= . ' unsigned
tnmmf lan long - =

-> >> #define

prlntf <<C . vold
else [=

[= struct
g, P double = ==

namespace
A |= P while

t
tinclude [- ”Q\ int+ |

do >
: e 1nllnc=i anf _

W\
float M
Q . —

MODULE -1

BEGINNING WITH C++ AND ITS
FEATURES

GANESH'Y
Dept. of ECE RNSIT

MODULE -1

Beginning with C++ and its features

SYLLABUS

Beginning with C++ and its features: What is C++, Applications and structure of C++
program, Different Data types, Variables, Different Operators, expressions, operator
overloading and control structures in C++ (Topics from Chapter-2,3 of Text1).

Differences between POP and OOP

Procedure Oriented
Programming

Object Oriented Programming

Divided Into

In POP, program is divided into small
parts called functions.

In OOP, program is divided into
parts called objects.

Importance

In POP, Importance is not given
to databut to functions as well
as sequence of actions to be done.

Approach

POP follows Top Down appr

Access
Specifiers

In Importance is given to the
" data, rather than procedures or
ctions because it works as

«eal world.

00P follows Bottom
approach.

Up

POP does not hav
specifier.

OOP has access specifiers named
Public, Private, Protected, etc.

Data
Moving

In POP, Data c
function to f

freely from
the system.

In OOP, objects can move and
communicate with each other
through member functions.

Expansion

To ad and function in POP

is not'Se e

OOP provides an easy way to add
new data and function.

Data Access

In POP, most function uses Global
data for sharing that can be accessed
freely from function to function in
the system.

In OOP, data cannot move easily
from function to function, it can be
kept public or private so we can
control the access of data.

Data Hiding

POP does not have any proper way
for hiding data so it is less secure.

OOP provides Data Hiding so
provides more security.

Overloading

In POP, Overloading is not possible.

In OOP, overloading is possible in
the form of Function Overloading
and Operator Overloading.

Examples

Example of POP are: C, VB,

FORTRAN, Pascal.

Example of OOP are: C++, JAVA,

VB.NET, C#.NET.

GANESH Y, Dept. of ECE RNSIT

Basic Concepts of Object-Oriented Programming

Objects:-

* Objects are the basic run time entities in an object-oriented system. They may
represent a person, a place, a bank account, a table of data or any item that the program
has to handle.

* They may also represent user-defined data such as vectors, time and lists,
Programming problem is analyzed in terms of objects and the nature of
communication between them.

* Program objects should be chosen such that they match closely with the real-world
objects. Objects take up space in the memory and have an associated address like a
record in Pascal or a structure in C.

Classes:-

* We just mentioned th.at objects contain data, and cod manipulate that data. The
entire set of data and code of an object can be made @fined data type with the
help of a class. \

*class has been defined, we can
ach object is associated with the

orange are members of the class fpaftd@lasses are user-defined data types and behave
like the built-in types of a programij language.

gCt is no different than the syntax used to create an
én defined as a class, then the statement

fruit rrango;Q
will create an object mango belonging to the class fruit.

Data Encapsulation: -
* The wrapping up of data and functions into a single unit (called class) is known as
encapsulation. Data encapsulation is the most striking feature of a class.

* The data is not accessible to the out-side world, and only those functions which are
wrapped in the class can access it. These functions provide the interface between the
object's data and the program. This insulation of the data from direct access by the
program is called data hiding or information hiding.

Data Abstraction:-

* Abstraction refers to the act of representing essential features without including the
background details or explanations.

GANESH Y, Dept. of ECE RNSIT

* Classes use the concept of abstraction and are defined as a list of abstract attributes
such as size, weight and cost and functions to operate on these attributes. They
encapsulate all the essential properties of the objects that are to be created. The
attributes are sometimes called data numbers because they hold information.

The functions that operate on these data are sometimes called methods or member
functions.

*Since the classes use the concept of data abstraction, they are known as Abstract Data
Types (ADT).

Inheritance:-

* Inheritance is the process by which objects of one class acquire the properties of
objects of another class. It supports the concept of hierarchical classification.

* In OOP, the concept of inheritance provides the idea of reusability. This means that
we can add additional features to an existing class withoutmodifying it. This is possible
by deriving a new class from the existing one. The newiclass will have the combined
features of both the classes. \

Polymorphism :- .
* Polymorphism is another important OOP co) ymorphism a Greek term, means
the ab111ty to take more than one form.

* Similarly Using a sifigle fanction name to perform different types of tasks is known
as function overloading’

Benefits of OOP

e Through inheritance, we can eliminate redundant code and extend the use of existing
classes.

e We can build programs from the standard working modules that communicate with
one another, rather than having to start writing the code from scratch. This leads to
saving of development time and higher productivity.

e The principle of data hiding helps the programmer to build secure programs that
cannot be invaded by code in other parts of the program.

e It is possible to have multiple instances of an object to co-exist without any
interference.

GANESH Y, Dept. of ECE RNSIT

e [t is possible to map objects in the problem domain to those in the program.

e [t is easy to partition the work in a project based on objects.

e The data-centered design approach enables us to capture more details of a model in
implementable form.

 Object-oriented systems can be easily upgraded from small to large systems.

e Message passing techniques for communication between objects makes the interface
descriptions with external systems much simpler.

« Software complexity can be easily managed.

What is C++?

*

C++ is an object-oriented programming language. It was developed by Bjarne
Stroustrup at AT&T Bell Laboratories in USA.

C++ is an extension of C with a major additiog 0@%5 construct feature of

Simula67.

Since the class was a major addition to the or %anguage, Stroustrup initially

called the new language 'C with classes’ er, later in 1983, the name was

changed to C++. The idea of C++ comes e C increment operator ++, thereby
dnchemented) version of C.

C++ is a superset of C.
Therefore. almost a rams are also C++ programs. However, there are a few
prevent a C program to run under C++ compiler.

The most important facilities that C++ adds on to C arc classes. inheritance, function
overloading, and operator overloading. Those features enable creating of abstract
data types, inherit properties &om existing data types and support polymorphism,
thereby making C++ a truly object-oriented language.

The addition of new features has transformed C from a language that currently
facilitates top-down. structured design, to one that provides bottom-up, object
oriented design.

Applications of C++

C++ is a versatile language for handling very large Programs. It is suitable for virtually
any programming task including development of editors, compilers, databases,
communication systems and any complex real-life application systems.

GANESH Y, Dept. of ECE RNSIT

e Since C++ allows us to create hierarchy-related objects, we can build special object,
oriented libraries which can be used later by many programmers.

e While C++ is able to map the real-world problem properly, the C part of C++ gives the
language the ability to get close to the machine-level details.

e C++ programs are easily maintainable and expandable. When a new feature needs to
be implemented, it is very easy to add to the existing structure of an object

A Simple C++ Program

Example of a C++ program that prints a string on the screen.

include <iostream> // include header file
using namespace std;
int main ()

{

cout<<"Hello world\n"; // C++ statement
return 0;

} // end of example
This simple program demonstrates several C++ f uh

Program Features Q

Like C, the C++ program is a collection of & ops. The above example contains only

one function, mai n() . As usual, execut insatmai n().

Every C++ program must have a - C++ is a free-form language. With a few
exceptions, the compiler ignore ge returns and white spaces. Like C, the C++
statements terminate with se

Y/ This is an example of
Q // C++ program to illustrate
// Some of its features

The double slash comment is basically a single line comment. Multiline comments can
be written as follows:

Comments

/* This is an example of
C++ program to illustrate
Some of its features */
the double slash comment cannot be used in the manner as shown below:

for(j=0; j<n;/* loops n time*/ j++)
Output Operator

The only statement in above program is an output statement. The statement
cout <<"Hello world\n";

causes the string in quotation marks to be displayed on the screen. This statement
introduces two new C++ features, cout and <<.

GANESH Y, Dept. of ECE RNSIT

The identifier cout (pronounced as 'C out') is a predefined object that represents the
standard output stream in C++. Here, the standard output stream represents the
screen. It is also possible to redirect the output to other output devices.

The operator << is called the insertion or put to operator. It inserts (or sends) the
contents of the variable on its right to the object on its left as shown in fig.1.

Scroen

The iostream File

We have used the following #incl

This directive causes the essor to add the contents of the iostream file to the
program. It contains d ns for the identifier cout and the operator <<.

Some old versions of uSe a header file called iostream.h. This is one of the changes
introduced by ANSI C++.

Namespace

Namespace is a new concept introduced by the ANSI C++ standards committee. This
defines a scope for the identifiers that are used in a program. For using the identifiers
defined in the namespace scope we must include the using directive, like

usi ng nanespace std;

Here, std is the namespace where ANSI C++ standard class libraries are defined. All
ANSI C++ programs must include this directive. This will bring all the identifiers
defined in std to the current global scope. using and namespace are the new
keywords of C++.

GANESH Y, Dept. of ECE RNSIT

Return f main

In C++, main() returns an integer type value to the operating system. Therefore, every
main() in C++ should end with a return 0 statement; otherwise a warning or error
might occur.

Since main() returns an integer type value, return type for main() is explicitly specified
as int. Note that the default return type for all functions in C++ is int.

Variables

float numberl, number2, sum, average;
All variables must be declared before they are used in the program.
Input Operator

The statement
cin >> nunber1;

: : e .

is an input statement and causes the program to wal%1 e user to type in a number.
1.Bhe identifier cin (pronounced

% the standard input stream.

The number keyed in is placed in the variable nu

overloaded.

Object act Variable

455

Fig.2 Input using extraction operator

Cascading of 1/0 Operators

The statement

cout <<"Sum="<< sum<<"\n";
first sends the string "Sum=" to cout and then sends the value of sum. Finally, it sends
the newline character so that the next output will be in the new line.

cout << "Sum=" << sum<<"\n"
<< "Average=" << average<<"\n";

GANESH Y, Dept. of ECE RNSIT

This is one statement but provides two lines of output. If you want only one line of
output, the statement will be:
cout << "Sum=" << sum<<","
<< "Average=" << average<<"\n";
We can also cascade input operator>> as shown below:

cin >>numberl>> number2;

The values are assigned from left to right. That is, if we key in two values, say, 10 and
20, then 10 will be assigned to number1 and 20 to number?2.

Structure of C++ Program

A typical C++ program would contain four sections as shown in Fig.3. These sections
may be placed in separate code files and then compiled independently or jointly.

Include files

[t is a common practi anize a program into three separate files:

* The class declaration$ are placed in a header file and the definitions of member
functions go into another file.

This approach enables the programmer to separate the abstract specification of the
interface (class definition) from the implementation details (member functions
definition).

* Finally, the main program that uses the class is placed in a third file which "includes"
* the previous two files as well as any other files required.

This approach is based on the concept of client-server model as shown in Fig. 4. The
class definition including the member functions constitute the server that provides
services to the main program known as client. The client uses the server through the
public interface of the class.

GANESH Y, Dept. of ECE RNSIT

Sarvear

'

|
Man function program | Client

Fig. 4 The client-server model

Fallowing program shows the use of class in a C++ program.
#include <iostream>

using namespace std;
class person ’\

{
char name[30]; 2
int age;
public:
void void);
void y(void);

:: getdata (void)
t << "Enter name: ";
in >> name;
cout << "Enter age: ";
cin >> age;
}
void person :: display(void)

{

cout << "\n Name:
cout << "\n Age:

<< name;
<< age;

}

int main()

{
person p;
p.getdata();
p.display();
return 0;

GANESH Y, Dept. of ECE RNSIT

The program defines person as a new data of type class. The class person includes two
basic data type items and two functions to operate on that data. These functions are
called member functions. The main program uses person to declare variables of its
type. As pointed out earlier, class variables are known as objects. Here, p is an object

of type person.

Tokens

The smallest individual units in a program are known as tokens. C++ has the following

tokens:

» Keywords
e I[dentifiers
e Constants
e Strings

e Operators

Keywords

asm

auto

break

case

catch

char

class

const goto
continue if
default inline
delete int
do long

operator
private
protected
public
register
return
short
signed
sizeof
static
struct

switch
template
this
throw
try
typedef
union
unsigned
virtual
void
volatile
while

Added by ANSI C++

hool export
const_cast’ false
dynamic_cast mutable
explicit namespace

e T T T e ey e e T el " e 3 LR

reinterpret_cast

static_cast
true

typeid

typename
using
wchar_t

GANESH Y, Dept. of ECE RNSIT

Identifiers

Identifiers refer to the names of variables, functions, arrays, classes, etc. created by the
programmer. They are the fundamental requirement of any language. Each language
has its own rules for naming these identifiers. The following rules are common to both
Cand C++:

e Only alphabetic characters, digits and underscores are permitted.
e The name cannot start with a digit.

e Uppercase and lowercase letters are distinct.

e A declared keyword cannot be used as a variable name.

A major difference between C and C++ is the limit on the length of a name. While ANSI
C recognizes only the first 32 characters in a name, ANSI C++ places no limit on its
length and, therefore, all the characters in a name are significant.

Constants ¢
Constants refer to fixed values that do not chang ig the execution of a program.

123 // de 1) integer

12.34 ting point integer
037 al integer

0X2 xadecimal integer

l 1 o o string constant

‘A // character constant

L'ab’ O\ // wide-character constant

The wchar_t type is @character literal introduced by ANSI C++ and is intended

for character sets that cahnot fit a character into a single byte. Wide-character literals
begin with the letter L.

C++ also recognizes all the backslash character constants available in C.

Strings

C++ supports two types of string representation - the C-style character string and the
string class type introduced with Standard C++.

GANESH Y, Dept. of ECE RNSIT

Basic Data types

Data types in C++ can be classified under various categories as shown in Fig. 5.

C++ Data Types

s 1

! User-defined type

S S

I Buit- Derived type

i structure
union
class

enumeration

array
function
pointer
reference

/

/
A

P

Integral type

Floating type

//\ ; X

S— . W—

int

rchar] ldoubie

* Both C and C++ compilers supp
fundamental) data types.
With the exception of void, t
preceding them to serve th
unsigned, long, and sho
However, the modifi
representation is m

Table 2: size an

built-in (also known as basic or

data types may have several modifiers

of various situations. The modifiers signed,

pplied to character and integer basic data types.

may also be applied to double. Data type
specific in C++.

anges of C++ basic data types (for 16-bit word machine)

Type

char

unsigned char
signed char .-
int

unsigned int
signed int

short int
unsigned short int
signed short int
long int

signed long int
unsigned long int
float

double

long double

Bytes

-128 to 127

0 to 255

- 128 to 127

- 32768 to 32767

0 to 65535

- 31768 to 32767

- 31768 to 32767

0 to 65535

-32768 to 32767
-2147483648 to 2147483647
-2147483648 to 2147483647
0 to 4294967295

3.4E-38 to 3.4E+38
1.7E-308 to 1.7E+308
3.4E-4932 to 1.1E+4932

O 00 in s ob 3B DO DO DD DO DD DD bt e

—

GANESH Y, Dept. of ECE RNSIT

The fallowing explanation of void data type can be understood properly after
discussion of pointers in module 4

The type void was introduced in ANSI C. Two normal uses of void are (1) to specify
the return type of a function when it is not returning any value, and (2) to indicate an
empty argument list to a function. Example:

void functl(void);
Another interesting use of void is in the declaration of generic pointers. Example:

void *gp; // gp becomes generic pointer

A generic pointer can be assigned a pointer value of any basic data type, but it may not
be dereferenced. For example,

int *ip; // int pointer
gp = ip; // assign int pointepgto void pointer

*ip = *gp;
is illegal. It would not make sense to derefer inter to a void value.

are valid statements. But, the statement, g \
L 2

Assigning any pointer type to a void pQidter Without using a cast is allowed in both
C++ and ANSI C. In ANSI C, we can sign a void pointer to a non-void pointer
without using a cast to non-void poi e. This is not allowed in C++. For example,

void *ptrl;
char *p
ptr2 =

are all valid statementgsai I C but not in C++. A void pointer cannot be directly
assigned to other typ ingers in C++. We need to use a cast operator as shown below:

ptr2 = (char *) ptri;

User-Defined Data Types

Structures

Standalone variables of primitive types are not sufficient enough to handle real world
problems. It is often required to group logically related data items together. While
arrays are used to group together similar type data elements, structures are used for
grouping together elements with dissimilar types.

GANESH Y, Dept. of ECE RNSIT

The general format of a structure definition is as follows:
struct name

{
Variable namel;
Variable name2;

}s

Consider an example of a book, which has several attributes such as title, number of
pages, price etc. we can realize a book using structures as shown below:
struct book
{
char title[25];
char author[25];
int pages;
float price;

}s
struct book bookl,

here book1, book2 and book3 are decl s V 1ables of the user-defined type book.
We can access the member elements (.J’operator as

bookl.pagess

book2.pRri
Unions K

Unions are conceptua ar to structures as they allow us to group together
dissimilar type elemefits ifiside a single unit.

unio book

{
char title[25];
char author[25];
int pages;
float price;

}s

But there are significant differences between structures and unions as far as their
implementation is concerned.

The size of a structure type is equal to the sum of the sizes of individual member types.
However, the size of a union is equal to the size of its largest member element.

GANESH Y, Dept. of ECE RNSIT

Table 3: Differences between structures and unions

Structures

Unions

1.The keyword struct is used to define a
structure

1. The keyword union is used to define a
union.

2. When a variable is associated with a
structure, the compiler allocates the
memory for each member. The size of
structure is greater than or equal to the
sum of sizes of its members. The smaller
members may end with unused slack
bytes.

2. When a variable is associated with a
union, the compiler allocates the
memory by considering the size of the
largest memory. So, size of union is equal
to the size of largest member.

3. Each member within a structure is
assigned unique storage area of location.

3. Memory allocated is shared by
individual members of union.

4. The address of each member will be in
ascending order This indicates that
memory for each member will start at
different offset values.

4. The address is same for all the
membegs a wnion. This indicates that
beg begins at the same offset

5 Altering the value of a member will not
affect other members of the structure.

6. Individual member can be access
a time

the value of any of the member
alter other member values.

Only one member can be accessed at a

pther user-defined data type known as class which can
ic data type, to declare variables. The class variables are

known as objects, which

Enumerated Data Type

are the central focus or object-oriented programming.

* An enumerated data type is another user-defined type which provides a way for
attaching names to numbers, thereby increasing comprehensibility of the code.
The enum keyword (from C) automatically enumerates a list of words by assigning
them values 0,1,.2. and so on. This facility provides an alternative means for creating
symbolic constants. The syntax of an enum statement is similar to that of the struct
statement.

Example:

enum shape {circle, square, triangle};
enum colour {red, blue, green, yellow};
enum position {off, on};

GANESH Y, Dept. of ECE RNSIT

In C++, the tag names shape, colour, and position become new type names. By using
these tag names, we can declare new variables.

colour background = blue; // allowed
colour background = 7; // Error 1n C++
colour background (colour) 7; //OK

However, an enumerated value can be used in place of an int value,
int ¢ = red; // valid colour type promoted to int

By default, the enumerators are assigned integer values starting with 0 for the first
enumerator, 1 for the second, and so on. We can override the default by explicitly
assigning integer values to the enumerators. For example,

enum colour {red, blue=4, green=6};
enum colour {red =5, blue, green};

C++ also permits the creation of anonymous enums (i.e@ns without tag names).
&

enum {off, on};

Here, off is 0 and on is 1. These constants may érenced in the same manner as
regular constants.

int switchl = off; d&
int switch2 = on;

Derived Data Types

Arrays ’\'

The application of arrays is similar to that in C. The only exception is the way
character arrays arehi ed. When initializing a character array in ANSI C, the
compiler will allow uS\to declare the array size as the exact length of the string
constant. For instance,

char string [3]= "xyz";

is valid in ANSI C. It assumes that the programmer intends to leave out the null
character (\0) in the definition. But in C++, the size should be one larger than the
number of characters in the string.

char string[4] = "xyz"; // OK for C++
Functions

Functions have undergone major changes in C++. While some of these changes are
simple, others require a new way of thinking when organizing our programs. Many of
these modifications and improvements were driven by the requirements of the object-
oriented concept of C++.

GANESH Y, Dept. of ECE RNSIT

Pointers
Pointers are declared and initialized as in C. Examples:

int *ip; // int pointer
ip = &x; // address of x assigned to ip
*ip =10; // 10 assigned to x through indirection

C++ adds the concept of constant pointer and pointer to a constant.
char *const ptrl ="Yes"; // constant pointer
We cannot modify the address that ptrl is initialized to.
int const *ptr2 = &m; // pointer to a constant

ptr2 is declared as pointer to a constant. It can point to any variable of correct type, but
the contents of what it points to cannot be changed.

We can also declare both the pointer and the mrigbl@nstants in the following

way: \
¢

e string which has been declared
a constant. In this case, neither the add 1 d to the pointer cp nor the contents
it points to can be changed.

Symbolic Constants

There are two ways of cre olic constants in C++:

e Using the qualifier co
¢ Defining a set of int@nstants using enum keyword.

const int size= 10;
char name[size];

This would be illegal in C but valid in C++. const allows us to create typed constants
instead of having to use #define to create constants that have no type information.

As with long and short, if we use the const modifier alone, it defaults to int. For
example,

const size =10;
//means
const int size =10;

C++ requires a const to be initialized. ANSI C does not require an initializer; if none is
given, it initializes the const to 0.

GANESH Y, Dept. of ECE RNSIT

The scoping of const values differs. A const in C++ defaults to the internal linkage and
therefore it is local to the file where it is declared. In ANSI C, const values are global in
nature.

They are visible outside the file in which they are declared. However, they can be made
local by declaring them as static.

To give a const value an external linkage so that it can be referenced from another file.
we must explicitly define it as an extern in C++. Example:

extern const total = 100;
Another method of naming integer constants is by enumeration as under;
enum {X, Y, Z};

This defines X. Y and Z as integer constants with values 0, 1, and 2 respectively. This is
equivalent to:

const X=0; . Q
const Y=1; \
*

const Z=2;

We can also assign values to X, Y, and Z explj ' example:

enum {X=100, Y=50,Z=

Declaration of Variables

We know that, in C, all variable e declared before they are used in executable
statements. This is true wit]& well.

int mai
{
float x; //declaration
float sum = 0;
for (int i=1;i<5;i++) //declaration
{ .
cin >> x;
sum= sum +X;
}
float average; //declaration
average = sum/(i-1):
cout << average;
return 0;

GANESH Y, Dept. of ECE RNSIT

Dynamic Initialization of Variables

C++ permits initialization of the variables at run time. This is referred to as dynamic
initialization, In C++, a variable can be initialized at run time using expressions at the
place of declaration.

For example

Dynamic initialization is extensively used in object oriented programming. We can
create exactly the type of object needed, using info‘rm omythat is known only at the

run time. \

Reference Variables

C++ introduces a new kind of variabl the reference variable. A reference
variable provides an alias (alternativ eor a previously defined variable.

A reference variable is created as fi

data_type & € name = variable name;

For example, if we make fable sum a reference to the variable total, then sum
and total can be used i geably to represent that variable.

total=100;
float & sum= total;

cout « total;
and
cout << sum;
both print the value 100. The statement

total = total + 10;

will change the value of both total and sum to 110. Reference variables are used as
function arguments, which will be discussed in call by reference method.

GANESH Y, Dept. of ECE RNSIT

Where Variables Are Declared

Variables will be declared in three basic places: inside functions, in the definition of
function parameters, and outside of all functions. These are local variables, formal
parameters, and global variables.

Local Variables
* Variables that are declared inside a function are called local variables. In some
C/C++ literature, these variables are referred to as automatic variables.

Local variables exist only while the block of code in which they are declared is
executing. That is, alocal variable is created upon entry into its block and destroyed
upon exit.

For example, consider the following two functions:

void funcl(void)
{ o Q
int x; \

X = 10;
) L 2
}

void func2(void) o
{ dg

int x;
X = -199
}

Formal Parameters \

* [fafunctionistous nts, it must declare variables that will accept the values
of the arguments. Maeséwariables are called the formal parameters of the function.

* They behave like any other local variables inside the function. As shown in the
following program fragment, their declarations occur after the function name and
inside parentheses:

int funl(char c)
{
C=Ial;
return 0;

Global Variables

* Unlike local variables, global variables are known throughout the program and may
be used by any piece of code. Also, they will hold their value throughout the
program's execution.

GANESH Y, Dept. of ECE RNSIT

* We can create global variables by declaring them outside of any function. Any
expression may access them, regardless of what block of code that expression is in.

#include <stdio.h>
int count; /* count is global */
void funcl(void);
int main(void)
{
count = 100;
funcl();
return 0;

}

void funcl(void)

{

int temp;

temp = count; N
cout <<"count is"<<count; / ill" print 100 */
L 2

Storage classes

There are four storage class specifier. ed by C++:

extern
auto
static

register O\¢

mutable
These specifiers tell @npiler how to store the subsequent variable. The general
form of a declaration that uses one is shown here.

storage_specifier type var_name;
extern

Because C/C++ allows separate modules of a large program to be separately compiled
and linked together, there must be some way of telling all the files about the global
variables required by the program. Although C technically allows you to define a global
variable more than once, it is not good practice (and may cause problems when
linking).

More importantly, in C++, you may define a global variable only once and inform all
files in program about these variables.

GANESH Y, Dept. of ECE RNSIT

File One File Two
int x, y; extern int x, y;
char ch; extern char ch;
int main(void) void func22(void)
{ {

/* .00 */ x=y/10;
} }
void funcl(void) void func23(void)
{ {

X = 123; y=10;
} }

Automatic
Automatic storage class assigns a variable to its defau ge type. auto keyword is
used to declare automatic variables.

However, if a variable is declared without any ke 1de a function, itis automatic
by default. This variable is visible only wi functlon it is declared and
its lifetime is same as the lifetime of thep n as well. Once the execution of

Static

Static storage class ensures a variable has the visibility mode of a local variable
but lifetime of an external variable. It can be used only within the function where it is
declared but destroyed only after the program execution has finished.

When a function is called, the variable defined as static inside the function retains its
previous value and operates on it. This is mostly used to save values in a recursive
function.

For example,

static int x = 101;
static float sum;

GANESH Y, Dept. of ECE RNSIT

Register

Register storage assigns a variable's storage in the CPU registers rather than primary
memory. It has its lifetime and visibility same as automatic variable.

The purpose of creating register variable is to increase access speed and makes
program run faster. If there is no space available in register, these variables are stored
in main memory and act similar to variables of automatic storage class. So only those
variables which requires fast access should be made register.

For example,
register int id;
register char a;
Example of Storage Class
//C++ program to create automatic, global, static and register
variables.
#include<iostream>
using namespace std; ¢ Q
int g; //global variable, initij Nolds 0
L 2
void test function()

{ >
static int s; //s &ar‘iable, initially holds ©
register int r; ter variable
r=5;
S=S+r*2;
cout<<"Inside unction"<<endl;
coutc<'g = <<endl;

cout<<"s s <<endl;
cout<<"r "R< r <<endl;

main()

int a; //automatic variable
g=25;

a=17;

test function();

cout<<"Inside main"<<endl;
cout<<"a = "<<a<kendl;
coutc<"g = "<<g<<endl;

test function();

return 0;

GANESH Y, Dept. of ECE RNSIT

In the above program, g is a global variable, s is static, r is register and a is automatic
variable.

We have defined two function, first is main() and another is test_function().

Since g is global variable, it can be used in both function. Variables r and s are declared
inside test_function() so can only be used inside that function.

However, s being static isn't destroyed until the program ends. When test_function() is
called for the first time, ris initialized to 5 and the value of s is 10 which is calculated
from the statement,

S=S+r*2;
After the termination of test_function(), r is destroyed but s still holds 10. When it is
called second time, r is created and initialized to 5 again.

Now, the value ofsbecomes 20 since sinitially held 10. Variable ais declared

inside main() and can only be used inside main().
Output ‘\Q

Inside test_function

= 25
= 10 2
A
Inside
a 17

g 25
Inside test function

3 -\
TS

Mutable

In C++, a class object can be kept constant using keyword const. This doesn't allow the
data members of the class object to be modified during program execution. But, there
are cases when some data members of this constant object must be changed.

|

For example, during a bank transfer, a money transaction has to be locked such that
no information could be changed but even then, its state has to be changed from
- started to processing to completed. In those cases, we can make these variables
modifiable using a mutable storage class.

Syntax for Mutable Storage Class Declaration

mutable datatype var_namel;

GANESH Y, Dept. of ECE RNSIT

For example,

mutable int x;

mutable char y;

Example of Mutable Storage Class

// C++ program to create mutable variable.
#include<iostream>
using namespace std;

class test

{

mutable int a;
int b;
public:
test(int x,int y)

void square_a() const

{
}

a=a*a;

int main()

{
const test x(2,3);
cout<<"Initial value"<<endl;
x.display();
x.square_a();
cout<<"Final value'<<endl;
x.display();
return 0;

}

A class testis defined in the program. It consists of a mutable data member a. A
constant object x of class test is created and the value of data members are initialized
using user-defined constructor.

GANESH Y, Dept. of ECE RNSIT

Since, bis a normal data member, its value can't be changed after initialization.

However a being mutable,

its wvalue

can be

changed which

is done by

invoking square_a() method. display() method is used to display the value the data

members.

Output

Initial value

a=2
b=3

Final value

a=4
b=3

Storage
Class

Keyword

Lifetime

Visibility

Initial
Value

Storage

Purpose

Automatic

auto

Function
Block

Local

Garbage

Stack
segment

Local variables used
by a single function

External

extern

Whole
Program

Global

Zero

Data
t

Global variables used
throughout the
program

Static

static

Whole
Program

Local

Register

register

Function
Block

a
Segment

Local variables
retaining their values
throughout the
program

CPU
registers

Variables using CPU
for storage purpose

Mutable

mutable

Class

Garbage

Depends
on the
scope of
class

GANESH Y, Dept. of ECE RNSIT

Extra info (not in syllabus)

Operators

Operators are the symbols which tell the computer to execute certain mathematical or
logical operations. A mathematical or logical expression is generally formed with the
help of an operator. C ++ programming offers a number of operators which are
classified into different categories viz.
1. Arithmetic operators

. Relational operators

. Logical operators

. Assignment operators

. Bitwise operators

. Special operators
1. Arithmetic Operators

Dperator

= : % Unary mnu

[mvcrement

Note: ‘%’ cannot be u \@ oating data type.

C programming allo e use of ++and - operators which are increment and
decrement operators reSpectively. Both the increment and decrement operators are
unary operators. The increment operator ++ adds 1 to the operand and the decrement
operator - subtracts 1 from the operand. The general syntax of these operators are:

Increment Operator: m++ or ++m;
Decrement Operator: m--or --m;
In the example above, m++ simply means m=m+1; and m-- simply means m=m-1;
Increment and decrement operators are mostly used in for and while loops.

++m and m++ performs the same operation when they form statements independently
but they function differently when they are used in right hand side of an expression.

++m is known as prefix operator and m++is known as postfix operator. A prefix
operator firstly adds 1 to the operand and then the result is assigned to the variable on

GANESH Y, Dept. of ECE RNSIT

the left whereas a postfix operator firstly assigns value to the variable on the left and
then increases the operand by 1. Same is in the case of decrement operator.

2.Relational Operators
Relational operators are used when we have to make comparisons. C programming
offers 6 relational operators.
Relational Oparators
Operaton Actiom
Greater than
Greater than or equal
Less than
= Less than or equal
== Equal
l= Mot equal
3. Logical Operators ’
Logical operators are used when more than one conditions are to be tested and based
on thatresult, decisions have to be made. C progr ir‘ ffers three logical operators.

They are:
Logical Oparators

Operator && Action

folfe AND
B OR

! NOT
4. Assignment Operatoré'

Assignment operator to assign result of an expression to a variable. ‘=" is the
assignment operator imC. Furthermore, C also allows the use of shorthand assignment
operators. Shorthand operators take the form:

var op = exp;
5. Bitwise Operator

In C programming, bitwise operators are used for testing the bits or shifting them left
or right. The bitwise operators available in C are:

Operator Action

& AND
[R
A Exclusive QR (XOR)

- Cine's complement (MOT)
5 Shift right
< Shifk left

GANESH Y, Dept. of ECE RNSIT

Operator precedence and associativity

Operator Associativity

- left to right

=, () | | posthix ++ posthx - ~ left to right
prefix ++ prefix = - ~ | unary + unary -

unary * unary & (type) sizeof new delete right to left

- * ¥ left to right

*{% left to nght

left to right

left to rnght

left Lo right

left to right

left to right

left to right

ft to right

IeTt to right

left to right

¢ left to right

right to left

left to right

7. Special operators:-

The ? Operator \

C/C++ contains a V:%TQ rful and convenient operator that replaces certain
Xp

statements of the if-then-8lse form. The ternary operator ? takes the general form

1 ? Exp2 : Exp3;

where Exp1, ExpZ2, and Exp3 are expressions.
The ? operator works like this: Exp1 is evaluated. If it is true, Exp2 is evaluated and
becomes the value of the expression. If Exp1 is false, Exp3 is evaluated and its value
becomes the value of the expression. For example, in

X = 10;

y = X>9 ? 100 : 200;
y is assigned the value 100. If x had been less than 9, y would have received the value
200. The same code written using the if-else statement is

X = 10;

if(x>9) y = 100;

else y = 200;

GANESH Y, Dept. of ECE RNSIT

The & and * Pointer Operators are discussed in module 4

The Compile-Time Operator sizeof

sizeof is a unary compile-time operator that returns the length, in bytes, of the variable
or parenthesized type-specifier that it precedes. For example, assuming that integers
are 4 bytes and doubles are 8 bytes,

double f;
printf("%d", sizeof (f));
printf("%d", sizeof(int));

The Comma Operator
The comma operator strings together several expressions. The left side of the comma

operator is always evaluated as void. This means that the expression on the right side
becomes the value of the total comma-separated expressi@n. For example,

x = (y=3, y+1); »
first assigns y the value 3 and then assigns x the va e&h parentheses are necessary
because the comma operator has a lower prece eqsthan the assignment operator.
The Dot (.) and Arrow (—>) Operators
In C, the . (dot) and the —>(arrow) ope access individual elements of structures

and unions. In C++, the dot and arro tors are also used to access the members
of a class.

For example,
struct emplo

struct employee *p = &emp; /* address of emp into p */
you would write the following code to assign the value 123.23 to the wage member of

structure variable emp:
emp.wage = 123.23;

However, the same assignment using a pointer to emp would be
p->wage = 123.23;

GANESH Y, Dept. of ECE RNSIT

int x » 10;

| =

) < —

In C, the global version of a variable cannot be accessed from within the inner block.
C++ resolves this problem by introducing a new operator :: called the scope resolution
operator. This can be used to uncover a hidden Variable&kes the following form:

:: variable-name *

##include <iostream> §
using namespace std;

int m = 10; // global m P
int main() &
{

int m = 20; // m redecl cal to main

{

int k = m;

int m = 30; Ky clared again
// loca ner block

cout << | in inner block \n";
cout <« ¥ << k << "\n";

cout << " ke m << "\n";

cout << ":im =" << im << "\n";

}

cout << "\n We are in outer block \n";

cout << "m = 11 "<< m << "\n";

cout << ":im =" << 1:m << "\n";
return 0;

}
Output

We are in inner block
k=20

m =30

::m=10

We are in outer block
m =20

::m=10

GANESH Y, Dept. of ECE RNSIT

Memorv Man ment rator

* Cusesmal | oc() andcal | oc() functions to allocate memory dynamically at run
time. Similarly, it uses the function f r ee() to free dynamically allocated memory.

Although C++ supports these functions, it also defines two unary operators newand
del et e that perform the task of allocating and freeing the memory in a better and
easier way. Since these operators manipulate memory on the free store, they are
also known as free store operators.

The new operator offers the following advantages over the function mal | oc().

1. It automatically computes the size of the data object. We need not use the operator
Si zeof.

2. It automatically returns the correct pointer type, so that there is no need to use a
type cast.

3. Itis possible to initialize the object while creatingthé&memory space.

4. Like any other operator, newand del et e can be ovegloaded.

L 2
* An object can be created by using new, an ed by using delete, as and when
required. X

A data object created inside a bl %’lew, will remain in existence until it is
explicitly destroyed by using del , the lifetime of an object is directly under
our control and is unrelated to ock structure of the program.

The new operator can be % reate objects of any type. It takes the following

general form: @
po&e variable = new data- type;

The new operator allocates sufficient memory to hold a data object of type data-type
and returns the address of the object. The data-type may be any valid data type. The
pointer-variable holds the address of the memory space allocated.

p = new int; int *p = new int; Subsequently, the statements
q = new float; float *q = new float; *p=25;
*q=17.5;
assign 25 to the newly created int object and 7.5 to the float object.

We can also initialize the allocated memory using the new operator. This is done as
follows:

pointer-variable = new data-type(value);

int *p = new int(25);
float *q = new float(7.5);

GANESH Y, Dept. of ECE RNSIT

similarly, memory for array data type can be allocated as

pointer-variable = new data- type[size];

int *p = new int[10];
creates a memory space for an array of 10 integers. p[O] will refer to the first element,
p[1] to the second element, and so on.

