, s.name.fname
from s in students
where 'Database Systems I' in

(select c.cname
from c in s.completed_sections.section.of_course);

QI0 also illustrates a simpler way to specify the select clause of queries that return a col
lection of structs; the type returned by QI0 is bag<struct(stri ng, stri nq)».

One can also write queries that return true/false results. As an example, let us assume
that there is a named object called Jeremy of type Student. Then, query Qll answers the
following question: "Is Jeremy a computer science minor?" Similarly, Q12 answers the
question "Are all computer science graduate students advised by computer science
faculty?". Both Qll and Q12 return true or false, which are interpreted as yes or no
answers to the above questions:

Q11: Jeremy in has_minors('Computer Science');
Q12: for all 9 in

(select s
from s in grad_students
where s.majors_in.dname = 'Computer Science')

g.advisor in csdepartment.has_faculty;

'Computer Science')

21.3 The Object Query Language OQL I 691

Note that query Q12 also illustrates how attribute, relationship, and operation
inheritance applies to queries. Although s is an iterator that ranges over the extent 9 rad_
students, we can write s.majors_in because the majors_in relationship is inherited by
GradStudent from Student via EXTENDS (see Figure 21.6). Finally, to illustrate the
ex; sts quantifier, query Q13 answers the following question: "Does any graduate
computer science major have a 4.0 gpa?" Here, again, the operation gpa is inherited by
GradStudent from Student via EXTENDS.

Q13: exists 9 in
(select s
from s in grad_students
where s.majors_in.dname

g.gpa = 4;

Ordered (Indexed) Collection Expressions. As we discussed in Section 21.1.2,
collections that are lists and arrays have additional operations, such as retrieving the i th,

first and last elements. In addition, operations exist for extracting a subcollection and
concatenating two lists. Hence, query expressions that involve lists or arrays can invoke
these operations. We will illustrate a few of these operations using example queries. Q14
retrieves the last name of the faculty member who earns the highest salary:

Q14: first (select struct(faculty: f.name.lname, salary:
f.salary)

from f in faculty
order by f.salary desc);

Q14 illustrates the use of the first operator on a list collection that contains the
salaries of faculty members sorted in descending order on salary. Thus the first element in
this sorted list contains the faculty member with the highest salary. This query assumes
that only one faculty member earns the maximum salary. The next query, Q15, retrieves
the top three computer science majors based on gpa.

Q15: (select struct(last_name: s.name.lname, first_name:
s.name.fname, gpa: s.gpa)

from s in csdepartment.has_majors
order by gpa desc) [0:2];

The sel ect-from-order-by query returns a list of computer science students
ordered by gpa in descending order. The first element of an ordered collection has an
index position of 0, so the expression [0: 2] returns a list containing the first, second and
third elements of the select-from-order-by result.

The G rou ping Operator. The 9 roup by clause in OQL, although similar to the
corresponding clause in SQL, provides explicit reference to the collection of objects
within each groupor partition. First we give an example, then describe the general form of
these queries.

692 I Chapter 21 Object Database Standards, Languages, and Design

Q16 retrieves the number of majors in each department. In this query, the students
are grouped into the same partition (group) if they have the same major; that is, the same
value for s ,majors_in. dname:

Q16: select struct(deptname, number_of_majors:
count (partition))

from s in students
group by deptname: s.majors_in.dname;

The result of the grouping specification is of type set<struct(deptname: string,
partition: bag<struct(s:Student»», which contains a struct for each group
(PARTITION) that has two components: the grouping attribute value (deptname) and the
bag of the student objects in the group (partition). The select clause returns the
grouping attribute (name of the department), and a count of the number of elements in
each partition (that is, the number of students in each department), where partition is
the keyword used to refer to each partition. The result type of the select clause is
set<struct(deptname: string, number_oCmajors: integer». In general, the
syntax for the group by clause is

group by f l : e l , f 2 : e2' ... , f k: ek

where f1: e1, f2: e2, '" , fk: ek is a list of partitioning (grouping) attributes and
each partitioning attribute specification fi : ei defines an attribute (field) name fi and an
expression ei. The result of applying the grouping (specified in the group by clause) isa
set of structures:

set<struct(fl : t l , f 2 : t 2 , •.. , f k: t k, partition: bag<B»>

where ti is the type returned by the expression ei, parti ti on is a distinguished field
name (a keyword), and B is a structure whose fields are the iterator variables (s in Q16)
declared in the from clause having the appropriate type.

] ust as in SQL, a having clause can be used to filter the partitioned sets (that is,
select only some of the groups based on group conditions). In Q17, the previous query
is modified to illustrate the havi ng clause (and also shows the simplified syntax for the
select clause). Q17 retrieves for each department having more than 100 majors, the
average gpa of its majors. The having clause in Q17 selects only those partitions
(groups) that have more than 100 elements (that is, departments with more than 100
students).

Q17: select

from
group by
having

deptname, avg_gpa: avg (select p.s.gpa from p
in partition)

s in students
deptname: s.majors_in.dname
count (partition) > 100;

Note that the select clause of Q17 returns the average gpa of the students in the
partition. The expression

select p.s.gpa from p in partition

returns a bag of student gpas for that partition. The from clause declares an iterator
variable p over the partition collection, which is of type baq-cstruct Cs : Student».

21.4 Overview of the c++ Language Binding I 693

Then the path expression p. s . gpa is used to access the gpa of each student in the
partition.

21.4 OVERVIEW OF THE C++ LANGUAGE BINDING
The c+ + language binding specifies how ODL constructs are mapped to c+ + constructs.
This is done via a c++ class library that provides classes and operations that implement
the ODL constructs. An Object Manipulation Language (OML) is needed to specify how
database objects are retrieved and manipulated within a c++ program, and this is based
on the c++ programming language syntax and semantics. In addition to the ODL/OML

bindings, a set of constructs called physical pragmas are defined to allow the programmer
some control over physical storage issues, such as clustering of objects, utilizing indices,
and memory management.

The class library added to C+ + for the ODMG standard uses the prefix d_ for class
declarations that deal with database concepts.i? The goal is that the programmer should
think that only one language is being used, not two separate languages. For the
programmer to refer to database objects in a program, a class d Ref-cT» is defined for each
database class T in the schema. Hence, program variables of type d_Ref<T> can refer to
both persistent and transient objects of class T.

In order to utilize the various built-in types in the ODMG Object Model such as
collection types, various template classes are specified in the library. For example, an
abstract class d_Object-cF> specifies the operations to be inherited by all objects.
Similarly, an abstract class d_Co11ecti on-cfc- specifies the operations of collections. These
classes are not instantiable, but only specify the operations that can be inherited by all
objects and by collection objects, respectively. A template class is specified for each type
of collection; these include d_Set<T>, d_Li s t-c'I», d_Bag<T>, d_Varray<T>, and d_
Di cti onary<T>, and correspond to the collection types in the Object Model (see Section
21.1). Hence, the programmer can create classes of types such as d_Set<d_
Ref<Student» whose instances would be sets of references to Student objects, or d_
Set<Stri ng> whose instances would be sets of Strings. In addition, a class d_Iterator
corresponds to the Iterator class of the Object Model.

The c++ ODL allows a user to specify the classes of a database schema using the
constructs of c++ as well as the constructs provided by the object database library. For
specifying the data types of attributes,27 basic types such as d_Short (short integer), d_
UShort (unsigned short integer), d_Long (long integer), and d Fl oat (floating point
number) are provided. In addition to the basic data types, several structured literal
types are provided to correspond to the structured literal types of the ODMG Object
Model. These include d_String, d_Interva1, d_Date, d_Time, and d_Timestamp (see
Figure 21.1 b).

26. Presumably, d_ stands for database classes.
27. That is,member variables in object-oriented programmingterminology.

694 I Chapter 21 Object Database Standards, Languages, and Design

To specify relationships, the keyword Re1_ is used within the prefix of type names; for
example, by writing

d_Re1_Ref<Department, _has_majors> majors_in;

in the Student class, and

d_Re1_Set<Student, _majors_in> has_majors;

in the Department class, we are declaring that majors_in and has_majors are relation
ship properties that are inverses of one another and hence represent a 1:N binary rela
tionship between Department and Student.

For the OML, the binding overloads the operation new so that it can be used to create
either persistent or transient objects. To create persistent objects, one must provide the
database name and the persistent name of the object. For example, by writing

d_Ref<Student> s = new(DB1, 'John_Smi th') Student;

the programmer creates a named persistent object of type Student in database DBl with
persistent name John_Smi tho Another operation, de1ete_obj ect () can be used to delete
objects. Object modification is done by the operations (methods) defined in each classby
the programmer.

The c++ binding also allows the creation of extents by using the library class
d_Extent. For example, by writing

d_Extent<Person> A11Persons(DB1);

the programmer would create a named collection object All Persons-whose type would
be d_Set<Person>-in the database DBl that would hold persistent objects of type
Person. However, key constraints are not supported in the c++ binding, and any key
checks must be programmed in the class methods.r'' Also, the C+ + binding does not sup
port persistence via reachabilitv: the object must be statically declared to be persistent at
the time it is created.

21.5 OBJECT DATABASE CONCEPTUAL DESIGN
Section 21.5.1 discusses how Object Database (OOB) design differs from Relational Data
base (ROB) design. Section 21.5.2 outlines a mapping algorithm that can be used to create
an OOB schema, made of OOMG OOL class definitions, from a conceptual EER schema.

21.5.1 Differences Between Conceptual Design of ODB

and RDB

One of the main differences between OOB and ROB design is how relationships are han
dled. In OOB, relationships are typically handled by having relationship properties or ref-

28. We have only provided a brief overview of the c++ binding. For full details, see Cattell et al.
(1997), Ch. 5.

21.5 Object Database Conceptual Design I 695

erence attributes that include OlD(s) of the related objects. These can be considered as
OID references to the related objects. Both single references and collections of references
are allowed. References for a binary relationship can be declared in a single direction, or
in both directions, depending on the types of access expected. If declared in both direc
tions, they may be specified as inverses of one another, thus enforcing the ODB equivalent
of the relational referential integrity constraint.

In RDB, relationships among tuples (records) are specified by attributes with
matching values. These can be considered as value references and are specified via foreign
keys, which are values of primary key attributes repeated in tuples of the referencing
relation. These are limited to being single-valued in each record because multivalued
attributes are not permitted in the basic relational model. Thus, M:N relationships must
be represented not directly but as a separate relation (table), as discussed in Section 7.1.

Mapping binary relationships that contain attributes is not straightforward in ODBs,
since the designer must choose in which direction the attributes should be included. If
the attributes are included in both directions, then redundancy in storage will exist and
may lead to inconsistent data. Hence, it is sometimes preferable to use the relational
approach of creating a separate table by creating a separate class to represent the
relationship. This approach can also be used for n-ary relationships, with degree n > 2.

Another major area of difference between ODB and ROB design is how inheritance is
handled. In ODB, these structures are built into the model, so the mapping is achieved by
using the inheritance constructs, such as derived (:) and EXTENDS. In relational design, as
we discussed in Section 7.2, there are several options to choose from since no built-in
construct exists for inheritance in the basic relational model. It is important to note,
though, that object-relational and extended-relational systems are adding features to
directly model these constructs as well as to include operation specifications in abstract
data types (see Chapter 22).

The third major difference is that in ODB design, it is necessary to specify the
operations early on in the design since they are part of the class specifications. Although
it is important to specify operations during the design phase for all types of databases, it
may be delayed in ROB design as it is not strictly required until the implementation phase.

21.5.2 Mapping an EER Schema to an ODB Schema
It is relatively straightforward to design the type declarations of object classes for an
ODBMS from an EER schema that contains neithercategories nor n-ary relationships with n
> 2. However, the operations of classes are not specified in the EER diagram and must be
added to the class declarations after the structural mapping is completed. The outline of
the mapping from EER to ODL is as follows:

Step 1: Create an ODL class for each EER entity type or subclass. The type of the ODL
class should include all the attributes of the EER class. 29 Multivalued attributes are

29.This implicitly uses a tuple constructor at the top level of the type declaration, but in general,
the tuple constructor is not explicitly shown in the ODL classdeclarations.

696 I Chapter 21 Object Database Standards, Languages, and Design

declared by using the set, bag, or list constructors.3D If the values of the multivalued
attribute for an object should be ordered, the list constructor is chosen; if duplicates
are allowed, the bag constructor should be chosen; otherwise, the set constructor is
chosen. Composite attributes are mapped into a tuple constructor (by using a struct
declaration in ODL).

Declare an extent for each class, and specify any key attributes as keys of the extent.
(This is possible only if an extent facility and key constraint declarations are avail
able in the ODBMS.)

Step 2: Add relationship properties or reference attributes for each binary relationship
into the ODL classes that participate in the relationship. These may be created in one
or both directions. If a binary relationship is represented by references in bothdirec
tions, declare the references to be relationship properties that are inverses of one
another, if such a facility exists. 3l If a binary relationship is represented by a reference
in only one direction, declare the reference to be an attribute in the referencing class
whose type is the referenced class name.

Depending on the cardinality ratio of the binary relationship, the relationship prop
erties or reference attributes may be single-valued or collection types. They will be
single-valued for binary relationships in the 1:1 or N: 1 directions; they are collection
types (set-valued or list-valuedv) for relationships in the l:N or M:N direction. An
alternative way for mapping binary M:N relationships is discussed in Step 7 below.

If relationship attributes exist, a tuple constructor (struct) can be used to create a
structure of the form <refe renee, rel ati onshi p attri butes», which may be
included instead of the reference attribute. However, this does not allow the use of
the inverse constraint. In addition, if this choice is represented in bothdirections, the
attribute values will be represented twice, creating redundancy.

Step 3: Include appropriate operations for each class. These are not available from
the EERschema and must be added to the database design by referring to the original
requirements. A constructor method should include program code that checks any
constraints that must hold when a new object is created. A destructor method should
check any constraints that may be violated when an object is deleted. Other methods
should include any further constraint checks that are relevant.

Step 4: An ODL class that corresponds to a subclass in the EER schema inherits (via
EXTENDS) the type and methods of its superclass in the om schema. Its specific (non
inherited) attributes, relationship references, and operations are specified, as dis
cussed in Steps 1,2, and 3.

30. Further analysis of the application domain is needed to decide on which constructor to use
because this information is not available from the EER schema.

31. The ODL standard provides for the explicit definition of inverse relationships. Some ODBMS

products may not provide this support; in such a case, the programmers must maintain every rela
tionship explicitly by coding the methods that update the objects appropriately.

32. The decision whether to use set or list is not available from the EER schema and must be deter
mined from the requirements.

21.6 Summary I 697

Step 5: Weak entity types can be mapped in the same way as regular entity types.
An alternative mapping is possible for weak entity types that do not participate in
any relationships except their identifying relationship; these can be mapped as
though they were composite multivalued attributes of the owner entity type, by using
the se t-cs t ruc t-c ... » or list<struct< » constructors. The attributes of the
weak entity are included in the struct< > construct, which corresponds to a tuple
constructor. Attributes are mapped as discussed in Steps 1 and 2.

Step 6: Categories (union types) in an EER schema are difficult to map to ODL. It is
possible to create a mapping similar to the EER-to-relational mapping (see Section
7.2) by declaring a class to represent the category and defining 1:1 relationships
between the category and each of its superclasses. Another option is to use a union
type, if it is available.

Step 7: An n-ary relationship with degree n > 2 can be mapped into a separate class,
with appropriate references to each participating class. These references are based on
mapping a l:N relationship from each class that represents a participating entity type
to the class that represents the n-ary relationship. An M:N binary relationship, espe
cially if it contains relationship attributes, may also use this mapping option, if
desired.

The mapping has been applied to a subset of the UNIVERSITY database schema of Figure
4.10 in the context of the ODMG object database standard. The mapped object schema
using the ODL notation is shown in Figure 21.6.

21.6 SUMMARY
In this chapter we discussed the proposed standard for object-oriented databases. We started
bydescribing the various constructs of the ODMG object model. The various built-in types,
such as Object, Collection, Iterator, Set, List, and so on were described by their interfaces,
which specify the built-in operations of each type. These built-in types are the foundation
upon which the object definition language (ODL) and object query language (OQL) are
based. We also described the difference between objects, which have an Objectld, and liter
als,which are values with no OID. Users can declare classes for their application that inherit
operations from the appropriate built-in interfaces. Two types of properties can be specified
in a user-defined class-attributes and relationships-in addition to the operations that can
be applied to objects of the class. The ODL allows users to specify both interfaces and classes,
and permits two different types of inheritance-interface inheritance via H:" and class
inheritance via EXTENDS. A class can have an extent and keys.

A description of ODL then followed, and an example database schema for the
UNIVERSITY database was used to illustrate the ODL constructs. We then presented an
overview of the object query language (OQL). The OQL follows the concept of
orthogonality in constructing queries, meaning that an operation can be applied to the
result of another operation as long as the type of the result is of the correct input type for
the operation. The OQL syntax follows many of the constructs of SQL but includes

698 I Chapter 21 Object Database Standards, Languages, and Design

additional concepts such as path expressions, inheritance, methods, relationships, and
collections. Examples of how to use OQL over the UNIVERSITY database were given.

We then gave an overview of the c++ language binding, which extends c++ class
declarations with the ODL type constructors but permits seamless integration of c++ with
the ODBMS.

Following the description of the ODMG model, we described a general technique for
designing object-oriented database schemas. We discussed how object-oriented databases
differ from relational databases in three main areas: references to represent relationships,
inclusion of operations, and inheritance. We showed how to map a conceptual database
design in the EER model to the constructs of object databases.

Review Questions
21.1. What are the differences and similarities between objects and literals in the

ODMG Object Model?
21.2. List the basic operations of the following built-in interfaces of the ODMG Object

Model: Object, Collection, Iterator, Set, List, Bag, Array, and Dictionary.
21.3. Describe the built-in structured literals of the ODMG Object Model and the opera

tions of each.
21.4. What are the differences and similarities of attribute and relationship properties

of a user-defined (atomic) class?
21.5. What are the differences and similarities of EXTENDS and interface ":"

inheritance?
21.6. Discuss how persistence is specified in the ODMG Object Model in the c++

binding.
21.7. Why are the concepts of extents and keys important in database applications?
21.8. Describe the following OQL concepts: database entry points, path expressions, item

tor variables, named queries (views), aggregate functions, grouping, and quantifiers.
21.9. What is meant by the type orthogonality or oot.'

21.10. Discuss the general principles behind the c++ binding of the ODMG standard.
21.11. What are the main differences between designing a relational database and an

object database?
21.12. Describe the steps of the algorithm for object database design by EER-to-OO

mapping.

Exercises
21.13. Design an 00 schema for a database application that you are interested in. First

construct an EER schema for the application; then create the corresponding
classes in ODL. Specify a number of methods for each class, and then specify que
ries in OQL for your database application.

21.14. Consider the AIRPORT database described in Exercise 4.21. Specify a number of
operations/methods that you think should be applicable to that application. Spec
ify the ODL classes and methods for the database.

Selected Bibliography I 699

21.15. Map the COMPANY ER schema of Figure 3.2 into ODL classes. Include appropriate
methods for each class.

21.16. Specify in OQL the queries in the exercises to Chapters 7 and 8 that apply to the
COMPANY database.

Selected Bibliography
Cattell et al. (1997) describes the ODMG 2.0 standard and Cattell et al. (1993) describes
the earlier versions of the standard. Several books describe the CORBA architecture-for
example, Baker (1996). Other general references to object-oriented databases were given
in the bibliographic notes to Chapter 11.

The 02 system is described in Deux et al. (1991) and Bancilhon et al. (1992)
includes a list of references to other publications describing various aspects of 02. The 02
model was formalized in Velez et al. (1989). The ObjectStore system is described in Lamb
et al. (1991). Fishman et al. (1987) and Wilkinson et al. (1990) discuss IRIS, an object
oriented DBMS developed at Hewlett-Packard laboratories. Maier et al. (1986) and But
terworth et al. (1991) describe the design of GEMSTONE. An 00 system supporting open
architecture developed at Texas Instruments is described in Thompson et al. (1993). The
ODE system developed at ATT Bell Labs is described in Agrawal and Gehani (1989). The
ORION system developed at MCC is described in Kim et al. (1990). Morsi et al. (1992)
describes an 00 testbed.

Object-Relational and
Extended-Relational
Systems

In the preceding chapters we have primarily discussed three data models-the Entity
Relationship (ER) model and its enhanced version, the EER model, in Chapters 3 and 4;
the relational data model and its languages and systems in Chapters 5 through 9; and the
object-oriented data model and object database languages and standards in Chapters 20
and 21. We discussed how all these data models have been thoroughly developed in terms
of the following features:

• Modeling constructs for developing schemas for database applications.

• Constraints facilities for expressing certain types of relationships and constraints on
the data as determined by application semantics.

• Operations and language facilities to manipulate the database.

Out of these three models, the ER model and its variations, has been primarily
employed in CASE tools that are used for database and software design, whereas the other
two models have been used as the basis for commercial DBMSs. This chapter discusses the
emerging class of commercial DBMSs that are called object-relational or enhanced relational
systems, and some of the conceptual foundations for these systems. These systems-which
are often called object-relational DBMSs (ORDBMSs)-emerged as a way of enhancing the
capabilities of relational DBMSs (RDBMSs) with some of the features that appeared in
object DBMSs (ODBMSs).

We start in Section 22.1 by giving an overview of the SQL standard, which provides
extended and object capabilities to the SQL standard for RDBMS. In Section 22.2 we give a

701

702 I Chapter 22 Object-Relational and Extended-Relational Systems

historical perspective of database technology evolution and current trends to understand
why these systems emerged. Section 22.3 gives an overview of the lnformix database
server as an example of a commercial extended ORDBMS. Section 22.4 discusses the
object-relational and extended features of Oracle. Section 22.5 discusses some issues
related to the implementation of extended relational systems and Section 22.6 presents
an overview of the nested relational model, which provides some of the theoretical
foundations behind extending the relational model with complex objects. Section 22.7 is
a summary.

Readers interested in typical features of ORDBMS may read Sections 22.1 through
22.4. Other sections may be skipped in an introductory course.

22.1 OVERVIEW OF SQL AND ITS
OBJECT-RELATIONAL FEATURES

We introduced SQL as the standard language for RDBMSs in Chapter 8. As we discussed,
SQL was first specified in the 1970s and underwent enhancements in 1989 and 1992. The
language continued its evolution toward a new standard called sQL3, which adds object
oriented and other features. A subset of the sQL3 standard, now known as sQL:99, was
approved. This section highlights some of the features of SQL3 and sQL:99 with a particu
lar emphasis on the object-relational concepts.

22.1.1 The SQL Standard and Its Components
We will briefly point out what each part of the SQL standard deals with, then describe
some SQL features that are relevant to the object extensions to SQL. The SQL standard
now includes the following parts: 1

• SQL/Framework, sQL/Foundation, SQL/Bindings, sQL/Object.

• New parts addressing temporal, transaction aspects of SQL.

• SQL/CLl (Call Level Interface).

• SQL/PSM (Persistent Stored Modules).

sQL/Foundation deals with new data types, new predicates, relational operations,
cursors, rules and triggers, user-defined types, transaction capabilities, and stored routines.
SQL/CLl (Call Level Interface) (see Chapter 9) provides rules that allow execution of
application code without providing source code and avoids the need for preprocessing. It
contains about 50 routines for tasks such as connection to the SQL server, allocating and
deallocating resources, obtaining diagnostic and implementation information, and
controlling termination of transactions. SQL/PSM (Persistent Stored Modules) specifies

1. The discussion about the standard is largely based on Melton and Mattos (1996).

22.1 Overview of SQL and Its Object-Relational Features I 703

facilities for partitioning an application between a client and a server. The goal is to
enhance performance by minimizing network traffic. SQL/Bindings includes Embedded
SQL and Direct Invocation. Embedded SQL has been enhanced to include additional
exception declarations. SQL/Temporal deals with historical data, time series data, and
other temporal extensions, and it is being proposed by the TSQL2 committee.r SQL/
Transaction specification formalizes the XA interface for use by SQL implementors.

22.1.2 Object-Relational Support in sQL-99
The sQL/Object specification extends sQL-92 to include object-oriented capabilities. We
will discuss some of these features by referring to the corresponding object-oriented con
cepts that we discussed in Chapter 20. The following are some of the features that have
been included in sQL-99:

• Some type constructors have been added to specify complex objects. These include
the row type, which corresponds to the tuple (or struct) constructor of Chapter 20.
An array type for specifying collections is also provided. Other collection type con
structors, such as set, list, and bag constructors, are not yet part of the sQL-99 specifi
cations, although some systems include them and they are expected to be in future
versions of the standard.

• A mechanism for specifying object identity through the use of reference type is
included.

• Encapsulation of operations is provided through the mechanism of user-defined
types that may include operations as part of their declaration.

• Inheritance mechanisms are provided.

We now discuss each of these concepts in more detail.

Type Constructors. The type constructors row and array are used to specify complex
types. These are also known as user-defined types, or UDTs, since the user defines them
for a particular application. A row type may be specified using the following syntax:

CREATE TYPE row_type_name AS [ROW] «component declarations»;

The keyword ROW is optional. An example for specifying a row type for addresses
and employees may be done as follows:

CREATE TYPE Addr_type AS (
street VARCHAR (45),
city VARCHAR (25),
zip CHAR (5)
) ;

CREATE TYPE Emp_type AS (

- .._-------------------

2. The full proposal appears in Snodgrass and Jensen (1996). We discuss temporal modeling and
introduce TSQL2 in Chapter 23.

704 I Chapter 22 Object-Relational and Extended-Relational Systems

name VARCHAR (35),
addr Addr_type,
age INTEGER
) ;

Notice that we can use a previously defined type as a type for an attribute, as
illustrated by the add r attribute above. An array type may be specified for an attribute
whose value will be a collection. For example, suppose that a company has up to ten
locations. Then a row type for company may be defined as follows:

CREATE TYPE Comp_type AS (
compname VARCHAR (20),
location VARCHAR (20) ARRAY [10]
) ;

Fixed-length array types have their elements referenced using the common notation
of square brackets. For example, 1ocati on [1] refers to the first location value in a
1ocati on attribute. For row types, the common dot notation is used to refer to

components. For example, add r. ci ty refers the the ci ty component of an addr
attribute. Currently, array elements cannot be arrays themselves, thus limiting the
complexity of the object structures that can be created.

Object Identifiers Using References. A user defined type can be used either as
type for an attribute, as illustrated by the addr attribute of Emp_type, or it can be used to

specify the row types of tables. For example, we can create two tables based on the row
type declarations given earlier as follows:

CREATE TABLE Employee OF Emp_.type REF IS emp_id SYSTEM GENERATED;
CREATE TABLE Company OF Comp_type (
REF IS comp_id SYSTEM GENERATED,
PRIMARY KEY (compname));

The above examples also illustrate how the user can specify that system-generated
object identifiers for the individual rows in a table should be created. By using the syntax:

REF IS -co i d_attri bute» <val ue._generati on_method> ;

the user declares that the attribute named -co i d_attri bute» will be used to identify indi
vidual tuples in the table. The options for -cva1ue~generati on_method> are SYSTEM GEN·

ERATED or DERIVED. In the former case, the system will automatically generate a unique
identifier for each tuple. In the latter case, the traditional method of using the user-pro
vided primary key value to identify tuples is applied.

A component attribute of one tuple may be a reference (specified using the keyword
REF) to a tuple of another (or possibly the same) table. For example, we can define the
following additional row type and correponding table to relate an employee to a company:

CREATE TYPE Employment_type AS (
employee REF (Emp_type) SCOPE (Employee),
company REF (Comp_type) SCOPE (Company)

) ;
CREATE TABLE Employment OF Employment_type;

22.1 Overview of SQL and Its Object-Relational Features I 705

The keyword SCOPE specifies the name of the table whose tuples can be referenced by
the reference attribute. Notice that this is similar to a foreign key, except that the system
generated value is used rather than the primary key value.

SQL uses a dot notation to build path expressions that refer to the component
attributes of tuples and row types. However, for an attribute whose type is REF, the
dereferencing symbol -> is used. For example, the query below retrieves employees
working in the company named 'ABCXYZ' by querying the Employment table:

SELECT e.employee->name
FROM Employment AS e
WHERE e.company->compname = 'ABCXYZ';

In SQL, -> is used for dereferencing and has the same meaning assigned to it in the C

programming language. Thus if r is a reference to a tuple and a is a component attribute
in that tuple, r -> a is the value of attribute a in that tuple.

Object identifiers can also be explicitly declared in the type definition rather than in
the table declaration. For example, the definition of Emp_type may be changed as follows:

CREATE TYPE Emp_type AS (
name CHAR (35),
addr Addr_type,
age INTEGER,
emp_id REF (Emp_type)

) ;

In the above example, the emp.,i d values may be specified to be system generated by
using the command:

CREATE TABLE Employee OF Emp_type
VALUES FOR emp_id ARE SYSTEM GENERATED;

If several relations of the same row type exist, SQL provides the SCOPE keyword by
which a reference attribute may be made to point to a specific table of that type by using:

SCOPE FOR <attribute> IS <relation>

Encapsulation of Operations in SQL. In SQL a construct similar to class definition
is provided whereby the user can create a named user-defined type with its own behavioral
specification by specifying methods (or operations) in addition to the attributes. The
general form of an UDTspecification with methods is:

CREATE TYPE <type-name> (
list of component attributes with individual types
declaration of EQUAL and LESS THAN functions
declaration of other functions (methods)

) ;

For example, suppose we would like to extract the apartment number (if given) from
a string that forms the street attribute component of the Addr_type row type declared
previously. We can specify a method for Addr_type as follows:

706 I Chapter 22 Object-Relational and Extended-Relational Systems

CREATE TYPE Addr_type AS (
street VARCHAR (45),
city VARCHAR (25),
zip CHAR (5)

)
METHOD apt_no() RETURNS CHAR (8);

The code for implementing the method still has to be written. We can refer to the
method implementation by specifying the file that contains the code for the method as
follows:

METHOD
CREATE FUNCTION apt_no() RETURNS CHAR (8) FOR Addr_type AS
EXTERNAL NAME 'jxjyjaptno.class' LANGUAGE 'java';

In this example, the implementation is in the JAVA language, and the code is stored
in the specified file path name.

SQL provides certain built-in functions for user defined types. For a UOT called
Type_T, the constructor function Type_T() returns a new object of that type. In the
new UOTobject, every attribute is initialized to its default value. An observer function
Ais implicitly created for each attribute A to read its value. Hence, A(X) or X.A returns
the value of attribute A of Type_T if X is of type Type_T. A mutator function for
updating an attribute sets the value of the attribute to a new value. SQL allows these
functions to be blocked from public use; an EXECUTE privilege is needed to have access
to these functions.

In general, a UOTcan have a number of user-defined functions associated with it. The
syntax is

METHOD <name> «argument_list» RETURNS <type>;

Two types of functions can be defined: internal SQL and external. Internal functions
are written in the extended PSM language of SQL (see Chapter 9). External functions are
written in a host language, with only their signature (interface) appearing in the UDT
definition. An external function definition can be declared as follows:

DECLARE EXTERNAL <function_name> <signature>
LANGUAGE <language_name>;

Many ORBOMSs have taken the approach of defining a package of Abstract Data
Types (AOTs) and associated functions for specific application domains. These could be
purchased separately from the basic system. For example, the Data Blades in Informix
Universal Server, the Data Cartridges in Oracle, and the Extenders in OB2 can be
considered as such packages or libraries of AOTs for specific application domains.

UOTs can be used as the types for attributes in SQL and the parameter types in a
function or procedure, and as a source type in a distinct type. Type Equivalence is defined
in SQL at two levels. Two types are name equivalent if and only if they have the same
name. Two types are structurally equivalent if and only if they have the same number of
components and the components are pairwise type equivalent.

22.1 Overview of SQL and Its Object-Relational Features I 707

Attributes and functions in UOTs are divided into three categories:

• PUBLIC (visible at the UDT interface).

• PRIVATE (not visible at the UOT interface).

• PROTECTED (visible only to subtypes).

It is also possible to define virtual attributes as part ofUDTs, which are computed and
updated using functions.

Inheritance and Overloading of Functions in SQL. Recall that we already
discussed many of the principles of inheritance in Chapter 20. SQLhas rules for dealing
with inheritance (specified via the UNDER keyword). Associated with inheritance are the
rules for overloading of function implementations, and for resolution of function names.
These rules can be summarized as follows:

• All attributes are inherited.

• The order of supertypes in the UNDER clause determines the inheritance hierarchy.

• An instance of a subtype can be used in every context in which a supertype instance
is used.

• A subtype can redefine any function that is defined in its supertype, with the restric
tion that the signature be the same.

• When a function is called, the best match is selected based on the types of all argu
ments.

• For dynamic linking, the runtime types of parameters is considered.

Consider the following example to illustrate type inheritance. Suppose that we want
to create a subtype Manager_type that inherits all the attributes (and methods) of Emp_
type but has an additional attribute dept_managed. Then we can write:

CREATE TYPE Manager_type UNDER Emp_type AS (
dept_managed CHAR (20)

) ;

This inherits all the attributes and methods of the supertype Emp_type, and has an
additional specific attribute dept_managed. We could also specify additional specific
methods for the subtype.

Another facility in SQLis the supertable/subtable facility, which is similar to the class
or extends inheritance discussed in Chapter 20. Here, a subtable inherits every column
from its supertable; every row of a subtable corresponds to one and only one row in the
supertable; every row in the supertable corresponds to at most one row in a subtable.
INSERT, DELETE, and UPDATE operations are appropriately propagated. For example,
consider the rea l_estate_info table defined as follows:

CREATE TABLE real_estate_info (
property real_estate,
owner CHAR(2S),
price MONEY,

) ;

708 I Chapter 22 Object-Relational and Extended-Relational Systems

The following subtables can be defined:

CREATE TABLE arnerican_real~estate UNDER real_estate_info;
CREATE TABLE georgia_real_estate UNDER arnerican~real_estate;

CREATE TABLE atlanta_real_estate UNDER georgia_real_estate;

In this example, every tuple in the subtable arneri can_real_estate must exist in its
supertable real_estate_info; every tuple in the subtable georgia_real_estate must
exist in its supertable arneri can_rea1 _estate, and so on. However, tuples can exist in a
supertable without being in the subtable.

Unstructured Complex Objects in SQL. SQL has new data types for binary large
objects (LOBs), and large object locators. Two variations exist for binary large objects
(BLOBs) and character large objects (CLOBs). SQL proposes LOB manipulation within the
DBMS without having to use external files. Certain operators do not apply to LOB-valued
attributes-for example, arithmetic comparisons, group by, and order by. On the other
hand, retrieval of partial value, LIKE comparison, concatenation, substring, position, and
length are operations that can be applied to LOBs. We will see how large objects are used
in Oracle 8.

We have given an overview of the proposed object-oriented facilities in SQL. At this
time, both the sQL/Foundations and sQL/Object specification have been standardized. It
is evident that the facilities that make SQL object-oriented closely follow what has been
implemented in commercial ORDBMSs. SQL/MM (multimedia) is being proposed as a
separate standard for multimedia database management with multiple parts: framework,
full text, spatial, general purpose facilities, and still image. We will discuss the use of the
two-dimensional data types and the image and text Datablades in Informix Universal
Server.

22.1.3 Some New Operations and Features in SQL

A major new operation is linear recursion for specifying recursive queries. To illustrate
this, suppose we have a table called PART_TABLE (Partl, Part2), which contains a tuple
<p l , p2> whenever part p l contains part p2 as a component. A query to produce the bill
of materials for some part p l (that is, all component parts needed to produce p 1) is writ
ten as a recursive query as follows:

WITH RECURSIVE
BILL_MATERIAL (Partl, Part2) AS

(SELECT Partl, Part2
FROM PART_TABLE
WHERE Partl = 'pI'

UNION ALL
SELECT PART_TABLE(Partl), PART_TABLE(Part2)
FROM BILL_MATERIAL, PART_TABLE
WHERE PART_TABLE.Partl = BILL_MATERIAL(Part2))

SELECT * FROM BILL_MATERIAL
ORDER BY Partl, Part2;

22.2 Evolution and Current Trends of Database Technology I 709

The final result is contained in BILL_MATERIAL (Part!, Part2). The UNION ALL
operation is evaluated by taking a union of all tuples generated by the inner block until
no new tuples can be generated. Because sQL2 lacks recursion, it was left to the
programmer to accomplish it by appropriate iteration.

For security in sQL3, the concept of role is introduced, which is similar to a "job
description" and is subject to authorization of privileges. The actual persons (user
accounts) that are assigned to a role may change, but the role authorization itself does not
have to be changed. sQL3 also includes syntax for the specification and use of triggers
(see Chapter 24) as active rules. Triggering events include the INSERT, DELETE, and
UPDATE operations on a table. The trigger can be specified to be considered BEFORE or
AFTER the triggering event. The concept of trigger granularity is included in sQL3, which
allows the specification of both row-level triggers (the trigger is considered for each
affected row) or statement-level trigger (the trigger is considered only once for each
triggering event l.:' For distributed (client-server) databases (see Chapter 25), the concept
of a client module is included in SQL3. A client module may contain externally invoked
procedures, cursors, and temporary tables, which can be specified using SQL3 syntax.

SQL3 also is being extended with programming language facilities. Routines written
in SQL/CLI with full matching of data types and an integrated environment are referred to
as SQL routines. To make the language computationally complete, the following
programming control structures are included in the SQL3 syntax: CALL/RETURN, BEGIN/
END, FOR/END_FOR, IF/THEN/ELSE/END_IF, CASE/END_CASE, LOOP/END_LOOP, WHILE/
END_WHILE, REPEAT/UNTIL/END_REPEAT, and LEAVE. Variables are declared using
DECLARE, and assignments are specified using SET. External routines refer to programs
written in a host language (ADA, C, COBOL, PASCAL, etc.), possibly containing embedded
SQL and having possible type mismatches. The advantage of external routines is that
there are existing libraries of such routines that are broadly used, which can cut down a
lot of implementation effort for applications. On the other hand, SQL routines are more
"pure," but they have not been in wide use. SQL routines can be used for server routines
(schema-level routines or modules) or as client modules, and they may be procedures or
functions that return values. SQL/CLI is described in Chapter 9.

22.2 EVOLUTION AND CURRENT TRENDS
OF DATABASE TECHNOLOGY

In the commercial world today, there are several families of DBMS products available. Two
important ones are RDBMS and ODBMS, which subscribe to the relational and the object
data models respectively. Two other major types of DBMS products-hierarchical and net
work-are now being referred to as legacy DBMSs; these are based on the hierarchical and
the network data models, both of which were introduced in the mid-1960s. The hierar
chical family primarily has one dominant product-IMS of IBM, whereas the network

3.These concepts are discussed in more detail in Chapter 24.

710 I Chapter 22 Object-Relational and Extended-Relational Systems

family includes a large number of DBMSs, such as IDS II (Honeywell), IDMS (Computer
Associates), IMAGE (Hewlett Packard), VAX-DBMS (Digital), and TOTAL/SUPRA (Cin
com), to name a few. The hierarchical and network data models are summarized in
Appendixes E and F.4

As database technology evolves, the legacy DBMSs will be gradually replaced by
newer offerings. In the interim, we must face the major problem of interoperability-the
interoperation of a number of databases belonging to all of the disparate families of
DBMSs-as well as to legacy file management systems. A whole series of new systems and
tools to deal with this problem are emerging as well. More recently, XML has emerged as a
new standard for data exchange on the Web (see Chapter 26).

The main forces behind the development of extended ORDBMSs stem from the
inability of the legacy DBMSs and the basic relational data model as well as the earlier
RDBMSs to meet the challenges of new applications. These are primarily in areas that
involve a variety of types of data-for example, text in computer-aided desktop
publishing; images in satellite imaging or weather forecasting; complex nonconventional
data in engineering designs, in the biological genome information, and in architectural
drawings; time series data in history of stock market transactions or sales histories; and
spatial and geographic data in maps, air/water pollution data, and traffic data. Hence
there is a clear need to design databases that can develop, manipulate, and maintain the
complex objects arising from such applications. Furthermore, it is becoming necessary to
handle digitized information that represents audio and video data streams (partitioned
into individual frames) requiring the storage of BLOBs (binary large objects) in DBMSs.

The popularity of the relational model is helped by a very robust infrastructure in terms
of the commercial DBMSs that have been designed to support it. However, the basic
relational model and earlier versions of its SQL language proved inadequate to meet the
above challenges. Legacy data models like the network data model have a facility to model
relationships explicitly, but they suffer from a heavy use of pointers in the implementation
and have no concepts like object identity, inheritance, encapsulation, or the support for
multiple data types and complex objects. The hierarchical model fits well with some
naturally occurring hierarchies in nature and in organizations, but it is too limited and rigid
in terms of built-in hierarchical paths in the data. Hence, a trend was started to combine
the best features of the object data model and languages into the relational data model so
that it can be extended to deal with the challenging applications of today.

In the remainder of this chapter we highlight the features of two representative
DBMSs that exemplify the ORDBMS approach: Informix Universal Server and Oracle 8.
We conclude by briefly discussing the nested relational model, which has its origin in a
series of research proposals and prototype implementations; this provides a theoretical
framework of embedding hierarchically structured complex objects within the relational
framework.

-~~-~~~------_.~---.~---

4. Those chapters devoted to the Network Data Model and the Hierarchical Data Model are avail
able at the Web site for this book.

22.3 The Informix Universal Server I 711

22.3 THE INFORMIX UNIVERSAL SERVERS
The Informix Universal Server is an ORDBMS that combines relational and object data
base technologies from two previously existing products: Informix and lllustra. The latter
system originated from the POSTGRES DBMS, which was a research project at the Univer
sity of California at Berkeley that was commercialized as the Montage DBMS and went
through the name Miro before being named lllustra. lllustra was then acquired by Infor
mix, integrated into its RDBMS, and introduced as the Informix Universal Server-an
ORDBMS.

To see why ORDBMSs emerged, we start by focusing on one way of classifying
DBMS applications according to two dimensions or axes: (1) complexity of data-the
'X-dimension-and (2) complexity of querying-the Y-dimension. We can arrange
these axes into a simple 0-1 space having four quadrants:

Quadrant 1 (X = 0, Y = 0): Simple data, simple querying

Quadrant 2 (X = 0, Y = 1): Simple data, complex querying

Quadrant 3 (X = 1, Y = 0): Complex data, simple querying

Quadrant 4 (X = 1, Y = 1): Complex data, complex querying

Traditional RDBMSs belong to Quadrant 2. Although they support complex ad hoc
queries and updates (as well as transaction processing), they can deal only with simple
data that can be modeled as a set of rows in a table. Many object databases (ODBMSs) fall
in Quadrant 3, since they concentrate on managing complex data but have somewhat
limited querying capabilities based on navigation.? In order to move into the fourth
quadrant to support both complex data and querying, RDBMSs have been incorporating
more complex data objects while ODBMSs have been incorporating more complex
querying (for example, the OQLhigh-level query language, discussed in Chapter 21). The
lnformix Universal Server belongs to Quadrant 4 because it has extended its basic
relational model by incorporating a variety of features that make it object-relational.

Other current ORDBMSs that evolved from RDBMSs include Oracle from Oracle
Corporation, Universal DB (UDB) from IBM, Odapter by Hewlett Packard (HP) (which
extends Oracle's DBMS), and Open ODB from HP (which extends HP's own Allbase/SQL
product). The more successful products seem to be those that maintain the option of
working as an RDBMS while introducing the additional functionality. Our intent here is
not to provide a comparative analysis of these products but only to give an overview of
two representative systems.

5. The discussion in this section is primarily based on the book Object-Relational DBMSs by Michael
Stonebraker and Dorothy Moore (1996), and on the input provided by Magdi Morsi of Informix,
Inc. Our discussion may refer to earlier versions of Informix that may not be the most recent.

6. Quadrant 1 includes any software packages that deal with data handling without sophisticated
data retrieval and manipulation features. These include spreadsheets like EXCEL, word processors
like Microsoft Word, or any file management software.

712 I Chapter 22 Object-Relational and Extended-Relational Systems

How Informix Universal Server Extends the Relational Data Model. The
extensions to the relational data model provided by Illustra and incorporated into
Informix Universal Server fall into the following categories:

• Support for additional or extensible data types.

• Support for user-defined routines (procedures or functions).

• Implicit notion of inheritance.

• Support for indexing extensions.

• Data Blades Application Programming Interface (API).?

We give an overview of each of these features in the following sections. We have
already introduced in a general way the concepts of data types, type constructors, complex
objects, and inheritance in the context of object-oriented models (see Chapter 20).

22.3.1 Extensible Data Types
The architecture of Informix Universal Server comprises the basic DBMS plus a number of
Data Blade modules. The idea is to treat the DBMSas a razor into which a particular blade
is inserted for the support of a specific data type. A number of data types have been pro
vided, including two-dimensional geometric objects (such as points, lines, circles, and
ellipses), images, time series, text, and Web pages. When Informix announced the Uni
versal Server, 29 Data Blades were already available.f It is also possible for an application
to create its own types, thus making the data type notion fully extendible. In addition to
the built-in types, Informix Universal Server provides the user with the following four
constructs to declare additional types:

1. Opaque type.

2. Distinct type.

3. Row type.

4. Collection type.

When creating a type based on one of the first three options, the user has to provide
functions and routines for manipulation and conversion, including built-in, aggregate,
and operator functions as well as any additional user-defined functions and routines. The
details of these four types are presented in the following sections.

Opaque Type. The opaque type has its internal representation hidden, so it is usedfor
encapsulating a type. The user has to provide casting functions to convert an opaque object
between its hidden representation in the server (database) and its visible representation as

7. Data Blades provides extensions to the basic system, as we shall discuss later in Section 22.3.6.

8. For more information on the Data Blades for Informix Universal Server, consult the Web site
http://www.informix.com/informix/.

22.3 The Informix Universal Server I 713

seen by the client (calling program). The user functions send/receive are needed to convert
to/from the server internal representation from/to the client representation. Similarly,
import/export functions are used to convert to/from an external representation for bulk copy
from/to the internal representation. Several other functions may be defined for processing
the opaque types, including assigni), destroy0 , and cornpareO .

The specification of an opaque type includes its name, internal length if fixed,
maximum internal length if it is variable length, alignment (which is the byte boundary),
as well as whether or not it is hashable (for creating a hash access structure). If we write

CREATE OPAQUE TYPE fixed_opaque_udt (INTERNAL LENGTH = 8,
ALIGNMENT ~ 4, CANNOTHASH);

CREATE OPAQUE TYPE var_opaque_udt (INTERNAL LENGTH = variable,
MAXLEN=1024, ALIGNMENT = 8);

then the first statement creates a fixed-length user-defined opaque type, named fi xed_
opaque_udt, and the second statement creates a variable length one, named var_
opaquejrdt. Both are described in an implementation with internal parameters that are
not visible to the client.

Distinct Type. The distinct data type is used to extend an extstmg type through
inheritance. The newly defined type inherits the functions/routines of its base type, if
they are not overridden. For example, the statement

CREATE DISTINCT TYPE hiring_date AS DATE;

creates a new user-defined type, hi ri ng_date, which can be used like any other built-in
type.

Row Type. The row type, which represents a composite attribute, is analogous to a
struct type in the C programming language." It is a composite type that contains one or
more fields. Row type is also used to support inheritance by using the keyword UNDER, but
the type system supports single inheritance only. By creating tables whose tuples are of a
particular row type, it is possible to treat a relation as part of an object-oriented schema
and establish inheritance relationships among the relations. In the following row type
declarations, employee_t and student_t inherit (or are declared under) person_t:

CREATE ROW TYPE person_t(name VARCHAR(60), social_security
NUMERIC(9) , birth_date DATE);

CREATE ROW TYPE employee_t(salary NUMERIC(lO,2) , hired_on
hiring_date) UNDER person_t;

CREATE ROW TYPE student_t(gpa NUMERIC(4,2), address
VARCHAR(200)) UNDER person_t;

Collection Type. Informix Universal Server collections include lists, sets, and
multisets (bags) of built-in types as well as user-defined types. to A collection can be the

9. This is similar to the tuple constructur discussed in Chapter 20.

10.These are similar to the collectiun types discussed in Chapters 20 and 21.

714 I Chapter 22 Object-Relational and Extended-Relational Systems

type of either a field in a row type or a column in a table. The elements of a set collection
cannot contain duplicate values, and have no specific order. The list may contain
duplicate elements, and order is significant. Finally, the multiset may include duplicates
and has no specific order. Consider the following example:

CREATE TABLE employee (name VARCHAR(50) NOT NULL, commission
MULTISET (MONEY));

Here, the emp1oyee table contains the commission column, which is of type multiset.

22.3.2 Support for User-Defined Routines
Informix Universal Server supports user-defined functions and routines to manipulate the
user defined types. The implementation of these functions can be in either Stored Proce
dure Language (SPL), or in the C or JAVA programming languages. User-defined functions
enable the user to define operator functions such as plusO, minusO, timesO, divideO, pasi
tiveO, and negate0, built-in functions such as cosf) and sinO, aggregate functions such as
sumO and avgO, and user-defined routines. This enables Informix Universal Server to
handle user-defined types as a built-in type whenever the required functions are defined.
The following example specifies an equal function to compare two objects of the fi xed_
opaque_udt type declared earlier:

CREATE FUNCTION equal (argl fixed_opaque_udt, arg2
fixed_opaque_udt) RETURNING BOOLEAN;

EXTERNAL NAME "/usr/lib/informix/libopaque.so
(fixed_opaque_udt_equal)" LANGUAGE C;

END FUNCTION;

Informix Universal Server also supports cast-a function that converts objects from
a source type to a target type. There are two types of user-defined casts: (1) implicit and
(2) explicit. Implicit casts are invoked automatically, whereas explicit casts are invoked
only when the cast operator is specified explicitly by using "::" or CAST AS. If the source
and target types have the same internal structure (such as when using the distinct types
specification), no user-defined functions are needed.

Consider the following example to illustrate explicit casting, where the employee
table has a co11 column of type var_opaque_udt and a co12 column of type fi xed_
opaque_udt.

SELECT coll FROM employee WHERE fixed_opaque_udt::coll = co12;

In order to compare co11 with co12, the cast operator is applied to co11 to convert it
from var_opaque_udt to fi xed_opaque_udt.

22.3.3 Support for Inheritance
Inheritance is addressed at two levels in Informix Universal Server: (1) data (attribute)
inheritance and (2) function (operation) inheritance.

22.3 The Informix Universal Server I 715

Data Inheritance. To create subtypes under existing row types, we use the UNDER

keyword as discussed earlier. Consider the following example:

CREATE ROW TYPE employee_type (
ename VARCHAR(25),
ssn CHAR(9),
salary INT) ;

CREATE ROW TYPE engineer_type (
degree VARCHAR(10) ,
license VARCHAR(20))
UNDER employee_type;

CREATE ROW TYPE engr_mgr_type (
manager_start_date VARCHAR(10) ,
dept_managed VARCHAR(20))
UNDER engineer_type;

The above statements create an employee_type and a subtype called engineer_type,
which represents employees who are engineers and hence inherits all attributes of
employees and has additional properties of deg ree and 1i cense. Another type called
engr_mgr_type is a subtype under engineer_type, and hence inherits from engineer_
type and implicitly from emp1oyee_type as well. Informix Universal Server does not sup
port multiple inheritance. We can now create tables called employee, engineer, and
engr_mg r based on these row types.

Note that storage options for storing type hierarchies in tables vary. Informix
Universal Server provides the option to store instances in different combinations-for
example, one instance (record) at each level or one instance that consolidates all levels
these correspond to the mapping options in Section 7.2. The inherited attributes are
either represented repeatedly in the tables at lower levels or are represented with a
reference to the object of the supertype. The processing of SQL commands is appropriately
modified based on the type hierarchy. For example, the query

SELECT *
FROM employee
WHERE salary> 100000;

returns the employee information from all tables where each selected employee is repre
sented. Thus the scope of the employee table extends to all tuples under employee. As a
default, queries on the supertable return columns from the supertable as well as those from
the subtables that inherit from that supertable. In contrast, the query

SELECT *
FROM ONLY (employee)
WHERE salary> 100000;

returns instances from only the employee table because of the keyword ONLY.

It is possible to query a supertable using a correlation variable so that the result
contains not only supertable_type columns of the subtables but also subtype-specific
columns of the subtables. Such a query returns rows of different sizes; the result is called a

716 I Chapter 22 Object-Relational and Extended-Relational Systems

jagged row result. Retrieving all information about an employee from all levels in a
"jagged form" is accomplished by

SELECT e
FROM employee e ;

For each employee, depending on whether he or she is an engineer or some other
subtypets), it will return additional sets of attributes from the appropriate subtype tables.

Views defined over supertables cannot be updated because placement of inserted rows
is ambiguous.

Function Inheritance. In the same way that data is inherited among tables along a
type hierarchy, functions can also be inherited in an ORDBMS. For example, a function
overpaid may be defined on emp1oyee_type to select those employees making a higher
salary than Bill Brown as follows:

CREATE FUNCTION overpaid (employee_type)
RETURNS BOOLEAN AS
RETURN $l.salary > (SELECT salary

FROM employee
WHERE ename = 'Bill Brown');

The tables under the employee table automatically inherit this function. However,
the same function may be redefined for the engr_mgr_type as those employees making a
higher salary than Jack Jones as follows:

CREATE FUNCTION overpaid (engr_mgr_type)
RETURNS BOOLEAN AS
RETURN $l.salary > (SELECT salary

FROM employee
WHERE ename = 'Jack Jones');

For example, consider the query

SELECT e.ename
FROM ONLY (employee) e
WHERE overpaid (e);

which is evaluated with the first definition of overpaid. The query

SELECT g.ename
FROM engineer 9
WHERE overpaid (g);

also uses the first definition of overpaid (because it was not redefined for engineer), whereas

SELECT gm.ename
FROM engr_mgr gm
WHERE overpaid (gm);

uses the second definition of overpaid, which overrides the first. This is called operation
(or function) overloading, as was discussed in Section 20.6 under polymorphism. Note
that overpaid-and other functions-can also be treated as virtualattributes; hence over
paid may be referenced as emp1oyee . ove rpai d or eng r_mg r .ove rpai d in a query.

22.3 The Informix Universal Server I 717

22.3.4 Support for Indexing Extensions
Informix Universal Server supports indexing on user-defined routines on either a single
table or a table hierarchy. For example,

CREATE INDEX empl_city ON employee (city (address));

creates an index on the table employee using the value of the city function.
In order to support user-defined indexes, Informix Universal Server supports operator

classes, which are used to support user-defined data types in the generic B-tree as well as
other secondary access methods such as Rvtrees.

22.3.5 Support for External Data Source
Informix Universal Server supports external data sources (such as data stored in a file system)
that are mapped to a table in the database called the virtual table interface. This interface
enables the user to define operations that can be used as proxies for the other operations, which
are needed to access and manipulate the row or rows associated with the underlying data
source. These operations include open, close, fetch, insert, and delete. Informix Univer
sal Server also supports a set of functions that enables calling SQL statements within a user
defined routine without the overhead of going through a client interface.

22.3.6 Support for Data Blades Application
Programming Interface

The Data Blades Application Programming Interface (API) of Informix Universal Server
provides new data types and functions for specific types of applications. We will review
the extensible data types for two-dimensional operations (required in GISor CADapplica
tions),11 the data types related to image storage and management, the time series data
type, and a few features of the text data type. The strength of ORDBMSs to deal with the
new unconventional applications is largely attributed to these special data types and the
tailored functionality that they provide.

Two-Dimensional (Spatial) Data Types. For a two-dimensional application, the
relevant data types would include the following:

• A point defined by (X, Y) coordinates.

• A line defined by its two end points.

• A polygon defined by an ordered list of n points that form its vertices.

• A path defined by a sequence (ordered list) of points.

• A circle defined by its center point and radius.

11. Recall that GIS stands for Geographic Information Systems and CAD for Computer Aided
Design.

718 I Chapter 22 Object-Relational and Extended-Relational Systems

Given the above as data types, a function such as distance may be defined between two
points, a point and a line, a line and a circle, and so on, by implementing the appropriate
mathematical expressions for distance in a programming language. Similarly, a Boolean
cross function-which returns true or false depending on whether two geometric objects
cross (or intersectl-i-can be defined between a line and a polygon, a path and a polygon, a
line and a circle, and so on. Other relevant Boolean functions for GIS applications would
be overlap (polygon, polygon), contains (polygon, polygon), contains (point, polygon), and
so on. Note that the concept of overloading (operation polymorphism) applies when the
same function name is used with different argument types.

Image Data Types. Images are stored in a variety of standard formats-such as TIFF,
GIF, JPEG, photof.D, GROUP 4, and FAX-so one may define a data type for each of these
formats and use appropriate library functions to input images from other media or to

render images for display. Alternately, IMAGE can be regarded as a single data type with a
large number of options for storage of data. The latter option would allow a column in a
table to be of type IMAGE and yet accept images in a variety of different formats. The
following are some possible functions (operations) on images:

rotate (image, angle) returns image.
crop (image, polygon) returns image.
enhance (image) returns image.

The crop function extracts the portion of an image that intersects with a polygon.
The enhance function improves the quality of an image by performing contrast
enhancement. Multiple images may be supplied as parameters to the following functions:

common (imagel, image2) returns image.
union (imagel, image2) returns image.
similarity (imagel, image2) returns number.

The similarity function typically takes into account the distance between two vectors
with components <co lor, shape, textu re, edge> that describe the content of the two
images. The VIR Data Blade in Informix Universal Server can be used to accomplish a
search on images by content based on the above similarity measure.

Time Series Data Type. Informix Universal Server supports a time series data type
that makes the handling of time series data much more simplified than storing it in
multiple tables. For example, consider storing the closing stock price on the New York
Stock Exchange for more than 3,000 stocks for each workday when the market is open.
Such a table can be defined as follows:

CREATE TABLE stockprices (
company-name VARCHAR(30),
symbol VARCHAR(5),
prices TIME_SERIES OF FLOAT);

Regarding the stock price data for all 3,000 companies over an entire period of, say,
several years, only one relation is adequate thanks to the time series data type for the
prices attribute. Without this data type, each company would need one table. For
example, a table for the coca_col a company (symbol KO) may be declared as follows:

22.3 The Informix Universal Server I 719

CREATE TABLE coca_cola (
recording_date DATE,
price FLOAT);

In this table, there would be approximately 260 tuples per year-one for each business
day. The time series data type takes into account the calendar, starting time, recording
interval (for example, daily, weekly, monthly), and so on. Functions such as extracting a
subset of the time series (for example, closing prices during January 1999), summarizing at
a coarser granularity (for example, average weekly closing price from the daily closing
prices), and constructing moving averages are appropriate.

A query on the stockprices table that gives the moving average for 30 days starting at
June 1, 1999 for the coca_co1a stock can use the MOVING-AVG function as follows:

SELECT MOVING-AVG(pri ces, 30, '1999-06-01')
FROM stockprices
WHERE symbol = "KO";

The same query in SQL on the table coca_co1a would be much more complicated to
write and would access numerous tuples, whereas the above query on the stockprices table
deals with a single row in the table corresponding to this company. It is claimed that using
the time series data type provides an order of magnitude performance gain in processing
such queries.

Text Data Type. The text DataBlade supports storage, search, and retrieval for text
objects. It defines a single data type called doc, whose instances are stored as large objects
that belong to the built-in data type 1arge-text. We will briefly discuss a few important
features of this data type.

The underlying storage for 1arge-text is the same as that for the 1arge-obj ect data
type. References to a single large object are recorded in the 'refcount' system table,
which stores information such as number of rows referring to the large object, its OlD, its
storage manager, its last modification time, and its archive storage manager. Automatic
conversion between 1arge-text and text data types enables any functions with text
arguments to be applied to 1arge-text objects. Thus concatenation of 1arge-text
objects as strings as well as extraction of substrings from a 1arge-text object are possible.

The Text DataBlade parameters include format for which the default is ASCII, with other
possibilitiessuch as postscri pt, dvi postscri pt, nroff, troff, and text. A Text Conversion
DataBlade, which is separate from the Text DataBlade, is needed to convert documents among
the various formats. An External File parameter instructs the internal representation of doc to
store a pointer to an external file rather than copying it to a large object.

For manipulation of doc objects, functions such as the following are used:

Import_doc (doc, text) returns doc.
Export_doc (doc, text) returns text.
Assign (doc) returns doc.
Destroy (doc) returns void.

The Assign and Destroy functions already exist for the built-in large-object and
1arge-text data types, but they must be redefined by the user for objects of type doc. The

720 I Chapter 22 Object-Relational and Extended-Relational Systems

following statement creates a table called 1ega1documents, where each row has a title of
the document in one column and the document itself as the other column:

CREATE TABLE legaldocuments(
title TEXT,
document DOC);

To insert a new row into this table of a document called '1ease. cont ract,' the
following statement can be used:

INSERT INTO legaldocuments (title, document)
VALUES ('lease. contract' , 'format {troff}:/user/local/

documents/lease');

The second value in the values clause is the path name specifying the file location of
this document; the format specification signifies that it is a troff document. To search
the text, an index must be created, as in the following statement:

CREATE INDEX legalindex
ON legaldocuments
USING dtree(document text_ops);

In the above, text_ops is an op-class (operator class) applicable to an access
structure called a dtree index, which is a special index structure for documents. When a
document of the doc data type is inserted into a table, the text is parsed into individual
words. The Text DataBlade is case insensitive; hence, Housenumber, HouseNumber, or
housenumber are all considered the same word. Words are stemmed according to the
WORDNET thesaurus. For example, houses or housi ng would be stemmed to house,
quickly to quick, and talked to talk. A stopword file is kept, which contains
insignificant words such as articles or prepositions that are ignored in the searches.
Examples of stopwords include is, not, a, the, but, for, and, if, and so on.

Informix Universal Server provides two sets of routines-the contains routines and
text-string functions-to enable applications to determine which documents contain a
certain word or words and which documents are similar. When these functions are used in
a search condition, the data is returned in descending order of how well the condition
matches the documents, with the best match showing first. There is Wei ght
Contai ns (i ndex to use, tup1e-i d of the document, input stri ng) function and a
similar WeightContai nsWords function that returns a precision number between 0 and 1
indicating the closeness of the match between the input string or input words and the
specific document for that tuple-id. To illustrate the use of these functions, consider
the following query: Find the titles of legal documents that contain the top ten terms in
the document titled '1ease contract', which can be specified as follows:

SELECT d.title
FROM legaldocuments d, legaldocuments 1
WHERE contains (d.document, AndTerms (TopNTerms(l.document,lO)))
AND l.title = 'lease.contract' AND d.title <> 'lease.contract';

This query illustrates how SQL can be enhanced with these data type specific functions
to yield a very powerful capability of handing text-related functions. In this query, variable
d refers to the entire legal corpus whereas 1 refers to the specific document whose title is

22.4 Object-Relational Features of Oracle 8 I 721

" ease. cont ract'. TopNTe rms extracts the top ten terms from the " ease. cont ract'
document (1); AndTerms combines these terms into a list; and contains compares the
terms in that list with the stemwords in every other document (d) in the table
, ega' documents.

Summary of Data Blades. As we can see, Data Blades enhance an RDBMS by
providing various constructors for abstract data types (ADTs) that allow a user to operate
on the data as if it were stored in an ODBMS using the ADTs as classes. This makes the
relational system behave as an ODBMS, and drastically cuts down the programming effort
needed when compared with achieving the same functionality with just SQLembedded in
a programming language.

22.4 OBJECT-RELATIONAL FEATURES OF ORACLE 8
In this section we will review a number of features related to the version of the Oracle
DBMS product called Release 8.X, which has been enhanced to incorporate object-rela
tional features. Additional features may have been incorporated into subsequent ver
sions of Oracle. A number of additional data types with related manipulation facilities
called cartridges have been added. 12 For example, the spatial cartridge allows map
based and geographic information to be handled. Management of multimedia data has
been facilitated with new data types. Here we highlight the differences between the
release 8.X of Oracle (as available at the time of this writing) from the preceding ver
sion in terms of the new object-oriented features and data types as well as some storage
options. Portions of the language sQL-99, which we discussed in Section 22.1, will be
applicable to Oracle. We do not discuss these features here.

22.4.1 Some Examples of Object-Relational
Features of Oracle

As an ORDBMS, Oracle 8 continues to provide the capabilities of an RDBMS and addition
ally supports object-oriented concepts. This provides higher levels of abstraction so that
application developers can manipulate application objects as opposed to constructing the
objects from relational data. The complex information about an object can be hidden,
but the properties (attributes, relationships) and methods (operations) of the object can
be identified in the data model. Moreover, object type declarations can be reused via
inheritance, thereby reducing application development time and effort. To facilitate
object modeling, Oracle introduced the following features (as well as some of the sQL-99
features in Section 22.1).

12. Cartridges in Oracle are somewhat similar to Data Blades in Informix.

722 I Chapter 22 Object-Relational and Extended-Relational Systems

Representing Multivalued Attributes Using VARRAY. Some attributes of an
object/entity could be multivalued. In the relational model, the multivalued attributes
would have to be handled by forming a new table (see Section 7.1 and Section 10.3.2 on
first normal form). If ten attributes of a large table were rnultivalued, we would have
eleven tables generated from a single table after normalization. To get the data back, the
developer would have to do ten joins across these tables. This does not happen in an
object model since all the attributes of an object-including multivalued ones-are
encapsulated within the' object. Oracle 8 achieves this by using a varying length array
(VARRAY) data type, which has the following properties:

1. COUNT: Current number of elements.

2. LIMIT:Maximum number of elements the VARRAYcan contain. This is user defined.

Consider the example of a custome r VARRAY entity with attributes name and phone_
numbers, where phone_numbe rs is multivalued. First, we need to define an object type
representing a phone_number as follows:

CREATE TYPE phone_num_type AS OBJECT (phone_number CHAR(lO));

Then we define a VARRAY whose elements would be objects of type phone_num_type:

CREATE TYPE phone_list_type as VARRAY (5) OF phone_num_type;

Now we can create the customer_type data type as an object with attributes customer_
name and phone_numbers:

CREATE TYPE customer_type AS
OBJECT (customer_name VARCHAR(20),

phone_numbers phone_list_type);

It is now possible to create the custome r table as

CREATE TABLE customer OF customer_type;

To retrieve a list of all customers and their phone numbers, we can issue a simple query
without any joins:

SELECT customer_name, phone_numbers
FROM customers;

Using Nested Tables to Represent Complex Objects. In object modeling, some
attributes of an object could be objects themselves. Oracle 8 accomplishes this by having
nested tables (see Section 20.6). Here, columns (equivalent to object attributes) can be
declared as tables. In the above example let us assume that we have a description attached
to every phone number (for example, home, office, cellular). This could be modeled using
a nested table by first redefining phone_num_type as follows:

CREATE TYPE phone_num_type AS
OBJECT (phone_number CHAR(lO) , description CHAR(30));

We next redefine phone_l i st_type as a table of phone_number_type as follows:

CREATE TYPE phone_list_type AS TABLE OF phone_number_type;

22.4 Object-Relational Features of Oracle 8 I 723

We can then create the type customer_type and the customer table as before. The only
difference is that phone j] i st_type is now a nested table instead of a VARRAY. Both struc
tures have similar functions with a few differences. Nested tables do not have an upper
bound on the number of items whereas VARRAYs do have a limit. Individual items can be
retrieved from the nested tables, but this is not possible with VARRAYs. Additional
indexes can also be built on nested tables for faster data access.

Object Views. Object views can be used to build virtual objects from relational data,
thereby enabling programmers to evolve existing schemas to support objects. This allows
relational and object applications to coexist on the same database. In our example, let us say
that we had modeled our customer database using a relational model, but management
decided to do all future applications in the object model. Moving over to the object view of
the same existing relational data would thus facilitate the transition.

22.4.2 Managing Large Objects and Other Storage Features
Oracle can now store extremely large objects like video, audio, and text documents. New
data types have been introduced for this purpose. These include the following:

• BLOB (binary large object).

• CLOB (character large object).

• BFILE (binary file stored outside the database).

• NCLOB (fixed-width multibyte CLOB).

All of the above except for BFILE, which is stored outside the database, are stored
inside the database along with other data. Only the directory name for a BFILE is stored in
the database.

Index Only Tables. Standard Oracle 7.X involves keeping indexes as a B+-tree that
contains pointers to data blocks (see Chapter 14). This gives good performance in most
situations. However, both the index and the data block must be accessed to read the data.
Moreover, key values are stored twice-in the table and in the index-increasing the
storage costs. Oracle 8 supports both the standard indexing scheme and also index only
tables, where the data records and index are kept together in a B-tree structure (see
Chapter 14). This allows faster data retrieval and requires less storage space for small- to
medium-sized files where the record size is not too large.

Partitioned Tables and Indexes. Large tables and indexes can be broken down into
smaller partitions. The table now becomes a logical structure and the partitions become the
actual physical structures that hold the data. This gives the following advantages:

• Continued data availability in the event of partial failures of some partitions.

• Scalable performance allowing substantial growth in data volumes.

• Overall performance improvement in query and transaction processing.

724 I Chapter 22 Object-Relational and Extended-Relational Systems

22.5 IMPLEMENTATION AND RELATED
ISSUES FOR EXTENDED TYPE SYSTEMS

There are various implementation issues regarding the support of an extended type system
with associated functions (operations). We briefly summarize them hereP

• The ORDBMS must dynamically link a user-defined function in its address space only
when it is required. As we saw in the case of the two ORDBMSs, numerous functions
are required to operate on two- or three-dimensional spatial data, images, text, and so
on. With a static linking of all function libraries, the DBMS address space may
increase by an order of magnitude. Dynamic linking is available in the two ORDBMSs
that we studied.

• Client-server issues deal with the placement and activation of functions. If the server
needs to perform a function, it is best to do so in the DBMS address space rather than
remotely, due to the large amount of overhead. If the function demands computation
that is too intensive or if the server is attending to a very large number of clients, the
server may ship the function to a separate client machine. For security reasons, it is
better to run functions at the client using the user ID of the client. In the future func
tions are likely to be written in interpreted languages like JAVA.

• It should be possible to run queries inside functions. A function must operate the
same way whether it is used from an application using the application program inter
face (API), or whether it is invoked by the DBMS as a part of executing SQL with the
function embedded in an SQL statement. Systems should support a nesting of these
"callbacks."

• Because of the variety in the data types in an ORDBMS and associated operators, effi
cient storage and access of the data is important. For spatial data or multidimensional
data, new storage structures such as Rvtrees, quad trees, or Grid files may be used. The
ORDBMS must allow new types to be defined with new access structures. Dealing with
large text strings or binary files also opens up a number of storage and search options.
It should be possible to explore such new options by defining new data types within
the ORDBMS.

Other Issues Concerning Object-Relational Systems. In the above discussion
of Informix Universal Server and Oracle 8, we have concentrated on how an ORDBMS
extends the relational model. We discussed the features and facilities it provides to
operate on relational data stored as tables as if it were an object database. There are other
obvious problems to consider in the context of an ORDBMS:

• Object-relational database design.: We described a procedure for designing object sche
mas in Section 21.5. Object-relational design is more complicated because we have
to consider not only the underlying design considerations of application semantics
and dependencies in the relational data model (which we discussed in Chapters 10

13.This discussion is derived largely from Stonebraker and Moore (1996).

22.6 The Nested Relational Model I 725

and 11) but also the object-oriented nature of the extended features that we have just
discussed.

• Query processing and optimization: By extending SQL with functions and rules, this
problem is further compounded beyond the query optimization overview that we dis
cuss for the relational model in Chapter 15.

• Interaction of rules with transactions: Rule processing as implied in SQL covers more
than just the update-update rules (see Section 24.1), which are implemented in
RDBMSs as triggers. Moreover, RDBMSs currently implement only immediate execu
tion of triggers. A deferred execution of triggers involves additional processing.

22.6 THE NESTED RELATIONAL MODEL
To complete this discussion, we summarize in this section an approach that proposes the
use of nested tables, also known as nonnormal form relations. No commercial DBMS has
chosen to implement this concept in its original form. The nested relational model
removes the restriction of first normal form (iNF, see Chapter 11) from the basic rela
tional model, and thus is also known as the Non-lNF or Non-First Normal Form
(NFNF) or NF2 relational model. In the basic relational model-also called the flat rela
tional model-attributes are required to be single-valued and to have atomic domains.
The nested relational model allows composite and multivalued attributes, thus leading to
complex tuples with a hierarchical structure. This is useful for representing objects that
are naturally hierarchically structured. In Figure 22.1, part (a) shows a nested relation
schema DEPT based on part of the COMPANY database, and part (b) gives an example of a
Non-INf tuple in DEPT.

To define the DEPT schema as a nested structure, we can write the following:

dept = (dno, dname, manager, employees, projects, locations)
employees = (ename, dependents)
projects = (pname, ploc)
locations = (dloc)
dependents = (dname, age)

First, all attributes of the DEPT relation are defined. Next, any nested attributes of
DEPT-namely, EMPLOYEES, PROJECTS, and LOCATIONS-are themselves defined. Next, any
second-level nested attributes, such as DEPENDENTS of EMPLOYEES, are defined, and so on. All
attribute names must be distinct in the nested relation definition. Notice that a nested
attribute is typically a multivalued composite attribute, thus leading to a "nested
relation" within each tuple. For example, the value of the PROJ ECTS attribute within each
DEPT tuple is a relation with two attributes (PNAME, PLOC). In the DEPT tuple of Figure 22.lb,
the PROJECTS attribute contains three tuples as its value. Other nested attributes may be
multivalued simple attributes, such as LOCATIONS of DEPT. It is also possible to have a
nested attribute that is single-valued and composite, although most nested relational
models treat such an attribute as though it were multivalued.

726 I Chapter 22 Object-Relational and Extended-Relational Systems

(a)

EMPLOYEES PROJECTS LOCATIONS

DNO DNAME MANAGER ENAME DEPENDENTS PNAME PLOC DLOC

DNAME I AGE

(b)

4 Administration Wallace Zelaya Thomas 8 New benefits Stafford Stafford

Jennifer 6 computerization Stafford Greenway

Wallace Jack 18 PhoneSystem Greenway

Robert 15

Mary 10

Jabbar
--

PROJECTS LOCATIONS

~\

(c)

DNO

DEPT

r~
DNAME MANAGER EMPLOYEES

/\
ENAME DEPENDENTS

/\
DNAME AGE

PNAME PLOC DLOC

FIGURE 22.1 Illustrating a nested relation. (a) DEPT schema. (b) Example of a Non-l NF tuple of DEPT.
(c) Tree representation of DEPT schema.

When a nested relational database schema is defined, it consists of a number of
external relation schemas; these define the top level of the individual nested relations. In
addition, nested attributes are called internal relation schemas, since they define
relational structures that are nested inside another relation. In our example, DEPT is the
only external relation. All the others-EMPLOYEES, PROJECTS, LOCATIONS, and DEPENDENTs-are
internal relations. Finally, simple attributes appear at the leaf level and are not nested.

22.7 Summary I 727

We can represent each relation schema by means of a tree structure, as shown in Figure
22.1c, where the root is an external relation schema, the leaves are simple attributes, and
the internal nodes are internal relation schemas. Notice the similarity between this
representation and a hierarchical schema (see Appendix E) and XML (see Chapter 26).

It is important to be aware that the three first-level nested relations in DEPT represent
independent information. Hence, EMPLOYEES represents the employees working for the
department, PROJECTS represents the projects controlled by the department, and LOCATIONS

represents the various department locations. The relationship between EMPLOYEES and
PROJECTS is not represented in the schema; this is an M:N relationship, which is difficult to
represent in a hierarchical structure.

Extensions to the relational algebra and to the relational calculus, as well as to SQL,
have been proposed for nested relations. The interested reader is referred to the selected
bibliography at the end of this chapter for details. Here, we illustrate two operations, NEST
and UNNEST, that can be used to augment standard relational algebra operations for
converting between nested and flat relations. Consider the flat EMP_PROJ relation of Figure
11.4, and suppose that we project it over the attributes SSN, PNUMBER, HOURS, ENAME as follows:

EMP_PROJ_FLAH-nssN, ENAME, PNUMBER, HOURS (EMP_PROJ)

To create a nested version of this relation, where one tuple exists for each employee
and the (PNUMBER, HOURS) are nested, we use the NEST operation as follows:

EMP_PROJ_NESTED<c-NESTPROJS ~ (PNUMBER, HOURS) (EMP_PROJ_FLAT)

The effect of this operation is to create an internal nested relation PROJS = (PNUMBER,

HOURS) within the external relation EMP_PROJ_NESTED. Hence, NEST groups together the
tuples with the same value for the attributes that are not specified in the NEST operation;
these are the SSN and ENAME attributes in our example. For each such group, which
represents one employee in our example, a single nested tuple is created with an internal
nested relation PROJS = (PNUMBER, HOURS). Hence, the EMP_PROJ_NESTED relation looks like the
EMP_PROJ relation shown in Figure 11.9a and b.

Notice the similarity between nesting and grouping for aggregate functions. In the
former, each group of tuples becomes a single nested tuple; in the latter, each group
becomes a single summary tuple after an aggregate function is applied to the group.

The UNNEST operation is the inverse of NEST. We can reconvert EMP_PROJ_NESTED to
EMP_PROJ_FLAT as follows:

EMP_PROJ_FLAT<c-UNNESTpROJ S " (PNUMBER, HOURS) (EMP_PROJ_NESTED)

Here, the PROJS nested attribute is flattened into its components PNUMBER, HOURS.

22.7 SUMMARY
In this chapter, we first gave an overview of the object-oriented features in sQL-99, which
are applicable to object-relational systems. Then we discussed the history and current
trends in database management systems that led to the development of object-relational
DBMSs (ORDBMSs). We then focused on some of the features of Informix Universal Server

728 I Chapter 22 Object-Relational and Extended-Relational Systems

and of Oracle 8 in order to illustrate how commercial RDBMSs are being extended with
object features. Other commercial RDBMSs are providing similar extensions. We saw that
these systems also provide Data Blades (Inforrnix) or Cartridges (Oracle) that provide
specific type extensions for newer application domains, such as spatial, time series, or
text/document databases. Because of the extendibility of ORDBMSs, these packages can be
included as abstract data type (ADT) libraries whenever the users need to implement the
types of applications they support. Users can also implement their own extensions as
needed by using the ADT facilities of these systems. We briefly discussed some implemen
tation issues for ADTs. Finally, we gave an overview of the nested relational model, which
extends the flat relational model with hierarchically structured complex objects.

Selected Bibliography
The references provided for the object-oriented database approach in Chapters 11 and 12
are also relevant for object-relational systems. Stonebraker and Moore (1996) provides a
comprehensive reference for object-relational DBMSs. The discussion about concepts
related to Illustra in that book are mostly applicable to the current Informix Universal
Server. Kim (1995) discusses many issues related to modern database systems that include
object orientation. For the most current information on Informix and Oracle, consult
their Web sites: www.informix.com and www.oracle.corn, respectively.

The SQL3 standard is described in various publications of the ISO WG3 (Working
Group 3) reports; for example, see Kulkarni et al. (1995) and Melton et al. (1991). An
excellent tutorial on SQL3 was given at the Very Large Data Bases Conference by Melton
and Mattos (1996). Ullman and Widom (1997) have a good discussion of SQL3 with
examples.

For issues related to rules and triggers, Widom and Ceri (1995) have a collection of
chapters on active databases. Some comparative studies-for example, Ketabchi et al.
(1990)-compare relational DBMSs with object DBMSs; their conclusion shows the superi
ority of the object-oriented approach for nonconventional applications. The nested rela
tional model is discussed in Schek and Scholl (1985),]aeshke and Schek (1982), Chen
and Kambayashi (1991), and Makinouchi (1977), among others. Algebras and query lan
guages for nested relations are presented in Paredaens and VanGucht (1992), Pistor and
Andersen (1986), Roth et al. (1988), and Ozsoyoglu et al. (1987), among others. Imple
mentation of prototype nested relational systems is described in Dadam et al. (1986),
Deshpande and VanGucht (1988), and Schek and Scholl (1989).

7
FURTHER TOPICS

Database Security
and Authorization

This chapter discusses the techniques used for protecting the database against persons
who are not authorized to access either certain parts of a database or the whole data
base. Section 23.1 provides an introduction to security issues and the threats to data
bases and an overview of the countermeasures that are covered in the rest of this
chapter. Section 23.2 discusses the mechanisms used to grant and revoke privileges in
relational database systems and in SQL, mechanisms that are often referred to as discre
tionary access control. Section 23.3 offers an overview of the mechanisms for enforc
ing multiple levels of security-a more recent concern in database system security that
is known as mandatory access control. It also introduces the more recently developed
strategy of role-based access control. Section 23.4 briefly discusses the security problem
in statistical databases. Section 23.5 introduces flow control and mentions problems
associated with covert channels. Section 23.6 is a brief summary of encryption and pub
lic key infrastructure schemes. Section 23.7 summarizes the chapter. Readers who are
interested only in basic database security mechanisms will find it sufficient to cover the
material in Sections 23.1 and 23.2.

731

732 I Chapter 23 Database Security and Authorization

23.1 INTRODUCTION TO DATABASE
SECURITY ISSUES

23.1.1 Types of Security
Database security is a very broad area that addresses many issues, including the following:

• Legal and ethical issues regarding the right to access certain information. Some informa
tion may be deemed to be private and cannot be accessed legally by unauthorized persons.
In the United States, there are numerous laws governing privacy of information.

• Policy issues at the governmental, institutional, or corporate level as to what kinds of
information should not be made publicly available-for example, credit ratings and
personal medical records.

• System-related issues such as the system levels at which various security functions
should be enforced-for example, whether a security function should be handled at
the physical hardware level, the operating system level, or the DBMS level.

• The need in some organizations to identify multiple security levels and to categorize
the data and users based on these classifications-for example, top secret, secret, con
fidential, and unclassified. The security policy of the organization with respect to per
mitting access to various classifications of data must be enforced.

Threats to Databases. Threats to databases result in the loss or degradation of some
or all of the following security goals: integrity, availability, and confidentiality.

• Loss of integrity: Database integrity refers to the requirement that information be pro
tected from improper modification. Modification of data includes creation, insertion,
modification, changing the status of data, and deletion. Integrity is lost if unautho
rized changes are made to the data by either intentional or accidental acts. If the loss
of system or data integrity is not corrected, continued use of the contaminated system
or corrupted data could result in inaccuracy, fraud, or erroneous decisions.

• Lossof availability: Database availability refers to making objects available to a human user
or a program to which they have a legitimate right.

• Loss of confidentiality: Database confidentiality refers to the protection of data from
unauthorized disclosure. The impact of unauthorized disclosure of confidential informa
tion can range from violation of the Data Privacy Act to the jeopardization of national
security. Unauthorized, unanticipated, or unintentional disclosure could result in lossof
public confidence, embarrassment, or legal action against the organization.

To protect databases against these types of threats four kinds of countermeasures can be
implemented: access control, inference control, flow control, and encryption. We discuss each
of these in this chapter.

In a multiuser database system, the DBMS must provide techniques to enable certain
users or user groups to access selected portions of a database without gaining access to the
rest of the database. This is particularly important when a large integrated database is to
be used by many different users within the same organization. For example, sensitive

23.1 Introduction to Database Security Issues I 733

information such as employee salaries or performance reviews should be kept confidential
from most of the database system's users. A DBMS typically includes a database security
and authorization subsystem that is responsible for ensuring the security of portions of a
database against unauthorized access. It is now customary to refer to two types of database
security mechanisms:

• Discretionary security mechanisms: These are used to grant privileges to users, includ
ing the capability to access specific data files, records, or fields in a specified mode
(such as read, insert, delete, or update).

• Mandatorysecurity mechanisms: These are used to enforce multilevel security by classify
ing the data and users into various security classes (or levels) and then implementing
the appropriate security policy of the organization. For example, a typical security pol
icy is to permit users at a certain classification level to see only the data items classified
at the user's own (or lower) classification level. An extension of this is role-based secu
rity, which enforces policies and privileges based on the concept of roles.

We discuss discretionary security in Section 23.2 and mandatory and role-based
security in Section 23.3.

A second security problem common to all computer systems is that of preventing
unauthorized persons from accessing the system itself, either to obtain information or to make
malicious changes in a portion of the database. The security mechanism of a DBMS must
include provisions for restricting access to the database system as a whole. This function is
called access control and is handled by creating user accounts and passwords to control the
login process by the DBMS. We discuss access control techniques in Section 23.1.3.

A third security problem associated with databases is that of controlling the access to a
statistical database, which is used to provide statistical information or summaries of values
based on various criteria. For example, a database for population statistics may provide
statistics based on age groups, income levels, size of household, education levels, and other
criteria. Statistical database users such as government statisticians or market research firms
are allowed to access the database to retrieve statistical information about a population but
not to access the detailed confidential information on specific individuals. Security for
statistical databases must ensure that information on individuals cannot be accessed. It is
sometimes possible to deduce or infer certain facts concerning individuals from queries that
involve only summary statistics on groups; consequently, this must not be permitted either.
This problem, called statistical database security, is discussed briefly in Section 23.4. The
corresponding countermeasures are called inference control measures.

Another security issue is that of flow control, which prevents information from
flowing in such a way that it reaches unauthorized users. It is discused in Section 23.5.
Channels that are pathways for information to flow implicitly in ways that violate the
security policy of an organization are called covert channels. We briefly discuss some
issues related to covert channels in Section 23.5.1.

A final security issue is data encryption, which is used to protect sensitive data (such as
credit card numbers) that is being transmitted via some type of communications network.
Encryption can be used to provide additional protection for sensitive portions of a database as
well. The data is encoded using some coding algorithm. An unauthorized user who accesses
encoded data will have difficulty deciphering it, but authorized users are given decoding or

734 I Chapter 23 Database Security and Authorization

decrypting algorithms (or keys) to decipher the data. Encrypting techniques that are very
difficult to decode without a key have been developed for military applications. Section 23.6
briefly discusses encryption techniques, including popular techniques such as public key
encryption, which is heavily used to support Web-based transactions against databases, and
digital signatures, which are used in personal communications.

A complete discussion of security in computer systems and databases is outside the
scope of this textbook. We give only a brief overview of database security techniques
here. The interested reader can refer to several of the references discussed in the selected
bibliography at the end of this chapter for a more comprehensive discussion.

23.1.2 Database Security and the DBA

As we discussed in Chapter 1, the database administrator (DBA) is the central authority
for managing a database system. The DBA's responsibilities include granting privileges to
users who need to use the system and classifying users and data in accordance with the
policy of the organization. The DBA has a DBA account in the DBMS, sometimes called a
system or superuser account, which provides powerful capabilities that are not made
available to regular database accounts and users.' DBA-privileged commands include com
mands for granting and revoking privileges to individual accounts, users, or user groups
and for performing the following types of actions:

1. Account creation: This action creates a new account and password for a user or a
group of users to enable access to the DBMS.

2. Privilege granting: This action permits the DBA to grant certain privileges to cer
tain accounts.

3. Privilege revocation: This action permits the DBA to revoke (cancel) certain privi
leges that were previously given to certain accounts.

4. Security level assignment: This action consists of assigning user accounts to the
appropriate security classification level.

The DBA is responsible for the overall security of the database system. Action 1 in the
preceding list is used to control access to the DBMS as a whole, whereas actions 2 and 3 are
used to control discretionary database authorization, and action 4 is used to control
mandatory authorization.

23.1.3 Access Protection, User Accounts,
and Database Audits

Whenever a person or a group of persons needs to access a database system, the individual
or group must first apply for a user account. The DBA will then create a new account

1. This account is similar to the root or superuser accounts that are given to computer system admin
istrators, allowingaccess to restricted operating system commands.

23.2 Discretionary Access Control Based on Granting and Revoking Privileges I 735

number and password for the user if there is a legitimate need to access the database. The
user must log in to the DBMS by entering the account number and password whenever
database access is needed. The DBMS checks that the account number and password are
valid; if they are, the user is permitted to use the DBMS and to access the database. Appli
cation programs can also be considered as users and can be required to supply passwords.

It is straightforward to keep track of database users and their accounts and passwords
by creating an encrypted table or file with the two fields AccountNumber and Password.
This table can easily be maintained by the DBMS. Whenever a new account is created, a
new record is inserted into the table. When an account is canceled, the corresponding
record must be deleted from the table.

The database system must also keep track of all operations on the database that are
applied by a certain user throughout each login session, which consists of the sequence of
database interactions that a user performs from the time of logging in to the time of
logging off. When a user logs in, the DBMS can record the user's account number and
associate it with the terminal from which the user logged in. All operations applied from
that terminal are attributed to the user's account until the user logs off. It is particularly
important to keep track of update operations that are applied to the database so that, if
the database is tampered with, the DBA can find out which user did the tampering.

To keep a record of all updates applied to the database and of the particular user who
applied each update, we can modify the system log. Recall from Chapters 17 and 19 that
the system log includes an entry for each operation applied to the database that may be
required for recovery from a transaction failure or system crash. We can expand the log
entries so that they also include the account number of the user and the online terminal
to that applied each operation recorded in the log. If any tampering with the database is
suspected, a database audit is performed, which consists of reviewing the log to examine
all accesses and operations applied to the database during a certain time period. When an
illegal or unauthorized operation is found, the DBA can determine the account number
used to perform this operation. Database audits are particularly important for sensitive
databases thar are updated by many transactions and users, such as a banking database
that is updated by many bank tellers. A database log that is used mainly for security
purposes is sometimes called an audit trail.

23.2 DISCRETIONARY ACCESS CONTROL
BASED ON GRANTING AND
REVOKING PRIVILEGES

The typical method of enforcing discretionary access control in a database system is based on
the granting and revoking of privileges. Let us consider privileges in the context of a relational
DBMS. In particular, we will discuss a system of privileges somewhat similar to the one origi
nally developed for the SQL language (see Chapter 8). Many current relational DBMSs use
somevariation of this technique. The main idea is to include statements in the query language
that allow the DBA and selected users to grant and revoke privileges.

736 I Chapter 23 Database Security and Authorization

23.2.1 Types of Discretionary Privileges
In sQL2, the concept of an authorization identifier is used to refer, roughly speaking, to a
user account (or group of user accounts). For simplicity, we will use the words user or
account interchangeably in place of authorization identifier. The DBMS must provide selec
tive access to each relation in the database based on specific accounts. Operations may
also be controlled; thus, having an account does not necessarily entitle the account
holder to all the functionality provided by the DBMS. Informally, there are two levels for
assigning privileges to use the database system:

• The account level: At this level, the DBA specifies the particular privileges that each
account holds independently of the relations in the database.

• The relation (or table) level: At this level, the DBA can control the privilege to access
each individual relation or view in the database.

The privileges at the account level apply to the capabilities provided to the account
itself and can include the CREATE SCHEMA or CREATE TABLE privilege, to create a schema
or base relation; the CREATE VIEW privilege; the ALTER privilege, to apply schema
changes such as adding or removing attributes from relations; the DROP privilege, to
delete relations or views; the MODIFY privilege, to insert, delete, or update tuples; and the
SELECT privilege, to retrieve information from the database by using a SELECT query.
Notice that these account privileges apply to the account in general. If a certain account
does not have the CREATE TABLE privilege, no relations can be created from that account.
Account-level privileges are not defined as part of sQL2; they are left to the DBMS

implementers to define. In earlier versions of SQL, a CREATETAB privilege existed to give
an account the privilege to create tables (relations).

The second level of privileges applies to the relation level, whether they are base
relations or virtual (view) relations. These privileges are defined for sQL2. In the
following discussion, the term relation may refer either to a base relation or to a view,
unless we explicitly specify one or the other. Privileges at the relation level specify for
each user the individual relations on which each type of command can be applied. Some
privileges also refer to individual columns (attributes) of relations. sQL2 commands
provide privileges at the relation and attribute level only. Although this is quite general, it
makes it difficult to create accounts with limited privileges. The granting and revoking of
privileges generally follow an authorization model for discretionary privileges known as
the access matrix model, where the rows of a matrix M represent subjects (users, accounts,
programs) and the columns represent objects (relations, records, columns, views,
operations). Each position M(i, j) in the matrix represents the types of privileges (read,
write, update) that subject i holds on object j.

To control the granting and revoking of relation privileges, each relation R in a
database is assigned an owner account, which is typically the account that was used when
the relation was created in the first place. The owner of a relation is given allprivileges on
that relation. In sQL2, the DBA can assign an owner to a whole schema by creating the
schema and associating the appropriate authorization identifier with that schema, using
the CREATE SCHEMA command (see Section 8.1.1). The owner account holder can pass
privileges on any of the owned relations to other users by granting privileges to their

23.2 Discretionary Access Control Based on Granting and Revoking Privileges I 737

accounts. In SQL the following types of privileges can be granted on each individual
relation R:

• SELECT (retrieval or read) privilege on R: Gives the account retrieval privilege. In
SQL this gives the account the privilege to use the SELECT statement to retrieve
tuples from R.

• MODIFY privileges on R: This gives the account the capability to modify tuples of R.
In SQL this privilege is further divided into UPDATE, DELETE, and INSERT privileges to
apply the corresponding SQL command to R. In addition, both the INSERT and
UPDATE privileges can specify that only certain attributes of R can be updated by the
account.

