
 
Module-I 

 
Finite Element Methods 

 

In the finite element method elements are grouped as 1D, 2D and 3D 

elements. Beams and plates are grouped as structural elements. One 

dimensional elements are the line segments which are used to model 

bars and truss. Higher order elements like linear, quadratic and cubic 

are also available. These elements are used when one of the dimension 

is very large compared to other two. 2D and 3D elements will be 

discussed in later chapters. 
 

Seven basic steps in Finite Element Method 

These seven steps include  

 Modeling 
 Discretization 
 Stiffness Matrix 
 Assembly 
 Application of BC’s 
 Solution 
 Results 

 

Let’s consider a bar subjected to the forces as shown 



 
 

First step is the modeling lets us model it as a stepped shaft consisting 

of discrete number of elements each having a uniform cross section. 

Say using three finite elements as shown. Average c/s area within each 

region is evaluated and used to define elemental area with uniform 

cross-section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A1= A1’ + A2’ / 2 similarly A2 and A 3 are evaluated 

 

 

Second step is the Discretization that includes both node and element 

numbering, in this model every element connects two nodes, so to 

distinguish between node numbering and element numbering elements 

numbers are encircled as shown. 



 

Above system can also be represented as a line segment as 

shown below. 
 
 
 
 
 
 
 
 
 

 

Here in 1D every node is allowed to move only in one direction, hence 

each node as one degree of freedom. In the present case the model as 

four nodes it means four dof. Let Q1, Q2, Q3 and Q4 be the nodal 

displacements at node 1 to node 4 respectively, similarly F1, F2, F3, F4 

be the nodal force vector from node 1 to node 4 as shown. When these 

parameters are represented for a entire structure use capitals which is 

called global numbering and for representing individual elements use 

small letters that is called local numbering as shown. 
 
 
 
 
 
 
 
 
 
 
 
 

This local and global numbering correspondence is established using 

element connectivity element as shown 



Now let’s consider a single element in a natural coordinate system that 

varies in  and , x1 be the x coordinate of node 1 and x2 be the x 

coordinate of node 2 as shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let us assume a polynomial 
 
 
 
 
 
 
 

Now 
 
 
 
 
 
 

 

After applying these conditions and solving for constants we have 
 
 
 
 
 
 
 
 
 
 

a0=x1+x2/2 a1= x2-x1/2 
 

 

Substituting these constants in above equation we get 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Where N1 and N2 are called shape functions also called as interpolation 

functions. 

 

These shape functions can also be derived using nodal displacements 

say q1 and q2 which are nodal displacements at node1 and node 2 

respectively, now assuming the displacement function and following 

the same procedure as that of nodal coordinate we get 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

U = Nq 



 

 

U = Nq  

Where N is the shape function matrix and q is displacement matrix. 

Once the displacement is known its derivative gives strain and 

corresponding stress can be determined as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

element strain displacement matrix 
 
 
 
 
 

From the potential approach we have the expression of  as 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Third step in FEM is finding out stiffness matrix from the 

above equation we have the value of K as 



 
 

But 
 
 
 
 
 
 

Therefore now substituting the limits as -1 to +1 because the value of  

varies between -1 & 1 we have 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Integration of above equations gives K which is given as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fourth step is assembly and the size of the assembly matrix is given 
by number of nodes X degrees of freedom, for the present example that 
has four nodes and one degree of freedom at each node hence size of 
the assembly matrix is 4 X 4. At first determine the stiffness matrix of 

each element say k1, k2 and k3 as 
 
 
 
 
 
 
 
 



Similarly determine k2 and k3 
 
 
 
 
 
 
 
 
 
 
 
 

 

The given system is modeled as three elements and four nodes we have 

three stiffness matrices. 
 
 
 
 
 
 
 
 
 
 

Since node 2 is connected between element 1 and element 2, the 

elements of second stiffness matrix (k2) gets added to second row 

second element as shown below similarly for node 3 it gets added to 
third row third element 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Fifth step is applying the boundary conditions for a given system. We 

have the equation of equilibrium KQ=F 

 

K = global stiffness matrix  

Q = displacement matrix  

F= global force vector 

 

Let Q1, Q2, Q3, and Q4 be the nodal displacements at node 1 to node 4 

respectively. And F1, F2, F3, F4 be the nodal load vector acting at node 

1 to node 4 respectively. 
 
 
 
 
 
 
 
 
 
 

Given system is fixed at one end and force is applied at other end. 

Since node 1 is fixed displacement at node 1 will be zero, so set q1 =0. 

And node 2, node 3 and node 4 are free to move hence there will be 

displacement that has to be determined. But in the load vector because 

of fixed node 1 there will reaction force say R1. Now replace F1 to R1 

and also at node 3 force P is applied hence replace F3 to P. Rest of the 

terms are zero. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sixth step is solving the above matrix to determine the displacements 

which can be solved either by 

 

 Elimination method 
 Penalty approach method 



 

Details of these two methods will be seen in later sections. 
 

Last step is the presentation of results, finding the parameters like 

displacements, stresses and other required parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
BASIC PROCEDURE 

 
 

Rayleigh-Ritz Method 

 
As discussed, one can solve axially loaded bars of arbitrary cross-section and material composition along 

the length using the lumped mass-spring model. As shown in Figure 12 of Exercise 2.4, one can 

approach the exact solution very closely by dividing the bar into more elements. One of the 

disadvantages of the lumped models is that we can only compute the deflection at the locations of the 

lumped masses (we call these points nodes), and we know nothing about what happens within the 

element. Consequently, if we want to get the smooth shape of the deflection curve, we need to take a 

very large number of elements. The Raleigh-Ritz method offers an alternative method to overcome these 

problems. This method also uses the MPE principle. 

 

Referring back to the tapering beam problem, what we were able to do with the lumped model is 

essentially solving the governing differential equation that represents the deflection of axially loaded 

bars. Our method of solution was of course numerical. It is worthwhile to study the differential equation 

that we just solved numerically in Chapter 2. 

 

Thus, the objectives of this Chapter are: (i) Derive the differential equation of an axially loaded 

bar using the force-balance method (ii) Derive the same equation using the MPE principle (iii) Discuss 

the Rayleigh-Ritz method. 

 

3.1 Derivation of the governing differential equation of an axially loaded bar using the 

force-balance method 
 
Let A(x), the cross-section area of the bar at x, be given. There is a body-force (gravity-like force), f(x), 

per unit volume of the bar. σ(x), the axial stress and u(x), the axial deflection, are two unknown 

functions. We would like to derive a differential equation that describes the axially loaded bar so that we 

can solve for σ(x) and u(x). 

 

Consider a differential element of length dx at some x. The stress and area at the left end of the 

differential element are σ(x) and A(x). At (x+dx), the right end, the same quantities can be approximated 

 dσ(x)   dA(x)  
 

as  σ(x) +  dx  and A(x) +  dx  . The free-body-diagram of the infinitesimally small  

dx dx 
 

    
  

differential element shows that the internal forces (stresses multiplied by areas of cross-section) balance 
 
 
 

 

3.2 
 
 



the body-force acting to the right. The body force acting on the differential element is given by f ( x) A( x 

)dx . Let us now expand and simplify the internal force acting to the right. 

 
 
 dσ(x)   dA(x)  

 

σ(x) +  dx   A(x) +    dx  

dx 
 

dx 
 

    
 

= σ(x) A(x) +σ(x) dA(x) dx + A(x)  
  

    dx  
 

 
 
 
 
 

    0    
 

dσ(x) dσ(x)   dA(x) 2  
 

 dx +  
 

 dx  (1)  

dx dx dx 
  

     
 

 
 
The last term in the above expression is a small second-order term and hence it can be ignored as shown 

stricken by an arrow in Equation (1). The first term balances the internal force acting on the left end of the 

differential element. So, the second and third terms and the body-force term should sum to zero for 

equilibrium 

 

σ(x) dA(x) dx + A(x) dσ(x) dx + f (x) A(x)dx = 0 (2a)  

dx 
  

  dx  
 

 
 
You can easily check that after canceling dx although in the above equation, the two terms on the left 

hand side can be collapsed as one term as shown below. 

 

d (σ (x) A(x))  
+ f (x) A(x)dx = 0 (2)  

dx 
 

  
 

 
 
This leads to the following differential equation in σ(x). 
 

 

d (σ (x) A(x))+ f (x) A(x) = 0 (3)  
dx 

 

  
 

 
 
Next, we would like to express u(x) in terms of σ(x) so that we can get the governing differential 

equation in u(x). From the definition of axial strain (change in length divide by the original length), we 
 

get the following expression for strain, ε(x) = 
du

dx
(x)

 , where du(x) is the deflection of the differential 

element of length dx. We also know the relationship between stress and strain: σ(x) = E ε(x) where E is 



 
3.3 

 
 
the Young’s modulus. By substituting these relationships into Equation (3), we get the governing 

differential equation: 

 

d du(x)   
 

 E A(x)   + f (x) A(x) = 0 (4)  
 

dx 
 

dx    
 

 
 
 
 
 
 

A(x) 
 
 

f(x) 
 
 
 
 
 

x  

   dx    
 

   
f(x) A(x) dx 

   
 

      
 

          
 

σ(x) A(x)    { σ(x) + dσ(x) dx } {A(x) + d A(x) dx } 
 

            

       dx  dx 
 

 
Figure 1 Force balance of a differential element in an axially loaded bar 

 

 

We had observed in Chapter 2 that the equilibrium equations could be written using the 

force balance method as well as the MPE principle. For the continuous model of an axially 

loaded bar, we just derived the equilibrium differential equation using the force-balance method. 

We will obtain the same equation using the MPE principle now. 