When creating multi-dimensional arrays with new, all the array sizes must be
supplied.

array_ptr = new int[3][5][4]; // legal

array_ptr = new int[m][5][4]; // legal

array_ptr = new int[3][5][], // illegal

array_ptr = new int[][5][4]; // illegal

When a data object is no longer needed, it is destroyed @ release the memory space
for reuse. The general form of its use is: =

delete pointer-variable;

L 2
delete p;

delete q; ;
If we want to free a dynamically alloc &y, we must use the following form of
delete:

delete [size nter-variable;

Recent versions of C++ do not he size to be specified. For example,

malloc(), new returns anull pointer. Therefore, it may be a good idea to check for the
pointer produced by new before using it. It is done as follows:

p = new int;
if(!p)
{

cout << "allocation failed \n";

GANESH Y, Dept. of ECE RNSIT

Member Dereferencing Operators

C++ permits us to define a class containing various types of data and functions as
members, C++ also permits us to access the class members through pointers. In order
to achieve this, C++ provides a set of three pointer-to-member operators.

To declare a Pointer to a member of a class

To access a member using object name and a pointer to that member
To access a member using a pointer to the object and a pointer to
that member

Manipulators
Manipulators are operators that are used to format the data display. The most
commonly used manipulators are endl and setw.

The endl manipulator, when used in an output statement, causes a linefeed to be
inserted. It has the same effect as using the newline‘ch@ "\n". For example,

cout <<"m = "<< m << end
<< "n ="
<< "p =
If we assume the values of the variable§ag% 14, and 175 respectively, the output
will appear as follows: ;

[t should rather appea

Here, the numbers are right-justified. This form of output is possible only if we can
specify a common field width for all the numbers and force them to be printed right-
justified. The setw manipulator does this job. It is used as follows:

cout << setw(5) <<sum<< endl;

The manipulator setw(5) specifies a field width 5 for printing the value of the variable
sum. This value is right-justified within the field as shown below:
314|5

GANESH Y, Dept. of ECE RNSIT

//Use of manipulators
#include <iostream>
#include <iomanip> // for setw
using namespace std;
int main()
{
long popl=2425785, pop2=47, pop3=9761;
cout << setw(8) <<"LOCATION"<< setw(12)<<"POPULATION"<< endl
<< setw(8) <<"Portcity"<< setw(12) << popl << endl
<< setw(8) <<"Hightown"<< setw(12) << pop2 << endl
<< setw(8) <<"Lowville"<< setw(12) << pop3 << endl;
return 0;

Type Cast Operator

C++ permits explicit type conversion or variables off @ons using the type cast
operator. K

Traditional C casts are augmented in C++ by fon call notation as a syntactic
alternative. The following two versions are g

(type-name) expressiopd//NC notation
type-name (expressi C++ notation
Examples:

average = sum/ i; // C notation
average = su (i); // C++ notation

The function call notati sually leads to simplest expressions. However, it can be
used only if the type is ab identifier. For example,

p = int* (q); // illegal

A type-name behave@ a function for converting values to a designated type.
0

In such cases we must use C type notation.
p = (int*) q;

Alternatively, we can use typedef to create an identifier of the required type and use
it in the functional notation.

typedef int* int pt;
p = int_pt(q);

GANESH Y, Dept. of ECE RNSIT

Expressions and their types

Constant Expressions
Integral Expressions
Float Expressions
Pointer Expressions
Relational expressions
Logical Expressions
Bitwise Expressions

Constant Expressions
Constant Expressions consists of only constant values

15
12+1/2.0

1 X 1
*
Integral Expressions

Integral Expressions are those which produce i wresults after implementing all
the automatic and explicit type conversions. S:

. i
where m and n are integer vari

Float Expressions
Float Expressions are t ich, after all conversions, produce floating-point results.

Examples:

X + Yy
X *y / 10
5 + float(10)
10.75

where x and y are floating point variables.

Pointer Expressions
Pointer Expressions produce address values. Examples:

&m

ptr
ptr + 1
"xyt

where m is a variable and ptr is a pointer.

GANESH Y, Dept. of ECE RNSIT

Relational Expressions

Relational Expressions yield results of type bool which takes a value true or false.
Examples:

X <=y
a+b ==c+d
m+n > 100

Relational expressions are also known as Boolean expressions.

Logical Expressions

Logical Expressions combine two or more relational expressions and produces bool
type results. Examples:

a>b && x==

Bitwise Expressions Q
Bitwise Expressions are used to manipulate data at l. They are basically used

for testing or shifting bits. Examples:
X << 3 // Shift three bit on to left

y >> 1 // Shift one bj t& on to right
Shift operators are often used for mu tion and division by powers of two.

Special Assignment Expression

Chained Assignment

x=(y=10); \'
or

x=y= 10,
First 10 is assigned to y and then to x.

A chained statement cannot be used to initialize variables at the time of declaration.
For instance, the statement

float a=b = 12.34; // is illegal.

This may be written as

float a=12.34, b=12.34; // correct
Embedded Assignment

x =(y = 50) + 10;
Here, the value 50 is assigned to y and then the result 50+ 10 = 60 is assigned to x. This
statement is identical to

y =50;

=y + 10;

GANESH Y, Dept. of ECE RNSIT

m nd Assignmen

Like C, C++ supports a compound assignment operator which is a combination of the
assignment operator with a binary arithmetic operator. For example, the simple
assignment statement

X = X + 10;
may be written as
X += 10;

The operator += is known as compound assignment operator or short-hand
assignment operator. The general form of the compound assignment operator is:

variablel op= variable2;

where op is a binary arithmetic operator. This means that

variablel = variablel op var‘iableQ
<

Implicit Conversions *

We can mix data types in expressions. For g3 lg,

conversion.

unsigned

ong Int

unsigned long int

Poat

GANESH Y, Dept. of ECE RNSIT

When the compiler encounters an expression, it divides the expressions into sub
expressions consisting of one operator and one or two operands. For a binary operator,
if the operands type differ the compiler converts one of them to match with the other,
using the rule that the “smaller” type is converted to the “wider” type.

Results of Mixed-mode Operations

v

~~_RHO
LHO |

char int int int | long | foat double | long double

short int int int long float double long double

|
char | short int l long float double | long double

int int int int long float double long double
long long long long long | float double | long double
float float float float float float double long double
double double double | double double double = double long double

long double long long long long . long long double
double | double | double double double

dother is a float, the int is converted
e “waterfall” model shown in above

Whenever a char or short int appéa n expression, it is converted to an int. This
is called integral widening co L Fsioh. The implicit conversion is applied only after
completing all integral wide nversions.

Operator Overloadin

Overloading means aSsi g different meanings to an operation, depending on the
context.

For example, the operator * when applied to a pointer variable gives the value pointed
by the pointer. Butitis also commonly used for multiplying two numbers. The number
and type of operands decide the nature of operation to follow.

The input/output operators << and >>are good examples of operator overloading.
Although the built-in definition of the << operator is for shifting of bits, it is also used
for displaying the values of various data types. This has been made possible by the
header file iostream where a number of overloading definitions for << are included.

Thus, the statement

cout<<75.86;
invokes the definition for displaying a double type value, and

cout<<"well done";

GANESH Y, Dept. of ECE RNSIT

invokes the definition for displaying a char value. However, none of these definitions
in iostream affect the built-in meaning of the operator.

Almost all C++ operators can be overloaded with a few exceptions such as the member-
access operators (.and .*), conditional operator (?:), scope resolution operator
(::) and the size operator (sizeof).

Control Structures

One method of achieving the objective of an accurate, error resistant and maintainable
code is to use one or any combination of the following three control structures:

1. Sequence structure (straight line)

2. Selection structure (branching)

3. Loop structure (iteration or repetition)

Figure below shows how these structures are implemented using one-entry, one-exit
concept, a popular approach used in modular progrilm

Entry

e

Exit Exil
L

Actian 3

|
|
|
1

{a) Sequence (b} Selaction (e} Loop

Basic combrol structures

It i s important to understand that all program processing can be coded by using only
these three logic structures. The approach of using one or more of these basic control
constructs in programming is known as structured programming, an important
technique in software engineering.

GANESH Y, Dept. of ECE RNSIT Y

Using these three basic constructs, we may represent a function structure either in
detail or in summary form as shown in following Figs (a), (b) and (c).

Entry Entry

$\\ -
(a) First leve! of abstraction (b) Second level of abstraction
Entry

(c) Detailed flow chart
Different levels of abstraction

GANESH Y, Dept. of ECE RNSIT a3

Like C, C++ also supports all the three basic control structures, and implements them
using various control statements as shown in following Fig. This shows that C++
combines the power of structured programming with the object-oriented paradigm.

Control structure

|
|

/

L Sequence Loop
N

» - »

if-else switch : do-whie while, for

trol Entry-control
Two way beanch Multipfe branch = Y

C++ statements to implement j >

The if statement is implemented in two

The if statement

 Simple if statement

e If.....else statement

Examples: \
Form 1 Form 2

if(expression is if (expression is
{ true)

actionil; {
} actionl;
action2; }
action3; else

{
}

action3;

action2;

The switch statement

This is a multiple-branching statement where, based on a condition, the control is
transferred to one of the many possible points. This is implemented as follows:

GANESH Y, Dept. of ECE RNSIT [

switch(expression)

{

case 1:

{
}

case 2:

{
}

case 3:

{

}
default:

{ . ‘<::\b
actiond4; \

}

actionl;
action2;

action3;

}

action5; &

The do-while statement

The do-while is an exit-controll ased on a condition, the control is transferred
back to a particular point in ram. The syntax is as follows:

o QO
{
actienl’;
}
while(condition is true);

actlon2;

The while statement

This is also a loop structure, but is an entry-controlled one. The syntax is as follows:

while(condition is true)

{
}

action2;

actionl;

GANESH Y, Dept. of ECE RNSIT &S

The for statement

The for is an entry-controlled loop and is used when an action is to be repeated for a
predetermined number of times. The syntax is as follows:

for(initial value; test; increment)

{
}

action2;

actionl;

Exercise Questions and Solutions

2.1 State whether the following statements are TRUE or FALSE.
(a) Since C i3 a subset of C++, all C programs will run under C++ compilers,

(b} In C+#+, a function contained within a closs g ed @ member function.
(e} Looking af one or two lines of code, we coft gnize whether a program

is written in C or C++. \

(d) In Ct+, it is very easy tv add newgfecPurgsto the existing structure of an
olject.
{e) The concept of using one ﬂ,ﬂ'l’.’]"ﬁi r different purposes is known as oerator

overioading.
ify The oufput function pri niel be used in C++ programs.
Why do we need the prep tive dinclude <instream> [
How does a mainf) funet ++ differ from mainf) in O?
What do you think is advantage of the comment I/ in C++ as compared
to the old C type
Dogeribe the m of & Ce+ program.

Debugging Ex 5

2.1 Identify the error in the following program.
Finclude =fostrean. k>

vaid main()

E
int 1 = 0z
1=1+1:
cout =< § == ® ‘;
f*comment*/f1 = 1 + 13
cout = {2

GANESH Y, Dept. of ECE RNSIT Q&

2,2 ldentify the error in the following program.
#include <fostream.h>
void main()
{
short 1-2500, J=3000;
cout >> "i + § = * >> (i+]);
}
What will happen when you run the following program?

#include <iostream.h>
void main()
{

int =10, j=5;
int modResult=0;
int divRasult=0;

modResult = 1%i:
cout << modResult == = ":

divResult = 1{/modResult;
cout =< divResult;

]

24 Find errars, if any, in the followin K&H-mum.ﬁ.

cauk == "N=" x;
m=hiNn=lKis=m+
cin >>x; >y,

oot << Wi "Name:"

cout =<"Entar va
*Addinion® = =

Write a progrom todisplay the following outpul waing a single cout stalement,
Maths L
Phyaics = 77
Chemizsiry = 6§68
Write a pragram to read luwe numbers from the bevboard and dizsplay the larger
value on the aerecn.
Write @ program to input an integer value from keyboard and display en screen
"WELL DONE” that many Hines,
Write a program to read the values of a, b and ¢ and display the volue of &, where

r=gfb=-0

Test your program for the follewing values:

(a) a=250,b=85c=85

b} a=300. b=70c=70

Write o O+ program thai will ask for a lemperafure ia Falirenheil and display i
in Celaius,

Redo Exercise 2.5 usitng o closs called temp and member fiinclions,

GANESH Y, Dept. of ECE RNSIT

2.1: State whether the following statements are TRUE or FALSE.

(a) Since C s a subset of C++, all C peograms will run under C++ compilers.

(b} In C++, a function contamed within a class 1s called a member function.

(¢) Lookmg at one or two hnes of code, we can easily recogmize whether 4 program 1$ wrillen 1n
Cor G,

(d) In C++, it 15 very easy to add new features to the existing stmicture of an object.

(€} The concept of using one operator for different purposes is known as aerator overloading. 10
The ouiput funciion printfl) cannot be vsed 1n C-++ programs.

Ans:

a= FALSE

b= TRUE

¢> FALSE

most hines of codes are the same m C & C++
d> TRUE

e TRUE

f= FALSE
*
22: Why do we need the preprocessor directive #includﬁinsw y

L 2
Ams: “Hinclude<iostream=" directive causes the p sgor to add-the contents of 1ostream file
L0 the program.
2.3: How does a mamn() function in C++ *“ gomnain{ | m 7

Amns: In C main () by default retu i | type but in C++ it returns mteger by defaull.

2.4: What do you think is the nggaigdvaiiage of the comment / / in C-++ as compared to the old C
[ype comment? Q&

Ans: 7 15 more casze'@:vmring than */* */

2.5:Describe the major parts of a C+ program.

Ans: Major parts of a C++ program :
- Include files
. Class declaranon

3. Member function definitions
. Maimn function program

GANESH Y, Dept. of ECE RNSIT &S

Debugging Exercises
2.1: Tdentify the ervor in the following program.

Hinclsde<iostream. b=
vidd maing)
i
int 1=
1=1+1]:
coutwia”™";
Mcomment \FA=1+ 1;
cout <= §;

Ans: Syntax error—»* comment'*1=i+1;

2.2 ldenfify the error in the following program. ’\Q

finclude<iostream.h> *
vodd main)
;

short i=2500, 7=3000);

cour== "IH=">> {1Hh

'

[

Ams: cout == "H="== SIPEL fure operation.—»<(1 +]):

2.3 What will hﬂ@ﬂ'n vou run the following program?

rnclude<iostream.h=

viid main()

{ -
it =10, =75;
it modResul=0;
int divResult=0;
modResult = 1%,
cout==<modBesult<<"""
divResult = vmodResult;
cout=<divResult;

Ans: floating point Error or divide by zero-»divResult = i'modResull;

GANESH Y, Dept. of ECE RNSIT ¥

Mote: If this Kind of Error exist in 4 program, the program will successfully compale but it will
show RBun Emor,

2.4: Find ervors, if any, in the following C++ statements.

(a) couf.<<x="% (Bym =5/ n= 10, /=m+ n (¢} cin =>x; >>y;
(d) cout <=<'h "Wame:" <<name;

(e) cout =="Enter value:™; cin > x:

() #Additon® z=x + v;

Ans:

Eiror Correction
Statement missing COU<"Y=""<<K;
Mo error

Expression-syntax-eImor Cin==x=>y; o
Migal character . :

COUt=<=""\n
; ey Name <<name; *
Statement missing

Mo error

N error s\\

Programming Exe

2.1: Write a program to dis & lowing output using a single cont statement

Maths = 90

Physics — 77 O
Chemistry = 69

=solution:

| fmeclude<iostream.h>
2 tinclude<iomanip.h=
3 int main()

4 4

]

[char *sub[]={"Maths"," Physics”,"Chemestry™) ;

7 int mark| |={90, 77,69}

B for{int r=0;1=<3;1++)

9 {

1 Gcout=<setw(1 0)=<sub[i]<<setw(3)=="="=<getw{4 F<mark[i]<<endl,
11 }

12 return

13}

GANESH Y, Dept. of ECE RNSIT [

output

Maths = 90

Physics = T7

Chemmstry = 69
2.2 Write a program to read two numbers from the kevboard and display the larger value
on the screen.

Solution: output
Enter two values @ 10 20
| #nclude<iostream = larger value = 20
2 finclude<iomanip.h=
3
4 ini main)
o
6 tloatab:
7 cout<=" Enter two values “<<e¢ndl;

I e B o
9 iffa=b) ¢
cout<<" larger value = "<<a<<endl; \
¢

11 else
12 cout<<" [arger value = "<<b<<endl;
13 retum 0

4} x
2.3 Write a program to input an inte &1 ie kevboard and display on the screen

“WELL DONE™ that many times.
Solution: output]
Solution: Enter an integer value 5
fmelude<tostream. h> WELL DONE

Hinclude<iomanip h> O\ WELL DONE

WELL DONE

il WELL DONE
{ ELL DONE
intn: WELL DONE

char #str;
st="WELL DONE";
cout<<" Enter an integer value ";
CIN=>n;
for(in 1=0;1<n:1++)
|
cout<=<str<<gndl;
H
return £,

GANESH Y, Dept. of ECE RNSIT [l

2.4 Write a program to read the values a, b and ¢ and display x, where
x=a /-

Test the program for the followmg values:

(aya=25L =85, c=25

(bra=300,b=T0,c=T0

Solution:

1 Hnclude<iostream. h=

2 Hinchsde<iomanip.h=

3 mt main{)

4 §

5 Moat ab,c.x;

i cout-<<" Enter the value of a b, &c "<wendl;
7 cin=Ea=zhesg

5 afi{b-c)!-0)

¥ |

L0} x=a'(b-c);

[cout<<" x=ai(h-¢) = "<<x<<endl;
12} During Second Run:
13 ¢lse ¢ Q

14 uutp\

During First Run:
output

Enter the value of ab, &c ; 250 85 25
x=af{b-c) = 4. 166557

15 cout<<" x= infinity "<<endl; TS
16 } tegihe value of ab, &c @ 300 70 70
17 retumn O infinity

18) x '
2.5 Write a C++ program that will ask fo &r ture in Fahrenheit and display it in

{ ‘elsins
Solution:

finclude<iostream. h>

sinchade-<womanip h> \

it maing) O
float ftheta;

cout<<" Enfer the temperature in Feranhite scale : 7;
cin>=>f

theta=({(f-32)9)*5;

cout<<" Temperature in Celsis = "<<theta-<<endl;

return

output

Enter the temperature in Feranhate seale : 105
Temperature 1n Celsins = 40,555557

GANESH Y, Dept. of ECE RNSIT

2.6: Redo Exercise 2.5 using a class called temp and member functions.

Solution:

finclude<iostream. h>
finclude<iomanip.h>

class temp
5 {
float theta;
public:
tloat conversion(tloat f);
i
10}
1 1 float temp::conversion(float)
124
13 theta=(({-32)/9)*5;
14 return theta:
15}
16int main)
174
I8 tempt;
19 float f;
200 cout=<" Enter lum}& arenheite scale "<<endl;

21 cin==f
22 cout=<" Tcm]mn@v
23 return (g

24}

Celstus scale = "<<t.conversion{t)<<endl;

output

Enter the temperature in Feranhite scale : 112
Temperature in Celsius = 44.444443

GANESH Y, Dept. of ECE RNSIT

3.2 An unsigned int can be twice as large as the signed int. Explain how?

3.3 Why does C++ have type modifiers?

3.4 What are the applications of void data type in C++7

3.5 Can we assign a void pointer to an int type pointer? If not, why? How can we
achieve this?

3.6 Describe, with examples, the uses of enumeration data types.

3.7 Describe the differences in the implementation of enum data type in ANSI C and
Ce+.

3.8 Why is an array called a derived data type?

3.9 The size of a char array that is declared to store a string should be one larger
than the number of characters in the string. Why?

3.10 The const was taken from C++ and incorporated in ANSI C, although quite
differently. Explain.

3.11 How does a constant defined by const differ from the constant defined by the
preproceszor statement #define?

3.12 In C++, a variable can be declared anywhere igathe scope. What is the significance
of this feature? .

3.13 What do you mean by dynamic initializati %an’able? Give an example.

3.14 What is a reference variable? What & r usef

3.15 List at least four new operators a ++ which aid OOP.

3.16 What is the application of the 35 dplution operator :: in Ce+?

3.17 What are the advantages new operator as compared to the function
malloc()?

3.18 Hlustrate with an exa the setw manipulator works.
3.19 How do the followin

(a) char *co

(b) char cor

Debugging

3.1 What will happen when you execute the following code?
finclude <iostream.h>
void main()

{
int 1=0;

1=400*400/400;
cout << {;
}
Identify the error in the following program.

#include <fostream.h>
void main()

GANESH Y, Dept. of ECE RNSIT

int num[]=(1,2,3,4,5,6);
num[1]==[1]num 7 cout<<"Success” : cout<<"Error®;
}
3.3 Identify the errors in the following program.
finclude <fostream.h>
void main()
{
int i=5;
while(i)
{

switch(1)

{
default:

case 4:
case 5: 0\

break; ¢

case 1:
continue; \

case 2:
case 3:

S

!

QO

)
3.4 Identify the error in the following program.
finclude <iostream. h»
fdefine pt 3.14
int sguareArea(int &);
int circleArea(int &);

void main()

{
int a=10;

cout << squareArea(a) << " ";

GANESH Y, Dept. of ECE RNSIT

cout << circleArea(a) << * *;
cout << 3 << endl;

int squareArea(int La)

{

return a *== 3;

}

int circleArea(int &r)

{

}

Identify the error in the following program.
#include <ifostream. h>

#include <malloc.h>

char* allocateMemory(); ’\Q

void main()

{

return r=pi *r*r;

char* str;

str = allocat &:
cout << str;

delete str;

}

char*, Qeﬂemory()

{
tr = "Memory allocation test, “;

return str;

)
3.6 Find errors, if any, in the following C++ statements.

(a) long float x;

(b) char *cp = vp; / vp is a void pointer

(¢) int code = three; // three is an enumerator
(d) int*p = new; / allocate memory with new
(e) enum (green, yellow, red);

(f) intconst *p = total;

(g) const int array_size;

(h) for (i=1; int i<10; i++) cout << i << “\n";

GANESH Y, Dept. of ECE RNSIT

(1) int & number = 100;
(j) float *p = new int [10};
(k) int public = 1000,

() char namel[3] = “USA";

l Programming Exercises

3.1 Write a function using reference variables as arguments to swap the values of a

pair of integers.
Write u function that creates a vector of user-given size M using new operator,
Write a program to print the following output using for loops.

1

22

333

4444

Write a program to evaluate the following invest tion

V=P14+r)

and print the tables which would give the N for various combination of
the following values of P, r and n: *

P: 1000, 2000, 3000,, 10,000

r: 0.10,0.11,012,..., 020

LY 10

(Hint: Pis lhe pmmpal amou is the value of money at the end of n years.
This equation can be recu]

V=Pls+r
P=V
In other words, the

to read the ballots and count the votes cast for each candidate
using an array variable count, In case, a number read is outside the range 1 to 5,
the ballot should be considered as a ‘spoilt ballot’, and the program should also
count the number of spoilt ballots.

A cricket team has the following table of battmg ﬁgures for a series of test matches:

Player’s name
Sachin

Saurav

Rahul

GANESH Y, Dept. of ECE RNSIT

Write a program to read the figures set out in the above form, to calculate the
batting averages and to print out the complete table including the averages.

Write programs to evaluate the following functions to 0.0001% cocuracy.

3.8 Write a program to print a table of values of the function
X
y=e
for x varying from 0 to 10 in steps of 0.1. The table should appear as follows.
TABLE FOR Y = EXP [-X]
X 0.1 02 03 04 0.5 0.6 ! 0.8

0.0
10

3.9 Write a program to calculate the ve@l

(I, - E)2
=1

P
Smndard& = \§Z¢x. -

=]

1 &
where X = N 2
3.10 An electricity boaN] charges the following rates to domestic users to discourage

large consumption of energy:

For the first 100 units - 60P per unit

For next 200 units - 80P per unit

Beyond 300 units - 90P per unit

All users are charged a minimum of Rs. 50.00. If the total amount is more than
Rs. 300.00 then an additional surcharge of 15% is added.

Write a program to read the names of users and number of units consumed and
print out the charges with names.

GANESH Y, Dept. of ECE RNSIT

Ans:
In case of unsigned int the range of the mput value 15 ; 0 to 2™ — 1. [where m is no. of bit]
In case of sipned ind the range of the mput value is : 2" "o+ (2™ ' - 1)

maximum value for unsigned int =~ _ =1

value for signed mnt (2==1-1) + 2=
2

i—1

So, maximum value for unsigned int can be twice as 1:&|'ge’a~: & int.
* Here (he absolute value of lower value <27 fisr sigrwed 1 be tonsidered for finding
average value of signed int

*

1.3 Why does C++ have type modifiers? \

Ans: To sernve the needs of vanoes sthe

3.4; What are the application ata type in CU++7

Ans: Two normal wses w '

(1) to specily the re Bf o function when it is not relurning any value.
(2) To indicate any ety argument list 1o a function.

Example : void function {void)
Another mieresting use of voud 15 in the declarabon of genenc pointers

Example :

void *gp; //Ep 15 generic pointer.

A pointer value of any basic data type can be assigned Lo a genernc pomter
inl *ip;

op = 1p: /i valid.

3.5 Can we assion a vold pointer to an int type polnter? If nor, why? Now can we achieve
this?

GANESH Y, Dept. of ECE RNSIT

Ans: We cannot assign a void pointer to an it type pointer directly. Because to assign a pointer
Loy gnother poanter data type must be matched. We can achieve thas using castimg.

Example :

void * gp,

imt *ip;

ip= (L *®) gp

b=

.00 Describe, with examples, the uses of enumeration data types.

Ans: An enumerafed data type 15 a user-delined type. Tt provides a way [or atlaching names to
numbers in ANSIC

Example :
enum kuet (EEE, CsE, ECE, CE, ME, IEM};

The enum kevword automatically emumerntes
EEE to) *
C5Eto] \

ECE 02
CElo3 L 2
ME to 4

IEMto S x
In Ctt each enumerated data type retains iERgwlhseirate type.

37 Describe the differences in th tation of cnum data type in ANSI C and C++.

Amns: Consider the following
cnum kucl (EEE, C5E, FiFI\

Here, kuet 15 tag name
In C++ tag name become new type name. We can declare a new vanables Example:

kel student;
ANSI C delines the types of enum Lo be Inl.

In C inl value can be automatically converted o on enwn value. Bul in €4 s 15 nol permitted.
Example:

student ¢cgp ~ 3.01 /! Emror in C++

HOK 1 C

student ¢pp = (student) 3.01 /VOK in C+

GANESH Y, Dept. of ECE RNSIT

3.8 Why is an army called a derived data type?

Ans: Derived data types are the data types which are derived from the fundamental data types.
Arrays refer 1o a list of finite number of same data types. The data can be accessed by an index
number from o to n. Hence an armray is derived from the basic date type, so array is called denived
data type.

3.9: The size of a char array that is declared to store a string should be one larger than the
number of characters in the string. Why?

Ans: An additional null character must assign at the end of the string that’s why the size of char
array that is declared to store a string should be one larger than the number of characters in the
string,

3.10: The const was taken from C++ and Incorporated in Qr\' ‘
Explain.

constant expression, such as const int size

I'his would be illegal in C. If we use const 1

size -~ 10; means const int size -~ 10;

Ct++ requires const to be initialized. ANSI Mol require an initialization if none is given, it
initializes the const to o. In C++ a cor , it can be made as global delining it as external.

In C const is global in nature | it K as local declaring it as static,

3.11: How does a constan by cowl differ from the constant defined by the
preprocessor statementele

Ans: Consider a example : /f define PI 3.14159

The preprocessor directive # define appearing at the beginning of your program specifies that the
identifier PI will be replace by the text 3.14159 throughout the program

The keyword const (for constant) precedes the data type of a vanable specilies that the value of a
variable will not be changed throughout the program.

In short, const allows us to create typed constants instead of having to use 7 define to create
constants that have no lype information.

GANESH Y, Dept. of ECE RNSIT

3020 In O+ a variable can be declred anywhere in the seope. What is the significance of
this feature?

Ans: It s very ensy to understand the reason of which the vanable is declared,

3013 What do vou mean by dypnamic initialization of a variable? Give an example.

Ans: When imtialization s done at the tmme of declaration then it 13 know as dymamic
mitialization of varable

Example :

oat area = 3014159 ad * rad,

304 What is s reference variable? What is its major use?

Ans: A reference vartable provides an alins (altemative name) [ORa pRy1ously delmed variable.

A major application of reference variables is in passing argigagnts Myfunctions.
L 2

3.15: List af least four new operators added by {.‘{ -l aid C0OP.

Ans:

New opperators added by C++ are :

1. Seope resolution operator

2. Memory release operator delete &
3. Memory allocation operator &gsp

4. Iield width opemator
5. Line feed operitor Snbspe
3,16 What is the applica of the scope resolution sperator :: in 472

Ans: A major application of the scope resolution operator 15 in the classes to identify the class o
which a member fumction belongs.

317 What are the advantages of using new operator as compaved to the junction ntallocOr

Ans: Advantages of new operator over malloc ()

1. It autoamatically computes the size of the data object. We need nol use the operitor size ol
2. It putomatically returns the correct pointer type, so that there is no need 0 use o tvpe casl.
3. Tt is possible to indtialize the object while creating the memory space

4. Like any other operator, new and delete can be overloaded

GANESH Y, Dept. of ECE RNSIT

3.18: Mustrate with an example, how the seize manipulator works.

Ans:

setw manipulator specifies the number of columns to print. The number of columns is equal the
value of argument of setw () function.

For example :

setw (10) specifies 10 columns and print the massage at right justified.

cout =< set (10) =< *1234™; will print

[f argument 1s negative massage will be pninted at left justified
cout <<setw(-10)<<=1234". will print .

2 : K

3.19: How do the following statements
(@) char *const p;
(b) char canal *p;

Ans:
(a) Char * const P; means consfnt pomnter.
(b) Char const * P; mcans O a constant,

In case of (a) we con 1 ify the address of p.
In case of (b) we can notmodify the contents of what 1t points to.

Debugging Exercises
3.1: What will happen when you execute the following code?

I finclude <1ostream.h>
2void mamn()

34

4 mti-0;

5 1=400%400/400:

6 cout<<i:

7}

GANESH Y, Dept. of ECE RNSIT

Ans: 1= 400740004000 Tere, 400%400 = 160000 which exceeds the maxinmon value of i

vanable. So wrong outpul will be shown when this program will be run.
Correction :

I Tne T = 0

should be changed as

long mt 1~ O;

Iy see the comect |:-|_|1]1u|:

3.2; Identify the error in the following program.

linelude<iostream. h= .
2void main() \

int num|[]=11,2,3.4,5.6%; ®
5 numll}=={1jnum ? cout=<"Success" ; cout<<

Ans: num [1] = [1] num?. ¥You shoul mdex number afler array name but here imdex
number is mention before array n

S0 CXPression syntax error wi

Correction : num| 1 | the correct format

3.3; Identify the errors in the following program.

Hinclude <ijostream. h>
void maing)

int i=5;
while(l)

I
switch{n)
r

I
detault:

1
2
3
4
5
E)
-
8
o
10 case 4;

GANESH Y, Dept. of ECE RNSIT

case 5:
break:
case 1:
continue;
case 2:
case 3.
break;

i

Ans:

Icasc 1 ;

2eontinue;
0\

The above code will cause the tollowing situation:

Program will be continuing while value of i is I and val L & updating. So infinite loop will be
created.

Correction: At last line 1- should be changed asi&:

3.4: Identify the ervors in the followjde pieram.

#include <lostream.h>

#define pi 3.14 \
int squareArea(int &): O
int ¢ircleArea(int &):

void main() Q

{

mt a-10;
cout << squareArea(a) <<
‘

cout « circleArea(a) « ",
cout « a «endl;

"o,
.

11

12 it squareArea(int &a)
13 |
14 rewurn a ¥=—=a,

15 }

16 int circleArea(int &r)
17 {

I8 reumr=p1*r*r:
19 }

GANESH Y, Dept. of ECE RNSIT

Amns: Assignment operator should be used in the following line:
Ireturn a *¥==a;
That means the above line should be changed as follows:

Ireturn a *=a;
3.5 Missing

3.0: Find errors, it any, in the following C++ statements.
(a) long Monl x;

(b) char Fep = vp: & vp 15 a void pointer

(c) int code — three; /7 three is an enumerator

(d) it sp = new; // allocate memory with new
(e} enum (green, vellow, red): *
(£} int const sp — total; \

() const int array size; *
(h) for (i=1; int i=10; i++) cout << i << "/n", (i) er = L00; (3) loat *p = new int 1101;
ik} it public = 1000; (1) char name| 33| = "I.J:'i(

Ans:

Error Correction

(a) log many lypes floal x; or double x;
type must be ma char *cp = (char®) vp;
Mo error

syniax ¢ mt*p = new mt [10];
tag name Ny ng entm colour (green, vellow, red)

address have o assign mstead of

int const * p= &total;
coqutent

C-++ requires a const to be initialized const int amray-size = 5;
for (int 1= 1; 1 <10; 1++) coul <<

i << ™

Undefined symbol 1
mvalid vanable name mi number = 100;
wrong dala type float *p = new float | 10];

keyword can not be used as a vanable

mt publicl = 1000;
name

array stre of char must be larger than X i
e © RS MW har name [4] =“USA™;
the number of characters in the string

GANESH Y, Dept. of ECE RNSIT

Programming Exerciscs

J.1: Write a function using reference variables as arguments to swap the values of a pair of
inbesers.

Solation:

iinclude<iostream.h>
iinelude<iomanip b=

vold swap func{int &a nt &b)
\
cout==<" Before swapping "<<endl
<<" g = "<<p<<pndl<<" b= "<<b<<endl<<endl;

it terpy;
10 lemp=a; ¢
11 a= \

12 betemp;)
13 cout<<" After swapping "<<endl

14 <" g = "ogeendl<c” b= "<ch<<ppdl<s
15 {
16}

17

18t mmin)

194

200 mtxy;

21 cout<<" Enter two miepg
22 cin>>xey,

23 swap lume (x.Y):

24 retum 0,

25}

oufput

Enter twio imteger value ; 56 61
Belore swapping

a= 56

b6l

Alter swapming

a— 356

b=l

GANESH Y, Dept. of ECE RNSIT

3.2 Write a function that creates a vector of user given size M using new operator,

Solation:

Hnclude<iostream. h™
#include<iomanip.h=
it maing)
{
il o
il ¥y
cout<<" Enter vector size ! "<<endl;
CiN~==1m;
v=new gt [m];
1 cout==<" to check your performance msert "=<m<" integer value"=<endl;
11 ol - 00=mii-++)
12

13 cin=>v[1];
14} .
15 cout<<" Given integer value are :"-<<endl; \

I for(i=i=mit+)

17 | ¢
1=

19 i me=1}

M coul<<v|i];
21 else
22 cout<<v[i}<=<"";

23

24 1

25 cout=<endl:

26 retum (0]

- O\
o fput Q
Enter vecior size : 5

to check your performance insert § inteper value
T39061

Oiven integer value are -
T.5.8 6.1

WO BE] N B L D e

3.3 Write a program to print the following outputs using for leops

GANESH Y, Dept. of ECE RNSIT

Solution:

1 #include<iostream.h>

2 #include<iomanip.h>

3 int main()

4 {

S min;

6 cout<<" Enter your desired number :"<<e¢ndl;
7 cin>n;

& cout=<endl=<endl:

for(int 1~ L;1<m;i++)

)
L

for(int j=1j<=izj++)

f
|

coul<<i;
) .
cout<<iendl; \

16

17 return O; 2
18}

output \\
Enter your desired number : 6

1

22
333
4444

55555 \
GOHOOOG Q

3.4 Write a program to evaluate the following investment equation

V=P(lir)"

and print the tables which would give the value of V for various

of the following values of P, r and n:

P: 1000, 2000, 3000,................ 10,000

5010, O G2lo iovaiiiiing 0.20

D 0 F dann xamaten ay e n s ans s na AN RSN AR 10

(Hint: P is the principal amount and V is the value of money at the end of n vears. This equation
can be recursively wntten as

V=P +r1)

P=V

In other words, the value of moncey at the end of the first year becomes the principal amount for
the next year and so on)

GANESH Y, Dept. of ECE RNSIT

Solution:

include<iostream.h>
fimclude=<<iomanip.h>
Finclude<math.h>
fdefine size B

it rradsny
i
Noat v,pf;
int n=size:
Moat pf stze|= § D000, 2000, 3000, 3000, 3000 G000, 7000 B000 | /79000, 100 :
float r{s1ze]={0.11,0.12,0.13,0.14,0.15,0.16,0.1 7,0, 18} /0. 19,0.20%;

WS] O WA de b b =

.._..._.._.
—
b =

coul==setw(3)"n=1";

for(int 1 =2;i<=size.1++)
coutT=set w9 ="
corf==""\n":

for(1=01<si1ze 1)
i
cout=<setw(-6)=<<"p=";
tor(int j=0;j<sizelj 1)
{.
ii—0)
plt=plil:

v=pC*(1-+di]):

cout. precision{ 2
coul. setfi]

COU=<v<<I5Q @l
pi=w;

cout ~:-:“'~.:1'Q

o= floathield);

L]
36 retarn (O
37}

output

n—I1 n——2 n—a3a 11— =3 n—i 1l
p=1110 1232.1 1367.63 1518.07 18506 127041 207616
p=2240 25082 EF 2RB09E86 3147.04 3524068 394765 4421.36
p3390 3R30.7 4328.09 4R9].42 5527.31 G245.86 TO57.82
p4560 51984 592618 67 5584 T70O1.66 RIT7T2.89 10009 08
p=53750 6612.5 T604.37 BT45.03 1005679 115653 133001
p o960 B0OT73.6 936538 10863.84 12602.05 [14618.38 16957.32

GANESH Y, Dept. of ECE RNSIT

pralild LDHEZS 1121129 13117.21 1534714 17956015 210087
p9ddn 111392 1314426 15510022 1830206 2159643 25453.79

3.5 An election is contested by five candidates, The candidates are numbered L to 5 and the
voting is done by marking the candidate number on the ballot paper, Write a program to
resd the ballots and count the vote cast for cach candidate using an array variable count. In
case, a number read is outside the range 1 to 5, the ballot should he considered as a “spoilt
ballot™ and the program should also count the numbers of “spoili ballots™.