• REFERENCES privilege on R: This gives the account the capability to reference rela
tion R when specifying integrity constraints. This privilege can also be restricted to
specific attributes of R.

Notice that to create a view, the account must have SELECT privilege on all relations
involved in the view definition.

23.2.2 Specifying Privileges Using Views
The mechanism of views is an important discretionary authorization mechanism in its
own right. For example, if the owner A of a relation R wants another account B to be able
to retrieve only some fields of R, then A can create a view V of R that includes only those
attributes and then grant SELECT on V to B. The same applies to limiting B to retrieving
only certain tuples of R; a view Vi can be created by defining the view by means of a
query that selects only those tuples from R that A wants to allow B to access. We shall
illustrate this discussion with the example given in Section 23.2.5.

23.2.3 Revoking Privileges
In some cases it is desirable to grant a privilege to a user temporarily. For example, the
owner of a relation may want to grant the SELECT privilege to a user for a specific task and
then revoke that privilege once the task is completed. Hence, a mechanism for revoking
privileges is needed. In SQL a REVOKE command is included for the purpose of canceling
privileges. We will see how the REVOKE command is used in the example in Section 23.2.5.

23.2.4 Propagation of Privileges Using the GRANT

OPTION

Whenever the owner A of a relation R grants a privilege on R to another account B, the
privilege can be given to B with or without the GRANT OPTION. If the GRANT OPTION is
given, this means that B can also grant that privilege on R to other accounts. Suppose
that B is given the GRANT OPTION by A and that B then grants the privilege on R to a

738 I Chapter 23 Database Security and Authorization

third account C, also with GRANT OPTION. In this way, privileges on R can propagate to

other accounts without the knowledge of the owner of R. If the owner account A now
revokes the privilege granted to B, all the privileges that Bpropagated based on that priv
ilege should automatically be revoked by the system.

It is possible for a user to receive a certain privilege from two or more sources. For
example, A4 may receive a certain UPDATE R privilege from both A2 and A3. In such a
case, if A2 revokes this privilege from A4, A4 will still continue to have the privilege by
virtue of having been granted it from A3. If A3 later revokes the privilege from A4, A4
totally loses the privilege. Hence, a DBMS that allows propagation of privileges must keep
track of how all the privileges were granted so that revoking of privileges can be done
correctly and completely.

23.2.5 An Example
Suppose that the DBA creates four accounts-AI, A2, A3, and A4-and wants only Al to be
able to create base relations; then the DBA must issue the following GRANT command in SQL:

GRANT CREATETAB TO Al;

The CREATETAB (create table) privilege gives account Al the capability to create new
database tables (base relations) and is hence an account privilege. This privilege was part of
earlier versions of SQL but is now left to each individual system implementation to define.

In sQL2, the same effect can be accomplished by having the DBA issue a CREATE
SCHEMA command, as follows:

CREATE SCHEMA EXAMPLE AUTHORIZATION Al;

Now user account Al can create tables under the schema called EXAMPLE. To continue our
example, suppose that Al creates the two base relations EMPLOYEE and DEPARTMENT shown in
Figure 23.1; A 1 is then the owner of these two relations and hence has all therelation priv
ileges on each of them.

Next, suppose that account Al wants to grant to account A2 the privilege to insert
and delete tuples in both of these relations. However, Al does not want A2 to be able to

propagate these privileges to additional accounts. A 1 can issue the following command:

GRANT INSERT, DELETE ON EMPLOYEE, DEPARTMENT TO A2;

EMPLOYEE

INAME~ BDATE1ADDRESS~LA~

DEPARTMENT

I DNUMBER I DNAME I MGRSSN I

FIGURE 23.1 Schemas for the two relations EMPLOYEE and DEPARTMENT.

23.2 Discretionary Access Control Based on Granting and Revoking Privileges I 739

Notice that the owner account Ai of a relation automatically has the GRANT OPTION,

allowing it to grant privileges on the relation to other accounts. However, account A2
cannot grant INSERT and DELETE privileges on the EMPLOYEE and DEPARTMENT tables, because
A2 was not given the GRANT OPTION in the preceding command.

Next, suppose that Ai wants to allow account A3 to retrieve information from either
of the two tables and also to be able to propagate the SELECT privilege to other accounts.
Al can issue the following command:

GRANT SELECT ON EMPLOYEE, DEPARTMENT TO A3 WITH GRANT OPTION;

The clause WITH GRANT OPTION means that A3 can now propagate the privilege to other
accounts by using GRANT. For example, A3 can grant the SELECT privilege on the EMPLOYEE

relation to A4 by issuing the following command:

GRANT SELECT ON EMPLOYEE TO A4;

Notice that A4 cannot propagate the SELECT privilege to other accounts because the
GRANT OPTION was not given to A4.

Now suppose that Ai decides to revoke the SELECT privilege on the EMPLOYEE relation
from A3; Al then can issue this command:

REVOKE SELECT ON EMPLOYEE FROM A3;

The DBMS must now automatically revoke the SELECT privilege on EMPLOYEE from A4, too,
because A3 granted that privilege to A4 and A3 does not have the privilege any more.

Next, suppose that Ai wants to give back to A3 a limited capability to SELECT from
the EMPLOYEE relation and wants to allow A3 to be able to propagate the privilege. The
limitation is to retrieve only the NAME, BDATE, and ADDRESS attributes and only for the tuples
with DNO = 5. Ai then can create the following view:

CREATE VIEW A3EMPLOYEE AS

SELECT NAME, BDATE, ADDRESS

FROM EMPLOYEE

WHERE DNO = 5;

After the view is created, Ai can grant SELECT on the view A3EMPLOYEE to A3 as follows:

GRANT SELECT ON A3EMPLOYEE TO A3 WITH GRANT OPTION;

Finally, suppose that Ai wants to allow A4 to update only the SALARY attribute of EMPLOYEE;

Al can then issue the following command:

GRANT UPDATE ON EMPLOYEE (SALARY) TO A4;

The UPDATE or INSERT privilege can specify particular attributes that may be updated
or inserted in a relation. Other privileges (SELECT, DELETE) are not attribute specific,
because this specificity can easily be controlled by creating the appropriate views that
include only the desired attributes and granting the corresponding privileges on the
views. However, because updating views is not always possible (see Chapter 9), the

740 I Chapter 23 Database Security and Authorization

UPDATE and INSERT privileges are given the option to specify particular attributes of a
base relation that may be updated.

23.2.6 Specifying Limits on Propagation of Privileges
Techniques to limit the propagation of privileges have been developed, although they
have not yet been implemented in most DBMSs and are not a part of SQL. Limiting hori
zontal propagation to an integer number i means that an account B given the GRANT
OPTION can grant the privilege to at most i other accounts. Vertical propagation is more
complicated; it limits the depth of the granting of privileges. Granting a privilege with a
vertical propagation of zero is equivalent to granting the privilege with no GRANT
OPTION. If account A grants a privilege to account B with the vertical propagation set to
an integer number j > 0, this means that the account B has the GRANT OPTION on that
privilege, but B can grant the privilege to other accounts only with a vertical propagation
less than j. In effect, vertical propagation limits the sequence of GRANT OPTIONs that can
be given from one account to the next based on a single original grant of the privilege.

We now briefly illustrate horizontal and vertical propagation limits-which are not
available currently in SQL or other relational systems-with an example. Suppose that Al
grants SELECT to A2 on the EMPLOYEE relation with horizontal propagation equal to I and
vertical propagation equal to 2. A2 can then grant SELECT to at most one account because
the horizontal propagation limitation is set to 1. In addition, A2 cannot grant the
privilege to another account except with vertical propagation set to 0 (no GRANT
OPTION) or 1; this is because A2 must reduce the vertical propagation by at least I when
passing the privilege to others. As this example shows, horizontal and vertical
propagation techniques are designed to limit the propagation of privileges.

23.3 MANDATORY ACCESS CONTROL
AND ROLE-BASED ACCESS CONTROL
FOR MULTILEVEL SECURITy2

The discretionary access control technique of granting and revoking privileges on rela
tions has traditionally been the main security mechanism for relational database systems.
This is an all-ot-nothing method: A user either has or does not have a certain privilege.
In many applications, an additional security policy is needed that classifies data and users
based on security classes. This approach, known as mandatory access control, would typ
ically be combined with the discretionary access control mechanisms described in Section
23.2. It is important to note that most commercial DBMSs currently provide mechanisms
only for discretionary access control. However, the need for multilevel security exists in

2. The conttibution of Fariborz Farahmand to this and subsequent sections is appreciated.

23.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security I 741

government, military, and intelligence applications, as well as in many industrial and cor
porate applications.

Typical security classes are top secret (TS), secret (S), confidential (C), and
unclassified (U), where TS is the highest level and U the lowest. Other more complex
security classification schemes exist, in which the security classes are organized in a
lattice. For simplicity, we will use the system with four security classification levels, where
TS ~ S ~ C ~ U, to illustrate our discussion. The commonly used model for multilevel
security, known as the Bell-LaPadula model, classifies each subject (user, account,
program) and object (relation, tuple, column, view, operation) into one of the security
classifications TS, S, C, or U. We will refer to the clearance (classification) of a subject S
as class(S) and to the classification of an object 0 as class(D). Two restrictions are
enforced on data access based on the subject/object classifications:

1. A subject S is not allowed read access to an object 0 unless class(S) ~ class(O).
This is known as the simple security property.

2. A subject S is not allowed to write an object 0 unless class(S) ~ class(O). This is
known as the star property (or *-property).

The first restriction is intuitive and enforces the obvious rule that no subject can read
an object whose security classification is higher than the subject's security clearance. The
second restriction is less intuitive. It prohibits a subject from writing an object at a lower
security classification than the subject's security clearance. Violation of this rule would
allow information to flow from higher to lower classifications, which violates a basic tenet
of multilevel security. For example, a user (subject) with TS clearance may make a copy
of an object with classification TS and then write it back as a new object with
classification U, thus making it visible throughout the system.

To incorporate multilevel security notions into the relational database model, it is
common to consider attribute values and tuples as data objects. Hence, each attribute A
isassociated with a classification attribute C in the schema, and each attribute value in a
tuple is associated with a corresponding security classification. In addition, in some
models, a tuple classification attribute TC is added to the relation attributes to provide a
classification for each tuple as a whole. Hence, a multilevel relation schema R with n
attributes would be represented as

where each C, represents the classification attribute associated with attribute A j •

The value of the TC attribute in each tuple t-which is the highest of all attribute
classification values within t-provides a general classification for the tuple itself, whereas
each C, provides a finer security classification for each attribute value within the tuple.
The apparent key of a multilevel relation is the set of attributes that would have formed
the primary key in a regular (single-level) relation. A multilevel relation will appear to
contain different data to subjects (users) with different clearance levels. In some cases, it
ispossible to store a single tuple in the relation at a higher classification level and produce
the corresponding tuples at a lower-level classification through a process known as
filtering. In other cases, it is necessary to store two or more tuples at different
classification levels with the same value for the apparent key. This leads to the concept of

742 I Chapter 23 Database Security and Authorization

polvinstantiationv' where several tuples can have the same apparent key value but have
different attribute values for users at different classification levels.

We illustrate these concepts with the simple example of a multilevel relation shown
in Figure 23.2a, where we display the classification attribute values next to each
attribute's value. Assume that the Name attribute is the apparent key, and consider the
query SELECT * FROM employee. A user with security clearance S would see the same
relation shown in Figure 23.2a, since all tuple classifications are less than or equal to S.
However, a user with security clearance C would not be allowed to see values for Salary
of Brown and JobPerformance of Smith, since they have higher classification. The tuples
would be filtered to appear as shown in Figure 23.2b, with Salary and JobPerformance

(a) EMPLOYEE

Name Salary JobPerformance TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

(b) EMPLOYEE

Name Salary JobPerformance TC

Smith U 40000 C null C C
Brown C null C Good C C

(c) EMPLOYEE

Name Salary [JobPerformance TC

Smith U null U null U U

(d) EMPLOYEE

Name Salary JobPerformance TC

Smith U 40000 C Fair S S
Smith U 40000 C Excellent C C
Brown C 80000 S Good C S

FIGURE 23.2 A multilevel relation to illustrate multilevel security. (a) The original
EMPLOYEE tuples. (b) Appearance of EMPLOYEE after filtering for classification C users.
(c) Appearance of EMPLOYEE after filtering for classification U users. (d) Polyinstantia-
tion of the Smith tuple.

------------ ------------ - ---------- ---

3. This is similar to the notion of having multiple versions in the database that represent the same
real-world object.

23.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security I 743

appearing as null. For a user with security clearance U, the filtering allows only the Name
attribute of Smith to appear, with all the other attributes appearing as null (Figure 23.2c).
Thus, filtering introduces null values for attribute values whose security classification is
higher than the user's security clearance.

In general, the entity integrity rule for multilevel relations states that all attributes
that are members of the apparent key must not be null and must have the same security
classification within each individual tuple. In addition, all other attribute values in the
tuple must have a security classification greater than or equal to that of the apparent key.
This constraint ensures that a user can see the key if the user is permitted to see any part
of the tuple at all. Other integrity rules, called null integrity and interinstance integrity,
informally ensure that if a tuple value at some security level can be filtered (derived) from
a higher-classified tuple, then it is sufficient to store the higher-classified tuple in the
multilevel relation.

To illustrate polyinstantiation further, suppose that a user with security clearance C
tries to update the value of JobPe rfo rmance of Smi th in Figure 23.2 to 'Exce11ent ' ; this
corresponds to the following SQL update being issued:

UPDATE EMPLOYEE

SET JobPerformance = 'Excellent'

WHERE Name = 'Smith';

Since the view provided to users with security clearance C (see Figure 23.2b) permits
such an update, the system should not reject it; otherwise, the user could infer that some
nonnull value exists for the JobPe rfo rmance attribute of Smith rather than the null value
that appears. This is an example of inferring information through what is known as a
covert channel, which should not be permitted in highly secure systems (see Section
23.5.1). However, the user should not be allowed to overwrite the existing value of
]obPerformance at the higher classification level. The solution is to create a polvinstan
tiation for the Smith tuple at the lower classification level C, as shown in Figure 23.2d.
This is necessary since the new tuple cannot be filtered from the existing tuple at classifi
cation S.

The basic update operations of the relational model (insert, delete, update) must be
modified to handle this and similar situations, but this aspect of the problem is outside the
scope of our presentation. We refer the interested reader to the end-of-chapter
bibliography for further details.

23.3.1 Comparing Discretionary Access Control and
Mandatory Access Control

Discretionary Access Control (DAC) policies are characterized by a high degree of flexi
bility, which makes them suitable for a large variety of application domains. The main
drawback of DAC models is their vulnerability to malicious attacks, such as Trojan horses
embedded in application programs. The reason is that discretionary authorization models
do not impose any control on how information is propagated and used once it has been
accessed by users authorized to do so. By contrast, mandatory policies ensure a high

744 I Chapter 23 Database Security and Authorization

degree of protection-in a way, they prevent any illegal flow of information. They are
therefore suitable for military types of applications, which require a high degree of protec
tion. However, mandatory policies have the drawback of being too rigid in that they
require a strict classification of subjects and objects into security levels, and therefore they
are applicable to very few environments. In many practical situations, discretionary poli
cies are preferred because they offer a better trade-off between security and applicability.

23.3.2 Role-Based Access Control
Role-based access control (RBAC) emerged rapidly in the 1990s as a proven technology
for managing and enforcing security in large-scale enterprisewide systems. Its basic notion
is that permissions are associated with roles, and users are assigned to appropriate roles.
Roles can be created using the CREATE ROLE and DESTROY ROLE commands. The
GRANT and REVOKE commands discussed under DAC can then be used to assign and
revoke privileges from roles.

RBAC appears to be a viable alternative to traditional discrerionary and mandatory
access controls; it ensures that only authorized users are given access to certain data or
resources. Users create sessions during which they may activate a subset of roles to which
they belong. Each session can be assigned to many roles, but it maps to only one user or a
single subject. Many DBMSs have allowed the concept of roles, where privileges can be
assigned to roles.

Role hierarchy in RBAC is a natural way of organizing roles to reflect the
organization's lines of authority and responsibility. By convention, junior roles at the
bottom are connected to progressively senior roles as one moves up the hierarchy. The
hierarchic diagrams are partial orders, so they are reflexive, transitive, and antisymmetric.

Another important consideration in RBAC systems is the possible temporal
constraints that may exist on roles, such as the time and duration of role activations, and
timed triggering of a role by an activation of another role. Using an RBAC model is a
highly desirable goal for addressing the key security requirements of Web-based
applications. Roles can be assigned to workflow tasks so that a user with any of the roles
related to a task may be authorized to execute it and may playa certain role for a certain
duration only.

RBAC models have several desirable features, such as flexibility, policy neutrality,
better support for security management and administration, and other aspects that make
them attractive candidates for developing secure Web-based applications. In contrast,
DAC and mandatory access control (MAC) models lack capabilities needed to support
the security requirements of emerging enterprises and Web-based applications. In
addition, RBAC models can represent traditional DAC and MAC policies as well as user
defined or organization-specific policies. Thus, RBAC becomes a superset model that can
in turn mimic the behavior of DAC and MAC systems. Furthermore, an RBAC model
provides a natural mechanism for addressing the security issues related to the execution of
tasks and workflows. Easier deployment over the Internet has been another reason for the
success of RBAC models.

23.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security I 745

23.3.3 Access Control Policies for
E-Commerce and the Web

Electronic commerce (E-commerce) environments are characterized by any transactions
that are done electronically. They require elaborate access control policies that go beyond
traditional DBMSs. In conventional database environments, access control is usually per
formed using a set of authorizations stated by security officers or users according to some
security policies. Such a simple paradigm is not well suited for a dynamic environment
like e-commerce. Furthermore, in an e-commerce environment the resources to be pro
tected are not only traditional data but also knowledge and experience. Such peculiarities
call for more flexibility in specifying access control policies. The access control mecha
nism must be flexible enough to support a wide spectrum of heterogeneous protection
objects.

A second related requirement is the support for content-based access control.
Content-based access control allows one to express access control policies that take the
protection object content into account. In order to support content-based access control,
access control policies must allow inclusion of conditions based on the object content.

A third requirement is related to the heterogeneity of subjects, which requires access
control policies based on user characteristics and qualifications rather than on very specific
and individual characteristics (e.g., user IDs). A possible solution, to better take into
account user profiles in the formulation of access control policies, is to support the notion of
credentials. A credential is a set of properties concerning a user that are relevant for security
purposes (for example, age, position within an organization). For instance, by using
credentials, one can simply formulate policies such as "Only permanent staff with 5 or more
yearsof service can access documents related to the internals of the system."

It is believed that the XML language can play a key role in access control for e
commerce applications." The reason is that XML is becoming the common representation
language for document interchange over the Web, and is also becoming the language for
e-commerce. Thus, on the one hand there is the need to make XML representations
secure, by providing access control mechanisms specifically tailored to the protection of
XML documents. On the other hand, access control information (that is, access control
policies and user credentials) can be expressed using XML itself. The Directory Service
Markup Language provides a foundation for this: a standard for communicating with the
directory services that will be responsible for providing and authenticating user
credentials. The uniform presentation of both protection objects and access control
policies can be applied to policies and credentials themselves. For instance, some
credential properties (such as the user name) may be accessible to everyone, whereas
other properties may be visible only to a restricted class of users. Additionally, the use of
an XML-based language for specifying credentials and access control policies facilitates
secure credential submission and export of access control policies.

4. See Thuraisingham et al. (200l).

746 I Chapter 23 Database Security and Authorization

23.4 INTRODUCTION TO STATISTICAL
DATABASE SECURITY

Statistical databases are used mainly to produce statistics on various populations. The
database may contain confidential data on individuals, which should be protected from
user access. However, users are permitted to retrieve statistical information on the popu
lations, such as averages, sums, counts, maximums, minimums, and standard deviations.
The techniques that have been developed to protect the privacy of individual informa
tion are outside the scope of this book. We will only illustrate the problem with a very
simple example, which refers to the relation shown in Figure 23.3. This is a PERSON relation
with the attributes NAME, SSN, INCOME, ADDRESS, CITY, STATE, ZIP, SEX, and LAST_DEGREE.

A population is a set of tuples of a relation (table) that satisfy some selection condition.
Hence each selection condition on the PERSON relation will specify a particular population of
PERSON tuples. For example, the condition SEX = 'M' specifies the male population; the
condition ((SEX = 'F') AND (LAST_DEGREE = 'M. S.' OR LAST_DEGREE = 'PH. D. ')) specifies
the female population that has an M.S. or PH.D. degree as their highest degree; and the
condition CITY = 'Houston' specifies the population that lives in Houston.

Statistical queries involve applying statistical functions to a population of tuples. For
example, we may want to retrieve the number of individuals in a population or the
average income in the population. However, statistical users are not allowed to retrieve
individual data, such as the income of a specific person. Statistical database security
techniques must prohibit the retrieval of individual data. This can be achieved by
prohibiting queries that retrieve attribute values and by allowing only queries that
involve statistical aggregate functions such as COUNT, SUM, MIN, MAX, AVERAGE, and
STANDARD DEVIATION. Such queries are sometimes called statistical queries.

It is the responsibility of a database management system to ensure the confidentiality
of information about individuals, while still providing useful statistical summaries of data
about those individuals to users. Provision of privacy protection of users in a statistical
database is paramount; its violation is illustrated in the following example.

In some cases it is possible to infer the values of individual tuples from a sequence of
statistical queries. This is particularly true when the conditions result in a population
consisting of a small number of tuples. As an illustration, consider the following two
statistical queries:

Ql: SELECT COUNT (*) FROM PERSON

WHERE <CONDITION>;

Q2: SELECT AVG (INCOME) FROM PERSON

WHERE <CONDITION>;

PERSON

L--_-----JL--_---'-- ---'--- -----JL--_.-L__--'__.L-S_E~DEGREE I

FIGURE 23.3 The PERSON relation schema for illustrating statistical database security.

23.5 Introduction to Flow Control I 747

Now suppose that we are interested in finding the SALARY of 'Jane Smi th' , and we
know that she has a PH.D. degree and that she lives in the city of Bellaire, Texas. We issue
the statistical query QI with the following condition:

(LAST~DEGREE='PH.D.' AND SEX='F' AND CITY='Bellaire' AND
STATE='Texas')

If we get a result of 1 for this query, we can issue Q2 with the same condition and find
the income of]ane Smith. Even if the result of QI on the preceding condition is not 1 but is
a small number-say, 2 or 3-we can issue statistical queries using the functions MAX, MIN,

and AVERAGE to identify the possible range of values for the INCOME of Jane Smith.
The possibility of inferring individual information from statistical queries is reduced

if no statistical queries are permitted whenever the number of tuples in the population
specified by the selection condition falls below some threshold. Another technique for
prohibiting retrieval of individual information is to prohibit sequences of queries that
refer repeatedly to the same population of tuples. It is also possible to introduce slight
inaccuracies or "noise" into the results of statistical queries deliberately, to make it
difficult to deduce individual information from the results. Another technique is
partitioning of the database. Partitioning implies that records are stored in groups of some
minimum size; queries can refer to any complete group or set of groups, but never to
subsets of records within a group. The interested reader is referred to the bibliography for
a discussion of these techniques.

23.5 INTRODUCTION TO FLOW CONTROL
Flow control regulates the distribution or flow of information among accessible objects. A
flow between object X and object Y occurs when a program reads values from X and writes
values into Y. Flow controls check that information contained in some objects does not
flow explicitly or implicitly into less protected objects. Thus, a user cannot get indirectly
in Y what he or she cannot get directly from X. Active flow control began in the early
1970s. Most flow controls employ some concept of security class; the transfer of informa
tion from a sender to a receiver is allowed only if the receiver's security class is at least as
privileged as the sender's. Examples of a flow control include preventing a service program
from leaking a customer's confidential data, and blocking the transmission of secret mili
tary data to an unknown classified user.

A flow policy specifies the channels along which information is allowed to move.
The simplest flow policy specifies just two classes of information: confidential (C) and
nonconfidential (N), and allows all flows except those from class C to class N. This policy
can solve the confinement problem that arises when a service program handles data such
as customer information, some of which may be confidential. For example, an income-tax
computing service might be allowed to retain the customer's address and the bill for
services rendered, but not the customer's income or deductions.

Access control mechanisms are responsible for checking users' authorizations for
resource access: Only granted operations are executed. Flow controls can be enforced by

748 I Chapter 23 Database Security and Authorization

an extended access control mechanism, which involves assigning a security class (usually
called the clearance) to each running program. The program is allowed to read a particular
memory segment only if its security class is as high as that of the segment. It is allowed to
write in a segment only if its class is as low as that of the segment. This automatically
ensures that no information transmitted by the person can move from a higher to a lower
class. For example, a military program with a secret clearance can read only from objects
that are unclassified and confidential and it can only write into objects that are secret or
top secret.

Two types of flow can be distinguished: explicit flows, occurring as a consequence of
assignment instructions, such as Y:= f(X l' Xn ,) ; and implicit flows generated by conditional
instructions, such as iff (Xm+! , ... , Xn) then y:= f (Xl' Xm) ·

Flow control mechanisms must verify that only authorized flows, both explicit and
implicit, are executed. A set of rules must be satisfied to ensure secure information flows.
Rules can be expressed using flow relations among classes and assigned to information,
stating the authorized flows within a system. (An information flow from A to B occurs
when information associated with A affects the value of information associated with B.
The flow results from operations that cause information transfer from one object to

another.) These relations can define, for a class, the set of classes where information
(classified in that class) can flow, or can state the specific relations to be verified between
two classes to allow information flow from one to the other. In general, flow control
mechanisms implement the controls by assigning a label to each object and by specifying
the security class of the object. Labels are then used to verify the flow relations defined in
the model.

23.5.1 Covert Channels
A covert channel allows a transfer of information that violates the security or the policy.

Specifically, a covert channel allows information to pass from a higher classification level
to a lower classification level through improper means. Covert channels can be classified
into two broad categories: storage and timing channels. The distinguishing feature
between the two is that in a timing channel the information is conveyed by the timing of
events or processes, whereas storage channels do not require any temporal synchroniza
tion, in that information is conveyed by accessing system information or what is other
wise inaccessible to the user.

In a simple example of a covert channel, consider a distributed database system in
which two nodes have user security levels of secret (S) and unclassified (U). In order for a
transaction to commit, both nodes must agree to commit. They mutually can only do
operations that are consistent with the *-property, which states that in any transaction, the
S site cannot write or pass information to the U site. However, if these two sites collude to
set up a covert channel between them, a transaction involving secret data may be
committed unconditionally by the U site, but the S site may do so in some predefined
agreed-upon way so that certain information may be passed on from the S site to the U site,
violating the *-property. This may be achieved where the transaction runs repeatedly, but
the actions taken by the S site implicitly convey information to the U site. Measures such as

23.6 Encryption and Public Key Infrastructures I 749

locking that we discussed in Chapters 17 and 18 prevent concurrent wntmg of the
information by users with different security levels into the same objects, preventing the
storage-type covert channels. Operating systems and distributed databases provide control
over the multiprogramming of operations that allow a sharing of resources without the
possibility of encroachment of one program or process into another's memory or other
resources in the system, thus preventing timing-oriented covert channels. In general, covert
channels are not a major problem in well-implemented robust database implementations.
However, certain schemes may be contrived by clever users that implicitly transfer
information.

Some security experts believe that one way to avoid covert channels is for
programmers to not actually gain access to sensitive data that a program is supposed to
process after the program has been put into operation. For example, a programmer for a
bank has no need to access the names or balances in depositors' accounts. Programmers
for brokerage firms do not need to know what buy and sell orders exist for clients. During
program testing, access to a form of real data or some sample test data may be justifiable,
but not after the program has been accepted for regular use.

23.6 ENCRYPTION AND PUBLIC KEY
INFRASTRUCTU RES

The previous methods of access and flow control, despite being strong countermeasures,
may not be able to protect databases from some threats. Suppose we communicate data,
but our data falls into the hands of some nonlegitimate user. In this situation, by using
encryption we can disguise the message so that even if the transmission is diverted, the
message will not be revealed. Encryption is a means of maintaining secure data in an inse
cure environment. Encryption consists of applying an encryption algorithm to data using
some prespecified encryption key. The resulting data has to be decrypted using a decryp
tion key to recover the original data.

23.6.1 The Data and Advanced Encryption Standards
The Data Encryption Standard (DES) is a system developed by the U.S. government for
use by the general public. It has been widely accepted as a cryptographic standard both in
the United States and abroad. DES can provide end-to-end encryption on the channel
between the sender A and receiver B. The DES algorithm is a careful and complex com
bination of two of the fundamental building blocks of encryption: substitution and per
mutation (transposition). The algorithm derives its strength from repeated application of
these two techniques for a total of 16 cycles. Plaintext (the original form of the message)
isencrypted as blocks of 64 bits. Although the key is 64 bits long, in effect the key can be
any 56-bit number. After questioning the adequacy of DES, the National Institute of
Standards (NIST) introduced the Advanced Encryption Standards (AES). This algo
rithm has a block size of 128 bits, compared with DES's 56-block size, and can use keys of

750 I Chapter 23 Database Security and Authorization

128, 192, or 256 bits, compared with DES's 56-bit key. AES introduces more possible
keys, compared with DES, and thus takes a much longer time to crack.

23.6.2 Public Key Encryption
In 1976 Diffie and Hellman proposed a new kind of cryptosystem, which they called pub
lic key encryption. Public key algorithms are based on mathematical functions rather
than operations on bit patterns. They also involve the use of two separate keys, in con
trast to conventional encryption, which uses only one key. The use of two keys can have
profound consequences in the areas of confidentiality, key distribution, and authentica
tion. The two keys used for public key encryption are referred to as the public key and the
private key. Invariably, the private key is kept secret, but it is referred to as a private key
rather than a secret key (the key used in conventional encryption) to avoid confusion
with conventional encryption.

A public key encryption scheme, or infrastructure, has six ingredients:

1. Plaintext: This is the data or readable message that is fed into the algorithm as
input.

2. Encryption algorithm: The encryption algorithm performs various transforma
tions on the plaintext.

3 and 4. Public and private keys: These are a pair of keys that have been selected so that if
one is used for encryption, the other is used for decryption. The exact transfor
mations performed by the encryption algorithm depend on the public or private
key that is provided as input.

5. Ciphertext: This is the scrambled message produced as output. It depends on the
plaintext and the key. For a given message, two different keys will produce two
different ciphertexts.

6. Decryption algorithm: This algorithm accepts the ciphertext and the matching
key and produces the original plaintext.

As the name suggests, the public key of the pair is made public for others to use,
whereas the private key is known only to its owner. A general-purpose public key
cryptographic algorithm relies on one key for encryption and a different but related one
for decryption. The essential steps are as follows:

1. Each user generates a pair of keys to be used for the encryption and decryption of
messages.

2. Each user places one of the two keys in a public register or other accessible file.
This is the public key. The companion key is kept private.

3. If a sender wishes to send a private message to a receiver, the sender encrypts the
message using the receiver's public key.

4. When the receiver receives the message, he or she decrypts it using the receiver's
private key. No other recipient can decrypt the message because only the receiver
knows his or her private key.

23.7 Summary I 751

The RSA Public Key Encryption Algorithm. One of the first public key
schemes was introduced in 1978 by Ron Rivest, Adi Shamir, and Len Adleman at MIT
and is named after them as the RSA scheme. The RSA scheme has since then reigned
supreme as the most widely accepted and implemented approach to public key encryp
tion. The RSA encryption algorithm incorporates results from number theory, combined
with the difficulty of determining the prime factors of a target. The RSA algorithm also
operates with modular arithmetic-mod n.

Two keys, d and e, are used for decryption and encryption. An important property is
that they can be interchanged. n is chosen as a large integer that is a product of two large
distinct prime numbers, a and b. The encryption key e is a randomly chosen number
between 1 and n that is relatively prime to (a - 1) X (b - 1). The plaintext block P is
encrypted as P" mod n. Because the exponentiation is performed mod n, factoring pe to
uncover the encrypted plaintext is difficult. However, the decrypting key d is carefully cho
sen so that (pe) d mod n = P. The decryption key d can be computed from the condition
that d x e = 1 mod ((a - 1) x (b - 1». Thus, the legitimate receiver who knows d simply
computes (P') d mod n = P and recovers P without having to factor P".

23.6.3 Digital Signatures
A digital signature is an example of using encryption techniques to provide authentica
tion services in electronic commerce applications. Like a handwritten signature, a digital
signature is a means of associating a mark unique to an individual with a body of text.
The mark should be unforgettable, meaning that others should be able to check that the
signature does come from the originator.

A digital signature consists of a string of symbols. If a person's digital signature were
always the same for each message, then one could easily counterfeit it by simply copying
the string of symbols. Thus, signatures must be different for each use. This can be
achieved by making each digital signature a function of the message that it is signing,
together with a time stamp. To be unique to each signer and counterfeitproof, each digital
signature must also depend on some secret number that is unique to the signer. Thus, in
general, a counterfeitproof digital signature must depend on the message and a unique
secret number of the signer. The verifier of the signature, however, should not need to
know any secret number. Public key techniques are the best means of creating digital
signatures with these properties.

23.7 SUMMARY
This chapter discussed several techniques for enforcing security in database systems. It
presented the different threats to databases in terms of loss of integrity, availability, and
confidentiality. The four types of countermeasures to deal with these problems are access
control, inference control, flow control, and encryption. We discussed all of these mea
sures in this chapter.

752 I Chapter 23 Database Security and Authorization

Security enforcement deals with controlling access to the database system as a whole
and controlling authorization to access specific portions of a database. The former is
usually done by assigning accounts with passwords to users. The latter can be
accomplished by using a system of granting and revoking privileges to individual accounts
for accessing specific parts of the database. This approach is generally referred to as
discretionary access control. We presented some SQL commands for granting and
revoking privileges, and we illustrated their use with examples. Then we gave an
overview of mandatory access control mechanisms that enforce multilevel security. These
require the classifications of users and data values into security classes and enforce the
rules that prohibit flow of information from higher to lower security levels. Some of the
key concepts underlying the multilevel relational model, including filtering and
poly instantiation, were presented. Role-based access control was introduced, which
assigns privileges based on roles that users play. We briefly discussed the problem of
controlling access to statistical databases to protect the privacy of individual information
while concurrently providing statistical access to populations of records. The issues
related to flow control and the problems associated with covert channels were discussed
next. Finally, we covered the area of encryption of data, including the public key
infrastructure and digital signatures.

Review Questions
23.1. Discuss what is meant by each of the following terms: database authorization, access

control, data encryption, privileged (system) account, database audit, audit trail.
a. Discuss the types of privileges at the account level and those at the relation

level.
23.2. Which account is designated as the owner of a relation? What privileges does the

owner of a relation have?
23.3. How is the view mechanism used as an authorization mechanism?
23.4. What is meant by granting a privilege?
23.5. What is meant by revoking a privilege?
23.6. Discuss the system of propagation of privileges and the restraints imposed by hori-

zontal and vertical propagation limits.
23.7. List the types of privileges available in SQL.

23.8. What is the difference between discretionary and mandatory access control?
23.9. What are the typical security classifications? Discuss the simple security property

and the *-property, and explain the justification behind these rules for enforcing
multilevel security.

23.10. Describe the multilevel relational data model. Define the following terms: appar-
ent key, polyinstantiation, filtering.

23.11. What are the relative merits of using DAC or MAC?
23.12. What is role-based access control? In what ways is it superior to DAC and MAC?
23.13. What is a statistical database? Discuss the problem of statistical database security.
23.14. How is privacy related to statistical database security? What meaures can be taken

to ensure some degree of privacy in statistical databases?
23.15. What is flow control as a security measure? What types of flow control exist?

Selected Bibliography I 753

23.16. What are covert channels? Give an example of a covert channel.
23.17. What is the goal of encryption? What process is involved in encrypting data and

then recovering it at the other end?
23.18. Give an example of an encryption algorithm and explain how it works.
23.19. Repeat the previous question for the popular RSA algorithm.
23.20. What is the public key infrastructure scheme? How does it provide security?
23.21. What are digital signatures? How do they work?

Exercises
23.22. Consider the relational database schema of Figure 5.5. Suppose that all the rela

tions were created by (and hence are owned by) user X, who wants to grant the
following privileges to user accounts A, B, C, D, and E:
a. Account A can retrieve or modify any relation except dependent and can

grant any of these privileges to other users.
b. Account B can retrieve aU the attributes of employee and department except

for salary, mgrssn, and mg rstartdate.
c. Account C can retrieve or modify WORKS_ON but can only retrieve the FNAME,

MINH, LNAME, and SSN attributes of EMPLOYEE and the PNAME and PNUMBER attributes of
PRO]ECT.

d. Account D can retrieve any attribute of EMPLOYEE or dependent and can modify
DEPENDENT.

e. Account E can retrieve any attribute of EMPLOYEE but only for EMPLOYEE tuples
that have DNO = 3.

f. Write SQL statements to grant these privileges. Use views where appropriate.
23.23. Suppose that privilege (a) of Exercise 23.1 is to be given with GRANT OPTION but

only so that account A can grant it to at most five accounts, and each of these
accounts can propagate the privilege to other accounts but without the GRANT

OPTION privilege. What would the horizontal and vertical propagation limits be
in this case?

23.24. Consider the relation shown in Figure 23.2d. How would it appear to a user with
classification U? Suppose a classification U user tries to update the salary of
ISm; th' to $50,000; what would be the result of this action?

Selected Bibliography
Authorization based on granting and revoking privileges was proposed for the SYSTEM R
experimental DBMS and is presented in Griffiths and Wade (1976). Several books discuss
security in databases and computer systems in general, including the books by Leiss
(1982a) and Fernandez et al. (1981). Denning and Denning (1979) is a tutorial paper on
data security.

Many papers discuss different techniques for the design and protection of statistical
databases. These include McLeish (1989), Chin and Ozsoyoglu (1981), Leiss (1982), Wong
(1984), and Denning (1980). Ghosh (1984) discusses the use of statistical databases for

754 I Chapter 23 Database Security and Authorization

quality control. There are also many papers discussing cryptography and data encryption,
including Diffie and Hellman (1979), Rivest et al. (1978), Akl (1983), Pfleeger (1997),
Omura et al. (1990), and Stalling (2000).

Multilevel security is discussed in [ajodia and Sandhu (1991), Denning et al. (1987),
Smith and Winslett (1992), Stachour and Thuraisingham (1990), Lunt et al. (1990), and
Bertino et al. (2001). Overviews of research issues in database security are given by Lunt
and Fernandez (1990), [ajodia and Sandhu (1991), Bertino et al. (1998), Castano et al.
(1995), and Thuraisingham et al. (2001). The effects of multilevel security on
concurrency control are discussed in Atluri et al. (1997). Security in next-generation,
semantic, and object-oriented databases is discussed in Rabbiti et al. (1991), [ajodia and
Kogan (1990), and Smith (1990). Oh (1999) presents a model for both discretionary and
mandatory security. Security models for Web-based applications and role-based access
control are discussed in Joshi et al. (2001). Security issues for managers in the context of
e-commerce applications and the need for risk assessment models for selection of
appropriate security countermeasures are discussed in Farahmand et al. (2002).

Enhanced Data
Models for Advanced
Appl ications

As the use of database systems has grown, users have demanded additional functionality
from these software packages, with the purpose of making it easier to implement more
advanced and complex user applications. Object-oriented databases and object-relational
systems do provide features that allow users to extend their systems by specifying addi
tional abstract data types for each application. However, it is quite useful to identify cer
tain common features for some of these advanced applications and to create models that
can represent these common features. In addition, specialized storage structures and
indexing methods can be implemented to improve the performance of these common fea
tures. These features can then be implemented as abstract data type or class libraries and
separately purchased with the basic DBMS software package. The term datablade has been
used in Informix and cartridge in Oracle (see Chapter 22) to refer to such optional sub
modules that can be included in a DBMS package. Users can utilize these features directly
if they are suitable for their applications, without having to reinvent, reimplement, and
reprogram such common features.

This chapter introduces database concepts for some of the common features that are
needed by advanced applications and that are starting to have widespread use. The features
we will cover are octive rules that are used in active database applications, temporal concepts
that are used in temporal database applications, and briefly some of the issues involving
multimedia databases. We will also discuss deductive databases. It is important to note that
each of these topics is very broad, and we can give only a brief introduction to each area. In
fact, each of these areas can serve as the sole topic for a complete book.

755

756 I Chapter 24 Enhanced Data Models for Advanced Applications

In Section 24.1, we will introduce the topic of active databases, which provide
additional functionality for specifying active rules. These rules can be automatically
triggered by events that occur, such as a database update or a certain time being reached,
and can initiate certain actions that have been specified in the rule declaration if certain
conditions are met. Many commercial packages already have some of the functionality
provided by active databases in the form of triggers. Triggers are now part of the sQL-99
standard.

In Section 24.2, we will introduce the concepts of temporal databases, which permit
the database system to store a history of changes, and allow users to query both current
and past states of the database. Some temporal database models also allow users to store
future expected information, such as planned schedules. It is important to note that many
database applications are already temporal, but are often implemented without having
much temporal support from the DBMS package-that is, the temporal concepts were
implemented in the application programs that access the database.

Section 24.3 will give a brief overview of spatial and multimedia databases. Spatial
databases provide concepts for databases that keep track of objects in a multidimensional
space. For example, cartographic databases that store maps include two-dimensional
spatial positions of their objects, which include countries, states, rivers, cities, roads, seas,
and so on. Other databases, such as meteorological databases for weather information, are
three-dimensional, since temperatures and other meteorological information are related
to three-dimensional spatial points. Multimedia databases provide features that allow
users to store and query different types of multimedia information, which includes images
(such as pictures or drawings), video clips (such as movies, news reels, or home videos),
audio clips (such as songs, phone messages, or speeches), and documents (such as books
or articles).

In Section 24.4, we discuss deductive databases.' an area that is at the intersection of
databases, logic, and artificial intelligence or knowledge bases. A deductive database
system is a database system that includes capabilities to define (deductive) rules, which
can deduce or infer additional information from the facts that are stored in a database.
Because part of the theoretical foundation for some deductive database systems is
mathematical logic, such rules are often referred to as logic databases. Other types of
systems, referred to as expert database systems or knowledge-based systems, also
incorporate reasoning and inferencing capabilities; such systems use techniques that were
developed in the field of artificial intelligence, including semantic networks, frames,
production systems, or rules for capturing domain-specific knowledge.

Readers may choose to peruse the particular topics they are interested in, as the
sections in this chapter are practically independent of one another.

--- ---~~ ~---- ----~

1. Section 24.4 is a summaryof Chapter 25 from the third edition. The full chapter willbe available
on the book Web site.

24.1 Active Database Concepts and Triggers I 757

24.1 ACTIVE DATABASE CONCEPTS AND TRIGGERS
Rules that specify actions that are automatically triggered by certain events have been
considered as important enhancements to a database system for quite some time. In fact,
the concept of triggers-a technique for specifying certain types of active rules-has
existed in early versions of the SQL specification for relational databases and triggers are
now part of the sQL-99 standard. Commercial relational DBMSs-such as Oracle, DB2,
and SYBASE-have had various versions of triggers available. However, much research
into what a general model for active databases should look like has been done since the
early models of triggers were proposed. In Section 24.1.1, we will present the general con
cepts that have been proposed for specifying rules for active databases. We will use the
syntax of the Oracle commercial relational DBMS to illustrate these concepts with specific
examples, since Oracle triggers are close to the way rules are specified in the SQL standard.
Section 24.1.2 will discuss some general design and implementation issues for active data
bases. We then give examples of how active databases are implemented in the STAR
BURST experimental DBMS in Section 24.1.3, since STARBURST provides for many of the
concepts of generalized active databases within its framework. Section 24.1.4 discusses
possible applications of active databases. Finally, Section 24.1.5 describes how triggers are
declared in the sQL-99 standard.

24.1.1 Generalized Model for Active Databases and
Oracle Triggers

The model that has been used for specifying active database rules is referred to as the
Event-Condition-Action, or ECA model. A rule in the ECA model has three components:

1. The event (or events) that triggers the rule: These events are usually database
update operations that are explicitly applied to the database. However, in the
general model, they could also be temporal events/ or other kinds of external
events.

2. The condition that determines whether the rule action should be executed: Once
the triggering event has occurred, an optional condition may be evaluated. If no
condition is specified, the action will be executed once the event occurs. If a condi
tion is specified, it is first evaluated, and only if it evaluates to true will the rule
action be executed.

3. The action to be taken: The action is usually a sequence of SQL statements, but it
could also be a database transaction or an external program that will be automati
cally executed.

Let us consider some examples to illustrate these concepts. The examples are based
on a much simplified variation of the COMPANY database application from Figure 5.7, which

2. An example would be a temporal event specified as a periodic time, such as: Trigger this rule
every day at 5:30 A.M.

758 I Chapter 24 Enhanced Data Models for Advanced Applications

is shown in Figure 24.1, with each employee having a name (NAME), social security number
(SSN), salary (SALARY), department to which they are currently assigned (DNO, a foreign key
to DEPARTMENT), and a direct supervisor (SUPERVISOR_SSN, a (recursive) foreign key to
EMPLOYEE). For this example, we assume that null is allowed for DNO, indicating that an
employee may be temporarily unassigned to any department. Each department has a
name (DNAME), number (DNO), the total salary of all employees assigned to the department
(TOTAL_SAL), and a manager (MANAGER_SSN, a foreign key to EMPLOYEE).

Notice that the TOTAL_SAL attribute is really a derived attribute, whose value should be
the sum of the salaries of all employees who are assigned to the particular department.
Maintaining the correct value of such a derived attribute can be done via an active rule.
We first have to determine the events that may cause a change in the value of TOTAL_SAL,
which are as follows:

1. Inserting (one or more) new employee tuples.

2. Changing the salary of (one or more) existing employees.

3. Changing the assignment of existing employees from one department to another.

4. Deleting (one or more) employee tuples.

In the case of event 1, we only need to recompute TOTAL_SAL if the new employee is
immediately assigned to a department-that is, if the value of the DNO attribute for the
new employee tuple is not null (assuming null is allowed for DNO). Hence, this would be
the condition to be checked. A similar condition could be checked for event 2 (and 4) to

determine whether the employee whose salary is changed (or who is being deleted) is
currently assigned to a department. For event 3, we will always execute an action to

maintain the value of TOTAL_SAL correctly, so no condition is needed (the action is always
executed).

The action for events 1, 2, and 4 is to automatically update the value ofTOTAL_SAL for
the employee's department to reflect the newly inserted, updated, or deleted employee's
salary. In the case of event 3, a twofold action is needed; one to update the TOTAL_SAL of
the employee's old department and the other to update the TOTAL_SAL of the employee's
new department.

The four active rules (or triggers) R1, R2, R3, and R4-corresponding to the above
situation-can be specified in the notation of the Oracle DBMS as shown in Figure 24.2a.
Let us consider rule R1 to illustrate the syntax of creating triggers in Oracle. The CREATE

EMPLOYEE

I NAME ~~~ERVISOR_SS~

DEPARTMENT

I DNAME~ TOTAL_SAL] MAN~~E~=-SSNJ
FIGURE 24.1 A simplified COMPANY database used for active rule examples.

24.1 Active Database Concepts and Triggers I 759

(a) RI: CREATE TRIGGER TOTALSAL1
AFTER INSERT ON EMPLOYEE
FOR EACH ROW
WHEN (NEW.DNO IS NOT NULL)

UPDATE DEPARTMENT
SET TOTAL_SAL=TOTAL_SAL + NEW.SALARY
WHERE DNO=NEW.DNO;

R2: CREATE TRIGGER TOTALSAL2
AFTER UPDATE OF SALARY ON EMPLOYEE
FOR EACH ROW
WHEN (NEW.DNO IS NOT NULL)

UPDATE DEPARTMENT
SET TOTAL_SAL=TOTAL_SAL + NEW.SALARY - OLD.SALARY
WHERE DNO=NEW.DNO;

R3: CREATE TRIGGER TOTALSAL3
AFTER UPDATE OF DNO ON EMPLOYEE
FOR EACH ROW

BEGIN
UPDATE DEPARTMENT
SET TOTAL_SAL=TOTAL_SAL + NEW.SALARY
WHERE DNO=NEW.DNO;
UPDATE DEPARTMENT
SET TOTAL_SAL=TOTAL_SAL- OLD.SALARY
WHERE DNO=OLD.DNO;
END;

R4: CREATE TRIGGER TOTALSAL4
AFTER DELETE ON EMPLOYEE
FOR EACH ROW
WHEN (OLD.DNO IS NOT NULL)

UPDATE DEPARTMENT
SET TOTAL_SAL=TOTAL_SAL - OLD.SALARY
WHERE DNO=OLD.DNO;

(b)
RS: CREATE TRIGGER INFORM_SUPERVISOR1

BEFORE INSERT OR UPDATE OF SALARY, SUPERVISOR_SSN ON EMPLOYEE
FOR EACH ROW
WHEN
(NEW.SALARY > (SELECT SALARY FROM EMPLOYEE

WHERE SSN=NEW.SUPERVISOR_SSN))
INFORM_SUPERVISOR(NEW. SUPERVISOR_SSN, NEW.SSN);

FIGURE 24.2 Specifying active rules as triggers in Oracle notation. (a) Triggers for
automatically maintaining the consistency of TOTAL_SAL of DEPARTMENT. (b) Trigger for
comparing an employee's salary with that of his or her supervisor.

760 I Chapter 24 Enhanced Data Models for Advanced Applications

TRIGGER statement specifies a trigger (or active rule) name-TOTALSALl for Rl. The
AFTER-clause specifies that the rule will be triggered after the events that trigger the rule
occur. The triggering events-an insert of a new employee in this example-are specified
following the AFTER keyword." The ON-clause specifies the relation on which the rule is
specified-EMPLOYEE for Rl. The optional keywords FOR EACH ROW specify that the rule will
be triggered once for eachrow that is affected by the triggering event." The optional WHEN
clause is used to specify any conditions that need to be checked after the rule is triggered
but before the action is executed. Finally, the actionts) to be taken are specified as a PL!
SQL block, which typically contains one or more SQL statements or calls to execute
external procedures.

The four triggers (active rules) Rl , R2, R3, and R4 illustrate a number of features of
active rules. First, the basic events that can be specified for triggering the rules are the
standard SQL update commands: INSERT, DELETE, and UPDATE. These are specified by the
keywords INSERT, DELETE, and UPDATE in Oracle notation. In the case of UPDATE one
may specify the attributes to be updated-for example, by writing UPDATE OF SALARY, DND.

Second, the rule designer needs to have a way to refer to the tuples that have been
inserted, deleted, or modified by the triggering event. The keywords NEW and OLD are
used in Oracle notation; NEW is used to refer to a newly inserted or newly updated tuple,
whereas OLD is used to refer to a deleted tuple or to a tuple before it was updated.

Thus rule Rl is triggered after an INSERT operation is applied to the EMPLOYEE relation.
In Rl, the condition (NEW. DNO IS NOT NULL) is checked, and if it evaluates to true, meaning
that the newly inserted employee tuple is related to a department, then the action is
executed. The action updates the DEPARTMENT tuplets) related to the newly inserted
employee by adding their salary (NEW. SALARY) to the TOTAL_SAL attribute of their related
department.

Rule R2 is similar to Rl, but it is triggered by an UPDATE operation that updates the
SALARY of an employee rather than by an INSERT. Rule R3 is triggered by an update to the
DNO attribute of EMPLOYEE, which signifies changing an employee's assignment from one
department to another. There is no condition to check in R3, so the action is executed
whenever the triggering event occurs. The action updates both the old department and
new department of the reassigned employees by adding their salary to TOTAL_SAL of their
new department and subtracting their salary from TOTAL_SAL of their old department. Note
that this should work even if the value of DNO was null, because in this case no department
will be selected for the rule action.i

It is important to note the effect of the optional FOR EACH ROW clause, which
signifies that the rule is triggered separately for each tuple. This is known as a row-level
trigger. If this clause was left out, the trigger would be known as a statement-level trigger

------ ~------- -----~----- .---- ----

3. As we shall see later, it is also possible to specify BEFORE instead of AITER, which indicates that
the rule is triggered before the triggering event is executed.

4. Again, we shall see later that an alternative is to trigger the rule only once even if multiple rows
(tuples) are affected by the triggeringevent.

5. Rl, R2, and R4 can also be written without a condition. However, they may be more efficient to

execute with the condition since the action is not invoked unless it is required.

24.1 Active Database Concepts and Triggers I 761

and would be triggered once for each triggering statement. To see the difference, consider
the following update operation, which gives a 10 percent raise to all employees assigned
to department 5. This operation would be an event that triggers rule R2:

UPDATE

SET

WHERE

EMPLOYEE

SALARY = 1. 1 * SALARY

DNO = 5;

Because the above statement could update multiple records, a rule using row-level
semantics, such as R2 in Figure 24.2, would be triggered once for eachrow, whereas a rule
using statement-level semantics is triggered only once. The Oracle system allows the user to

choose which of the above two options is to be used for each rule. Including the optional
FOR EACH ROW clause creates a row-level trigger, and leaving it out creates a statement
level trigger. Note that the keywords NEW and OLD can only be used with row-level triggers.

As a second example, suppose we want to check whenever an employee's salary is greater
than the salary of his or her direct supervisor. Several events can trigger this rule: inserting a
new employee, changing an employee's salary, or changing an employee's supervisor. Suppose
that the action to take would be to call an external procedure INFORM_SUPERVISOR,6 which will
notify the supervisor. The rule could then be written as in R5 (see Figure 24.2b).

Figure 24.3 shows the syntax for specifying some of the main options available in Oracle
triggers. We will describe the syntax for triggers in the sQL-99 standard in Section 24.1.5.

24.1.2 Design and Implementation Issues for
Active Databases

The previous section gave an overview of some of the main concepts for specifying active
rules. In this section, we discuss some additional issues concerning how rules are designed
and implemented. The first issue concerns activation, deactivation, and grouping of rules.

<trigger> ::= CREATETRIGGER <trigger name>
(AFTERI BEFORE) <triggering events> ON <table name>

[FOR EACH ROW1
[WHEN <condition> 1
<trigger actions> ;

<triggering events> ::=<trigger event> {OR <trigger event> }
<trigger event>::=INSERT I DELETEI UPDATE[OF <column name> {, <column names} 1
<trigger action> ::=<PUSQL block>

FIGURE 24.3 A syntax summary for specifying triggers in the Oracle system (main
options only).

6. Assuming that an appropriate external procedure has been declared. This is a feature that is now
available in SQL.

762 I Chapter 24 Enhanced Data Models for Advanced Applications

In addition to creating rules, an active database system should allow users to activate,
deactivate, and drop rules by referring to their rule names. A deactivated rule will not be
triggered by the triggering event. This feature allows users to selectively deactivate rules
for certain periods of time when they are not needed. The activate command will make
the rule active again. The drop command deletes the rule from the system. Another
option is to group rules into named rule sets, so the whole set of rules could be activated,
deactivated, or dropped. It is also useful to have a command that can trigger a rule or rule
set via an explicit PROCESS RULES command issued by the user.

The second issue concerns whether the triggered action should be executed before, after,
or concurrently with the triggering event. A related issue is whether the action being executed
should be considered as a separate transaction or whether it should be part of the same
transaction that triggered the rule. We will first try to categorize the various options. It is
important to note that not all options may be available for a particular active database system.
In fact, most commercial systems are limited to oneor two of the options that we will now discuss.

Let us assume that the triggering event occurs as part of a transaction execution. We
should first consider the various options for how the triggering event is related to the
evaluation of the rule's condition. The rule condition evaluation is also known as rule
consideration, since the action is to be executed only after considering whether the
condition evaluates to true or false. There are three main possibilities for rule
consideration:

1. Immediate consideration: The condition is evaluated as part of the same transaction
as the triggering event, and is evaluated immediately. This case can be further cat
egorized into three options:

• Evaluate the condition before executing the triggering event.

• Evaluate the condition after executing the triggering event.

• Evaluate the condition instead of executing the triggering event.

2. Deferred consideration: The condition is evaluated at the end of the transaction
that included the triggering event. In this case, there could be many triggered
rules waiting to have their conditions evaluated.

3. Detached consideration: The condition is evaluated as a separate transaction,
spawned from the triggering transaction.

The next set of options concerns the relationship between evaluating the rule
condition and executing the rule action. Here, again, three options are possible: immediate,
deferred, and detached execution. However, most active systems use the first option. That
is, as soon as the condition is evaluated, if it returns true, the action is immediately executed.

The Oracle system (see Section 24.1.1) uses the immediate consideration model, but it
allows the user to specify for each rule whether the before or afteroption is to be used with
immediate condition evaluation. It also uses the immediate execution model. The
STARBURST system (see Section 24.1.3) uses the deferred consideration option, meaning
that all rules triggered by a transaction wait until the triggering transaction reaches its
end and issues its COMMIT WORK command before the rule conditions are evaluated.I

-------------------- ---- - ---- ---- --------

7.STARBURST alsoallows the userto explicitly start ruleconsideration viaa PROCESSRULES command.

24.1 Active Database Concepts and Triggers I 763

Another issue concerning active database rules is the distinction between row-level
rules versus statement-level rules. Because SQL update statements (which act as triggering
events) can specify a set of tuples, one has to distinguish between whether the rule should
be considered once for the whole statement or whether it should be considered separately
for eachrow (that is, tuple) affected by the statement. The sQL-99 standard (see Section
24.1.5) and the Oracle system (see Section 24.1.1) allow the user to choose which of the
above two options is to be used for each rule, whereas STARBURST uses statement-level
semantics only. We will give examples of how statement-level triggers can be specified in
Section 24.1.3.

One of the difficulties that may have limited the widespread use of active rules, in
spite of their potential to simplify database and software development, is that there are no
easy-to-use techniques for designing, writing, and verifying rules. For example, it is quite
difficult to verify that a set of rules is consistent, meaning that two or more rules in the set
do not contradict one another. It is also difficult to guarantee termination of a set of rules
under all circumstances. To briefly illustrate the termination problem, consider the rules
in Figure 24.4. Here, rule Rl is triggered by an INSERT event on TABLEl and its action
includes an update event on ATTRIBUTEl of TABLE2. However, rule R2's triggering event is an
UPDATE event on ATTRIBUTEl of TABLE2, and its action includes an INSERT event on TABLEl.

It is easy to see in this example that these two rules can trigger one another indefinitely,
leading to nontermination. However, if dozens of rules are written, it is very difficult to
determine whether termination is guaranteed or not.

If active rules are to reach their potential, it is necessary to develop tools for the
design, debugging, and monitoring of active rules that can help users in designing and
debugging their rules.

24.1.3 Examples of Statement-level Active Rules
in STARBURST

We now give some examples to illustrate how rules can be specified in the STARBURST

experimental DBMS. This will allow us to demonstrate how statement-level rules can be
written, since these are the only types of rules allowed in STARBURST.

RI: CREATE TRIGGER T1
AFTER INSERT ON TABLE1
FOR EACH ROW

UPDATE TABLE2
SET ATIRIBUTE1=... ;

R2: CREATE TRIGGER T2
AFTER UPDATE OF ATIRIBUTE1 ON TABLE2
FOR EACH ROW

INSERT INTO TABLE1 VALUES (...);

FIGURE 24.4 An example to illustrate the termination problem for active rules.

764 I Chapter 24 Enhanced Data Models for Advanced Applications

The three active rules RlS, R2S, and R3S in Figure 24.5 correspond to the first three
rules in Figure 24.2, but use STARBURST notation and statement-level semantics. We can
explain the rule structure using rule RlS. The CREATE RULE statement specifies a rule
name-TOTALSALl for RlS. The ON-clause specifies the relation on which the rule is
specified-EMPLOYEE for RlS. The WHEN-clause is used to specify the events that trigger
the rule.f The optional IF-clause is used to specify any conditions that need to be checked,

RIS: CREATE RULE TOTALSAL1 ON EMPLOYEE

WHEN INSERTED
IF EXISTS(SELECT· FROM INSERTED WHERE DNO IS NOT NULL)
THEN UPDATE DEPARTMENT AS D

SET D.TOTAL_SAL=D.TOTAL_SAL +
(SELECT SUM(I.SALARY) FROM INSERTED AS I WHERE D.DNO = I.ONO)

WHERE D.DNO IN (SELECT DNO FROM INSERTED);

R2S: CREATE RULE TOTALSAL2 ON EMPLOYEE

WHEN
IF

THEN

UPDATED (SALARY)

EXISTS(SELECT· FROM NEW·UPDATED WHERE DNO IS NOT NULL)
OR EXISTS(SELECT· FROM OLD·UPDATED WHERE DNO IS NOT NULL)
UPDATE DEPARTMENT AS D

SET D.TOTAL_SAL=D.TOTAL_SAL +
(SELECT SUM(N.SALARY) FROM NEW-UPDATED AS N WHERE

D.DNO =N,DNO) -

(SELECT SUM(O,SALARY) FROM OLD-UPDATED AS 0 WHERE
D.DNO=O.DNO)

WHERE D.DNO IN (SELECT DNO FROM NEW-UPDATED) OR
D,DNO IN (SELECT DNO FROM OLD-UPDATED);

R3S: CREATE RULE TOTALSAL3 ON EMPLOYEE

WHEN UPDATED(DNO)
THEN UPDATE DEPARTMENT AS D

SET D.TOTAL_SAL=D.TOTAL_SAL +
(SELECT SUM(N.SALARY) FROM NEW-UPDATED AS N WHERE

D.DNO=N.DNO)

WHERE D.DNO IN (SELECT DNO FROM NEW-UPDATED);

UPDATE DEPARTMENT AS D

SET D.TOTAL_SAL=D.TOTAL_SAL-

(SELECT SUM(O.SALARY) FROM OLD-UPDATED AS 0 WHERE

O.DNO=O.DNO)

WHERE D.DNO IN (SELECT DNO FROM OLD-UPDATED);

FIGURE 24.5 Active rules using statement-level semantics in STARBURST notation.

8. Note that the WHEN keyword specifies events in STARBURST but is used to specify the rule condi
tion in SQLand Oracle triggers.

24.1 Active Database Concepts and Triggers I 765

Finally, the THEN-clause is used to specify the action (or actions) to be taken, which are
typically one or more SQL statements.

In STARBURST, the basic events that can be specified for triggering the rules are the
standard SQL update commands: INSERT, DELETE, and UPDATE. These are specified by the
keywords INSERTED, DELETED, and UPDATED in STARBURST notation. Second, the rule designer
needs to have a way to refer to the tuples that have been modified. The keywords INSERTED,

DELETED, NEW-UPDATED, and OLD-UPDATED are used in STARBURST notation to refer to four
transition tables (relations) that include the newly inserted tuples, the deleted tuples, the
updated tuples before they were updated, and the updated tuples after they were updated,
respectively. Obviously, depending on the triggering events, only some of these transition
tables may be available. The rule writer can refer to these tables when writing the
condition and action parts of the rule. Transition tables contain tuples of the same type as
those in the relation specified in the ON-clause of the rule-for RlS, R2S, and R3S, this
is the EMPLOYEE relation.

In statement-level semantics, the rule designer can only refer to the transition tables
as a whole and the rule is triggered only once, so the rules must be written differently than
for row-level semantics. Because multiple employee tuples may be inserted in a single
insert statement, we have to check if at least one of the newly inserted employee tuples is
related to a department. In RlS, the condition

EXISTSCSELECT * FROM INSERTED WHERE DNO IS NOT NULL)

is checked, and if it evaluates to true, then the action is executed. The action updates in a
single statement the DEPARTMENT tupleis) related to the newly inserted emploveets) by add
ing their salaries to the TOTAL_SAL attribute of each related department. Because more than
one newly inserted employee may belong to the same department, we use the SUM aggre
gate function to ensure that all their salaries are added.

Rule R2S is similar to RlS, but is triggered by an UPDATE operation that updates the
salary of one or more employees rather than by an INSERT. Rule R3S is triggered by an
update to the DNO attribute of EMPLOYEE, which signifies changing one or more employees'
assignment from one department to another. There is no condition in R3S, so the action
is executed whenever the triggering event occurs.l' The action updates both the old
departmentfs) and new departmentts) of the reassigned employees by adding their salary
to TOTAL_SAL of each new department and subtracting their salary from TOTAL_SAL of each old
department.

In our example, it is more complex to write the statement-level rules than the row
level rules, as can be illustrated by comparing Figures 24.2 and 24.5. However, this is not
a general rule, and other types of active rules may be easier to specify using statement
level notation than when using row-level notation.

The execution model for active rules in STARBURST uses deferred consideration. That is,
all the rules that are triggered within a transaction are placed in a set---ealled the conflict

9. As in the Oracle examples, rules R1S and R2S can be written without a condition. However,
they may be more efficient to execute with the condition since the action is not invoked unless it is
required.

766 I Chapter 24 Enhanced Data Models for Advanced Applications

set-which is not considered for evaluation of conditions and execution until the transaction
ends (by issuing its COMMIT WORK command). STARBURST also allows the user to explicitly
start rule consideration in the middle of a transaction via an explicit PROCESS RULES

command. Because multiple rules must be evaluated, it is necessary to specify an order among
the rules. The syntax for rule declaration in STARBURST allows the specification of ordering
among the rules to instruct the system about the order in which a set of rules should be
considered.l" In addition, the transition tables-INSERTED, DELETED, NEW-UPDATED, and OLD
UPDATED------eontain the net effect of all the operations within the transaction that affected each
table, since multiple operations may have been applied to each table during the transaction.

24.1.4 Potential Applications for Active Databases
We now briefly discuss some of the potential applications of active rules. Obviously, one
important application is to allow notification of certain conditions that occur. For exam
ple, an active database may be used to monitor, say, the temperature of an industrial fur
nace. The application can periodically insert in the database the temperature reading
records directly from temperature sensors, and active rules can be written that are trig
gered whenever a temperature record is inserted, with a condition that checks if the tem
perature exceeds the danger level, and the action to raise an alarm.

Active rules can also be used to enforce integrity constraints by specifying the types of
events that may cause rhe constraints to be violated and then evaluating appropriate
conditions that check whether the constraints are actually violated by the event or not.
Hence, complex application constraints, often known as business rules may be enforced
that way. For example, in the UNIVERSITY database application, one rule may monitor the
grade point average of students whenever a new grade is entered, and it may alert the
advisor if the CPA of a student falls below a certain threshold; another rule may check that
course prerequisites are satisfied before allowing a student to enroll in a course; and so on.

Other applications include the automatic maintenance of derived data, such as the
examples of rules R1 through R4 that maintain the derived attribute TOTAL_SAL whenever
individual employee tuples are changed. A similar application is to use active rules to
maintain the consistency of materialized views (see Chapter 9) whenever the base relations
are modified. This application is also relevant to the new data warehousing technologies
(see Chapter 28). A related application is to maintain replicated tables consistent by
specifying rules that modify the replicas whenever the master table is modified.

24.1.5 Triggers in SQL-99

Triggers in the sQL-99 standard are quite similar to the examples we discussed in Section
24.1.1, with some minor syntactic differences. The basic events that can be specified for
triggering the rules are the standard SQL update commands: INSERT, DELETE, and UPDATE.

-~~---~~~~~~--~--~~----_._------~~------

10. If no order is specified between a pair of rules, the system default order is based on placing the
rule declared first ahead of the other rule.

24.2 Temporal Database Concepts I 767

In the case of UPDATE one may specify the attributes to be updated. Both row-level and
statement-level triggers are allowed, indicated in the trigger by the clauses FOR EACH
ROWand FOR EACH 5TATEMENT, respectively. One syntactic difference is that the trigger
may specify particular tuple variable names for the old and new tuples instead of using the
keywords NEW and OLD as in Figure 24.1. Trigger Tl in Figure 24.6 shows how the row
level trigger R2 from Figure 24.1(a) may be specified in 5QL-99. Inside the REFERENCING
clause, we named tuple variables (aliases) 0 and N to refer to the OLD tuple (before mod
ification) and NEW tuple (after modification), respectively. Trigger T2 in Figure 24.6
shows how the statement-level trigger R2S from Figure 24.5 may be specified in 5QL-99.
For a statement-level trigger, the REFERENCING clause is used to refer to the table of all
new tuples (newly inserted or newly updated) as N, whereas the table of all old tuples
(deleted tuples or tuples before they were updated) is referred to as O.

24.2 TEMPORAL DATABASE CONCEPTS
Temporal databases, in the broadest sense, encompass all database applications that
require some aspect of time when organizing their information. Hence, they provide a
good example to illustrate the need for developing a set of unifying concepts for applica
tion developers to use. Temporal database applications have been developed since the
early days of database usage. However, in creating these applications, it was mainly left to

T1: CREATE TRIGGER TOTALSAL1
AFTER UPDATE OF SALARY ON EMPLOYEE
REFERENCING OLD ROW AS 0, NEW ROW AS N
FOR EACH ROW
WHEN (N.DNO IS NOT NULL)

UPDATE DEPARTMENT
SET TOTAL_SAL = TOTAL SAL + N.SALARY - O.SALARY
WHERE DNO = N.DNO;

T2: CREATE TRIGGER TOTALSAL2
AFTER UPDATE OF SALARY ON EMPLOYEE
REFERENCING OLD TABLE AS 0, NEW TABLE AS N
FOR EACH STATEMENT
WHEN EXISTS(SELECT * FROM N WHERE N.DNO IS NOT NULL) OR

EXISTS(SELECT * FROM 0 WHERE O.DNO IS NOT NULL)
UPDATE DEPARTMENT AS D
SET D.TOTAL_SAL = D.TOTAL_SAL
+ (SELECT SUM(N.SALARY) FROM N WHERE D.DNO=N.DNO)
- (SELECT SUM(O.SALARY) FROM 0 WHERE D.DNO=O.DNO)
WHERE DNO IN ((SELECT DNO FROM N) UNION (SELECT DNO FROM 0));

FIGURE 24.6 Trigger T1 illustrating the syntax for defining triggers in sQL-99.

768 I Chapter 24 Enhanced Data Models for Advanced Applications

the application designers and developers to discover, design, program, and implement the
temporal concepts they need. There are many examples of applications where some
aspect of time is needed to maintain the information in a database. These include health
care, where patient histories need to be maintained; insurance, where claims and accident
histories are required as well as information on the times when insurance policies are in
effect; reservation systems in general (hotel, airline, car rental, train, etc.}, where informa
tion on the dates and times when reservations are in effect are required; scientific data
bases, where data collected from experiments includes the time when each data is
measured; an so on. Even the two examples used in this book may be easily expanded into
temporal applications. In the COMPANY database, we may wish to keep SALARY, JOB, and PROJECT

histories on each employee. In the UNIVERSITY database, time is already included in the
SEMESTER and YEAR of each SECTION of a COURSE; the grade history of a STUDENT; and the informa
tion on research grants. In fact, it is realistic to conclude that the majority of database
applications have some temporal information. Users often attempted to simplify or ignore
temporal aspects because of the complexity that they add to their applications.

In this section, we will introduce some of the concepts that have been developed to
deal with the complexity of temporal database applications. Section 24.2.1 gives an
overview of how time is represented in databases, the different types of temporal
information, and some of the different dimensions of time that may be needed. Section
24.2.2 discusses how time can be incorporated into relational databases. Section 24.2.3
gives some additional options for representing time that are possible in database models
that allow complex-structured objects, such as object databases. Section 24.2.4 introduces
operations for querying temporal databases, and gives a brief overview of the TSQL2

language, which extends SQL with temporal concepts. Section 24.2.5 focuses on time
series data, which is a type of temporal data that is very important in practice.

24.2.1 Time Representation, Calendars, and
Time Dimensions

For temporal databases, time is considered to be an ordered sequence of points in some
granularity that is determined by the application. For example, suppose that some tempo
ral application never requires time units that are less than one second. Then, each time
point represents one second in time using this granularity. In reality, each second is a
(short) time duration, not a point, since it may be further divided into milliseconds, micro
seconds, and so on. Temporal database researchers have used the term chronon instead of
point to describe this minimal granularity for a particular application. The main conse
quence of choosing a minimum granularity-say, one second-is that events occurring
within the same second will be considered to be simultaneous events, even though in real
ity they may not be.

Because there is no known beginning or ending of time, one needs a reference point
from which to measure specific time points. Various calendars are used by various cultures
(such as Gregorian (Western), Chinese, Islamic, Hindu, Jewish, Coptic, etc.) with different
reference points. A calendar organizes time into different time units for convenience. Most

24.2 Temporal Database Concepts I 769

calendars group 60 seconds into a minute, 60 minutes into an hour, 24 hours into a day
(based on the physical time of earth's rotation around its axis), and 7 days into a week.
Further grouping of days into months and months into years either follow solar or lunar
natural phenomena, and are generally irregular. In the Gregorian calendar, which is used in
most Western countries, days are grouped into months that are either 28,29,30, or 31 days,
and 12 months are grouped into a year. Complex formulas are used to map the different
time units to one another.

In sQL2, the temporal data types (see Chapter 8) include DATE (specifying Year,
Month, and Day as YYYY-MM-DD), TIME (specifying Hour, Minute, and Second as
HH:MM:SS), TIMESTAMP (specifying a Date/Time combination, with options for including
sub-second divisions if they are needed), INTERVAL (a relative time duration, such as 10
days or 250 minutes), and PERIOD (an anchored time duration with a fixed starting point,
such as the lO-day period from January 1, 1999, to January 10, 1999, inclusive).ll

Event Information Versus Duration (or State) Information. A temporal database
will store information concerning when certain events occur, or when certain facts are
considered to be true. There are several different types of temporal information. Point
events or facts are typically associated in the database with a single time point in
some granularity. For example, a bank deposit event may be associated with the
timestamp when the deposit was made, or the total monthly sales of a product (fact}
may be associated with a particular month (say, February 1999). Note that even
though such events or facts may have different granularities, each is still associated
with a single time value in the database. This type of information is often represented as
time series data as we shall discuss in Section 24.2.5. Duration events or facts, on the
other hand, are associated with a specific time period in the database.l/ For example,
an employee may have worked in a company from August 15, 1993, till November
20, 1998.

A time period is represented by its start and end time points [START-TIME, END-TIME].

For example, the above period is represented as [1993-08-15, 1998-11-20]. Such a time
period is often interpreted to mean the set of all time points from start-time to end-time,
inclusive, in the specified granularity. Hence, assuming day granularity, the period [1993

08-15, 1998-11-20] represents the set of all days from August 15, 1993, until November
20, 1998, inclusive. 13

11. Unfortunately, the terminology has not been used consistently. For example, the term interval is
often used to denote an anchored duration. For consistency, we shall use the SQL terminology.

12. This is the same as an anchored duration. It has also been frequently called a time interval, but
to avoid confusion we will use period to be consistent with SQL terminology.

13. The representation [1993-08-15, 1998-11-20] is called a closed interval representation. One
can also use an open interval, denoted [1993-08-15, 1998-11-21), where the set of points does not
include the end point. Although the latter representation is sometimes more convenient, we shall
use closed intervals throughout to avoid confusion.

770 I Chapter 24 Enhanced Data Models for Advanced Applications

Valid Time and Transaction Time Dimensions. Given a particular event or
fact that is associated with a particular time point or time period in the database, the
association may be interpreted to mean different things. The most natural interpretation
is that the associated time is the time that the event occurred, or the period during which
the fact was considered to be true in the real world. If this interpretation is used, the
associated time is often referred to as the valid time. A temporal database using this
interpretation is called a valid time database.

However, a different interpretation can be used, where the associated time refers to
the time when the information was actually stored in the database; that is, it is the value
of the system time clock when the information is valid in the system. 14 In this case, the
associated time is called the transaction time. A temporal database using this
interpretation is called a transaction time database.

Other interpretations can also be intended, but these two are considered to be the
most common ones, and they are referred to as time dimensions. In some applications,
only one of the dimensions is needed and in other cases both time dimensions are
required, in which case the temporal database is called a bitemporal database. If other
interpretations are intended for time, the user can define the semantics and program the
applications appropriately, and it is called a user-defined time.

The next section shows with examples how these concepts can be incorporated into
relational databases, and Section 24.2.3 shows an approach to incorporate temporal
concepts into object databases.

24.2.2 Incorporating Time in Relational Databases
Using Tuple Versioning

Valid Time Relations. Let us now see how the different types of temporal databases
may be represented in the relational model. First, suppose that we would like to include
the history of changes as they occur in the real world. Consider again the database in
Figure 24.1, and let us assume that, for this application, the granularity is day. Then, we
could convert the two relations EMPLOYEE and DEPARTMENT into valid time relations by adding
the attributes VST (Valid Start Time) and VET (Valid End Time), whose data type is DATE

in order to provide day granularity. This is shown in Figure 24.7a, where the relations
have been renamed EMP_VT and DEPT_VT, respectively.

Consider how the EMP_VT relation differs from the nontemporal EMPLOYEE relation
(Figure 24.1) .15 In EMP_VT, each tuple V represents a version of an employee's information
that is valid (in the real world) only during the time period [v. VST, V. VET], whereas in
EMPLOYEE each tuple represents only the current state or current version of each employee.
In EMP_VT, the current version of each employee typically has a special value, now, as its

14.The explanation is more involved, as we shall see in Section 24.2.3.

15. A nontemporal relation is also called a snapshot relation as it shows only the currentsnapshot or
current stateof the database.

24.2 Temporal Database Concepts I 771

(a) EMP_VT

SUPERVISOR_SSN

DEPT_VT

I DNAME~ TOTAL_SAL I MANAGER_SSN~

SUPERVISOR_SSN

DEPT_TT

I DNAME~ TOTAL_SAL I MANAGER_SSN~

(c) EMP_BT

SUPERVISOR_SSN

DEPT_BT

FIGURE 24.7 Different types of temporal relational databases. (a) Valid time data
base schema. (b) Transaction time database schema. (c) Bitemporal database
schema.

valid end time. This special value, now, is a temporal variable that implicitly represents
the current time as time progresses. The nontemporal EMPLOYEE relation would only
include those tuples from the EMP_VT relation whose VET is now.

Figure 24.8 shows a few tuple versions in the valid-time relations EMP_VT and OEPT_VT.

There are two versions of Smith, three versions of Wong, one version of Brown, and one
version of Narayan. We can now see how a valid time relation should behave when
information is changed. Whenever one or more attributes of an employee are updated,
rather than actually overwriting the old values, as would happen in a nontemporal
relation, the system should create a new version and close the current version by
changing its VET to the end time. Hence, when the user issued the command to update the
salary of Smith effective on June 1, 2003, to $30000, the second version of Smith was
created (see Figure 24.8). At the time of this update, the first version of Smith was the
current version, with now as its VET, but after the update now was changed to May 31,
2003 (one less than June 1, 2003, in day granularity), to indicate that the version has
become a closed or history version and that the new (second) version of Smith is now
the current one.

772 I Chapter 24 Enhanced Data Models for Advanced Applications

EMP_VT

SUPERVISOR_SSN

Smith 123456789 25000 5 333445555 2002-06-15 2003-05-31
Smith 123456789 30000 5 333445555 2003-06-01 now
Wong 333445555 25000 4 999887777 1999-08-20 2001-01-31
Wong 333445555 30000 5 999887777 2001-02-01 2002-03-31
Wong 333445555 40000 5 888665555 2002-04-01 now
Brown 222447777 28000 4 999887777 2001-05-01 2002-08-10
Narayan 666884444 38000 5 333445555 2003-08-01 now

DEPT_VT

I DNAME DNO MANAGER_SSN VST VET

Research 5 888665555 2001-09-20 2002-03-31
Research 5 333445555 2002-04-01 now

FIGURE 24.8 Some tuple versions in the valid time relations EMP_VT and DEPT_VT.

It is important to note that in a valid time relation, the user must generally provide
the valid time of an update. For example, the salary update of Smith may have been
entered in the database on May 15, 2003, at 8:52:12 A.M., say, even though the salary
change in the real world is effective on June 1, 2003. This is called a proactive update,
since it is applied to the database before it becomes effective in the real world. If the
update was applied to the database after it became effective in the real world, it is calleda
retroactive update. An update that is applied at the same time when it becomes effective
is called a simultaneous update.

The action that corresponds to deleting an employee in a nontemporal database
would typically be applied to a valid time database by closing the current version of the
employee being deleted. For example, if Smith leaves the company effective January 19,
2004, then this would be applied by changing VET of the current version of Smith from
now to 2004-01-19. In Figure 24.8, there is no current version for Brown, because he
presumably left the company on 2002-08-10 and was logically deleted. However, because
the database is temporal, the old information on Brown is still there.

The operation to insert a new employee would correspond to creating the first tuple
version for that employee, and making it the current version, with the VST being the
effective (real world) time when the employee starts work. In Figure 24.7, the tuple on
Narayan illustrates this, since the first version has not been updated yet.

Notice that in a valid time relation, the nontemporal key, such as SSN in EMPLOYEE, isno
longer unique in each tuple (version). The new relation key for EMP_VT is a combination of
the nontemporal key and the valid start time attribute VST,16 so we use (SSN, vsr) as

16. A combination of the nontemporal key and the valid end time attribute VET could also be used.

24.2 Temporal Database Concepts I 773

primary key. This is because, at any point in time, there should be at most one validversion
of each entity. Hence, the constraint that any two tuple versions representing the same
entity should have nonintersecting valid time periods should hold on valid time relations.
Notice that if the nontemporal primary key value may change over time, it is important
to have a unique surrogate key attribute, whose value never changes for each real world
entity, in order to relate together all versions of the same real world entity.

Valid time relations basically keep track of the history of changes as they become
effective in the realworld. Hence, if all real-world changes are applied, the database keeps
a history of the real-world states that are represented. However, because updates,
insertions, and deletions may be applied retroactively or proactively, there is no record of
the actual database state at any point in time. If the actual database states are more
important to an application, then one should use transaction time relations.

Transaction Time Relations. In a transaction time database, whenever a change is
applied to the database, the actual timestamp of the transaction that applied the change
(insert, delete, or update) is recorded. Such a database is most useful when changes are
applied simultaneously in the majority of cases-for example, real-time stock trading or
banking transactions. If we convert the nontemporal database of Figure 24.1 into a
transaction time database, then the two relations EMPLOYEE and DEPARTMENT are converted
into transaction time relations by adding the attributes TST (Transaction Start Time) and
TET (Transaction End Time), whose data type is typically TIMESTAMP. This is shown in
Figure 24.7b, where the relations have been renamed EMP_TT and DEPT_TT, respectively.

In EMP_TI, each tuple v represents a version of an employee's information that was
created at actual time v. TST and was (logically) removed at actual time v. TET (because the
information was no longer correct). In EMP_TI, the currentversion of each employee typically
has a special value, uc (Until Changed), as its transaction end time, which indicates that
the tuple represents correct information until it is changed by some other transaction.l" A
transaction time database has also been called a rollback database.l'' because a user can
logically roll back to the actual database state at any past point in time T by retrieving all
tuple versions v whose transaction time period [v. TST, V. TET] includes time point T.

Bitemporal Relations. Some applications require both valid time and transaction
time, leading to bitemporal relations. In our example, Figure 24.7c shows how the
EMPLOYEE and DEPARTMENT non-temporal relations in Figure 24.1 would appear as bitemporal
relations EMP_BT and DEPT_BT, respectively. Figure 24.9 shows a few tuples in these relations.
In these tables, tuples whose transaction end time TET is uc are the ones representing
currently valid information, whereas tuples whose TET is an absolute timestamp are tuples
that were valid until (just before) that timestamp. Hence, the tuples with uc in Figure
24.9 correspond to the valid time tuples in Figure 24.7. The transaction start time
attribute TST in each tuple is the timestamp of the transaction that created that tuple.

17. The uc variable in transaction time relations corresponds to the now variable in valid time rela
tions. The semantics are slightly different though.

18. The term rollback here does not have the same meaning as transaction rollback (see Chapter 19)
during recovery, where the transaction updates are physically undone. Rather, here the updates can be
logically undone, allowing the user to examine the database as it appeared at a previous time point.

774 I Chapter 24 Enhanced Data Models for Advanced Applications

EMP_BT

~ SSN SALARY~ SUPERVISOR_SSN I VST I VET TST TET

Smith 123456789 25000 5 333445555 2002-06-15 now 2002-06-08,13:05:58 2003-06-04,08:56:12

Smith 123456789 25000 5 333445555 2002-06-15 1998-05-31 2003-06-<l4,08:56:12 uc
Smith 123456789 30000 5 333445555 2003-06-01 now 2003-06-04,08:56:12 uc
Wong 333445555 25000 4 999887777 1999-08-20 now 1999-08-20,11:18:23 2001-{)1-o7,14:33:02

Wong 333445555 25000 4 999887777 1999-08-20 1996-01-31 2001-01-07,14:33:02 uc
Wong 333445555 30000 5 999887777 2001-02-01 now 2001-01-07,14:33:02 2002-03-28,09:23:57

Wong 333445555 30000 5 999887777 2001-02-01 1997-03-31 2002-03-28,09:23:57 uc
Wong 333445555 40000 5 888665555 2002-<l4-o1 now 2002-03-28,09:23:57 uc
Brown 222447777 28000 4 999887777 2001-05-01 now 2001-04-27,16:22:05 2002-08-12,10:11:07

Brown 222447777 28000 4 999887777 2001-05-01 1997-08-10 2002-08-12,10:11:07 uc
Narayan 666884444 38000 5 333445555 2003-oa-01 now 2003-07-28,09:25:37 uc

DEPT_VT

IDNAME I DNO MANAGER_SSN VST VET TST TET

Research 5 888665555 2001-09-20 now 2001-09-15,14:52:12 2001-03-28,09:23:57

Research 5 888665555 2001-09-20 1997-03-31 2002-03-28,09:23:57 uc

Research 5 333445555 2002-04-01 now 2002-03-28,09:23:57 uc

FIGURE 24.9 Some tuple versions in the bitemporal relations EMP_BT and DEPT_BT.

Now consider how an update operation would be implemented on a bitemporal relation.
In this model of bitemporal databases, 19 no attributes are physically changed in any tuple except
for the transaction end time attribute TET with a value of ue.20 To illustrate how tuples are
created, consider the EMP_BT relation. The current version v of an employee has uc in its TET
attribute and now in its VET attribute. If some attribute-say, SALARy-is updated, then the
transaction T that performs the update should have two parameters: the new value of SALARY
and the valid time VT when the new salary becomes effective (in the real world). Assume that
VT- is the time point before VT in the given valid time granularity and that transaction Thas a
timestamp TS(T). Then, the following physical changes would be applied to the EMP_BT table:

1. Make a copy v2 of the current version V; set V2.VET to VT-, v2. TST to TS(T), v2. TET
to uc, and insert v2 in EMP_BT; v2 is a copy of the previous current version Vafterit
is closed at valid time VT-.

2. Make a copy v3 of the current version V; set v3. VST to VT, v3. VET to now, v3. SALARY
to the new salary value, v3. TST to TS (T), v3. TET to uc, and insert v3 in EMP_BT; v3
represents the new current version.

19. There have been many proposed temporal database models. We are describing specific models
here as examples to illustrate the concepts.

20. Some bitemporal models allow the VET attribute to be changed also, but the interpretations of
the tuples are different in those models.

24.2 Temporal Database Concepts I 775

3. Set v. TET to TS(T) since the current version is no longer representing correct
information.

As an illustration, consider the first three tuples VI, v2, and v3 in EMP_BT in Figure
24.9. Before the update of Smith's salary from 25000 to 30000, only v'l was in EMP_BT and it
was the current version and its TET was uc. Then, a transaction T whose timestamp TS(T)

is 2003-06-04,08: 56: 12 updates the salary to 30000 with the effective valid time of
2003-06-01. The tuple v2 is created, which is a copy of v.l, except that its VET is set to
2003-05-31, one day less than the new valid time and its TST is the timestamp of the
updating transaction. The tuple v3 is also created, which has the new salary, its VST is set
to 2003-06-01, and its TST is also the timestamp of the updating transaction. Finally, the
TET of vt is set to the timestamp of the updating transaction, 2003-06-04,08: 56: 12. Note
that this is a retroactive update, since the updating transaction ran on June 4, 2003, but the
salary change is effective on June 1, 2003.

Similarly, when Wong's salary and department are updated (at the same time) to
30000 and 5, the updating transaction's timestamp is 2001-01-07,14: 33: 02 and the
effective valid time for the update is 2001-02-01. Hence, this is a proactive updatebecause
the transaction ran on January 7, 2001, but the effective date was February 1, 2001. In
this case, tuple v4 is logically replaced by v5 and v6.

Next, let us illustrate how a delete operation would be implemented on a bitemporal
relation by considering the tuples v9 and v10 in the EMP_BT relation of Figure 24.9. Here,
employee Brown left the company effective August 10, 2002, and the logical delete is
carried out by a transaction T with TS(T) = 2002-08-12,10: 11: 07. Before this, v9 was the
current version of Brown, and its TET was uc. The logical delete is implemented by setting
v9. TET to 2002-08-12,10: 11: 07 to invalidate it, and creating the final version v10 for
Brown, with its VET = 2002-08-10 (see Figure 24.9). Finally, an insert operation is
implemented by creating the first versionas illustrated by v11 in the EMP_BT table.

Implementation Considerations. There are various options for storing the tuples in
a temporal relation. One is to store all the tuples in the same table, as in Figures 23.8 and
23.9. Another option is to create two tables: one for the currently valid information and the
other for the rest of the tuples. For example, in the bitemporal EMP_BT relation, tuples with uc
for their TET and now for their VET would be in one relation, the current table, since they are
the ones currently valid (that is, represent the current snapshot), and all other tuples would
be in another relation. This allows the database administrator to have different access paths,
such as indexes for each relation, and keeps the size of the current table reasonable. Another
possibility is to create a third table for corrected tuples whose TET is not uc.

Another option that is available is to vertically partition the attributes of the temporal
relation into separate relations. The reason for this is that, if a relation has many
attributes, a whole new tuple version is created whenever anyone of the attributes is
updated. If the attributes are updated asynchronously, each new version may differ in only
one of the attributes, thus needlessly repeating the other attribute values. If a separate
relation is created to contain only the attributes that always change synchronously, with
the primary key replicated in each relation, the database is said to be in temporal normal

776 I Chapter 24 Enhanced Data Models for Advanced Applications

form. However, to combine the information, a variation of join known as temporal
intersection join would be needed, which is generally expensive to implement.

It is important to note that bitemporal databases allow a complete record of changes.
Even a record of corrections is possible. For example, it is possible that two tuple versions
of the same employee may have the same valid time but different attribute values as long
as their transaction times are disjoint. In this case, the tuple with the later transaction
time is a correction of the other tuple version. Even incorrectly entered valid times may
be corrected this way. The incorrect state of the database will still be available as a
previous database state for querying purposes. A database that keeps such a complete
record of changes and corrections has been called an append only database.

24.2.3 Incorporating Time in Object-Oriented
Databases Using Attribute Versioning

The previous section discussed the tuple versioning approach to implementing temporal
databases. In this approach, whenever one attribute value is changed, a whole new tuple
version is created, even though all the other attribute values will be identical to the previ
ous tuple version. An alternative approach can be used in database systems that support
complex structured objects, such as object databases (see Chapters 20 and 21) or object
relational systems (see Chapter 22). This approach is called attribute versioning.r!

In attribute versioning, a single complex object is used to store all the temporal changes
of the object. Each attribute that changes over time is called a time-varying attribute, and
it has its values versioned over time by adding temporal periods to the attribute. The
temporal periods may represent valid time, transaction time, or bitemporal, depending on
the application requirements. Attributes that do not change are called non-time-varying
and are not associated with the temporal periods. To illustrate this, consider the example in
Figure 24.10, which is an attribute versioned valid time representation of EMPLOYEE using the
ODL notation for object databases (see Chapter 21). Here, we assumed that name and social
security number are non-time-varying attributes (they do not change over time), whereas
salary, department, and supervisor are time-varying attributes (they may change over time).
Each time-varying attribute is represented as a list of tuples <VALID_START_TIME, VALID_END_

TIME, VALUE>, ordered by valid start time.
Whenever an attribute is changed in this model, the current attribute version is

closed and a new attribute version for this attribute only is appended to the list. This
allows attributes to change asynchronously. The current value for each attribute has now
for its VALID_END_TIME. When using attribute versioning, it is useful to include a lifespan
temporal attribute associated with the whole object whose value is one or more valid
time periods that indicate the valid time of existence for the whole object. Logical
deletion of the object is implemented by closing the lifespan. The constraint that any
time period of an attribute within an object should be a subset of the object's lifespan
should be enforced.

21. Attribute versioning can also be used in the nested relational model (see Chapter 22).

24.2 Temporal Database Concepts I 777

class Temporal_Salary

{

};

attribute
attribute
attribute

Date
Date
float

valid_start_time;
valid_end_time;
salary;

class Temporal Dept
{

};

attribute
attribute
attribute

Date valid_start_time;
Date valid_end_time;
Department_VT dept;

class Temporal_Supervisor

{

};

attribute
attribute
attribute

Date
Date
Employee_VT

valid_start_time;
valid_end_time;
supervisor;

class Temporal_Lifespan

{
attribute Date
attribute Date

};

class Employee_VT
(extent employees)

{

valid_ start_time;
valid_end_time;

};

attribute
attribute
attribute
attribute
attribute
attribute

list<Temporal_Lifespan>
string
string
llst-cTemporal Balary»
llst«Temporal_Dept>
list<Temporal_Supervisor>

lifespan;
name;

ssn;
sal_history;
dept_history;
supervisor_history;

FIGURE 24.10 Possible ODL schema for a temporal valid time Employee_VT object
class using attribute versioning.