 

3.2 Derivation of the governing equation using the MPE principle 
 
In this method, first we need to write down the PE of the system. Since this is a continuous model, both 

SE and WP are integrals over the length of the bar. Note that 

SE = ∫(strain energy density) dV = ∫ 
1 

(stress) (strain) dV 
 

2 
 

dV dV  
 

 

 
 

 whose integrand is a function (in this case a differential 



 

  L 1  du(x)   du(x)   
 

 

= ∫   E    

 

  A(x)dx (5)  

 

2 
    

dx 
 

  0  dx    
 

WP = −∫L f (x) A(x) u(x) dx    (6) 
 

 0              
 

By denoting 
du(x) 

by u′, from Equations (5) and (6), the PE can be written as the sum of SE  

 
  

 

             
 

and WP.               
 

PE = SE +WP = ∫L 1 A(x)Eu′2 dx − ∫L f (x)A(x)u(x)dx (7) 
 

2 
 

      0     0   
 

 
As before, we have to minimize PE with respect to the deformation variables. Here, the deflection 

variable, u(x) is a continuous function, and the PE is an integral. In fact, PE in Equation (7) is called a 
 
functional in this case an integral 

relation) of some function u(x). 

 
 

Next we will show that if PE is minimized with respect to all kinematically admissible 

displacement u(x), then that u(x) satisfies the differential equation (4). To show this, consider the 

~ 
the variation from the exact 

 

kinematically admissible displacement  u (x) = u(x) +αδu(x)  where 
 

 ~ 
 

solution u(x) is given by the function δu(x) times the parameter α . Since u (x) must satisfy the same 
 

kinematical boundary conditions as u(x), it follows that δu(x = 0) = 0 

~ 
 

. With u (x) substituted in the 
 

place of u(x) in the PE expression in Equation (7), for a given δu(x) , we can regard the potential energy 
 

to be a function of the parameter α , i.e., PE(α) .  Then, minimizing PE(α) with respect to α and 
 

setting α = 0 gives the desired governing differential equation: 
 

 PE(α) = ∫L 1 EA(x)(u′+αδu′)2 dx − ∫L f (x)A(x)(u +α u)dx 
 

2 
 

  0  0   
 

 d (PE) 
 = ∫L EA(x)(u′+αδu′) δu′dx − ∫L f (x)A(x)(δ u )dx = 0 

 

 

dα 
 

 0    0  
 

By substituting α = 0 , we get   
 

 

d (PE) 
  

= ∫L EA(x)(u′) δu′dx − ∫L f (x)A(x)(δ u )dx = 0 

 

   
 

 

dα 
 

α=0 
 

  0 0   
 

     

 
3.5 

 
 
Integrating the expression in the last equation by parts and using the boundary conditions on δu(x) , we 
 

arrive at (note: we substitute u′ = du(x) to get back to our original notation)  
 



dx  
 

L   du(x)     
 

∫ 
d     

 
 EA(x)(  ) + f (x) A(x)  δudx = 0 (8)  
   

0 dx dx     
 

Since this last integral must vanish for all kinematically admissible δu when the potential energy of the 

deformed beam is minimized, it follows that the integrand itself must vanish, i.e.: 

 
d du(x)    

 

 EA(x)(  ) + f (x) A(x) = 0 (9)  
 

dx 
 

dx    
 

 
which is the same as Equation (4). 
 

 
We have demonstrated above that the MPE principle can be applied to continuous elastic systems 

as well. In fact, in doing so, we have utilized a fundamental mathematical approach in the calculus of 

variations. We could also have derived Equation (9) by applying what is known as Euler-Lagrange equation of 

calculus of variations. The Euler-Lagrange equation helps us minimize a functional (the PE expression in 

Equation (7) in our case) with respect to a function (in our case u(x)). It is given by 

 

d ∂(PE) 
− 

∂(PE) 
= 0 

 
 

 
 

∂u′ 
 

∂u 

(10)  
  

dx     
 

 
 

You should verify that Equation (10) also leads to Equation (9). 
 

 
Once again, the MPE principle gave us the solution with less work and more systematically as 

compared to the force-balance method. It is systematic in the following sense. If you were to derive the 

governing equilibrium differential equation for a beam, all you need is its PE, as opposed to the force-

balance method where you need to know much more about the internal forces. Much of the theoretical 

basis for the finite element method is rooted in the method we used above. In particular, Equation (10) is 

a fundamental equation in calculus of variations – an important mathematical tool in FEM formulations. 

Refer to any book on calculus of variations for more details. References to two books are given in the 

bibliography at the end. 



 
3.3 Rayleigh-Ritz method 
 
In Chapter 2, we solved a problem numerically the differential equation of which we derived in this 

chapter. We noted that the lumped-model method gives us deflections at only some discrete points 

(nodes), and we know nothing in between the nodes. Rayleigh-Ritz method is an alternative numerical 

method to solve the same equation in a simple way to know what happens in between as well. 

 

There is one more thing to bear in mind. The lumped-model method gave us a nice set of linear 

equations, which we can easily solve. Also, we reduced a continuous system to a discretized system so 

that we can easily implement it on the computer. We don’t want to lose these advantages in the Rayleigh-

Ritz method. Thus, the Rayleigh-Ritz method is another way to discretize the continuous model. 

 

Let us refer to Equation (7). We need to minimize PE to find u(x). If u(x) were to be a scalar 

variable, we could have minimized PE very easily as we did several times in Chapter 2. So, we have to 

employ a trick to get u(x) to become scalar variables somehow. We can do that as follows. 

 
 

Note from Figure 12 of Chapter 2 that as we increased the number of elements, the deflection 

curve converged to a continuous shape. And that shape looks like a parabola. So, the unknown function 

u(x) can be assumed to be a quadratic equation of the form shown below. 
 

u(x) = a 
0 
+ a x + a 

2 
x 2 (10) 

 

 1   
 

But, what we don’t know are three scalars viz. a0, a1, and a2. That is perfectly agreeable to us, because 

we can substitute for u(x) from Equation (10) into the expression for PE given in Equation (7). Then, we 

get PE in terms of scalar quantities as we wanted. Now invoke the MPE principle. 

 

Extremize  PE(a0 , a1 , a2 )  with respect  to a0 , a1 , & a2 (11) 
 

 
The conditions for solving the above are: 

 

∂( PE) = 0 i = 0, 1, 2 (12) 

∂ai   

 

Equations (12) result in three linear equations in a0, a1, and a2, which can easily be solved. In fact, you 

would note at once that a0 = 0 as u(x=0) = 0. That is our assumed function for u(x) should satisfy the 

 
boundary condition. Or in other words, it should be a kinematically admissible deformation. If you didn’t 

appreciate kinematic admissibility in Chapter 2, here is the second chance! 

 



Exercise 3.1 
 
For the same tapered bar problem considered in Chapter 1, use the Rayleigh-Ritz method. That is, write 

Equations (7), and (12) to solve for a0, a1, and a2. 
 

· Work it out by hand so that you can understand more.  
 

· Try it out with Maple also so that you can solve more interesting and larger problems.  
 

· Check the Rayleigh-Ritz solution with the lumped-model solution with a large number of 

elements.  

 

Exercise 3.2 
 
Consider the overhanging simply supported beam shown below in Figure 2. In order to use the Rayleigh-  
  2π x 

 

Ritz method, we would like to approximate the deflected profile, v(x) as  a cos  where L is the  

L 
 

   
 

length of the beam. Use the minimum potential energy principle to compute the unknown constant, a . 
· Draw the assumed deflected profile. Is it a kinematically admissible function?  

 
· Write down the expression for the strain energy of the beam.   

· What is the work potential due to each force (use yx=0 , yx=40 , and yx=80)?  
 

· Compute the expression for the total potential energy in terms of a .  
 

· Compute the value of a .  
 

 

 
 
 
 

 

3.8 
 
 

If a single assumed function is not adequate to represent the deformation, one can use more than 

one function for different parts of the structure. Each of these functions will have unknown coefficients 

which can be determined by minimizing PE. If more than one function is used, one needs to ensure 

continuity of the functions at points where they connect with each other. The following exercise uses this 

technique. 

 
 
Exercise 3.3 
 
Repeat the tapered bar problem if the area of cross-section varies as follows. Area at the top is the same as 

before (i.e., A0). The cross-section area remains constant up to the middle of the bar (x=0.5), and then 

increases parabolically to become three times A0 at the bottom. 
 

A1 (x) = A0 for 0 ≤ x ≤ 0.5 

A (x) = A (3 −8 +8x2 ) for 0.5 ≤ x ≤ 1 
2 0    

Use two different polynomials for the ranges (0 ≤ x ≤ 0.5) and (0.5 ≤ x ≤ 1) to approximate u(x) with two 

piece-wise continuous polynomials. Note that you should ensure continuity at x = 0.5 so that u(x) and its 



derivative are continuous. 

 
 
Exercise 3.4 
 
Comfy Beds, Inc. is considering a new design for the box-spring system. It consists of top and bottom 

grids of thin strips of metal connected by linear helical springs. A portion of this new box-spring system 

is shown in the figure. Use Rayleigh-Ritz method to determine the maximum deflections of the top and 

bottom beams. (see Figure 3). 

 

Use 
y1 = a1 x1 (x1 −l1 ) 

as the basis functions where y1 and y2 are the deformations of the top and   

y2  = −a2 x2
2 

 

         
 

bottom beams respectively. x1 and x2 are zero at the left end of each beam. 
 

(a) Do the above basis functions satisfy the kinematic admissibility conditions? Explain how. 
 

   L EI  2 y 
2 

 

(b) The strain energy for a beam is given by ∫  
 

   dx . Write the total strain energy stored in the  
   2  

   0 2 dx   
 

two beams and the spring in terms of a1 and a2. 
 

+ What is the work potential due to the applied force, F of 5 lb? (again in terms of a1 and a2).  
 

+ Use the principle of the minimum potential energy to find the equilibrium values of a1 and a2.  



Both beams have rectangular cross-section of thickness 0.1 in and a width of 1 in. The Young's modulus 

is 30E6 psi, and the spring constant, k is 10 lb/in. The applied force F is 5 lb. l1 and l2 are respectively 40 

in and 30 in. 