Solution:

I #mmelode<iostrenmm. -
2 tinclude<iomanip.h=
3 mt mamd)
4 |
5 int countf5]:

int test;

for{int i={k1<5; 1+

(]
L}

9 count]i =0,

0 }

11 int spoalt_ballot-0;

[2 cout=<" Youcan vot candidate | o 5"
13 =="1wess] or2oriordor’iovol

L I

4 =<"candidate lorZor3ordorsre poRly "—<pnll

15 =<" press any integer value outsi ¢ 1 to 5 for NOVOTE "<=<endl<<" press any
[fnegative value 1o fermanate and s

17

I8 while(l)

&Y i

20 Cin==aest;

21

22 for(ing i=1;i<=

23 {

24 Hilest—1)

25 {

20 coumtfi=L] 1+

27)

28 }

29 fi test=0)

3 break,

31 clse iifftesi=5)

32 spanll balloi-—;

33]
34 for(int k=1 k==5k++)

35 cout=<" candidate "=<k<=zsetw{12);
30 cont=<cndl;

37 coub-==setw{ 7).

GANESH Y, Dept. of ECE RNSIT

for(k-0 k=5:k++)
cout=-<<count[k]=<-<setw(l3)

coul=<endl;

cout==" spotlt_ballot "<<spoilt ballot=<endl;
return 10,

oumtput

You can vol candidate | to 5

press lor 2 or 3 or 4 or 3 to vode

candidate 1 or 2 or 3 or 4 or 5 respectively

press any integrer value owside the range 1 o 5 for NO VOTE
press any nepalive value o lerminate and see resull

1

bl LA Uh Tl e Lh e =

]

£,

=1

candidate 1 candidate 2 candidste 3 candida
4 1 2 13

spoill_ballon 1

300 A cricket has the To Ql:lr of hatting fizure Mor a series of test mafches:

Player’s name Run Innings Time not
cutSachin B430 230 185auray

Wrile a program to read the Bgures set out 1 the above forms, to caleulate the battug arranges
and 1o print oul the complete table including the averages.

Solution:

1 fmelude<sosiream. fis-
2 fmclude=somanp -

char *seral[3]={" FIRST *,° SECOND * " THIRID " }://plobal declaration

GANESH Y, Dept. of ECE RNSIT

y it maand)

nln;
char name[100]{40;
mnl *run;
int *mnings;
it *ume not out;
cout=<" How many players' record would you insert 7 ",
cin>>n;
15 J/iname-new charnl;
6 mn=new mtfnj,
17 inmings=new int|n);
I8 time_not_out-nmew intn|,

for(int 1=00<n;1++)
{

if(1>2)
{

cout<<"n [nput details of "<<i+l<<"th"<<" pla},\:r's"‘f"-'cnd].

else

{
!

cout<<" Input details of "<<senal|i1j<<"player’s : "<<

3l cout<<" Enter name :
32
33 cin>>name|i];

RE) cout<<" Enterrun : ";
35 cm=>munf1;

36 cout=<" Enter innings : ",
37 cin>>innings|if; \
38 cout<<" Enter times n Q -
39 cin=>tme_not_ou

0 |

1l

12 float *average;

43 average=new foat|n);

44 for(i=0:i<nii++)

45 {
46 float avrg.

47 average[i]=fleat(mn| i])/innings|i);

48

T I

50 cout<<endi<<endl,

51 cout<<setw(12)y<<"player's name "<<setw(l 1 y<<"run"<<setw(12)<<"inmngs"<<setw{ | 6)<<"Average™<<selw
S2out*<<endl;

53 for(1-(z1<n;i++)

54 ¢

33 cout<<setw{ 14)y<<name[i]<<setw(] I)<<rm|i|<<setw(9)<<innmgs[i]<<setw(18 <<average]1j<<setw(15)<<

GANESH Y, Dept. of ECE RNSIT

'

cout==gndl;

- rotuT O
i
it

How many players record would vou insert 7 22
[nput details of FIRST player’s :

Enter name ¢ Sakib-Al-Hassan

Endcr rum : 15710

Enter mmnings : 83

Enter tiumies not out ; 10

Input details of SECOND playver’s :

Eater naime ¢ Tamim

Enter rumn ; 2000

Enter innings : 84

Enter times not out ; 5

plaver’s name run inmings Average mes nol ool *
Salab-Al-Hasson 1570 B3 189215663 10 \
Tamim 2000 84 23 BOO525 5 .

1.7 Write n program to evalaate [\ rl&ing function to 000001 %% ACCUracy

(a) sinx = x — x*/31 + x%51 — x°/7!

(b) SUM = 1-+(1/2)° + (1/3)" e
()Y Cosx = 1 —x%/2! + '-."ON N

Solation {a):

Hinclude<iostream. h>
Hinclude=math h=
fiinclude<iomanip.h=>
rdefine accuracy 0.000]
Hdetine pi 3.1416

long mit fac{mnt a)

4
I

ilia=—13
return 1
clse
returte a¥lac(a-1);

W00] B et ok e

131
L4int maing)

GANESH Y, Dept. of ECE RNSIT

15§
16 Noat vyl %X
17 min=1;
1% ot m;
19 Seonst Doam pi=3.1416;
cout<-=<" Enter the value of angle in terms of degree:
cin==x;
float d;
d=x:
meL aIETL,
sigm- | ;
26if(x=()

274

28 x=x*{-1);

24) sign=-1;

301

Flagain:

32 =90 && x< 180)

33 |
34 .
35 x=180x: \

36
17 ¢
3R else if{x>180 && x<==270)

39

;HI x-x-180; \
4l sigm- -1

2 1

= 1 |

43 else ifx=270 && x=<-3060)
a4
45 - 300-x;
sign=-1; \

47
4K

else i{x=360)

t
= | int m=ntxy;
52 Noat Fractional —x-m;
o3 x=m¥a3 G0+ ractional;
54 A0y
55 aoto afaim;
56 else
57 sigm=1;
58

i
k]

x-(pif 1 BOY*x;
6l mrentl;
=,
63 for(:)
o4 |
15 long int h=facin):

GANESH Y, Dept. of ECE RNSIT

({1 yopowi(a,n;

o7 ml factor-pow(-1.m):;
it yi=vy*iacior;

(38 f+=y1/h;

T n—n+2;

71 o b o

72 if{v/h=—accuracy}

73 break:

74 3}

75

76 cout<<"sin{"<=d=<")y— "<<fx*sign<<=cndl;
77 return O

78}

output

Enter the value of angle mn terms of degree; 120
sifu 1 200= 0. 866027

N\

Solution (b):

Finclude<iostreant s

#include=math.h>

Hdefine accuracy 0.0001 \
il v

int n:

(Toat surm,nd i

1= | s

forint 1=1;;1

i
nl=1loat(l
T
SLLITIH 1T
if{im=—accuracy)

break;

-+t
i
19 cout<<sum-=<"‘n":
return
'II'I i
=1

Samplec Outpat{b)

Solution: (<)
finclude<iostreamuh>
2adfinclude=math.h=
27 Hdefine accuracy 00001

GANESH Y, Dept. of ECE RNSIT

long int facdinl n)

1iiin=—19%
return 1
clse
return n¥ fac(n-1);

int mmain)

MMoat y,v il M
41 mt n—1;
42 int 1m;

const loat pi—3.1416;
44 cout===" Enter the value of angle i:@m of degree: ':
45 cin==x; N
46 -0
47 x=x%{-1);
48 x—(pi/ 1RO *x;
)

50 fx1: \
51
52 =2 &
53 float v2;

54 long int h;

55

50 {

=7

58

59

)

ol

62 1 v 1/ h=—accuracy)

o3 broak:;

it m-=—mt2;

065 n++;
66 1

a7 cout=—=[x-=="""\n":
6E1

*

output

Enter the value ol angle in terms ol degree: 60
Q. 566025

GANESH Y, Dept. of ECE RNSIT

3.8 Write a program to print a table of values of the function

For x varying from O to 10 i steps of (0.1, The table should appear as tollows

TABLE FOR Y —=EXP|-X|;

X il 0.2 03 04 0.5 0.6 07 0.8 0,900

1.0y

O\Q
2
Solution:

1 #Fnclude<iosiresin. s &\
2 #include<iomanip.h>
3 timelude<smmath. h=
int main()
i

1
float x.v;

cout="<"\g

torl=0 10" T k=k+0.1)
Conat=

cout=="""n'";

for(oat j-0.j=10;j+—)

i
L

coUr=<j<<setwid);
forMoat 1=01=<. 7 0=+, 17
l
x=i+j;
Ve =X
cout precision(t);
cout.setf{ios: -fixed,ios -floatfield);
cout<<setw(1 -y

GANESH Y, Dept. of ECE RNSIT

26 cout<=<"\n",

27 }

28 return (]

29}

Note: Here we work with 0.4 for a good looking output,

output

TABLE FOR Y-EXP(-X)

X O 0.1 0.2 0.3 0.4

1 0.904837 0.818731 0.740818 0.67032

0.367879 0.332871 0.301194 0272532 0.246597

). 135335 0.122456 0.110803 0.100 0.090718
*
0.049787 0.045049 0.040762 0.030588. 0.033373

0018316 0.016573 0.014996 569 0.012277

0.006738 0.006097 0.0055 l\ 004992 0.004517

0.002479 0.002243 A Q) 0.001836 0.001662
0.000012 0000825 747 0000676 0000611

0.000335 0.0003\ 0.000249 0.000225

0.000123 ()Oé@ 0.000101 0.000091 0.000083

3.9: Write a program to calculate the variance and standard deviation of
N numbers

Variance =1/N 3 (xi-x)*

Standard deviation—VI/N 3 (xi -x)*

Where x = I/N > x

Solution:

1 Hinclude<iostream. h=>

GANESH Y, Dept. of ECE RNSIT

ifnelhsde<matl.h=
it mesing)

float *x;

cout=-<" How many number 7 :";
inf n;
CITE=T;
b2 x=new Moat[n];

float s
11 sum=ik
12 for(mmt 1==n;++)
13 |
i4 cim=>x[i];
| sum+=x[1];
16 3
17 floal mean:
I8 mean--summ;
1% floatv,vl;
20 wl=l;
21 for(i=li=nci+)
22X {
23 v—x[i]-mean;
24 v+ pow(v,2);
25 -}
26 float varance std deviation:
27 varnanes-v
28 sld deviation-sgrifvanance);
29 cout<<"n'n variance = "<<variance andard deviation = "=<std_deviation<<"\n",
30
31 return O,
i

How many number 7 ;
{1

2
3
4
5
&
.
a

15

-

variance = 26,24
standerd deviation = 5. 122499

200 An electricity board charees the following rates to demestic users to
discouraze large consumption of energy:

For the first 104 units GOP per un

GANESH Y, Dept. of ECE RNSIT

For the first 200 units — 80P per unit
For the first 300 units 90P per unit

All users are charged a mimmum of Rs. 50.00. If the total amount 1s more than Rs. 300,00 then an
additional surcharge of 15% is added.

Write a program to read the names of users and number of units consumed and print out the
charges with names.

Solution:

1 Minclude<iostream.h>

2 #include<iomanip.h>

3 mt mam()

4 1

5 it unil;

6 [loat charge,additional;

7 char name[40];

8 while(l)

9

10 ¢

11 mput:

12 cout<<=" Enter consumer name &
13 cin>>name>>unit;

14 if{unit<-100)

15 {

16 charge=50+ (60%unit)y
17 }

I8 else 1f{umt<=300 &&
e,

20 charge=350 Y100,
Ise if{unit=3

charge 50+ (20*unit)/float(100):
additional—(charge® 1 5/ 100,
charge charge+additional;
]
cout<<setw{ I 5)=<"Name"<<setw(20)=<"Charge"<<endl;
cout<<setw{ I 5y<<name<<sctw(20)<<charge<<endl;
cout=<=" Press o for exit/ press | to mput again =",
int test:
cimn>>rest,
if{test=1)
golo input;
else if(test—()
break;

GANESH Y, Dept. of ECE RNSIT

A8 retumn O;
397

output

FEnter consumer name & unil consumed sattar 200
Mame Charge

caltar 210

Press o for exat / press 1 1o input again 1

Enter consumer name & unil consumed santo 300
Nmae Charge

sanio 290

Press o for exat / press 1 to inpuat again : 0

a(

S

N\

GANESH Y, Dept. of ECE RNSIT

#include <iostream=>
using namespace std;
Notes EC 5 SEM_D_SEC()

{
cout <<" MODULE-2 "<<\n"

<" FUNCTIONS,
CLASSES ANP ECTS

R&QTIY '<< ok »

<< " DP Of TCT RNQTT "
return Assi ents;
]

S
N\
MODULE -2
FUNCTIONS, CLASSES AND OBJECTS

GANESH'Y
Dept. of ECE RNSIT

MODULE -2
Functions, Classes and Objects

SYLLABUS

Functions, classes and Objects: Functions, Inline function, function overloading,
friend and virtual functions, Specifying a class, C++ program with a class, arrays within
a class, memory allocation to objects, array of objects, members, pointers to members
and member functions (Selected Topics from Chap-4,5 of Text1).

Introduction

We know that functions play an important role in C program development. Dividing a
program into functions is one of the major principles of top down, structured
programming. Another advantage of using functions is it is possible to reduce the
size of a program by calling and using them at differe t@ in the program.

Recall that we have used a syntax similar to the f Wi‘ in developing C programs.

void show(); /* Fuzo eclaration */

/* Function call */

/* Function definition */

//Function body

When the function is called control is transferred to the first statement in function
body. The other statements in the function body are then executed and control returns
to the main program when the closing brace is encountered.

C++ is no exception. Functions continue to be the building blocks of C++ programs. In
fact, C++ bas added many new features to functions to make them more reliable and
flexible. Like C++ operators, a C++ function can be overloaded to make it perform
different tasks depending on the arguments passed to it. Most of these modifications
are aimed at meeting the requirements of object oriented facilities.

GANESH Y, Dept. of ECE RNSIT

The Main Function

C does not specify any return type for the main () function which is the starting point
for the execution of a program. The definition of main() would look like this:

main ()

{

//main program statements
}

This is perfectly valid because the main() in C does not return any value. In C++, the
main() returns a value of type int to the operating system. C++, therefore, explicitly
defines main() as matching one of the following prototypes:

int main();

int main(int argc, char* argv[]);
The functions that have a return value should use the return$tatement for termination,
The main() function in C++ is, therefore, defined as w

int main () .

return 0;
}

Since the return type of fungti int by default. the keyword int in the main()
header is optional. Most C llers will generate an error or warning if here is no
return statement.

Many operating syste@t the return value (called exit value) to determine if there
is any problem. The normal convention is that an exit value of zero means the program
ran successfully. while a nonzero value means there was a problem. The explicit use of
a return(0) statement will indicate that the program was successfully executed.

Function Prototyping

Function prototyping is one of the major improvements added to C++ functions. The
prototype describes the function interface to the compiler by giving details such as the
number and type of arguments and the type of return values. With function
prototyping, a template is always used when declaring and defining a function.

When a function is called, the compiler uses the template to ensure that proper
arguments are passed, and the return value is treated correctly. Any violation in
matching the arguments or the return types will be caught by the compiler at the time

GANESH Y, Dept. of ECE RNSIT

of compilation itself. These checks and controls did not exist in the conventional C
functions.

Remember, C also uses prototyping. But it was introduced first in C++ and the success
of this feature inspired the ANSI C committee to adopt it.

However, there is a major difference in prototyping between C and C++. While C++
makes the prototyping essential, ANSI C makes it optional, perhaps, to preserve the
compatibility with classic C.

Function prototype is a declaration statement in the calling program and is of the
following form:

type function-name (argument-list);

The argument-list contains the types and names of arguments that must be passed to
the function.

Example: y Q
float volume(int x, float y, fl);

Note that each argument variable must be d independently inside the
parenthesis. That is, a. combined declaratio

is illegal.

In a function declaration, the n of the arguments are dummy variables and
form

float volu float, float);

is acceptable at the pl claration. At this stage. the compiler only checks for the
type of arguments wheég the function is called.

In general, we can either include or exclude the variable names in the argument list of
prototypes. The variable names in the prototype just act as placeholders and, therefore,
if names are used, they don't have to match the names used in the function call or function
definition.

In the function definition, names are required because the arguments must be
referenced inside the function. Example:

float volume(float a, float b, float c)
{

float v=a*b*c;

GANESH Y, Dept. of ECE RNSIT

The function volume () can be invoked in a program as follows:
float cubel= volume(bl,wl,hl); // Function call

The variable b1, w1, and h1 are known as the actual parameters which specify the
dimensions of cubel. Their types (which have been declared earlier) should match
with the types declared in the prototype. Remember, the calling statement should not
include type names in the-argument list.

We can also declare a function with an empty argument list, as in the following example:
void display();

Which is similar to
void display(void);

However, in C, an empty parenthesis implies any number of arguments. That is, we
have foregone prototyping. A C++ function can also have an 'open' parameter list by
the use of ellipses in the prototype as shown below:

»
void do_something(...)\
The general form of a function is ¢

ret-type function-name (4 ter List)

{
}

The parameter declaration list ction takes this general form:

f(type varnamel, & arname2, . . . , type varnameN)

f(i nt k, int j) /* correct */
f(Mat k, float j) /* incorrect */

body of the fu

Call by Value

In traditional C, a function call passes arguments by value. The called function creates
a new set of variables and copies the values of arguments into them. The function does
not have access to the actual variables in the calling program and can only work on the
copies of values.

#include <stdio.h>
int sqr(int x)/* formal parameters */

{
X = X*x;
return(x);

}

int main(void)

{

GANESH Y, Dept. of ECE RNSIT

int t=10,a;
a=sqr(t); /* actual parameters */
return 0;

}

Call by Reference

Provision of the reference variables in C++ permits us to pass parameters to the
functions by reference. When we pass arguments by reference. the formal arguments
in the called function become aliases to the 'actual’ arguments in the calling function.
This means that when the function is working with its own arguments, it is actually
working on the original data.

swap (int &x, int &y)
{
int temp;
temp = Xx;
X =Y;
y = temp;
}
int main()
{
int i, j;
i = 10;
J = 20;
swap(i, j)

return \
}

// C style C reference using pointers
swap (int *X§\int *y)
{

int temp;
temp = *x; /* save the value at address x */
*X = *y; /* put y into x */
y = temp; / put x into y */
}
int main()
{
int i, j;
i=10;
J = 26;
swap(&i, &j); /* pass the addresses of i and j */
return 0;

GANESH Y, Dept. of ECE RNSIT

This approach is also acceptable in C++. Note that the call-by-reference method is
neater in its approach.

Return by reference

A function can also return a reference. Consider the following function:

int & max(int &x, int &y)
{
if (x > y)
return Xx;
else
return y;
}
int main()
{
int m=10,n=8,p;
p=max(m,n); // p=m=10
max(m,n)=-1; // returne Qgh&a le=m=-1
return 0; ¢

}
Since the return type of max() isint & ﬁfil ction returns reference to x or y (and
not the values). Then a function call §) x(m,n) will yield a reference to either
m or n depending on their values.

4

This means that this function
statement as max(m,n)=-1

Inline Functions

One of the objectives g functions in a program is to save some memory space.
Which becomes apprecidble when a function is likely to be called many times.

However, every time a function it; called, it takes a lot of extra time in executing a series
of instructions for tasks such as jumping to the function, saving registers, pushing
arguments into the stack, and returning to the calling function.

When a function is small, a substantial percentage of execution time may be spent in such
overheads.

One solution to this problem is to use macro definitions, popularly known as macros.
Preprocessor macros are popular in C.

The major drawback with macros is that they are not really functions and therefore,
the usual error checking does not occur during compilation.

C++ has a different solution to this problem. To eliminate the cost of calls to small
functions, C++ proposes a new feature called inline function.

GANESH Y, Dept. of ECE RNSIT

An inline function is a function that is expanded in line when it is invoked. That is, the
compiler replaces the function call with the corresponding function code (something
similar to macros expansion).

The inline functions are defined as follows:

inline function-header

{
function body

For example
inline double cube(double a)

{

return(a*a*a);

) Q
The above inline function can be invoked by statementsliKe

= cube(3.0);
d = cube(2.5+1.5);

If the arguments are expressions suc &1.5, the function passes the value of the
expression, 4 in this case. This make iNline feature far superior to macros.

We should exercise care before a function inline. The speed benefits of inline
functions diminish as the fy ows in size. At some point the overhead of the
function call becomes sma npdred to the execution of the function, and the benefits

of inline functions may @ . In such cases, the use of normal functions will be
more meaningful.

Usually the functions are made inline when they are small enough to be defined in one
or two lines. Example:

inline double cube(double a){return(a*a*a);}

All inline functions must be defined before they are called.
Remember that the inline keyword merely sends a request, not a command, to the
Compiler. The compiler may ignore this request if the function definition is too long or
too complicated and compile the function as a normal function.

Some of the situations where inline expansion may not work are:

1. For functions returning values, if a loop, a switch, or a goto exists.
2. For functions not returning values, if a return statement exists.

3. If functions contain static variables.

4. If inline functions are recursive.

GANESH Y, Dept. of ECE RNSIT

Inline expansion makes a program run faster because the overhead of a function call
and return is eliminated. However, it makes the program to take up more memory
because the statements that define the inline function are reproduced at each point
where the function is called. So a trade-off becomes necessary.

#include <iostream>

using namespace std;

inline float Mul(float x, floaty)

{

}
inline double Div(double p, double Qq)

{
}

int main()

{

return (x*y);

return(p/q);

float a =12.345;
float b = 9.82;
cout << Mul(a.b) << "

cout << Div(a.b) <<
return 0;

output
121.228
1.25713

Default Arguments

C++ allows us to call ion without specifying all its arguments. In such cases, the
function assigns a defatlt value to the parameter which does not have a matching
argument in the function call.

Default values are specified when the function is declared. The compiler looks at the
prototype(declaration) to see how many arguments a function uses and alerts the
program for possible default values.

float amount(float principal , int period, float rate=0.15) ;

The default value is specified in a manner syntactically similar to a variable
initialization.

The above prototype declares a default value of 0.15 to the argument rate. A
subsequent function call like

value=amount(5000,7) ; // one argument missing
the function use default value of 0.15 for rate. The call

GANESH Y, Dept. of ECE RNSIT

value=amount(5000,5,0.12); // no missing argument
passes an explicit value of 0.12 to rate

One important point to note is that only the trailing arguments can have default values
and therefore we must add defaults from right to left. We cannot provide a default
value to a particular argument in the middle of an argument list. Some examples of
function declaration with default values are:

int mul(int i,int j=5,int k=10); //legal
int mul(int i=5,int j); //illegal
int mul(int i=0,int j,int k=10); //illegal
int mul(int i=2,int j=5,int k=10); //legal

#include <iostream>
using namespace std;

void repchar(char="*", int’=4v/declar‘ation with

int main()
{ \

repchar(); //printd 46 g8sterisks
repchar('="'); /. @ 45 equal signs
repchar('+' £.38) ; prints 30 plus signs
return 0; ;

}

j=0; j<n; j++) //loops n times
<< ch; //prints ch
cout << endl;

}

Advantages of providing the default arguments are:

1. We can use default arguments to add new parameters to the existing functions.

2. Default arguments can be used to combine similar functions into one.
Example 2:

#include<iostream>
using namespace std;
float value(float p, int n, float r=0.15) //prototype + defn
{
int year = 1;
float sum = p;
while (year <= n)

GANESH Y, Dept. of ECE RNSIT

sum=sum* (1+r);
year = year+l;
}
return (sum);
¥
void printline(char ch="*"', int len=40) //prototyp + defn
{
for(int i=1; i<+len; i++) cout<<ch;
cout<<"\n";
¥
int main()
{
float amount;
printline(); //uses default values for grguments
amount =value(5000.00,5); //defaultef argument
cout<<"\n"<<"final value"<<amount<<"\Wg";
printline('="); //default for 2n giment
return 0;

}

const Arguments

In C++, an argument to a function eclared as const as shown below.

int strlen char *p) ;
st string &s);

declaration is significanfgonly when we pass arguments by reference or pointers.

Recursion

Recursion is a situation where a function calls itself meaning, one of the statements in
the function definition makes a call to the same function in which it is present.

It may sound like an infinite looping condition but just as a loop has a conditional check
to take the program control out of the loop, recursive function also possesses a base
case which returns the program from the current instance of the function to call back
to the calling function.

Example 1:

//Calculating Factorial of a Number
#include <iostream>
#include <conio.h>

GANESH Y, Dept. of ECE RNSIT

using namespace std;
long fact (int n)
{
if(n== //base case
return 1;
return (n* fact(n-1)); // recursive function call

main()

int num;

cout<<"Enter a positive integer: ";
cin>>num;

cout<<"Factorial of "<<num<< "is"<<fact(num);
getch();

return 0; Q
.

L 4
Tower of Hanoi is a mathematical puzzle wh ave three rods and n disks. The
objective of the puzzle is to move the entirg another rod, obeying the following
simple rules:

Example 2:

1) Only one disk can be moved at .
2) Each move consists of takin er disk from one of the stacks and placing it
on top of another stack i.e. aydi only be moved if it is the uppermost disk on a

stack.
3) No disk may be plac @p of a smaller disk.
Approach:

Take an example for 2 disks:
Letrod1="A",rod 2="B,rod 3="C"
Step 1 : Shift first disk from 'A’ to 'B'.
Step 2 : Shift second disk from ‘A’ to 'C".
Step 3 : Shift first disk from 'B' to 'C'.

The pattern here is :

Shift 'n-1" disks from 'A" to 'B".
Shift last disk from 'A" to 'C'.
Shift 'n-1" disks from 'B' to 'C'.

Image illustration for 3 disks:

GANESH Y, Dept. of ECE RNSIT

#include <iostream>

#include <conio.h>

using namespace std;

void TOH(int d, char towerl, char tower2, char tower3)

{
if(d==1) //base case % Q
(N

cout<<”\n Shift top disk from P "<<towerl<<" to tower
"<<tower2;

return; &
}

TOH(d-1,towerl,tower3,t s // recursive function call

cout<<"\n Shift top di m tower "<<towerl<<" to tower "<<
tower2;

TOH(d-1,tower'1,to& wer2); // recursive function call

}
int main() QO

{
int disk;
cout<<"Enter the no of disks: ";
cin>>disk;
if (disk<1)
cout<<"\nThere are no disks to shift";
else
cout<<"\nThere are "<<disk<<"disks in towerl\n";
TOH(disk,'1','2"',"'3");
cout <<"\n\n"<<disk<<" disks in tower 1 are shifted to tower

getch();
return 0;}

GANESH Y, Dept. of ECE RNSIT

http://www.geeksforgeeks.org/wp-content/uploads/faq.disk3_.gif

Function Overloading

As stated earlier, overloading refers to the use of the same thing for different purposes.

C++ also permits overloading of functions. This means that we can use the same
function name to create functions that perform a variety of different tasks. This is
known as function polymorphism in OOP.

Using the concept of function overloading; we can design a family of functions with one
function name but with different argument lists. The function would perform different
operations depending on the argument list in the function call. The correct function to
be invoked is determined by checking the number and type of the arguments but not
on the function type.

For example, an overloaded add() function handles different types of data as shown
below:

//declarations
int add(int a, int b); ¢ rdtotype
int add(int a, int b, int c); Xpr‘ototype

double add(double x, double y); ¥ /prototype
double add(int p, double q); : //prototype

double add(double p, int q); & //prototype

// Function calls

cout << add(5, 190); ses prototype
cout << add(15, 10.0); ses prototype
cout << add(12.5, 7.5 //uses prototype
cout << add(5, 10, ses prototype 2

cout << add(@.75,° //uses prototype
Example:

#include<stdlib.h>
#include<iostream>
using namespace std;
int square(int x)

{

}
float square(float x)

{
¥

int main()

{

return x*x;

return x*x;

GANESH Y, Dept. of ECE RNSIT

cout<<square(5)<<endl;
cout<<square(2.5f);
return 0;

}

A function call first matches the prototype having the same number and type of
arguments and then calls the appropriate function for execution. A best match must be
unique. The function selection involves the following steps:

1. The compiler first tries to find an exact match in which the types of actual arguments
are the same, and use that function.

2.If an exact match is not found, the compiler uses the integral promotions to the actual
arguments, such as,

char to int
float to double

to find a match . Q
Sy

3. When either of them fails, the compiler tries the built-in conversions (the
implicit assignment conversions) to the actual énts and then uses the function
whose match is unique. If the conversion is have multiple matches, then the
compiler will generate an error message. S| we use the following two functions:

A function call such as

0)

will cause an error bega Q t argument can be converted to either long or double,
thereby creating an ambiguous situation as to which version of square() should be
used.

4. If all of the steps fail, then the compiler will try the user defined conversions in
combination with integral promotions and built-in conversions to find a unique match.
User defined conversions are often used in handling class objects.

GANESH Y, Dept. of ECE RNSIT

Example 2:

//function volume() is overloaded three times

#include <iostream>

using namespace std;

// declarations (prototypes)

int volume (int);

double volume (double, int);

long volume (long, int, int);

int main()

{
cout<< volume(10) <<"\n";
cout<< volume(2.5,8) <<"\n";
cout<< volume(1001,75,15) <<"\n";
return 0;

} Q
.
//function definitions \
int volume(int s) //cube ¢

{

return (s*s*s); &
}

double volume(do , int h) // cylinder
{

return & 9*p*p*h);
}

long vol ng 1, int b, int h) // rectangular box
{

}

returh (1*b*h);

Overloading of the functions should be done with caution. We should not overload
unrelated functions and should reserve function overloading for functions that
perform closely related tasks.

Sometimes, the default arguments may be used instead of overloading. This may
reduce the number of functions to be defined.

GANESH Y, Dept. of ECE RNSIT

Math Library Functions

The standard C++ supports many math functions that can be used for performing
certain commonly used calculations. Most frequently used math library functions are

summarized in following table.

Commonly used math library functions

Function ‘Purposes
Rounds x to the smallest integer not less than x coil(8.1)
= 9.0 and ceil(-8.8) = -8.0
Trigonometric cosine of x (x in radians)
Exponential function e,
Absolute value of x.
If x>0 then abalx) is x
If x=0 then abs(x) is 0.0
If x<0 then abs(x) is -x
Rounds x to the largest integer greater than x
floor{8.2) = 8.0 and floor{-8.8 7~
Natural logarithm of x(baSg e)
Logarithm of x(tbase 10)
x raised to power yix’
Trigonometric sine if Padians)

Square root of x
f X (X in radians)

pe double and all the functions return the dnta

type double.

To use the math library , we must include the header file math.h in conventional

GANESH Y, Dept. of ECE RNSIT

Limitations of C Structure

The standard C does not allow the struct data type to be treated like built-in types. For
example, consider the following structure:
struct complex

{
float x;

float y;
}s
struct canplex cl, c2, c3;
The complex numbers c1, c2, and c3 can easily be assigned values using the dot

operator, but we cannot add two complex numbers or subtract one from the other. For
example,

c3=cl+c2;
is illegal in C. ’\Q
t

Another important limitation of C structures is y do not permit data hiding.

Structure members can be directly accessed b stiucture variables by any function
anywhere in their scope. In other words, ‘K ure members are public membe.rs.

Extensions to Structures

In C++, a structure can have bot les and functions as members. It can also
declare some of its members as_, e’ so that they cannot be accessed directly by
the external functions.

In C++, the structure nam &and alone and can be used like any other type names.
In other words, the k struct can be omitted in the declaration of structure
variables.

For example, we can declare the student variable A as
student A; // C++ decleration
Remember, this is an error in C.

C++ incorporates all these extensions in another user-defined type known as class.
There is very little syntactical difference between structures and classes in C++ and,
therefore. they can be used interchangeably with minor modifications. Since class is a
specially introduced data. type in C++, most of the C++ programmers tend to use the
structures for holding only data, and classes to hold both the data and functions.

Note: The only difference between a structure and a class in C++ is that, by default. the
members of a class are private, while, by default. the members of a structure are public.

GANESH Y, Dept. of ECE RNSIT

Specifying a Class

When defining a class, we are creating a new abstract data type that can be treated
like any other built-in data type.

Generally, a class specification has two parts:

1. Class declaration
2. Class function definitions

The class declaration describes type and scope of its members. The class function
definitions describe how the class functions are implemented.

The general form of a class declaration is:

class class _name
{
private:
variable declarations;
function declarations;
public:
variable declarations;
function declarations;

}s

ates and terminated by a semicolon. The class
es and functions.

gollectively called class members. They are usually
mely, private and public to denote which of the
of them are public.

The keywords privateNand public are known as visibility labels. Note that these
keywords are followed by a colon.

The class members that have been declared as private can be accessed only from
within the class. On the other hand, public members can be accessed from outside the
class also.

The data hiding (using private declaration) is the key feature of object-oriented
programming. The use of the keyword private is optional. By default, the members of
a class are private.

The variables declared inside the class are known as data members and the functions
are known as member functions.

Only the member functions can have access to the private data members and private
functions. However, the public members (both functions and data) can be accessed
from outside the class.

GANESH Y, Dept. of ECE RNSIT

The binding of data and functions together into a single class-type variable is referred
to as encapsulation.

CLASS

No eatry 10 Privata aren

private area

Public area
Entry allowad to = e e |

public area i

A Simple Class Example
A typical class declaration would look like:

class item

{ .
int number;//variables decla
float cost;// private by

public:

void getdata(int a, f

void putdata(void);
}; // ends with semic

The data members ar e by default while both the functions are public by
declaration. The funefionNgetdata() can be used to assign values to the member
variables number and 'eost, and putdata() for displaying their values. These
functions provide the only access to the data members from outside the class.

Figure shows two different notations used by the OOP analysts to represent a class.

Class: ITEM ITEM
DATA ‘ |__getdatal) |

nurmdor
cosl

[pudanal) |

FUNCTIONS

e =]

putdata()

{1}

Representation of class

GANESH Y, Dept. of ECE RNSIT

Creating Objects

item x; // memory for x is created
item p,q,r;

creates a variable x of type item. In C++, the class variables are known as objects.
Therefore, x is called an object of type item.

Note that class specification, like a structure, provides only a template and does not
create any memory space for the objects.

class item

Accessing Class Members

As pointed out earlier, the private data of. an be accessed only through the
member functions of that class. The & ot contain statements that access
number and cost directly.

The following is the format for calli mber function:

object-name.function-nam al-arguments);

For example, the function ment

x.getdata(1l00,75.

is valid and assigns hlue 100 to number and 75.5 to cost of the object x by
implementing the getdata() function.

Similarly, the statement

x.putdata();

would display the values of data members.

getdata(100,75.5); // error
X.number = 100; // error
class xyz
{
int x;
int y;
public:
int z;

GANESH Y, Dept. of ECE RNSIT

}

XyzZ p;

p.x =0;//error

p.z =10;// ok z is public

Defining Member Functions

Member functions can be defined in two places:

e Qutside the class definition.
e Inside the class definition.
Outside the Class Definition

An important. difference between a member function and a normal function is that a
member function incorporates a membership 'identity label' in the header. This ‘label’
tells the compiler which class the function belongs to. eneral form of a member
function definition is: ¢

return_type class name :: function_na %ument declaration)
{

}

function body;

The membership label class-name:: compiler that the function function-name
belongs to the class class name.

void item :: getdata i , float b)
{ O

number = a;

cost =b; Q
}

void item :: putdata (void)

{

cout << "Number=" << number << "\n";
cout << "Cost=" << cost << "\n";

}

The member functions have some special characteristics that are often used in the
program development These characteristics are:

« Several different classes can use the same function name. The 'membership label’ will
resolve their scope.

e Member functions can access the private data of the class. A non-member function
cannot do so. (However, an exception to this rule is a friend function discussed later.)