For bitemporal databases, each attribute version would have a tuple with five components:

The object lifespan would also include both valid and transaction time dimensions.
The full capabilities of bitemporal databases can hence be available with attribute
versioning. Mechanisms similar to those discussed earlier for updating tuple versions can
be applied to updating attribute versions.

778 I Chapter 24 Enhanced Data Models for Advanced Applications

24.2.4 Temporal Querying Constructs and the
TSQL2 Language

So far, we have discussed how data models may be extended with temporal constructs. We
now give a brief overview of how query operations need to be extended for temporal que
rying. Then we briefly discuss the TSQL2 language, which extends SQL for querying valid
time, transaction time, and bitemporal relational databases.

In nontemporal relational databases, the typical selection conditions involve attribute
conditions, and tuples that satisfy these conditions are selected from the set of current tuples.
Following that, the attributes of interest to the query are specified by a projection operation (see
Chapter 5). For example, in the query to retrieve the names of all employees working in
department 5 whose salary is greater than 30000, the selection condition would be:

((SALARY > 30000) AND (DNa = 5))

The projected attribute would be NAME. In a temporal database, the conditions may
involve time in addition to attributes. A pure time condition involves only time-for
example, to select all employee tuple versions that were valid on a certain time point T or
that were valid duringa certain time period [T1, T2]. In this case, the specified time period
is compared with the valid time period of each tuple version [T. VST, T. VET], and only
those tuples that satisfy the condition are selected. In these operations, a period is
considered to be equivalent to the set of time points from T1 to T2 inclusive, so the
standard set comparison operations can be used. Additional operations, such as whether
one time period ends before another starts are also needed.22 Some of the more common
operations used in queries are as follows:

[t.VST, t.VET] INCLUDES [d, t2]
[t.VST, t.VET] INCLUDED_IN [tl , t2]
[t.VST, t.VET] OVERLAPS [d, t2]
[t.VST, t.VET] BEFORE [d, t2]
[t.VST, t.VET] AFTER [d, t2]
[t.VST, t.VET] MEETS_BEFORE [tl, t2]
[t.VST, t.VET] MEETS_AFTER [rl, t2]

Equivalent to t l 2: t.VST AND t2 :s t.VET
Equivalent to t l :s t.VST AND t2 2: t.VET
Equivalent to (rl :s t.VETAND t2 2: t.VST)23
Equivalent to t l 2: t.VET
Equivalent to t2 :s t.VST
Equivalent to tl = t.VET + 124

Equivalent to t2 + 1 = t.VST

In addition, operations are needed to manipulate time periods, such as computing the
union or intersection of two time periods. The results of these operations may not
themselves be periods, but rather temporal eIements-a collection of one or more disjoint
time periods such that no two time periods in a temporal element are directly adjacent.

-_.---_._----

22. A complete set of operations, known as Allen's algebra, has been defined for comparing time
periods.

23. This operation returns true if the mrersecnon of the two periods is not empty; it has also been
called INTERSECTS_WITH.

24. Here, I (one) refers to one time point in the specified granularity. The MEETS operations basi
cally specify if one period starts immediately after the orher period ends.

24.2 Temporal Database Concepts I 779

That is, for any two time periods [Tl, T2] and [T3, T4] in a temporal element, the
following three conditions must hold:

• [Tl, T2] intersection [T3, T4] is empty.

• T3 is not the time point following T2 in the given granularity.

• Tl is not the time point following T4 in the given granularity.

The latter conditions are necessary to ensure unique representations of temporal
elements. If two time periods [Tl, T2] and [T3, T4] are adjacent, they are combined into
a single time period [Tl, T4]. This is called coalescing of time periods. Coalescing also
combines intersecting time periods.

To illustrate how pure time conditions can be used, suppose a user wants to select all
employee versions that were valid at any point during 2002. The appropriate selection
condition applied to the relation in Figure 24.8 would be

[T.VST, T.VET] OVERLAPS [2002-01-01, 2002-12-31]

Typically, most temporal selections are applied to the valid time dimension. For a
bitemporal database, one usually applies the conditions to the currently correct tuples
with uc as their transaction end times. However, if the query needs to be applied to a
previous database state, an AS_OF T clause is appended to the query, which means that the
query is applied to the valid time tuples that were correct in the database at time T.

In addition to pure time conditions, other selections involve attribute and time
conditions. For example, suppose we wish to retrieve all EMP_VT tuple versions T for
employees who worked in department 5 at any time during 2002. In this case, the
condition is

([T.VST, T.VET] OVERLAPS [2002-01-01, 2002-12-31]) AND (T.DNO = 5)

Finally, we give a brief overview of the TSQL2 query language, which extends SQL
with constructs for temporal databases. The main idea behind TSQL2 is to allow users to
specify whether a relation is nontemporal (that is, a standard SQL relation) or temporal.
The CREATE TABLE statement is extended with an optional As-clause to allow users to
declare different temporal options. The following options are available:

• AS VALID STATE <GRANULARITY> (valid time relation with valid time period)

• AS VALID EVENT <GRANULARITY> (valid time relation with valid time point)

• AS TRANSACTION (transaction time relation with transaction time period)

• AS VALID STATE <GRANULARITY> AND TRANSACTION (bitemporal relation, valid time period)

• AS VALID EVENT <GRANULARITY> AND TRANSACTION (bitemporal relation, valid time point)

The keywords STATE and EVENT are used to specify whether a time period or time point is
associated with the valid time dimension. In TSQL2, rather than have the user actually see
how the temporal tables are implemented (as we discussed in the previous sections), the
TSQL2 language adds query language constructs to specify various types of temporal selections,
temporal projections, temporal aggregations, transformation among granularities, and many
other concepts. The book by Snodgrass et al. (1995) describes the language.

780 I Chapter 24 Enhanced Data Models for Advanced Applications

24.2.5 Time Series Data
Time series data is used very often in financial, sales, and economics applications. They
involve data values that are recorded according to a specific predefined sequence of time
points. They are hence a special type of valid event data, where the event time points are
predetermined according to a fixed calendar. Consider the example of closing daily stock
prices of a particular company on the New York Stock Exchange. The granularity here is
day, but the days that the stock market is open are known (nonholiday weekdays). Hence,
it has been common to specify a computational procedure that calculates the particular
calendar associated with a time series. Typical queries on time series involve temporal
aggregation over higher granularity intervals-for example, finding the average or maxi
mum weekly closing stock price or the maximum and minimum monthly closing stock
price from the daily information.

As another example, consider the daily sales dollar amount at each store of a chain of
stores owned by a particular company. Again, typical temporal aggregates would be
retrieving the weekly, monthly, or yearly sales from the daily sales information (using the
sum aggregate function), or comparing same store monthly sales with previous monthly
sales, and so on.

Because of the specialized nature of time series data, and the lack of support in older
DBMSs, it has been common to use specialized time series management systems rather than
general purpose DBMSs for managing such information. In such systems, it has been
common to store time series values in sequential order in a file, and apply specialized time
series procedures to analyze the information. The problem with this approach is that the full
power of high-level querying in languages such as SQL will not be available in such systems.

More recently, some commercial DBMS packages are offering time series extensions, such
as the time series datablade of Informix Universal Server (see Chapter 22). In addition, the
TSQL2 language provides some support for time series in the form of event tables.

24.3 MULTIMEDIA DATABASES
Because the two topics discussed in this section are very broad, we can give only a very
brief introduction to these fields. Section 24.3.1 introduces spatial databases, and Section
24.3.2 briefly discusses multimedia databases.

24.3.1 Introduction to Spatial Database Concepts
Spatial databases provide concepts for databases that keep track of objects in a multi
dimensional space. For example, cartographic databases that store maps include two
dimensional spatial descriptions of their objects-from countries and states to rivers,
cities, roads, seas, and so on. These applications are also known as Geographical Informa
tion Systems (GIS), and are used in areas such as environmental, emergency, and battle
management. Other databases, such as meteorological databases for weather information,
are three-dimensional, since temperatures and other meteorological information are

24.3 Multimedia Databases I 781

related to three-dimensional spatial points. In general, a spatial database stores objects
that have spatial characteristics that describe them. The spatial relationships among the
objects are important, and they are often needed when querying the database. Although a
spatial database can in general refer to an n-dimensional space for any n, we will limit our
discussion to two dimensions as an illustration.

The main extensions that are needed for spatial databases are models that can
interpret spatial characteristics. In addition, special indexing and storage structures are
often needed to improve performance. Let us first discuss some of the model extensions
for two-dimensional spatial databases. The basic extensions needed are to include two
dimensional geometric concepts, such as points, lines and line segments, circles,
polygons, and arcs, in order to specify the spatial characteristics of objects. In addition,
spatial operations are needed to operate on the objects' spatial characteristics-for
example, to compute the distance between two objects-c-as well as spatial Boolean
conditions-for example, to check whether two objects spatially overlap. To illustrate,
consider a database that is used for emergency management applications. A description of
the spatial positions of many types of objects would be needed. Some of these objects
generally have static spatial characteristics, such as streets and highways, water pumps
(for fire control), police stations, fire stations, and hospitals. Other objects have dynamic
spatial characteristics that change over time, such as police vehicles, ambulances, or fire
trucks.

The following categories illustrate three typical types of spatial queries:

• Rangequery: Finds the objects of a particular type that are within a given spatial area
or within a particular distance from a given location. (For example, finds all hospitals
within the Dallas city area, or finds all ambulances within five miles of an accident
location.)

• Nearest neighbor query: Finds an object of a particular type that is closest to a given
location. (For example, finds the police car that is closest to a particular location.)

• Spatial joins or overlays: Typically joins the objects of two types based on some spatial
condition, such as the objects intersecting or overlapping spatially or being within a
certain distance of one another. (For example, finds all cities that fall on a major
highway or finds all homes that are within two miles of a lake.)

For these and other types of spatial queries to be answered efficiently, special techniques
for spatial indexing are needed. One of the best known techniques is the use of Rvtrees and
their variations. Rvtrees group together objects that are in close spatial physical proximity
on the same leaf nodes of a tree-structured index. Since a leaf node can point to only a
certain number of objects, algorithms for dividing the space into rectangular subspaces that
include the objects are needed. Typical criteria for dividing the space include minimizing
the rectangle areas, since this would lead to a quicker narrowing of the search space.
Problems such as having objects with overlapping spatial areas are handled in different ways
by the many different variations of Rvtrees. The intemal nodes of Rvtrees are associated
with rectangles whose area covers all the rectangles in its subtree. Hence, Rvtrees can easily
answer queries, such as find all objects in a given area by limiting the tree search to those
subtrees whose rectangles intersect with the area given in the query.

782 I Chapter 24 Enhanced Data Models for Advanced Applications

Other spatial storage structures include quadtrees and their variations. Quadtrees
generally divide each space or subspace into equally sized areas, and proceed with the
subdivisions of each subspace to identify the positions of various objects. Recently,
many newer spatial access structures have been proposed, and this area is still an active
research area.

24.3.2 Introduction to Multimedia Database Concepts
Multimedia databases provide features that allow users to store and query different types
of multimedia information, which includes images (such as photos or drawings), video clips
(such as movies, newsreels, or home videos), audioclips (such as songs, phone messages, or
speeches), and documents (such as books or articles). The main types of database queries
that are needed involve locating multimedia sources that contain certain objects of inter
est. For example, one may want to locate all video clips in a video database that include a
certain person in them, say Bill Clinton. One may also want to retrieve video clips based
on certain activities included in them, such as a video clips where a goal is scored in a
soccer game by a certain player or team.

The above types of queries are referred to as content-based retrieval, because the
multimedia source is being retrieved based on its containing certain objects or
activities. Hence, a multimedia database must use some model to organize and index
the multimedia sources based on their contents. Identifying the contents of multimedia
sources is a difficult and time-consuming task. There are two main approaches. The
first is based on automatic analysis of the multimedia sources to identify certain
mathematical characteristics of their contents. This approach uses different
techniques depending on the type of multimedia source (image, text, video, or
audio). The second approach depends on manual identification of the objects and
activities of interest in each multimedia source and on using this information to

index the sources. This approach can be applied to all the different multimedia
sources, but it requires a manual preprocessing phase where a person has to scan each
multimedia source to identify and catalog the objects and activities it contains so
that they can be used to index these sources.

In the remainder of this section, we will very briefly discuss some of the
characteristics of each type of multimedia source-images, video, audio, and text sources,
in that order.

An image is typically stored either in raw form as a set of pixel or cell values, or in
compressed form to save space. The image shape descriptor describes the geometric shape
of the raw image, which is typically a rectangle of cells of a certain width and height.
Hence, each image can be represented by an m by n grid of cells. Each cell contains a
pixel value that describes the cell content. In black/white images, pixels can be one bit.
In gray scale or color images, a pixel is multiple bits. Because images may require large
amounts of space, they are often stored in compressed form. Compression standards, such
as GlF or JPEG, use various mathematical transformations to reduce the number of cells
stored but still maintain the main image characteristics. The mathematical transforms

24.3 Multimedia Databases I 783

that can be used include Discrete Fourier Transform (OFT), Discrete Cosine Transform
(OCT), and wavelet transforms.

To identify objects of interest in an image, the image is typically divided into
homogeneous segments using a homogeneity predicate. For example, in a color image,
cells that are adjacent to one another and whose pixel values are close are grouped into
a segment. The homogeneity predicate defines the conditions for how to automatically
group those cells. Segmentation and compression can hence identify the main
characteristics of an image.

A typical image database query would be to find images in the database that are
similar to a given image. The given image could be an isolated segment that contains,
say, a pattern of interest, and the query is to locate other images that contain that same
pattern. There are two main techniques for this type of search. The first approach uses a
distance function to compare the given image with the stored images and their
segments. If the distance value returned is small, the probability of a match is high.
Indexes can be created to group together stored images that are close in the distance
metric so as to limit the search space. The second approach, called the transformation
approach, measures image similarity by having a small number of transformations that
can transform one image's cells to match the other image. Transformations include
rotations, translations, and scaling. Although the latter approach is more general, it is
also more time consuming and difficult.

A video source is typically represented as a sequence of frames, where each frame is a
still image. However, rather than identifying the objects and activities in every individual
frame, the video is divided into video segments, where each segment is made up of a
sequence of contiguous frames that includes the same objects/activities. Each segment is
identified by its starting and ending frames. The objects and activities identified in each
video segment can be used to index the segments. An indexing technique called frame
segment trees has been proposed for video indexing. The index includes both objects, such
as persons, houses, cars, and activities, such as a person delivering a speech or two people
talking. Videos are also often compressed using standards such as MPEG.

A text/document source is basically the full text of some article, book, or magazine.
These sources are typically indexed by identifying the keywords that appear in the text
and their relative frequencies. However, filler words are eliminated from that process.
Because there could be too many keywords when attempting to index a collection of
documents, techniques have been developed to reduce the number of keywords to those
that are most relevant to the collection. A technique called singular value decompositions
(SVO), which is based on matrix transformations, can be used for this purpose. An
indexing technique called telescoping vector trees, or TV-trees, can then be used to group
similar documents together.

Audio sources include stored recorded messages, such as speeches, class presentations,
or even surveillance recording of phone messages or conversations by law enforcement.
Here, discrete transforms can be used to identify the main characteristics of a certain
person's voice in order to have similarity based indexing and retrieval. Audio characteristic
features include loudness, intensity, pitch, and clarity.

784 I Chapter 24 Enhanced Data Models for Advanced Applications

24.4 INTRODUCTION TO
DEDUCTIVE DATABASES

24.4.1 Overview of Deductive Databases
In a deductive database system, we typically specify rules through a declarative language-a
language in which we specify what to achieve rather than how to achieve it. An inference
engine (or deduction mechanism) within the system can deduce new facts from the data
base by interpreting these rules. The model used for deductive databases is closely related to
the relational data model, and particularly to the domain relational calculus formalism (see
Section 6.6). It is also related to the field of logic programming and the Prolog language.
The deductive database work based on logic has used Prolog as a starting point. A variation
of Prolog called Datalog is used to define rules declaratively in conjunction with an existing
set of relations, which are themselves treated as literals in the language. Although the lan
guage structure of Datalog resembles that of Prolog, its operational semantics-that is, how
a Datalog program is to be executed-is still different.

A deductive database uses two main types of specifications: facts and rules. Facts are
specified in a manner similar to the way relations are specified, except that it is not
necessary to include the attribute names. Recall that a tuple in a relation describes some
real-world fact whose meaning is partly determined by the attribute names. In a deductive
database, the meaning of an attribute value in a tuple is determined solely by its position
within the tuple. Rules are somewhat similar to relational views. They specify virtual
relations that are not actually stored but that can be formed from the facts by applying
inference mechanisms based on the rule specifications. The main difference between rules
and views is that rules may involve recursion and hence may yield virtual relations that
cannot be defined in terms of basic relational views.

The evaluation of Prolog programs is based on a technique called backward chaining,
which involves a top-down evaluation of goals. In the deductive databases that use Datalog,
attention has been devoted to handling large volumes of data stored in a relational
database. Hence, evaluation techniques have been devised that resemble those for a
bottom-up evaluation. Prolog suffers from the limitation that the order of specification of
facts and rules is significant in evaluation; moreover, the order of literals (defined later in
Section 24.4.3) within a rule is significant. The execution techniques for Datalog
programs attempt to circumvent these problems.

24.4.2 Prolog/Datalog Notation
The notation used in Prolog/Datalog is based on providing predicates with unique names.
A predicate has an implicit meaning, which is suggested by the predicate name, and a
fixed number of arguments. If the arguments are all constant values, the predicate simply
states that a certain fact is true. If, on the other hand, the predicate has variables as argu
ments, it is either considered as a query or as part of a rule or constraint. Throughout this
chapter, we adopt the Prolog convention that all constant values in a predicate are either
numeric or character strings; they are represented as identifiers (or names) starting with
lowercase letters only, whereas variable names always start with an uppercase letter.

24.4 Introduction to Deductive Databases I 785

Consider the example shown in Figure 24.11, which is based on the relational data
base of Figure 5.6, but in a much simplified form. There are three predicate names: super
vise, superior, and subordinate. The supervi se predicate is defined via a set of facts, each
of which has two arguments: a supervisor name, followed by the name of a direct supervi
see (subordinate) of that supervisor. These facts correspond to the actual data that is
stored in the database, and they can be considered as constituting a set of tuples in a rela
tion SUPERVISE with two attributes whose schema is

SUPERVISE (Supe rvi so r, Supe rvi see)

Thus, supervi se(X, Y) states the fact that "X supervises Y." Notice the omission of
the attribute names in the Prolog notation. Attribute names are only represented by vir
tue of the position of each argument in a predicate: the first argument represents the
supervisor, and the second argument represents a direct subordinate.

The other two predicate names are defined by rules. The main contribution of deduc
tive databases is the ability to specify recursive rules, and to provide a framework for infer
ring new information based on the specified rules. A rule is of the form head :- body,
where :- is read as "if and only if." A rule usually has a single predicate to the left of the :
symbol-called the head or left-hand side (LHS) or conclusion of the rule-and one or
more predicates to the right of the :- symbol-called the body or right-hand side (RHS)

or premisets) of the rule. A predicate with constants as arguments is said to be ground;
we also refer to it as an instantiated predicate. The arguments of the predicates that
appear in a rule typically include a number of variable symbols, although predicates can
also contain constants as arguments. A rule specifies that, if a particular assignment or
binding of constant values to the variables in the body (RHS predicates) makes all the RHS

predicates true, it also makes the head (LHS predicate) true by using the same assignment
of constant values to variables. Hence, a rule provides us with a way of generating new
facts that are instantiations of the head of the rule. These new facts are based on facts that

(a) (b)

james

/~
franklin jennifer

/\~ .>.

Facts
supervise(franklin,john).
supervise(franklin,ramesh).
supervise(franklin,joyce).
superviseUennifer,alicia).
superviseUennifer,ahmad).
superviseUames,franklin).
superviseUames,jennifer).

Rules
superior(X,Y) :- supervise(X,Y).
superior(X,Y) :- supervise(X,Z), superior(Z,Y).
subordinate(X,Y) :- superior(Y,X).

Queries
superionjarnes.Y)?
superiorUames,joyce)?

john ramesh joyce alicia ahmad

FIGURE 24.11 (a) Prolog notation. (b) The supervisory tree.

786 I Chapter 24 Enhanced Data Models for Advanced Applications

already exist, corresponding to the instantiations (or bindings) of predicates in the body
of the rule. Notice that by listing multiple predicates in the body of a rule we implicitly
apply the logical and operator to these predicates. Hence, the commas between the RHS

predicates may be read as meaning "and."
Consider the definition of the predicate supe r i 0 r in Figure 24.11, whose first argu

ment is an employee name and whose second argument is an employee who is either a
direct or an indirect subordinate of the first employee. By indirect subordinate, we mean the
subordinate of some subordinate down to any number of levels. Thus super; or(X, Y)

stands for the fact that "X is a superior of Y" through direct or indirect supervision. We
can write two rules that together specify the meaning of the new predicate. The first rule
under Rules in the figure states that, for every value of X and Y, if supe rv i se(X, Y)-the
rule body-is true, then supe r i or(X, Y)-the rule head-is also true, since Y would be a
direct subordinate of X (at one level down). This rule can be used to generate all direct
superior/subordinate relationships from the facts that define the supervise predicate. The
second recursive rule states that, if superv i se fx , Z) and supe r t o r Cz , Y) are both true,
then supe r i 0 r (X, Y) is also true. This is an example of a recursive rule, where one of
the rule body predicates in the RHS is the same as the rule head predicate in the LHS. In
general, the rule body defines a number of premises such that, if they are all true, we can
deduce that the conclusion in the rule head is also true. Notice that, if we have two (or
more) rules with the same head (LHS predicate), it is equivalent to saying that the predi
cate is true (that is, that it can be instantiated) if eitherone of the bodies is true; hence, it
is equivalent to a logical or operation. For example, if we have two rules X : - Y and
X : - Z, they are equivalent to a rule X : - Y or z. The latter form is not used in deduc
tive systems, however, because it is not in the standard form of rule, called a Horn clause,
as we discuss in Section 24.4.4.

A Prolog system contains a number of built-in predicates that the system can inter
pret directly. These typically include the equality comparison operator =(X, Y), which
returns true if X and Yare identical and can also be written as X=Y by using the standard
infix notation.i'' Other comparison operators for numbers, such as <, <=, >, and >=,
can be treated as binary predicates. Arithmetic functions such as +, -, *, and / can be
used as arguments in predicates in Prolog. In contrast, Datalog (in its basic form) doesnot
allow functions such as arithmetic operations as arguments; indeed, this is one of the
main differences between Prolog and Datalog. However, later extensions to Datalog have
been proposed to include functions.

A query typically involves a predicate symbol with some variable arguments, and its
meaning (or "answer") is to deduce all the different constant combinations that, when
bound (assigned) to the variables, can make the predicate true. For example, the first
query in Figure 24.11 requests the names of all subordinates of "james" at any level. A dif
ferent type of query, which has only constant symbols as arguments, returns either a true
or a false result, depending on whether the arguments provided can be deduced from

25. A Prolog system typically has a number of different equality predicates that have different inter
pretations.

24.4 Introduction to Deductive Databases I 787

the facts and rules. For example, the second query in Figure 24.11 returns true, since
superior(james, joyce) can be deduced.

24.4.3 Datalog Notation
In Datalog, as in other logic-based languages, a program is built from basic objects called
atomic formulas. It is customary to define the syntax of logic-based languages by describ
ing the syntax of atomic formulas and identifying how they can be combined to form a
program. In Datalog, atomic formulas are literals of the form p(al , a 2 , •.• , an), where
p is the predicate name and n is the number of arguments for predicate p. Different predi
cate symbols can have different numbers of arguments, and the number of arguments n of
predicate p is sometimes called the arity or degree of p. The arguments can be either con
stant values or variable names. As mentioned earlier, we use the convention that con
stant values either are numeric or start with a lowercase character, whereas variable names
always start with an uppercase character.

A number of built-in predicates are included in Datalog, which can also be used to
construct atomic formulas. The built-in predicates are of two main types: the binary
comparison predicates <(less), <=(less_or_equal), >(greater), and >= (greater_
or_equal) over ordered domains; and the comparison predicates = (equal) and /=
(not_equa1) over ordered or unordered domains. These can be used as binary predi
cates with the same functional syntax as other predicates-for example by writing
less(X, 3)--or they can be specified by using the customary infix notation X<3.
Norice that, because the domains of these predicates are potentially infinite, they
should be used with care in rule definitions. For example, the predicate 9 reate r (X, 3),
if used alone, generates an infinite set of values for X that satisfy the predicate (all inte
ger numbers greater than 3).

A literal is either an atomic formula as defined earlier-called a positive literal-or
an atomic formula preceded by not. The latter is a negated atomic formula, called a nega
tive literal. Datalog programs can be considered to be a subset of the predicate calculus
formulas, which are somewhat similar to the formulas of the domain relational calculus
(see Section 6.7). In Datalog, however, these formulas are first converted into what is
known as clausal form before they are expressed in Datalog; and only formulas given in a
restricted clausal form, called Horn clauses.i'' can be used in Datalog.

24.4.4 Clausal Form and Horn Clauses
Recall from Section 6.6 that a formula in the relational calculus is a condition that
includes predicares called atoms (based on relation names). In addition, a formula can
have quantifiers-namely, the universal quantifier (for all) and the existential quantifier

26. Named after the mathematician Alfred Horn.

788 I Chapter 24 Enhanced Data Models for Advanced Applications

(there exists). In clausal form, a formula must be transformed into another formula with
the following characteristics:

• All variables in the formula are universally quantified. Hence, it is not necessary to

include the universal quantifiers (for all) explicitly; the quantifiers are removed, and
all variables in the formula are implicitly quantified by the universal quantifier.

• In clausal form, the formula is made up of a number of clauses, where each clause is
composed of a number of literals connected by OR logical connectives only. Hence,
each clause is a disjunction of literals.

• The clauses themselves are connected by AND logical connectives only, to form a for
mula. Hence, the clausal form of a formula is a conjunction of clauses.

It can be shown that any formula can be converted into clausal form. For our purposes,
we are mainly interested in the form of the individual clauses, each of which is a disjunc
tion of literals. Recall that literals can be positive literals or negative literals. Consider a
clause of the form:

(1)

This clause has n negative literals and mpositive literals. Such a clause can be trans
formed into the following equivalent logical formula:

PI AND PzAND ... AND P, => Q I OR QzOR ... OR Q rn (2)

where => is the implies symbol. The formulas (1) and (2) are equivalent, meaning that their
truth values are always the same. This is the case because, if all the Pi literals (i = 1,2, ... ,n)
are true, the formula (2) is true only if at least one of the Q/s is true, which is the meaningof
the => (implies) symbol. For formula (1), if all the Pi literals (i = 1,2, ... , n) are true, their
negations are all false; so in this case formula (1) is true only if at least one of the Q/s is true.In
Datalog, rules are expressed as a restricted form of clauses called Hom clauses, in which a
clause can contain at mostonepositive literal. Hence, a Hom clause is either of the form

not(PI) OR not(Pz) OR ... OR not(Pn) OR Q

or of the form

not(PI) OR not(Pz) OR ... OR not(Pn)

The Horn clause in (3) can be transformed into the clause

PI AND PzAND ... AND P; => Q

which is written in Datalog as the following rule

Q:- PI' Pz, ... , Pn ·

The Horn clause in (4) can be transformed into

PI AND Pz AND ... AND P, =>

which is written in Datalog as follows:

(3)

(4)

(5)

(6)

(7)

(8)

24.4 Introduction to Deductive Databases I 789

A Datalog rule, as in (6), is hence a Horn clause, and its meaning, based on formula
(5), is that if the predicates p) and Pz and ... and Pn are all true for a particular binding to
their variable arguments, then Q is also true and can hence be inferred. The Datalog
expression (8) can be considered as an integrity constraint, where all the predicates must
be true to satisfy the query.

In general, a query in Datalog consists of two components:

• A Datalog program, which is a finite set of rules.

• A literal PiX), Xz, ... , Xn), where each Xi is a variable or a constant.

A Prolog or Datalog system has an internal inference engine that can be used to process
and compute the results of such queries. Prolog inference engines typically return one
result to the query (that is, one set of values for the variables in the query) at a time and
must be prompted to return additional results. On the contrary, Datalog returns results
set-at-a-time.

24.4.5 Interpretations of Rules
There are two main alternatives for interpreting the theoretical meaning of rules: proof
theoretic and model-theoretic. In practical systems, the inference mechanism within a sys
tem defines the exact interpretation, which may not coincide with either of the two theo
retical interpretations. The inference mechanism is a computational procedure and hence
provides a computational interpretation of the meaning of rules. In this section, we first
discuss the two theoretical interpretations. Inference mechanisms are then discussed
briefly as a way of defining the meaning of rules.

In the proof-theoretic interpretation of rules, we consider the facts and rules to be
true statements, or axioms. Ground axioms contain no variables. The facts are ground
axioms that are given to be true. Rules are called deductive axioms, since they can be
used to deduce new facts. The deductive axioms can be used to construct proofs that
derive new facts from existing facts. For example, Figure 24.12 shows how to prove the
fact superior(james, ahmad) from the rules and facts given in Figure 24.11. The proof
theoretic interpretation gives us a procedural or computational approach for computing
an answer to the Datalog query. The process of proving whether a certain fact (theorem)
holds is known as theorem proving.

1. superior(X,Y) :- supervise(X,Y).
2. superior(X,Y) :- supervise(X,Z), superior(Z,Y).

3. supervisefjennifer.ahrnad).
4. supervlsetjamss.jennlter).
5. superiortjennifer.ahrnad).
6. superiortjames.ahrnad).

FIGURE 24.12 Proving a new fact.

(rule 1)
(rule 2)

(ground axiom, given)
(ground axiom, given)
(apply rule 1 on 3)
(apply rule 2 on 4 and 5)

790 I Chapter 24 Enhanced Data Models for Advanced Applications

The second type of interpretation is called the model-theoretic interpretation.
Here, given a finite or an infinite domain of constant values,27 we assign to a predicate
every possible combination of values as arguments. We must then determine whether
the predicate is true or false. In general, it is sufficient to specify the combinations of
arguments that make the predicate true, and to state that all other combinations make
the predicate false. If this is done for every predicate, it is called an interpretation of
the set of predicates. For example, consider the interpretation shown in Figure 24.13 for
the predicates supe rvi se and superi or. This interpretation assigns a truth value (true
or false) to every possible combination of argument values (from a finite domain) for
the two predicates.

An interpretation is called a model for a specific set of rules if those rules are always
true under that interpretation; that is, for any values assigned to the variables in the rules,
the head of the rules is true when we substitute the truth values assigned to the predicates

Rules

superior(X,Y) :- supervise(X,Y).
superior(X,Y) :- supervise(X,Z), superior(Z,Y).

Interpretation

Known Facts:

supervise(franklin,john) is true.
supervise(franklin,ramesh) is true.
supervise(franklin,joyce) is true.
superviseUennifer,alicia) is true.
superviseUennifer,ahmad) is true.
superviseUames,franklin) is true.
superviseUames,jennifer) is true.
supervise(X,Y) is false forall other possible (X,Y) combinations.

Derived Facts:

superior(franklin,john) is true.
superior(franklin,ramesh) is true.
superior(franklin,joyce) is true.
superiorUennifer,alicia) is true.
superiorUennifer,ahmad) is true.
superiorjjames.franklin) is true.
superiorfjarnes.jennifer) is true.
superiorUames,john) is true.
superiorQames,ramesh) is true.
superiorUames,joyce) is true.
superiorjjarnes.alicia) is true.
superlortjarnes.ahrnad) is true.
superior(X,Y) is false forallother possible (X,Y) combinations.

FIGURE 24.13 An interpretation that is a minimal model.

27. The most commonly chosen domain is finite and is called the Herbrand Universe.

24.4 Introduction to Deductive Databases I 791

in the body of the rule by that interpretation. Hence, whenever a particular substitution
(binding) to the variables in the rules is applied, if all the predicates in the body of a rule
are true under the interpretation, the predicate in the head of the rule must also be true.
The interpretation shown in Figure 24.13 is a model for the two rules shown, since it can
never cause the rules to be violated. Notice that a rule is violated if a particular binding of
constants to the variables makes all the predicates in the rule body true but makes the
predicate in the rule head false. For example, if supe rv i se(a, b) and super; or(b, c) are
both true under some interpretation, but supe r; 0 r (a, c) is not true, the interpretation
cannot be a model for the recursive rule:

superior(X,Y) :- supervise(X,Z), superior(Z,Y)

In the model-theoretic approach, the meaning of the rules is established by providing
a model for these rules. A model is called a minimal model for a set of rules if we cannot
change any fact from true to false and still get a model for these rules. For example, con
sider the interpretation in Figure 24.13, and assume that the supervise predicate is defined
by a set of known facts, whereas the superior predicate is defined as an interpretation
(model) for the rules. Suppose that we add the predicate super-i or Cjames , bob) to the
true predicates. This remains a model for the rules shown, but it is not a minimal model,
since changing the truth value of super-tor-Cjames , bob) from true to false still provides
us with a model for the rules. The model shown in Figure 24.13 is the minimal model for
the set of facts that are defined by the supervise predicate.

In general, the minimal model that corresponds to a given set of facts in the model
theoretic interpretation should be the same as the facts generated by the proof-theoretic
interpretation for the same original set of ground and deductive axioms. However, this is
generally true only for rules with a simple structure. Once we allow negation in the speci
fication of rules, the correspondence between interpretations does not hold. In fact, with
negation, numerous minimal models are possible for a given set of facts.

A third approach to interpreting the meaning of rules involves defining an inference
mechanism that is used by the system to deduce facts from the rules. This inference mech
anism would define a computational interpretation to the meaning of the rules. The Pro
log logic programming language uses its inference mechanism to define the meaning of
the rules and facts in a Prolog program. Not all Prolog programs correspond to the proof
theoretic or model-theoretic interpretations; it depends on the type of rules in the pro
gram. However, for many simple Prolog programs, the Prolog inference mechanism infers
the facts that correspond either to the proof-theoretic interpretation or to a minimal
model under the model-theoretic interpretation.

24.4.6 Datalog Programs and Their Safety
There are two main methods of defining the truth values of predicates in actual Datalog
programs. Fact-defined predicates (or relations) are defined by listing all the combina
tions of values (the tuples) that make the predicate true. These correspond to base rela
tions whose contents are stored in a database system. Figure 24.14 shows the fact-defined
predicates employee, male, female, department, supervise, project, and workson,

792 I Chapter 24 Enhanced Data Models for Advanced Applications

ernployeeqohn).
employee(franklin).
employee(alicia).
employeeUennifer).
employee(ramesh).
employeeUoyce).
employee(ahmad).
employee(james).

salaryUohn,30000).
salary(franklin,40000).
salary(alicia,25000).
salaryUennifer,43000).
salary(ramesh,38000).
sataryuoyce.zsooo).
salary(ahmad,25000).
salaryUames,55000).

departrnenttjohn, research).
department(franklin,research).
department(alicia,administration).
departmentUennifer,administration).
department(ramesh, research).
departmentUoyce,research).
department(ahmad,administration).
departmentUames,headquarters).

supervise(franklin,john).
supervise(franklin,ramesh).
supervise(franklin,joyce).
superviseUennifer,alicia).
superviseUennifer,ahmad).
supervisetjarnes,franklin).
superviseUames,jennifer) .

rnaletjohn).
male(franklin).
male(ramesh).
male(ahmad).
maletjamss).

female(alicia).
femaleUennifer) .
femaletjoyce).

project(productx).
project{producty).
project(productz).
project(computerization).
project(reorganization).
project(newbenefits).

worksonUohn,productx,32).
worksonUohn,producty,8).
workson(ramesh,productz,40).
worksonUoyce,productx,20).
worksonUoyce,producty,20).
workson(franklin,producty, 10).
workson(franklin,productz, 10).
workson(franklin,computerization,10).
workson(franklin,reorganization,10).
workson(alicia,newbenefits,30).
workson(alicia,computerization, 10).
workson(ahmad,computerization,35).
workson(ahmad,newbenefits,5).
worksonUennifer,newbenefits,20).
worksonUennifer,reorganization,15).
worksonUames,reorganization,10).

FIGURE 24.14 Fact predicates for part of the database from Figure 5.6.

which correspond to part of the relational database shown in Figure 5.6. Rule-defined
predicates (or views) are defined by being the head (LHS) of one or more Datalog rules;
they correspond to virtual relations whose contents can be inferred by the inference
engine. Figure 24.15 shows a number of rule-defined predicates.

A program or a rule is said to be safe if it generates a finite set of facts. The general
theoretical problem of determining whether a set of rules is safe is undecidable. However,
one can determine the safety of restricted forms of rules. For example, the rules shown in
Figure 24.16 are safe. One situation where we get unsafe rules that can generate an infi
nite number of facts arises when one of the variables in the rule can range over an infinite
domain of values, and that variable is not limited to ranging over a finite relation. For
example, consider the rule

big_salary(Y) :- Y>60000

Here, we can get an infinite result if Y ranges over all possible integers. But suppose that
we change the rule as follows:

big_salary(Y) r- employee(X), salary(X,Y), Y>60000

24.4 Introduction to Deductive Databases I 793

superior(X,Y) :- supervise(X,Y).
superior(X,Y) :- supervise(X,Z), superior(Z,Y).

sUbordinate(X,Y) :- superior(Y,X).

supervisor(X) :- employee(X), supervise(X,Y).

over_40K_emp(X) :- empioyee(X), salary(X,Y), Y>=40000.
under_40K_supervisor(X) :- supervisor(X), not(over_40_K_emp(X)).
main_productx_emp(X) :- employee(X), workson(X,productx,Y), Y>=20.
president(X) :- employee(X), not(supervise(Y,X)).

FIGURE 24.15 Rule-defined predicates.

In the second rule, the result is not infinite, since the values that Y can be bound to are
now restricted to values that are the salary of some employee in the database-presum
ably, a finite set of values. We can also rewrite the rule as follows:

big_salary(Y) :- Y>60000, employee(X), salary(X,Y)

In this case, the rule is still theoretically safe. However, in Prolog or any other system that
uses a top-down, depth-first inference mechanism, the rule creates an infinite loop, since
we first search for a value for Y and then check whether it is a salary of an employee. The
result is generation of an infinite number of Y values, even though these, after a certain
point, cannot lead to a set of true RHS predicates. One definition of Datalog considers
both rules to be safe, since it does not depend on a particular inference mechanism.
Nonetheless, it is generally advisable to write such a rule in the safest form, with the pred
icates that restrict possible bindings of variables placed first. As another example of an
unsafe rule, consider the following rule:

has_something(X,Y) :- employee(X)

Here, an infinite number of Y values can again be generated, since the variable Y
appears only in the head of the rule and hence is not limited to a finite set of values. To
define safe rules more formally, we use the concept of a limited variable. A variable X is
limited in a rule if (1) it appears in a regular (not built-in) predicate in the body of the
rule; (2) it appears in a predicate of the form X=c or c=X or (c1<=X and X<=c2) in the
rule body, where c, cl , and c2 are constant values; or (3) it appears in a predicate of the
form X=Y or Y=X in the rule body, where Y is a limited variable. A rule is said to be safe
if all its variables are limited.

24.4.7 Use of Relational Operations
It is straightforward to specify many operations of the relational algebra in the form of
Datalog rules that define the result of applying these operations on the database relations
(fact predicates). This means that relational queries and views can easily be specified in
Datalog. The additional power that Datalog provides is in the specification of recursive

794 I Chapter 24 Enhanced Data Models for Advanced Applications

queries, and views based on recursive queries. In this section, we show how some of the
standard relational operations can be specified as Datalog rules. Our examples will use the
base relations (fact-defined predicates) rel_one, rel_two, and rel_three, whose sche
mas are shown in Figure 24.16. In Datalog, we do not need to specify the attribute names
as in Figure 24.16; rather, the arity (degree) of each predicate is the important aspect. In a
practical system, the domain (data type) of each attribute is also important for operations
such as UNION, INTERSECTION, and JOIN, and we assume that the attribute types are com
patible for the various operations, as discussed in Chapter 5.

Figure 24.16 illustrates a number of basic relational operations. Notice that, if the
Datalog model is based on the relational model and hence assumes that predicates (fact
relations and query results) specify sets of tuples, duplicate tuples in the same predicate
are automatically eliminated. This mayor may not be true, depending on the Datalog
inference engine. However, it is definitely not the case in Prolog, so any of the rules in
Figure 24.16 that involve duplicate elimination are not correct for Prolog. For example, if
we want to specify Prolog rules for the UNION operation with duplicate elimination, we
must rewrite them as follows:

union_one_two(X,Y,Z) :- rel_one(X,Y,Z).

union_one_two(X,Y,Z) :- rel_two(X,Y,Z), not(rel_one(X,Y,Z)).

However, the rules shown in Figure 24.16 should work for Datalog, if duplicates are auto
matically eliminated. Similarly, the rules for the PROJECT operation shown in Figure

ret,one(A,B,C).
reUwo(D,E,F).
reUhree(G,H,I,J).

seleccone_A_eq_c(X,Y,Z) :- reLone(c,Y,Z).
selecCone_B_less_5(X,Y,Z) :- rel_one(X,Y,Z), Y<5.
seleccone_A_eq_c_and_B_less_5(X,Y,Z) :- rel_one(c,Y,Z), Y<5.

select_one_A_eq_c_ocB_less_5(X,Y,Z) :- reLone(c,Y,Z).
selecCone_A_eq_c_or_B_less_5(X,Y,Z) :- rel_one(X,Y,Z), Y<5.

projecUhree_on_G_H(W,X) :- reUhree(W,X,Y,Z).

union_one_two(X,Y,Z) :- reLone(X,Y,Z).
union_one_two(X,Y,Z) :- reLtwo(X,Y,Z).

intersecCone_two(X,Y,Z) :- reLone(X,Y,Z), rel_two(X,Y,Z).

difference_two_one(X,Y,Z) :- rel_two(X,Y,Z), not(rel_one(X,Y,Z)).

carCprod_one_three(T,U,V,W,X,Y,Z) :-
reLone(T,U,V), reUhree(W,X,Y,Z).

naturaijoin_one_three_C_eq_G(U,V,W,X,Y,Z) :
reLone(U,V,W), reUhree(W,X,Y,Z).

FIGURE 24.16 Predicates for illustrating relational operations.

24.4 Introduction to Deductive Databases I 795

24.16 should work for Datalog in this case, but they are not correct for Prolog, since dupli
cates would appear in the latter case.

24.4.8 Evaluation of Nonrecursive Datalog Queries
In order to use Datalog as a deductive database system, it is appropriate to define an infer
ence mechanism based on relational database query processing concepts. The inherent
strategy involves a bottom-up evaluation, starting with base relations; the order of opera
tions is kept flexible and subject to query optimization. In this section, we discuss an
inference mechanism based on relational operations that can be applied to nonrecursive
Datalog queries. We use the fact and rule base shown in Figures 24.14 and 24.15 to illus
trate our discussion.

If a query involves only fact-defined predicates, the inference becomes one of search
ing among the facts for the query result. For example, a query such as

department(X,research) ?

is a selection of all employee names X who work for the research department. In rela
tional algebra, it is the query:

1T$! (U$2 = "Research" (departmentl)

which can be answered by searching through the fact-defined predicate depart
ment(X, V). The query involves relational SELECT and PROJECT operations on a base rela
tion, and it can be handled by the database query processing and optimization techniques
discussed in Chapter 15.

When a query involves rule-defined predicates, the inference mechanism must com
pute the result based on the rule definitions. If a query is nonrecursive and involves a
predicate P that appears as the head of a rule P : - Pl. Pz, ...• Pn, the strategy is first to
compute the relations corresponding to Pl' Pz, ...• p, and then to compute the rela
tion corresponding to p. It is useful to keep track of the dependency among the predicates
of a deductive database in a predicate dependency graph. Figure 24.17 shows the graph
for the fact and rule predicates shown in Figures 24.14 and 24.15. The dependency graph
contains a node for each predicate. Whenever a predicate A is specified in the body (RHS)

of a rule, and the head (LHS) of that rule is the predicate B, we say that B depends on A,
and we draw a directed edge from A to B. This indicates that, in order to compute the
facts for the predicate B (the rule head), we must first compute the facts for all the predi
cates A in the rule body. If the dependency graph has no cycles, we call the rule set non
recursive. If there is at least one cycle, the rule set is called recursive. In Figure 24.17,
there is one recursively defined predicate-namely, superior-which has a recursive edge
pointing back to itself. In addition, because the predicate subordinate depends on supe
rior, it also requires recursion in computing its result.

A query that includes only nonrecursive predicates is called a nonrecursive query. In
this section, we discuss only inference mechanisms for nonrecursive queries. In Figure
24.17, any query that does not involve the predicates subordinate or superior is nonrecur
sive. In the predicate dependency graph, the nodes corresponding to fact-defined

796 I Chapter 24 Enhanced Data Models for Advanced Applications

supervisor~under, 40K_supervisor

main-producCemp

subordinate

I
CT

workson

department

employee

project

salary

female

supervise

male

FIGURE 24.17 Predicate dependency graph for Figures 24.14 and 24.15.

predicates do not have any incoming edges, since all fact-defined predicates have their
facts stored in a database relation. The contents of a fact-defined predicate can be com
puted by directly retrieving the tuples in the corresponding database relation.

The main function of an inference mechanism is to compute the facts that corre
spond to query predicates. This can be accomplished by generating a relational expres
sion involving relational operators as SELECT, PROJECT, JOIN, UNION, and SET DIFFERENCE

(with appropriate provision for dealing with safety issues) that, when executed, provides
the query result. The query can then be executed by utilizing the internal query process
ing and optimization operations of a relational database management system. Whenever
the inference mechanism needs to compute the fact set corresponding to a nonrecursive
rule-defined predicate p, it first locates all the rules that have p as their head. The idea is
to compute the fact set for each such rule and then to apply the UNION operation to the
results, since UNION corresponds to a logical OR operation. The dependency graph indi
cates all predicates q on which each p depends, and since we assume that the predicate is
nonrecursive, we can always determine a partial order among such predicates q. Before
computing the fact set for p, we first compute the fact sets for all predicates q on which p
depends, based on their partial order. For example, if a query involves the predicate
under_40K_supervi sor, we must first compute both supervisor and over_40K_emp. Since
the latter two depend only on the fact-defined predicates employee, salary, and super
vi se, they can be computed directly from the stored database relations.

This concludes our introduction to deductive databases. Additional material may be
found at the book Web site, where the complete Chapter 25 from the third edition is
available. This includes a discussion on algorithms for recursive query processing.

24.5 Summary I 797

24.5 SUMMARY
In this chapter, we introduced database concepts for some of the common features that
are needed by advanced applications: active databases, temporal databases, and spatial
and multimedia databases. It is important to note that each of these topics is very broad
and warrants a complete textbook.

We first introduced the topic of active databases, which provide additional
functionality for specifying active rules. We introduced the event-condition-action or
ECA model for active databases. The rules can be automatically triggered by events that
occur-such as a database update-and they can initiate certain actions that have been
specified in the rule declaration if certain conditions are true. Many commercial packages
already have some of the functionality provided by active databases in the form of
triggers. We discussed the different options for specifying rules, such as row-level versus
statement-level, before versus after, and immediate versus deferred. We gave examples of
row-level triggers in the Oracle commercial system, and statement-level rules in the
STARBURST experimental system. The syntax for triggers in the sQL-99 standard was also
discussed. We briefly discussed some design issues and some possible applications for
active databases.

We then introduced some of the concepts of temporal databases, which permit the
database system to store a history of changes and allow users to query both current and past
states of the database. We discussed how time is represented and distinguished between the
valid time and transaction time dimensions. We then discussed how valid time, transaction
time, and bitemporal relations can be implemented using tuple versioning in the relational
model, with examples to illustrate how updates, inserts, and deletes are implemented. We
also showed how complex objects can be used to implement temporal databases using
attribute versioning. We then looked at some of the querying operations for temporal
relational databases and gave a very brief introduction to the TSQL2 language.

We then turned to spatial and multimedia databases. Spatial databases provide
concepts for databases that keep track of objects that have spatial characteristics, and
they require models for representing these spatial characteristics and operators for
comparing and manipulating them. Multimedia databases provide features that allow
users to store and query different types of multimedia information, which includes images
(such as pictures or drawings), video clips (such as movies, news reels, or home videos),
audio clips (such as songs, phone messages, or speeches), and documents (such as books or
articles). We gave a very brief overview of the various types of media sources and how
multimedia sources may be indexed.

We concluded the chapter with an introduction to deductive databases and Datalog.

Review Questions
24.1. What are the differences between row-level and statement-level active rules?
24.2. What are the differences among immediate, deferred, and detached consideration

of active rule conditions?
24.3. What are the differences among immediate, deferred, and detached execution of

active rule actions?

798 I Chapter 24 Enhanced Data Models for Advanced Applications

24.4. Briefly discuss the consistency and termination problems when designing a set of
active rules.

24.5. Discuss some applications of active databases.
24.6. Discuss how time is represented in temporal databases and compare the different

time dimensions.
24.7. What are the differences between valid time, transaction time, and bitemporal

relations?
24.8. Describe how the insert, delete, and update commands should be implemented on

a valid time relation.
24.9. Describe how the insert, delete, and update commands should be implemented on

a bitemporal relation.
24.10. Describe how the insert, delete, and update commands should be implemented on

a transaction time relation.
24.1 L What are the main differences between tuple versioning and attribute versioning?
24.12. How do spatial databases differ from regular databases?
24.13. What are the different types of multimedia sources?
24.14. How are multimedia sources indexed for content-based retrieval?

Exercises
24.15. Consider the COMPANY database described in Figure 5.6. Using the syntax of Oracle

triggers, write active rules to do the following:
a. Whenever an employee's project assignments are changed, check if the total

hours per week spent on the employee's projects are less than 30 or greater
than 40; if so, notify the employee's direct supervisor.

b. Whenever an EMPLOYEE is deleted, delete the PROJECT tuples and DEPENDENT tuples
related to that employee, and if the employee is managing a department or
supervising any employees, set the MGRSSN for that department to null and set
the SUPERSSN for those employees to nulL

24.16. Repeat 24.15 but use the syntax of STARBURST active rules.
24.17. Consider the relational schema shown in Figure 24.18. Write active rules for

keeping the SUM_COMMISSIONS attribute of SALES_PERSON equal to the sum of the COM

MISSION attribute in SALES for each sales person. Your rules should also check if rhe

SALES

~ COMMISSION I

SALESPERSON ID SUM COMMISSIONS

FIGURE 24.18 Database schema for sales and salesperson commissions in Exercise
24.17.

SUM_COMMISSIONS exceeds 100000; if it does, call a procedure NOTIFY_MANAGER(S_ID).

Write both statement-level rules in STARBURST notation and row-level rules in
Oracle.

24.18. Consider the UNIVERSITY EER schema of Figure 4.10. Write some rules (in English)
that could be implemented via active rules to enforce some common integrity
constraints that you think are relevant to this application.

24.19. Discuss which of the updates that created each of the tuples shown in Figure 24.9
were applied retroactively and which were applied proactively.

24.20. Show how the following updates, if applied in sequence, would change the con
tents of the bitemporal EMP_8T relation in Figure 24.9. For each update, state
whether it is a retroactive or proactive update.
a. On 2004-03-10,17:30:00, the salary of NARAYAN is updated to 40000, effective

on 2004-03-01-
b. On 2003-07-30,08:31:00, the salary of SMITH was corrected to show that it

should have been entered as 31000 (instead of 30000 as shown), effective on
2003-06-01-

c. On 2004-03-18,08: 31: 00, the database was changed to indicate that NARAYAN

was leaving the company (i.e., logically deleted) effective 2004-03-31-
d. On 2004-04-20,14: 07: 33, the database was changed to indicate the hiring of

a new employee called JOHNSON, with the tuple <' JOHNSON', '334455667', 1,
NULL> effective on 2004-04-20.

e. On 2004-04-28,12: 54: 02, the database was changed to indicate that WONG was
leaving the company (i.e., logically deleted) effective 2004-06-01.

f. On 2004-05-05,13: 07: 33, the database was changed to indicate the rehiring
of BROWN, with the same department and supervisor but with salary 35000 effec
tive on 2004-05-01-

24.21. Show how the updates given in Exercise 24.20, if applied in sequence, would
change the contents of the valid time EMP_VT relation in Figure 24.8.

24.22. Add the following facts to the example database in Figure 24.3:

supervise (ahmad,bob) , supervise (franklin,gwen).

First modify the supervisory tree in Figure 24.1b to reflect this change. Then mod
ify the diagram in Figure 24.4 showing the top-down evaluation of the query
superior(james,Y).

24.23. Consider the following set of facts for the relation parent(X, V), where Y is the
parent of X:

parent(a,aa), parent(a,ab), parent(aa,aaa), parent(aa,aab),
parent(aaa,aaaa), parent(aaa,aaab).

Consider the rules

Exercises I 799

r1: ancestor(X,Y)
r2: ancestor(X,Y)

parent(X,Y)
parent(X,Z), ancestor(Z,Y)

which define ancestor Yof X as above.

800 I Chapter 24 Enhanced Data Models for Advanced Applications

a. Show how to solve the Datalog query

ancestor(aa,X)?

using the naive strategy. Show your work at each step.
b. Show the same query by computing only the changes in the ancestor relation

and using that in rule 2 each time.
[This question is derived from Bancilhon and Ramakrishnan (1986).]

24.24. Consider a deductive database with the following rules:

ancestor(X,Y) :- father(X,Y)
ancestor(X,Y) :- father(X,Z), ancestor(Z,Y)

Notice that "father(X,Y)" means that Y is the father of X; "ancestor(X,Y)"
means that Yis the ancestor of X. Consider the fact base

father(HarrY,Issac) , father(Issac,John) , father(John,Kurt).

a. Construct a model theoretic interpretation of the above rules using the given
facts.

b. Consider that a database contains the above relations father(X, V), another
relation brothe r (X, Y), and a third relation bi rth (X, B), where B is the birth
date of person X. State a rule that computes the first cousins of the following
variety: their fathers must be brothers.

c. Show a complete Datalog program with fact-based and rule-based literals that
computes the following relation: list of pairs of cousins, where the first person
is born after 1960 and the second after 1970. You may use "greater than" as a
built-in predicate. (Note: Sample facts for brother, birth, and person must also
be shown.)

24.25. Consider the following rules:

reachable(X,Y) :- flight(X,Y)
reachable(X,Y) :- flight(X,Z), reachable(Z,Y)

where reachable (X, Y) means that city Y can be reached from city X, and
fl i ght (X, Y) means that there is a flight to city Yfrom city X.
a. Construct fact predicates that describe the following:

i. Los Angeles, New York, Chicago, Atlanta, Frankfurt, Paris, Singapore,
Sydney are cities.

ii. The following flights exist: LA to NY, NY to Atlanta, Atlanta to Frankfurt,
Frankfurt to Atlanta, Frankfurt to Singapore, and Singapore to Sydney.
(Note: No flight in reverse direction can be automatically assumed.)

b. Is the given data cyclic? If so, in what sense?
c. Construct a model theoretic interpretation (that is, an interpretation similar

to the one shown in Figure 25.3) of the above facts and rules.
d. Consider the query

reachable(Atlanta,Sydney)?

How will this query be executed using naive and seminaive evaluation? List
the series of steps it will go through.

Selected Bibliography I 801

e. Consider the following rule-defined predicates:

round-trip-reachable(X,Y) :- reachable(X,Y), reachable(Y,X)
duration(X,Y,Z)

Draw a predicate dependency graph for the above predicates. (Note: dura
t i on(X,Y,Z) means that you can take a flight from Xto Yin Z hours.)

f. Consider the following query: What cities are reachable in 12 hours from
Atlanta? Show how to express it in Datalog. Assume built-in predicates like
greater-than(X, V). Can this be converted into a relational algebra state
ment in a straightforward way? Why or why not?

g. Consider the predicate population(X, Y) where Y is the population of city
X. Consider the following query: List all possible bindings of the predicate
pai r (X,V), where Y is a city that can be reached in two flights from city X,
which has over 1 million people. Show this query in Datalog, Draw a corre
sponding query tree in relational algebraic terms.

Selected Bibliography
The book by Zaniolo et al. (1997) consists of several parts, each describing an advanced
database concept such as active, temporal, and spatial/text/multimedia databases. Widom
and Ceri (1996) and Ceri and Fraternali (1997) focus on active database concepts and
systems. Snodgrass et al. (1995) describe the TSQL2 language and data model. Khoshafian
and Baker (1996), Faloutsos (1996), and Subrahmanian (1998) describe multimedia
database concepts. Tansel et al. (1992) is a collection of chapters on temporal databases.

STARBURST rules are described in Widom and Finkelstein (1990). Early work on
active databases includes the HiPAC project, discussed in Chakravarthy et al. (1989) and
Chakravarthy (1990). A glossary for temporal databases is given in Jensen et al. (1994).
Snodgrass (1987) focuses on TQuel, an early temporal query language.

Temporal normalization is defined in N avathe and Ahmed (1989). Paton (1999) and
Paton and Diaz (1999) survey active databases. Chakravarthy et al. (1994) describe
SENTINEL, and object-based active systems. Lee et al. (1998) discuss time series
management.

The early developments of the logic and database approach are surveyed by Gallaire
et al. (1984). Reiter (1984) provides a reconstruction of relational database theory, while
Levesque (1984) provides a discussion of incomplete knowledge in light of logic. Gallaire
and Minker (1978) provide an early book on this topic. A detailed treatment oflogic and
databases appears in Ullman (1989, vol. 2), and there is a related chapter in Volume 1
(1988). Ceri, Gottlob, and Tanca (1990) present a comprehensive yet concise treatment
of logic and databases. Das (1992) is a comprehensive book on deductive databases and
logic programming. The early history of Datalog is covered in Maier and Warren (1988).
Clocks in and Mellish (1994) is an excellent reference on Prolog language.

Aho and Ullman (1979) provide an early algorithm for dealing with recursive
queries, using the least fixed-point operator. Bancilhon and Ramakrishnan (1986) give an
excellent and detailed description of the approaches to recursive query processing, with
detailed examples of the naive and seminaive approaches. Excellent survey articles on

802 I Chapter 24 Enhanced Data Models for Advanced Applications

deductive databases and recursive query processing include Warren (1992) and
Ramakrishnan and Ullman (1993). A complete description of the seminaive approach
based on relational algebra is given in Bancilhon (1985). Other approaches to recursive
query processing include the recursive query/subquery strategy of Vieille (1986), which is
a top-down interpreted strategy, and the Henschen-N aqvi (1984) top-down compiled
iterative strategy. Balbin and Rao (1987) discuss an extension of the seminaive
differential approach for multiple predicates.

The original paper on magic sets is by Bancilhon et at. (1986). Beeri and
Ramakrishnan (1987) extend it. Mumick et at. (1990) show the applicability of magic
sets to nonrecursive nested SQL queries. Other approaches to optimizing rules without
rewriting them appear in Vieille (1986, 1987). Kifer and Lozinskii (1986) propose a
different technique. Bry (1990) discusses how the top-down and bottom-up approaches
can be reconciled. Whang and Navathe (1992) describe an extended disjunctive normal
form technique to deal with recursion in relational algebra expressions for providing an
expert system interface over a relational DBMS.

Chang (1981) describes an early system for combining deductive rules with relational
databases. The LOL system prototype is described in Chimenti et at. (1990).
Krishnamurthy and Naqvi (1989) introduce the "choice" notion in LDL. Zaniolo (1988)
discusses the language issues for the LOL system. A language overview of CORAL is
provided in Ramakrishnan et at. (1992), and the implementation is described in
Ramakrishnan et at. (1993). An extension to support object-oriented features, called
CORAL++, is described in Srivastava et at. (1993). Ullman (1985) provides the basis for
the NAIL! system, which is described in Morris et at. (1987). Phipps et at. (1991) describe
the GLUE-NAIL! deductive database system.

Zaniolo (1990) reviews the theoretical background and the practical importance of
deductive databases. Nicolas (1997) gives an excellent history of the developments
leading up to OOOOs. Falcone et at. (1997) survey the 0000 landscape. References on the
VALIDITY system include Friesen et at. (1995), Vieille (1997), and Dietrich et at. (1999).

Distributed Databases
and Client-Server
Architectures

In this chapter we tum our attention to distributed databases (DDBs), distributed data
base management systems (DDBMSs), and how the client-server architecture is used as a
platform for database application development. The DDB technology emerged as a merger
of two technologies: (1) database technology, and (2) network and data communication
technology. The latter has made tremendous strides in terms of wired and wireless
technologies-from satellite and cellular communications and Metropolitan Area Net
works (MANs) to the standardization of protocols like Ethernet, TCPjIP, and the Asyn
chronous Transfer Mode (ATM) as well as the explosion of the Internet. While early
databases moved toward centralization and resulted in monolithic gigantic databases in
the seventies and early eighties, the trend reversed toward more decentralization and
autonomy of processing in the late eighties. With advances in distributed processing and
distributed computing that occurred in the operating systems arena, the database
research community did considerable work to address the issues of data distribution, dis
tributed query and transaction processing, distributed database rnetadata management,
and other topics, and developed many research prototypes. However, a full-scale compre
hensive DDBMS that implements the functionality and techniques proposed in DDB
research never emerged as a commercially viable product. Most major vendors redirected
their efforts from developing a "pure" DDBMS product into developing systems based on
client-server, or toward developing technologies for accessing distributed heterogeneous
data sources.

803

804 I Chapter 25 Distributed Databases and Client-Server Architectures

Organizations, however, have been very interested in the decentralization of
processing (at the system level) while achieving an integmtion of the information
resources (at the logical level) within their geographically distributed systems of
databases, applications, and users. Coupled with the advances in communications, there
is now a general endorsement of the client-server approach to application development,
which assumes many of the DDB issues.

In this chapter we discuss both distributed databases and client-server architectures.'
in the development of database technology that is closely tied to advances in
communications and network technology. Details of the latter are outside our scope; the
reader is referred to a series of texts on data communications and networking (see the
Selected Bibliography at the end of this chapter).

Section 25.1 introduces distributed database management and related concepts.
Detailed issues of distributed database design, involving fragmenting of data and distributing
it over multiple sites with possible replication, are discussed in Section 25.2. Section 25.3
introduces different types of distributed database systems, including federated and
multidatabase systems and highlights the problems of heterogeneity and the needs of
autonomy in federated database systems, which will dominate for years to come. Sections
25.4 and 25.5 introduce distributed database query and transaction processing techniques,
respectively. Section 25.6 discusses how the client-server architectural concepts are related
to distributed databases. Section 25.7 elaborates on future issues in client-server
architectures. Section 25.8discusses distributed database features of the Oracle RDBMS.

For a short introduction to the topic, only sections 25.1,25.3,and 25.6may be covered.

25.1 DISTRIBUTED DATABASE CONCEPTS
Distributed databases bring the advantages of distributed computing to the database man
agement domain. A distributed computing system consists of a number of processing ele
ments, not necessarily homogeneous, that are interconnected by a computer network, and
that cooperate in performing certain assigned tasks. As a general goal, distributed comput
ing systems partition a big, unmanageable problem into smaller pieces and solve it effi
ciently in a coordinated manner. The economic viability of this approach stems from two
reasons: (l) more computer power is harnessed to solve a complex task, and (2) each auton
omous processing element can be managed independently and develop its own applications.

We can define a distributed database (OOB) as a collection of multiple logically
interrelated databases distributed over a computer network, and a distributed database
management system (OOBMS) as a software system that manages a distributed database
while making the distribution transparent to the user.l A collection of files stored at
different nodes of a network and the maintaining of interrelationships among them via
hyperlinks has become a common organization on the Internet, with files of Web pages.

1. The reader should review the introduction to client-server architecture in Section 2.5.

2. This definition and some of the discussion in this section are based on Ozsu and Valduriez
(1999).

25.1 Distributed Database Concepts I 805

The common functions of database management, including uniform query processing and
transaction processing, do not apply to this scenario yet. The technology is, however,
moving in a direction such that distributed World Wide Web (WWW) databases will
become a reality in the near future. We shall discuss issues of accessing databases on the
Web in Chapter 26. None of those qualifies as DDB by the definition given earlier.

25.1.1 Parallel Versus Distributed Technology
Turning our attention to parallel system architectures, there are two main types of multi
processor system architectures that are commonplace:

• Shared memory (tightly coupled) architecture: Multiple processors share secondary
(disk) storage and also share primary memory.

• Shared disk (loosely coupled) architecture: Multiple processors share secondary (disk)
storage but each has their own primary memory.

These architectures enable processors to communicate without the overhead of
exchanging messages over a network.:' Database management systems developed using
the above types of architectures are termed parallel database management systems
rather than DDBMS, since they utilize parallel processor technology. Another type of
multiprocessor architecture is called shared nothing architecture. In this architecture,
every processor has its own primary and secondary (disk) memory, no common memory
exists, and the processors communicate over a high-speed interconnection network
(bus or switch). Although the shared nothing architecture resembles a distributed
database computing environment, major differences exist in the mode of operation. In
shared nothing multiprocessor systems, there is symmetry and homogeneity of nodes;
this is not true of the distributed database environment where heterogeneity of
hardware and operating system at each node is very common. Shared nothing
architecture is also considered as an environment for parallel databases. Figure 25.1
contrasts these different architectures.

25.1.2 Advantages of Distributed Databases
Distributed database management has been proposed for various reasons ranging from
organizational decentralization and economical processing to greater autonomy. We high
light some of these advantages here.

1. Management of distributed data with different levels of transparency: Ideally, a DBMS

should be distribution transparent in the sense of hiding the details of where
each file (table, relation) is physically stored within the system. Consider the
company database in Figure 5.5 that we have been discussing throughout the

------- --------- ----- ---------

3. If both primary and secondary memories are shared, the architecture is also known as shared
everything architecture.

806 I Chapter 25 Distributed Databases and Client-Server Architectures

(a)
Computer System 1

Switch

Computer System 2

Computer System n

(b)

Site
(San Francisco)

Central
Site

(Chicago)
Site

(New York)

Site
(Los Angeles)

Communications
Network

Site
(Atlanta)

(c)

Communications
Network

fIGURE 25.1 Some different database system architectures. (a) Shared nothing
architecture. (b) A networked architecture with a centralized database at one of the
sites. (c) A truly distributed database architecture.

25.1 Distributed Database Concepts I 807

book. The EMPLOYEE, PROJECT, and WORKS_ON tables may be fragmented horizontally
(that is, into sets of rows, as we shall discuss in Section 25.2) and stored with pos
sible replication as shown in Figure 25.2. The following types of transparencies
are possible:

• Distribution or network transparency: This refers to freedom for the user from the
operational details of the network. It may be divided into location transparency
and naming transparency. Location transparency refers to the fact that the
command used to perform a task is independent of the location of data and the
location of the system where the command was issued. Naming transparency
implies that once a name is specified, the named objects can be accessed unam
biguously without additional specification.

• Replication transparency: As we show in Figure 25.2, copies of data may be stored
at multiple sites for better availability, performance, and reliability. Replication
transparency makes the user unaware of the existence of copies.

• Fragmentation transparency: Two types offragmentation are possible. Horizontal
fragmentation distributes a relation into sets of tuples (rows). Vertical fragmen
tation distributes a relation into subrelations where each subrelation is defined
by a subset of the columns of the original relation. A global query by the user
must be transformed into several fragment queries. Fragmentation transparency
makes the user unaware of the existence of fragments.

EMPLOYEES-San Francisco
and Los Angeles

PROJECTs- San Francisco
WORKS_ON- San Francisco

Employees

San Francisco

Los Angeles

EMPLOYEES-los Angeles
PROJECTS- Los Angeles and

San Francisco
WORKs_ON-Los Angeles

Employees

EMPLOYEES-All
PROJECTS- All
WORKS_ON-AII

Communications
Network

New York

Atlanta

EMPLOYEES-New York
PROJECTS- All
WORKS_ON- NewYork

Employees

EMPLOYEES-Atlanta
PROJECTS- Atlanta

WORKS_ON- Atlanta
Employees

FIGURE 25.2 Data distribution and replication among distributed databases

808 I Chapter 25 Distributed Databases and Client-Server Architectures

2. Increased reliability and availability: These are two of the most common potential
advantages cited for distributed databases. Reliability is broadly defined as the
probability that a system is running (not down) at a certain time point, whereas
availability is the probability that the system is continuously available during a
time interval. When the data and DBMSsoftware are distributed over several sites,
one site may fail while other sites continue to operate. Only the data and software
that exist at the failed site cannot be accessed. This improves both reliability and
availability. Further improvement is achieved by judiciously replicating data and
software at more than one site. In a centralized system, failure at a single site
makes the whole system unavailable to all users. In a distributed database, some of
the data may be unreachable, but users may still be able to access other parts of
the database.

3. Improved performance: A distributed DBMSfragments the database by keeping the
data closer to where it is needed most. Data localization reduces the contention
for CPU and I/O services and simultaneously reduces access delays involved in
wide area networks. When a large database is distributed over multiple sites,
smaller databases exist at each site. As a result, local queries and transactions
accessing data at a single site have better performance because of the smaller local
databases. In addition, each site has a smaller number of transactions executing
than if all transactions are submitted to a single centralized database. Moreover,
interquery and intraquery parallelism can be achieved by executing multiple que
ries at different sites, or by breaking up a query into a number of subqueries that
execute in parallel. This contributes to improved performance.

4. Easier expansion: In a distributed environment, expansion of the system in terms
of adding more data, increasing database sizes, or adding more processors is much
easier.

The transparencies we discussed in (1) above lead to a compromise between easeof
use and the overhead cost of providing transparency. Total transparency provides the
global user with a view of the entire DDBS as if it is a single centralized system.
Transparency is provided as a complement to autonomy, which gives the users tighter
control over their own local databases. Transparency features may be implemented as a
part of the user language, which may translate the required services into appropriate
operations. In addition, transparency impacts the features that must be provided by the
operating system and the DBMS.

25.1.3 Additional Functions of Distributed Databases
Distribution leads to increased complexity in the system design and implementation. To
achieve the potential advantages listed previously, the DDBMS software must be able to
provide the following functions in addition to those of a centralized DBMS:

• Keeping track of data: The ability to keep track of the data distribution, fragmenta
tion, and replication by expanding the DDBMS catalog.

25.1 Distributed Database Concepts I 809

• Distributed query processing: The ability to access remote sites and transmit queries
and data among the various sites via a communication network.

• Distributed transaction management: The ability to devise execution strategies for que'
ries and transactions that access data from more than one site and to synchronize the
access to distributed data and maintain integrity of the overall database.

• Replicated data management: The ability to decide which copy of a replicated data
item to access and to maintain the consistency of copies of a replicated data item.

• Distributed database recovery: The ability to recover from individual site crashes and
from new types of failures such as the failure of a communication links.

• Security: Distributed transactions must be executed with the proper management of
the security of the data and the authorization/access privileges of users.

• Distributed directory (catalog) management: A directory contains information (meta
data) about data in the database. The directory may be global for the entire DDB, or
local for each site. The placement and distribution of the directory are design and
policy issues.

These functions themselves increase the complexity of a DDBMS over a centralized
DBMS. Before we can realize the full potential advantages of distribution, we must find
satisfactory solutions to these design issues and problems. Including all this additional
functionality is hard to accomplish, and finding optimal solutions is a step beyond that.

At the physical hardware level, the following main factors distinguish a DDBMS from
a centralized system:

• There are multiple computers, called sites or nodes.

• These sites must be connected by some type of communication network to transmit
data and commands among sites, as shown in Figure 25.1c.

The sites may all be located in physical proximity-say, within the same building or
group of adjacent buildings-and connected via a local area network, or they may be
geographically distributed over large distances and connected via a long-haul or wide
area network. Local area networks typically use cables, whereas long-haul networks use
telephone lines or satellites. It is also possible to use a combination of the two types of
networks.

Networks may have different topologies that define the direct communication
paths among sites. The type and topology of the network used may have a significant
effect on performance and hence on the strategies for distributed query processing and
distributed database design. For high-level architectural issues, however, it does not
matter which type of network is used; it only matters that each site is able to
communicate, directly or indirectly, with every other site. For the remainder of this
chapter, we assume that some type of communication network exists among sites,
regardless of the particular topology. We will not address any network specific issues,
although it is important to understand that for an efficient operation of a DDBS,

network design and performance issues are very critical.

810 I Chapter 25 Distributed Databases and Client-Server Architectures

25.2 DATA FRAGMENTATION, REPLICATION,
AND ALLOCATION TECHNIQUES
FOR DISTRIBUTED DATABASE DESIGN

In this section we discuss techniques that are used to break up the database into logical
units, called fragments, which may be assigned for storage at the various sites. We also
discuss the use of data replication, which permits certain data to be stored in more than
one site, and the process of allocating fragments-or replicas of fragments-for storage at
the various sites. These techniques are used during the process of distributed database
design. The information concerning data fragmentation, allocation, and replication is
stored in a global directory that is accessed by the DDBSapplications as needed.

25.2.1 Data Fragmentation
In a DDB, decisions must be made regarding which site should be used to store which por
tions of the database. For now, we will assume that there is no replication; that is, each
relation-or portion of a relation-is to be stored at only one site. We discuss replication
and its effects later in this section. We also use the terminology of relational databases
similar concepts apply to other data models. We assume that we are starting with a rela
tional database schema and must decide on how to distribute the relations over the vari
ous sites. To illustrate our discussion, we use the relational database schema in Figure 5.5.

Before we decide on how to distribute the data, we must determine the logical units of
the database that are to be distributed. The simplest logical units are the relations
themselves; that is, each whole relation is to be stored at a particular site. In our example,
we must decide on a site to store each of the relations EMPLOYEE, DEPARTMENT, PROJECT, WORKS_ON,

and DEPENDENT of Figure 5.5. In many cases, however, a relation can be divided into smaller
logical units for distribution. For example, consider the company database shown in
Figure 5.6, and assume there are three computer sites-one for each department in the
cornpanv," We may want to store the database information relating to each department at
the computer site for that department. A technique called horizontal fragmentation can be
used to partition each relation by department.

Horizontal Fragmentation. A horizontal fragment of a relation is a subset of the
tuples in that relation. The tuples that belong to the horizontal fragment are specified by a
condition on one or more attributes of the relation. Often, only a single attribute is
involved. For example, we may define three horizontal fragments on the EMPLOYEE relation of
Figure 5.6 with the following conditions: (DNO = 5), (DNO = 4), and (DNO = l)-each fragment
contains the EMPLOYEE tuples working for a particular department. Similarly, we may define
three horizontal fragments for the PROJECT relation, with the conditions (DNUM = 5), (DNUM = 4),

4. Of course, in an actual situation, there will be many more tuples in the relations than those
shown in Figure 5.6.

25.2 Data Fragmentation, Replication, and Allocation Techniques I 811

and (DNUM = I)--each fragment contains the PROJ ECT tuples controlled by a particular
department. Horizontal fragmentation divides a relation "horizontally" by grouping rows to
create subsets of tuples, where each subset has a certain logical meaning. These fragments
can then be assigned to different sites in the distributed system. Derived horizontal
fragmentation applies the partitioning of a primary relation (DEPARTMENT in our example) to
other secondary relations (EMPLOYEE and PROJECT in our example), which are related to the
primary via a foreign key. This way, related data between the primary and the secondary
relations gets fragmented in the same way.

Vertical Fragmentation. Each site may not need all the attributes of a relation,
which would indicate the need for a different type of fragmentation. Vertical
fragmentation divides a relation "vertically" by columns. A vertical fragment of a
relation keeps only certain attributes of the relation. For example, we may want to
fragment the EMPLOYEE relation into two vertical fragments. The first fragment includes
personal information-NAME, BDATE, ADDRESS, and sEx-and the second includes work-related
informarion-s-sss, SALARY, SUPERSSN, DNO. This vertical fragmentation is not quite proper
because, if the two fragments are stored separately, we cannot put the original employee
tuples back together, since there is no common attribute between the two fragments. It is
necessary to include the primary key or some candidate key attribute in every vertical
fragment so that the full relation can be reconstructed from the fragments. Hence, we
must add the SSN attribute to the personal information fragment.

Notice that each horizontal fragment on a relation R can be specified by a (JCi(R)
operation in the relational algebra. A set of horizontal fragments whose conditions CI, C2,
... , Cn include all the tuples in R-that is, every tuple in R satisfies (CI ORC2 OR... OR
Cn)-is called a complete horizontal fragmentation of R. In many cases a complete
horizontal fragmentation is also disjoint; that is, no tuple in R satisfies (Ci ANDCj) for any
i *" j. Our two earlier examples of horizontal fragmentation for the EMPLOYEE and PROJECT
relations were both complete and disjoint. To reconstruct the relation R from a complete
horizontal fragmentation, we need to apply the UNION operation to the fragments.

A vertical fragment on a relation R can be specified by a 7TLi (R) operation in the
relational algebra. A set of vertical fragments whose projection lists L1, L2, ... , Ln
include all the attributes in R but share only the primary key attribute of R is called a
complete vertical fragmentation ofR. In this case the projection lists satisfy the following
two conditions:

• L1 U L2 U ... U Ln = ATTRS(R).

• Li n Lj = PK(R) for any i *- j, where ATTRS(R) is the set of attributes of Rand
PK(R) is the primary key of R.

To reconstruct the relation R from a complete vertical fragmentation, we apply the
OUTER UNION operation to the vertical fragments (assuming no horizontal fragmentation
is used). Notice that we could also apply a FULL OUTER JOIN operation and get the same
result for a complete vertical fragmentation, even when some horizontal fragmentation
may also have been applied. The two vertical fragments of the EMPLDYEE relation with
projection lists LI = {SSN, NAME, BDATE, ADDRESS, SEX} and L2 = {SSN, SALARY, SUPERSSN, DNO}
constitute a complete vertical fragmentation of EMPLOYEE.

812 I Chapter 25 Distributed Databases and Client-Server Architectures

Two horizontal fragments that are neither complete nor disjoint are those defined on the
EMPLOYEE relation of Figure 5.5 by the conditions (SALARY> 50000) and (DNO = 4); they may not
include all EMPLOYEE tuples, and they may include common tuples. Two vertical fragments that
are not complete are those defined by the attribute lists L1 = {NAME, ADDRESS} and L2 = {SSN, NAME,

SALARY}; these lists violate both conditions of a complete vertical fragmentation.

Mixed (Hybrid) Fragmentation .. We can intermix the two types of fragmentation,
yielding a mixed fragmentation. For example, we may combine the horizontal and
vertical fragmentations of the EMPLOYEE relation given earlier into a mixed fragmentation
that includes six fragments. In this case the original relation can be reconstructed by
applying UNION and OUTER UNION (or OUTER JOIN) operations in the appropriate order.
In general, a fragment of a relation R can be specified by a SELECT-PROJECT combination
of operations TIL(udR)). If C = TRUE (that is, all tuples are selected) and L -=1= ATTRS(R),
we get a vertical fragment, and if e -=1= TRUE and L = ATTRS(R), we get a horizontal
fragment. Finally, if C -=1= TRUE and L -=1= ATTRS(R), we get a mixed fragment. Notice that
a relation can itself be considered a fragment with e = TRUE and L = ATTRS(R). In the
following discussion, the term fragment is used to refer to a relation or to any of the
preceding types of fragments.

A fragmentation schema of a database is a definition of a set of fragments that
includes allattributes and tuples in the database and satisfies the condition that the whole
database can be reconstructed from the fragments by applying some sequence of OUTER
UNION (or OUTER JOIN) and UNION operations. It is also sometimes useful-although not
necessary-to have all the fragments be disjoint except for the repetition of primary keys
among vertical (or mixed) fragments. In the latter case, all replication and distribution of
fragments is clearly specified at a subsequent stage, separately from fragmentation.

An allocation schema describes the allocation of fragments to sites of the DDBS;
hence, it is a mapping that specifies for each fragment the sitets) at which it is stored. If a
fragment is stored at more than one site, it is said to be replicated. We discuss data
replication and allocation next.

25.2.2 Data Replication and Allocation
Replication is useful in improving the availability of data. The most extreme case is replica
tion of the whole database at every site in the distributed system, thus creating a fully replicated
distributed database. This can improve availability remarkably because the system can con
tinue to operate as long as at least one site is up. It also improves performance of retrieval for
global queries, because the result of such a query can be obtained locally from anyone site;
hence, a retrieval query can be processed at the local site where it is submitted, if that site
includes a server module. The disadvantage of full replication is that it can slow down update
operations drastically, since a single logical update must be performed on every copy of the
database to keep the copies consistent. This is especially true if many copies of the database
exist. Full replication makes the concurrency control and recovery techniques more expensive
than they would be if there were no replication, as we shall see in Section 25.5.

The other extreme from full replication involves having no replication-that is,
each fragment is stored at exactly one site. In this case all fragments must be disjoint,

25.2 Data Fragmentation, Replication, and Allocation Techniques I 813

except for the repetition of primary keys among vertical (or mixed) fragments. This is also
called nonredundant allocation.

Between these two extremes, we have a wide spectrum of partial replication of the
data-that is, some fragments of the database may be replicated whereas others may not.
The number of copies of each fragment can range from one up to the total number of sites
in the distributed system. A special case of partial replication is occurring heavily in
applications where mobile workers-such as sales forces, financial planners, and claims
adjustors-carry partially replicated databases with them on laptops and personal digital
assistants and synchronize them periodically with the server database.i A description of
the replication of fragments is sometimes called a replication schema.

Each fragment-or each copy of a fragment-must be assigned to a particular site in
the distributed system. This process is called data distribution (or data allocation). The
choice of sites and the degree of replication depend on the performance and availability
goals of the system and on the types and frequencies of transactions submitted at each
site. For example, if high availability is required and transactions can be submitted at any
site and if most transactions are retrieval only, a fully replicated database is a good choice.
However, if certain transactions that access particular parts of the database are mostly
submitted at a particular site, the corresponding set of fragments can be allocated at that
site only. Data that is accessed at multiple sites can be replicated at those sites. If many
updates are performed, it may be useful to limit replication. Finding an optimal or even a
good solution to distributed data allocation is a complex optimization problem.

25.2.3 Example of Fragmentation, Allocation,
and Replication

We now consider an example of fragmenting and distributing the company database of Fig
ures 5.5 and 5.6. Suppose that the company has three computer sites--one for each current
department. Sites 2 and 3 are for departments 5 and 4, respectively. At each of these sites,
we expect frequent access to the EMPLOYEE and PROJECT information for the employees who
work in thatdepartment and the projects controlled by thatdepartment. Further, we assume that
these sites mainly access the NAME, SSN, SALARY, and SUPERSSN attributes of EMPLOYEE. Site 1 is
used by company headquarters and accesses all employee and project information regularly,
in addition to keeping track of DEPENDENT information for insurance purposes.

According to these requirements, the whole database of Figure 5.6 can be stored at
site 1. To determine the fragments to be replicated at sites 2 and 3, we can first
horizontally fragment DEPARTMENT by its key DNUMBER. We then apply derived fragmentation
to the relations EMPLOYEE, PROJECT, and DEPT_LOCATIONS relations based on their foreign keys
for department number-called DNO, DNUM, and DNUMBER, respectively, in Figure 5.5. We can
then vertically fragment the resulting EMPLOYEE fragments to include only the attributes
{NAME, SSN, SALARY, SUPERSSN, DNO}. Figure 25.3 shows the mixed fragments EMPD5 and
EMPD4, which include the EMPLOYEE tuples satisfying the conditions DNO = 5 and DNO = 4,

5. For a scalable approach to synchronize partially replicated databases, see Mahajan et al. (1998).

814 I Chapter 25 Distributed Databases and Client-Server Architectures

(a) I EMPD5 FNAME MINIT LNAME SSN SALARY SUPERSSN DNO-
John B Smith 123456789 30000 333445555 5

Franklin T Wcq; 333445555 40000 888665555 5

Ramesh K Naravan 666884444 38000 333445555 5

Jcryce A English 453453453 25000 333445555 5

DNAME MGRSTARTDATE

1988-05-22

IDEP5_LOCS DNUMBER LOCATION

5 Bellaire

5 SugaJ1and

5 Houston

J WORKS ONS ESSN PNO HOURS

123456789 1 32.5

123456789 2 7.5

666884444 3 40.0

453453453 1 20.0

453453453 2 20.0

333445555 2 10.0

333445555 3 10.0

333445555 10 10.0

333445555 20 10.0

! PROJS5 PNAME PNUMBER PLOCATION DNUM
ProductX 1 Bellaire 5

ProductY 2 Sugarland 5

ProductZ 3 Houston 5

Data at Site 2

(b) I EMPD4 FNAME MINIT LNAME SSN SALARY SUPERSSN DNO-
AIic:ia J Zelaya 999887777 25000 987654321 4

Jemifer S Wallace 987654321 43000 888665555 4

Ahmad V Jabbar 987987987 25000 987654321 4

DNAME

Administration

MGRSTARTDATE

1995-01-01
IDEP4 lOCS I DNU~BER I=ON I

I WORKS_ON4 ESSN PNO HOURS

333445555 10 10.0

999887777 30 30.0

999887777 10 10.0

987987987 10 35.0
987987987 30 5.0

987654321 30 20.0

987654321 20 15.0

I PROJS4 PNAME PNUMBER PLOCATION DNUM

Computerization 10 Stafford 4

Newbenefits 30 Staffold 4

Data at Site 3

FIGURE 25.3 Allocation of fragments to sites. (a) Relation fragments at site 2 corresponding to
department 5. (b) Relation fragments at site 3 corresponding to department 4.

respectively. The horizontal fragments of PROJECT, DEPARTMENT, and DEPCLOCATIONS are
similarly fragmented by department number. All these fragments-stored at sites 2 and
3-are replicated because they are also stored at the headquarters site 1.

We must now fragment the WORKS_ON relation and decide which fragments of WORKS_ON

to store at sites 2 and 3. We are confronted with the problem that no attribute of WORKS_ON

25.3 Types of Distributed Database Systems I 815

directly indicates the department to which each tuple belongs. In fact, each tuple in WORKS_

ON relates an employee e to a project p. We could fragment WORKS_ON based on the
department d in which e works or based on the department d' that controls p.
Fragmentation becomes easy if we have a constraint stating that d = d' for all WORKS_ON

tuples-that is, if employees can work only on projects controlled by the department they
work for. However, there is no such constraint in our database of Figure 5.6. For example,
the WORKS_ON tuple <333445555, 10, 10.0> relates an employee who works for department
5 with a project controlled by department 4. In this case we could fragment WORKS_ON based
on the department in which the employee works (which is expressed by the condition C)
and then fragment further based on the department that controls the projects that
employee is working on, as shown in Figure 25.4.

In Figure 25.4, the union of fragments 01, 02, and 03 gives all WORKS_ON tuples for
employees who work for department 5. Similarly, the union of fragments 04, OS, and 06
gives all WORKS_ON tuples for employees who work for department 4. On the other hand, the
union of fragments 01, 04, and 07 gives all WORKS_ON tuples for projects controlled by
department 5. The condition for each of the fragments 01 through 09 is shown in Figure
25.4. The relations that represent M:N relationships, such as WORKS_ON, often have several
possible logical fragmentations. In our distribution of Figure 25.3, we choose to include all
fragments that can be joined to either an EMPLOYEE tuple or a PROJECT tuple at sites 2 and 3.
Hence, we place the union of fragments 01, 02, 03, 04, and 07 at site 2 and the union of
fragments 04, OS, 06, 02, and 08 at site 3. Notice that fragments 02 and 04 are
replicated at both sites. This allocation strategy permits the join between the local EMPLOYEE

or PROJECT fragments at site 2 or site 3 and the local WORKS_ON fragment to be performed
completely locally. This clearly demonstrates how complex the problem of database
fragmentation and allocation is for large databases. The Selected Bibliography at the end
of this chapter discusses some of the work done in this area.

25.3 TYPES OF DISTRIBUTED DATABASE SYSTEMS
The term distributed database management system can describe various systems that dif
fer from one another in many respects. The main thing that all such systems have in com
mon is the fact that data and software are distributed over multiple sites connected by
some form of communication network. In this section we discuss a number of types of
DDBMSs and the criteria and factors that make some of these systems different.

The first factor we consider is the degree of homogeneity of the DDBMS software. If all
servers (or individual local DBMSs) use identical software and all users (clients) use identical
software, the DDBMS is called homogeneous; otherwise, it is called heterogeneous. Another
factor related to the degree of homogeneity is the degree of local autonomy. If there is no
provision for the local site to function as a stand-alone DBMS, then the system has no local
autonomy. On the other hand, if direct access by local transactions to a server is permitted,
the system has some degree of local autonomy.

At one extreme of the autonomy spectrum, we have a DDBMS that "looks like" a
centralized DBMS to the user. A single conceptual schema exists, and all access to the
system is obtained through a site that is part of the DDBMS-which means that no local

816 I Chapter 25 Distributed Databases and Client-Server Architectures

autonomy exists. At the other extreme we encounter a type of DDBMS called a federated
DDBMS (or a multidatabase system). In such a system, each server is an independent and
autonomous centralized DBMS that has its own local users, local transactions, and DBA and
hence has a very high degree of local autonomy. The term federated database system (FDBS)
is used when there is some global view or schema of the federation of databases that is
shared by the applications. On the other hand, a multidatabase system does not have a
global schema and interactively constructs one as needed by the application. Both systems
are hybrids between distributed and centralized systems and the distinction we made
between them is not strictly followed. We will refer to them as FDBSs in a generic sense.

(a) I G1 ESSN PNO HOURS

123456789 1 32.5

123456789 2 7.5

666884444 3 40.0

453453453 1 20.0

453453453 2 20.0

333445555 2 10.0

333445555 3 10.0

C2=CAND (PNOIN (SELECTPNUMBER
FROMPROJECT

WHEREDNUM=4))

C3=CAND(PNOIN(SELECTPNUMBER
FROMPROJECT

WHEREDNUM=1))

C1=C AND (PNOIN(SELECTPNUMBER
FROMPROJECT

WHEREDNUM=5))

Employees in Department 5

C4=CAND (PNOIN (SELECTPNUMBER
FROMPROJECT

WHEREDNUM=5))

(b) ~ ESSN ~ HOURS I IG5 ESSN PNO HOURS

999887777 30 30.0

999887777 10 10.0

987987987 10 35.0

987987987 30 5.0

987654321 30 20.0

C5=CAND (PNOIN (SELECTPNUMBER
FROMPROJECT

WHEREDNUM=4))

Employees in Department 4

C6=CAND(PNOIN(SELECTPNUMBER
FROMPROJECT

WHEREDNUM=1))

C7=CAND (PNOIN(SELECTPNUMBER
FROMPROJECT

WHEREDNUM=5))

C8=CAND (PNOIN(SELECTPNUMBER
FROMPROJECT

WHEREDNUM=4))

(e) ~ ESSN ~I HOURS I ~ ESSN ~ HOURS I

C9=CAND(PNOIN(SELECTPNUMBER
FROMPROJECT

WHEREDNUM=1))

Employees in Department 1

FIGURE 25.4 Complete and disjoint fragments of the WORKS_ON relation. (a) Fragmentsof WORKS_ON for employ
eesworking in department 5 (c= [ESSN IN (SELECT SSN FROM EMPLOYEE WHERE DNO=5)]). (b) Fragmentsof WORKS_

ON for employees working in department 4 (c= [ESSN IN (SELECT SSN FROM EMPLOYEE WHERE DNo=4)]). (e)Frag
ments of WORKS_ON for employees working in department 1 (c= [ESSN IN (SELECT SSN FROM EMPLOYEE WHERE

DNO=l)]) •

25.3 Types of Distributed Database Systems I 817

In a heterogeneous FOBS, one server may be a relational DBMS, another a network
DBMS, and a third an object or hierarchical DBMS; in such a case it is necessary to have a
canonical system language and to include language translators to translate subqueries
from the canonical language to the language of each server. We briefly discuss the issues
affecting the design of FDBSs below.

Federated Database Management Systems Issues. The type of heterogeneity
present in FDBSs may arise from several sources. We discuss these sources first and then
point out how the different types of autonomies contribute to a semantic heterogeneity
that must be resolved in a heterogeneous FOBS.

• Differences in data models: Databases in an organization come from a variety of data
models including the so-called legacy models (network and hierarchical, see Appen
dixes E and F), the relational data model, the object data model, and even files. The
modeling capabilities of the models vary. Hence, to deal with them uniformly via a
single global schema or to process them in a single language is challenging. Even if
two databases are both from the RDBMS environment, the same information may be
represented as an attribute name, as a relation name, or as a value in different data
bases. This calls for an intelligent query-processing mechanism that can relate infor
mation based on metadata.

