
no
tes
4fr
ee
.in

MODULE -1

BEGINNING WITH C++ AND ITS
FEATURES

GANESH Y
Dept. of ECE RNSIT

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

1 GANESH Y, Dept. of ECE RNSIT

MODULE -1
Beginning with C++ and its features

SYLLABUS

Beginning with C++ and its features: What is C++, Applications and structure of C++
program, Different Data types, Variables, Different Operators, expressions, operator
overloading and control structures in C++ (Topics from Chapter-2,3 of Text1).

Differences between POP and OOP

Procedure Oriented
Programming

 Object Oriented Programming

Divided Into In POP, program is divided into small
parts called functions.

 In OOP, program is divided into
parts called objects.

Importance In POP, Importance is not given
to data but to functions as well
as sequence of actions to be done.

 In OOP, Importance is given to the
data rather than procedures or
functions because it works as
a real world.

Approach POP follows Top Down approach. OOP follows Bottom Up
approach.

Access
Specifiers

POP does not have any access
specifier.

 OOP has access specifiers named
Public, Private, Protected, etc.

Data
Moving

In POP, Data can move freely from
function to function in the system.

 In OOP, objects can move and
communicate with each other
through member functions.

Expansion To add new data and function in POP
is not so easy.

 OOP provides an easy way to add
new data and function.

Data Access In POP, most function uses Global
data for sharing that can be accessed
freely from function to function in
the system.

 In OOP, data cannot move easily
from function to function, it can be
kept public or private so we can
control the access of data.

Data Hiding POP does not have any proper way
for hiding data so it is less secure.

 OOP provides Data Hiding so
provides more security.

Overloading In POP, Overloading is not possible. In OOP, overloading is possible in
the form of Function Overloading
and Operator Overloading.

Examples Example of POP are: C, VB,
FORTRAN, Pascal.

 Example of OOP are: C++, JAVA,
VB.NET, C#.NET.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

2 GANESH Y, Dept. of ECE RNSIT

Basic Concepts of Object-Oriented Programming

Objects:-

* Objects are the basic run time entities in an object-oriented system. They may
represent a person, a place, a bank account, a table of data or any item that the program
has to handle.

* They may also represent user-defined data such as vectors, time and lists,
Programming problem is analyzed in terms of objects and the nature of
communication between them.

* Program objects should be chosen such that they match closely with the real-world
objects. Objects take up space in the memory and have an associated address like a
record in Pascal or a structure in C.

Classes:-

* We just mentioned th.at objects contain data, and code to manipulate that data. The
entire set of data and code of an object can be made a user-defined data type with the
help of a class.

* In fact, objects are variables of the type class. Once a class has been defined, we can
create any number of objects belonging to that class. Each object is associated with the
data of type class with which they are created.

* A class is thus a collection of objects of similar type. For example, mango, apple and
orange are members of the class fruit. Classes are user-defined data types and behave
like the built-in types of a programming language.

* The syntax used to create an object is no different than the syntax used to create an
integer object in C. If fruit bas been defined as a class, then the statement

fruit mango;

will create an object mango belonging to the class fruit.

Data Encapsulation: -

* The wrapping up of data and functions into a single unit (called class) is known as
encapsulation. Data encapsulation is the most striking feature of a class.

* The data is not accessible to the out-side world, and only those functions which are
wrapped in the class can access it. These functions provide the interface between the
object's data and the program. This insulation of the data from direct access by the
program is called data hiding or information hiding.

Data Abstraction:-

* Abstraction refers to the act of representing essential features without including the
background details or explanations.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

3 GANESH Y, Dept. of ECE RNSIT

* Classes use the concept of abstraction and are defined as a list of abstract attributes
such as size, weight and cost and functions to operate on these attributes. They
encapsulate all the essential properties of the objects that are to be created. The
attributes are sometimes called data numbers because they hold information.

The functions that operate on these data are sometimes called methods or member
functions.

* Since the classes use the concept of data abstraction, they are known as Abstract Data
Types (ADT).

Inheritance:-

* Inheritance is the process by which objects of one class acquire the properties of
objects of another class. It supports the concept of hierarchical classification.

* In OOP, the concept of inheritance provides the idea of reusability. This means that
we can add additional features to an existing class without modifying it. This is possible
by deriving a new class from the existing one. The new class will have the combined
features of both the classes.

Polymorphism :-

* Polymorphism is another important OOP concept. Polymorphism a Greek term, means
the ability to take more than one form.

* An operation may exhibit different behaviors in different instances. The behavior
depends upon the types of data used in the operation. For example, consider the
operation of addition. For two numbers, the operation will generate a sum. If the
operands are strings. then the operation would produce a third string by
concatenation. The process of making an operator to exhibit different behaviors in
different instances is known as operator overloading.

* Similarly Using a single function name to perform different types of tasks is known
as function overloading.

Benefits of OOP

• Through inheritance, we can eliminate redundant code and extend the use of existing
classes.

• We can build programs from the standard working modules that communicate with
one another, rather than having to start writing the code from scratch. This leads to
saving of development time and higher productivity.

• The principle of data hiding helps the programmer to build secure programs that
cannot be invaded by code in other parts of the program.

• It is possible to have multiple instances of an object to co-exist without any
interference.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

4 GANESH Y, Dept. of ECE RNSIT

• It is possible to map objects in the problem domain to those in the program.

• It is easy to partition the work in a project based on objects.

• The data-centered design approach enables us to capture more details of a model in
implementable form.

• Object-oriented systems can be easily upgraded from small to large systems.

• Message passing techniques for communication between objects makes the interface
descriptions with external systems much simpler.

• Software complexity can be easily managed.

What is C++?

 C++ is an object-oriented programming language. It was developed by Bjarne
Stroustrup at AT&T Bell Laboratories in USA.

 C++ is an extension of C with a major addition of the class construct feature of
Simula67.

 Since the class was a major addition to the original C language, Stroustrup initially
called the new language 'C with classes'. However, later in 1983, the name was
changed to C++. The idea of C++ comes from the C increment operator ++, thereby
suggesting that C++ is an augmented (incremented) version of C.

 During the early 1990's the language underwent a number of improvements and
changes. In November 1997, the ANSI/ISO standards committee standardized these
changes and added several new features to the language specifications.

 C++ is a superset of C. Most of what we already know about C applies to C++ also.
Therefore. almost all C programs are also C++ programs. However, there are a few
minor differences that will prevent a C program to run under C++ compiler.

 The most important facilities that C++ adds on to C arc classes. inheritance, function
overloading, and operator overloading. Those features enable creating of abstract
data types, inherit properties &om existing data types and support polymorphism,
thereby making C++ a truly object-oriented language.

 The addition of new features has transformed C from a language that currently
facilitates top-down. structured design, to one that provides bottom-up, object
oriented design.

Applications of C++

C++ is a versatile language for handling very large Programs. It is suitable for virtually
any programming task including development of editors, compilers, databases,
communication systems and any complex real-life application systems.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

5 GANESH Y, Dept. of ECE RNSIT

• Since C++ allows us to create hierarchy-related objects, we can build special object,
oriented libraries which can be used later by many programmers.

• While C++ is able to map the real-world problem properly, the C part of C++ gives the
language the ability to get close to the machine-level details.

• C++ programs are easily maintainable and expandable. When a new feature needs to
be implemented, it is very easy to add to the existing structure of an object

A Simple C++ Program

Example of a C++ program that prints a string on the screen.
include <iostream> // include header file
using namespace std;
int main ()
{
 cout<<"Hello world\n"; // C++ statement
 return 0;
} // end of example

This simple program demonstrates several C++ features.

Program Features

Like C, the C++ program is a collection of functions. The above example contains only
one function, main(). As usual, execution begins at main().

Every C++ program must have a main(). C++ is a free-form language. With a few
exceptions, the compiler ignores carriage returns and white spaces. Like C, the C++
statements terminate with semicolons.

Comments

// This is an example of
// C++ program to illustrate
// Some of its features

The double slash comment is basically a single line comment. Multiline comments can
be written as follows:

/* This is an example of
C++ program to illustrate
Some of its features */

the double slash comment cannot be used in the manner as shown below:

for(j=0; j<n;/* loops n time*/ j++)

Output Operator

The only statement in above program is an output statement. The statement

 cout <<"Hello world\n";

causes the string in quotation marks to be displayed on the screen. This statement
introduces two new C++ features, cout and <<.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

6 GANESH Y, Dept. of ECE RNSIT

The identifier cout (pronounced as 'C out') is a predefined object that represents the
standard output stream in C++. Here, the standard output stream represents the
screen. It is also possible to redirect the output to other output devices.

The operator << is called the insertion or put to operator. It inserts (or sends) the
contents of the variable on its right to the object on its left as shown in fig.1.

Fig.1 output using insertion operator

The iostream File

We have used the following #include directive in the program:

#include <iostream>

This directive causes the preprocessor to add the contents of the iostream file to the
program. It contains declarations for the identifier cout and the operator <<.

Some old versions of C++ use a header file called iostream.h. This is one of the changes
introduced by ANSI C++.

Namespace

Namespace is a new concept introduced by the ANSI C++ standards committee. This
defines a scope for the identifiers that are used in a program. For using the identifiers
defined in the namespace scope we must include the using directive, like

using namespace std;

Here, std is the namespace where ANSI C++ standard class libraries are defined. All
ANSI C++ programs must include this directive. This will bring all the identifiers
defined in std to the current global scope. using and namespace are the new
keywords of C++.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

7 GANESH Y, Dept. of ECE RNSIT

Return type of main()

ln C++, main() returns an integer type value to the operating system. Therefore, every
main() in C++ should end with a return 0 statement; otherwise a warning or error
might occur.

Since main() returns an integer type value, return type for main() is explicitly specified
as int. Note that the default return type for all functions in C++ is int.

Variables

float number1, number2, sum, average;

All variables must be declared before they are used in the program.

Input Operator

The statement

cin >> number1;

is an input statement and causes the program to wait for the user to type in a number.
The number keyed in is placed in the variable number1. The identifier cin (pronounced
'C in ') is a predefined object in C++ that corresponds to the standard input stream.

The operator >> is known as extraction or get from operator. It extracts (or takes) the
value from the keyboard and assigns it to the variable on its right (Fig.2). This
corresponds to the familiar scanf () operation. Like <<, the operator >> can also be
overloaded.

Fig.2 Input using extraction operator

Cascading of I/0 Operators

The statement
cout <<"Sum="<< sum<<"\n";

first sends the string "Sum=" to cout and then sends the value of sum. Finally, it sends
the newline character so that the next output will be in the new line.

cout << "Sum=" << sum<<"\n"
 << "Average=" << average<<"\n";

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

8 GANESH Y, Dept. of ECE RNSIT

This is one statement but provides two lines of output. If you want only one line of
output, the statement will be:

cout << "Sum=" << sum<<","
 << "Average=" << average<<"\n";

We can also cascade input operator>> as shown below:

cin >>number1>> number2;

The values are assigned from left to right. That is, if we key in two values, say, 10 and
20, then 10 will be assigned to number1 and 20 to number2.

Structure of C++ Program

A typical C++ program would contain four sections as shown in Fig.3. These sections
may be placed in separate code files and then compiled independently or jointly.

Fig 3 structure of a C++ program

It is a common practice to organize a program into three separate files:

 The class declarations are placed in a header file and the definitions of member
functions go into another file.

 This approach enables the programmer to separate the abstract specification of the
interface (class definition) from the implementation details (member functions
definition).

 Finally, the main program that uses the class is placed in a third file which "includes"

 the previous two files as well as any other files required.

This approach is based on the concept of client-server model as shown in Fig. 4. The
class definition including the member functions constitute the server that provides
services to the main program known as client. The client uses the server through the
public interface of the class.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

9 GANESH Y, Dept. of ECE RNSIT

Fallowing program shows the use of class in a C++ program.

#include <iostream>
using namespace std;
class person
{
 char name[30];
 int age;
 public:
 void getdata(void);
 void display(void);
} ;
void person :: getdata (void)
{
 cout << "Enter name: ";
 cin >> name;
 cout << "Enter age: ";
 cin >> age;
}
void person :: display(void)
{
 cout << "\n Name: " << name;
 cout << "\n Age: " << age;
}
int main()
{
 person p;
 p.getdata();
 p.display();
 return 0;
}

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

10 GANESH Y, Dept. of ECE RNSIT

The program defines person as a new data of type class. The class person includes two
basic data type items and two functions to operate on that data. These functions are
called member functions. The main program uses person to declare variables of its
type. As pointed out earlier, class variables are known as objects. Here, p is an object
of type person.

Tokens

The smallest individual units in a program are known as tokens. C++ has the following
tokens:

• Keywords

• Identifiers

• Constants

• Strings

• Operators

Keywords

The keywords implement specific C++ language features. They are explicitly reserved
identifiers and cannot be used as names for the program variables or other user-
defined program elements. Table. 1 gives the complete set of C++ keywords.

Table 1 C++ keywords

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

11 GANESH Y, Dept. of ECE RNSIT

Identifiers

Identifiers refer to the names of variables, functions, arrays, classes, etc. created by the
programmer. They are the fundamental requirement of any language. Each language
has its own rules for naming these identifiers. The following rules are common to both
C and C++:

• Only alphabetic characters, digits and underscores are permitted.

• The name cannot start with a digit.

• Uppercase and lowercase letters are distinct.

• A declared keyword cannot be used as a variable name.

A major difference between C and C++ is the limit on the length of a name. While ANSI
C recognizes only the first 32 characters in a name, ANSI C++ places no limit on its
length and, therefore, all the characters in a name are significant.

Constants

Constants refer to fixed values that do not change during the execution of a program.

The wchar_t type is a wide-character literal introduced by ANSI C++ and is intended
for character sets that cannot fit a character into a single byte. Wide-character literals
begin with the letter L.

C++ also recognizes all the backslash character constants available in C.

Strings

C++ supports two types of string representation - the C-style character string and the
string class type introduced with Standard C++.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

12 GANESH Y, Dept. of ECE RNSIT

Basic Data types

Data types in C++ can be classified under various categories as shown in Fig. 5.

Fig. 5 C++ data types

 Both C and C++ compilers support all the built-in (also known as basic or
fundamental) data types.

 With the exception of void, the basic data types may have several modifiers
preceding them to serve the needs of various situations. The modifiers signed,
unsigned, long, and short may be applied to character and integer basic data types.

 However, the modifier long may also be applied to double. Data type
representation is machine specific in C++.

Table 2: size and ranges of C++ basic data types (for 16-bit word machine)

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

13 GANESH Y, Dept. of ECE RNSIT

The fallowing explanation of void data type can be understood properly after
discussion of pointers in module 4

The type void was introduced in ANSI C. Two normal uses of void are (1) to specify
the return type of a function when it is not returning any value, and (2) to indicate an
empty argument list to a function. Example:

void funct1(void);

Another interesting use of void is in the declaration of generic pointers. Example:

void *gp; // gp becomes generic pointer

A generic pointer can be assigned a pointer value of any basic data type, but it may not
be dereferenced. For example,

int *ip; // int pointer
gp = ip; // assign int pointer to void pointer

are valid statements. But, the statement,

*ip = *gp;

is illegal. It would not make sense to dereference a pointer to a void value.

Assigning any pointer type to a void pointer without using a cast is allowed in both
C++ and ANSI C. In ANSI C, we can also assign a void pointer to a non-void pointer
without using a cast to non-void pointer type. This is not allowed in C++. For example,

void *ptr1;
char *ptr2;
ptr2 = ptr1;

are all valid statements in ANSI C but not in C++. A void pointer cannot be directly
assigned to other type pointers in C++. We need to use a cast operator as shown below:

 ptr2 = (char *) ptr1;

User-Defined Data Types

Structures

Standalone variables of primitive types are not sufficient enough to handle real world
problems. It is often required to group logically related data items together. While
arrays are used to group together similar type data elements, structures are used for
grouping together elements with dissimilar types.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

14 GANESH Y, Dept. of ECE RNSIT

The general format of a structure definition is as follows:

struct name
{
 Variable name1;
 Variable name2;

};

Consider an example of a book, which has several attributes such as title, number of
pages, price etc. we can realize a book using structures as shown below:

struct book
{
 char title[25];
 char author[25];
 int pages;
 float price;
};
struct book book1, book2, book3;

here book1, book2 and book3 are declared as variables of the user-defined type book.
We can access the member elements by dot(.) operator as

book1.pages=300;

book2.price=275.75;

Unions

Unions are conceptually similar to structures as they allow us to group together
dissimilar type elements inside a single unit.

union book
{
 char title[25];
 char author[25];
 int pages;
 float price;
};

But there are significant differences between structures and unions as far as their
implementation is concerned.

The size of a structure type is equal to the sum of the sizes of individual member types.
However, the size of a union is equal to the size of its largest member element.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

15 GANESH Y, Dept. of ECE RNSIT

Table 3: Differences between structures and unions

Structures Unions

1.The keyword struct is used to define a
structure

1. The keyword union is used to define a
union.

2. When a variable is associated with a
structure, the compiler allocates the
memory for each member. The size of
structure is greater than or equal to the
sum of sizes of its members. The smaller
members may end with unused slack
bytes.

2. When a variable is associated with a
union, the compiler allocates the
memory by considering the size of the
largest memory. So, size of union is equal
to the size of largest member.

3. Each member within a structure is
assigned unique storage area of location.

3. Memory allocated is shared by
individual members of union.

4. The address of each member will be in
ascending order This indicates that
memory for each member will start at
different offset values.

4. The address is same for all the
members of a union. This indicates that
every member begins at the same offset
value.

5 Altering the value of a member will not
affect other members of the structure.

5. Altering the value of any of the member
will alter other member values.

6. Individual member can be accessed at
a time

6. Only one member can be accessed at a
time.

Class
C++ also permits us to define another user-defined data type known as class which can
be used, just like any other basic data type, to declare variables. The class variables are
known as objects, which are the central focus or object-oriented programming.

Enumerated Data Type

 An enumerated data type is another user-defined type which provides a way for
attaching names to numbers, thereby increasing comprehensibility of the code.

 The enum keyword (from C) automatically enumerates a list of words by assigning
them values 0,1,.2. and so on. This facility provides an alternative means for creating
symbolic constants. The syntax of an enum statement is similar to that of the struct
statement.

Example:

enum shape {circle, square, triangle};
enum colour {red, blue, green, yellow};
enum position {off, on};

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

16 GANESH Y, Dept. of ECE RNSIT

In C++, the tag names shape, colour, and position become new type names. By using
these tag names, we can declare new variables.

colour background = blue; // allowed
colour background = 7; // Error 1n C++
colour background = (colour) 7; //OK

However, an enumerated value can be used in place of an int value,

int c = red; // valid colour type promoted to int

By default, the enumerators are assigned integer values starting with 0 for the first
enumerator, 1 for the second, and so on. We can override the default by explicitly
assigning integer values to the enumerators. For example,

enum colour {red, blue=4, green=6};
enum colour {red =5, blue, green};

C++ also permits the creation of anonymous enums (i.e., enums without tag names).

enum {off, on};

Here, off is 0 and on is 1. These constants may be referenced in the same manner as
regular constants.

int switch1 = off;
int switch2 = on;

Derived Data Types

Arrays

The application of arrays in C++ is similar to that in C. The only exception is the way
character arrays are initialized. When initializing a character array in ANSI C, the
compiler will allow us to declare the array size as the exact length of the string
constant. For instance,

char string [3]= "xyz";

is valid in ANSI C. It assumes that the programmer intends to leave out the null
character (\0) in the definition. But in C++, the size should be one larger than the
number of characters in the string.

char string[4] = "xyz"; // OK for C++

Functions

Functions have undergone major changes in C++. While some of these changes are
simple, others require a new way of thinking when organizing our programs. Many of
these modifications and improvements were driven by the requirements of the object-
oriented concept of C++.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

17 GANESH Y, Dept. of ECE RNSIT

Pointers

Pointers are declared and initialized as in C. Examples:

int *ip; // int pointer
ip = &x; // address of x assigned to ip
*ip =10; // 10 assigned to x through indirection

C++ adds the concept of constant pointer and pointer to a constant.

char *const ptr1 ="Yes"; // constant pointer

We cannot modify the address that ptr1 is initialized to.

int const *ptr2 = &m; // pointer to a constant

ptr2 is declared as pointer to a constant. It can point to any variable of correct type, but
the contents of what it points to cannot be changed.

We can also declare both the pointer and the variable as constants in the following
way:

const char * const cp = "xyz";

This statement declares cp as a constant pointer to the string which has been declared
a constant. In this case, neither the address assigned to the pointer cp nor the contents
it points to can be changed.

Symbolic Constants

There are two ways of creating symbolic constants in C++:

• Using the qualifier const and

• Defining a set of integer constants using enum keyword.

const int size= 10;
char name[size];

This would be illegal in C but valid in C++. const allows us to create typed constants
instead of having to use #define to create constants that have no type information.

As with long and short, if we use the const modifier alone, it defaults to int. For
example,

const size =10;
//means
const int size =10;

C++ requires a const to be initialized. ANSI C does not require an initializer; if none is
given, it initializes the const to 0.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

18 GANESH Y, Dept. of ECE RNSIT

The scoping of const values differs. A const in C++ defaults to the internal linkage and
therefore it is local to the file where it is declared. In ANSI C, const values are global in
nature.

They are visible outside the file in which they are declared. However, they can be made
local by declaring them as static .

To give a const value an external linkage so that it can be referenced from another file.
we must explicitly define it as an extern in C++. Example:

extern const total = 100;

Another method of naming integer constants is by enumeration as under;

enum {X, Y, Z};

This defines X. Y and Z as integer constants with values 0, 1, and 2 respectively. This is
equivalent to:

const X=0;
const Y=1;
const Z=2;

We can also assign values to X, Y, and Z explicitly. For example:

enum {X=100, Y=50,Z=200};

Declaration of Variables

We know that, in C, all variables must be declared before they are used in executable

statements. This is true with C++ as well.

int main()
{
 float x; //declaration
 float sum = 0;
 for (int i=1;i<5;i++) //declaration
 {
 cin >> x;
 sum= sum +x;
 }
 float average; //declaration
 average = sum/(i-1):
 cout << average;
 return 0;

}

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

19 GANESH Y, Dept. of ECE RNSIT

Dynamic Initialization of Variables

C++ permits initialization of the variables at run time. This is referred to as dynamic
initialization, In C++, a variable can be initialized at run time using expressions at the
place of declaration.

For example

………………
int n = strlen(string);
………………
………………
float area =3.14159 * rad * rad;
………………

Dynamic initialization is extensively used in object oriented programming. We can
create exactly the type of object needed, using information that is known only at the
run time.

Reference Variables

C++ introduces a new kind of variable known as the reference variable. A reference
variable provides an alias (alternative name) for a previously defined variable.

A reference variable is created as follows:

data_type & reference_name = variable_name;

For example, if we make the variable sum a reference to the variable total, then sum
and total can be used interchangeably to represent that variable.

float total=100;
float & sum= total;

cout « total;

and

cout << sum;

both print the value 100. The statement

total = total + 10;

will change the value of both total and sum to 110. Reference variables are used as
function arguments, which will be discussed in call by reference method.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

20 GANESH Y, Dept. of ECE RNSIT

Where Variables Are Declared

Variables will be declared in three basic places: inside functions, in the definition of
function parameters, and outside of all functions. These are local variables, formal
parameters, and global variables.

Local Variables

 Variables that are declared inside a function are called local variables. In some
C/C++ literature, these variables are referred to as automatic variables.

 Local variables exist only while the block of code in which they are declared is
executing. That is, a local variable is created upon entry into its block and destroyed
upon exit.

For example, consider the following two functions:

void func1(void)
{

int x;
x = 10;

}
void func2(void)
{

int x;
x = -199;

}

Formal Parameters

 If a function is to use arguments, it must declare variables that will accept the values
of the arguments. These variables are called the formal parameters of the function.

 They behave like any other local variables inside the function. As shown in the
following program fragment, their declarations occur after the function name and
inside parentheses:

int fun1(char c)
{

c='a';
return 0;

}

Global Variables

 Unlike local variables, global variables are known throughout the program and may
be used by any piece of code. Also, they will hold their value throughout the
program's execution.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

21 GANESH Y, Dept. of ECE RNSIT

 We can create global variables by declaring them outside of any function. Any
expression may access them, regardless of what block of code that expression is in.

#include <stdio.h>
int count; /* count is global */
void func1(void);
int main(void)
{

count = 100;
func1();
return 0;

}
void func1(void)
{

int temp;
temp = count;
cout <<"count is"<<count; /* will print 100 */

}

Storage classes

There are four storage class specifiers supported by C++:

extern

auto

static

register

mutable

These specifiers tell the compiler how to store the subsequent variable. The general
form of a declaration that uses one is shown here.

storage_specifier type var_name;

extern

Because C/C++ allows separate modules of a large program to be separately compiled
and linked together, there must be some way of telling all the files about the global
variables required by the program. Although C technically allows you to define a global
variable more than once, it is not good practice (and may cause problems when
linking).

More importantly, in C++, you may define a global variable only once and inform all
files in program about these variables.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

22 GANESH Y, Dept. of ECE RNSIT

Automatic

Automatic storage class assigns a variable to its default storage type. auto keyword is
used to declare automatic variables.

However, if a variable is declared without any keyword inside a function, it is automatic
by default. This variable is visible only within the function it is declared and
its lifetime is same as the lifetime of the function as well. Once the execution of
function is finished, the variable is destroyed.

Syntax of Automatic Storage Class Declaration

datatype var_name1 [= value];

or

auto datatype var_name1 [= value];

Example of Automatic Storage Class

auto int x;
float y = 5.67;

Static

Static storage class ensures a variable has the visibility mode of a local variable
but lifetime of an external variable. It can be used only within the function where it is
declared but destroyed only after the program execution has finished.

When a function is called, the variable defined as static inside the function retains its
previous value and operates on it. This is mostly used to save values in a recursive
function.

For example,

static int x = 101;
static float sum;

File One
int x, y;
char ch;
int main(void)
{

/* ... */
}
void func1(void)
{

x = 123;
}

File Two
extern int x, y;
extern char ch;
void func22(void)
{
 x=y/10;
}
void func23(void)
{
 y=10;
}

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

23 GANESH Y, Dept. of ECE RNSIT

Register

Register storage assigns a variable's storage in the CPU registers rather than primary
memory. It has its lifetime and visibility same as automatic variable.

The purpose of creating register variable is to increase access speed and makes
program run faster. If there is no space available in register, these variables are stored
in main memory and act similar to variables of automatic storage class. So only those
variables which requires fast access should be made register.

For example,
register int id;
register char a;

Example of Storage Class

//C++ program to create automatic, global, static and register
variables.

#include<iostream>
using namespace std;
int g; //global variable, initially holds 0

void test_function()
{
 static int s; //static variable, initially holds 0
 register int r; //register variable
 r=5;
 s=s+r*2;
 cout<<"Inside test_function"<<endl;
 cout<<"g = "<< g <<endl;
 cout<<"s = "<< s <<endl;
 cout<<"r = "<< r <<endl;
}

int main()
{
 int a; //automatic variable
 g=25;
 a=17;
 test_function();
 cout<<"Inside main"<<endl;
 cout<<"a = "<<a<<endl;
 cout<<"g = "<<g<<endl;
 test_function();
 return 0;
}

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

24 GANESH Y, Dept. of ECE RNSIT

In the above program, g is a global variable, s is static, r is register and a is automatic
variable.

We have defined two function, first is main() and another is test_function().

Since g is global variable, it can be used in both function. Variables r and s are declared
inside test_function() so can only be used inside that function.

However, s being static isn't destroyed until the program ends. When test_function() is
called for the first time, r is initialized to 5 and the value of s is 10 which is calculated
from the statement,

s=s+r*2;

After the termination of test_function(), r is destroyed but s still holds 10. When it is
called second time, r is created and initialized to 5 again.

Now, the value of s becomes 20 since s initially held 10. Variable a is declared
inside main() and can only be used inside main().

Output
Inside test_function

g = 25

s = 10

r = 5

Inside main

a = 17

g = 25

Inside test_function

g = 25

s = 20

r = 5

Mutable
In C++, a class object can be kept constant using keyword const. This doesn't allow the
data members of the class object to be modified during program execution. But, there
are cases when some data members of this constant object must be changed.

For example, during a bank transfer, a money transaction has to be locked such that
no information could be changed but even then, its state has to be changed from
- started to processing to completed. In those cases, we can make these variables
modifiable using a mutable storage class.

Syntax for Mutable Storage Class Declaration

mutable datatype var_name1;

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

25 GANESH Y, Dept. of ECE RNSIT

For example,
mutable int x;
mutable char y;
Example of Mutable Storage Class

// C++ program to create mutable variable.
#include<iostream>
using namespace std;

class test
{
 mutable int a;
 int b;
 public:
 test(int x,int y)
 {
 a=x;
 b=y;
 }
 void square_a() const
 {
 a=a*a;
 }
 void display() const
 {
 cout<<"a = "<<a<<endl;
 cout<<"b = "<<b<<endl;
 }
};

int main()
{
 const test x(2,3);
 cout<<"Initial value"<<endl;
 x.display();
 x.square_a();
 cout<<"Final value"<<endl;
 x.display();
 return 0;
}

A class test is defined in the program. It consists of a mutable data member a. A
constant object x of class test is created and the value of data members are initialized
using user-defined constructor.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

26 GANESH Y, Dept. of ECE RNSIT

Since, b is a normal data member, its value can't be changed after initialization.
However a being mutable, its value can be changed which is done by
invoking square_a() method. display() method is used to display the value the data
members.

Output

Initial value Final value

a = 2 a = 4

b = 3 b = 3

Storage
Class

Keyword Lifetime Visibility Initial
Value

Storage Purpose

Automatic auto Function
Block

Local Garbage Stack
segment

Local variables used
by a single function

External extern Whole
Program

Global Zero Data
segment

Global variables used
throughout the
program

Static static Whole
Program

Local Zero Data
segment

Local variables
retaining their values
throughout the
program

Register register Function
Block

Local Garbage CPU
registers

Variables using CPU
for storage purpose

Mutable mutable Class Local Garbage Depends
on the
scope of
class

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

27 GANESH Y, Dept. of ECE RNSIT

Extra info (not in syllabus)

Operators

Operators are the symbols which tell the computer to execute certain mathematical or
logical operations. A mathematical or logical expression is generally formed with the
help of an operator. C ++ programming offers a number of operators which are
classified into different categories viz.

1. Arithmetic operators

2. Relational operators

3. Logical operators

4. Assignment operators

5. Bitwise operators

6. Special operators

1. Arithmetic Operators

Note: ‘%’ cannot be used on floating data type.

C programming allows the use of ++ and – operators which are increment and
decrement operators respectively. Both the increment and decrement operators are
unary operators. The increment operator ++ adds 1 to the operand and the decrement
operator – subtracts 1 from the operand. The general syntax of these operators are:

Increment Operator: m++ or ++m;

Decrement Operator: m--or --m;

In the example above, m++ simply means m=m+1; and m-- simply means m=m-1;
Increment and decrement operators are mostly used in for and while loops.

++m and m++ performs the same operation when they form statements independently
but they function differently when they are used in right hand side of an expression.

++m is known as prefix operator and m++ is known as postfix operator. A prefix
operator firstly adds 1 to the operand and then the result is assigned to the variable on

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

28 GANESH Y, Dept. of ECE RNSIT

the left whereas a postfix operator firstly assigns value to the variable on the left and
then increases the operand by 1. Same is in the case of decrement operator.

2.Relational Operators

Relational operators are used when we have to make comparisons. C programming
offers 6 relational operators.

3. Logical Operators

Logical operators are used when more than one conditions are to be tested and based
on that result, decisions have to be made. C programming offers three logical operators.
They are:

4. Assignment Operators

Assignment operators are used to assign result of an expression to a variable. ‘=’ is the
assignment operator in C. Furthermore, C also allows the use of shorthand assignment
operators. Shorthand operators take the form:

var op = exp;

5. Bitwise Operator

In C programming, bitwise operators are used for testing the bits or shifting them left
or right. The bitwise operators available in C are:

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

29 GANESH Y, Dept. of ECE RNSIT

7. Special operators:-

The ? Operator

C/C++ contains a very powerful and convenient operator that replaces certain
statements of the if-then-else form. The ternary operator ? takes the general form

Exp1 ? Exp2 : Exp3;

where Exp1, Exp2, and Exp3 are expressions.