GANESH Y, Dept. of ECE RNSIT

¢ A member function can call another member function directly, without using the dot
operator.

Inside the Class Definition

Another method of defining a member function is to replace the function declaration
by the actual function definition inside the class.

class item

{

int number;

float cost;
public:

void getdata (int a, float b);

void putdata (void) // definition inside the
class

{ .
cout << "Number=" << number << ﬂ
2

cout << "Cost=" << cost << "\

s

When a function is defined inside a is treated as an inline function. Therefore,
all the restrictions and limitation apply to an inline function are also applicable
here. Normally, only small fun e defined inside the class definition.

A C++ Program with

#include <iostreaf>
using namespace sT6y

class item
{
int number;
float cost;
public:
void getdata (int a, float b);
void putdata (void) // definition inside the class
{
cout << "Number=" << number << "\n";
cout << "Cost=" << cost << "\n";

GANESH Y, Dept. of ECE RNSIT

int main()

{

item x;// creats object x

cout << "\nobject x " << "\n";
x.getdata(100, 299.95);
x.putdata();

item y;// creats another object y
cout << "\nobject y " << "\n";
y.getdata(200, 120.25);
y.putdata();

return 0;

}

Result:
object x
Number=100
Cost=299.95

objecty \
Number=200 O
Cost=120.25

Making an ide F ion Inlin

We can define a member function outside the class definition and still make it inline by

just using the qualifier inline in the header line of function definition, Example:

inline void item :: getdata (int a, float b)

Nesting of Member Functions

We just discussed that a member function of a class can be called only by an object of
that class using a dot operator. However, there is an exception to this. A member

GANESH Y, Dept. of ECE RNSIT

function can be called by using its name inside another member function of the same
class. This is known as nesting of member functions.

#include <iostream>
#include <conio.h>
#include <string>
using namespace std;
class binary
{

string s;
public:

void read (void)

{

cout << "Enter a binary number: ";
cin >> s;
}
void chk_bin (void)
{
for(int i=0; i<s.length();i+
{ .
if (s.at(i) !'= 'o" \
{
cout < " \nin binary number format ...
program will quit";
getch ()
exit (o

}
}
void ones(void)
{
chk_bin(); //calling member function
for(int i=0;i<s.length();i++)
{
if(s.at(i)=='0")
s.at(i)="1";
else
s.at(i)='0";
}
}
void displayones()

{

ones(); //calling member function

GANESH Y, Dept. of ECE RNSIT

cout<<"\nThe ones complement of the above binary number is:
"<<s;

}
}s

int main ()

{
binary b;
b.read() ;
b.displayones();
getch();
return 0;

}

Pri Member Function

Tasks such as deleting an account in a customer file, roviding increment to an
employee are events of serious consequences and® % the functions handling
such tasks should have restricted access. We can placgthese functions in the private

section. 2

A private member function can only b; 1éd by another function that is n
member of its class. Even an object t invoke a private function using the
dot operator. Consider a class as de low:

class sample

{

int m; "NN'

void read(qab Y // private member function
public:

void updage(void);

void write (void);

¥

If s1 is an object of sample then

sl.read(); // won't work; objects cannot access
//private members

However, the function read() can be called by the function update() to update the value
of m.

void sample::update(void)

{
}

read(); // simple call; no object used

GANESH Y, Dept. of ECE RNSIT

Arrays within a Class

The arrays can be used as member variables in a class. The following class definition is
valid.

const int size= 10; // provides value for array size
class array

{

int a [size]: // 'a' ts tnt type array
public:
void setval(void):
void display(void);
}s

The array variable a[| declared as a private member of the class array can be used in

the member functions, like any other array variable. V@perferm any operations
: .
on it.

For instance, in the above class definition, the m rfunction setval() sets the values
of elements of the array a[], and display() f; isplays the values. Similarly, we
may use other member functions to perfog@r a her operations on the array values.

Let us consider a shopping list of item@korwhich we place an order with a dealer every

month. The list includes details sugk ’ ne code number and price of each item. We
would like to perform operation f' as adding an item to the list, deleting an item
al ya

from the list and printing the ' ue of the order. Following program shows how
these operations are implefented using a class with arrays as data members.

#include <iostreaif>
using namespace stWd;
const int m=50;
class items
{
int itemcode[m];
float itemprice[m];
int count;
public:
void cnt(void) {count = ©;} // initializes count to ©
void getitem(void);
void displaysum(void);
remove(void);
displayitems(void);

GANESH Y, Dept. of ECE RNSIT

void items::getitem(void) // assign values to data members
//of item

{

cout <<"enter item code : ";
cin >>itemcode[count];
cout<<"enter item cost:";
cin >>itemprice[count];
count++;

items::displaysum(void) //display total value of all
//items

float sum=0;
for(int i=0; i<count; i++)

sum=sum+itemprice[i];
cout<<"\ntotal value :" <<sum<<"\n"j Q

items::remove(void) // delete a if?ed item

int a;
cout<<"\n enter item code’
cin >>a;
for(int i=0; i<count;
if (itemcode[i]s

cout<<"\n code price\n";
for(int i=0; i<count; i++)
{
cout<<"\n"<<itemcode[1i]
<" "<<itemprice[i];
}

cout<<"\n ";

int main()

{

items order;
order.cnt();
int x;

GANESH Y, Dept. of ECE RNSIT

cout << "\nyou can do the following;"
<< " enter appropriate number \n";

cout <<"\nl1l : add an item";

cout <<"\n2 : display total value";

cout <<"\n3 : delete an item";

cout <<"\n4 : display all items";

cout <<"\n5 : quit";

cout <<"\nwhat is your option? ";

cin>>x;

switch (x)

{

case l:order.getitem(); break;

case 2:order.displaysum(); break;
case 3:order.remove(); br‘e‘aké
case 4:order.displayitems () bReak;

case 5: break; .
default: cout<<"\n er input; try again\n";

} &
} while (x!=5);

return 0;

}

The sample output of above

you can do the following; propriate number
1:add an item

: display total valueQ

: delete an item

: display all items

: quit
what is your option? 1

enter item code : 111
enter item cost:100

you can do the following; enter appropriate number
:add an item
: display total value
: delete an item
: display all items
: quit
what is your option? 1

GANESH Y, Dept. of ECE RNSIT

enter item code : 222
enter item cost:200

you can do the following; enter appropriate number
1:add an item

2 : display total value

3 : delete an item

4 : display all items

5: quit

what is your option? 1

enter item code : 333

enter item cost:300

you can do the following; enter appropriate number
:add an item
: display total value
: delete an item
: display all items
: quit
what is your option? 2
total value :600

you can do the following; enter ap e number
1:add anitem
2 : display total value

3 : delete an item O\'

4 : display all items

5: quit
what is your option? 3

enter item code222

you can do the following; enter appropriate number

:add an item
: display total value
: delete an item
: display all items
: quit
what is your option? 4
code price
111 100
222 0
333 300

GANESH Y, Dept. of ECE RNSIT

you can do the following; enter appropriate number

1:add an item

2 : display total value

3 : delete an item

4 : display all items

5: quit

what is your option? 5

The program uses two arrays, namely itemcode[] to hold the code number of items
and itemprice]] to hold the prices. A third data member count is used to keep a record
of items in the list. The program uses a total of four functions to implement the
operations to be performed on the list.

Memory Allocation for Objects

Commeon for all objects

mamber luncbon 1
.Q\
2

member unchon

Moy croafod whon
funcbons cefned
Qoject 1 o - Qujort 3

member variabla 1 mbat variablo 1 mombet varioble 1

mamber v memdier varable 2 member variable 2

momary creafod
whon obyacts defined

We have stated that the memory space for objects is allocated when they are declared
and not when the class is specified. This statement is only partly true.

Actually, the member functions are created and placed in the memory space only once
when they are defined as a part of a class specification. Since all the objects belonging
to that class use the same member functions, no separate space is allocated for member
functions when the objects are created.

Only space for member variables is allocated separately for each object. Separate
memory locations for the objects are essential, because the member variables will hold
different data values for different objects. This is shown in above Fig.

GANESH Y, Dept. of ECE RNSIT

Static Data Members

A data member of a class can be qualified as static. The properties of a static member
variable are similar to that of a C static variable. A static member variable has certain
special characteristics. These are:

e It is initialized to zero when the first object of its class is created. No other
initialization is permitted.

e Only one copy of that member is created for the entire class and is shared by all the
objects of that class, no matter how many objects are created.

e [t is visible only within the class, but its lifetime is the entire program.

Static variables are normally used to maintain values common to the entire class. For
example, a static data member can be used as a counter that records the occurrences

of all the objects. p Q
class items \

{ XS
static int num;

um; // definition of static data members

Note that the type an f each static member variable must be defined outside
the class definition. This 1S necessary because the static data members are stored
separately rather than as a part of an object.

Since they are associated with the class itself rather than with any class object, they are
also known as class variables.

Example:

#include <iostream>
using namespace std;
class item
{
static int count;
int number;
public:
void getdata(int a)

GANESH Y, Dept. of ECE RNSIT

{

number=a;
count++;

}

void getcount(void)

{

cout <<"Count: ";
cout << count << "\n";

}
¥
int item::count;
int main()
{
item a, b, c; //count is initialized to zero
.getcount ();
.getcount();
.getcount ();
a.getdata(100); // get data into
b.getdata (200);// get data in
.getdata(300);// get //displ
cout << "After reading da
a.getcount ();//display
b.getcount();
c.getcount ();
return 0;

} "Nh'
Output: O
Count:

Count:

Count:

After reading data

Count:

Count:

Count:

GANESH Y, Dept. of ECE RNSIT

Static Member Functions

Like static member variable, we can also have static member functions. A member
function that is declared static has the following properties:

e A static function can have access to only other static members (functions or
variables) declared in the same class.

e A static member function can be called using the class name (instead of its objects)
as follows:

class_name :: function_name();
Example:

class items

{

static int num;

int ite :Q // definition of static data members

int main()

Example :

#tinclude <iostream>
using namespace std;
class static_type

{

GANESH Y, Dept. of ECE RNSIT

static int i; //static data member

public:
static void init(int x) { i=x; } //static member function
void show() { cout<<i; }

¥
int static_type::i; // define static 1
int main()
{
static_type::init(100);//initialise static data before object
creation
static_type x;
x.show(); //displays 100
return 0;

}

Example 2: p Q
#tinclude <iostream> \

using namespace std; .
class test

{

int code;

static int count; // st mber variable
public:

void setcode (void)

{

code = ++count; \
}

void showcod@

{

cout <<"object number: "<<code << "\n";

}

static void showcount(void) // static member function

{
}

cout << "count: "<<count<< "\n";

}s

int test :: count;

int main()

{
test t1,t2;
tl.setcode();
t2.setcode();

GANESH Y, Dept. of ECE RNSIT

test::showcount();
test t3;
t3.setcode();
test::showcount();
t1.showcode();
t2.showcode();
t3.showcode();
return 0;

Arrays of Objects

We know that an array can be of any data type including struct. Similarly, we can also
have arrays of variables that are of the type class. Such variables are called arrays of

objects. Consider the following class definition:
.
class employee \Q

{

char name[10];
float age;

}s
The identifier employee is
that relate to different. ca of the employees. Example:

anager[3] ; //array of manager

employee worker[75] ; //array of worker

The array manager contains three objects (managers). namely, manager[0],
manager[1] and manager[2], of type employee class. Similarly, the foreman array
contains 15 objects (foremen) and the worker array contains 75 objects(workers).

Since an array of objects behaves like any other array, we can use the usual array
accessing methods to access individual elements, and then the dot member operator
to access the member functions. For example, the statement

manager[i].putdata();

An array of objects is stored inside the memory in the same way as a multi-dimensional
array. The array manager is represented in following Fig. 5.5. Note that only the space
for data items of the objects is created. Member functions are stored separately and
will be used by all the objects.

GANESH Y, Dept. of ECE RNSIT

nanme

» manager|0)

» manaqger|1}

]
!
» managoe{2]

#include <iostream>
using namespace std;

class employee

{

char name[10];
float age;

public:

void getdata(void);
void putdata(void);

employee: :getd

cout <<"\n

cin >> n

cout <« er age:

cin >> age;

employee: :putdata(void)
cout <<"\nName: "<<name;
cout <<"\nAge: "<<age;

const int size=3;

int main()

{

employee manager[size];
for(int i=0; i<size; i++)

GANESH Y, Dept. of ECE RNSIT

cout <<"\nDetails of Manager'"<<i+1<<"\n";
manager[i].getdata();

}

cout<<"\n";

for(int i=0; i<size; i++)

{
cout <<"\nManager"<<i+1<<"\n";
manager[i].putdata();

}

return 0;

Objects as Function Arguments

Like any other data type an object may be used as” f@n argument. This can be
done in two ways: \

. 4
A copy of the entire object is passed to the f (pass by vale)

e Only the address of the object is tran QQ e function. (pass by reference)

#include <iostream>
using namespace std;
class time

{

int hours;

int minutes; O
public:
void gettime(fpt h, int m)
{
hours=h;
minutes=m;
}
void puttime(void)
{
cout<<hours<<" hours and ";
cout<<minutes<<" minutes"<<"\n";
}
void sum(time, time); // declaration with object as arguments
¥
void time::sum(time t1, time t2)
{

minutes = tl.minutes +t2.minutes;

GANESH Y, Dept. of ECE RNSIT

hours= minutes/60;
minutes = minutes%60;
hours= hours + tl.hours+ t2.hours;

}

int main()

{
time t1,t2,t3;
tl.gettime(2,45); // get t1
t2.gettime(3,30); // get t2
t3.sum(t1,t2); //t3=t1+t2
cout<<"tl = "; tl.puttime(); // display ti1
cout<<"t2 = "; t2.puttime(); // display t2
cout<<"t3 = "; t3.puttime(); // display t3
return 0;

Friendly Functions

For example, consider a case where two ¢ anager and scientist have been
defined. We would like to use a functiongdngd@m () to operate on the objects of both
these classes. In such situations, C++ e common function to be made friendly
with both the classes, thereby allowi unction to have access to the private data
of these classes. Such a function n t be a member of any of these classes.

int vall,val2;
public:

void get()

{

}

friend float mean(base ob);

cin>>vall>>val2;

}s

float mean(base ob)

{
}

return float(ob.vall + ob.val2)/2;

GANESH Y, Dept. of ECE RNSIT

int main()

{

base obj;

obj.get();
cout<<"\n Mean value is : "<<mean(obj);
return 0;

}

A friend function possesses certain special characteristics:

e [t is not in the scope of the class to which it has been declared as friend.

e Since it is not in the scope of the class, it cannot be called using the object of that class.
e [t can be invoked like a normal function without the help of any object.

e Unlike member functions, it cannot access the member names directly and has to use
an object name and dot membership operator with eac%nber name (e.g. Ax).

&
e [t can be declared either in the public or the privat& of a class without affecting

its meaning.
2

e Usually, it has the objects as arguments.
e Member functions of one class can befrighd tion of another class.

class X

{
int f

}s
class \
{
nd int X::fun();

}s
e We can also declare all the member functions of one class as the friend functions of

another class. In such cases, the class is called a friend class. This can be specified
follows:

class Z

{

friend class X;

}s

e Consider following example

class Y;// forward declaration
class X

{

GANESH Y, Dept. of ECE RNSIT

friend int fun(X,Y);
s

class Y
{
}s

int fun(X x, Y vy)

friend int fun(X,Y);

» As pointed out earlier, a friend function can be called by reference. In this case, local
copies of the objects are not made. Instead, a pointer to the address of the object is
passed and the called function directly works on the actual object used in the call.

This method can be used to alter the values of¢theNprivi@ate members of a class.
Remember, altering the values of private members X inst the basic principles of
data hiding. It should be used only when absol Epngcessary.

// write a C++ prog using friend function fg @7‘- afige the private values of the two

classes. &
finclude <iostreams

using namespace st

class class_2;

class class 1 0\
{
int valmzelQ

public:
void indata(int a) {valuel = a;)
void display(void) {cout << valuel << "“\n";)
friend void exchange (class_1 &, class 2 &);

)i

class class 2
{
int value2;
public:
void indata(int a) {value2 = a;}
veid display(veoid) {cout << valuez2 << “\n“;}
friend void exchange(class 1 &, class 2 &);

)i

GANESH Y, Dept. of ECE RNSIT Y

void exchange(class_ 1 & x, class_
int temp x.valuel;
x.valuel = y.value2;
y.value2 = temp;

int main()

1
class_1 C1;
class_2 C2;

Cl.indata (100) ;
C2.indata (200) ;

cout <<« "Values before exchange”
Cl.display():

C2.display();
exchange (Cl1, C2); // swapping

cout << “Walues after e CI% << “_nu;
Cl.display ()
c2.display(};

recturn 0;

Returning ObjectQQ
A function cannot only réceive objects as arguments but also can return them.

X fun(X x, X vy)
{

X z;
Z= X+Yy;
return z;

}

const Member Functions

If a member function does not alter any data in the class. then we may declare it as a
const member function as follows;

void mul(int, int) const;
double get balance() const;

GANESH Y, Dept. of ECE RNSIT [

The qualifier const is appended to the function prototypes (in both declaration and
definition). The compiler will generate an error message if such functions try to alter
the data values.

Pointers to Objects

#include <iostream>
using namespace std;
class cl {
int 1i;
public:
int get_i() { return i; }
}s

int main()

{
cl ob, *p;
p = &b; // get address oﬁoQ
cout << p->get _i(); // use\ call get i()
return 0;

}

Pointers to Members

It is possible to take the address of
address of a member can be obtai
class member name.

A class member pointer cambe

For example, given the clas
class A
{

private:

int m;
public:

void show();

};
We can define a pointer to the member m as follows:
int A ::* p=8&A :: m;
The p pointer created thus acts like a class member in that it must be invoked with a

class object. In the statement above, the phrase A::* means “ pointer-to--member of A
class". The phrase &A :: m means the “address of the m member of A class".

int *p = &m; // wont work

GANESH Y, Dept. of ECE RNSIT [

This is because m is not simply an int type data. It has meaning only when it is
associated with the class to which it belongs. The scope operator must be applied to
both the pointer and the member.

The pointer p can now be used to access the member m inside member functions (or
friend functions). Let us assume that a is an object of A declared in a member function.

We can access m using the pointer p as follows:
cout << a.*p; // display
cout << a.m; //same as obave

Now, look at the following code:

ap = &a; // ap is pointer to object a
cout << ap -> *p; // display m
cout << ap -> m; // some as above
The dereferencing operator ->* is used to access ame@vhen we use pointers to

both the object and the member. The dereferencing ONE r .*is used when the object
itself is used with the member pointer. Note that#pyis U d like a member name.

We can also design pointers to member ful ich, then, can be invoked using
the dereferencing operators in the mai a& elow :
t

(object-name . member function) (10);
(pointer-to-objec ointer-to-member function) (10);

of .*and ->*, so the parentheses are necessary.

int y;
public:
void set_xy (int a, int b)
{
X = a;
y = b;
}

friend int sum(M m);

}s

int sum(M m)

{

GANESH Y, Dept. of ECE RNSIT &S

int M ::* px
int M ::* py =
M *pm = &m;
int s= m.*px
return s;
}
int main()
{
M n;
void (M ::* pf)(int,int) = &M :: set xy;
(n .* pf)(10, 20);
cout << "SUM = " << sum(n) << "\n";
M *op = &n;
(op->*pf)(10,40);
cout << "SUM = "<< sum(n)r< "\n";
return 0;

: N

Local Classes

Classes can be defined and used insid &: or a block. Such classes are called
local classes. Examples:

void test(int a) tion

Local classes can use global variables (declanid above the function) and static variables
declared, inside the function but cannot use automatic local variables. The global
variables should be used with the soope operator (::).

There are some restrictions in constructing local classes. They cannot have static data
members and member functions must be defined inside the local classes. Enclosing
function cannot access the private members of a local class. However. we can achieve
this by declaring the enclosing function as a friend.

GANESH Y, Dept. of ECE RNSIT JR&

38 return O;
39}

output

Enter consumer name & unit consumed :sattar 200
Name Charge

sattar 210

Presso for exit/ press 1toinput again :1

Enter consumer name & unit consumed :santo 300
Nmae Charge

santo 290 ’\Q

Presso for exit / press 1 to input again : 0 *

Chapter 4

4.1: Statewhether thefoll entsare TRUE or FAL SE.

(a) A function argument is rned by the function to the calling program.

(b) When arguments are alue, the function works with the original argumentsin the
calling program.

(c) When a functioneturnga value, the entire function call can be assigned to avariable.

(d) A function can retUkg a val ue by reference.

(e) When an argument is passed by reference, atemporary variableis created in the calling
program to hold the argument value.

(f) It is not necessary to specify the variable name in the function prototype.

Ans.

() FALSE (d) TRUE
(b) FALSE (e) FALSE
(c) TRUE (f) TRUE

4.2: What arethe advantages of function prototypesin C++?

Ans: Function prototyping is one of the major improvements added to C++ functions. The
prototype describes the function interface to the compiler by giving details such as the number
and type of arguments and the type of return values.

4.3: Describe the different styles of writing prototypes.

Ans
General form of function prototyping :
return_type function_name (argument_list)

Example:

int do_something (void);
float area (float a, float b);
float area (float, float);

4
4.4 Find errors, if any, in the following function proto A
(a) float average(x,y); *
(b) int mul(int a,b);
(c) int display(....); 2
(d) void Vect(int? &V, int & size);
(e) void print(float data[], size = 201);

Ans:

No. Error & Correction

@ Undefined sy float average (float x, floaty)

(b) Undefin int mul (int a, int b);

(© No error

(d) invalid charaeter in variable name void vect (int &v, int &size);
Y, void print (float data[], int

(e Undefined symbol ‘s size = 20):

4.5: What isthe main advantage of passing arguments by refer ence?

Ans. When we pass arguments by reference, the formal arguments in the called function become
aliasesto the ‘actual’ arguments in the calling function.

4.6: When will you make a function inline? Why?

Ans. When afunction contains a small number of statements, then it is declared as inline function.

By declaring afunction inline the execution time can be minimized.
4.7: How does an inline function differ from a preprocessor macro?

Ans. The macos are not really functions and therefore, the usual error checking does not occur
during compilation. But using inline-function this problem can be solved.

4.8: When do we need to use default argumentsin a function?

Ans. When some congtant values are used in a user defined function, then it is needed to assign a
default value to the parameter.

Example:
4
1Float area (float r, float Pl = 3.1416) \Q

2 {

3 return PI*r*r; *

4}

4.9: What isthe significance of an em hesisin afunction declaration?
Ans: An empty parentheses impl tsisvoid type.

4.10: What do you moading of afunction? When do we use this concept?

Ans. Overloading o& on means the use of the same thing for different purposes.
When we need to design a family of functions-with one function name but with different
argument lists, then we use this concept.

4.11: Comment on thefollowing function definitions:

(@

1int *f()

6return(&m);
7}

(b)

ldoublef()

Breturn(1);
6}

(©

lint & f()
2
3intn-10;

6return(n);
7}

Ans.

No. Comment

@ This function returns addr
execution this function.

(b) Thisfunction returns 1 tion.
(© returns address of n

Debuggi cises
4.1: |dentify theerngr i ollowing program.

#include <iostream.h>
int fun()

{

return 1;

%Ioat fun()
return 10.23;
void main()
cout <<(int)fun() <<'"

cout << (float)fun() <<'"
}

Solution: Here two function are same except return type. Function overloading can be used using
different argument type but not return type.

Correction : Thiserror can be solved asfollows:

#include<iostream.h>

int fun()
{

return 1;
}
float funl()

{
return 10.23;

}
- \'Q
Void man

{

cout<<fun()<<" "; L 2
cout<<funl()<<" ";

} &
4.2: | dentify theerror in thefollowi

#include <iostream.h>

void display(const Int constl
| O

const int const2=5;

int arrayl[constl];
int array2[const2];
for(int 1=0; i<5; 1++)

{
arrayl[i] =1,
array2[i] =i*10;
cout <<arrayl[i]<<'' << array2[i] <<'';
}
}

void main()

display(5);
}

Solution:

#include<iostream.h>

void display()
{

const int const1=5;
const int const2=5;
int array1[constl];
int array2[const2];

for(int i=0;i<5;i++)
{
array1[i]=i;
array2[i]=i*10;
cout<<arrayl[i]<<" "<<array2[i]<<" *;
}
}

void main() ¢ Q
{ \

display();
TS

4.3: Identify theerror in thefollowing ;

#include <iostream.h>
int gvValue=10;
void extra()

{
cout << gValue<<"’ &
}
void main() QO
{
extra();

{

int gvValue = 20;

cout << gValue<<'"
cout <<:gVaue<<''

}
}

Solution:
Here cout << : gvalue <<""; replace with cout <<::gvalue<<" ",

#include <iostream.h>
int gvVaue=10;
void extra()

{

cout << gValue << * *;
}
void main()
{

extra();

{
int gValue = 20;
cout << gValue << * ¢;
cout <<::gvalue<<"";
}

}

4.4: Find errors, if any, in the following function definition for displaying a matrix: void

display(int A[][], int m, int n)
4
{ \Q

for(1=0; i<m; i++)
for(j=0; j<n; j++) L 2
cout<<" "<<A[i][j];

cout<<"\n": P
} &

Solution:

First dimension of an array may but others must be constant.
Hereint A[][] replace Nwing code:

int A[][10];

int A[10] [10];
int A[] [size]; Q
int A [size] [size];

Where const int size = 100;
any other numerica value can be assigned to size.
Programming Exer cises

4.1: Writeafunction to read a matrix of sizem*n from the keyboard.

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>
3

4 void matrix(int m,int n)

5

6 float **p;

7 p=new float*[m];

8 for(inti=0;i<m;i++)

9 {

10 p[i]=new float[n];

11

12 cout<<" Enter "<<m<<"by"<<n<<" matrix el ements one by one"<<end!;
13 for(i=0;i<m;i++)

14

15 for(int j=0;j<n;j++)

16

17 float value;

18 cin>>value;

19 pli][i]=value;

20

21} o Q
22 cout<<" The given matrix is:"<<endl;

23 for(i=0;i<m;i++) \
24 TN
25 for(int j=0;j<n;j++)

26 { y

27 cout<<p[i][j]<<" " \

28 }

29 cout<<"\n";

30 }

31}

32

33int main()

34{ X

35 intr,.;

36 cout<<" Enter s o

37 cin>>r>>c;

38 matrix(r,c);

39 returnO;

40}

output

Enter sizeof matrix: 3 4

Enter 3 by 4 matrix elements one by one

1 2 3 4

2 3 45

3 45 6

The given matrix is:

1 2 3 4
2 3 45

3 4 5 6

4.2: Writeaprogram toread a matrix of size m*n from the keyboard and display the same
on the screen using function.

Solution:

1 #include<iostream.h>

2 #include<iomanip.h> Q
4

void matrix(int m,int n) \

{

float **p;s L 2

p=new float*[m];

for(int i=0;i<m;i++)

{

10 pli]=new float[n];

11 }

12 cout<<" Enter "<<m<<" by "<<

13 for(i=0;i<m;i++)

{
15 for(intj=0;j<n;j++)
16 {

17 float value;

18 cin>>val 3
19 pli][j]=valUg;
20 }

21 }

22 cout<<" The given matrix is:"<<endl;
23 for(i=0;i<m;i++)

24 {

25 for(int j=0;j<n;j++)

26 {

27 cout<<p[i][j]1<<" ™

28

29 cout<<"\n";

30 }

31}

32

33int main()

34

35 intr,.;

36 cout<<" Enter size of matrix : ";

©Co~NOoO U~ W

elements one by one "<<end!;

37 cin>>r>>c;
38 matrix(r,c);
39 returnO;
40}

output

Enter size of matrix : 4 4

Enter 4 by 4 matrix elements one by one
1 2 3 47

2 3 45 8

3456 9 Q
2
The given matrix is: \

1 2 3 47 ¢

2 3458 &

3456 9

4.3: Rewritethe program X .2to maketherow parameter of thematrix asa
default argument.

s QO

1 #include<iostream.h>
2 #include<iomanip.h>

void matrix(int n,int m=3)
{
float **p;
p=new float*[m];
for(int i=0;i<m;i++)
{
10 pli]=new float[n];
11 }
12 cout<<" Enter "<<m<<" by "<<n<<" matrix € ements one by one "<<endl;
13 for(i=0;i<m;i++)

©oo~NOO O~ W

15 for(int j=0;j<n;j++)

17 float value;

18 cin>>value;
19 plil[j]=value;
20 }

21 }

22 cout<<" Thegiven matrix is:"<<endl;
23 for(i=0;i<m;i++)

24

25 for(int j=0;j<n;j++)

26

27 cout<<p[i][j]<<" *;

28 }

29 cout<<"\n";

30 }

31}

32

33int main() £ Q
34

35 intc; \
36 cout<<" Enter column of matrix : "; TS
37 cin>>c;

38 matrix(c); y

39 returnO; \

40}

output

Enter column of matrix : 3

Enter 3 by 3 matrix elem one
12 3 Q

2 3 4

3 45

4.4: The effect of a default argument can be alter natively achieved by overloading. Discuss
with examples.

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>

v
{

24
25
26
27
28
29
30
31}

oid matrix(int m,int n)

float **p;
p=new float*[m];
for(int i=0;i<m;i++)
{

p[i]=new float[n];
}

cout<<" Enter "<<m<<"by"<<n<<" matrix elements one by one"<<end!;

for(i=0;i<m;i++)

{ . Q
for(int j=0;j<n;j++)
{ \

float value; 'Y
cin>>value,

} pli][j]=value; ¢
} \

cout<<" The given matrix is:"<<
for(i=0;i<m;i++)
{

for(int j=0;j<n;j++)

{
cout<<p[i][j]<< &
}
cout<<"\n"; O
}

32void matrix(int m,long int n=3)

33{
34
35
36
37
38
39
40
41
42
43
a4
45
46
47
48

float **p;
p=new float*[m];

for(int i=0;i<m;i++)
p[i]=new float[n];
cout<<" Enter "<<m<<" by "<<n<<" matrix elements one by one "<<endl;
for(i=0;i<m;i++)
{

for(int j=0;j<n;j++)

float value;
cin>>vaue;
pli][j]=value;

49 }

50 }

51 cout<<" Thegiven matrix is:"<<endl;
52 for(i=0;i<m;i++)

53 {

54 for(int j=0;j<n;j++)

55 {

56 cout<<p[i][j]<<" "

57 }

58 cout<<"\n";

59 }

60}

61

62int main()

63{

64 intr;

65 cout<<" Enter row of matrix : "; Py Q
66 cin>>r;

67 matrix(r); \
68 return0; TN
69}

output &

Enter column of matrix : 2

Enter 2 by 3 matrix elements one

N
QO

The given matrix is:

4.5: Write a macro that obtainsthelargest of thethree numbers.

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>

loat large(float a,float b,float c)

b~ w

f
{

6 float largest;
7 if(a>b)
8

{
9 if(a>c)
10 largest=a;
11 ese
12 largest=c;
13 }
14 dse
15
16 if(b>c)
17 largest=Db;
18 ese
19 largest=c;
20 }

21 returnlargest;
22} .
23 \

24int main()

25{
26 floatx,y,z;

27 cout<<" Enter three values: "; .
28 cin>>x>>y>>7; \
29 float largest=large(x,y,2);

30 cout<<" large = "<<largest<<end!;

31 returnO;

32}

output \
Enter threevalues: 4 5 O
large=8 Q

4.6: Redo Exercise 4.16 using inline function. Test the function using a main function.

Solution:
Blank

4.7: Write afunction power () toraise a number m to power n. Thefunction takes a double
valuefor m and int valuefor n and returnstheresult correctly. Use a default value of 2 for
n to make the function to calculate the squares when this argument isomitted. Writea main
that getsthevaluesof m and n from the user to test the function.

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>
3 #include<math.h>

4
5 long double power(double m,int n)

6 {

7 long double mn=pow(m,n);

8 returnmn;

9}

10long double power(double m,long int n=2)
11§

12 long double mn=pow(m,n);

13 return mn;

14}

15int main()

16{
17 long double mn; .
18 doublem; \

19 intn;
20
21 cout<<" Enter the value of m & n"<<endl;

22 cin>>m>>n; .
23 mn=power(m,n); \
24 cout<<" mto power n: "<<mn<< ;

25 mn=power(m);

26 cout<<" mto power n:"<<mn<
27 returnO;

28}

output \
Enter the value of m QQ
12 6

m to power n : 2985984

m to power n; 144

4.6: Redo Exercise 4.16 using inline function. Test the function using a main function.

Solution:
Blank

4.7: Write afunction power () to raise a number m to power n. Thefunction takes a double
valuefor m and int valuefor n and returnstheresult correctly. Use a default value of 2 for

n to make the function to calculate the squares when thisargument isomitted. Write a main
that getsthevalues of m and n from the user to test the function.

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>
3 #include<math.h>

4
5 long double power(double m,int n)
6 {

7 long double mn=pow(m,n);

8 returnmn;

9}

10long double power(double m,long int n=2)
11 *
12 long double mn=pow(m,n);
13 return mn; \

14} TS
15int main()

16{ 2

17 long double mn;

18 doublem;

19 intn;

20

21 cout<<" Enter the value of m &
22 cin>>m>>n;
23 mn=power(m,n);

24 cout<<" mto power %
25 mn=power(m);

26 cout<<"mtop mn<<endl;

27 returnO;
28}

<endl;

output
Enter the value of m& n
12 6
m to power n : 2985984

m to power n: 144

4.8: Write afunction that performsthe same operation asthat of Exercise 4.18 but takes an
int valuefor m. Both the functions should have the same name. Write a main that calls both
the functions. Use the concept of function overloading.

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>
3 #include<math.h>

4
5 long double power(int m,int n)

6 {

7 long double mn= (long double)pow(m,n);
8 returnmn;

9}

10long double power(int m,long int n=2)

11

12 long double mn=(long double)pow(m,n);
13 return mn;

14}

15int main()

16{

17 long double mn;

18 intm; 2
19 intn;
20

21 cout<<" Enter thevalueof m& n"
22 cin>>m>>n;

23 mn=power(m,n);

24 cout<<" mto power n: "<<
25 mn=power(m);

26 cout<<" mto power % <endl;
27 return O;

“ Q

output

Enter thevalueof m& n

15 16
m to power n : 6.568408e+18

m to power n: 225

Chapter 5

Review Questions

5.1: How do structuresin C and C++ differ?

Ans:
C structure member functions are not permitted but in C++ member functions are permitted.

5.2: What isaclass? How doesit accomplish data hiding?

Ans:

A classisaway to bind the data and its associated functions together. In class we can declare a
data as private for which the functions accomplish data—outside the class can not access the data
and thusif hiding.

5.3: How does a C++ structure differ from a C++ class? 4 Q
L 4

Ans:
Initially (in C) a structure was used to bundle differ pes together to perform a
particular functionality C++ extended the structurg tain functions also. The differenceis

that all declarationsinside a structure are d b

5.4: What are objects? How areth

Ans:
Object isamember of cla

type. Again consider clas @

{
}
here fruit is the class-nage. We can create an object asfollows:

fruit mango;
here mango is a object.

s consider asimple example. int a; hereaisavariable of int

5.5: How isa member function of a class defined?

Ans:

member function of a class can be defined in two places:
* Qutside the class definition.

* Inside the class definition.

Inside the class definition : same as other normal function.

Outside the class definition : general form:
return-type class-name : function-name (argument list)

{
function body

}

5.6: Can we use the same function name for a member function of a classand an outside
function in the same program file? If yes, how arethey distinguished? If no, givereasons.

Ans:
Y es, We can distinguish them during calling to main () function. The following example
illustrates this:

1 #include<iostream.h>

9 public: 2
10void f()

11

12 cout<<"Inside of class\n";
13}
14};

15

16void main()

17{ \
18f(); // outsidef() iscal

19santo robin;
20robin.f(); // Insi isealling.
21}

5.7: Describe the mechanism of accessing data members and member functionsin the
following cases:

(@) Inside the main program.

(b) Inside a member function of the same class.

(c) Inside a member function of another class.

Ans:

(a) Using object and dot membership operator.

(b) Just like accessing alocal variable of afunction.
(c) Using object and dot membership operator.

The following example explains how to access data members and member functionsinside a
member function of another class.

1 #include<iostream.h>

2

3 classa

4 {

5 public:

6 int x;

7 void display()

8 {

9 cout<<"Thisisclassa\n";

10 x=111;

1 }

12};

13

14classb PN

15{

16 public: \
17 void display() ¢
18 {

19 as, \

20 cout<<" Now member function 'di of aiscdling fromclassb\n";
21 s.display();

22 cout<<" x = "<<s.x<<"\n";

23}

24},

25

26void main()

27

28 b billa: //billd | @
29

billal .displ ayeF
30}

5.8: When do we declare a member of a class static?

Ans.
When we need a new context of a variable the n we declare this variable as static.