• Differences in constraints: Constraint facilities for specification and implementation
vary from system to system. There are comparable features that must be reconciled in
the construction of a global schema. For example, the relationships from ER models
are represented as referential integrity constraints in the relational model. Triggers
may have to be used to implement certain constraints in the relational model. The
global schema must also deal with potential conflicts among constraints.

• Differences in query languages: Even with the same data model, the languages and
their versions vary. For example, SQLhas multiple versions like SQL-89, sQL-92, and
SQL-99, and each system has its own set of data types, comparison operators, string
manipulation features, and so on.

Semantic Heterogeneity. Semantic heterogeneity occurs when there are differences
in the meaning, interpretation, and intended use of the same or related data. Semantic
heterogeneity among component database systems (DBSs) creates the biggest hurdle in
designing global schemas of heterogeneous databases. The design autonomy of component
DBSs refers to their freedom of choosing the following design parameters, which in tum
affect the eventual complexity of the FOBS:

• The universe of discourse from which the data is drawn: For example, two customer
accounts, databases in the federation may be from United States and Japan with
entirely different sets of attributes about customer accounts required by the account
ing practices. Currency rate fluctuations would also present a problem. Hence, rela
tions in these two databases which have identical names-CUSTOMER or ACCOUNT-may
have some common and some entirely distinct information.

• Representation and naming: The representation and naming of data elements and the
structure of the data model may be prespecified for each local database.

818 I Chapter 25 Distributed Databases and Client-Server Architectures

• The understanding, meaning, and subjective interpretation of data. This is a chief contrib
utor to semantic heterogeneity.

• Transaction and policy constraints: These deal with serializability criteria, compensat
ing transactions, and other transaction policies.

• Derivation of summaries: Aggregation, summarization, and other data-processing fea
tures and operations supported by the system.

Communication autonomy of a component DBS refers to its ability to decide
whether to communicate with another component DBS. Execution autonomy refers to

the ability of a component DBS to execute local operations without interference from
external operations by other component DBSs and its ability to decide the order in which
to execute them. The association autonomy of a component DBS implies that it has the
ability to decide whether and how much to share its functionality (operations it supports)
and resources (data it manages) with other component DBSs. The major challenge of
designing FDBSs is to let component DBSs interoperate while still providing the above
types of autonomies to them.

A typical five-level schema architecture to support global applications in the FOBS

environment is shown in Figure 25.5. In this architecture, the local schema is the
conceptual schema (full database definition) of a component database, and the compo
nent schema is derived by translating the local schema into a canonical data model or
common data model (CDM) for the FDBS. Schema translation from the local schema to

the component schema is accompanied by generation of mappings to transform
commands on a component schema into commands on the corresponding local schema.
The export schema represents the subset of a component schema that is available to the
FDBS. The federated schema is the global schema or view, which is the result of
integrating all the shareable export schemas. The external schemas define the schema for
a user group or an application, as in the three-level schema architecture.6

All the problems related to query processing, transaction processing, and directory
and metadata management and recovery apply to FDBSs with additional considerations. It
is not within our scope to discuss them in detail here.

25.4 QUERY PROCESSING IN DISTRIBUTED
DATABASES

We now give an overview of how a DDBMS processes and optimizes a query. We first dis
cuss the communication costs of processing a distributed query; we then discuss a spe
cial operation, called a semijoin, that is used in optimizing some types of queries in a
DDBMS.

6. For a detailed discussion of the autonomies and the five-level architecture of FDBMSs, seeSheth
and Larson (1990).

25.4 Query Processing in Distributed Databases I 819

FIGURE 25.5 The five-level schema architecture in a federated database system
(FOBS). Source: Adapted from Sheth and Larson, Federated Database Systems for
Managing Distributed Heterogeneous Autonomous Databases. ACM Computing
Surveys (Vol. 22: No.3, September 1990).

25.4.1 Data Transfer Costs of Distributed Query
Processing

We discussed the issues involved in processing and optimizing a query in a centralized
DBMS in Chapter 15. In a distributed system, several additional factors further complicate
query processing. The first is the cost of transferring data over the network. This data
includes intermediate files that are transferred to other sites for further processing, as well
as the final result files that may have to be transferred to the site where the query result is
needed. Although these costs may not be very high if the sites are connected via a high
performance local area network, they become quite significant in other types of networks.
Hence, DDBMS query optimization algorithms consider the goal of reducing the amount of
data transfer as an optimization criterion in choosing a distributed query execution strategy.

We illustrate this with two simple example queries. Suppose that the EMPLOYEE and
DEPARTMENT relations of Figure 5.5 are distributed as shown in Figure 25.6. We will assume
in this example that neither relation is fragmented. According to Figure 25.6, the size of
the EMPLOYEE relation is 100 * 10,000 = 106 bytes, and the size of the DEPARTMENT relation is
35 * 100 = 3500 bytes. Consider the query Q: "For each employee, retrieve the employee

820 I Chapter 25 Distributed Databases and Client-Server Architectures

SITE1:

EMPLOYEE

10,000records
eachrecord is 100byteslong
SSNfieldis9 byteslong
DNOfieldis 4 byteslong

SITE2:

DEPARTMENT

FNAMEfieldis 15byteslong
LNAMEfieldis 15byteslong

I DNAME I DNUMBER , MGRSSN I MGRSTARTDATE

100records
eachrecord is35 byteslong
DNUMBER fieldis 4 byteslong DNAME fieldis 10byteslong
MGRSSN fieldis 9 byteslong

FIGURE 25.6 Example to illustrate volume of data transferred.

name and the name of the department for which the employee works." This can be stated
as follows in the relational algebra:

Q: '1TFNAME, LNAME,DNAME (EMPLOYEE ~ DNO~DNUMBER DEPARTMENT)

The result of this query will include 10,000 records, assuming that every employee is
related to a department. Suppose that each record in the query result is 40 bytes long. The
query is submitted at a distinct site 3, which is called the result site because the query
result is needed there. Neither the EMPLOYEE nor the DEPARTMENT relations reside at site 3.
There are three simple strategies for executing this distributed query:

1. Transfer both the EMPLOYEE and the DEPARTMENT relations to the result site, and per
form the join at site 3. In this case a total of 1,000,000 + 3500 = 1,003,500 bytes
must be transferred.

2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2, and send the
result to site 3. The size of the query result is 40 * 10,000 = 400,000 bytes, so
400,000 + 1,000,000 = 1,400,000 bytes must be transferred.

3. Transfer the DEPARTMENT relation to site 1, execute the join at site 1, and send the
result to site 3. In this case 400,000 + 3500 = 403,500 bytes must be transferred.

If minimizing the amount of data transfer is our optimization criterion, we should
choose strategy 3. Now consider another query Q': "For each department, retrieve the
department name and the name of the department manager." This can be stated as
follows in the relational algebra:

Q': '1TFNAME, LNAME, DNAME (DEPARTMENT ~MGRSSN~SSN EMPLOYEE)

25.4 Query Processing in Distributed Databases I 821

Again, suppose that the query is submitted at site 3. The same three 'strategies for
executing query Q apply to Q', except that the result of Q' includes only 100 records,
assuming that each department has a manager:

1. Transfer both the EMPLOYEE and the DEPARTMENT relations to the result site, and per
form the join at site 3. In this case a total of 1,000,000 + 3500 = 1,003,500 bytes
must be transferred.

2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2, and send the
result to site 3. The size of the query result is 40 * 100 = 4000 bytes, so 4000 +
1,000,000 = 1,004,000 bytes must be transferred.

3. Transfer the DEPARTMENT relation to site 1, execute the join at site 1, and send the
result to site 3. In this case 4000 + 3500 = 7500 bytes must be transferred.

Again, we would choose strategy 3-in this case by an overwhelming margin over
strategies 1 and 2. The preceding three strategies are the most obvious ones for the case
where the result site (site 3) is different from all the sites that contain files involved in the
query (sites 1 and 2). However, suppose that the result site is site 2; then we have two
simple strategies:

1. Transfer the EMPLOYEE relation to site 2, execute the query, and present the result to
the user at site 2. Here, the same number of bytes-1 ,OOO,OOO-must be trans
ferred for both Q and Q'.

2. Transfer the DEPARTMENT relation to site 1, execute the query at site 1, and send the
result back to site 2. In this case 400,000 + 3500 = 403,500 bytes must be trans
ferred for Q and 4000 + 3500 = 7500 bytes for Q'.

A more complex strategy, which sometimes works better than these simple strategies,
uses an operation called semijoin. We introduce this operation and discuss distributed
execution using semijoins next.

25.4.2 Distributed Query Processing Using Semijoin
The idea behind distributed query processing using the semijoin operation is to reduce the
number of tuples in a relation before transferring it to another site. Intuitively, the idea is
to send the joining column of one relation R to the site where the other relation S is
located; this column is then joined with S. Following that, the join attributes, along with
the attributes required in the result, are projected out and shipped back to the original site
and joined with R. Hence, only the joining column of R is transferred in one direction,
and a subset of S with no extraneous tuples or attributes is transferred in the other direc
tion. If only a small fraction of the tuples in S participate in the join, this can be quite an
efficient solution to minimizing data transfer.

To illustrate this, consider the following strategy for executing Q or Q':

1. Project the join attributes of DEPARTMENT at site 2, and transfer them to site 1. For Q,
we transfer F = 'ITDNuMBER(DEPARTMENT), whose size is 4 * 100 = 400 bytes, whereas, for
Q', we transfer F' = 'ITMGRSSN(DEPARTMENT), whose size is 9 * 100 = 900 bytes.

822 I Chapter 25 Distributed Databases and Client-Server Architectures

2. Join the transferred file with the EMPLOYEE relation at site 1, and transfer the required
attributes from the resulting file to site 2. For Q, we transfer R = 1TDNOFNAME LNAME(F
~DNUMBER~DNOEMPLOYEE)' whose size is 34 * 10,000 = 340,000 bytes, whereas, for Q', w~ trans
fer R' = 'lTMGRSSN, FNAME. LNAME(F' !>4"GRSSN=SSN EMPLOYEE), whose size is 39 * 100 =3900 bytes,

3. Execute the query by joining the transferred file R·or R' with DEPARTMENT, and
present the result to the user at site 2.

Using this strategy, we transfer 340,400 bytes for Q and 4800 bytes for Q'. We
limited the EMPLOYEE attributes and tuples transmitted to site 2 in step 2 to only those that
will actually be joined with a DEPARTMENT tuple in step 3. For query Q, this turned out to

include all EMPLOYEE tuples, so little improvement was achieved. However, for Q' only 100
out of the 10,000 EMPLOYEE tuples were needed.

The semijoin operation was devised to formalize this strategy. A semijoin operation
R I><~~BS, where A and B are domain-compatible attributes of Rand S, respectively,
produces the same result as the relational algebra expression 'lTR(R~A~BS), In a distributed
environment where Rand S reside at different sites, the semijoin is typically
implemented by first transferring F = 'lTR(S) to the site where R resides and then joining F
with R, thus leading to the strategy discussed here.

Notice that the semijoin operation is not commutative; that is,

25.4.3 Query and Update Decomposition
In a DDBMS with no distribution transparency, the user phrases a query directly in terms of
specific fragments. For example, consider another query Q: "Retrieve the names and
hours per week for each employee who works on some project controlled by department
5," which is specified on the distributed database where the relations at sites 2 and 3 are
shown in Figure 25.3, and those at site 1 are shown in Figure 5.6, as in our earlier exam
ple. A user who submits such a query must specify whether it references the PROJSS and
WORKS_ONS relations at site 2 (Figure 25.3) or the PROJECT and WORKS_ON relations at site 1
(Figure 5.6). The user must also maintain consistency of replicated data items when
updating a DDBMS with no replication transparency.

On the other hand, a DDBMS that supports full distribution, fragmentation, and
replication transparency allows the user to specify a query or update request on the schema
of Figure 5.5 just as though the DBMS were centralized. For updates, the DDBMS is
responsible for maintaining consistency among replicated items by using one of the
distributed concurrency control algorithms to be discussed in Section 25.5. For queries, a
query decomposition module must break up or decompose a query into subqueries that
can be executed at the individual sites. In addition, a strategy for combining the results of
the subqueries to form the query result must be generated. Whenever the DDBMS

determines that an item referenced in the query is replicated, it must choose or
materialize a particular replica during query execution.

To determine which replicas include the data items referenced in a query, the DDBMS

refers to the fragmentation, replication, and distribution information stored in the DDBMS

25.4 Query Processing in Distributed Databases I 823

catalog. For vertical fragmentation, the attribute list for each fragment is kept in the
catalog. For horizontal fragmentation, a condition, sometimes called a guard, is kept for
each fragment. This is basically a selection condition that specifies which tuples exist in
the fragment; it is called a guard because only tuples that satisfy this condition are-permitted
to be stored in the fragment. For mixed fragments, both the attribute list and the guard
condition are kept in the catalog.

In our earlier example, the guard conditions for fragments at site 1 (Figure 5.6) are
TRUE (all tuples), and the attribute lists are * (all attributes). For the fragments shown in
Figure 25.3, we have the guard conditions and attribute lists shown in Figure 25.7. When
the DDBMS decomposes an update request, it can determine which fragments must be
updated by examining their guard conditions. For example, a user request to insert a new
EMPLOYEE tuple <'Alex', 'B', 'Coleman', '345671239', '22-APR-64', '3306

Sandstone, Houston, TX', M, 33000, '987654321', 4> would be decomposed by the
DDBMS into two insert requests: the first inserts the preceding tuple in the EMPLOYEE fragment

(a) EMPD5
attribute list: FNAME,MINIT,LNAME,SSN,SALARY,SUPERSSN, DNO

guard condition: DNO=5
DEP5
attribute list: * (all attributes DNAME,DNUMBER,MGRSSN,MGRSTARTDATE)

guard condition: DNUMBER=5
DEP5_LOCS
attribute list: * (all attributes DNUMBER,LOCATION)

guard condition: DNUMBER=5
PROJS5
attribute list: * (all attributes PNAME,PNUMBER,PLOCATION,DNUM)

guard condition: DNUM=5
WORKS_ON5

attribute list: * (all attributes ESSN,PNO,HOURS)
guard condition: ESSN IN (ltSSN (EMPD5)) OR PNO IN (ltPNUMBER (PROJS5))

EMPD4
(b) attribute list: FNAME,MINIT,LNAME,SSN,SALARY,SUPERSSN, DNO

guard condition: DNO=4
DEP4
attribute list: * (all attributes DNAME,DNUMBER,MGRSSN,MGRSTARTDATE)

guard condition: DNUMBER=4
DEP4_LOCS
attribute list: * (all attributes DNUMBER,LOCATION)

guard condition: DNUMBER=4
PROJS4
attribute list: * (all attributes PNAME,PNUMBER,PLOCATION,DNUM)

guard condition: DNUM=4
WORKS_ON4

attribute list: * (all attributes ESSN,PNO,HOURS)
guard condition: ESSN IN (ltSSN (EMPD4))
OR PNO IN (ltPNUMBER (PROJS4))

FIGURE 25.7 Guard conditions and attributes lists for fragments. (a) Site 2 frag
ments. (b) Site 3 fragments.

824 I Chapter 25 Distributed Databases and Client-Server Architectures

at site 1, and the second inserts the projected tuple -c' Alex' , ' B' , 'Co1eman' ,

'345671239', 33000, '987654321', 4> in the EMPa4 fragment at site 3.
For query decomposition, the DDBMS can determine which fragments may contain

the required tuples by comparing the query condition with the guard conditions. For
example, consider the query Q: "Retrieve the names and 'hours per week for each
employee who works on some project controlled by department 5"; this can be specified
in SQL on the schema of Figure 5.5 as follows:

Q: SELECT FNAME, LNAME, HOURS
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE DNUM:5 AND PNUMBER:PNO AND ESSN:SSN;

Suppose that the query is submitted at site 2, which is where the query result will be
needed. The DDBMS can determine from the guard condition on PROJs5 and WORKS_ON 5 that
all tuples satisfying the conditions (aNuM = 5 AND PNUMBER = PNO) reside at site 2. Hence, it
may decompose the query into the following relational algebra subqueries:

Tl <- 1TE5SN (PROJS5~PNUMBER=PNOWORKS_ON5)

T2 <- 1TESSN, 'NAME, LNAME (Tl~ESSN=sSNEMPLOYEE)

RESULT <- 1T'NAME, LNAME, HOURS(T2 * WORKS_ON5)

This decomposition can be used to execute the query by using a semijoin strategy.
The DDBMS knows from the guard conditions that PROJs5 contains exactly those tuples
satisfying (aNuM = 5) and that WORKS_ON 5 contains all tuples to be joined with PROJs5; hence,
subquery T1 can be executed at site 2, and the projected column ESSN can be sent to site 1.
Subquery T2 can then be executed at site 1, and the result can be sent back to site 2,
where the final query result is calculated and displayed to the user. An alternative strategy
would be to send the query Q itself to site 1, which includes all the database tuples, where
it would be executed locally and from which the result would be sent back to site 2. The
query optimizer would estimate the costs of both strategies and would choose the one
with the lower cost estimate.

25.5 OVERVIEW OF CONCURRENCY CONTROL
AND RECOVERY IN DISTRIBUTED DATABASES

For concurrency control and recovery purposes, numerous problems arise in a distributed
DBMS environment that are not encountered in a centralized DBMS environment. These
include the following:

• Dealing with multiple copies of the data items: The concurrency control method is
responsible for maintaining consistency among these copies. The recovery method is
responsible for making a copy consistent with other copies if the site on which the
copy is stored fails and recovers later.

• Failure of individual sites: The DDBMS should continue to operate with its running
sites, if possible, when one or more individual sites fail. When a site recovers, its
local database must be brought up to date with the rest of the sites before it rejoins
the system.

25.5 Overview of Concurrency Control and Recovery in Distributed Databases I 825

• Failure of communication links: The system must be able to deal with failure of one or
more of the communication links that connect the sites. An extreme case of this
problem is that network partitioning may occur. This breaks up the sites into two or
more partitions, where the sites within each partition can communicate only with
one another and not with sites in other partitions.

• Distributed commit: Problems can arise with committing a transaction that is access
ing databases stored on multiple sites if some sites fail during the commit process.
The two-phase commit protocol (see Chapter 19) is often used to deal with this
problem.

• Distributed deadlock: Deadlock may occur among several sites, so techniques for deal
ing with deadlocks must be extended to take this into account.

Distributed concurrency control and recovery techniques must deal with these and
other problems. In the following subsections, we review some of the techniques that have
been suggested to deal with recovery and concurrency control in DDBMSs.

25.5.1 Distributed Concurrency Control Based on a
Distinguished Copy of a Data Item

To deal with replicated data items in a distributed database, a number of concurrency
control methods have been proposed that extend the concurrency control techniques for
centralized databases. We discuss these techniques in the context of extending centralized
locking. Similar extensions apply to other concurrency control techniques. The idea is to
designate a particular copy of each data item as a distinguished copy. The locks for this
data item are associated with the distinguished copy, and all locking and unlocking requests
are sent to the site that contains that copy.

A number of different methods are based on this idea, but they differ in their method
of choosing the distinguished copies. In the primary site technique, all distinguished
copies are kept at the same site. A modification of this approach is the primary site with a
backup site. Another approach is the primary copy method, where the distinguished
copies of the various data items can be stored in different sites. A site that includes a
distinguished copy of a data item basically acts as the coordinator site for concurrency
control on that item. We discuss these techniques next.

Primary Site Technique. In this method a single primary site is designated to be
the coordinator site for all database items. Hence, all locks are kept at that site, and all
requests for locking or unlocking are sent there. This method is thus an extension of the
centralized locking approach. For example, if all transactions follow the two-phase
locking protocol, serializability is guaranteed. The advantage of this approach is that it is
a simple extension of the centralized approach and hence is not overly complex.
However, it has certain inherent disadvantages. One is that all locking requests are sent
to a single site, possibly overloading that site and causing a system bottleneck. A second
disadvantage is that failure of the primary site paralyzes the system, since all locking
information is kept at that site. This can limit system reliability and availability.

826 I Chapter 25 Distributed Databases and Client-Server Architectures

Although all locks are accessed at the primary site, the items themselves can be
accessed at any site at which they reside. For example, once a transaction obtains a READ_LOCK

on a data item from the primary site, it can access any copy of that data item. However,
once a transaction obtains a WRITE_LOCK and updates a data item, the DDBMS is responsible for
updating allcopies of the data item before releasing the lock.

Primary Site with Backup Site. This approach addresses the second disadvantage
of the primary site method by designating a second site to be a backup site. All locking
information is maintained at both the primary and the backup sites. In case of primary
site failure, the backup site takes over as primary site, and a new backup site is chosen.
This simplifies the process of recovery from failure of the primary site, since the backup
site takes over and processing can resume after a new backup site is chosen and the lock
status information is copied to that site. It slows down the process of acquiring locks,
however, because all lock requests and granting of locks must be recorded at both the
primary and the backup sites before a response is sent to the requesting transaction. The
problem of the primary and backup sites becoming overloaded with requests and slowing
down the system remains undiminished.

Primary Copy Technique. This method attempts to distribute the load of lock
coordination among various sites by having the distinguished copies of different data
items stored at different sites. Failure of one site affects any transactions that are accessing
locks on items whose primary copies reside at that site, but other transactions are not
affected. This method can also use backup sites to enhance reliability and availability.

Choosing a New Coordinator Site in Case of Failure. Whenever a coordinator
site fails in any of the preceding techniques, the sites that are still running must choose a
new coordinator. In the case of the primary site approach with no backup site, all
executing transactions must be aborted and restarted in a tedious recovery process. Part of
the recovery process involves choosing a new primary site and creating a lock manager
process and a record of all lock information at that site. For methods that use backup sites,
transaction processing is suspended while the backup site is designated as the new primary
site and a new backup site is chosen and is sent copies of all the locking information from
the new primary site.

If a backup site X is about to become the new primary site, X can choose the new
backup site from among the system's running sites. However, if no backup site existed, or if
both the primary and the backup sites are down, a process called election can be used to

choose the new coordinator site. In this process, any site Y that attempts to communicate
with the coordinator site repeatedly and fails to do so can assume that the coordinator is
down and can start the election process by sending a message to all running sites proposing
that Y become the new coordinator. As soon as Y receives a majority of yes votes, Y can
declare that it is the new coordinator. The election algorithm itself is quite complex, but
this is the main idea behind the election method. The algorithm also resolves any attempt
by two or more sites to become coordinator at the same time. The references in the
Selected Bibliography at the end of this chapter discuss the process in detail.

25.6 An Overview of 3-Tier Client-Server Architecture I 827

25.5.2 Distributed Concurrency Control Based on Voting
The concurrency control methods for replicated items discussed earlier all use the idea of
a distinguished copy that maintains the locks for that item. In the voting method, there is
no distinguished copy; rather, a lock request is sent to all sites that includes a copy of the
data item. Each copy maintains its own lock and can grant or deny the request for it. If a
transaction that requests a lock is granted that lock by a majority of the copies, it holds the
lock and informs all copies that it has been granted the lock. If a transaction does not
receive a majority of votes granting it a lock within a certain time-out period, it cancels its
request and informs all sites of the cancellation.

The voting method is considered a truly distributed concurrency control method,
since the responsibility for a decision resides with all the sites involved. Simulation
studies have shown that voting has higher message traffic among sites than do the
distinguished copy methods. If the algorithm takes into account possible site failures
during the voting process, it becomes extremely complex.

25.5.3 Distributed Recovery
The recovery process in distributed databases is quite involved. We give only a very brief
idea of some of the issues here. In some cases it is quite difficult even to determine
whether a site is down without exchanging numerous messages with other sites. For
example, suppose that site X sends a message to site Y and expects a response from Y but
does not receive it. There are several possible explanations:

• The message was not delivered to Y because of communication failure.

• Site Y is down and could not respond.

• Site Y is running and sent a response, but the response was not delivered.

Without additional information or the sending of additional messages, it is difficult
to determine what actually happened.

Another problem with distributed recovery is distributed commit. When a transaction
is updating data at several sites, it cannot commit until it is sure that the effect of the
transaction on every site cannot be lost. This means that every site must first have recorded
the local effects of the transactions permanently in the local site log on disk. The two-phase
commit protocol, discussed in Section 19.6, is often used to ensure the correctness of
distributed commit.

25.6 AN OVERVIEW OF 3-TIER
CLIENT-SERVER ARCHITECTURE

As we pointed out in the chapter introduction, full-scale DDBMSs have not been devel
oped to support all the types of functionalities that we discussed so far. Instead, distributed
database applications are being developed in the context of the client-server architec-

828 I Chapter 25 Distributed Databases and Client-Server Architectures

tures. We already introduced the two-tier client-server architecture in Section 2.5. It is
now more common to use a three-tier architecture, particular in Web applications. This
architecture is illustrated in Figure 25.8.

In the three-tier client-server architecture, the following three layers exist:

1. Presentation layer (client): This provides the user interface and interacts with the
user. The programs at this layer present Web interfaces or forms to the client in
order to interface with the application. Web browsers are often utilized, and the
languages used include HTML, JAVA, JavaScript, PERL, Visual Basic, and so on.
This layer handles user input, output, and navigation by accepting user com
mands and displaying the needed information, usually in the form of static or
dynamic Web pages. The latter are employed when the interaction involves data
base access. When a Web interface is used, this layer typically communicates with
the application layer via the HTTP protocol.

2. Application layer (business logic): This layer programs the application logic. For
example, queries can be formulated based on user input from the client, or query
results can be formatted and sent to the client for presentation. Additional appli
cation functionality can be handled at this layer, such as security checks, identity
verification, and other functions. The application layer can interact with one or
more databases or data sources as needed by connecting to the database using
ODBC,)DBC, SQL/CLI or other database access techniques.

3. Database server: This layer handles query and update requests from the applica
tion layer, processes the requests, and send the results. Usually SQL is used to

access the database if it is relational or object-relational and stored database pro-

supervisor~ undec4OK_supervisor

subordinate

1
CTmain-producbcemp

workson employee salary supervise

department project female male

FIGURE 25.8 The three-tier client-server architecture.

25.6 An Overview of 3-Tier Client-Server Architecture I 829

cedures may also be invoked. Query results (and queries) may be formatted into
XML (see Chapter 26) when transmitted between the application server and the
database server.

Exactly how to divide the DBMS functionality between client, application server, and
database server may vary. The common approach is to include the functionality of a
centralized DBMS at the database server level. A number of relational DBMS products have
taken this approach, where an SQL server is provided. The application server must then
formulate the appropriate SQL queries and connect to the database server when needed.
The client provides the processing for user interface interactions. Since SQL is a relational
standard, various SQL servers, possibly provided by different vendors, can accept SQL
commands through standards such as ODBC, JDBC, SQL!CLI (see Chapter 9).

In this architecture, the application server may also refer to a data dictionary that
includes information on the distribution of data among the various SQL servers, as well as
modules for decomposing a global query into a number of local queries that can be
executed at the various sites. Interaction between application server and database server
might proceed as follows during the processing of an SQL query:

1. The application server formulates a user query based on input from the client
layer and decomposes it into a number of independent site queries. Each site
query is sent to the appropriate database server site.

2. Each database server processes the local query and sends the results to the applica
tion server site. Increasingly, XML is being touted as the standard for data
exchange (see Chapter 26) so the database server may format the query result into
XML before sending it to the application server.

3. The application server combines the results of the subqueries to produce the
result of the originally required query, formats it into HTML or some other form
accepted by the client, and sends it to the client site for display.

The application server is responsible for generating a distributed execution plan for a
multisite query or transaction and for supervising distributed execution by sending
commands to servers. These commands include local queries and transactions to be
executed, as well as commands to transmit data to other clients or servers. Another
function controlled by the application server (or coordinator) is that of ensuring
consistency of replicated copies of a data item by employing distributed (or global)
concurrency control techniques. The application server must also ensure the atomicity of
global transactions by performing global recovery when certain sites fail. We discussed
distributed recovery and concurrency control in Section 25.5.

If the DDBMS has the capabilty to hide the details of data distribution from the
application server, then it enables the application server to execute global queries and
transactions as though the database were centralized, without having to specify the sites
at which the data referenced in the query or transaction resides. This property is called
distribution transparency. Some DDBMSs do not provide distribution transparency,
instead requiring that applications be aware of the details of data distribution.

830 I Chapter 25 Distributed Databases and Client-Server Architectures

25.7 DISTRIBUTED DATABASES IN ORACLE
In the client-server architecture, the Oracle database system is divided into two parts:
(l) a front-end as the client portion, and (2) a back-end as the server portion. The cli
ent portion is the front-end database application that interacts' with the user. The cli
ent has no data access responsibility and merely handles the requesting, processing, and
presentation of data managed by the server. The server portion runs Oracle and handles
the functions related to concurrent shared access. It accepts SQL and PL/SQL statements
originating from client applications, processes them, and sends the results back to the
client. Oracle client-server applications provide location transparency by making loca
tion of data transparent to users; several features like views, synonyms, and procedures
contribute to this. Global naming is achieved by using <TABLENAME.@, DATABASENAME> to
refer to tables uniquely.

Oracle uses a two-phase commit protocol to deal with concurrent distributed
transactions. The COMMIT statement triggers the two-phase commit mechanism. The RECO

(recoverer) background process automatically resolves the outcome of those distributed
transactions in which the commit was interrupted. The RECO of each local Oracle Server
automatically commits or rolls back any "in-doubt" distributed transactions consistently on all
involved nodes. For long-term failures, Oracle allows each local DBA to manually commit or

roll back any in-doubt transactions and free up resources. Global consistency can be
maintained by restoring the database at each site to a predetermined fixed point in the past.

Oracle's distributed database architecture is shown in Figure 25.9. A node in a
distributed database system can act as a client, as a server, or both, depending on the
situation. The figure shows two sites where databases called HQ (headquarters) and Sales
are kept. For example, in the application shown running at the headquarters, for an SQL

statement issued against local data (for example, DELETE FRDM DEPT •••), the HQ computer
acts as a server, whereas for a statement against remote data (for example, INSERT INTO

EMP@SALES), the HQ computer acts as a client.
All Oracle databases in a distributed database system (DDBS) use Oracle's networking

software NetS for interdatabase communication. NetS allows databases to communicate
across networks to support remote and distributed transactions. It packages SQL

statements into one of the many communication protocols to facilitate client to server
communication and then packages the results back similarly to the client. Each database
has a unique global name provided by a hierarchical arrangement of network domain
names that is prefixed to the database name to make it unique.

Oracle supports database links that define a one-way communication path from one
Oracle database to another. For example,

CREATE DATABASE LINK sales.us.americas;

establishes a connection to the sales database in Figure 25.9 under the network domain
us that comes under domain ameri cas.

Data in an Oracle DDBS can be replicated using snapshots or replicated master tables.
Replication is provided at the following levels:

• Basic replication: Replicas of tables are managed for read-only access. For updates,
data must be accessed at a single primary site.

25.7 Distributed Databases in Oracle I 831

Net8

Database
server

Database
server

Net8
(c:::>c:::>c:::>

=

EMPtable

--t- , , Sales,
database

CONNECT TO ..

IDENTIFY BY .

DEPT Table

--t- .r HQ
Database

~---

(C:::>C:::>C:::>

=I---::l-~-----:.,--f----'

Application

TRANSACTION

INSERT INTO EMP@SALES .. ;

DELETE FROM DEPT .. ;

SELECT...
FROM EMP@SALES ... ;

COMMIT;

TRANSACTION

INSERT INTO EMP@SALES .. ;

DELETE FROM DEPT .. ;

SELECT ...
FROM EMP@SALES ... ;

COMMIT;

FIGURE 25.9 Oracle distributed database systems. Source: From Oracle (1997a).
Copyright © Oracle Corporation 1997. All rights reserved.

• Advanced (symmetric) replication: This extends beyond basic replication by allowing
applications to update table replicas throughout a replicated DDBS. Data can be read
and updated at any site. This requires additional software called Oracle's advanced
replication option. A snapshot generates a copy of a part of the table by means of a
query called the snapshot definingquery. A simple snapshot definition looks like this:

CREATE SNAPSHOT sales.orders AS
SELECT * FROM sa1es.orders@hq.us.americas;

832 I Chapter 25 Distributed Databases and Client-Server Architectures

Oracle groups snapshots into refresh groups. By specifying a refresh interval, the
snapshot is automatically refreshed periodically at that interval by up to ten Snapshot
Refresh Processes (SNPs). If the defining query of a snapshot contains a distinct or
aggregate function, a GROUP BY or CONNECT BY clause, or join or set operations, the
snapshot is termed a complex snapshot and requires additional processing. Oracle (up to
version 7.3) also supports ROWID snapshots that are based on physical row identifiers of
rows in the master table.

Heterogeneous Databases in Oracle. In a heterogeneous DDBS, at least one
database is a non-Oracle system. Oracle Open Gateways provides access to a non-Oracle
database from an Oracle server, which uses a database link to access data or to execute
remote procedures in the non-Oracle system. The Open Gateways feature includes the
following:

• Distributed transactions: Under the two-phase commit mechanism, transactions may
span Oracle and non-Oracle systems.

• Transparent SQL access: SQL statements issued by an application are transparently
transformed into SQL statements understood by the non-Oracle system.

• Pass-through SQL and stored procedures: An application can directly access a non
Oracle system using that system's version of SQL. Stored procedures in a non-Oracle
SQL-based system are treated as if they were PL!SQL remote procedures.

• Global query optimization: Cardinality information, indexes, etc., at the non-Oracle
system are accounted for by the Oracle Server query optimizer to perform global
query optimization.

• Procedural access: Procedural systems like messaging or queuing systems are accessed
by the Oracle server using PL!SQL remote procedure calls.

In addition to the above, data dictionary references are translated to make the non
Oracle data dictionary appear as a part of the Oracle Server's dictionary. Character set
translations are done between national language character sets to connect multilingual
databases.

25.8 SUMMARY
In this chapter we provided an introduction to distributed databases. This is a very broad
topic, and we discussed only some of the basic techniques used with distributed databases. We
first discussed the reasons for distribution and the potential advantages of distributed databases
over centralized systems. We also defined the concept of distribution transparency and the
related concepts of fragmentation transparency and replication transparency. We discussed
the design issues related to data fragmentation, replication, and distribution, and we distin
guished between horizontal and vertical fragments of relations. We discussed the use of data
replication to improve system reliability and availability. We categorized DDBMSs by usingcri
teria such as degree of homogeneity of software modules and degree of local autonomy. We dis-

Review Questions I 833

cussed the issues of federated database management in some detail focusing on the needs of
supporting various types of autonomies and dealing with semantic heterogeneity.

We illustrated some of the techniques used in distributed query processing, and
discussed the cost of communication among sites, which is considered a major factor in
distributed query optimization. We compared different techniques for executing joins and
presented the semijoin technique for joining relations that reside on different sites. We
briefly discussed the concurrency control and recovery techniques used in DDBMSs. We
reviewed some of the additional problems that must be dealt with in a distributed
environment that do not appear in a centralized environment.

We then discussed the client-server architecture concepts and related them to
distributed databases, and we described some of the facilities in Oracle to support
distributed databases.

Review Questions
25.1. What are the main reasons for and potential advantages of distributed databases?
25.2. What additional functions does a DDBMS have over a centralized DBMS?
25.3. What are the main software modules of a DDBMS? Discuss the main functions of

each of these modules in the context of the client-server architecture.
25.4. What is a fragment of a relation? What are the main types of fragments? Why is

fragmentation a useful concept in distributed database design?
25.5. Why is data replication useful in DDBMSs? What typical units of data are

replicated?
25.6. What is meant by data allocation in distributed database design? What typical

units of data are distributed over sites?
25.7. How is a horizontal partitioning of a relation specified? How can a relation be put

back together from a complete horizontal partitioning?
25.8. How is a vertical partitioning of a relation specified? How can a relation be put

back together from a complete vertical partitioning?
25.9. Discuss what is meant by the following terms: degree of homogeneity of a DDBMS,

degree of local autonomy of a DDBMS, federated DBMS, distribution transparency, frag
mentation transparency, replication transparency, multidatabase system.

25.10. Discuss the naming problem in distributed databases.
25.11. Discuss the different techniques for executing an equijoin of two files located at

different sites. What main factors affect the cost of data transfer?
25.12. Discuss the semijoin method for executing an equijoin of two files located at dif

ferent sites. Under what conditions is an equijoin strategy efficient?
25.13. Discuss the factors that affect query decomposition. How are guard conditions and

attribute lists of fragments used during the query decomposition process?
25.14. How is the decomposition of an update request different from the decomposition

of a query? How are guard conditions and attribute lists of fragments used during
the decomposition of an update request?

25.15. Discuss the factors that do not appear in centralized systems that affect concur
rency control and recovery in distributed systems.

834 I Chapter 25 Distributed Databases and Client-Server Architectures

25.16. Compare the primary site method with the primary copy method for distributed
concurrency control. How does the use of backup sites affect each?

25.17. When are voting and elections used in distributed databases?
25.18. What are the software components in a client-server DDBMS? Compare the two

tier and three-tier client-server architectures.

Exercises
25.19. Consider the data distribution of the COMPANY database, where the fragments at

sites 2 and 3 are as shown in Figure 25.3 and the fragments at site 1 are as shown
in Figure 5.6. For each of the following queries, show at least two strategies of
decomposing and executing the query. Under what conditions would each of your
strategies work well?
a. For each employee in department 5, retrieve the employee name and the

names of the employee's dependents.
b. Print the names of all employees who work in department 5 but who work on

some project not controlled by department 5.
25.20. Consider the following relations:

BOOKS (Book#, Primary_author, Topic, Total_stock, $price)
BOOKSTORE (Store#, City, State, Zip, Inventory_value)
STOCK (Store#, Book#, Qty)

TOTAL_STOCK is the total number of books in stock, and INVENTORY_VALUE is the total
inventory value for the store in dollars.

a. Give an example of two simple predicates that would be meaningful for the
BOOKSTORE relation for horizontal partitioning.

b. How would a derived horizontal partitioning of STOCK be defined based on the
partitioning of BOOKSTORE?

c. Show predicates by which BOOKS may be horizontally partitioned by topic.
d. Show how the STOCK may be further partitioned from the partitions in (b) by

adding the predicates in (c).
25.21. Consider a distributed database for a bookstore chain called National Books with

3 sites called EAST, MIDDLE, and WEST. The relation schemas are given in question
24.20. Consider that BOOKS are fragmented by $PRICE amounts into:

B1: BOOK!: up to $20.
Bz: BOOK2: from $20.01 to $50.
B3: BOOK3: from $50.01 to $100.
B4: BOOK4: $100.01 and above.

Similarly, BOOKSTORES are divided by Zi pcodes into:

SI: EAST: Zi pcodes up to 35000.
s, MIDDLE: Zipcodes 35001 to 70000.
S3: WEST: Zi pcodes 70001 to 99999.

Assume that STOCK is a derived fragment based on BOOKSTORE only.

Selected Bibliography I 835

a. Consider the query:

SELECT Book#, Total_stock
FROM Books
WHERE $price > 15 and $price < 55;

Assume that fragments of BOOKSTORE are non-replicated and assigned based on
region. Assume further that BOOKS are allocated as:

EAST: 81, B4
MIDDLE: B1, 82
WEST: 81, B2, B3, B4

Assuming the query was submitted in EAST, what remote subqueries does it
generate? (write in SQL).

b. If the bookprice of BOOK#= 1234 is updated from $45 to $55 at site MIDDLE,

what updates does that generate? Write in English and then in SQl.

c. Given an example query issued at WEST that will generate a subquery for
MIDDLE.

d. Write a query involving selection and projection on the above relations and
show two possible query trees that denote different ways of execution.

25.22. Consider that you have been asked to propose a database architecture in a large
organization, General Motors, as an example, to consolidate all data including
legacy databases (from Hierarchical and Network models, which are explained in
Appendices C and D; no specific knowledge of these models is needed) as well as
relational databases, which are geographically distributed so that global applica
tions can be supported. Assume that alternative one is to keep all databases as
they are, while alternative two is to first convert them to relational and then sup
port the applications over a distributed integrated database.
a. Draw two schematic diagrams for the above alternatives showing the linkages

among appropriate schemas. For alternative one, choose the approach of pro
viding export schemas for each database and constructing unified schemas for
each application.

b. List the steps one has to go through under each alternative from the present
situation until global applications are viable.

c. Compare these from the issues of: (i) design time considerations, and (ii) run
time considerations.

Selected Bibliography
The textbooks by Ceri and Pelagatti (1984a) and Ozsu and Valduriez (1999) are devoted
to distributed databases. Halsaal (1996), Tannenbaum (1996), and Stallings (1997) are
textbooks on data communications and computer networks. Comer (1997) discusses net
works and internets. Dewire (1993) is a textbook on client-server computing. Ozsu et at.
(1994) has a collection of papers on distributed object management.

836 I Chapter 25 Distributed Databases and Client-Server Architectures

Distributed database design has been addressed in terms of horizontal and vertical
fragmentation, allocation, and replication. Ceri et a1. (1982) defined the concept of
minterm horizontal fragments. Ceri et a1. (1983) developed an integer programming
based optimization model for horizontal fragmentation and allocation. N avathe et '11.
(1984) developed algorithms for vertical fragmentation based on attribute affinity and
showed a variety of contexts for vertical fragment allocation. Wilson and Navathe (1986)
present an analytical model for optimal allocation of fragments. Elmasri et a1. (1987)
discuss fragmentation for the EeR model; Karlapalem et a1. (1994) discuss issues for
distributed design of object databases. Navathe et a1. (1996) discuss mixed fragmentation
by combining horizontal and vertical fragmentation; Karlapalem et a1. (1996) present a
model for redesign of distributed databases.

Distributed query processing, optimization, and decomposition are discussed in
Hevner and Yao (1979), Kerschberg et a1. (1982), Apers et a1. (1983), Ceri and Pelagatti
(1984), and Bodorick et a1. (1992). Bernstein and Goodman (1981) discuss the theory
behind semijoin processing. Wong (1983) discusses the use of relationships in relation
fragmentation. Concurrency control and recovery schemes are discussed in Bernstein and
Goodman (1981a). Kumar and Hsu (1998) have some articles related to recovery in
distributed databases. Elections in distributed systems are discussed in Garcia-Molina
(1982). Lamport (1978) discusses problems with generating unique timestamps in a
distributed system.

A concurrency control technique for replicated data that is based on voting is
presented by Thomas (1979). Gifford (1979) proposes the use of weighted voting, and
Paris (1986) describes a method called voting with witnesses.]ajodia and Mutchler
(1990) discuss dynamic voting. A technique called available copy is proposed by Bernstein
and Goodman (1984), and one that uses the idea of a group is presented in EIAbbadi and
Toueg (1988). Other recent work that discusses replicated data includes Gladney (1989),
Agrawal and E1Abbadi (1990), E1Abbadi and Toueg (1990), Kumar and Segev (1993),
Mukkamala (1989), and Wolfson and Milo (1991). Bassiouni (1988) discusses optimistic
protocols for DDB concurrency control. Garcia-Molina (1983) and Kumar and
Stonebraker (1987) discuss techniques that use the semantics of the transactions.
Distributed concurrency control techniques based on locking and distinguished copies are
presented by Menasce et a1. (1980) and Minoura and Wiederhold (1982). Obermark
(1982) presents algorithms for distributed deadlock detection.

A survey of recovery techniques in distributed systems is given by Kohler (1981).
Reed (1983) discusses atomic actions on distributed data. A book edited by Bhargava
(1987) presents various approaches and techniques for concurrency and reliability in
distributed systems.

Federated database systems were first defined in McLeod and Heimbigner (1985).
Techniques for schema integration in federated databases are presented by Elmasri et al.
(1986), Batini et a1. (1986), Hayne and Ram (1990), and Motro (1987). Elmagarmid and
Helal (1988) and Gamal-Eldin et a1. (1988) discuss the update problem in heterogeneous
DDBSs. Heterogeneous distributed database issues are discussed in Hsiao and Kamel
(1989). Sheth and Larson (1990) present an exhaustive survey of federated database
management.

Selected Bibliography I 837

Recently, multidatabase systems and interoperability have become important topics.
Techniques for dealing with semantic incompatibilities among multiple databases are
examined in DeMichiel (1989), Siegel and Madnick (1991), Krishnamurthy et al.
(1991), and Wang and Madnick (1989). Castano et al. (1998) present an excellent
survey of techniques for analysis of schemas. Pitoura et al. (1995) discuss object
orientation in multidatabase systems.

Transaction processing in multidatabases is discussed in Mehrotra et al. (1992),
Georgakopoulos et al. (1991), Elmagarmid et al. (1990), and Brietbart et al. (1990),
among others. Elmagarmid et al. (1992) discuss transaction processing for advanced
applications, including engineering applications discussed in Heiler et a1. (1992).

The workflow systems, which are becoming popular to manage information in
complex organizations, use multilevel and nested transactions in conjunction with
distributed databases. Weikum (1991) discusses multilevel transaction management.
Alonso et al. (1997) discuss limitations of current workflow systems.

A number of experimental distributed DBMSs have been implemented. These include
distributed INGRES (Epstein et al., 1978), DDTS (Devor and Weeldreyer, 1980), SDD-l
(Rothnie et al., 1980), System R* (Lindsay et al., 1984), SIRIUS-DELTA (Ferrier and
Stangret, 1982), and MULTIBASE (Smith et al., 1981). The OMNIBASE system
(Rusinkiewicz et al., 1988) and the Federated Information Base developed using the
Candide data model (Navathe et al., 1994) are examples of federated DDBMS. Pitoura et al.
(1995) present a comparative survey of the federated database system prototypes. Most
commercial DBMS vendors have products using the client-server approach and offer
distributed versions of their systems. Some system issues concerning client-server DBMS
architectures are discussed in Carey et al. (1991), DeWitt et al. (1990), and Wang and
Rowe (1991). Khoshafian et al. (1992) discuss design issues for relational DBMSs in the
client-server environment. Client-server management issues are discussed in many books,
such as Zantinge and Adriaans (1996).

8
EMERGING TECHNOLOGIES

XML and Internet
Databases

We now turn our attention to how databases are used and accessed from the Internet.
Many electronic commerce (e-commerce) and other Internet applications provide Web
interfaces to access information stored in one or more databases. These databases are
often referred to as data sources. It is common to use two-tier and three-tier clientserver
architectures for Internet applications (see Section 2.5). In some cases, other variations of
the clientserver model are used. E-commerce and other Internet database applications are
designed to interact with the user through Web interfaces that display Web pages. The
common method of specifying the contents and formatting of Web pages is through the
use of hyperlink documents. There are various languages for writing these documents,
the most common being HTML (Hypertext Markup Language). Although HTML is widely
used for formatting and structuring Web documents, it is not suitable for specifying struc
tured data that is extracted from databases. Recently, a new language-namely, XML

(Extended Markup Language)-has emerged as the standard for structuring and exchang
ing data over the Web. XML can be used to provide information about the structure and
meaning of the data in the Web pages rather than just specifying how the Web pages are
formatted for display on the screen. The formatting aspects are specified separately-for
example, by using a formatting language such as XSL (Extended Stylesheet Language).

This chapter describes the basics of accessing and exchanging information over the
Internet. We start in Section 26.1 by discussing how traditional Web pages differ from
structured databases, and discuss the differences between structured, semistructured, and
unstructured data. Then in Section 26.2 we turn our attention to the XML standard and

841

842 I Chapter 26 XML and Internet Databases

its tree-structured (hierarchical) data model. Section 26.3 discusses XML documents and
the languages for specifying the structure of these documents, namely, XML DTD

(Document Type Definition) and XML schema. Section 26.4 presents the various
approaches for storing XML documents, whether in their native (text) format, in a
compressed form, or in relational and other types of databases. Section 26.5 gives an
overview of the languages proposed for querying XML data. Section 26.6 summarizes the
chapter.

26.1 STRUCTURED, SEMISTRUCTURED, AND
UNSTRUCTURED DATA

The information stored in databases is known as structured data because it is represented
in a strict format. For example, each record in a relational database table-such as the
EMPLOYEE table in Figure S.6-follows the same format as the other records in that table.
For structured data, it is common to carefully design the database using techniques such as
those described in Chapters 3, 4, 7, 10, and 11 in order to create the database schema.
The DBMS then checks to ensure that all data follows the structures and constraints spec
ified in the schema.

However, not all data is collected and inserted into carefully designed structured
databases. In some applications, data is collected in an ad-hoc manner before it is known
how it will be stored and managed. This data may have a certain structure, but not all the
information collected will have identical structure. Some attributes may be shared among
the various entities, but other attributes may exist only in a few entities. Moreover,
additional attributes can be introduced in some of the newer data items at any time, and
there is no predefined schema. This type of data is known as semistructured data. A
number of data models have been introduced for representing semistructured data, often
based on using tree or graph data structures rather than the flat relational model structures.

A key difference between structured and semistructured data concerns how the
schema constructs (such as the names of attributes, relationships, and entity types) are
handled. In semistructured data, the schema information is mixed in with the data values,
since each data object can have different attributes that are not known in advance.
Hence, this type of data is sometimes referred to as self-describing data. Consider the
following example. We want to collect a list of bibliographic references related to a
certain research project. Some of these may be books or technical reports, others may be
research articles in journals or conference proceedings, and still others may refer to
complete journal issues or conference proceedings. Clearly, each of these may have
different attributes and different types of information. Even for the same type of
reference-say, conference articles-we may have different information. For example,
one article citation may be quite complete, with full information about author names,
title, proceedings, page numbers, and so on, whereas another citation may not have all
the information available. New types of bibliographic sources may appear in the future
for example, references to Web pages or to conference tutorials-and these may have new
attributes that describe them.

26.1 Structured, Semistructured, and Unstructured Data I 843

Company Projects

Name

•"Product X"

Project

• •"123456789" "Smith"

Project

• •32.5 "435435435" •"Joyce" •20.0

FIGURE 26.1 Representing semistructured data as a graph.

Semistructured data may be displayed as a directed graph, as shown in Figure 26.1.
The information shown in Figure 26.1 corresponds to some of the structured data shown
in Figure 5.6. As we can see, this model somewhat resembles the object model (see Figure
20.1) in its ability to represent complex objects and nested structures. In Figure 26.1, the
labels or tags on the directed edges represent the schema names: the names of attributes,
object types (or entity types or classes), and relationships. The internal nodes represent
individual objects or composite attributes. The leaf nodes represent actual data values of
simple (atomic) attributes.

There are two main differences between the semistructured model and the object
model that we discussed in Chapter 20:

1. The schema information-names of attributes, relationships, and classes (object
types) in the semistructured model is intermixed with the objects and their data
values in the same data structure.

2. In the semistructured model, there is no requirement for a predefined schema to
which the data objects must conform.

In addition to structured and semistructured data, a third category exists, known as
unstructured data because there is very limited indication of the type of data. A typical
example is a text document that contains information embedded within it. Web pages in
HTML that contain some data are considered to be unstructured data. Consider part of
an HTML file, shown in Figure 26.2. Text that appears between angled brackets, <... >, is
an HTML tag. A tag with a backslash, «] ... >, indicates an end tag, which represents the

844 I Chapter 26 XML and Internet Databases

<html>
<head>

</head>
<body>
<H1>List of company projects and the employees in each project<\H1>

<H2>The ProductX project:</H2>
<table width="100%" border=O cellpadding=O cellspacing=O>

<TR>
<TO width="50%">John Smith:</TO>
<TO>32.5 hours per week</TO>

</TR>
<TR>

<TO width="50%%">Joyce English:</TO>
<TO>20.0 hours per week</TD>

</TR>
</table>

<H2>The ProductY project:</H2>
<table width="100%" border=O cellpadding=O cellspacing=O>

<TR>
<TO width="50%">John Smith:</TO>
<TO>7.5 hours per week</TO>

</TR>
<TR>

<TO width="50%%">Joyce English:</TO>
<TO>20.0 hours per week</TO>

</TR>
<TR>

<TO width="50%%">Franklin Wong:</TO>
<TO>10.0 hours per week</TO>

</TR>
</table>

</body>
</html>

FIGURE 26.2 Part of an HTML document representing unstructured data.

ending of the effect of a matching start tag. The tags mark up the document! in order to
instruct an HTML processor how to display the text between a start tag and a matching
end tag. Hence, the tags specify document formatting rather than the meaning of the
various data elements in the document. HTML tags specify information, such as font size
and style (boldface, italics, and so on), color, heading levels in documents, and so on.
Some tags provide text structuring in documents, such as specifying a numbered or

1. That is why it is known as Hypertext Markup Language.

26.1 Structured, Semistructured, and Unstructured Data I 845

unnumbered list or a table. Even these structuring tags specify that the embedded textual
data is to be displayed in a certain manner, rather than indicating the type of data
represented in the table.

HTML uses a large number of predefined tags, which are used to specify a variety of
commands for formatting Web documents for display. The start and end tags specify the
range of text to be formatted by each command. A few examples of the tags shown in
Figure 26.2 follow:

• The <html> ... </html> tags specify the boundaries of the document.

• The document header information-within the <head> ... </head> tags-specifies
various commands that will be used elsewhere in the document. For example, it may
specify various script functions in a language such as JAVA Script or PERL, or certain
formatting styles (fonts, paragraph styles, header styles, and so on) that can be used
in the document. It can also specify a title to indicate what the HTML file is for, and
other similar information that will not be displayed as part of the document.

• The body of the document-specified within the <body> ... </body> tags-includes
the document text and the markup tags that specify how the text is to be formatted
and displayed. It can also include references to other objects, such as images, videos,
voice messages, and other documents.

• The <HI> ... </HI> tags specify that the text is to be displayed as a level I heading.
There are many heading levels «H2>, <H3>, and so on), each displaying text in a
less prominent heading format.

• The <table> ... </table> tags specify that the following text is to be displayed as a
table. Each row in the table is enclosed within <TR> ... </TR> tags, and the actual
text data in a row is displayed within <TD> ... </TD> tags.2

• Some tags may have attributes, which appear within the start tag and describe addi
tional properties of the tag." In Figure 26.2, the <table> start tag has four attributes
describing various characteristics of the table. The following <TD> and start
tags have one and two attributes, respectively.

HTML has a very large number of predefined tags, and whole books are devoted to

describing how to use these tags. If designed properly, HTML documents can be formatted
so that humans are able to easily understand the document contents, and are able to
navigate through the resulting Web documents. However, the source HTML text
documents are very difficult to interpret automatically by computer programs because they
do not include schema information about the type of data in the documents. As e
commerce and other Internet applications become increasingly automated, it is becoming
crucial to be able to exchange Web documents among various computer sites and to
interpret their contents automatically. This need was one of the reasons that led to the
development of XML, which we discuss in the next section.

2. <TR> stands for table row, and <TO> for table data.
3. This is how the term attribute is used in document markup languages, which differs from how it is
used in database models.

846 I Chapter 26 XML and Internet Databases

26.2 XMl HIERARCHICAL (TREE) DATA MODEL
We now introduce the data model used in XML. The basic object is XML in the XML docu
ment. Two main structuring concepts are used to construct an XML document: elements
and attributes. It is important to note right away that the term attribute in XML is not used
in the same manner as is customary in database terminology, but rather as it is used in
document description languages such as HTML and SGML.4 Attributes in XML provide
additional information that describes elements, as we shall see. There are additional con
cepts in XML, such as entities, identifiers, and references, but we first concentrate on
describing elements and attributes to show the essence of the XMLmodel.

Figure 26.3 shows an example of an XML element called <projects>. As in HTML,

elements are identified in a document by their start tag and end tag. The tag names are
enclosed between angled brackets < ... >, and end tags are further identified by a
backslash, </. .. >.5 Complex elements are constructed from other elements hierarchically,
whereas simple elements contain data values. A major difference between XMLand HTML

is that XML tag names are defined to describe the meaning of the data elements in the
document, rather than to describe how the text is to be displayed. This makes it possible
to process the data elements in the XMLdocument automatically by computer programs.

It is straightforward to see the correspondence between the XML textual representation
shown in Figure 26.3 and the tree structure shown in Figure 26.1. In the tree representation,
internal nodes represent complex elements, whereas leaf nodes represent simple elements.
That is why the XML model is called a tree model or a hierarchical model. In Figure 26.3,
the simple elements are the ones with the tag names <Name>, <Number>, <Location>,
<DeptNo>, <SSN>, <LastName>, <FirstName>, and <hours>. The complex elements are
the ones with the tag names <projects>, <project>, and <Worker>. In general, there is no
limit on the levels of nesting of elements.

In general, it is possible to characterize three main types of XML documents:

• Data-centric XML documents: These documents have many small data items that fol
Iowa specific structure and hence may be extracted from a structured database. They
are formatted as XML documents in order to exchange them or display them over the
Web.

• Document-centric XML documents: These are documents with large amounts of text,
such as news articles or books. There are few or no structured data elements in these
documents.

• Hybrid XMLdocuments: These documents may have parts that contain structured data
and other parts that are predominantly textual or unstructured.

It is important to note that data-centric XML documents can be considered either as
semistructured data or as structured data. If an XML document conforms to a predefined

4. SGML (Standard Generalized Markup Language) is a more general language for describing docu
ments and provides capabilities for specifying new tags. However, it is more complex than HTML

and XML.
5. The left and right angled bracket characters « and» are reserved characters, as are the amper
sand (&), apostrophe e), and single quotation marks ('). To include them within the text of a doc
ument, they must be encoded as &It;, >, &, ', and ", respectively.

26.2 XML Hierarchical (Tree) Data Model I 847

<?xml version="l.O" standalone="yes"?>
<projects>

<project>
<Name>ProductX</Name>
<Number>l</Number>
<Location>Bellaire</Location>
<DeptNo>5</DeptNo>
<Worker>
<SSN>123456789</SSN>
<LastName>Smith</LastName>
<hours>32.5</hours>

</Worker>
<Worker>
<SSN>453453453</SSN>
<FirstName>]oyce</FirstName>
<hours>20.0</hours>

</Worker>
«project>
</project>
<Name>ProductY</Name>
<Number>2</Number>
<Location>Sugarland</Location>
<DeptNo >5</DeptNo >
<Worker>
<SSN>123456789</SSN>
<hours>7.5</hours>

</Worker>
<Worker>
<SSN>453453453</SSN>
<hours>20.0</hours>

</Worker>
<Worker>
<SSN>333445555</SSN>
<hours>10.0</hours>

</Worker>
</project>

</projects>

FIGURE 26.3 A complex XML element called <projects>.

XML schema or DTD (see Section 26.3), then the document can be considered as
structured data. On the other hand, XML allows documents that do not conform to any
schema; and these would be considered as semistructured data. The latter are also known as
schemaless XML documents. When the value of the STANDALONE attribute in an XML document
is "YES", as in the first line of Figure 26.3, the document is standalone and schemaless.

XML attributes are generally used in a manner similar to how they are used in HTML
(see Figure 26.2), namely, to describe properties and characteristics of the elements (tags)
within which they appear. It is also possible to use XML attributes to hold the values of

848 I Chapter 26 XML and Internet Databases

simple data elements; however this is definitely not recommended. We discuss XML

attributes further in Section 26.3 when we discuss XMLschema and DTD.

26.3 XML DOCUMENTS, DTD, AND XML SCHEMA

26.3.1 Well-Formed and Valid XML Documents and XML DTD

In Figure 26.3, we saw what a simple XMLdocument may look like. An XMLdocument is
well formed if it follows a few conditions. In particular, it must start with an XML declara
tion to indicate the version of XML being used as well as any other relevant attributes, as
shown in the first line of Figure 26.3. It must also follow the syntactic guidelines of the
tree model. This means that there should be a single root element, and every element must
include a matching pair of start and end tags within the start and end tags of the parent ele
ment. This ensures that the nested elements specify a well-formed tree structure.

A well-formed XML document is syntactically correct. This allows it to be processed
by generic processors that traverse the document and create an internal tree
representation. A standard set of API (application programming interface) functions
called DOM (Document Object Model) allows programs to manipulate the resulting tree
representation corresponding to a well-formed XML document. However, the whole
document must be parsed beforehand when using DOM. Another API called SAX allows
processing of XML documents on the fly by notifying the processing program whenever a
start or end tag is encountered. This makes it easier to process large documents and allows
for processing of so-called streaming XML documents, where the processing program can
process the tags as they are encountered.

A well-formed XML document can have any tag names for the elements within the
document. There is no predefined set of elements (tag names) that a program processing
the document knows to expect. This gives the document creator the freedom to specify
new elements, but limits the possibilities for automatically interpreting the elements
within the document.

<!DOCTYPE projects [
<!ELEMENT projects (project+»
<!ELEMENT project (Name, Number, Location, DeptNo?, Workers»
<!ELEMENT Name (#PCDATA»
<!ELEMENT Number (#PCDATA»
<!ELEMENT Location (#PCDATA»
<!ELEMENT DeptNo (#PCDATA»
<!ELEMENT Workers (Worker*»
<!ELEMENT Worker (SSN, LastName?, FirstName?, hours»
<!ELEMENT SSN (#PCDATA»
<!ELEMENT LastName (#PCDATA»
<!ELEMENT FirstName (#PCDATA»
<!ELEMENT hours (#PCDATA»

] >

FIGURE 26.4 An XML DTD file called projects.

26.3 XML Documents, DTD, and XML Schema I 849

A stronger criterion is for an XML document to be valid. In this case, the document
must be well formed, and in addition the element names used in the start and end tag
pairs must follow the structure specified in a separate XML DTD (Document Type
Definition) file or XML schema file. We first discuss XML DTD here, then give an overview
of XML schema in Section 26.3.2. Figure 26.4 shows a simple XML DTD file, which specifies
the elements (tag names) and their nested structures. Any valid documents conforming
to this DTD should follow the specified structure. A special syntax exists for specifying
DTD files, as illustrated in Figure 26.4. First, a name is given to the root tag of the
document, which is called projects in the first line of Figure 26.4. Then the elements and
their nested structure are specified.

When specifying elements, the following notation is used:

• A * following the element name means that the element can be repeated zero or
more times in the document. This kind of element is known as an optional multivalued
(repeating) element.

• A + following the element name means that the element can be repeated one or
more times in the document. This kind of element is a required multivalued(repeating)
element.

• A ?following the element name means that the element can be repeated zero or one
times. This kind is an optional single-valued (nonrepeating) element.

• An element appearing without any of the preceding three symbols must appear
exactly once in the document. This kind is a required single-valued (nonrepeating)
element.

• The type of the element is specified via parentheses following the element. If the
parentheses include names of other elements, these latter elements are the children of
the element in the tree structure. If the parentheses include the keyword #PCDATA or
one of the other data types available in XML DTD, the element is a leaf node. PCDATA
stands for parsed character data, which is roughly similar to a string data type.

• Parentheses can be nested when specifying elements.

• A bar symbol (e\ I ez) specifies that either e\ or ez can appear in the document.

We can see that the tree structure in Figure 26.1 and the XML document in Figure
26.3 conform to the XML DTD in Figure 26.4. To require that an XML document be
checked for conformance to a DTD, we must specify this in the declaration of the
document. For example, we could change the first line in Figure 26.3 to the following:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE projects SYSTEM "proj.dtd">

When the value of the standalone attribute in an XML document is "no", the
document needs to be checked against a separate DTD document. The DTD file shown in
Figure 26.4 should be stored in the same file system as the XML document, and should be
given the file name "proj . dtd". Alernatively, we could include the DTD document text
at the beginning of the XML document itself to allow the checking.

Although XML DTD is quite adequate for specifying tree structures with required,
optional, and repeating elements, it has several limitations. First, the data types in DTD

850 I Chapter 26 XML and Internet Databases

are not very general. Second, DTD has its own special syntax and thus requires specialized
processors. It would be advantageous to specify XML schema documents using the syntax
rules of XML itself so that the same processors used for XML documents could process XML

schema descriptions. Third, all DTD elements are always forced to follow the specified
ordering of the document, so unordered elements are not permitted. These drawbacks led
to the development of XML schema, a more general language for specifying the structure
and elements of XMLdocuments.

26.3.2 XML Schema
The XML schema language is a standard for specifying the structure of XML documents. It
uses the same syntax rules as regular XML documents, so that the same processors can be
used on both. To distinguish the two types of documents, we will use the term XML

instance document or XML document for a regular XML document, and XML schema document
for a document that specifies an XML schema. Figure 26.5 shows an XML schema docu
ment corresponding to the COMPANY database shown in Figures 3.2 and 5.5. Although it is
unlikely that we would want to display the whole database as a single document, there
have been proposals to store data in native XML format as an alternative to storing the
data in relational databases. The schema in Figure 26.5 would serve the purpose of speci
fying the structure of the COMPANY database if it were stored in a native XML system. We dis
cuss this topic further in Section 26.4.

As with XML DTD, XML schema is based on the tree data model, with elements and
attributes as the main structuring concepts. However, it borrows additional concepts from

<7xml version="l.O" encoding="UTF-8" 7>
<xsd:schema xmlns:xsd=''http://www.w3.org/2001/XMLSchema''>

<xsd:annotation>
<xsd:documentation xml:lang="en">Company Schema (Element Approach)

Prepared by Babak Hojabri</xsd:documentation>
</xsd:annotation>

<xsd:element name="company">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="department" type="Department" minOccurs="O"

maxOccurs="unbounded" />
<xsd:element name="employee" type="Employee" minOccurs="O"

maxOccurs="unbounded">
<xsd:unique name="dependentNameUnique">

<xsd:selector xpath="employeeDependent" />
<xsd:field xpath="dependentName" />

</xsd:unique>
</xsd:element>
<xsd:element name="project" type="Project" minOccurs="O"

maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>

FIGURE 26.5 An XML schema file called company.

26.3 XML Documents, DTD, and XML Schema I 851

<xsd:unique name:"departmentNameUnique">
<xsd:selector xpath:"department" />
<xsd:field xpath:"departmentName" />

</xsd:unique>
<xsd:unique name:"projectNameUnique">

<xsd:selector xpath:"project" />
<xsd:field xpath:"projectName" />

</xsd:unique>
<xsd:key name:"projectNumberKey">

<xsd:selector xpath:"project" />
<xsd:field xpath:"projectNumber" />

</xsd:key>
<xsd:key name:"departmentNumberKey">

<xsd:selector xpath:"department" />
<xsd:field xpath:"departmentNumber" />

</xsd:key>
<xsd:key name:"employeeSSNKey">

<xsd:selector xpath:"employee" />
<xsd:field xpath:"employeeSSN" />

</xsd:key>
<xsd:keyref name:"departmentManagerSSNKeyRef" refer:"employeeSSNKey">

<xsd:selector xpath:"department" />
<xsd:field xpath:"departmentManagerSSN" />

</xsd:keyref>
<xsd:keyref name:"employeeDepartmentNumberKeyRef"

refer:"departmentNumberKey">
<xsd:selector xpath:"employee" />
<xsd:field xpath:"employeeDepartmentNumber" />

</xsd:keyref>
<xsd:keyref name:"employeeSupervisorSSNKeyRef" refer:"employeeSSNKey">

<xsd:selector xpath:"employee" />
<xsd:field xpath:"employeeSupervisorSSN" />

</xsd:keyref>
<xsd:keyref name:"projectDepartmentNumberKeyRef"

refer:"departmentNumberKey">
<xsd:selector xpath:"project" />
<xsd:field xpath:"projectDepartmentNumber" />

</xsd:keyref>
<xsd:keyref name:"projectWorkerSSNKeyRef" refer:"employeeSSNKey">

<xsd:selector xpath:"project/projectWorker" />
<xsd:field xpath:"SSN" />

</xsd:keyref>
<xsd:keyref name:"employeeWorksOnProjectNumberKeyRef"

refer:"projectNumberKey">
<xsd:selector xpath:"employee/employeeWorksOn" />
<xsd:field xpath:"projectNumber" />

</xsd:keyref>
</xsd:element>

FIGURE 26.5(CONTINUED) An XML schema file called. company.

852 I Chapter 26 XML and Internet Databases

<xsd:complexType name="Department">
<xsd:sequence>

<xsd:element name="departmentName" type="xsd:string" />
<xsd:element name="departmentNumber" type="xsd:string" />
<xsd:element name="departmentManagerSSN" type="xsd:string" />
<xsd:element name="departmentManagerStartDate" type="xsd:date" />
<xsd:element name="departmentLocation" type="xsd:string"

m;nOccurs="O" maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="Employee">

<xsd:sequence>
<xsd:element name="employeeName" type="Name" />
<xsd:element name="employeeSSN" type="xsd:string" />
<xsd:element name="employeeSex" type="xsd:string" />
<xsd:element name="employeeSalary" type="xsd:unsignedlnt" />
<xsd:element name="employeeBirthDate" type="xsd:date" />
<xsd:element name="employeeDepartmentNumber" type="xsd:string" />
<xsd:element name="employeeSupervisorSSN" type="xsd:string" />
<xsd:element name="employeeAddress" type="Address" />
<xsd:element name="employeeWorksOn" type="WorksOn" m;nOccurs="I"

maxOccurs="unbounded" />
<xsd:element name="employeeDependent" type="Dependent" m;nOccurs="O"

maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="Project">

<xsd:sequence>
<xsd:element name="projectName" type="xsd:string" />
<xsd:element name="projectNumber" type="xsd:string" />
<xsd:element name="projectLocat;on" type="xsd:string" />
<xsd:element name="projectDepartmentNumber" type="xsd:string" />
<xsd:element name="projectWorker" type="Worker" m;nOccurs="I"

maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="Dependent">

<xsd:sequence>
<xsd:element name="dependentName" type="xsd:string" />
<xsd:element name="dependentSex" type="xsd:string" />
<xsd:element name="dependentBirthDate" type="xsd:date" />
<xsd:element name="dependentRelationship" type="xsd:string" />

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Address">

<xsd:sequence>
<xsd:element name="number" type="xsd:string" />
<xsd:element name="street" type="xsd:string" />
<xsd:element name="city" type="xsd:string" />
<xsd:element name="state" type="xsd:string" />

</xsd:sequence>

FIGURE 26.5(CONTINUED) An XML schema file called company.

26.3 XML Documents, DTD, and XML Schema I 853

</xsd:complexType>
<xsd:complexType name="Name">

<xsd:sequence>
<xsd:element name="firstName" type="xsd:string" />
<xsd:element name="middleName" type="xsd:string" />
<xsd:element name="lastName" type="xsd:string" />

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Worker">

<xsd:sequence>
<xsd:element name="SSN" type="xsd:string" />
<xsd:element name="hours" type="xsd:float" />

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="WorksOn">

<xsd:sequence>
<xsd:element name="projectNumber" type="xsd:string" />
<xsd:element name="hours" type="xsd:float" />

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

FIGURE 26.5(CONTINUED) An XML schema file called company.

database and object models, such as keys, references, and identifiers. We here describe the
features of XML schema in a step-by-step manner, referring to the example XML schema
document of Figure 26.5 for illustration. We introduce and describe some of the schema
concepts in the order in which they are used in Figure 26.5.

1. Schema descriptions and XML namespaces: It is necessary to identify the specific set
ofXML schema language elements (tags) being used by specifying a file stored at a
Web site location. The second line in Figure 26.5 specifies the file used in this
example, which is ..http://www.w3.org/200l/XMLSchema". This is the most
commonly used standard for XML schema commands. Each such definition is
called an XML namespace, because it defines the set of commands (names) that
can be used. The file name is assigned to the variable xsd (XML schema descrip
tion) using the attribute xml ns (XML narnespace}, and this variable is used as a
prefix to all XML schema commands (tag names). For example, in Figure 26.5,
when we write xsd: el ement or xsd: sequence, we are referring to the definitions
of the element and sequence tags as defined in the file ''http://www.w3.org/
200l/XMLSchema".

2. Annotations, documentation, and language used: The next couple of lines in Figure
26.5 illustrate the XML schema elements (tags) xsd: annotati on and
xsd: documentati on, which are used for providing comments and other descrip
tions in the XML document. The attribute xml :1ang of the xsd: documentati on
element specifies the language being used, where "en" stands for the English
language.

854 I Chapter 26 XML and Internet Databases

3. Elements and types: Next, we specify the root element of our XML schema. In XML

schema, the name attribute of the xsd: element tag specifies the element name,
which is called company for the root element in our example (see Figure 26.5).
The structure of the company root element can then be specified, which in our
example is xsd: complexType. This is further specified to be a sequence of depart
ments, employees, and projects using the xsd: sequence structure of XML schema.
It is important to note here that this is not the only way to specify an XML schema
for the COMPANY database. We will discuss other options in Section 26.4.

4. First-level elements in the COMPANY database: Next, we specify the three first-level ele
ments under the company root element in Figure 26.5. These elements are named
employee, department, and proj ect, and each is specified in an xsd: element tag.
Notice that if a tag has only attributes and no further subelements or data within
it, it can be ended with the backslash symbol C/» directly instead of having a
separate matching end tag. These are called empty elements; examples are the
xsd: el ement elements named department and project in Figure 26.5.

5. Specifying element type and minimum and maximum occurrences: In XML schema, the
attributes type, minOccu rs , and maxOccurs in the xsd: element tag specify the
type and multiplicity of each element in any document that conforms to the
schema specifications. If we specify a type attribute in an xsd: element, the struc
ture of the element must be described separately, typically using the
xsd : comp1exType element of XML schema. This is illustrated by the employee,
department, and project elements in Figure 26.5. On the other hand, if no type
attribute is specified, the element structure can be defined directly following the
tag, as illustrated by the company root element in Figure 26.5. The mi nOccurs and
maxOccurs tags are used for specifying lower and upper bounds on the number of
occurrences of an element in any document that conforms to the schema specifi
cations. If they are not specified, the default is exactly one occurrence. These
serve a similar role to the ", +, and? symbols of XML DTD, and to the (min, max)
constraints of the ER model (see Section 3.7.4).

6. Specifying keys: In XMLschema, it is possible to specify constraints that correspond
to unique and primary key constraints in a relational database (see Section 5.2.2),
as well as foreign keys (or referential integrity) constraints (see Section 5.2,4).
The xsd: uni que tag specifies elements that correspond to unique attributes in a
relational database that are not primary keys. We can give each such uniqueness
constraint a name, and we must specify xsd: sel ector and xsd: fi e1d tags for it
to identify the element type that contains the unique element and the element
name within it that is unique via the xpath attribute. This is illustrated by the
departmentNameUni que and proj ectNameUni que elements in Figure 26.5. For
specifying primary keys, the tag xsd: key is used instead of xsd: uni que, as illus
trated by the projectNumberKey, departmentNumberKey, and employeeSSNKey
elements in Figure 26.5. For specifying foreign keys, the tag xsd: keyref is used,
as illustrated by the six xsd: key ref elements in Figure 26.5. When specifying a
foreign key, the attribute refer of the xsd: key ref tag specifies the referenced
primary key, whereas the tags xsd: se1ector and xsd: fi e1d specify the referenc
ing element type and foreign key (see Figure 26.5).

26.4 XML Documents and Databases I 855

7. Specifying the structures of complex elements via complex types: The next part of our
example specifies the structures of the complex elements Department, Employee,
Project, and Dependent, using the tag xsd:complexType (see Figure 26.5). We
specify each of these as a sequence of subelements corresponding to the database
attributes of each entity type (see Figures 3.2 and 5.7) by using the xsd: sequence
and xsd: element tags of XML schema. Each element is given a name and type via
the attributes name and type of xsd: element. We can also specify mi nOccurs and
maxOccu rs attributes if we need to change the default of exactly one occurrence.
For (optional) database attributes where null is allowed, we need to specify
mi nOccurs = 0, whereas for multivalued database attributes we need to specify
maxOccurs = "unbounded" on the corresponding element. Notice that if we were
not going to specify any key constraints, we could have embedded the subelernents
within the parent element definitions directly without having to specify complex
types. However, when unique, primary key, and foreign key constraints need to be
specified, we must define complex types to specify the element structures.

8. Composite (compound) attributes: Composite attributes from Figure 3.2 are also
specified as complex types in Figure 26.5, as illustrated by the Address, Name,
Worker, and WorksOn complex types. These could have been directly embedded
within their parent elements.

This example illustrates some of the main features of XML schema. There are other
features, but they are beyond the scope of our presentation. In the next section, we discuss
the different approaches to creating XMLdocuments from relational databases and storing
XMLdocuments.

26.4 XML DOCUMENTS AND DATABASES
We now discuss how various types of XML documents can be stored and retrieved. Section
26.4.1 gives an overview of the various approaches for storing XML documents. Section
26.4.2 discusses one of these approaches, in which data-centric XML documents are
extracted from existing databases, in more detail. In particular, we show how tree struc
tured documents can be created from graph-structured databases. Section 26.4.3 discusses
the problem of cycles and how it can be dealt with.

26.4.1 Approaches to Storing XML Documents
Several approaches to organizing the contents of XML documents to facilitate their subse
quent querying and retrieval have been proposed. The following are the most common
approaches:

1. Using a DBMS to store the documents as text: A relational or object DBMS can be
used to store whole XML documents as text fields within the DBMS records or
objects. This approach can be used if the DBMS has a special module for document
processing, and would work for storing schemaless and document-centric XML

856 I Chapter 26 XML and Internet Databases

documents. The keyword indexing functions of the document processing module
(see Chapter 22) can be used to index and speed up search and retrieval of the
documents.

2. Using a DBMS to store the document contents as data elements: This approach would
work for storing a collection of documents that follow a specific XML DTD or XML

schema. Because all the documents have the same structure, one can design a
relational (or object) database to store the leaf-level data elements within the
XML documents. This approach would require mapping algorithms to design a
database schema that is compatible with the XMLdocument structure as specified
in the XML schema or DTD and to recreate the XML documents from the stored
data. These algorithms can be implemented either as an internal DBMS module or
as separate middleware that is not part of the DBMS.

3. Designing a specialized system for storing native XML data: A new type of database
system based on the hierarchical (tree) model could be designed and imple
mented. The system would include specialized indexing and querying techniques,
and would work for all types of XML documents. It could also include data com
pression techniques to reduce the size of the documents for storage.

4. Creatingor publishing customizedXML documents from preexisting relational databases:
Because there are enormous amounts of data already stored in relational data
bases, parts of this data may need to be formatted as documents for exchanging or
displaying over the Web. This approach would use a separate middleware software
layer to handle the conversions needed between the XML documents and the rela
tional database.

All four of these approaches have received considerable attention over the past few
years. We focus on approach 4 in the next subsection, because it gives a good conceptual
understanding of the differences between the XML tree data model and the traditional
database models based on flat files (relational model) and graph representations (ER

model).

26.4.2 Extracting XML Documents from Relational
Databases

This section discusses the representational issues that arise when converting data from a
database system into XML documents. As we have discussed, XML uses a hierarchical
(tree) model to represent documents. The database systems with the most widespread use
follow the flat relational data model. When we add referential integrity constraints, a
relational schema can be considered to be a graph structure (for example, see Figure 5.7).
Similarly, the ER model represents data using graphlike structures (for example, see Figure
3.2). We saw in Chapter 7 that there are straightforward mappings between the ER and
relational models, so we can conceptually represent a relational database schema using
the corresponding ER schema. Although we will use the ER model in our discussion and
examples to clarify the conceptual differences between tree and graph models, the same
issues apply to converting relational data to XML.

26.4 XML Documents and Databases I 857

We will use the simplified UNIVERSITY ER schema shown in Figure 26.6 to illustrate our
discussion. Suppose that an application needs to extract XML documents for student,
course, and grade information from the UNIVERSITY database. The data needed for these
documents is contained in the database attributes of the entity types COURSE, SECTION, and
STUDENT from Figure 26.6, and the relationships s-s and c-s between them. In general,
most documents extracted from a database will only use a subset of the attributes, entity
types, and relationships in the database. In this example, the subset of the database that is
needed is shown in Figure 26.7.

0ections taught

FIGURE 26.6 An ER schema diagram for a simplified UNIVERSITY database.

~

Students
attended

~

course

SoD
~

sections '-------'

FIGURE 26.7 Subset of the UNIVERSITY database schema needed for XML document extraction.

858 I Chapter 26 XML and Internet Databases

At least three possible document hierarchies can be extracted from the database
subset in Figure 26.7. First, we can choose COURSE as the root, as illustrated in Figure
26.8. Here, each course entity has the set of its sections as subelements, and each
section has its students as subelements. We can see one consequence of modeling the
information in a hierarchical tree structure. If a student has taken multiple sections,
that student's information will appear multiple times in the document-once under
each section. A possible simplified XML schema for this view is shown in Figure 26.9.
The Grade database attribute in the s-s relationship is migrated to the STUDENT element.
This is because STUDENT becomes a child of SECTION in this hierarchy, so each STUDENT

element under a specific SECTION element can have a specific grade in that section. In
this document hierarchy, a student taking more than one section will have several
replicas, one under each section, and each replica will have the specific grade given in
that particular section.

In the second hierarchical document view, we can choose STUDENT as root (Figure
26.10). In this hierarchical view, each student has a set of sections as its child elements,
and each section is related to one course as its child, because the relationship between
SECTION and COURSE is N: 1. We can hence merge the COURSE and SECTION elements in this

COURSE

sections

N

SECTION

Students attended

N

STUDENT
Class

FIGURE 26.8 Hierarchical (tree) view with COURSE as the root.

26.4 XML Documents and Databases I 859

<xsd:element name="root">
<xsd:sequence>
<xsd:element name="course" m;nOccurs="O" maxOccurs="unbounded">

<xsd:sequence>
<xsd:element name="cname" type="xsd:string" />
<xsd:element name="cnumber" type="xsd:unsignedlnt" />
<xsd:element name="section" m;nOccurs="O" maxOccurs="unbounded">

<xsd:sequence>
<xsd:element name="secnumber" type="xsd:unsignedlnt" />
<xsd:element name="year" type="xsd:string" />
<xsd:element name="quarter" type="xsd:string" />
<xsd:element name="student" m;nOccurs="O" maxOccurs="unbounded">

<xsd:sequence>
<xsd:element name="ssn" type="xsd:string" />
<xsd:element name="sname" type="xsd:string" />
<xsd:element name="class" type="xsd:string" />
<xsd:element name="grade" type="xsd:string" />

</xsd:sequence>
</xsd:element>

</xsd:sequence>
</xsd:element>

</xsd:sequence>
</xsd:element>
</xsd:sequence>
</xsd:element>

FIGURE 26.9 XML schema document with COURSE as the root.

view, as shown in Figure 26.10. In addition, the GRADE database attribute can be migrated
to the SECTION element. In this hierarchy, the combined COURSE/SECTION information is
replicated under each student who completed the section. A possible simplified XML

schema for this view is shown in Figure 26.11.
The third possible way is to choose SECTION as the root, as shown in Figure 26.12.

Similar to the second hierarchical view, the COURSE information can be merged into the
SECTION element. The GRADE database attribute can be migrated to the STUDENT element. As
we can see, even in this simple example, there can be numerous hierarchical document
views, each corresponding to a different root and a different XML document structure.

26.4.3 Breaking Cycles to Convert Graphs into Trees
In the previous examples, the subset of the database of interest had no cycles. It is pos
sible to have a more complex subset with one or more cycles, indicating multiple rela
tionships among the entities. In this case, it is more complex to decide how to create
the document hierarchies. Additional duplication of entities may be needed to repre
sent the multiple relationships. We shall illustrate this with an example using the ER

schema in Figure 26.6.

860 I Chapter 26 XML and Internet Databases

STUDENT

Sections completed

FIGURE 26.10 Hierarchical (tree) view with STUDENT as the root.

Suppose that we need the information in all the entity types and relationships of
Figure 26.6 for a particular XML document, with STUDENT as the root element. Figure 26.13
illustrates how a possible hierarchical tree structure can be created for this document.
First, we get a lattice with STUDENT as the root, as shown in part (l) of Figure 26.13. This is
not a tree structure because of the cycles. One way to break the cycles is to replicate the
entity types involved in the cycles. First, we replicate INSTRUCTOR as shown in part (2) of
Figure 26.13, calling the replica to the right INSTRUCTORI. The INSTRUCTOR replica on the left
represents the relationship between instructors and the sections they teach, whereas the
INSTRUCTOR1 replica on the right represents the relationship between instructors and the
department each works in. After this, we still have the cycle involving COURSE, so we can
replicate COURSE in a similar manner, leading to the hierarchy shown in part (3) of Figure
26.13. The COURSEI replica to the left represents the relationship between courses and
their sections, whereas the COURSE replica to the right represents the relationship between
courses and the department that offers each course.

In part (3) of Figure 26.13, we have converted the initial graph to a hierarchy. We
can do further merging if desired (as in our previous example) before creating the final
hierarchy and the corresponding XML schema structure.

26.4 XML Documents and Databases I 861

<xsd:element name="root">
<xsd:sequence>
<xsd:element name="student" minOccurs="O" maxOccurs="unbounded">

<xsd:sequence>
<xsd:element name="ssn" type="xsd:string" />
<xsd:element name="sname" type="xsd:string" />
<xsd:element name="class" type="xsd:string" />
<xsd:element name="section" minOccurs="O" maxOccurs="unbounded">

<xsd:sequence>
<xsd:element name="secnumber" type="xsd:unsignedlnt" />
<xsd:element name="year" type="xsd:string" />
<xsd:element name="quarter" type="xsd:string" />
<xsd:element name="cnumber" type="xsd:unsignedlnt" />
<xsd:element name="cname" type="xsd:string" />
<xsd:element name="grade" type="xsd:string" />

</xsd:sequence>
</xsd:element>

</xsd:sequence>
</xsd:element>
</xsd:sequence>
</xsd:element>

FIGURE 26.11 XML schema document with STUDENT as the root.

Students attended

SECTION

1 '.,
,

,

,
,

,

:, . ,
','_ - - - - - - _I. _

1 :
, COURSE,,
---------~----

FIGURE 26.12 Hierarchical (tree) view with SECTION as the root.

862 I Chapter 26 XML and Internet Databases

(1)

M Nr------J.....

(3)

(2)

FIGURE 26.13 Converting a graph with cycles into a hierarchical (tree) structure.

26.4.4 Other Steps for Extracting XML Documents from
Databases

In addition to creating the appropriate XML hierarchy and corresponding XML schema docu
ment, several other steps are needed to extract a particular XML document from a database:

1. It is necessary to create the correct query in SQL to extract the desired information
for the XMLdocument.

2. Once the query is executed, its result must be structured from the flat relational
form to the XML tree structure.

3. The query can be customized to select either a single object or multiple objects
into the document. For example, in the view of Figure 26.11, the query can select
a single student entity and create a document corresponding to that single stu
dent, or it may select several-or even all of-the students and create a document
with multiple students.

26.5 XML QUERYING
There have been several proposals for XML query languages, but two standards have
emerged. The first is XPath, which provides language constructs for specifying path
expressions to identify certain nodes (elements) within an XMLdocument that match spe-

26.5 XML Querying I 863

cific patterns. The second is XQuery, which is a more general query language. XQuery
uses XPath expressions but has additional constructs. We give an overview of each of
these languages in this section.

26.5.1 XPath: Specifying Path Expressions in XML

An XPath expression returns a collection of element nodes that satisfy certain patterns
specified in the expression. The names in the XPath expression are node names in the XML

document tree that are either tag (element) names or attribute names, possibly with addi
tional qualifier conditions to further restrict the nodes that satisfy the pattern. Two main
separators are used when specifying a path: single slash (f) and double slash (//). A single
slash before a tag specifies that the tag must appear as a direct child of the previous (par
ent) tag, whereas a double slash specifies that the tag can appear as a descendant of the pre
vious tag at any level. Let us look at some examples of XPath as shown in Figure 26.14.

The first XPath expression in Figure 26.14 returns the company root node and all its
descendant nodes, which means that it returns the whole XMLdocument. We should note
that it is customary to include the file name in the XPath query. This allows us to specify
any local file name or even any path name that specifies a file on the Web. For example, if
the COMPANY XMLdocument is stored at the location

www.company.com/info.xml

then the first XPath expression in Figure 26.14 can be written as

doc(www.company.com/info.xml)/company

This prefix would also be included in the other examples.
The second example in Figure 26.14 returns all department nodes (elements) and

their descendant subtrees. Note that the nodes (elements) in an XML document are
ordered, so the XPath result that returns multiple nodes will do so in the same order in
which the nodes are ordered in the document tree.

The third XPath expression in Figure 26.14 illustrates the use of II, which is
convenient to use if we do not know the full path name we are searching for, but do know
the name of some tags of interest within the XML document. This is particularly useful for
schemaless XML documents or for documents with many nested levels of nodes.6 The

1. /company
2. /company/department
3. //employee [employeeSalary gt 70000]/employeeName
4. /company/employee [employeeSalary gt 70000]/employeeName
5. /company/project/projectWorker [hours ge 20.0]

FIGURE 26.14 Some examples of XPath expressions on XML documents that follow
the XML schema file COMPANY in Figure 26.5.

------------------------ ------

6. We are using the terms node, tag, and element interchangeably here.

864 I Chapter 26 XML and Internet Databases

expression returns all emp1oyeeName nodes that are direct children of an emp1oyee node,
such that the employee node has another child element employeeSalary whose value is
greater than 70000. This illustrates the use of qualifier conditions, which restrict the
nodes selected by the XPath expression to those that satisfy the condition. XPath has a
number of comparison operations for use in qualifier conditions, including standard
arithmetic, string, and set comparison operations.

The fourth XPath expression should return the same result as the previous one, except
that we specified the full path name in this example. The fifth expression in Figure 26.14
returns all proj ectWo rke r nodes and their descendant nodes that are children under a path
/company/project and have a child node hours with a value greater than 20.0hours.

26.5.2 XQuery: Specifying Queries in XML

XPath allows us to write expressions that select nodes from a tree-structured XML docu
ment. XQuery permits the specification of more general queries on one or more XML doc
uments. The typical form of a query in XQuery is known as a FLWR expression, which
stands for the four main clauses of XQuery and has the following form:

FOR <variable bindings to individual nodes (elements»

LET <variable bindings to collections of nodes (elements»

WHERE <qualifier conditions>

RETURN <query result specification>

Figure 26.15 includes some examples of queries in XQuery that can be specified on
XML instance documents that follow the XML schema document in Figure 26.5. The first
query retrieves the first and last names of employees who earn more than $70,000. The

1. FOR $x IN
doc(www.company.com/info.xml)
//employee [employeeSalary gt 70000]/employeeName
RETURN <res> $x/firstName, $x/lastName <Ires>

2. FOR $x IN
doc(www.company.com/info.xml)/company/employee
WHERE $x/employeeSalary gt 70000
RETURN <res> $x/employeeName/firstName,

$x/employeeName/lastName <Ires>
3. FOR $x IN

doc(www.company.com/info.xml)/company
/project[projectNumber = 5]/projectWorker,

$y IN
doc(www.company. com/info.xml)/company/employee
WHERE $x/hours gt 20.0 AND $y.ssn = $x.ssn
RETURN <res> $y/employeeName/firstName,

$y/employeeName/lastName, $x/hours <Ires>

FIGURE 26.15 Some examples of XQuery queries on XML documents that follow the
XML schema file COMPANY in Figure 26.5.

26.6 Summary I 865

variable $x is bound to each emp1oyeeName element that is a child of an employee
element, but only for employee elements that satisfy the qualifier that their
employeeSalary value is greater than $70,000. The result retrieves the fi rs"tName and
1as rName child elements of the selected employeeName elements. The second query is an
alternative way of retrieving the same elements retrieved by the first query.

The third query illustrates how a join operation can be performed by having more
than one variable. Here, the $x variable is bound to each projec"tWorker element that is
a child of project number 5, whereas the $y variable is bound to each employee element.
The join condition matches SSN values in order to retrieve the employee names.

This concludes our brief introduction to XQuery. The interested reader is referred to
the Web site www.w3.org, which contains documents describing the latest standards
related to XML.

26.6 SUMMARY
This chapter gave an overview of the standard for representing and exchanging data over
the Internet. We started by discussing the differences between structured, semistructured,
and unstructured data, then discussed why there was a need for a specification language
such as XML. We described the XML standard and its tree-structured (hierarchical) data
model, and discussed XML documents and the languages for specifying the structure of
these documents, namely, XML DTD (Document Type Definition) and XML schema. We
then gave an overview of the various approaches for storing XML documents, whether in
their native (text) format, in a compressed form, or in relational and other types of data
bases, and discussed the mapping issues that arise when there is need to convert data
stored in traditional databases into XML documents. Finally, we gave an overview of the
XPath and XQuery languages proposed for querying XML data.

Review Questions
26.1. What are the differences between structured, semistructured, and unstructured

data?
26.2. Under which of the above categories do XML documents fall? What about self

describing data?
26.3. What are the differences between the use of tags in XML versus HTML?
26.4. What is the difference between data-centric and document-centric XML

documents?
26.5. What is the difference between attributes and elements in XML? List some of the

important attributes used in specifying elements in XML schema.
26.6. What is the difference between XML schema and XML DTD?

866 I Chapter 26 XML and Internet Databases

Exercises
26.7. Create an XML instance document to correspond to the data stored in the rela

tional database shown in Figure 5.6 such that the XML document conforms to the
XML schema document in Figure 26.5.