 

l1/2 l1/2 
 

 

Force = F 
 
 

A 
C 

B 
 

 
 

 k  
 

 

D 
 

E 

 

l2 
 

 

Figure 3 The schematic of the springs used by Comfy Beds, Inc. 
 
 
 

 

The Rayleigh-Ritz method is a powerful method to use if we know a priori, the nature of the 

function for the deformation. However, we may not be able to guess such a function or several piece-wise 

functions for any given problem. The FEM enables us to come up with such functions systematically. 

Those functions are called shape functions. They serve the following purpose. 

 

• Approximate the continuous deformation using piece-wise functions defined over elements.  
 

• Shape functions depend on some scalar quantities and those scalar quantities are nothing but the 

value of the deformation at the nodes.  
 

• Interpolation, i.e., knowing what happens within the element is readily available through shape 

functions.  



 

 
The following Table summarizes the basic concepts we laid out in Chapters 2 and 3. In 

the next chapter, we will study the shape functions and apply this concept to the axially loaded 

bars once again. This is the real beginning of our FEM discussion. 

 

Table 1 Comparison of three approaches to deformation analysis 
 
 Lumped-model Rayleigh-Ritz FEM 
    

Discretization Divide into segments Discretization concept In principle, it is the 

 (“element”). The is different. You do same as the lumped 

 value of the convert a continuous model, i.e., the 

 deformation at the problem into a discretization is 

 discrete points discrete problem. But, physical. 

 (“nodes”) are the the discrete (scalar)  

 unknown scalar unknowns are  

 quantities to be coefficients of the  

 determined using the assumed polynomials  

 MPE principle. (basis functions).  

Interpolation Not possible. You need to know the The procedure is 
  nature of the function systematic. 

  so that you can  

  approximate the Shape functions are 

  deformation curve used for interpolation 

  with one or more trial locally for small 

  (guess) functions elements. 

  globally.  

  The procedure is not  

  systematic.  

 

 

 



 
 
 

SOLUTION OF 1-D BARS 
 
Module 2 
 

Body force distribution for 2 noded bar element 

 

We derived shape functions for 1D bar, variation of these shape 
functions is shown below .As a property of shape function the value of 

N1 should be equal to 1 at node 1 and zero at rest other nodes (node 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

From the potential energy of an elastic body we have the expression of 

work done by body force as 



 
 
 
 
 

Where fb is the body acting on the system. We know the displacement 

function U = N1q1 + N2q2 substitute this U in the above equation we get 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This amount of body force will be distributed at 2 nodes hence the 

expression as 2 in the denominator. 



 
 
 
 
 
 

Surface force distribution for 2 noded bar element  

Now again taking the expression of work done by surface 

force from potential energy concept and following the same 

procedure as that of body we can derive the expression of surface 

force as 
 
 
 
 
 
 
 
 
 
 
 
 
 

Where Te is element surface force distribution. 

 

Methods of handling boundary conditions  
We have two methods of handling boundary conditions 

namely Elimination method and penalty approach method. Applying 

BC’s is one of the vital role in FEM improper specification of boundary 

conditions leads to erroneous results. Hence BC’s need to be accurately 

modeled. 
 

Elimination Method: let us consider the single boundary conditions 

say Q1 = a1.Extremising  results in equilibrium equation. 
 

Q = [Q1, Q2, Q3……….QN]T  be the displacement vector and 

 

F = [F1, F2, F3…………FN]T be load vector 

 

Say we have a global stiffness matrix as 
 

K11 K12 …………K1N 

K21 K22………….K2N 

. 

K = . 

. 

KN1   KN2…………..KNN 



 

 
 

Now potential energy of the form  = ½ QTKQ-QTF can written as 
 

 = ½ (Q1K11Q1 +Q1K12Q2+…..+ Q1K1NQN 

+ Q2K21Q1+Q2K22Q2+………. + Q2K2NQN 

………………………………………… 

……………………………………… .. 
 

+ QNKN1Q1+QNKN2Q2+……. +QNKNNQN)   
- (Q1F1 + Q2F2+…………………+QNFN)  

 

Substituting Q1 = a1 we have 

 

 = ½ (a1K11a1 +a1K12Q2+…..+ a1K1NQN 

+ Q2K21a1+Q2K22Q2+………. + Q2K2NQN 

………………………………………… 

……………………………………… .. 
 

+ QNKN1a1+QNKN2Q2+……. +QNKNNQN)   
- (a1F1 + Q2F2+…………………+QNFN)  

 

Extremizing the potential energy  

ie d/dQi = 0  gives  

Where i = 2, 3...N 
 

K22Q2+K23Q3+………. + K2NQN = F2 – K21a1 

K32Q2+K33Q3+………. + K3NQN = F3 – K31a1  

……………………………………………… 

KN2Q2+KN3Q3+………. + KNNQN = FN – KN1a1 

 

Writing the above equation in the matrix form we get 
 

K22 K23 …………K2N Q2 F2-K21a1 
 

K32 K33………….K2N Q3 F3-K31a1 
 

.  . 
=  

. 
 

.  

  
 

.    
 

KN2 KN3…………..KNN QN FN-KN1a1 
 



 
 
 
 
 

Now the N X N matrix reduces to N-1 x N-1 matrix as we know Q1=a1 

ie first row and first column are eliminated because of known Q1. 

Solving above matrix gives displacement components. Knowing the 
displacement field corresponding stress can be calculated using the 

relation  = Bq. 
 

Reaction forces at fixed end say at node1 is evaluated using the relation 
 

R1= K11Q1+K12Q2+……………+K1NQN-F1 
 
 

 

Penalty approach method: let us consider a system that is fixed at 
both the ends as shown 
 
 
 
 
 
 
 
 
 
 

 

In penalty approach method the same system is modeled as a spring 

wherever there is a support and that spring has large stiffness value as 

shown. 



 
 
 
 

Let a1 be the displacement of one end of the spring at node 1 and a3 be 

displacement at node 3. The displacement Q1 at node 1 will be 

approximately equal to a1, owing to the relatively small resistance 

offered by the structure. Because of the spring addition at the support 

the strain energy also comes into the picture of  equation .Therefore 

equation  becomes 
 

 = ½ QTKQ+ ½ C (Q1 –a1)2 - QTF 

 

The choice of C can be done from stiffness matrix as 
 
 
 
 
 

We may also choose 105 &106 but 104 found more satisfactory on most 

of the computers. 
 

Because of the spring the stiffness matrix has to be modified ie the 

large number c gets added to the first diagonal element of K and Ca1 

gets added to F1 term on load vector. That results in. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A reaction force at node 1 equals the force exerted by the spring on the 

system which is given by 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

To solve the system again the seven steps of FEM has to be followed, 

first 2 steps contain modeling and discretization. this result in 
 
 
 
 
 
 
 
 
 

 

Third step is finding stiffness matrix of individual elements 



 
 
 
 
 

Similarly 
 
 
 
 
 
 
 
 
 

 

Next step is assembly which gives global stiffness matrix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now determine global load vector 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

We have the equilibrium condition KQ=F 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

After applying elimination method we have Q2 = 0.26mm 
 
 
 

Once displacements are known stress components are calculated as 

follows 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Global load vector: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We have the equilibrium condition KQ=F 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After applying elimination method and solving matrices we have the 

value of displacements as Q2 = 0.23 X 10-3mm & Q3 = 2.5X10-4mm 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Global stiffness matrix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Global load vector: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solving the matrix we have 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 
 
 
 

Quadratic 1D bar element 

 

In the previous sections we have seen the formulation of 1D linear bar 

element , now lets move a head with quadratic 1D bar element which 

leads to for more accurate results . linear element has two end nodes 

while quadratic has 3 equally spaced nodes ie we are introducing one 

more node at the middle of 2 noded bar element. 

 

Consider a quadratic element as shown and the numbering scheme will 

be followed as left end node as 1, right end node as 2 and middle node 

as 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let’s assume a polynomial as 
 
 
 
 
 

 

Now applying the conditions as 
 
 
 
 
 
 

 

ie 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

Solving the above equations we have the values of constants 
 
 
 
 
 
 
 
 

 

And substituting these in polynomial we get 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Or 
 
 
 
 
 
 

Where N1 N2 N3 are the shape functions of quadratic element 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Graphs show the variation of shape functions within the element .The 

shape function N1 is equal to 1 at node 1 and zero at rest other nodes (2 

and 3). N2 equal to 1 at node 2 and zero at rest other nodes(1 and 3) and 

N3 equal to 1 at node 3 and zero at rest other nodes(1 and 2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Element strain displacement matrix If the displacement field is 
known its derivative gives strain and corresponding stress can be 

determined as follows 

 

WKT 
 
 
 
 
 
 
 
 
 
 
 

By chain rule 
 
 
 
 
 

Now 
 
 
 
 
 

 

Splitting the above equation into the matrix form we have 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Therefore 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B is element strain displacement matrix for 3 noded bar element 
 
 
 

Stiffness matrix: 

 

We know the stiffness matrix equation 
 
 
 
 
 

 

For an element 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Taking the constants outside the integral we get 
 
 
 
 
 
 

 

Where 
 
 
 
 
 

and BT
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now taking the product of BT X B and integrating for the limits -1 to 

+1 we get 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Integration of a matrix results in 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Body force term & surface force term can be derived as same as 2 

noded bar element and for quadratic element we have 
 
 
 

Body force: 
 
 
 
 
 
 

 

Surface force term: 
 
 
 
 
 
 
 

This amount of body force and surface force will be distributed at three 

nodes as the element as 3 equally spaced nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

Problems on quadratic element 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Global stiffness matrix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Global load vector 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

By the equilibrium equation KQ=F, solving the matrix we have Q2, Q3 

and Q4 values 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stress components in each element 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution to Simultaneous Algebraic Equations – Gauss Elimination 

Method: 

 

Consider n simultaneous equations ,  

a 11 x 1 + a 12 x 2 +, a 13 x 3 ………… + a 1n x n 

a 21 x 1 + a 22 x 2 + a 23 x 3 …………+ a 2n x n 

a 31 x 1 + a 32 x2 + a 33 x 3 ………… + a 3n x n 

an1 x 1 + a n2 x 2 + a n3 x 3 ………  + a nn x n 

write the given set of equations in matrix form, 

 
 

 b1   
 b2   
 b3  
 

· bn  



 

 

a 11 a 12 a 13 …. a 1n  x 1  b 1 
 

a 21 a 22 a 23 …. a 2n  x 2  b 2 
 

a 31 a 32 a 33 …. a 3n  x 3  b 3 
 

. . . ….   … 

= 

… 
 

. . . ….   … … 
 

. . . ….   …  … 
 

. . . ….   …  … 
 

a n1 a n2 a n3 …. a nn  x n  b n 
 

 

 

In Gauss elimination method the variables x2, … ………… …… x n-1, will be 

successively eliminated using Row Operations. This step is called forward elimination  
. The given matrix will be converted to into an upper triangular matrix, Lower triangular 
elements become zeros.     