5.9: What isafriend function? What are the meritsand demerits of using friend functions?

Ans.
A function that acts as a bridge among different classes, then it is called friend function.

Merits
We can access the other class membersin our class if we use friend keyword. We can access the
members without inheriting the class.

demerits:
Maximum size of the memory will occupied by objects according to the size of friend members.

5.10: State whether the following statements are TRUE or FAL SE.
(a) Dataitemsin a class must aways be private.
(b) A function designed as private is accessible only to member functions of that class.
(c) A function designed as public can be accessed like any other ordinary functions.
(d) Member functions defined inside a class specifier become inline functions by default.
(e) Classes can bring together all aspects of an entity in one place.
(f) Class members are public by default.
(g) Friend junctions have access to only public members of a class
(h) An entire class can be made afriend of another class. o
() Functions cannot return class objects.
(j) Data members can beinitialized inside class specifier.
L 2

AnNS. P
() FALSE
(b) TRUE

(c) FALSE

* A function designed as public like any other ordinary functions from the
member function of same class.
(d) TRUE

(e) TRUE \
(f) FALSE 0
(0) FALSE
(h) TRUE
(i) FALSE
(i) FALSE

Debugging Exercises

5.1: Identify theerror in thefollowing program

1 #include <iosream.h>
2 struct Room

3{

4 int width;

5 intlength;

6 voidsetVaue(int w, intl)
7 A

8 width = w;

9 length=1;

10 }

11};

12void main()

13{

14Room objRoom;
150bjRoom.setVaue(12, 1,4);
16}

Solution:
Void setvalue (in w, int) function must be public.

5.2: Identify theerror in thefollowing program

1 #include <iosream.h> P
2 classRoom
3

int width, int length; L 2

void setValue(int w, int h)

4

5

6 { $

7 width = w; &
8 length=h;

9 }

10};

11void main()

12{

13Room objRoom;

140bjRoom.width=12; \
" QO
Solution:;

Void setvalue (int w, int I) function must be public.

5.3: Identify theerror in thefollowing program

1 #include <iosream.h>
2 classltem
3{
4 private:

static int count;
public:

Item()

{

count++;

2 O 00N U

O}

11int getCount()

12{

13 return count;

14}

15int* getCountAddress()
16{

17 return count;

18 }

19};

20int Item::count = O;
21void main()

2

23 Item objlteml;
24 Item objltem2;
25

26 cout << objlteml.getCount() <<'';
27 cout << objltem2.getCount() <<"", é Q
28 \

29 cout << objlteml.getCountAddress() <<'';
30 cout << objltem2.getCountAddress() <<''; P

31}

Solution:

1
2int* getCountAddress ()
3 {

4 return & count; \

) O

Note: All other cod% unchanged.

5.4: Identify theerror in thefollowing program

1 #include <iosream.h>
2 class staticfunction
3{

4 daticint count;

5 public:

6 static void setCounto()
7 {

8 count++;

9 }

10 void displayCount()
11 {

12 cout << count;

13 }

14};

15int staticFunction::count = 10;
16void main()

17

18 dtaticFunction obj1;

19 objlsetcount(5);

20 staticFunction::setCount();
21 objl.displayCount();

22}

Solution:
setCount () isavoid argument type, so here obj1.setCount (5); replace with obj1.setcount();

5.5: Identify theerror in thefollowing program P Q

1 #include <iosream.h>
2 class Length L 2
31

4 intfeet; 2
5 float inches; &
6 public:

7

8

9

Length()
{
feet = 5;
10 inches = 6.0;

11 }
12 Length(int f, float in)Q

13 {

14 feet =f;
15 inches=in;
16 }

17 Length addLength(Length 1)
18 {

19

20 l.inchesthis->inches;

21 1.feet +=this->feet;

22 if(Linches>12)

23 {

24

25 l.inches-=12;
26 1.feet++;

27 }

28 return 1;

29}

30 int getFeet()
314

32 return feet;

33}

34 float getinches()

35 {

36 returninches;

37}

38};

39void main()

40{

41

42 Length objLengthl;

43 Length objLenngthl(5, 6.5);

44 objLengthl = objLengthl.addL ength(objLength2);
45 cout << objLenthl.getFeet() <<"'",

46 cout << objLengthl.getinches() <<'",
47}

) 2
Solution: \Q

Just write the main function like this:

#include<iostream.h>

void main() &
{

1

2

3

4

5 Length objLengthl;
6 Length objLength2(5,6.5);

7 objLengthl=objLengthl.addL jLenghth2);
8

9 cout<<objLengthl.getFeet()
10 cout<<objLengthl.g <<

11} Q

5.6: Identify theerror in thefollowing program

1 #include <iosream.h>
2 class Room

3 void Area()

4 {

5 int width, height;

6 classRoom

7

8 int width, height;

9 public:

10 void setvalue(int w, int h)
11 {

12 width = w;

13 height = h;

14 }

15 void displayvalues()
16 {

17 cout << (float)width << "' << (float)height;
18 }

19 };

20 Room objRoom1;

21 objRooml.setVaue(12, 8);

22 objRoom1l.displayvalues();

23}

24

25void main()

26{

27Area();

28Room objRoom2;

29}

Solution:
Undefined structure Room in main () function. 'Y
Correction : Change themain () Function asfollo

1void main()

5.1: Defineaclass t a bank account. Include the following members:

Data members:

Name of the depositor.
Account number.

Type of account.

Balance amount in the account.

rPODPE

Member functions:

To assign initial values.

To deposit an amount.

To withdraw an amount after checking the balance.
To display the name and balance.

POODPE

Write amain program to test the program.

Solution:

1 #include<iostream.h>

2 #include<iomanip.h>

3 class bank

4 {

char name[40];

int ac_no;

char ac_type[20];
double balance;

9 public:

10 int assign(void);

11 void deposite(float b);
12 void withdraw(float c);

13 void display(void);
14}; *
15 \

16int bank::assign(void)
17

18 floatinitidl;

19 cout<<" You haveto pay 500 TK to open ys o@nt \n"
20 <<"Youhaveto storeat least 500 TK
21 <<"Would you want to open aacco
22 <<"If Yespress1i\n"
23 <<"If NopressO:";
24 int test;

25 cin>>test;

26 if(test==1)

20 4 \
28 initia=500; Q

29 balance=initialf
30 cout<<" Ent ount number & account type to creat account : \n";
31 cin>>name>>ag)y no>>ac_type;

32 }

33 dse

34 ;// do nothing

35

36 return test;

37

38}

39void bank::deposite(float b)
40{

41 baancet+=b;

42}

43void bank::withdraw(float)
44

45 balance-=c;

46 if(balance<500)

47 {

48 cout<<" Sorry your balanceis not sufficient to withdraw "<<c<<"TK\n"

0 ~NO Ol

49 <<" You have to store at least 500 TK to keep your account active\n”;
50 balancet+=c;

51 }

52}

53void bank::display(void)

S4{

55 cout<<setw(12)<<"Name"<<setw(20)<<"Account type'<<satw(12)<<"Baance"<<endl;
56 cout<<setw(1l2)<<name<<satw(1l7)<<ac type<<setw(14)<<balance<<end!;
57}

58

59int main()

60{

61 bank account;

62

63 int t;

64 t=account.assign();
65 if(t==1) . Q
66 {

M

67 cout<<" Would you want to deposite: ?'<<endl
68 <<"If NO press 0(zero)"<<endl

69 <<"If YES enter deposite ammount :"<<end|;
70 float dp;

71 cin>>dp;

72 account.deposite(dp);

73 cout<<" Would you want to with
74 <<"If NO press 0(zero)"<<en
75 <<"If YES enter withdrawal
76 float wd;

77 cin>>wd;

78 account.withdraw(y
79 cout<<" see detail§

80 account.displ
81 }
82 eseif(t==0)

83 cout<<" Thank you ,see again\n”;
84 return O;
85}

s Y<<end|

t "<<endl;

output

Y ou have to pay 500 TK to open your account

You haveto store at least 500 TK to keep your account active
Would you want to open a account????

If Yespress1

If NopressO: 0

Thank you ,see again

5.2: Writeaclasstorepresent avector (a seriesof float values). Include member functions
to perform thefollowing tasks:

(@ Tocreatethe vector.

(b) To modify the value of a given element.

(¢) Tomultiply by ascalar value.

(d) To display the vector in the form (10, 20, 30 ...)

Write a program to test your class.

Solution;

1 #include<iostream.h> ¢ Q
2 #include<iomanip.h> \

3 class vector

44 *

float *p;

5 .
6 intsize .
7 public:

8 void creat_vector(int a);

9 void set_element(int i,float value);
10 void modify(void);
11 void multiply(float b);

12 void display(void);

13}; \
14

15void vector::creat_ %)
16{

17 size=g

18 p=new float[siz€];

19}

20void vector::set_element(int i float value)
21

22 p[i]=value;

23}

24void vector :: multiply(float b)
25{

26 for(inti=0;i<sizeji++)

27 pli]=b*pli];

28}

29void vector:: display(void)

30{

31 cout<<"p["<<size<<"] =(";
32 for(int i=0;i<size;i++)

33 {

34 if(i==size-1)

35 cout<<pJil;

36 else

37 cout<<p[i]<<",";

38

39 }

40 cout<<")"<<endl;

41}

42

43void vector::modify(void)

a4

45 inti;

46 cout<<" to edit agiven element enter position of the element : ";
47 cin>>i;

48 j--;

49 cout<<" Now enter new value of "<<i+1<<"th element:";

50 floatv;
51 cin>>v; .
52 pli]=v; \

53 cout<<" Now new contents: "<<endl;

54 display(); S
55

56 cout<<" to delete an element enter position ent :";
57 cin>>i; \

58 i--;

59

60 for(int j=i;j<sizej++)

61 {

62 p[j]=pli+1];

63 }

64 sSize--;

65 cout<<" New conte Q ghdl:

66 display();

67}

68

69int main()

7

71 vector santo;

72 ints;

73 cout<<" enter size of vector : ";

74 cin>>s;

75 santo.creat_vector(s);

76 cout<<" enter "<<s<<" elements one by one :"<<endl;
77 for(inti=0;i<s;i++)

78 {

79 float v;

80 cin>>v;

81 santo.set_element(i,v);

82 }

83 cout<<" Now contents :"<<endl;

84 santo.display();

85 cout<<" to multiply thisvector by a scalar quantity enter this scalar quantity : ";

86 float m;

87 cin>>m;

88 santo.multiply(m);

89 cout<<" Now contents : "<<endl;
90 santo.display();

91 santo.modify();

92 returnO;

93}

output
enter size of vector : 5

enter 5 elements one by one:

11 22 33 4 55
4
Now contentsp[5] =(11 , 22 , 33, 44 , 55) \

to multiply this vector by a scalar quantity enter this u Rty 12

to edit a given element enter positio element : 3

Now contents :

p[5]=(22 , 44, 66 , 88 , 110)

Now enter new value of 3th
Now new contents : Q
p[5] =(22 , 44 , , , 110)

to delete an element enter position of the element :2
New contents:

pl4]=(22 , 100 , 88 , 110)

5.3: Modify the classand the program of Exercise 5.1 for handling 10 customers.
Solution:

#include<iostream.h>

#include<iomanip.h>

#definesize 10

char *seria[size]={" FIRST ", SECOND "," THIRD "," 4th"" 5th"," 6th"," 7th"," 8th" "

A WNPEF

5 0oth","10th"};
6

7 class bank
8 {

9 char name[40];

10 intac no;

11 char ac_type[20];

12 double baance;

13 public:

14 int assign(void);

15 void deposit(float b);
16 void withdraw(float c);
17 void displayon(void);
18 void displayoff(void);
19 };

20
21 int bank::assign(void) .
22 { \

23 floatinitid;
24 cout<<" You haveto pay 500 TK to open your
25 <<"Youhaveto store at least 500 TK to keep
26 <<"Would you want to open a account???"

27 <<"IfYespressl\n"
28 <<"IfNopressO:";

count active\n"

29 inttest;

30 cin>>tedt;
31 if(test==1)
32 |

33 initial=500;

34 balance=initia; N

35 cout<<" Enter name , mber & account type to create account : \n";
)

36 cin>>nam ac_type;
37}
38 dse

39 ;// donothing

40

41 return test;

42

43 }

44 void bank::deposit(float b)

45 {

46 balancet+=b;

47 }

48 void bank::withdraw(float c)

49 {

50 balance-=c;

51 if(balance<500)

52 {

53 cout<<" Sorry your balance is not sufficient to withdraw "<<c<<"TK\n"
54 <<" You haveto store at least 500 TK to keep your account active\n”;
55 balancet+=c;

56

57 }

58 void bank::displayon(void)

59 {

60 cout<<setw(12)<<name<<setw(l7)<<ac type<<setw(14)<<balance<<end;
61 }

62 void bank::displayoff(void)

63 { cout<<” Account has not created”<<endl; }

64 int main()

65 {

66 bank account[size];

67 int t[10];

68 for(inti=0;i<sizeji++)

69

70 cout<<" Enter information for "<<serial[i]<<"customer : "<<endl;
71 t[i]=account][i].assign();

72 if(t[i]==1) £ Q
73 {

74 cout<<" Would you want to deposit: ?'<<end \
75 <<"If NO press 0(zero)"<<endl TN
76 <<"If YES enter deposit amount :"<<endly

77 float dp; .

78 cin>>dp; \

79 account[i].deposit(dp); »

80 cout<<" Would you want to Wi W, ?'<<endl

81 <<"If NO press 0(zero)" <<gu

82 <<"If YES enter withdra é’ punt :"<<endl;

83 float wd;

84 cin>>wd;

85 account[i].with

86 cout<<end <<€

87 }

88 else¥i(t[i]=%0)

89 cout< ank you, seeagain \n”;

90

91

92

93 cout<<" see details :"<<endl<<end!;

94 cout<<setw(12)<<"Name'<<setw(20)<<"Account type"
95 <<setw(12)<<"Baance'<<end!;

96

97 for(i=0;i<sizeji++)

98

99 if(t[i]l==1)

100 account[i].displayon();

101 else if(t[i]==0)

102 account[i].displayoff();

103

104 return O;

Note: Here we will show output only for Three customers. But when you run this program you
can see output for 10 customer.

output

Enter information for FIRST customer :

Y ou have to pay 500 TR to open your account

You have to store at least 500 TR to keep your account active Would you want to open a
account????

If Yespress1

If Nopress0: 0

Thank you , see again

Enter information for SECOND customer :

Y ou have to pay 500 TR to open your account

You have to store at least 500 TR to keep your account active Would you want to open a

account????
If Yespress1 *
If Nopress0: 1 \
t :
L 2

Enter name ,account number & account type to create acc
Robin 11123 saving
Would you want to deposit: ?

If HO press 0(zero) 2

If YES enter deposit amount : &
0

Would you want to with draw : ?

If HO press 0(zero)

If YES enter withdrawa amount :

0

Enter information for 3rd cus
Y ou have to pay 500 TK tgse
Y ou have to store at |east
account????

If Yespress1

If NopressO: 1

Enter name ,account number & account type to create account :
Billal 11123 fixed

Would you want to deposit: ?

If HO press 0(zero)

If YES enter deposit amount :

1000000

Would you want to with draw : ?

If HO press 0(zero)

If YES enter withdrawal amount :

100000

Qur account
0 keep your account active Would you want to open a

see details:
Name Account type Balance

Account has not created

Raobin saving 500

Billal fixed 900500

5.4: Modify the class and the program of Exercise 5.12 such that the program would be
able to add two vectors and display theresultant vector. (Note that we can pass objects as
function arguments)

Solution;

1 #include<iostream.h>
2 #include<iomanip.h>

3 #definesize 8
4 class vector *
5 { \

6 float*p;

7 L 2
8 public:

9 void creat_vector(void); P

10 void set_element(int i float value); &

11 friend void add(vector v1,vector v2

12

13};

14void vector::creat_vector(void)

15{

16 p=new float[size];

17}

18void vector::set_eleme @ float value)
1A

20 pli]=vaue;

21}

22void add(vector v1,vector v2)
23{

24

25 float *sum;

26 cout<<"sum["<<size<<"] = (";
27 sum= new float[siz€];

28

29 for(inti=0;i<sizeji++)

30 {

31 sum[i]=v1.p[i]+v2.p[i];

32 if(i==size-1)

33 cout<<sum[i];

34 else

35 cout<<sum[i]<<", ",
36 }

37 cout<<")"<<endl;

38

39}

40

4lint main()

42{

43 vector X1,X2,X3;

44 xl.creat vector();

45 x2.creat vector();

46 x3.creat_vector();

47 cout<<" Enter "<<size<<" e ements of FIRST vector : ";
48 for(int i=0;i<size)i++)

49 {
50 float v;
51 cin>>v;

52 x1l.set_element(i,v);

56 for(i=0;i<sizeji++)
57 {
58 float v;

59 cin>>v; 4
60 x2.set_element(i,v); \
61 }

62 add(x1,x2);

53 }

>4 .

55 cout<<" Enter "<<size<<" e ements of SECOND vector \
2

63

64 return O;

65}

output \

Enter 8 e ements of r. 47824329

Enter 8 eementsof S NDvector: 12345678

sum[8] =(5,9,11,6,9,9,9, 17)

5.5: Createtwo classes DM and DB which store the value of distances. DM stores distances
in meters and centimetersand DB in feet and inches. Write a program that can read values
for the class objects and add one object of DM with another object of DB.

Use afriend function to carry out the addition operation. The object that storestheresults
may bea DM object or DB object, depending on the unitsin which theresultsarerequired.
Thedisplay should bein theformat of feet and inches or metersand centimeter s depending
on the object on display.

Solution:

1 #include<iostream.h>
2 #define factor 0.3048

3 classDB;

4 classDM

5 {

6 float d;

7 public:

8 void store(float x){ d=x;}

9 friend void sum(DM,DB);

10 void show();

11};

12class DB

13{

14 float d1;

15 public:

16 void store(float y){ d1=y;}

17 friend void sum(DM,DB); £ Q
18 void show();

19}; \
20 ®
21void DM::show()

22{ y

23 \

24 cout<<"\n Distance = "<<d<<" m < 00<<" centimeter\n”;
25}

26

27void DB::show()

28{

29

feet or "<<d1* 12<<" inches\n";

30 cout<<"\n Distance 3 &
 —.

32void sum(DM m,D,

33{

34

35 float sum;

36

37 sum=m.d+b.d1* factor;
38 float f;

39 f=sum/factor;

40 DM mil;

41 DB bi;

42

43 ml.store(sum);

44 bl.store(f);

45

46 cout<<" press 1 to display result in meter\n"
47 <<" press 2 to display result in feet \n"

48 <<" What isyour option ?: ";

49 int test;

50 cin>>test;

51

52 if(test==1)

53 mZ1.show();
54 eseif(test==2)
55 b1.show();
56

57

58}

59

60

61int main()

62{

63 DM dm;

64 DB db;

65 dm.store(10.5);
66 db.store(12.3);

67 sum(dm,db);
68 return O; .
69} \

output L 2

Press 1 to display result in meter

Press 2 to display result in feet

What isyour option ? 1

Distance = 14.24904 meter or 1424.903 eter

C

Re\Q ions
6.1: What isa construbor? |sit mandatory to use constructorsin a class?

Ans: A constructor is a ‘special” member function whose task is to initialize the object of its class.
It is not mandatory to use constructor in aclass.

6.2: How do weinvoke a constructor function?
Ans:Constructor function are invoked automatically when the objects are created.
6.3: List some of the special properties of the constructor functions.

Ans:Special properties of the constructor functions:

Constructor Destructor

L |

ClassName operator - (ClassName c -

{
return result;
}

int main()

{ N\
ClassName c1,c2, .
result = cl-cl'&

MODULE -3

Constructors, Destructors and
Operator Overloadin

GANESH Y
Dept. of ECE RNSIT

MODULE -3
Constructors, Destructors and Operator overloadin

SYLLABUS

Constructors, Multiple constructors in a class, Copy constructor, Dynamic constructor,
Destructors, Defining operator overloading, Overloading Unary and binary operators,
Manipulation of strings using operators (Selected topics from Chap-6, 7 of Text)

Introduction

We have seen, so far, a few examples of classes being implemented. In all the cases, we
have used member functions such as putdata() and setvalue() to provide initial
values to the private member variables. For example, the following statement

A.input();
invokes the member function input(), which assignsth@l values to the data items
of object A. Similarly, the statement

x.getdata(100,2 4

passes the initial values as argument to the; idn getdata(), where these values are
assigned to the private variables of obj&gg

Providing the initial valueg=a cribed above does not conform with the philosophy
of C++ language. We st aplier that one of the aims of C++ is to create user-defined
data types such as class, that behave very similar to the built-in types.,

This means that we should be able to initialize a class type variable (object) when it is
declared, much the same way as initialization of an ordinary variable. For example,

int m 20;
float x 5.75;

are valid initialization statements for basic data types.

Similarly, when a variable of built-in type goes out of scope, the compiler automatically
destroys the variable. But it has not happened with the objects we have so far studied.
It is therefore clear that some more features of classes need to be explored that would
enable us to initialize the objects when they are created and destroy them when their
presence is no longer necessary.

C++ provides a special member function called the constructor which enables an
object to initialize itself when it is created. This is known as automatic initialization

GANESH Y, Dept. of ECE RNSIT

of objects. It also provides another member function called the destructor that
destroys the objects when they are no longer required.

CONSTRUCTORS

A constructor is a 'special’ member function whose task is to initialize the objects of
its class. It is special because its name is the same as the class name. The constructor is
invoked whenever an object of its associated class is created. It is called constructor
because it constructs the values of data members of the class.

A constructor is declared and defined as follows:

// class with a constructor
class integer

{

int m, n;
public:
integer (void); // constructop delt 1ged

‘>

integer :: integer (void structor defined

When a class contains a constructdf Lilé€ the one defined above, it is guaranteed that an
object created by the class initialized automatically. For example, the

declaration \
inte r@u // object intl created

not only creates the object int1 of type integer but also initializes its data members m
and n to zero. There is no need to write any statement to invoke the constructor-
function (as we do with the normal member functions).

If a 'normal' member function is defined for zero initialization, we would need to
invoke this function for each of the objects separately. This would be very
inconvenient, if there are a large number of objects.

A constructor that accepts no parameters is called the default constructor. The default
constructor for class A is A :: A(). If no such constructor is defined, then the compiler
supplies a default constructor.

Therefore a statement such as
Aa;

invokes the default constructor of the compiler to create the object a.

GANESH Y, Dept. of ECE RNSIT

The constructor functions have some special characteristics. These are:

e They should be declared in the public section.
e They are invoked automatically when the objects are created.

» They do not have return types, not even void and therefore, and they cannot return
values.

e They cannot be inherited, though a derived class can call the base class constructor.
e Like other C++ functions, they can have default arguments.
e Constructors cannot be virtual. (Meaning of virtual will be discussed later)

e We cannot refer to their addresses.

» An object with a constructor (or destructor) cannot be used as a member of a union.
e

* They make 'implicit calls' to the operators new an’d& hen memory allocation

is required.

2
Remember, when a constructor is declare lass, initialization of the class
objects becomes mandatory. ;

The constructor integer(),
objects to zero. However, j acfice it may be necessary to initialize the various data
elements of different obj ith different values when they are created.

C++ permits us to achieve this objective by passing arguments to the constructor
function when the objects are created.
The constructor integer() may be modified to take arguments as shown below:

class integer

{
int m, n;
public:
integer (int x, int y);

}s

integer :: integer (int x, int y)

{
}

When a constructor has been parameterized, the object declaration statement such as

m=x;n=y;

integer intl;

GANESH Y, Dept. of ECE RNSIT

may not work. We must pass the initial values as arguments to the constructor function
when an object is declared. This can be done in two ways:

* By calling the constructor explicitly.

* By calling the constructor implicitly.

The following declaration illustrates the first method:
integer intl = integer (0,100); // explicit call

This statement creates an integer object int1 and passes the values 0 and 100 to it. The
second is implemented as follows:

integer int1(0,100); // implicit call

This method, sometimes called the shorthand method, is used very often as it is
shorter, looks better and is easy to implement.

Remember, when the constructor is parameterizg must provide appropriate
arguments for the constructor. Program below demonstgates the passing of arguments
to the constructor functions. ¢

The constructor functions can also be defig inline functions. Example:

class integer

X, int y) // Inline constructor

The parameters of a constructor can be of any type except that of the class to which it
belongs: For example,

is illegal.

However, a constructor can accept a reference to its own class as a parameter. Thus,
the statement

GANESH Y, Dept. of ECE RNSIT

is valid. In such cases, the constructor is called the copy constructor.

//This program defines a class called Point that stores the x and y
//coordinates of a point.The «class uses parameterized constructor for
//initializing the class objects

#include <iostream>

class Point

{

int x , vy;
public :

Point (int a, int b) //inline para rized constructor
definition *

{

X=a,
’ &
y=b;

}
void display ()
{
Cout<<" ("<gex<<", "
}
int main ()
{
point pl //invokes parameterized constructor
point)

cout gy pl =";
pl.display();
cout<q'Point p2 ;

p2.display();
return 9;
}
The output of above Program would be:
Point p1=(1,1)
Point p2 = (5,10)

#include <iostream>
using namespace std;
class str
{
int a_count,e_count,i_count,o_count,u_count;
char user_str[100];
public:
str (char gg[]);
void count_vowels();

GANESH Y, Dept. of ECE RNSIT

::str (char gg[])

a_count=0;e_count=0;i count=0;0 count=0;u_count=0;
for (int i1=0;i<100;i++)
{
user_str[i]=gg[i];
if (user_str[i]=="\0")
break;
}
}
void str::count_vowels()
{
int i=0;
do {
switch (user_str[i])

case 'A':
case 'a': a_count++$
brea
1 e_co 5

case
L 4
case

case
case

case
. o_count++;
break;

": u_count++;

break;
Q
+;5

} while(user_str[i]!="\0");
cout<<"\n a or A Count "<<a_count;
cout<<"\n e or E Count "<<e_count;
cout<<"\n 1 or I Count "<<i_count;
cout<<"\n or 0 Count "<<o_count;
cout<<"\n or U Count "<<u_count;
}
int main ()
{
char s[]={'G',"'a','n",'e',"'s"','h'};
str objl(s);
objl.count_vowels();
str obj2("Ganesh Yernally");
obj2.count_vowels();
return 0;

GANESH Y, Dept. of ECE RNSIT

Multiple Constructors in a Class / Overloaded Constructors

So far we have used two kinds of constructors. They are:

integer();// No arguments
integer (int, int);// Two arguments

In the first case, the constructor itself supplies the data values and no values are passed
by the calling program. In the second case, the function call passes the appropriate
values from main(). C++ permits us to use both these constructors in the same class.
For example,

class integer

{
int m, n ;
public :
integer () {m=0; n=0;} // constructor 1

integer (int a, int b) {m = 3} = b;} //constructor 2
integer(integer &i) {m =9_.m{{n =2 i.n;} //constructor 3
}s
This declares three constructors for an integ £ The first constructor receives

no arguments, the second receives two int uments and the third receives one
integer object as an argument. For exa eclaration

would automatically invoke the nstructor and set both m and n of I1 to zero.

The statement
&integer‘ 12(20,40);

would call the secon tor which will initialize the data members m and n of 12
to 20 and 40 respectivély. Finally, the statement

integer I3(I2);

would invoke the third constructor which copies the values of 12 into 13. In other
words, it sets the value of every data element of I3 to the value of the corresponding
data element of 12.

GANESH Y, Dept. of ECE RNSIT

#include <iostream>
using namespace std;
class complex
{
float x , y ;
public:
complex() { } // constructor no arg
complex (float a) {x=y=a;} // constructor-one arg
complex (float real, float imag) {x=real; y=imag;}// constructor-two arg
friend complex sum(complex, complex);
friend void show(complex);
}s
complex sum(complex cl, complex c2) //friend
{
complex c3;
c3.x = cl.Xx + c2.X;
c3.y = cl.y + c2.y;
return (c3);

}

void show(complex c)

{
}

int main ()

{

coutc<c.x<<"+j"<<c.y << "\n";

complex A(2.7, 3.5); // defj itialize
complex B(1.6); i initialize
complex C;

C = sum(A, B); / sum() is a friend
cout << "A = ";show show() is also friend
cout << "B ";sh

cout << "C = "; ;
// Another way to g itial values
complex P,Q,R; // define

P = complex(2.5,3.9);

Q = complex(1.6,2.5);

R = sum(P,Q);

cout <<"\n";

cout << "P = ";show (P);
cout << "Q = ";show (Q);
cout << "R = ";show (R);
return 0;

}

Output:

A=2.7+j35 P=2.5+j3.9
B =1.6+j1.6 Q=1.6+j2.5
C=4.3+j5.1 R=4.1+j6.4

GANESH Y, Dept. of ECE RNSIT

Let us look at the first constructor again.

complex() { }

It contains the empty body and does not do anything. We just stated that this is used
to create objects without any initial values. Remember, we have defined objects in the
earlier examples without using such a constructor.

Why do we need this constructor now? As pointed out earlier, C++ compiler has an
implicit constructor which creates objects, even though it was not defined in the class.

This works fine as long as we do not use any other constructors in the class. However,
once we define a constructor, we must also define the "do-nothing" implicit
constructor. This constructor will not do anything and is defined just to satisfy the
compiler.

CONSTRUCTORS WITH DEFAULT ARGU TS

<
It is possible to define constructors with defaul& ments. For example, the

constructor complex() can be declared as follows; A

complex (float real, float imag=0);

The default value of the argument imagy 210, en, the statement

complex C(5.90);

assigns the value 5.0 to the rea le and 0.0 to imag (by default). However, the
statement

complex C(2.9, 3.9); \

assigns 2.0 to real a \ imag. The actual parameter, when specified, overrides
the default value.

As pointed out earlier, the missing arguments must be the trailing ones. It is important
to distinguish between the default constructor A :: A() and the default argument
constructor A :: A(int = 0).

The default argument constructor can be called with either one argument or no
arguments. When called with no arguments, it becomes a default constructor. When
both these forms are used in a class, it causes ambiguity for a statement such as

A a;
The ambiguity is whether to 'call' A:: A() or A :: A(int = 0).

GANESH Y, Dept. of ECE RNSIT

DYNAMIC INITIALIZATION OF OBJECTS

Class objects can be initialized dynamically too. That is to say, the initial value of an
object may be provided during run time.

One advantage of dynamic initialization is that we can provide various initialization
formats, using overloaded constructors. This provides the flexibility of using different
format of data at run time depending upon the situation.

Consider the long-term deposit schemes working in the commercial banks. The banks

provide different interest rates for different schemes as well as for different periods of
investment.

Program shown below illustrates how to use the class variables for holding account
details and how to construct these variables at run time using dynamic initialization.

ng-term flxed deposit gystem
i i o |
#inpclude <clostryreEams

using namespace atd;

+lape Fixed deposit

lorg int P amount;

int ¥Years:

Lloat Rate;

float R : . of amount
public:

Fixed deposit ()

Fixed deposit/| LTt
Fixed depoaId ' ; i g
vold disp] gt A ;
} i
¢ ixed deposit ¢F *1ked deposit (long int P, int v,
{

GANESH Y, Dept. of ECE RNSIT

Fixed deposit :: Fixed deposit(long int p, int Yy, int r}
{
P _amount = p;
fears = y;
Rate = £y
B value = P _amount;
for(int i=1; igsy; 1+t)
R value = R value*(1.0+float(r)/100};
|
void Fived deposit :: display(void)
i
eout << “\n"
<< "Principal Amount = " << P amount << "\n”
<< "“RBeturn Value * €< B ovalue << "\n";

}
int main({) . Q
{ \

n

Fixed deposit FD1, FD2, FD3; apogils created
long int p; { principal amount
1nt yi /i iInwestment period, years

loat ;i \\ {f Interest rate, decimal form

int i {! interest rate, percent form
cout << “Enter amount, peripf: est rate{in percent)”<<™\n";

cin > p »> y 2> R;

FD1 = Fixed deposit |

cout << “Enter amou od, interest rate(decimal form)” << "“\n";

cin > p »» ¥y > gf
FD2 = ?ixed_d&@, Ve TG
cout << “Enter amMwnt and peripd”™ << “\n";

ein > p>r y;

FDl = Fixed deposit(p,¥);
gout << *\nlepasit 1*;
FD1.display{):

gout << “\nheposit 2¥;
FD2.display() ;

cout << “\nleposit 3¥;
FD3.display{):

return 0;

l

GANESH Y, Dept. of ECE RNSIT

The output of Program would be:

Enter amount,period,interest rate(in percent)
10000 3 18

Enter amount,period,interest (in decimal form)
10000 3 0.18

Enter amount and period

10000 3

Deposit 1

Principal Amount = 10000

Return Value = 16430.3

Deposit 2

Principal Amount = 10000

Return Value = 16430.3

Deposit 3 * Q
Principal '"Amount = 10000 \

Return Value = 14049.3

COPY CONSTRUCTOR

We have used the copy constructor
integer (integer &i);
as one of the overloaded const

As stated earlier, a copy or is used to declare.and initia.lize an object from
another object.

For example, the stat@

integer I2(I1);

would define the object I12 and at the same time initialize it to the values of I1. Another
form of this statement is

integer I2 = I1;

The process of initializing through a copy constructor is known as copy initialization.
Remember, the statement

I2 = I1;

will not invoke the copy constructor. However, if I1 and 12 are objects, this statement
is legal and simply assigns the values of I1 to 12, member-by-member. This is the task
of the overloaded assignment operator(=).

GANESH Y, Dept. of ECE RNSIT

include <iostreams
using namespace std;
class code

int id:
public:
coda(}| | {} constructor
cada(int a) { id = a;) f{ constructor again
code (code & X) f! copy constructor
{

id = x.1d; // copy in the value
|
vaid display(void)

{

cout << id;
OQ
fi \
2 2

int maim(}
I

code A{100); A oobi 5 created and initialized
')
i

caode B{A); i (#%) EEructor called
code O = A¥ No Yonastructor called again
code 0} ™ crested, not initlialrzed

0 = A; ' constructor not called
poubt << ™

CouL <<

eaut << *h\p i N C.displavyi);

cout << "\n j ; D.display():

The output of above Program would be:
id of A: 100
id of B: 100
id of C: 100
id of D: 100

When no copy constructor is defined, the compiler supplies its own copy constructor.

DYNAMIC CONSTRUCTORS

The constructors can also be used to allocate memory while creating objects. This will
enable the system to allocate the right amount of memory for each object when the
objects are not of the same size, thus resulting in the saving of memory.

GANESH Y, Dept. of ECE RNSIT

Allocation of memory to objects at the time of their construction is known as dynamic
construction of objects. The memory is allocated with the help of the new operator.

Program shown below the use of new, in constructors that are used to construct strings
in objects.

finclude <iostream®»
finclude <string>
uging namespace atd;
class Btring
|

char *name;}

int length:

publie:

Sering (] /i eoanscrucror=1

[

laength = 0;

nama = pew char[length + 1];

*

I

String(char *s} J/ constructor-2

| \
langth = strlenis}

nama = naWw charflength + 1]; /4) gftfﬂnﬁl
scter for \0

scropyinams, s);

|

vold display{wvoid)

[cout << name << "“Yn";|]

volid joini(String Eka, 5

I

vald String :: jolin [Siggl
| x
length = a.lent_@ . length;
deleta nama;
nameE = new artength+l]; A4 dynamie allocacion
sLropy (name, mame) ;
sErcAaL (nam®, b.nameé} ;
I r
ine r':..'|5-_n|::|
i
char *first = "Josaph ";
Straing namel (first), named (“Louis "), name3d (“Lagranga”).
5l, 52}
§1.joini{namel, nam=2);
52.join{sl, nama3);
namsl.display (]
nam=2 .display(} s
nam=3.displayi{]
gl.displayi{];
sd .display{];
return O

GANESH Y, Dept. of ECE RNSIT

Output
Joseph

Louis

Lagrange

Joseph Louis

Joseph Louis Lagrange

This Program uses two constructors. The first is an empty constructor that allows us to
declare an array of strings. The second constructor initializes the length of the string,
allocates necessary space for the string to be stored and creates the string itself. Note that
one additional character space is allocated to hold the end-of-string character '\0'.

The member function join() concatenates two strings. It estimates the combined
length of the strings to be joined, allocates memory for the combined string and then
creates the same using the string functions strcpy() and strcat().

Note that in the function join(), length and name are mgmbers of the object that calls
the function, while a.length and a.name are members @argument object a.