The ? operator works like this: Exp1 is evaluated. If it is true, Exp2 is evaluated and
becomes the value of the expression. If Exp1 is false, Exp3 is evaluated and its value
becomes the value of the expression. For example, in

x = 10;

y = x>9 ? 100 : 200;

y is assigned the value 100. If x had been less than 9, y would have received the value

200. The same code written using the if-else statement is

x = 10;
if(x>9) y = 100;
else y = 200;

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

30 GANESH Y, Dept. of ECE RNSIT

The & and * Pointer Operators are discussed in module 4

The Compile-Time Operator sizeof

sizeof is a unary compile-time operator that returns the length, in bytes, of the variable

or parenthesized type-specifier that it precedes. For example, assuming that integers

are 4 bytes and doubles are 8 bytes,

double f;
printf("%d", sizeof (f));
printf("%d", sizeof(int));

The Comma Operator

The comma operator strings together several expressions. The left side of the comma

operator is always evaluated as void. This means that the expression on the right side

becomes the value of the total comma-separated expression. For example,

x = (y=3, y+1);

first assigns y the value 3 and then assigns x the value 4. The parentheses are necessary
because the comma operator has a lower precedence than the assignment operator.

The Dot (.) and Arrow (−>) Operators

In C, the . (dot) and the −>(arrow) operators access individual elements of structures

and unions. In C++, the dot and arrow operators are also used to access the members
of a class.

For example,

struct employee
{

char name[80];
int age;
float wage;

} emp;
struct employee *p = &emp; /* address of emp into p */

you would write the following code to assign the value 123.23 to the wage member of

structure variable emp:

emp.wage = 123.23;

However, the same assignment using a pointer to emp would be

p->wage = 123.23;

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

31 GANESH Y, Dept. of ECE RNSIT

Scope Resolution Operator

In C, the global version of a variable cannot be accessed from within the inner block.
C++ resolves this problem by introducing a new operator :: called the scope resolution
operator. This can be used to uncover a hidden variable. It takes the following form:

#include <iostream>
using namespace std;
int m = 10; // global m
int main()
{

int m = 20; // m redeclared, local to main
{

int k = m;
int m = 30; // m declared again
 // local to inner block
cout << "we are in inner block \n";
cout << "k =" << k << "\n";
cout << "m =" << m << "\n";
cout << "::m =" << ::m << "\n";

}
cout << "\n We are in outer block \n";
cout << "m = 11 "<< m << "\n";
cout << "::m =" << ::m << "\n";
return 0;

}
Output
We are in inner block
k = 20
m = 30
: : m = 10
We are in outer block
m = 20
: : m = 10

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

32 GANESH Y, Dept. of ECE RNSIT

Memory Management Operators

 C uses malloc() and calloc() functions to allocate memory dynamically at run
time. Similarly, it uses the function free() to free dynamically allocated memory.

 Although C++ supports these functions, it also defines two unary operators new and
delete that perform the task of allocating and freeing the memory in a better and
easier way. Since these operators manipulate memory on the free store, they are
also known as free store operators.

The new operator offers the following advantages over the function malloc().

1. It automatically computes the size of the data object. We need not use the operator
sizeof.

2. It automatically returns the correct pointer type, so that there is no need to use a
type cast.

3. It is possible to initialize the object while creating the memory space.

4. Like any other operator, new and delete can be overloaded.

 An object can be created by using new, and destroyed by using delete, as and when
required.

 A data object created inside a block with new, will remain in existence until it is
explicitly destroyed by using delete. Thus, the lifetime of an object is directly under
our control and is unrelated to the block structure of the program.

The new operator can be used to create objects of any type. It takes the following
general form:

pointer- variable = new data- type;

The new operator allocates sufficient memory to hold a data object of type data-type
and returns the address of the object. The data-type may be any valid data type. The
pointer-variable holds the address of the memory space allocated.

assign 25 to the newly created int object and 7.5 to the float object.

We can also initialize the allocated memory using the new operator. This is done as
follows:

pointer-variable = new data-type(value);

int *p = new int(25);
float *q = new float(7.5);

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

33 GANESH Y, Dept. of ECE RNSIT

similarly, memory for array data type can be allocated as

pointer-variable = new data- type[size];

int *p = new int[1O];

creates a memory space for an array of 10 integers. p[O] will refer to the first element,
p[1] to the second element, and so on.

When creating multi-dimensional arrays with new, all the array sizes must be
supplied.

array_ptr = new int[3][5][4]; // legal
array_ptr = new int[m][5][4]; // legal
array_ptr = new int[3][5][]; // illegal
array_ptr = new int[][5][4]; // illegal

When a data object is no longer needed, it is destroyed to release the memory space
for reuse. The general form of its use is:

delete pointer-variable;

delete p;

delete q;

If we want to free a dynamically allocated array, we must use the following form of

delete:

delete [size] pointer-variable;

Recent versions of C++ do not require the size to be specified. For example,

delete [] p;

will delete the entire array pointed to by p.

What happens if sufficient memory is not available for allocation? In such cases, like

malloc(), new returns a null pointer. Therefore, it may be a good idea to check for the

pointer produced by new before using it. It is done as follows:

..........
..........
p = new int;
if(!p)
{
 cout << "allocation failed \n";
}
..........
..........

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

34 GANESH Y, Dept. of ECE RNSIT

Member Dereferencing Operators

C++ permits us to define a class containing various types of data and functions as
members, C++ also permits us to access the class members through pointers. In order
to achieve this, C++ provides a set of three pointer-to-member operators.

::* To declare a Pointer to a member of a class

* To access a member using object name and a pointer to that member

->* To access a member using a pointer to the object and a pointer to

that member

Manipulators

Manipulators are operators that are used to format the data display. The most
commonly used manipulators are endl and setw.

The endl manipulator, when used in an output statement, causes a linefeed to be
inserted. It has the same effect as using the newline character "\n". For example,

cout <<"m = "<< m << endl
 << "n = " << n << endl
 << "p = " << p << endl;

If we assume the values of the variables as 2597, 14, and 175 respectively, the output
will appear as follows:

It should rather appear as under:

Here, the numbers are right-justified. This form of output is possible only if we can
specify a common field width for all the numbers and force them to be printed right-
justified. The setw manipulator does this job. It is used as follows:

cout << setw(5) <<sum<< endl;

The manipulator setw(5) specifies a field width 5 for printing the value of the variable

sum. This value is right-justified within the field as shown below:

 3 4 5

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

35 GANESH Y, Dept. of ECE RNSIT

//Use of manipulators
#include <iostream>
#include <iomanip> // for setw
using namespace std;
int main()
{

long pop1=2425785, pop2=47, pop3=9761;
cout << setw(8) <<"LOCATION"<< setw(12)<<"POPULATION"<< endl

 << setw(8) <<"Portcity"<< setw(12) << pop1 << endl
 << setw(8) <<"Hightown"<< setw(12) << pop2 << endl
 << setw(8) <<"Lowville"<< setw(12) << pop3 << endl;

return 0;
}

Type Cast Operator
C++ permits explicit type conversion or variables or expressions using the type cast

operator.

Traditional C casts are augmented in C++ by a function call notation as a syntactic
alternative. The following two versions are equivalent:

(type-name) expression // C notation
type-name (expression) // C++ notation

Examples:
average = sum/(float)i; // C notation
average = sum/float(i); // C++ notation

A type-name behaves as if it is a function for converting values to a designated type.
The function call notation usually leads to simplest expressions. However, it can be
used only if the type is an identifier. For example,

p = int* (q); // illegal

In such cases we must use C type notation.

p = (int*) q;

Alternatively, we can use typedef to create an identifier of the required type and use
it in the functional notation.

typedef int* int_pt;
p = int_pt(q);

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

36 GANESH Y, Dept. of ECE RNSIT

Expressions and their types

• Constant Expressions
• Integral Expressions
• Float Expressions
• Pointer Expressions
• Relational expressions
• Logical Expressions
• Bitwise Expressions

Constant Expressions

Constant Expressions consists of only constant values

15
12+1/2.0

'x'

Integral Expressions

Integral Expressions are those which produce integer results after implementing all
the automatic and explicit type conversions. Examples:

m
m = n - 5
m = 'x'
5 + int(2.0)

where m and n are integer variables.

Float Expressions

Float Expressions are those which, after all conversions, produce floating-point results.

Examples:

x + y
x * y / 10
5 + float(10)
10.75

where x and y are floating point variables.

Pointer Expressions

Pointer Expressions produce address values. Examples:

&m
ptr
ptr + l
"xyt"

where m is a variable and ptr is a pointer.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

37 GANESH Y, Dept. of ECE RNSIT

Relational Expressions

Relational Expressions yield results of type bool which takes a value true or false.
Examples:

x <= y
a+b ==c+d
m+n > 100

Relational expressions are also known as Boolean expressions.

Logical Expressions

Logical Expressions combine two or more relational expressions and produces bool
type results. Examples:

a>b && x== 1O
x==10 || y==5

Bitwise Expressions

Bitwise Expressions are used to manipulate data at bit level. They are basically used
for testing or shifting bits. Examples:

x << 3 // Shift three bit position to left
y >> 1 // Shift one bit position to right

Shift operators are often used for multiplication and division by powers of two.

Special Assignment Expressions

Chained Assignment

x=(y=1O);
or
x=y= 10;

First 10 is assigned to y and then to x.

A chained statement cannot be used to initialize variables at the time of declaration.
For instance, the statement

float a=b = 12.34; // is illegal.
This may be written as
float a=12.34, b=12.34; // correct

Embedded Assignment

x =(y = 5O) + 10;

Here, the value 50 is assigned to y and then the result 50+ 1O = 60 is assigned to x. This
statement is identical to

y =50;
x = y + 10;

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

38 GANESH Y, Dept. of ECE RNSIT

Compound Assignment

Like C, C++ supports a compound assignment operator which is a combination of the
assignment operator with a binary arithmetic operator. For example, the simple
assignment statement

x = x + 10;

may be written as

x += 10;

The operator += is known as compound assignment operator or short-hand
assignment operator. The general form of the compound assignment operator is:

variable1 op= variable2;

where op is a binary arithmetic operator. This means that

variable1 = variable1 op variable2;

Implicit Conversions

We can mix data types in expressions. For example,

m = 5 + 2.75;

is a valid statement. Wherever data types are mixed in an expression. C++ performs
the conversions automatically. This process is known as implicit or automatic
conversion.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

39 GANESH Y, Dept. of ECE RNSIT

When the compiler encounters an expression, it divides the expressions into sub
expressions consisting of one operator and one or two operands. For a binary operator,
if the operands type differ the compiler converts one of them to match with the other,
using the rule that the “smaller” type is converted to the “wider” type.

For example, if one of the operand is an int and the other is a float, the int is converted
into a float because a float is wider than an int. The “waterfall” model shown in above
figure illustrates this rule.

Whenever a char or short int appears in an expression, it is converted to an int. This
is called integral widening conversion. The implicit conversion is applied only after
completing all integral widening conversions.

Operator Overloading

Overloading means assigning different meanings to an operation, depending on the
context.

For example, the operator * when applied to a pointer variable gives the value pointed
by the pointer. But it is also commonly used for multiplying two numbers. The number
and type of operands decide the nature of operation to follow.

The input/output operators << and >>are good examples of operator overloading.
Although the built-in definition of the << operator is for shifting of bits, it is also used
for displaying the values of various data types. This has been made possible by the
header file iostream where a number of overloading definitions for << are included.

Thus, the statement

cout<<75.86;

invokes the definition for displaying a double type value, and

cout<<"well done";

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

40 GANESH Y, Dept. of ECE RNSIT

invokes the definition for displaying a char value. However, none of these definitions
in iostream affect the built-in meaning of the operator.

Almost all C++ operators can be overloaded with a few exceptions such as the member-
access operators (.and .*), conditional operator (?:), scope resolution operator
(::) and the size operator (sizeof).

Control Structures

One method of achieving the objective of an accurate, error resistant and maintainable
code is to use one or any combination of the following three control structures:

1. Sequence structure (straight line)

2. Selection structure (branching)

3. Loop structure (iteration or repetition)

Figure below shows how these structures are implemented using one-entry, one-exit
concept, a popular approach used in modular programming.

It i s important to understand that all program processing can be coded by using only
these three logic structures. The approach of using one or more of these basic control
constructs in programming is known as structured programming, an important
technique in software engineering.

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

41 GANESH Y, Dept. of ECE RNSIT

Using these three basic constructs, we may represent a function structure either in
detail or in summary form as shown in following Figs (a), (b) and (c).

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

42 GANESH Y, Dept. of ECE RNSIT

Like C, C++ also supports all the three basic control structures, and implements them
using various control statements as shown in following Fig. This shows that C++
combines the power of structured programming with the object-oriented paradigm.

The if statement

The if statement is implemented in two forms:

• Simple if statement

• lf…..else statement

Examples:

The switch statement

This is a multiple-branching statement where, based on a condition, the control is
transferred to one of the many possible points. This is implemented as follows:

Form 1
if(expression is true)
{
 action1;
}
action2;
action3;

Form 2
if (expression is
true)
{
 action1;
}
else
{
 action2;
}

action3;

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

43 GANESH Y, Dept. of ECE RNSIT

switch(expression)
{
 case l:
 {
 action1;
 }
 case 2:
 {
 action2;
 }
 case 3:
 {
 action3;
 }
 default:
 {
 action4;
 }
}

action5;

The do-while statement

The do-while is an exit-controlled loop. Based on a condition, the control is transferred
back to a particular point in the program. The syntax is as follows:

do
{
 action1;
}
while(condition is true);

act1on2;

The while statement

This is also a loop structure, but is an entry-controlled one. The syntax is as follows:

while(condition is true)
{

action1;
}
action2;

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

44 GANESH Y, Dept. of ECE RNSIT

The for statement

The for is an entry-controlled loop and is used when an action is to be repeated for a
predetermined number of times. The syntax is as follows:

for(initial value; test; increment)
{
 action1;
}

action2;

Exercise Questions and Solutions

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

45 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

46 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

47 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

48 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

49 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

50 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

51 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

52 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

53 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

54 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

55 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

56 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

57 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

58 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

59 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

60 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

61 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

62 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

63 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

64 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

65 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

66 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

67 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

68 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

69 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

70 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

71 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

72 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

73 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

74 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

75 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

76 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

77 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

78 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

79 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

80 GANESH Y, Dept. of ECE RNSIT

Gan
es

h
Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

MODULE -2

FUNCTIONS, CLASSES AND OBJECTS

GANESH Y
Dept. of ECE RNSIT

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

1 GANESH Y, Dept. of ECE RNSIT

MODULE -2
Functions, Classes and Objects

SYLLABUS

Functions, classes and Objects: Functions, Inline function, function overloading,
friend and virtual functions, Specifying a class, C++ program with a class, arrays within
a class, memory allocation to objects, array of objects, members, pointers to members
and member functions (Selected Topics from Chap-4,5 of Text1).

Introduction

We know that functions play an important role in C program development. Dividing a
program into functions is one of the major principles of top down, structured
programming. Another advantage of using functions is that it is possible to reduce the
size of a program by calling and using them at different places in the program.

Recall that we have used a syntax similar to the following in developing C programs.

void show(); /* Function declaration */
main ()
{

......
show(); /* Function call */
......

}
void show() /* Function definition */
{

.......

....... //Function body
}

When the function is called control is transferred to the first statement in function
body. The other statements in the function body are then executed and control returns
to the main program when the closing brace is encountered.

C++ is no exception. Functions continue to be the building blocks of C++ programs. In
fact, C++ bas added many new features to functions to make them more reliable and
flexible. Like C++ operators, a C++ function can be overloaded to make it perform
different tasks depending on the arguments passed to it. Most of these modifications
are aimed at meeting the requirements of object oriented facilities.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

2 GANESH Y, Dept. of ECE RNSIT

The Main Function

C does not specify any return type for the main() function which is the starting point
for the execution of a program. The definition of main() would look like this:

main ()
{

//main program statements

}

This is perfectly valid because the main() in C does not return any value. In C++, the
main() returns a value of type int to the operating system. C++, therefore, explicitly
defines main() as matching one of the following prototypes:

int main();

int main(int argc, char* argv[]);

The functions that have a return value should use the return statement for termination,
The main() function in C++ is, therefore, defined as follows:

int main ()
{

..........

..........
return 0;

}

Since the return type of functions is int by default. the keyword int in the main()
header is optional. Most C++ compilers will generate an error or warning if here is no
return statement.

Many operating systems test the return value (called exit value) to determine if there
is any problem. The normal convention is that an exit value of zero means the program
ran successfully. while a nonzero value means there was a problem. The explicit use of
a return(0) statement will indicate that the program was successfully executed.

Function Prototyping

Function prototyping is one of the major improvements added to C++ functions. The
prototype describes the function interface to the compiler by giving details such as the
number and type of arguments and the type of return values. With function
prototyping, a template is always used when declaring and defining a function.

When a function is called, the compiler uses the template to ensure that proper
arguments are passed, and the return value is treated correctly. Any violation in
matching the arguments or the return types will be caught by the compiler at the time

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

3 GANESH Y, Dept. of ECE RNSIT

of compilation itself. These checks and controls did not exist in the conventional C
functions.

Remember, C also uses prototyping. But it was introduced first in C++ and the success
of this feature inspired the ANSI C committee to adopt it.

However, there is a major difference in prototyping between C and C++. While C++
makes the prototyping essential, ANSI C makes it optional, perhaps, to preserve the
compatibility with classic C.

Function prototype is a declaration statement in the calling program and is of the
following form:

type function-name (argument-list);

The argument-list contains the types and names of arguments that must be passed to
the function.

Example:

float volume(int x, float y, float z);

Note that each argument variable must be declared independently inside the
parenthesis. That is, a. combined declaration like

float volume(int x, float y,z);

is illegal.

In a function declaration, the names of the arguments are dummy variables and
therefore they are optional. That is, the form

float volume(int , float, float);

is acceptable at the place of declaration. At this stage. the compiler only checks for the
type of arguments when the function is called.

In general, we can either include or exclude the variable names in the argument list of
prototypes. The variable names in the prototype just act as placeholders and, therefore,
if names are used, they don't have to match the names used in the function call or function
definition.

In the function definition, names are required because the arguments must be
referenced inside the function. Example:

float volume(float a, float b, float c)
{
 float v=a*b*c;

}

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

4 GANESH Y, Dept. of ECE RNSIT

The function volume() can be invoked in a program as follows:

float cube1= volume(b1,w1,h1); // Function call

The variable b1, w1, and h1 are known as the actual parameters which specify the
dimensions of cube1. Their types (which have been declared earlier) should match
with the types declared in the prototype. Remember, the calling statement should not
include type names in the-argument list.

We can also declare a function with an empty argument list, as in the following example:

void display();

Which is similar to

void display(void);

However, in C, an empty parenthesis implies any number of arguments. That is, we
have foregone prototyping. A C++ function can also have an 'open' parameter list by
the use of ellipses in the prototype as shown below:

void do_something(...);

The general form of a function is

ret-type function-name (parameter list)
{

body of the function
}

The parameter declaration list for a function takes this general form:

f(type varname1, type varname2, . . . , type varnameN)

f(int i, int k, int j) /* correct */
f(int i, k, float j) /* incorrect */

Call by Value

In traditional C, a function call passes arguments by value. The called function creates
a new set of variables and copies the values of arguments into them. The function does
not have access to the actual variables in the calling program and can only work on the
copies of values.

#include <stdio.h>
int sqr(int x)/* formal parameters */
{

x = x*x;
return(x);

}
int main(void)
{

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

5 GANESH Y, Dept. of ECE RNSIT

 int t=10,a;
 a=sqr(t); /* actual parameters */
 return 0;
}

Call by Reference

Provision of the reference variables in C++ permits us to pass parameters to the
functions by reference. When we pass arguments by reference. the formal arguments
in the called function become aliases to the 'actual' arguments in the calling function.
This means that when the function is working with its own arguments, it is actually
working on the original data.

swap (int &x, int &y)
{
 int temp;
 temp = x;
 x = y;
 y = temp;
}
int main()
{
 int i, j;
 i = 10;
 j = 20;
 swap(i, j);
 return 0;
}

// C style Call by reference using pointers

swap (int *x, int *y)
{
 int temp;
 temp = *x; /* save the value at address x */
 *x = *y; /* put y into x */
 y = temp; / put x into y */
}
int main()
{
 int i, j;
 i = 10;
 j = 20;
 swap(&i, &j); /* pass the addresses of i and j */
 return 0;
}

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

6 GANESH Y, Dept. of ECE RNSIT

This approach is also acceptable in C++. Note that the call-by-reference method is
neater in its approach.

Return by reference

A function can also return a reference. Consider the following function:

int & max(int &x, int &y)
{

if (x > y)
return x;

else
return y;

}
int main()
{
 int m=10,n=8,p;
 p=max(m,n); // p=m=10
 max(m,n)=-1; // returned variable=m=-1
 return 0;
}

Since the return type of max() is int &, the function returns reference to x or y (and
not the values). Then a function call such as max(m,n) will yield a reference to either
m or n depending on their values.

This means that this function call can appear on the left-hand side of an assignment
statement as max(m,n)=-1;

Inline Functions

One of the objectives of using functions in a program is to save some memory space.
Which becomes appreciable when a function is likely to be called many times.

However, every time a function it; called, it takes a lot of extra time in executing a series
of instructions for tasks such as jumping to the function, saving registers, pushing
arguments into the stack, and returning to the calling function.

When a function is small, a substantial percentage of execution time may be spent in such
overheads.

One solution to this problem is to use macro definitions, popularly known as macros.
Preprocessor macros are popular in C.

The major drawback with macros is that they are not really functions and therefore,
the usual error checking does not occur during compilation.

C++ has a different solution to this problem. To eliminate the cost of calls to small
functions, C++ proposes a new feature called inline function.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

7 GANESH Y, Dept. of ECE RNSIT

An inline function is a function that is expanded in line when it is invoked. That is, the
compiler replaces the function call with the corresponding function code (something
similar to macros expansion).

The inline functions are defined as follows:

inline function-header

{

function body

}

For example
inline double cube(double a)
{
 return(a*a*a);

}

The above inline function can be invoked by statements like

c = cube(3.0);

d = cube(2.5+1.5);

If the arguments are expressions such as 2.5 + 1.5, the function passes the value of the
expression, 4 in this case. This makes the inline feature far superior to macros.

We should exercise care before making a function inline. The speed benefits of inline
functions diminish as the function grows in size. At some point the overhead of the
function call becomes small compared to the execution of the function, and the benefits
of inline functions may be lost. In such cases, the use of normal functions will be
more meaningful.

Usually the functions are made inline when they are small enough to be defined in one
or two lines. Example:

inline double cube(double a){return(a*a*a);}

All inline functions must be defined before they are called.

Remember that the inline keyword merely sends a request, not a command, to the
Compiler. The compiler may ignore this request if the function definition is too long or
too complicated and compile the function as a normal function.

Some of the situations where inline expansion may not work are:

1. For functions returning values, if a loop, a switch, or a goto exists.

2. For functions not returning values, if a return statement exists.

3. If functions contain static variables.

4. If inline functions are recursive.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

8 GANESH Y, Dept. of ECE RNSIT

Inline expansion makes a program run faster because the overhead of a function call
and return is eliminated. However, it makes the program to take up more memory
because the statements that define the inline function are reproduced at each point
where the function is called. So a trade-off becomes necessary.

#include <iostream>
using namespace std;
inline float Mul(float x, floaty)
{
 return (x*y);
}
inline double Div(double p, double q)
{
 return(p/q);
}
int main()
{
 float a =12.345;
 float b = 9.82;
 cout << Mul(a.b) << "\n";
 cout << Div(a.b) << "\n";
 return 0;
}

output

121.228

l.25713

Default Arguments

C++ allows us to call a function without specifying all its arguments. In such cases, the
function assigns a default value to the parameter which does not have a matching
argument in the function call.

Default values are specified when the function is declared. The compiler looks at the
prototype(declaration) to see how many arguments a function uses and alerts the
program for possible default values.

float amount(float principal , int period, float rate=0.15) ;

The default value is specified in a manner syntactically similar to a variable
initialization.

The above prototype declares a default value of 0.15 to the argument rate. A
subsequent function call like

value=amount(5000,7) ; // one argument missing

the function use default value of 0.15 for rate. The call

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

9 GANESH Y, Dept. of ECE RNSIT

value=amount(5000,5,0.12); // no missing argument

passes an explicit value of 0.12 to rate

One important point to note is that only the trailing arguments can have default values
and therefore we must add defaults from right to left. We cannot provide a default
value to a particular argument in the middle of an argument list. Some examples of
function declaration with default values are:

int mul(int i,int j=5,int k=10); //legal
int mul(int i=5,int j); //illegal
int mul(int i=0,int j,int k=10); //illegal
int mul(int i=2,int j=5,int k=10); //legal

Example:

#include <iostream>
using namespace std;
void repchar(char='*', int=45); //declaration with
int main()
{
 repchar(); //prints 45 asterisks
 repchar('='); //prints 45 equal signs
 repchar('+', 30); //prints 30 plus signs
 return 0;
}
// displays line of characters
void repchar(char ch, int n) //defaults supplied
{
 for(int j=0; j<n; j++) //loops n times
 cout << ch; //prints ch
 cout << endl;

}

Advantages of providing the default arguments are:

1. We can use default arguments to add new parameters to the existing functions.

2. Default arguments can be used to combine similar functions into one.

Example 2:

#include<iostream>
using namespace std;
float value(float p, int n, float r=0.15) //prototype + defn
{
 int year = 1;
 float sum = p;
 while (year <= n)

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

10 GANESH Y, Dept. of ECE RNSIT

 {
 sum=sum*(1+r);
 year = year+1;
 }
 return (sum);
}
void printline(char ch='*', int len=40) //prototyp + defn
{
 for(int i=1; i<+len; i++) cout<<ch;
 cout<<"\n";
}
int main()
{
 float amount;
 printline(); //uses default values for arguments
 amount =value(5000.00,5); //default for 3rd argument
 cout<<"\n"<<"final value"<<amount<<"\n";
 printline('='); //default for 2nd argument
 return 0;

}

const Arguments

In C++, an argument to a function can be declared as const as shown below.

int strlen(const char *p) ;
int length(const string &s);

The qualifier const tells the compiler that the function should not modify the argument.
The compiler will generate an error when this condition is violated. This type of
declaration is significant only when we pass arguments by reference or pointers.

Recursion

Recursion is a situation where a function calls itself meaning, one of the statements in
the function definition makes a call to the same function in which it is present.

It may sound like an infinite looping condition but just as a loop has a conditional check
to take the program control out of the loop, recursive function also possesses a base
case which returns the program from the current instance of the function to call back
to the calling function.

Example 1:

//Calculating Factorial of a Number
#include <iostream>
#include <conio.h>

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

11 GANESH Y, Dept. of ECE RNSIT

using namespace std;
long fact (int n)
{
 if(n==0) //base case
 return 1;
 return (n* fact(n-1)); // recursive function call
}

 int main()
 {
 int num;
 cout<<"Enter a positive integer: ";
 cin>>num;
 cout<<"Factorial of "<<num<< "is"<<fact(num);
 getch();
 return 0;
 }

Example 2:

Tower of Hanoi is a mathematical puzzle where we have three rods and n disks. The
objective of the puzzle is to move the entire stack to another rod, obeying the following
simple rules:

1) Only one disk can be moved at a time.
2) Each move consists of taking the upper disk from one of the stacks and placing it
on top of another stack i.e. a disk can only be moved if it is the uppermost disk on a
stack.
3) No disk may be placed on top of a smaller disk.

Approach :

Take an example for 2 disks :

Let rod 1 = 'A', rod 2 = 'B', rod 3 = 'C'.

Step 1 : Shift first disk from 'A' to 'B'.

Step 2 : Shift second disk from 'A' to 'C'.

Step 3 : Shift first disk from 'B' to 'C'.

The pattern here is :

Shift 'n-1' disks from 'A' to 'B'.

Shift last disk from 'A' to 'C'.

Shift 'n-1' disks from 'B' to 'C'.

Image illustration for 3 disks:

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

12 GANESH Y, Dept. of ECE RNSIT

#include <iostream>
#include <conio.h>
using namespace std;
void TOH(int d, char tower1, char tower2, char tower3)
{
 if(d==1) //base case
 {
 cout<<"\n Shift top disk from tower "<<tower1<<" to tower
"<<tower2;
 return;
 }
 TOH(d-1,tower1,tower3,tower2); // recursive function call
 cout<<"\n Shift top disk from tower "<<tower1<<" to tower "<<
tower2;
 TOH(d-1,tower1,tower3,tower2); // recursive function call
}

 int main()
 {
 int disk;
 cout<<"Enter the no of disks: ";
 cin>>disk;
 if (disk<1)
 cout<<"\nThere are no disks to shift";
 else
 cout<<"\nThere are "<<disk<<"disks in tower1\n";
 TOH(disk,'1','2','3');
 cout <<"\n\n"<<disk<<" disks in tower 1 are shifted to tower
2";
 getch();
 return 0;}

GANESH
 Y

no
tes

4f
ree

.in

http://www.geeksforgeeks.org/wp-content/uploads/faq.disk3_.gif

no
tes
4fr
ee
.in

13 GANESH Y, Dept. of ECE RNSIT

Function Overloading

As stated earlier, overloading refers to the use of the same thing for different purposes.

C++ also permits overloading of functions. This means that we can use the same
function name to create functions that perform a variety of different tasks. This is
known as function polymorphism in OOP.

Using the concept of function overloading; we can design a family of functions with one
function name but with different argument lists. The function would perform different
operations depending on the argument list in the function call. The correct function to
be invoked is determined by checking the number and type of the arguments but not
on the function type.

For example, an overloaded add() function handles different types of data as shown
below:

//declarations
int add(int a, int b); //prototype 1
int add(int a, int b, int c); //prototype 2
double add(double x, double y); //prototype 3
double add(int p, double q); //prototype 4
double add(double p, int q); //prototype 5

// Function calls
cout << add(5, 10); //uses prototype 1
cout << add(15, 10.0); //uses prototype 4
cout << add(12.5, 7.5); //uses prototype 3
cout << add(5, 10, 15); //uses prototype 2

cout << add(0.75, 5) ; //uses prototype 5

Example:

#include<stdlib.h>
#include<iostream>
using namespace std;
int square(int x)
{

return x*x;
}
float square(float x)
{

return x*x;
}
int main()
{

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

14 GANESH Y, Dept. of ECE RNSIT

cout<<square(5)<<endl;
cout<<square(2.5f);
return 0;

}

A function call first matches the prototype having the same number and type of
arguments and then calls the appropriate function for execution. A best match must be
unique. The function selection involves the following steps:

1. The compiler first tries to find an exact match in which the types of actual arguments
are the same, and use that function.

2. If an exact match is not found, the compiler uses the integral promotions to the actual
arguments, such as,

char to int
float to double

to find a match

3. When either of them fails, the compiler tries to use the built-in conversions (the
implicit assignment conversions) to the actual arguments and then uses the function
whose match is unique. If the conversion is possible to have multiple matches, then the
compiler will generate an error message. Suppose we use the following two functions:

long square(long n)

double square(double)

A function call such as

square(1O)

will cause an error because int argument can be converted to either long or double,
thereby creating an ambiguous situation as to which version of square() should be
used.

4. If all of the steps fail, then the compiler will try the user defined conversions in
combination with integral promotions and built-in conversions to find a unique match.
User defined conversions are often used in handling class objects.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

15 GANESH Y, Dept. of ECE RNSIT

Example 2:

//function volume() is overloaded three times
#include <iostream>
using namespace std;
// declarations (prototypes)
int volume (int);
double volume (double, int);
long volume (long, int, int);
int main()
{
 cout<< volume(10) <<"\n";
 cout<< volume(2.5,8) <<"\n";
 cout<< volume(100l,75,15) <<"\n";
 return 0;
}

//function definitions
int volume(int s) //cube
{
 return (s*s*s);
}

double volume(double r, int h) // cylinder
{
 return (3.14519*r*r*h);
}
long volume (long l, int b, int h) // rectangular box
{
 return (l*b*h);
}

Overloading of the functions should be done with caution. We should not overload
unrelated functions and should reserve function overloading for functions that
perform closely related tasks.

Sometimes, the default arguments may be used instead of overloading. This may
reduce the number of functions to be defined.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

16 GANESH Y, Dept. of ECE RNSIT

Math Library Functions

The standard C++ supports many math functions that can be used for performing
certain commonly used calculations. Most frequently used math library functions are
summarized in following table.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

17 GANESH Y, Dept. of ECE RNSIT

Limitations of C Structure

The standard C does not allow the struct data type to be treated like built-in types. For

example, consider the following structure:

struct complex
{
float x;
float y;
};

struct canplex cl, c2, c3;

The complex numbers c1, c2, and c3 can easily be assigned values using the dot
operator, but we cannot add two complex numbers or subtract one from the other. For
example,

c3 = c1 + c2;

is illegal in C.

Another important limitation of C structures is that they do not permit data hiding.
Structure members can be directly accessed by the structure variables by any function
anywhere in their scope. In other words, the structure members are public membe.rs.

Extensions to Structures

In C++, a structure can have both variables and functions as members. It can also
declare some of its members as 'private' so that they cannot be accessed directly by
the external functions.

In C++, the structure names are stand alone and can be used like any other type names.
In other words, the keyword struct can be omitted in the declaration of structure
variables.