26.8. Create XML schema documents to correspond to the hierarchies shown in Figures
26.12 and 26.13 part (3).

26.9. Consider the LIBRARY relational database schema of Figure 5.20. Create an XML

schema document that corresponds to this database schema.
26.10. Specify the following views as queries in XQuery on the COMPANY XML schema

shown in Figure 26.5.
a. A view that has the department name, manager name, and manager salary for

every department.
b. A view that has the employee name, supervisor name, and employee salary for

each employee who works in the Research department.
c. A view that has the project name, controlling department name, number of

employees, and total hours worked per week on the project for each project.
d. A view that has the project name, controlling department name, number of

employees, and total hours worked per week on the project for each project
with more than one employee working on it.

Selected Bibliography
There are so many articles and books on various aspects of XML that it would be impossi
ble to make even a modest list. We will mention one book: Chaudhri, Rashid, and Zicari,
eds (2003). This book discusses various aspects of XML and contains a list of some recent
references to XML research and practice.

Data Mining Concepts

Over the last three decades, many organizations have generated a large amount of
machine-readable data in the form of files and databases. To process this data, we have
the database technology available that supports query languages like SQL. The problem
with SQL is that it is a structured language that assumes the user is aware of the database
schema. SQL supports operations of relational algebra that allow a user to select rows and
columns of data from tables or join related information from tables based on common
fields. In the next chapter, we shall see that data warehousing technology affords several
types of functionality: that of consolidation, aggregation, and summarization of data. Data
warehouses let us view the same information along multiple dimensions. In this chapter,
we will focus our attention on another very popular area of interest known as data min
ing. As the term connotes, data mining refers to the mining or discovery of new informa
tion in terms of patterns or rules from vast amounts of data. To be practically useful, data
mining must be carried out efficiently on large files and databases. To date, it is not well
integrated with database management systems.

We will briefly review the state of the art of this rather extensive field of data mining,
which uses techniques from such areas as machine learning, statistics, neural networks,
and genetic algorithms. We will highlight the nature of the information that is
discovered, the types of problems faced when trying to mine databases, and the types of
applications of data mining. We also survey the state of the art of a large number of
commercial tools available (see Section 26.2.5) and describe a number of research
advances that are needed to make this area viable.

867

868 I Chapter 27 Data Mining Concepts

27.1 OVERVIEW OF DATA MINING
TECHNOLOGY

In reports such as the very popular Gartner Report,' data mining has been hailed as one
of the top technologies for the near future. In this section we relate data mining to the
broader area called knowledge discovery and contrast the two by means of an illustrative
example.

Data Mining versus Data Warehousing. The goal of a data warehouse (see
Chapter 28) is to support decision making with data. Data mining can be used in
conjunction with a data warehouse to help with certain types of decisions. Data mining
can be applied to operational databases with individual transactions. To make data
mining more efficient, the data warehouse should have an aggregated or summarized
collection of data. Data mining helps in extracting meaningful new patterns that cannot
be found necessarily by merely querying or processing data or metadata in the data
warehouse. Data mining applications should therefore be strongly considered early, during
the design of a data warehouse. Also, data mining tools should be designed to facilitate
their use in conjunction with data warehouses. In fact, for very large databases running
into terabytes of data, successful use of data mining applications will depend first on the
construction of a data warehouse.

Data Mining asa Partof the Knowledge Discovery Process. Knowledge Discovery
in Databases. frequently abbreviated as KDD, typically encompasses more than data
mining. The knowledge discovery process comprises six phases.' data selection, data
cleansing, enrichment, data transformation or encoding, data mining, and the reporting
and display of the discovered information.

As an example, consider a transaction database maintained by a specialty consumer
goods retailer. Suppose the client data includes a customer name, zip code, phone
number, date of purchase, item code, price, quantity, and total amount. A variety of new
knowledge can be discovered by KDD processing on this client database. During data
selection, data about specific items or categories of items, or from stores in a specific region
or area of the country, may be selected. The data cleansing process then may correct
invalid zip codes or eliminate records with incorrect phone prefixes. Enrichment typically
enhances the data with additional sources of information. For example, given the client
names and phone numbers, the store may purchase other data about age, income, and
credit rating and append them to each record. Data transformation and encoding may be
done to reduce the amount of data. For instance, item codes may be grouped in terms of
product categories into audio, video, supplies, electronic gadgets, camera, accessories, and
so on. Zip codes may be aggregated into geographic regions, incomes may be divided into
ranges, and so on. In Figure 28.1, we will show a step called cleaning as a precursor to the

1. The Gartner Report is one example of the many technology surveypublications that corporate
managersrely on to make their technology selection decisions.
2. This discussionis largely based on Adriaans and Zantinge (1996).

27.1 Overview of Data Mining Technology I 869

data warehouse creation. If data mining is based on an existing warehouse for this retail
store chain, we would expect that the cleaning has already been applied. It is only after
such preprocessing that data mining techniques are used to mine different rules and
patterns.

The result of mining may be to discover the following type of "new" information:

a. Association rules-for example, whenever a customer buys video equipment,
he or she also buys another electronic gadget.

b. Sequential patterns-for example, suppose a customer buys a camera, and
within three months he or she buys photographic supplies, then within six
months he is likely to buy an accessory item. This defines a sequential pattern
of transactions. A customer who buys more than twice in the lean periods may
be likely to buy at least once during the Christmas period.

c. Classification trees-for example, customers may be classified by frequency of
visits, by types of financing used, by amount of purchase, or by affinity for types
of items, and some revealing statistics may be generated for such classes.

We can see that many possibilities exist for discovering new knowledge about buying
patterns, relating factors such as age, income group, place of residence, to what and how
much the customers purchase. This information can then be utilized to plan additional
store locations based on demographics, to run store promotions, to combine items in
advertisements, or to plan seasonal marketing strategies. As this retail store example
shows, data mining must be preceded by significant data preparation before it can yield
useful information that can directly influence business decisions.

The results of data mining may be reported in a variety of formats, such as listings,
graphic outputs, summary tables, or visualizations.

Goals of Data Mining and Knowledge Discovery. Data rrurung is typically
carried out with some end goals or applications. Broadly speaking, these goals fall into the
following classes: prediction, identification, classification, and optimization.

• Prediction-Data mining can show how certain attributes within the data will
behave in the future. Examples of predictive data mining include the analysis of buy
ing transactions to predict what consumers will buy under certain discounts, how
much sales volume a store would generate in a given period, and whether deleting a
product line would yield more profits. In such applications, business logic is used cou
pled with data mining. In a scientific context, certain seismic wave patterns may pre
dict an earthquake with high probability.

• Identification-Data patterns can be used to identify the existence of an item, an
event, or an activity. For example, intruders trying to break a system may be identi
fied by the programs executed, files accessed, and CPU time per session. In biological
applications, existence of a gene may be identified by certain sequences of nucleotide
symbols in the DNA sequence. The area known as authentication is a form of identifi
cation. It ascertains whether a user is indeed a specific user or one from an authorized
class, and involves a comparison of parameters or images or signals against a database.

870 I Chapter 27 Data Mining Concepts

• Classification-Data mining can partition the data so that different classes or cate
gories can be identified based on combinations of parameters. For example, customers
in a supermarket can be categorized into discount-seeking shoppers, shoppers in a
rush, loyal regular shoppers, shoppers attached to name brands, and infrequent shop
pers. This classification may be used in different analyses of customer buying transac
tions as a post-mining activity. Sometimes classification based on common domain
knowledge is used as an input to decompose the mining problem and make it simpler.
For instance, health foods, party foods, or school lunch foods are distinct categories
in the supermarket business. It makes sense to analyze relationships within and across
categories as separate problems. Such categorization may be used to encode the data
appropriately before subjecting it to further data mining.

• Optimization-One eventual goal of data mining may be to optimize the use of lim
ited resources such as time, space, money, or materials and to maximize output vari
ables such as sales or profits under a given set of constraints. As such, this goal of data
mining resembles the objective function used in operations research problems that
deals with optimization under constraints.

The term data mining is popularly being used in a very broad sense. In some
situations it includes statistical analysis and constrained optimization as well as machine
learning. There is no sharp line separating data mining from these disciplines. It is beyond
our scope, therefore, to discuss in detail the entire range of applications that make up this
vast body of work. For a detailed understanding of the area, readers are referred to

specialized books devoted to data mining.

Types of Knowledge Discovered During Data Mining. The term "knowledge"
is very broadly interpreted as involving some degree of intelligence. There is a progression
from raw data to information to knowledge as we go through additional processing.
Knowledge is often classified as inductive versus deductive. Deductive knowledge
deduces new information based on applying pre-specified logical rules of deduction on the
given data. Data mining addresses inductive knowledge, which discovers new rules and
patterns from the supplied data. Knowledge can be represented in many forms: In an
unstructured sense, it can be represented by rules or propositional logic. In a structured
form, it may be represented in decision trees, semantic networks, neural networks, or
hierarchies of classes or frames. It is common to describe the knowledge discovered during
data mining in five ways, as follows.

• Association rules-These rules correlate the presence of a set of items with another
range of values for another set of variables. Examples: (1) When a female retail shop
per buys a handbag, she is likely to buy shoes. (2) An X-ray image containing charac
teristics a and b is likely to also exhibit characteristic c.

• Classification hierarchies-The goal is to work from an existing set of events or
transactions to create a hierarchy of classes. Examples: (I) A population may be
divided into five ranges of credit worthiness based on a history of previous credit
transactions. (2) A model may be developed for the factors that determine the desir
ability oflocation of a store on a 1-10 scale. (3) Mutual funds may be classified based
on performance data using characteristics such as growth, income, and stability.

27.2 Association Rules I 871

• Sequential patterns-A sequence of actions or events is sought. Example: If a patient
underwent cardiac bypass surgery for blocked arteries and an aneurysm and later
developed high blood urea within a year of surgery, he or she is likely to suffer from
kidney failure within the next 18 months. Detection of sequential patterns is equiva
lent to detecting associations among events with certain temporal relationships.

• Patterns within time series-Similarities can be detected within positions of a time
series of data, which is a sequence of data taken at resular intervals such as daily sales
or daily closing stock prices. Examples: (1) Stocks of a utility company, ABC Power,
and a financial company, XYZ Securities, showed the same pattern during 2002 in
terms of closing stock price. (2) Two products show the same selling pattern in sum
mer but a different one in winter. (3) A pattern in solar magnetic wind may be used
to predict changes in earth atmospheric conditions.

• Clustering-A given population of events or items can be partitioned (segmented)
into sets of "similar" elements. Examples: (1) An entire population of treatment data
on a disease may be divided into groups based on the similarity of side effects pro
duced. (2) The adult population in the United States may be categorized into five
groups from "most likely to buy" to "least likely to buy" a new product. (3) The web
accesses made by a collection of users against a set of documents (say, in a digital
library) may be analyzed in terms of the keywords of documents to reveal clusters or
categories of users.

For most applications, the desired knowledge is a combination of the above types.
We expand on each of the above knowledge types in the following sections.

27.2 ASSOCIATION RULES

27.2.1 Market-Basket Model, Support, and Confidence
One of the major technologies in data mining involves the discovery of association

rules. The database is regarded as a collection of transactions, each involving a set of
items. A common example is that of market-basket data. Here the market basket
corresponds to the sets of items a consumer buys in a supermarket during one visit.
Consider four such transactions in a random sample shown in Figure 27.1.

An association rule is of the form X => Y, where X = {Xl' Xz, ... ,xn }, and Y = {yj'
Yz, ... , Ym } are sets of items, with Xi and Yj being distinct items for all i and all j. This
association states that if a customer buys X, he or she is also likely to buy Y. In general,
any association rule has the form LHS (left-hand side) => RHS (right-hand side), where
LHS and RHS are sets of items. The set LHS U RHS is called an itemset, the set of
items purchased by customers. For an association rule to be of interest to a data miner, the
rule should satisfy some interest measure. Two common interest measures are support and
confidence.

The support for a rule LHS => RHS is with respect to the iternset: it refers to how
frequently a specific itemset occurs in the database. That is, the support is the percentage

872 I Chapter 27 Data Mining Concepts

Transaction-id Time Items-Bought

101 6:35 milk, bread, cookies, juice

792 7:38 milk, juice

1130 8:05 milk, eggs

1735 8:40 bread, cookies, coffee

FIGURE 27.1 Example transactions in market-basket model.

of transactions that contain all of the items in the itemset, LHS U RHS. If the support is
low, it implies that there is no overwhelming evidence that items in LHS U RHS occur
together, because the itemset occurs in only a small fraction of transactions. Another
term for support is prevalence of the rule.

The confidence is with regard to the implication shown in the rule. The confidence of
the rule LHS => RHS is computed as the support(LHS U RHS)/support(LHS). We can
think of it as the probability that the items in RHS will be purchased given that the items in
LHS are purchased by a customer. Another term for confidence is strength of the rule.

As an example of support and confidence, consider the following two rules: Milk =>
Juice and Bread => Juice. Looking at our four sample transactions in Figure 27.1, we see
that the support of{Milk, Juice} is 50% and the support of [Bread.juice] is only 25%. The
confidence of Milk => Juice is 66.7% (meaning that, of three transactions in which milk
occurs, two contain juice) and the confidence of Bread => Juice is 50% (meaning that
one of two transactions containing bread also contains juice).

As we can see, support and confidence do not necessarily go hand in hand. The goal
of mining association rules, then, is to generate all possible rules that exceed some
minimum user-specified support and confidence thresholds. The problem is thus
decomposed into two subproblems:

a. Generate all itemsets that have a support that exceeds the threshold. These
sets of items are called large (or frequent) itemsets. Note that large here
means large support.

b. For each large itemset, all the rules that have a minimum confidence are gener
ated as follows: For a large itemset X and Y C X, let Z = X - Y; then if sup
port(X)/support(Z) > minimum confidence, the rule Z => Y (that is, X - Y =>
Y) is a valid rule.

Generating rules by using all large itemsets and their supports is relatively
straightforward. However, discovering all large itemsets together with the value for their
support is a major problem if the cardinality of the set of items is very high. A typical
supermarket has thousands of items. The number of distinct itemsets is 2m

, where m is the
number of items, and counting support for all possible itemsets becomes very
computation-intensive. To reduce the combinatorial search space, algorithms for finding
association rules utilize the following properties:

27.2 Association Rules I 873

• A subset of a large itemset must also be large (that is, each subset of a large itemset
exceeds the minimum required support).

• Conversely, a superset of a small itemset is also small (implying that it does not have
enough support).

The first property is referred to as downward closure. The second property, called the
antimonotonicity property, helps in reducing the search space of possible solutions. That
is, once an itemset is found to be small (not a large itemset), then any extension to that
itemset, formed by adding one or more items to the set, will also yield a small itemset.

27.2.2 Apriori Algorithm
The first algorithm to use the downward closure and antimontonicity properties was the
Apriori algorithm, shown as Algorithm 27.1.

Algorithm 27.1: Apriori algorithm for finding frequent (large) itemsets

Input: database of m transactions, D, and a minimum support, mins, represented as a
fraction of m

Output: frequent itemsets, L j , Lz, ... , Lk

Begin

compute supportl i.) = count(ij)/m for each individual item, iI' i2, ••• ,in by scanning
the database once and counting the number of transactions that item ij appears in
(that is, countfi.)):

the candidate frequent I-iternset, L.l , will be the set of items iI' iz' ... ,in'

the subset of items containing ij from C l where supportti.) >= mins becomes the
frequent

I-iternset, LI ;

k = 1;

termination = false;

repeat

Lk+ l =

create the candidate frequent (k+ l l-itemset, Ck+l' by combining members of Lk
that have k-I items in common; (this forms candidate frequent (k+ l)-itemsets by
selectively extending frequent k-itemsets by one item)

in addition, only consider as elements of Ck+ I those k+ 1 items such that every subset
of size k appears in Lk;

874 I Chapter 27 Data Mining Concepts

scan the database once and compute the support for each member of C k+ l ; if the
support for a member ofCk+1 >= mins then add that member to Lk+ l ;

if Lk+ I is empty then termination = true

elsek=k+l;

until termination;

End;

We illustrate Algorithm 27.1 using the transaction data in Figure 27.1 using a
minimum support of 0.5. The candidate l-itemsets are {milk, bread, juice, cookies, eggs,
coffee} and their respective supports are 0.75, 0.5, 0.5, 0.5, 0.25 and 0.25. The first four
items qualify for LI since each support is greater than or equal to 0.5. In the first iteration
of the repeat-loop, we extend the frequent l-itemsets to create the candidate frequent 2
itemsets, C z. C z contains {milk, bread}, {milk, juice}, {bread, juice}, {milk, cookies},
{bread, cookies} and {juice, cookies}. Notice, for example that {milk, eggs} does not appear
in C z since {eggs} is small (by the antimonotonicity property) and does not appear in LI .

The supports for the six sets contained in C z are 0.25, 0.5, 0.25, 0.25, 0.5 and 0.25 and
are computed by scanning the set of transactions. Only the second 2-itemset {milk, juice}
and the fifth 2-itemset {bread, cookies} have support greater than or equal to 0.5. These
two 2-itemsets form the frequent 2-itemsets, Lz.

In the next iteration of the repeat-loop, we construct candidate frequent 3-itemsets by
adding additional items to sets in Lz. However, for no extension of itemsets in Lz will all 2
item subsets be contained in Lz. For example, consider {milk, juice, bread}; the 2-itemset
{milk, bread} is not in Lz, hence {milk, juice, bread} cannot be a frequent 3-itemset by the
downward closure property. At this point the algorithm terminates with LI equal to {{milk},
{bread}, {juice}, [cookiesl] and Lz equal to { {milk, juice}, {bread, cookies} }.

Several other algorithms have been proposed to mine association rules. They vary
mainly in terms of how the candidate itemsets are generated, and how the supports for the
candidate itemsets are counted. Some algorithms use such data structures as bitmaps and
hashtrees to keep information about itemsets. Several algorithms have been proposed
that use multiple scans of the database because the potential number of itemsets, 2m

, can
be too large to set up counters during a single scan. We will examine three improved
algorithms (compared to the Apriori algorithm) for association rule mining: a sampling
algorithm, the frequent-pattern tree algorithm, and the partition algorithm.

27.2.3 Sampling Algorithm
The main idea for the Sampling algorithm is to select a small sample, one that fits in
main memory, of the database of transactions and to determine the frequent itemsets from
that sample. If those frequent itemsets form a superset of the frequent itemsets for the
entire database, then we can determine the real frequent itemsets by scanning the
remainder of the database in order to compute the exact support values for the superset
itemsets. A superset of the frequent itemsets can usually be found from the sample by
using, for example, the Apriori algorithm, with a lowered minimum support.

27.2 Association Rules I 875

In some rare cases, some frequent itemsets may be missed and a second scan of the
database is needed. To decide whether any frequent itemsets have been missed, the
concept of the negative border is used. The negative border with respect to a frequent
itemset, S, and set of items, I, is the minimal itemsets contained in PowerSetf l) and not
in S. The basic idea is that the negative border of a set of frequent itemsets contains the
closest itemsets that could also be frequent. Consider the case where a set X is not
contained in the frequent itemsets. If all subsets of X are contained in the set of frequent
itemsets, then X would be in the negative border.

We illustrate this with the following example. Consider the set of items I = {A, B, C,
D, E} and let the combined frequent itemsets of size 1 to 3 be S = {{A}, {B}, {C}, {D},
{AB}, {AC}, {BC}, {AD}, {CD}, {ABC} }. The negative border is { {E}, {BD}, {ACD} }. The
set {E} is the only l-itemset not contained in S, {BD} is the only 2-itemset not in S but
whose l-itemset subsets are, and {ACD} is the only 3-itemset whose 2-itemset subsets are
all in S. The negative border is important since it is necessary to determine the support
for those itemsets in the negative border to ensure that no large itemsets are missed from
analyzing the sample data.

Support for the negative border is determined when the remainder of the database is
scanned. If we find that an itemset, X, in the negative border belongs in the set of all
frequent itemsets, then there is a potential for a superset of X to also be frequent. If this
happens, then a second pass over the database is needed to make sure that all frequent
itemsets are found.

27.2.4 Frequent-Pattern Tree Algorithm
The Frequent-pattern tree algorithm is motivated by the fact that Apriori based algo
rithms may generate and test a very large number of candidate itemsets. For example,

with 1000 frequent l-itemsets, the Apriori algorithm would have to generate 0000) or

499,500 candidate 2-itemsets. The FP-growth algorithm is one approach that eliminates
the generation of a large number of candidate itemsets.

The algorithm first produces a compressed version of the database in terms of an FP
tree (frequent pattern tree). The FP-tree stores relevant itemset information and allows
for the efficient discovery of frequent itemsets. The actual mining process adopts a divide
and-conquer strategy where the mining process is decomposed into a set of smaller tasks
that each operate on a conditional FP-tree, a subset (projection) of the original tree. To
start with, we examine how the FP-tree is constructed. The database is first scanned and
the frequent l-itemsets along with their support are computed. With this algorithm, the
support is the count of transactions containing the item rather than the fraction of
transactions containing the item. The frequent l-itemsets are then sorted in
nonincreasing order of their support. Next, the root of the FP-tree is created with a "null"
label. The database is scanned a second time and for each transaction T in the database,
the frequent l-itemsets in T are placed in order as was done with the frequent l-itemsets.
We can designate this sorted list for T as consisting of a first item, the head, and the

876 I Chapter 27 Data Mining Concepts

remaining items, the tail. The iternset information (head, tail) is inserted into the FP-tree
recursively, starting at the root node, as follows:

1. if the current node, N, of the FP-tree has a child with an item name = head,
then increment the count associated with node N by 1 else create a new node, N,
with a count of I, link N to it's parent and link N with the item header table
(used for efficient tree traversal).

2. if tail is nonempty, then repeat step (1) using as the sorted list only the tail, i.e.,
the old head is removed and the new head is the first item from the tail and the
remaining items become the new tail.

The item header table, created during the process of building the FP-tree, contains
three fields per entry for each frequent item, which are item identifier, support count, and
node link. The item identifier and support count are self-explanatory. The node link is a
pointer to an occurrence of that item in the H'-tree. Since multiple occurrences of a
single item may appear in the FP-tree, these items are linked together as a list where the
start of the list is pointed to by the node link in the item header table. We illustrate the
building of the FP-tree using the transaction data in Figure 27.1. Let us use a minimum
support of 2. One pass over the four transactions yields the following frequent I-itemsets
with associated support: { {(milk,3)}, {(bread,2H, {(cookies,2 H, {(juice,2 H}. The database
is scanned a second time and each transaction will be processed again.

For the first transaction, we create the sorted list, T = {milk, bread, cookies, juice}.
The items in T are the frequent l-rtemsers from the first transaction. The items are
ordered based on the nonincreasing ordering of the count of the I-iternsets found in pass
1, (i.e., milk first, bread second, etc.). We create a null root node for the FP-tree and
insert "milk" as a child of the root, "bread" as a child of "milk", "cookies" as a child of
"bread" and "juice" as a child of "cookies". We adjust the entries for the frequent items
in the item header table.

For the second transaction, we have the sorted list {milk, juice}. Starting at the root,
we see that a child node with label "milk" exists, so we move to that node and update its
count (to account tor the second transaction that contains milk). We see that there is no
child of the current node with label "juice," so we create a new node with label "juice."
The item header table is adjusted.

The third transaction only has I-frequent item, {milk}. Again, starting at the root, we
see that the node with label "milk" exists, so we move to that node, increment its count,
and adjust the item header table. The final transaction contains frequent items, {bread,
cookies}. At the root node, we see that there does not exist a child with label "bread."
Thus, we create a new child of the root, initialize its counter, and then insert "cookies" as
a child of this node and initialize its count. After the item header table is updated, we end
up with the FP-tree and item header table as shown in Figure 27.2. If we examine this FP
tree, we see that it indeed represents the original transactions in a compressed format
(that is, only showing the items from each transaction that are large I-itemsets).

Algorithm 27.2: FP-growth Algorithm for finding frequent itemsets

Input: Fp-tree and a minimum support, mins
Output: frequent patterns (itemsers)

Item Support Unk

27.2 Association Rules I 877

milk 3

bread 2

cookies 2

juice 2

FIGURE 27.2 FP-tree and item header table.

procedure FP-growth (tree, alpha);
Begin
if tree contains a single path P then
for each combination, beta, of the nodes in the path

generate pattern (beta U alpha)
with support = minimum support of nodes in beta

else
for each item, i, in the header of the tree do

begin
generate pattern beta = (i U alpha) with support = i.support;
construct beta's conditional pattern base;
construct beta's conditional FP-tree, beta_tree;
if beta_tree is not empty then

FP-growth(beta_tree, beta);
end;

End;

Algorithm 27.2 is used for mining the FP-tree for frequent patterns. With the FP
tree, it is possible to find all frequent patterns that contain a given frequent item by
starting from the item header table for that item and traversing the node links in the FP
tree. The algorithm starts with a frequent l-itemset (suffix pattern), constructs its
conditional pattern base and then its conditional FP-tree. The conditional pattern base is
made up of a set of prefix paths, i.e., where the frequent item is a suffix. For example, if we
consider the item juice, we see from Figure 27.2 that there are two paths in the FP-tree

8i8 I Chapter 27 Data Mining Concepts

that end with juice: (milk, bread, cookies, juice) and (milk, juice). The two associated
prefix paths are (milk, bread, cookies) and (milk). The conditional FP-tree is constructed
from the patterns in the conditional pattern base. The mining is recursively performed on
this FP-tree. The frequent patterns are formed by concatenating the suffix pattern with
the frequent patterns produced from a conditional FP-tree.

We illustrate the algorithm using the data in Figure 27.1 and the tree in Figure 27.2.
The procedure FP-growth is called with the two parameters: the original FP-tree and null
for the variable alpha. Since the original FP-tree has more than a single path, we execute
the else part of the first if statement. We start with the frequent item, juice. We will
examine the frequent items in order of lowest support (that is, from the last entry in the
table to the first). The variable beta is set to juice with support equal to 2.

Following the node link in the item header table, we construct the conditional
pattern base consisting of two paths (with juice as suffix). These are (milk, bread, cookies:
1) and (milk: 1). The conditional FP tree consists of only a single node, milk:2. This is
due to a support of only 1 for node bread and cookies, which is below the minimal support
of 2. The algorithm is called recursively with an FP-tree of only a single node (i.e.,
milk:2) and a beta value of juice. Since this FP-tree only has one path, all combinations
of beta and nodes in the path are generated, (that is, [rnilk.juicej) with support of 2.

Next, the frequent item, cookies, is used. The variable beta is set to cookies with
support = 2. Following the node link in the item header table, we construct the
conditional pattern base consisting of two paths. These are (milk, bread: 1) and (bread:
1). The conditional FP tree is only a single node, bread:2. The algorithm is called
recursively with an FP-tree of only a single node (that is, bread:2) and a beta value of
cookies. Since this FP-tree only has one path, all combinations of beta and nodes in the
path are generated, that is, {bread.cookies] with support of 2. The frequent item, bread, is
considered next. The variable beta is set to bread with support = 2. Following the node
link in the item header table, we construct the conditional pattern base consisting of one
path, which is (milk: 1). The conditional FP tree is empty since the count is less than the
minimum support. Since the conditional FP-tree is empty, no frequent patterns will be
generated.

The last frequent item to consider is milk. This is the top item in the item header
table and as such has an empty conditional pattern base and empty conditional FP·tree.
As a result, no frequent patterns are added. The result of executing the algorithm is the
following frequent patterns (or itemsets) with their support: { {milk:3}, {bread:2},
{cookies.Z], {juice:2}, {milk.juice.Z], {bread.cookies.Z] }.

27.2.5 Partition Algorithm
Another algorithm, called the Partition algorithmv' is summarized below. If we are given
a database with a small number of potential large itemsets, say, a few thousand, then the
support for all of them can be tested in one scan by using a partitioning technique. Parti-

3. See Savasere et at. (1995) for details of the algorithm, the data structures used to implement it,
and its performance comparisons.

27.2 Association Rules I 879

tioning divides the database into nonoverlapping subsets; these are individually consid
ered as separate databases and all large itemsets for that partition, called local frequent
itemsets, are generated in one pass. The Apriori algorithm can then be used efficiently on
each partition if it fits entirely in main memory. Partitions are chosen in such a way that
each partition can be accommodated in main memory. As such, a partition is read only
once in each pass. The only caveat with the partition method is that the minimum sup
port used for each partition has a slightly different meaning from the original value. The
minimum support is based on the size of the partition rather than the size of the database
for determining local frequent (large) itemsets. The actual support threshold value is the
same as given earlier, but the support is computed only for a partition.

At the end of pass one, we take the union of all frequent itemsets from each
partition. These form the global candidate frequent itemsets for the entire database.
When these lists are merged, they may contain some false positives. That is, some of the
itemsets that are frequent (large) in one partition may not qualify in several other
partitions and hence may not exceed the minimum support when the original database is
considered. Note that there are no false negatives; no large itemsets will be missed. The
global candidate large itemsets identified in pass one are verified in pass two; that is, their
actual support is measured for the entire database. At the end of phase two, all global
large itemsets are identified. The Partition algorithm lends itself naturally to a parallel or
distributed implementation for better efficiency. Further improvements to this algorithm
have been suggested"

27.2.6 Other Types of Association Rules

Association Rules among Hierarchies. There are certain types of associations
that are particularly interesting for a special reason. These associations occur among
hierarchies of items. Typically, it is possible to divide items among disjoint hierarchies
based on the nature of the domain. For example, foods in a supermarket, items in a
department store, or articles in a sports shop can be categorized into classes and subclasses
that give rise to hierarchies. Consider Figure 27.3, which shows the taxonomy of items in
a supermarket. The figure shows two hierarchies-beverages and desserts, respectively.
The entire groups may not produce associations of the form beverages => desserts, or
desserts => beverages. However, associations of the type Healthy-brand frozen yogurt =>
bottled water, or Richcream-brand ice cream => wine cooler may produce enough
confidence and support to be valid association rules of interest.

Therefore, if the application area has a natural classification of the itemsets into
hierarchies, discovering associations within the hierarchies is of no particular interest. The
ones of specific interest are associations across hierarchies. They may occur among item
groupings at different levels.

------------- -------- ------------- --------

4. See Cheung et at. (1996) and Lin and Dunham (1998).

CLEAR

88G I Chapter 27 Data Mining Concepts

BEVERAGES

~~
CARBONATED NONCARBONATED

/I~ ~~
COLAS CLEAR MIXED BOTTLED BOTTLED WINE
/ I\ DRINKS DRINKS JUICES WATER COOLERS

/1\ /1\ ~I~ I~
ORANGE APPLE OTHERS PLAIN

DESSERTS

/~
ICE CREAMS BAKED FROZEN YOGHURT

/I~ /1\ < >.
RICH CREAM REDUCE HEALTHY

FIGURE 27.3 Taxonomy of items in a supermarket.

Multidimensional Associations. Discovering association rules involves searching
for patterns in a file. At the beginning of the data mining section, we have an example of
a file of customer transactions with three dimensions, Transaction-Id, Time and Items
Bought. However, our data mining tasks and algorithms introduced up to this point only
involve one dimension: the items-bought. The following rule is an example, where we
include the label of the single dimension: Items-Boughtirnilk) => Iterns-Boughttjuicej.Jt
may be of interest to find association rules that involve multiple dimensions, e.g.,
Time(6:30...8:00) => Items-Boughtfrnilk). Rules like these are called multidimensional
association rules. The dimensions represent attributes of records of a file or, in terms of
relations, columns of rows of a relation, and can be categorical or quantitative.
Categorical attributes have a finite set of values that display no ordering relationship.
Quantitative attributes are numeric and whose values display an ordering relationship,
e.g., <. Items-Bought is an example of a categorical attribute and Transaction-Id and
Time are quantitative.

One approach to handling a quantitative attribute is to partition its values into non
overlapping intervals that are assigned labels. This can be done in a static manner based
on domain specific knowledge. For example, a concept hierarchy may group values for
salary into three distinct classes: low income (0 < salary < 29,999), middle income
(30,000 < salary < 74,999) and high income (salary> 75,000). From here, the typical
Apriori type algorithm or one of its variants can be used for the rule mining since the
quantitative attributes now look like categorical attributes. Another approach to
partitioning is to group attribute values together based on data distribution, for example,
equi-depth partitioning, and to assign integer values to each partition. The partitioning
at this stage may be relatively fine, that is, a larger number of intervals. Then during the

27.2 Association Rules I 881

rrurung process, these partitions may combine with other adjacent partitions if their
support is less than some predefined maximum value. An Apriori-type algorithm can be
used here as well for the data mining.

Negative Associations. The problem of discovering a negative association is
harder than that of discovering a positive association. A negative association is of the
following type: "60% of customers who buy potato chips do not buy bottled water." (Here,
the 60% refers to the confidence for the negative association rule.) In a database with
10,000 items, there are 210000 possible combinations of items, a majority of which do not
appear even once in the database. If the absence of a certain item combination is taken to
mean a negative association, then we potentially have millions and millions of negative
association rules with RHSs that are of no interest at all. The problem, then, is to find
only interesting negative rules. In general, we are interested in cases in which two specific
sets of items appear very rarely in the same transaction. This poses two problems.

1. For a total item inventory of 10,000 items, the probability of any two being bought
together is (1/10,000) * 0/10,000) = 10"'°. If we find the actual support for these two
occurring together to be zero, that does not represent a significant departure from
expectation and hence is not an interesting (negative) association.

2. The other problem is more serious. We are looking for item combinations with
very low support, and there are millions and millions with low or even zero sup
port. For example, a data set of 10 million transactions has most of the 2.5 billion
pairwise combinations of 10,000 items missing. This would generate billions of
useless rules.

Therefore, to make negative association rules interesting, we must use prior
knowledge about the itemsets. One approach is to use hierarchies. Suppose we use the
hierarchies of soft drinks and chips shown in Figure 27.4.

A strong positive association has been shown between soft drinks and chips. If we
find a large support for the fact that when customers buy Days chips they predominantly
buy Topsy and not Joke and not Wakeup, that would be interesting. This is so because we
would normally expect that if there is a strong association between Days and Topsy, there
should also be such a strong association between Days and Joke or Days and Wakeup.s

In the frozen yogurt and bottled water groupings in Figure 27.3, suppose the Reduce
versus Healthy-brand division is 80-20 and the Plain and Clear brands division is 60-40
among respective categories. This would give a joint probability of Reduce frozen yogurt

Soft Drinks

/~
Chips

/\~
JOKE WAKEUP TOPSY DAYS NIGHTOS PARTY'OS

FIGURE 27.4 Simple hierarchy of soft drinks and chips.

---------._-- ._-------------- ._-- ._-
5. For simplicity we are assuming a uniform distribution of transactions among members of a hierarchy.

882 I Chapter 27 Data Mining Concepts

being purchased with Plain bottled water as 48% among the transactions containing a
frozen yogurt and a bottled water. If this support, however, is found to be only 20%, that
would indicate a significant negative association among Reduce yogurt and Plain bottled
water; again, that would be interesting.

The problem of finding negative association is important in the above situations given
the domain knowledge in the form of item generalization hierarchies (that is, the beverage
given and desserts hierarchies shown in Figure 27.3), the existing positive associations (such
as between the frozen yogurt and bottled water groups), and the distribution of items (such
as the name brands within related groups). Work has been reported by the database group at
Georgia Tech in this context (see bibliographic notes). The scope of discovery of negative
associations is limited in terms of knowing the item hierarchies and distributions.
Exponential growth of negative associations remains a challenge.

27.2.7 Additional Considerations for Association Rules
Mining association rules in real-life databases is complicated by the following factors.

• The cardinality of itemsets in most situations is extremely large, and the volume of
transactions is very high as well. Some operational databases in retailing and commu
nication industries collect tens of millions of transactions per day.

• Transactions show variability in such factors as geographic location and seasons,
making sampling difficult.

• Item classifications exist along multiple dimensions. Hence, driving the discovery
process with domain knowledge, particularly for negative rules, is extremely difficult.

• Quality of data is variable; significant problems exist with missing, erroneous, con
flicting, as well as redundant data in many industries.

27.3 CLASSIFICATION
Classification is the process of learning a model that describes different classes of data. The
classes are predetermined. For example, in a banking application, customers who apply for
a credit card may be classified as a "poor risk," a "fair risk," or a "good risk." Hence this
type of activity is also called supervised learning. Once the model is built, then it can be
used to classify new data. The first step, of learning the model, is accomplished by using a
training set of data that has already been classified. Each record in the training data con
tains an attribute, called the class label, that indicates which class the record belongs to.

The model that is produced is usually in the form of a decision tree or a set of rules. Some
of the important issues with regard to the model and the algorithm that produces the
model include the model's ability to predict the correct class of new data, the computa
tional cost associated with the algorithm, and the scalability of the algorithm.

We will examine the approach where our model is in the form of a decision tree. A
decision tree is simply a graphical representation of the description of each class or in

27.3 Classification I 883

other words, a representation of the classification rules. An example decision tree is
pictured in Figure 27.5. We see from Figure 27.5 that if a customer is "married" and their
salary >= 50K, then they are a good risk for a credit card from the bank. This is one of the
rules that describe the class "good risk." Other rules for this class and the two other
classes are formed by traversing the decision tree from the root to each leaf node.
Algorithm 27.3 shows the procedure for constructing a decision tree from a training data
set. Initially, all training samples are at the root of the tree. The samples are partitioned
recursively based on selected attributes. The attribute used at a node to partition the
samples is the one with the best splitting criterion, for example, the one that maximizes
the information gain measure.

Algorithm 27.3: Algorithm for decision tree induction

Input: set of training data Records: RI, Rz, ... ,R,n and set of Attributes: AI' Az, ... ,An
Output: decision tree

procedure Build_tree (Records, Attributes);
Begin
create a node N;

if all Records belong to the same class, C then
Return N as a leaf node with class label C;

if Attributes is empty then
Return N as a leaf node with class label C, such that the majority of Records belong to it;

select attribute Ai (with the highest information gain) from Attributes;

label node N with Ai;

married

fair risk good risk

< 20k

poor risk

yes

>= 20k

< 50k

>= 50k

no

fair risk good risk

FIGURE 27.5 Example decision tree for credit card applications.

884 I Chapter 27 Data Mining Concepts

for each known value, Vi' of Ai do
begin
add a branch from node N for the condition Ai == Vj;
Sj == subset of Records where Ai == Vj;
if Sj is empty then
add a leaf, L, with class label C, such that the majority of

Records belong to it and Return L
else add the node returned by Build_tree (Si' Attributes - Ai);

end;
End;

Before we illustrate Algorithm 27.3, we will explain in more detail the information
gain measure. The use of entropy as the information gain measure is motivated by the
goal of minimizing the information needed to classify the sample data in the resulting
partitions and thus minimizing the expected number of conditional tests needed to

classify a new record. The expected information needed to classify training data of
s samples, where the Class attribute has n values (vI'"''vn) and Si is the number of samples
belonging to Class label Vi' is given by

n

where Pi is the probability that a random sample belongs to class with label Vi' An estimate for
Piis sJs. Consider an attribute A with values {Vl""'Vrn} used as the test attribute for splitting in
the decision tree. Attribute A partitions the samples into the subsets SI' ..., Srn where samples
in each S, have a value of Vi for attribute A. Each Si may contain samples that belong to any of
the classes. The number of samples in S, that belong to class j can be denoted as sJi' The
entropy associated with using attribute A as the test attribute is defined as

n

E(A) =L Sj1 + ... + Sjn. [(S)1' Sj2' ... , Sin)
J == 1 S

I(sjl, ...,Sjn) can be defined using the formulation for I(sl, ...Sn) with Pi being replaced by PII

where Pji == SjJs. Now the information gain by partitioning on attribute A, Gain(A), is
defined as I(SI,... ,Sn) - E(A). We can use the sample training data from Figure 26.6 to illus
trate Algorithm.

The attribute RID represents the record identifier used for identifying an individual
record and is an internal attribute. We use it to identify a particular record in our
example. First, we compute the expected information needed to classify the training data
of 6 records as I(SI ,S2) where the first class label value corresponds to "yes" and the second
to "no". So,

1(3,3) == - 0.5log2 0.5 - 0.5log20.5 == 1.

Now, we compute the entropy for each of the 4 attributes as shown below. For Mar
ried == yes, we have S11 == 2, S21 '" 1 and I(s11,s12) == 0.92. For Married == no, we have

27.4 Clustering I 885

RID Married Salary Acct Balance Age Loanworthy
1 no >=50k <5k >=25 yes
2 yes >=50k >=5k >=25 yes
3 yes 20k ...50k <5k <25 no
4 no <20k >=5k <25 no
5 no <20k <5k >=25 no
6 yes 20k...50k >=5k >=25 yes

FIGURE 27.6 Sample training data for classification algorithm.

S12 = 1, S22 = 2 and I(s12,s22) = 0.92. So, the expected information needed to classify a
sample using attribute married as the partitioning attribute is

E(Married) = 3/6 I(sll,S21) + 3/6 I(s12,S22) = 0.92.

The gain in information, Gain(Married), would be 1 - 0.92 = 0.08. If we follow similar
steps for computing the gain with respect to the other three attributes we end up with

E(Salary) = 0.33 and Gain(Salary) = 0.67
E(Acct Balance) = 0.82 and Gain(Acct Balance) = 0.18
E(Age) = 0.81 and Gain(Age) = 0.19

Since the greatest gain occurs for attribute Salary, it is chosen as the partitioning
attribute. The root of the tree is created with label Salary and has three branches, one for
each value of Salary. For two of the three values, i.e., <20k and >=50k, all the samples
that are partitioned accordingly (records with RIDs 4 and 5 for <20k and records with
RIDs 1 and 2 for >=50k) fall within the same class "loanworthy no" and "loanworthy
yes," respectively for those two values. So we create a leaf node for each. The only
branch that needs to be expanded is for the value 20k ...50k with two samples, records
with RIDs 3 and 6 in the training data. Continuing the process using these two records,
we find that Gain(Married) is 0, Gain(Acct Balance) is 1 and Gain(Age) is 1.

We can choose either Age or Acct Balance since they both have the largest gain. Let
us choose Age as the partitioning attribute. We add a node with label Age that has two
branches, less than 25, and greater or equal to 25. Each branch partitions the remaining
sample data such that one sample record belongs to each branch and hence one class.
Two leaf nodes are created and we are finished. The final decision tree is pictured in
Figure 27.7.

27.4 CLUSTERING
The previous data mining task of classification deals with partitioning data based on using
a pre-classified training sample. However, it is often useful to partition data without hav
ing a training sample; this is also known as unsupervised learning. For example, in busi
ness, it may be important to determine groups of customers who have similar buying
patterns, or in medicine, it may be important to determine groups of patients who show

886 I Chapter 27 Data Mining Concepts

class is "no" {4,5}

< 25

class is "no" {3}

{1,2} class is "yes"

>= 25

{6} class is "yes"

FIGURE 27.7 Decision tree based on sample training data where the leaf nodes are
represented by a set of RIDs of the partitioned records.

similar reactions to prescribed drugs. The goal of clustering is to place records into groups,
such that records in a group are similar to each other and dissimilar to records in other
groups. The groups are usually disjoint.

An important facet of clustering is the similarity function that is used. When the
data is numeric, a similarity function based on distance is typically used. For example, the
Euclidean distance can be used to measure similarity. Consider two n-dimensional data
points (records) rj and rk. We can consider the value for the ith dimension as rji and rki for
the two records. The Euclidean distance between points rj and rk in n-dimensional space
is calculated as:

The smaller the distance between two points, the greater is the similarity as we think
of them. A classic clustering algorithm is the k-Meansalgorithm, Algorithm 27.4.

Algorithm 27.4: K-means clustering algorithm

Input: a database D, of m records, rl' ... ,rro and a desired number of clusters k
Output: set of k clusters that minimizes the squared error criterion

Begin
randomly choose k records as the centroids for the k clusters;

repeat

assign each record, ri , to a cluster such that the distance between ri

and the cluster centroid (mean) is the smallest among the k clusters;

recalculate the centroid (mean) for each cluster based on the records assigned to the
cluster;

until no change;

End;

27.4 Clustering I 887

The algorithm begins by randomly choosing k records to represent the centroids
(means), mt, ... , mk' of the clusters, C t, ... ,Ck. All the records are placed in a given
cluster based on the distance between the record and the cluster mean. If the distance
between m i and record rj is the smallest among all cluster means, then record rj is placed
in cluster C, Once all records have been initially placed in a cluster, the mean for each
cluster is recomputed. Then the process repeats, by examining each record again and
placing it in the cluster whose mean is closest. Several iterations may be needed, but the
algorithm will converge, although it may terminate at a local optimum. The terminating
condition is usually the squared-error criterion. For clusters C t, ... ,Ck with means mt,
... , mk' the error is defined as:

k

Error = I I Distance(rj , m/
i = 1'\;/rj E c,

We will examine how Algorithm 26.4 works with the (2-dimensional) records in
Figure 27.8. Assume that the number of desired clusters k is 2. Let the algorithm choose
records with RID 3 for cluster C 1 and RID 6 for cluster Cz as the initial cluster centroids.
The remaining records will be assigned to one of those clusters during the first iteration of
the repeat loop. The record with RID 1 has a distance from C t of 22.4 and a distance from
Cz of 32.0, so it joins cluster Ct. The record with RID 2 has a distance from C, of 10.0
and a distance from Cz of 5.0, so it joins cluster Cz. The record with RID 4 has a distance
from C t of 25.5 and a distance from Cz of 36.6, so it joins cluster Ct. The record with RID
5 has a distance from C, of 20.6 and a distance from Cz of 29.2, so it joins cluster Ct.
Now, the new means (centroids) for the two clusters are computed. The mean for a
cluster, C i , with n records of m dimensions is the vector:

The new mean for C, is (33.75, 8.75) and the new mean for Cz is (52.5, 25). A
second iteration proceeds and the six records are placed into the two clusters as follows:
records with RIDs 1,4,5 are placed in C, and records with RIDs 2, 3, 6 are placed in Cz.
The mean for C, and Cz is recomputed as (28.3, 6.7) and (51.7, 21.7), respectively. In the
next iteration, all records stay in their previous clusters and the algorithm terminates.

RID
1
2
3
4
5
6

Age
30
50
50
25
30
55

Years
of Service

5
25
15

5
10
25

FIGURE 27.8 Sample 2-dimensional records for clustering example (the RID col
umn is not considered).

888 I Chapter 27 Data Mining Concepts

Traditionally, clustering algorithms assume that the entire data set fits in main memory.
More recently, researchers have been developing algorithms that are efficient and are scalable
for very large databases. One such algorithm is called BIRCH. BIRCH is a hybrid approach
that uses both a hierarchical clustering approach, which builds a tree representation of the
data, as well as additional clustering methods, which are applied to the leaf nodes of the tree.
Two input parameters are used by the BIRCH algorithm. One specifies the amount of
available main memory and the other is an initial threshold for the radius of any cluster. Main
memory is used to store descriptive cluster information such as the center (mean) of a cluster
and the radius of the cluster (clusters are assumed to be spherical in shape). The radius
threshold affects the number of clusters that are produced. For example, if the radius threshold
value is large, then few clusters of many records will be formed. The algorithm tries to
maintain the number of clusters such that their radius is below the radius threshold. If
available memory is insufficient, then the radius threshold is increased.

The BIRCH algorithm reads the data records sequentially and inserts them into an
in-memory tree structure, which tries to preserve the clustering structure of the data. The
records are inserted into the appropriate leaf nodes (potential clusters) based on the
distance between the record and the cluster center. The leaf node where the insertion
happens may have to split, depending upon the updated center and radius of the cluster
and the radius threshold parameter. In addition, when splitting, extra cluster information
is stored and if memory becomes insufficient, then the radius threshold will be increased.
Increasing the radius threshold may actually produce a side effect of reducing the number
of clusters since some nodes may be merged.

Overall, BIRCH is an efficient clustering method with a linear computational
complexity in terms of the number of records to be clustered.

27.5 ApPROACHES TO OTHER DATA MINING
PROBLEMS

27.5.1 Discovery of Sequential Patterns
The discovery of sequential patterns is based on the concept of a sequence of itemsets. We
assume that transactions such as the supermarket-basket transactions we discussed previ
ously are ordered by time of purchase. That ordering yields a sequence of itemsets. For
example, {milk, bread, juice}, {bread, eggs}, {cookies, milk, coffee} may be such a sequence
of itemsets based on three visits of the same customer to the store. The support for a
sequence 5 of itemsets is the percentage of the given set U of sequences of which 5 is a
subsequence. In this example, {milk, bread, juice} {bread, eggs} and {bread, eggs} {cookies,
milk, coffee} are considered subsequences. The problem of identifying sequential
patterns, then, is to find all subsequences from the given sets of sequences that have a
user-defined minimum support. The sequence 51'52'53' ... is a predictor of the fact that
a customer who buys itemset 51 is likely to buy itemset 52 and then 53' and so on. This
prediction is based on the frequency (support) of this sequence in the past. Various algo
rithms have been investigated for sequence detection.

27.5 Approaches to Other Data Mining Problems I 889

27.5.2 Discovery of Patterns in Time Series
Time series are sequences of events; each event may be a given fixed type of a transaction.
For example, the closing price of a stock or a fund is an event that occurs every weekday
for each stock and fund. The sequence of these values per stock or fund constitutes a time
series. For a time series, one may look for a variety of patterns by analyzing sequences and
subsequences as we did above. For example, we might find the period during which the
stock rose or held steady for n days, or we might find the longest period over which the
stock had a fluctuation of no more than 1% over previous closing price, or we might find
the quarter during which the stock had the most percentage gain or percentage loss. Time
series may be compared by establishing measures of similarity to identify companies
whose stocks behave in a similar fashion. Analysis and mining of time series is an
extended functionality of temporal data management (see Chapter 24).

27.5.3 Regression
Regression is a special application of the classification rule. If a classification rule is
regarded as a function over the variables that maps these variables into a target class vari
able, the rule is called a regression rule. A general application of regression occurs when,
instead of mapping a tuple of data from a relation to a specific class, the value of a variable
is predicted based on that tuple. For example, consider a relation

LAB_TESTS (patient 10, test 1, test 2, ... , test n)

which contains values that are results from a series of n tests for one patient. The target
variable that we wish to predict is P, the probability of survival of the patient. Then the
rule for regression takes the form:

(test 1 in range I) and (test 2 in range-) and ... (test n in range.) => P =x,
orx<P~y

The choice depends on whether we can predict a unique value of P or a range of
values for P. If we regard P as a function:

P = f (test 1, test 2, ... , test n)

the function is called a regression function to predict P. In general, if the function
appears as

Y = f (Xl' Xl' ••• , x.),

and f is linear in the domain variables Xi' the process of deriving f from a given set of
tuples for < Xl' Xl' .•• , ~, y > is called linear regression. Linear regression is a com
monly used statistical technique for fitting a set of observations or points in n dimensions
with the target variable y.

Regression analysis is a very common tool for analysis of data in many research
domains. The discovery of the function to predict the target variable is equivalent to a
data mining operation.

890 I Chapter 27 Data Mining Concepts

27.5.4 Neural Networks
Neural network is a technique derived from artificial intelligence research that uses gener
alized regression and provides an iterative method to carry it out. Neural networks use the
curve-fitting approach to infer a function from a set of samples. This technique provides a
"learning approach"; it is driven by a test sample that is used for the initial inference and
learning. With this kind of learning method, responses to new inputs may be able to be
interpolated from the known samples. This interpolation however, depends on the world
model (internal representation of the problem domain) developed by the learning method.

Neural networks can be broadly classified into two categories: supervised and
unsupervised networks. Adaptive methods that attempt to reduce the output error are
supervised learning methods, whereas those that develop internal representations
without sample outputs are called unsupervised learning methods.

Neural networks self-adapt; that is, they learn from information on a specific
problem. They perform well on classification tasks and are therefore useful in data
mining. Yet, they are not without problems. Although they learn, they do not provide a
good representation of what they have learned. Their outputs are highly quantitative and
not easy to understand. As another limitation, the internal representations developed by
neural networks are not unique. Also, in general, neural networks have trouble modeling
time series data. Despite these shortcomings, they are popular and frequently used by
several commercial vendors.

27.5.5 Genetic Algorithms
Genetic algorithms (GAs) are a class of randomized search procedures capable of adaptive
and robust search over a wide range of search space topologies. Modeled after the adap
tive emergence of biological species from evolutionary mechanisms, and introduced by
Holland," GAs have been successfully applied in such diverse fields such as image analysis,
scheduling, and engineering design.

Genetic algorithms extend the idea from human genetics of the four-letter alphabet
(based on the A,C,T,G nucleotides) of the human DNA code. The construction of a genetic
algorithm involves devising an alphabet that encodes the solutions to the decision problem
in terms of strings of that alphabet. Strings are equivalent to individuals. A fitness function
defines which solutions can survive and which cannot. The ways in which solutions can be
combined are patterned after the cross-over operation of cutting and combining strings
from a father and a mother. An initial population of well-varied population is provided, and
a game of evolution is played in which mutations occur among strings. They combine to
produce a new generation of individuals; the fittest individuals survive and mutate until a
family of successful solutions develops.

The solutions produced by genetic algorithms (GAs) are distinguished from most
other search techniques by the following characteristics:

6. Holland's seminal work (1975) entitled "Adaptation in Natural and Artificial Systems" intro
duced the idea of genetic algorithms.

27.7 Commercial Data Mining Tools I 891

• A GA search uses a set of solutions during each generation rather than a single solution.

• The search in the string-space represents a much larger parallel search in the space of
encoded solutions.

• The memory of the search done is represented solely by the set of solutions available
for a generation.

• A genetic algorithm is a randomized algorithm since search mechanisms use probabi
listic operators.

• While progressing from one generation to the next, a GA finds near-optimal balance
between knowledge acquisition and exploitation by manipulating encoded solutions.

Genetic algorithms are used for problem solving and clustering problems. Their
ability to solve problems in parallel provides a powerful tool for data mining. The
drawbacks of GAs include the large overproduction of individual solutions, the random
character of the searching process, and the high demand on computer processing. In
general, substantial computing power is required to achieve anything of significance with
genetic algorithms.

27.6 ApPLICATIONS OF DATA MINING
Data mining technologies can be applied to a large variety of decision-making contexts in
business. In particular, areas of significant payoffs are expected to include the following:

• Marketing-Applications include analysis of consumer behavior based on buying
patterns; determination of marketing strategies including advertising, store location,
and targeted mailing; segmentation of customers, stores, or products; and design of
catalogs, store layouts, and advertising campaigns.

• Finance-Applications include analysis of creditworthiness of clients, segmentation
of account receivables, performance analysis of finance investments like stocks,
bonds, and mutual funds; evaluation of financing options; and fraud detection.

• Manufacturing-Applications involve optimization of resources like machines, man
power, and materials; optimal design of manufacturing processes, shop-floor layouts,
and product design, such as for automobiles based on customer requirements.

• Health Care-Applications include discovering patterns in radiological images,
analysis of microarray (gene-chip) experimental data to relate to diseases, analyzing
side effects of drugs, and effectiveness of certain treatments; optimization of processes
within a hospital, relating patient wellness data with doctor qualifications.

27.7 COMMERCIAL DATA MINING TOOLS
At the present time, commercial data mining tools use several common techniques to
extract knowledge. These include association rules, clustering, neural networks, sequenc
ing, and statistical analysis. We have discussed these earlier. Also used are decision trees,

892 I Chapter 27 Data Mining Concepts

which are a representation of the rules used in classification or clustering, and statistical
analyses, which may include regression and many other techniques. Other commercial
products use advanced techniques such as genetic algorithms, case-based reasoning, Baye
sian networks, nonlinear regression, combinatorial optimization, pattern matching, and
fuzzy logic. In this chapter we have already discussed some of these.

Most data mining tools use the OOBC (Open Database Connectivity) interface. ODBC
is an industry standard that works with databases; it enables access to data in most of the
popular database programs such as Access, dBASE, Informix, Oracle, and SQL Server.
Some of these software packages provide interfaces to specific database programs; the
most common are Oracle, Access, and SQL Server. Most of the tools work in the
Microsoft Windows environment and a few work in the UNIX operating system. The
trend is for all products to operate under the Microsoft Windows environment. One tool,
Data Surveyor, mentions OOMO compliance; see Chapter 21 where we discuss the ODMO
object-oriented standard.

In general, these programs perform sequential processing in a single machine. Many
of these products work in the client-server mode. Some products incorporate parallel
processing in parallel computer architectures and work as a part of online analytical
processing (OLAP) tools.

User Interface. Most of the tools run in a graphical user interface (OUr)
environment. Some products include sophisticated visualization techniques to view data
and rules (e.g., MineSet of son, and are even able to manipulate data this way
interactively. Text interfaces are rare and are more common in tools available for UNIX,
such as IBM's Intelligent Miner.

Application Programming Interface. Usually, the application programming
interface (API) is an optional tool. Most products do not permit using their internal
functions. However, some of them allow the application programmer to reuse their code.
The most common interfaces are C libraries and Dynamic Link Libraries (OLLs). Some
tools include proprietary database command languages.

In Table 27.1 we list 11 representative data mining tools. To date there are almost a
hundred commercial data mining products available worldwide. Non-U.S. products
include Data Surveyor from the Netherlands and Polyanalyst from Russia.

Future Directions. Data mining tools are continually evolving, building on ideas
from the latest scientific research. Many of these tools incorporate the latest algorithms
taken from artificial intelligence (AI), statistics, and optimization.

At present, fast processing is done using modem database techniques-such as
distributed processing-in client-server architectures, in parallel databases, and in data
warehousing. For the future, the trend is toward developing Internet capabilities more
fully. In addition, hybrid approaches will become commonplace, and processing will be
done using all resources available. Processing will take advantage of both parallel and
distributed computing environments. This shift is especially important because modem
databases contain very large amounts of information. Not only are multimedia databases
growing, but image storage and retrieval are both slow operations. Also, the cost of

27.7 Commercial Data Mining Tools I 893

TABLE 27.1 SOME REPRESENTATIVE DATA MINING TOOLS

COMPANY PRODUCT TECHNIQUE PLATFORM INTERFACE'

Acknosoft Kate Decision trees, Win NT Microsoft Access
Case-based UNIX
reasoning

Angoss Knowledge Decision trees, Win NT ODBC
Seeker Statistics

Business Business Neural nets, Win NT ODBC
Objects Miner Machine learning
CrossZ QueryObject Statistical Analysis Win NT ODBC

Optimization MVS
algorithm UNIX

Data Data Comprehensive, UNIX ODBC
Distilleries Surveyor Can mix OM ODMG-compliant
DBMiner DBMiner OLAP analysis, Win NT Microsoft 7.0
Technology Inc. Associations, Classification, OLAPMGr

Clustering
algorithms

IBM Intelligent Classification, UNIX IBM
Miner Association rules, (AIX) DB2

Predictive models
Megaputer Polyanalyst Symbolic Win NT ODBC
Intelligence knowledge OS/2 Oracle

acquisition, DB2
Evolutionary
programming

NCR Management Association rules Win NT ODBC
Discovery
Tool (MDT)

SAS Enterprise Decision trees, UNIX ODBC
Miner Association rules, (Solaris) Oracle

Neural nets, Win NT As/400
Regression, Macintosh
Clustering

Silicon MineSet Decision trees, UNIX Oracle
Graphics Association rules (Irix) Sybase

Informix

*ODBC: Open Data Base Connectivity;
ODMG: Object Data Management Group

894 I Chapter 27 Data Mining Concepts

secondary storage is decreasing, so massive information storage will be feasible, even for
small companies. Thus, data mining programs will have to deal with larger sets of data of
more companies.

In the near future it seems that Microsoft Windows NT and UNIX will be the standard
platforms, with NT being dominant. Most of data mining software will use the ODBC

standard to extract data from business databases; proprietary input formats can be
expected to disappear. There is a definite need to include nonstandard data, including
images and other multimedia data, as source data for data mining. However, the
algorithmic developments for nonstandard data mining have not reached a maturity level
sufficient for commercialization.

27.8 SUMMARY
In this chapter we surveyed the important discipline of data mining, which uses database
technology to discover additional knowledge or patterns in the data. We gave an illustra
tive example of knowledge discovery in databases, which has a wider scope than data
mining. For data mining, among the various techniques, we focused on the details of
association rule mining classificaion and clustering. We presented algorithms in each of
these areas and illustrated how those algorithms work with the aid of examples.

A variety of other techniques, including the Al-based neural networks and genetic
algorithms, were also briefly discussed. Active research is ongoing in data mining and we
have outlined some of the expected research directions. In the future database technology
products market, a great deal of data mining activity is expected. We summarized 11 out
of nearly a hundred data mining tools available today; future research is expected to
extend the number and functionality significantly.

Review Questions
27.1. What are the different phases of the knowledge discovery from databases!

Describe a complete application scenario in which new knowledge may be mined
from an existing database of transactions.

27.2. What are the goals or tasks that data mining attempts to facilitate?
27.3. What are the five types of knowledge produced from data mining?
27.4. What are association rules as a type of knowledge? Give a definition of support

and confidence and use them to define an association rule.
27.5. What is the downward closure property? How does it aid in developing an

efficient algorithm for finding association rules, Le., with regard to finding large
itemsets?

27.6. What was the motivating factor for the development of the FP-tree algorithm for
association rule mining?

27.7. Describe an association rule among hierarchies with an example.
27.8. What is a negative association rule in the context of the hierarchy of Figure 27.3!
27.9. What are the difficulties of mining association rules from large databases?

27.10. What are classification rules and how are decision trees related to them?
27.11. What is entropy and how is it used in building decision trees?
27.12. How does clustering differ from classification?
27.13. Describe neural networks and genetic algorithms as techniques for data mining.

What are the main difficulties in using these techniques?

Exercises
27.14. Apply the Apriori algorithm to the following data set.

Exercises I 895

Trans ID

101
102
103
104
105
106
107
108
109
110

Items Purchased

milk, bread, eggs
milk, juice
juice, butter
milk, bread, eggs
coffee, eggs
coffee
coffee, juice
milk, bread, cookies, eggs
cookies, butter
milk, bread

The set of items is {milk, bread, cookies, eggs, butter, coffee, juice}. Use 0.2 for
the minimum support value.

27.15. Show two rules that have a confidence of 0.7 or greater for an itemset containing
three items from Exercise 23.

27.16. For the Partition algorithm, prove that any frequent itemset in the database must
appear as a local frequent itemset in at least one partition.

27.17. Show the FP tree that would be made for the data from Exercise 23.
27.18. Apply the FP-growth algorithm to the FP tree from Exercise 26 and show the fre

quent itemsets.
27.19. Apply the classification algorithm to the following set of data records. The class

attribute is Repeat Customer.

RID Age City Gender Education Repeat Customer

101 20..30 NY F college YES
102 20..30 SF M graduate YES
103 31..40 NY F college YES
104 51..60 NY F college NO
105 31..40 LA M high school NO
106 41..50 NY F college YES
107 41..50 NY F graduate YES
108 20..30 LA M college YES
109 20..30 NY F high school NO
110 20..30 NY F college YES

896 I Chapter 27 Data Mining Concepts

27.20. Consider the following set of two-dimensional records:

RID Dimension1 Dimension2
1 8 4
2 5 4
3 2 4
4 2 6
5 2 8
6 8 6

Also consider two different clustering schemes: (1) where Cluster) contains
records {1,2,3} and Cluster- contains records {4,5,6} and (2) where Cluster)
contains records {1,6} and Clusterz contains records {2,3,4,5}. Which scheme is
better and why?

27.21. Use the K-means algorithm to cluster the data from Exercise 29. We can use a
value of 3 for K and can assume that the records with RIDs 1, 3 and 5 are used for
the initial cluster centroids (means).

27.22. The Kvrneans algorithm uses a similarity metric of distance between a record and
a cluster centroid. If the attributes of the records are not quantitative but cate
gorical in nature, such as Income Level with values {low, medium, high} or
Married with values {Yes, No} or State of Residence with values {Alabama,
Alaska, ... , Wyoming} then the distance metric is not meaningful. Define a
more suitable similarity metric that can be used for clustering data records that
contain categorical data.

Selected Bibliography
Literature on data mining comes from several fields, including statistics, mathematical
optimization, machine learning, and artificial intelligence. Data mining has only recently
become a topic in the database literature. We, therefore, mention only a few database
related works. Chen et a1. (1996) give a good summary of the database perspective on
data mining. The book by Han and Kamber (2001) is an excellent text, describing in
detail the different algorithms and techniques used in the data mining area. Work at IBM
Almaden research has produced a large number of early concepts and algorithms as well
as results from some performance studies. Agrawal et a1. (1993) report the first major
study on association rules. Their Apriori algorithm for market basket data in Agrawal and
Srikant (1994) is improved by using partitioning in Savasere et a1. (1995); Toivonen
(1996) proposes sampling as a way to reduce the processing effort. Cheung et a1. (1996)
extends the partitioning to distributed environments; Lin and Dunham (1998) propose
techniques to overcome problems with data skew. Agrawal et a1. (1993b) discuss the per
formance perspective on association rules. Mannila et a1. (1994), Park et a1. (1995), and
Amir et a1. (1997) present additional efficient algorithms related to association rules. Han
et a1. (2000) present the FP tree algorithm discussed in this chapter. Srikant (1995) pro
poses mining generalized rules. Savasere et a1. (1998) present the first approach to mining
negative associations. Agrawal et a1. (1996) describe the Quest system at IBM. Sarawagi
et a1. (1998) describe an implementation where association rules are integrated with a

Selected Bibliography I 897

relational database management system. Piatesky-Shapiro and Frawley (1992) have con
tributed papers from a wide range of topics related to knowledge discovery. Zhang et al.
(1996) present the BIRCH algorithm for clustering large databases. Information about
decision tree learning and the classification algorithm presented in this chapter can be
found in Mitchell (1997).

Adriaans and Zantinge (1996) and Weiss and Indurkhya (1998) are two recent books
devoted to the different aspects of data mining and its use in prediction. The idea of
genetic algorithms was proposed by Holland (1975); a good survey of genetic algorithms
appears in Srinivas and Patnaik (1974). Neural networks have a vast literature; a
comprehensive introduction is available in Lippman (1987).

Overview of Data
Warehousing and OlAP

The increasing processing power and sophistication of analytical tools and techniques
have resulted in the development of what are known as data warehouses. These data
warehouses provide storage, functionality, and responsiveness to queries beyond the capa
bilities of transaction-oriented databases. Accompanying this ever-increasing power has
come a great demand to improve the data access performance of databases. As we have
seen throughout the book, traditional databases balance the requirement of data access
with the need to ensure integrity of data. In modern organizations, users of data are often
completely removed from the data sources. Many people only need read-access to data,
but still need a very rapid access to a larger volume of data than can conveniently be
downloaded to the desktop. Often such data comes from multiple databases. Because
many of the analyses performed are recurrent and predictable, software vendors and sys
tems support staff have begun to design systems to support these functions. At present
there is a great need to provide decision makers from middle management upward with
information at the correct level of detail to support decision making. Data warehousing,
online analytical processing (OLAF), and data mining provide this functionality. We already
gave an introduction to data mining techniques in Chapter 27. In this chapter we give a
broad overview of data warehousing and OLAF technologies.

899

900 I Chapter 28 Overview of Data Warehousing and OLAP

28.1 INTRODUCTION, DEFINITIONS,
AND TERMINOLOGY

In Chapter 1 we defined database as a collection of related data and a database system as a
database and database software together. A data warehouse is also a collection of informa
tion as well as a supporting system. However, a clear distinction exists. Traditional databases
are transactional (relational, object-oriented, network, or hierarchical). Data warehouses
have the distinguishing characteristic that they are mainly intended for decision-support
applications. They are optimized for data retrieval, not routine transaction processing.

Because data warehouses have been developed in numerous organizations to meet
particular needs, there is no single, canonical definition of the term data warehouse.
Professional magazine articles and books in the popular press have elaborated on the meaning
in a variety of ways. Vendors have capitalized on the popularity of the term to help market a
variety of related products, and consultants have provided a large variety of services, all under
the data warehousing banner. However, data warehouses are quite distinct from traditional
databases in their structure, functioning, performance, and purpose.

W. H. Inmon l characterized a data warehouse as "a subject-oriented, integrated,
nonvolatile, time-variant collection of data in support of management's decisions." Data
warehouses provide access to data for complex analysis, knowledge discovery, and
decision making. They support high-performance demands on an organization's data and
information. Several types of applications--QLAP, DSS, and data mining applications
are supported. We define each of these next.

OLAP (online analytical processing) is a term used to describe the analysis of
complex data from the data warehouse. In the hands of skilled knowledge workers, OLAP

tools use distributed computing capabilities for analyses that require more storage and
processing power than can be economically and efficiently located on an individual
desktop.

DSS (decision-support systems) also known as EIS (executive information systems)
(not to be confused with enterprise integration systems) support an organization's leading
decision makers with higher level data for complex and important decisions. Data mining
(which we discussed in detail in Chapter 27) is used for knowledge discovery, the process
of searching data for unanticipated new knowledge.

Traditional databases support online transaction processing (OLTP), which includes
insertions, updates, and deletions, while also supporting information query requirements.
Traditional relational databases are optimized to process queries that may touch a small
part of the database and transactions that deal with insertions or updates of a few tuples
per relation to process. Thus, they cannot be optimized for OLAP, DSS, or data mining. By
contrast, data warehouses are designed precisely to support efficient extraction,
processing, and presentation for analytic and decision-making purposes. In comparison to
traditional databases, data warehouses generally contain very large amounts of data from
multiple sources that may include databases from different data models and sometimes
files acquired from independent systems and platforms.

1. Inmon (1992) has been credited with initially using the term data warehouse.

28.2 Characteristics of Data Warehouses I 901

28.2 CHARACTERISTICS OF DATA WAREHOUSES
To discuss data warehouses and distinguish them from transactional databases calls for an
appropriate data model. The multidimensional data model (explained in more detail in
Section 28.3) is a good fit for OLAP and decision-support technologies. In contrast to multi
databases, which provide access to disjoint and usually heterogeneous databases, a data
warehouse is frequently a store of integrated data from multiple sources, processed for stor
age in a multidimensional model. Unlike most transactional databases, data warehouses
typically support time-series and trend analysis, both of which require more historical data
than is generally maintained in transactional databases.

Compared with transactional databases, data warehouses are nonvolatile. That
means that information in the data warehouse changes far less often and may be regarded
as non-real-time with periodic updating. In transactional systems, transactions are the
unit and are the agent of change to the database; by contrast, data warehouse information
is much more coarse grained and is refreshed according to a careful choice of refresh
policy, usually incremental. Warehouse updates are handled by the warehouse's
acquisition component that provides all required preprocessing.

We can also describe data warehousing more generally as "a collection of decision
support technologies, aimed at enabling the knowledge worker (executive, manager,
analyst) to make better and faster decisions.Y Figure 28.1 gives an overview of the
conceptual structure of a data warehouse. It shows the entire data warehousing process.
This process includes possible cleaning and reformatting of data before its warehousing.
At the back end of the process, OLAP, data mining, and DSS may generate new relevant
information such as rules; this information is shown in the figure going back into the
warehouse. The figure also shows that data sources may include files.

Back flushing

~~ DATA WAREHOUSE

U ~Cle,"i"g~ R,fmma.i"g~ ""DATA
, , _ ~;~

Databases / ~~~~~T~ i <, DATA _

MINING

1////////
Other Data Inputs Updates/New Data

FIGURE 28.1 Example transactions in market-basket model.

2. Chaudhuri and Dayal (1997) provide an excellent tutorial on the topic, with this as a starting
definition.

902 I Chapter 28 Overview of Data Warehousing and OlAP

Data warehouses have the following distinctive characteristicsr'

• multidimensional conceptual view

• generic dimensionality

• unlimited dimensions and aggregation levels

• unrestricted cross-dimensional operations

• dynamic sparse matrix handling

• client-server architecture

• multi-user support

• accessibility

• transparency

• intuitive data manipulation

• consistent reporting performance

• flexible reporting

Because they encompass large volumes of data, data warehouses are generally an
order of magnitude (sometimes two orders of magnitude) larger than the source databases.
The sheer volume of data (likely to be in terabytes) is an issue that has been dealt with
through enterprise-wide data warehouses, virtual data warehouses, and data marts:

• Enterprise.wide data warehouses are huge projects requiring massive investment of
time and resources.

• Virtual data warehouses provide views of operational databases that are materialized
for efficient access.

• Data marts generally are targeted to a subset of the organization, such as a depart
ment, and are more tightly focused.

28.3 DATA MODELING FOR DATA
WAREHOUSES

Multidimensional models take advantage of inherent relationships in data to populate
data in multidimensional matrices called data cubes. (These may be called hypercubes if
they have more than three dimensions.) For data that lends itself to dimensional format
ting, query performance in multidimensional matrices can be much better than in the
relational data model. Three examples of dimensions in a corporate data warehouse
would be the corporation's fiscal periods, products, and regions.

A standard spreadsheet is a two-dimensional matrix. One example would be a
spreadsheet of regional sales by product for a particular time period. Products could be

3. Codd (1993) coined the term OLAP and mentioned these characteristics. We have reordered
Codd's original list.

28.3 Data Modeling for Data Warehouses I 903

shown as rows, with sales revenues for each region comprising the columns. (Figure 28.2
shows this two-dimensional organization.) Adding a time dimension, such as an
organization's fiscal quarters, would produce a three-dimensional matrix, which could be
represented using a data cube.

In Figure 28.3 there is a three-dimensional data cube that organizes product sales data
by fiscal quarters and sales regions. Each cell could contain data for a specific product,

REGION

PRODUCT

P123

P124

P125

P126

REG1 REG2 REG3

FIGURE 28.2 Two-dimensional matrix model.

t5
5o P126
II:
0..

1

P123

P124

P125

P127

FIGURE 28.3 A three-dimensional data cube model.

904 I Chapter 28 Overview of Data Warehousing and OlAP

specific fiscal quarter, and specific region. By including additional dimensions, a data
hypercube could be produced, although more than three dimensions cannot be easily
visualized at all or presented graphically. The data can be queried directly in any
combination of dimensions, bypassing complex database queries. Tools exist for viewing
data according to the user's choice of dimensions.

Changing from one dimensional hierarchy (orientation) to another is easily
accomplished in a data cube by a technique called pivoting (also called rotation). In this
technique the data cube can be thought of as rotating to show a different orientation of
the axes. For example, you might pivot the data cube to show regional sales revenues as
rows, the fiscal quarter revenue totals as columns, and the company's products in the third
dimension (Figure 28.4). Hence, this technique is equivalent to having a regional sales
table for each product separately, where each table shows quarterly sales for that product
region by region.

Multidimensional models lend themselves readily to hierarchical views in what is
known as roll-up display and drill-down display. Roll-up display moves up the hierarchy,
grouping into larger units along a dimension (e.g., summing weekly data by quarter, or by
year). Figure 28.5 shows a roll-up display that moves from individual products to a coarser
grain of product categories. Shown in Figure 28.6, a drill-down display provides the
opposite capability, furnishing a finer-grained view, perhaps disaggregating country sales
by region and then regional sales by subregion and also breaking up products by styles.

The multidimensional storage model involves two types of tables: dimension tables
and fact tables. A dimension table consists of tuples of attributes of the dimension. A fact
table can be thought of as having tuples, one per a recorded fact. This fact contains some
measured or observed vanablets) and identifies it (them) with pointers to dimension

o 1Ys.UJ c"'{

1

a:: Ou-
N o.,.~< "'/~.,.~~o
UJ
a:: O"'~(J
C')

z o
O"'~<10 UJ

a a::
UJ v
a:: o

UJ
a::

FIGURE 28.4 Pivoted version of the data cube from Figure 26.3.

28.3 Data Modeling for Data Warehouses I 905

REGION •

PRODUCT
CATEGORIES

j

Products
1XX

Products
2XX

Products
3XX

Products
4XX

FIGURE 28.5 The roll-up operation.

REGION 1

P123
STYLES

P124
STYLES

P125
STYLES

A

B

C

D

A

B
C

A

B

C

D

SUBREG1 SUBREG2 SUBREG3 SUBREG4

REGION 2

SUBREG1

FIGURE 28.6 The drill-down operation.

tables. The fact table contains the data, and the dimensions identify each tuple in that
data. Figure 28.7 contains an example of a fact table that can be viewed from the
perspective of multiple dimension tables.

Two common multidimensional schemas are the star schema and the snowflake
schema. The star schema consists of a fact table with a single table for each dimension
(Figure 28.7). The snowflake schema is a variation on the star schema in which the
dimensional tables from a star schema are organized into a hierarchy by normalizing them
(Figure 28.8). Some installations are normalizing data warehouses up to the third normal
form so that they can access the data warehouse to the finest level of detail. A fact
constellation is a set of fact tables that share some dimension tables. Figure 28.9 shows a
fact constellation with two fact tables, business results and business forecast. These share
the dimension table called product. Fact constellations limit the possible queries for the
warehouse.

906 I Chapter 28 Overview of Data Warehousing and OlAP

DIMENSION

TABLES

FISCAL QUARTER

FACT TABLE

BUSINESS RESULTS

DIMENSION

TABLE

PRODUOT

--- PRODUCT QTR

----Prod. No. QUARTER YEAR

Prod. Name REGION \ BEG DATE

Prod. Oeser. END DATE

Prod. Style

Prod. Line
SALES REVENUE

REGION

SUBREGION

FIGURE 28.7 A star schema with fact and dimensional tables.

DIMENSION TABLES

FISCAL QUARTER FQ DATES

DIMENSION TABLES

PNAME

Prod. Name

Prod. Oeser.

PRODUCT

Prod. No.

Prqq·J:!!1-ITl.e.

Style

Prod. Line No.-----------

FACT TABLE

BUSINESS RESULTS

I--HPRODUCT

QUARTER

REGION

REVENUE

QTR

YEAR

BEG DATE

BEG. DATE

END DATE

PLiNE
SALES REVENUE

Prod. Line No.

Prod. Line Name

REGION

SUBREGION

FIGURE 28.8 A snowflake schema.

Data warehouse storage also utilizes indexing techniques to support high
performance access (see Chapter 6 for a discussion of indexing). A technique called
bitmap indexing constructs a bit vector for each value in a domain (column) being
indexed. It works very well for domains of low cardinality. There is a 1 bit placed in the

FACT
TABLE I

BUSINESS RESULTS

DIMENSION
TABLE

PRODUCT

28.4 Building a Data Warehouse I 907

FACT
TABLE II

BUSINESS FORECAST

PRODUCT Prod. No. PRODUCT

OUARTER Prod. Name FUTURE OTR

REGION Prod. Deser. REGION

REVENUE Prod. Style PROJECTED_

Prod. Line REVENUE

FIGURE 28.9 A fact constellation.

jth position in the vector if the jth row contains the value being indexed. For example,
imagine an inventory of 100,000 cars with a bitmap index on car size. If there are four car
sizes-economy, compact, midsize, and fullsize-there will be four bit vectors, each
containing 100,000 bits (12.5 K) for a total index size of 50K. Bitmap indexing can
provide considerable input/output and storage space advantages in low-cardinality
domains. With bit vectors a bitmap index can provide dramatic improvements in
comparison, aggregation, and join performance.

In a star schema, dimensional data can be indexed to tuples in the fact table by join
indexing. Join indexes are traditional indexes to maintain relationships between primary
key and foreign key values. They relate the values of a dimension of a star schema to rows
in the fact table. For example, consider a sales fact table that has city and fiscal quarter as
dimensions. If there is a join index on city, for each city the join index maintains the
tuple IDs of tuples containing that city. Join indexes may involve multiple dimensions.

Data warehouse storage can facilitate access to summary data by taking further
advantage of the nonvolatility of data warehouses and a degree of predictability of the
analyses that will be performed using them. Two approaches have been used: (1) smaller
tables including summary data such as quarterly sales or revenue by product line, and (2)
encoding of level (e.g., weekly, quarterly, annual) into existing tables. By comparison, the
overhead of creating and maintaining such aggregations would likely be excessive in a
volatile, transaction-oriented database.

28.4 BUILDING A DATA WAREHOUSE
In constructing a data warehouse, builders should take a broad view of the anticipated use of
the warehouse. There is no way to anticipate all possible queries or analyses during the design
phase. However, the design should specificallysupport ad-hoc querying, that is, accessing data
with any meaningful combination of values for the attributes in the dimension or fact tables.

908 I Chapter 28 Overview of Data Warehousing and OlAP

For example, a marketing-intensive consumer-products company would require different ways
of organizing the data warehouse than would a nonprofit charity focused on fund raising. An
appropriate schema should be chosen that reflects anticipated usage.

Acquisition of data for the warehouse involves the following steps:

• The data must be extracted from multiple, heterogeneous sources, for example, data
bases or other data feeds such as those containing financial market data or environ
mental data.

• Data must be formatted for consistency within the warehouse. Names, meanings, and
domains of data from unrelated sources must be reconciled. For instance, subsidiary
companies of a large corporation may have different fiscal calendars with quarters
ending on different dates, making it difficult to aggregate financial data by quarter.
Various credit cards may report their transactions differently, making it difficult to
compute all credit sales. These format inconsistencies must be resolved.

• The data must be cleaned to ensure validity. Data cleaning is an involved and com
plex process that has been identified as the largest labor-demanding component of
data warehouse construction. For input data, cleaning must occur before the data is
loaded into the warehouse. There is nothing about cleaning data that is specific to
data warehousing and that could not be applied to a host database. However, since
input data must be examined and formatted consistently, data warehouse builders
should take this opportunity to check for validity and quality. Recognizing erroneous
and incomplete data is difficult to automate, and cleaning that requires automatic
error correction can be even tougher. Some aspects, such as domain checking, are
easily coded into data cleaning routines, but automatic recognition of other data
problems can be more challenging. (For example, one might require that City = 'San
Francisco' together with State = 'CT' be recognized as an incorrect combination.)
After such problems have been taken care of, similar data from different sources must
be coordinated for loading into the warehouse. As data managers in the organization
discover that their data is being cleaned for input into the warehouse, they will likely
want to upgrade their data with the cleaned data. The process of returning cleaned
data to the source is called backflushing (see Figure 28.1).

• The data must be fitted into the data model of the warehouse. Data from the various
sources must be installed in the data model of the warehouse. Data may have to be
converted from relational, object-oriented, or legacy databases (network and/or hier
archical) to a multidimensional model.

• The data must be loaded into the warehouse. The sheer volume of data in the ware
house makes loading the data a significant task. Monitoring tools for loads as well as
methods to recover from incomplete or incorrect loads are required. With the huge
volume of data in the warehouse, incremental updating is usually the only feasible
approach. The refresh policy will probably emerge as a compromise that takes into
account the answers to the following questions:

• How up-to-date must the data be?

• Can the warehouse go off-line, and for how long?

28.4 Building a Data Warehouse I 909

• What are the data interdependencies?

• What is the storage availability?

• What are the distribution requirements (such as for replication and partitioning)?

• What is the loading time (including cleaning, formatting, copying, transmitting,
and overhead such as index rebuilding)?

As we have said, databases must strike a balance between efficiency in transaction
processing and supporting query requirements (ad hoc user requests), but a data
warehouse is typically optimized for access from a decision maker's needs. Data storage in
a data warehouse reflects this specialization and involves the following processes:

• Storing the data according to the data model of the warehouse

• Creating and maintaining required data structures

• Creating and maintaining appropriate access paths

• Providing for time-variant data as new data are added

• Supporting the updating of warehouse data

• Refreshing the data

• Purging data

Although adequate time can be devoted initially to constructing the warehouse, the
sheer volume of data in the warehouse generally makes it impossible to simply reload the
warehouse in its entirety later on. Alternatives include selective (partial) refreshing of
data and separate warehouse versions (requiring double storage capacity for the
warehouse!). When the warehouse uses an incremental data refreshing mechanism, data
may need to be periodically purged; for example, a warehouse that maintains data on the
previous twelve business quarters may periodically purge its data each year.

Data warehouses must also be designed with full consideration of the environment in
which they will reside. Important design considerations include the following:

• Usage projections

• The fit of the data model

• Characteristics of available sources

• Design of the metadata component

• Modular component design

• Design for manageability and change

• Considerations of distributed and parallel architecture

We discuss each of these in tum. Warehouse design is initially driven by usage
projections; that is, by expectations about who will use the warehouse and in what way.
Choice of a data model to support this usage is a key initial decision. Usage projections
and the characteristics of the warehouse's data sources are both taken into account.
Modular design is a practical necessity to allow the warehouse to evolve with the
organization and its information environment. In addition, a well-built data warehouse

910 I Chapter 28 Overview of Data Warehousing and OlAP

must be designed for maintainability, enabling the warehouse managers to effectively plan
for and manage change while providing optimal support to users.

You may recall the term metadata from Chapter 2; metadata was defined as the
description of a database including its schema definition. The metadata repository is a
key data warehouse component. The metadata repository includes both technical and
business metadata. The first, technical metadata, covers details of acquisition processing,
storage structures, data descriptions, warehouse operations and maintenance, and access
support functionality. The second, business metadata, includes the relevant business rules
and organizational details supporting the warehouse.

The architecture of the organization's distributed computing environment is a major
determining characteristic for the design of the warehouse.

There are two basic distributed architectures: the distributed warehouse and the
federated warehouse. For a distributed warehouse, all the issues of distributed databases
are relevant, for example, replication, partitioning, communications, and consistency
concerns. A distributed architecture can provide benefits particularly important to
warehouse performance, such as improved load balancing, scalability of performance, and
higher availability. A single replicated metadata repository would reside at each
distribution site. The idea of the federated warehouse is like that of the federated
database: a decentralized confederation of autonomous data warehouses, each with its
own metadata repository. Given the magnitude of the challenge inherent to data
warehouses, it is likely that such federations will consist of smaller scale components,
such as data marts. Large organizations may choose to federate data marts rather than
build huge data warehouses.

28.5 TYPICAL FUNCTIONALITY OF A DATA
WAREHOUSE

Data warehouses exist to facilitate complex, data-intensive, and frequent ad hoc queries.
Accordingly, data warehouses must provide far greater and more efficient query support
than is demanded of transactional databases. The data warehouse access component sup
ports enhanced spreadsheet functionality, efficient query processing, structured queries,
ad hoc queries, data mining, and materialized views. In particular, enhanced spreadsheet
functionality includes support for state-of-the-art spreadsheet applications (e.g., MS
Excel) as well as for OLAP applications programs. These offer preprogrammed functional
ities such as the following:

• Roll-up: Data is summarized with increasing generalization (e.g., weekly to quarterly
to annually).

• Drill-down: Increasing levels of detail are revealed (the complement of roll-up).

• Pivot: Cross tabulation (also referred as rotation) is performed.

• Slice and dice: Performing projection operations on the dimensions.

• Sorting: Data is sorted by ordinal value.

28.6 Data Warehouse Versus Views I 911

• Selection: Data is available by value or range.

• Derived (computed) attributes: Attributes are computed by operations on stored and
derived values.

Because data warehouses are free from the restrictions of the transactional
environment, there is an increased efficiency in query processing. Among the tools and
techniques used are query transformation, index intersection and union, special ROLAP

(relational OLAP) and MOLAP (multidimensional OLAP) functions, SQL extensions,
advanced join methods, and intelligent scanning (as in piggy-backing multiple queries).

Improved performance has also been attained with parallel processing. Parallel server
architectures include symmetric multiprocessor (SMP), cluster, and massively parallel
processing (MPP), and combinations of these.

Knowledge workers and decision makers use tools ranging from parametric queries to
ad hoc queries to data mining. Thus, the access component of the data warehouse must
provide support for structured queries (both parametric and ad hoc). These together make
up a managed query environment. Data mining itself uses techniques from statistical
analysis and artificial intelligence. Statistical analysis can be performed by advanced
spreadsheets, by sophisticated statistical analysis software, or by custom-written programs.
Techniques such as lagging, moving averages, and regression analysis are also commonly
employed. Artificial intelligence techniques, which may include genetic algorithms and
neural networks, are used for classification and are employed to discover knowledge from
the data warehouse that may be unexpected or difficult to specify in queries. (We treat
data mining in detail in Chapter 27.)

28.6 DATA WAREHOUSE VERSUS VIEWS
Some people have considered data warehouses to be an extension of database views. Ear
lier we mentioned materialized views as one way of meeting requirements for improved
access to data (see Chapter 8 for a discussion of views). Materialized views have been
explored for their performance enhancement. Views, however, provide only a subset of
the functions and capabilities of data warehouses. Views and data warehouses are alike in
that they both have read-only extracts from databases and subject-orientation. However,
data warehouses are different from views in the following ways:

• Data warehouses exist as persistent storage instead of being materialized on demand.

• Data warehouses are not usually relational, but rather multidimensional. Views of a
relational database are relational.

• Data warehouses can be indexed to optimize performance. Views cannot be indexed
independent of the underlying databases.

• Data warehouses characteristically provide specific support of functionality; views
cannot.

• Data warehouses provide large amounts of integrated and often temporal data, gener
ally more than is contained in one database, whereas views are an extract of a database.

912 I Chapter 28 Overview of Data Warehousing and OlAP

28.7 PROBLEMS AND OPEN ISSUES IN DATA
WAREHOUSES

28.7.1 Difficulties of Implementing Data Warehouses
Some significant operational issues arise with data warehousing: construction, administra
tion, and quality control. Project management-the design, construction, and implemen
tation of the warehouse-is an important and challenging consideration that should not
be underestimated. The building of an enterprise-wide warehouse in a large organization
is a major undertaking, potentially taking years from conceptualization to implementa
tion. Because of the difficulty and amount of lead time required for such an undertaking,
the widespread development and deployment of data marts may provide an attractive
alternative, especially to those organizations with urgent needs for OLAP, DSS, and/or data
mining support.

The administration of a data warehouse is an intensive enterprise, proportional to
the size and complexity of the warehouse. An organization that attempts to administer a
data warehouse must realistically understand the complex nature of its administration.
Although designed for read-access, a data warehouse is no more a static structure than
any of its information sources. Source databases can be expected to evolve. The
warehouse's schema and acquisition component must be expected to be updated to
handle these evolutions.

A significant issue in data warehousing is the quality control of data. Both quality
and consistency of data are major concerns. Although the data passes through a cleaning
function during acquisition, quality and consistency remain significant issues for the
database administrator. Melding data from heterogeneous and disparate sources is a major
challenge given differences in naming, domain definitions, identification numbers, and
the like. Every time a source database changes, the data warehouse administrator must
consider the possible interactions with other elements of the warehouse.

Usage projections should be estimated conservatively prior to construction of the
data warehouse and should be revised continually to reflect current requirements. As
utilization patterns become clear and change over time, storage and access paths can be
tuned to remain optimized for support of the organization's use of its warehouse. This
activity should continue throughout the life of the warehouse in order to remain ahead of
demand. The warehouse should also be designed to accommodate addition and attrition
of data sources without major redesign. Sources and source data will evolve, and the
warehouse must accommodate such change. Fitting the available source data into the
data model of the warehouse will be a continual challenge, a task that is as much art as
science. Because there is continual rapid change in technologies, both the requirements
and capabilities of the warehouse will change considerably over time. Additionally, data
warehousing technology itself wi!! continue to evolve for some time so that component
structures and functionalities will continually be upgraded. This certain change is
excellent motivation for having fully modular design of components.

Administration of a data warehouse will require far broader skills than are needed for
traditional database administration. A team of highly skilled technical experts with

28.8 Summary I 913

overlapping areas of expertise will likely be needed, rather than a single individual, Like
database administration, data warehouse administration is only partly technical; a large
part of the responsibility requires working effectively with all the members of the
organization with an interest in the data warehouse. However difficult that can be at
times for database administrators, it is that much more challenging for data warehouse
administrators, as the scope of their responsibilities is considerably broader.

Design of the management function and selection of the management team for a
database warehouse are cruciaL Managing the data warehouse in a large organization will
surely be a major task. Many commercial tools are already available to support
management functions. Effective data warehouse management will certainly be a team
function, requiring a wide set of technical skills, careful coordination, and effective
leadership. Just as we must prepare for the evolution of the warehouse, we must also
recognize that the skills of the management team will, of necessity, evolve with it.

28.7.2 Open Issues in Data Warehousing
There has been much marketing hyperbole surrounding the term "data warehouse"; the
exaggerated expectations will probably subside, but the concept of integrated data collec
tions to support sophisticated analysis and decision support will undoubtedly endure.

Data warehousing as an active research area is likely to see increased research activity
in the near future as warehouses and data marts proliferate. Old problems will receive new
emphasis; for example, data cleaning, indexing, partitioning, and views could receive
renewed attention.

Academic research into data warehousing technologies will likely focus on automating
aspects of the warehouse that currently require significant manual intervention, such as the
data acquisition, data quality management, selection and construction of appropriate access
paths and structures, self-maintainability, functionality, and performance optimization.
Application of active database functionality (see Section 23.1) into the warehouse is likely
also to receive considerable attention. Incorporation of domain and business rules
appropriately into the warehouse creation and maintenance process may make it more
intelligent, relevant, and self- governing.

Commercial software for data warehousing is already available from a number of
vendors, focusing principally on management of the data warehouse and OLAP/DSS

applications. Other aspects of data warehousing, such as design and data acquisition
(especially cleaning), are being addressed primarily by teams of in-house IT managers and
consultants.