The main() function program concatenates thr rings into one string. The output
is as shown below: Q

Joseph Louis Lagrange

CONSTRUCTING TWO-DI AL ARRAYS

The following illustrates how to c ct a matrix of size m X n.

finclude <ioatream:>
uaing namespace std
class matrix O
{
int **p; ff pointer to matrix
Iy

int dl,d2 dimensions
public:
matrix(int =, ink v);
void gat element{int i, int j, int value)
(plil [§]=value;}]
int & put_element{int i, int J)
[retuen pli]l [3):)
b
matrix i: matrix(int 2, int ¥

{

dl =

d2 = g

p = new int *[dl]; M) creates an array po
for(fint i = 0 1 < dl; i++]

p['.j = pnaw iLnkfdd] H creates S e for sach row

GANESH Y, Dept. of ECE RNSIT

int maini}

[

ink m; my

cout << “Enter size of matrix:

cin Frxm >> ni
matrisx Aim,n);

L
¢

f matrix sbhiect A constructed

cout << YEnter matrix elements row by row \n";

int i, J, walue;

for{i = 07 3 < my 3++)

for(i = 6; 3 < n;
[
cin »>» value;

A.get element{i,],value);

]

coaut < "h\Avs

cout << A.put element (1,2):

raturn 0;

| 3
Output

Enter size of matrix: 3 4

Enter matrix elements row by row

11 12 13 14
15 16 17 18
19 20 21 22
17

17 is

The constructor first creates a
iteratively an int type vectogef

pointer to an int of size d1 . Then, it allocates,
pointed at by each element p[i].

d2 columns
2 3

Pointer P [0] ——»

Pointer P [1]

Pointer P [2] ———»

Pointer P [3] ——

x represents the element P[2] [3]

Thus, space for the elements of a d1 x d2 matrix is allocated from free store as shown

above.

GANESH Y, Dept. of ECE RNSIT

const OBJECTS

We may create and use constant objects using const keyword before object
declaration. For example, we may create X as a constant object of the class matrix as
follows:

const matrix X(m, n) ; // object X is constant

Any attempt to modify the values of m and n will generate compile-time error. Further,
a constant object can call only const member functions.

As we know, a const member is a function prototype or function definition where the
keyword const appears after the function's signature. Whenever const objects try to
invoke nonconst member functions, the compiler generates errors.

DESTRUCTORS

A destructor, as the name implies, is used to destroy;heﬁs that have been created
by a constructor. Like a constructor, the destructor i ber function whose name
is the same as the class name but is preceded by ¥ de,).

For example, the destructor for the class intgg @" pe defined as shown below:

~integer () { }

A destructor never takes any argumg
implicitly by the compiler upon exi
may be) to clean up storage thdft isnefonger accessible.

Itis a good practice to de tructors in a program since it releases memory space
for future use.

Whenever new is us&lelocate memory in the constructors, we should use delete
to free that memory. For example, the destructor for the matrix class discussed above
may be defined as follows:

matrix :: ~matrix()
{
for(int i=0; i<dl ; i++)
delete p[i];
delete p;
}
This is required because when the pointers to objects go out of scope, a destructor is
not called implicitly.

The example below illustrates that the destructor has been invoked implicitly by the
compiler.

GANESH Y, Dept. of ECE RNSIT

ginclude<ioscream>
us1ing namespace std;
int count=0;
class test
{
public:
test ()
{
countt+;
cout<<*\n\nConstructor Msg: Object number “<<count<<
“created..”;

|
~test ()

[
cout<<*\n\nDestructor Msg: Object nurher@l”l“{“
destroved..”; \

count--; *
|

I

int main{)

{

tast Tl
[[/Black 1

-y

tast T2,T3;

cout<<™\n\nleaving Block 1..%;
I
cout<<"\n\nBack inside the main block..”;
return 0;
|

Inside the main block ..
Creating first object T1 ..
Constructor Msg: Object number 1 created ..

Inside Block 1 ..

Creating two more objects T2 and T3 .
Constructor Msg: Object number 2 created ..
Constructor Msg: Object number 3 created

GANESH Y, Dept. of ECE RNSIT

Leaving Block 1 ..

Destructor Msg: Object number 3 destroyed .
Destructor Msg : Object number 2 destroyed.
Back inside the main block .

Destructor Msg: Object number 1 destroyed .

A class constructor is called every time an object is created. Similarly, as the program
control leaves the current block the objects in the block start getting destroyed and
destructors are called for each one of them.

Note that the objects are destroyed in the reverse order of their creation. Finally, when
the main block is exited, destructors are called corresponding to the remaining objects
present inside main.

Similar functionality can be attained by using static data members with
constructors and destructors. We can declare a smgic teger variable countinside a
tions.

class to keep a track of the number of its object instan

Being static, the variable will be initialized onl e .g., when the first object instance
is created. During all subsequent object crg the constructor will increment the
count variable by one. Similarly, the d or will decrement the count variable by
one as and when an object gets destr

To realize this scenario, the code owing program will change slightly, as shown

#include <ios#
using names
class te
{
private:
static int count=0;
public :
}
test ()

{
}
~test ()
{

}

count++;

count--;

The primary use of destructors is in freeing up the memory reserved by the object
before it gets destroyed. Program shown below demonstrates how a destructor releases
the memory allocated to an object:

GANESH Y, Dept. of ECE RNSIT

#include<iostream>
finclude<conio.h>
Using namespace std;
class test
{
int *®a;
public:
test (int slze)
1
a = new 1lnt[size]:
cout<<"\ni\nConstructor Msg: Integer array of size “<<glgze<<™
created..”;
|
~kask)
1
delete a;
cout<<*\n\nlestructor Msg: Freed ug® phimemry allocated for
integer array®;
L 2
i
int maini)
{
int =;
cout<<*Enter the size
CLM»>s5;

cout<<"“\n\nCreatin ject of test class..”;
test Ti{s): &
EE'JL{'{""‘I'I,H"._D?‘_"_ key to end the program..”;
getchi};
return 0;

Output

Enter the size of the array .. 5

Creating an object of test class.

Constructor Msg: Integer array of sizes created

Press any key to end the program

Destructor Msg: Freed up the memory allocated for integer array

GANESH Y, Dept. of ECE RNSIT

Operator Overloading

C++ tries to make the user-defined data types behave in much the same way as the
built-in types. For instance, C++ permits us to add two variables of user-defined types
with the same syntax that is applied to the basic types.

This means that C++ has the ability to provide the operators with a special meaning for
a data type. The mechanism of giving such special meanings to an operator is known
as operator overloading.

Operator overloading provides a flexible option for the creation of new definitions for
most of the C++ operators. We can overload (give additional meaning to) all the C++
operators except the following:

e Class member access operators (., .*)
e Scope resolution operator (::)

* Size operator (sizeof)

 Conditional operator (?:)

g

The reason why we cannot overload these op ay be attributed to the fact that

these operators take names (example clasg e as their operand instead of values,

DEFINING OPERATOR OVERLOADING

The general form of an operator function is:
return_type classname :: operator op (arglist)

{
}

To define an additional task to an operator, we must specify what it means in relationto
the class to which the operator is applied.

Function body // task defined

This is done with the help of a special function, called operator function, which
describes the task.

GANESH Y, Dept. of ECE RNSIT

where return type is the type of value returned by the specified operation and op is
the operator being overloaded. operator op is the function name, where operator is a
keyword.

Operator functions must be either member functions (non-static) or friend functions.
A basic difference between them is that a friend function will have only one argument
for unary operators and two for binary operators, while a member function has no
arguments for unary operators and only one for binary operators.

This is because the object used to invoke the member function is passed implicitly and
therefore is available for the member function. This is not the case with friend
functions.

vector operator+ (vector); // vector addition
vector operator- (); // unary minus
friend vector operator+ (vector,vector); // vector addition

friend vector operator- (vector); / ary minus
vector operator-(vector &a); * straction
int operator==(vector); / ®omparison

friend int operator==(vector,vector); comparison

vector is a data type of class and may repr; magnitude and direction (as in
physics and engineering) or a series of poits d elements (as in mathematics).

The process of overloading involves wing steps:

1. Create a class that defines th type that is to be used in the overloading
operation.

2. Declare the operator fu erator op() in the public part of the class. It may
be either a member funct friend function.

3. Define the operatogfu to implement the required operations.

Overloaded operator furtctions can be invoked by expressions such as

op X or X op

for unary operators and

X opy

for binary operators. op x (or x op) would be interpreted as
operator op (x)

for friend functions.

Similarly, the expression x op y would be interpreted as either
x.operator op (y)

in case of member functions, or

operator op (Xx,y)

GANESH Y, Dept. of ECE RNSIT

in case of friend functions. When both the forms are declared, standard argument
matching is applied to resolve any ambiguity.

OVERLOADING UNARY OPERATORS

Let us consider the unary minus operator. A minus operator when used as a unary,
takes just one operand. We know that this operator changes the sign of an operand
when applied to a basic data item.

We will see here how to overload this operator so that it can be applied to an object in
much the same way as is applied to an int or float variable. The unary minus when
applied to an object should change the sign of each of its data items.

finclude <iostreams
using namespace std;

class space

1
iRt x;
int w;
int 2}

public:

vold getdata(int a, int b
vold display(vaid];

'

vold operator-(}; { owverlocad unary minus

¥

vold space :: getdatﬂ‘& 1t b, ink o)

vold space :: display(void)
1
coubL<s K = TLCR4EY)
coub<e®y = "agyge™ M
coptadtz = "IdgcdMin;
]

vold space :: operator-()

=¥:
_':rlll

=T

inkt maindi)

GANESH Y, Dept. of ECE RNSIT

space 5}

S.getdata {10, =20, 30};

ooUuEL << T8s. ¢ 3

S.displayil;

-5 !/ activakes npl"T.1|i:l._-l::l funckion
SOUL L =8 B

S.cdiasplay) :

return 0
|

Output
S:x=10y=-20 Z=30
-S:x=-10y=20 Z=-30

The function operator - () takes no argument. Theg, v@es this operator function
do? It changes the sign of data members of the objectx e this function is a member

function of the same class, it can directly access the s of the object which activated
it.

Remember, a statement like

S2=-S1;

will not work because, the functi rator-() does not return any value. It can work
if the function is modified to re

It is possible to overload xminus operator using a friend function as follows:

friend veid ator-(space &s);// declaration
void operdgor- (space &s)// definition

- S.X;

Note that the argument is passed by reference. It will not work if we pass argument by
value because only a copy of the object that activated the call is passed to operator-().
Therefore, the changes made inside the operator function will not reflect in the called
object.

OVERLOADING BINARY OPERATORS

we illustrated, how to add two complex numbers using a friend function. A statement
like

sum (A,B) ; // functional notation.

GANESH Y, Dept. of ECE RNSIT

was used. The functional notation can be replaced by a natural

looking expression

C = A+B; //arithmetic notation

by overloading the + operator using an operator+() function. The Program shown
below illustrates how this is accomplished.

finclude <lostrsam?
using namespace std)

class complex

i
Eloat x; /) real part
Fioat v; fr o imaginary part

public:

complex{]{ | /i constr Il
complex (float real, float imag) /f/f 1 2
{ x = real; y = imag; |}
complex operator+(complex);
wold displav(voild)

L

complex complex i1: operator+i{cor -%I
i

complex temp; A temporary
temp.X = % + C.X; !l these are

temp.y¥ = ¥ + c.¥; /S Flpat additions

ekt sl 4 \
]
F

vold complex :: @
{

cout << X <<

)

int maini)

{
complex Cil, €2, C3r /7 invokes constructor
Cl = complexi{z2.%, 3.5); fF invokes constructor
Cd = complex(l.6, 2.7);
C3w]l + C2;

cout << 7 Cl.display():
cout << “C: ; C2.displayi);

cout << ™ *: C3.displayi);

raturn UJ

GANESH Y, Dept. of ECE RNSIT

Output

C1= 2.5 +j3.5
C2=1.6 +j2.7
C3=4.1+i6.2

Let us have a close look at the function operator +() and see how the operator
overloading is implemented.

complex complex:: operator+(complex c)
{

complex temp;

temp.x X + C.X;

temp.y =y + c.y;
return (temp);

}

We should note the following features of this function:

1. It receives only one complex type argument explécitQ

2. It returns a complex type value.

3. Itis a member function of complex.

The function is expected to add two comggtexvalues and return a complex value as the
ent. Where does the other value come from?

We know that a member fa on can .be invoked only by an object of the same class.
% esponsibility of invoking the function and C2 plays the

Here, the object C1 ta h
role of an argument that iS\passed to the function. The above invocation statement is
equivalent to

C3 = Cl.operator+(C2); // usual function call syntax

Therefore, in the operator+() function, the data members of C1 are accessed directly
and the data members of C2 (thatis passed as an argument) are accessed using the dot
operator. Thus, both the objects are available for the function. For example, in the
statement

temp.Xx = X + C.X;
cx refers to the object C2 and x refers to the object C1. temp.x is the real part of temp
that has been created specially to hold the results of addition of C1 and C2. The function
returns the complex temp to be assigned to C3. Figure below shows how this is
implemented.

GANESH Y, Dept. of ECE RNSIT

complex operator + (complex ¢€)
{

compiex temg .

\

L

cy

return (temp) .

ca

.
410 x|
620 vy |
|

-

Fig. Implementati overloded + operator

As a rule, in overloading of binary o , the left-hand operand is used to invoke
the operator function and the righ perand is passed as an argument.

We can avoid the creation o object by replacing the entire function body by
the following statement:

return co X+c.x), (y+c-y)); // invokes constructor 2
What does it mean n we use a class name with an argument list? When the
compiler comes across a statement like this, it invokes an appropriate constructor,
initializes an object with no name and returns the contents for copying into an object.

Such an object is called a temporary object and goes out of space as soon as the
contents are assigned to another object. Using temporary objects can make the code
shorter, more efficient and better to read.

GANESH Y, Dept. of ECE RNSIT

OVERLOADING BINARY OPERATORS USING FRIENDS

As stated earlier, friend functions may be used in the place of member functions for
overloading a binary operator, the only difference being that a friend function requires
two arguments to be explicitly passed to it, while a member function requires only one.

The complex number program discussed in the previous section can be modified using
a friend operator function as follows:

1. Replace the member function declaration by the friend function declaration.

friend complex operator+(complex , complex);

2. Redefine the operator function as follows:

complex operator +(complex a , complex b)

{

return complex ((a.x + b.x), (a. b.y));
} . Q
In this case, the statement \

C3 = C1+ C2 TS

is equivalent to

C3 = operator +(C1 , C2); &

In most cases, we will get the same s Dy the use of either a friend function or a
member function. Why then an aj e is made available? There are certain
situations where we would like to riend function rather than a member function.

For instance, consider a situati e we need to use two different types of operands
for a binary operator, say, object and another a built-in type data as shown
below,

A=B+2;(or‘A=Q;)

where A and B are objects of the same class. This will work for a member function but
the statement

A=2+B; (orA=2%*B)

will not work. This is because the left-hand operand which is responsible for invoking
the member function should be an object of the same class. However, friend function
allows both approaches. How?

It may be recalled that an object need not be used to invoke a friend function but can
be passed as an argument. Thus, we can use a friend function with a built-in type data
as the left-hand operand and an object as the right-hand operand.

Program shown below illustrates this, using scalar multiplication of a vector. It also
shows how to overload the input and output operators >> and <<.

GANESH Y, Dept. of ECE RNSIT

Finclude <icstream.h>

const S1ze

class vector

i
int v[size]:

public:
wector () !/ constructs noll vector
vunLnr[inl LT fl conszeruces veckor From arrai
friend weckbor operator *(int a, vecter b); ff Ffriend 1
friend vecteor operatoar *(vector b, int a); M/ friend 2
friend istream & operatar >» (latream &, wector &};
friend ostream & operator << (ostream &, vector &};

vestor 131 vectori)
{

far{int i=-0; i<size; 1+4)
wli] = 0:

vector operator *{int a, w=acto
i

YBECEOE ©F

fori{int i=0;
c.wi]
rafurn o<;f

yashor aperatorn L3 | ctar h, 1ot &)
{
vactor of

for(int 21=0; i1<sgiza; 1i++}
S.v[i] = b.v[1] * a;
raturn ocp
I

istream & operator »>»> {istream Ldin, wector Eb)

{
forifint 1=0; i<sl1iza; 1++}
din >> p.v[1];
return (ding »

GANESH Y, Dept. of ECE RNSIT

shraam & oparator << (ostream &dout, veobor &)

dout €€ "™ <€ b.v [U];

forf{int i=1; i<size; 1it++]
dout << ™, * << b.w[1}:

dout << 7]V

return {dout) ;

i
int x[size] = [2,4,6);

int maint)
|

vector my ff Invokes constructor |
vaector o o= X; {f invekes constructor 2

wh o
d

cout << "Enker elamenb=s of vector m ™ <£<£ [Rl

cin > mi o invakes r,:lF'.'-r-r:'.r.it-::-r}}.g'I:' funcedon
cout << "wn';
cout << “m o= T <& ! invokes OREa tor <)

vector p. g/
P =2 * m;

g =n * 2;
cout << "ha';

couL €< "p =
cout < g = Y <4 g

return 0;

Output

Enter elements of vector
51015

m = (5,10, 15)
p=(10,20,30)
q=(4,8,12)

The program overloads the operator * two times, thus overloading the operator
function operator®*() itself. In both the cases, the functions are explicitly passed two
arguments and they are invoked like any other overloaded function, based on the types
of its arguments. This enables us to use both the forms of scalar multiplication such as

p=2%*m; // equivalent to p = operator*(2, m) ;
g=n*2; // equivalent to q = operator* (n ,2) ;
The program and its output are largely self-explanatory. The first constructor

vector() ;

constructs a vector whose elements are all zero. Thus

GANESH Y, Dept. of ECE RNSIT

vector m;
creates a vector m and initializes all its elements to 0. The second constructor
vector (int &x);

creates a vector and copies the elelnents pointed to by the pointer argument x into it.
Therefore, the statements

int x [3] = {2,4,6};
vector n = x;

create n as a vector with colnponents 2, 4, and 6.

We have used vector variables like m and n in input and output statements just like simple
variables. This has been made possible by overloading the operators >> and << using the

functions:

friend istream & operator >> (istream Qor‘ &) ;

friend ostream & operator << (ostream ctor &) ;
istream and ostream are classes defined in the i apt.h file which has been included
in the program.

MANIPULATION OF STRING OPERATORS

Although these limitations exist i well, it permits us to create our own
definitions of operators that can d to manipulate the strings very much similar
to the decimal numbers. (Rece [C++ committee has added a new class called
string to the C++ class librag t pports all kinds of string manipulations.

For example, we shall b o use statements like

string3 gl + string2;
if(stringl string2) string = stringl;

Strings can be defined as class objects which can be then manipulated like the built-in
types. Since the strings vary greatly in size, we use new to allocate memory for each
string and a pointer variable to point to the string array.

Thus we must create string objects that can hold these two pieces of information,
namely, length and location which are necessary for string manipulations. A typical
string class will look as follows:

GANESH Y, Dept. of ECE RNSIT

class string

{

char *p ; //pointer to string
int len ; // length of string

// member functions
// to initialize and
// manipulate strings

We shall consider an example to illustrate the application of overloaded operators to
strings. The example shown below overloads two operators, + and <= just to show how
they are implemented. This can be extended to cover other operators as well.

#include <string.h>

finclude <lostream.h>

class string
["NN‘

char *p;
int len; ¢
public:

string{} {(len = 0y p =0} Ergate null string
string{const char * s); 3 reate string from arrays
string{const string & 3); {f copy constructor

~ atring() {delets p;} /! destructor

ff + operator

friend string DFE& anst string &is, const string &t):

friend woid oWYconst string s}

// <= operater Q
friend int Q t={gonst string &8, const string &t);

¥
steing :: stringlconst sharc *s)
{

len = strlen(s};

p = new char[len+l};

strepyip, s):

string :: string{const string & s)

len = 3. len;
P = new charlent+l];
strepyvip, 5.0} ;

GANESH Y, Dept. of ECE RNSIT

/f overloading + operator

string operator+{const string &=, const string E&t)
string temp;
temp.len = =.len + t.len;
temp.p = new char[temp.lentl];
strcpyitemp.p:5.P) ¢
strcat (temp.p.t.p};
raturn (temp) ;

ff overloading <= operator

int operator<=(const string &s, const string &t}
int m = strlen{s.p):
int n = strlen{t.p):

ifim <= n}) return{l);

else returnil);

void show (const string s)

d

cout << 5.p; \\

int main{)

7]

ring

tn I I
T T T [T
[PO T . Y B
#ro
=]
Ja]

T

5l%=s3;

"wnstringl = *; show({stringl);
““nstring?2 = “; show{atring2);
et IR
““nstring3d = "; show(string3);
"\n\n";
1f{stringl <= stringd)
{
show (stringl);
cout << ™ gmaller than “;
show (stringd);

GANESH Y, Dept. of ECE RNSIT

cout << *\n";
1

i
else
|
show (string3d);
cout << * smaller than *;
show {stringl):
cout <C "\n¥;
b

return 0;

output

stringl = New

string?2 = York

string3 = New Delhi

New smaller than New Delhi

e
QO

GANESH Y, Dept. of ECE RNSIT

Chapter 6

Review Questions

1. They should be declared in the public section.

2. They areinvoked automatically when the objects are created.
3. They do not have return type, not even void.

4. They cannot be inherited.

5. Like other C++ functions, they can have default arguments.
6. Constructors cannot be virtual .

6.4: What isa parameterized constructor ?
Ans.The constructors that can take arguments are called parameterized constructors.

6.5 Can we have morethan one constructorsin a class? If yes, explain the need for such a
situation.

*

twe ave to do this.

6.6: What do you mean by dynamic initializati \ jiects? Why do we need to this?

AnsY es, we have when we need to overload the construct

Ans:Initializing value of object during ru
One advantage of dynamic initializati
using overloaded constructors.

led dynamic initialization of objects.
e can provide various initialization formats

6.7: How isdynamic initi |0M"Of objects achieved?

Ans.Appropriate fufigtion'@f a object isinvoked during run-time and thus dynamic initialization
of object is achieved.

Consider following constructor:

santo (int p, int g, float r);

santo (int p, int g, int r);

It two int type value and one float type value are passed then sant (int p, int g, float r) isinvoked.
It three int type value are passed then santo (int p, into g, int r) isinvoked.

6.8: Distinguish between the following two statements:
time T2(T1);

timeT2=T1;

T1 and T2 are objects of time class.

Ans:
time T2 (T1); ==> explicitly called of copy constructor
time T2 =T1; ==>implicitly called of copy constructor.

6.9: Describetheimportance of destructors.
Ans.Dedtructors are important to rel ease memory space for future use.

6.10: Statewhether the following statementsare TRUE or FAL SE.

(a) Constructors, like other member functions, can be declared anywhere in the class.
(b) Constructors do not return any values.

(c) A congtructor that accepts no parameter is known as the default constructor.

(d) A class should have at least one constructor.

(e) Destructors never take any argument.

Ans.

(a) FALSE
(b) TRUE
(c) TRUE
(d) TRUE
(e) TRUE

1 #include <iostream.h>
2 class Room

1 O
4

5 intlength;

6 int width;

7

8

9

public:
Room(int 1, int w=0):
width(w),
10 length(1)
11 {
12 }
13};
14void main()
15{
16Room objRooml;
17Room objRoom2(12, 8);
18}
191
20</br>
21<gpan class="4d">Solution:Here there is no default constructor, so object could not be
22written without any argument.

23Correction :

241

25 Voidmain ()

26 {

27 Room Objroom2(12,8);

}.

6.2: ldentify theerror in thefollowing program.

1 #include <iostream.h>
2 class Room
31

4
5 int length;

6 int width; ¢

7 public: \

8 Room()
9 { L 2
10 length=0;

11 width=0; 2
12 }
13Room(int value=8)

14 {

15 length = width =8;
16 }

17void display()

18 {

19 cout<<length<<"'
20}

21}; Q
22void main()
23{

24Room objRooml;
250bj RoomL.display();

Solution:Room() and Room(int value=8) Functions are same, so it show Ambiguity error.
Correction : Erase Room() function and then error will not show.

6.3: ldentify theerror in thefollowing program.

1 #include <iostream.h>
2 class Room

3{

4 int width;

5 int height;

6 public:
7 void Room()

8 {

9 width=12;
10 height=8;
11 }
12Room(Room& r)
13 {

14 width =r.width;

15 height=r.height;

16 copyConsCount++;

17 }

18void discopyConsCount()
19 {

20 cout<<copyConsCount;

21}
22}; *
23int Room::copyConsCount = 0; \

24void main()

25(.
26Room objRooml;

27Room objroom2(objRooml); y

28Room objRoom3 = objRoom1; \

29Room objRoom4;

300bjRoom4 = objRoom3;
31objRoom4.dicopyConsCount();
32}

run.

Solution: Just erase “obijoomS; invalid to call copy constructor.” for successfully

6.4: Identify theerror in thefollowing program.

1 #include <iostream.h>
2 classRoom

34

4 int width;

5 int height;

6 static int copyConsCount;
7 public:

8 void Room()

9 {

10 width=12;

11 height=8;

12 }

13Room(Room& r)

14 {

15 width =r.width;

16 height=r.height;

17 copyConsCount++;

18 }

19void discopyConsCount()

20 {

21 cout<<copyConsCount;
22 '}

23},

24int Room::copyConsCount = 0;
25void main()

26{

27Room objRooml;

28Room objroom2(objRoom1);
29Room objRoom3 = objRoom1;
30Room objRoom4;

31objRoom4 = objRoom3;
320bj Roomd. dicopyConsCount():; . Q
33) \

L 2
Solution: Same as 6.3 problem sol ution. &

Programming E

6.1: Design constructorsfar th designed in Programming Exercise 5.1 through 5.5
of Chapter 5. KK

Solution: Study on €on and then see solution of chapter 5.

6.2: Defineaclass String that could work as a user-defined string type. Include
constructorsthat will enable usto create an uninitialized string:

String s1; // string with length O

And also initialize an object with a string constant at the time of creation like
String s2(“Well done!”);

Include afunction that adds two strings to make a third string. Note that the statement
S2 =sl;

will be perfectly reasonable expression to copy one string to another.

Write a complete program to test your class to see that it does the following tasks:
(a) Creates uninitialized string objects.

(b) Creates objects with string constants.

(c) Concatenates two strings properly.

(d) Displays adesired string object.

Solution:

1 #include

2 #include

3 classstring

4 {

5 char *dtr;

6 int length;

7

8 public:

9 string()

10{

1llength = Q;

12str = new char [length + 1] ;
13}

14string(char *s);

15void concat(string & amp;m,string &n);
16string(string & amp;X);
17void display();

18

19}; 2
20string::string(string & amp;X) &
21

22length = x.length + strlen(x.str);
23str = new char[length + 1];
24strepy(str, X.str);

25

26}

27void string:: concat(stri string & amp;n)
28{

29length=m.length+

30delete str;

3lstr=new char[length
32strepy(str,m.str);
33streat(str,n.str);

34}

35void string:: display()

36{
37cout&It;&It;str&It; & It;"\n";
38}

39string::string(char *s)

40{

41length = strlen(s);

42str = new char[length + 1];
43strepy(str,s);

44}

45

46int main()

47

48string s1;

49string s2(*" Well done");
50string s3(" Badly done");
51s2.display();
52sl.concat(s2,s3);
53s2=s3;

54s2.display();

55s1.display();
56return O;

57}
output
Well done

Badly done
Well done Badly done

*

%g sold at the shop. Thelist

position. Whenever a
author and the system sear ches
iS not, an appropriate messageis

6.3: A book shop maintainstheinventory of booksth
includes details such as author, title, price, publisher
customer wants a book, the sales person inputst

displayed. If it is, then the system display
copiesrequired. If thereguested copiesigef)
displayed; otherwise “Required copiegy ock” is displayed.

Design a system using a class called8okstith suitable member functions and constructors.

ate memory space required.
Solution: 0\
#include Q

#include
#include
#include
#include

class book

{

char **author;
10 char **title;

11 float *price;

12 char **publisher;
13 int *stock_copy;
14 int size

15

16 public:

17 book();

18 void book_detail(int i);
19 void buy(int i);

OCoO~NOUITAWNPEF

20 int search();

21 };

22

23 book :: book()

24 {

25 size=4;

26 author=new char*[80];
27 title=new char*[80];

28 publisher=new char*[80];
29

30 for(int i=0;i&It;size;i++)
31 {

32 author[i]=new char[80];
33 titlgfi]=new char[80];

34 publisher[i]l=new char[80];

35}

36 stock_copy=new int[size]; . Q
37 price=new float[size];

38 \

39 titlg[0]="object oriented programming with c++";
40 titleg/1]="programming in ANCI";
41 titleg[2]="electronic circuit theory"; y

42 title[3]="computer algorithm"; &
43

44 author[0]="baagurusamy";

45 author[1]="baagurusamy";

46 author[2]="boyelstade";

47 author[3]="shahani";

48

49 stock_copy[0]=200; \
50 stock copy[1]=150;

51 stock copy[2]=5

52 stock _copy[3]=86;

53

54 price[0]=120.5;

55 price[1]=115.75;

56 price[2]=140;

57 price[3]=180.5;

58

59 }

60 void book::book_detail(int i)

61 {

62 COUt&It;&It;" *¥********hook detail **********\n"

63 cout&It;&It;setw(12)& It; & It;" Title" & It; & It;setw(25) & It; & It;" Author Name"

64 &It;&It;setw(18)& It;&It;" Stock copy\n”;

65 cout<&It;setw(15)& It; & It;titlefi] & It; & It; setw(16) & It; & It;author[i] & It; & It; setw(15)
66 &It;&It;stock _copy[i]&It;&It;"\n";

67

68 }

69 int book::search()

70 {

71 char name[80],t[80];

72 cout<&It;" Enter author name: ";
73

74 gets(name);

75 cout&It;&It;"and title of book in small letter ; *;
76 gets(t);

77

78 int count=-1;

79 int a,b;

80 for(int i=0;i&It;sizeji++)

81 {

82

83 a=strcmp(name,authorfi]);

84 b=strcmp(t.titl€i]);

85 if(a==0 & amp;& b==0)

86
87 count=i; .
838 \

89 }
90 TS
91 return count;

92 } y
93 \
94 void book::buy(int i)

95 {

96 if(i&It;0)

97 cout<&It;" Thisbook is not
98

99 else

100{
101book_detail(i);
102cout<&It;" Ho
103int remaining_c
104if(copy&It;=stock |
105{
106remaining_copy=stock_copy[i]-copy;

107float total_price;

108total_price=price[i]* copy;

109cout& It;&It;" Total price = "&It;&It;total_price&It;&It;" TK\n";
110}

111else

112cout& It;&It;" Sorry your required copiesis not available \n";
113}

114}

115

116int main()

117{

118book b1;

119int result;

120

121result=bl.search();

122b1.buy(result);
123return O;
124}

output
Enter author name : shahani
and title of book in small latter : computer algorithm

*********book detall kkkkkkhkkk*k

Title Author Name Stock copy

computer algorithm shahani 80

How many copies of thisbook isrequired: ? 78 ¢ Q
Total price= 14079 TK §

PH.3 tQjincorporate the following features:
(a) The price of the books should be up@ted'as and when required. Use a private member

completed.
(c) The number of successf gtindliccessful transactions should berecorded for the
purpose of statistical analysiShUseStatic data membersto keep count of transactions.

Solution: Q

#include
#include
#include
#include
#include

class book

{

static int successful ,unsuccessful;
10 char **author;

11 char **title

12 float *price;

13 char **publisher;

14 int *stock_copy;

15 int size

©CoOoO~NO UL~ WNPEF

17 public:

18 book();

19 void book_detail(int i);
20 void buy(int i);

21 int search();

22 void showtransaction();
23 void showdetail();

24 void edit_price();
25}

26 int book::successful=0;
27 int book::unsuccessful=0;
28

29 book :: book()

30 {

31 size=5;

32 author=new char*[80];

33 title=new char*[80];
34 publisher=new char*[80); . Q
35 \

36 for(int i=0;i&It;sizeji++)
37 { ¢
38 author[i]=new char[80];

39 titlgfi]=new char[80]; y
40 publisher[i]=new char[80]; \
41 }

42 stock copy=new int[siz€];

43

44 price=new float[siz€];
45

46 titlef0]="object oriented
47 title[1]="programming
48 titleg/2]="electronic ci
49 title[3]="computera :
50 title[4]="compl &e solttion of balagurusamy(c++)";
51
52 author[0]="ba agurusamy";
53 author[1]="ba agurusamy";
54 author[2]="boyelstade";
55 author[3]="shahani";

56 author[4]="abdus sattar";
57

58 stock_copy[0]=200;

59 stock_copy[1]=150;

60 stock copy[2]=50;

61 stock copy[3]=80;

62 stock_copy[4]=300;

63

64 price[0]=120.5;

65 price[1]=115.75;

66 price[2]=140;

67 price3]=180.5;

68 price[4]=120;

g with c++";

aWA’

69

70 }

71

72 void book::book_detail(int i)

73 {

74 COUt&It;&It;" ********xphook detail **********\n":

75 cout<&It;setw(25)&It; & It " Title" & It; & It; setw(30) & It; & It;" Author Name"
76 &It;&It;setw(18)& It;&It;" Stock copy\n”;

77 cout<<setw(15)& It; & Ittitlefi] & It; & It; setw(16) & It; & It;author[i] & It; & It; setw(15)
78 <&It;stock_copy[i]&It;&It;"\n";

79

80 }

81

82 int book::search()

83 {

84 char name[80],t[80];
85 cout&It;&It;"Enter author namein small letter : "; . Q
86 gets(name);
87 cout&It;&It;" title of book in small letter : "; \

88 gets(t); TS
89

90 int count=-1; .
91 intab; \
92 for(int i=0;i&It;size;i++)

93 {

94

95 a=strcmp(name,authorf(i]);
96 b=strcmp(t.titl€i]);

97 if(a==0 && b==0)
98 &
99 count=i;

100

101}

102

103return count;

104}

105

106void book::buy(int i)

107{

108if(i&It;0)

109{

110cout& It;&It;" Thisbook is not available \n";
111unsuccessful ++;

112}

113

114else

115{

116book_detail(i);

117cout&It;&It;" How many copies of this book isrequired : ?"; int copy; cin>>copy;
118

119if(copy& It;=stock_copyl[i])

120{

121stock_copy[i]=stock_copyl[i]-copy;

122float tota _price;

123total_price=priceli]* copy;

124cout&It;&It;" Tota price ="&It;&It;total_price&It;&It;" TK\n";
125successful++;

126}

127else

128{

129cout& It;&It;" Sorry your required copiesis not available \n";
130unsuccessful++;

131}

132}

133}

134

135void book::edit_price()
136{ .
137cout&It;&It;" To edit price"; \

138int i;
139i=search(); TS
140cout& It;&It;"Enter new price: "; float p; cin>

141price|i]=p; :
142} ’
143void book::showdetail () ’

144
145cout& It; & It;setw(22) & It; & It; " Titl
146&1t;&1t;" Price per book "&It;&|
147for(int i=0;i&It;size;i++)

148{

149cout& It; & It; setw(35) & Lis& Tt <&It;setw(10)& It; & It;stock_copyli]
150&It;&|t;setw(18)&|t; <:<end;

151}

152}

153void book::showtr ion()

154

155cout& It; & It;setw(22) & It; & It;" Successful transaction” & It; & It;setw(34)
156&It;&It;" unsuccessful transaction "&It; & It;endl & It; & It; setw(10)
157&It;& It;successful & It; & It;setw(32) & It; & It;unsuccessful & It; & It;endl;
158}

159

160int main()

161{

162book b1,

163int result;

164

165result=b1.search();

166b1.buy(result);

167b1.showdetail();

168b1.showtransaction();

169b1.edit_price();

170cout&It; & It;"********x*** detaj|s after edit price

171*****************"<& |t;end|;
172b1.showdetail();

173

174return O,

175}

output
Enter author namein small letter : abdus sattar

title of book in small letter : complete solution of balagurusamy(c++)

*********book detall kkkkkkkhkkk*k

Title Author Name Stock copy
complete solution of balagurusamy(c++) abdus sattar * 3\
How many copies of this book isrequired : ? 100 *

Tota price= 12000 TK

Title stock co KPrice per book

120.5

object oriented programming with c++

programming in ANCI 115.75

electronic circuit theory & 140

computer algorithm 0 180.5
complete solution of balagurusamy(c++) 200 120
Successful transaction unsuccessful transaction
1 0

To edit price Enter author name in small letter : shahani
title of book in small letter : computer algorithm

Enter new price: 200

*rEHEEA KK et]S after edit PriOEHHHHHHF KRR KRk

Title stock copy Price per book

object oriented programming with c++ 200 120.5

programming in ANCI 150 115.75

electronic circuit theory 50 140

computer algorithm 80 200

complete solution of balagurusamy(c++) 200 120
Chapter 7

Review Questions

7.1: What is operator overloading?

Ans. We can amost create a new |ail
operator overloading techniques. '

2gelof our own by the creative use of the function and

7.3: What isan oper ion? Describe the syntax of an operator function.

Ans. To define an additional task to an operator, we must specify what it meansin relation to the
class to which the operator is applied. By which function thisis done, is called operator function.
Syntax of operator function:

return type class name : : operator OP (argument list)

{
function body // task defined
}

7.4: How many argumentsarerequired in the definition of an overloaded unary operator?

Ans. No arguments are required.

7.5. A classalpha hasa constructor asfollows:
alpha(int a, double b);
Can we usethis constructor to convert types?

Ans. No. The constructors used for the type conversion take a single argument whose type isto
be converted.