For example, we can declare the student variable A as

student A; // C++ decleration

Remember, this is an error in C.

C++ incorporates all these extensions in another user-defined type known as class.
There is very little syntactical difference between structures and classes in C++ and,
therefore. they can be used interchangeably with minor modifications. Since class is a
specially introduced data. type in C++, most of the C++ programmers tend to use the
structures for holding only data, and classes to hold both the data and functions.

Note: The only difference between a structure and a class in C++ is that, by default. the
members of a class are private, while, by default. the members of a structure are public.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

18 GANESH Y, Dept. of ECE RNSIT

Specifying a Class

When defining a class, we are creating a new abstract data type that can be treated
like any other built-in data type.

Generally, a class specification has two parts:

1. Class declaration

2. Class function definitions

The class declaration describes type and scope of its members. The class function
definitions describe how the class functions are implemented.

The general form of a class declaration is:

class class_name
{
 private:
 variable declarations;
 function declarations;
 public:
 variable declarations;
 function declarations;

};

The body of a class is enclosed within braces and terminated by a semicolon. The class
body contains the declaration of variables and functions.

These functions and variables are collectively called class members. They are usually
grouped under two sections, namely, private and public to denote which of the
members are private and which of them are public.

The keywords private and public are known as visibility labels. Note that these
keywords are followed by a colon.

The class members that have been declared as private can be accessed only from
within the class. On the other hand, public members can be accessed from outside the
class also.

The data hiding (using private declaration) is the key feature of object-oriented
programming. The use of the keyword private is optional. By default, the members of
a class are private.

The variables declared inside the class are known as data members and the functions
are known as member functions.

Only the member functions can have access to the private data members and private
functions. However, the public members (both functions and data) can be accessed
from outside the class.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

19 GANESH Y, Dept. of ECE RNSIT

The binding of data and functions together into a single class-type variable is referred
to as encapsulation.

A Simple Class Example

A typical class declaration would look like:

class item
{
 int number;//variables declaration
 float cost;// private by default

 public:
 void getdata(int a, float b);
 void putdata(void);

}; // ends with semicolon

The data members are private by default while both the functions are public by
declaration. The function getdata() can be used to assign values to the member
variables number and cost, and putdata() for displaying their values. These
functions provide the only access to the data members from outside the class.

Figure shows two different notations used by the OOP analysts to represent a class.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

20 GANESH Y, Dept. of ECE RNSIT

Creating Objects

item x; // memory for x is created

item p,q,r;

creates a variable x of type item. In C++, the class variables are known as objects.
Therefore, x is called an object of type item.

Note that class specification, like a structure, provides only a template and does not
create any memory space for the objects.

class item
{

} p,q,r;

Accessing Class Members

As pointed out earlier, the private data of a class can be accessed only through the
member functions of that class. The main() cannot contain statements that access
number and cost directly.

The following is the format for calling a member function:

object-name.function-name (actual-arguments);

For example, the function call statement

x.getdata(l00,75.5);

is valid and assigns the value 100 to number and 75.5 to cost of the object x by
implementing the getdata() function.

Similarly, the statement

x.putdata();

would display the values of data members.

getdata(l00,75.5); // error
x.number = 100; // error

class xyz
{
 int x;
 int y;
public:
 int z;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

21 GANESH Y, Dept. of ECE RNSIT

}
xyz p;
p.x =O;//error
p.z =10;// ok z is public

Defining Member Functions

Member functions can be defined in two places:

• Outside the class definition.

• Inside the class definition.

Outside the Class Definition

An important. difference between a member function and a normal function is that a
member function incorporates a membership 'identity label' in the header. This ‘label’
tells the compiler which class the function belongs to. The general form of a member
function definition is:

return_type class_name :: function_name (argument declaration)
{
 function body;
}

The membership label class-name:: tells the compiler that the function function-name
belongs to the class class_name.

void item :: getdata (int a, float b)
{
 number = a;
 cost =b;
}
void item :: putdata (void)
{
 cout << "Number=" << number << "\n";
 cout << "Cost=" << cost << "\n";
}

The member functions have some special characteristics that are often used in the

program development These characteristics are:

• Several different classes can use the same function name. The 'membership label' will

resolve their scope.

• Member functions can access the private data of the class. A non-member function

cannot do so. (However, an exception to this rule is a friend function discussed later.)

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

22 GANESH Y, Dept. of ECE RNSIT

• A member function can call another member function directly, without using the dot

operator.

Inside the Class Definition

Another method of defining a member function is to replace the function declaration

by the actual function definition inside the class.

class item
{
 int number;
 float cost;
public:
 void getdata (int a, float b);
 void putdata (void) // definition inside the
class
 {
 cout << "Number=" << number << "\n";
 cout << "Cost=" << cost << "\n";
 }

};

When a function is defined inside a class, it is treated as an inline function. Therefore,

all the restrictions and limitations that apply to an inline function are also applicable

here. Normally, only small functions are defined inside the class definition.

A C++ Program with Class

#include <iostream>
using namespace std;

class item
{
 int number;
 float cost;
public:
 void getdata (int a, float b);
 void putdata (void) // definition inside the class
 {
 cout << "Number=" << number << "\n";
 cout << "Cost=" << cost << "\n";
 }

};

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

23 GANESH Y, Dept. of ECE RNSIT

// Member Function Definition
void item :: getdata (int a, float b)
{
 number = a;
 cost = b;
}
// Main program
int main()
{

 item x;// creats object x
 cout << "\nobject x " << "\n";
 x.getdata(100, 299.95);
 x.putdata();
 item y;// creats another object y
 cout << "\nobject y " << "\n";
 y.getdata(200, 120.25);
 y.putdata();
 return 0;
}

Result:
object x
Number=100
Cost=299.95
object y
Number=200
Cost=120.25

Making an Outside Function Inline

We can define a member function outside the class definition and still make it inline by

just using the qualifier inline in the header line of function definition, Example:

inline void item :: getdata (int a, float b)
{
 number = a;
 cost = b;
}

Nesting of Member Functions

We just discussed that a member function of a class can be called only by an object of

that class using a dot operator. However, there is an exception to this. A member

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

24 GANESH Y, Dept. of ECE RNSIT

function can be called by using its name inside another member function of the same

class. This is known as nesting of member functions.

#include <iostream>
#include <conio.h>
#include <string>
using namespace std;

class binary
{
 string s;
public:
 void read (void)
 {
 cout << "Enter a binary number: ";
 cin >> s;
 }
void chk_bin (void)
{
 for(int i=0; i<s.length();i++)
 {
 if (s.at(i) != '0' && s.at(i) != '1')
 {
 cout < " \nincorrect binary number format ... the
program will quit";
 getch ();
 exit (0);
 }
 }
}
void ones(void)
{
 chk_bin(); //calling member function
 for(int i=0;i<s.length();i++)
 {
 if(s.at(i)=='0')
 s.at(i)='1';
 else
 s.at(i)='0';
 }
}
void displayones()
{
 ones(); //calling member function

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

25 GANESH Y, Dept. of ECE RNSIT

 cout<<"\nThe ones complement of the above binary number is:
"<<s;
}
};
int main ()
{
 binary b;
 b.read() ;
 b.displayones();
 getch();
 return 0;
}

Private Member Functions

Tasks such as deleting an account in a customer file, or providing increment to an

employee are events of serious consequences and therefore the functions handling

such tasks should have restricted access. We can place these functions in the private

section.

A private member function can only be called by another function that is n

member of its class. Even an object cannot invoke a private function using the

dot operator. Consider a class as defined below:

class sample
{
int m;
void read(void); // private member function
public:
void update(void);
void write (void);
};

If s1 is an object of sample then

s1.read(); // won't work; objects cannot access
 //private members

However, the function read() can be called by the function update() to update the value

of m.

void sample::update(void)
{
 read(); // simple call; no object used
}

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

26 GANESH Y, Dept. of ECE RNSIT

Arrays within a Class

The arrays can be used as member variables in a class. The following class definition is

valid.

const int size= 1O; // provides value for array size
class array
{
 int a [size]: // 'a' ts tnt type array
 public:
 void setval(void):
 void display(void);
};

The array variable a[] declared as a private member of the class array can be used in

the member functions, like any other array variable. We can perform any operations

on it.

For instance, in the above class definition, the member function setval() sets the values

of elements of the array a[], and display() function displays the values. Similarly, we

may use other member functions to perform any other operations on the array values.

Let us consider a shopping list of items for which we place an order with a dealer every

month. The list includes details such as the code number and price of each item. We

would like to perform operations such as adding an item to the list, deleting an item

from the list and printing the total value of the order. Following program shows how

these operations are implemented using a class with arrays as data members.

#include <iostream>
using namespace std;
const int m=50;
class items
{
 int itemcode[m];
 float itemprice[m];
 int count;
 public:
 void cnt(void) {count = 0;} // initializes count to 0
 void getitem(void);
 void displaysum(void);
 void remove(void);
 void displayitems(void);
};
//==

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

27 GANESH Y, Dept. of ECE RNSIT

void items::getitem(void) // assign values to data members
 //of item

{
 cout <<"enter item code : ";
 cin >>itemcode[count];
 cout<<"enter item cost:";
 cin >>itemprice[count];
 count++;
}
void items::displaysum(void) //display total value of all

 //items
{
 float sum=0;
 for(int i=0; i<count; i++)
 sum=sum+itemprice[i];
 cout<<"\ntotal value :" <<sum<<"\n";
}
void items::remove(void) // delete a specified item
{
 int a;
 cout<<"\n enter item code";
 cin >>a;
 for(int i=0; i<count; i++)
 if (itemcode[i]==a)
 itemprice[i]=0;
}
void items:: displayitems(void) //displaying items
{
 cout<<"\n code price\n";
 for(int i=0; i<count; i++)
 {
 cout<<"\n"<<itemcode[i]
 <<" "<<itemprice[i];
 }
 cout<<"\n ";
}

//==
int main()
{
items order;
order.cnt();
int x;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

28 GANESH Y, Dept. of ECE RNSIT

do
 {
 cout << "\nyou can do the following;"
 << " enter appropriate number \n";
 cout <<"\n1 : add an item";
 cout <<"\n2 : display total value";
 cout <<"\n3 : delete an item";
 cout <<"\n4 : display all items";
 cout <<"\n5 : quit";
 cout <<"\nwhat is your option? ";
 cin>>x;
 switch (x)
 {
 case 1:order.getitem(); break;
 case 2:order.displaysum(); break;
 case 3:order.remove(); break;
 case 4:order.displayitems(); break;
 case 5: break;
 default: cout<<"\n error in input; try again\n";
 }

 } while (x!=5);
 return 0;
}
The sample output of above code is

you can do the following; enter appropriate number
1 : add an item
2 : display total value
3 : delete an item
4 : display all items
5 : quit
what is your option? 1
enter item code : 111
enter item cost:100

you can do the following; enter appropriate number
1 : add an item
2 : display total value
3 : delete an item
4 : display all items
5 : quit
what is your option? 1

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

29 GANESH Y, Dept. of ECE RNSIT

enter item code : 222
enter item cost:200

you can do the following; enter appropriate number
1 : add an item
2 : display total value
3 : delete an item
4 : display all items
5 : quit
what is your option? 1
enter item code : 333
enter item cost:300

you can do the following; enter appropriate number
1 : add an item
2 : display total value
3 : delete an item
4 : display all items
5 : quit
what is your option? 2
total value :600

you can do the following; enter appropriate number
1 : add an item
2 : display total value
3 : delete an item
4 : display all items
5 : quit
what is your option? 3
 enter item code222

you can do the following; enter appropriate number

1 : add an item
2 : display total value
3 : delete an item
4 : display all items
5 : quit
what is your option? 4
 code price
111 100
222 0
333 300

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

30 GANESH Y, Dept. of ECE RNSIT

you can do the following; enter appropriate number
1 : add an item
2 : display total value
3 : delete an item
4 : display all items
5 : quit
what is your option? 5
The program uses two arrays, namely itemcode[] to hold the code number of items

and itemprice[] to hold the prices. A third data member count is used to keep a record

of items in the list. The program uses a total of four functions to implement the

operations to be performed on the list.

Memory Allocation for Objects

We have stated that the memory space for objects is allocated when they are declared

and not when the class is specified. This statement is only partly true.

Actually, the member functions are created and placed in the memory space only once

when they are defined as a part of a class specification. Since all the objects belonging

to that class use the same member functions, no separate space is allocated for member

functions when the objects are created.

Only space for member variables is allocated separately for each object. Separate

memory locations for the objects are essential, because the member variables will hold

different data values for different objects. This is shown in above Fig.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

31 GANESH Y, Dept. of ECE RNSIT

Static Data Members

A data member of a class can be qualified as static. The properties of a static member

variable are similar to that of a C static variable. A static member variable has certain

special characteristics. These are:

• It is initialized to zero when the first object of its class is created. No other

initialization is permitted.

• Only one copy of that member is created for the entire class and is shared by all the

objects of that class, no matter how many objects are created.

• It is visible only within the class, but its lifetime is the entire program.

Static variables are normally used to maintain values common to the entire class. For

example, a static data member can be used as a counter that records the occurrences

of all the objects.

class items
{
 static int num;

public:

};
int items:: num; // definition of static data members

Note that the type and scope of each static member variable must be defined outside

the class definition. This is necessary because the static data members are stored

separately rather than as a part of an object.

Since they are associated with the class itself rather than with any class object, they are

also known as class variables.

Example:

#include <iostream>
using namespace std;
class item
{
 static int count;
 int number;
 public:
 void getdata(int a)

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

32 GANESH Y, Dept. of ECE RNSIT

 {
 number=a;
 count++;
 }
 void getcount(void)
 {
 cout <<"Count: ";
 cout << count << "\n";
 }
};
int item::count;
int main()
{
 item a, b, c; //count is initialized to zero
 a.getcount ();
 b.getcount();
 c.getcount ();
 a.getdata(100); // get data into object a
 b.getdata (200);// get data into object b
 c.getdata(300);// get //display countdata into object c
 cout << "After reading data"<< "\n";
 a.getcount ();//display count
 b.getcount();
 c.getcount ();
 return 0;
}
Output:
Count: 0
Count: 0
Count: 0
After reading data
Count: 3
Count: 3
Count: 3

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

33 GANESH Y, Dept. of ECE RNSIT

Static Member Functions

Like static member variable, we can also have static member functions. A member

function that is declared static has the following properties:

• A static function can have access to only other static members (functions or

variables) declared in the same class.

• A static member function can be called using the class name (instead of its objects)

as follows:

class_name :: function_name();

Example:

class items
{
 static int num;

public:

 static void showcount()
 {
 cout<< num;
 }
};

int items:: num; // definition of static data members

int main()
{

 items :: showcount();

}

Example :

#include <iostream>
using namespace std;
class static_type
{

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

34 GANESH Y, Dept. of ECE RNSIT

 static int i; //static data member
public:
 static void init(int x) { i=x; } //static member function
 void show() { cout<<i; }
};
int static_type::i; // define static i
int main()
{
 static_type::init(100);//initialise static data before object

creation
 static_type x;
 x.show(); //displays 100
 return 0;
}

Example 2:

#include <iostream>
using namespace std;
class test
{
 int code;
 static int count; // static member variable
 public:
 void setcode (void)
 {
 code = ++count;
 }
 void showcode(void)
 {
 cout <<"object number: "<<code << "\n";
 }
 static void showcount(void) // static member function
 {
 cout << "count: "<<count<< "\n";
 }
};
int test :: count;
int main()
{
 test t1,t2;
 t1.setcode();
 t2.setcode();

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

35 GANESH Y, Dept. of ECE RNSIT

 test::showcount();
 test t3;
 t3.setcode();
 test::showcount();
 t1.showcode();
 t2.showcode();
 t3.showcode();
 return 0;
}

Arrays of Objects

We know that an array can be of any data type including struct. Similarly, we can also
have arrays of variables that are of the type class. Such variables are called arrays of
objects. Consider the following class definition:

class employee
{
 char name[10];
 float age;
 public:
 void getdata(void);
 void putdata(void);

};

The identifier employee is a user-defined data type and can be used to create objects
that relate to different. categories of the employees. Example:

employee manager[3] ; //array of manager
employee foreman[15] ; //array of foremen
employee worker[75] ; //array of worker

The array manager contains three objects (managers). namely, manager[0],
manager[1] and manager[2], of type employee class. Similarly, the foreman array
contains 15 objects (foremen) and the worker array contains 75 objects(workers).

Since an array of objects behaves like any other array, we can use the usual array
accessing methods to access individual elements, and then the dot member operator
to access the member functions. For example, the statement

manager[i].putdata();

An array of objects is stored inside the memory in the same way as a multi-dimensional
array. The array manager is represented in following Fig. 5.5. Note that only the space
for data items of the objects is created. Member functions are stored separately and
will be used by all the objects.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

36 GANESH Y, Dept. of ECE RNSIT

#include <iostream>
using namespace std;

class employee
{
 char name[10];
 float age;
 public:
 void getdata(void);
 void putdata(void);
};
void employee::getdata(void)
{
 cout <<"\nEnter name: ";
 cin >> name;
 cout <<"\nEnter age: ";
 cin >> age;
}
void employee::putdata(void)
{
 cout <<"\nName: "<<name;
 cout <<"\nAge: "<<age;
}

const int size=3;

int main()
{
 employee manager[size];
 for(int i=0; i<size; i++)

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

37 GANESH Y, Dept. of ECE RNSIT

 {
 cout <<"\nDetails of Manager"<<i+1<<"\n";
 manager[i].getdata();
 }
 cout<<"\n";
 for(int i=0; i<size; i++)
 {
 cout <<"\nManager"<<i+1<<"\n";
 manager[i].putdata();
 }
 return 0;

}

Objects as Function Arguments

Like any other data type an object may be used as a function argument. This can be
done in two ways:

• A copy of the entire object is passed to the function. (pass by vale)

• Only the address of the object is transferred to the function. (pass by reference)

#include <iostream>
using namespace std;
class time
{
 int hours;
 int minutes;
public:
 void gettime(int h, int m)
 {
 hours=h;
 minutes=m;
 }
 void puttime(void)
 {
 cout<<hours<<" hours and ";
 cout<<minutes<<" minutes"<<"\n";
 }
 void sum(time, time); // declaration with object as arguments
};
void time::sum(time t1, time t2)
{
 minutes = t1.minutes +t2.minutes;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

38 GANESH Y, Dept. of ECE RNSIT

 hours= minutes/60;
 minutes = minutes%60;
 hours= hours + t1.hours+ t2.hours;
}
int main()
{
 time t1,t2,t3;
 t1.gettime(2,45); // get t1
 t2.gettime(3,30); // get t2
 t3.sum(t1,t2); //t3=t1+t2
 cout<<"t1 = "; t1.puttime(); // display t1
 cout<<"t2 = "; t2.puttime(); // display t2
 cout<<"t3 = "; t3.puttime(); // display t3
 return 0;
}

Friendly Functions

For example, consider a case where two classes, manager and scientist have been
defined. We would like to use a function income_tax () to operate on the objects of both
these classes. In such situations, C++ allows the common function to be made friendly
with both the classes, thereby allowing the function to have access to the private data
of these classes. Such a function need not be a member of any of these classes.

#include<iostream>
using namespace std;

class base
{
 int val1,val2;
public:
 void get()
 {
 cin>>val1>>val2;
 }
 friend float mean(base ob);
};

float mean(base ob)
{
 return float(ob.val1 + ob.val2)/2;
}

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

39 GANESH Y, Dept. of ECE RNSIT

int main()
{
 base obj;
 obj.get();
 cout<<"\n Mean value is : "<<mean(obj);
 return 0;

}

A friend function possesses certain special characteristics:

• It is not in the scope of the class to which it has been declared as friend.

• Since it is not in the scope of the class, it cannot be called using the object of that class.

• It can be invoked like a normal function without the help of any object.

• Unlike member functions, it cannot access the member names directly and has to use
an object name and dot membership operator with each member name (e.g. A.x).

• It can be declared either in the public or the private part of a class without affecting
its meaning.

• Usually, it has the objects as arguments.

• Member functions of one class can be friend function of another class.

class X
{
 int fun();
};
class Y
{
 friend int X::fun();

};

• We can also declare all the member functions of one class as the friend functions of
another class. In such cases, the class is called a friend class. This can be specified
follows:

class Z
{
 friend class X;

};

• Consider following example

class Y;// forward declaration
class X
{

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

40 GANESH Y, Dept. of ECE RNSIT

 friend int fun(X,Y);
};
class Y
{
 friend int fun(X,Y);
};

int fun(X x, Y y)
{
;

}

• As pointed out earlier, a friend function can be called by reference. In this case, local
copies of the objects are not made. Instead, a pointer to the address of the object is
passed and the called function directly works on the actual object used in the call.

This method can be used to alter the values of the private members of a class.
Remember, altering the values of private members is against the basic principles of
data hiding. It should be used only when absolutely necessary.

// write a C++ prog using friend function to exchange the private values of the two
classes.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

41 GANESH Y, Dept. of ECE RNSIT

Returning Objects

A function cannot only receive objects as arguments but also can return them.

X fun(X x, X y)
{
 X z;
 z= x+y;
 return z;

}

const Member Functions

If a member function does not alter any data in the class. then we may declare it as a
const member function as follows;

void mul(int, int) const;

double get_balance() const;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

42 GANESH Y, Dept. of ECE RNSIT

The qualifier const is appended to the function prototypes (in both declaration and
definition). The compiler will generate an error message if such functions try to alter
the data values.

Pointers to Objects

#include <iostream>
using namespace std;
class cl {
 int i;
public:
 int get_i() { return i; }
};
int main()
{
 cl ob, *p;
 p = &ob; // get address of ob
 cout << p->get_i(); // use -> to call get_i()
 return 0;

}

Pointers to Members

It is possible to take the address of a member of a class and assign it to a pointer. The
address of a member can be obtained by applying the operator & to a '"fully qualified"
class member name.

A class member pointer can be declared using the operator ::* with the class name.
For example, given the class

class A
{

private:
 int m;
public:
 void show();

};

We can define a pointer to the member m as follows:

int A ::* p = &A :: m;

The p pointer created thus acts like a class member in that it must be invoked with a
class object. In the statement above, the phrase A::* means “ pointer-to--member of A
class". The phrase &A :: m means the “address of the m member of A class".

int *p = &m; // wont work

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

43 GANESH Y, Dept. of ECE RNSIT

This is because m is not simply an int type data. It has meaning only when it is
associated with the class to which it belongs. The scope operator must be applied to
both the pointer and the member.

The pointer p can now be used to access the member m inside member functions (or
friend functions). Let us assume that a is an object of A declared in a member function.

We can access m using the pointer p as follows:

cout << a.*p; // display

cout << a.m; //same as obave

Now, look at the following code:

ap = &a; // ap is pointer to object a
cout << ap -> *p; // display m

cout << ap -> m; // some as above

The dereferencing operator ->* is used to access a member when we use pointers to
both the object and the member. The dereferencing operator .* is used when the object
itself is used with the member pointer. Note that *p is used like a member name.

We can also design pointers to member functions which, then, can be invoked using
the dereferencing operators in the main as shown below :

(object-name .* pointer-to-member function) (1O);

(pointer-to-object ->* pointer-to-member function) (1O);

The precedence of () is higher than that of .* and ->*, so the parentheses are necessary.
Example:

#include <iostream>
using namespace std;
class M
{
 int x;
 int y;
public:
 void set_xy (int a, int b)
 {
 x = a;
 y = b;
 }
 friend int sum(M m);
};

int sum(M m)
{

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

44 GANESH Y, Dept. of ECE RNSIT

 int M ::* px = &M :: x;
 int M ::* py = &M :: y;
 M *pm = &m;
 int s= m.*px + pm->*py;
 return s;
}

int main()
{
 M n;
 void (M ::* pf)(int,int) = &M :: set_xy;
 (n .* pf)(10, 20);
 cout << "SUM = " << sum(n) << "\n";
 M *op = &n;
 (op->*pf)(10,40);
 cout << "SUM = "<< sum(n) << "\n";
return 0;

}

Local Classes

Classes can be defined and used inside a function or a block. Such classes are called
local classes. Examples:

void test(int a) //function
{

class student // local class
 {

 };

 student s1(a); // create object

}

Local classes can use global variables (declanid above the function) and static variables
declared, inside the function but cannot use automatic local variables. The global
variables should be used with the soope operator (::).

There are some restrictions in constructing local classes. They cannot have static data
members and member functions must be defined inside the local classes. Enclosing
function cannot access the private members of a local class. However. we can achieve
this by declaring the enclosing function as a friend.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

38
39

 return 0;
}

output

Enter consumer name & unit consumed :sattar 200
Name Charge

sattar 210

Press o for exit / press 1 to input again :1

Enter consumer name & unit consumed :santo 300

Nmae Charge

santo 290

Press o for exit / press 1 to input again : 0

 Chapter 4

 Review Questions

4.1: State whether the following statements are TRUE or FALSE.
(a) A function argument is a value returned by the function to the calling program.
(b) When arguments are passed by value, the function works with the original arguments in the
calling program.
(c) When a function returns a value, the entire function call can be assigned to a variable.
(d) A function can return a value by reference.
(e) When an argument is passed by reference, a temporary variable is created in the calling
program to hold the argument value.
(f) It is not necessary to specify the variable name in the function prototype.

Ans:

(a) FALSE (d) TRUE

(b) FALSE (e) FALSE

(c) TRUE (f) TRUE

4.2: What are the advantages of function prototypes in C++?

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Ans: Function prototyping is one of the major improvements added to C++ functions. The
prototype describes the function interface to the compiler by giving details such as the number
and type of arguments and the type of return values.

4.3: Describe the different styles of writing prototypes.

Ans:
General form of function prototyping :
return_type function_name (argument_list)

Example :
int do_something (void);
float area (float a, float b);
float area (float, float);

4.4: Find errors, if any, in the following function prototypes.
(a) float average(x,y);
(b) int mul(int a,b);
(c) int display(….);
(d) void Vect(int? &V, int & size);
(e) void print(float data[], size = 201);

Ans:

No. Error Correction

(a) Undefined symbol x, y float average (float x, floaty)

(b) Undefined symbol b int mul (int a, int b);

(c) No error

(d) invalid character in variable name void vect (int &v, int &size);

(e) Undefined symbol ‘s’
void print (float data [], int
size = 20);

4.5: What is the main advantage of passing arguments by reference?

Ans: When we pass arguments by reference, the formal arguments in the called function become
aliases to the ‘actual’ arguments in the calling function.

4.6: When will you make a function inline? Why?

Ans: When a function contains a small number of statements, then it is declared as inline function.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

By declaring a function inline the execution time can be minimized.

4.7: How does an inline function differ from a preprocessor macro?

Ans: The macos are not really functions and therefore, the usual error checking does not occur
during compilation. But using inline-function this problem can be solved.

4.8: When do we need to use default arguments in a function?

Ans: When some constant values are used in a user defined function, then it is needed to assign a
default value to the parameter.
Example :

1
2
3
4

Float area (float r, float PI = 3.1416)
 {
 return PI*r*r;
 }

4.9: What is the significance of an empty parenthesis in a function declaration?

Ans: An empty parentheses implies arguments is void type.

4.10: What do you meant by overloading of a function? When do we use this concept?

Ans: Overloading of a function means the use of the same thing for different purposes.
When we need to design a family of functions-with one function name but with different
argument lists, then we use this concept.

4.11: Comment on the following function definitions:
(a)

1
2
3
4
5
6
7

int *f()
{
int m = 1;
.....
.....
return(&m);
}

(b)

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

1
2
3
4
5
6

double f()
{
.....
.....
return(1);
}

(c)

1
2
3
4
5
6
7

int & f()
{
int n - 10;
.....
.....
return(n);
}

Ans:

No. Comment

(a)
This function returns address of m after
execution this function.

(b) This function returns 1 after execution.

(c) returns address of n

 Debugging Exercises

4.1: Identify the error in the following program.

#include <iostream.h>
int fun()
{
 return 1;
}
float fun()
{
 return 10.23;
}
void main()
{
 cout <<(int)fun() << ' ';
 cout << (float)fun() << ' ';
}

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Solution: Here two function are same except return type. Function overloading can be used using
different argument type but not return type.

Correction : This error can be solved as follows :

#include<iostream.h>

int fun()
{
 return 1;
}
float fun1()
{
 return 10.23;
}

void main()
{
 cout<<fun()<<" ";
 cout<<fun1()<<" ";
}

4.2: Identify the error in the following program.

#include <iostream.h>
void display(const Int constl=5)
{
 const int const2=5;
 int arrayl[constl];
 int array2[const2];
 for(int 1=0; i<5; 1++)
 {
 arrayl[i] = i;
 array2[i] = i*10;
 cout <<arrayl[i]<< ' ' << array2[i] << ' ' ;
 }
}
void main()
{
 display(5);
}

Solution:

#include<iostream.h>

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

void display()
{
 const int const1=5;
 const int const2=5;
 int array1[const1];
 int array2[const2];

 for(int i=0;i<5;i++)
 {
 array1[i]=i;
 array2[i]=i*10;
 cout<<array1[i]<<" "<<array2[i]<<" ";
 }
}

void main()
{
 display();
}

4.3: Identify the error in the following program.

#include <iostream.h>
int gValue=10;
void extra()
{
 cout << gValue << ' ';
}
void main()
{
 extra();
 {
 int gValue = 20;
 cout << gValue << ' ';
 cout << : gValue << ' ';
 }
}

Solution:
Here cout << : gvalue << " "; replace with cout <<::gvalue<< " ";

#include <iostream.h>
int gValue=10;
void extra()
{

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

 cout << gValue << ‘ ‘;
}
void main()
{
 extra();
 {
 int gValue = 20;
 cout << gValue << ‘ ‘;
 cout <<::gvalue<< " ";
 }
}

4.4: Find errors, if any, in the following function definition for displaying a matrix: void
display(int A[][], int m, int n)

{
 for(1=0; i<m; i++)
 for(j=o; j<n; j++)
 cout<<" "<<A[i][j];
 cout<<"\n";
}

Solution:
First dimension of an array may be variable but others must be constant.

Here int A [] [] replace by the following code:
int A [] [10];
int A[10] [10];
int A[] [size];
int A [size] [size];

Where const int size = 100;
any other numerical value can be assigned to size.

 Programming Exercises

4.1: Write a function to read a matrix of size m*n from the keyboard.

Solution:

1
2
3
4

#include<iostream.h>
#include<iomanip.h>

void matrix(int m,int n)

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

{
 float **p;
 p=new float*[m];
 for(int i=0;i<m;i++)
 {
 p[i]=new float[n];
 }
 cout<<" Enter "<<m<<"by"<<n<<" matrix elements one by one "<<endl;
 for(i=0;i<m;i++)
 {
 for(int j=0;j<n;j++)
 {
 float value;
 cin>>value;
 p[i][j]=value;
 }
 }
 cout<<" The given matrix is :"<<endl;
 for(i=0;i<m;i++)
 {
 for(int j=0;j<n;j++)
 {
 cout<<p[i][j]<<" ";
 }
 cout<<"\n";
 }
}

int main()
{
 int r,c;
 cout<<" Enter size of matrix : ";
 cin>>r>>c;
 matrix(r,c);
 return 0;
}

output

Enter size of matrix : 3 4

Enter 3 by 4 matrix elements one by one

1 2 3 4

2 3 4 5

3 4 5 6

The given matrix is :

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

1 2 3 4

2 3 4 5

3 4 5 6

4.2: Write a program to read a matrix of size m*n from the keyboard and display the same
on the screen using function.

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

#include<iostream.h>
#include<iomanip.h>

void matrix(int m,int n)
{
 float **p;s
 p=new float*[m];
 for(int i=0;i<m;i++)
 {
 p[i]=new float[n];
 }
 cout<<" Enter "<<m<<" by "<<n<<" matrix elements one by one "<<endl;
 for(i=0;i<m;i++)
 {
 for(int j=0;j<n;j++)
 {
 float value;
 cin>>value;
 p[i][j]=value;
 }
 }
 cout<<" The given matrix is :"<<endl;
 for(i=0;i<m;i++)
 {
 for(int j=0;j<n;j++)
 {
 cout<<p[i][j]<<" ";
 }
 cout<<"\n";
 }
}

int main()
{
 int r,c;
 cout<<" Enter size of matrix : ";

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

37
38
39
40

 cin>>r>>c;
 matrix(r,c);
 return 0;
}

output

Enter size of matrix : 4 4

Enter 4 by 4 matrix elements one by one

1 2 3 4 7

2 3 4 5 8

3 4 5 6 9

The given matrix is :

1 2 3 4 7

2 3 4 5 8

3 4 5 6 9

4.3: Rewrite the program of Exercise 4.2 to make the row parameter of the matrix as a
default argument.