28.8 SUMMARY
In this chapter we surveyed the field known as data warehousing. Data warehousing can
be seen as a process that requires a variety of activities to precede it. In contrast, data
mining (see Chapter 27) may be thought of as an activity that draws knowledge from an
existing data warehouse. We introduced key concepts related to data warehousing and we

914 I Chapter 28 Overview of Data Warehousing and OlAP

discussed the special functionality associated with a multidimensional view of data. We
also discussed the ways in which data warehouses supply decision makers with informa
tion at the correct level of detail, based on an appropriate organization and perspective.

Review Questions
28.1. What is a data warehouse? How does it differ from a database?
28.2. Define the terms: OLAP (Online Analytical Processing), ROLAP (Relational

OLAP), and MOLAP (Multidimensional OLAP), DSS (Decision Support Systems).
28.3. Describe the characteristics of a data warehouse. Divide them into functionality

of a warehouse and advantages users derive from it.
28.4. What is the multidimensional data model? How is it used in data warehousing?
28.5. Define these terms: Star Schema, Snowflake Schema, Fact Constellation, Data

Marts.
28.6. What types of indexes are built for a warehouse? Illustrate the uses for each with

an example.
28.7. Describe the steps of building a warehouse.
28.8. What considerations playa major role in the design of a warehouse?
28.9. Describe the functions a user can perform on a data warehouse and illustrate the

results of these functions on a sample multidimensional data warehouse.
28.10. How is the concept of a relational view related to data warehouse and data marts?

In what way are they different?
28.11. List the difficulties in implementing a data warehouse.
28.12. List the open issues and research problems in data warehousing.

Selected Bibliography
Data warehousing has become a very popular topic and has appeared in many publica
tions in the last few years. Inmon (1992) is credited for giving this term wide acceptance.
Codd (1993) popularized the term online analytical processing (OLAP) and defined a set
of characteristics for data warehouses to support OLAP. Mattison (1996) is one of the sev
eral books on data warehousing that gives a comprehensive analysis of techniques avail
able in data warehouses and the strategies companies should use in deploying them.
Bischoff and Alexander (1997) is a compilation of advice from experts. Chaudhuri and
Dayal (1997) give an excellent tutorial on the topic, while Widom (1995) points to a
number of outstanding research problems.

Emerging Database
Technologies and
Applications

Throughout this book we have discussed a variety of issues related to the modeling,
design, and functions of databases as well as to the internal structure and performance
issues related to database management systems. In Chapter 26 we covered the internet
databases that provide universal access to data and discussed the use of XML that will
facilitate development of applications involving many disimilar databases and different
DBMS platforms. In the previous two chapters we considered variations of database man
agement technology, such as data mining and data warehouses, that provide very large
databases and tools for decision support. We now turn our attention in this chapter to two
categories of continuously evolving developments in the database field: (1) emerging
database technologies, and (2) the major application domains. We do not claim to do so
exhaustively and only address some prominent technological and application advances.
The first deals with creating new functionality in DBMSs so that a variety of new applica
tions can be supported, including mobile databases to allow users widespread and flexible
access to data while being mobile, and multimedia databases providing support for storage
and processing of multimedia information. Sections 29.1 and 29.2 will briefly introduce
and discuss the issues and approaches to solving the specific problems that arise in the
mobile and multimedia database technologies.

We next consider two application domains that have historically relied upon manual
processing of file systems, or tailored system solutions. Section 29.3 discusses geographic
information systems, which deal with geographic data alone or spatial data combined
with non-spatial data, such as census counts. Section 29.4 discusses biological databases

915

916 I Chapter 29 Emerging Database Technologies and Applications

and their applications, particularly contarrung genetic data on different organisms,
including the human genome data. A common characteristic of all these applications is
the domain-specific nature of data in each specific application domain. Furthermore, they
are all characterized by their "static" nature-a situation where the end user can only
retrieve from the database; updating with new information is limited to database domain
experts who supervise and analyze the new data being entered.

29.1 MOBILE DATABASES1

Recent advances in portable and wireless technology have led to mobile computing, a new
dimension in data communication and processing. Portable computing devices coupled
with wireless communications allow clients to access data from virtually anywhere and at
any time. This feature is especially useful to geographically dispersed organizations. Typical
examples might include electronic valets, news reporting, brokerage services, and auto
mated salesforces. However, there are a number of hardware and software problems that
must be resolved before the capabilities of mobile computing can be fully utilized.

Some of the software problems-which may involve data management, transaction
management, and database recovery-have their origins in distributed database systems.
In mobile computing, however, these problems are more difficult, mainly because of the
limited and intermittent connectivity afforded by wireless communications, the limited
life of the power supply (battery) of mobile units, and the changing topology of the
network. In addition, mobile computing introduces new architectural possibilities and
challenges.

29.1.1 Mobile Computing Architecture
The general architecture of a mobile platform is illustrated in Figure 29.1. It is a distributed
architecture where a number of computers, generally referred to as Fixed Hosts and Base
Stations, are interconnected through a high-speed wired network. Fixed hosts are general
purpose computers that are not typically equipped to manage mobile units but can be con
figured to do so. Base stations function as gateways to the fixed network for the Mobile
Units. They are equipped with wireless interfaces and offer network access services of which
mobile units are clients.

Wireless Communications. The wireless medium on which mobile units and base
stations communicate have bandwidths significantly lower than those of a wired network.
The current generation of wireless technology has data rates that range from the tens to
hundreds of kilobits per second (2G cellular telephony) to tens of megabits per second
(wireless Ethernet, popularly known as WiFi). Modem (wired) Ethernet, by comparison,
provides data rates on the order of hundreds of megabits per second.

1. The contribution ofWaigen Yee and Wanxia Xie to this section is appreciated.

--

29.1 Mobile Databases I 917

Wireless radio cell

•• ~~~~~~~~~~?
Mobile Wireless
units links

Wireless Radio Cells
,-------------- .. ~----------- -,:'. '(~- "

_------,---' crossing.:
,,<_------J,:. ~..: • ,:

.. - - - - - - , .. -r -
I," I I I

" t , '
I' I I I

" '" '
" '" ''. ''. '" .'. ''. 'I II'

" ,
'"' ..

Wirelss LAN cell

Disconnected'~' '-., ,
" ', ,

..... .."

Wireless radio cell

, ,'.", ,
-',

r ,'

,
, ', '.... _-----,--.,-- ...

" .. I "',: . ::' :, .
, ', '

fiGURE 29.1 A general architecture of a mobile platform (Adapted from Dunham
and Helal (1995)).

Besides data rates, other characteristics also distinguish wireless connectivity options.
Some of these characteristics include range, interference, locality of access, and support for
packet switching. Some wireless access options allow seamless roaming thoughout a
geographical region (e.g., cellular networks), whereas WiFi networks are localized around a
base station. Some wireless networks, such as WiFi and Bluetooth, use unlicensed areas of the
frequency spectrum, which may cause interference with other appliances, such as cordless
telephones. Finally, modem wireless networks can transfer data in units called packets, that
are commonly used in wired networks in order to conserve bandwidth. Wireless applications
must consider these characteristics when choosing a communication option. For example,
physical objects block infrared frequencies. While inconvenient for some applications, such
blockage allows for secure wireless communications within a closed room.

Client/Network Relationships. Mobile units can move freely in a geographic
mobility domain, an area that is circumscribed by wireless network coverage. To manage
the mobility of units, the entire geographic mobility domain is divided into one or more
smaller domains, called cells, each of which is supported by at least one base station. The
mobile discipline requires that the movement of mobile units be unrestricted throughout

918 I Chapter 29 Emerging Database Technologies and Applications

the cells of a geographic mobility domain, while maintaining information access contigu
ity-Le., movement, especially intercell movement, does not negatively affect the data
retrieval process.

The communication architecture just described is designed to give the mobile unit
the impression that it is attached to a fixed network, emulating a traditional client-server
architecture. Wireless communications, however, make other architectures possible. One
alternative is a mobile ad-hoc network (MANET), illustrated in Figure 29.2. 2 In a
MANET, co-located mobile units do not need to communicate via a fixed network, but
instead, form their own using cost-effective technologies such as Bluetooth. In a
MANET, mobile units are responsible for routing their own data, effectively acting as
base stations as well as clients. Moreoever, they must be robust enough to handle changes
in the network topology, such as the arrival or departure of other mobile units.

MANET applications can be considered as peer-to-peer, meaning that a mobile unit
is simultaneously a client and a server. Transaction processing and data consistency
control become more difficult since there is no central control in this architecture.
Resource discovery and data routing by mobile units make computing in a MANET even
more complicated. Sample MANET applications are multi-user games, shared
whiteboards, distributed calendars, and battle information sharing. The expectation is
that these networks and related applications will become dominant in a few years.
Currently MANETs are an active research area in both academia and industry. This
research is still in its infancy, so the following discussion will focus on the basic mobile
computing architecture described previously.

FIGURE 29.2 The architecture of a mobile ad-hoc network.

2. This architecture is based on the IETF proposal in IETF(l999) with comments by Carson and
Macker (1999)

29.1 Mobile Databases I 919

29.1.2 Characteristics of Mobile Environments
As we discussed in the previous section, the characteristics of mobile computing include
high communication latency, intermittent wireless connectivity, limited battery life, and,
of course, changing client location. Latency is caused by the processes unique to the wire
less medium, such as coding data for wireless transfer, and tracking and filtering wireless
signals at the receiver. Battery life is directly related to battery size, and indirectly related
to the mobile device's capabilities. Intermittent connectivity can be intentional or unin
tentional. Unintentional disconnections happen in areas wireless signals cannot reach,
e.g., elevator shafts or subway tunnels. Intentional disconnections occur by user intent,
e.g., during an airplane takeoff, or when the mobile device is powered down. Finally, cli
ents are expected to move, which alters the network topology and may cause their data
requirements to change. All of these characteristics impact data management, and robust
mobile applications must consider them in their design.'

To compensate for high latencies and unreliable connectivity, clients cache replicas of
important, frequently accessed data, and work offline, if necessary. Besides increasing data
availability and response time, caching can also reduce client power consumption by
eliminating the need to make energy-consuming wireless data transmissions for each data
access.

On the other hand, the server may not be able to reach a client. A client may be
unreachable because it is dozing-in an energy-conserving state in which many
subsystems are shut down--or because it is out of range of a base station. In either case,
neither client nor server can reach the other, and modifications must be made to the
architecture in order to compensate for this case. Proxies for unreachable components are
added to the architecture. For a client (and symmetrically for a server), the proxy can
cache updates intended for the server. When a connection becomes available, the proxy
automatically forwards these cached updates to their ultimate destination.

As suggested above, mobile computing poses challenges for servers as well as clients.
The latency involved in wireless communication makes scalability a problem. Because
latency due to wireless communications increases the time to service each client request,
the server can handle fewer clients. One way servers relieve this problem is by broadcasting
data whenever possible. Broadcast takes advantage of a natural characteristic of radio
communications, and is scalable because a single broadcast of a data item can satisfy all
outstanding requests for it. For example, instead of sending weather information to all
clients in a cell individually, a server can simply broadcast it periodically. Broadcast also
reduces the load on the server, as clients do not have to maintain active connections to it.

Client mobility also poses many data management challenges. First, servers must
keep track of client locations in order to efficiently route messages to them. Second,
client data should be stored in the network location that minimizes the traffic necessary
to access it. Keeping data in a fixed location increases access latency if the client moves
"far away" from it. Finally, as stated above, the act of moving between cells must be

3. This architecture is based on the IETF proposal in IETF(1999) with comments by Carson and
Macker (1999).

920 I Chapter 29 Emerging Database Technologies and Applications

transparent to the client. The server must be able to gracefully divert the shipment of
data from one base station to another, without the client noticing.

Client mobility also allows new applications that are location-based. For example,
consider an electronic valet application that can tell a user the location of the nearest
restaurant. Clearly, "nearest" is relative to the client's current position, and movement
can invalidate any previously cached responses. Upon movement, the client must
efficiently invalidate parts of its cache and request updated data from the database.

29.1.3 Data Management Issues
From a data management standpoint, mobile computing may be considered a variation of
distributed computing. Mobile databases can be distributed under two possible scenarios:

1. The entire database is distributed mainly among the wired components, possibly
with full or partial replication. A base station or fixed host manages its own data
base with a DBMS-like functionality, with additional functionality for locating
mobile units and additional query and transaction management features to meet
the requirements of mobile environments.

2. The database is distributed among wired and wireless components. Data manage
ment responsibility is shared among base stations or fixed hosts and mobile units.

Hence, the distributed data management issues we discussed in Chapter 24 can
also be applied to mobile databases with the following additional considerations and
variations:

• Data distribution and replication: Data is unevenly distributed among the base stations
and mobile units. The consistency constraints compound the problem of cache man
agement. Caches attempt to provide the most frequently accessed and updated data
to mobile units that process their own transactions and may be disconnected over
long periods.

• Transaction models: Issues of fault tolerance and correctness of transactions are aggra
vated in the mobile environment. A mobile transaction is executed sequentially
through several base stations and possibly on multiple data sets depending upon the
movement of the mobile unit. Central coordination of transaction execution is lack
ing, particularly in scenario (2) above. Moreover, a mobile transaction is expected to

be long-lived because of disconnection in mobile units. Hence, traditional ACID
properties of transactions (see Chapter 19) may need to be modified and new transac
tion models must be defined.

• Query processing: Awareness of where data is located is important and affects the cost/
benefit analysis of query processing. Query optimization is more complicated because
of mobility and rapid resource changes of mobile units. The query response needs to

be returned to mobile units that may be in transit or may cross cell boundaries yet
must receive complete and correct query results.

• Recovery and fault tolerance: The mobile database environment must deal with site,
media, transaction, and communication failures. Site failure of a mobile unit is fre-

29.1 Mobile Databases I 921

quent due to limited battery power. A voluntary shutdown of a mobile unit should
not be treated as a failure. Transaction failures are routine during handoff when a
mobile unit crosses cells. The transaction manager should be able to deal with such
frequent failures.

• Mobile database design: The global name resolution problem for handling queries is
compounded because of mobility and frequent shutdown. Mobile database design
must consider many issues of metadata management-for example, the constant
updating of location information.

• Location-based service: As clients move, location-dependent cache information may
become stale. Eviction techniques are important in this case. Furthermore, fre
quently updating location dependent queries, then applying these (spatial) queries in
order to refresh the cache poses a problem.

• Division of labor: Certain characteristics of the mobile environment force a change in
the division of labor in query processing. In some cases, the client must function
independent of the server. However, what are the consequences of allowing full inde
pendent access to replicated data? The relationship between client responsibilities
and their consequences has yet to be developed.

• Security: Mobile data is less secure than that which is left at the fixed location. Proper
techniques for managing and authorizing access to critical data become more impor
tant in this environment. Data is also more volatile, and techniques must be able to
compensate for its loss.

29.1.4 Application: Intermittently Synchronized
Databases

One mobile computing scenario is becoming increasingly commonplace as people con
duct their work away from their offices and homes and perform a wide range of activities
and functions: all kinds of sales, particularly in pharmaceuticals, consumer goods, and
industrial parts; law enforcement; insurance and financial consulting and planning; real
estate or property management activities; courier and transportation services, and so on.
In these applications, a server or a group of servers manages the central database and the
clients carry laptops or palmtops with a resident DBMS software to do "local" transaction
activity for most of the time. The clients connect via a network or a dial-up connection
(or possibly even through the Internet) with the server, typically for a short session-say,
30 to 60 minutes. They send their updates to the server, and the server must in turn enter
them in its central database, which must maintain up-to-date data and prepare appropri
ate copies for all clients on the system. Thus, whenever clients connect-through a pro
cess known in the industry as synchronization of a client with a server-they receive a
batch of updates to be installed on their local database. The primary characteristic of this
scenario is that the clients are mostly disconnected; the server is not necessarily able to
reach them. This environment has problems similar to those in distributed and client
server databases, and some from mobile databases, but presents several additional research
problems for investigation. We refer to this environment as Intermittently Synchronized

922 I Chapter 29 Emerging Database Technologies and Applications

Database Environment (ISOBE), and the corresponding databases as Intermittently Syn
chronized Databases (ISOBs).

Together, the following characteristics of ISOB's make them distinct from the mobile
databases we have discussed thus far:

1. A client connects to the server when it wants to exchange updates. This commu
nication may be unicast-one-on-one communication between the server and the
client-or multicast-one sender or server may periodically communicate to a set
of receivers or update a group of clients.

2. A server cannot connect to a client at will.

3. Issues of wireless versus wired client connections and power conservation are gen
erally immaterial.

4. A client is free to manage its own data and transactions while it is disconnected.
It can also perform its own recovery to some extent.

5. A client has multiple ways of connecting to a server and, in case of many servers,
may choose a particular server to connect to based on proximity, communication
nodes available, resources available, etc.

Because of such differences, there is a need to address a number of problems related
to ISOBs that are different from those typically involving mobile database systems. These
include server database design for server databases, consistency and synchronization
management among client and server databases, transaction and update processing,
efficient use of the server bandwidth, and achieving scalability in the ISOB environments.

29.1.5 Selected Bibliography for Mobile Databases
There has been a sudden surge of interest in mobile computing, and research on mobile
databases has had a significant growth for the last five to six years. The June 1995 issue of
Byte magazine discusses many aspects of mobile computing. Among books written on this
topic, Dhawan (1997) is an excellent source on mobile computing. Wireless networks and
their future are discussed in Holtzman and Goodman (1993). Imielinski and Badrinath
(1994) provide a good survey of mobile database issues and also discuss in Imielinski and
Badrinath (1992) data and metadata allocation in a mobile architecture. Dunham and
Helal (1995) discuss problems of query processing, data distribution, and transaction man
agement for mobile databases. Foreman and Zahorjan (1994) describe the capabilities and
the problems of mobile computing and make a convincing argument in its favor as a viable
solution for many information system applications of the future. Pitoura and Samaras
(1998) describe all aspects of mobile database problems and solutions. Chrysanthis (1993)
describes a transaction model that is designed to operate in an environment with mobile
clients. In particular, this model allows a client to share the transaction processing load with
proxies in order to facilitate mobility. Bertino et al. (1998) discuss approaches to fault toler
ance and recovery in mobile databases. Acharya et al. (1995) consider broadcast schedules
that minimize average query latency, and explore the impact of such schedules on optimal
client caching strategies. Milojicic et al. (2002) present a tutorial on peer-to-peer comput-

29.2 Multimedia Databases I 923

ing. Corson and Macker (1999) is a response to IETF(1999) report that discusses the mobile
ad-hoc networking protocol performance issues. Broadcasting (or pushing) data as a means
of scalably disseminating information to clients is covered in Yeeet al. (2002). Chintalapati
et al. (1997) provide an adaptive location management algorithm. Jensen et al. (200l) dis
cuss data management issues as they pertain to location-based services. Wolfson (200l)
describes a novel way of efficiently modeling object mobility by describing position using
trajectories instead of points. For an initial discussion of the ISOB scalability issues and an
approach by aggregation of data and grouping of clients, see Mahajan et al. (1998). Specific
aggregation algorithms for grouping data at the server in ISOB applications are described in
Yeeet al. (200l). Gray et al. (1993) discuss ISOB update conflicts and resolution techniques
under various ISOB architectures. Breibart et al. (1999) go into further detail about deferred
synchronization algorithms for replicated data.

29.2 MULTIMEDIA DATABASES
In the years ahead multimedia information systems are expected to dominate our daily lives.
Our houses will be wired for bandwidth to handle interactive multimedia applications. Our
high-definition TVjcomputer workstations will have access to a large number of databases,
including digital libraries, image and video databases that will distribute vast amounts of
multisource multimedia content.

29.2.1 The Nature of Multimedia Data and
Applications

In Section 24.3 we discussed the advanced modeling issues related to multimedia data. We
also examined the processing of multiple types of data in Chapter 22 in the context of
object relational OBMSs (OROBMSs). OBMSs have been constantly adding to the types of data
they support. Today the following types of multimedia data are available in current systems:

• Text: May be formatted or unformatted. For ease of parsing structured documents,
standards like SOML and variations such as HTML are being used.

• Graphics: Examples include drawings and illustrations that are encoded using some
descriptive standards (e.g., COM, PICT, postscript}.

• Images: Includes drawings, photographs, and so forth, encoded in standard formats
such as bitmap, JPEO, and MPEO. Compression is built into JPEO and MPEO. These
images are not subdivided into components. Hence querying them by content (e.g.,
find all images containing circles) is nontrivial.

• Animations: Temporal sequences of image or graphic data.

• Video: A set of temporally sequenced photographic data for presentation at specified
rates-for example, 30 frames per second.

• Structured audio: A sequence of audio components comprising note, tone, duration,
and so forth.

924 I Chapter 29 Emerging Database Technologies and Applications

• Audio: Sample data generated from aural recordings in a string of bits in digitized
form. Analog recordings are typically converted into digital form before storage.

• Composite or mixed multimedia data: A combination of multimedia data types such as
audio and video which may be physically mixed to yield a new storage format or log
ically mixed while retaining original types and formats. Composite data also contains
additional control information describing how the information should be rendered.

Nature of Multimedia Applications. Multimedia data may be stored, delivered,
and utilized in many different ways. Applications may be categorized based on their data
management characteristics as follows:

• Repository applications: A large amount of multimedia data as well as metadata is
stored for retrieval purposes. A central repository containing multimedia data may be
maintained by a DBMS and may be organized into a hierarchy of storage levels-local
disks, tertiary disks and tapes, optical disks, and so on. Examples include repositories
of satellite images, engineering drawings and designs, space photographs, and radiol
ogy scanned pictures.

• Presentation applications: A large number of applications involve delivery of multimedia
data subject to temporal constraints. Audio and video data are delivered this way; in
these applications optimal viewing or listening conditions require the DBMS to deliver
data at certain rates offering "quality of service" above a certain threshold. Data is con
sumed as it is delivered, unlike in repository applications, where it may be processed
later (e.g., multimedia electronic mail). Simple multimedia viewing of video data, for
example, requires a system to simulate VCR-like functionality. Complex and interac
tive multimedia presentations involve orchestration directions to control the retrieval
order of components in a series or in parallel. Interactive environments must support
capabilities such as real-time editing analysis or annotating of video and audio data.

• Collaborative work using multimedia information: This is a new category of applications
in which engineers may execute a complex design task by merging drawings, fitting
subjects to design constraints, and generating new documentation, change notifica
tions, and so forth. Intelligent healthcare networks as well as telemedicine will
involve doctors collaborating among themselves, analyzing multimedia patient data
and information in real time as it is generated.

All of these application areas present major challenges for the design of multimedia
database systems.

29.2.2 Data Management Issues
Multimedia applications dealing with thousands of images, documents, audio and video seg
ments, and free text data depend critically on appropriate modeling of the structure and
content of data and then designing appropriate database schemas for storing and retrieving
multimedia information. Multimedia information systems are very complex and embrace a
large set of issues, including the following:

29.2 Multimedia Databases I 925

• Modeling: This area has the potential for applying database versus information retrieval
techniques to the problem. There are problems of dealing with complex objects (see
Chapter 20) made up of a wide range of types of data: numeric, text, graphic (com
puter-generated image), animated graphic image, audio stream, and video sequence.
Documents constitute a specialized area and deserve special consideration.

• Design: The conceptual, logical, and physical design of multimedia databases has not
been addressed fully, and it remains an area of active research. The design process can
be based on the general methodology described in Chapter 12, but the performance
and tuning issues at each level are far more complex.

• Storage: Storage of multimedia data on standard disklike devices presents problems of
representation, compression, mapping to device hierarchies, archiving, and buffering
during the input/output operation. Adhering to standards such as JPEO or MPEO is one
way most vendors of multimedia products are likely to deal with this issue. In DBMSs,
a "BLOB" (Binary Large Object) facility allows untyped bitmaps to be stored and
retrieved. Standardized software will be required to deal with synchronization and
compression/decompression, and will be coupled with indexing problems, which are
still in the research domain.

• Queries and retrieval: The "database" way of retrieving information is based on query
languages and internal index structures. The "information retrieval" way relies
strictly on keywords or predefined index terms. For images, video data, and audio
data, this opens up many issues, among them efficient query formulation, query exe
cution, and optimization. The standard optimization techniques we discussed in
Chapter 16 need to be modified to work with multimedia data types.

• Performance: For multimedia applications involving only documents and text, perfor
mance constraints are subjectively determined by the user. For applications involving
video playback or audio-video synchronization, physical limitations dominate. For
instance, video must be delivered at a steady rate of 60 frames per second. Techniques
for query optimization may compute expected response time before evaluating the
query. The use of parallel processing of data may alleviate some problems, but such
efforts are currently subject to further experimentation.

Such issues have given rise to a variety of open research problems. We look at a few
representative problems now.

29.2.3 Open Research Problems

Information Retrieval Perspective in Querying Mutimedia Databases.
Modeling data content has not been an issue in database models and systems because the
data has a rigid structure and the meaning of a data instance can be inferred from the
schema. In contrast, information retrieval (IR) is mainly concerned with modeling the con
tent of text documents (through the use of keywords, phrasal indexes, semantic networks,
word frequencies, soundex encoding, and so on) for which structure is generally neglected.
By modeling content, the system can determine whether a document is relevant to a query

926 I Chapter 29 Emerging Database Technologies and Applications

by examining the content-descriptors of the document. Consider, for instance, an insurance
company's accident claim report as a multimedia object: it includes images of the accident,
structured insurance forms, audio recordings of the parties involved in the accident, the text
report of the insurance company's representative, and other information. Which data model
should be used to represent multimedia information such as this? How should queries be for
mulated against this data? Efficient execution thus becomes a complex issue, and the seman
tic heterogeneity and representational complexity of multimedia information gives rise to

many new problems.

Requirements of Multimedia/Hypermedia Data Modeling and Retrieval.
To capture the full expressive power of multimedia data modeling, the system should have a
general construct that lets the user specify links between any two arbitrary nodes. Hyperme
dia links, or hyperlinks, have a number of different characteristics:

• Links can be specified with or without associated information, and they may have
large descriptions associated with them.

• Links can start from a specific point within a node or from the whole node.

• Links can be directional or nondirectional when they can be traversed in either
direction.

The link capability of the data model should take into account all of these variations.
When content-based retrieval of multimedia data is needed, the query mechanism should
have access to the links and the link-associated information. The system should provide
facilities for defining views over all links-private and public. Valuable contextual
information can be obtained from the structural information. Automatically generated
hypermedia links do not reveal anything new about the two nodes, and in contrast to

manually generated hypermedia links, would have different significance. Facilities for
creating and utilizing such links, as well as developing and using navigational query
languages to utilize the links, are important features of any system permitting effective use
of multimedia information. This area is important to interlinked databases on the www.

The World Wide Web presents an opportunity to access a vast amount of information
via an array of unstructured and structured databases that are interlinked. The phenomenal
success and growth of the web has made the problem of finding, accessing, and maintaining
this information extremely challenging. For the last few years several projects are
attempting to define frameworks and languages that will allow us to define the semantic
content of the web that will be machine processable. The effort is collectively known by the
term semantic web. The RDF (resource description framework), XHTML (Extensible
Hypertext Markup Language), DAML (DARPA Agent Markup Language), and OIL
(Ontology Inference Layer) are among some of its major components.t Further details are
outside the scope of our discussion.

Indexing of Images. There are two approaches to indexing images: (1) identifying
objects automatically through image-processing techniques, and (2) assigning index terms

4. See Fensel (2000) for an overview of these terms.

29.2 Multimedia Databases I 927

and phrases through manual indexing. An important problem in using image-processing
techniques to index pictures relates to scalability. The current state of the art allows the
indexing of only simple patterns in images. Complexity increases with the number of recog
nizable features. Another important problem relates to the complexity of the query. Rules
and inference mechanisms can be used to derive higher-level facts from simple features of
images. Similarly, abstraction can be used to capture concepts that are not simply possible to
define in terms of a set of <attribute, value> pairs. This allows high-level queries like "find
hotel buildings that have open foyers and allow maximum sunshine in the front desk area"
in an architectural application.

The information-retrieval approach to image indexing is based on one of three
indexing schemes:

1. Classificatory systems: Classifies images hierarchically into predetermined catego
ries. In this approach, the indexer and the user should have a good knowledge of
the available categories. Finer details of a complex image and relationships among
objects in an image cannot be captured.

2. Keyword-based systems: Uses an indexing vocabulary similar to that used in the
indexing of textual documents. Simple facts represented in the image (like "ice
capped region") and facts derived as a result of high-level interpretation by
humans (like permanent ice, recent snowfall, and polar ice) can be captured.

3. Entity-attribute-relationship systems: All objects in the picture and the relationships
between objects and the attributes of the objects are identified.

In the case of text documents, an indexer can choose the keywords from the pool of
words available in the document to be indexed. This is not possible in the case of visual
and video data.

Problems in Text Retrieval. Text retrieval has always been the key feature in busi
ness applications and library systems, and although much work has gone into some of the
following problems, there remains an ongoing need for improvement, especially regarding
the following issues:

• Phrase indexing: Substantial improvements can be realized if phrase descriptors (as
opposed to single-word index terms) are assigned to documents and used in queries,
provided that these descriptors are good indicators of document content and infor
mation need.

• Use of thesaurus: One reason for the poor recall of current systems is that the vocabu
lary of the user differs from the vocabulary used to index the documents. One solu
tion is to use a thesaurus to expand the user's query with related terms. The problem
then becomes one of finding a thesaurus for the domain of interest. Another resource
in this context is ontologies. An ontology necessarily entails or embodies some sort
of world view with respect to a given domain. The world view is often conceived as a
set of concepts (e.g. entities, attributes, process), their definitions and their inter
relationships which describe a target world. An ontology can be constructed in two
ways, domain dependent and generic. The purpose of generic ontologies is to make a

928 I Chapter 29 Emerging Database Technologies and Applications

general framework for all (or most) categories encountered by human existence. A
variety of domain ontologies such as gene ontology (see Section 29.4) or ontology for
electronic components have been constructed'

• Resolving ambiguity; One of the reasons for low precision (the ratio of the number of
relevant items retrieved to the total number of retrieved items) in text information
retrieval systems is that words have multiple meanings. One way to resolve ambiguity
is to use an online dictionary or ontology; another is to compare the contexts in
which the two words occur.

In the first three decades of DBMS development-roughly from 1965 to 1995-the
primary focus had been on the management of mostly numeric business and industrial data. In
the next few decades, nonnumeric textual information will probably dominate database
content. The text retrieval problem is becoming very relevant in the context of HTML and
XML documents. The web currently contains several billion of these pages. Search engines
find relevant documents given lists of words which is a case of free form natural language
query. Obtaining the corrrect result that meets the requirements of both precision (% of
retrieved documents that are relevant) and recall (% of total relevant documents that are
retrieved), which are standard metrics in information retrieval, remains a challenge. As a
consequence, a variety of functionalities involving comparison, conceptualization, under
standing, indexing, and summarization of documents will be added to DBMSs. Multimedia
information systems promise to bring about a joining of disciplines that have historically been
separate areas: information retrieval and database management.

29.2.4 Multimedia Database Applications
Large-scale applications of multimedia databases can be expected to encompass a large
number of disciplines and enhance existing capabilities. Some important applications will
be involved:

• Documentsand records management: A large number of industries and businesses keep
very detailed records and a variety of documents. The data may include engineering
design and manufacturing data, medical records of patients, publishing material, and
insurance claim records.

• Knowledge dissemination: The multimedia mode, a very effective means of knowledge
dissemination, will encompass a phenomenal growth in electronic books, catalogs,
manuals, encyclopedias and repositories of information on many topics.

• Education and training: Teaching materials for different audiences-from kindergarten
students to equipment operators to professionals-can be designed from multimedia
sources. Digital libraries are expected to have a major influence on the way future
students and researchers as well as other users will access vast repositories of educa
tional material.

5. A good discussion of ontologies is given in Uschold and Gruninger (1996).

29.2 Multimedia Databases I 929

• Marketing, advertising, retailing, entertainment, and travel: There are virtually no limits
to using multimedia information in these applications-from effective sales presenta
tions to virtual tours of cities and art galleries. The film industry has already shown
the power of special effects in creating animations and synthetically designed ani
mals, aliens, and special effects. The use of predesigned stored objects in multimedia
databases will expand the range of these applications.

• Real-time control andmonitoring: Coupled with active database technology (see Chap
ter 24), multimedia presentation of information can be a very effective means for
monitoring and controlling complex tasks such as manufacturing operations, nuclear
power plants, patients in intensive care units, and transportation systems.

Commercial Systems for Multimedia Information Management. There are no
OBMSs designed for the sole purpose of multimedia data management, and therefore there
are none that have the range of functionality required to fully support all of the
multimedia information management applications that we discussed above. However,
several OBMSs today support multimedia data types; these include lnformix Dynamic
Server, OB2 Universal database (UOB) of IBM, Oracle 9 and 10, CA- JASMINE, Sybase, OOB
II. All of these OBMSs have support for objects, which is essential for modeling a variety of
complex multimedia objects. One major problem with these systems is that the "blades,
cartridges, and extenders" for handling multimedia data are designed in a very ad hoc
manner. The functionality is provided without much apparent attention to scalability and
performance. There are products available that operate either stand-alone or in
conjunction with other vendors' systems to allow retrieval of image data by content. They
include Virage, Excalibur, and IBM's QBIC. Operations on multimedia need to be
standardized. The MPEG-7 and other standards are addressing some of these issues.

29.2.5 Selected Bibliography on Multimedia Databases
Multimedia database management is becoming a very heavily researched area with sev
eral industrial projects on the way. Grosky (1994, 1997) provides two excellent tutori
als on the topic. Pazandak and Srivastava (1995) provide an evaluation of database
systems related to the requirements of multimedia databases. Grosky et al. (1997) con
tains contributed articles including a survey on content-based indexing and retrieval by
]agadish (1997). Faloutsos et al. (1994) also discuss a system for image querying by con
tent. Li et al. (1998) introduce image modeling in which an image is viewed as a hierar
chical structured complex object with both semantics and visual properties. Nwosu et
al. (1996) and Subramanian and]ajodia (1997) have written books on the topic.
Lassila (1998) discusses the need for metadata for accessing mutimedia information on
the web; the semantic web effort is summarized in Fensel (2000). Khan (2000) did a
dissertation on ontology-based information retrieval. Uschold and Gruninger (1996) is
a good resource on ontologies Corcho et al. (2003) compare ontology languages and
discuss methodologies to build ontologies. Multimedia content analysis, indexing, and
filtering are discussed in Dimitrova (1999). A survey of content-based multimedia

930 I Chapter 29 Emerging Database Technologies and Applications

retrieval is provided by Yoshitaka and Ichikawa (1999). The following WWW references
may be consulted for additional information:

CA- JASMINE (Multimedia ODBMS): http://www.cai.com/products/iasmine.htm
Excalibur technologies: http://www.excalib.com
Virage, Inc (Content based image retrieval): http://www.virage.com
IBM's QBlC (Query by Image Content) product:

29.3 GEOGRAPHIC INFORMATION SYSTEMS
Geographic information systems (GIS) are used to collect, model, store, and analyze
information describing physical properties of the geographical world. The scope of GIS
broadly encompasses two types of data: (1) spatial data, originating from maps, digital
images, administrative and political boundaries, roads, transportation networks; physical
data such as rivers, soil characteristics, climatic regions, land elevations, and (2) nonspa
tial data, such as socio-economic data (like census counts), economic data, and sales or
marketing information. GIS is a rapidly developing domain that offers highly innovative
approaches to meet some challenging technical demands.

29.3.1 GIS Applications
It is possible to divide GISs into three categories: (1) cartographic applications, (2) digital
terrain modeling applications, and (3) geographic objects applications. Figure 29.3
summarizes these categories.

In cartographic and terrain modeling applications, variations in spatial attributes are
captured-for example, soil characteristics, crop density, and air quality. In geographic
objects applications, objects of interest are identified from a physical domain-for
example, power plants, electoral districts, property parcels, product distribution districts,
and city landmarks. These objects are related with pertinent application data-which
may be, for this specific example, power consumption, voting patterns, property sales
volumes, product sales volume, and traffic density.

The first two categories of GIS applications require a field-based representation,
whereas the third category requires an object-based one. The cartographic approach
involves special functions that can include the overlapping of layers of maps to combine
attribute data that will allow, for example, the measuring of distances in three
dimensional space and the reclassification of data on the map. Digital terrain modeling
requires a digital representation of parts of earth's surface using land elevations at sample
points that are connected to yield a surface model such as a three-dimensional net
(connected lines in 3D) showing the surface terrain. It requires functions of interpolation
between observed points as well as visualization. In object-based geographic applications,
additional spatial functions are needed to deal with data related to roads, physical
pipelines, communication cables, power lines, and such. For example, for a given region,

29.3 Geographic Information Systems I 931

GIS Applications

r>:
Cartographic

Irrigation

Crop yield
analysis

Land
evaluation

Planning and
facilities
management

Landscape
studies

Traffic pattern
analysis

Digital Terrain
Modeling Applications

Earth science
resource studies

Civil engineering
and military
evaluation

Soil surveys

Air and water
pollution studies

Flood control

Water resource
management

Geographic Objects
Applications

Car navigation
systems

Geographic market
analysis

Utility distribution
and consumption

Consumer product
and services
economic analysis

FIGURE 29.3 A possible classification of GIS applications (Adapted from Adam and
Gangopadhyay (1997)).

comparable maps can be used for comparison at various points of time to show changes in
certain data such as locations of roads, cables, buildings, and streams.

29.3.2 Data Management Requirements of GIS

The functional requirements of the GIS applications above translate into the following data
base requirements.

Data Modeling and Representation. GIS data can be broadly represented in two
formats: (l) vector and (2) raster. Vector data represents geometric objects such as points,
lines, and polygons. Thus a lake may be represented as a polygon, a river by a series of line
segments. Raster data is characterized as an array of points, where each point represents the
value of an attribute for a real-world location. Informally, raster images are n-dimensional
arrays where each entry is a unit of the image and represents an attribute. Two-dimensional
units are called pixels, while three-dimensional units are called voxels. Three-dimensional
elevation data is stored in a raster-based digital elevation model (OEM) format. Another ras
ter format called triangular irregular network (TIN) is a topological vector-based approach
that models surfaces by connecting sample points as vertices of triangles and has a point
density that may vary with the roughness of the terrain. Rectangular grids (or elevation

932 I Chapter 29 Emerging Database Technologies and Applications

matrices) are two-dimensional array structures. In digital terrain modeling (OTM), the
model also may be used by substituting the elevation with some attribute of interest such as
population density or air temperature. GIS data often includes a temporal structure in addi
tion to a spatial structure. For example, traffic flow or average vehicular speeds in traffic may
be measured every 60 seconds at a set of points in a roadway nework.

Data Analysis. GIS data undergoes various types of analysis. For example, in applica
tions such as soil erosion studies, environmental impact studies, or hydrological runoff simu
lations, OTM data may undergo various types of geomorphometric analysis-measurements
such as slope values, gradients (the rate of change in altitude), aspect (the compass direction
of the gradient), profile convexity (the rate of change of gradient), plan convexity (the con
vexity of contours and other parameters). When GIS data is used for decision support appli
cations, it may undergo aggregation and expansion operations using data warehousing, as
we discussed in Section 28.3. In addition, geometric operations (to compute distances,
areas, volumes), topological operations (to compute overlaps, intersections, shortest paths),
and temporal operations (to compute internal-based or event-based queries) are involved.
Analysis involves a number of temporal and spatial operations, which were discussed in
Chapter 24.

Data Integration. GISs must integrate both vector and raster data from a variety of
sources. Sometimes edges and regions are inferred from a raster image to form a vector model,
or conversely, raster images such as aerial photographs are used to update vector models. Sev
eral coordinate systems such as Universal Transverse Mercator (UTM), latitude/longitude, and
local cadastral systems are used to identify locations. Data originating from different coordi
nate systems requires appropriate transformations. Major public sources of geographic data,
including the TIGER files maintained by U.S. Department of Commerce, are used for road
maps by many Web-based map drawing tools (e.g., http://maps.yahoo.com). Often there are
high-accuracy, attribute-poor maps that have to be merged with low-accuracy, attribute-rich
maps. This is done with a process called "rubber-banding" where the user defines a set of con
trol points in both maps and the transformation of the low accuracy map is accomplished by
lining up the control points. A major integration issue is to create and maintain attribute
information (such as air quality or traffic flow), which can be related to and integrated with
appropriate geographical information over time as both evolve.

Data Capture. The first step in developing a spatial database for cartographic model
ing is to capture the two-dimensional or three-dimensional geographical information in dig
ital form-a process that is sometimes impeded by source map characteristics such as
resolution, type of projection, map scales, cartographic licensing, diversity of measurement
techniques, and coordinate system differences. Spatial data can also be captured from
remote sensors in satellites such as Landsat, NORA, and Advanced Very High Resolution
Radiometer (AVHRR) as well as SPOT HRV (High Resolution Visible Range Instrument),
which is free of interpretive bias and very accurate. For digital terrain modeling, data cap
ture methods range from manual to fully automated. Ground surveys are the traditional
approach and the most accurate, but they are very time consuming. Other techniques
include photogrammetric sampling and digitizing cartographic documents.

29.3 Geographic Information Systems I 933

29.3.3 Specific GIS Data Operations
GISapplications are conducted through the use of special operators such as the following:

1. Interpolation: This process derives elevation data for points at which no samples
have been taken. It includes computation at single points, computation for a rect
angular grid or along a contour, and so forth. Most interpolation methods are
based on triangulation that uses the TIN method for interpolating elevations
inside the triangle based on those of its vertices.

2. Interpretation: Digital terrain modeling involves the interpretation of operations
on terrain data such as editing, smoothing, reducing details, and enhancing.
Additional operations involve patching or zipping the borders of triangles (in TIN
data), and merging, which implies combining overlapping models and resolving
conflicts among attribute data. Conversions among grid models, contour models,
and TIN data are involved in the interpretation of the terrain.

3. Proximity analysis: Several classes of proximity analysis include computations of
"zones of interest" around objects, such as the determination of a buffer around a
car on a highway. Shortest path algorithms using 2D or 3D information is an
important class of proximity analysis.

4. Raster image processing: This process can be divided into two categories: (1) map
algebra, which is used to integrate geographic features on different map layers to
produce new maps algebraically; and (2) digital image analysis, which deals with
analysis of a digital image for features such as edge detection and object detection.
Detecting roads in a satellite image of a city is an example of the latter.

5. Analysis of networks: Networks occur in GIS in many contexts that must be ana
lyzed and may be subjected to segmentations, overlays, and so on. Network overlay
refers to a type of spatial join where a given network-for example, a highway net
work-is joined with a point database-for example, incident locations-to yield,
in this case, a profile of high-incident roadways.

Other Database Functionality. The functionality of a GIS database is also subject
to other considerations.

• Extensibility: GISs are required to be extensible to accommodate a variety of con
stantly evolving applications and corresponding data types. If a standard DBMS is
used, it must allow a core set of data types with a provision for defining additional
types and methods for those types.

• Data quality control: As in many other applications, quality of source data is of par
amount importance for providing accurate results to queries. This problem is par
ticularly significant in the GIS context because of the variety of data, sources, and
measurement techniques involved and the absolute accuracy expected by applica
tions users.

6. Visualization: A crucial function in GIS is related to visualization-the graphical
display of terrain information and the appropriate representation of application

934 I Chapter 29 Emerging Database Technologies and Applications

attributes to go with it. Major visualization techniques include (1) contouring
through the use of isolines, spatial units of lines or arcs of equal attribute values; (2)
hillshading, an illumination method used for qualitative relief depiction using var
ied light intensities for individual facets of the terrain model; and (3) perspective
displays, three-dimensional images of terrain model facets using perspective projec
tion methods from computer graphics. These techniques impose cartographic data
and other three-dimensional objects on terrain data providing animated scene ren
derings such as those in flight simulations and animated movies.

Such requirements clearly illustrate that standard RDBMSs or ODBMSs do not meet the
special needs of GIS. It is therefore necessary to design systems that support the vector and
raster representations and the spatial functionality as well as the required DBMS features. A
popular GIS software called ARC-INFO, which is not a DBMS but integrates RDBMS
functionality in the INFO part of the system, is briefly discussed in the subsection that follows.
More systems are likely to be designed in the future to work with relational or object
databases that will contain some of the spatial and most of the nonspatial information.

29.3.4 An Example of a GIS Software: ARC-INFO

ARC/INFo-a popular GIS software launched in 1981 by Environmental System Research
Institute (ESRr)-uses the arc node model to store spatial data. A geographic layer-ealled
coverage in ARC/INFO-eonsists of three primitives: (1) nodes (points), (2) arcs (similar to
lines), and (3) polygons. The arc is the most important of the three and stores a large
amount of topological information. An arc has a start node and an end node (and it there
fore has direction too). In addition, the polygons to the left and the right of the arc are also
stored along with each arc. As there is no restriction on the shape of the arc, shape points
that have no topological information are also stored along with each arc. The database
managed by the INFO RDBMS thus consists of three required tables: (1) node attribute table
(NAT), (2) arc attribute table (AAT), and (3) polygon attribute table (PAT). Additional
information can be stored in separate tables and joined with any of these three tables.

The NAT contains an internal !D for the node, a user-specified !D, the coordinates of
the node, and any other information associated with that node (e.g., names of the
intersecting roads at the node). The AAT contains an internal !D for the are, a user
specified !D, the internal !D of the start and end nodes, the internal !D of the polygons to
the left and the right, a series of coordinates of shape points (if any), the length of the are,
and any other data associated with the arc (e.g., the name of the road the arc represents).
The PAT contains an internal ID for the polygon, a user-specified !D, the area of the
polygon, the perimeter of the polygon, and any other associated data (e.g., name of the
county the polygon represents).

Typical spatial queries are related to adjacency, containment, and connectivity. The arc
node model has enough information to satisfy all three types of queries, but the RDBMS is not
ideally suited for this type of querying. A simple example will highlight the number of timesa
relational database has to be queried to extract adjacency information. Assume that we are
trying to determine whether two polygons, A and B, are adjacent to each other. We would
have to exhaustively look at the entire AAT to determine whether there is an edge that has A

29.3 Geographic Information Systems I 935

on one side and B on the other. The search cannot be limited to the edges of either polygon as
we do not explicitly store all the arcs that make a polygon in the PAT. Storing all the arcs in
the PAT would be redundant because all the information is already there in the AAT.

ESRI has released Arc/Storm (Arc Store Manager) which allows multiple users to use
the same GIS, handles distributed databases, and integrates with other commercial
RDBMSs like ORACLE, INFORMIX, and SYBASE. While it offers many performance and
functional advantages over ARC/INFO, it is essentially an RDBMS embedded within a GIS.

29.3.5 Problems and Future Issues in GIS

GIS is an expanding application area of databases, reflecting an explosion in the number of
end users using digitized maps, terrain data, space images, weather data, and traffic informa
tion support data. As a consequence, an increasing number of problems related to GIS appli
cations has been generated and will need to be solved:

1. New architectures: GIS applications will need a new client-server architecture that
will benefit from existing advances in RDBMS and ODBMS technology. One possi
ble solution is to separate spatial from nonspatial data and to manage the latter
entirely by a DBMS. Such a process calls for appropriate modeling and integration
as both types of data evolve. Commercial vendors find that it is more viable to
keep a small number of independent databases with an automatic posting of
updates across them. Appropriate tools for data transfer, change management, and
workflow management will be required.

2. Versioning and object life-cycle approach: Because of constantly evolving geographi
cal features, GISs must maintain elaborate cartographic and terrain data-a man
agement problem that might be eased by incremental updating coupled with
update authorization schemes for different levels of users. Under the object life
cycle approach, which covers the activities of creating, destroying, and modifying
objects as well as promoting versions into permanent objects, a complete set of
methods may be predefined to control these activities for GISobjects.

3. Data standards: Because of the diversity of representation schemes and models,
formalization of data transfer.standards is crucial for the success of GIS. The inter
national standardization body (rso Tc2l0 and the European standards body
(CEN Tc278) are now in the process of debating relevant issues-among them
conversion between vector and raster data for fast query performance.

4. Matchingapplications and data structures: Looking again at Figure 27.5, we see that
a classification of GISapplications is based on the nature and organization of data.
In the future, systems covering a wide range of functions-from market analysis
and utilities to car navigation-will need boundary-oriented data and functional
ity. On the other hand, applications in environmental science, hydrology, and
agriculture will require more area-oriented and terrain model data. It is not clear
that all this functionality can be supported by a single general-purpose GIS. The
specialized needs of GISs will require that general purpose DBMSs must be

936 I Chapter 29 Emerging Database Technologies and Applications

enhanced with additional data types and functionality before full-fledged GIS
applications can be supported.

5. Lack of semantics in data structures: This is evident especially in maps. Information
such as highway and road crossings may be difficult to determine based on the
stored data. One-way streets are also hard to represent in the present GISs. Trans
portation CAD systems have incorporated such semantics into GIS.

29.3.6 Selected Bibliography for GIS

There are a number of books written on GIS. Adam and Gangopadhyay (1997) and Laurini
and Thompson (1992) focus on GIS database and information management problems.
Kemp (1993) gives an overview of GIS issues and data sources. Huxhold (1991) gives an
intruduction to Urban GIS. Maguire et al. (1991) have a very good collection of GIS-related
papers. Antenucci (1998) presents a discussion of the GIS technologies. Shekhar and
Chawla (2002) discusses issues and approaches to spatial data management which is at the
core of all GIS. Demers (2002) is another recent book on the fundamentals of GIS. Bosso
maier and Green (2002) is a primer on GIS operations, languages, metadata paradigms and
standards. Peng and Tsou (2003) discusses Internet GIS which includes a suite of emerging
new technologies aimed at making GISmore mobile, powerful, and flexible, as well as better
able to share and communicate geographic information. The TIGER files for road data in the
United States are managed by the U.S. Department of Commerce (1993). Laser-Scan's
Web site (http://www.lsl.co.uk/papers) is a good source of information.

Environmental System Research Institute (ESRI) has an excellent library of GIS
books for all levels at http://www.esri.com. The GIS terminology is defined at http://
www.esri.com/library/glossary/glossary.html. The university of Edinburgh maintains a
GIS WWW resource list at http://www.geo.ed.ac.uk/home/giswww.html

29.4 GENOME DATA MANAGEMENT

29.4.1 Biological Sciences and Genetics
The biological sciences encompass an enormous variety of information. Environmental sci
ence gives us a view of how species live and interact in a world filled with natural phenom
ena. Biology and ecology study particular species. Anatomy focuses on the overall structure
of an organism, documenting the physical aspects of individual bodies. Traditional medicine
and physiology break the organism into systems and tissues and strive to collect information
on the workings of these systems and the organism as a whole. Histology and cell biology
delve into the tissue and cellular levels and provide knowledge about the inner structure
and function of the cell. This wealth of information that has been generated, classified, and
stored for centuries has only recently become a major application of database technology.

Genetics has emerged as an ideal field for the application of information technology.
In a broad sense, it can be thought of as the construction of models based on information

29.4 Genome Data Management I 937

about genes-which can be defined as basic units of heredity-and populations and the
seeking out of relationships in that information. The study of genetics can be divided into
three branches: (1) Mendelian genetics, (2) molecular genetics, and (3) population
genetics. Mendelian genetics is the study of the transmission of traits between
generations. Molecular genetics is the study of the chemical structure and function of
genes at the molecular level. Population genetics is the study of how genetic information
varies across populations of organisms.

Molecular genetics provides a more detailed look at genetic information by allowing
researchers to examine the composition, structure, and function of genes. The origins of
molecular genetics can be traced to two important discoveries. The first occurred in 1869
when Friedrich Miescher discovered nuclein and its primary component, deoxyribonucleic
acid (DNA). In subsequent research DNA and a related compound, ribonucleic acid (RNA),

were found to be composed of nucleotides (a sugar, a phosphate, and a base, which
combined to form nucleic acid) linked into long polymers via the sugar and phosphate. The
second discovery was the demonstration in 1944 by Oswald Avery that DNA was indeed the
molecular substance carrying genetic information. Genes were thus shown to be composed
of chains of nucleic acids arranged linearly on chromosomes and to serve three primary
functions: (1) replicating genetic information between generations, (2) providing
blueprints for the creation of polypeptides, and (3) accumulating changes-thereby
allowing evolution to occur. Waston and Crick found the double-helix structure of the
DNA in 1953, which gave molecular genetics research a new direction.6 Discovery of the
DNA and its structure is hailed as probably the most important biological work of the last
100 years, and the field it opened may be the scientific frontier for the next 100. In 1962,
Watson, Crick, and Wilkins won the Nobel Prize for physiology/medicine for this
breakthrough. 7

29.4.2 Characteristics of Biological Data
Biological data exhibits many special characteristics that make management of biological
information a particularly challenging problem. We will thus begin by summarizing the
characteristics related to biological information, and focusing on a multidisciplinary field
called bioinforrnatics that has emerged, with graduate degree programs now in place in sev
eral universities. Bioinformatics addresses information management of genetic information
with special emphasis on DNA sequence analysis. It needs to be broadened into a wider
scope to harness all types of biological information-its modeling, storage, retrieval, and
management. Moreover, applications of bioinformatics span design of targets for drugs,
study of mutations and related diseases, anthropological investigations on migration pat
terms of tribes, and therapeutic treatments.

Characteristic 1: Biological data is highly complex when compared with most other
domains or applications. Definitions of such data must thus be able to represent a complex
substructure of data as well as relationships and to ensure that no information is lost

6. See Nature, 171:737 1953.
7. http://www.pbs.org/wgbh/aso/databank/entries/doS3dn.html

938 I Chapter 29 Emerging Database Technologies and Applications

during biological data modeling. The structure of biological data often provides an
additional context for interpretation of the information. Biological information systems
must be able to represent any level of complexity in any data schema, relationship, or
schema substructure-not just hierarchical, binary, or table data. As an example,
MITOMAP is a database documenting the human mitochondrial genome.f This single
genome is a small, circular piece of DNA encompassing information about 16,569
nucleotide bases; 52 gene loci encoding messenger RNA, ribosomal RNA, and transfer
RNA; 1000 known population variants; over 60 known disease associations; and a limited
set of knowledge on the complex molecular interactions of the biochemical energy
producing pathway of oxidative phosphorylation. As might be expected, its management
has encountered a large number of problems; we have been unable to use the traditional
RDBMS or ODBMS approches to capture all aspects of the data.

Characteristic 2: The amount and range of variability in data is high. Hence, biological
systems must be flexible in handling data types and values. With such a wide range of
possible data values, placing constraints on data types must be limited since this may
exclude unexpected values-e.g., outlier values-that are particularly common in the
biological domain. Exclusion of such values results in a loss of information. In addition,
frequent exceptions to biological data structures may require a choice of data types to be
available for a given piece of data.

Characteristic 3: Schemas in biological databases change at a rapid pace. Hence, for
improved information flow between generations or releases of databases, schema
evolution and data object migration must be supported. The ability to extend the schema,
a frequent occurrence in the biological setting, is unsupported in most relational and
object database systems. Presently systems such as GenBank rerelease the entire database
with new schemas once or twice a year rather than incrementally changing the system as
changes become necessary. Such an evolutionary database would provide a timely and
orderly mechanism for following changes to individual data entities in biological
databases over time. This sort of tracking is important for biological researchers to be able
to access and reproduce previous results.

Characteristic 4: Representations of the same data by different biologists will likely be
different (even when using the same system). Hence, mechanisms for "aligning" different
biological schemas or different versions of schemas should be supported. Given the
complexity of biological data, there are a multitude of ways of modeling any given entity,
with the results often reflecting the particular focus of the scientist. While two individuals
may produce different data models if asked to interpret the same entity, these models will
likely have numerous points in common. In such situations, it would be useful to
biological investigators to be able to run queries across these common points. By linking
data elements in a network of schemas, this could be accomplished.

Characteristic 5: Most users of biological data do not require write access to the database;
read-only access is adequate. Write access is limited to privileged users called curators. For
example, the database created as part of the MITOMAP project has on average more than

8. Details of MITOMAP and its information complexity can be seen in Kogelniket al. (1997, 1998)
and at http://www. mitomap.org.

29.4 Genome Data Management I 939

15,000 users per month on the Internet. There are fewer than twenty noncurator
generated submissions to MITOMAP every month. In other words, the number of users
requiring write access is small. Users generate a wide variety of read-access patterns into
the database, but these patterns are not the same as those seen in traditional relational
databases. User requested ad hoc searches demand indexing of often unexpected
combinations of data instance classes.

Characteristic 6: Most biologists are not likely to have any knowledge of the internal
structure of the database or about schema design. Biological database interfaces should
display information to users in a manner that is applicable to the problem they are trying
to address and that reflects the underlying data structure. Biological users usually know
which data they require, but they have no technical knowledge of the data structure or
how a DBMS represents the data. They rely on technical users to provide them with views
into the database. Relational schemas fail to provide cues or any intuitive information to
the user regarding the meaning of their schema. Web interfaces in particular often
provide preset search interfaces, which may limit access into the database. However, if
these interfaces are generated directly from database structures, they are likely to produce
a wider possible range of access, although they may not guarantee usability.

Characteristic 7: The context of data gives added meaning for its use in biological
applications. Hence, context must be maintained and conveyed to the user when
appropriate. In addition, it should be possible to integrate as many contexts as possible to

maximize the interpretation of a biological data value. Isolated values are of less use in
biological systems. For example, the sequence of a DNA strand is not particularly useful
without additional information describing its organization, function, and such. A single
nucleotide on a DNA strand, for example, seen in context with nondisease-causing DNA
strands, could be seen as a causative element for sickle cell anemia.

Characteristic 8: Definingand representing complexqueries is extremely important to the
biologist. Hence, biological systems must support complex queries. Without any
knowledge of the data structure (see Characteristic 6), average users cannot construct a
complex query across data sets on their own. Thus, in order to be truly useful, systems
must provide some tools for building these queries. As mentioned previously, many
systems provide predefined query templates.

Characteristic 9: Users of biological information often require access to "old" values of the
data-particularly when verifying previously reported results. Hence, changes to the values of
data in the database must be supported through a system of archives. Access to both the
most recent version of a data value and its previous version are important in the
biological domain. Investigators consistently want to query the most up-to-date data, but
they must also be able to reconstruct previous work and reevaluate prior and current
information. Consequently, values that are about to be updated in a biological database
cannot simply be thrown away.

All of these characteristics clearly point to the fact that today's DBMSs do not fully
cater to the requirements of complex biological data. A new direction in database
management systems is necessary,"

9. See Kogelnik et al. (1997, 1998) for further details.

940 I Chapter 29 Emerging Database Technologies and Applications

29.4.3 The Human Genome Project and Existing
Biological Databases

The term genome is defined as the total genetic information that can be obtained about an
entity. The human genome, for example, generally refers to the complete set of genes
required to create a human being--estimated to be more than 30,000 genes spread over 23
pairs of chromosomes, with an estimated 3 to 4 billion nucleotides. The goal of the Human
Genome Project (HGP) has been to obtain the complete sequence-the ordering of the
bases-of those nucleotides. A rough draft of entire human genome sequence was
announced in June 2000 and the 13-year effort will end in year 2003 with the completion of
the human genetic sequence. In isolation, the human DNA sequence is not particularly use
ful. The sequence can however be combined with other data and used as a powerful tool to

help address questions in genetics, biochemistry, medicine, anthropology, and agriculture.
In the existing genome databases, the focus has been on "curating" (or collecting with some
initial scrutiny and quality check) and classifying information about genome sequence data.
In addition to the human genome, numerous organisms such as E.coli, Drosophila, and
C .elegans have been investigated. We will briefly discuss some of the existing database sys
tems that are supporting or have grown out of the Human Genome Project.

GenBank. The preeminent DNA sequence database in the world today is GenBank,
maintained by the National Center for Biotechnology Information (NCB!) of the
National Library of Medicine (NLM).lt was established in 1978 as a central repository for
DNAsequence data. Since then it has expanded somewhat in scope to include expressed
sequence tag data, protein sequence data, three-dimensional protein structure, taxonomy,
and links to the biomedical literature (MEDLINE). As of release 135.0 in April 2003,
GenBank contains over 31 billion nucleotide bases of more than 24 million sequences
from over 100,000 species with roughly 1400 new organisms being added each month.
The database size in flat file format is over 100 GB uncompressed and has been doubling
every 15 months. Through international collaboration with the European Molecular
Biology Laboratory(EMBL) in the U.K. and the DNA Data Bank of Japan (DDBJ), data
are exchanged among the three sites on a daily basis. The mirroring of sequence data at
the three sites affords fast access to this data to scientists in varous geographical parts of
the world.

While it is a complex, comprehensive database, the scope of its coverage is focused
on human sequences and links to the literature. Other limited data sources (e.g. three
dimensional structure and OMIM, discussed below), have been added recently by
reformatting the existing OMIM and PDB databases and redesigning the structure of the
GenBank system to accommodate these new data sets.

The system is maintained as a combination of flat files, relational databases, and files
containing Abstract Syntax Notation One (ASN.l)-a syntax for defining data structures
developed for the telecommunications industry. Each GenBank entry is assigned a unique
identifier by the NCB!. Updates are assigned a new identifier, with the identifier of the
original entity remaining unchanged for archival purposes. Older references to an entity
thus do not inadvertently indicate a new and possibly inappropriate value. The most
current concepts also receive a second set of unique identifiers (UIDs), which mark the

29.4 Genome Data Management I 941

most up-to-date form of a concept while allowing older versions to be accessed via their
original identifier.

The average user of the database is not able to access the structure of the data directly
for querying or other functions, although complete snapshots of the database are available
for export in a number of formats, including ASN.1. The query mechanism provided is via
the Entrez application (or its World Wide Web version), which allows keyword,
sequence, and GenBank UID searching through a static interface.

The Genome Database (GOB). Created in 1989, the Genome Database (GOB) is a
catalog of human gene mapping data, a process that associates a piece of information with
a particular location on the human genome. The degree of precision of this location on
the map depends upon the source of the data, but it is usually not at the level of
individual nucleotide bases. GOB data includes data describing primarily map information
(distance and confidence limits), and Polymerase Chain Reaction (PCR) probe data
(experimental conditions, PCR primers, and reagents used). More recently efforts have
been made to add data on mutations linked to genetic loci, cell lines used in experiments,
DNA probe libraries, and some limited polymorphism and population data.

The GOB system is built around SYBASE, a commercial relational DBMS, and its data
are modeled using standard Entity-Relationship techniques (see Chapters 3 and 4). The
implementors of GOB have noted difficulties in using this model to capture more than
simple map and probe data. In order to improve data integrity and to simplify the
programming for application writers, GOB distributes a Database Access Toolkit.
However, most users use a Web interface to search the ten interlinked data managers.
Each manager keeps track of the links (relationships) for one of the ten tables within the
GOB system. As with GenBank, users are given only a very high-level view of the data at
the time of searching and thus cannot easily make use of any knowledge gleaned from the
structure of the GOB tables. Search methods are most useful when users are simply looking
for an index into map or probe data. Exploratory ad hoc searching of the database is not
encouraged by present interfaces. Integration of the database structures of GOB and OMIM
(see below) was never fully established.

Online Mendelian Inheritance in Man. Online Mendelian Inheritance in Man
(OMIM) is an electronic compendium of information on the genetic basis of human
disease. Begun in hard-copy form by Victor McCusick in 1966 with 1500 entries, it was
converted to a full-text electronic form between 1987 and 1989 by the GOB. In 1991 its
administration was transferred from Johns Hopkins University to the NCBI, and the entire
database was converted to NCBI's GenBank format. Today it contains more than 14,000
entries.

OMIM covers material on five disease areas based loosely on organs and systems. Any
morphological, biochemical, behavioral, or other properties under study are referred to as
phenotype of an individual (or a cell). Mendel realized that genes can exist in numerous
different forms known as alleles. A genotype refers to the actual allelic composition of an
individual.

The structure of the phenotype and genotype entries contains textual data loosely
structured as general descriptions, nomenclature, modes of inheritance, variations, gene

942 I Chapter 29 Emerging Database Technologies and Applications

structure, mapping, and numerous lesser categories. The full-text entries were converted to
an ASN.1 structured format when OMIM was transferred to the NCB!. This greatly improved
the ability to link OMIM data to other databases and it also provided a rigorous structure for
the data. However, the basic form of the database remained difficult to modify.

EcoCyc. The Encyclopedia of Escherichia coli Genes and Metabolism (EcoCyc) is a
recent experiment in combining information about the genome and the metabolism of E.
coli K-12. The database was created in 1996 as a collaboration between Stanford Research
Institute and the Marine Biological Laboratory. It catalogs and describes the known genes
of E .coli, the enzymes encoded by those genes, and the biochemical reactions catalyzed by
each enzyme and their organization into metabolic pathways. In so doing, EcoCyc spans
the sequence and function domains of genomic information. It contains 1283 compounds
with 965 structures as well as lists of bonds and atoms, molecular weights, and empirical
formulas. It contains 3038 biochemical reactions described using 269 data classes.

An object-oriented data model was first used to implement the system, with data
stored on Ocelot, a frame knowledge representation system. EcoCyc data was arranged in
a hierarchy of object classes based on the observations that (1) the properties of a
reaction are independent of an enzyme that catalyzes it, and (2) an enzyme has a number
of properties that are "logically distinct" from its reactions.

EcoCyc provides two methods of querying: (1) direct (via predefined queries) and (2)
indirect (via hypertext navigation). Direct queries are performed using menus and dialogs
that can initiate a large but finite set of queries. No navigation of the actual data
structures is supported. In addition, no mechanism for evolving the schema is
documented.

Table 29.1 summarizes the features of the major genome-related databases, as well as
HGMOB and ACEOB databases. Some additional protein databases exist; they contain
information about protein structures. Prominent protein databases include SWISS

PROT at the University of Geneva, Protein Data Bank (POB) at Brookhaven National
Laboratory, and Protein Identification Resource (PIR) at National Biomedical Research
Foundation.

Over the past ten years, there has been an increasing interest in the applications of
databases in biology and medicine. GenBank, GOB, and OMIM have been created as central
repositories of certain types of biological data but, while extremely useful, they do not yet
cover the complete spectrum of the Human Genome Project data. However, efforts are
under way around the world to design new tools and techniques that will alleviate the data
management problem for the biological scientists and medical researchers.

Gene Ontology. We already explained the concept of ontologies in Section 29.2.3
in the context of modeling of multimedia information. Gene Ontology (GO)
Consortium was formed in 1998 as a collaboration among three model organism
databases: FlyBase, Mouse Genome Informatics (MGI) and Saccharomyces or yeast
Genome Database (SGD). Its goal is to produce a structured, precisely defined, common,
controlled vocabulary for describing the roles of genes and gene products in any organism.
With the completion of genome sequencing of many species, it has been observed that a
large fraction of genes among organisms display similarity in biological roles and

29.4 Genome Data Management I 943

biologists have acknowledge that there is likely to be a single limited universe of genes
and proteins that are conserved in most or all living cells. On the other hand, genome
data is increasing exponentially and there is no uniform way to interpret and
conceptualize the shared biological elements. Gene Ontology makes possible the
annotation of gene products using a common vocabulary based on their shared biological
attributes and interoperability between genomic databases.

The GO Consortium has developed three ontologies: Molecular function, biological
process, and cellular component, to describe attributes of genes, gene products or gene
product groups. Molecular function is defined as the biochemical activity of a gene product.
Biological process refers to a biological objective to which the gene or gene product
contributes. Cellular component refers to the place in the cell where a gene product is
active. Each ontology comprises a set of well-defined vocabularies of terms and
relationships. The terms are organized in the form of directed acyclic graphs (DAGs), in

TABLE 29.1 SUMMARY OF THE MAJOR GENOME-RELATED DATABASES

DATABASE MAJOR INITIAL CURRENT DB PROBLEM PRIMARY DATA
NAME CONTENT TECHNOLOGY TECHNOLOGY AREAS TYPES

Genbank DNA/RNA Text files Flat-file/ASN.1 Schema brows- Text, numeric,
sequence, ing, schema some complex
protein evolution, link- types

ing to other dbs
OMIM Disease Index cards/text Flat-file/ASN.l Unstructured, Text

phenotypes and files free text entries
genotypes, etc. linking to other

dbs
GDB Genetic map Flat file Relational Schema expan- Text, numeric

linkage data sion/evolution,
complex
objects, linking
to other dbs

ACEDB Genetic map 00 00 Schema expan- Text, numeric
linkage data, sion/evolution,
sequence data linking to other
(non-human) dbs

HGMDB Sequence and Flat file- Flat-file- Schema expan- Text
sequence application application sion/evolution,
variants specific specific linking to other

dbs
EcoCyc Biochemical 00 00 Locked into Complex types,

reactions and class hierarchy, text, numeric
pathways schema

evolution

944 I Chapter 29 Emerging Database Technologies and Applications

which a term node may have multiple parents and multiple children. A child term can be
an instance of (is a) or a partof its parent. In the latest release of the GO database, there are
over 13,000 terms and more than 18,000 relationships between terms. The annotation of
gene products is operated independently by each of the collaborating databases. A subset of
the annotations is included in GO database, which contains over 1,386,000 gene products
and 5,244,000 associations between gene products and GO terms.

The Gene Ontology was implemented using MySQL, an open source relational
DBMS and a monthly database release is available in SQL and XML formats. A set of
tools and libraries, written in C, Java, Perl and XML etc, is available for database access
and development of applications. Web-based and stand-alone GO browsers are available
from the GO consortium.

29.4.4 Selected Bibliography for Genome Databases
Bioinformatics has become a popular area of research in recent years and many workshops
and conferences are being organized around this topic. Robbins (1993) gives a good over
view while Frenkel (1991) surveys the human genome project with its special role in bioin
formatics at large. Cutticchia et a1. (1993), Benson et a1. (2002), and Pearson et a1. (1994)
are references on GOB, GenBank, and OMIM. In an international collaboration among
GeneBank (USA), DNA Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp/E-mail/
homology.html) , and Euporean Molecular Biology Laborarory (EBML) (Stoesser G, 2003),
data are exchanged amongst the collaborating databases on a daily basis to achieve optimal
synchronization Wheeler et a1. (2000) discuss the various tools that currently allow users
access and analysis of the data available in the databases.

Wallace (1995) has been a pioneer in the mitochondrial genome research, which
deals with a specific part of the human genome; the sequence and organizational details of
this area appear in Anderson et al. (1981) Recent work in Kogelnik et al. (1997, 1998)
and Kogelnik (1998) addresses the development of a generic solution to the data
management problem in biological sciences by developing a prototype solution. Apweiler
et al. (2003) review the core Bioinformatics resources maintained at the European
Bioinformatics Institute (EBI) (such as Swiss-prot + TrEMBL) and summarize important
issues of database management of such resources. They discuss three main types of
databases: Sequence Databases such as DDBJJEMBL/ GENEBANK Nucleotide Sequence
Database; Secondary Databases such as PROSITE, PRINTS and Pfam; and Integrated
Databases such as InterPro, that integrates data from six major protein signature databases
(Pfam, PRINTS, ProDom, PROSITE, SMART, and TIGRFAMs).

The European Bioinformatics Institute Macromolecular Structure Database (E
MSD), which is a relational database (http://www.ebi.ac.uk/msd) (Boutselakis et al.,
2003) is designed to be a single access point for protein and nucleic acid structures and
related information. The database is derived from Protein Data Bank (PDB) entries. The
search database contains an extensive set of derived properties, goodness-of-fit indicators,
and links to other EBI databases including InterPro, GO, and SWISS-PROT, together
with links to SCOP, CATH, PFAM and PROSITE. Karp (1996) discusses the problems of
interlinking the variety of databases mentioned in this section. He defines two types of

29.4 Genome Data Management I 945

links: those that integrate the data and those that relate the data between databases.
These were used to design the Ecocyc database.

Some of the important web links include the following: The Human Genome
sequence information can be found at: http://www.ncbLnlm.nih.gov/genome/seq/.

The MITOMAP database developed in Kogelnik (1998) can be accessed at
http://www.mitomap.org/. The biggest protein database SWISS-PROT can be
accessed from http://expasy.hcuge.ch/sprot/. The ACEDB database information is
available at http://probe.nalusda.gov:8080/acedocs/.

Alternative
Diagrammatic
Notations for ER Models

Figure A.I shows a number of different diagrammatic notations for representing ER and
EER model concepts. Unfortunately, there is no standard notation: different database
design practitioners prefer different notations. Similarly, various CASE (computer-aided
software engineering) tools and OOA (object-oriented analysis) methodologies use various
notations. Some notations are associated with models that have additional concepts and
constraints beyond those of the ER and EER models described in Chapters 3 and 24, while
other models have fewer concepts and constraints. The notation we used in Chapter 3 is
quite close to the original notation for ER diagrams, which is still widely used. We discuss
some alternate notations here.

Figure Al (a) shows different notations for displaying entity types/classes, attributes,
and relationships. In Chapters 3 and 24, we used the symbols marked (i) in Figure
AI(a)-namely, rectangle, oval, and diamond. Notice that symbol (ii) for entity types/
classes, symbol [ii) for attributes, and symbol (ii) for relationships are similar, but they are
used by different methodologies to represent three different concepts. The straight line
symbol (iii) for representing relationships is used by several tools and methodologies.

Figure A. 1(b) shows some notations for attaching attributes to entity types. We used
notation (i). Notation (ii) uses the third notation (iii) for attributes from Figure Al (a).
The last two notations in Figure Al(b)-(iii) and (iv)-are popular in OOA

methodologies and in some CASE tools. In particular, the last notation displays both the
attributes and the methods of a class, separated by a horizontal line.

947

948 I Appendix A Alternative Diagrammatic Notations for ER Models

(a) entity type/class symbols (i) [I] (ii) CD
attribute symbols (i) 5D (ii) ? (iii) ---0A

relationship symbols (i) ~ (ii) CD (iii) R

EMPLOYEE
(ii) I 8ssn

EMPLOYEE Name
Address

(iii) EMPLOYEE

Ssn
Name
Address

(iv)
1------1

Ssn
Name
Address

(v) T
~

c

(iv)

Hire_emp

(d)
Fire_emp

(c)

(i) ~ (i) ~
(ii) ((ii) ~
(iii) ~ (iii)

(1,1) (O,n)

(iv) --<>- (iv) Q-«

(v)

(vi) *-

(e)

(ii) C

FIGURE A.l Alternative notations. (a) Symbols for entity type/class, attribute, and
relationship. (b) Displaying attributes. (c) Displaying cardinality ratios. (d) Various
(min, max) notations. (e) Notations for displaying specialization/generalization.

Figure A.I (c) shows various notations for representing the cardinality ratio of binary
relationships. We used notation (i) in Chapters 3 and 24. Notation (ii)-known as the
chicken feet notation-is quite popular. Notation (iv) uses the arrow as a functional
reference (from the N to the 1 side) and resembles our notation for foreign keys in the
relational model (see Figure 7.7); notation (v)-used in Bachman diagrams-uses the

Appendix A Alternative Diagrammatic Notations for ER Models I 949

arrow in the reverse direction (from the 1 to the N side). For a 1:1 relationship, (ii) uses a
straight line without any chicken feet; (iii) makes both halves of the diamond white; and
(iv) places arrowheads on both sides. For an M:N relationship, (ii) uses chicken feet at
both ends of the line; (iii) makes both halves of the diamond black; and (iv) does not
display any arrowheads.

Figure A.l(d) shows several variations for displaying (min, max) constraints, which
are used to display both cardinality ratio and total/partial participation. Notation (ii) is
the alternative notation we used in Figure 3.15 and discussed in Section 3.7.4. Recall that
our notation specifies the constraint that each entity must participate in at least min and
at most max relationship instances. Hence, for a 1:1 relationship, both max values are 1;
and for M:N, both max values are n. A min value greater than 0 (zero) specifies total
participation (existence dependency). In methodologies that use the straight line for
displaying relationships, it is common to reverse the positioning of the (min, max)
constraints, as shown in (iii). Another popular technique-which follows the same
positioning as (iii)-is to display the min as 0 (Uoh" or circle, which stands for zero) or as
I (vertical dash, which stands for 1), and to display the max as I (vertical dash, which

stands for 1) or as chicken feet (which stands for n), as shown in (iv).
Figure A.l(e) shows some notations for displaying specialization/generalization. We

used notation (i) in Chapter 14, where a d in the circle specifies that the subclasses (S 1,
S2, and S3) are disjoint and an a specifies overlapping subclasses. Notation (ii) uses G
(for generalization) to specify disjoint, and Gs to specify overlapping; some notations use
the solid arrow, while others use the empty arrow (shown at the side). Notation (iii) uses
a triangle pointing toward the superclass, and notation (v) uses a triangle pointing toward
the subclasses; it is also possible to use both notations in the same methodology, with (iii)
indicating generalization and (v) indicating specialization. Notation (iv) places the boxes
representing subclasses within the box representing the superclass. Of the notations based
on (vi), some use a single-lined arrow, and others use a double-lined arrow (shown at the
side).

The notations shown in Figure A.l show only some of the diagrammatic symbols
that have been used or suggested for displaying database conceptual schemes. Other
notations, as well as various combinations of the preceding, have also been used. It would
be useful to establish a standard that everyone would adhere to, in order to prevent
misunderstandings and reduce confusion.

Parameters
of Disks

The most important disk parameter is the time required to locate an arbitrary disk block,
given its block address, and then to transfer the block between the disk and a main mem
ory buffer. This is the random access time for accessing a disk block. There are three time
components to consider:

1. Seek time (s): This is the time needed to mechanically position the read/write
head on the correct track for movable-head disks. (For fixed-head disks, it is the
time needed to electronically switch to the appropriate read/write head.) For
movable head disks this time varies, depending on the distance between the cur
rent track under the read/write head and the track specified in the block address.
Usually, the disk manufacturer provides an average seek time in milliseconds. The
typical range of average seek time is 10 to 60 msec. This is the main "culprit" for
the delay involved in transferring blocks between disk and memory.

2. Rotational delay (rd): Once the read/write head is at the correct track, the user
must wait for the beginning of the required block to rotate into position under the
read/write head. On the average, this takes about the time for half a revolution of
the disk, but it actually ranges from immediate access (if the start of the required
block is in position under the read/write head right after the seek) to a full disk
revolution (if the start of the required block just passed the read/write head after

951

952 I Appendix C Parameters of Disks

the seek). If the speed of disk rotation is p revolutions per minute (rpm), then the
average rotational delay rd is given by

rd = (1/2)*(1/p) min = (60*1000)/(2*p) msec

A typical value for p is 10,000 rpm, which gives a rotational delay of rd = 3 msec.
For fixed-head disks, where the seek time is negligible, this component causes the
greatest delay in transferring a disk block.

3. Block transfer time (btt): Once the read/write head is at the beginning of the
required block, some time is needed to transfer the data in the block. This block
transfer time depends on the block size, the track size, and the rotational speed. If
the transfer rate for the disk is tr bytes/msec and the block size is B bytes, then

btt = B/tr msec

If we have a track size of 50 Kbvtes and p is 3600 rpm, the transfer rate in bytes/
msec is

tr = (50*1000)/(60*1000/3600) = 3000 bytes/msec

In this case, btt = B/3000 msec, where B is the block size in bytes.

The average time needed to find and transfer a block, given its block address, is
estimated by

(s + rd + btt) msec

This holds for either reading or writing a block. The principal method of reducing
this time is to transfer several blocks that are stored on one or more tracks of the same
cylinder; then the seek time is required only for the first block. To transfer consecutively k
noncontiguous blocks that are on the same cylinder, we need approximately

s + (k * (rd + btt)) msec

In this case, we need two or more buffers in main storage, because we are
continuously reading or writing the k blocks, as we discussed in Section 4.3. The transfer
time per block is reduced even further when consecutive blocks on the same track or
cylinder are transferred. This eliminates the rotational delay for all but the first block, so
the estimate for transferring k consecutive blocks is

5 + rd + (k * btt) msec

A more accurate estimate for transferring consecutive blocks takes into account the
interblock gap (see Section 5.2.1), which includes the information that enables the read/
write head to determine which block it is about to read. Usually, the disk manufacturer
provides a bulk transfer rate (btr) that takes the gap size into account when reading
consecutively stored blocks. If the gap size is G bytes, then

btr = (B/(B + G)) * tr bytes/msec

The bulk transfer rate is the rate of transferring useful bytes in the data blocks. The
disk read/write head must go over all bytes on a track as the disk rotates, including
the bytes in the interblock gaps, which store control information but not real data. When
the bulk transfer rate is used, the time needed to transfer the useful data in one block out

Appendix C Parameters of Disks I 953

of several consecutive blocks is B/btr. Hence, the estimated time to read k blocks
consecutively stored on the same cylinder becomes

5 + rd + (k * (B/btr)) msec

Another parameter of disks is the rewrite time. This is useful in cases when we read a
block from the disk into a main memory buffer, update the buffer, and then write the
buffer back to the same disk block on which it was stored. In many cases, the time
required to update the buffer in main memory is less than the time required for one disk
revolution. If we know that the buffer is ready for rewriting, the system can keep the disk
heads on the same track, and during the next disk revolution the updated buffer is
rewritten back to the disk block. Hence, the rewrite time Trw' is usually estimated to be
the time needed for one disk revolution:

Trw = 2 ~, rd msec

To summarize, here is a list of the parameters we have discussed and the symbols we
use for them:

seek time: s msec

rotational delay: rd msec

block transfer time: btt msec

rewrite time: Trw msec

transfer rate: tr byres/msec

bulk transfer rate: btr bytes/msec

block size: B bytes

interblock gap size: G bytes

Overview of the
QSE Language

The Query-By-Example (QBE) language is important because it is one of the first graphi
cal query languages with minimum syntax developed for database systems. It was devel
oped at IBM Research and is available as an IBM commercial product as part of the QMF

(Query Management Facility) interface option to DB2. The language was also imple
mented in the PARADOX DBMS, and is related to a point-and-click type interface in the
ACCESS DBMS (see Chapter 10). It differs from SQL in that the user does not have to spec
ify a structured query explicitly; rather, the query is formulated by filling in templates of
relations that are displayed on a monitor screen. Figure 9.5 shows how these templates
may look for the database of Figure 7.6. The user does not have to remember the names of
attributes or relations, because they are displayed as part of these templates. In addition,
the user does not have to follow any rigid syntax rules for query specification; rather, con
stants and variables are entered in the columns of the templates to construct an example
related to the retrieval or update request. QBE is related to the domain relational calculus,
as we shall see, and its original specification has been shown to be relationally complete.

D.l BASIC RETRIEVALS IN QBE
In QBE, retrieval queries are specified by filling in one or more rows in the templates of the
tables. For a single relation query, we enter either constants or example elements (a QBE

term) in the columns of the template of that relation. An example element stands for a

955

956 I Appendix D Overview of the QBE Language

ADDRESS

DEPARTMENT

IDEPT_LOCATIONS IDNUMBER IDLOCATION I
ESSNI WORKS ON I----~ HOURS I

PNAME

RELATIONSHIP

FIGURE D.l The relational schema of Figure 7.6 as it may be displayed by QBE.

domain variable and is specified as an example value preceded by the underscore charac
ter L). Additionally, a P. prefix (called the P dot operator) is entered in certain columns
to indicate that we would like to print (or display) values in those columns for our result.
The constants specify values that must be exactly matched in those columns.

For example, consider the query QO: "Retrieve the birthdate and address of John B.
Smith." We show in Figures 9.6(a) through 9.6(d) how this query can be specified in a
progressively more terse form in QBE. In Figure 9.6(a) an example of an employee is pre
sented as the type of row that we are interested in. By leaving John B. Smith as constants
in the FNAME, MINH, and LNAME columns, we are specifying an exact match in those columns.
All the rest of the columns are preceded by an underscore indicating that they are domain

(a) ADDRESS

P._100 Main,Houston, TX

ADDRESS

P._100 Main,Houston, TX

(c) ADDRESS

ADDRESS

P.

FIGURE D.2 Four ways of specifying the query QO in QBE.

Appendix 0 Overview of the QBE Language I 957

variables (example elements). The P. prefix is placed in the BDATE and ADDRESS columns to
indicate that we would like to output valuets) in those columns.

QO can be abbreviated as shown in Figure 9.6(b). There is no need to specify exam
ple values for columns in which we are not interested. Moreover, because example values
are completely arbitrary, we can just specify variable names for them, as shown in Figure
9.6(c). Finally, we can also leave out the example values entirely, as shown in Figure
9.6(d), and just specify a P. under the columns to be retrieved.

To see how retrieval queries in QBE are similar to the domain relational calculus,
compare Figure 9.6(d) with QO (simplified) in domain calculus, which is as follows:

QO : {uv I EMPLOYEE(qrstuvwxyz) and q='John' and r='B' and s='Smith'}

We can think of each column in a QBE template as an implicit domain variable; hence,
FNAME corresponds to the domain variable q, MINH corresponds to r, ..., and DNO corresponds
to z. In the QBE query, the columns with P. correspond to variables specified to the left of
the bar in domain calculus, whereas the columns with constant values correspond to tuple
variables with equality selection conditions on them. The condition EMPLOYEE(qrstuvwxyz)
and the existential quantifiers are implicit in the QBE query because the template corre
sponding to the EMPLOYEE relation is used.

In QBE, the user interface first allows the user to choose the tables (relations) needed
to formulate a query by displaying a list of all relation names. The templates for the cho
sen relations are then displayed. The user moves to the appropriate columns in the tem
plates and specifies the query. Special function keys were provided to move among
templates and perform certain functions.

We now give examples to illustrate basic facilities of QBE. Comparison operators
other than = (such as> or 2:) may be entered in a column before typing a constant value.
For example, the query QOA: "List the social security numbers of employees who work
more than 20 hours per week on project number 1," can be specified as shown in Figure
9.7(a). For more complex conditions, the user can ask for a condition box, which is cre
ated by pressing a particular function key. The user can then type the complex condi
tion.' For example, the query QOB-"List the social security numbers of employees who
work more than 20 hours per week on either project 1 or project 2"-ean be specified as
shown in Figure 9.7(b).

Some complex conditions can be specified without a condition box. The rule is that
all conditions specified on the same row of a relation template are connected by the and
logical connective (all must be satisfied by a selected tuple), whereas conditions specified
on distinct rows are connected by or (at least one must be satisfied). Hence, QOB can also
be specified, as shown in Figure 9.7(c), by entering two distinct rows in the template.

Now consider query QOC: "List the social security numbers of employees who work
on both project 1 and project 2"; this cannot be specified as in Figure 9.8(a), which lists
those who work on either project 1 or project 2. The example variable _ES will bind itself
to ESSN values in <-, 1, -> tuples as wellas to those in <-,2, -> tuples. Figure 9.8(b)

1. Negation with the -, symbol is not allowed in a condition box.

958 I Appendix D Overview of the QBE Language

(a)

(b)

ESSN

P.

ESSN

P.

(c)

CONDITIONS

I _HX>20AND CPX = 1OR _PX = 2)

I WORKS_ON ESSN PNO HOURS

P. >20

FIGURE D.3 Specifying complex conditions in QBE. (a) The same query QOA.
(b) The query QOB with a condition box. (c) The query QOB without a condition
box.

(a)

(b)

I WORKS ON ESSN PNO HOURS

P._ES 1

I WORKS ON ESSN PNO HOURS

P._EX 1

P EY 2

CONDITIONS
I EX= EY

FIGURE D.4 Specifying EMPLOYEES who work on both projects. (a) Incorrect specifica
tion of an AND condition. (b) Correct specification.

shows how to specify QOC correctly, where the condition CEX = _EY) in the box makes
the _EX and _EY variables bind only to identical ESSN values.

In general, once a query is specified, the resulting values are displayed in the template
under the appropriate columns. If the result contains more rows than can be displayed on
the screen, most QBE implementations have function keys to allow scrolling up and down
the rows. Similarly, if a template or several templates are too wide to appear on the
screen, it is possible to scroll sideways to examine all the templates.

Appendix 0 Overview of the QSE Language I 959

(a) ADDRESS

DEPARTMENT MGRSTARTDATE

~DDR

IRESULT~I _
p~

(b) I EMPLOYEE FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNa

E1 E2 _X55N
- -

51 52 X55N

IRE~ULT 1-_-E-1-1--_E-2-----11~------1r---------1

FIGURE 0.5 Illustrating JOIN and result relations in QSE. (a) The query Ql. (b) The query Q8.

A join operation is specified in QBE by using the same variable2 in the columns to be
joined. For example, the query Q1: "List the name and address of all employees who work for
the 'Research' department," can be specified as shown in Figure 9.9(a). Any number of joins
can be specified in a single query. We can also specify a result table to display the result of the
join query, as shown in Figure 9.9(a); this is needed if the result includes attributes from two or
more relations. If no result table is specified, the system provides the query result in the col
umns of the various relations, which may make it difficult to interpret. Figure 9.9(a) also illus
trates the feature of QBE for specifying that all attributes of a relation should be retrieved, by
placing the P. operator under the relation name in the relation template.

To join a table with itself, we specify different variables to represent the different ref
erences to the table. For example, query QS-"For each employee retrieve the employee's
first and last name as well as the first and last name of his or her immediate supervisor"
can be specified as shown in Figure 9.9(b), where the variables starting with E refer to an
employee and those starting with S refer to a supervisor.

D.2 GROUPING, AGGREGATION, AND
DATABASE MODIFICATION IN QBE

Next, consider the types of queries that require grouping or aggregate functions. A group
ing operator G. can be specified in a column to indicate that tuples should be grouped by

2. A variable is called an example element in QBE manuals.

960 I Appendix D Overview of the QBE Language

the value of that column. Common functions can be specified, such as AVG., SUM., CNT.

(count), MAX., and MIN. In QBE the functions AVG., SUM., and CNT. are applied to dis
tinct values within a group in the default case. If we want these functions to apply to all
values, we must use the prefix ALL. 3 This convention is different in SQL, where the default
is to apply a function to all values.

Figure 9.1O(a) shows query Q23, which counts the number of distinct salary values in
the EMPLOYEE relation. Query Q23A (Figure 9.1Ob) counts all salary values, which is the
same as counting the number of employees. Figure 9.10(c) shows Q24, which retrieves
each department number and the number of employees and average salary within each
department; hence, the DNO column is used for grouping as indicated by the G. function.
Several of the operators G., P., and ALL can be specified in a single column. Figure 9.l0(d)
shows query Q26, which displays each project name and the number of employees work
ing on it for projects on which more than two employees work.

QBE has a negation symbol, " which is used in a manner similar to the NOT EXISTS

function in SQL. Figure 9.11 shows query Q6, which lists the names of employees who
have no dependents. The negation symbol ' says that we will select values of the _SX

variable from the EMPLOYEE relation only if they do not occur in the DEPENDENT relation. The
same effect can be produced by placing a ' _SX in the ESSN column.

(a)

(b)

(c)

(d)

CONDITIONS

I CNT._EX>2

ADDRESS

ADDRESS

ADDRESS

FIGURE D.6 Functions and grouping in QBE. (a) The query Q23. (b) The query Q23A. (c) The query
Q24. (d) The query Q26.

--- -----------------~----~---------------------------

3. ALL in QBE is unrelated to the universal quantifier.

Appendix D Overview of the QSE Language I 961

ADDRESS

DEPENDENT~NAME RELATIONSHIP

FIGURE 0.7 Illustrating negation by the query Q6.

Although the QBE language as originally proposed was shown to support the equiva
lent of the EXISTS and NOT EXISTS functions of SQL, the QBE implementation in QMF

(under the DBl system) does not provide this support. Hence, the QMF version of QBE,

which we discuss here, is not relationally complete. Queries such as Q3-"Find employees
who work on all projects controlled by department 5"--cannot be specified.

There are three QBE operators for modifying the database: 1. for insert, D. for delete,
and U. for update. The insert and delete operators are specified in the template column
under the relation name, whereas the update operator is specified under the columns to be
updated. Figure 9.12(a) shows how to insert a new EMPLOYEE tuple. For deletion, we first
enter the D. operator and then specify the tuples to be deleted by a condition (Figure
9.12b). To update a tuple, we specify the U. operator under the attribute name, followed
by the new value of the attribute. We should also select the tuple or tuples to be updated
in the usual way. Figure 9.12(c) shows an update request to increase the salary of 'John
Smith' by 10 percent and also to reassign him to department number 4.

QBE also has data definition capabilities. The tables of a database can be specified
interactively, and a table definition can also be updated by adding, renaming, or removing
a column. We can also specify various characteristics for each column, such as whether it
is a key of the relation, what its data type is, and whether an index should be created on
that field. QBE also has facilities for view definition, authorization, storing query defini
tions for later use, and so on.

QBE does not use the "linear" style of SQL; rather, it is a "two-dimensional" language,
because users specify a query moving around the full area of the screen. Tests on users

(a)

(b)

(c)

ADDRESS

98 Oak Forest,Katy,TX

ADDRESS

ADDRESS

FIGURE 0.8 Modifying the database in QBE. (a) Insertion. (b) Deletion. (c) Update in QSE.

962 I Appendix 0 Overview of the QBE Language

have shown that QBE is easier to learn than SQL, especially for nonspecialists. In this
sense, QBE was the first user-friendly "visual" relational database language.