After forward elimination the n
th

  equation (last equation) become simple , it as an 

equation with one variable xn , determine xn. Now using (n-1)
th

 equation xn-1 can be 

determined. Similarly using (n-2)
nd

  equation xn-2 can be determined. Using (n-3)
rd

 

equation xn-3 can be determined. Continue up to first equation until all the unknowns are 

determined. This is called backward substitution.   

Forward Elimination     

Step 1 : a11 becomes pivot, eliminate x1 from row2 , row3, row4, row n etc 

Row2 a 21 = a 21 - ( a 21 / a 11) a 11  a 21 becomes 0   

 a 22 = a 22 - ( a 21 / a 11) a 12 a 22 changes   

 a 23 = a 23 - ( a 21 / a 11) a 13 a 23 changes   

       1 
 
 

etc up to  a 1n = a 2n - ( a 21 / a 11) a 1n a 2n changes 

b2 = b2 - ( a 21 / a 11) b1 b2 changes   

whatever we did to make a 21 = 0 applied the same to other elements 

of that row       

Row3  a 31 = a 31 - ( a 31 / a 11) a 11 a 31 becomes 0 

a 32 = a 32 - ( a 31 / a 11) a 12 a 32 changes 

a 33 = a 33 - ( a 31 / a 11) a 13 a 33 changes 

etc up to  a 3n = a 3n - ( a 31 / a 11) a 1n     a 3n changes 

b3 = b3 - ( a 31 / a 11) b1 b3 changes 

whatever we did to make a 31 = 0 applied the same to other elements 



of that row      
 

 

……………………………………………………………………………… 

………………………………………………………………………………  
……………………………………………………………………………… 

Row n  a n1 = a n1 - ( a n1 / a 11) a 11 a n1 becomes 0 

a n2 = a n2 - ( a n1 / a 11) a 12 a n2 changes 

a n3 = a n3 - ( a n1 / a 11) a 13 a n3 changes 

etc up to a nn = a nn - ( a n1 / a 11) a 1n     a nn changes 

b3 = b3 - ( a 31 / a 11) b1 b3 changes  

whatever we did to make a n1 = 0 applied the same to other elements of that row. 
 
Now, re- write the whole matrix equation. First row remains same, elements of other 

rows will be different. 
 

Step2 : : a22 becomes pivot, eliminate x2 from row3 , row4, row5, etc., row n 

following the same method    

Now, re-write the whole matrix equation. First row , Second row remains same, 

elements of other rows will be different    

Step3 : : a33 becomes pivot, eliminate x3 from row4 , row5, row6, etc., row n 

following the same method    

Now, re-write the whole matrix equation. First row , Second row , Third row remains 

same, elements of other rows will be different   

Continue until the variables x2, x3, x4 … ……………………….… x n-1 will be 

successively eliminated and all the lower triangular elements becomes zero. 
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Backward substitution.  
After forward elimination the n

th
 equation (last equation) become simple , it as an 

equation with one variable x n , determine xn. Now , using (n-1)
th

 equation xn -1 can be 

determined. Similarly using (n-2)
nd

 equation xn-2 can be determined. Using (n-3)
rd

 

equation xn -3 can be determined. Continue up to first equation until all the unknowns 
are determined. The method is best understood by solving problems. 
 
 
 
 
Different Methods used to Solve Set of Simultaneous Equations in FEM. 

 
Method of Matrix Inversion  
Gauss elimination method  
Cholesky Decomposition Technique 

Gauss-Seidal Iteration Technique 

Relaxation Method 

 

Numerical examples illustrating Gauss elimination method : 

 

Problem 1. Solve the following set of equation by Gaussian elimination 

technique. 

 

5x1 + 3x2 + 2x3 + x4 = 4 

4x1 + 3x2 - 3x3 - 2x4 = 5  
x1 + 2x2 - 2x3 + 3x4 = 6 -

4x1 + 3x2 – 5x3 + 2x4 = 7 

 

Solution : Write the given equations in Matrix Form 
 
 
 

5 3 2  1   x1   4 
 

           
 

4 3 -3  -2   x2   5 
 

           
 

1 2 -2  3 *  
x3  = 

6 
 

         
 

           
 

-4 3 -5  2   x4   7 
 

        
 

  [ CO ] [ X ] = [ CONS ]  
 

  [ a ] [ x ] = [ b ]   
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Step 1 : a i j  = a i j – (a i1 / a 11) a 1j b i  = b i – (a i1 / a 11 ) b 1 

 i = 2, j = 1,2,3,4      

Row 2 i = 2 j = 1,2,3,4     

4 – (4/5) 5 = 4 – (4) = 0.0 3 – (4/5) 3 = 3 – 2.4  = 0.6   

-3 – (4/5)2 = -3 –1.6 = -4.6 -2 – (4/5) 1 = -2 – 0.8 = -2.8  

Row 3 i = 3 j = 1,2,3,4     

1 – (1/5)5 = 1 – 1 = 0.0 2 – (1/5)3 = 2 -0 .6  = 1.4   

-2 – (1/5) 2 = -2– 0.4= -2.4 3 – (1/5) 1 = 3 – 0.2 = 2.8   

Row 4 : i = 4 j = 1,2,3,4      

-4 – ( -4  / 5)5 = 4 - 4   = 0 3 – ( -4 / 5)3 = 3+2.4 = 5.4 

-5 – ( -4 /5) 2 = -5 + 1.6 = -3 .4  2 – ( -4 /5) 1 = 3 – 0.2 = 2.8 

b i = b i – (a i1/ a11) b 1      

i = 2 b2 = 5 – (4/5)4 = 1.8     

  i = 3 b3 = 6 – (1/5)4 = 5.2   

   i = 4 b4 = 7 – (-4/5)4 = 10.2 

 
The modified matrix equation , after eliminating x1 

from 2nd , 3rd and 4th equations. 
 

 

5 3 2 1  x1  4 

        

0 0.6 -4.6 -2.8  x2  1.8 

        

0 1.4 -2.4 2.8 * x3 = 5.2 
        

0 5.4 -3.4 2.8  x4  10.2 
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Step 2 : To eliminate x2 from Row 3 and Row 4  

a i j = a i j – (a i2 / a 22) a 2j b i = b i – (a i2 / a 22 ) b 2   i = 3, j = 2,3,4 

Row 3 i =3   j = 2,3,4   

1.4 – (1.4/0.6) 0.6 =1.4 – 1.4 = 0.0 j = 2 

-2.4 – (1.4/0.6) (-4.6) = – 2.4+10.73 =8.33 j = 3 

2.8 – (1.4/0.6)(-2.8) = -2.8 – 6.53 = 9.33 j = 4 

Row 4 i = 4   j = 2,3,4   

5.4– (5.4/0.6)0.6 = 5.4-5.4 = 0.0 j = 2 

-3.4 – (5.4/0.6)(-4.6) = -3.4+41.4 = 38  j = 3 

2.8 – (5.4/0.6)2.8 = 2.8 +25.2 = 28 j = 4 

 

b i = b i – (a i2/ a22) b 2 

 

i = 3  b3 = b3 – (a32/a22)b2 

5.2 - (1.4/0.6) 1.8 = 5.2 – 4.2 = 1 

 

i = 4  b4 = b4 – (a42/a22)b2  
10.2 - (5.4/0.6)1.8 = 10.2 -16.2 = -6 

 

The modified matrix after step 2 eliminating x2 from 3rd and 4th equations. 
 

 

5 3 2 1  x1  4 

        

0 0.6 -4.6 -2.8  x2  1.8 

        

0 0 8.33 9.32 * x3 = 1 
        

0 0 38 28  x4  -6 

        
 

 

Step 3 : To eliminate x3 from Row 4  

a i j = a i j – (a i3 / a 33) a 3j b i = b i – (a i3 / a 33 ) b 3 i = 4, j = 3,4 

a43 = a43 – (a43/ a33) a33 = 38 – (38 / 8.33) 8.33 = 38 – 38 = 0.0 
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a44 = a44- (a43/ a33) a34 = 28 - (38 / 8.33) 9.32    

= 28 – 42.52 = -1 4.52         

b i = b i – (a i3/ a33) b 3  i = 4,      

b4 = b4 - (a43/ a33) b3  b4 = -6 - (38 / 8.33) 1 =  - 6 - 4.56  = - 10.56 

The modified matrix, after step 3 , eliminating x3 from 4th equation. 