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

#include<iostream.h>
#include<iomanip.h>

void matrix(int n,int m=3)
{
 float **p;
 p=new float*[m];
 for(int i=0;i<m;i++)
 {
 p[i]=new float[n];
 }
 cout<<" Enter "<<m<<" by "<<n<<" matrix elements one by one "<<endl;
 for(i=0;i<m;i++)
 {
 for(int j=0;j<n;j++)
 {

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

 float value;
 cin>>value;
 p[i][j]=value;
 }
 }
 cout<<" The given matrix is :"<<endl;
 for(i=0;i<m;i++)
 {
 for(int j=0;j<n;j++)
 {
 cout<<p[i][j]<<" ";
 }
 cout<<"\n";
 }
}

int main()
{
 int c;
 cout<<" Enter column of matrix : ";
 cin>>c;
 matrix(c);
 return 0;
}

output

Enter column of matrix : 3

Enter 3 by 3 matrix elements one by one

1 2 3

2 3 4

3 4 5

The given matrix is :

1 2 3

2 3 4

3 4 5

4.4: The effect of a default argument can be alternatively achieved by overloading. Discuss
with examples.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

#include<iostream.h>
#include<iomanip.h>

void matrix(int m,int n)
{
 float **p;
 p=new float*[m];
 for(int i=0;i<m;i++)
 {
 p[i]=new float[n];
 }
 cout<<" Enter "<<m<<"by"<<n<<" matrix elements one by one "<<endl;
 for(i=0;i<m;i++)
 {
 for(int j=0;j<n;j++)
 {
 float value;
 cin>>value;
 p[i][j]=value;
 }
 }
 cout<<" The given matrix is :"<<endl;
 for(i=0;i<m;i++)
 {
 for(int j=0;j<n;j++)
 {
 cout<<p[i][j]<<" ";
 }
 cout<<"\n";
 }
}
void matrix(int m,long int n=3)
{
 float **p;
 p=new float*[m];

 for(int i=0;i<m;i++)
 {
 p[i]=new float[n];
 }
 cout<<" Enter "<<m<<" by "<<n<<" matrix elements one by one "<<endl;
 for(i=0;i<m;i++)
 {
 for(int j=0;j<n;j++)
 {
 float value;
 cin>>value;
 p[i][j]=value;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

 }
 }
 cout<<" The given matrix is :"<<endl;
 for(i=0;i<m;i++)
 {
 for(int j=0;j<n;j++)
 {
 cout<<p[i][j]<<" ";
 }
 cout<<"\n";
 }
}

int main()
{
 int r;
 cout<<" Enter row of matrix : ";
 cin>>r;
 matrix(r);
 return 0;
}

output

Enter column of matrix : 2

Enter 2 by 3 matrix elements one by one

1 0 1

0 2 1

The given matrix is :

1 0 1

0 2 1

4.5: Write a macro that obtains the largest of the three numbers.

Solution:

1
2
3
4
5

#include<iostream.h>
#include<iomanip.h>

float large(float a,float b,float c)
{

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

 float largest;
 if(a>b)
 {
 if(a>c)
 largest=a;
 else
 largest=c;
 }
 else
 {
 if(b>c)
 largest=b;
 else
 largest=c;
 }
 return largest;
}

int main()
{
 float x,y,z;
 cout<<" Enter three values : ";
 cin>>x>>y>>z;
 float largest=large(x,y,z);
 cout<<" large = "<<largest<<endl;
 return 0;
}

output

Enter three values : 4 5 8

large = 8

4.6: Redo Exercise 4.16 using inline function. Test the function using a main function.

Solution:
 Blank

4.7: Write a function power() to raise a number m to power n. The function takes a double
value for m and int value for n and returns the result correctly. Use a default value of 2 for
n to make the function to calculate the squares when this argument is omitted. Write a main
that gets the values of m and n from the user to test the function.

Solution:

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#include<iostream.h>
#include<iomanip.h>
#include<math.h>

long double power(double m,int n)
{
 long double mn=pow(m,n);
 return mn;
}
long double power(double m,long int n=2)
{
 long double mn=pow(m,n);
 return mn;
}
int main()
{
 long double mn;
 double m;
 int n;

 cout<<" Enter the value of m & n"<<endl;
 cin>>m>>n;
 mn=power(m,n);
 cout<<" m to power n : "<<mn<<endl;
 mn=power(m);
 cout<<" m to power n : "<<mn<<endl;
 return 0;
}

output

Enter the value of m & n

12 6

m to power n : 2985984

m to power n: 144

4.6: Redo Exercise 4.16 using inline function. Test the function using a main function.

Solution:
 Blank

4.7: Write a function power() to raise a number m to power n. The function takes a double
value for m and int value for n and returns the result correctly. Use a default value of 2 for

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

n to make the function to calculate the squares when this argument is omitted. Write a main
that gets the values of m and n from the user to test the function.

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#include<iostream.h>
#include<iomanip.h>
#include<math.h>

long double power(double m,int n)
{
 long double mn=pow(m,n);
 return mn;
}
long double power(double m,long int n=2)
{
 long double mn=pow(m,n);
 return mn;
}
int main()
{
 long double mn;
 double m;
 int n;

 cout<<" Enter the value of m & n"<<endl;
 cin>>m>>n;
 mn=power(m,n);
 cout<<" m to power n : "<<mn<<endl;
 mn=power(m);
 cout<<" m to power n : "<<mn<<endl;
 return 0;
}

output

Enter the value of m & n

12 6

m to power n : 2985984

m to power n: 144

4.8: Write a function that performs the same operation as that of Exercise 4.18 but takes an
int value for m. Both the functions should have the same name. Write a main that calls both
the functions. Use the concept of function overloading.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#include<iostream.h>
#include<iomanip.h>
#include<math.h>

long double power(int m,int n)
{
 long double mn= (long double)pow(m,n);
 return mn;
}
long double power(int m,long int n=2)
{
 long double mn=(long double)pow(m,n);
 return mn;
}
int main()
{
 long double mn;
 int m;
 int n;

 cout<<" Enter the value of m & n"<<endl;
 cin>>m>>n;
 mn=power(m,n);
 cout<<" m to power n : "<<mn<<endl;
 mn=power(m);
 cout<<" m to power n : "<<mn<<endl;
 return 0;
}

output

Enter the value of m & n

15 16

m to power n : 6.568408e+18

m to power n: 225

 Chapter 5

 Review Questions

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

5.1: How do structures in C and C++ differ?

Ans:
C structure member functions are not permitted but in C++ member functions are permitted.

5.2: What is a class? How does it accomplish data hiding?

Ans:
A class is a way to bind the data and its associated functions together. In class we can declare a
data as private for which the functions accomplish dataoutside the class can not access the data
and thus if hiding.

5.3: How does a C++ structure differ from a C++ class?

Ans:
Initially (in C) a structure was used to bundle different of data types together to perform a
particular functionality C++ extended the structure to contain functions also. The difference is
that all declarations inside a structure are default public.

5.4: What are objects? How are they created?

Ans:
Object is a member of class. Let us consider a simple example. int a; here a is a variable of int
type. Again consider class fruit.
{
}
here fruit is the class-name. We can create an object as follows:
fruit mango;
here mango is a object.

5.5: How is a member function of a class defined?

Ans:
member function of a class can be defined in two places:
* Outside the class definition.
* Inside the class definition.

Inside the class definition : same as other normal function.

Outside the class definition : general form:
return-type class-name : function-name (argument list)

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

{
function body
}

5.6: Can we use the same function name for a member function of a class and an outside
function in the same program file? If yes, how are they distinguished? If no, give reasons.

Ans:
Yes, We can distinguish them during calling to main () function. The following example
illustrates this:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

#include<iostream.h>
void f()
{
cout<<"Outside Of class \n";
}

class santo
{
public:
void f()
{
 cout<<"Inside of class \n";
}
};

void main()
{
f(); // outside f() is calling.
santo robin;
robin.f(); // Inside f() is calling.
}

5.7: Describe the mechanism of accessing data members and member functions in the
following cases:
(a) Inside the main program.
(b) Inside a member function of the same class.
(c) Inside a member function of another class.

Ans:
(a) Using object and dot membership operator.
(b) Just like accessing a local variable of a function.
(c) Using object and dot membership operator.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

The following example explains how to access data members and member functions inside a
member function of another class.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

#include<iostream.h>

class a
{
 public:
 int x;
 void display()
 {
 cout<<"This is class a \n";
 x=111;
 }
};

class b
{
 public:
 void display()
 {
 a s;
 cout<<" Now member function 'display()' of class a is calling from class b \n";
 s.display();
 cout<<" x = "<<s.x<<"\n";
 }
};

void main()
{
 b billal; // billal is a object of class b.
 billal.display();
}

5.8: When do we declare a member of a class static?

Ans:
When we need a new context of a variable the n we declare this variable as static.

5.9: What is a friend function? What are the merits and demerits of using friend functions?

Ans:
A function that acts as a bridge among different classes, then it is called friend function.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Merits :
We can access the other class members in our class if we use friend keyword. We can access the
members without inheriting the class.

demerits :
Maximum size of the memory will occupied by objects according to the size of friend members.

5.10: State whether the following statements are TRUE or FALSE.
(a) Data items in a class must always be private.
(b) A function designed as private is accessible only to member functions of that class.
(c) A function designed as public can be accessed like any other ordinary functions.
(d) Member functions defined inside a class specifier become inline functions by default.
(e) Classes can bring together all aspects of an entity in one place.
(f) Class members are public by default.
(g) Friend junctions have access to only public members of a class.
(h) An entire class can be made a friend of another class.
(i) Functions cannot return class objects.
(j) Data members can be initialized inside class specifier.

Ans:
(a) FALSE
(b) TRUE
(c) FALSE

*A function designed as public can be accessed like any other ordinary functions from the
member function of same class.
(d) TRUE
(e) TRUE
(f) FALSE
(g) FALSE
(h) TRUE
(i) FALSE
(j) FALSE

 Debugging Exercises

5.1: Identify the error in the following program

1
2
3
4
5
6
7
8
9

#include <iosream.h>
struct Room
{
 int width;
 int length;
 void setValue(int w, int l)
 {
 width = w;
 length = l;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

10
11
12
13
14
15
16

 }
};
void main()
{
Room objRoom;
objRoom.setValue(12, 1,4);
}

Solution:
Void setvalue (in w, int l) function must be public.

5.2: Identify the error in the following program

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

#include <iosream.h>
class Room
{
 int width, int length;
 void setValue(int w, int h)
 {
 width = w;
 length = h;
 }
};
void main()
{
Room objRoom;
objRoom.width=12;
}

Solution:
Void setvalue (int w, int l) function must be public.

5.3: Identify the error in the following program

1
2
3
4
5
6
7
8
9
10

#include <iosream.h>
class Item
{
 private:
 static int count;
 public:
 Item()
 {
 count++;
}

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

int getCount()
{
 return count;
}
int* getCountAddress()
{
 return count;
 }
};
int Item::count = 0;
void main()
{
 Item objlteml;
 Item objltem2;

 cout << objlteml.getCount() << ' ';
 cout << objltem2.getCount() << ' ';

 cout << objlteml.getCountAddress() << ' ';
 cout << objltem2.getCountAddress() << ' ';
}

Solution:

1
2
3
4
5

int* getCountAddress ()
 {
 return &count;
 }

Note: All other code remain unchanged.

5.4: Identify the error in the following program

1
2
3
4
5
6
7
8
9
10
11
12
13

#include <iosream.h>
class staticfunction
{
 static int count;
public:
 static void setCounto()
 {
 count++;
 }
 void displayCount()
 {
 cout << count;
 }

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

14
15
16
17
18
19
20
21
22

};
int staticFunction::count = 10;
void main()
{
 staticFunction obj1;
 obj1setcount(5);
 staticFunction::setCount();
 obj1.displayCount();
}

Solution:
setCount () is a void argument type, so here obj1.setCount (5); replace with obj1.setcount();

5.5: Identify the error in the following program

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

#include <iosream.h>
class Length
{
 int feet;
 float inches;
public:
 Length()
 {
 feet = 5;
 inches = 6.0;
 }
 Length(int f, float in)
 {
 feet = f;
 inches=in;
 }
 Length addLength(Length 1)
 {

 1.inches this->inches;
 1.feet += this->feet;
 if(1.inches>12)
 {

 1.inches-=12;
 1.feet++;
 }
 return 1;
 }
 int getFeet()
 {
 return feet;
 }

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

34
35
36
37
38
39
40
41
42
43
44
45
46
47

 float getInches()
 {
 return inches;
 }
};
void main()
{

 Length objLength1;
 Length objLenngth1(5, 6.5);
 objLength1 = objLength1.addLength(objLength2);
 cout << objLenth1.getFeet() << ' ';
 cout << objLength1.getInches() << ' ';
}

Solution:
Just write the main function like this:

1
2
3
4
5
6
7
8
9
10
11

#include<iostream.h>

void main()
{
 Length objLength1;
 Length objLength2(5,6.5);
 objLength1=objLength1.addLenghth(objLenghth2);

 cout<<objLength1.getFeet()<<" ";
 cout<<objLength1.getInches()<<" ";
}

5.6: Identify the error in the following program

1
2
3
4
5
6
7
8
9
10
11
12
13
14

#include <iosream.h>
class Room
void Area()
{
 int width, height;
 class Room
 {
 int width, height;
 public:
 void setvalue(int w, int h)
 {
 width = w;
 height = h;
 }

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

 void displayvalues()
 {
 cout << (float)width << ' ' << (float)height;
 }
 };
 Room objRoom1;
 objRoom1.setValue(12, 8);
 objRoom1.displayvalues();
}

void main()
{
Area();
Room objRoom2;
}

Solution:
Undefined structure Room in main () function.
Correction : Change the main () Function as follow:

1
2
3
4

void main()
{
 Area();
}

 Programming Exercises

5.1: Define a class to represent a bank account. Include the following members:

Data members:

1. Name of the depositor.
2. Account number.
3. Type of account.
4. Balance amount in the account.

Member functions:

1. To assign initial values.
2. To deposit an amount.
3. To withdraw an amount after checking the balance.
4. To display the name and balance.

Write a main program to test the program.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

#include<iostream.h>
#include<iomanip.h>
class bank
{
 char name[40];
 int ac_no;
 char ac_type[20];
 double balance;
public:
 int assign(void);
 void deposite(float b);
 void withdraw(float c);
 void display(void);
};

int bank::assign(void)
{
 float initial;
 cout<<" You have to pay 500 TK to open your account \n"
 <<" You have to store at least 500 TK to keep your account active\n"
 <<"Would you want to open a account????\n"
 <<" If Yes press 1 \n"
 <<" If No press 0 : ";
 int test;
 cin>>test;
 if(test==1)
 {
 initial=500;
 balance=initial;
 cout<<" Enter name ,account number & account type to creat account : \n";
 cin>>name>>ac_no>>ac_type;
 }
 else
 ;// do nothing

 return test;

}
void bank::deposite(float b)
{
 balance+=b;
}
void bank::withdraw(float c)
{
 balance-=c;
 if(balance<500)
 {
 cout<<" Sorry your balance is not sufficient to withdraw "<<c<<"TK\n"

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

 <<" You have to store at least 500 TK to keep your account active\n";
 balance+=c;
 }
}
void bank::display(void)
{
 cout<<setw(12)<<"Name"<<setw(20)<<"Account type"<<setw(12)<<"Balance"<<endl;
 cout<<setw(12)<<name<<setw(17)<<ac_type<<setw(14)<<balance<<endl;
}

int main()
{
 bank account;

 int t;
 t=account.assign();
 if(t==1)
 {
 cout<<" Would you want to deposite: ?"<<endl
 <<"If NO press 0(zero)"<<endl
 <<"If YES enter deposite ammount :"<<endl;
 float dp;
 cin>>dp;
 account.deposite(dp);
 cout<<" Would you want to withdraw : ?"<<endl
 <<"If NO press 0(zero)"<<endl
 <<"If YES enter withdrawal ammount :"<<endl;
 float wd;
 cin>>wd;
 account.withdraw(wd);
 cout<<" see details :"<<endl<<endl;
 account.display();
 }
 else if(t==0)
 cout<<" Thank you ,see again\n";
 return 0;
}

output

You have to pay 500 TK to open your account
You have to store at least 500 TK to keep your account active
Would you want to open a account????
If Yes press 1
If No press 0 : 0
Thank you ,see again

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

5.2: Write a class to represent a vector (a series of float values). Include member functions
to perform the following tasks:

(a) To create the vector.

(b) To modify the value of a given element.

(c) To multiply by a scalar value.

(d) To display the vector in the form (10, 20, 30 …)

Write a program to test your class.

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

#include<iostream.h>
#include<iomanip.h>
class vector
{
 float *p;
 int size;
public:
 void creat_vector(int a);
 void set_element(int i,float value);
 void modify(void);
 void multiply(float b);
 void display(void);
};

void vector::creat_vector(int a)
{
 size=a;
 p=new float[size];
}
void vector::set_element(int i,float value)
{
 p[i]=value;
}
void vector :: multiply(float b)
{
 for(int i=0;i<size;i++)
 p[i]=b*p[i];
}
void vector:: display(void)
{
 cout<<"p["<<size<<"] = (";
 for(int i=0;i<size;i++)
 {
 if(i==size-1)

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

 cout<<p[i];
 else
 cout<<p[i]<<" , ";

 }
 cout<<")"<<endl;
}

void vector::modify(void)
{
 int i;
 cout<<" to edit a given element enter position of the element : ";
 cin>>i;
 i--;
 cout<<" Now enter new value of "<<i+1<<"th element : ";
 float v;
 cin>>v;
 p[i]=v;
 cout<<" Now new contents : "<<endl;
 display();

 cout<<" to delete an element enter position of the element :";
 cin>>i;
 i--;

 for(int j=i;j<size;j++)
 {
 p[j]=p[j+1];
 }
 size--;
 cout<<" New contents : "<<endl;
 display();
}

int main()
{
 vector santo;
 int s;
 cout<<" enter size of vector : ";
 cin>>s;
 santo.creat_vector(s);
 cout<<" enter "<<s<<" elements one by one :"<<endl;
 for(int i=0;i<s;i++)
 {
 float v;
 cin>>v;
 santo.set_element(i,v);
 }
 cout<<" Now contents :"<<endl;
 santo.display();
 cout<<" to multiply this vector by a scalar quantity enter this scalar quantity : ";

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

86
87
88
89
90
91
92
93

 float m;
 cin>>m;
 santo.multiply(m);
 cout<<" Now contents : "<<endl;
 santo.display();
 santo.modify();
 return 0;
}

output

enter size of vector : 5

enter 5 elements one by one :

11 22 33 44 55

Now contents p[5] = (11 , 22 , 33 , 44 , 55)

to multiply this vector by a scalar quantity enter this scalar quantity : 2

Now contents :

p[5] = (22 , 44 , 66 , 88 , 110)

to edit a given element enter position of the element : 3

Now enter new value of 3th element : 100

Now new contents :

p[5] = (22 , 44 , 100 , 88 , 110)

to delete an element enter position of the element :2

New contents :

p[4] = (22 , 100 , 88 , 110)

5.3: Modify the class and the program of Exercise 5.1 for handling 10 customers.

Solution:

1
2
3
4

#include<iostream.h>
#include<iomanip.h>
#define size 10
char *serial[size]={" FIRST "," SECOND "," THIRD "," 4th "," 5th "," 6th "," 7th "," 8th ","

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

9th ","10th"};

class bank
{
 char name[40];
 int ac_no;
 char ac_type[20];
 double balance;
public:
 int assign(void);
 void deposit(float b);
 void withdraw(float c);
 void displayon(void);
 void displayoff(void);
};

int bank::assign(void)
{
 float initial;
 cout<<" You have to pay 500 TK to open your account \n"
 <<" You have to store at least 500 TK to keep your account active\n"
 <<"Would you want to open a account????\n"
 <<" If Yes press 1 \n"
 <<" If No press 0 : ";
 int test;
 cin>>test;
 if(test==1)
 {
 initial=500;
 balance=initial;
cout<<" Enter name ,account number & account type to create account : \n";
 cin>>name>>ac_no>>ac_type;
 }
 else
 ;// do nothing

 return test;

}
void bank::deposit(float b)
{
 balance+=b;
}
void bank::withdraw(float c)
{
 balance-=c;
 if(balance<500)
 {
 cout<<" Sorry your balance is not sufficient to withdraw "<<c<<"TK\n"
 <<" You have to store at least 500 TK to keep your account active\n";
 balance+=c;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

 }
}
void bank::displayon(void)
{
 cout<<setw(12)<<name<<setw(17)<<ac_type<<setw(14)<<balance<<endl;
}
void bank::displayoff(void)
{ cout<<” Account has not created”<<endl; }
int main()
{
 bank account[size];
 int t[10];
 for(int i=0;i<size;i++)
 {
 cout<<" Enter information for "<<serial[i]<<"customer : "<<endl;
 t[i]=account[i].assign();
 if(t[i]==1)
 {
 cout<<" Would you want to deposit: ?"<<endl
 <<"If NO press 0(zero)"<<endl
 <<"If YES enter deposit amount :"<<endl;
 float dp;
 cin>>dp;
 account[i].deposit(dp);
 cout<<" Would you want to with draw : ?"<<endl
 <<"If NO press 0(zero)"<<endl
 <<"If YES enter withdrawal amount :"<<endl;
 float wd;
 cin>>wd;
 account[i].withdraw(wd);
 cout<<endl<<endl;
 }
 else if(t[i]==0)
 cout<<”Thank you , see again \n”;

 }

 cout<<" see details :"<<endl<<endl;
 cout<<setw(12)<<"Name"<<setw(20)<<"Account type"
 <<setw(12)<<"Balance"<<endl;

 for(i=0;i<size;i++)
 {
 if(t[i]==1)
 account[i].displayon();
 else if(t[i]==0)
 account[i].displayoff();
 }
 return 0;
}

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Note: Here we will show output only for Three customers. But when you run this program you
can see output for 10 customer.

output

Enter information for FIRST customer :
You have to pay 500 TR to open your account
You have to store at least 500 TR to keep your account active Would you want to open a
account????
If Yes press 1
If No press 0 : 0
Thank you , see again
Enter information for SECOND customer :
You have to pay 500 TR to open your account
You have to store at least 500 TR to keep your account active Would you want to open a
account????
If Yes press 1
If No press 0 : 1
Enter name ,account number & account type to create account :
Robin 11123 saving
Would you want to deposit: ?
If HO press 0(zero)
If YES enter deposit amount :
0
Would you want to with draw : ?
If HO press 0(zero)
If YES enter withdrawal amount :
0
Enter information for 3rd customer :
You have to pay 500 TK to open your account
You have to store at least 500 TK to keep your account active Would you want to open a
account????
If Yes press 1
If No press 0 : 1
Enter name ,account number & account type to create account :
Billal 11123 fixed
Would you want to deposit: ?
If HO press 0(zero)
If YES enter deposit amount :
1000000
Would you want to with draw : ?
If HO press 0(zero)
If YES enter withdrawal amount :
100000

see details :

Name Account type Balance

Account has not created

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Robin saving 500

Billal fixed 900500

5.4: Modify the class and the program of Exercise 5.12 such that the program would be
able to add two vectors and display the resultant vector. (Note that we can pass objects as
function arguments)

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

#include<iostream.h>
#include<iomanip.h>
#define size 8
class vector
{
 float *p;

public:
 void creat_vector(void);
 void set_element(int i,float value);
 friend void add(vector v1,vector v2);

};
void vector::creat_vector(void)
{
 p=new float[size];
}
void vector::set_element(int i,float value)
{
 p[i]=value;
}
void add(vector v1,vector v2)
{

 float *sum;
 cout<<"sum["<<size<<"] = (";
 sum= new float[size];

 for(int i=0;i<size;i++)
 {
 sum[i]=v1.p[i]+v2.p[i];
 if(i==size-1)
 cout<<sum[i];
 else
 cout<<sum[i]<<" , ";
 }
 cout<<")"<<endl;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

}

int main()
{
 vector x1,x2,x3;
 x1.creat_vector();
 x2.creat_vector();
 x3.creat_vector();
 cout<<" Enter "<<size<<" elements of FIRST vector : ";
 for(int i=0;i<size;i++)
 {
 float v;
 cin>>v;
 x1.set_element(i,v);
 }

 cout<<" Enter "<<size<<" elements of SECOND vector : ";
 for(i=0;i<size;i++)
 {
 float v;
 cin>>v;
 x2.set_element(i,v);
 }
 add(x1,x2);

 return 0;
}

output

Enter 8 elements of FIRST vector : 4 7 8 2 4 3 2 9

Enter 8 elements of SECOND vector : 1 2 3 4 5 6 7 8

sum[8] = (5 , 9 , 11 , 6 , 9 , 9 , 9 , 17)

5.5: Create two classes DM and DB which store the value of distances. DM stores distances
in meters and centimeters and DB in feet and inches. Write a program that can read values
for the class objects and add one object of DM with another object of DB.
Use a friend function to carry out the addition operation. The object that stores the results
may be a DM object or DB object, depending on the units in which the results are required.
The display should be in the format of feet and inches or meters and centimeters depending
on the object on display.

Solution:

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

#include<iostream.h>
#define factor 0.3048
class DB;
class DM
{
 float d;
 public:
 void store(float x){d=x;}
 friend void sum(DM,DB);
 void show();
};
class DB
{
 float d1;
 public:
 void store(float y){d1=y;}
 friend void sum(DM,DB);
 void show();
};

void DM::show()
{

 cout<<"\n Distance = "<<d<<" meter or "<<d*100<<" centimeter\n";
}

void DB::show()
{

 cout<<"\n Distance = "<<d1<<" feet or "<<d1*12<<" inches \n";
}
void sum(DM m,DB b)
{

 float sum;

 sum=m.d+b.d1*factor;
 float f;
 f=sum/factor;
 DM m1;
 DB b1;

 m1.store(sum);
 b1.store(f);

 cout<<" press 1 to display result in meter\n"
 <<" press 2 to display result in feet \n"
 <<" What is your option ? : ";
 int test;
 cin>>test;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

 if(test==1)
 m1.show();
 else if(test==2)
 b1.show();

}

int main()
{
 DM dm;
 DB db;
 dm.store(10.5);
 db.store(12.3);
 sum(dm,db);
 return 0;
}

output

Press 1 to display result in meter
Press 2 to display result in feet
What is your option ? 1
Distance = 14.24904 meter or 1424.903931 centimeter

 Chapter 6

 Review Questions

6.1: What is a constructor? Is it mandatory to use constructors in a class?

Ans:A constructor is a ‘special’ member function whose task is to initialize the object of its class.

It is not mandatory to use constructor in a class.

6.2: How do we invoke a constructor function?

Ans:Constructor function are invoked automatically when the objects are created.

6.3: List some of the special properties of the constructor functions.

Ans:Special properties of the constructor functions:

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

MODULE -3

Constructors, Destructors and
Operator Overloading

GANESH Y
Dept. of ECE RNSIT

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

1 GANESH Y, Dept. of ECE RNSIT

MODULE -3
Constructors, Destructors and Operator overloading
SYLLABUS

Constructors, Multiple constructors in a class, Copy constructor, Dynamic constructor,
Destructors, Defining operator overloading, Overloading Unary and binary operators,
Manipulation of strings using operators (Selected topics from Chap-6, 7 of Text)

Introduction

We have seen, so far, a few examples of classes being implemented. In all the cases, we
have used member functions such as putdata() and setvalue() to provide initial
values to the private member variables. For example, the following statement

A.input();

invokes the member function input(), which assigns the initial values to the data items
of object A. Similarly, the statement

x.getdata(100,299.95);

passes the initial values as argument to the function getdata(), where these values are
assigned to the private variables of object x.

 All these 'function call' statements are used with the appropriate objects that have
already been created. These functions cannot be used to initialize the member
variables at the time of creation of their objects.

Providing the initial values as described above does not conform with the philosophy
of C++ language. We stated earlier that one of the aims of C++ is to create user-defined
data types such as class, that behave very similar to the built-in types.,

 This means that we should be able to initialize a class type variable (object) when it is
declared, much the same way as initialization of an ordinary variable. For example,

int m = 20;
float x = 5.75;

are valid initialization statements for basic data types.

Similarly, when a variable of built-in type goes out of scope, the compiler automatically
destroys the variable. But it has not happened with the objects we have so far studied.
It is therefore clear that some more features of classes need to be explored that would
enable us to initialize the objects when they are created and destroy them when their
presence is no longer necessary.

C++ provides a special member function called the constructor which enables an
object to initialize itself when it is created. This is known as automatic initialization

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

2 GANESH Y, Dept. of ECE RNSIT

of objects. It also provides another member function called the destructor that
destroys the objects when they are no longer required.

CONSTRUCTORS

A constructor is a 'special' member function whose task is to initialize the objects of
its class. It is special because its name is the same as the class name. The constructor is
invoked whenever an object of its associated class is created. It is called constructor
because it constructs the values of data members of the class.

A constructor is declared and defined as follows:

// class with a constructor
class integer
{
 int m, n;
public:
integer (void); // constructor declared
 …………
 …………
} ;
integer :: integer (void) // constructor defined
{
 m = 0; n = 0;
}

When a class contains a constructor like the one defined above, it is guaranteed that an
object created by the class will be initialized automatically. For example, the
declaration

integer int1; // object int1 created

not only creates the object int1 of type integer but also initializes its data members m
and n to zero. There is no need to write any statement to invoke the constructor·
function (as we do with the normal member functions).

If a 'normal' member function is defined for zero initialization, we would need to
invoke this function for each of the objects separately. This would be very
inconvenient, if there are a large number of objects.

A constructor that accepts no parameters is called the default constructor. The default
constructor for class A is A :: A(). If no such constructor is defined, then the compiler
supplies a default constructor.

Therefore a statement such as
A a ;

invokes the default constructor of the compiler to create the object a.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

3 GANESH Y, Dept. of ECE RNSIT

The constructor functions have some special characteristics. These are:

• They should be declared in the public section.

• They are invoked automatically when the objects are created.

• They do not have return types, not even void and therefore, and they cannot return
values.

• They cannot be inherited, though a derived class can call the base class constructor.

• Like other C++ functions, they can have default arguments.

• Constructors cannot be virtual. (Meaning of virtual will be discussed later)

• We cannot refer to their addresses.

• An object with a constructor (or destructor) cannot be used as a member of a union.

• They make 'implicit calls' to the operators new and delete when memory allocation
is required.

Remember, when a constructor is declared for a class, initialization of the class
objects becomes mandatory.

PARAMETERIZED CONSTRUCTORS

The constructors that can take arguments are called parameterized constructors.

The constructor integer(), defined above, initializes the data members of all the
objects to zero. However, in practice it may be necessary to initialize the various data
elements of different objects with different values when they are created.

C++ permits us to achieve this objective by passing arguments to the constructor
function when the objects are created.
The constructor integer() may be modified to take arguments as shown below:

class integer
{
 int m, n;
public:
 integer (int x, int y);
};
integer :: integer (int x, int y)
{
 m = x; n = y;
}

When a constructor has been parameterized, the object declaration statement such as

integer int1;

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

4 GANESH Y, Dept. of ECE RNSIT

may not work. We must pass the initial values as arguments to the constructor function
when an object is declared. This can be done in two ways:

• By calling the constructor explicitly.

• By calling the constructor implicitly.

The following declaration illustrates the first method:

integer int1 = integer (0,100); // explicit call

This statement creates an integer object int1 and passes the values 0 and 100 to it. The
second is implemented as follows:

integer int1(0,100); // implicit call

This method, sometimes called the shorthand method, is used very often as it is
shorter, looks better and is easy to implement.

Remember, when the constructor is parameterized, we must provide appropriate
arguments for the constructor. Program below demonstrates the passing of arguments
to the constructor functions.

The constructor functions can also be defined as inline functions. Example:

class integer
{
 int m, n;
public:
 integer (int x, int y) // Inline constructor
 {
 m = x; n = y;
 }
};

The parameters of a constructor can be of any type except that of the class to which it
belongs: For example,

class A
{
 ……
 ………
public :
 A (A) ;
};

is illegal.

However, a constructor can accept a reference to its own class as a parameter. Thus,
the statement

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

5 GANESH Y, Dept. of ECE RNSIT

class A
{

……
………

public :
A (A&) ;

};

is valid. In such cases, the constructor is called the copy constructor.