7.6: What isa conversion function How isit created Explain its syntax.

Ans. C++ alows usto define an overloaded casting operator that could be used to convert a class
type datato abasic type. Thisisreferred to conversion function.

Syntax:
Operator type name () . Q
{ \

(Function Statements)
} .

7.7. A friend function cannot be used t@,g¥ &heassignment operator =. Explain why?

Ans: A friend function is a non-membe tion of the classto which it has been defined as
friend. Thereforeit just usesthe f @ opality (functions and data) of the class. So it does not

consist the implementation h3 8. That’s why it cannot be used to overload the assignment
operator. O
7.8. When isafrie@ion compulsory? Give an example.

Ans. When we need to use two different types of operands for a binary operator, then we must
use friend function.

Example:

A=B+2

or

A=B* 2

isvalid

ButA=2+B

or

A =2* B will not work.

Because the left hand operand is responsible for invoking the member function. In this case friend
function allows both approaches.

7.9: Wehavetwo classes X and Y. If aisan object of X and b isan object of Y and we want
to say a=b; What type of conversion routine should be used and wher e?

Ans. We have to use one class to ancther class type conversion. The type-conversion function to
be located in the source class or in the destination class.

7.10: Statewhether thefollowing statementsare TRUE or FAL SE.

(a) Using the operator overloading concept, we can change the meaning of an operator.

(b) Operator overloading works when applied to class objects only.

(c) Friend functions cannot be used to overload operators.

(d) When using an overloaded binary operator, the left operand isimplicitly passed to the member
function.

(e) The overloaded operator must have at least one operand that is user-defined type.

(f)Operator functions never return avalue.

(g) Through operator overloading, a class type data can be cwv@basi C type data.

(h) A constructor can be used to convert a basic type to acla% a

2
Ans.

(8) FALSE :
(b) TRUE ;
(c) FALSE

(d) FALSE

(e) TRUE

(f) FALSE

(g) TRUE

(h) TRUE

Exercises

De@g
7.1: ldentify theerror in thefollowing program.

#include <iostream.h>
class Space

{

int mCount;
public:

{Space()

}

Space operator ++()

{

mCount = O;

mCount++;
return Space(mCount);

}
b
void main()
{
Space obj Space;
obj Spacet+;
}

Solution: The argument of Space() function isvoid type, so when this function is called there are
no argument can send to it. But ‘mCount’ argument is sending to Space() function through return
space(mCount); Statement.

Here return space (mCount); replaced by return space();

7.2 ldentify theerror in thefollowing program. P Q

#include <iostream.h>
enum WeekDays L 2

{
mSunday’ 2
mMonday, &
mtuesday,
mWednesday,
mThursday,
mFriday,
mSaturday
|3
bool op==(WeekDays& ays& w2)

if(wl==mSund mSunday)
return 1;
else if(wl==mSunday & & w2==mSunday)

return 1;
else if(wl==mSunday & & w2==mSunday)
return 1;
elseif(wl==mSunday & & w2==mSunday)
return 1;
elseif(wl==mSunday & & w2==mSunday)
return 1;
elseif(wl==mSunday & & w2==mSunday)
return 1;
elseif(wl==mSunday & & w2==mSunday)
return 1;
ese
return O;
}
void main()

{
WeekDays wl = mSunday, w2 = mSunday;

if(wl==w2)
cout<<"Same day";
ese

cout<<"Different day";

Solution: bool OP = = (WeekDays & w1, WeekDays & w2) replaced by bool operator = =
(Weekdays & w1, WeekDays & w2). All other code will remain same.

7.3 ldentify theerror in the following program.

#include <iostream.h>

class Room
{ .
float mWidth; \
2

float mLength;
public:
Room()

{ ¢
} &
Room(float w, float h)

:mWidth(w), mLength(h)
{

}
operator float ()

return (float)mwWidth
}

float getWidth() Q
{

float getLength()
{

}
N

void main()

{

return mLength;

Room objRoom1(2.5, 2.5)
float fTotal Area;

fTotal Area = objRoom1;
cout<< fTotaArea;

Solution: The float getWidth() function return float type data, but there is no return statement in
getWidth() function. So it should write as follows.

float getWidth()
{

}

return mwWidth;

All other code will remain unchanged.

Programming Exer cises

7.1: CrateaclassFLOAT that contains onefloat data m @oad all thefour
arithmetic operators so that they operate on the objects of AT.

L 2
Solution: .
1 #include<iostream.h> &
2
3 classFLOAT
4 {
5 float data;
6 public:
7 FLOAT(){}; \
8 FLOAT (float
9 { data=d;}
10 FLOAT opgrato OAT f1);
11 FLOAT op r-(FLOAT f2);
12 FLOAT operator* (FLOAT f3);
13 FLOAT operator/(FLOAT f4);
14 void display();
15};
16FLOAT FLOAT::operator+(FLOAT f1)
17{
18 FLOAT temp;
19 temp.data=data+f1.data;
20 return (temp);
21}
22FLOAT FLOAT::operator-(FLOAT f2)
23{

24 FLOAT temp;

25 temp.data=data-f2.data;

26 return temp;

27}

28FLOAT FLOAT::operator* (FLOAT f3)

29{

30 FLOAT temp;

31 temp.data=data*f3.data;
32 return temp;

33}

34FLOAT FLOAT ::operator/(FLOAT f4)

35{

36 FLOAT temp;

37 temp.data=data/f4.data;

38 return (temp);

39}

40void FLOAT:: display()

41

42 cout<<data<<"\n";

43}

44int main()

a5 . Q
46 FLOAT F1,F2,F3,F4,F5,F6;

47 F1=FLOAT(2.5); \
48 F2=FLOAT(3.1); ¢
49 F3=F1+F2;

50 FA=F1-F2; y
51 F5=F1*F2; \
52 F6=F1/F2

53 cout<<" F1=";

54 Fl.display();

55 cout<<" F2=";

56 F2.display();

57 cout<<" F1+R2=

T SR

59

60

61

62 .

63 cout<<" F1/F2=",;

64 F6.display();

65 returnO;

66}

output

F1=25

F2=3.1

F1+F2=5.6

F1-F2 =-0.6

F1*F2=7.75

F1/F2= 0.806452

7.2: Design a class Polar which describes a point in the plane using polar coordinatesradius
and angle. A point in polar coordinatesisshown below figure 7.3

Use the overload + operator to add two objects of Polar.

Note that we cannot add polar values of two points directly. This requires first the conversion of
points into rectangular coordinates, then adding the respective rectangular coordinates and finally
converting the result back into polar coordinates. Y ou need to use the following trigonometric
formula:

X=r*
cos(a);
point(r,a)
Radius E
’ Q
: ’\
Angle=a i *
> x < : \
fig: polar coordinates of a poi
y=r*sin(a);

a= atan(y/x); //arc tangent
r=sgrt(x*x + y*y);

Solution: QO
1 #include<iostream.h

2 #include<math.h>
3 #define pi 3.1416

4 classpolar

5 {

6 float r,a,x,y;

7 public:

8 polar(){};

9 polar(float r1,float al);
10 polar operator+(polar rl);
11 void display(void);
12};

13

14polar :: polar(float r1,float al)

15{

16 r=ri;

17 a=al*(pi/180);

http://www.codingpractise.com/wp-content/uploads/2015/03/polar-coordinates.jpg

18 X=r*cos(a);

19 y=r*sin(a);

20}

21

22polar polar :: operator+(polar rl)

23{

24 polar R;

25

26 R.x=x+rl.x;

27 R.y=y+rl.y;

28 R.r=sgrt(R.x* Rx+R.y*R.y);

29 R.a=atan(R.y/R.x);

30

31 retunR;

32}

33

34void polar::display() . Q
35{

36 cout<<"radius = "<<r<<"\n angle = "<<a*(180/pi <\
37} .
38

39int main() y

40{ \

41 polar pl,p2,p3;

42 floatr,a;

43 cout<<" Enter radiusand angle: ";
44 cin>>r>>g;

45 pl=polar(r,a);
46 p2=polar(8,45);

47 p3=pl+pz, \
48 cout<<" pl:\n";

49 pl.display();

50 cout<<" p2:\n

51 p2.display();

52 cout<<" p3:\n";
53 p3.display();

54 return O;

55}

output

Enter radius and angle : 10 45
P1:

radius = 10

angle = 44.999998

P2:

radius =8

angle = 44.999998

P3:

radius = 18

angle = 44.999998

7.3: CreateaclassMAT of sizem * n. Define all possible matrix operationsfor MAT type
objects.

Solution;

#include<iostream.h>
#include<iomanip.h>

1

2

3

4 class mat

5 {

6 float **m;

7 int rs,cs,

8 public:

9 ()} . Q
10 void creat(int r,int ¢);

11 friend istream & operator >>(istream & ,mat \
12 friend ostream & operator <<(ostream &, L®
13 mat operator+(mat m2);

14 mat operator-(mat m2); 2
15 mat operator* (mat m2);

16 };

17

18 void mat::creat(int r,int)

19 {

20 rs=r;

21 Cs=c,

22 m=new float * \

23 for(int i=0;i

24 m[i]=new

25}

26

27 istream & operator>>(istream &din, mat &a)
28 {

29 intr,c;

30 r=ars,

31 c=a.cs,

32 for(int i=0;i<r;i++)

33 {

34 for(int j=0;j<c;j++)

35 {

36 din>>am(i][j];

37

38 }

39 return (din);

40 }

41 ostream & operator<<(ostream & dout,mat &)
42 {

43 intr,.c;

44 r=ars,

45 c=acs,

46 for(int i=0;i<r;i++)
47 {

48 for(int j=0;j<c;j++)
49

50 dout<<setw(5)<<a.m[i][j];
51 }

52 dout<<"\n";
53 }

54 return (dout);

55 }

56 mat mat::operator+(mat m2)

57 {

58 mat mt;

59 mt.creat(rs,cs);
60 for(int i=0;i<rs;i++) .
61 { \

62 for(int j=0;j<csj++)
63 { 2
64 mt.m[i][j]=m[i][j]+m2.m[i][j];

65 }

66 } \
67 return mt;

68 }

69

70 mat mat::operator-(mat m2)

71 {

72 mat mt;
73 mt.creat(rs,cs); \
74 for(int i=0;i<r

75 {

76 for(iny=0;)<es;j ++)

77 {

78 mt.m[i][j]=m(i][j]-m2.m(i][j];
79 }

80 }

81 return mt;

82 }

83

84 mat mat::operator* (mat m2)

85 {

86 mat mt;

87 mt.creat(rs,m2.cs);

88

89 for(inti=0;i<rs;i++)

90 {

91 for(int j=0;j<m?2.cs;j++)

92 {

93 mt.m[i][j]=0;

94 for(int k=0;k<m2.rs;k++)

95 mt.m[i][j]+=m[i][K]* m2.m[K][];
96 }

97 }

98

99 return mt;

100 }

101int main()

102{

103 mat m1,m2,m3,m4,m5;

104 intrl,cl,r2,c2;

105 cout<<" Enter first matrix size: ";
106 cin>>r1>>cl;

107 ml.creat(rl,cl);

108 cout<<"ml=";

109 cin>>mi;

110 cout<<" Enter second matrix size: ";
111 cin>>r2>>c2; .
112 m2.creat(r2,c2); \

113 cout<<"m2=";

114 cin>>m2; TS
115 cout<<" ml:"<<endl;

116 cout<<ml;

117 cout<<" m2: "<<endl;

118 cout<<mz;

119 cout<<endl<<end!;

120 if(rl==r2 && cl==c2)

121 {

122 m3.creat(rl,cl);

123 m3=m

124 cout<<" m

125 cout<<m

126 m4.cr

127

128 md=mIw2;

129 cout<<" ml - m2:"<<endl;

130 cout<<mé<<endl<<end;

131

132 }

133 dse

134 cout<<" Summation & substraction are not possible n"<<endl
135 <<"Two matrices must be same size for summation & substraction "<<endl<<end!;
136if(cl==r2)

137{

138 m5=m1* m2;

139 cout<<" ml x m2: "<<endl;

140 cout<<mb;

141}

142€else

143cout<<" Multiplication is not possible "<<endl
144<<" column of first matrix must be equal to the row of second matrix ";
145 return O;

146}
output

Enter first matrix size: 2 2

; S\
. QO

43 50

7.4: Defineaclass String. Use overload == operator to compar e two strings.

Solution:

1 #include<iostream.h>
2 #include<string.h>
3 #include<stdio.h>

4
5 classstring

6 {

7 char str[1000];

8 public: *

9 void input(){ gets(str);}

10 int operator==(string s2);

11}; L 2

12int string::operator==(string s2)

13{ 2
14 int t= stremp(str,s2.str);
15 if (t==0)

16 t=1;

17 ese

18 t=0;

19 return t;

20}

21

22int main() O

23{
24
25 char st1[1000],52[1000];

26 string s1,2;
27 cout<<" Enter 1t string: ";

28 sl.input();

29 cout<<" enter 2nd string : ";

30 s2.input();

31

32 if(s1==s2)

33 cout<<" Two strings are equa ";
34 else

35 cout<<" Two string are not equal ";
36 returnO;

37}

output

Enter 1st string : our sweetest songs tel our saddest thought
enter 2nd string : aburning desire lead to success.
Two string are not equal

7.5. Definetwo classes Polar and Rectangleto represent pointsin the polar and rectangle
systems. Use conversion routines to convert from one system to the other.

Solution:

1 #include<iostream.h>
2 #include<math.h>
3 #define pi 3.1416

4 class conversion point
5 *
float x,y,rtheta; \

6

7 public:

8 void set_xy(); L 2
9 void set_r_theta();

10 void show_xy(); 2
11 void show_r_theta(); &
12 void conversion(int t);

13};

14 void conversion_point::set_xy,

15{

16 cout<<"Enter the value

17 CiN>>X>>Y;

18}

19 void conversion r_theta()

20{

21 cout<<"Entex theValue of r & theta:";
22 cin>>r>>thet

23 theta=(pi/180)* theta;

24}

25

26 void conversion_point::show_xy()

27

28 cout<<" CERTECIAN FORM :\n"

29 <<" x ="<<x<<"\n"

30 <<y ="<<y<<"\n";

31}

32void conversion_point::show_r_theta()

33{

34 cout<<" POLAR FORM :\n"

35 <" r ="<<r<<"\n"

36 <<" theta = "<<(180/pi)*theta<<" degree \n";
37}

38

39void conversion_point::conversion(int t)

40

41 if(t==1)

42 {

43 r=sgri(x* x+y*y);

44

45 if(x!=0)

46 {

47 theta=atan(y/x);

48 show_r_theta();

49 }

50

51 ese

52 {

53 cout<<" POLAR FORM :\n"
54 <<"'r ="<<r<<"\n"

55 <<" theta= 90 degree\n”;
56 } . Q
57

} \

58
59 dseif(t==2) .
60 {

61 X=r* cos(theta); y
62 y=r*sin(theta); \
63 show_xy();

64 }

65}

66

67int main()

68{

69 conversion_poj (o)
70 int test;

71 cout<<" put certecian point \n"
72 <<" input polar point \n"
73 <<"what isyour input ?:";

74 cin>>test;

75 if (test==1)

76 santo.set_xy();

77 elseif(test==2)

78 santo.set_r_theta();
79 santo.conversion(test);
80

81 returnO;

82}

output

Press 1 to input certecian point
Press 2 to input polar point
what isyour input ? 1

Enter thevalueof x & y: 45 r= 6-‘103124
POLAR FORM : theta = 51.340073 degree

E

D

SINGLE INHERITANCE

Q HYBRID INHERITANCE

MODULE -4

Inheritance, Pointers, Virtual
Functions, Polymorphism

GANESH Y
Dept. of ECE RNSIT

MODULE -4
Inheritance, Pointers, Virtual Functions, Polvmorphism

SYLLABUS

Derived Classes, Single, multilevel, multiple inheritance, Pointers to objects and
derived classes, this pointer, Virtual and pure virtual functions (Selected topics from
Chap-8, 9 of Text).

Introduction

Reusability is yet another important feature of OOP. It is always nice if we could reuse
something that already exists rather than trying to create the same all over again. It
would not only save time and money but also reduce frustration and increase
reliability. For instance, the reuse of a class that has already been tested, debugged and

used many times can save us the effort of developing a@ing the same again.
.

Fortunately, C++ strongly supports the concept of re&d'
reused in several ways. Once a class has been wri

ity. The C++ classes can be
tested, it can be adapted by

Definition: The capability of a dlasssto derive properties and characteristics from
another class is called Inherita ﬁ e derived class inherits some or all of the traits
from the base class.

Derived class or Sub e class that inherits properties from another class is
called Sub class or DetiivehClass.

Base class or Super Class: The class whose properties are inherited by sub class is
called Base Class or Super class.

Different Forms of Inheritance

A class can also inherit properties from more than one class or from more than one
level.

A derived class with only one base class, is called single inheritance and one with
several base classes _is called multiple Inheritance.

On the other hand, the traits of one class may be inherited by more than one class. This
process is known as hierarchical inheritance. The mechanism of deriving a class from
another 'derived class' is known as multilevel inheritance.

GANESH Y, Dept. of ECE RNSIT

Figure below shows various forms of Inheritance that could be used for writing
extensible programs. The direction of arrow Indicates the direction of inheritance.

A

|
KX

f(a) Single inharitance

£ KR Lo |

(k] Muleple mbentance (el Hie hital inhertance
2

IL | A

LN

T; \ ¥
ARQ (=
{d} Multileved inh%c (2] Hybrid inheritance

Fig. Forms of infenfance

Defining Derived Classes

For creating a sub-class which is inherited from the base class we have to follow the
below syntax.

class derived_class _name: visiblity mode base_class_nhame

{

//members of derived class

}s

GANESH Y, Dept. of ECE RNSIT

The colon indicates that the derived-class-name is derived from the base-class-name.
The visibility-mode is optional and, if present, may be either private or public. The
default visibility-mode is private. Visibility mode specifies whether the features of the
base class are privately derived or publicly derived.

class ABC:public XYZ // public derivation
{

}s
class ABC:private XYZ // private derivation

{

}s5

class ABC:protected XYZ // protected derivation
{

}s5

class ABC: XYZ // private derivation by ult
{ 4

members of ABC; \

}s 7S

members of ABC;

members of ABC;

members of ABC;

Syntax for multiple inherita

class C: public A, publi
{

}s
TaeLe 9.1

Access 2 i Accessible from Accessible from
Specifier i Clas Derived Class Objects Outside Class

public yes yes
protected yes no

private yes no no

When a base class is privately inherited by a derived class, '‘public members' of the base
class become 'private members' of the derived class and therefore the public members
of the base class can only be accessed by the member functions of the derived class.
They are inaccessible to the objects of the derived class. Remember, a public member
of a class can be accessed by its own objects using the dot operator. The result is that
no member of the base class is accessible to the objects of the derived class.

On the other hand, when the base class is publicly inherited, 'public members' of the
base class become 'public members' of the derived class and therefore they are
accessible to the objects of the derived class. In both the cases, the private members are

GANESH Y, Dept. of ECE RNSIT

not inherited and therefore, the private members of a base class will never become the
members of its derived class.

In inheritance, some of the base class data elements and member functions are
'inherited’ into the derived class. We can add our own data and member functions and
thus extend the functionality of the base class. Inheritance, when used to modify and
extend the capabilities of the existing classes, becomes a very powerful tool for
incremental program development.

Summary of above explanation

{.;t_tcess in Base Class | Basc Class Inherited as
I .
1Public | Public Public

Prodected Protected

Private ' &ess :

Access in Derived Class

o — e e,

L-Ecteﬂ

Protecled %Tﬁ[ﬁ‘i‘tlﬁd

iy —

Frivvale Mo acceas

|
d

—
=
E 3
=)
—
=

FPubiic I vate

Frotecied Privata

T -

Frivale

i access

Single Inheritance

Let us consider a simple,example to illustrate inheritance. Program 8.1 shows a base
class B and a derived class D. The class B contains one private data member, one public
data member, and three public member functions. The class D contains one private
data member and two public member functions.

I Program 8.1 ELGIERGLG fiell=H T 1] [+

tinclugde ciostreams
ueing namespace std;

g B

inkt a; ff private; pnot inheritable
public:

GANESH Y, Dept. of ECE RNSIT

int b S/ public; ready for imheritance
void set_abl() ;

int get a(wvoid);

vold show alvaoid) ;

public B /! public derivatien

int oy

public:
void mul [void) ;
void display (void) ;

recurn a;

show af]

couk << "a

r: ol (]
B = 08C &
display

CRuUE "= H e geb_af) << "\n*
coult <=QN'hb Fi2e B e« Aynia
'I'I.T'.l'l.:l'l." :

il i ¥

couk =< 8 = << 0 =<

int main
{

r

d.8et abl};
d.mul [} ;
d.show_a(];

d.dieplayl});

d.b = 20;
d.mul () ;
d.displavy(};

rebturn 0;

GANESH Y, Dept. of ECE RNSIT

The output of Program 8.1 would be:

LL 1 | [| | O [
= N U = U1 U
[O I u o

() ()

The class D is a public derivation of the base class B. Therefore, D inherits all the public
members of B and retains their visibility. Thus, a public member of the base class B is
also a public member of the derived class D. The private members of B cannot be
inherited by D.

The class D, in effect, will have more members than what it contains at the time of
declaration as shown in Fig. below.

Class D
Private Section

c

Public Section

| display()

Adding more members 10 a class (by puble denvation)

The program illustrates that the objects of class D have access to all the public
members of B. Let us have a look at the functions show_a() and mul():

void show a()

{
}
void mul ()

{
}

cout << "a = " <<a<< "\n";

c=b *get a(); // c=Db *a

GANESH Y, Dept. of ECE RNSIT

Although the data member a is private in B and cannot be inherited, objects of D are
able to access it through an inherited member function of B.

Let us now consider the case of private derivation.

int a;
public:
int b;
void get_ab();
void get_af();
void show a();

}i

int ¢;

public:
void mul() ;
void display();

}i

The membership of the derived class
the public members of the base cla
Therefore, the objects of D canno

of B.

// private derivation

Ny

wn in Fig. below. In private derivation,
e private members of the derived class.

Private Secton

gel_aoi)
get_al)

show_ad)

1 Inherited

i
:

i

! ,_/:l"'
s

H

.

fom8

/":/--

Public Section

e ()

display()

Fig. Adding more members to a class (by pnvate devivation)

The statements such asd.get_ab(); d.get_a(); d.show_a(); will not work. However,
these functions can be used inside mul() and display() like the normal functions as
shown below:

GANESH Y, Dept. of ECE RNSIT

void mul(}

{
get_ab(};
=BT - [g B

I|

vold display (]

f

l ghow_all; // outputs value of ‘'a’
SOUL << "h = b <2 Win"

(19 i

g g o= < o< *\n\n";

!

Program 8.2 incorporates these modifications for private derivation. Please compare
this with Program 8. 1.

I SO IETR: A Single Inheritance : Private

ffinoclude <liocstream:>
uElng namsspace std; 4

clage B

ine &; \K;‘;’ prdvate; not inheritable

public:
ink bj; /4 public; ready for inheritance
void get abi) ;
int get a{void}
vold show atw

Ml private derivaticn

paulic:
vold mul {void) ;
displaty (woid) ;

get _ab|wvoid)

<< "Epfber valiues

=% O =% B

GANESH Y, Dept. of ECE RNSIT

show ai)

L T o= M

cEnnat Fyem |.'.'.-r_'r|I r|'.' EeC L 4' i

WON'T WORK: kB has becams I!:u'n':: var

Suppose a base class and a derived class define a function of the same name.
What will happen when a derived class object invokes the function? In such cases,
the derived class function supersedes the base class definition. However, if the derived
class does not redefine the function, then the base class function will be called.

Making a Private Member Inheritable

We have seen that a private member of a base class cannot be inherited and therefore
itis not available for the derived class directly. What do we do if the private data needs
to be inherited by a derived class? This can be accomplished by modifying the visibility

GANESH Y, Dept. of ECE RNSIT

limit of the private member by making it public. This would make it accessible to all
the other functions of the program, thus taking away the advantage of data hiding.

C++ provides a third visibility modifier, protected, which serve a limited purpose in
inheritance. A member declared as protected is accessible by the member functions
within its class and any class immediately derived from it. It cannot be accessed by the
functions outside these two classes. A class can now use all the three visibility modes

as illustrated below:

class alpha
private: optional
visible teo member functions

within its class

member functions
hat eof derived class
*
visible toWwl
in/ the e

&)n for the two levels of derivation.

Mot imheritable X X Mot inhertable

Protected

Pubfic

class D1 : p-ug B class D2 : private B

Privale Private |e— |

Frotected Erotecied

Pubhlic Fubilic

class X : public D1 . protected D2

Privala

Profeciad

Public

Fig. Effect of inheritance on the visibility af members

GANESH Y, Dept. of ECE RNSIT

When a protected member is inherited in public mode, it becomes protected in the
derived class too and therefore is accessible by the member functions of the derived
class. It is also ready for further inheritance.

A protected member, inherited in the private mode derivation, becomes private in
the derived class. Although it is available to the member functions of the derived class,
it is not available for further inheritance (since private members cannot be inherited).

(visibility mode summery table explained once again 1)

The keywords private, protected, and public may appear in any order and any
number of times in the declaration of a class. For example,

class beta

{

protected:

| practice is to use them as follows:

/{ private by default

It is also possible to inherit a base class in protected mode (known as protected
derivation). In protected derivation, both the public and protected members of the
base class become protected members of the derived class. Table below (same as
visibility summary table shown earlier) summarizes how the visibility of base class
members undergoes modifications in all the three types of derivation.

Table Visibility of inherited members

—— Denived class visibilily
Base class visibility o — -
Public derivation Private derfvalion Fraofected derfvation

Privale Mot inherited Mot inhented Mot inhernted

Frotected Protected Private Protected
Public Publie Private Protaciad

GANESH Y, Dept. of ECE RNSIT

Now let us review the access control to the private and protected members of a class.
What are the various functions that can have access to these members? They could be:

1. A function that is a friend of the class.
2. A member function of a class that is a friend of the class.
3. A member function of a derived class.

While the friend functions and the member functions of a friend class can have direct
access to both the private and protected data, the member functions of a derived class
can directly access only the protected data. However. they can access the private data
through the member functions of the base class.

Figure 8.5 illustrates how the access control mechanism works in various situations. A
simplified view of access control to the members of a class is shown in Fig. 8.6.

class X

friend class Y:
class Y

private

friend of X

N - - ——

X
\
\
\

function 1

friend of X

|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
1
|
1
|
|
|
|
|
L

Inherited from X
Fig. 8.5 Access mechanism in classes

GANESH Y, Dept. of ECE RNSIT

All users

derived class Private Own member functions
member and friendly functions
functions and classes

Protected

Public

Fig. 8.6 A simple view of access conlrol lp U@»bers of a class

Multilevel Inheritance 3

It is not uncommon that a class is deriy, d& other derived class as shown in Fig.
8.7.

Grandfather

Father

Derived class l c l Child

Flg. 8.7 Multevel inhentance

The class A serves as a base class for the derived class B, which in turn serves as a base
class for the derived class C. The class B is known as intermediate base class since it
provides a link for the inheritance between A and C. The chain ABC is known as
inheritance path. This process can be extended to any number of levels.

A derived class with multilevel inheritance is declared as follows:

// Base class
// B derived from A
// C derived from B

GANESH Y, Dept. of ECE RNSIT

Let us consider a simple example. Assume that the test results of a batch of students
are stored in three different classes.

Class student stores the roll number, class test stores the marks obtained in two
subjects and class result contains the total marks obtained in the test.
The class result can inherit the details of the marks obtained in the test and the roll
number of students through multilevel inheritance. Example:
class student
{
protected:
int roll number;
public: &
void get numberx (int) ;
void put number (void) ;

}i

void student :: get number({int a)

roll number = a; PS

void student :: put numbex() \

{ 2

cout << "“Roll Number: * << roll &8 ynT:

class test : public student &S Eirst level derivation

{

protected:
float subl;
float sub2;
public:
void get marks
void put magfks
void teat :: get marke(flcat x, float vy)
subl x;
sub2 Vi
void teat :: put marks()
cout << "Marks in SUE1] "\n”*;
cout << “"Marks in SUB2 ul "\n*;
class result : public test // Seccnd level derivation

{

float total; // private by default
public:
void display({veoid);

GANESH Y, Dept. of ECE RNSIT

The class result, after inheritance from 'grandfather’' through 'father’, would contain

the following members:

private;:
float total;
pretected:

int roll number:

float subl;
float sub2;

public:
veid get number (int) ;
veid put number (veid) ;
veid get marks (float,
void put marks(void) ;
void display(veid) ;

float) ;

The inherited functions put_number() and pu&_ mark

total <«

definition of display() function:

void result

{

display(veid)

total = subl + gub2;
put_number () ;

put marks();

cout << "“Totalr= <

J

Here is a simple main() progra\

int main()
[/ studentl
studentliget pumber(111);

studentl.get_marks(75.0, 59.5);

studentl.display();

return 0;

}

own member

inherited from student
via test

inherited from test
inherited from test

from student via test
from student via test
from test
from test

owrl member

) can be used in the

2

“\n*;

This will display the result of student1. The complete program is shown in Program8.3.

GANESH Y, Dept. of ECE RNSIT

I Program 8.3 LUUTNOETEIR [l =10

dineluds: ciostreams

uzing namespace skbd;

class student
|
protected .
int rell number;
public:
vold get number {1nt}
void put_number (void) ;

k3

vold student :: get number[int &)

|

roll number = a; \

voird student :: put number(} L

i

coUukt <= “Rall Numbers 'o¥< , l_numbur S N el

]
class test : publiec studen ff Firat

level derivaticn

procected:
Eloat aubl;

float
public:
L markglfloat, fleoat);
veid patomarks (void) ;

geate marks [float x, float ¥)

I

subl = X :
subz = ¥;:

vold test :: put_marks()
cout << "Markas imn SUBlL = ¢ << subl << "“\O";
cout << "Marks 1n S5UB2 = " <= gubl << "\O";

GANESH Y, Dept. of ECE RNSIT

class result
float total:;
public:
void display(void);

| &

void result :: display(void)
total =~ subl + sub2:;
put number|() ;
put marks () ;

nee

cout <« Total

J

int main()

result studentl; '/ studeR created
studentl.get number{111l); \

{

The output of Program 8.@ be:
Roll Number: 111 Q

Marks in SUB1= 75

Marks in SUB2 = 59.5

Total =134.5

Multiple Inheritance

A class can inherit the attributes of two or more classes as shown in Fig. 8.8. This is
known as multiple inheritance. Multiple inheritance allows us to combine the features
of several existing classes as a starting point for defining new classes. It is like a child
inheriting the physical features of one parent and the intelligence of another.

GANESH Y, Dept. of ECE RNSIT

[T

D

Fig. 8.8 Multiple inherftance

The syntax of a derived class with multiple base classes is as follows:

7S
class D: visibility B-1, wvisibility E_KQ
! 4
(Body of D} \

where, visibility may be either r private. The base classes are separated by

commas. Example: \
ass P : !mleQ:bllc N
publics

void display(veid) ;

i

Classes M and N have been specified as follows:
lass M

protected:
int m;
public:
void get _m(int) ;
}3
void M :: get m(int Xx)

[

GANESH Y, Dept. of ECE RNSIT

protected:
int n;
public:
void get_n(int);
}i

void N :: get_n(int y)

{
J

The derived class P, as declared above, would, in effect, contain all the members of M and N in
addition fo its own members as shown balow:

n=y;

class P

{

protected:

int m;

int n;

public:

void get _miing); 4 f// from M

void get n(ingfN /) from N

void digpl b /] own member

}i

The member functicngisp can be defined as follows:

void P :: displayiveid)

{

cout << "m = " << m << *\n";
cout €<."n = " << n << *\n";
Cout << "m*n =" << m*n << "“\n";

}:

The main() function which provides the user-interface may be written as follows:

main/()

{
P p
p.get m(10};
p.get n(20);
p.display(};

J

Program 8.4 shows the entire code illustrating how all the three classes are implemented in mul-
tiple inheritance mode.

GANESH Y, Dept. of ECE RNSIT

I Program 8.4 LTHUERGL G E T

#include <iostream>

using namespace s=td;

class M

{

protected:
1nt m;
public:

void get m{int);

}i

class N

{

protected:

int n;

public: \

volid get_n(int); ¢

}i

class ¢ public M, public N K
{

public:
voeid display(woi

gat _n{int y)

n = y;

display (void)

cout o - ¢ Mt << "\n*;

m
cout "n = << n << "\n";
m

cout "m*n " << m*n << "“\n";

int main()

{

GANESH Y, Dept. of ECE RNSIT

The output of Program 8.4 would be:
= 10

mT*n = 200

Ambiguity Resolution in Inheritance

with the same name appears in more than one base cldss. Censider the following two

Occasionally, we may face a problem in using the multn@eritame, when a function
classes.

class M L

public:

void display(void) &\
(

cout << “Classg

void slay (void)

(

public: O
d

cout << “Class N\n";

}i
Which display () function is used by the derived class when we inherit these two
classes? We can solve this problem by defining a named instance within the derived
class, using the class resolution operator with the function as shown below:

class P : public M, public N
{

public:

void display(void) // overrides display() of M and N

{
)i

GANESH Y, Dept. of ECE RNSIT

We can now use the derived class as follows:

int main()

{
P p;
p.display();
¥

Ambiguity may also arise in single inheritance applications. For instance, consider the
following situation:

class A

{
public:
void display()

{
}

cout<<"A\n";

}s5
class B:public A
{
public:
void display()

{ ¢
cout<<"B\n";

}
}s

In this case, the function in t d class overrides the inherited function and,
therefore, a simple call to d by B type object will invoke function defined in
B only. However, we may j e function defined in A by using the scope resolution
operator to specify th

int main()

{
B b; // derived class object
b.display(); // invokes display() in B
b.A::display();// invokes display() in A
b.B::display();// invokes display() in B
return 9;

}
This will produce the following output:

GANESH Y, Dept. of ECE RNSIT

Pointers to Objects

We have already seen how to use pointers to access the class members. As stated
earlier, a pointer can point to an object created by a class. Consider the following
statement:

item x;
where item is a class and x is an object defined to be of type item. Similarly, we can
define a pointer it_ptr of type item as follows:

item *it_ptr;
Object pointers are useful in creating objects at run time. We can also use an object
pointer to access the public members of an object. Consider a class item defined as
follows:

claggs item

{
int code; " ;
Lloat price; \

publie: *
viold getdata(int a,

i
code = a;
price = b;

b

rolid show

d
“"Code : " << code << “\n7;
Q << “"Price: * << priece << “\n\n";

¥
Let us declare an item variable x and a pointer ptr to x as follows:

item x;
item *ptr = &x;
The pointer ptr is initialized with the address of x.

We can refer to the member functions of item in two ways, one by using the dot
operator and the object, and another by using the arrow operator and the object pointer.
The statements

x.getdata(100,75.50);
x.show();
are equivalent to

ptr->getdata(100, 75.50);
ptr->show();

GANESH Y, Dept. of ECE RNSIT

Since *ptr is an alias of X, we can also use the following method:
(*ptr).show();

The parentheses are necessary because the dot operator has higher precedence than
the indirection operator*.

We can also create the objects using pointers and new operator as follows:
item *ptr = new item;

This statement allocates enough memory for the data members in the object structure
and assigns the address of the memory space to ptr. Then ptr can be used to refer to
the members as shown below:

ptr -> show();

If a class has a constructor with arguments and does not include an empty constructor,
then we must supply the arguments when the object is¢reated.

We can also create an array of objects using pointers. xample, the statement
4
item *ptr = new item[10]; ray of 10 objects

creates memory space for an array of & f item. Remember, in such cases, if
the class contains constructors, it mug , ntain an empty constructor.

. o v -
l Program 9.8 RJUICIERGREIJENE

o ; \ ¢/
finclude ='.1.-;_r'_'.r_r..-':.:1m;-
using namespacea _-@
eliss item Q

I

T -

i

Int code;
float pElce;
publiec:
vold q&Ld::d[ini a, Lioat b)

[

conak int

GANESH Y, Dept. of ECE RNSIT

int maini]

144}

cout =< "Input code and
S2ifl mm B omn i

p-=>getdata{x, ¥yl

pt+;

1=0; 1l=<8BlE8; 1++|

oot < *ltem:™ <
A-zahowi) :
[= E

'

return 0,

The output of Pragram 9.8 would be;

Input code and p
Input code

ICam: 1

Crode

Frice: 500
Icem:2

Code ¢ 50

Frice: 600

In Program 9.8 we created space dynamically for two objects of equal size. But this may
not be the case always. For example, the objects of a class that contain character strings
would not be of the same size. In such cases, we can define an array of pointers to
objects that can be used to access the individual objects. This is illustrated in Program
9.9.