             

 5  3 2  1  x1  4   

            

 0 0.6 -4.6  -2.8  x2  1.8   

            

 0  0 8.33 9.32 * x3 = 1   
             

 0  0 0  -  x4  -   

      14.52    10.56  
 
 
Back Substitution: 

 

The modified equations are 

 

5 x1 + 3 x2 + 2 x3 + x4 = 4 

0.6 x2 – 4.6 x3 - 2.8 x4 = 1.8 

8.33 x3 + 9.32 x4 = 1 

-14.52 x4 = -10.56 

x4 = ( -1 0.56/ -1 4.52) = 0.727 

 

8.33 x3 + 9.32 (0.727 ) = 1  
x3 = (1 - 6.776) / 8.33 = - 0.693 

 

0.6 x2 – 4.6( - 0.693) -2.8 (0.727) = 

1.8 0.6 x2 = (1.8 - 3.1878 + 2.0356)  
x2 = (1.8 - 3.1878 + 2.0356) / 0.6 = 1.079 

 

5x1 + 3 (1.079) + 2 ( - 0.693) + 0.727 = 4 

x1 = ( 4 - 3 (1.079) + 2 (0.693) - 0.727 ) / 5 = 0.155 

 

x1= 0.155   x2=1.079   x3= - 0.693   x4= 0.727 
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Prob2 : Solve using gauss elimination method   
 

x1- 2x2 + 6 x3 = 0  2x1 +2x2 + 3x3 = 3  -x 1 + 3x2 = 2 
 

              
 

 1 -2   6    x1  

= 

0  
 

             
 

 

2 2 
  

3 
   

x2 
 

3 
 

 

         
 

              
 

 -1 3   0    x3   2  
 

             

Step 1 :   a 
 

i j = a i j – (a i1 / a11) a1j I = 2,3 j = 2,3 

    
 

     
 

2- (2/1)* 1 = 0  2 – (2/1) (-2) = 6 3 – (2/1) (6) = -9 
 

-1- (-1/1) 1 = 0  3 – (-1/1) (-2) = 1 0 – (-1/1) 6 = 6 
 

   bi = bi - (a i1 / a11) b1     
 

 3 – (2/1) *0 = 3 2 – (-1/1) *0 = 2   
 

Modified Matrix After step1        
 

             
 

 1 -2   6    x1  

= 

0  
 

             
 

 

0 6 
  

-9 
   

x2 
 

3 
 

 

         
 

              
 

 0 1   6    x3   2  
 

              
 

 

Step 2 : a i j = a i j – (a i2 / a22) a2j   i = 3 j = 2,3 
 

1 – (1/6)* (6) = 0  6 – (1/6) (-9) = 7.5 
 

bi = bi - (a i2 / a22) b2 
 

2 – (1/6) 3 = 1.5 
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Modified Matrix After step2       
 

                  
 

   1   -2   6   x1  

= 

 0  
 

                 
 

   

0 
  

6 
  

-9 
  

x2 
  

3 
 

 

             
 

                  
 

   0   0   7.5   x3    1.5  
 

                
 

Back Substitution :          
 

7.5 x3 = 1.5  x3 = 1.5 / 7.5 = 0.2   x3 = 0.2   
 

6 x2 – 9x3 = 3 x2=(3 + 9(0.2))/6 =0.8 x2 = 0.8   
 

x1 – 2x2 +6x3 = 0 x1 = 2(0.8)–6(0.2) = 0.4 x1 = 0.4   
 

Prob 3 :Solve using gauss elimination method   
 

4x1 +6x2 +8x3 = 2   8x1 +4x2 + 6x3 = 4 6x1 + 2x2+4x3= 6 
 

Solution :  writing the equations in matrix form   
 

              
 

 4  6  8  
= 

x1    2  
 

                
 

 8  4  6    x2    4  
 

               
 

 6  2  4    x3    6  
 

                  
 

 

Step 1 :   a i j = a i j – (a i1 / a11) a1j i = 2,3 j = 2,3  

8 - (8/4)* 4 = 0 4 – (8/4) (6) = -8 6  -( 8/4)8 = -10 

6 -( 6/4) 4 = 0 2 – (6/4 (6) = -7 4 – (6 /4) 8 = -8 

  bi = bi - (a i1 / a11) b1   

 4 – (8/4) 2 = 0 6 – (6/4) 2 = 3  
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Modified matrix equation after step 1   
 

        
 

 4 6 8 
= 

X1  2 
 

       
 

 0 -8 -10  X2  0 
 

        
 

 0 -7 -8  X3  3 
 

        
  

Step 2 : a i j = a i j – (a i2 / a22) a2j i = 3 j = 2,3    

   -7 – (-7/-8) (-8) = 0      

-8 -(-7 / -8 )( -10) = -8 +70/8 = -8 + 8.75 = 0.75 

 bi = bi - (a i2 / a22) b2      

   3 – (-7/-8) 0 = 3      

Modified matrix equation after step 2 :    

           

 4  6 8  X1   2  
           

 0  -8 -10  X2   0  
           

 0  0 0.75  x3   3  
           

 
 

0.75 x3 = 3   x3 = 3/0.75 = 4 x3 = 4 

-8 x2 -10 x3 = 0 -8x2 -10 (4) = 0 -8x2 = 40  x2 =  -5 

4x1+6x2 + 8x3 = 2 4x1+ 6(-5) +8(4) = 2 

x1 = (2+30 -32 ) / 4 =0  

x1 = 0  x2 = -5 x3= 4  
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Prob 4 : Solve using gauss elimination method 

3x1 -3x2 -2x3 = 5 2x1+2x2+3x3= 6 3x1 - 5x2+2x3= 7 



        

 3 -3 -2  5   

 2 2 3  6   

 3 -5 2  7   
 
Step 1 :     

a i j = a i j – (a i1 / a11) a1j   i = 2,3 j = 2,3   

2 - (2/3)3 = 0 2 - (2/3)(-3) = 4  3 -( 2/3)(-2) = 4.33 

3 -( 3/3) 3 = 0 -5 – (3/3 (-3) = -2 2 – (3/3)(-2) = 4 
 

bi = bi - (a i1 / a11) b1 
 

6 – (2/3) 5 = 6-10/3 = 2.667 7 – (3/3) 5 = 2 

Modified matrix is 

 

3 -3 -2  5 

0 4 4.33  2.667 

0 -2 4  2 
 
Step 2 : 

a i j = a i j – (a i2 / a22) a2j   i = 3 j = 2,3  
-2 - (-2/4)4 = 0 4 - (-2/4)(4.333) = 4+ 2.166 = 6.166 

 

bi = bi - (a i2 / a22) b2 
 
2 – (-2/4) 2.667 = 2+(2.667/2) = 2+1.333 = 3.333 

 

 3 -3 -2  5  

 0  4 4.33  2.667  

 0 0  6.166  3.333  

6.166 x3 = 3.333 x3 = ( 3.333/6.166) = 0.504 

 

4x2 + 4.333x3 = 2.667 4x2 = 2.667 - 4.333 (0.504) x2 = 

0.483 /4 = 0.120 
 
 
 
 
 

3x1 -3x2 – 2x3 = 5   3x1 -3(0.120) -2(0.504) = 5 

x1 = (5 + 0.360 +1.008) / 3 = 2.122 

x1 = 2.122  x2 =  0.120  x3 = 0.504 
 
 
 
 



HIGHER ORDER ELEMENTS 

 

 

Many engineering structures and mechanical components are subjected to loading in 

two directions. Shafts, gears, couplings, mechanical joints, plates, bearings, are few 

examples. Analysis of many three dimensional systems reduces to two dimensional, 

based on whether the loading is plane stress or plane strain type. Triangular elements or 

Quadrilateral elements are used in the analysis of such components and systems. The 

various load vectors, displacement vectors, stress vectors and strain vectors used in the 

analysis are as written below, 
 

the displacement vector u = [u, v]
T

 ,  
u is the  displacement along x direction, v is the displacement along y direction, 
 

the body force vector f = [ fx , fy]
T

  
fx , is the component of body force along x direction, fy is the component of body force 
along y direction 
 

the traction force vector T = [ Tx , Ty]
T

  
Tx , is the component of body force along x direction, Ty is the component of body force 
along y direction 
 

Two dimensional stress strain equations  
From theory of elasticity for a two dimensional body subjected to general 

loading the equations of equilibrium are given by 
 

[   x / x] + [  yx /  y ] + Fx  = 0 
 

[  xy / x ] + [   y / y] + Fy  = 0 
 

Also   xy =  yx 

 

The strain displacement relations are given by  

x = u / x, y = v / y, xy = u / y + v / x = [ u / x, v / y, 

( u / y + v / x) ]
T

 

The stress strain relationship for plane stress and plane strain conditions are given by the 

matrices shown in the next page.   x y xyx y    xy are usual stress strain 

components, v is the poisons ratio. E is young’s modulus. Please note the differences in 

[ D] matrix . 
 
 
 
 
 
 



 

Two dimensional elements  
Triangular elements and Quadrilateral elements are called two dimensional 

elements. A simple triangular element has straight edges and corner nodes. This is also a 

linear element. It can have constant thickness or variable thickness. 
 

 

The stress strain relationship for plane stress loading is given by 
 
 

x   1  V 0  z 
 

          

y 
= E / (1-v 

2
) 

V  1 0 
* 

y 
 

xy 0 
 

0 1-v / 2 yz 
 

    
 

         
 

  [   ] =  [ D ] [   ]    
 

 

The stress strain relationship for plane strain loading is give by 

 

x   1-v V 0  z 
 

        
 

y 

= E / (1+v)( 1-2v) 

V 1-v 0 

* 

y 
 

      

xy 0 0 ½ -v yz 
 

        
 

 
 

[   ] =  [ D ] [   ] 
 
 

 

The element having mid side nodes along with corner nodes is a higher order element. 

Element having curved sides is also a higher order element. 

A simple quadrilateral element has straight edges and corner nodes. This is also 

a linear element. It can have constant thickness or variable thickness. The quadrilateral 

having mid side nodes along with corner nodes is a higher order element. Element having 

curved sides is also a higher order element. 

The given two dimensional component is divided in to number of triangular 

elements or quadrilateral elements. If the component has curved boundaries certain small 

region at the boundary is left uncovered by the elements. This leads to some error in the 

solution. 
 