//This program defines a class called Point that stores the x and y
//coordinates of a point.The class uses parameterized constructor for
//initializing the class objects

#include <iostream>
class Point
{

int x , y;
public :

Point (int a, int b) //inline parameterized constructor
definition

{
x=a;
y=b;

}
void display ()
{
Cout<<"("<<x<<","<<y<<")\n";
}

int main ()
{

point p1(1, 1); //invokes parameterized constructor
point p2(5, 10);
cout<<"Point pl =";
p1.display();
cout<<"Point p2 =";
p2.display();
return 0;

}

The output of above Program would be:
Point p1= (1,1)

Point p2 = (5,10)

#include <iostream>
using namespace std;
class str
{

int a_count,e_count,i_count,o_count,u_count;
char user_str[100];

public:
str (char gg[]);
void count_vowels();

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

6 GANESH Y, Dept. of ECE RNSIT

};
str::str (char gg[])
{

a_count=0;e_count=0;i_count=0;o_count=0;u_count=0;
for (int i=0;i<100;i++)
{

user_str[i]=gg[i];
if (user_str[i]=='\0')

break;
}

}
void str::count_vowels()
{

int i=0;
do {

switch (user_str[i])
{

case 'A':
case 'a': a_count++;

break;
case 'E':
case 'e': e_count++;

break;
case 'I':
case 'i': i_count++;

break;
case 'O':
case 'o': o_count++;

break;
case 'U':
case 'u': u_count++;

break;
}
i++;

} while(user_str[i]!='\0');
cout<<"\n a or A Count "<<a_count;
cout<<"\n e or E Count "<<e_count;
cout<<"\n i or I Count "<<i_count;
cout<<"\n o or O Count "<<o_count;
cout<<"\n u or U Count "<<u_count;

}
int main ()
{

char s[]={'G','a','n','e','s','h'};
str obj1(s);
obj1.count_vowels();
str obj2("Ganesh Yernally");
obj2.count_vowels();
return 0;

}

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

7 GANESH Y, Dept. of ECE RNSIT

Multiple Constructors in a Class / Overloaded Constructors

So far we have used two kinds of constructors. They are:

integer();// No arguments
integer (int, int);// Two arguments

In the first case, the constructor itself supplies the data values and no values are passed
by the calling program. In the second case, the function call passes the appropriate
values from main(). C++ permits us to use both these constructors in the same class.
For example,

class integer
{

int m, n ;
public :

integer () {m=0; n=0;} // constructor 1
integer (int a, int b) {m = a; n = b;} //constructor 2
integer(integer &i) {m = i.m; n = i.n;} //constructor 3

};

This declares three constructors for an integer object. The first constructor receives
no arguments, the second receives two integer arguments and the third receives one
integer object as an argument. For example, the declaration

integer I1;

would automatically invoke the first constructor and set both m and n of I1 to zero.
The statement

integer I2(20,40);

would call the second constructor which will initialize the data members m and n of I2
to 20 and 40 respectively. Finally, the statement

integer I3(I2);

would invoke the third constructor which copies the values of I2 into I3. In other
words, it sets the value of every data element of I3 to the value of the corresponding
data element of I2.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

8 GANESH Y, Dept. of ECE RNSIT

#include <iostream>
using namespace std;
class complex
{
float x , y ;
public:
 complex() { } // constructor no arg
 complex (float a) {x=y=a;} // constructor-one arg
 complex (float real, float imag) {x=real; y=imag;}// constructor-two arg
 friend complex sum(complex, complex);
 friend void show(complex);
};
complex sum(complex c1, complex c2) //friend
{
 complex c3;
 c3.x = c1.x + c2.x;
 c3.y = c1.y + c2.y;
 return (c3);
}
void show(complex c)
{
 cout<<c.x<<"+j"<<c.y << "\n";
}
int main ()
{
 complex A(2.7, 3.5); // define & initialize
 complex B(1.6); // define & initialize
 complex C; // define
 C = sum(A, B); // sum() is a friend
 cout << "A = ";show (A); // show() is also friend
 cout << "B = ";show (B);
 cout << "C = ";show (C);
// Another way to give initial values
 complex P,Q,R; // define
 P = complex(2.5,3.9);
 Q = complex(1.6,2.5);
 R = sum(P,Q);
 cout <<"\n";
 cout << "P = ";show (P);
 cout << "Q = ";show (Q);
 cout << "R = ";show (R);
 return 0;
}

Output:
A = 2.7+j3.5 P = 2.5+j3.9
B = 1.6+j1.6 Q = 1.6+j2.5
C = 4.3+j5.1 R = 4.1+j6.4

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

9 GANESH Y, Dept. of ECE RNSIT

Let us look at the first constructor again.

complex() { }

It contains the empty body and does not do anything. We just stated that this is used
to create objects without any initial values. Remember, we have defined objects in the
earlier examples without using such a constructor.

Why do we need this constructor now? As pointed out earlier, C++ compiler has an
implicit constructor which creates objects, even though it was not defined in the class.

This works fine as long as we do not use any other constructors in the class. However,
once we define a constructor, we must also define the "do-nothing" implicit
constructor. This constructor will not do anything and is defined just to satisfy the
compiler.

CONSTRUCTORS WITH DEFAULT ARGUMENTS

It is possible to define constructors with default arguments. For example, the
constructor complex() can be declared as follows:

complex (float real, float imag=0);

The default value of the argument imag is zero. Then, the statement

complex C(5.0);

assigns the value 5.0 to the real variable and 0.0 to imag (by default). However, the
statement

complex C(2.0, 3.0);

assigns 2.0 to real and 3.0 to imag. The actual parameter, when specified, overrides
the default value.

As pointed out earlier, the missing arguments must be the trailing ones. It is important
to distinguish between the default constructor A :: A() and the default argument
constructor A :: A(int = 0).

The default argument constructor can be called with either one argument or no
arguments. When called with no arguments, it becomes a default constructor. When
both these forms are used in a class, it causes ambiguity for a statement such as

A a;

The ambiguity is whether to 'call' A :: A() or A :: A(int = 0).

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

10GANESH Y, Dept. of ECE RNSIT

DYNAMIC INITIALIZATION OF OBJECTS

Class objects can be initialized dynamically too. That is to say, the initial value of an
object may be provided during run time.

One advantage of dynamic initialization is that we can provide various initialization
formats, using overloaded constructors. This provides the flexibility of using different
format of data at run time depending upon the situation.

Consider the long-term deposit schemes working in the commercial banks. The banks
provide different interest rates for different schemes as well as for different periods of
investment.

Program shown below illustrates how to use the class variables for holding account
details and how to construct these variables at run time using dynamic initialization.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

11 GANESH Y, Dept. of ECE RNSIT

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

12GANESH Y, Dept. of ECE RNSIT

The output of Program would be:

Enter amount,period,interest rate(in percent)

10000 3 18

Enter amount,period,interest (in decimal form)

10000 3 0.18

Enter amount and period

10000 3

Deposit 1

Principal Amount = 10000

Return Value = 16430.3

Deposit 2

Principal Amount = 10000

Return Value = 16430.3

Deposit 3

Principal 'Amount = 10000

Return Value = 14049.3

COPY CONSTRUCTOR

We have used the copy constructor

integer (integer &i);

as one of the overloaded constructors.

As stated earlier, a copy constructor is used to declare.and initia.lize an object from
another object.

For example, the statement

integer I2(I1);

would define the object I2 and at the same time initialize it to the values of I1. Another
form of this statement is

integer I2 = I1;

The process of initializing through a copy constructor is known as copy initialization.
Remember, the statement

I2 = I1;

will not invoke the copy constructor. However, if I1 and I2 are objects, this statement
is legal and simply assigns the values of I1 to I2, member-by-member. This is the task
of the overloaded assignment operator(=).

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

13 GANESH Y, Dept. of ECE RNSIT

The output of above Program would be:
id of A: 100
id of B: 100
id of C: 100
id of D: 100

When no copy constructor is defined, the compiler supplies its own copy constructor.

DYNAMIC CONSTRUCTORS

The constructors can also be used to allocate memory while creating objects. This will
enable the system to allocate the right amount of memory for each object when the
objects are not of the same size, thus resulting in the saving of memory.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

14 GANESH Y, Dept. of ECE RNSIT

Allocation of memory to objects at the time of their construction is known as dynamic
construction of objects. The memory is allocated with the help of the new operator.

Program shown below the use of new, in constructors that are used to construct strings
in objects.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

15GANESH Y, Dept. of ECE RNSIT

Output
Joseph
Louis
Lagrange
Joseph Louis
Joseph Louis Lagrange

This Program uses two constructors. The first is an empty constructor that allows us to
declare an array of strings. The second constructor initializes the length of the string,
allocates necessary space for the string to be stored and creates the string itself. Note that
one additional character space is allocated to hold the end-of-string character '\0'.

The member function join() concatenates two strings. It estimates the combined
length of the strings to be joined, allocates memory for the combined string and then
creates the same using the string functions strcpy() and strcat().

Note that in the function join(), length and name are members of the object that calls
the function, while a.length and a.name are members of the argument object a.

The main() function program concatenates three strings into one string. The output
is as shown below:

Joseph Louis Lagrange

CONSTRUCTING TWO-DIMENSIONAL ARRAYS

The following illustrates how to construct a matrix of size m X n.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

16 GANESH Y, Dept. of ECE RNSIT

Output

Enter size of matrix: 3 4
Enter matrix elements row by row
11 12 13 14
15 16 17 18
19 20 21 22
17
17 is the value of the element (1, 2).

The constructor first creates a vector pointer to an int of size d1 . Then, it allocates,
iteratively an int type vector of size d2 pointed at by each element p[i].

Thus, space for the elements of a d1 x d2 matrix is allocated from free store as shown
above.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

17GANESH Y, Dept. of ECE RNSIT

const OBJECTS

We may create and use constant objects using const keyword before object
declaration. For example, we may create X as a constant object of the class matrix as
follows:

const matrix X(m, n) ; // object X is constant

Any attempt to modify the values of m and n will generate compile-time error. Further,
a constant object can call only const member functions.

As we know, a const member is a function prototype or function definition where the
keyword const appears after the function's signature. Whenever const objects try to
invoke nonconst member functions, the compiler generates errors.

DESTRUCTORS

A destructor, as the name implies, is used to destroy the objects that have been created
by a constructor. Like a constructor, the destructor is a member function whose name
is the same as the class name but is preceded by a tilde (~).

For example, the destructor for the class integer can be defined as shown below:

~integer () { }

A destructor never takes any argument nor does it return any value. It will be invoked
implicitly by the compiler upon exit from the program (or block or function as the case
may be) to clean up storage that is no longer accessible.

It is a good practice to declare destructors in a program since it releases memory space
for future use.

Whenever new is used to allocate memory in the constructors, we should use delete
to free that memory. For example, the destructor for the matrix class discussed above
may be defined as follows:

matrix :: ~matrix()
{

for(int i=0; i<dl ; i++)
delete p[i];
delete p;

}
This is required because when the pointers to objects go out of scope, a destructor is
not called implicitly.

The example below illustrates that the destructor has been invoked implicitly by the
compiler.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

18GANESH Y, Dept. of ECE RNSIT

Inside the main block ..

Creating first object T1 ..
Constructor Msg: Object number 1 created ..

Inside Block 1 ..
Creating two more objects T2 and T3 . .

Constructor Msg: Object number 2 created ..
Constructor Msg: Object number 3 created ..

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

19 GANESH Y, Dept. of ECE RNSIT

Leaving Block 1 ..

Destructor Msg: Object number 3 destroyed .

Destructor Msg : Object number 2 destroyed.

Back inside the main block . .
Destructor Msg: Object number 1 destroyed . .

A class constructor is called every time an object is created. Similarly, as the program
control leaves the current block the objects in the block start getting destroyed and
destructors are called for each one of them.

Note that the objects are destroyed in the reverse order of their creation. Finally, when
the main block is exited, destructors are called corresponding to the remaining objects
present inside main.

Similar functionality can be attained by using static data members with
constructors and destructors. We can declare a static integer variable count inside a
class to keep a track of the number of its object instantiations.

Being static, the variable will be initialized only once, i.e., when the first object instance
is created. During all subsequent object creations, the constructor will increment the
count variable by one. Similarly, the destructor will decrement the count variable by
one as and when an object gets destroyed.

To realize this scenario, the code in following program will change slightly, as shown
below:

#include <iost ream>
using namespace std;
class test
{
private:
 static int count=0;
public :
}
test ()
{
 count++;
}
~test ()
{
 count--;
}

The primary use of destructors is in freeing up the memory reserved by the object
before it gets destroyed. Program shown below demonstrates how a destructor releases
the memory allocated to an object:

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

20GANESH Y, Dept. of ECE RNSIT

Output

Enter the size of the array .. 5

Creating an object of test class. :

Constructor Msg: Integer array of sizes created ..

Press any key to end the program ..

Destructor Msg: Freed up the memory allocated for integer array

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

21GANESH Y, Dept. of ECE RNSIT

Operator Overloading

C++ tries to make the user-defined data types behave in much the same way as the
built-in types. For instance, C++ permits us to add two variables of user-defined types
with the same syntax that is applied to the basic types.

This means that C++ has the ability to provide the operators with a special meaning for
a data type. The mechanism of giving such special meanings to an operator is known
as operator overloading.

Operator overloading provides a flexible option for the creation of new definitions for
most of the C++ operators. We can overload (give additional meaning to) all the C++
operators except the following:

• Class member access operators (. , .*)

• Scope resolution operator (::)

• Size operator (sizeof)

• Conditional operator (?:)

The reason why we cannot overload these operators may be attributed to the fact that
these operators take names (example class name) as their operand instead of values,
as is the case with other normal operators.

Although the semantics of an operator can be extended, we cannot change its syntax,
the grammatical rules that govern its use such as the number of operands, precedence
and associativity. For example, the multiplication operator will enjoy higher
precedence than the addition operator.

Remember, when an operator is overloaded, its original meaning is not lost. For
instance, the operator +, which has been overloaded to add two vectors, can still be
used to add two integers.

DEFINING OPERATOR OVERLOADING

The general form of an operator function is:
return_type classname :: operator op (arglist)
{

Function body // task defined
}

To define an additional task to an operator, we must specify what it means in relationto
the class to which the operator is applied.

This is done with the help of a special function, called operator function, which
describes the task.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

22 GANESH Y, Dept. of ECE RNSIT

where return type is the type of value returned by the specified operation and op is
the operator being overloaded. operator op is the function name, where operator is a
keyword.

Operator functions must be either member functions (non-static) or friend functions.
A basic difference between them is that a friend function will have only one argument
for unary operators and two for binary operators, while a member function has no
arguments for unary operators and only one for binary operators.

This is because the object used to invoke the member function is passed implicitly and
therefore is available for the member function. This is not the case with friend
functions.

vector operator+ (vector); // vector addition
vector operator- (); // unary minus
friend vector operator+ (vector,vector); // vector addition
friend vector operator- (vector); // unary minus
vector operator-(vector &a); // subtraction
int operator==(vector); // comparison
friend int operator==(vector,vector); // comparison

vector is a data type of class and may represent both magnitude and direction (as in
physics and engineering) or a series of points called elements (as in mathematics).

The process of overloading involves the following steps:

1. Create a class that defines the data type that is to be used in the overloading
operation.

2. Declare the operator function operator op() in the public part of the class. It may
be either a member function or a friend function.

3. Define the operator function to implement the required operations.

Overloaded operator functions can be invoked by expressions such as

op x or x op

for unary operators and

x op y
for binary operators. op x (or x op) would be interpreted as

operator op (x)

for friend functions.

Similarly, the expression x op y would be interpreted as either

x.operator op (y)

in case of member functions, or

operator op (x,y)

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

23GANESH Y, Dept. of ECE RNSIT

in case of friend functions. When both the forms are declared, standard argument
matching is applied to resolve any ambiguity.

OVERLOADING UNARY OPERATORS

Let us consider the unary minus operator. A minus operator when used as a unary,
takes just one operand. We know that this operator changes the sign of an operand
when applied to a basic data item.

We will see here how to overload this operator so that it can be applied to an object in
much the same way as is applied to an int or float variable. The unary minus when
applied to an object should change the sign of each of its data items.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

24 GANESH Y, Dept. of ECE RNSIT

Output

S : x = 10 y = -20 Z = 30

-S : x = - 10 y = 20 Z = - 30

The function operator - () takes no argument. Then, what does this operator function
do? It changes the sign of data members of the object S. Since this function is a member
function of the same class, it can directly access the members of the object which activated
it.

Remember, a statement like

S2 = -S1 ;

will not work because, the function operator-() does not return any value. It can work
if the function is modified to return an object.

It is possible to overload a unary minus operator using a friend function as follows:

friend void operator-(space &s);// declaration
void operator- (space &s)// definition
{
 s.x = - s.x;
 s.y = - s.y;
 s.z = - s.z;
}

Note that the argument is passed by reference. It will not work if we pass argument by
value because only a copy of the object that activated the call is passed to operator-().
Therefore, the changes made inside the operator function will not reflect in the called
object.

OVERLOADING BINARY OPERATORS

we illustrated, how to add two complex numbers using a friend function. A statement
like

C = sum (A,B) ; // functional notation.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

25GANESH Y, Dept. of ECE RNSIT

was used. The functional notation can be replaced by a natural

looking expression

C = A+B; //arithmetic notation

by overloading the + operator using an operator+() function. The Program shown
below illustrates how this is accomplished.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

26GANESH Y, Dept. of ECE RNSIT

Output
C1= 2.5 + j3.5

C2=1.6 + j2.7

C3=4.1 + j6.2

Let us have a close look at the function operator +() and see how the operator
overloading is implemented.

complex complex:: operator+(complex c)
{

complex temp;
temp.x = x + c.x;
temp.y = y + c.y;
return (temp);

}

We should note the following features of this function:

1. It receives only one complex type argument explicitly.

2. It returns a complex type value.

3. It is a member function of complex.

The function is expected to add two complex values and return a complex value as the
result but receives only one value as argument. Where does the other value come from?
Now let us look at the statement that invokes this function:

C3 =C1+ C2; // invokes operator+() function

We know that a member function can .be invoked only by an object of the same class.
Here, the object C1 takes the responsibility of invoking the function and C2 plays the
role of an argument that is passed to the function. The above invocation statement is
equivalent to

C3 = C1.operator+(C2); // usual function call syntax

Therefore, in the operator+() function, the data members of C1 are accessed directly
and the data members of C2 (that is passed as an argument) are accessed using the dot
operator. Thus, both the objects are available for the function. For example, in the
statement

temp.x = x + c.x;
c.x refers to the object C2 and x refers to the object C1. temp.x is the real part of temp
that has been created specially to hold the results of addition of C1 and C2. The function
returns the complex temp to be assigned to C3. Figure below shows how this is
implemented.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

27GANESH Y, Dept. of ECE RNSIT

As a rule, in overloading of binary operators, the left-hand operand is used to invoke
the operator function and the right-hand operand is passed as an argument.

We can avoid the creation of the temp object by replacing the entire function body by
the following statement:

return complex ((x+c.x),(y+c·y)); // invokes constructor 2

What does it mean when we use a class name with an argument list? When the
compiler comes across a statement like this, it invokes an appropriate constructor,
initializes an object with no name and returns the contents for copying into an object.

Such an object is called a temporary object and goes out of space as soon as the
contents are assigned to another object. Using temporary objects can make the code
shorter, more efficient and better to read.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

28 GANESH Y, Dept. of ECE RNSIT

OVERLOADING BINARY OPERATORS USING FRIENDS

As stated earlier, friend functions may be used in the place of member functions for
overloading a binary operator, the only difference being that a friend function requires
two arguments to be explicitly passed to it, while a member function requires only one.

The complex number program discussed in the previous section can be modified using
a friend operator function as follows:

1. Replace the member function declaration by the friend function declaration.

friend complex operator+(complex , complex);

2. Redefine the operator function as follows:

complex operator +(complex a , complex b)
{
 return complex ((a.x + b.x), (a.y + b.y));
}

In this case, the statement
C3 = C1+ C2 ;

is equivalent to
C3 = operator +(C1 , C2);

In most cases, we will get the same results by the use of either a friend function or a
member function. Why then an alternative is made available? There are certain
situations where we would like to use a friend function rather than a member function.

For instance, consider a situation where we need to use two different types of operands
for a binary operator, say, one an object and another a built-in type data as shown
below,

A = B + 2; (or A = B * 2;)

where A and B are objects of the same class. This will work for a member function but
the statement

A = 2 + B; (or A = 2 * B)

will not work. This is because the left-hand operand which is responsible for invoking
the member function should be an object of the same class. However, friend function
allows both approaches. How?

It may be recalled that an object need not be used to invoke a friend function but can
be passed as an argument. Thus, we can use a friend function with a built-in type data
as the left-hand operand and an object as the right-hand operand.

Program shown below illustrates this, using scalar multiplication of a vector. It also
shows how to overload the input and output operators >> and <<.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

29 GANESH Y, Dept. of ECE RNSIT

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

30GANESH Y, Dept. of ECE RNSIT

Output

Enter elements of vector m

5 10 15

m = (5, 10 , 15)
p = (10 , 20, 30)

q = (4, 8 , 12)

The program overloads the operator * two times, thus overloading the operator
function operator*() itself. ln both the cases, the functions are explicitly passed two
arguments and they are invoked like any other overloaded function, based on the types
of its arguments. This enables us to use both the forms of scalar multiplication such as

p = 2 * m; // equivalent to p = operator*(2, m) ;
q = n * 2; // equivalent to q = operator* (n ,2) ;

The program and its output are largely self-explanatory. The first constructor

vector() ;

constructs a vector whose elements are all zero. Thus

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

31 GANESH Y, Dept. of ECE RNSIT

vector m;

creates a vector m and initializes all its elements to 0. The second constructor

vector (int &x);

creates a vector and copies the ele1nents pointed to by the pointer argument x into it.
Therefore, the statements

int x [3] = {2,4,6};

vector n = x;

create n as a vector with co1nponents 2, 4, and 6.

We have used vector variables like m and n in input and output statements just like simple
variables. This has been made possible by overloading the operators >> and << using the
functions:

friend istream & operator >> (istream &, vector &) ;
friend ostream & operator << (ostream &, vector &) ;

istream and ostream are classes defined in the iostream.h file which has been included
in the program.

MANIPULATION OF STRINGS USING OPERATORS

Although these limitations exist in C++ as well, it permits us to create our own
definitions of operators that can be used to manipulate the strings very much similar
to the decimal numbers. (Recently, ANSI C++ committee has added a new class called
string to the C++ class library that supports all kinds of string manipulations.

For example, we shall be able to use statements like

string3 = string1 + string2;
if(string1 >= string2) string = string1;

Strings can be defined as class objects which can be then manipulated like the built-in
types. Since the strings vary greatly in size, we use new to allocate memory for each
string and a pointer variable to point to the string array.

Thus we must create string objects that can hold these two pieces of information,
namely, length and location which are necessary for string manipulations. A typical
string class will look as follows:

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

32GANESH Y, Dept. of ECE RNSIT

class string
{

char *p ; //pointer to string
int len ; // length of string

public:
......... // member functions
......... // to initialize and
........ // manipulate strings

} ;

We shall consider an example to illustrate the application of overloaded operators to
strings. The example shown below overloads two operators, + and <= just to show how
they are implemented. This can be extended to cover other operators as well.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

33GANESH Y, Dept. of ECE RNSIT

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

34 GANESH Y, Dept. of ECE RNSIT

output

string1 = New

string2 = York

string3 = New Delhi

New smaller than New Delhi

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

1. They should be declared in the public section.
2. They are invoked automatically when the objects are created.
3. They do not have return type, not even void.
4. They cannot be inherited.
5. Like other C++ functions, they can have default arguments.
6. Constructors cannot be virtual.

6.4: What is a parameterized constructor?

Ans:The constructors that can take arguments are called parameterized constructors.

6.5: Can we have more than one constructors in a class? If yes, explain the need for such a
situation.

Ans:Yes, we have when we need to overload the constructor, then we have to do this.

6.6: What do you mean by dynamic initialization of objects? Why do we need to this?

Ans:Initializing value of object during run time is called dynamic initialization of objects.
One advantage of dynamic initialization is that we can provide various initialization formats
using overloaded constructors.

6.7: How is dynamic initialization of objects achieved?

Ans:Appropriate function of a object is invoked during run-time and thus dynamic initialization
of object is achieved.
Consider following constructor:
santo (int p, int q, float r);
santo (int p, int q, int r);
It two int type value and one float type value are passed then sant (int p, int q, float r) is invoked.
It three int type value are passed then santo (int p, into q, int r) is invoked.

6.8: Distinguish between the following two statements:
time T2(T1);
time T2 = T1;
T1 and T2 are objects of time class.

Ans:
time T2 (T1); ==> explicitly called of copy constructor
time T2 = T1; ==> implicitly called of copy constructor.

Chapter 6

Review Questions

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

6.9: Describe the importance of destructors.

Ans:Destructors are important to release memory space for future use.

6.10: State whether the following statements are TRUE or FALSE.
(a) Constructors, like other member functions, can be declared anywhere in the class.
(b) Constructors do not return any values.
(c) A constructor that accepts no parameter is known as the default constructor.
(d) A class should have at least one constructor.
(e) Destructors never take any argument.

Ans:
(a) FALSE
(b) TRUE
(c) TRUE
(d) TRUE
(e) TRUE

Debugging Exercises

6.1: Identify the error in the following program.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

#include <iostream.h>
class Room
{

 int length;
 int width;
public:

 Room(int 1, int w=0):
 width(w),

 length(1)
 {
 }
};
void main()
{
Room objRooml;
Room objRoom2(12, 8);
}
1
</br>
Solution:Here there is no default constructor, so object could not be
written without any argument.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

23
24
25
26
27

Correction :
1
 Void main ()
 {
 Room Objroom2(12,8);

 }.

6.2: Identify the error in the following program.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#include <iostream.h>
class Room
{

 int length;
 int width;

public:
 Room()
 {

 length=0;
 width=0;
 }
Room(int value=8)
 {
 length = width =8;
 }
void display()
 {
 cout<<length<< ' ' <<width;
 }
};
void main()
{
Room objRooml;
objRoom1.display();

Solution:Room() and Room(int value=8) Functions are same, so it show Ambiguity error.
Correction : Erase Room() function and then error will not show.

6.3: Identify the error in the following program.

1
2
3
4
5

#include <iostream.h>
class Room
{

 int width;
 int height;

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

public:
 void Room()

 {
 width=12;

 height=8;
 }
Room(Room& r)
 {
 width =r.width;
 height=r.height;
 copyConsCount++;
 }
void discopyConsCount()
 {
 cout<<copyConsCount;
 }
};
int Room::copyConsCount = 0;
void main()
{
Room objRooml;
Room objroom2(objRoom1);
Room objRoom3 = objRoom1;
Room objRoom4;
objRoom4 = objRoom3;
objRoom4.dicopyConsCount();
}

Solution: Just erase “objRoom4 = objRoom3; invalid to call copy constructor.” for successfully
run.

6.4: Identify the error in the following program.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

#include <iostream.h>
class Room
{

 int width;
 int height;
 static int copyConsCount;

public:
 void Room()

 {
 width=12;
 height=8;
 }
Room(Room& r)
 {
 width =r.width;

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

 height=r.height;
 copyConsCount++;
 }
void discopyConsCount()
 {
 cout<<copyConsCount;
 }
};
int Room::copyConsCount = 0;
void main()
{
Room objRooml;
Room objroom2(objRoom1);
Room objRoom3 = objRoom1;
Room objRoom4;
objRoom4 = objRoom3;
objRoom4.dicopyConsCount();
}

Solution: Same as 6.3 problem solution.

Programming Exercises

6.1: Design constructors for the classes designed in Programming Exercise 5.1 through 5.5
of Chapter 5.

Solution: Study on Constructor and then see solution of chapter 5.

6.2: Define a class String that could work as a user-defined string type. Include
constructors that will enable us to create an uninitialized string:

String s1; // string with length 0
And also initialize an object with a string constant at the time of creation like
String s2(“Well done!”);
Include a function that adds two strings to make a third string. Note that the statement
S2 = s1;
will be perfectly reasonable expression to copy one string to another.
Write a complete program to test your class to see that it does the following tasks:
(a) Creates uninitialized string objects.
(b) Creates objects with string constants.
(c) Concatenates two strings properly.
(d) Displays a desired string object.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

#include
#include
class string
{
char *str;
int length;

public:
string()
{
length = 0;
str = new char [length + 1] ;
}
string(char *s);
void concat(string &m,string &n);
string(string &x);
void display();

};
string::string(string &x)
{
length = x.length + strlen(x.str);
str = new char[length + 1];
strcpy(str, x.str);

}
void string:: concat(string &m,string &n)
{
length=m.length+n.length;
delete str;
str=new char[length+1];
strcpy(str,m.str);
strcat(str,n.str);
}
void string:: display()
{
cout<<str<<"\n";
}
string::string(char *s)
{
length = strlen(s);
str = new char[length + 1];
strcpy(str,s);
}

int main()
{
string s1;

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

49
50
51
52
53
54
55
56
57

string s2(" Well done ");
string s3(" Badly done ");
s2.display();
s1.concat(s2,s3);
s2=s3;
s2.display();
s1.display();
return 0;
}

output

Well done
Badly done
Well done Badly done

6.3: A book shop maintains the inventory of books that are being sold at the shop. The list
includes details such as author, title, price, publisher and stock position. Whenever a
customer wants a book, the sales person inputs the title and author and the system searches
the list and displays whether it is available or not. If it is not, an appropriate message is
displayed. If it is, then the system displays the book details and requests for the number of
copies required. If the requested copies are available, the total cost of the requested copies is
displayed; otherwise “Required copies not in stock” is displayed.
Design a system using a class called books with suitable member functions and constructors.
Use new operator in constructors to allocate memory space required.

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

#include
#include
#include
#include
#include

class book
{
char **author;
char **title;
float *price;
char **publisher;
int *stock_copy;
int size;

public:
book();
void book_detail(int i);
void buy(int i);

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

int search();
};

book :: book()
{
size=4;
author=new char*[80];
title=new char*[80];
publisher=new char*[80];

for(int i=0;i<size;i++)
{
author[i]=new char[80];
title[i]=new char[80];
publisher[i]=new char[80];
}
stock_copy=new int[size];
price=new float[size];

title[0]="object oriented programming with c++";
title[1]="programming in ANCI";
title[2]="electronic circuit theory";
title[3]="computer algorithm";

author[0]="balagurusamy";
author[1]="balagurusamy";
author[2]="boyelstade";
author[3]="shahani";

stock_copy[0]=200;
stock_copy[1]=150;
stock_copy[2]=50;
stock_copy[3]=80;

price[0]=120.5;
price[1]=115.75;
price[2]=140;
price[3]=180.5;

}
void book::book_detail(int i)
{
cout<<" *********book detail **********\n";
cout<<setw(12)<<"Title"<<setw(25)<<"Author Name"
<<setw(18)<<"Stock copy\n";
cout<<setw(15)<<title[i]<<setw(16)<<author[i]<<setw(15)
<<stock_copy[i]<<"\n";

}
int book::search()
{

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

char name[80],t[80];
cout<<"Enter author name : ";

gets(name);
cout<<"and title of book in small letter : ";
gets(t);

int count=-1;
int a,b;
for(int i=0;i<size;i++)
{

a=strcmp(name,author[i]);
b=strcmp(t,title[i]);
if(a==0 && b==0)

count=i;

}

return count;
}

void book::buy(int i)
{
if(i<0)
cout<<" This book is not available \n";

else
{
book_detail(i);
cout<<" How many copies of this book is required : ? "; int copy; cin>>copy;
int remaining_copy;
if(copy<=stock_copy[i])
{
remaining_copy=stock_copy[i]-copy;
float total_price;
total_price=price[i]*copy;
cout<<"Total price = "<<total_price<<" TK\n";
}
else
cout<<" Sorry your required copies is not available \n";
}
}

int main()
{
book b1;
int result;

result=b1.search();

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

122
123
124

b1.buy(result);
return 0;
}

output

Enter author name : shahani

and title of book in small latter : computer algorithm

*********book detail *********

Title Author Name Stock copy

computer algorithm shahani 80

How many copies of this book is required : ? 78

Total price = 14079 TK

6.4: Improve the system design in Exercise 6.3 to incorporate the following features:
(a) The price of the books should be updated as and when required. Use a private member
function to implement this.
(b) The stock value of each book should be automatically updated as soon as a transaction is
completed.
(c) The number of successful and unsuccessful transactions should be recorded for the
purpose of statistical analysis. Use static data members to keep count of transactions.