More recently, numerous other user-friendly interfaces have been developed for com
mercial database systems. The use of menus, graphics, and forms is now becoming quite
common. Visual query languages, which are still not so common, are likely to be offered
with commercial relational databases in the future.

Selected Bibliography

Abbreviations Used in the Bibliography

ACM: Association for Computing Machinery

AFIPS: American Federation of Information Processing Societies

CACM: Communications of the ACM (journal)

CIKM: Proceedings of the International Conference on Information and Knowledge
Management

EDS: Proceedings of the International Conference on Expert Database Systems

ER Conference: Proceedings of the International Conference on Entity-Relationship
Approach (now called International Conference on Conceptual Modeling)

ICDE: Proceedings of the IEEE International Conference on Data Engineering

IEEE: Institute of Electrical and Electronics Engineers

IEEE Computer: Computer magazine (journal) of the IEEE CS

IEEE CS: IEEE Computer Society

IFIP: International Federation for Information Processing

JACM: Journal of the ACM

KDD: Knowledge Discovery in Databases

LNCS: Lecture Notes in Computer Science

NCC: Proceedings of the National Computer Conference (published by AFIPS)

963

964 I Selected Bibliography

OOPSLA: Proceedings of the ACM Conference on Object-Oriented Programming Sys
tems, Languages, and Applications

PODS: Proceedings of the ACM Symposium on Principles of Database Systems

SIGMOD: Proceedings of the ACM SIGMOD International Conference on
Management of Data

TKDE: IEEE Transactions on Knowledge and Data Engineering (journal)

TOCS: ACM Transactions on Computer Systems (journal)

TODS: ACM Transactions on Database Systems (journal)

TOIS: ACM Transactions on Information Systems (journal)

TOOlS: ACM Transactions on Office Information Systems (journal)

TSE: IEEE Transactions on Software Engineering (journal)

VLDB: Proceedings of the International Conference on Very Large Data Bases (issues
after 1981 available from Morgan Kaufmann, Menlo Park, California)

Format for Bibliographic Citations
Book titles are in boldface-for example, Database Computers. Conference proceedings
names are in italics-for example, ACM Pacific Conference. Journal names are in bold
face-for example, TODS or Information Systems. For journal citations, we give the vol
ume number and issue number (within the volume, if any) and date of issue. For example
"TODS, 3:4, December 1978" refers to the December 1978 issue of ACM Transactions on
Database Systems, which is Volume 3, Number 4. Articles that appear in books or confer
ence proceedings that are themselves cited in the bibliography are referenced as "in"
these references-for example, "in VLDB [1978]" or "in Rustin [1974]." Page numbers
(abbreviated "pp.") are provided with pp. at the end of the citation whenever available.
For citations with more than four authors, we will give the first author only followed by et
a1. In the selected bibliography at the end of each chapter, we use et a1. if there are more
than two authors.

BIBUOG RAPH IC REFERENCES
Abbott, R., and Garcia-Molina, H. [1989] "Scheduling Real-Time Transactions with Disk

Resident Data," in VLDB [1989].

Abiteboul, S., and Kanellakis, P. [1989] "Object Identity as a Query Language Primitive,"
in SIGMOD [1989].

Abiteboul, S. Hull, R., and Vianu, V. [1995] Foundations of Databases, Addison-Wesley,
1995.

Abrial, J. [1974] "Data Semantics," in Klimbie and Koffeman [1974].

Adam, N., and Gongopadhyay, A. [1993] "Integrating Functional and Data Modeling in a
Computer Integrated Manufacturing System," in ICDE [1993].

Selected Bibliography I 965

Adriaans, P., and Zantinge, D. [1996] Data Mining, Addison-Wesley, 1996.
Afsarmanesh, H., McLeod, D., Knapp, D., and Parker, A [1985] "An Extensible Object

Oriented Approach to Databases for VLSI/CAD," in VLDB [1985].
Agrawal, D., and ElAbbadi, A [1990] "Storage Efficient Replicated Databases," TKDE,

2:3, September 1990.
Agrawal, R., and Gehani, N. [1989] "ODE: The Language and the Data Model," in SIG

MOD [1989].
Agrawal, R., Gehani, N., and Srinivasan,]. [1990] "OdeView: The Graphical Interface to

Ode," in SIGMOD [1990].
Agrawal, R., Imielinski, T., and Swami A [1993] "Mining Association Rules Between

Sets of Items in Databases," in SIGMOD [1993].
Agrawal, R., Imielinski, T., and Swami, A [1993b] "Database Mining: A Performance

Perspective," IEEE TKOE 5:6, December 1993~

Agrawal, R., Mehta, M., and Shafer,]., and Srikant, R. [1996] "The Quest Data Mining
System," in KDD [1996].

Agrawal, R., and Srikant, R. [1994] "Fast Algorithms for Mining Association Rules in
Large Databases," in VLDB [1994].

Ahad, R., and Basu, A [1991] "ESQL: A Query Language for the Relational Model Sup
porting Image Domains," in ICDE [1991].

Aho, A, Beeri, C., and Ullman,]. [1979] "The Theory of Joins in Relational Databases,"
TOOS, 4:3, September 1979.

Aho, A, Sagiv, Y., and Ullman, J. [1979a] "Efficient Optimization of a Class of Relational
Expressions," TOOS, 4:4, December 1979.

Aho, A and Ullman, J. [1979] "Universality of Data Retrieval Languages," Proceedings of
the POPL Conference, San Antonio TX, ACM, 1979.

Akl, S. [1983] "Digital Signatures: A Tutorial Survey," IEEE Computer, 16:2, February
1983.

Alashqur, A, Su, S., and Lam, H. [1989] "OQL: A Query Language for Manipulating
Object-Oriented Databases," in VLDB [1989].

Albano, A., Cardelli, L., and Orsini, R. [1985] "GALILEO: A Strongly Typed Interactive
Conceptual Language," TOOS, 10:2, June 1985.

Allen, E, Loomis, M., and Mannino, M. [1982] "The Integrated Dictionary/Directory
System," ACM Computing Surveys, 14:2, June 1982.

Alonso, G., Agrawal, D., EI Abbadi, A, and Mohan, C. [1997] "Functionalities and lim
itations of Current Workflow Management Systems," IEEE Expert, 1997.

Amir, A, Feldman, R., and Kashi, R. [1997] "A New and Versatile Method for Associa
tion Generation," Information Systems, 22:6, September 1997.

Anderson, S., Bankier, A., Barrell, B., deBruijn, M., Coulson, A., Drouin, J., Eperon, I.,
Nierlich, D., Rose, B., Sanger, E, Schreier, P., Smith, A, Staden, R., Young, I. [1981]
"Sequence and Organization of the Human Mitochondrial Genome." Nature,
290:457-465,1981.

Andrews, T, and Harris, C. [1987] "Combining Language and Database Advances in an
Object-Oriented Development Environment," OOPSLA, 1987.

ANSI [1975] American National Standards Institute Study Group on Data Base Manage

ment Systems: Interim Report, FDT, 7:2, ACM, 1975.
ANSI [1986] American National Standards Institute: The Database Language SQL, Docu

ment ANSI X3.135, 1986.
ANSI [1986a] American National Standards Institute: The Database Language NOL, Doc

ument ANSI X3.133, 1986.
ANSI [1989] American National Standards Institute: Information Resource Dictionary

Systems, Document ANSI X3.138, 1989.
Anwar, T, Beck, H., and Navathe, S. [1992] "Knowledge Mining by Imprecise Querying:

A Classification Based Approach," in ICDE [1992].
Apers, P., Hevner, A., and Yao, S. [1983] "Optimization Algorithms for Distributed Que

ries," TSE, 9:1, January 1983.
Armstrong, W. [1974] "Dependency Structures of Data Base Relationships," Proceedings of

the IFIP Congress, 1974.
Astrahan, M., et al. [1976] "System R: A Relational Approach to Data Base Manage

ment," TOOS, 1:2, June 1976.
Atkinson, M., and Buneman, P. [1987] "Types and Persistence in Database Programming

Languages" in ACM Computing Surveys, 19:2, June 1987.
Atluri, v., [ajodia, S., Keefe, TE, McCollum, c., and Mukkamala, R. [1997] "Multilevel

Secure Transaction Processing: Status and Prospects," in Database Security: Status
and Prospects, Chapman and Hall, 1997, pp. 79-98.

Atzeni, P., and De Antonellis, V. [1993] Relational Database Theory, Benjamin/Cum
mings, 1993.

Atzeni, P., Mecca, G., and Merialdo, P. [1997] "To Weave the Web," in VLDB [1997].

Bachman, C. [1969] "Data Structure Diagrams," Data Base (Bulletin of ACM SIGFIDET),

1:2, March 1969.
Bachman, C. [1973] "The Programmer as a Navigator," CACM, 16:1, November 1973.
Bachman, C. [1974] "The Data Structure Set Model," in Rustin [1974].

Bachman, c., and Williams, S. [1964) "A General Purpose Programming System for Ran
dom Access Memories," Proceedings of the Fall Joint Computer Conference, AFIPS, 26,

1964.
Badal, D., and Popek, G. [1979J "Cost and Performance Analysis of Semantic Integrity

Validation Methods," in SIGMOD [1979].

Badrinath, B. and Ramamritham, K. [1992J "Semantics-Based Concurrency Control:
Beyond Commutativity," TOOS, 17:1, March 1992.

Baeaa-Yates, R., and Larson, P. A. [1989J "Performance of Bf -trees with Partial Expan
sions," TKOE, 1:2, June 1989.

Baeza-Yates, R., and Ribero-Neto, B. [1999] Modern Information Retrieval, Addison
Wesley, 1999.

Selected Bibliography I 967

Balbin, I., and Ramamohanrao, K. [1987] "A Generalization of the Different Approach to
Recursive Query Evaluation," Journal of Logic Programming, 15:4, 1987.

Bancilhon, E, and Buneman, P., eds. [1990] Advances in Database Programming Lan
guages, ACM Press, 1990.

Bancilhon, E, Delobel, c., and Kanellakis, P., eds. [1992] Building an Object-Oriented
Database System: The Story of 02, Morgan Kaufmann, 1992.

Bancilhon, E, Maier, D., Sagiv, Y., and Ullman,]. [1986] "Magic sets and other strange
ways to implement logic programs," PODS [1986].

Bancilhon, E, and Ramakrishnan, R. [1986] "An Amateur's Introduction to Recursive
Query Processing Strategies, " in SIGMOD [1986].

Banerjee,]., et al. [1987] "Data Model Issues for Object-Oriented Applications," TOOlS,

5:1, January 1987.
Banerjee, J., Kim, W., Kim, H., and Korth, H. [1987a] "Semantics and Implementation of

Schema Evolution in Object-Oriented Databases," in SIGMOD [1987].
Baroody, A., and DeWitt, D. [1981] "An Object-Oriented Approach to Database System

Implementation," TODS, 6:4, December 1981.
Barsalou, T., Siambela, N., Keller, A., and Wiederhold, G. [1991] "Updating Relational

Databases Through Object-Based Views," in SIGMOD [1991].
Bassiouni, M. [1988] "Single-Site and Distributed Optimistic Protocols for Concurrency

Control," TSE, 14:8, August 1988.
Batini, c., Ceri, S., and Navathe, S. [1992] Database Design: An Entity-Relationship

Approach, Benjamin/Cummings, 1992.
Batini, C; Lenzerini, M., and Navathe, S. [1987]"A Comparative Analysis of Methodologies

for Database Schema Integration," ACM Computing Surveys, 18:4, December 1987.
Batory, D., and Buchmann, A. [1984] "Molecular Objects, Abstract Data Types, and Data

Models: A Framework," in VLDB [1984].
Batory, D., et al. [1988] "GENESIS: An Extensible Database Management System," TSE,

14:11, November 1988.
Bayer, R., Graham, M., and Seegmuller, G., eds. [1978] Operating Systems: An

Advanced Course, Springer-Verlag, 1978.
Bayer, R., and McCreight, E. [1972] "Organization and Maintenance of Large Ordered

Indexes," Acta Informatica, 1:3, February 1972.
Beck, H., Anwar, T., and Navathe, S. [1993] "A Conceptual Clustering Algorithm for

Database Schema Design," TKDE, to appear.
Beck, H., Gala, S., and Navathe, S. [1989] "Classification as a Query Processing Tech

nique in the CANDIDE Semantic Data Model," in ICDE [1989].
Beeri, c., Fagin, R., and Howard,]. [1977] "A Complete Axiomatization for Functional

and Multivalued Dependencies," in SIGMOD [1977]
Beeri, c., and Ramakrishnan, R. [1987] "On the Power of Magic" in PODS [1987].
Benson, D., Boguski, M., Lipman, D., and Ostell,]., "GenBank," Nucleic Acids

Research, 24:1, 1996.

968 I Selected Bibliography

Ben-Zvi, J. [1982] "The Time Relational Model," Ph.D. dissertation, University of Cali
fornia, Los Angeles, 1982.

Berg, B. and Roth, J. [1989] Software for Optical Disk, Meckler, 1989.
Berners-Lee, T., Caillian, R., Grooff, J., Pollerrnann, B. [1992] "World-Wide Web: The

Information Universe," Electronic Networking: Research, Applications and Pol
icy, 1:2, 1992.

Berners-Lee, T., Caillian, R., Lautonen, A., Nielsen, H., and Secret, A. [1994] "The
World Wide Web," CACM, 13:2, August 1994.

Bernstein, P. [1976] "Synthesizing Third Normal Form Relations from Functional Depen
dencies," TODS, 1:4, December 1976.

Bernstein, P., Blaustein, B., and Clarke, E. [1980] "Fast Maintenance of Semantic Integ
rity Assertions Using Redundant Aggregate Data," in VLDB [1980].

Bernstein, P., and Goodman, N. [1980] "Timestamp-Based Algorithms for Concurrency
Control in Distributed Database Systems," in VLDB [1980].

Bernstein, P., and Goodman, N. [1981] "The Power of Natural Semijoins," SIAM Journal
of Computing, 10:4, December 1981.

Bernstein, P., and Goodman, N. [1981a] "Concurrency Control in Distributed Database
Systems," ACM Computing Surveys, 13:2, June 1981.

Bernstein, P., and Goodman, N. [1984] "An Algorithm for Concurrency Control and
Recovery in Replicated Distributed Databases," TODS, 9:4, December 1984.

Bernstein, P., Hadzilacos, v., and Goodman, N. [1988] Concurrency Control and Recov
ery in Database Systems, Addison-Wesley, 1988.

Bertino, E. [1992] "Data Hiding and Security in Object-Oriented Databases," in ICDE

[1992].
Bertino, E., Catania, B., and Ferrari, E. [2001] "A Nested Transaction Model for Multi

level Secure Database Management Systems," ACM Transactions on Information
and System Security, 4:4, November 2001, pp. 321-370.

Bertino, E., and Ferrari, E. [1998] "Data Security," Twenty-Second Annual International

Conference on Computer Software and Applications, August 1998, pp. 228-237.
Bertino, E., and Kim, W [1989] "Indexing Techniques for Queries on Nested Objects,"

TKDE, 1:2, June 1989.
Bertino, E., Negri, M., Pelagatti, G., and Sbattella, L. [1992] "Object-Oriented Query

Languages: The Notion and the Issues," TKDE, 4:3, June 1992.
Bertino, E., Pagani, E., and Rossi, G. [1992] "Fault Tolerance and Recovery in Mobile

Computing Systems, in Kumar and Han [1992].
Bertino, E, Rabbitti and Gibbs, S. [1988] "Query Processing in a Multimedia Environ

ment," TOlS, 6, 1988.
Bhargava, B., ed. [1987] Concurrency and Reliability in Distributed Systems, Van Nos

trand-Reinhold,1987.
Bhargava, B., and Helal, A. [1993] "Efficient Reliability Mechanisms in Distributed Data

base Systems," CIKM, November 1993.

Selected Bibliography I 969

Bhargava, B., and Reidl,]. [1988] "A Model for Adaptable Systems for Transaction Pro
cessing," in ICDE [1988].

Biliris, A [1992] "The Performance of Three Database Storage Structures for Managing
Large Objects," in SIGMOD [1992].

Biller, H. [1979] "On the Equivalence of Data Base Schemas-A Semantic Approach to
Data Translation," Information Systems, 4:1, 1979.

Bischoff,]., and T. Alexander, eds., Data Warehouse: Practical Advice from the
Experts, Prentice-Hall, 1997.

Biskup,]., Dayal, U., and Bernstein, P. [1979] "Synthesizing Independent Database Sche
mas," in SIGMOD[1979].

Bjork, A [1973] "Recovery Scenario for a DB/DC System," Proceedings of the ACM National
Conference, 1973.

Bjorner, D., and Lovengren, H. [1982] "Formalization of Database Systems and a Formal
Definition of IMS," in VLDB [1982].

Blaha, M., Premerlani, W. [1998] Object-Oriented Modeling and Design for Database
Applications, Prentice-Hall, 1998.

Blakeley, J., Coburn, N., and Larson, P. [1989] "Updated Derived Relations: Detecting
Irrelevant and Autonomously Computable Updates," TODS, 14:3, September 1989.

Blakeley,]., and Martin, N. [1990] "Join Index, Materialized View, and Hybrid-Hash Join:
A Performance Analysis," in ICDE [1990].

Blasgen, M., and Eswaran, K. [1976] "On the Evaluation of Queries in a Relational Data
base System," IBM Systems Journal, 16:1, January 1976.

Blasgen, M., et al. [1981] "System R: An Architectural Overview," IBM Systems Journal,
20:1, January 1981.

Bleier, R., and Vorhaus, A [1968] "File Organization in the soc TOMS," Proceedings of the
IFIP Congress.

Bocca, J. [1986] "EDUCE-A Marriage of Convenience: Prolog and a Relational DBMS,"
Proceedings of the Third International Conference on Logic Programming, Springer-Ver
lag, 1986.

Bocca,]. [1986a] "On the Evaluation Strategy of EDUCE," in SIGMOD [1986].
Bodorick, P., Riordan, J., and Pyra, J. [1992] "Deciding on Correct Distributed Query Pro

cessing," TKDE, 4:3, June 1992.
Booch, G., Rumbaugh, J., and Jacobson, I., Unified Modeling Language User Guide,

Addison-Wesley, 1999.
Borgida, A, Brachman, R., McGuinness, D., and Resnick, L. [1989] "CLASSIC: A Struc

tural Data Model for Objects," in SIGMOD [1989].
Borkin, S. [1978] "Data Model Equivalence," in VLDB [1978].
Bouzeghoub, M., and Metals, E. [1991] "Semantic Model1ing of Object-Oriented Data

bases," in VLDB [1991].
Boyce, R., Chamberlin, D., King, w., and Hammer, M. [1975] "Specifying Queries as

Relational Expressions," CACM, 18:11, November 1975.

970 I Selected Bibliography

Bracchi, G., Paolini, P., and Pelagatti, G. [1976] "Binary Logical Associations in Data
Modelling," in Nijssen [1976].

Brachman, R., and Levesque, H. [1984] "What Makes a Knowledge Base Knowledgeable?
A View of Databases from the Knowledge Level," in EDS [1984].

Bratbergsengen, K. [1984] "Hashing Methods and Relational Algebra Operators," in
VLDB [1984].

Bray,O. [1988] Computer Integrated Manufacturing-The Data Management Strategy,
Digital Press, 1988.

Breitbart, Y., Silberschatz, A., and Thompson, G. [1990] "Reliable Transaction Manage
ment in a Multidatabase System," in SIGMOD [1990].

Brodie, M., and Mylopoulos, J., eds. [1985] On Knowledge Base Management Systems,
Springer- Verlag, 1985.

Brodie, M., Mvlopoulos, J., and Schmidt, J., eds. [1984] On Conceptual Modeling,
Springer-Verlag, 1984.

Brosey, M., and Shneiderman, B. [1978] "Two Experimental Comparisons of Relational
and Hierarchical Database Models," International Journal of Man-Machine Stud
ies, 1978.

Bry, F. [1990] "Query Evaluation in Recursive Databases: Bottom-up and Top-down Rec
onciled," TKDE, 2, 1990.

Bukhres, O. [1992] "Performance Comparison of Distributed Deadlock Detection Algo
rithms," in ICDE [1992].

Buneman, P., and Frankel, R. [1979] "FQL: A Functional Query Language," in SIGMOD

[1979].
Burkhard, W [1976] "Hashing and Trie Algorithms for Partial Match Retrieval," TODS,

1:2, June 1976, pp. 175-87.
Burkhard, W [1979] "Partial-match Hash Coding: Benefits of Redunancy," TODS, 4:2,

June 1979, pp. 228-39.
Bush, V. [1945] "As We May Think," Atlantic Monthly, 176:1, January 1945. Reprinted in

Kochen, M., ed., The Growth of Knowledge, Wiley, 1967.
Byte [1995] Special Issue on Mobile Computing, June 1995.
CACM [1995] Special issue of the Communications of the ACM, on Digital Libraries,

38:5, May 1995.
CACM [1998] Special issue of the Communications of the ACM on Digital Libraries: Glo

bal Scope and Unlimited Access, 41:4, April 1998.
Cammarata, S., Ramachandra, P., and Shane, D. [1989] "Extending a Relational Data

base with Deferred Referential Integrity Checking and Intelligent Joins," in SIGMOD

[1989].
Campbell, D., Embley, D., and Czejdo, B. [1985] "A Relationally Complete Query Lan

guage for the Entity-Relationship Model," in ER Conference [1985].
Cardenas, A. [1985] Data Base Management Systems, 2nd ed., Allyn and Bacon, 1985.

Selected Bibliography I 971

Carey, M., et a!. [1986] "The Architecture of the EXODUS Extensible DBMS," in Dittrich
and Dayal [1986].

Carey, M., DeWitt, D., Richardson, J. and Shekita, E. [1986a] "Object and File Manage
ment in the EXODUS Extensible Database System," in VLDB [1986].

Carey, M., DeWitt, D., and Vandenberg, S. [1988] "A Data Model and Query Language
for Exodus," in SIGMOD [1988].

Carey, M., Franklin, M., Livny, M., and Shekita, E. [1991] "Data Caching Tradeoffs in
Client-Server DBMS Architectures," in SIGMOD [1991].

Carlis, J. [1986] "HAS, a Relational Algebra Operator or Divide Is Not Enough to Con
quer," in ICDE [1986].

Carlis, J., and March, S. [1984] "A Descriptive Model of Physical Database Design Prob
lems and Solutions," in ICDE [1984].

Carroll, J. M., [1995] Scenario Based Design: Envisioning Work and Technology in
System Development, Wiley, 1995.

Casanova, M., Fagin, R., and Papadimitriou, C. [1981] "Inclusion Dependencies and
Their Interaction with Functional Dependencies," in PODS [1981].

Casanova, M., Furtado, A., and Tuchermann, L. [1991] "A Software Tool for Modular
Database Design," TODS, 16:2, June 1991.

Casanova, M., Tuchermann, L., Furtado, A., and Braga, A. [1989] "Optimization of Rela
tional Schemas Containing Inclusion Dependencies," in VLDB [1989].

Casanova, M., and Vidal, V. [1982] "Toward a Sound View Integration Method," in PODS

[1982].
Cattell, R., and Skeen, J. [1992] "Object Operations Benchmark," TODS, 17:1, March

1992.
Castano, S., DeAntonellio, V., Fugini, M.G., and Pernici, B. [1998] "Conceptual Schema

Analysis: Techniques and Applications," TODS, 23:3, September 1998, pp. 286-332.
Castano, S., Fugini, M., Martella G., and Samarati, P. [1995] Database Security, ACM

Press and Addison-Wesley, 1995.
Catarci, T., Costabile, M. E, Santucci, G., and Tarantino, L., eds. [1998] Proceedings of the

Fourth International Workshop on Advanced Visual Interfaces, ACM Press, 1998.
Catarci, T., Costabile, M. E, Levialdi, S., and Batini, C. [1997] "Visual Query Systems for

Databases: A Survey," Journal of Visual Languages and Computing, 8:2, June 1997,
pp.215-60.

Cattell, R., ed. [1993] The Object Database Standard: ODMG-93, Release 1.2, Morgan
Kaufmann, 1993.

Cattell, R., ed. [1997] The Object Database Standard: ODMG, Release 2.0, Morgan
Kaufmann, 1997.

Ceri, S., and Fraternali, P. [1997] Designing Database Applications with Objects and
Rules: The IDEA Methodology, Addison-Wesley, 1997.

Ceri, S., Gottlob, G., Tanca, L. [1990], Logic Programming and Databases, Springer
Verlag, 1990.

972 I Selected Bibliography

Ceri, S., Navathe, S., and Wiederhold, G. [1983] "Distribution Design of Logical Data
base Schemas," TSE, 9:4, July 1983.

Ceri, S., Negri, M., and Pelagatti, G. [1982] "Horizontal Data Partitioning in Database
Design," in SIGMOD [1982].

Ceri, S., and Owicki, S. [1983] "On the Use of Optimistic Methods for Concurrency
Control in Distributed Databases," Proceedings of the Sixth Berkeley Workshop on Dis
tributed Data Managementand Computer Networks, February 1983.

Ceri, S., and Pelagatti, G. [1984] "Correctness of Query Execution Strategies in Distrib
uted Databases," TOOS, 8:4, December 1984.

Ceri, S., and Pelagatti, G. [1984a] Distributed Databases: Principles and Systems,
McGraw-Hill, 1984.

Ceri, S., and Tanca, L. [1987] "Optimization of Systems of Algebraic Equations for Evalu
ating Datalog Queries," in VLDB [1987].

Cesarini, F, and Soda, G. [1991] "A Dynamic Hash Method with Signature," TOOS, 16:2,
June 1991.

Chakravarthy, S. [1990] "Active Database Management Systems: Requirements, State-of
the-Art, and an Evaluation," in ER Conference [1990].

Chakravarthy, S. [1991] "Divide and Conquer: A Basis for Augmenting a Conventional
Query Optimizer with Multiple Query Processing Capabilities," in ICDE [1991].

Chakravarthy, S., Anwar, E., Maugis, L., and Mishra, D. [1994] Design of Sentinel: An
Object-oriented DBMS with Event-based Rules, Information and Software Technol
ogy, 36:9, 1994.

Chakravarthy, S., et al. [1989] "HiPAC: A Research Project in Active, Time Constrained
Database Management," Final Technical Report, XAIT-89-02, Xerax Advanced
Information Technology, August 1989.

Chakravarthy, S., Karlapalem, K., Navathe, S., and Tanaka, A. [1993] "Database Sup
ported Co-operative Problem Solving," in International Journal of Intelligent Co
operative Information Systems, 2:3, September 1993.

Chakravarthy, U., Grant, J., and Minker, J. [1990] "Logic-Based Approach to Semantic
Query Optimization," TOOS, 15:2, June 1990.

Chalmers, M., and Chitson, P. [1992] "Bead: Explorations in Information Visualization,"
Proceedings of the ACM SIGIN. International Conference, June 1992.

Chamberlin, D., and Boyce, R. [1974] "SEQUEL: A Structured English Query Language,"
in SIGMOD [1984].

Chamberlin, D., et al. [1976] "SEQUEL 2: A Unified Approach to Data Definition, Manip
ulation, and Control," IBM Journal of Research and Development, 20:6, November
1976.

Chamberlin, D., et al. [1981] "A History and Evaluation of System R," CACM, 24:10,
October 1981.

Chan, c., Ooi, B., and Lu, H. [1992] "Extensible Buffer Management of Indexes," in
VLDB [1992].

Selected Bibliography I 973

Chandy, K., Browne, J., Dissley, c., and Uhrig, W. [1975] "Analytical Models for Roll
back and Recovery Strategies in Database Systems," TSE, 1:1, March 1975.

Chang, C. [1981] "On the Evaluation of Queries Containing Derived Relations in a Rela
tional Database" in Gallaire et al. [1981].

Chang, c., and Walker, A [1984] "PROSQL: A Prolog Programming Interface with SQL/

os," in EOS [1984].
Chang, E., and Katz, R. [1989] "Exploiting Inheritance and Structure Semantics for Effec

tive Clustering and Buffering in Object-Oriented Databases," in SIGMOO [1989].
Chang, N., and Fu, K. [1981] "Picture Query Languages for Pictorial Databases," IEEE

Computer, 14:11, November 1981.
Chang, P., and Myre, W. [1988] "os/2 EE Database Manager: Overview and Technical

Highlights," IBM Systems Journal, 27:2, 1988.
Chang, S., Lin, B., and Walser, R. [1979] "Generalized Zooming Techniques for Pictorial

Database Systems," Nec, AFIPS, 48, 1979.
Chen, M., and Yu, P. [1991] "Determining Beneficial Semijoins for a Join Sequence in

Distributed Query Processing," in ICOE [1991].
Chatzoglu, P. D., and McCaulay, L. A [1997] "Requirements Capture and Analysis: A

Survey of Current Practice," Requirements Engineering, 1997, pp. 75-88.
Chaudhuri, S., and Dayal, U. [1997] "An Overview of Data Warehousing and OLAP

Technology," SIGMOD Record, Vol. 26, No.1, March 1997.
Chen, M., Han, J., Yu, P'S., [1996] " Data Mining: An Overview from a Database Perspec

tive," IEEE TKDE, 8:6, December 1996.
Chen, P. [1976] "The Entity Relationship Mode-Toward a Unified View of Data," TODS,

1:1, March 1976.
Chen, P., Lee E., Gibson G., Katz, R., and Patterson, D. [1994] RAID High Performance,

Reliable Secondary Storage, ACM Computing Surveys, 26:2, 1994.
Chen, P., and Patterson, D. [1990]. "Maximizing performance in a striped disk array," in

Proceedings of Symposiumon Computer Architecture, IEEE, New York, 1990.
Chen, Q., and Kambayashi, Y. [1991] "Nested Relation Based Database Knowledge Rep

resentation," in SIGMOD [1991].
Cheng, J. [1991] "Effective Clustering of Complex Objects in Object-Oriented Data

bases," in SIGMOO [1991].
Cheung, D., Han, J., Ng, v., Fu, AW., and Fu, AY., "A Fast and Distributed Algorithm

for Mining Association Rules," in Proceedings of International Conference on Parallel
and Distributed Information Systems, PDIS [1996].

Childs, D. [1968] "Feasibilityof a Set Theoretical Data Structure-A General Structure Based
on a Reconstituted Definition of Relation," Proceedings of the IFIPCongress, 1968.

Chimenti, D., et a1. [1987] "An Overview of the LDL System," MCC Technical Report
#ACA-ST-370-87, Austin, TX, November 1987.

Chimenti, D., et a1. [1990] "The LDL System Prototype," TKDE, 2:1, March 1990.

974 I Selected Bibliography

Chin, E [1978] "Security in Statistical Databases for Queries with Small Counts," TODS,

3:1, March 1978.
Chin, E, and Ozsoyoglu, G. [1981] "Statistical Database Design," TODS, 6:1, March 1981.
Chintalapati, R. Kumar, V. and Datta, A. [1997] "An Adaptive Location Management

Algorithm for Mobile Computing," Proceedings of 22nd Annual Conference on Local
ComputerNetworks (LCN (97), Minneapolis, 1997.

Chou, H., and Kim, W. [1986] "A Unifying Framework for Version Control in a CAD

Environment," in VLDB [1986].
Christodoulakis, S., et al. [1984] "Development of a Multimedia Information System for

an Office Environment," in VLDB [1984].
Christodoulakis, S., and Faloutsos, C. [1986] "Design and Performance Considerations for

an Optical Disk-Based Multimedia Object Server," IEEE Computer, 19:12, December
1986.

Chu, W., and Hurley, P. [1982] "Optimal Query Processing for Distributed Database Sys
tems," IEEE Transactions on Computers, 31:9, September 1982.

Ciborra, c., Migliarese, P., and Romano, P. [1984] "A Methodological Inquiry of Organi-
zational Noise in Socio Technical Systems," Human Relations, 37:8, 1984.

Claybrook, B. [1983] File Management Techniques, Wiley, 1983.
Claybrook, B. [1992] OLTP: OnLine Transaction Processing Systems, Wiley, 1992.
Clifford, J., and Tansel, A. [1985] "On an Algebra for Historical Relational Databases:

Two Views," in SIGMOD [1985].
Clocks in, W. E, and Mellish, C. S. [1984] Programming in Prolog, 2nd ed., Springer-Ver

lag, 1984.
CODASYL [1978] Data Description Language Journal of Development, Canadian Govern

ment Publishing Centre, 1978.
Codd, E. [1970] "A Relational Model for Large Shared Data Banks," CACM, 13:6, June

1970.
Codd, E. [1971] "A Data Base Sublanguage Founded on the Relational Calculus," Pro

ceedings of the ACM SIGFIDET Workshop on Data Description, Access, and Control,
November 1971.

Codd, E. [1972] "Relational Completeness of Data Base Sublanguages," in Rustin [1972].
Codd, E. [1972a] "Further Normalization of the Data Base Relational Model," in Rustin

[1972].
Codd, E. [1974] "Recent Investigations in Relational Database Systems," Proceedings of

the IFIP Congress, 1974.
Codd, E. [1978] "How About Recently? (English Dialog with Relational Data Bases

Using Rendezvous Version 1)," in Shneiderman [1978].
Codd, E. [1979] "Extending the Database Relational Model to Capture More Meaning,"

TODS, 4:4, December 1979.
Codd, E. [1982] "Relational Database: A Practical Foundation for Productivity," CACM,

25:2, December 1982.

Selected Bibliography I 975

Codd, E. [1985] "Is Your DBMS Really Relational?" and "Does Your DBMS Run By the
Rules?,"COMPUTER WORLD, October 14 and October 21,1985.

Codd, E. [1986] "An Evaluation Scheme for Database Management Systems That Are
Claimed to Be Relational," in ICDE [1986].

Codd, E. [1990] Relational Model for Data Management-Version 2, Addison-Wesley,
1990.

Codd, E. F., Codd, S. B., and Salley, C. T. [1993] "Providing OLAP (On-Line Analytical
Processing) to User Analyst: An IT Mandate," a white paper at http://www.arbor
soft.com/OLAP.html, 1993.

Comer, D. [1979] "The Ubiquitous B-tree," ACM Computing Surveys, 11:2, June 1979.
Comer, D. [1997] Computer Networks and Internets, Prentice-Hall, 1997.
Cornelio, A. and Navathe, S. [1993] "Applying Active Database Models for Simulation,"

in Proceedings of 1993 Winter Simulation Conference, IEEE, Los Angeles, December
1993.

Cosmadakis, S., Kanellakis, P. C; and Vardi, M. [1990] "Polynomial-time Implication
Problems for Unary Inclusion Dependencies," JACM, 37:1, 1990, pp. 15-46.

Cruz, 1. [1992] "Doodle: A Visual Language for Object-Oriented Databases," in SIGMOD

[1992].
Curtice, R. [1981] "Data Dictionaries: An Assessment of Current Practice and Problems,"

in VLDB [1981].
Cuticchia, A., Fasman, K., Kingsbury, D., Robbins, R., and Pearson, P. [1993] "The GDB

Human Genome Database Anno 1993." Nucleic Acids Research, 21:13, 1993.
Czejdo, B., Elmasri, R., Rusinkiewicz, M., and Embley, D. [1987] "An Algebraic Language

for Graphical Query Formulation Using an Extended Entity-Relationship Model,"
Proceedings of theACM Computer Science Conference, 1987.

Dahl, R., and Bubenko, J. [1982] "IDBD: An Interactive Design Tool for CODASYL DBTG

Type Databases," in VLDB [1982].
Dahl, V. [1984] "Logic Programming for Constructive Database Systems," in EDS [1984].
Das, S. [1992] Deductive Databases and Logic Programming, Addison-Wesley, 1992.
Date, C. [1983] An Introduction to Database Systems, Vol. 2, Addison-Wesley, 1983.
Date, C. [1983a] "The Outer Join," Proceedings of the Second International Conference on

Databases (ICOD-2), 1983.
Date, C. [1984] "A Critique of the SQL Database Language," ACM SIGMOD Record, 14:3,

November 1984.
Date, C. [1995] An Introduction Database Systems, 6th ed., Addison-Wesley, 1995.
Date, C. J., and Darwen, H. [1993] A Guide to the SQL Standard, 3rd ed., Addison-Wes-

ley.
Date, c., and White, C. [1989] A Guide to DB2, 3rd ed., Addison-Wesley, 1989.
Date, c, and White, C. [1988a] A Guide to SQL/DS, Addison-Wesley, 1988.
Davies, C. [1973] "Recovery Semantics for a DB/DC System," Proceedings of the ACM

NationalConference, 1973.

976 I Selected Bibliography

Dayal, U, and Bernstein, P. [1978] "On the Updatability of Relational Views," in VLDB
[1978].

Dayal, U, Hsu, M., and Ladin, R. [1991] "A Transaction Model for Long-Running Activ
ities," in VLDB [1991].

Dayal, U, et al. [1987] "PROBE Final Report," Technical Report CCA-87-02, Computer
Corporation of America, December 1987.

DBTG [1971] Report of the CODASYL Data Base Task Group, ACM, April 1971.
Delcambre, L., Lim, B., and Urban, S. [1991] "Object-Centered Constraints," in ICDE

[1991].
DeMarco, T. [1979] Structured Analysis and System Specification, Prentice-Hall, 1979.
DeMichiel, L. [1989] "Performing Operations Over Mismatched Domains," in ICOE

[1989].
Denning, D. [1980] "Secure Statistical Databases with Random Sample Queries," TOOS,

5:3, September 1980.
Denning, D., and Denning, P. (1979J "Data Security," ACM Computing Surveys, 11:3,

September 1979, pp. 227-249.
Deshpande, A. [1989] "An Implementation for Nested Relational Databases," Technical

Report, Ph.D. dissertation, Indiana University, 1989.
Devor, c., and Weeldreyer, J. [1980] "DOTS: A Testbed for Distributed Database

Research," Proceedings of the ACM Pacific Conference, 1980.
Dewire, D. [1993] Client Server Computing, McGraw-Hill, 1993.
DeWitt, D., et al. [1984] "Implementation Techniques for Main Memory Databases," in

SIGMOD [1984].
DeWitt, D., et al. [1990] "The Gamma Database Machine Project," TKDE, 2:1, March

1990.
DeWitt, D., Futtersack, P., Maier, D., and Velez, F. [1990] "A Study of Three Alternative

Workstation Server Architectures for Object-Oriented Database Systems," in VLDB
[1990].

Dhawan, C. [1997] Mobile Computing, McGraw-Hill, 1997.
Dietrich, S., Friesen, 0., W. Calliss [1998] On Deductive and Object Oriented Databases:

The VALIDITY Experience," Technical Report, Arizona State University, 1999.
Diffie, w., and Hellman, M. [1979] "Privacy and Authentication," Proceedings of the

IEEE, 67:3, March 1979.
Dipert, B., and Levy M. [1993] Designing with Flash Memory, Annabooks 1993.
Dittrich, K. [1986] "Object-Oriented Database Systems: The Notion and the Issues," in

Dittrich and Dayal [1986].
Dittrich, K., and Dayal, U., eds, [1986] Proceedings of the International Workshop on Object

OrientedDatabase Systems, IEEE CS, Pacific Grove, CA, September 1986.
Dittrich, K., Kotz, A., and Mulle, J. [1986] "An Event/Trigger Mechanism to Enforce Com

plex Consistency Constraints in Design Databases," in SIGMOO Record, 15:3, 1986.

Selected Bibliography I 977

Dodd, G. [1969] "APL-A Language for Associative Data Handling in PL/I," Proceedings of
the Fall Joint Computer Conference, AFIPS, 29, 1969.

Dodd, G. [1969] "Elements of Data Management Systems," ACM Computing Surveys,
1:2, June 1969.

Dogac, A, Ozsu, M. T., Bilins, A, Sellis, T., eds. [1994] Advances in Object-oriented
Databases Systems, Springer-Verlag, 1994.

Dogac, A, [1998] Special Section on Electronic Commerce, ACM Sigmod Record 27:4,
December 1998.

Dos Santos, c., Neuhold, E., and Furtado, A [1979] "A Data Type Approach to the
Entity-Relationship Model," in ER Conference [1979].

Du, D., and Tong, S. [1991] "Multilevel Extendible Hashing: A File Structure for Very
Large Databases," TKDE, 3:3, September 1991.

Du, H., and Ghanta, S. [1987] "A Framework for Efficient IC/VLSI CAD Databases," in
ICDE [1987].

Dumas, P., et a1. [1982] "MOBILE-Burotique: Prospects for the Future," in Naffah [1982].
Dumpala, S., and Arora, S. [1983] "Schema Translation Using the Entity-Relationship

Approach," in ER Conference [1983].
Dunham, M., and Helal, A [1995] "Mobile Computing and Databases: Anything New?"

SIGMOD Record, 24:4, December 1995.
Dwyer, S., et a1. [1982] "A Diagnostic Digital Imaging System," Proceedings of the IEEE CS

Conference on PatternRecognition and Image Processing, June 1982.
Eastman, C. [1987] "Database Facilities for Engineering Design," Proceedings of the

IEEE, 69:10, October 1981.
EDS [1984] Expert Database Systems, Kerschberg, L., ed. (Proceedings of the First Interna

tionalWorkshop on Expert Database Systems, Kiawah Island, SC, October 1984), Ben
jamin/Cummings,1986.

EDS [1986] Expert Database Systems, Kerschberg, L., ed. (Proceedings of the First Interna
tional Conference on Expert Database Systems, Charleston, SC, April 1986), Ben
jamin/Cummings,1987.

EDS [1988] Expert Database Systems, Kerschberg, L., ed. (Proceedings of the Second Interna
tional Conference on Expert Database Systems, Tysons Corner, VA, April 1988), Ben
jamin/Cummings (forthcoming).

Eick, C. [1991] "A Methodology for the Design and Transformation of Conceptual Sche
mas," in VLDB [1991].

ElAbbadi, A, and Toueg, S. [1988] "The Group Paradigm for Concurrency Control," in
SIGMOD [1988].

ElAbbadi, A, and Toueg, S. [1989] "Maintaining Availability in Partitioned Replicated
Databases," TODS, 14:2, June 1989.

Ellis, c., and Nutt, G. [1980] "Office Information Systems and Computer Science," ACM
Computing Surveys, 12:1, March 1980.

978 I Selected Bibliography

Elmagarmid A K., ed. [1992] Database Transaction Models for Advanced Applications,
Morgan Kaufmann, 1992.

Elmagarmid, A, Leu, Y., Litwin, W, and Rusinkiewicz, M. [1990] "A Multidatabase
Transaction Model for Interbase," in VLDB [1990].

Elmasri, R., James, S., and Kouramajian, V. [1993] "Automatic Class and Method Gener
ation for Object-Oriented Databases," Proceedings of the Third International Confer
ence on Deductive and Object-Oriented Databases (0000-93), Phoenix, AZ,
December 1993.

Elmasri, R., Kouramajian, v., and Fernando, S. [1993] "Temporal Database Modeling: An
Object-Oriented Approach," CIKM, November 1993.

Elmasri, R., and Larson, J. [1985] "A Graphical Query Facility for ER Databases," in ER

Conference [1985].
Elmasri, R., Larson, J., and Navathe, S. [1986] "Schema Integration Algorithms for Feder

ated Databases and Logical Database Design," Honeywell CSDD, Technical Report
csc-86-9: 8212, January 1986.

Elmasri, R., Srinivas, P., and Thomas, G. [1987] "Fragmentation and Query Decomposi
tion in the ECR Model," in ICDE [1987].

Elmasri, R., Weeldreyer, J., and Hevner, A [1985] "The Category Concept: An Extension
to the Entity-Relationship Model," International Journal on Data and Knowledge
Engineering, 1:1, May 1985.

Elmasri, R., and Wiederhold, G. [1979] "Data Model Integration Using the Structural
Model," in SIGMOD [1979].

Elmasri, R., and Wiederhold, G. [1980] "Structural Properties of Relationships and Their
Representation," NCC, AFlPS, 49, 1980.

Elmasri, R., and Wiederhold, G. [1981] "GORDAS: A Formal, High-Level Query Language
for the Entity-Relationship Model," in ER Conference [1981].

Elmasri, R., and Wuu, G. [1990] "A Temporal Model and Query Language for ER Data
bases," in ICDE [1990], in VLDB [1990].

Elmasri, R., and Wuu, G. [1990a] "The Time Index: An Access Structure for Temporal
Data," in VLDB [1990].

Engelbart, D., and English, W. [1968] "A Research Center for Augmenting Human Intel
lect," Proceedings of the Fall Joint Computer Conference, AFlPS, December 1968.

Epstein, R., Stonebraker, M., and Wong, E. [1978] "Distributed Query Processing in a
Relational Database System," in SIGMOD [1978].

ER Conference [1979] Entity-Relationship Approach to Systems Analysis and Design,
Chen, P., ed. (Proceedings of the First International Conference on Entity-Relationship
Approach, Los Angeles, December 1979), North-Holland, 1980.

ER Conference [1981] Entity-Relationship Approach to Information Modeling and
Analysis, Chen, P., eds. (Proceedings of the Second International Conference on Entity
Relationship Approach, Washington, October 1981), Elsevier Science, 1981.

Selected Bibliography I 979

ER Conference [1983] Entity-Relationship Approach to Software Engineering, Davis,
c., [ajodia, S., Ng, P., and Yeh, R., eds, (Proceedings of the Third International Confer
ence on Entity-Relationship Approach, Anaheim, CA, October 1983), North-Holland,

1983.
ER Conference [1985] Proceedings of the Fourth International Conference on Entity-Relation

ship Approach, Liu, j., ed., Chicago, October 1985, IEEE CS.

ER Conference [1986] Proceedings of the Fifth International Conferenceon Entity-Relationship
Approach, Spaccapietra, S., ed., Dijon, France, November 1986, Express-Tirages.

ER Conference [1987] Proceedings of the Sixth International Conferenceon Entity-Relationship
Approach, March, S., ed., New York, November 1987.

ER Conference [1988] Proceedings of the Seventh International Conferenceon Entity-Relation
ship Approach, Batini, c., ed., Rome, November 1988.

ER Conference [1989] Proceedings of the Eighth International Conference on Entity-Relation
shipApproach, Lochovsky, E, ed., Toronto, October 1989.

ER Conference [1990] Proceedings of the Ninth International Conference on Entity-Relation
ship Approach, Kangassalo, H., ed., Lausanne, Switzerland, September 1990.

ER Conference [1991] Proceedings of the Tenth International Conference on Entity-Relation
ship Approach, Teorey, T., ed., San Mateo, CA, October 1991.

ER Conference [1992] Proceedings of the Eleventh International Conference on Entity-Rela
tionship Approach, Pernul, G., and Tjoa, A., eds., Karlsruhe, Germany, October 1992.

ER Conference [1993] Proceedings of the Twelfth International Conferenceon Entity-Relation
ship Approach, Elmasri, R., and Kouramajian, v., eds., Arlington, TX, December
1993.

ER Conference [1994] Proceedings of the Thirteenth International Conference on Entity-Rela
tionship Approach, Loucopoulos, P., and Theodoulidis, B., eds., Manchester, England,
December 1994.

ER Conference [1995] Proceedings of the Fourteenth International Conference on ER-OO
Modeling, Papazouglou, M., and Tari, Z., eds., Brisbane, Australia, December 1995.

ER Conference [1996] Proceedings of the Fifteenth International Conference on Conceptual
Modeling, Thalheim, B., ed., Cottbus, Germany, October 1996.

ER Conference [1997] Proceedings of the Sixteenth International Conference on Conceptual
Modeling, Embley, D., ed., Los Angeles, October 1997.

ER Conference [1998] Proceedings of the Seventeenth International Conference on Conceptual
Modeling, Ling, T.-K., ed., Singapore, November 1998.

Eswaran, K., and Chamberlin, D. [1975] "Functional Specifications of a Subsystem for
Database Integrity," in VLDB [1975].

Eswaran, K., Gray,]., Lorie, R., and Traiger, I. [1976] "The Notions of Consistency and

Predicate Locks in a Data Base System," CACM, 19:11, November 1976.
Everett, G., Dissly, c., and Hardgrave, W. [1971] RFMS User Manual, TRM-16, Computing

Center, University of Texas at Austin, 1981.

980 I Selected Bibliography

Fagin, R. [1977] "Multivalued Dependencies and a New Normal Form for Relational
Databases," TOOS, 2:3, Septembet 1977.

Fagin, R. [1979] "Normal Forms and Relational Database Operators," in SIGMOD [1979].
Fagin, R. [1981] "A Normal Form for Relational Databases That Is Based on Domains and

Keys," TOOS, 6:3, September 1981.
Fagin, R., Nievergelt,]., Pippenger, N., and Strong, H. [1979] "Extendible Hashing-A

Fast Access Method for Dynamic Files," TOOS, 4:3, September 1979.
Falcone, S., and Paton, N. [1997]. "Deductive Object-Oriented Database Systems: A Sur

vey," Proceedings of the 3rd International Workshop Rules in Database Systems
(RIDS'97), Skovde, Sweden, June 1997.

Faloutsos, C. [1996] Searching Multimedia Databases by Content, Kluwer, 1996.
Faloutsos, G., and]agadish, H. [1992] "On B-Tree Indices for Skewed Distributions," in

VLDB [1992].
Faloutsos, c., Barber, R., Flickner, M., Hafner,]., Niblack, W., Perkovic, D., and Equitz,W.

[1994] Efficient and effective querying by image content," in Journal of Intelligent
Information Systems, 3:4, 1994.

Farag, W., and Teorey, T [1993] "FunBase: A Function-based Information Management
System," CIKM, November 1993.

Farahmand, F., Navathe, S. B., and Enslow, P. H. [2002] "Electronic Commerce and
Security-Management Perspective," INFORMS 7th Annual Conference on Informa
tions Systems and Technology, CIST 2002, November 2002
(http://www.sba.uconn.edu/OPIM/CISTf).

Fernandez, E., Summers, R., and Wood, C. [1981] Database Security and Integrity,
Addison-Wesley, 1981.

Ferrier, A., and Stangret, C. [1982] "Heterogeneity in the Distributed Database Manage
ment System SIRIUS-DELTA," in VLDB [1982].

Fishman, D., et al. [1986] "IRIS: An Object-Oriented DBMS," TOOlS, 4:2, April 1986.
Folk, M.]., Zoellick, B., and Riccardi, G. [1998] File Structures: An Object Oriented

Approach with C++, 3rd ed., Addison-Wesley, 1998.
Ford, D., Blakeley,]., and Bannon, T. [1993] "Open OODB: A Modular Object-Oriented

DBMS," in SIGMOD [1993].
Ford, D., and Christodoulakis, S. [1991] "Optimizing Rendom Retrievals from CLV For

mat Optical Disks," in VLDB [1991].
Foreman, G., and Zahorjan,]. [1994] "The Challenges of Mobile Computing" IEEE Com

puter, April 1994.
Fowler, M., and Scott, K. [1997] UML distilled, Addison-Wesley, 1997.
Franaszek, P., Robinson,]., and Thomasian, A. [1992] "Concurrency Control for High

Contention Environments," TOOS, 17:2, June 1992.
Franklin, F., et al. [1992] "Crash Recovery in Client-Server EXODUS," in SIGMOn

[1992].

Selected Bibliography I 981

Fratemali, P. [1999] Tools and Approaches for Data Intensive Web Applications: A Sur
vey, ACM Computing Surveys, 31:3, September 1999.

Frenkel, K. [1991] "The Human Genome Project and Informatics," CACM, November
1991.

Friesen, 0., Gauthier-Villars, G., Lefelorre, A, and Vieille, L., "Applications of Deduc
tive Object-Oriented Databases Using DEL," in Ramakrishnan (1995).

Furtado, A [1978] "Formal Aspects of the Relational Model," Information Systems, 3:2,
1978.

Gadia, S. [1988] "A Homogeneous Relational Model and Query Language for Temporal
Databases," TODS, 13:4, December 1988.

Gait, J. [1988] "The Optical File Cabinet: A Random-Access File System for Write-Once
Optical Disks," IEEE Computer, 21:6, June 1988.

Gallaire, H., and Minker, J., eds. [1978] Logic and Databases, Plenum Press, 1978.
Gallaire, H., Minker, J., and Nicolas, J. [1984] "Logic and Databases: A Deductive

Approach," ACM Computing Surveys, 16:2, June 1984.
Gallaire, H., Minker, J., and Nicolas,]., eds. [1981], Advances in Database Theory, vol.

1, Plenum Press, 1981.
Gamal-Eldin, M., Thomas, G., and Elmasri, R. [1988] "Integrating Relational Databases

with Support for Updates," Proceedings of the International Symposium on Databases in
Parallel and Distributed Systems, IEEE CS, December 1988.

Gane, c., and Sarson, T. [1977] Structured Systems Analysis: Tools and Techniques,
Improved Systems Technologies, 1977.

Gangopadhyay, A, and Adam, N. [1997]. Database Issues in Geographic Information
Systems, Kluwer Academic Publishers, 1997.

Garcia-Molina, H. [1982] "Elections in Distributed Computing Systems," IEEE Transac
tions on Computers, 31:1, January 1982.

Garcia-Molina, H. [1983] "Using Semantic Knowledge for Transaction Processing in a
Distributed Database," TODS, 8:2, June 1983.

Gehani, N., Jagdish, H., and Shmueli, O. [1992] "Composite Event Specification in
Active Databases: Model and Implementation," in VLDB [1992].

Georgakopoulos, D., Rusinkiewicz, M., and Sheth, A. [1991] "On Serializability of Multi
database Transactions Through Forced Local Conflicts," in ICDE [1991].

Gerritsen, R. [1975] "A Preliminary System for the Design of DBTG Data Structures,"
CACM, 18:10, October 1975.

Ghosh, S. [1984] "An Application of Statistical Databases in Manufacturing Testing," in
ICDE [1984].

Ghosh, S. [1986] "Statistical Data Reduction for Manufacturing Testing," in ICDE [1986].
Gifford, D. [1979] "Weighted Voting for Replicated Data," Proceedings of the Seventh ACM

Symposium on OperatingSystems Principles, 1979.
Gladney, H. [1989] "Data Replicas in Distributed Information Services," TODS, 14:1,

March 1989.

982 I Selected Bibliography

Gogolla, M., and Hohenstein, U. [1991] "Towards a Semantic View of an Extended
Entity-Relationship Model," TODS, 16:3, September 1991.

Goldberg, A., and Robson, D. [1983] Smalltalk-80: The Language and Its Implementa
tion, Addison-Wesley, 1983.

Goldfine, A., and Konig, P. [1988] A Technical Overview of the Information Resource Dictio
nary System (IRDS), 2nd ed., NBS IR 88-3700, National Bureau of Standards.

Gotlieb, L. [1975] "Computing Joins of Relations," in SIGMOD [1975].
Graefe, G. [1993] "Query Evaluation Techniques for Large Databases," ACM Computing

Surveys, 25:2, June 1993.
Graefe, G., and DeWitt, D. [1987] "The EXODUS Optimizer Generator," in SIGMOD

[1987].
Gravano, L., and Garcia-Molina, H. [1997] "Merging Ranks from Heterogeneous

Sources," in VLDB [1997].
Gray,]. [1978] "Notes on Data Base Operating Systems," in Bayer, Graham, and Seeg

muller [1978].
Gray,]. [1981] "The Transaction Concept: Virtues and Limitations," in VLDB [1981].
Gray,]., Lorie, R., and Putzulo, G. [1975] "Granularity of Locks and Degrees of Consis

tency in a Shared Data Base," in Nijssen [1975].
Gray, [., Mcjones, P., and Blasgen, M. [1981] "The Recovery Manager of the System R

Database Manager," ACM Computing Surveys, 13:2, June 1981.
Gray,]., and Reuter, A. [1993] Transaction Processing: Concepts and Techniques, Mor

gan Kaufmann, 1993.
Griffiths, P., and Wade, B. [1976] "An Authorization Mechanism for a Relational Data

base System," TODS, 1:3, September 1976.
Grochowski, E., and Hoyt, R. F. [1996] "Future Trends in Hard Disk Drives," IEEE Trans

actions on Magnetics, 32:3, May 1996.
Grosky, W. [1994] "Multimedia Information Systems," in IEEE Multimedia, 1:1, Spring

1994.
Groskv, W. [1997] "Managing Multimedia Information in Database Systems," in CACM,

40:12, December 1997.
Grosky, w., Jain, R., and Mehrotra, R., eds. [1997], The Handbook of Multimedia Infor

mation Management, Prentice-Hall PTR, 1997.
Guttman, A. [1984] "R-Trees: A Dynamic Index Structure for Spatial Searching," in SIG

MOD [1984].
Gwayer, M. [1996] Oracle Designer/lOOO Web Server Generator Technical Overview

(version 1.3.2), Technical Report, Oracle Corporation, September 1996.
Halsaal, F. [1996] Data Communications, Computer Networks and Open Systems, 4th

ed., Addison-Wesley, 1996.
Haas, P., Naughton,]., Seshadri, S. and Stokes, L. [1995] Sampling-based Estimation of

the Number of Distinct Values of an Attribute," in VLDB [1995].

Selected Bibliography I 983

Haas, P., and Swami, A.[1995] "Sampling-based Selectivity Estimation for Joins Using
Augmented Frequent Value Statistics," in ICOE [1995].

Hachem, N. and Berra, P. [1992] "New Order Preserving Access Methods for Very Large
Files Derived from Linear Hashing," TKOE, 4:1, February 1992.

Hadzilacos, V. [1983] "An Operational Model for Database System Reliability," in Pro
ceedings ofSIGACT-SIGMOD Conference, March 1983.

Hadzilacos, V. [1986] "A Theory of Reliability in Database Systems," 1986.
Haerder, T., and Rothermel, K. [1987] "Concepts for Transaction Recovery in Nested

Transactions," in SIGMOO [1987].
Haerder, T., and Reuter, A. [1983] "Principles of Transaction Oriented Database

Recovery-A Taxonomy," ACM Computing Surveys, 15:4, September 1983, pp.
287-318.

Hall, P. [1976] "Optimization of a Single Relational Expression in a Relational Data Base
System," IBM Journal of Research and Development, 20:3, May 1976.

Hamilton, G., Catteli, R., and Fisher, M. [1997] JDBC Database Access with Java-A
Tutorial and Annotated Reference, Addison Wesley, 1997.

Hammer, M., and McLeod, D. [1975] "Semantic Integrity in a Relational Data Base Sys
tem," in VLDB [1975].

Hammer, M., and McLeod, D. [1981] "Database Description with SOM: A Semantic Data
Model," TODS, 6:3, September 1981.

Hammer, M., and Sarin, S. [1978] "Efficient Monitoring of Database Assertions," in
SIGMOO [1978].

J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, San
Francisco, 2001.

]. Han, J. Pei and Y. Yin, "Mining Frequent Patterns without Candidate Generation,"
Proc. ACM SIGMOD Conference, 2000.

Hanson, E. [1992] "Rule Condition Testing and Action Execution in Ariel," in SIGMOO

[1992].
Hardgrave, W. [1984] "BOLT: A Retrieval Language for Tree-Structured Database Sys

tems," in TaU [1984].
Hardgrave, W. [1980] "Ambiguity in Processing Boolean Queries on TOMS Tree Struc

tures: A Study of Four Different Philosophies," TSE, 6:4, July 1980.
Harrington, J. [1987] Relational Database Management for Microcomputer: Design and

Implementation, Holt, Rinehart, and Winston, 1987.
Harris, L. [1978] "The ROBOT System: Natural Language Processing Applied to Data Base

Query," Proceedings of the ACM NationalConference, December 1978.
Haskin, R., and Lorie, R. [1982] "On Extending the Functions of a Relational Database

System," in SIGMOO [1982].
Hasse, c., and Weikum, G. [1991] "A Performance Evaluation of Multi-Level Trans

action Management," in VLOB [1991].

984 I Selected Bibliography

Hayes-Roth, F., Waterman, D., and Lenat, D., eds. [1983] Building Expert Systems,
Addison-Wesley, 1983.

Hayne, S., and Ram, S. [1990] "Multi-User View Integration System: An Expert System
for View Integration," in ICOE [1990].

Heiler, S., and Zdonick, S. [1990] "Object Views: Extending the Vision," in ICOE [1990].
Heiler, S., Hardhvalal, S., Zdonik, S., Blaustein, B., and Rosenthal, A. [1992] "A Flexible

Framework for Transaction Management in Engineering Environment," in Elmagar
mid [1992].

Helal, A., Hu, T., Elmasri, R., and Mukherjee, S. [1993] "Adaptive Transaction Schedul
ing," CIKM, November 1993.

Held, G., and Stonebraker, M. [1978] "B-Trees Reexamined," CACM, 21:2, February 1978.
Henschen, L., and Naqvi S. [1984], "On Compiling Queries in Recursive First-Order

Databases," JACM, 31:1, January 1984.
Hernandez, H., and Chan., E. [1991] "Constraint-Time-Maintainable BCNF Database

Schemes," TOOS, 16:4, December 1991.
Herot, C. [1980] "Spatial Management of Data," TOOS, 5:4, December 1980.
Hevner, A, and Yao, S. [1979] "Query Processing in Distributed Database Systems," TSE,

5:3, May 1979.
Hoffer, J. [1982] "An Empirical Investigation with Individual Differences in Database

Models," Proceedings of the Third International Information SystemsConference, Decem
ber 1982.

Holland, J. [1975]Adaptation in Natural and Artificial Systems, University of Michigan
Press, 1975.

Holsapple, c., and Whinston, A, eds. [1987] Decisions Support Systems Theory and
Application, Springer-Verlag, 1987.

Holtzman J. M., and Goodman D. J., eds. [1993] Wireless Communications: Future
Directions, Kluwer, 1993.

Hsiao, D., and Kamel, M. [1989] "Heterogeneous Databases: Proliferation, Issues, and
Solutions," TKOE, 1:1, March 1989.

Hsu, A, and lmielinsky, T. [1985] "Integriry Checking for Multiple Updates," in SIGMOD
[1985].

Hull, R., and King, R. [1987] "Semantic Database Modeling: Survey, Applications, and
Research Issues," ACM Computing Surveys, 19:3, September 1987.

IBM [1978]QBE Terminal Users Guide, Form Number SH20-2078-0.
IBM [1992] Systems Application Architecture Common Programming Interface Database

Level 2 Reference, Document Number sc26-4798-01.
ICOE [1984] Proceedings of the IEEE CS International Conference on Data Engineering, Shuey,

R., ed., Los Angeles, CA, April 1984.
ICOE [1986] Proceedings of the IEEE CS International Conference on Data Engineering, Wied

erhold, G., ed., Los Angeles, February 1986.

Selected Bibliography I 985

ICDE [1987] Proceedings of the IEEE CS International Conference on Data Engineering, Wah,
B., ed., Los Angeles, February 1987.

ICDE [1988] Proceedings of the IEEE CS International Conference on Data Engineering, Carlis,
J., ed., Los Angeles, February 1988.

ICDE [1989] Proceedings of the IEEE CS International Conference on Data Engineering, Shuey,
R., ed., Los Angeles, February 1989.

ICDE [1990] Proceedings of the IEEE CS International Conference on Data Engineering, Liu,
M., ed., Los Angeles, February 1990.

ICDE [1991] Proceedings of the IEEE CS International Conference on Data Engineering, Cer
cone, N., and Tsuchiya, M., eds., Kobe, Japan, April 1991.

ICDE [1992] Proceedings of the IEEE CS International Conference on Data Engineering, Gols
hani, E, ed., Phoenix, AZ, February 1992.

ICDE [1993] Proceedings of the IEEE CS International Conference on Data Engineering, Elma
garmid, A, and Neuhold, E., eds., Vienna, Austria, April 1993.

ICDE [1994] Proceedings of the IEEE CS International Conference on Data Engineering.
ICDE [1995] Proceedings of the IEEE CS International Conference on Data Engineering, Yu, P.

S., and Chen, A L. A, eds., Taipei, Taiwan, 1995.
ICDE [1996] Proceedings of the IEEE CS International Conference on Data Engineering, Su, S.

Y. w., ed., New Orleans, 1996.
ICDE [1997] Proceedings of the IEEE CS International Conference on Data Engineering, Gray,

A, and Larson, P.A, eds., Birmingham, England, 1997.
ICDE [1998] Proceedings of the IEEE CS International Conference on Data Engineering,

Orlando, FL, 1998.
ICDE [1999] Proceedings of the IEEE CS International Conference on Data Engineering, Sydney,

Australia, 1999.
IGES [1983] International Graphics Exchange Specification Version 2, National Bureau of

Standards, U.S. Department of Commerce, January 1983.
Imielinski, T., and Badrinath, B. [1994] "Mobile Wireless Computing: Challenges in Data

Management," CACM, 37:10, October 1994.
Imielinski, T., and Lipski, W. [1981] "On Representing Incomplete Information in a Rela

tional Database," in VLDB [1981].
Informix [1998] "Web Integration Option for Informix Dynamic Server," available at

http://www.infomix.com.
Inmon, W. H. [1992] Building the Data Warehouse, Wiley, 1992.
Ioannidis, Y., and Kang, Y. [1990] "Randomized Algorithms for Optimizing Large Join

Queries," in SIGMOD [1990].
Ioannidis, Y., and Kang, Y. [1991] "Left-Deep vs. Bushy Trees: An Analysis of Strategy

Spaces and Its Implications for Query Optimization," in SIGMOD [1991].
Ioannidis, Y., and Wong, E. [1988] "Transforming Non-Linear Recursion to Linear Recur

sion," in EDS [1988].

986 I Selected Bibliography

Iossophidis, J. [1979] "A Translator to Convert the DOL of ERM to the DDL of System
2000," in ER Conference [1979].

Irani, K.,Purkayastha, S., and Teorey, T. [1979] "A Designer for DBMS-Processable Logical
Database Structures," in VLDB [1979].

Jacobson, 1., Christerson, M., Jonsson, P., Overgaard, G. [1992] Object Oriented Soft-
ware Engineering: A Use Case Driven Approach, Addison-Wesley, 1992.

[agadish, H. [1989]"Incorporating Hierarchy in a Relational Model of Data," in SIGMOD [1989].

Jagadish, H. [1997] "Content-based Indexing and Retrieval," in Groskv et al. [1997].

jajodia, S., and Kogan, B. [1990] "Integrating an Object-oriented Data Model with Multi-
level Security," IEEE Symposium on Security and Privacy, May 1990, pp. 76-85.

Jajodia, S., and Mutchler, D. [1990] "Dynamic Voting Algorithms for Maintaining the

Consistency of a Replicated Database," TODS, 15:2, June, 1990.
[ajodia, S., Ng, P., and Springsteel, F. [1983] "The Problem of Equivalence for Entity

Relationship Diagrams," TSE, 9:5, September, 1983.
[ajodia, S., and Sandhu, R. [1991] "Toward a Multilevel Secure Relational Data Model,"

in SIGMOD [1991].

Jardine, D., ed. [1977] The ANSI/SPARC DBMS Model, North-Holland, 1977.

[arke, M., and Koch, J. [1984] "Query Optimization in Database Systems," ACM Comput
ing Surveys, 16:2, June 1984.

Jensen, C; and Snodgrass, R. [1992] "Temporal Specialization," in ICDE [1992].
Jensen, c., et al. [1994] "A Glossary of Temporal Database Concepts," ACM SIGMOD

Record, 23:1, March 1994.

Johnson, T., and Shasha, D. [1993] "The Performance of Current B-Tree Algorithms,"
TODS, 18:1, March 1993.

Joshi, J. B. D., Aref, W. G., Ghafoor, A., and Spafford, E. H. [2001] "Security Models for
Web-Based Applications," Communications of the ACM, February 2001, pp. 38-44.

Kaefer, W., and Schoening, H. [1992] "Realizing a Temporal Complex-Object Data
Model," in SIGMOD [1992].

Kamel, 1., and Faloutsos, C. [1993] "On Packing Rvtrees," CIKM, November 1993.
Kamel, N., and King, R. [1985] "A Model of Data Distribution Based on Texture Analy

sis," in SIGMOD [1985].

Kapp, D., and Leben, J. [1978] IMS Programming Techniques, Van Nostrand-Reinhold,

1978.
Kappel, G., and Schrefl, M. [1991] "Object/Behavior Diagrams," in ICDE [1991].
Karlapalem, K., Navathe, S. B., and Ammar, M. [1996] "Optimal Redesign Policies to

Support Dynamic Processing of Applications on a Distributed Relational Database
System," Information Systems, 21:4,1996, pp. 353-67.

Katz, R. [1985] Information Management for Engineering Design: Surveys in Com
puter Science, Springer-Verlag, 1985.

Katz, R., and Wong, E. [1982] "Decompiling CODASYL DML into Relational Queries,"
TODS, 7:1, March 1982.

Selected Bibliography I 987

KDD [1996] Proceedings of the Second International Conference on Knowledge Discovery in
Databases and Data Mining, Portland, Oregon, August 1996.

Kedem, Z., and Silberschatz, A. [1980] "Non-Two Phase Locking Protocols with Shared
and Exclusive Locks," in VLDB [1980].

Keller, A. [1982] "Updates to Relational Database Through Views Involving Joins," in
Scheuermann [1982].

Kemp, K. [1993]. "Spatial Databases: Sources and Issues," in Environmental Modeling
with GIS, Oxford University Press, New York, 1993.

Kemper, A., Lockemann, P., and Wallrath, M. [1987] "An Object-Oriented Database Sys
tem for Engineering Applications," in SIGMOD [1987].

Kemper, A., Moerkotte, G., and Steinbrunn, M. [1992] "Optimizing Boolean Expressions
in Object Bases," in VLDB [1992].

Kemper, A., and Wallrath, M. [1987] "An Analysis of Geometric Modeling in Database
Systems," ACM Computing Surveys, 19:1, March 1987.

Kent, W. [1978] Data and Reality, North-Holland, 1978.
Kent, W [1979] "Limitations of Record-Based Information Models," TODS, 4:1, March

1979.
Kent, W. [1991] "Object-Oriented Database Programming Languages," in VLDB

[1991].
Kerschberg, L., Ting, E, and Yao, S. [1982] "Query Optimization in Star Computer Net

works," TODS, 7:4, December 1982.
Ketabchi, M. A., Mathur, S., Risch, T., and Chen, J. [1990] "Comparative Analysis of

RDBMS and OODBMS: A Case Study," IEEE International Conference on Manufacturing,

1990.
Khoshafian, S. and Baker A., [1996] Multimedia and Imaging Databases, Morgan Kauf

mann, 1996.
Khoshafian, S., Chan, A., Wong, A., and Wong, H. K. T. [1992] Developing Client

Server Applications, Morgan Kaufmann, 1992.
Kifer, M., and Lozinskii, E. [1986] "A Framework for an Efficient Implementation of

Deductive Databases," Proceedings of the Sixth Advanced Database Symposium, Tokyo,
August 1986.

Kim, P. [1996] "A Taxonomy on the Architecture of Database Gateways for the Web,"
Working Paper TR-96-U-1O, Chungnam National University, Taejon, Korea (avail
able from http://grigg.chungnam.ac.kr/projects/UniWeb).

Kim, W [1982] "On Optimizing an sQL-like Nested Query," TODS, 3:3, September 1982.
Kim, W [1989] "A Model of Queries for Object-Oriented Databases," in VLDB [1989].
Kim, W. [1990] "Object-Oriented Databases: Definition and Research Directions," TKDE,

2:3, September 1990.
Kim W. [1995] Modern Database Systems: The Object Model, Interoperability, and

Beyond, ACM Press, Addison-Wesley, 1995.

988 I Selected Bibliography

Kim, W., Reiner, D., and Batory, D., eds. [1985] Query Processing in Database Systems,
Springer-Verlag, 1985.

Kim, W. et al. [1987] "Features of the ORION Object-Oriented Database System," Micro
electronics and Computer Technology Corporation, Technical Report ACA-ST-308
87, September 1987.

Kimball, R. [1996] The Data Warehouse Toolkit, Wiley, Inc. 1996.
King, J. [1981J "QUIST: A System for Semantic Query Optimization in Relational Data

bases," in VLDB [1981J.
Kitsuregawa, M., Nakayama, M., and Takagi, M. [1989] "The Effect of Bucket Size Tuning

in the Dynamic Hybrid GRACE Hash Join Method," in VLDB [1989].
Klimbie, J., and Koffeman, K., eds. [1974] Data Base Management, North-Holland, 1974.
Klug, A [1982] "Equivalence of Relational Algebra and Relational Calculus Query Lan

guages Having Aggregate Functions," JACM, 29:3, July 1982.
Knuth, D. [1973] The Art of Computer Programming, Vol. 3: Sorting and Searching,

Addison-Wesley, 1973.
Kogelnik, A [1998] "Biological Information Management with Application to Human

Genome Data," Ph.D. dissertation, Georgia Institute of Technology and Emory Uni
versity, 1998.

Kogelnik, A., Lott, M., Brown, M., Navarhe, S., Wallace, D. [1998] "MITOMAP: A
human mitochondrial genome database-1998 update." Nucleic Acids Research,
26:1, January 1998.

Kogelnik, A, Navathe, S., Wallace, D. [1997J "GENOME: A system for managing
Human Genome Project Data." Proceedings of Genome Informatics '97, Eighth Work
shop on Genome Informatics, Tokyo, Japan, Sponsor: Human Genome Center, Uni
versity of Tokyo, December 1997.

Kohler, W. [1981] "A Survey of Techniques for Synchronization and Recovery in Decen
tralized Computer Systems," ACM Computing Surveys, 13:2, June 1981.

Konsynski, B., Bracker, L., and Bracker, W. [1982] "A Model for Specification of Office
Communications," IEEE Transactions on Communications, 30:1, January 1982.

Korfhage, R. [1991] "To See, or Not to See: Is that the Query?" in Proceedings of the ACM

SIGIR International Conference, June 1991.
Korth, H. [1983] "Locking Primitives in a Database System," JACM, 30:1, January 1983.
Korth, H., Levy, E., and Silberschatz, A [1990] "A Formal Approach to Recovery by

Compensating Transactions," in VLDB [1990].
Kotz, A, Dittrich, K., Mulle, J. [1988] "Supporting Semantic Rules by a Generalized

Event/Trigger Mechanism," in VLDB [1988].
Krishnamurthy, R., Litwin, W., and Kent, W. [1991] "Language Features for Interoperabil

ity of Databases with Semantic Discrepancies," in SIGMOD [1991].
Krishnamurthy, R., and Naqvi, S., [1988] "Database Updates in Logic Programming, Rev.

1," MCC Technical Report #ACA-ST-OI0-88, Rev. 1, September 1988.

Selected Bibliography I 989

Krishnamurthy, R., and Naqvi, S. [1989] "Non-Deterministic Choice in Datalog," Pro
ceeedings of the 3rd International Conference on Data and Knowledge Bases, Jerusalem,
June 1989.

Krovetz, R., and Croft B. [1992] "Lexical Ambiguity and Information Retrieval" in TOlS,

10, April 1992.
Kulkarni K., Carey, M., DeMichiel, L., Mattos, N., Hong, W, and Ubell M., "Introducing

Reference Types and Cleaning Up SQL3's Object Model," ISO WG3 Report X3H2
95-456, November 1995.

Kumar, A. [1991] "Performance Measurement of Some Main Memory Recovery Algo
rithms," in ICDE [1991].

Kumar, A, and Segev, A [1993] "Cost and Availability Tradeoffs in Replicated Concur
rency Control," TODS, 18:1, March 1993.

Kumar, A, and Stonebraker, M. [1987] "Semantics Based Transaction Management
Techniques for Replicated Data," in SIGMOD [1987].

Kumar, v., and Han, M., eds. [1992] Recovery Mechanisms in Database Systems, Pren
tice-Hall, 1992.

Kumar, v., and Hsu, M. [1998] Recovery Mechanisms in Database Systems, Prentice
Hall (PTR), 1998.

Kumar, v., and Song, H. S. [1998] Database Recovery, Kluwer Academic, 1998.
Kung, H., and Robinson, J. [1981] "Optimistic Concurrency Control," TODS, 6:2, June

1981.
Lacroix, M., and Pirotte, A [1977] "Domain-Oriented Relational Languages," in VLDB

[1977].
Lacroix, M., and Pirotte, A [1977a] "ILL: An English Structured Query Language for

Relational Data Bases," in Nijssen [1977].
Lamport, L. [1978] "Time, Clocks, and the Ordering of Events in a Distributed System,"

CACM, 21:7, July 1978.
Langerak, R. [1990] "View Updates in Relational Databases with an Independent

Scheme," TODS, 15:1, March 1990.
Lanka, S., and Mays, E. [1991] "Fully Persistent Bl-Trees," in SIGMOD [1991].
Larson, J. [1983] "Bridging the Gap Between Network and Relational Database Manage

ment Systems," IEEE Computer, 16:9, September 1983.
Larson, J., Navathe, S., and Elmasri, R. [1989] "Attribute Equivalence and its Use in

Schema Integration," TSE, 15:2, April 1989.
Larson, P. [1978] "Dynamic Hashing," BIT, 18, 1978.
Larson, P. [1981] "Analysis of Index-Sequential Files with Overflow Chaining," TODS,

6:4, December 1981.
Laurini, R., and Thompson, D. [1992] Fundamentals of Spatial Information Systems,

Academic Press, 1992.
Lehman, P., and Yao,S. [1981] "Efficient Locking for Concurrent Operations on B-Trees,"

TODS, 6:4, December 1981.

990 I Selected Bibliography

Lee, J., Elmasri, R., and Won, J. [1998] " An Integrated Temporal Data Model Incorpo
rating Time Series Concepts," Data and Knowledge Engineering, 24, 1998, pp.
257-276.

Lehman, T., and Lindsay, B. [1989] "The Starburst Long Field Manager," in VLDB

[1989].
Leiss, E. [1982] "Randomizing: A Practical Method for Protecting Statistical Databases

Against Compromise," in VLDB [1982].
Leiss, E. [1982a] Principles of Data Security, Plenum Press, 1982.
Lenzerini, M., and Santucci, C. [1983] "Cardinality Constraints in the Entity Relation

ship Model," in ER Conference [1983].
Leung, c., Hibler, B., and Mwara, N. [1992] "Picture Retrieval by Content Description,"

in Journal of Information Science, 1992, pp. 111-19.
Levesque, H. [1984] " The Logic of Incomplete Knowledge Bases," in Brodie et al., ch. 7

[1984].
Li, W., Seluk Candan, K., Hirata, K., and Hara, Y. [1998] Hierarchical Image Modeling

for Object-based Media Retrieval in DKE, 27:2, September 1998, pp. 139-76.
Lien, E., and Weinberger, P. [1978] "Consistency, Concurrency, and Crash Recovery," in

SIGMOD [1978].
Lieuwen, L., and DeWitt, D. [1992] "A Transformation-Based Approach to Optimizing

Loops in Database Programming Languages," in SIGMOD [1992].
Lilien, L., and Bhargava, B. [1985] "Database Integrity Block Construct: Concepts and

Design Issues," TSE, 11:9, September 1985.
Lin, J., and Dunham, M. H. [1998] "Mining Association Rules," in lCDE [1998].
Lindsay, B., et al. [1984] "Computation and Communication in R*: A Distributed Data

base Manager," TOCS, 2:1, January 1984.
Lippman R. [1987] "An Introduction to Computing with Neural Nets," IEEE ASSP

Magazine, April 1987.
Lipski, W. [1979] "On Semantic Issues Connected with Incomplete Information," TODS,

4:3, September 1979.
Lipton, R., Naughton, J., and Schneider, D. [1990] "Practical Selectivity Estimation

through Adaptive Sampling," in SIGMOD [1990].
Liskov, B., and Zilles, S. [1975] "Specification Techniques for Data Abstractions," TSE,

1:1, March 1975.
Litwin, W. [1980] "Linear Hashing: A New Tool for File and Table Addressing," in VLDB

[1980].
Liu, K., and Sunderraman, R. [1988] "On Representing Indefinite and Maybe Information

in Relational Databases," in ICDE [1988].
Liu, L., and Meersman, R. [1992] "Activity Model: A Declarative Approach for Captur

ing Communication Behavior in Object-Oriented Databases," in VLDB [1992].
Livadas, P. [1989] File Structures: Theory and Practice, Prentice-Hall, 1989.

Selected Bibliography I 991

Lockemann, P., and Knutsen, W. [1968] "Recovery of Disk Contents After System Fail
ure," CACM, 11:8, August 1968.

Lorie, R. [1977] "Physical Integrity in a Large Segmented Database," TODS, 2:1, March
1977.

Lorie, R., and Plouffe, W. [1983] "Complex Objects and Their Use in Design Transac
tions," in SIGMOD [1983].

Lozinskii, E. [1986] "A Problem-Oriented Inferential Database System," TODS, 11:3,Sep
tember 1986.

Lu, H., Mikkilineni, K., and Richardson.}, [1987] "Design and Evaluation of Algorithms
to Compute the Transitive Closure of a Database Relation," in ICDE [1987].

Lubars, M., Potts, c., and Richter, C. [1993] " A Review of the State of Practice in
Requirements Modeling," IEEE International Symposium on Requirements Engineering,
San Diego, CA, 1993.

Lucyk, B. [1993] Advanced Topics in DB2, Addison-Wesley, 1993.
Maguire, D., Goodchild, M. and Rhind D., eds. [1997] Geographical Information Sys

tems: Principles and Applications. vols. 1 and 2, Longman Scientific and Technical,
New York.

Mahajan, S., Donahoo. M.]., Navathe, S. B., Ammar, M., Malik, S. [1998] "Grouping Tech
niques for Update Propagation in Intermittently Connected Databases," in ICDE [1998].

Maier, D. [1983] The Theory of Relational Databases, Computer Science Press, 1983.
Maier, D., Stein,]., Otis, A, and Purdy, A [1986] "Development of an Object-Oriented

DBMS," OOPSLA, 1986.
Malley, C. and Zdonick, S. [1986] "A Knowledge-Based Approach to Query Optimiza

tion," in EDS [1986].
Maier, D., and Warren, D. S. [1988] Computing with Logic, Benjamin Cummings, 1988.
Mannila, H., Toivonen, H., and Verkamo A [1994] "Efficient Algorithms for Discovering

Association Rules," in KDD-94, AAAI Workshop on Knowledge Discovery in Data
bases, Seattle, 1994.

Manola. F. [1998] "Towards a Richer Web Object Model," in SIGMOD Record, 27:1,
March 1998.

March, S., and Severance, D. [1977] "The Determination of Efficient Record Segmenta
tions and Blocking Factors for Shared Files," TODS, 2:3, September 1977.

Mark, L., Roussopoulos, N., Newsome, T., and Laohapipattana, P. [1992] "Incrementally
Maintained Network to Relational Mappings," Software Practice & Experience,
22:12, December 1992.

Markowitz, v., and Raz, Y. [1983] "ERROL: An Entity-Relationship, Role Oriented, Query
Language," in ER Conference [1983].

Martin,]., Chapman, K., and Leben,]. [1989] DB2-Concepts, Design, and Program
ming, Prentice-Hall, 1989.

Martin,]., and Odell,]. [1992] Object Oriented Analysis and Design, Prentice Hall,
1992.

992 I Selected Bibliography

Maryanski, F. [1980] "Backend Database Machines," ACM Computing Surveys, 12:1,
March 1980.

Masunaga, Y. [1987] "Multimedia Databases: A Formal Framework," Proceedings of the
IEEE Office Automation Symposium, April 1987.

Mattison, R., Data Warehousing: Strategies, Technologies, and Techniques, McGraw
Hill, 1996.

McFadden, F. and Hoffer, J. [1988] Database Management, 2nd ed., Benjamin/Cum
mings, 1988.

McFadden, F. R., and Hoffer, J. A. [1994] Modern Database Management, 4th ed., Ben
jamin Cummings, 1994.

McGee, W. [1977] "The Information Management System IMS/VS, Part I: General Struc
ture and Operation," IBM Systems Journal, 16:2, June 1977.

McLeish, M. [1989] "Further Results on the Security of Partitioned Dynamic Statistical
Databases," TODS, 14:1, March 1989.

McLeod, D., and Heimbigner, D. [1985] "A Federated Architecture for Information Sys
tems," TOOlS, 3:3, July 1985.

Mehrotra, S., et al. [1992] "The Concurrency Control Problem in Multidatabases: Char
acteristics and Solutions," in SIGMOD [1992].

Melton, J., Bauer, J., and Kulkarni, K. [1991] "Object ADTs (with improvements for value
ADTs)," ISO WG3 ReportX3H2-91-083, April 1991.

Melton, J., and Mattos, N. [1996] An Overview ofSQL3-The Emerging New Generation of
the SQL Standard, Tutorial No. T5, VLDB, Bombay, September 1996.

Melton, J., and Simon, A. R. [1993] Understanding the New SQL: A Complete Guide,
Morgan Kaufmann.

Menasce, D., Popek, G., and Muntz, R. [1980] "A Locking Protocol for Resource Coordi
nation in Distributed Databases," TODS, 5:2, June 1980.

Mendelzon, A., and Maier, D. [1979] "Generalized Mutual Dependencies and the Decom
position of Database Relations," in VLDB [1979].

Mendelzon, A., Mihaila, G., Milo, T. [1997] "Querying the World Wide Web," Journal of
Digital Libraries, 1:1, April 1997.

Metais, E., Kedad, Z., Comyn-Wattiau, c., Bouzeghoub, M., "Using Linguistic Knowl
edge in View Integration: Toward a Third Generation of Tools," in DKE 23:1, June
1977.

Mikkilineni, K., and Su, S. [1988] "An Evaluation of Relational Join Algorithms in a
Pipelined Query Processing Environment," TSE, 14:6, June 1988.

Miller, N. [1987] File Structures Using PASCAL, Benjamin Cummings, 1987.
Minoura, T., and Wiederhold, G. [1981] "Resilient Extended True-Copy Token Scheme

for a Distributed Database," TSE, 8:3, May 1981.
Missikoff, M., and Wiederhold, G. [1984] "Toward a Unified Approach for Expert and

Database Systems," in EDS [1984].
T. Mitchell, Machine Learning, McGraw Hill, New York, 1997.

Selected Bibliography I 993

Mitschang, B. [1989] "Extending the Relational Algebra to Capture Complex Objects,"
in VLDB [1989].

Mohan, C. [1993] "IBM's Relational Database Products: Features and Technologies," in
SIGMOD [1993].

Mohan, c., Haderle, D., Lindsay, B., Pirahesh, H. and Schwarz, P. [1992] "ARIES: A
Transaction Recovery Method Supporting Fine-Granularity Locking and Partial
Rollbacks using Write-Ahead Logging," TODS, 17:1, March 1992.

Mohan, C, and Levine, F. [1992] "ARIEL/1M: An Efficient and High-Concurrency Index
Management Method Using Write-Ahead Logging," in SIGMOD [1992].

Mohan, c., and Narang, 1. [1992] "Algorithms for Creating Indexes for Very Large Tables
without Quiescing Updates," in SIGMOD [1992].

Mohan, C. et al. [1992] "ARIEL: A Transaction Recovery Method Supporting Fine-Gran
ularity Locking and Partial Rollbacks Using Write-Ahead Logging," TODS, 17:1,
March 1992.

Morris, K., Ullman, J., and VanGelden, A. [1986] "Design Overview of the NAIll Sys
tem," Proceedings of theThird International Conference on Logic Programming, Springer
Verlag, 1986.

Morris, K., et al. [1987] "YAWN! (Yet Another Window on NAIll), in ICDE [1987].
Morris, R. [1968] "Scatter Storage Techniques," CACM, 11:1, January 1968.
Morsi, M., Navathe, S., and Kim, H. [1992] "An Extensible Object-Oriented Database

Testbed," in ICDE [1992].
Moss, J. [1982] "Nested Transactions and Reliable Distributed Computing," Proceedings of

the Symposium on Reliability in Distributed Software and Database Systems, IEEE CS, July
1982.

Morro, A. [1987] "Superviews: Virtual Integration of Multiple Databases," TSE, 13:7, July
1987.

Mukkamala, R. [1989] "Measuring the Effect of Data Distribution and Replication Mod
els on Performance Evaluation of Distributed Systems," in ICDE [1989].

Mumick, 1., Finkelstein, S., Pirahesh, H., and Ramakrishnan, R. [1990] "Magic Is Rele
vant," in SIGMOD [1990].

Mumick, 1., Pirahesh, H., and Ramakrishnan, R. [1990] "The Magic of Duplicates and
Aggregates," in VLDB [1990].

Muralikrishna, M. [1992] "Improved Unnesting Algorithms for Join and Aggregate SQL

Queries," in VLDB [1992].
Muralikrishna, M., and DeWitt, D. [1988] "Equi-depth Histograms for Estimating Selec

tivity Factors for Multi-dimensional Queries," in SIGMOD [1988].
Mylopolous, J., Bernstein, P., and Wong, H. [1980] "A Language Facility for Designing

Database-Intensive Applications," TODS, 5:2, June 1980.
Naish, L., and Thom, J. [1983] "The MU-PROLOG Deductive Database," Technical Report

83/10, Department of Computer Science, University of Melbourne, 1983.

994 I Selected Bibliography

Navathe, S. [1980] "An Intuitive View to Normalize Network-Structured Data," in VLDB

[1980].
Navathe, S., and Ahmed, R. [1989] "A Temporal Relational Model and Query Lan

guage," Information Sciences, 47:2, March 1989, pp. 147-75.
Navathe, S., Ceri, S., Wiederhold, G., and Dou, J. [1984] "Vertical Partitioning Algo

rithms for Database Design," TODS, 9:4, December 1984.
Navathe, S., Elmasri, R., and Larson, J. [1986] "Integrating User Views in Database

Design," IEEE Computer, 19:1, January 1986.
Navathe, S., and Gadgil, S. [1982] "A Methodology for View Integration in Logical Data

base Design," in VLDB [1982].
Navathe, S. B. Karlapalem, K., and Ra, M.Y. [1996] "A Mixed Fragmentation Methodol

ogy for the Initial Distributed Database Design," Journal of Computers and Soft
ware Engineering, 3:4, 1996.

Navathe, S., and Kerschberg, L. [1986] "Role of Data Dictionaries in Database Design,"
Information and Management, 10:1, January 1986.

Navathe, S., and Pillalamarri, M. [1988] "Toward Making the ER Approach Object-Ori
ented," in ER Conference [1988].

Navathe, S., Sashidhar, T., and Elmasri, R. [1984a] "Relationship Merging in Schema
Integration," in VLDB [1984].

Navathe, S., and Savasere, A. [1996] "A Practical Schema Integration Facility using an
Object Oriented Approach," in Multidatabase Systems (A. Elmagarmid and O.
Bukhres, eds.), Prentice-Hall, 1996.

Navathe, S. B., Savasere, A., Anwar, T. M., Beck, H., and Gala, S. [1994] "Object Model
ing Using Classification in CANDIDE and Its Application," in Dogac et al. [1994].

Navathe, S., and Schkolnick, M. [1978] "View Representation in Logical Database
Design," in SIGMOD [1978].

Negri, M., Pelagatti, S., and Sbatella, L. [1991] "Formal Semantics of SQL Queries,"
TODS, 16:3, September 1991.

Ng, P. [1981] "Further Analysis of the Entity-Relationship Approach to Database
Design," TSE, 7:1, January 1981.

Nicolas, J. [1978] "Mutual Dependencies and Some Results on Undecomposable Rela
tions," in VLDB [1978].

Nicolas, J. [1997] "Deductive Object-oriented Databases, Technology, Products, and
Applications: Where Are We?" Proceedings of theSymposiumon Digital MediaInforma
tion Base (DMIB'97), Nara, Japan, November 1997.

Nicolas, J., Phipps, G., Derr, M., and Ross, K. [1991] "Glue-NAIL!: A Deductive Data
base System," in SIGMOD [1991].

Nievergelt, J. [1974] "Binary Search Trees and File Organization," ACM Computing Sur
veys, 6:3, September 1974.

Nievergelt, J., Hinterberger, H., and Seveik, K. [1984]. "The Grid File: An Adaptable
Symmetric Multikey File Structure," TODS, 9:1, March 1984, pp. 38-71.

Selected Bibliography I 995

Nijssen, G., ed. [1976] Modelling in Data Base Management Systems, North-Holland,
1976.

Nijssen, G., ed. [1977] Architecture and Models in Data Base Management Systems,
North-Holland, 1977.

Nwosu, K., Berra, P., Thuraisingham, B., eds. [1996], Design and Implementation of
Multimedia Database Management Systems, Kluwer Academic, 1996.

Obermarck, R. [1982] "Distributed Deadlock Detection Algorithms," TODS, 7:2, June
1982.

Oh, y-c., [1999] "Secure Database Modeling and Design," Ph.D. dissertation, College of
Computing, Georgia Institute of Technology, March 1999.

Ohsuga, S. [1982] "Knowledge Based Systems as a New Interactive Computer System of the
Next Generation," in Computer Science and Technologies, North-Holland, 1982.