 
 
 
 
 

2 
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Constant Strain Triangle 
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Quadrilateral 
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Constant Strain Triangle  
It is a triangular element having three straight sides joined at three corners. and imagined 

to have a node at each corner. Thus it has three nodes, and each node is permitted to 

displace in the two directions, along x and y of the Cartesian coordinate system. The 

loads are applied at nodes. Direction of load will also be along x direction and y 

direction, +ve or –ve etc. Each node is said to have two degrees of freedom. The nodal 

displacement vector for each element is given by, 
 
 

q = [q 1 , q 2 , q 3 , q 4 , q 5 , q 6 ]   

q 1 , q 3 , q 5 are nodal displacements along x direction of node1, node2 and node3 

simply called horizontal displacement components. 

q 2 , q 4 , q 6 are nodal displacements along y direction of node1, node2 and node3 

simply called vertical displacement components. q 2j – 1  is the displacement component in 

x direction and q 2j is the displacement component in y direction. 

Similarly the nodal load vector has to be considered for each element. Point 

loads will be acting at various nodes along x and y ………………………… 

(x 1 , y 1), (x 2 , y 2) , (x 3 , y 3 )  are cartesian coordinates.of node 1 node 2 and node 3. 

 
In the discretized model of the continuum the node numbers are progressive, 

like 1,2,3,4,5,6,7,8……….etc and the corresponding displacements are Q 1 , Q 2 , Q 3 , 

Q 4, Q 5  Q 6 , Q 7 , Q 8 , Q 9 , Q10….. Q16 , two displacement components at each node. 
 

Q 2j – 1  is the displacement component in x direction and Q 2j is the displacement 

component in y direction.  Let j = 10, ie 10
th

 node, Q 2j – 1 = Q 19    Q 2j  = Q 20  
The element connectivity table shown establishes correspondence of local and global 

node numbers and the corresponding degrees of freedom. Also the (x1, y1), ( x2 ,y2 ) and 

(x3,y3) have the global correspondence established through the table. 
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Element Connectivity Table Showing 

Local – Global Node Numbers  
Element Local Nodes Numbers 

 

Number 1 2 3  
 

1 1 2 4 
Corres- 

 

    
 

2 4 2 7 
-ponding- 

 

3 
   

 

   
 

    
 

     
 

.. .. .. .. Global- 
 

     
 

11 6 7 10 Node-  

    
 

.. .. .. ..  
 

     
 

20 13 16 15 Numbers 
 

     
 

     
 

 
 
 
 
Nodal Shape Functions: u nder the action of the given load the nodes are assumed to 

deform linearly. element has to deform elastically and the deformation has to become 

zero as soon as the loads are zero. It is required to define the magnitude of deformation 
 
 
 
 
and nature of deformation for the element Shape functions or Interpolation functions are 

used to model the magnitude of displacement and nature of displacement. 

 

The Triangular element has three nodes. Three shape functions N1 , N2 , N3 are used at 

nodes 1,2 and 3 to define the displacements. Any linear combination of these shape 

functions also represents a plane surface.  
N1 =   , N2 =  , N3 = 1 –  – (1.8) 

 

The value of N1 is unity at node 1 and linearly reduces to 0 at node 2 and 3. It defines a 

plane surface as shown in the shaded fig. N2 and N3 are represented by similar surfaces 

having values of unity at nodes 2 and 3 respectively and dropping to 0 at the opposite 

edges. In particular N1 + N2 + N3 represents a plane at a height of 1 at nodes 1 , 2 and 3 

The plane is thus parallel to triangle 1 2 3. 
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Shape Functions N1 , N2 , N3  

For every N1 , N2 and N3 , N1 + N2 + N3 = 1 N1 N2  and N3 are   therefore not 

linearly independent.   

N1 =N2  =N3 = 1 –   –  , where and are natural coordinates 

The displacements inside the element are given by,    
u = N1 q1 + N2 q3 + N3 q5     

q 
 

v = N1 q2 + N2 q4 + N3 q6 writing these in the matrix form   
 

         q 
 

 u 

 

N 1 0   N  2 0   N  3 0 

* 

q 
 

 v 0 N 1     0 N  2     0 
N

  3 q 
 

q  
[ u ] = [ N ] [q ] 

q 
 

 
 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 
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Iso Paramatric Formulation :  
The shape functions N1, N2, N3 are also used to define the geometry of the element 

apart from variations of displacement. This is called Iso-Parametric formulation 

 
· u = N1 q1 + N2 q3 + N3 q5  

v = N1 q2 + N2 q4 + N3 q6 , defining variation of displacement. 

 

• x = N1 x1 + N2 x2 + N3 x3  
· y = N1 y1 + N2 y2 + N3 y3  , defining geometry.  

 

Potential Energy :  
Total Potential Energy of an Elastic body subjected to general loading is given by  

= Elastic Strain Energy + Work Potential 

= ½ 
T

 dv - u
T

 f dv - u
T

 T ds - u
T

i Pi  

 
For the 2- D body under consideration P.E. is given by  

= ½   
T

D  te dA -  u
T

 f t dA -  u
T

 T t dl  -  u
T

i Pi  

This expression is utilised in deriving the elemental properties such as  Element stiffness 

matrix  [K] ,  load vetors f 
e
 ,  T

e
  , etc .   

Derivation of Strain Displacement Equation and Stiffness Matrix for CST 

( derivation of [ B ] and [ K ] ) :     

Consider the equations      

u = N1 q1 + N2 q3 + N3 q5 v =  N1 q2 + N2 q4 + N3 q6  

x = N1 x1 + N2 x2 + N3 x3 y = N1 y1 + N2 y2 + N3 y3 Eq (1) 

We Know that u and v are functions of x and y and they in turn are functions 

ofand   .      

u = u ( x (  ,  ) , y (  , ) ) v = v ( x (  ,  ) , y (  , ) )  

taking partial derivatives for u , using chain rule, we have equation (A) given by 
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  u 

 

  u    x  

 

    u  y       
 

   .                                     
 

 

 
 

 x 
  

 
    

 y     
      

 

                  
 

   u    
 

   u     x 
 

  u     y       
 

  

 
     

 x 
   

 
 

 y 
   

 
      

 

                         
 

                                     Eq (A)     
 

 Similarly, taking partial derivatives for v using chain rule, we have equation (B) 
 

 given by                                         
 

     v   
 

    v    x  
 

   v   y 
 

    

 
  

 
   

 x   
 

 y   
 

               
 

  v    
 

  v     x     
 

   v     y     
 

  

   

 x  

 

 

    

 

 

y   

    
 

               
 

                                     Eq (B)     
 

  now consider equation (A), writing it in matrix form               
 

 

 
 u 

   x   y 
 

         

    

 

  

 

 

  =    
 

  u    x   y 
 

 

 
       

 

    

 

  

 
 

       
 

 

 

 u 
 x 
 u 
 y 
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 x   y  

Is called JACOBIAN [ J ] 
 

     

 

 

  
   

 

     
 

 x   y   
 

        

       
 

 

Jacobian is used in determining the strain components, now we can get 

 

 u 
 x 
 u 
 y 

 
 

 

= [ J ] 
– 1

 

 
 

 u 
 


 u 
 


 

In the Left vector  u / x =    x , is the strain component along x-dirction. 
 

 

Similarly writing equation (B) in matrix form and considering [J] we get , 

 

 v 
  

[ J ] 
– 1

 

 v  
 

=  
 

 

   

 x 
 

 

    

 v 

 
 

 v      
 

     

 

 
 

 y 
     

 

      
 

 

 

In the left vector   v / y =    y , is the strain component along y-direction.. 
 

u/ x =  x , v/ y =  y , xy =  u/ y +   v/ x 

We have to determine [J] , [J] 
-1

  which is same for both the equations. 

First we will take up the determination  u/ x =  x  and  u/ y using J and J
-1

 , 
 
 



 
Consider the equations 

u = N1 q1 + N2 q3 + N3 q5 v = N1 q2 + N2 q4 + N3 q6 

 
Substituting for  N1 , N2 and N3 , in the above equations we get  
u =   q1 +  q3 + (1 –  –  ) q5 = ( q1 - q5 )   + ( q3 - q5 )  + q5 

= q 15   + q 35    + q 5  
u /   = q15 u /   = q 35 

 

 

v =   q2 +  q4 + (1 –  –  ) q6 = ( q2 - q6)   + ( q4 - q6 )   + q6 

= q 26   + q 46   + q 6 

v /   = q 26 v /   = q 46 
 

 

Consider x = N1 x1 + N2 x2 + N3 x3 

y = N1 y1 + N2 y2 + N3 y3  
Substituting for  N1 , N2 and N3 , in the above equations we get 

 
x =   x1 +  x2 + (1 –  –  ) x3 

x = ( x1 - x3 )   + ( x2 - x3 )  + x3 = x 13   + x 23   + x3  
x /   = x13 x /   = q 23 

 

y =   y1 +  y2 + (1 –  –  ) y3 

y = ( y1 - y3 )   + ( y2 - y3 )  + y3 = y 13   + y 23   + y3  
y /   = y13 y /   = y23 

 
 

To determine [J] , [J] 
-1

  

u /   = q15 u /   = q 35 v /   = q 26 

x /   = x13 x /   = y23 y /   = y13 

 
 
 
 

v / = q 46 y 

/ = y23 

 
[ J ] =x / y / [J] = x13 , y13 x1 - x 3 , y1 - y 3 

x / y / x23 , y23 x2 - x 3 , y2 - y3 
 

To determine [ J ] 
-1

 : find out co factors [ J ] 
 

co-factors of x ij = (-1) 
i+j

 | | 

 
co-factors [co] = (y2 - y3), -(x2 - x 3) y23 , x32 

 -(y1 - y3), (x1 - x 3) y31, x13 
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Adj [J] = [co]
T