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

#include
#include
#include
#include
#include

class book
{
static int successful,unsuccessful;
char **author;
char **title;
float *price;
char **publisher;
int *stock_copy;
int size;

public:

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

book();
void book_detail(int i);
void buy(int i);
int search();
void showtransaction();
void showdetail();
void edit_price();
};
int book::successful=0;
int book::unsuccessful=0;

book :: book()
{
size=5;
author=new char*[80];
title=new char*[80];
publisher=new char*[80];

for(int i=0;i<size;i++)
{
author[i]=new char[80];
title[i]=new char[80];
publisher[i]=new char[80];
}
stock_copy=new int[size];

price=new float[size];

title[0]="object oriented programming with c++";
title[1]="programming in ANCI";
title[2]="electronic circuit theory";
title[3]="computer algorithm";
title[4]="complete solution of balagurusamy(c++)";

author[0]="balagurusamy";
author[1]="balagurusamy";
author[2]="boyelstade";
author[3]="shahani";
author[4]="abdus sattar";

stock_copy[0]=200;
stock_copy[1]=150;
stock_copy[2]=50;
stock_copy[3]=80;
stock_copy[4]=300;

price[0]=120.5;
price[1]=115.75;
price[2]=140;
price[3]=180.5;
price[4]=120;

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

}

void book::book_detail(int i)
{
cout<<" *********book detail **********\n";
cout<<setw(25)<<"Title"<<setw(30)<<"Author Name"
<<setw(18)<<"Stock copy\n";
cout<<setw(15)<<title[i]<<setw(16)<<author[i]<<setw(15)
<<stock_copy[i]<<"\n";

}

int book::search()
{
char name[80],t[80];
cout<<"Enter author name in small letter : ";
gets(name);
cout<<" title of book in small letter : ";
gets(t);

int count=-1;
int a,b;
for(int i=0;i<size;i++)
{

a=strcmp(name,author[i]);
b=strcmp(t,title[i]);
if(a==0 && b==0)

count=i;

}

return count;
}

void book::buy(int i)
{
if(i<0)
{
cout<<" This book is not available \n";
unsuccessful++;
}

else
{
book_detail(i);
cout<<" How many copies of this book is required : ? "; int copy; cin>>copy;

if(copy<=stock_copy[i])

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

{
stock_copy[i]=stock_copy[i]-copy;
float total_price;
total_price=price[i]*copy;
cout<<"Total price = "<<total_price<<" TK\n";
successful++;
}
else
{
cout<<" Sorry your required copies is not available \n";
unsuccessful++;
}
}
}

void book::edit_price()
{
cout<<" To edit price ";
int i;
i=search();
cout<<"Enter new price : "; float p; cin>>p;
price[i]=p;
}
void book::showdetail()
{
cout<<setw(22)<<"Title"<<setw(30)<<" stock copy "<<setw(20)
<<" Price per book "<<endl;
for(int i=0;i<size;i++)
{
cout<<setw(35)<<title[i]<<setw(10)<<stock_copy[i]
<<setw(18)<<price[i]<<endl;
}
}
void book::showtransaction()
{
cout<<setw(22)<<"Successful transaction"<<setw(34)
<<"unsuccessful transaction "<<endl<<setw(10)
<<successful<<setw(32)<<unsuccessful<<endl;
}

int main()
{
book b1;
int result;

result=b1.search();
b1.buy(result);
b1.showdetail();
b1.showtransaction();
b1.edit_price();
cout<<"************details after edit price

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

171
172
173
174
175

*****************"<<endl;
b1.showdetail();

return 0;
}

output

Enter author name in small letter : abdus sattar

title of book in small letter : complete solution of balagurusamy(c++)

*********book detail **********

Title Author Name Stock copy

complete solution of balagurusamy(c++) abdus sattar 300

How many copies of this book is required : ? 100

Total price = 12000 TK

Title stock copy Price per book

object oriented programming with c++ 200 120.5

programming in ANCI 150 115.75

electronic circuit theory 50 140

computer algorithm 80 180.5

complete solution of balagurusamy(c++) 200 120

Successful transaction unsuccessful transaction

1 0

To edit price Enter author name in small letter : shahani

title of book in small letter : computer algorithm

Enter new price : 200

************details after edit price*****************

Title stock copy Price per book

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

object oriented programming with c++ 200 120.5

programming in ANCI 150 115.75

electronic circuit theory 50 140

computer algorithm 80 200

complete solution of balagurusamy(c++) 200 120

 Chapter 7

 Review Questions

7.1: What is operator overloading?

Ans: The mechanism of giving special meaning to an operator is known as operator overloading.

7.2: Why is it necessary to overload an operator?

Ans: We can almost create a new language of our own by the creative use of the function and
operator overloading techniques.

7.3: What is an operator function? Describe the syntax of an operator function.

Ans: To define an additional task to an operator, we must specify what it means in relation to the
class to which the operator is applied. By which function this is done, is called operator function.
Syntax of operator function:

 return type class name : : operator OP (argument list)
 {
 function body // task defined
 }

7.4: How many arguments are required in the definition of an overloaded unary operator?

Ans: No arguments are required.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

7.5: A class alpha has a constructor as follows:
alpha(int a, double b);
Can we use this constructor to convert types?

Ans: No. The constructors used for the type conversion take a single argument whose type is to
be converted.

7.6: What is a conversion function How is it created Explain its syntax.

Ans: C++ allows us to define an overloaded casting operator that could be used to convert a class
type data to a basic type. This is referred to conversion function.
Syntax:

 Operator type name ()
 {
 (Function Statements)
 }

7.7: A friend function cannot be used to overload the assignment operator =. Explain why?

Ans: A friend function is a non-member function of the class to which it has been defined as
friend. Therefore it just uses the functionality (functions and data) of the class. So it does not
consist the implementation for that class. That’s why it cannot be used to overload the assignment

operator.

7.8: When is a friend function compulsory? Give an example.

Ans: When we need to use two different types of operands for a binary operator, then we must
use friend function.
Example:
A = B + 2;
or
A = B * 2;
is valid
But A = 2 + B
or
A = 2 * B will not work.
Because the left hand operand is responsible for invoking the member function. In this case friend
function allows both approaches.

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

7.9: We have two classes X and Y. If a is an object of X and b is an object of Y and we want
to say a = b; What type of conversion routine should be used and where?

Ans: We have to use one class to another class type conversion. The type-conversion function to
be located in the source class or in the destination class.

7.10: State whether the following statements are TRUE or FALSE.
(a) Using the operator overloading concept, we can change the meaning of an operator.
(b) Operator overloading works when applied to class objects only.
(c) Friend functions cannot be used to overload operators.
(d) When using an overloaded binary operator, the left operand is implicitly passed to the member
function.
(e) The overloaded operator must have at least one operand that is user-defined type.
(f)Operator functions never return a value.
(g) Through operator overloading, a class type data can be converted to a basic type data.
(h) A constructor can be used to convert a basic type to a class type data.

Ans:
(a) FALSE
(b) TRUE
(c) FALSE
(d) FALSE
(e) TRUE
(f) FALSE
(g) TRUE
(h) TRUE

 Debugging Exercises

7.1: Identify the error in the following program.

#include <iostream.h>
class Space
{
 int mCount;
public:
 Space()
 {
 mCount = 0;
 }

 Space operator ++()
 {
 mCount++;
 return Space(mCount);

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

 }
};
void main()
{
 Space objSpace;
 objSpace++;
}

Solution: The argument of Space() function is void type, so when this function is called there are
no argument can send to it. But ‘mCount’ argument is sending to Space() function through return

space(mCount); Statement.
Here return space (mCount); replaced by return space();

7.2: Identify the error in the following program.

#include <iostream.h>
enum WeekDays
{
 mSunday'
 mMonday,
 mtuesday,
 mWednesday,
 mThursday,
 mFriday,
 mSaturday
};
bool op==(WeekDays& w1, WeekDays& w2)
{
 if(w1== mSunday && w2==mSunday)
 return 1;
 else if(w1==mSunday && w2==mSunday)
 return 1;
 else if(w1==mSunday && w2==mSunday)
 return 1;
 else if(w1==mSunday && w2==mSunday)
 return 1;
 else if(w1==mSunday && w2==mSunday)
 return 1;
 else if(w1==mSunday && w2==mSunday)
 return 1;
 else if(w1==mSunday && w2==mSunday)
 return 1;
 else
 return 0;
}
void main()
{
 WeekDays w1 = mSunday, w2 = mSunday;

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

 if(w1==w2)
 cout<<"Same day";
 else
 cout<<"Different day";
}

Solution: bool OP = = (WeekDays & w1, WeekDays & w2) replaced by bool operator = =
(Weekdays & w1, WeekDays & w2). All other code will remain same.

7.3: Identify the error in the following program.

#include <iostream.h>
class Room
{
 float mWidth;
 float mLength;
public:
 Room()
 {
 }
 Room(float w, float h)
 :mWidth(w), mLength(h)
 {
 }
 operator float ()
 {
 return (float)mWidth * mLength;
 }

 float getWidth()
 {
 }
 float getLength()
 {
 return mLength;
 }
};

void main()
{
 Room objRoom1(2.5, 2.5)
 float fTotalArea;
 fTotalArea = objRoom1;
 cout<< fTotalArea;
}

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Solution: The float getWidth() function return float type data, but there is no return statement in
getWidth() function. So it should write as follows.

 float getWidth()
 {
 return mWidth;
 }

All other code will remain unchanged.

 Programming Exercises

7.1: Crate a class FLOAT that contains one float data member. Overload all the four
arithmetic operators so that they operate on the objects of FLOAT.

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#include<iostream.h>

class FLOAT
{
 float data;
 public:
 FLOAT(){};
 FLOAT(float d)
 { data=d;}
 FLOAT operator+(FLOAT f1);
 FLOAT operator-(FLOAT f2);
 FLOAT operator*(FLOAT f3);
 FLOAT operator/(FLOAT f4);
 void display();
};
FLOAT FLOAT::operator+(FLOAT f1)
{
 FLOAT temp;
 temp.data=data+f1.data;
 return (temp);
}
FLOAT FLOAT::operator-(FLOAT f2)
{
 FLOAT temp;
 temp.data=data-f2.data;
 return temp;
}
FLOAT FLOAT::operator*(FLOAT f3)

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

{
 FLOAT temp;
 temp.data=data*f3.data;
 return temp;
}
FLOAT FLOAT::operator/(FLOAT f4)
{
 FLOAT temp;
 temp.data=data/f4.data;
 return (temp);
}
void FLOAT:: display()
{
 cout<<data<<"\n";
}
int main()
{
 FLOAT F1,F2,F3,F4,F5,F6;
 F1=FLOAT(2.5);
 F2=FLOAT(3.1);
 F3=F1+F2;
 F4=F1-F2;
 F5=F1*F2;
 F6=F1/F2;
 cout<<" F1 = ";
 F1.display();
 cout<<" F2 = ";
 F2.display();
 cout<<" F1+F2 = ";
 F3.display();
 cout<<" F1-F2 = ";
 F4.display();
 cout<<" F1*F2 = ";
 F5.display();
 cout<<" F1/F2= ";
 F6.display();
 return 0;
}

output

F1 = 2.5
F2 = 3.1
F1+F2 = 5.6
F1-F2 = -0.6
F1*F2 = 7.75
F1/F2= 0.806452

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

7.2: Design a class Polar which describes a point in the plane using polar coordinates radius
and angle. A point in polar coordinates is shown below figure 7.3
Use the overload + operator to add two objects of Polar.
Note that we cannot add polar values of two points directly. This requires first the conversion of
points into rectangular coordinates, then adding the respective rectangular coordinates and finally
converting the result back into polar coordinates. You need to use the following trigonometric
formula:
x = r *
cos(a);

y = r * sin(a);
a = atan(y/x); //arc tangent
r = sqrt(x*x + y*y);

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

#include<iostream.h>
#include<math.h>
#define pi 3.1416
class polar
{
 float r,a,x,y;
 public:
 polar(){};
 polar(float r1,float a1);
 polar operator+(polar r1);
 void display(void);
};

polar :: polar(float r1,float a1)
{
 r=r1;
 a=a1*(pi/180);

no
tes

4f
ree

.in

http://www.codingpractise.com/wp-content/uploads/2015/03/polar-coordinates.jpg

no
tes
4fr
ee
.in

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

 x=r*cos(a);
 y=r*sin(a);
}

polar polar :: operator+(polar r1)
{
 polar R;

 R.x=x+r1.x;
 R.y=y+r1.y;
 R.r=sqrt(R.x*R.x+R.y*R.y);
 R.a=atan(R.y/R.x);

 return R;
}

void polar::display()
{
 cout<<"radius = "<<r<<"\n angle = "<<a*(180/pi)<<"\n";
}

int main()
{
 polar p1,p2,p3;
 float r,a;
 cout<<" Enter radius and angle : ";
 cin>>r>>a;
 p1=polar(r,a);
 p2=polar(8,45);
 p3=p1+p2;
 cout<<" p1 : \n";
 p1.display();
 cout<<" p2 : \n ";
 p2.display();
 cout<<" p3 : \n ";
 p3.display();
 return 0;
}

output

Enter radius and angle : 10 45
P1:
radius = 10
angle = 44.999998
P2 :
radius = 8
angle = 44.999998
P3 :
radius = 18
angle = 44.999998

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

7.3: Create a class MAT of size m * n. Define all possible matrix operations for MAT type
objects.

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

#include<iostream.h>
#include<iomanip.h>

class mat
{
 float **m;
 int rs,cs;
 public:
 mat(){}
 void creat(int r,int c);
 friend istream & operator >>(istream &,mat &);
 friend ostream & operator <<(ostream &,mat &);
 mat operator+(mat m2);
 mat operator-(mat m2);
 mat operator*(mat m2);
};

void mat::creat(int r,int c)
{
 rs=r;
 cs=c;
 m=new float *[r];
 for(int i=0;i<r;i++)
 m[i]=new float1;
}

istream & operator>>(istream &din, mat &a)
{
 int r,c;
 r=a.rs;
 c=a.cs;
 for(int i=0;i<r;i++)
 {
 for(int j=0;j<c;j++)
 {
 din>>a.m[i][j];
 }
 }
 return (din);
}
ostream & operator<<(ostream &dout,mat &a)
{
 int r,c;

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

 r=a.rs;
 c=a.cs;
 for(int i=0;i<r;i++)
 {
 for(int j=0;j<c;j++)
 {
 dout<<setw(5)<<a.m[i][j];
 }
 dout<<"\n";
 }
 return (dout);
}
mat mat::operator+(mat m2)
{
 mat mt;
 mt.creat(rs,cs);
 for(int i=0;i<rs;i++)
 {
 for(int j=0;j<cs;j++)
 {
 mt.m[i][j]=m[i][j]+m2.m[i][j];
 }
 }
 return mt;
}

mat mat::operator-(mat m2)
{
 mat mt;
 mt.creat(rs,cs);
 for(int i=0;i<rs;i++)
 {
 for(int j=0;j<cs;j++)
 {
 mt.m[i][j]=m[i][j]-m2.m[i][j];
 }
 }
 return mt;
}

mat mat::operator*(mat m2)
{
 mat mt;
 mt.creat(rs,m2.cs);

 for(int i=0;i<rs;i++)
 {
 for(int j=0;j<m2.cs;j++)
 {
 mt.m[i][j]=0;
 for(int k=0;k<m2.rs;k++)

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

 mt.m[i][j]+=m[i][k]*m2.m[k][j];
 }
 }

 return mt;
 }
int main()
{
 mat m1,m2,m3,m4,m5;
 int r1,c1,r2,c2;
 cout<<" Enter first matrix size : ";
 cin>>r1>>c1;
 m1.creat(r1,c1);
 cout<<"m1 = ";
 cin>>m1;
 cout<<" Enter second matrix size : ";
 cin>>r2>>c2;
 m2.creat(r2,c2);
 cout<<"m2 = ";
 cin>>m2;
 cout<<" m1:"<<endl;
 cout<<m1;
 cout<<" m2: "<<endl;
 cout<<m2;
 cout<<endl<<endl;
 if(r1==r2 && c1==c2)
 {
 m3.creat(r1,c1);
 m3=m1+m2;
 cout<<" m1 + m2: "<<endl;
 cout<<m3<<endl;
 m4.creat(r1,c1);

 m4=m1-m2;
 cout<<" m1 - m2:"<<endl;
 cout<<m4<<endl<<endl;

 }
 else
 cout<<" Summation & substraction are not possible n"<<endl
 <<"Two matrices must be same size for summation & substraction "<<endl<<endl;
if(c1==r2)
{
 m5=m1*m2;
 cout<<" m1 x m2: "<<endl;
 cout<<m5;
}
else
cout<<" Multiplication is not possible "<<endl
<<" column of first matrix must be equal to the row of second matrix ";
 return 0;

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

146 }

output

Enter first matrix size : 2 2

m1 =

1 2

3 4

Enter second matrix size : 2 2

m2 =

5 6

7 8

m1 =

1 2

3 4

m2 =

5 6

7 8

m1+m2:

6 8

10 12

m1-m2:

-4 -4

-4 -4

m1 x m2:

19 22

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

43 50

7.4: Define a class String. Use overload == operator to compare two strings.

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

#include<iostream.h>
#include<string.h>
#include<stdio.h>

class string
{

 char str[1000];
 public:
 void input(){gets(str);}

 int operator==(string s2);
};
int string::operator==(string s2)
{
 int t= strcmp(str,s2.str);
 if(t==0)
 t=1;
 else
 t=0;
 return t;
}

int main()
{

 char st1[1000],st2[1000];
 string s1,s2;
 cout<<" Enter 1st string : ";
 s1.input();
 cout<<" enter 2nd string : ";
 s2.input();

 if(s1==s2)
 cout<<" Two strings are equal ";
 else
 cout<<" Two string are not equal ";
 return 0;
}

output

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Enter 1st string : our sweetest songs tel our saddest thought
enter 2nd string : a burning desire lead to success.
Two string are not equal

7.5: Define two classes Polar and Rectangle to represent points in the polar and rectangle
systems. Use conversion routines to convert from one system to the other.

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

#include<iostream.h>
#include<math.h>
#define pi 3.1416
class conversion_point
{

 float x,y,r,theta;
 public:
 void set_xy();
 void set_r_theta();

 void show_xy();
 void show_r_theta();
 void conversion(int t);
};
 void conversion_point::set_xy()
{
 cout<<"Enter the value of x & y : ";
 cin>>x>>y;
}
 void conversion_point::set_r_theta()
{
 cout<<"Enter the value of r & theta :";
 cin>>r>>theta;
 theta=(pi/180)*theta;
}

 void conversion_point::show_xy()
{
 cout<<" CERTECIAN FORM :\n"
 <<" x = "<<x<<"\n"
 <<" y = "<<y<<"\n";
}
void conversion_point::show_r_theta()
{
 cout<<" POLAR FORM :\n"
 <<" r = "<<r<<"\n"
 <<" theta = "<<(180/pi)*theta<<" degree \n";
}

void conversion_point::conversion(int t)

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

{
 if(t==1)
 {
 r=sqrt(x*x+y*y);

 if(x!=0)
 {
 theta=atan(y/x);
 show_r_theta();
 }

 else
 {
 cout<<" POLAR FORM :\n"
 <<" r = "<<r<<"\n"
 <<" theta = 90 degree\n";
 }

 }
 else if(t==2)
 {
 x=r*cos(theta);
 y=r*sin(theta);
 show_xy();
 }
}

int main()
{
 conversion_point santo;
 int test;
 cout<<" press 1 to input certecian point \n"
 <<" press 2 to input polar point \n "
 <<" what is your input ? : ";
 cin>>test;
 if(test==1)
 santo.set_xy();
 else if(test==2)
 santo.set_r_theta();
 santo.conversion(test);

 return 0;
}

output

Press 1 to input certecian point
Press 2 to input polar point
what is your input ? 1
Enter the value of x & y : 4 5
POLAR FORM :

r = 6.403124
theta = 51.340073 degree

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

MODULE -4

Inheritance, Pointers, Virtual
Functions, Polymorphism

GANESH Y
Dept. of ECE RNSIT

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

1 GANESH Y, Dept. of ECE RNSIT

MODULE -4
Inheritance, Pointers, Virtual Functions, Polymorphism

SYLLABUS

Derived Classes, Single, multilevel, multiple inheritance, Pointers to objects and
derived classes, this pointer, Virtual and pure virtual functions (Selected topics from
Chap-8, 9 of Text).

Introduction

Reusability is yet another important feature of OOP. It is always nice if we could reuse
something that already exists rather than trying to create the same all over again. It
would not only save time and money but also reduce frustration and increase
reliability. For instance, the reuse of a class that has already been tested, debugged and
used many times can save us the effort of developing and testing the same again.

Fortunately, C++ strongly supports the concept of reusability. The C++ classes can be
reused in several ways. Once a class has been written and tested, it can be adapted by
other programmers to suit their requirements. This is basically done by creating new
classes, reusing the properties of the existing ones. The mechanism of deriving a new
class from an old one is called inheritance (or derivation). The old class is referred to as
the base class and the new one is called the derived class or subclass.

Definition: The capability of a class to derive properties and characteristics from
another class is called Inheritance. The derived class inherits some or all of the traits
from the base class.

Derived class or Sub Class: The class that inherits properties from another class is
called Sub class or Derived Class.

Base class or Super Class: The class whose properties are inherited by sub class is
called Base Class or Super class.

Different Forms of Inheritance

A class can also inherit properties from more than one class or from more than one
level.

A derived class with only one base class, is called single inheritance and one with
several base classes _is called multiple Inheritance.

On the other hand, the traits of one class may be inherited by more than one class. This
process is known as hierarchical inheritance. The mechanism of deriving a class from
another 'derived class' is known as multilevel inheritance.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

2 GANESH Y, Dept. of ECE RNSIT

Figure below shows various forms of Inheritance that could be used for writing
extensible programs. The direction of arrow Indicates the direction of inheritance.

Defining Derived Classes

For creating a sub-class which is inherited from the base class we have to follow the
below syntax.

class derived_class_name: visiblity_mode base_class_name

{

 //members of derived class

};

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

3 GANESH Y, Dept. of ECE RNSIT

The colon indicates that the derived-class-name is derived from the base-class-name.
The visibility-mode is optional and, if present, may be either private or public. The
default visibility-mode is private. Visibility mode specifies whether the features of the
base class are privately derived or publicly derived.

class ABC:public XYZ // public derivation
{
 members of ABC;
};
class ABC:private XYZ // private derivation
{
 members of ABC;
};
class ABC:protected XYZ // protected derivation
{
 members of ABC;
};
class ABC: XYZ // private derivation by default
{
 members of ABC;
};

Syntax for multiple inheritance

class C: public A, public B
{
;
};

When a base class is privately inherited by a derived class, 'public members' of the base
class become 'private members' of the derived class and therefore the public members
of the base class can only be accessed by the member functions of the derived class.
They are inaccessible to the objects of the derived class. Remember, a public member
of a class can be accessed by its own objects using the dot operator. The result is that
no member of the base class is accessible to the objects of the derived class.

On the other hand, when the base class is publicly inherited, 'public members' of the
base class become 'public members' of the derived class and therefore they are
accessible to the objects of the derived class. In both the cases, the private members are

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

4 GANESH Y, Dept. of ECE RNSIT

not inherited and therefore, the private members of a base class will never become the
members of its derived class.

In inheritance, some of the base class data elements and member functions are
'inherited' into the derived class. We can add our own data and member functions and
thus extend the functionality of the base class. Inheritance, when used to modify and
extend the capabilities of the existing classes, becomes a very powerful tool for
incremental program development.

Summary of above explanation

Single Inheritance

Let us consider a simple example to illustrate inheritance. Program 8.1 shows a base
class B and a derived class D. The class B contains one private data member, one public
data member, and three public member functions. The class D contains one private
data member and two public member functions.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

5 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

6 GANESH Y, Dept. of ECE RNSIT

The output of Program 8.1 would be:

a =5
a =5
b =10
C = 50
a =5
b =20
C =100

The class D is a public derivation of the base class B. Therefore, D inherits all the public
members of B and retains their visibility. Thus, a public member of the base class B is
also a public member of the derived class D. The private members of B cannot be
inherited by D.

The class D, in effect, will have more members than what it contains at the time of
declaration as shown in Fig. below.

The program illustrates that the objects of class D have access to all the public
members of B. Let us have a look at the functions show_a() and mul():

void show_a()
{
 cout << "a = " <<a<< "\n";
}
void mul ()
{
 c = b * get_a(); // c = b * a
}

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

7 GANESH Y, Dept. of ECE RNSIT

Although the data member a is private in B and cannot be inherited, objects of D are
able to access it through an inherited member function of B.

Let us now consider the case of private derivation.

The membership of the derived class D is shown in Fig. below. In private derivation,
the public members of the base class become private members of the derived class.
Therefore, the objects of D cannot have direct access to the public member functions
of B.

The statements such as d.get_ab(); d.get_a(); d.show_a(); will not work. However,
these functions can be used inside mul() and display() like the normal functions as
shown below:

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

8 GANESH Y, Dept. of ECE RNSIT

Program 8.2 incorporates these modifications for private derivation. Please compare
this with Program 8. 1.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

9 GANESH Y, Dept. of ECE RNSIT

Suppose a base class and a derived class define a function of the same name.
What will happen when a derived class object invokes the function? In such cases,
the derived class function supersedes the base class definition. However, if the derived
class does not redefine the function, then the base class function will be called.

Making a Private Member Inheritable

We have seen that a private member of a base class cannot be inherited and therefore
it is not available for the derived class directly. What do we do if the private data needs
to be inherited by a derived class? This can be accomplished by modifying the visibility

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

10 GANESH Y, Dept. of ECE RNSIT

limit of the private member by making it public. This would make it accessible to all
the other functions of the program, thus taking away the advantage of data hiding.

C++ provides a third visibility modifier, protected, which serve a limited purpose in
inheritance. A member declared as protected is accessible by the member functions
within its class and any class immediately derived from it. It cannot be accessed by the
functions outside these two classes. A class can now use all the three visibility modes
as illustrated below:

Figure below shows the pictorial representation for the two levels of derivation.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

11 GANESH Y, Dept. of ECE RNSIT

When a protected member is inherited in public mode, it becomes protected in the
derived class too and therefore is accessible by the member functions of the derived
class. It is also ready for further inheritance.

A protected member, inherited in the private mode derivation, becomes private in
the derived class. Although it is available to the member functions of the derived class,
it is not available for further inheritance (since private members cannot be inherited).

(visibility mode summery table explained once again ⇑)

The keywords private, protected, and public may appear in any order and any
number of times in the declaration of a class. For example,

is a valid class definition. However, the normal practice is to use them as follows:

It is also possible to inherit a base class in protected mode (known as protected
derivation). In protected derivation, both the public and protected members of the
base class become protected members of the derived class. Table below (same as
visibility summary table shown earlier) summarizes how the visibility of base class
members undergoes modifications in all the three types of derivation.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

12 GANESH Y, Dept. of ECE RNSIT

Now let us review the access control to the private and protected members of a class.
What are the various functions that can have access to these members? They could be:

1. A function that is a friend of the class.

2. A member function of a class that is a friend of the class.

3. A member function of a derived class.

While the friend functions and the member functions of a friend class can have direct
access to both the private and protected data, the member functions of a derived class
can directly access only the protected data. However. they can access the private data
through the member functions of the base class.

Figure 8.5 illustrates how the access control mechanism works in various situations. A
simplified view of access control to the members of a class is shown in Fig. 8.6.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

13 GANESH Y, Dept. of ECE RNSIT

Multilevel Inheritance

It is not uncommon that a class is derived from another derived class as shown in Fig.
8. 7.

The class A serves as a base class for the derived class B, which in turn serves as a base
class for the derived class C. The class B is known as intermediate base class since it
provides a link for the inheritance between A and C. The chain ABC is known as
inheritance path. This process can be extended to any number of levels.

A derived class with multilevel inheritance is declared as follows:

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

14 GANESH Y, Dept. of ECE RNSIT

Let us consider a simple example. Assume that the test results of a batch of students
are stored in three different classes.
Class student stores the roll number, class test stores the marks obtained in two
subjects and class result contains the total marks obtained in the test.
The class result can inherit the details of the marks obtained in the test and the roll
number of students through multilevel inheritance. Example:

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

15 GANESH Y, Dept. of ECE RNSIT

The class result, after inheritance from 'grandfather' through 'father', would contain
the following members:

The inherited functions put_number() and put_marks() can be used in the
definition of display() function:

This will display the result of student1. The complete program is shown in Program8.3. GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

16 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

17 GANESH Y, Dept. of ECE RNSIT

The output of Program 8.3 would be:

Roll Number: 111

Marks in SUB1= 75

Marks in SUB2 = 59.5

Total =134.5

Multiple Inheritance

A class can inherit the attributes of two or more classes as shown in Fig. 8.8. This is
known as multiple inheritance. Multiple inheritance allows us to combine the features
of several existing classes as a starting point for defining new classes. It is like a child
inheriting the physical features of one parent and the intelligence of another.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

18 GANESH Y, Dept. of ECE RNSIT

The syntax of a derived class with multiple base classes is as follows:

where, visibility may be either public or private. The base classes are separated by
commas. Example:

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

19 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

20 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

21 GANESH Y, Dept. of ECE RNSIT

Ambiguity Resolution in Inheritance

Occasionally, we may face a problem in using the multiple inheritance, when a function
with the same name appears in more than one base class. Consider the following two
classes.

Which display () function is used by the derived class when we inherit these two
classes? We can solve this problem by defining a named instance within the derived
class, using the class resolution operator with the function as shown below:

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

22 GANESH Y, Dept. of ECE RNSIT

We can now use the derived class as follows:

int main()
{
 P p;
 p.display();
}

Ambiguity may also arise in single inheritance applications. For instance, consider the
following situation:

class A
{
 public:
 void display()
 {
 cout<<"A\n";
 }
};
class B:public A
{
 public:
 void display()
 {
 cout<<"B\n";
 }
};

In this case, the function in the derived class overrides the inherited function and,
therefore, a simple call to display () by B type object will invoke function defined in
B only. However, we may invoke the function defined in A by using the scope resolution
operator to specify the class.

int main()
{
 B b; // derived class object
 b.display(); // invokes display() in B
 b.A::display();// invokes display() in A
 b.B::display();// invokes display() in B
 return 0;
}

This will produce the following output:
B
A
B

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

23 GANESH Y, Dept. of ECE RNSIT

Pointers to Objects

We have already seen how to use pointers to access the class members. As stated
earlier, a pointer can point to an object created by a class. Consider the following
statement:

item x;

where item is a class and x is an object defined to be of type item. Similarly, we can
define a pointer it_ptr of type item as follows:

item *it_ptr;

Object pointers are useful in creating objects at run time. We can also use an object
pointer to access the public members of an object. Consider a class item defined as
follows:

Let us declare an item variable x and a pointer ptr to x as follows:

item x;

item *ptr = &x;

The pointer ptr is initialized with the address of x.

We can refer to the member functions of item in two ways, one by using the dot
operator and the object, and another by using the arrow operator and the object pointer.
The statements

x.getdata(100,75.50);

x.show();

are equivalent to
ptr->getdata(1OO, 75.50);

ptr->show();

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

24 GANESH Y, Dept. of ECE RNSIT

Since *ptr is an alias of x, we can also use the following method:

(*ptr).show();

The parentheses are necessary because the dot operator has higher precedence than
the indirection operator* .

We can also create the objects using pointers and new operator as follows:

item *ptr = new item;

This statement allocates enough memory for the data members in the object structure
and assigns the address of the memory space to ptr. Then ptr can be used to refer to
the members as shown below:

ptr -> show();

If a class has a constructor with arguments and does not include an empty constructor,
then we must supply the arguments when the object is created.

We can also create an array of objects using pointers. For example, the statement

item *ptr = new item[10]; // array of 10 objects

creates memory space for an array of 10 objects of item. Remember, in such cases, if
the class contains constructors, it must also contain an empty constructor.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

25 GANESH Y, Dept. of ECE RNSIT

In Program 9.8 we created space dynamically for two objects of equal size. But this may
not be the case always. For example, the objects of a class that contain character strings
would not be of the same size. In such cases, we can define an array of pointers to
objects that can be used to access the individual objects. This is illustrated in Program
9.9. GANESH

 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

26 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

27 GANESH Y, Dept. of ECE RNSIT

this POINTER

C++ uses a unique keyword called this to represent an object that invokes a member
function. This is a pointer that points to the object for which this function was called.

For example, the function call A.max() will set the pointer this to the address of the
object A. The starting address is the same as the address of the first variable in the class
structure.

This unique pointer is automatically passed to a member function when it is called. The
pointer this acts as an implicit argument to all the member functions. Consider the
following simple example:

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

28 GANESH Y, Dept. of ECE RNSIT

The private variable 'a' can be used directly inside a member function, like

a= 123;

We can also use the following statement to do the same job:

this->a =123;

Since C++ permits the use of shorthand form a = 123, we have not been using the
pointer this explicitly so far. However, we have been implicitly using the pointer this
when overloading the operators using member function.

Recall that, when a binary operator is overloaded using a member function, we pass
only one argument to the function. The other argument is implicitly passed using the
pointer this.

One important application of the pointer this is to return the object it points to. For
example, the statement

return *this;

inside a member function will return the object that invoked the function. This
statement assumes importance when we want to compare two or more objects inside
a member function and return the invoking object as a result. Example:

Suppose we invoke this function by the call

max= A.greater(B);

The function will return the object B (argument object) if the age of the person B is
greater than that of A, otherwise, it will return the object A (invoking object) using the
pointer this.