Olle, T. [1978] The CODASYL Approach to Data Base Management, Wiley, 1978.
Olle, T., Sol, H., and Verrijn-Stuart, A., eds. [1982] Information System Design Meth

odology, North-Holland, 1982.
Omiecinski, E., and Scheuermann, P. [1990] "A Parallel Algorithm for Record Cluster

ing," TODS, 15:4, December 1990.
Omura, J. K. [1990] "Novel Applications of Cryptography in Digital Communications," IEEE

Communications 28:5, May 1990, pp. 21-29.
O'Neill, P. [1994] Database: Principles, Programming, Performance, Morgan Kauf-

mann, 1994.
Oracle [1992a] RDBMS Database Administrator's Guide, ORACLE, 1992.
Oracle [1992 b] Performance Tuning Guide, Version 7.0, ORACLE, 1992.
Oracle [1997a] Oracle 8 Server Concepts, vols. 1 and 2, Release 8-0, Oracle Corpora-

tion, 1997.
Oracle [1997b] Oracle 8 Server Distributed Database Systems, Release 8.0, 1997.
Oracle [1997c] PL/SQL User's Guide and Reference, Release 8.0,1997.
Oracle [1997d] Oracle 8 Server SQL Reference, Release 8.0, 1997.
Oracle [1997e] Oracle 8 Parallel Server, Concepts and Administration, Release 8.0,

1997.
Oracle [1997f] Oracle 8 Server Spatial Cartridge, User's Guide and Reference, Release

8.0.3,1997.
Osborn, S. [1977] Normal Forms for Relational Databases, Ph.D. dissertation, Univer

sity of Waterloo, 1977.
Osborn, S. [1979] "Towards a Universal Relation Interface," in VLDB [1979].
Osborn, S. [1989] "The Role of Polymorphism in Schema Evolution in an Object-Ori

ented Database," TKDE, 1:3, September 1989.
Ozsoyoglu, G., Ozsoyoglu, Z., and Matos, V. [1985] "Extending Relational Algebra and

Relational Calculus with Set Valued Attributes and Aggregate Functions," TODS,

12:4, December 1987.

996 I Selected Bibliography

Ozsoyoglu, Z., and Yuan, L. [1987] "A New Normal Form for Nested Relations," TOOS,

12:1, March 1987.
Ozsu, M. T., and Valduriez, P. [1999] Principles of Distributed Database Systems, 2nd

ed., Prentice-Hall, 1999.
Papadimitriou, C. [1979] "The Serializabilirv of Concurrent Database Updates," JACM,

26:4, October 1979.
Papadimitriou, C. [1986] The Theory of Database Concurrency Control, Computer Sci

ence Press, 1986.
Papadimitriou, c., and Kanellakis, P. [1979] "On Concurrency Control by Multiple Ver

sions," TOOS, 9:1, March 1974.
Papazoglou, M., and Valder, W. [1989] Relational Database Management: A Systems

Programming Approach, Prentice-Hall, 1989.
Paredaens, J., and Van Gucht, D. [1992] "Converting Nested Algebra Expressions into

Flat Algebra Expressions," TOOS, 17:1, March 1992.
Parent, c., and Spaccapietra, S. [1985] "An Algebra for a General Entity-Relationship

Model," TSE, 11:7, July 1985.
Paris, J. [1986] "Voting with Witnesses: A Consistency Scheme for Replicated Files," in

ICOE [1986].
Park, J., Chen, M., and Yu, P. [1995] "An Effective Hash Based Algorithm for Mining

Association Rules," in SIGMOD [1995].
Paton, A. W., ed. [1999] Active Rules in Database Systems, Springer Verlag, 1999.
Paton, N. W., and Diaz, O. [1999] Survey of Active Database Systems, ACM Computing

Surveys, to appear.
Patterson, D., Gibson, G., and Katz, R. [1988]. "A Case for Redundant Arrays of Inexpen

sive Disks (RAID)," in SIGMOO [1988].
Paul, H., et al. [1987] "Architecture and Implementation of the Darmstadt Database Ker

nel System," in SIGMOO [1987].

Pazandak, P., and Srivastava, J., "Evaluating Object DBMSs for Multimedia," IEEE Multi
media, 4:3, pp. 34-49.

POES [1991] "A High-Lead Architecture for Implementing a POES/STEP Data Sharing
Environment." Publication Number PT 1017.03.00, POES Inc., May 1991.

Pearson, P., Francomano, c., Foster, P., Bocchini, c., u, P., and McKusick, V. [1994] "The
Status of Online Mendelian inheritance in Man (OMIM) Medio 1994" Nucleic Acids
Research 22:17,1994.

Peckham, J., and Maryanski, F. [1988] "Semantic Data Models," ACM Computing Sur
veys, 20:3, September 1988, pp. 153-89.

Pfleeger, C. P. [1997] Security in Computing, Prentice Hall, 1997.
Phipps, G., Derr, M., Ross, K. [1991] "Glue-NAIL!: A Deductive Database System," in

SIGMOO [1991].
Piateskv-Shapiro, G., and Frauley, W., eds. [1991] Knowledge Discovery in Databases,

AAAI Press/MIT Press, 1991.

Selected Bibliography I 997

Pistor P., and Anderson, E [1986] "Designing a Generalized NF2 Model with an SQL-type
Language Interface," in VLDB [1986], pp. 278-85.

Pitoura, E., Bukhres, 0., and Elmagarmid, A. [1995] "Object Orientation in Multidata
base Systems," ACM Computing Surveys, 27:2, June 1995.

Pitoura, E., and Samaras, G. [1998]Data Management for Mobile Computing, Kluwer, 1998.
Poosala, v., Ioannidis, Y., Haas, P., and Shekita, E. [1996] "Improved Histograms for

Selectivity Estimation of Range Predicates," in SIGMOD [1996].
Potter, B., Sinclair, J., Till, D. [1991] An Introduction to Formal Specification and Z, Pren

tice-Hall, 1991.
Rabitti, E, Bertino, E., Kim, W., and Woelk, D. [1991] "A Model of Authorization for

Next-Generation Database Systems," TODS, 16:1, March 1991.
Ramakrishnan, R., ed. [1995] Applications of Logic Databases, Kluwer Academic, 1995.
Ramakrishnan, R. [1997] Database Management Systems, McGraw-Hill, 1997.
Ramakrishnan, R., Srivastava, D. and Sudarshan, S. [1992] "{CORAL}: {C}ontrol, {R}ela-

tions and [Llogic," in VLDB [1992].
Ramakrishnan, R., Srivastava, D., Sudarshan, S. and Sheshadri, P. [1993] "Implementa

tion of the {CORAL} deductive database system," in SIGMOD [1993].
Ramakrishnan, R., and Ullman, J. [1995] "Survey of Research in Deductive Database Sys

tems," Journal Of Logic Programming, 23:2, 1995, pp. 125-49.
Ramamoorthy, c., and Wah, B. [1979] "The Placement of Relations on a Distributed Rela

tional Database," Proceedings of the First International Conference on Distributed Comput
ingSystems, IEEE CS, 1979.

Ramesh, v., and Ram, S. [1997] "Integrity Constraint Integration in Heterogeneous
Databases an Enhanced Methodology for Schema Integration," Information Sys
tems, 22:8, December 1997, pp. 423-46.

Reed, D. [1983] "Implementing Atomic Actions on Decentralized Data," TOCS, 1:1, Feb
ruary 1983.

Reisner, P. [1977] "Use of Psychological Experimentation as an Aid to Development of a
Query Language," TSE,3:3, May 1977.

Reisner, P. [1981] "Human Factors Studies of Database Query Languages: A Survey and
Assessment," ACM Computing Surveys, 13:1, March 1981.

Reiter, R. [1984] "Towards a Logical Reconstruction of Relational Database Theory," in
Brodie et al., ch. 8. [1984].

Ries, D., and Stonebraker, M. [1977] "Effects of Locking Granularity in a Database Man
agement System," TODS, 2:3, September 1977.

Rissanen, J. [1977] "Independent Components of Relations," TODS, 2:4, December 1977.
Robbins, R. [1993] "Genome Informatics: Requirements and Challenges," Proceedings of

the Second International Conference on Bioinformatics, Supercomputing _and Complex
Genome Analysis, World Scientific Publishing, 1993.

Roth, M., and Korth, H. [1987] "The Design of Non-1NF Relational Databases into
Nested Normal Form," in SIGMOD [1987].

998 I Selected Bibliography

Roth, M. A., Korth, H. E, and Silberschatz, A. [1988] Extended Algebra and Calculus for
non-1NF relational Databases," TODS, 13:4, 1988, pp. 389-417.

Rothnie,]., et a1. [1980] "Introduction to a System for Distributed Databases (soo-t),"
TODS, 5:1, March 1980.

Roussopoulos, N. [1991] "An Incremental Access Method for View-Cache: Concept,
Algorithms, and Cost Analysis," TODS, 16:3, September 1991.

Rozen, S., and Shasha, D. [1991] "A Framework for Automating Physical Database
Design," in VLDB [1991].

Rudensteiner, E. [1992] "Multiview: A Methodology for Supporting Multiple Views in
Object-Oriented Databases," in VLDB [1992].

Ruernmler, C; and Wilkes,]. [1994] "An Introduction to Disk Drive Modeling," IEEE
Computer, 27:3, March 1994, pp. 17-27.

Rumbaugh, j., Blaha, M., Premerlani, W, Eddy, E, and Lorensen, W [1991] Object Ori
ented Modelng and Design, Prentice-Hall, 1991.

Rusinkiewicz, M., et al. [1988] "OMNIBASE-A Loosely Coupled: Design and Implemen
tation of a Multidatabase System," IEEE Distributed Processing Newsletter, 10:2,
November 1988.

Rustin, R., ed. [1972] Data Base Systems, Prentice-Hall, 1972.
Rustin, R., ed. [1974] Proceedings of the BJNAV2.
Sacca, D., and Zaniolo, C. [1987] "Implementation of Recursive Queries for a Data Lan

guage Based on Pure Horn Clauses," Proceedings of the Fourth International Conference
on Logic Programming, MIT Press, 1986.

Sadri, E, and Ullman,]. [1982] "Template Dependencies: A Large Class of Dependencies
in Relational Databases and Its Complete Axiomatization," JACM, 29:2, April 1982.

Sagiv, Y., and Yannakakis, M. [1981] "Equivalence among Relational Expressions with
the Union and Difference Operators," JACM, 27:4, November 1981.

Sakai, H. [1980] "Entity-Relationship Approach to Conceptual Schema Design," in SIG·
MOD [1980].

Salzberg, B. [1988] File Structures: An Analytic Approach, Prentice-Hall, 1988.
Salzberg, B., et a1. [1990] "FastSort: A Distributed Single-Input Single-Output External

Sort," in SIGMOO [1990].
Salton, G., and Buckley, C. [1991] "Global Text Matching for Information Retrieval" in

Science, 253, August 1991.
Samet, H. [1990] The Design and Analysis of Spatial Data Structures, Addison-Wesley,

1990.
Samet, H. [1990a] Applications of Spatial Data Structures: Computer Graphics, Image

Processing and GIS, Addison-Wesley, 1990.
Sammut, c., and Sammut, R. [1983] "The Implementation ofuNsw-PROLOG,"The Aus

tralian Computer Journal, May 1983.
Sarasua, W., and O'Neill, W. [1999]. GIS in Transportation, in Taylor and Francis

[1999].

Selected Bibliography I 999

Sarawagi, S., Thomas, S., Agrawal, R. [1998] "Integrating Association Rules Mining with
Relational Database systems: Alternatives and Implications," in SIGGMOO [1998].

Savasere, A., Omiecinski, E., and Navathe, S. [1995] "An Efficient Algorithm for Mining
Association Rules," in VLDB [1995].

Savasere, A., Omiecinski, E., and Navathe, S. [1998] "Mining for Strong Negative Asso
ciation in a Large Database of Customer Transactions," in ICOE [1998].

Schatz, B. [1995] "Information Analysis in the Net: The Interspace of the Twenty-First
Century," Keynote Plenary Lecture at American Society for Information Science (ASIS)

Annual Meeting, Chicago, October 11, 1995.
Schatz, B. [1997] "Information Retrieval in Digital Libraries: Bringing Search to the

Net," Science, vol. 275, 17 January 1997.
Schek, H. J., and Scholl. M. H. [1986] "The Relational Model with Relation-valued

Attributes," Information Systems, 11:2, 1986.
Schek, H. J., Paul, H. B., Scholl, M. H., and Weikum, G. [1990] "The OASOBS Project:

Objects, Experiences, and Future Projects," IEEE TKDE, 2:1, 1990.
Scheuermann, P., Schiffner, G., and Weber, H. [1979] "Abstraction Capabilities and

Invariant Properties Modeling within the Entity-Relationship Approach," in ER

Conference [1979].
Schlimmer, J., Mitchell, T., McDermott, J. [1991] "Justification Based Refinement of

Expert Knowledge" in Piateskv-Shapiro and Frawley [1991].
Schmidt, J., and Swenson, J. [1975] "On the Semantics of the Relational Model," in SIG·

MOD [1975].
Sciore, E. [1982] "A Complete Axiomatization for Full Join Dependencies," JACM, 29:2,

April 1982.
Selinger, P., et al. [1979] "Access Path Selection in a Relational Database Management

System," in SIGMOO [1979].
Senko, M. [1975] "Specification of Stored Data Structures and Desired Output in DIAM II

with FORAL," in VLDB [1975].
Senko, M. [1980] "A Query Maintenance Language for the Data Independent Accessing

Model II," Information Systems, 5:4,1980.
Shapiro, L. [1986] "Join Processing in Database Systems with Large Main Memories,"

TOOS, 11:3, 1986.
Shasha, D. [1992] Database Tuning: A Principled Approach, Prentice-Hall, 1992.
Shasha, D., and Goodman, N.[1988] "Concurrent Search Structure Algorithms," TODS,

13:1, March 1988.
Shekita, E., and Carey, M. [1989] "Performance Enhancement Through Replication in an

Object-Oriented DBMS," in SIGMOD [1989].
Shenoy, S., and Ozsoyoglu, Z. [1989] "Design and Implementation of a Semantic Query

Optimizer," TKDE, 1:3, September 1989.

1000 I Selected Bibliography

Sheth, A, Gala, S., Navathe, S. [1993]" On Automatic Reasoning for Schema Integra
tion," in International Journal of Intelligent Co-operative Information Systems,
2:1, March 1993.

Sheth, A P., and Larson, J. A [1990] "Federated Database Systems for Managing Distrib
uted, Heterogeneous, and Autonomous Databases," ACM Computing Surveys, 22:3,
September 1990,pp. 183-236.

Sheth, A, Larson, J., Cornelio, A, and Navathe, S. [1988] "A Tool for Integrating Con
ceptual Schemas and User Views," in ICDE [1988].

Shipman, D. [1981] "The Functional Data Model and the Data Language DAPLEX,"

TODS, 6:1, March 1981.
Shlaer, S., Mellor, S. [1988] Object-Oriented System Analysis: Modeling the World in

Data, Yourdon Press, 1988.
Shneiderman, B., ed. [1978] Databases: Improving Usability and Responsiveness, Aca

demic Press, 1978.
Sibley, E., and Kerschberg, L. [1977] "Data Architecture and Data Model Consider

ations," NCC, AFIPS, 46, 1977.
Siegel, M., and Madnick, S. [1991] "A Metadata Approach to Resolving Semantic Con

flicts," in VLDB [1991].
Siegel, M., Sciore, E., and Salveter, S. [1992] "A Method for Automatic Rule Derivation

to Support Semantic Query Optimization," TODS, 17:4, December 1992.
SIGMOD [1974] Proceedings of the ACM SIGMOD-SIGFIDET Conference on Data Description,

Access, and Control, Rustin, R., ed., May 1974.
SIGMOD [1975] Proceedings of the 1975 ACM SIGMOD International Conference on Manage

ment of Data, King, E, ed., San Jose, CA, May 1975.
SIGMOD [1976] Proceedings of the 1976 ACM SIGMOD International Conference on Manage

ment of Data, Rothnie, J., ed., Washington, June 1976.
SIGMOD [1977] Proceedings of the 1977 ACM SIGMOD Internaitonal Conference on Manage

ment of Data, Smith, D., ed., Toronto, August 1977.
SIGMOD [1978] Proceedings of the 1978 ACM SIGMOD International Conference on Manage

ment of Data, Lowenthal, E. and Dale, N., eds., Austin, TX, May/June 1978.
SIGMOD [1979] Proceedings of the 1979 ACM SIGMOD International Conference on Manage

ment of Data, Bernstein, P., ed., Boston, MA, May/June 1979.
SIGMOD [1980] Proceedings of the 1980 ACM SIGMOD International Conference on Manage

ment of Data, Chen, P. and Sprowls, R., eds., Santa Monica, CA, May 1980.
SIGMOD [1981] Proceedings of the 1981 ACM SIGMOD International Conference on Manage

ment of Data, Lien, Y., ed., Ann Arbor, MI, April/May 1981.
SIGMOD [1982] Proceedings of the 1982 ACM SIGMOD International Conference on Manage

ment of Data, Schkolnick, M., ed., Orlando, FL, June 1982.
SIGMOD [1983] Proceedings of the 1983 ACM SIGMOD International Conference on Manage

ment of Data, DeWitt, D. and Gardarin, G., eds., San Jose, CA, May 1983.

Selected Bibliography I 1001

SIGMOD [1984] Proceedings of the 1984 ACM SIGMOD 1nternaitonal Conference on Manage
ment of Data, Yormark, E., ed., Boston, MA, June 1984.

SIGMOD [1985] Proceedings of the 1985 ACM SIGMOD International Conference on Manage
ment of Data, Navathe, S., ed., Austin, TX, May 1985.

SIGMOD [1986] Proceedings of the 1986 ACM SIGMOD Internaitonal Conference on Manage
ment of Data, Zaniolo, c., ed., Washington, May 1986.

SIGMOD [1987] Proceedings of the 1987 ACM SIGMOD International Conference on Manage
ment of Data, Dayal, U. and Traiger, 1., eds., San Francisco, CA, May 1987.

SIGMOD [1988] Proceedings of the 1988 ACM SIGMOD International Conference on Manage
ment of Data, Boral, H., and Larson, P., eds., Chicago, June 1988.

SIGMOD [1989] Proceedings of the 1989 ACM SIGMOD International Conference on Manage
ment of Data, Clifford, J., Lindsay, B., and Maier, D., eds., Portland, OR, June 1989.

SIGMOD [1990] Proceedings of the 1990 ACM SIGMOD International Conference on Manage
ment of Data, Garcia-Molina, H., and [agadish, H., eds., Atlantic City, NJ, June
1990.

SIGMOD [1991] Proceedings of the 1991 ACM SIGMOD Internaitonal Conference on Manage
ment of Data, Clifford, J. and King, R., eds., Denver, CO, June 1991.

SIGMOD [1992] Proceedings of the 1992 ACM SIGMOD International Conference on Manage
ment of Data, Stonebraker, M., ed., San Diego, CA, June 1992.

SIGMOD [1993] Proceedings of the 1993 ACM SIGMOD International "Conference on Manage
ment of Data, Buneman, E and [ajodia, S., eds., Washington, June 1993.

SIGMOD [1994] Proceedings of 1994 ACM SIGMOD International Conference on Management
of Data, Snodgrass, R. T., and Winslett, M., eds., Minneapolis, MN, June 1994.

SIGMOD [1995] Proceedings of 1995 ACM SIGMOD International Conference on Management
of Data, Carey, M., and Schneider, D. A, eds., Minneapolis, MN, June 1995.

SIGMOD [1996] Proceedings of 1996 ACM SIGMOD International Conference on Management
of Data, [agadish, H. v., and Mumick, 1. E, eds., Montreal, June 1996.

SIGMOD [1997] Proceedings of 1997 ACM SIGMOD International Conference on Management
of Data, Peckham, J., ed., Tucson, AZ, May 1997.

SIGMOD [1998] Proceedings of 1998 ACM SIGMOD International Conference on Management
of Data, Haas, L., and Tiwary, A, eds., Seattle, WA. June 1998.

SIGMOD [1999] Proceedings of 1999 ACM SIGMOD International Conference on Management
of Data, Faloutsos, c., ed., Philadelphia, PA, May 1999.

Silberschatz, A, Stonebraker, M., and Ullman, J. [1990] "Database Systems: Achieve
ments and Opportunities," in ACM SIGMOD Record, 19:4, December 1990.

Silberschatz, A, Korth, H., and Sudarshan, S. [2001] Database System Concepts, 4th ed.,
McGraw-Hill,2001.

Smith, G. [1990] "The Semantic Data Model for Security: Representing the Security
Semantics of an Application," in ICDE [1990].

Smith, J., and Chang, E [1975] "Optimizing the Performance of a Relational Algebra
Interface," CACM, 18:10, October 1975.

1002 I Selected Bibliography

Smith, J., and Smith, D. [1977] "Database Abstractions: Aggregation and Generaliza
tion," TODS, 2:2, June 1977.

Smith, J., et al. [1981] "MULTIBASE: Integrating Distributed Heterogeneous Database Sys
tems," NCC, AFIPS, 50, 1981.

Smith, K., and Winslett, M. [1992] "Entity Modeling in the MLS Relational Model," in
VLDB [1992J.

Smith, P., and Barnes, G. [1987] Files and Databases: An Introduction, Addison-Wes-
ley, 1987.

Snodgrass, R. [1987] "The Temporal Query Language TQuel," TODS, 12:2, June 1987.
Snodgrass, R., ed. [1995] The TSQL2 Temporal Query Language, Kluwer, 1995.
Snodgrass, R., and Ahn, I. [1985] "A Taxonomy of Time in Databases," in SIGMOD

[1985].
Soutou, G. [1998] "Analysis of Constraints for N-ary Relationships," in ER98.
Spaccapietra, S., and Jain, R., eds. [1995] Proceedings of the Visual Database Workshop,

Lausanne, Switzerland, October 1995.
Spooner D., Michael, A., and Donald, B. [1986] "Modeling CAD Data with Data Abstrac

tion and Object Oriented Technique," in ICDE [1986].
Srikant, R., and Agrawal, R. [1995] "Mining Generalized Association Rules," in VLDB

[1995].
Srinivas, M., and Patnaik, L. [1994] "Genetic Algorithms: A Survey," IEEE Computer,

June 1994.
Srinivasan, v., and Carey, M. [1991] "Performance of B-Tree Concurrency Control Algo

rithms," in SIGMOD [1991].
Srivastava, D., Ramakrishnan, R., Sudarshan, S., and Sheshadri, P. [1993] "Coral++:

Adding Object-orientation to a Logic Database Language," in VLDB [1993].
Stachour, P., and Thuraisingham, B. [1990] "The Design and Implementation ofINGRES,"

'rxns, 2:2, June 1990.
Stallings, W. [1997] Data and Computer Communications, 5th ed., Prentice-Hall, 1997.
Stallings, W. [2000] Network Security Essentials: Applications and Standards, Prentice

Hall,2000.
Stonebraker, M. [1975] "Implementation of Integrity Constraints and Views by Query

Modification," in SIGMOD [1975].
Stonebraker, M. [1993] "The Miro DBMS" in SIGMOD [1993].
Stonebraker, M., ed, [1994] Readings in Database Systems, 2nd ed., Morgan Kaufmann,

1994.
Stonebraker, M., Hanson, E., and Hong, C. [1987] "The Design of the POSTGRES Rules

System," in ICDE [1987].
Stonebraker, M., with Moore, D. [1996], Object-Relational DBMSs: The Next Great

Wave, Morgan Kaufman, 1996.
Stonebraker, M., and Rowe, L. [1986] "The Design ofpOSTGRES," in SIGMOD [1986].

Selected Bibliography 11003

Stonebraker, M., Wong, E., Kreps, P., and Held, G. [1976] "The Design and Implementa
tion of INGRES," TODS, 1:3, September 1976.

Su, S. [1985] "A Semantic Association Model for Corporate and Scientific-Statistical
Databases," Information Science, 29, 1985.

Su, S. [1988] Database Computers, McGraw-Hill, 1988.
Su, S., Krishnamurthy, V., and Lam, H. [1988] "An Object-Oriented Semantic Associa

tion Model (OSAM*)," in AI in Industrial Engineering and Manufacturing: Theo
reticallssues and Applications, American Institute of Industrial Engineers, 1988.

Subrahmanian, V. [1998] Principles of Multimedia Databases Systems, Morgan Kauf
mann, 1998.

Subramanian V. S., and [ajodia, S., eds. [1996] Multimedia Database Systems: Issues
and Research Directions, Springer Verlag. 1996.

Sunderraman, R. [1999] ORACLE Programming: A Primer, Addison Wesley Longman,
1999.

Swami, A., and Gupta, A. [1989] "Optimization of Large Join Queries: Combining Heu
ristics and Combinatorial Techniques," in SIGMOD [1989].

Tanenbaum, A. [1996] Computer Networks, Prentice Hall PTR, 1996.
Tansel, A., et al., eds. [1993] Temporal Databases: Theory, Design, and Implementa

tion, Benjamin Cummings, 1993.
Teorey, T. [1994] Database Modeling and Design: The Fundamental Principles, 2nd ed.,

Morgan Kaufmann, 1994.
Teorey, T., Yang, D., and Fry, J. [1986] "A Logical Design Methodology for Relational

Databases Using the Extended Entity-Relationship Model," ACM Computing Sur
veys, 18:2, June 1986.

Thomas, J., and Gould, J. [1975] "A Psychological Study of Query by Example," NCC

AFIPS, 44,1975.
Thomas, R. [1979] "A Majority Consensus Approach to Concurrency Control for Multi

ple Copy Data Bases," TODS, 4:2, June 1979.
Thomasian, A. [1991] "Performance Limits of Two-Phase Locking," in ICDE [1991].
Thuraisingham, B., et al. [2001] "Directions for Web and E-Commerce Applications

Security," Tenth IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, 2001, pp. 200-204.

Todd, S. [1976] "The Peterlee Relational Test Vehicle-A System Overview," IBM Sys-
tems Journal, 15:4, December 1976.

Toivonen, H., "Sampling Large Databases for Association Rules," in VLDB [1996].
Tou, J., ed. [1984] Information Systems COINS-IV, Plenum Press, 1984.
Tsangaris, M., and Naughton, J. [1992] "On the Performance of Object Clustering Tech

niques," in SIGMOD [1992].
Tsichritzis, D. [1982] "Forms Management," CACM, 25:7, July 1982.
Tsichritzis, D., and Klug, A., eds. [1978] The ANSI/X3/SPARC DBMS Framework, AFIPS

Press, 1978.

1004 I Selected Bibliography

Tsichritzis, D., and Lochovsky, F. [1976] "Hierarchical Data-base Management: A Sur
vey," ACM Computing Surveys, 8:1, March 1976.

Tsichritzis, D., and Lochovsky, F. [1982] Data Models, Prentice-Hall, 1982.
Tsotras, v., and Gopinath, B. [1992] "Optimal Versioning of Object Classes," in ICDE

[1992].
Tsou, D. M., and Fischer, P. C. [1982] "Decomposition of a Relation Scheme into Boyce

Codd Normal Form," SIGACT News, 14:3, 1982, pp. 23-29.
Ullman, J. [1982] Principles of Database Systems, 2nd ed., Computer Science Press,

1982.
Ullman, J. [1985] "Implementation of Logical Query Languages for Databases," TODS,

10:3, September 1985.
Ullman, J. [1988] Principles of Database and Knowledge-Base Systems, vol. 1, Com

puter Science Press, 1988.
Ullman, J. [1989] Principles of Database and Knowledge-Base Systems, vol. 2, Com

puter Science Press, 1989.
Ullman, J. D. and Widom, J. [1997] A First Course in Database Systems, Prentice-Hall,

1997.
U.S. Congress [1988] "Office of Technology Report, Appendix D: Databases, Reposito

ries, and Informatics," in Mapping Our Genes: Genome Projects: How Big, How
Fast? John Hopkins University Press, 1988.

U.S. Department of Commerce [1993]. TIGER/Line Files, Bureau of Census, Washing
ton, 1993.

Valduriez, P., and Gardarin, G. [1989] Analysis and Comparison of Relational Database
Systems, Addison-Wesley, 1989.

Vassiliou, y. [1980] "Functional Dependencies and Incomplete Information," in VLDB

[1980].
Verheijen, G., and VanBekkum, J. [1982] "NIAM: An Information Analysis Method," in

Olle et al. [1982].
Verhofstadt, J. [1978] "Recovery Techniques for Database Systems," ACM Computing

Surveys, 10:2, June 1978.
Vielle, L. [1986] "Recursive Axioms in Deductive Databases: The Query-Subquery

Approach," in EDS [1986].
Vielle, L. [1987] "Database Complete Proof Production Based on SLD-resolution," in Pro

ceedings of the Fourth International Conference on Logic Programming, 1987.
Vielle, L. [1988] "From QSQ Towards QoSaQ: Global Optimization of Recursive Queries,"

in EDS [1988].
Vieille, L. [1998] "VALIDITY: Knowledge Independence for Electronic Mediation,"

invited paper, in Practical Applications of Prolog/Practical Applications of Constraint
Technology (PAP/PACT '98), London, March 1998, available from lvieille@com
puter.org,

Selected Bibliography I 1005

Yin, H., Zellweger, E, Swinehart, D., and Venkat Rangan, P. [1991] "Multimedia Confer
encing in the Etherphone Environment," IEEE Computer, Special Issue on Multime
dia Information Systems, 24:10, October 1991.

VLDB [1975] Proceedings of the First International Conference on Very Large Data Bases, Kerr,
D., ed., Framingham, MA, September 1975.

VLDB [1976] Systems for Large Databases, Lockemann, E and Neuhold, E., eds., in Pro
ceedings of the Second International Conference on Very Large Data Bases, Brussels, Bel
gium, July 1976, North-Holland, 1976.

VLDB [1977] Proceedings of the Third International Conference on Very Large Data Bases,
Merten, A., ed., Tokyo, Japan, October 1977.

VLDB [1978] Proceedings of the Fourth International Conference on Very Large Data Bases,
Bubenko, J., and Yao, S., eds., West Berlin, Germany, September 1978.

VLDB [1979] Proceedings of the Fifth International Conference on Very Large Data Bases, Fur
tado, A., and Morgan, H., eds., Rio de Janeiro, Brazil, October 1979.

VLDB [1980] Proceedings of the Sixth International Conference on Very Large Data Bases,
Lochovsky, E, and Taylor, R., eds., Montreal, Canada, October 1980.

VLDB [1981] Proceedings of the Seventh International Conference on Very Large Data Bases,
Zaniolo, c., and Delobel, c., eds., Cannes, France, September 1981.

VLDB [1982] Proceedings of the Eighth International Conference on Very Large Data Bases,
McLeod, D., and Villasenor, Y., eds., Mexico City, September 1982.

VLDB [1983] Proceedings of the Ninth International Conference on Very Large Data Bases,
Schkolnick, M., and Thanos, c., eds., Florence, Italy, October/November 1983.

VLDB [1984] Proceedings of the Tenth International Conference on Very Large Data Bases,
Dayal, 0., Schlageter, G., and Seng, L., eds., Singapore, August 1984.

VLDB [1985] Proceedings of the Eleventh International Conference on Very Large Data Bases,
Pirotte, A., and Vassiliou, Y, eds., Stockholm, Sweden, August 1985.

VLDB [1986] Proceedings of the Twelfth International Conference on Very Large Data Bases,
Chu, W., Gardarin, G., and Ohsuga, S., eds., Kyoto, Japan, August 1986.

VLDB [1987] Proceedings of the Thirteenth International Conference on Very Large Data Bases,
Stocker, P., Kent, W., and Hammersley, P., eds., Brighton, England, September 1987.

VLDB [1988] Proceedings of the Fourteenth International Conference on Very Large Data
Bases, Bancilhon, E, and DeWitt, D., eds., Los Angeles, August/September 1988.

VLDB [1989] Proceedings of the Fifteenth International Conference on Very Large Data Bases,
Apers, E, and Wiederhold, G., eds., Amsterdam, August 1989.

VLDB [1990] Proceedings of the Sixteenth International Conference on Very Large Data
Bases, McLeod, D., Sacks-Davis, R., and Schek, H., eds., Brisbane, Australia,
August 1990.

VLDB [1991] Proceedings of the Seventeenth International Conference on Very Large Data
Bases, Lohman, G., Sernadas, A., and Camps, R., eds., Barcelona, Catalonia, Spain,
September 1991.

1006 I Selected Bibliography

VLDB [1992] Proceedings of theEighteenth International Conference on Very Large Data Bases,
Yuan, L., ed., Vancouver, Canada, August 1992.

VLDB [1993] Proceedings of the Nineteenth International Conference on Very Large Data
Bases, Agrawal, R., Baker, S., and Bell, D.A., eds., Dublin, Ireland, August 1993.

VLDB [1994] Proceedings of the 20th International Conference on Very Large Data Bases,
Bocca, J., [arke, M., and Zaniolo, c., eds., Santiago, Chile, September 1994.

VLDB [1995] Proceedings of the 21st International Conference on Very Large Data Bases,
Dayal, u.,Gray, P.M.D., and Nishio, S., eds., Zurich, Switzerland, September 1995.

VLDB [1996] Proceedings of the 22nd International Conference on Very Large Data Bases,
Vijayaraman, T. M., Buchman, A. P., Mohan, c., and Sarda, N. L., eds., Bombay,
India, September 1996.

VLDB [1997] Proceedings of the 23rd International Conference on Very Large Data Bases,
[arke, M., Carey, M. J., Dittrich, K. R., Lochovsky, F. H., and Loucopoulos, P.(edi
tors), Zurich, Switzerland, September 1997.

VLDB [1998] Proceedings of the 24th International Conference on Very Large Data Bases,
Gupta, A., Shmueli, 0., and Widom, J., eds., New York, September 1998.

VLDB [1999] Proceedings of the 25th International Conference on Very Large Data Bases,
Zdonik, S. B., Valduriez, P., and Orlowska, M., eds., Edinburgh, Scotland, September
1999.

Vorhaus, A., and Mills, R. [1967] "The Time-Shared Data Management System: A New
Approach to Data Management," System Development Corporation, Report SP
2634,1967.

Wallace, D. [1995] "1994 William Allan Award Address: Mitochondrial DNA Variation
in Human Evolution, Degenerative Disease, and Aging." American Journal of
Human Genetics, 57:201-223, 1995.

Walton, C; Dale, A., and [enevein, R. [1991] "A Taxonomy and Performance Model of
Data Skew Effects in Parallel Joins," in VLDB [1991].

Wang, K. [1990] "Polynomial Time Designs Toward Both BCNF and Efficient Data Manip
ulation," in SIGMOD [1990].

Wang, Y., and Madnick, S. [1989] "The Inter-Database Instance Identity Problem in Inte
grating Autonomous Systems," in ICDE [1989].

Wang, Y. and Rowe, L. [1991] "Cache Consistency and Concurrency Control in a Client!
Server DBMS Architecture," in SIGMOD [1991].

Warren, D. [1992] "Memoing for Logic Programs," CACM, 35:3, ACM, March 1992.
Weddell, G. [1992] "Reasoning About Functional Dependencies Generalized for Seman

tic Data Models," TODS, 17:1, March 1992.
Weikum, G. [1991] "Principles and Realization Strategies of Multilevel Transaction Man

agement," TODS, 16:1, March 1991.
Weiss, S. and Indurkhya, N. [1998] Predictive Data Mining: A Practical Guide, Morgan

Kaufmann, 1998.

Selected Bibliography I 1007

Whang, K. [1985] "Query Optimization in Office By Example," IBM Research Report RC

11571, December 1985.
Whang, K., Malhotra, A., Sockut, G., and Burns, L. [1990] "Supporting Universal Quan

tification in a Two-Dimensional Database Query Language," in ICOE [1990].
Whang, K., and Navathe, S. [1987] "An Extended Disjunctive Normal Form Approach

for Processing Recursive Logic Queries in Loosely Coupled Environments," in VLOB

[1987].
Whang, K., and Navathe, S. [1992] "Integrating Expert Systems with Database Manage

ment Systems-an Extended Disjunctive Normal Form Approach," Information
Sciences, 64, March 1992.

Whang, K., Wiederhold, G., and Sagalowicz, D. [1982] "Physical Design of Network
Model Databases Using the Property of Separability," in VLDB [1982].

Widom, J., "Research Problems in Data Warehousing," CIKM, November 1995.
Widom, J., and Ceri, S. [1996] Active Database Systems, Morgan Kaufmann, 1996.
Widom, J., and Finkelstein, S. [1990] "Set Oriented Production Rules in Relational Data-

base Systems" in SIGMOO [1990].
Wiederhold, G. [1983] Database Design, 2nd ed., McGraw-Hill, 1983.
Wiederhold, G. [1984] "Knowledge and Database Management," IEEE Software, January

1984.
Wiederhold, G. [1995] "Digital Libraries, Value, and Productivity," CACM, April 1995.
Wiederhold, G., Beetem, A., and Short, G. [1982] "A Database Approach to Communi

cation in VLSI Design," IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 1:2, April 1982.

Wiederhold, G., and Elmasri, R. [1979] "The Structural Model for Database Design," in
ER Conference [1979].

Wilkinson, K., Lyngbaek, P., and Hasan, W. [1990] "The IRIS Architecture and Imple
mentation," TKDE, 2:1, March 1990.

Willshire, M. [1991] "How Spacey Can They Get? Space Overhead for Storage and
Indexing with Object-Oriented Databases," in ICOE [1991].

Wilson, B., and Navathe, S. [1986] "An Analytical Framework for Limited Redesign of
Distributed Databases," Proceedings of the SixthAdvancedDatabase Symposium, Tokyo,
August 1986.

Wiorkowski, G., and Kull, D. [1992] DB2-Design and Development Guide, 3rd ed.,
Addison-Wesley, 1992.

Wirth, N. [197] Algorithms + Data Structures =Programs, Prentice-Hall, 1972.
Wood, J., and Silver, D. [1989]J Joint Application Design: How to Design Quality Sys

tems in 40% Less Time, Wiley, 1989.
Wong, E. [1983] "Dynamic Rematerialization-Processing Distributed Queries Using

Redundant Data," TSE, 9:3, May 1983.
Wong, E., and Youssefi, K. [1976] "Decomposition-A Strategy for Query Processing,"

TOOS, 1:3, September 1976.

1008 I Selected Bibl iography

Wong, H. [1984] "Micro and Macro Statistical/Scientific Database Management," in rcm
[1984].

Wu, X., and Ichikawa, T. [1992] "KDA: A Knowledge-based Database Assistant with a
Query Guiding Facility," TKDE 4:5, October 1992.

Yannakakis, Y. [1984] "Serializabilitv by Locking," JACM, 31:2,1984.
Yao, S. [1979] "Optimization of Query Evaluation Algorithms," TODS, 4:2, June 1979.
Yao, S., ed. [1985] Principles of Database Design, vol. 1: Logical Organizations, Pren-

tice-Hall, 1985.
Youssefi, K., and Wong, E. [1979] "Query Processing in a Relational Database Manage

ment System," in VLDB [1979].
Zadeh, 1. [1983] "The Role of Fuzzy Logic in the Management of Uncertainty in Expert

Systems," Fuzzy Sets and Systems, 11, North-Holland, 1983.
Zaniolo, C. [1976] "Analysis and Design of Relational Schemata for Database Systems,"

Ph.D. dissertation, University of California, Los Angeles, 1976.
Zaniolo, C. [1988] "Design and Implementation of a Logic Based Language for Data

Intensive Applications," MCC Technical Report #ACA-ST-199-88, June 1988.
Zaniolo, c., et al. [1986] "Object-Oriented Database Systems and Knowledge Systems,"

in EDS [1984].
Zaniolo, c., et al. [1997] Advanced Database Systems, Morgan Kaufmann, 1997.
Zave, P. [1997] "Classification of Research Efforts in Requirements Engineering," ACM

Computing Surveys, 29:4, December 1997.
T. Zhang, R. Ramakrishnan and M. Livny, "Birch: An Efficient Data Clustering Method

for Very Large Databases," Proc. ACM SIGMOD Conference, 1996.
Zicari, R. [1991] "A Framework for Schema Updates in an Object-Oriented Database

System," in rCDE [1991].
Zloof, M. [1975] "Query by Example," NCC, AFIPS, 44, 1975.
Zloof, M. [1982] "Office By Example: A Business Language That Unifies Data, Word Pro

cessing, and Electronic Mail," IBM Systems Journal, 21:3, 1982.
Zobel, J., Moffat, A., and Sacks-Davis, R. [1992] "An Efficient Indexing Technique for

Full-Text Database Systems," in VLDB [1992].
Zook, W., et al. [1977] INGRES Reference Manual, Department of EECS, University of

California at Berkeley, 1977.
Zvieli, A. [1986] "A Fuzzy Relational Calculus," in EDS [1986].

Index

A
abstract operation, 11
Abstract Syntax Notation One (ASN.1), 940
abstraction concepts, 110
access

access method, 429
DAC (discretionary access control), 743-744
data access, 42
discretionary, 735-740
E-commerce policies, 745
file, 429
mandatory access control, 740-743
protection, 734-735
RBAC (role-based access control), 744
sequential access devices, 420-421
unauthorized, restricting, 16

accounts, superuser, 734
ACM Computing Surveys, 24
actions, 257
activate command, 762
activation, sequence diagrams, 389-390
active database systems, 19

design and implementation issues, 761-763
generalized model for, 757-761

potential applications for, 766
technology, 3

active state, transactions, 559
activity diagrams, 392
acyclic graphs, 44
ad-hoc querying, 907
addition (+) operator, 227
administrators. See database administrators
Advanced Encryption Standards (AES), 749
advanced replication, 831
aggregate functions, 165-168,238-240,509-511
aggregation, 76, 112-113
algebra. See relational algebra
algorithms

normalization, 345-347
relational database design, 340-347

aliases, 222
all-key relations, 350
ALL keyword, 226
allocation, 812-815

contiguous, 426
indexed, 427
linked,426

ALTER command, 217-218

1009

1010 I Index

AND operator, 176, 179
animations, multimedia data, 923
anomalies

deletion, 300
insertion, 299-300
modification, 300
update, 298,300-302

API (application programming interface), 41, 262, 275
apostrophe ('), 227
application-based constraints, 133
application development environments, 37
application layer (three-tier client-server architecture),

828
application programmers, 14
application programming interface (APr), 41, 262, 275
application programs, 49, 262
application servers, 36, 42
applications

data mining, 22
database, 49, 52-53, 255, 262
GIS, 930-931
multimedia databases, 928-929
scientific, 22
spatial,22
time series, 22

Apriori algorithm, 873-874
ARC/INFO software, 934-935
archived tapes, 421
ARIES recovery algorithm, 625-629
arithmetic operators, 226-228
Armstrong's inference rules, 309
arrow notation, 671
ASCkeyword, 228
ASN.1 (Abstract Syntax Notation One), 940
assertions, 140

constraints as, 256-257
declarative, 256

association autonomy, 818
association rules, data mining

among hierarchies, 879
Apriori algorithm, 873-874
confidence, 872
frequent-pattern tree algorithm, 875-878
market-basket data, 871
multidimensional associations, 880-881
negative associations, 881-882
partition algorithm, 878-879
sampling algorithm, 874-875
support, 871

associations
aggregation and, 112-113
bidirectional, 76
binary, 75
defined, 75

qualified, 76
reflexive, 76
unidirectional, 76

asterisk (*), 76, 224
ATM (Asynchronous Transfer Mode), 803
atomic attributes, 55-56
atomic literals, 668
atomic objects, 674-676
atomic value, 130
atoms, 175, 182
attribute-defined specialization, 92, 104
attributes, 75

atomic, 55-56
Boolean type, 200
complex, 56-57
composite, 55-56, 58
defined, 27
derived,56
discriminating, 201
domain of, 75
entities and, 53-57
entity types of, 57-58
grouping, 240
image, 201
inheritance, 86
key, 57
link, 76
local,89
multivalued, 56
null values, 56
prime, 314
of relationship types, 67-68
relationships as, 63-64
renaming, 236
simple, 55-56
single-valued, 56
specific, 89
stored,56
tags, 845
value sets of, 59-60

audio, multimedia data, 924
audits, security, 735
authorization identifier, 209
authorization subsystem, security and, 16
automated database design tools, 401-405
autonomy, in federated DBMS, 816-817
availability, 807
AVERAGE function, 165
AVG function, 238-240

B
B+-trees, 474-481
B-trees, 443, 471-474

Bachman diagrams, 948
backflushing, 908
backup and recovery systems, 17, 37, 630-631
base class, 104
Base Stations, 916
base tables, 210
basic replication, 830
begin transactions, 553
behavior inheritance, 677
bidirectional associations, 76
binary associations, 75, 105-108
binary decompositions, 338-340
Binary Large Objects (BLOBs), 423, 658
binary locks, 584-585
binary relational operations, 158-162
binary relationships, 63
binary search, 431
bind operation, 678
binding, 263
bioinformatics,937
biological sciences and genetics, 936-939
BIRCH algorithm, 888
bit, 415
bit-level data striping, 446
bit-string data types, 212
bitmap indexing, 906-907
BLOBs (Binary Large Objects), 423, 658
block-level striping, 446
block transfer times, 419, 952
blocking factor, 425
blocks

buffering of, 421
queries, 495-496

boolean data types, 212
Boolean type attributes, 200
bottom-up conceptual synthesis, 98
bottom-up design methodology, relation schema, 294
bound columns, 278
Boyce-Codd normal form (BCNF), 324-326
broadcasting, 919
browsing interfaces, 34
btt (block transfer time), disk parameters, 952
buffer manager modules, 36
buffering modules, 17
bulk transfer rates, 420
bytes, 415

C
C/C++,255
C++ language binding, 693-694
cache memory, 412
caching, of disk blocks, 613-614
calculus. See relational calculus

Index /1011

Call Language Interface (CLI), 248
CALL statement, 285
candidate keys, 305, 314
canned transactions, 262
cardinality ratio, 65-66, 129
CARTESIAN PRODUCT operation, 158
cascading rollback, 565, 616
CASE (computer-assisted software engineering), 383,

402-403
casual end users, 13-14
catalog

DBMS, 9
SQL, 209-213

category, 98-100, 202-203
centralized DBMS, 38
character-string data types, 212
CHECK clause, 216
checkpoints, recovery, 615-616
child nodes, 469
class diagrams, 74-76,386-387
class libraries, 280
class name, 75
class properties, III
class/subclass relationships, 86
classes, 103, 280

base, 104
defined,75
driver manager, 280
independent, 113
leaf, 104
meta-class, III

classification
data mining, 870, 882-885
defined, 111

clauses
FROM, 219-220
INTO, 267
CHECK, 216
WITH CHECK OPTION, 261
FOREIGN, 215
GROUP BY, 240-243
HAVING, 240-243
PRIMARY, 214
SELECT, 219-220,498-501
UNIQUE, 215
FOR UPDATE OF, 269
WHERE, 219-220,223-224

CLI (Call Language Interface), 248
client computers, 36
client machines, 39
client modules, 25
client programs, 36, 263
client/server architecture, 38
clients, defined, 40

1012 I Index

CLOSE CURSOR command, 268
clustering

data mining, 885-888
indexes, 459--462

clusters, 419, 426--427, 443
COBOL,255
collaboration diagrams, 390
collection data types, 713-714
collection literals, 668
collection objects, 672-674
collision, hashing and, 436
columns, bound, 278
commands. See also functions; operations

activate, 762
ALTER,217-218
CLOSE CURSOR, 268
CREATE SCHEMA, 209
CREATE TABLE, 210-211
CREATE VIEW, 258-259
DELETE,247
DROP, 217, 262
DROP VIEW, 259
FETCH,268
GRANT,737-738
INSERT,245-247
OPEN CURSOR, 267
REVOKE,737
UPDATE,247-248

commercial tools, data mining, 891-894
commit point, transactions, 561-562
committed state, transactions, 560
communication autonomy, 818
communication variables, 266
Communications of theACM, 24
communications software, 38
commutative operations, 156
compatibility, 17
complete horizontal fragmentation, 811
completeness constraint, 93
complex attributes, 56-57
complex objects, 657-659
component diagrams, 387-388
composite attributes, 55-56, 58
composite keys, 483
computer-assisted software engineering (CASE), 383,

402--403
conceptual data models, 26
conceptual database design, 52, 371-380
conceptual representation, 10
conceptual schema, 30, 52, 97-98
conceptualization, 115
concurrency control

deadlocks, 591-594
distributed database systems, 825-827

in indexes, 605-606
multiversion, 596-599
optimistic techniques, 599-600
phantom problem, 606
software, 12
system lock tables, 584-588
timestamping, 594, 596-597
validation techniques, 599-600

concurrent engineering, 662
condition-defined subclasses, 92
conditions, 175, 182, 257
confidence, data mining, 872
connecting fields, 442
connection objects, 281
connection records, 277
connections

database servers, 263
to databases, 266

constraints
application-based, 133
as assertions, 256-257
completeness, 93
constraint specification language, 140
disjointness, 93
domain, 133
entity integrity, 138
inherent model-based, 133
integrity, 135
naming, 216
referential integrity, 355
satisfied, 256
schema-based, 133
SQL, 213-217
state, 140
transition, 140
tuple-based, 216
violated, 256

contiguous allocation, 426
controlled redundancy, 15-16
conversion routines, 385
conversion tools, 37
correlated nested queries, 232-233
cost-based query optimization, 523-532
COUNT function, 238-240
covert channels, 733, 748-749
CREATE ASSERTION statement, 256
CREATE SCHEMA command, 209
CREATE TABLE command, 210-211
CREATE VIEW command, 258-259
credentials, 745
CROSS PRODUCT operation, 162
current state, 29
cursors, 263, 267
cylinders, disks, 416

D
DAC (discretionary access control), 743-744
DAML (DARPA Agent Markup Language), 926
dangling tuples, 343-345
DARPA Agent Markup Language (DAML), 926
data

abstraction, 10
access, 42
bit-level data striping, 446
complex relationships among, 18
elements, 6
encoded, 733
flow diagrams, 52
fragmentation, 810-812
independence,31-32
localization, 807
market-basket, 871
self-describing, 842
semistructured,842
structured, 842
sublanguage, 33, 255
unstructured,843
virtual, 11

Data Blade modules, 712
data definition language (DOL), 32, 137
data dictionary systems, 37, 364
data-driven design, 367
Data Encryption Standard (DES), 749-750
data management issues

mobile databases, 920-921
multimedia databases, 924-925
open research problems, 925-928

data manipulation language (DML), 32-33
data marts, 902
data mining, 22

applications of, 891
association rules, 871-882
classification, 882-885
clustering, 885-888
commercial tools, 891-894
discovery of patterns in time series, 889
discovery of sequential patterns, 888
genetic algorithms, 890-891
neural networks, 890
regression rule, 889
technology overview, 868-871

data model, 43
categories of, 26-27
data warehouses, 902-907
defined, 10, 26

data model mapping, 52
data pointers, 476
data repository system, 37
data requirements, 50-52

Index 11013

data servers, 41
data sources, 280, 841
data types, 59,423

bit-string, 212
boolean, 212
character-string, 212
data, 212-213
date, 423
defined,7
domains, 127
extensible, 712-714
image, 718
interval, 213
numeric, 212
sQL,209-213
text, 719-no
time, 212-213, 423
time series, 718-719
timestamp, 213
two-dimensional,717-718

data warehouses, 3
building, 907-910
characteristics of, 901-902
data marts, 902
data modeling for, 902-907
defined,900
distributed,910
enterprise-data, 902
federated,910
functionality of, 910-911
problems and open issues in, 912-913
views versus, 911
virtual data, 902

database administrators (DBA), 12
interfaces for, 34
security and, 734

database applications, 49, 52-53, 255, 262
database designers, 13
database management systems. See DBMS
database programming

approaches to, 262-263
impedance mismatch, 263
languages, 262
sequence interaction, 263-264

database programming languages, 255
database schema, 27-28, 115
database servers, 36, 263
database state, 28
database systems

active, 19
active database technology, 3
characteristics, 8-11
deductive, 19
environment, 35-38

1014 I Index

multimedia databases, 3
object-oriented, 10, 16
object-relational, 10
overview, 3-4
real-time database technology, 3
simple example of, 6-8
three-schema architecture, 29-31
traditional applications, 3
utilities, 36-37

database utilities, 36-37
databases

connections to, 266
constructing,S
defined, 4
defining,S
large, 362
loaded, 29,385
manipulating,S
mobile, 916-923
multimedia, 780-782,923-930
personal, 363
populated, 29
sharing,S
spatial, 780-782
storage of, 414-415
UNIVERSITY database example, 101-103

Datalog notation, 787
date data type, 212-213,423
DBA (database administrators), 12

interfaces for, 34
security and, 734

DBMS (database management systems), 43
advantages of, 15-20
catalog, 9
centralized and client/server architectures for, 38-42
classification, 43-45
component modules, 35-36
database design, 380-383
DDBMS (distributed DBMS), 43
defined,S
disadvantages, 23
general purpose, 43
interfaces, 33-34
languages, 32-33
legacy, 709-710
multiuser, 11-12
personnel required for, 12-14
platforms, 382
procedural program code, 19
RDBMS (relational database management systems), 21
special purpose,S, 43

DDBMS (distributed DBMS), 43
DDL (data definition language), 32, 137
deadlocks, 591-594

decision-support systems (DSS), 900
declarative assertions, 256
declarative expressions, 173
declare section, shared variables, 265
decompositions. See relational decomposition
deduction rules, inferencing, 19
deductive database systems, 19

Datalog notation, 787
Hom clauses, 787-789
interpretations of rules, 789-791
overview, 784
Prolog/Datalog notation, 784-787
relational operations, use of, 793-795

default context, 271
deferred update techniques, recovery concepts, 612,

618-621
degree

of homogeneity, 815
of local autonomy, 815
of relation, 127
relationship, 105

DELETE command, 247
Delete operation, 142-143
deletion anomalies, 300
deletion markers, 430
deletion operation, 606
DEM (digital elevation model), 931
denormalization, 540
dense indexes, 457
dependencies

functional, 304-312
inclusion, 354-355
join, 353-354
multivalued, 347-353
template, 355-357

dependency-preservation, 313, 335-336
deployment diagrams, 388
derived attributes, 56
derived horizontal fragmentation, 811
derived tables, 255
DES (Data Encryption Standard), 749-750
DESCkeyword, 228
description records, 277
descriptors, 209
design, database design

active database systems, 761-763
automated tools for, 401-405
centralized schema design approach, 372
conceptual design, 52, 371-380
data-driven, 367
data model mapping, 383
database designers, 13
database tuning, 369
DBMS choices, 380-383

design methodology, 361
ER design, 71-73
local design, 52
logical database design, 368, 383
physical, 52, 369, 383-384
process-driven, 367
Relation Rose design tool, 395-399
requirements collection and analysis, 369-371
system designers, 14
system implementation and tuning, 384-385
tuning, 543-544
UML diagrams as aid to, 385-395
University database design example, 393-394
view integration approach, 372

design autonomy, 817
diagrammatic notations, ER models, 947-949
diagrams

data flow, 52
sequence, 52

dictionary, 115
digital elevation model (OEM), 931
digital signatures, 751
digital terrain modeling (DTM), 932
dimension tables, 904
directed graphs, 570
discretionary access control (DAC), 735-740, 743-744
discriminating attribute, 201
discriminator, in UML terminology, 76
disjointness constraint, 93
disks

cylinders, 416
devices, hardware descriptions of, 415-420
disk blocks, 417
disk controllers, 419
disk drives, 419
disk packs, 415
double-sided, 415
file records on, 422-427
fixed-head, 419
formatting, 417
initialization, 417
magnetic tape storage devices, 420-421
parameters of, 951-953
read command, 417
read/write head, 419
shared, 805
single-sided, 415
tracks, 416
write command, 417

distinct data types, 713
distributed database systems

advantages of, 805-808
allocation, 812-815
concurrency control, 825-827

Index 11015

data fragmentation, 810-812
data replication, 812-815
functions, 808-809
in Oracle, 830-832
overview, 804-805
parallel versusdistributed technology, 805
query processing in, 818-824
recovery, 827
three-tier client-server architecture, 827-829
types of, 815-818

distributed DBMS (DDBMS), 43
distributed warehouse, 910
distribution transparency, 829
division (/) operator, 227
DIVISION operation, 163-165
DML (data manipulation language), 32-33
Document Type Definition (DTD), 849
documents, 113

headers, 845
XML, 855-859

domain-key normal forms (DKNF), 357
domain of knowledge, 110
domains

of attributes, 75
constraints, 133
logical definitions of, 127
structured, 75

dot notation, 652, 671
double buffering, 421
double-sided disks, 415
downward closure property, 873
dozing, mobile environments, 919
drill-down display, 904
driver manager, 280
DROP command, 217, 762
DROP VIEW command, 259
DSS (decision-support systems), 900
DTD (Document Type Definition), 849
DTM (digital terrain modeling), 932
duplicate elimination, 153
dynamic files, 429
dynamic SQL, 256, 270-271

E
e-comrnerce (electronic commerce), 21, 745
e-mail servers, 39
ECA model, active database systems, 757-761
EEPROM (Electrically Erasable Programmable Read-Only

Memory), 413
EER (Enhanced-ER) model, 50, 86, 693

model concepts, 103-104
model constructs, mapping to relations, 199-202,206

electronic commerce (e-cornmercc), 21, 745

1016 I Index

embedded SQL, 256, 262, 264-269
empty state, 29
encapsulation, 649-650
encoded data, 733
encryption, 733

AES (Advanced Encryption Standards), 749
DES (Data Encryption Standard), 749-750
public key, 750-751

end tags, 843
end transactions, 553
end users, 13-14
engineers, software, 14
enhanced ER, 85
Enhanced-ER (EER) model, 50, 86

model concepts, 103-104
model constructs, mapping to relations, 199-202,206

Enterprise Resource Planning (ERP), 447
enterprise-wide data warehouses, 902
entities

attributes and, 53-57
defined, 27

entity integrity constraint, 138
entity sets,S 7
entity types, 57

generalized, 103
key attributes of, 57-58
mapping of regular, 194
owner entity, 68
regular, 68
strong, 68
subclass of, 86
weak,58,68-69,194

entropy, 884
environment records, 277
EQUIjOIN operation, 161-162
equivalence, of sets offunctional dependencies, 310-311
ER database schema, 70, 947-949
ER design, 69-73
ER diagrams, 50

alternative notations for, 73-74
summary of notation for, 70-71

ER (Entity-Relationship) model
defined, 49

Ek-to-relational mapping, 192-199
ERP (Enterprise Resource Planning), 447
events, 257, 758
exception objects, III
execution autonomy, 818
existence dependency, 67
existential quantifier, 176

query examples, 177-178
transformations, 178-179

EXISTS function, 233-236
explicit sets, 236

expressions
declarative, 173
FLWR,864
path, 686
safe, 181
unsafe, 181

expressive power, 174
eXtended Markup Language. SeeXML
extended relational systems, 44
extendible hashing, 439-441
EXTENDS keyword, 677
extensible data types, 712-714
extension, schemas, 29
external hashing, 437-439
external schemas, 30
external sorting, queries, 496-498

F
fact-defined predicates, 791
fact tables, 904
factory objects, 678
failed state, transactions, 560
failures, transactions, 558-559
FALSE values, 229
FOBS (federated database system), 816
federated warehouse, 910
feedback loops, database design, 367
FETCH command, 268
fetch orientation, 269
fields

clustering, 459
connecting, 442
optional, 424
ordering, 431
repeating, 423

fifth normal form (5NF), 353-354
file processing, 8
file servers, 38
files

access, 429
blocks, 426-427
dynamic,429
expansion, 439-442
grid files, 484-485
hash,434
headers, 427
heap, 430
indexes, 17
main, 433
master, 433
mixed, 424
operations on, 427-429
ordered,431-434

organization, 429, 442--443
overflow, 433
pile,430
record-at-a-time operations, 428
reorganization, 37, 430
scans, 498
segments, 427
set-at-a-time operations, 428--429
sorted,431--434
sorting, 430
static, 429
transaction, 433

finance applications, data mining, 891
first level, multilevel indexes, 465
first normal form (lNF), 131,315-318
fixed-head disks, 419
fixed hosts, 916
fixed-length records, 423
flash memory, 413
flat relational model, 131
flow control, 733, 747-749
FLWRexpression, 864
FOR UPDATE OFclause, 269
force/no-force approach, recovery techniques, 614
force-writing, 562
FOREIGN clause, 215
foreign key, 138
formats

disks, 417
domains, 127

formatting styles, 845
forms, 34
forms-based interfaces, 34
forms specification languages, 34
formulas, 175, 182
fourth normal form (4NF), 351-353
fragmentation

data, 810-812
horizontal,810-811
mixed,812
transparency, 807
vertical, 811

frequent-pattern tree algorithm, 875-878
FROM clause, 219-220
FULL OUTER JOIN operation, 170
functional dependencies

definition of, 304-306
equivalence of sets of, 310-311
inference rules, 306-310
minimal sets of, 311-312

functional requirements, 52
functions. See alsocommands; operations

aggregate, 238-240, 509-511
AVERAGE,165

Index 11017

AVG, 238-240
COUNT, 238-240
defined,59
EXISTS, 233-236
MAX, 238-240
MAXIMUM,165
MIN, 238-240
MINIMUM,165
SUM, 165,238-240
UNIQUE, 233-236
user-defined, 714

G
generalization. See alsospecialization, 90-91, 103

constraints on, 92-94
defined, 86, 112
hierarchies, 97
hierarchies and lattices, 94-97
lattices, 97
mapping, 199-201
in refining conceptual schemas, 97-98

generalized entity type, 103
generalized superclass, 90
genetic algorithms, 890-891
genome data management

bioinformatics, 937
biological sciences and genetics, 936-939
human genome project and biological databases,

940-943
resources for, 944-945

geographic information systems. See GIS
geographic mobility domain, 917-918
GIS(geographic information systems), 3, 85

applications, 930-931
ARC/INFO software, 934-935
data management requirements of, 931-932
data operations, 933-934
problems and future issues in, 935-936
resources for, 936

glossary, 115
GRANT command, 737-738
granting privileges, 736-738
graphical user interfaces (GUIs), 18,34,381
graphics, multimedia data, 923
graphs

acyclic, 44
directed, 570
precedence, 570
predicate dependency, 795
query, 512-513
serialization, 570
version, 662

grid files, 484--485

1018 I Index

GROUP BY clause, 240-243
grouping attributes, 240
guards, 823
GUIs (graphical user interfaces), 18,34,381

H
handles, 277
hashing techniques

dynamic file expansion, 439-442
extendible, 439-441
external,437-439
internal,434-437
linear, 441-442
partitioned, 483-484
static, 438

HAVING clause, 240-243
headers

documents, 845
files, 427

health care applications, data mining, 891
heap files, 430
hierarchical and network systems, 20
hierarchical data models, 27,43
hierarchies

acyclic graphs, 44
association rules among, 879
generalization, 94-97
specialization, 94-97

high-level data modules, 26
high-level DML, 33
higher-degree relationships. See ternary relationships
homogeneous DDBMS, 815
homonyms, 376
horizontal fragmentation, 807, 810-811
horizontal partitioning, 544
horizontal propagation, 740
Horn clauses, 787-789
host languages, 33, 264
hosts, fixed, 916
HTML (HyperText Markup Language), 21
human genome project and biological databases,

940-943
hyperlinks

defined,21
documents, 841

HyperText Markup Language (HTML), 21

I
identification

data mining, 869
defined,lll

identifier
authorization, 209
defined,lll

identifying entity type, 68
image attribute, 201
image data types, 718
images

multimedia data, 923
raster images, 933
storage and retrieval of, 22

immediate update techniques, recovery concepts, 612,
622-624

impedance mismatch, 17,263
implementation

active database systems, 761-763
database design, 384-385
views, 259-261

implementation data models, 27
implementation level, relation schema, 294
implementers, DBMS environment, 14
inclusion dependencies, 354-355
incremental updates, 260
independent classes, 113
indexed allocation, 427
indexes

bitmap indexing, 906-907
clustering, 459-462
concurrency control in, 605-606
defined,17
join indexing, 907
logical, 485-486
multilevel, 464-469
physical, 485-486
primary, 457-459
secondary, 462-464
tuning, 542-543
types of, 456

inferences, 110,350
information repositories, 37, 364
information resource management (IRM), 362
information systems

database application life cycle, 365-366
information system life cycle, 364-365
role in organizations, 362-364

information technology (IT), 362
Informix Universal Server, 711-712
inherence rules, functional dependencies, 306-310
inherent model-based constraints, 133
inheritance

attribute, 86
behavior, 677
multiple, 92, 95, 202, 660-661
relationship, 86
selective, 661
single, 92
support for, 714-716
type, 88
type hierarchy and, 654-656

initial state, 29
ini tialization, disks, 417
innermost nested queries, 232
Insert operation, 141-142
insertion anomalies, 299-300
instances

defined,28
relation, 128
variables, 642

instantiable interfaces, 676
instantiation

defined,lll
polyinstantiation, 742

integrity constraints, 18, 135
intention, schemas, 29
interactive interfaces, 261
interactive transactions, 607
interblock gaps, 417
interfaces

DBMS, 33-34
defined, 10
instantiable, 676
interactive, 261
multiple user, 18
noninstantiable, 676
user-friendly, 33
Web,262

Intermittently Synchronized Database Environment
(ISDBE),921-922

internal hashing, 434-437
internal schemas, 29
interoperability, 710
interpolation, 933
INTERSECTION operation, 155-157
interval data types, 213
INTO clause, 267
invalid state, 136
IRM (information resource management), 362
IS-Arelationship, 112
ISDBE (Intermittently Synchronized Database Environ-

ment),921-922
isolation property, 12
IT (information technology), 362
iteration markers, 390
iterator variables, 263
iterators, 273

J
JAVA,255
]BuiIder (Borland), 37
JDBC class libraries, 280
JDBC driver, 280
join dependencies, 353-354

Index 11019

join indexing, 907
JOIN operation, 158-161,501-508
joined tables, 237-238
joins

multiway, 501
semijoin, 818, 821-822

K
KDD (Knowledge Discovery in Databases), 868
key attributes, 57
key candidate key, 135
keys

candidate, 135,305,314
composite, 483
foreign, 138
partial, 318
primary, 135, 314
superkey, 134, 314
surrogate, 202

Knowledge Discovery in Databases (KDD), 868
knowledge representation, 85, 110

L
labels, 843
languages, 32-33

data sublanguage , 255
database programming, 255, 262
host, 264

LANs (local area networks), 38, 809
large databases, 362
latches, 607
lattices

generalization, 94-97
multiple inheritance, 92
specialization, 94-97

leaf node, 95
learning

supervised, 882
unsupervised, 885

left-deep trees, 529
LEFfOUTER JOIN operation, 170
legacy DBMSs, 709-710
legal relation states, 305
linear hashing, 441--442
linear recursion, 708
linear regression, 889
link attributes, 76
linked allocation, 426
links, 75
literals

atomic, 668
collection, 668
structured, 668

1020 I Index

loaded databases, 29,385
loading utility, 37
local area networks (LANs), 38, 809
local attributes, 89
local design, 52
location transparency, 807
locks

binary, 584-585
conversion of, 587-588
latches, 607
multiple granularity level, 601-604
multitable, 586
read/write, 586
shared/exclusive, 586
two-phase, 588-591

log records, transactions, 560-561
log sequence number (LSN), 626
Logical Block Address (LBA), 417
logical data independence, 31
logical database design, 368, 383
logical indexes, 485-486
logical level, relation schemas, 293
logical theory, 115
login sessions, 735
lossless join property, 313, 335-337, 341-342
low-level data models, 26

M
macro life cycle, information systems, 364
main files, 433
main memory, 412-413
maintenance personnel, 14
mandatory access control, 740-743
MANET (mobile ad-hoc network), 918
manual identification, 782
manufacturing applications, data mining, 891
mappings

categories (union types), 202-203
data model, 52
defined, 31
EER model constructs to relations, 199-202,206
ER-to-relational, 192-199
shared subclasses, 202

mark up, 844
market-based data, 871
marketing applications, data mining, 891
mass storage, 412
massively parallel processing (MPP), 911
master files, 433
mathematical relation, 125, 129
MAX function, 238-240
MAXIMUM function, 165
memory

cache, 412

EEPROM (Electrically Erasable Programmable Read-
Only Memory), 413

flash,413
main, 412-413
RAM (Random Access Memory), 412
shared,805

menu-based interfaces, 33-34
menus, defined, 33-34
meta-class, 111
meta-data, 9, 29
metadata repository, 910
methods, 44
micro life cycle, information systems, 365
middle tier, three-tier client/server architecture, 42
MIN function, 238-240
minimal cover, functional dependencies, 311
minimum cardinality constraint, 67
MINIMUM function, 165
mini world, 4
MINUS operation, 155-157
mirroring, 445
mixed files, 424
mixed fragmentation, 812
mixed transactions, 380
M:N relationship type, 67-68
mobile ad-hoc network (MANET), 918
mobile databases

characteristics of, 919-920
computing architecture, 916-918
data management issues, 920-921
ISDBE (Intermittently Synchronized Database Envi

ronment),921-922
reference materials for, 922-923

modification anomalies, 300
modules

buffer manager, 36
buffering, 17
client, 25
Data Blade, 712
defined, 14
persistent stored, 284
server, 25
stored disk manager, 35

MOLAP (multidimensional OLAP), 911
MPP (massively parallel processing), 911
multidimensional associations, 880-881
multidimensionalOLAP (MOLAP), 911
multilevel indexes, 464-469
multimedia databases, 3

applications, 928-929
concepts, 782-783
data and applications, 923-924
data management issues, 924-925
resources for, 929-930
spatial databases, 780-782

multiple granularity level locking, 601-604
multiple inheritance, 92, 95, 202, 660-661
multiple-relation options, 200
multiplication (*) operator, 227
multiplicities, 76
multiprogramming, 552
multisets, 224
multiuser DBMS, 11-12
multiuser systems, 43
multivalued attributes, 56
multivalued dependencies, 347-353
multiversion concurrency control, 596-599
multiway joins, 501

N
N-ary relationship types, 108, 196-197
N relationship type, 67
naive end users, 13
named iterators, 273
named queries, 688
names, constraints, 216
naming schema constructs, 71
naming transparency, 807
National Institute of Standards (NIST), 749
NATURAL JOIN operation, 161-162
natural language interfaces, 34
negative associations, 881-882
nested queries, 230-233
nested relational model, 725-72 7
nested relations, 249, 316
network data models, 27, 43-44
network partitioning, 825
networks

LANs (local area networks), 38, 809
neural, 890
SANs (Storage Area Networks), 447
WANs (wide area networks), 809

neural networks, 890
NIST (National Institute of Standards), 749
nonadditive join property, 313

decomposition, 341-342
lossless, 340
testing binary decompositions for, 338-340

noninstantiable interfaces, 676
nonprocedural language, 173
nonrecursive queries, 795
nonredundant allocation, 813
nonvolatile storage, 414
normal forms

Boyce-Codd (BCNF), 324-326
defined, 312
domain-key (DKNF), 357
fifth (5NF), 353-354

Index /1021

first (lNF), 315-318
fourth (4NF), 351-353
practical use of, 313-314
project-join (PJNF), 354
relation decomposition and insufficiency of, 334-335
second (2NF), 318-319, 321-323
third (3NF), 319-320, 323-324

normalization
algorithms, 345-347
denorrnalization, 540
process, 312

NOToperator, 176, 179
notation

arrow, 671
dot, 652, 671
relational data models, 132

null values, 56, 131, 229
problems with, 343-345
in tuples, 301

numeric data types, 212

o
Object Data Management Group. See ODMG
object data models, 27,43
Object Definition Language (ODL), 647, 679-684
object diagrams, 387
object identifiers, 249
Object Management Group (OMG), 385
Object Manipulation Language (OML), 693
object modeling, 85
object-oriented database systems, 10, 16

concepts, 641-643
encapsulation, 649-650
object behavior, via class operations, 650-652
object identity, 644
object persistence, 652-653
object structure, 644-647
overview, 639-641
polymorphism, 659-660
type constructors, 647-649

Object Query Language (OQL), 684-693
object-relational database systems, 10, 43-44

SQL standards and components, 702-703
support, 703-708

objects
atomic, 674-676
BLOBs (Binary Large Objects), 423, 658
collection, 672-674
complex, 657-659
connection, 281
exception, 111
factory, 678
persistent, 652

1022 I Index

statement, 281
transient, 652
user-defined,674-676

occurrences, 28
ODBC (Open Database Connectivity), 41, 248, 256, 275
om (Object Definition Language), 679-684
ODMG (Object Data Management Group)

atomic objects, 674-676
Collection interface, 672-674
object model, overview, 666-667
objects and literals, 667-671

OIL (Ontology Inference Layer), 926
OLAP (online analytical processing), 3, 208-209,900
OLTP (online transaction processing), 12,43,900
OMG (Object Management Group), 385
OML (Object Manipulation Language), 693
online analytical processing (OLAP), 3, 208-209, 900
online transaction processing (OLTP), 12,43,900
ontology, 110
Ontology Inference Layer (OIL),926
opaque data types, 712-713
OPEN CURSOR command, 267
Open Database Connectivity (ODBC), 41, 248, 256, 275
operating system (OS), 35
operations. Seealso commands; functions, 52, 75

binary relational, 158-162
CARTESIAN PRODUCT, 158
commutative, 156
CROSS PRODUCT, 162
defined
Delete, 142-143
DIVISION, 163-165
EQUIJOIN, 161-162
FULL OUTER JOIN, 170
Insert, 141-142
INTERSECTION, 155-157
JOIN,158-161,501-508
LEIT OUTER JOIN, 170
MINUS, 155-157
NATURAL JOIN, 161-162
OUTER JOIN, 169-170
OUTER UNION, 170-171
PROJECT, 153-154
REDO,619
RENAME, 154-155
RIGHT OUTER JOIN, 170
SELECT, 151-153
sequence of, 154-155
SET,508-509
UNION, 155-157
update, 143

operator overloading, 643, 659
operators

AND, 176, 179

DBMS environment, 14
NOT, 176, 179
OR, 176, 179

optimist concurrency control, 599-600
optimization

cost-based queries, 523-532
data mining, 870

optional fields, 424
OQL (Object Query Language), 684-693
ORoperator, 176, 179
Oracle

distributed database systems in, 830-832
Oracle 8, 721

ORDER BY clause, 228
order preservation, 438
ordered files, 431-434
organizations, information systems, 362-364
OS (operating system), 35
OUTER JOIN operations, 169-170
outer queries, 230
OUTER UNION operation, 170-171
overflow files, 433
overlapping, 103
owner entity type, 68

p
parallel database management systems, 805
parallel processing, 553
parameter mode, 285
parameter types, 285
parameters, statement, 278, 281
parametric end users, 13,34
parent nodes, 469
partially committed state, transactions, 559
partial, defined, 103
partial key, 68, 318
partial replication, 813
partial specialization, 94
participation constraints, 64, 67
partition algorithm, 878-879
partitioned hashing, 483-484
partitioning

horizontal, 544
network, 825
vertical, 544

path expressions, 686
pattern matching, 226-228
performance, monitoring, 37
persistent objects, 652
persistent storage, 16
persistent stored modules, 284
personal databases, 363
phantom problem, concurrency control, 606

physical data independence, 31
physical data models, 26
physical database design, 383-384

decisions about, 539-541
influencing factors, 537-539

physical design, 52
physical indexes, 485-486
pile files, 430
pipelining, 511-512
pivoting, 904
platforms, 382
pointing device, 34
polyinstantiation, 742
polymorphism, 659-660
populated databases, 29
portability, 665
positional iterators, 273
PowerBuilder (Sybase), 37
precompilers, 36, 262, 264
predicate-defined subclasses, 92, 103
predicates, 132

fact-defined, 791
rule-defined, 792

prediction goals, data mining, 869
preprocessors, 262, 264
presentation layer (three-tier client-server architecture),

828
PRIMARY clause, 214
primary indexes, 457-459
primary key, 135, 314
primary storage, 412
prime attributes, 314
printer servers, 39
privacy protection, 746
privileged software, 16
privileges

granting, 736-738
horizontal propagation, 740
overview, 735
revoking, 737
types of, 736-737
vertical propagation, 740

procedural DML, 33
procedural language, 173
procedural program code, 19
procedures, stored, 284-286
process-driven design, 367
program-data independence, 9
Program Stored Modules (PSM), 248
programmers, 14
programming

approaches to, 262-263
impedance mismatch, 263

Index 11023

multiprogramming, 552
sequence interaction, 263-264

programs
application, 262
client, 263

project-join normal form (PJNF), 354
PROJECT operation, 153-154
Prolog/Datalog notation, 784-787
properties

class, 111
transactions, 562-563

protection. See security
proxies, 919
PSM (Program Stored Modules), 248
public key encryption, 750-751

Q
QBE (Query-By-Example), 150

aggregation, 960
database modification in, 960-962
grouping, 959-960
retrievals in, 955-959

qualified aggregation, 76
qualified associations, 76
quantifiers

existential, 176-179
universal, 176, 178-181

queries, 544-547
ad-hoc querying, 907
blocks, 495-496
correlated nested, 232-233
cost-based optimization, 523-532
decomposition, 822
in distributed database systems, 818-824
existential quantifier, 177-178
external sorting, 496-498
graphs, 512-513
innermost, 232
modification, 259
named,688
nested, 230-233
nonrecursive, 795
optimization, 532-533
outer, 230
relational algebra, 171-173
semantic optimization, 533-534
sQL,218-245
trees, 512-515
universal quantifier, 179-181
validation, 493
XML, 862-865

Query-By-Example. See QBE
query compiler, 36

1024 I Index

query language, 33
query processing, 17
query servers, 41
quotation marks ("), 227

R
RAIN (Redundant Arrays of Independent Disks),

443-447
RAM (Random Access Memory), 412
range relation, 174
raster image processing, 933
RBAC (role-based access control), 744
rd (rotational delay), disk parameters, 951-952
RDMBS (relational database management systems), 21
RDF (resource description framework), 926
read command, disks, 417
read-set transactions, 554
read timestamp, 597
read/write locks, 586
reasoning mechanisms, 110
record-at-a-time

DML,33
file operations, 428

record-based data models, 27
record pointers, 438
record types, 425
records

connection, 277
defined,422
description, 277
environment, 277
fixed-length,423
spanned,426
statement, 277
unspanned, 426
values and items, 422
variable-length, 423

recovery
ARIES algorithm, 625-629
backups, 630-631
caching of disk blocks, 613-614
cascading rollback, 616
checkpoints, 615-616
deferred update, 618-621
distributed database systems, 827
force/no-force approach, 614
immediate updates, 622-624
in multidatabase systems, 629-630
outlines and categorization, 612-613
shadow paging, 624-625
steal/no-steal approach, 614
transaction rollback, 616-617
transactions, 558-559

UNDO/REDO algorithm, 613
write-ahead logging, 614

recovery and backup systems, 17, 37
recursive closure, 168
recursive relationships, role names and, 64
REDO operation, 619
redundancy, controlling, 15-16
Redundant Arrays ofIndependent Disks (RAID),

443-447
referencing relation, 138
referential integrity constraints, 355
referential triggered action, 215
reflexive association, 76
regression rule, 889
regular entity types, 68
Relation Rose tool, 395-399
relation schema, 127

bottom-up design methodology, 294
implementation level, 294
logical level, 293
semantics, 295-298
top-down design methodology, 294
tuples, generation of, 301-304
tuples, null values in, 301
tuples, redundant information in, 298-301

relational algebra
aggregate functions, 165-168
CARTESIAN PRODUCT operation, 158
CROSS PRODUCT operation, 162
defined, 149
DIVISION operation, 163-165
EQUlJOIN operation, 161-162
expression, 149
INTERSECTION operation, 155-157
MINUS operation, 155-157
NATURAL JOIN operation, 161-162
OUTER JOIN operations, 169-170
OUTER UNION operation, 170-171
PROJECT operation, 153-154
query examples, 171-173
recursive closure, 168
RENAME operation, 154-155
SELECT operation, 151-153
transformation rules, 518-520
UNION operation, 155-157

relational calculus
defined, 149-150, 173
domain calculus, 181-184
existential quantifiers, 176
safe expressions, 181
universal quantifiers, 176
unsafe expressions, 181

relational data models
constraints, 133-140

flat, 131
notation, 132
overview, 126
update operations, 140-143

relational data modules, 27,43
relational database design. Seealso design, 196-197

algorithms for, 340-347
EER model constructs, mapping to relations, 199-203
ER-to-relational mapping algorithm, 192-199

relational database management systems (RDBMS), 21
relational database schema, 135
relational decomposition

multi valued dependencies, 347-353
properties of, 334-340
queries, 822

relational OLAP (ROLAP), 911
relations

all-key, 350
characteristics, 129-132
extension, 128
instance, 128
intention, 128
interpretation, 131-132
mathematical, 125, 129
nested, 249,316
range, 174
referencing, 138
state, 129
virtual,210

relationship inheritance, 86
relationship instance, 61
relationship sets, 61
relationship types

attributes of, 67-68
constraints on, 64-67
defined, 61
degree of, 63
specific, 89

reliability, 807
RENAME operation, 154-155
renaming attributes, 236
reorganization, files, 430
repeating fields, 423
replication, 812-815

advanced, 831
basic, 830
symmetric, 831

replication transparency, 807
representational data models, 27
requirements collection and analysis, 50-52, 369
requirements specification techniques, database design,

370
resource description framework (RDF), 926
restrictions, unauthorized access, 16

Index /1025

retrieval operations, 427
retrieval transactions, 380
retrievals, 140
reverse engineering, 204, 397
REVOKE command, 737
rewrite time, disk parameters, 953
RIGHT OUTER JOIN operation, 170
ROLAP (relational OLAP), 911
role-based access control (RBAC), 744
role names, recursive relationships and, 64
roll-up display, 904
rotational delay (rd), disk parameters, 951-952
row data types, 713
row-level triggers, 760
rule-defined predicates, 792
rules, 19
runtime database processor, 36

s
s (seek time), disk parameters, 951
safe expressions, 181
sampling algorithm, 874-875
SANs (Storage Area Networks), 447-449
schedules of transactions

conflict equivalent, 569
conflict serializability, 570-572
debit-credit transactions, 576
overview, 563-564
recoverability, 565-566
result equivalent, 569
serial,568
serializability, uses of,S 72-575
serializable, 568
view serializable, 575-576

schema
change statements, SQL, 217-218
conceptual, 30, 52,97-98
constructs, proper naming of, 71
database, 115
ER database, 70
extension of, 29
external, 30
intension of, 29
internal,29
relation, 127
relational database, 135
snowflake, 905
sQL,209
star, 905
XML, 850-855

schema-based constraints, 133
schema construct, 28
schema diagram, 28

1026 I Index

schema evolution, 29
schema name, 209
scientific applications, 22
script functions, 845
SCSI (Small Computer Storage Interface), 419
SOL (storage definition language), 32
search trees, 470
searches, binary search, 431
second level, multilevel indexes, 466
second normal form (2NF), 318-319, 321-323
secondary indexes, 462-464
secondary storage, 412, 415-420
security

access protection, 734-735
audits, 735
authorization subsystem and, 16
OBAs and, 734
digital signatures, 751
encryption, 749-751
flow control, 733, 747-749
login sessions, 735
protection, 5
statistical database, 746-747
threats, 733
types of, 732-734

seek time (s), disk parameters, 951
SELECT clause, 219-220, 498-501
select-from-where block, 219-221
SELECT operation, 151-153
selection conditions, 220
selective inheritance, 661
self-describing data, 842
semantic data modeling, 85
semantic query optimization, 533-534
Semantic Web, 113,926
semantics, 18, 295-298
semijoins, 818, 821-822
semistructured data, 842
SEQUEL (Structured English Query Language), 208
sequence diagrams, 52, 389-390
sequential access devices, 420-421
sequential patterns, 888
serial schedules, 568
serialization graphs, 570
server modules, 25
servers

application, 42
data, 41
database, 263
defined,40
e-mail, 39
file, 38
printer, 39
query, 41

specialized, 38
transaction, 41
Web, 39, 42

set-at-a-time
OML,33
file operations, 428-429

SET operations, 508-509
set-oriented OML, 33
set types, 44
sets

multisets, 224
tables as, 224-226

shadowing,445,624-625
shared databases, 5
shared disk, 805
shared/exclusive locks, 586
shared memory, 805
shared subclass, 95, 202
shared variables, 264
signatures, 650, 751
simple attributes, 55-56
singer-user systems, 43
single inheritance, 92
single-relation options, 200
single-sided disks, 415
single-valued attributes, 56
Small Computer Storage Interface (SCSI), 419
SMP (symmetric multiprocessor), 911
Snapshot Refresh Processes (SNPs), 832
snapshots, 28
snowflake schema, 905
SNPs (Snapshot Refresh Processes), 832
software

communications, 38
concurrency control, 12
privileged, 16

software engineers, 14
sophisticated users, 13
sorted files, 431-434
spanned records, 426
sparse indexes, 457
spatial applications, 22
spatial databases, 780-782
specialization. Seealso generalization, 88-90, 103

attribute-defined, 92, 104
constraints on, 92-94
defined, 86, 112
hierarchies and lattices, 94-97
mapping, 199-201
partial, 94
in refining conceptual schemas, 97-98
total, 93

specialized servers, 38
specific attributes, 89

specific relationship types, 89
specification, 115
spurious tuples, generation of, 301-304
sQL-92,703
sQL-99, 208, 766-767
SQL/CLl (Call Level Interface), 256, 275
SQL schema, 209
SQL (Structured Query Language)

constraints, 213-217, 256-257
data types, 209-213
database programming, 261-264
DELETE command, 247
discussed, 207
dynamic, 256, 270-271
embedded,256,264-269
INSERT command, 245-247
queries, 218-245
schema change statements, 217-218
SQL),271-275
stored procedures, 284-286
syntax summary, 250
transaction support, 576-578
UPDATE command, 247-248
views, 257-261

SQLCODE variable, 266
SQLSTATE variable, 266
stand-alone users, 13-14
star schema, 905
start tags, 844
state constraints, 140
statechart diagrams, 390-392
statement-level triggers, 760, 763-766
statement objects, 281
statement parameter, 278, 281
statement records, 277
statements

CALL, 285
CREATE ASSERTION, 256
embedded, 262

static database programming approach, 275
static files, 429
static hashing, 438
statistical database security, 746-747
steal/no-steal approach, recovery techniques, 614
storage

capacity, 413
of databases, 414-415
hierarchies, 412-414
magnetic tape devices, 420-421
mass storage, 412
nonvolatile, 414
persistent, 16
primary, 412
SANs (Storage Area Networks), 447-449

Index 11027

SCSI (Small Computer Storage Interface), 419
secondary, 412
secondary storage device, 415-420
volatile, 414

Storage Area Networks (SANs),447-449
storage channels, 748
storage definition language (SDL), 32
stored attributes, 56
stored disk manager modules, 35
stored procedures, 284-286
stream-based processing, 511-512
strong entity types, 68
Struct keyword, 668
structural constraints, 67
structured complex objects, 658-659
structured data, 842
structured domain, 75
Structured English Query Language (SEQUEL), 208
structured literals, 668
Structured Query Language. SeeSQL
subclasses, 86-87, 90, 103

condition-defined, 92
predicate-defined, 92, 103
shared, 95,202
user-defined, 93, 103

substring pattern matching, 226-228
subtraction (-) operator, 227
SUM function, 165,238-240
superclasses, 86-88, 90, 103
superkey, 58, 134, 314
superuser accounts, 734
supervised learning, 882
support

external data sources, 717
indexing extensions, 717
inheritance, 714-716
user-defined functions, 714

surrogate key, 202
symmetric multiprocessor (SMP), 911
symmetric replication, 831
synonyms, 376
system analysts, 14
system designers, 14
system lock tables, concurrency control, 584-588
system protection, 5

T
tables

base, 210
derived, 255
dimension, 904
fact, 904
joined,237-238

1028 I Index

as sets, SQL, 224-226
virtual, 255, 258

tags, 843
attributes, 845
end, 843
mark up, 844
start, 844

tape drives, 420-421
tape reels, 420-421
tapes, archived, 421
taxonomy, 115
template dependencies, 355-357
temporal databases, 767-768

querying constructs, 778-779
time representation, 768-770
time series data, 780

terminated state, transactions, 560
ternary relationships, 63, 105-109
text

data types, 719-720
multimedia data, 923

thesaurus, 115
third level, multilevel indexes, 466
third normal form (3NF), 319-320, 323-324
threats, 733
three-schema architecture, 29-31
three-tier client/server architectures, 42, 827-829
time data types, 212-213,423
time representation

data mining, 889
temporal databases, 768-770, 780

time series applications, 22
time series data types, 718-719
timestamp data types, 213
timestamp ordering, 594-596
TIN (triangular irregular network), 931
tool developers, 14
tools

automated database design, 401-405
conversion tools, 37
data mining, 891-894
Relation Rose, 395-399

top-down conceptual refinement process, 98
top-down design methodology, relation schema, 294
total participation, 67
total specialization, 93
tracks, disks, 416
traditional database applications, 3
transaction files, 433
transaction rollback, recovery, 616-617
transaction servers, 41
transactions, 52

begin, 553
canned,262

commit point of, 561-562
concurrency control, 555-557
defined, 12
end, 553
failures, 558-559
identifying, functional behaviors, 379
interactive, 607
mixed,380
processing systems, 551-552
properties, 562-563
read-set, 554
recovery, 558-559
retrieval, 380
schedules. See schedules of transactions
single-user versus multiuser systems, 552-553
sQL,576-578
system concepts, 559-562
system log, 560-561
unrepeatable read, 557
update, 380
write-set, 554

transformations, 178-179
transient objects, 652
transition constraints, 140
transitive dependency, 319
transparency

distribution, 829
fragmentation, 807
location, 807
naming, 807
replication, 807

tree structures
queries, 512-515
subtrees, 469
XML, 846-848

trees
B+-trees, 474-481
B-trees, 471-474
left-deep, 529
search,470

triangular irregular network (TIN), 931
triggers, 140

events, 257
granularity, 709
row-level, 760
in sQL-99, 766-767
statement-level, 760, 763-766

trivial MVD, 349
TRUE values, 229
truth values, 176, 182
tuple-based constraints, 216
tuples

dangling, 343-345
multiple, 267-269, 273-275

null values in, 301
redundant information in, 298-301
relations, 129-131
spurious, generation of, 301-304

two-dimensional data types, 717-718
two-tier client/server architecture, 41
two-way joins, 501
type hierarchy

constraints on extents, 656, 666
inheritance and, 654-656

type inheritance, 88
type lattice, 660
types

data types, 423
parameter, 285
record types, 425

U
UML diagrams

activity, 392
class diagrams, 386-387
collaboration, 390
component, 387-388
as database application design, 386-387
deployment, 388
as design specification standard, 385-386
object, 387
sequence, 389-390
statechart, 390-392
use case, 388

UML (Universal Modeling Language), 50, 74-76
unary operations, 150

PROJECT operation, 153-154
SELECT operation, 151-153

unauthorized access, restricting, 16
UNDO/REDO algorithm, recovery techniques, 613, 623
unidirectional associations, 76
union compatible, 156
UNION operation, 155-157
union type, 98-100, 202-203
UNIQUE function, 215, 233-236
uniqueness constraint, attributes, 57
Universal Modeling Language (UML), 50, 74-76
universal quantifier, 176

query examples, 179-181
transformations, 178-179

universal relation, 334-335
universe of discourse (UoD), 4
unsafe expressions, 181
unspanned records, 426
unstructured data, 843
unsupervised learning, 885
UoD (universe of discourse), 4

Index 11029

update anomalies, 298, 300-302
UPDATE command, 247-248
update operations, 143,427
update transactions, 380
updates, views, 259-261
use case diagrams, 388
user-defined functions, 714
user-defined objects, 674-676
user-defined subclasses, 93, 103
user-friendly interfaces, 33
utilities, 36-37

V
valid state, 29, 136
validation

concurrency control, 599-600
queries, 493

value sets, attributes, 59-60
variable-length records, 423
variables

communication, 266
instance, 642
iterator, 263
shared,264
SQLCODE, 266
SQLSTATE, 266

VOL (view definition language), 32
version graphs, 662
vertical fragmentation, 807, 811
vertical partition, 153,544
vertical propagation, 740
video sources, 783, 923
view definition language (VOL), 32
views

concepts of, 257-258
CREATE VIEW command, 258
data warehouses versus, 911
DROP VIEW command, 259
implementation and update, 259-261
incremental updates, 260
specification of, 258-259
view materialization, 259

virtual data, 11,902
virtual relations, 210
virtual storage access method (VSAM), 486
virtual tables, 255, 258
volatile storage, 414
VSAM (virtual storage access method), 486

W
WANs (wide area networks), 809
warehouses. See data warehouses
weak entity type, 58, 68-69, 194

1030 I Index

Web
access control policies, 745
e-commerce and, 21

Web-based user interfaces, 34
Web interfaces, 262
Web servers, 39, 42
WHERE clause, 219-220, 223-224
wide area networks (WANs), 809
wireless communications, 916-917
WITHCHECK OPTION clause, 261
write-ahead logging, recovery techniques, 614
write command, disks, 417
write timestamp, 597

X
XML (eXtended Markup Language), 22,45,841

documents, 846
documents and databases, 855-862
hierarchical data model, 846-848
querying, 862-865
schema, 850-855
well-formed and valid documents, 848-850