    =  y23 y31   
   x32 x13   

[J] 
-1

  = Adj [J] / | J |    

   [J] 
-1

 = ( 1/ |J| ) y23 y31 

    x32 x13 

Also we have     

u /   = q15 = q1- q5 u /   = q 35 = q3 –q5 

u / x =  [ J ] 
-1

    u /    

u / y   u /    

u / x = ( 1/ |J| ) y23  y31  q1- q5  

u / y   x32 x13  q3 –q5  

u / x = ( 1/ |J| ) y23 q1- q5 + y31 q3 –q5 

u / y   x32 q1- q5 + x13 q3 –q5 

u / x = ( 1/ |J| ) y23 q1- y23 q5 + y31 q3 – y31q5 

u / y   x32 q1- x32 q5 + x13 q3 – x13q5 

u / x = ( 1/ |J| ) y23q1 + y31 q3 - y23 q5– y31q5 

u / y   x32 q1 + x13 q3 - x32 q5– x13q5 

u / x = ( 1/ |J| ) y23q1 + y31 q3 - q5 (y2 - y3+ y3 -y1) 

u / y   x32 q1 + x13 q3 - q5 (x3 - x2+x1 - x3) 

u / x = ( 1/ |J| ) y23q1 + y31 q3 - q5 (y2 -y1) 

u / y   x32 q1 + x13 q3 - q5 ( - x2+x1) 

u / x = ( 1/ |J| ) y23q1 + y31 q3 + q5 (y1- y2) 

u / y   x32 q1 + x13 q3 + q5 (x2 -x1 ) 

u / x = ( 1/ |J| ) y23q1 + y31 q3 + y12 q5 

u / y   x32 q1 + x13 q3 + x21 q5 
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Writing the R.H.S of above equation in Matrix form 

 

u / x = 1/ |J| y23 0 y31 0 y12 0 q1 

u / y  x32 0 x13 0 x21 0 q2 

        q3 

q4  
q5  
q6  

…… eq (6) 
 

 

Similarly Considering equation (B) we get 

 

 v 
  

[ J ] 
– 1

 

 v  
 

=  
 

 

   

 x 
 

 

    

 v 

 
 

 v      
 

     

 

 
 

 y 
     

 

      
 

 
 

 

[ J ] =  x / y /   = x13 , y13 x1 - x 3 , y1 - y 3 

x /y /  x23 , y23 x2 - x 3 , y2 - y3 

[J] -1 = 1/ |J| y23 y31   

 x32 x13   

consider v = N1 q2 + N2 q4 + N3 q6  

v =   q2 +  q4 + (1 –  –  ) q6  

v = ( q2 - q6)   + ( q4 - q6 )   + q6 

= q26  + q46  + q6 

 

v / = q26 v 

/ = q46 
 

v / x = [ J ] 
-1

 

v / y 

 
 
 
 

 

v / v 

/ 
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v / x = ( 1/ |J| ) y23 y31 q2- q6 

v / y   x32 x13 q4 –q6 

v / x = ( 1/ |J| ) y23 (q2- q6) + y31 ( q4 –q6) 

v / y   x32 (q2- q6) + x13 (q4 –q6) 

v / x = ( 1/ |J| ) y23 q2- y23 q6 + y31 q4 – y31q6 

v / y   x32 q2- x32q6 + x13 q4 – x13q6 

v / x = ( 1/ |J| ) y23q2 + y31 q4 - y23q6– y31q6 

v / y   x32 q2 + x13 q4 - x32q6– x13q6 

v / x = ( 1/ |J| ) y23q2 + y31q4 - q6(y2 - y3+ y3 -y1) 

v / y   x32 q2 + x13 q4 - q6(x3 - x2+x1 - x3) 

canceling y3 and x3 , we get  

 
v / x = ( 1/ |J| ) y23q2 + y31q4 - q6(y2 -y1)  

v / y   x32 q2 + x13 q4 - q6( - x2+x1) 

v / x = ( 1/ |J| ) y23q2 + y31q4 + q6(y1 + y2) 

v / y   x32 q2 + x13 q4 + q6(x2+x1) 

v / x = ( 1/ |J| ) y23q2 + y31q4 + y12 q6  

v / y   x32 q2 + x13 q4 + x21q  

Writing in matrix form      

v / x = 1/ |J|  0 y23 0 y31 0 y12 q1 

v / y  0 x32 0 x13 0 x21 q2 

        q3 

        q4 

q5  
q6 
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TRUSSES 

ANALYSIS OF TRUSSES 

 

A Truss is a two force members made up of bars that are 

connected at the ends by joints. Every stress element is in either tension 

or compression. Trusses can be classified as plane truss and space truss. 

 

 Plane truss is one where the plane of the structure remain in 
plane even after the application of loads 



 While space truss plane will not be in a same plane 
 

Fig shows 2d truss structure and each node has two degrees of freedom. 

The only difference between bar element and truss element is that in 

bars both local and global coordinate systems are same where in truss 

these are different. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

There are always assumptions associated with every finite element 

analysis. If all the assumptions below are all valid for a given situation, 

then truss element will yield an exact solution. Some of the 

assumptions are: 
 

Truss element is only a prismatic member ie cross sectional 

area is uniform along its length   

It should be a isotropic material  

Constant load ie load is independent of 

time Homogenous material  
 
 

 



 
 

A load on a truss can only be applied at the  joints (nodes)  

Due to the load applied each bar of a truss is either induced 
with tensile/compressive forces   

The joints in a truss are assumed to be  frictionless pin joints  

Self weight of the bars are neglected 
 
 
 

 

Consider one truss element as shown that has nodes 1 and 2 .The 

coordinate system that passes along the element (xl axis) is called 
local coordinate and X-Y system is called as global coordinate 
system. After the loads applied let the element takes new position 

say locally node 1 has displaced by an amount q1
l and node2 has 

moved by an amount equal to q2
l.As each node has 2 dof in 

global coordinate system .let node 1 has displacements q 1 and q2 

along x and y axis respectively similarly q3 and q4 at node 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Resolving the components q1, q2, q3 and q4 along the bar we get two 

equations as 

 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 

Or 
 
 
 
 
 
 
 

 

Writing the same equation into the matrix form 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Where L is called transformation matrix that is used for local –global 

correspondence. 
 

Strain energy for a bar element we have 
 

U = ½ qTKq 

 

For a truss element we can write 
 

U = ½ qlT K ql
 

 

Where ql = L q and q1T = LT qT
 

 
 
 
 
 
 
 
 

 



 
 

Therefore 
 

U = ½ qlT K ql
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Where KT  is the stiffness matrix of truss element 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taking the product of all these matrix we have stiffness matrix for truss 

element which is given as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

Stress component for truss element 

 

The stress  in a truss element is given by 

 

= E 

 

But strain = B ql
 and ql = T q 

 
 
 
 
 
 
 

Therefore 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

How to calculate direction cosines 

 

Consider a element that has node 1 and node 2 inclined by an angle  

as shown .let (x1, y1) be the coordinate of node 1 and (x2,y2) be the 

coordinates at node 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

When orientation of an element is know we use this angle to calculate 

and m as: 
 

cos m = cos (90 -    sin 

 

and by using nodal coordinates we can calculate using the relation 
 
 
 
 
 
 
 

 

We can calculate length of the element as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 

 

3 
 

2 
 
 
 
 
 
 
 

 

1 
 
 
 
 
 
 

 

Solution: For given structure if node numbering is not given we have to 

number them which depend on user. Each node has 2 dof say q1 q2 be 

the displacement at node 1, q3 & q4 be displacement at node 2, q5 &q6 

at node 3. 
 

Tabulate the following parameters as shown 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For element 1  can be calculate by using tan = 500/700 ie  = 33.6, 

length of the element is 
 
 
 
 

= 901.3 mm  

Similarly calculate all the parameters for element 2 and tabulate 
 
 



 
 

Calculate stiffness matrix for both the elements 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Element 1 has displacements q1, q2, q3, q4. Hence numbering scheme 

for the first stiffness matrix (K1) as 1 2 3 4 similarly for K2 3 4 5 & 6 
as shown above. 
 

Global stiffness matrix: the structure has 3 nodes at each node 3 dof 

hence size of global stiffness matrix will be 3 X 2 = 6  

ie 6 X 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

From the equation KQ = F we have the following matrix. Since node 1 
is fixed q1=q2=0 and also at node 3 q5 = q6 = 0 .At node 2 q3 & q4 are 

free hence has displacements.  

In the load vector applied force is at node 2 ie F4 = 50KN rest other 

forces zero. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

By elimination method the matrix reduces to 2 X 2 and solving we get 

Q3= 0.28mm and Q4 = -1.03mm. With these displacements we 

calculate stresses in each element. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Solution: Node numbering and element numbering is followed for the 

given structure if not specified, as shown below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let Q1, Q2 …..Q8 be displacements from node 1 to node 4 

and F1, F2……F8 be load vector from node 1 to node 4. 
 

Tabulate the following parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Determine the stiffness matrix for all the elements 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Global stiffness matrix: the structure has 4 nodes at each node 3 dof 

hence size of global stiffness matrix will be 4 X 2 = 8  

ie 8 X 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

From the equation KQ = F we have the following matrix. Since node 1 

is fixed q1=q2=0 and also at node 4 q7 = q8 = 0 .At node 2 because of 

roller support q3=0 & q4 is free hence has displacements. q5 and q6 

also have displacement as they are free to move. 

In the load vector applied force is at node 2 ie F3 = 20KN and at node 3 

F6 = 25KN, rest other forces zero. 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solving the matrix gives the value of q3, q5 and q6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



BEAMS and SHAFTS 
Module-3 
 

Beam element  
Beam is a structural member which is acted upon by a system of 

external loads perpendicular to axis which causes bending that is 

deformation of bar produced by perpendicular load as well as force 

couples acting in a plane. Beams are the most common type of 

structural component, particularly in Civil and Mechanical 

Engineering. A beam is a bar-like structural member whose primary 

function is to support transverse loading and carry it to the supports 
 
 
 
 
 
 
 
 
 
 
 

A truss and a bar undergoes only axial deformation and it is 

assumed that the entire cross section undergoes the same displacement, 

but beam on other hand undergoes transverse deflection denoted by v. 