Remember, the dereference operator * produces the contents at the address contained
in the pointer. A complete program to illustrate the use of this is given in Program 9.10. GANESH

 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

29 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

30 GANESH Y, Dept. of ECE RNSIT

Pointers to Derived Classes

We can use pointers not only to the base objects but also to the objects of derived
classes. Pointers to objects of a base class are type-compatible with pointers to objects
of a derived class.

Therefore, a single pointer variable can be made to point to objects belonging to
different classes. For example,

if B is a base class and D is a derived class from B, then a pointer declared as a pointer
to B can also be a pointer to D. Consider the following declarations:

This is perfectly valid with C++ because d is an object derived from the class B.

However, there is a problem in using cptr to access the public members of the derived
class D. Using cptr, we can access only those members which are inherited from B and
not the members that originally belong to D.

In case a member of D has the same name as one of the members of B, then any
reference to that member by cptr will always access the base class member.

Although C++ permits a base pointer to point to any object derived from that base, the
pointer cannot be directly used to access all the members of the derived class. We may
have to use another pointer declared as pointer to the derived type.

Program 9.11 illustrates how pointers to a derived object are used.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

31 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

32 GANESH Y, Dept. of ECE RNSIT

Polymorphism

Polymorphism is one of the crucial features of OOP. It simply means 'one name,
multiple forms'. We have already seen how the concept of polymorphism is
implemented using the overloaded functions and operators.

The overloaded member functions are 'selected' for invoking by matching arguments,
both type and number. This information is known to the compiler at the compile time
and, therefore, compiler is able to select the appropriate function for a particular call
at the compile time itself. This

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

33 GANESH Y, Dept. of ECE RNSIT

is called early binding or static binding or static linking. Also known as compile time
polymorphism, early binding simply means that an object is bound to its function call
at compile time.

Now let us consider a situation where the function name and prototype is the same in
both the base and derived classes. For example, consider the following class
definitions:

How do we use the member function show() to print the values of objects of both the
classes A and B? Since the prototype of show() is the same in both the places, the
function is not overloaded and therefore static binding does not apply.

We have seen earlier that, in such situations. we may use the class resolution operator
to specify the class while invoking the functions with the derived class objects.

It would be nice if the appropriate member function could be selected while the
program is running. This is known as run time polymorphism. How could it happen?
C++ supports a mechanism known as virtual function to achieve run time
polymorphism. Please refer Fig. 9.1.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

34 GANESH Y, Dept. of ECE RNSIT

At run time, when it is known what class objects are under consideration, the
appropriate version of the function is invoked. Since the function is linked with a
particular class much later after the compilation, this process is termed as late binding.
It is also known as dynamic binding because the selection of the appropriate function
is done dynamically at run time.

Dynamic binding is one of the powerful features of C++. This requires the use of
pointers to objects. We shall discuss in detail how the object pointers and virtual
functions are used to implement dynamic binding.

Virtual Functions

As mentioned earlier, polymorphism refers to the property by which objects belonging
to different classes are able to respond to the same message, but in different forms. An
essential requirement of polymorphism is therefore the ability to refer to objects
without any regard to their classes.

This necessitates the use of a single pointer variable to refer to the objects of different
classes. Here, we use the pointer to base class to refer to all the derived objects. But,
we just discovered that a base pointer, even when it is made to contain the address of
a derived class, always executes the function in the base class.

The compiler simply ignores the contents of the pointer and chooses the member
function that matches the type of the pointer. How do we then achieve polymorphism?
It is achieved using what is known as 'virtual' functions.

When we use the same function name in both the base and derived classes, the function
in base class is declared as virtual using the keyword virtual preceding its normal
declaration.

When a function is made virtual, C++ determines which function to use at run time
based on the type of object pointed to by the base pointer, rather than the type of the
pointer.

Thus, by making the base pointer to point to different objects, we can execute different
versions of the virtual function. Program 9.12 illustrates this point.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

35 GANESH Y, Dept. of ECE RNSIT

 GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

36 GANESH Y, Dept. of ECE RNSIT

One important point to remember is that, we must access virtual functions through
the use of a pointer declared as a pointer to the base class. Why can't we use the object
name (with the dot operator) the same way as any other member function to call the
virtual functions? We can, but remember, run time polymorphism is achieved only
when a virtual function is accessed through a pointer to the base class.

Let us take an example where virtual functions are implemented in practice. Consider
a book shop which sells both books and video-tapes. We can create a class known as.
media that stores the title and price of a publication. We can then create two derived
classes, one for storing the number of pages in a book and another for storing the
playing time of a tape. Figure below shows the class hierarchy for the book shop.

The classes are implemented in Program 9.13. A function display() is used in all the
classes to display the class contents. Notice that the function display() has been
declared virtual in media, the base class.

In the main program we create a heterogeneous list of pointers. of type media as
shown below:

media *list[2]={&book1,&tape1};

The base pointers list[0] and list[1] are initialized with the addresses of objects book1
and tape1 respectively.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

37 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

38 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

39 GANESH Y, Dept. of ECE RNSIT

Rules for Virtual Functions

When virtual functions are created for implementing late binding, we should observe
some basic rules that satisfy the compiler requirements:

1. The virtual functions must be members of some class.

2. They cannot be static members.

3. They are accessed by using object pointers.

4. A virtual function can be a friend of another class.

5. A virtual function in a base class must be defined, even though it may not be used.

6. The prototypes of the base class version of a virtual function and all the derived class
versions must be identical. If two functions with the same name have different
prototypes,

C++ considers them as overloaded functions, and the virtual function mechanism is
ignored.

7. We cannot have virtual constructors, but we can have virtual destructors.

8. While a base pointer can point to any type of the derived object, the reverse is not
true. That is to say, we cannot use a pointer to a derived class to access an object of the
base type.

9. When a base pointer points to a derived class, incrementing or decrementing it will
not make it to point to the next object of the derived class. It is incremented or
decremented only relative to its base type. Therefore, we should not use this method
to move the pointer to the next object.

10. If a virtual function is defined in the base class, it need not be necessarily redefined
in the derived class. In such cases, calls will invoke the base function.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

40 GANESH Y, Dept. of ECE RNSIT

Extra program

// virtual functions accessed from pointer
#include <iostream>
using namespace std;
class Base //base class
{
public:
 virtual void show() //virtual function
 {
 cout << "Base\n";
 }
};
class Derv1 : public Base //derived class 1
{
public:
 void show()
 {
 cout << "Derv1\n";
 }
};
class Derv2 : public Base //derived class 2
{
public:
 void show()
 {
 cout << "Derv2\n";
 }
};
int main()
{
 Derv1 dv1; //object of derived class 1
 Derv2 dv2; //object of derived class 2
 Base* ptr; //pointer to base class
 ptr = &dv1; //put address of dv1 in pointer
 ptr->show(); //execute show()
 ptr = &dv2; //put address of dv2 in pointer
 ptr->show(); //execute show()
 return 0;
}

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

41 GANESH Y, Dept. of ECE RNSIT

Pure Virtual Functions

It is normal practice to declare a function virtual inside the base class and redefine it
in the derived classes. The function inside the base class is seldom used for performing
any task. It only serves as a placeholder.

For example, we have not defined any object of class media and therefore the function
display() in the base class has been defined 'empty'. Such functions are called "do-
nothing" functions.

A "do-nothing" function may be defined as follows:

virtual void display () = 0;

Such functions are called pure virtual functions. A pure virtual function is a function
declared in a base class that has no definition relative to the base class. In such cases,
the compiler requires each derived class to either define the function or redeclare it as
a pure virtual function.

Remember that a class containing pure virtual functions cannot be used to declare any
objects of its own. As stated earlier, such classes are called abstract base classes. The
main objective of an abstract base class is to provide some traits to the derived classes
and to create a base pointer required for achieving run time polymorphism.

Program 9.14 demonstrates the use of pure virtual function:

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

42 GANESH Y, Dept. of ECE RNSIT

Extra program

#include <iostream>
using namespace std;
class A
{
public:
 void virtual display()=0;
};
class B:public A
{
public:
 void display()
 {
 cout<<"derived class";
 }
};
int main()
{
 A* ap;
 B b;
 ap=&b;
 ap->display();//invokes derived function.
 return 0;
}

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

r = 6.403124
theta = 51.340073 degree

 Chapter 8

 Review Questions

8.1: What does inheritance mean in C++?

Ans:The mechanism of deriving a new class from an old one is called inheritance. The old class is
referred to as the base class and the new one is called derived class.

8.2: What are the different forms of inheritance? Give an example for each.

Ans:Different forms of inheritence:
1. Single inheritence : Only one derived class inherited from only one base class is called single
inheritence.
Example: Let A is a base class
and B is a new class derived from A

This is written in program as following:
class A {……….};
class B : Public A {……..};
2.Multiple inheritence : A class can inherit the attributes of two or more classes. This is known as
multiple inheritence.
Example : GANESH

 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Class D : visibilityB1, visibility.B2, visibility B3

 {
 (Body of D)
 }

* visibility may be public or private.
3.Multilevel inheritance : It a class is derived from a base class, and another class is derived from
this derived class and so on, then it is called multilevel inheritance.

Example :
Class A { ….. };
Class B : Public A { ….. };
Class C : Private B{ ….. };
4.Hierarchical inheritance: It the inheritance follows the hierarchical design of a program, then it
is called hierarchical inheritance.
Example :

This design is implemented in program as follows:
Class student { …… }; // base class,
Class Arts : Public student { ……};
Class Medical : Public student {…….};
Class Engineering : Public student { ……};
Class CSE : Public Engineering { ……. };

GANESH
 Y

no
tes

4f
ree

.in

http://www.codingpractise.com/wp-content/uploads/2015/03/Example-2.jpg

no
tes
4fr
ee
.in

Class EEE : Public Engineering { …… };
Class ECE : Public Engineering { …… };

* here all inheritance are considered as public you can private inheritance also. as you wish.

5.Hybrid inheritance: When multi level and multiple inheritances are applied to an inheritance,
then it is called Hybrid inheritance.

Example :

In program :
Class student {……};
Class test : public student {……};
Class result : public test {…….};
Class result : public sports {…….};

8.3: Describe the syntax of the single inheritance in C++.

Ans:Syntax of single inheritance:
Class Derived name : visibility mode Base_class name

 {
 Body of derived class
 };

* visibility mode may be public or private.
or protected

8.4: We know that a private member of a base class is not inheritable. Is it anyway possible
for the objects of a derived class to access the private members of the base class? If yes, how?
Remember, the base class cannot be modified.

Ans:Yes. It is possible for the objects of derived class to access the private member of the base
class by a member function of base class which is public. The following example explains this :

#include<iostream.h>
class B
{

GANESH
 Y

no
tes

4f
ree

.in

http://www.codingpractise.com/wp-content/uploads/2015/03/Example-5.jpg

no
tes
4fr
ee
.in

 int a; // a is private that can not be inherited.
 public:
 int get_a();
 void set_a();
};
class D:public B
{
 int b;
 public:
 void display_a();
};

void D :: display_a()
{
 cout<<" a = "<<get_a()<<"\n"; // a is accessed by member function get_a().
}

void B :: set_a()
{
 a=156271;
}

int B :: get_a()
{
 return a;
}

void main()
{
 D d;
 d.set_a();
 d.display_a();
}

8.5: How do the properties of the following two derived classes differ?
(a) class D1: private B(// ….);
(b) class D2: public B(//….);

Ans:(a) Private member of B can not be inherited in D1 Protected member of B become private in
D1 public member of B become private in D1.
(b) Private member of B can not be inherited in D2 Protected member of B remains protected in
D2 Public member of B remains public in D2

8.6: When do we use the protected visibility specifier to a class member?

Ans:When we want access a data member by the member function within its class and by the

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

member functions immediately derived from it, then we use visibility modifier protected.

8.7: Describe the syntax of multiple inheritance. When do we use such an inheritance?

Ans: Syntax :

Class D : Visibility B1, Visibility B2,
 {
 (Body of D)
 }

Then we want of combine several feature to a single class then we use multiple inheritance.

8.8: What are the implications of the following two definitions?
(a) class A: public B, public C(//….);
(b) class A: public C, public B(//….);

Ans:Two are same.

8.9: WWhat is a virtual base class?

Ans:Whey multiple paths between a bass class and a derived class are exist then this base class is
virtual base class. A base class can be made as virtual just adding ‘virtual’ keyword before this

base class.

8.10: When do we make a class virtual?

Ans:To avoid the duplication of inherited members due to multiple paths between base and
derived classes we make base class virtual.

8.11: What is an abstract class?

Ans:An abstract class is one that is not used to create objects.

8.12: In what order are the class constructors called when a derived class object is created?

Ans:According to the order of derived class header lines

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

8.13: Class D is derived from class B. The class D does not contain any data members of its
own. Does the class D require constructors? If yes, why?

Ans:D does not require any construct or because a default constructor is always set to class by
default.

8.14: What is containership? How does it differ from inheritance?

Ans:Containership is another word for composition. That is, the HAS-A relationship where A
has-a member that is an object of class B.
Difference : In inheritance the derived class inherits the member data and functions from the base
class and can manipulate base public/protected member data as its own data. By default a
program which constructs a derived class can directly access the public members of the base class
as well. The derived class can be safely down cast to the base class, because the derived is-a”

base class.

Container : a class contains another object as member data. The class which contains the object
cannot access any protected or private members of the contained class(unless the container it was
made a friend in the definition of the contained class).The relationship between the container and
the contained object is “has-a” instead of “is-a”

8.15: Describe how an object of a class that contains objects of other classes created?

Ans:By inheriting an object can be created that contains the objects of other class.

Example :

class A
{
 int a;
 public:
 void dosomething();
};

class B: class A
{
 int b;
 public:
 void donothing();
};

Now if object of B is created ; then if contains:
1. void dosomething ();
2. int b;
3. void donothing ();

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

8.16: State whether the following statements are TRUE or FALSE:
(a) Inheritance helps in making a general class into a more specific class.
(b) Inheritance aids data hiding.
(c) One of the advantages of inheritance is that it provides a conceptual framework.
(d) Inheritance facilitates the creation of class libraries.
(e) Defining a derived class requires some changes in the base class.
(f) A base class is never used to create objects.
(g) It is legal to have an object of one class as a member of another class.
(h) We can prevent the inheritance of all members of the base class by making base class virtual
in the definition of the derived class.

Ans:
(a) TRUE
(b) FALSE
(c) TRUE
(d) TRUE
(e) FALSE
(f) TRUE
(g) TRUE
(h) FALSE

 Debugging Exercises

8.1: Identify the error in the following program.

#include <iostream.h>;
class Student {
 char* name;
 int rollNumber;
public:
 Student() {
 name = "AlanKay";;
 rollNumber = 1025;
 }

 void setNumber(int no) {
 rollNumber = no;
 }
 int getRollNumber() {
 return rollNumber;
 }
};

class AnualTest: Student {
 int mark1, mark2;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

public:
 AnualTest(int m1, int m2)
 :mark1(m1), mark2(m2) {
 }
 int getRollNumber() {
 return Student::getRollNumber();
 }
};
void main()
{
 AnualTest test1(92 85);
 cout<< test1.getRollNumber();
}

Solution: Constructor and Private (data & function) can not be inherited.

8.2: Identify the error in the following program.

#include <iostream.h>;
class A
{
public:
 A()
 {

 cout<< "A";
 }
};

class B: public A
{
public:
 B()
 {
 cout<< "B";
 }
};
class C: public B
{
public:
 C()
 {
 cout << "C";
 }
};
class D
{
public:

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

 D()
 {
 cout << "D";
 }
};
class E: public C, public D
{
public:
 E()
 {
 cout<< "D";
 }
};
class F: B, virtual E
{
public:
 F()
 {
 cout<< "F";
 }
};
void main()
{
 F f;
}

Solution: The inheritance can be represented as follows :

Here B is virtual, but not E.

8.3: Identify the error in the following program.

#include <iostream.h>;

GANESH
 Y

no
tes

4f
ree

.in

http://www.codingpractise.com/wp-content/uploads/2015/03/Exarcise-1.jpg

no
tes
4fr
ee
.in

class A
{
 int i;
};

class AB: virtual A
{
 int j;
};
class AC: A, ABAC
{
 int k;
};
class ABAC: AB, AC
{
 int l;
};
void main()
{
 ABAC abac;
 cout << "sizeof ABAC:" << sizeof(abac);
}

Solution: The inheritance can be represented as follows:

Class AC: A, Here there is no identification of ABAC. If we write class ABAC; after #include it
will not show any error massage.

8.4: Find errors in the following program. State reasons.

// Program test
#include <iostream.h>
class X
{
 private:
 int x1;
 Protected:

GANESH
 Y

no
tes

4f
ree

.in

http://www.codingpractise.com/wp-content/uploads/2015/03/Exarcise-2.jpg

no
tes
4fr
ee
.in

 int x2;
 public:
 int x3;
};

class Y: public X
{
 public:
 void f()
 {
 int y1,y2,y3;
 y1 = x1;
 y2 = x2;
 y3 = x3;
 }
};
class Z: X
{
 public:
 void f()
 {
 int z1,z2,z3;
 z1 = x1;
 z2 = x2;
 z3 = x3;
 }
};
main()
{
 int m,n,p;
 Y y;
 m = y.x1;
 n = y.x2;
 p = y.x3;
 Z z;
 m = z.x1;
 n = z.x2;
 p = z.x3;
}

Solution: Here x1 is private, so x1 cannot be inherited.
y1 = x1; is not valid
z1 = x1; is not valid
m = y, x1; is not valid
m = z, x1; is not valid

8.5: Debug the following program.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

// Test program
#include <iostream.h>
class B1
{
 int b1;
 public:
 void display();
 {
 cout << b1 <<"\n";
 }
};

class B2
{
 int b2;
 public:
 void display();
 {
 cout << b2 <<"\n";
 }
};
class D: public B1, public B2
{
 //nothing here
};
main()
{
 D d;
 d.display()
 d.B1::display();
 d.B2::display();
}

 Programming Exercises

8.1: Assume that a bank maintains two kinds of accounts for customers, one called as
savings and the other as current account. The savings account provides compound interest
and withdrawal facilities but no cheque book facility. The current account provides cheque
book facility but no interest. Current account holders should also maintain a minimum
balance and if the balance falls below this level a service charge is imposed.
Create a class account that stores customer name, account number and type of account.
From this derive the classes cur_acct and sav_acct to make them more specific to their
requirements. Include necessary member functions in order to achieve the following tasks:
(a) Accept the deposit from a customer and update the balance.
(b) Display the balance.
(c) Compute and deposit interest.
(d) Permit withdrawal and update the balance.
(e) Check for the minimum balance, impose penalty, necessary and update the balance.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Do not use any constructors. Use member functions to initialize class members.

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

#include<iostream.h>
#include<stdio.h>
#include<string.h>
#include<math.h>
#define minimum 500
#define service_charge 100
#define r 0.15

class account
{
 protected:
 char name[100];
 int ac_number;
 char ac_type[100];
 public:
 void creat(char *t);
};

void account::creat(char *t)
{

 cout<<" Enter customer name :";
 gets(name);
 strcpy(ac_type,t);
 cout<<" Enter account number :";
 cin>>ac_number;
}
class cur_acct: public account
{
 private:
 float balance;
 public:
 void deposite(float d);
 void withdraw(float w);
 void display();
};
void cur_acct::deposite(float d)
{
 balance=d;
}

void cur_acct::withdraw(float w)
{
 if(balance<w)
 cout<<" sorry your balance is less than your withdrawal amount \n";
 else

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

 {
 balance-=w;
 if(balance<minimum)
 cout<<"\n your current balance is :"<<balance<<" which is less than"<<minimum<<"\n
your account is discharged by "<<service_charge<<"TK \n"<<" You must store
"<<minimum<<"TK to avoid discharge \n "<<" Do you want to withdraw ? press 1 for yes
press 0 for no \n"<<" what is your option ?";
 int test;
 cin>>test;
 if(test==0)
 balance+=w;
 }

}

void cur_acct::display()
{
 cout<<"\n Now balance = "<<balance<<"\n";
}
class sav_acct:public account
{
 float balance;
 int d,m,y;
 public:
 void deposite(float d);
 void withdraw(float w);
 void display();
 void set_date(int a,int b,int c){d=a;m=b;y=c;}
 void interest();
};

void sav_acct::deposite(float d)
{
 int x,y,z;
 cout<<" Enter today's date(i,e day,month,year) : ";
 cin>>x>>y>>z;
 set_date(x,y,z);
 balance=d;
}

 void sav_acct::withdraw(float w)
{
 if(balance<w)
 cout<<" sorry your balance is less than your withdrawal amount \n";
 else
 {
 balance-=w;

 if(balance<minimum)
 {
 cout<<"\n your current balance is :"<<balance<<" which is less than"<<minimum<<"\n

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

your account is discharged by "<<service_charge<<"TK \n"<<" You must store
"<<minimum<<"TK to avoid discharge \n "<<" Do you want to withdraw ? press 1 for yes
press 0 for no \n"<<" what is your option ?";

 int test;
 cin>>test;
 if(test==0)
 balance+=w;
 }
 }

}
void sav_acct::display()
{
 cout<<"\n Now balance = "<<balance;
}
void sav_acct::interest()
{
 int D[12]={31,28,31,30,31,30,31,31,30,31,30,31};
 int d1,y1,m1;
 cout<<" Enter today's date :(i,e day,month,year) ";
 cin>>d1>>m1>>y1;
 int iday,fday;
 iday=d;
 fday=d1;
 for(int i=0;i<m1;i++)
 {
 fday+=D[i];
 }
 for(i=0;i<m;i++)
 {
 iday+=D[i];
 }
 int tday;
 tday=fday-iday;
 float ty;
 ty=float(tday)/365+y1-y;
 float intrst;

 intrst=ty*r*balance;
 cout<<" Interest is : "<<intrst<<"\n";
 balance+=intrst;
}

int main()
{
 sav_acct santo;
 santo.creat("savings");
 float d;
 cout<<" Enter your deposit amount : ";
 cin>>d;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

149
150
151
152
153
154
155
156
157
158
159
160

 santo.deposite(d);
 santo.display();
 int t;
 cout<<"\n press 1 to see your interest : \n"
 <<" press 0 to skip : ";

 cin>>t;

 if(t==1)
 santo.interest();

 cout<<"\n Enter your withdrawal amount :";
 float w;
 cin>>w;
 santo.withdraw(w);
 santo.display();
 return 0;
}

output

Enter customer name :Rimo
Enter account number :10617
Enter your deposit amount : 10000
Enter today’s date(i,e day,month,year) : 13 7 2010

Now balance = 10000
press 1 to see your interest :
press 0 to skip : 1
Enter today’s date :(i,e day,month,year) 15 8 2010

Interest is : 135.61644
Enter your withdrawal amount :500
Now balance = 9635.616211

8.2: Modify the program of exercise 8.1 to include constructors for all three classes.

Solution:

1
2
3
4
5
6
7
8

#include<iostream.h>
#include<stdio.h>
#include<string.h>
#include<math.h>
#define minimum 500
#define service_charge 100
#define r 0.15

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

class account
{
 protected:
 char name[100];
 int ac_number;
 char ac_type[100];
 public:
 account(char *n,char *t,int no);
};
 account::account(char *n,char *t,int no)
{
 strcpy(name,n);
 strcpy(ac_type,t);
 ac_number=no;

}

 class cur_acct: public account
{
 private:
 float balance,d,w;
 public:
 void withdraw(float ww);
 void deposit(float d){balance=d;}
 cur_acct(char *n,char *t,int number,float dp,float wd):
 account(n,t,number)
 {
 d=dp;
 w=wd;
 deposit(d);
 withdraw(w);

 }
 void display();
};

void cur_acct::withdraw(float ww)
{

 if(balance<ww)
 cout<<" sorry your balance is less than your withdrawal amount \n";
 else
 {
 balance-=ww;
 if(balance<minimum)
 {
 cout<<"\n your current balance is :"<<balance<<" which is less than"<<minimum<<"\n your
account is discharged by "<<service_charge<<"TK \n"<<" You must store
"<<minimum<<"TK to avoid discharge \n "<<" Do you want to withdraw ? press 1 for yes
press 0 for no \n"<<" what is your option ?";
 int test;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

 cin>>test;
 if(test==0)
 balance+=w;
 }
 else
 ;
 }
}

 void cur_acct::display()
{
 cout<<"\n Now balance = "<<balance<<"\n";
}
class sav_acct:public account
{
 float balance;
 int d,m,y;
 public:
 void deposite(float d){balance=d;set_date();}
 void withdraw(float w);
 void display();
 void set_date(){d=12;m=1;y=2010;}
 void interest();
 sav_acct(char *n,char *t,int number,float dp,float wd):
 account(n,t,number)
 {
 float d,w;
 d=dp;
 w=wd;
 deposite(d);
 interest();
 withdraw(w);

 }
};
 void sav_acct::withdraw(float w)
{
 if(balance<w)
 cout<<" sorry your balance is less than your withdrawal amount \n";
 else
 {
 balance-=w;
 if(balance<minimum)
 {
 cout<<"\n your current balance is :"<<balance<<" which is less than"<<minimum<<"\n your
account is discharged by "<<service_charge<<"TK \n"<<" You must store
"<<minimum<<"TK to avoid discharge \n "<<" Do you want to withdraw ? press 1 for yes
press 0 for no \n"<<" what is your option ?";
 int test;
 cin>>test;
 if(test==0)

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

 balance+=w;
 }
 else
 ;
 }

}
void sav_acct::display()
{
 cout<<"\n Now balance = "<<balance;
}
void sav_acct::interest()
{
 int D[12]={31,28,31,30,31,30,31,31,30,31,30,31};
 int d1,y1,m1;
 cout<<" Enter today's date :(i,e day,month,year) ";
 cin>>d1>>m1>>y1;
 int iday,fday;
 iday=d;
 fday=d1;
 for(int i=0;i<m1;i++)
 {
 fday+=D[i];
 }
 for(i=0;i<m;i++)
 {
 iday+=D[i];
 }
 int tday;
 tday=fday-iday;
 float ty;
 ty=float(tday)/365+y1-y;
 balance=balance*pow((1+r),ty);
}

int main()
{

 float d;
 cout<<" Enter customer name :";
 char name[100];
 gets(name);
 cout<<" Enter account number :";
 int number;
 cin>>number;
 cout<<" Enter your deposit amount : ";
 cin>>d;

 cout<<" Enter your withdrawal amount :";
 float w;
 cin>>w;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

 //cur_acct s("current",name,number,d,w);
 //s.display();
 sav_acct c("savings",name,number,d,w);
 c.display();
 return 0;
}

output

Enter customer name :mehedi

Enter account number :1457

Enter your deposit amount : 5000

Enter your withdrawal amount :1200

Enter today’s date :(i,e day,month,year) 13 7 2010
Now balance = 4160.875977

8.3: An educational institution wishes to maintain a database of its employees. The database
is divided into a number of classes whose hierarchical relationships are shown in following
figure. The figure also shows the minimum information required for each class. Specify all
classes and define functions to create the database and retrieve individual information as
and when required.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

#include<iostream.h>
#include<iomanip.h>
#include<string.h>

class staff
{
 public:
 int code;
 char name[100];
 public:
 void set_info(char *n,int c)
 {
 strcpy(name,n);
 code=c;
 }
};

class teacher : public staff

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

{
 protected:
 char sub[100],publication[100];
 public:
 void set_details(char *s,char *p)
 {
 strcpy(sub,s);strcpy(publication,p);
 }
 void show()
 {
 cout<<"name"<<setw(8)<<"code"<<setw(15)<<"subject"<<setw(25)
<<"publication"<<endl<<name<<setw(8)<<code<<setw(25)<<sub<<setw(22)<<publication<<endl;
 }
};

class officer:public staff
{
 char grade[100];
 public:
 void set_details(char *g)
 {
 strcpy(grade,g);
 }

 void show()
 {
 cout<<" name "<<setw(15)<<"code"<<setw(15)<<"Category "<<endl
 <<name<<setw(10)<<code<<setw(15)<<grade<<endl;
 }
};
 class typist: public staff
{
 protected:
 float speed;
 public:
 void set_speed(float s)
 {
 speed=s;
 }
};
class regular:public typist
{
 protected:
 float wage;
 public:
 void set_wage(float w){wage=w;}
 void show()
 {
 cout<<"name"<<setw(16)<<"code"<<setw(15)<<"speed"<<setw(15)
<<"wage"<<endl<<name<<setw(10)<<code<<setw(15)<<speed
<<setw(15)<<wage<<endl;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

 }
};
class causal:public typist
{
 float wage;
 public:
 void set_wage(float w){wage=w;}
 void show()
 {
 cout<<"name"<<setw(16)<<"code"<<setw(15)<<"speed"<<setw(15)
<<"wage"<<endl<<name<<setw(10)<<code<<setw(15)<<speed
<<setw(15)<<wage<<endl;
 }

};

int main()
{

 teacher t;
 t.set_info("Ataur",420);
 t.set_details("programming with c++"," Tata McGraw Hill");

 officer o;
 o.set_info("Md. Rashed",222);
 o.set_details("First class");

 regular rt;
 rt.set_info("Robiul Awal",333);
 rt.set_speed(85.5);
 rt.set_wage(15000);

 causal ct;
ct.set_info("Kawser Ahmed",333);
ct.set_speed(78.9);
ct.set_wage(10000);
 cout<<" About teacher: "<<endl;
 t.show();
 cout<<" About officer:"<<endl;
 o.show();
 cout<<" About regular typist :"<<endl;
 rt.show();
 cout<<" About causal typist :"<<endl;
 ct.show();

 return 0;
}

output

About teacher:

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

name code subject publication

Ataur 420 programming with c++ Tata McGraw Hill

About officer:

name code Category

Md. Rashed 222 First class

About regular typist :

name code speed wage

Robiul Awal 333 85.5 15000

About causal typist :

name code speed wage

Kawser Ahmed 333 78.900002 10000

8.4: The database created in exercise 8.3 does not include educational information of the
staff. It has been decided to add this information to teachers and officers (and not for typists)
which will help management in decision making with regard to training, promotions etc.
Add another data class called education that holds two pieces of educational information
namely highest qualification in general education and highest professional qualification.
This class should be inherited by the classes teacher and officer. Modify the program of
exercise 8.19 to incorporate these additions.

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

#include<iostream.h>
#include<iomanip.h>
#include<string.h>

class staff
{
 protected:
 int code;
 char name[100];
 public:
 void set_info(char *n,int c)
 {
 strcpy(name,n);
 code=c;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 }
};
class education:public staff
{
 protected:
 char quali[100];
 public:
 void set_qualification(char *q){strcpy(quali,q);}
};

class teacher : public education
{
 protected:
 char sub[100],publication[100];
 public:
 void set_details(char *s,char *p)
 {
 strcpy(sub,s);strcpy(publication,p);
 }
 void show()
 {
 cout<<" name "<<setw(8)<<"code"<<setw(15)
 <<"subject"<<setw(22)<<"publication"
 <<setw(25)<<"qualification"<<endl
 <<name<<setw(8)<<code<<setw(25)
 <<sub<<setw(18)<<publication<<setw(25)<<quali<<endl;
 }
};

 class officer:public education
{
 char grade[100];
 public:
 void set_details(char *g)
 {
 strcpy(grade,g);

 }

 void show()
 {
 cout<<" name "<<setw(15)<<"code"<<setw(15)<<"Catagory "
 <<setw(22)<<"Qualification"<<endl<<name<<setw(10)
 <<code<<setw(15)<<grade<<setw(25)<<quali<<endl<<endl;
 }
};

class typist: public staff
{
 protected:
 float speed;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

 public:
 void set_speed(float s)
 {
 speed=s;
 }
};
class regular:public typist
{
 protected:
 float wage;
 public:
 void set_wage(float w){wage=w;}
 void show()
 {
 cout<<" name "<<setw(16)<<"code"<<setw(15)<<"speed"
 <<setw(15)<<"wage"<<endl<<name<<setw(10)<<code
 <<setw(15)<<speed<<setw(15)<<wage<<endl<<endl;
 }
};
class causal:public typist
{
 float wage;
 public:
 void set_wage(float w){wage=w;}
 void show()
 {
 cout<<" name "<<setw(16)<<"code"<<setw(15)<<"speed"
 <<setw(15)<<"wage"<<endl<<name<<setw(10)<<code
 <<setw(15)<<speed<<setw(15)<<wage<<endl<<endl;
 }

};

int main()
{

 teacher t; t.set_info("Ataur",420);
t.set_details("programming with c++"," Tata McGraw Hill");
t.set_qualification("PHD from programming ");

 officer o;

 o.set_info("Md. Rashed",222);
 o.set_details("First class");
 o.set_qualification("2 years experienced");

 regular rt;
 rt.set_info("Robiul Awal",333);
rt.set_speed(85.5);
rt.set_wage(15000);

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

 causal ct;
 ct.set_info("Kawser Ahmed",333);
 ct.set_speed(78.9);
 ct.set_wage(10000);

 cout<<" About teacher: "<<endl;
 t.show();

 cout<<" About officer:"<<endl;
 o.show();

 cout<<" About regular typist :"<<endl;
 rt.show();
 cout<<" About causal typist :"<<endl;
 ct.show();

 return 0;
}

output

About teacher:

name code subject publication qualification

Ataur 420 programming with c++ Tata McGraw Hill PHD from programming-
About officer:

name code Catagory Qualification

Md. Rashed 222 First class 2 years experienced

About regular typist :

name code speed wage

Robiul Awal 333 85.5 15000
About causal typist :

name code speed wage

Kawser 333 78.900002 10000

8.5: Consider a class network of the following figure. The class master derives information
from both account and admin classes which in turn derives information from the class
person. Define all the four classes and write a program to create, update and display the
information contained in master objects.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#include<iostream.h>
#include<iomanip.h>
#include<string.h>

class staff
{
 protected:
 int code;
 char name[100];
 public:
 void set_info(char *n,int c)
 {
 strcpy(name,n);
 code=c;
 }
};

class education:public staff
{
 protected:
 char quali[100];
 public:
 void set_qualification(char *q){strcpy(quali,q);}
};

GANESH
 Y

no
tes

4f
ree

.in

http://www.codingpractise.com/wp-content/uploads/2015/03/Ques-Figure.jpg

no
tes
4fr
ee
.in

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

class teacher : public education
{
 protected:
 char sub[100],publication[100];
 public:
 void set_details(char *s,char *p)
 {
 strcpy(sub,s);strcpy(publication,p);

 }

 void show()
 {
 cout<<"name"<<setw(8)<<"code"<<setw(15)<<"subject"<<setw(22)
<<"publication"<<setw(25)<<"qualification"<<endl<<name<<setw(8)
<<code<<setw(25)<<sub<<setw(18)<<publication<<setw(25)<<quail
<<endl;
 }
};

class officer:public education
{
 char grade[100];
 public:
 void set_details(char *g)
 {
 strcpy(grade,g);
 }

 void show()
 {
 cout<<"name"<<setw(15)<<"code"<<setw(15)<<"Catagory"
 <<setw(22)<<"Qualification"<<endl<<name<<setw(10)
 <<code<<setw(15)<<grade<<setw(25)<<quali<<endl<<endl;
 }
};

class typist: public staff
{
 protected:
 float speed;
 public:
 void set_speed(float s)
 {
 speed=s;
 }
};
 class regular:public typist
{
 protected:
 float wage;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

 public:
 void set_wage(float w){wage=w;}
 void show()
 {
 cout<<"name"<<setw(16)<<"code"<<setw(15)<<"speed"<<setw(15)
<<"wage"<<endl<<name<<setw(10)<<code<<setw(15)<<speed
<<setw(15)<<wage<<endl<<endl;
 }
};
class causal:public typist
{
 float wage;
 public:
 void set_wage(float w){wage=w;}

 void show()
 {
 cout<<"name"<<setw(16)<<"code"<<setw(15)<<"speed"<<setw(15)
<<"wage"<<endl<<name<<setw(10)<<code<<setw(15)<<speed
<<setw(15)<<wage<<endl<<endl;
 }

};

int main()
{

 teacher t;
 t.set_info("Ataur",420);
 t.set_details("programming with c++"," Tata McGraw Hill");
 t.set_qualification("PHD from programming ");
 officer o;
 o.set_info("Md. Rashed",222);
 o.set_details("First class");
 o.set_qualification("2 years experienced");
 regular rt;
 rt.set_info("Robiul Awal",333);
 rt.set_speed(85.5);
 rt.set_wage(15000);
 causal ct;
 ct.set_info("Kawser Ahmed",333);
 ct.set_speed(78.9);
 ct.set_wage(10000);
 cout<<" About teacher: "<<endl;
 t.show();
 cout<<" About officer:"<<endl;
 o.show();
 cout<<" About regular typist :"<<endl;
 rt.show();
 cout<<" About causal typist :"<<endl;
 ct.show();

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

128
129
130

 return 0;
}

output

name code Experience payment

Hasibul 111 3 years 1500tk

8.6: In exercise 8.3 the classes teacher, officer, and typist are derived from the class staff. As
we know we can use container classes in place of inheritance in some situations. Redesign
the program of exercise 8.3 such that the classes teacher, officer and typist contain the
objects of staff.

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

#include<iostream.h>
#include<iomanip.h>
#include<string.h>

class staff
{
 public:
 int code;
 char name[100];
 public:
 void set_info(char *n,int c)
 {
 strcpy(name,n);
 code=c;
 }
};

class teacher : public staff
{
 protected:
 char sub[100],publication[100];
 public:
 void set_details(char *s,char *p)
 {
 strcpy(sub,s);strcpy(publication,p);
 }
 void show()
 {
 cout<<"name"<<setw(8)<<"code"<<setw(15)<<"subject"<<setw(25)
<<"publication"<<endl<<name<<setw(8)<<code<<setw(25)<<sub

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

<<setw(22)<<publication<<endl;
 }
};

 class officer:public staff
{
 char grade[100];
 public:
 void set_details(char *g)
 {
 strcpy(grade,g);
 }
 void show()
 {
 cout<<" name "<<setw(15)<<"code"<<setw(15)<<"Catagory "<<endl
 <<name<<setw(10)<<code<<setw(15)<<grade<<endl;
 }
};

class typist: public staff
{
 protected:
 float speed;
 public:
 void set_speed(float s)
 {
 speed=s;
 }
 void show()
 {
 cout<<" name "<<setw(15)<<"code"<<setw(15)<<"speed"<<endl
 <<name<<setw(10)<<code<<setw(15)<<speed<<endl<<endl;
 }
};

 int main()
{

 teacher t;
 t.set_info("Ataur",420);
 t.set_details("programming with c++"," Tata McGraw Hill");

 officer o;
 o.set_info("Md. Rashed",222);
 o.set_details("First class");

 typist tp;
 tp.set_info("Robiul Awal",333);
 tp.set_speed(85.5);

 cout<<" About teacher: "<<endl;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

82
83
84
85
86
87
88

 t.show();
 cout<<" About officer:"<<endl;
 o.show();
 cout<<" About typist :"<<endl;
 tp.show();
 return 0;
}

output

About teacher:

name code subject publication

Ataur 420 programming with c++ Tata McGraw Hill

About officer:

name code Catagory

Md. Rashed 222 First class

About typist :

name code speed

Robiul Awal 333 85.5

8.7: We have learned that OOP is well suited for designing simulation programs. Using the
techniques and tricks learned so far, design a program that would simulate a simple real-
world system familiar to you

Solution:

1
2
3
4
5
6
7
8
9
10
11
12

#include<iostream.h>
#include<stdio.h>
#include<string.h>
#include<iomanip.h>
#include<conio.h>

char *sub[10]={"Bangla 1st paper","Bangla 2nd paper","English 1st paper",
 "English 2nd paper","Mathematics","Religion",
 "Physics","Chemistry","Sociology","Higher Mathematics"};

class student_info
{

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

 public:
 char name[40];
 char roll[20];
 public:
 void set_info();
};

void student_info::set_info()
{
 cout<<"Enter student name : ";
 gets(name);
 cout<<"Enter roll: ";
 gets(roll);
}

 class subject :public student_info
{

 public:
 float mark[10];

 public:
 void set_mark();
};

void subject::set_mark()
{
 cout<<" marks of : \n";
 for(int i=0;i<10;i++)
 {
 cout<<sub[i]<<" = ? ";
 cin>>mark[i];
 }

}
 class conversion :public subject
{
 float gpa[10];
 char grade[20][20];
 public:
 void convert_to_gpa();
 void show();
};
 void conversion::convert_to_gpa()
{
 for(int i=0;i<10;i++)
 {
 if(mark[i]>=80)
 {
 gpa[i]=5.00;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

 strcpy(grade[i],"A+");
 }
 else if(mark[i]>=70 && mark[i]<80)
 {
 gpa[i]=4.00;
 strcpy(grade[i],"A");
 }
 else if(mark[i]>=60 && mark[i]<70)
 {
 gpa[i]=3.50;
 strcpy(grade[i],"A-");
 }
 else if(mark[i]>=50 && mark[i]<60)
 {
 gpa[i]=3.00;
 strcpy(grade[i],"B");
 }
 else if(mark[i]>=40 && mark[i]<50)
 {
 gpa[i]=2.00;
 strcpy(grade[i],"C");
 }
 else if(mark[i]>=33 && mark[i]<40)
 {
 gpa[i]=1.00;
 strcpy(grade[i],"D");
 }
 else
 {
 gpa[i]=0.00;
 strcpy(grade[i],"Fail");
 }
 }
 }

void conversion::show()
{
 cout<<" result of \n";
 cout<<"name :"<<name<<"\n";
 cout<<"Roll : "<<roll<<"\n";
 cout<<setw(25)<<"Subject"<<setw(17)<<"Marks"
 <<setw(14)<<"GPA"<<setw(12)<<"Grade \n";
 for(int i=0;i<10;i++)
 {
 cout<<setw(25)<<sub[i]<<setw(15)<<mark[i]
 <<setw(15)<<gpa[i]<<setw(10)<<grade[i]<<"\n";
 }
}
int main()
{
 clrscr();

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

115
116
117
118
119
120
121
122

 conversion A;
 A.set_info();
 A.set_mark();
 A.convert_to_gpa();
 A.show();
 getch();
 return 0;
}

output

Enter student name : santo

Enter roll: 156271

marks of :

Bangla 1st paper = ? 74

Bangla 2nd paper = ? 87

English 1st paper = ? 45

English 2nd paper = ? 56

Mathematics = ? 87

Religion = ? 59

Physics = ? 75

Chemistry = ? 65

Sociology = ? 39

Higher Mathematics = ? 86

result of

name :santo

Roll : 156271

Subject Marks GPA Grade

Bangla 1st paper 74 4 A

Bangla 2nd paper 87 5 A+

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

English 1st paper 45 2 C

English 2nd paper 56 3 B

Mathematics 87 5 A+

Religion 59 3 B

Physics 75 4 A

Chemistry 65 3.5 A-

Sociology 39 1 D

Higher Mathematics 86 5 A+

 Chapter 9

 Review Questions

9.1: What does polymorphism mean in C++ language?

Ans:In short, polymorphism means one thing with several district forms.
In details, using operators or functions in different ways, depending on what they are
Operating on, is called polymorphism.

9.2: How is polymorphism achieved at (a) compile time, and (b) run time?

Ans:Polymorphism can be achieved at compile time by early binding. Early binding means an
object is bound to its function call at compile time.
And we can achieve run time polymorphism by a mechanism known as virtual function.

9.3: Discuss the different ways by which we can access public member functions of an
object.

Ans:We can access public member functions of an object by
(i) Object name and dot membership operator.
(ii) Pointer to object and function name.

9.4: Explain, with an example, how you would create space for an array of objects using
pointers.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Ans:We can also create an array of objects using pointers. For example, the statement
item *ptr = new item [10]; // array of 10 objects.
creates memory space for an array of 10 objects of item.

9.5: What does this pointer point to?

Ans:‘this’ pointer point to invoking object.

9.6: What are the applications of this pointer?

Ans:One important application of the pointer this is to return the object it points to. For example,
the statement.
return * this;
inside a member function will return the object that invoked the function.

9.7: What is a virtual junction?

Ans:When we use the same function name in both the base and derived classes the function in the
base class is declared as virtual using the keyword virtual preceding its normal declaration.

9.8: Why do we need virtual functions?

Ans:It we need same function name at base class and derived class then, we need virtual function.

9.9: When do we make a virtual function “pure”? What are the implications of making a

function a pure virtual function?

Ans:When a function is defined as empty, then this function is called do nothing function.
The implications of making a function a pure virtual function is to achieve run time
polymorphism.

9.10: State which of the following statements are TRUE or FALSE.
(a) Virtual functions are used to create pointers to base classes.
(b) Virtual functions allow us to use the same junction call to invoke member functions of objects
of different classes.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

(c) A pointer to a base class cannot be made to point to objects of derived class.
(d) this pointer points to the object that is currently used to invoke a function.
(e) this pointer can be used like any other pointer to access the members of the object it points to.
(f) this pointer can be made to point to any object by assigning the address of the object.
(g) Pure virtual functions force the programmer to redefine the virtual function inside the derived
classes.

Ans:
(a) TRUE
(b) TRUE
(c) FALSE
(d) TRUE
(e) TRUE
(f) TRUE
(g) TRUE

 Debugging Exercises

9.1: Identify the error in the following program.

#include <iostream.h>;
class Info
{
 char* name;
 int Number;
public:
 void getInfo()
 {
 cout << "Info::getInfo";
 getName();
 }

 void getName()
 {
 cout << "Info::getName";
 }
};

class Name: public Info
{
 char *name;
public:
 void getName()
 {
 cout << "Name::getName";
 }
};

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

void main()
{
 Info *P;
 Name n;
 P = n;
 p->getInfo();
}
/*

Solution: Here P=n will replace with P=&n in the main() function. Because P is a pointer.

9.2: Identify the error in the following program.

#include <iostream.h>;
class Person
{
 int age;
public:
 Person()
 {
 }

 Person(int age)
 {
 this.age = age;
 }
 Person& operator < (Person &p)
 {
 return age < p.age? p: *this;
 }
 int getAge()
 {
 return age;
 }
};

void main()
{
 Person P1 (15);
 Person P2 (11);
 Person P3;
 //if P1 is less than P2
 P3 = P1 < P2; P1.lessthan(P2)
 cout << P3.getAge();
}
/*

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

Solution: The function

person (int age)
{
 this.age = age;
}

should write like as…

person (int age)
{
 this > age = age;
}

9.3: Identify the error in the following program.

#include <iostream.h>;
class Human
{
public:
 Human()
 {
 }

 virtual -Human()
 {
 cout << "Human::-Human";
 }
};
class Student: public Human
{
public:
 Student()
 {
 }
 -Student()
 {
 cout << "Student::-Student()";
 }
};

void main()
{
 Human *H = new Student();
 delete H;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

}

Solution: Here we cannot write Human *H = new student(); in the main() function because base
class’s member includes in derived class’s object so we should write this as follow
student *H = new Student();

9.4: Correct the errors in the following program.

class Human
{
private:
 int m;
public:
 void getdata()
 {
 cout << " Enter number:";
 cin >> m;
 }
};
main()
{
 test T;
 T->getdata();
 T->display();

 test *p;
 p = new test;
 p.getdata();
 (*p).display();
}

Solution: Here T->getdata replace with T.getdata and T->display replace with T.display in the
main() function. Because in this program T is object to pointer.

9.5: Debug and run the following program. What will be the output?

#include<iostream.h>
class A
{
protected:
 int a,b;
public:
 A(int x = 0, int y)
 {

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

 a = x;
 b = y;
 }
 virtual void print ();
};
class B: public A
{
 private:
 float p,q;
 public:
 B(intm, int n, float u, float v)
 {
 p = u;
 q = v;
 }
 B() {p = p = 0;}
 void input(float u, float v);
 virtual void print(loat);
};
void A::print(void)
{
 cout << A values: << a <<""<< b << "\n";
}
void B:print(float)
{
 cout << B values: << u <<""<< v << "\n";
}
void B::input(float x, float y)
{
 p = x;
 q = y;
}
main()
{
 A a1(10,20), *ptr;
 B b1;
 b1.input(7.5,3.142);

 ptr = &a1;
 ptr->print();

 ptr = &b1;
 ptr->print();
}

 Programming Exercises

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

9.1: Create a base class called shape. Use this class to store two double type values that
could be used to compute the area of figures. Derive two specific classes called triangle and
rectangle from the base shape. Add to the base class, a member function get_data() to
initialize base class data members and another member function display_area() to compute
and display the area of figures. Make display_area() as a virtual function and redefine this
function in the derived classes to suit their requirements.

Using these three classes, design a program that will accept dimensions of a triangle or a
rectangle interactively, and display the area.

Remember the two values given as input will be treated as lengths of two sides in the case of
rectangles and as base and height in the case of triangles, and used as follows:

Area of rectangle = x * y

Area of triangle = ½ * x * y

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

#include<iostream.h>
#include<iomanip.h>
class shape
{
 public:
 double x,y;
 public:
 void get_data()
 {
 cin>>x>>y;

 }
 double get_x(){return x;}
 double get_y(){return y;}
 virtual void display_area(){}
};

class triangle:public shape
{
 public:
 void display_area()
 {
 double a;
 a=(x*y)/2;
 cout<<" Area of triangle = "<<a<<endl;

 }
};
class rectangle:public shape
{

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

 public:
 void display_area()
 {
 double a;
 a=x*y;
 cout<<" Area of rectangle = "<<a<<endl;
 }
};
 int main()
{

 shape *s[2];
 triangle t;
 s[0]=&t;
 rectangle r;
 s[1]=&r;
 cout<<" Enter the value of x & y for triangle: ";
 s[0]->get_data();
 cout<<" Enter the value of x & y for rectangle: ";
 s[1]->get_data();
 s[0]->display_area();
 s[1]->display_area();
 return 0;
 }

output

Enter the value of x & y for triangle: 12 26

Enter the value of x & y for rectangle: 24 14

Area of triangle = 156

Area of rectangle = 336

9.2: Extend the above program to display the area of circles. This requires addition of a
new derived class ‘circle’ that computes the area of a circle. Remember, for a circle we need

only one value, its radius, but the get_data() function in base class requires two values to be
passed.(Hint: Make the second argument of get_data() function as a default one with zero
value.)

Solution:

1
2
3
4

#include<iostream.h>
#include<iomanip.h>
#define pi 3.1416
class shape

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

{
 public:
 double x,y;
 public:
 void get_data(double a,double b)
 {
 x=a;
 y=b;

 }
 double get_x(){return x;}
 double get_y(){return y;}
 virtual void display_area(){}
};

class triangle:public shape
{
 public:
 void display_area()
 {
 double a;
 a=(x*y)/2;
 cout<<" Area of triangle = "<<a<<endl;

 }
};

 class rectangle:public shape
{
 public:
 void display_area()
 {
 double a;
 a=x*y;
 cout<<" Area of rectangle = "<<a<<endl;
 }
};
class circle:public shape
{
 public:
 void display_area()
 {
 double a;
 a=pi*x*x;
 cout<<" Area of circle = "<<a<<endl;
 }
};

int main()
{

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

 shape *s[3];

 triangle t;
 s[0]=&t;

 rectangle r;
 s[1]=&r;

 circle c;
 s[2]=&c;
 double x,y;
 cout<<" Enter the value of x & y for triangle: ";
 cin>>x>>y;
 s[0]->get_data(x,y);
 cout<<" Enter the value of x & y for rectangle: ";
 cin>>x>>y;
 s[1]->get_data(x,y);
 cout<<" Enter the radius of circle : ";
 double rd;
 cin>>rd;
 s[2]->get_data(rd,0);
 cout<<endl<<endl;
 s[0]->display_area();
 s[1]->display_area();
 s[2]->display_area();

 return 0;
}

output

Enter the value of x & y for triangle: 10 24

Enter the value of x & y for rectangle: 14 23

Enter the radius of circle : 12

Area of triangle = 120

Area of rectangle = 322

Area of circle = 452.3904

9.3: Run the program above with the following modifications:
(a) Remove the definition of display_area() from one of the derived
classes.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

(b) In addition to the above change, declare the display_area() as
virtual in the base class shape.
Comment on the output in each case.

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

#include<iostream.h>
#include<iomanip.h>
#define pi 3.1416
class shape
{
 public:
 double x,y;
 public:
 void get_data(double a,double b)
 {
 x=a;
 y=b;

 }
double get_x(){return x;}
double get_y(){return y;}
 virtual void display_area(){}
};
class triangle:public shape
{
 public:
 void display_area()
 {
 double a;
 a=(x*y)/2;
 cout<<" Area of triangle = "<<a<<endl;
 }
};
class rectangle:public shape
{
 public:
 void display_area()
 {
 double a;
 a=x*y;
 cout<<" Area of rectangle = "<<a<<endl;
 }
};
class circle:public shape
{
 public:
 void display_area()
 {
 double a;

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

 a=pi*x*x;
 cout<<" Area of circle = "<<a<<endl;
 }
};

int main()
{

 shape *s[3];
 triangle t;
 s[0]=&t;

 rectangle r;
 s[1]=&r;
 circle c;
 s[2]=&c;
 double x,y;
 cout<<" Enter the value of x & y for triangle: ";
 cin>>x>>y;
 s[0]->get_data(x,y);
 cout<<" Enter the value of x & y for rectangle: ";
 cin>>x>>y;
 s[1]->get_data(x,y);
 cout<<" Enter the radius of circle : ";
 double rd;
 cin>>rd;
 s[2]->get_data(rd,0);
 cout<<endl<<endl;
 s[0]->display_area();
 s[1]->display_area();
 s[2]->display_area();

 return 0;
}

output

Enter the value of x & y for triangle: 28 32

Enter the value of x & y for rectangle: 25 36

Enter the radius of circle : 20

Area of triangle = 448

Area of rectangle = 900

Area of circle = 1256.64

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

MODULE -5

STREAMS AND WORKING
WITH FILES

GANESH Y
Dept. of ECE RNSIT

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

1 GANESH Y, Dept. of ECE RNSIT

MODULE -5
Streams and Working with files

Syllabus

C++ streams and stream classes, formatted and unformatted I/O operations, Output
with manipulators, Classes for file stream operations, opening and closing a file, EOF
(Selected topics from Chap-10, 11 of Text).

Introduction

Every program takes some data as input and generates processed data as output
following the familiar input-process-output cycle. It is, therefore, essential to know
how to provide the input data and how to present the results in a desired form.

We have, in the earlier chapters, used cin and cout with the operators >> and << for
the input and output operations. But we have not so far discussed as to how to control
the way the output is printed. C++ supports a rich set of I/O functions and operations
to do this.

Since these functions use the advanced features of C++ (such as classes, derived classes
and virtual functions), we need to know a lot about them before really implementing
the C++ I/O operations.

Remember, C++ supports all of C's rich set of I/O functions. We can use any of them in
the C++ programs. But we restrained from using them due to two reasons. First, I/O
methods in C++ support the concepts of 00P and secondly, I/O methods in C cannot
handle the user-defined data types such as class objects.

C++ uses the concept of stream and stream classes to implement its I/O operations
with the console and disk files. We will discuss in this module, how stream classes
support the console-oriented input-output operations and File-oriented I/O
operations.

C++ Streams

The I/O system in C++ is designed to work with a wide variety of devices including
terminals, disks, and tape drives. Although each device is very different, the I/O
system supplies an interface to the programmer that is independent of the actual
device being accessed. This interface is known as stream.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

2 GANESH Y, Dept. of ECE RNSIT

A stream is a sequence of bytes. It acts either as a source from which the input data can
be obtained or as a destination to which the output data can be sent.

The source stream that provides data to the program is called the input stream and
the destination stream that receives output from the program is called the output
stream.

In other words, a program extracts the bytes from an input stream and inserts bytes
into an output stream as illustrated in Fig. 10.1.

The data in the input stream can come from the keyboard or any other storage device.
Similarly, the data in the output stream can go to the screen or any other storage
device.

Hence, a stream acts as an interface between the program and the input/output device.
Therefore, a C++ program handles data (input or output) independent of the devices
used.

C++ contains several pre-defined streams that are automatically opened when a
program begins its execution. These include cin and cout, we know that cin represents
the input stream connected to the standard input device (usually the keyboard) and
cout represents the output stream connected to the standard output device (usually
the screen).

Note that the keyboard and the screen are default options. We can redirect streams to
other devices or files, if necessary.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

3 GANESH Y, Dept. of ECE RNSIT

C++ Stream Classes

The C++ I/O system contains a hierarchy of classes that are used to define various
streams to deal with both the console and disk files. These classes are called stream
classes.

Figure 10.2 shows the hierarchy of the stream classes used for input and output
operations with the console unit. These classes are declared in the header file
iostream. This file should be included in all the programs that communicate with the
console unit.

As seen in the Fig. 10.2, ios is the base class for istream (input stream) and ostream
(output stream) which are, in turn, base classes for iostream (input/output stream).
The class ios is declared as the virtual base class so that only one copy of its members
are inherited by the iostream.

The class ios provides the basic support for formatted and unformatted I/O
operations.

The class istream provides the facilities for formatted and unformatted input while
the class ostream (through inheritance) provides the facilities for formatted output.

The class iostream provides the facilities for handling both input and output streams.
Three classes, namely, istream_withassign, ostream_withassign, and
iostream_withassign add assignment operators to these classes. Table 10.1 gives the
details of these classes.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

4 GANESH Y, Dept. of ECE RNSIT

Unformatted I/O Operations

Overloaded Operators >> and <<

We have used the objects cin and cout (pre-defined in the iostream file) for the input
and output of data of various types. This has been made possible by overloading the
operators >> and << to recognize all the basic C++ types.

The >> operator is overloaded in the istream class and << is overloaded in the
ostream class. The following is the general format for reading data from the keyboard:

cin >> variable1 >> variable2 >>>> variableN

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

5 GANESH Y, Dept. of ECE RNSIT

variable 1, variable 2, ... are valid C++ variable names that have been declared already.
This statement will cause the computer to stop the execution and look for input data
from the keyboard. The input data for this statement would be:

data1 data2 dataN

The input data are separated by white spaces and should match the type of variable in
the cin list. Spaces, newlines and tabs will be skipped.

The operator >> reads the data character by character and assigns it to the indicated
location. The reading for a variable will be terminated at the encounter of a white space
or a character that does not match the destination type. For example, consider the
following code:

int code;
cin >> code;

Suppose the following data is given as input:

4258D

The operator will read the characters upto 8 and the value 4258 is assigned to code.
The character D remains in the input stream and will be input to the next cin statement.

The general form for displaying data on the screen is:

cout <<item1<<item2 << <<itemN

The items item1 through itemN may be variables or constants of any basic type.

Note: Whitespace is a term that refers to characters that are used for formatting
purposes. In C++, this refers primarily to spaces, tabs, and (sometimes) newlines.

put() and get() Functions

The classes istream and ostream define two member functions get() and put()
respectively to handle the single character input/output operations.

There are two types of get() functions. We can use both get(char *) and get(void)
prototypes to fetch a character including the blank space, tab and the newline
character.

The get(char *) version assigns the input character to its argument and the get(void)
version returns the input character.

Since these functions are members of the input/output stream classes, we must invoke
them using an appropriate object.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

6 GANESH Y, Dept. of ECE RNSIT

This code reads and displays a line of text (terminated by a newline character).
Remember, the operator >> can also be used to read a character but it will skip the
white spaces and newline character. The above while loop will not work properly if
the statement

cin >> c;

is used in place of

cin.get(c);

The get(void) version is used as follows:

………..
char c;
c= cin.get(); // cin.get(c); replaced
………..
………..

The value returned by the function get() is assigned to the variable c.

The function put(), a member of ostream class, can be used to output a line of text,
character by character. For example,

cout.put ('x');

displays the character x and

cout.put(ch);

displays the value of variable ch.

The variable ch must contain a character value. We can also use a number as an
argument to the function put(). For example,

cout.put(68);

displays the character D. This statement will convert the int value 68 to a char value
and display the character whose ASCII value is 68.

The following segment of a program reads a line of text from the keyboard and displays
it on the screen.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

7 GANESH Y, Dept. of ECE RNSIT

char c;
cin.get(c); // read a character
while (c !='\n')
{
 cout.put(c); // display the character on screen
 cin.get(c);
}

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

8 GANESH Y, Dept. of ECE RNSIT

getline() and write() Functions

We can read and display a line of text more efficiently using the line-oriented
input/output functions getline() and write(). The getline() function reads a whole
line of text that ends with a newline character (transmitted by the RETURN key).

This function can be invoked by using the object cin as follows:

cin.getline (line, size);

This function call invokes the function getline() which reads character input into the
variable line. The reading is terminated as soon as either the newline character '\n' is
encountered or size-1 characters are read (whichever occurs first).

The newline character is read but not saved. Instead, it is replaced by the null
character. For example, consider the following code:

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

9 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

10 GANESH Y, Dept. of ECE RNSIT

The write() function displays an entire line and has the following form:

 cout.write (line, size)

The first argument line represents the name of the string to be displayed and the
second argument size indicates the number of characters to display.

Note that it does not stop displaying the characters automatically when the null
character is encountered. If the size is greater than the length of line, then it displays
beyond the bounds of line.

Program 10.3 illustrates how write() method displays a string.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

11 GANESH Y, Dept. of ECE RNSIT

FORMATTED CONSOLE I/O OPERATIONS

C++ supports a number of features that could be used for formatting the output. These
features include:

• ios class functions and flags

• Manipulators

• User-defined output functions

The ios class contains a large number of member functions that would help us to
format the output in a number of ways. The most important ones among them are
listed in Table 10.2.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

12 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

13 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

14 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

15 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

16 GANESH Y, Dept. of ECE RNSIT

 GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

17 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

18 GANESH Y, Dept. of ECE RNSIT

 GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

19 GANESH Y, Dept. of ECE RNSIT

 GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

20 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

21 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

22 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

23 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

24 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

25 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

26 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

27 GANESH Y, Dept. of ECE RNSIT

We can also create manipulators that could represent a sequence of operations.
Example:

ostream & show(ostream & output)
{
 output.setf(ios::showpoint);
 output.setf(ios::showpos);
 output<< setw(10);
 return output;
}

This function defines a manipulator called show that turns on the flags showpoint and
showpos declared in the class ios and sets the field width to 10.

Program 10.11 illustrates the creation and use of the user-defined manipulators. The
program creates two manipulators called currency and form which are used in the
main program.

#include <iostream>
#include <iomanip>
using namespace std;
// user-defined manipulators
ostream & currency(ostream & output)
{
 output << "Rs";
 return output;
}
ostream & form(ostream & output)
{
 output.setf(ios::showpos);
 output. setf (ios: ·: showpoint) ;
 output .fill ('*');
 output.precision(2);
 output<<setiosflags(ios::£ixed)
 << setw(10);
 return output;
}
int main()
{
 cout <<currency<< form<< 7864.5;
 return 0;
}

The output of Program 10.11 would be:

Rs**+7864.50

Note that form represents a complex set of format functions and manipulators.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

28 GANESH Y, Dept. of ECE RNSIT

Working with files

 Many real-life problems handle large volumes of data and, in such situations, we need
to use some devices such as floppy disk or hard disk to store the data. The data is stored
in these devices using the concept of files.

A file is a collection of related data stored in a particular area on the disk.

Programs can be designed to perform the read and write operations on these files. A
program typically involves either or both of the following kinds of data
communication:

1. Data transfer between the console unit and the program.

2. Data transfer between the program and a disk file.

This is illustrated in Fig. 11.1.

In this section we will discuss various methods available for storing and retrieving the
data from files.

The I/0 system of C++ handles file operations which are very much similar to the
console input and output operations. It uses file streams as an interface between the
programs and the files.

The stream that supplies data to the program is known as input stream and the one
that receives data from the program is known as output stream. In other words, the
input stream extracts (or reads) data from the file and the output stream inserts (or
writes) data to the file. This is illustrated in Fig. 11.2.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

29 GANESH Y, Dept. of ECE RNSIT

The input operation involves the creation of an input stream and linking it with the
program and the input file. Similarly, the output operation involves establishing an
output stream with the necessary links with the program and the output file.

CLASSES FOR FILE STREAM OPERATIONS

The I/O system of C++ contains a set of classes that define the file handling methods.
These include ifstream, ofstream and fstream. These classes are derived from
fstreambase and from the corresponding iostream class as shown in Fig. 11.3.

These classes, designed to manage the disk files, are declared in fstream and therefore,
we must include this file in any program that uses files. Table 11.1 shows the details of
file stream classes. Note that these classes contain many more features.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

30 GANESH Y, Dept. of ECE RNSIT

OPENING AND CLOSING A FILE

If we want to use a disk file, we need to decide the following things about the file and
its intended use:

1. Suitable name for the file

2. Data type and structure

3. Purpose

4. Opening method

The filename is a string of characters that make up a valid filename for the operating
system. It may contain two parts, a primary name and an optional period with
extension. Examples:

Input.data

Test.doc

INVENT.ORY

student

salary

OUTPUT

As stated earlier, for opening a file, we must first create a file stream and then link it to
the filename. A file stream can be defined using the classes ifstream, ofstream, and
fstream that are contained in the header file fstream.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

31 GANESH Y, Dept. of ECE RNSIT

The class to be used depends upon the purpose, that is, whether we want to read data
from the file or write data to it. A file can be opened in two ways:

1. Using the constructor function of the class.

2. Using the member function open() of the class.

The first method is useful when we use only one file in the stream. The second method
is used when we want to manage multiple files using one stream.

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

32 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

33 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

34 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

35 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

36 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

37 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

no
tes
4fr
ee
.in

38 GANESH Y, Dept. of ECE RNSIT

GANESH
 Y

no
tes

4f
ree

.in