Fig shows a beam subjected to system of forces and the deformation of 

the neutral axis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

We assume that cross section is doubly symmetric and bending take 

place in a plane of symmetry. From the strength of materials we 

observe the distribution of stress as shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Where M is bending moment and I is the moment of inertia.  

According to the Euler Bernoulli theory. The entire c/s has the same 

transverse deflection V as the neutral axis, sections originally 

perpendicular to neutral axis remain plane even after bending 

 

Deflections are small & we assume that rotation of each section 

is the same as the slope of the deflection curve at that point (dv/dx). 

Now we can call beam element as simple line segment representing the 

neutral axis of the beam. To ensure the continuity of deformation at any 

point, we have to ensure that V & dv/dx are continuous by taking 2 dof 

@ each node V & (dv/dx). If no slope dof then we have only 

transverse dof. A prescribed value of moment load can readily taken 

into account with the rotational dof  . 
 

Potential energy approach  

Strain energy in an element for a length dx is given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

But we know  = M y / I substituting this in above equation we get. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

But 
 

 

Therefore strain energy for an element is given by 
 
 
 
 
 
 

Now the potential energy for a beam element can be written as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

Hermite shape functions:  
1D linear beam element has two end nodes and at each node 2 

dof which are denoted as Q2i-1 and Q2i at node i. Here Q2i-1 represents 

transverse deflection where as Q2i is slope or rotation. Consider a beam 
element has node 1 and 2 having dof as shown. 
 
 
 
 
 
 
 
 
 
 
 

The shape functions of beam element are called as Hermite shape 

functions as they contain both nodal value and nodal slope which is 

satisfied by taking polynomial of cubic order 
 
 
 
 
 
 

that must satisfy the following conditions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Applying these conditions determine values of constants as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solving above 4 equations we have the values of constants 
 
 

 

Therefore 
 
 

Similarly we can derive 
 
 
 
 
 
 
 
 
 

Following graph shows the variations of Hermite shape functions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Stiffness matrix:  

Once the shape functions are derived we can write the equation 

of the form 
 
 
 

 

But 
 
 
 
 
 
 

 

ie 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Strain energy in the beam element we have 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Therefore total strain energy in a beam is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now taking the K component and integrating for limits -1 to +1 we get 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Beam element forces with its equivalent loads  

Uniformly distributed load 
 
 
 
 
 
 
 
 

Point load on the element 
 
 
 
 
 
 
 
 
 
 

Varying load 
 
 
 
 
 
 
 
 
 
 
 

Bending moment and shear force  

We know 
 
 
 
 
 

Using these relations we have 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: 

Let’s model the given system as 2 elements 3 nodes finite 

element model each node having 2 dof. For each element determine 

stiffness matrix. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Global stiffness matrix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

Load vector because of UDL  

Element 1 do not contain any UDL hence all the force term for 
element 1 will be zero.  

ie 
 
 
 
 
 
 
 

 

For element 2 that has UDL its equivalent load and moment are 

represented as 
 
 
 
 
 
 
 

 

ie 
 
 
 
 
 
 
 
 
 
 
 
 
 

Global load vector: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

From KQ=F we write 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

At node 1 since its fixed both q1=q2=0 

node 2 because of roller q3=0  

node 3 again roller ie q5= 0  

By elimination method the matrix reduces to 2 X 2 solving this we 

have Q4= -2.679 X 10-4mm and Q6 = 4.464 X10-4mm 

 

To determine the deflection at the middle of element 2 we can write the 

displacement function as 
 
 
 

 

= -0.089mm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Solution: Let’s model the given system as 3 elements 4 nodes finite 

element model each node having 2 dof. For each element determine 

stiffness matrix. Q1, Q2……Q8 be nodal displacements for the entire 

system and F1……F8 be nodal forces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Global stiffness matrix: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Load vector because of UDL:  

For element 1 that is subjected to UDL we have load vector as 
 
 
 
 
 
 
 
 

 

ie 
 
 
 
 
 
 
 
 

 

Element 2 and 3 does not contain UDL hence 
 
 
 
 
 
 
 
 
 

 

Global load vector: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

And also we have external point load applied at node 3, it gets added to 

F5 term with negative sign since it is acting downwards. Now F 

becomes, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

From KQ=F 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

At node 1 because of roller support 

q1=0 Node 4 since fixed q7=q8=0  

After applying elimination and solving the matrix we determine the 

values of q2, q3, q4, q5 and q6. 
 
 
 
 

 



HEAT TRANSFER
Module 4 

Temperature effect on 1D bar element 

 

Lets us consider a bar of length L fixed at one end whose temperature 

is increased to T as shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Because of this increase in temperature stress induced are called as 

thermal stress and the bar gets expands by a amount equal to TL as 

shown. The resulting strain is called as thermal strain or initial strain 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

In the presence of this initial strain variation of stress strain graph is as 

shown below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We know that 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Therefore 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Therefore  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Extremizing the potential energy first term yields stiffness matrix, 

second term results in thermal load vector and last term eliminates that 

do not contain displacement filed 



 
 
 
 

Thermal load vector 

 

From the above expression taking the thermal load vector lets 

derive what is the effect of thermal load. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

Stress component because of thermal load 
 
 
 
 
 

 

We know  = Bq and o = T substituting these in above equation we 

get 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

Global stiffness matrix: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thermal load vector:  

We have the expression of thermal load vector given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Similarly calculate thermal load distribution for second element 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

Global load vector: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

From the equation KQ=F we have 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

After applying elimination method and solving the matrix we 

have Q2= 0.22mm 
 
 
 
 
 
 
 
 
 

 



 
 

 

Stress in each element: 
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Introduction

 Axisymmetric elements are 2-D elements
that can be used to model axisymmetric
geometries with axisymmetric loads

 These convert a 3-D problem to a 2-D
problem
◦ Smaller models

◦ Faster execution

◦ Easier postprocessing

 We only model the cross section, and
ANSYS accounts for the fact that it is really
a 3-D, axisymmetric structure (no need to
change coord. Systems)



Modeling

 To model this:

 We just need 

this:



Modeling

 To model this:
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Modeling

 To model this:

 We just need 

this:



Modeling

 To model this:

 We just need 

this:



How would you model this?



How would you model this?



How would you model this?



How would you model this?



Note

 In ANSYS, axisymmetric models must be
drawn in the x-y plane.

 The x-direction is the radial direction.

 The 2-D model will be rotated about the
y-axis (and always about x=0)

 Nothing in your model should be in the
region x<0

 In postprocessing, x will be the radial
stress, y will be the axial stress, and z

will be the “hoop” stress
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GeneralStepstobefollowedwhilesolvingaproblemonFluidfl
owthroughporousmediabyusingFEM:

1.Discretize and select the element type

2.Choose a potential function

3.Define the gradient / potential and velocity / gradient 
relationship

4.Derive the element stiffness matrix and equations

5.Assemble the element equations to obtain the global 
equations and introduce boundary conditions

6.Solve for the nodal potential

7.Solve for the element velocities and volumetric flow 
rates 



Points to be remembered: 
• 1. This is similar to one dimensional heat conduction 

problem 
• 2. The temperature function T is to be replaced by fluid 

velocity potential Ф 
• 3.The nodal temperature vector should be replaced by 

vector of nodal potential denoted by 
• 4. Fluid velocity v replaces heat flux q and permeability 

coefficient K for flow through porous medium replaces 
the conduction coefficient K 

• 5. If fluid flow through a pipe or around a solid body is 
considered, then K is taken as unity



• Navier-Stokes equations:

• Darcy law:

• K    is the matrix of permeability: porous
media characteristic
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• Poiseuille flow in a tube:
single-phase, horizontal flow steady and laminar no entrance and exit effects

mean velocity
radius
length
pressure gradient
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• Defining the porosity as φ=ΔVf/ΔVφ=ΔVf/ΔV,
where ΔV is the volume of the representative
elementary volume and ΔVfΔVf is the volume
of fluid in the representative elementary
volume, the flux of fluid per unit area (the
“Darcy velocity”) is given by the volume av



General Description of the finite element method 

Application of the finite element method to a structural problem demands
the subdivision of the structure into a number of discrete elements. Each
of these elements must satisfy three conditions

1. Equilibrium of forces; 

2. Compatibility of strains; and  The force displacement relationship specified 
by the geometric and elastic properties of the discrete element 

An equivalent set of conditions for a pipe network exist; hence, the ability to 
draw the analogy: 

• The algebraic sum of the flows at any joint or node must be zero. 

• The value of the piezometric head at a joint or node is the same for all 
pipes connected to that joint; and 

• The flow-head relationship {such as Darcy-Weisbach or Hazen-Williams} 
must be satisfied for each element or pipe. 

For Direct application of the finite element method involving a matrix 
solution, a linear relationship is required to define the element or pipe.



Hence there is a relationship of the form:

q = c h (1)

In which q = flow; h = head loss and c = the hydraulic properties of the pipe (to be
assumed).

The solution technique can be subdivided into three steps:

1. An initial value of the pipe coefficient. c, is selected for each pipe and is then
combined to yield the system matrix coefficient {C}. The system matrix is then
solved for the value of piezometric head at each joint.

2. The individual pipe flows, q, are computed by means of Eq. (1) using the difference
between the determined piezometric heads. These flows are then substituted in
the Darcy-Weisbach equation to calculate the pipe head losses. If the pipe head
losses obtained from Q the Darcy-Weisbach equation correspond to those
obtained from the matrix solution, then the unique solution, satisfying both the
Darcy-Weisbach equation and the linear equation (1) has been found.

3. If there is a difference between the values of head loss calculated by the two
methods, the values of c are changed to cause the problem to converge to a
solution.