GANESH Y, Dept. of ECE RNSIT

I HODeTnR R I Array of Pointers to Objects

finclude <iocBtreams

#include <cstrings
using namespace std;

class city
{
protecied;
char *name;
intk len;
public:
cLty ()

d

lanp = Q;
nams = fnew char[len+l]:
2

vold gebtname (woid)
]

*E;
new char [30);

cout == “ER
C1Tl >> B
lan = atr
name =
gtrom

c=pniame << "hnY;

imEt maini)
{
::‘;I.'}-' '|‘:_i‘:-l'r[‘.':‘.l]; £ array ol 10 polinters Eo glbles

int
ink

do
cptr[n] = new gity; f) create new city
cptrn] -sgetname {} ;
Ni++;
cout =< "IN you want To enter one more name?\nY

"

cout << “|Bnter 1 for yes 0 Eor moj:%;

GANESH Y, Dept. of ECE RNSIT

Cln = Dptlall;
while (optiecn) ;

coukt <= ymhnts
foriint 1=1:
1

cptr [i] ~=printname {) ;

The oulput of Program 5.5 would be:

Erntcer =i Ey names !-'.':'-..:-.'.-.n'.':.-.:]
Lo WOou Want To anter one marse name=
|

- . L A f s |
LoE veag O Lor o)

F
=ity pame:Secunderabad
yau want to enter one more namas

IBnter 1 for ves 0 Eor nol ;1

Enter city name:;Malkajglira
O

Yau Want T

BT

Hyderabad
Secunderabad

Malkajgiri

this POINTER

C++ uses a unique ke called this to represent an object that invokes a member
function. This is a pointér that points to the object for which this function was called.

For example, the function call A.max() will set the pointer this to the address of the
objectA. The starting address is the same as the address of the first variable in the class
structure.

This unique pointer is automatically passed to a member function when it is called. The
pointer this acts as an implicit argument to all the member functions. Consider the
following simple example:

clasa ABC

!

int a;

GANESH Y, Dept. of ECE RNSIT

The private variable 'a’ can be used directly inside a member function, like
a= 123;
We can also use the following statement to do the same job:
this->a =123;

Since C++ permits the use of shorthand form a = 123, we have not been using the
pointer this explicitly so far. However, we have been implicitly using the pointer this
when overloading the operators using member function.

Recall that, when a binary operator is overloaded using a member function, we pass
only one argument to the function. The other argument is implicitly passed using the
pointer this.

One important application of the pointer this is to return the object it points to. For

example, the statement 4 Q
return *this; \
4

inside a member function will return the at invoked the function. This
statement assumes importance when we waiiggo gompare two or more objects inside
a member function and return the invokg t as a result. Example:

pErson & person :: greaber |

1f x.age » age
'r'n':l:.urri& !/ jargument object
retuO s /] invoking obhject
Suppose we invoke tl&nction by the call

max= A.greater(B);

The function will return the object B (argument object) if the age of the person B is
greater than that of A, otherwise, it will return the object A (invoking object) using the
pointer this.

Remember, the dereference operator * produces the contents at the address contained
in the pointer. A complete program to illustrate the use of this is given in Program 9.10.

GANESH Y, Dept. of ECE RNSIT

Finelude =ziostream=
fincluds <cstrings

using namespace =td;

class P LSl

{

char name{20] ;
float age;

ien(char *s, float a)

greater(person
*

1f(x.age >= age)
return X;
clse
return *thiag

}

<< name << *\n*
<< u'n\nn;

) =
i

int main()
person P1(“John",
P2 ({“Ahmed",

P3 (“Hebber”,
.greater(P3i); .greater(P1)
“*Elder person is: \n*;
Bidisplayl();
P = Pl.greater(P2); // P2.greater (P1)
cout << “Elder
P.display();

return 0;

GANESH Y, Dept. of ECE RNSIT

The output of Frogram 510 would be:

Elder perEon 16 :
Hame: Hebber
Age: 40.25

Elder merson ig:
Mame : John

Aee: AT .5

Pointers to Derived Classes

We can use pointers not only to the base objects but also to the objects of derived
classes. Pointers to objects of a base class are type-compatible with pointers to objects
of a derived class.

Therefore, a single pointer variable can be made to point to objects belonging to

different classes. For example,
.
if B is a base class and D is a derived class from B, théha Peinter declared as a pointer
to B can also be a pointer to D. Consider the follg 0. g déclarations:
pointer to cla
'/ base obhject
derived objeg

cptr points tg

We can make cptr o point to the obj ®as follows:

aptr gd; S :’.:5.:-:.']. e objeact d
This is perfectly valid wit@ ecause d is an object derived from the class B.

However, there is a p@l in using cptr to access the public members of the derived
class D. Using cptr, we can access only those members which are inherited from B and
not the members that originally belong to D.

In case a member of D has the same name as one of the members of B, then any
reference to that member by cptr will always access the base class member.

Although C++ permits a base pointer to point to any object derived from that base, the
pointer cannot be directly used to access all the members of the derived class. We may
have to use another pointer declared as pointer to the derived type.

Program 9.11 illustrates how pointers to a derived object are used.

GANESH Y, Dept. of ECE RNSIT

I Program 9.

(AW Pointers to Derived Objects

finclude

ziostream»

LUS1nE namaspace st :'1;

class BC

l

)z

clags DC

{

public:
int b;:
wvold showi)

{ ‘goRt <4 M = "
].:-'.J!.'".".! ie BC

F_:uh]j_ s

inkt g

wolgd show()
L]

{ cout =<« “b
C AL !

mainl)

BC *bptr; /! base pointer
BT base:
bptrx i LY base address

bptr-sb b // access BC wvia base pointer
cout baae chject \n";

bpET -

fiderived class

DC derdved;

bptr = &darived;

bptr &>, b = 200; i

I ;

/bptr - = 300w/ ff wan't work

cgut z«< “bptr now points ko derived object \n";

JErll —F GF |'-:I|' ;- :'ﬂ-""a':fn'."..- ._. 'ﬁﬁl\.'-
Eptr -= showi) '/ bptr now points bo derived objec

i
L

J/* accessing d uaing a pointer of tvpe derived class DC %

no *dptr; /! deriwved type pointer
dptr = &deriwved;
dptr-sd = 3040;

GANESH Y, Dept. of ECE RNSIT

cout << *dptr is derived Lype pointerin™;

|'|§:-I.: -m !ihl_:'.h'l::'_:

cout << “uaing
[{DE +)bptr)

| (DT T bptr) - I

Feturn iu;

The output of Frogram 9.11 would be:

bptr points
100

Er now points bto derived cbject

1 derived Lype pointex

two fimes. First, when
denved object. But, bo s, if executed BC::show() function and displayed fhe content of the
nis

t
-“::Ebuwil:
L GET] &= ahiow (} b7 oeast bpEr te DI Ly e

display the conlenls of the derived objecl. This shows that, athough a base poditer can be made fo
point fo any namber of derived objects, it cannol direclly access the membeyrs defined by a denived class,

Polymorphism

Polymorphism is one of the crucial features of OOP. It simply means 'one name,
multiple forms'. We have already seen how the concept of polymorphism is
implemented using the overloaded functions and operators.

The overloaded member functions are 'selected’ for invoking by matching arguments,
both type and number. This information is known to the compiler at the compile time
and, therefore, compiler is able to select the appropriate function for a particular call
at the compile time itself. This

GANESH Y, Dept. of ECE RNSIT

is called early binding or static binding or static linking. Also known as compile time
polymorphism, early binding simply means that an object is bound to its function call
at compile time.

Now let us consider a situation where the function name and prototype is the same in
both the base and derived classes. For example, consider the following class
definitions:

clase A
{

lnt X
public:
void show(} {....]

¥
clagg B: public A

1
ink ¥;
public: PN
vold show(} -: e] Ir show :',| \ =ivad ~lass

How do we use the member function show it the values of objects of both the
classes A and B? Since the prototype of ghio 1s the same in both the places, the
function is not overloaded and theref@gs binding does not apply.

|
| 2

We have seen earlier that, in such 1pions. we may use the class resolution operator
to specify the class while invoking nctions with the derived class objects.

PTO
@ Wn as run time polymorphism. How could it happen?

e

Compile time
-._& podymcrphism
-_\-‘—\—

]

ot

.,
L

Function Operator ‘irtual
avarioadmng aver|aading funetions

Fig. 8.1 Achisving polrmorshizm

GANESH Y, Dept. of ECE RNSIT

At run time, when it is known what class objects are under consideration, the
appropriate version of the function is invoked. Since the function is linked with a
particular class much later after the compilation, this process is termed as late binding.
It is also known as dynamic binding because the selection of the appropriate function
is done dynamically at run time.

Dynamic binding is one of the powerful features of C++. This requires the use of
pointers to objects. We shall discuss in detail how the object pointers and virtual
functions are used to implement dynamic binding.

Virtual Functions

As mentioned earlier, polymorphism refers to the property by which objects belonging
to different classes are able to respond to the same message, but in different forms. An
essential requirement of polymorphism is therefore @ility to refer to objects

without any regard to their classes. ’\

This necessitates the use of a single pointer vari efer to the objects of different
classes. Here, we use the pointer to base cla r to all the derived objects. But,
we just discovered that a base pointer, gvest it is made to contain the address of
a derived class, always executes the f] in the base class.

The compiler simply ignores the s of the pointer and chooses the member
function that matches the type o inter. How do we then achieve polymorphism?
It is achieved using what is irtual’ functions.

When we use the same fu me in both the base and derived classes, the function
in base class is declar, rtual using the keyword virtual preceding its normal
declaration.

When a function is made virtual, C++ determines which function to use at run time
based on the type of object pointed to by the base pointer, rather than the type of the
pointer.

Thus, by making the base pointer to point to different objects, we can execute different
versions of the virtual function. Program 9.12 illustrates this point.

I Program 9.12 RUGTEIRST[H {131

finclude <ziostreams

uaing namespace skd;

GANESH Y, Dept. of ECE RNSIT

Hapge

public:
void display(} {cout << ™\n Display base ";]
virtual woid show(] jcout =< *\n show base®;|

Derived : public Baae

publiic:
valid display() {cout << ™\n Display derived"§|

vold SRoW) {cuuh =z« "Y1 show dﬂriVﬂd”;]

int maini)

bptr L3 ;
bptr > displayi); {f calls
bptxr = showl} ; £y talls

- Q
e *\n bptr pointsgko N L™
‘n’n’

caulE == *yrin o Pl = P ".’-.-e-:_:l"'._r|""';

bpte = &0F¥;
bptr == diap ; fd ecalls Base wvwersion
bptr 8 // calls Derived wversion

TeLArn

The output of Program 882 would be:
|:'-I:|I r polints Co Bame

Dizplay base

Ehow bage
bptr pointg to Derived

Diegplay base
Zhow derived

GANESH Y, Dept. of ECE RNSIT

When bptr is made lo poinl to the object D, the statement

calls the Derfved version of shaw(). This is because the finction display{) has not been made virtual
irr the Base class,

One important point to remember is that, we must access virtual functions through
the use of a pointer declared as a pointer to the base class. Why can't we use the object
name (with the dot operator) the same way as any other member function to call the
virtual functions? We can, but remember, run time polymorphism is achieved only
when a virtual function is accessed through a pointer to the base class.

Let us take an example where virtual functions are;m;@ted in practice. Consider
a book shop which sells both books and Video-tapesx n create a class known as.
media that stores the title and price of a publicagion. can then create two derived
classes, one for storing the number of pagessi ok and another for storing the
playing time of a tape. Figure below shows # ass hierarchy for the book shop.

The class hierarchy for the book shop

The classes are implemented in Program 9.13. A function display() is used in all the
classes to display the class contents. Notice that the function display() has been
declared virtual in media, the base class.

In the main program we create a heterogeneous list of pointers. of type media as
shown below:

media *list[2]={&book1l,&tapel};

The base pointers list[0] and list[1] are initialized with the addresses of objects book1
and tapel respectively.

GANESH Y, Dept. of ECE RNSIT

I HGLIET R NER Runtime Polymorphism

#include <iostream>

#include <cstring>
using namespace std;

class media
{
protected:
char title[50];
float price;
public:
media({char *s, float a)

{

strepyi{title, s);
IlLCe = Q4;

} S

virtual void display(){ ;’\gm ty viftual function
2

lass book: public media

{

int pages;
public:
beok(chay * int p):medials,a)

)
veid @ ay();
} i

class tape ipu cmedia
flbat tame;
public:
tape(char * s, float a, float t)

{

void display();

}i

void book :: diaplay/()

cout << *\n Title: " << title;
cout << *\n Pages: " << pages;

GANESH Y, Dept. of ECE RNSIT

Title; ¥

play time:

~

price:

int main()

{
\

1

char * title = new char[30];
r

£loat price, time;

int pages;

// Boock details
cout << "\n ENTER
eont << " Title: *»
w

cout Price: *;

cout << " Pages: *;
book bookl({title,

detail
DETAILS\n";
cin &> title;
ein >> price;
me dmins): "; ¢in >> time;

price, time};

. f
display book details

TAPE

-» display(); // display tape details

GANESH Y, Dept. of ECE RNSIT

The cutput of Program 8.13 would be:

ENTEE BOOK DETAILS
Title:Programming im ANE]
PE

{5 r ==
L. ad

Fagesr 400

ENMTER TAPE DETAILS
itle: Computing Concepts
Price; 30

Play time [mins): 55

MEDILA DETAL LS

. « » BOOK
Title:Programning in AWSI C
Pages: 400

Price: A8

TAFE

Title: Computing Concepbs

Play time: S5mina

Di=d mi s 0 *

Price: 90 \
4

Rules for Virtual Functions

When virtual functions are created for impl late binding, we should observe
some basic rules that satisfy the compi q ents:

of Some class.

4. A virtual function can be
5. A virtual function in a s must be defined, even though it may not be used.

6. The prototypes of t ass version of a virtual function and all the derived class
versions must be id
prototypes,

C++ considers them as overloaded functions, and the virtual function mechanism is
ignored.

7. We cannot have virtual constructors, but we can have virtual destructors.

8. While a base pointer can point to any type of the derived object, the reverse is not
true. That is to say, we cannot use a pointer to a derived class to access an object of the
base type.

9. When a base pointer points to a derived class, incrementing or decrementing it will
not make it to point to the next object of the derived class. It is incremented or
decremented only relative to its base type. Therefore, we should not use this method
to move the pointer to the next object.

10. If a virtual function is defined in the base class, it need not be necessarily redefined
in the derived class. In such cases, calls will invoke the base function.

GANESH Y, Dept. of ECE RNSIT

Extra program

// virtual functions accessed from pointer
#include <iostream>
using namespace std;
class Base //base class
{
public:
virtual void show() //virtual function

{
}

cout << "Base\n";

}s
class Dervl : public Base //derived class 1

{
public:
void show()

{
cout << "Dervi\n"; 4 Q
} \

}s .

class Derv2 : public Base //derived

{

public: \
void show()

{
}

cout << "Derv2

}s

int main()

{
Dervl dvil; ct of derived class 1
Derv2 dv ject of derived class 2
Base* ptr; % /pointer to base class
ptr = &dvl; //put address of dvl in pointer
ptr->show(); //execute show()
ptr = &dv2; //put address of dv2 in pointer
ptr->show(); //execute show()
return 0;

GANESH Y, Dept. of ECE RNSIT Y

Pure Virtual Functions

It is normal practice to declare a function virtual inside the base class and redefine it
in the derived classes. The function inside the base class is seldom used for performing
any task. It only serves as a placeholder.

For example, we have not defined any object of class media and therefore the function
display() in the base class has been defined 'empty’. Such functions are called "do-
nothing” functions.

A "do-nothing" function may be defined as follows:
virtual void display () = 0;

Such functions are called pure virtual functions. A pure virtual function is a function
declared in a base class that has no definition relative to the base class. In such cases,

the compiler requires each derived class to either define function or redeclare it as
a pure virtual function. .

Remember that a class containing pure virtual fupeti annot be used to declare any
objects of its own. As stated earlier, such classesydrefcalled abstract base classes. The
\ 'ﬁ e some traits to the derlved classes

ginclude fic::rf.-aO

UG 1Ng nam ’F.'-“Q

class Halagurugamy

!.:.'-I.]:'l!:c:'.

wirtual vold eRample()=0; f/Denotes purs virtual Function Definition

Lk
class C:public Balagurusamy ffderived clasg 1
tf
pubiiic:
void exampled)
i

coukz<"C text Book written by Balagurusamy™;

GANESH Y, Dept. of ECE RNSIT

a3 -::-c;::.n:-._::ui:r'l 1o F.J'l_-.ll:rulr'

wvoid example)

cout=="C++ text Book written by Balagurusamy";

|
maini

rayar arral2];
B2

[0] =⪙

[1]1=8m2;
[0] ~rexamplel] ;
[1] =rexamplel] ; ‘\

Z text Book written by Balagurusga
C++ btexk Book written bv Balagt '1%!
Extra program

#include <iostream>
using namespace std

class A \
{
public:
void virtlal gisplay()=90;
}s

class B:public A

{
public:

void display()
{

}

cout<<"derived class";

}s
int main()
{
A* ap;
B b;
ap=&b;
ap->display();//invokes derived function.
return 0;

GANESH Y, Dept. of ECE RNSIT [

r = 6.403124
theta=51.340073 degree

Chapter 8

Review Questions

8.1: What doesinheritance mean in C++?

referred to as the base class and the new oneis called deri

*
Ans: The mechanism of deriving anew class from an old one i@eﬂtance. Theold classis
cl
L 4

8.2 What are the different forms of inheritangs® examplefor each.

Ans.Different forms of inheritence:

1. Singleinheritence : Only one deriv;
inheritence.

Example: Let A isabase class
and B isanew class derived

Thisiswritten in program as following:

class A {.......... ¥

class B : Public A {........ s

2.Multiple inheritence : A class can inherit the attributes of two or more classes. Thisis known as

multiple inheritence.
Example:

erited from only one base classis called single

Bl B2 B3

D

Class D : visibilityB1, visibility.B2, visibility B3
{
(Body of D)
}

* visihility may be public or private.

2
3.Multilevel inheritance: It aclassis derived from a base cla$®er classis derived from

this derived class and so on, then it is caled multilevel i

(O Wi]

Example:
ClassA {..... };
ClassB : Public A { 0

afﬂ

Class C : Private B{ #7%
4. Hierarchical inh celt the inheritance follows the hierarchical design of a program, then it

iscalled hierarchicd i itance.

Example:
Student
L 4
Arts Engineering Medical
y
CSE EEE ECE

This design isimplemented in program as follows:
Class student { }; // base class,

Class Arts : Public student { IS

Class Medical : Public student {.......)

Class Engineering : Public student { };

Class CSE : Public Engineering { };

http://www.codingpractise.com/wp-content/uploads/2015/03/Example-2.jpg

Class EEE : Public Engineering { IS
Class ECE : Public Engineering { }s

* here all inheritance are considered as public you can private inheritance also. as you wish.

5.Hybrid inheritance: When multi level and multiple inheritances are applied to an inheritance,
then it is called Hybrid inheritance.

Example:

student

l

test sports
*
I . Q
result \

In program :

Class student {...... b

Class test : public student {...... }s
Class result : public test {....... };
Class result : public sports {....... };

8.3: Describethe syntax of thesinglei itancein C++.

Class Derived name : visi @a otle Base_class name

{
Body&d class

* visibility mode may be public or private.
or protected

8.4: Weknow that a private member of a base classisnot inheritable. Isit anyway possible
for the objects of a derived class to access the private member s of the base class? If yes, how?
Remember, the base class cannot be modified.

Ans.Yes. It is possible for the objects of derived class to access the private member of the base
class by amember function of base class which is public. The following example explains this:

#include<iostream.h>
classB

{

http://www.codingpractise.com/wp-content/uploads/2015/03/Example-5.jpg

int a; // ais private that can not be inherited.

public:
int get_a();
void set_a();
|3
class D:public B
{
int b;
public:
void display_a();
|3

void D :: display_a()
{

cout<<" a="<<get_a()<<"\n"; // ais accessed by member function get_a().

}
void B :: set_a() ‘\Q

{
a=156271; .
}

int B :: get_a() &
{

return a;
}

void main()

{
Dd; &
d.set_a();
d.displaya();QO

8.5: How dothe properties of the following two derived classes differ ?
(a) class D1: private B(//);
(b) class D2: public B(//....);

Ans.(a) Private member of B can not beinherited in D1 Protected member of B become privatein
D1 public member of B become private in D1.

(b) Private member of B can not be inherited in D2 Protected member of B remains protected in
D2 Public member of B remains publicin D2

8.6; When dowe usethe protected visibility specifier to a class member?

Ans:When we want access a data member by the member function within its class and by the

member functions immediately derived from it, then we use visibility modifier protected.
8.7: Describe the syntax of multiple inheritance. When do we use such an inheritance?

Ans. Syntax :
Class D : Vighility B1, Visbility B2,

(Body of D)
}

Then we want of combine several feature to a single class then we use multiple inheritance.

8.8: What aretheimplications of the following two definigio
(a) class A: public B, public C(//....);

(b) class A: public C, public B(//....);

Ans: Two are same. &

8.9: WWhat isavirtual base class?

2

Ans:Whey multiple paths betwee @ sfass and a derived class are exist then thisbase classis
D

virtual base class. A base claSsfca
base class. O
8.10: When do We@class virtual?

Ans.To avoid the duplication of inherited members due to multiple paths between base and
derived classes we make base class virtual.

8.11: What isan abstract class?
Ans:An abstract classis one that is not used to create objects.
8.12: Inwhat order arethe class constructor s called when a derived class object iscreated?

Ans:According to the order of derived class header lines

8.13: ClassD isderived from class B. The class D does not contain any data members of its
own. Doesthe class D require constructor s? If yes, why?

Ans:D does not require any construct or because a default constructor is always set to class by
defaullt.

8.14: What iscontainership? How doesit differ from inheritance?

Ans:Containership is another word for composition. That is, the HAS-A relationship where A
has-a member that is an object of class B.

Difference: In inheritance the derived classinherits the member data and functions from the base
class and can manipul ate base public/protected member data as its own data. By default a
program which constructs aderived class can directly access the pullic members of the base class
aswell. The derived class can be safely down cast to the basg cl because the derived is-a”
base class.

Container : aclass contains ancther object as member d

@ @)cl ass which contains the object
cannot access any protected or private members of t

ained class(unlessthe contai ner it was

ed that contains the objects of other class.

Ans:By inheriting an object &

Example:

e\

inta
public:
void dosomething();
b

classB: class A
{
int b;
public:
void donothing();
h

Now if object of B is created ; then if contains:
1 void dosomething ();

2. int b;

3. void donothing ();

8.16: Statewhether thefollowing statementsare TRUE or FAL SE:

(@) Inheritance helps in making a general class into a more specific class.

(b) Inheritance aids data hiding.

(c) One of the advantages of inheritanceisthat it provides a conceptual framework.

(d) Inheritance facilitates the creation of class libraries.

(e) Defining aderived class requires some changes in the base class.

(f) A base classis never used to creste objects.

(g) Itislegal to have an object of one class as a member of another class.

(h) We can prevent the inheritance of all members of the base class by making base class virtual
in the definition of the derived class.

Ans.

(@) TRUE
(b) FALSE . Q
(c) TRUE \

.

(d) TRUE
(e) FALSE
(f) TRUE

(9) TRUE p
(h) FALSE &
Debugging Ex

8.1: Identify theerror in tr% g program.
#include <iostream.h>; O
class Student {

char* name;

int rolINumber;
public:
Student() {
name = "AlanKay";;
rollNumber = 1025;

}

void setNumber(int no) {
rolINumber = no;
}

int getRollNumber() {
return rollNumber;
}

b

class Anual Test: Student {
int markl, mark2;

public:
AnuaTest(int m1, int m2)
:mark1(ml), mark2(m2) {
}

int getRollNumber() {
return Student::getRolINumber();

}
|3
void main()
{
Anual Test test1(92 85);
cout<< testl.getRolINumber();

}

Solution: Constructor and Private (data & function) can not e

8.2: ldentify theerror in thefollowing program.

#include <iostream.h>;
class A

{
public:

A()
{

COUt<< "A";

. ¥
QO

class B: public A

{
public:

B()
{

}
|3
class C: public B

{
public:

C0
{

}
b

classD

cout<< "B";

cout <<"C";

public:

DO
{

}
b
class E: public C, public D

{
public:

EQ
{

}
h
classF; B, virtual E

{
public:

FO
{

}
1
void main()

{
}

cout << "D";

cout<< "D";

cout<<"F";

Ff;

e Wi |

E

T

Ny

2

a(

Solution: The inheritance ca& ted as follows:

l_@

Here B isvirtuad, but not E.

8.3: ldentify theerror in thefollowing program.

#include <iostream.h>;

http://www.codingpractise.com/wp-content/uploads/2015/03/Exarcise-1.jpg

class A

{
h

class AB: virtual A
{

h
classAC: A, ABAC
{

inti;

intj;

intk;

cl’assABAC: AB, AC
{

intl;
};_d in0 O\Q
Vvoid man

{
ABAC abac; 2
cout << "sizeof ABAC:" << sizeof(abac);

} &
Solution: The inheritance can be repr ollows:
2 &

»>(AC

h 4

—| ABC

Class AC: A, Herethereis no identification of ABAC. If wewrite class ABAC; after #include it
will not show any error massage.

8.4: Find errorsin thefollowing program. State reasons.

I/l Program test
#include <iostream.h>
class X
-
private:
int x1;
Protected:

http://www.codingpractise.com/wp-content/uploads/2015/03/Exarcise-2.jpg

int x2;
public:
int x3;

h

classY: public X
{
public:
void f()
{
intyly2y3;
yl=x1,
y2 = X2,
y3=x3;
}

i:l;a&Z: X . Q
N\

public:
void f() ¢

{
int z1,22,z3; y
z1=x1; \
72 = X2;

Z3=X3;

main()

int m,n,p; &
Yy;
m=y.x1,
n=y.x2

p=yx3;

Zz

m=z.x1;

n=2zx2;

p=2zXx3;

Solution: Here x1 is private, so x1 cannot be inherited.
y1 =x1; isnot valid

z1 =x1; isnot valid

m=y, x1; isnot valid

m = z, x1; isnot vaid

8.5: Debug thefollowing program.

/] Test program
#include <iostream.h>

classB1
{
int bl;
public:
void display();
{ cout << b1 <<"\n";
}
1
classB2
{
int b2;

public:
void display():; . Q
{ \

cout << b2 <<"\n";

} *
b

class D: public B1, public B2 y
{)
//nothing here

1
main()
{

Dd;

d.display()
d.B1:display(); \
d.B2::display(); O

} Q

Programming Exer cises

8.1: Assumethat a bank maintains two kinds of accountsfor customers, one called as
savings and the other as current account. The savings account provides compound inter est
and withdrawal facilities but no cheque book facility. The current account provides cheque
book facility but nointerest. Current account holders should also maintain a minimum
balance and if the balance falls below thislevel a service chargeisimposed.

Create a class account that stores customer name, account number and type of account.
From thisderive the classes cur_acct and sav_acct to make them mor e specific to their
requirements. I nclude necessary member functionsin order to achieve the following tasks:
(a) Accept the deposit from a customer and update the balance.

(b) Display the balance.

(c) Compute and deposit interest.

(d) Permit withdrawal and update the balance.

(e) Check for the minimum balance, impose penalty, necessary and update the balance.

Do not use any constructors. Use member functions to initialize class members.

Solution;

#include<iostream.h>
#include<stdio.h>
#include<string.h>
#include<math.h>

#define minimum 500
#define service_charge 100
#definer 0.15

©CoO~NOOOUITAWNPE

class account
10 {

11 protected:
12 char name[100]; P
13 int ac_number; \

14 char ac_type[100];
15 public: ®
16 void creat(char *t);

17} 2
18
19 void account::creat(char *t) '

20 {
21
22 cout<<" Enter customer na
23 gets(name);

24 strepy(ac_typet);
25 cout<<" Enter acee

26 cin>>ac_numb ‘
27}

28 classcur_acct: ic ageount
29 {

30 private:

31 float balance;

32 public:

33 void deposite(float d);
34 void withdraw(float w);
35 void display();

36 };

37 void cur_acct::deposite(float d)
38 {

39 bal ance=d;

40 }

41

42 void cur_acct::withdraw(float w)
43 {

44 if (balance<w)

45 cout<<" sorry your balanceis less than your withdrawal amount \n";

46 else

47 {

48 balance-=w;

49 if (balance<minimum)

50 cout<<"\n your current balanceis:"<<balance<<" whichisless than"<<minimum<<"\n
51 your account is discharged by "<<service charge<<"TK \n"<<" You must store

52 "<<minimum<<"TK to avoid discharge \n "<<" Do you want to withdraw ? press 1 for yes
53 press 0 for no \n"<<" what is your option ?';

54 int test;

55 cin>>test;

56 if (test==0)

57 balancet+=w;

58 }

59

60 }

61

62 void cur_acct::display()

63 { . Q
64 cout<<"\n Now balance = "<<ba ance<<"\n"; \
65 }

66 class sav_acct:public account 7S
67 {

63 float balance; .

69 int d,m,y; \

70 public:

71 void deposite(float d);

72 void withdraw(float w);

73 void display();

74 void set_date(int a,i —a;m=h;y=c;}
75 void interest();

76 }; \

77

78 void sav_acct::d i d)

79 {

80 int x,y,z;

81 cout<<" Enter today's date(i,e day,month,year) : ";
82 CiN>>X>>y>>7;

83 set_date(x,y,2);

84 balance=d;

85 }

86

87 void sav_acct::withdraw(float w)

88 {

89 if (balance<w)

20 cout<<" sorry your balanceisless than your withdrawal amount \n";
91 else

92 {

93 ba ance-=w;

94

95 if (bal ance<minimum)

96

97 cout<<™\n your current balanceis :"<<balance<<" which is lessthan"<<minimum<<"\n

98 your account is discharged by "<<service charge<<"TK \n"<<" You must store
99 "<<minimum<<"TK to avoid discharge \n "<<" Do you want to withdraw ? press 1 for yes
100press O for no \n"<<" what is your option ?";

101

102 int test;

103 cin>>test;

104 if(test==0)

105 balancet+=w;

106 }

107 }

108

109}

110void sav_acct::display()

111

112 cout<<"\n Now balance = "<<balance;

113}

114void sav_acct::interest() . Q
115{

116 int D[12]={31,28,31,30,31,30,31,31,30,31,30,3 \
117 int d1,y1l,mi; V'S
118 cout<<" Enter today's date :(i,e day,mont

119 cin>>d1>>mil>>yl; y

120 int iday,fday; \

121 iday=d;

122 fday=d1;

123 for(int i=0;i<ml;i++)
124 {

125 fday+=D[i];

126 }
127 for(i=0;i<m;i++) \
128 {

day

129 i

130 }

131 int tday;

132 tday=fday-iday;
133 float ty;

134 ty=float(tday)/365+y1-y;
135 float intrst;

136

137 intrst=ty* r* balance;

138 cout<<" Interest is: "<<intrst<<"\n";
139 balance+=intrst;

140}

141

142int main()

143{

144 sav_acct santo;

145 santo.creat("savings");

146 float d;

147 cout<<" Enter your deposit amount : ";

148 cin>>d;

149 santo.deposite(d);
150 santo.display();

151 intt;

152 cout<<"\n press 1 to see your interest : \n"

153 <<" pressOto skip:";

154

155 cin>>t;

156

157 if(t==1)

158 santo.interest();

159

160 cout<<"\n Enter your withdrawa amount :";
float w;
cin>>w;

santo.withdraw(w);

santo.display();
return O; . Q
} \

output 4

Enter customer name :Rimo 2
Enter account number :10617 &
Enter your deposit amount : 10000

Enter today’s date(i,e day,month,year) :

Now balance = 10000
press 1 to see your interest :
pressOtoskip: 1

Enter today’s date :(i,e da)15 8 2010

Interestis: 135.61

Enter your withdraw otint :500

Now balance = 9635.616211

8.2: Maodify the program of exercise 8.1 to include constructorsfor all three classes.

Solution:

#include<iostream.h>
#include<stdio.h>
#include<string.h>
#include<math.h>

#define minimum 500
#define service_charge 100
#definer 0.15

O~NO U WNPE

9 classaccount

10 {

11 protected:

12 char name[100];

13 int ac_number;

14 char ac_type[100];

15 public:

16 account(char *n,char *t,int no);

17 };

18 account::account(char * n,char *t,int no)

19 {

20 strepy(name,n);

21 strepy(ac_typeyt);

22 ac_number=no;

23

24 }

25 . Q
26 class cur_acct: public account

27 { \
28 private: TS
29 float balance,d,w;

30 public:

31 void withdraw(float ww);

32 void deposit(float d){ balan

33 cur_acct(char *n,char *t,int nu dp,float wd):
34 account(n,t,number)

35 {

36 d=dp;

37 w=wd;

38 deposit(\

39 withdr

40

41 }

42 void di 0;

43 };

44

45 void cur_acct::withdraw(float ww)

46 {

47

48 if (balance<ww)

49 cout<<" sorry your balanceisless than your withdrawal amount \n";
50 else

51 {

52 balance-=ww;

53 if(balance<minimum)

54 {

55 cout<<"\n your current balanceis :"<<balance<<" which isless than"<<minimum<<"\n your
56 account is discharged by "<<service_charge<<"TK \n"<<" Y ou must store

57 "<<minimum<<"TK to avoid discharge \n "<<" Do you want to withdraw ? press 1 for yes
58 press 0 for no \n"<<" what isyour option ?';

59 int test;

60 cin>>test;

61 if (test==0)
62 ba ancet=w;
63 }

64 ese

65 ;

66 }

67 }

68

69 void cur_acct::display()

70 {

71 cout<<"\n Now balance = "<<balance<<"\n";
72}

73 class sav_acct:public account

74 {

75 float balance;

76 int d,m,y; PN

77 public: \
4

78 void deposite(float d){ balance=d;set_date();}
79 void withdraw(float w);
80 void display();

81 void set_date(){ d=12;m=1,y=2010;} :
82 void interest(); \
83 sav_acct(char *n,char *t,int er, dp,float wd):

84 account(n,t,number)
85

86

87

88

89

90

91

92

93 }
94 };

95 void sav_acct::withdraw(float w)

96 {

97 if (bal ance<w)

98 cout<<" sorry your balance is less than your withdrawal amount \n";

99 else

100 {

101 balance-=w;

102 if (balance<minimum)

103 {

104 cout<<"\n your current balance is :"<<balance<<" which isless than"<<minimum<<"\n your
105account is discharged by "<<service charge<<"TK \n"<<" You must store

106" <<minimum<<"TK to avoid discharge \n "<<" Do you want to withdraw ? press 1 for yes
107press 0 for no \n"<<" what is your option 7;

108 int test;

109 cin>>test;

110 if (test==0)

111 balancet+=w;

112 }

113 dse

114 :

115 }

116

117}

118void sav_acct::display()

119{

120 cout<<"\n Now balance = "<<balance;
121}

122void sav_acct::interest()

123{

124 int D[12]={31,28,31,30,31,30,31,31,30,31,30,31} ;
125 intdl,ylmi;

126 cout<<" Enter today's date :(i,e day,month,year) ";
127 cin>>d1>>mi1>>y1; PN
128 int iday,fday; \

129 iday=d;
130 fday=d1; V'S
131 for(int i=0;i<ml;i++)

132 { '
133 fday+=DIi]: '
134 }

135 for(i=0;i<m;i++)
136 {

137 iday+=DJi];
138

}
139 int tday;
140 tday=fday-iday; &
141 float ty;

142 ty=float(td ;

143 bal ance=balance®pow((1+r),ty);
144}

145

146int main()

147

148

149 float d;

150 cout<<" Enter customer name:";
151 char name[100];

152 gets(name);

153 cout<<" Enter account number :";

154 int number;

155 cin>>number;

156 cout<<" Enter your deposit amount : ";
157 cin>>d;

158

159 cout<<" Enter your withdrawa amount :";
160 float w;

161 cin>>w;

llcur_acct §("current” ,name,number,d,w);

IIs.display();
sav_acct ¢("savings',name,number,d,w);
c.display();
return O;
}
output

Enter customer name :mehedi
Enter account number :1457
Enter your deposit amount : 5000
Enter your withdrawal amount :1200 4 Q
Enter today’s date :(i,e day,month,year) 13 7 2010 \
2

Now balance = 4160.875977

8.3: An educational institution wishest
isdivided into a number of classeswh
figure. Thefigure also showsthe ming
classes and define functionsto cr
and when required.

%a database of its employees. The database
[chical relationshipsare shown in following
formation required for each class. Specify all
atabase and retrieve individual information as

Staff

fig: class relatio

1 #Hinclude<iostr

2 #include<iomanip.h

3 #include<string.h>

4

5 class staff

6 {

7 public:

8 int code;

9 char name[100];

10 public:

11 void set_info(char *n,i
12 {

13 strcpy(name,n);
14 code=c;

15 }

16 };

17

18 classteacher : public staff

Code
Name
Teacher
Subject -
Publication typist
speed
regular

@O

nt c)

ca

g

officer

grade

Y

r exercise 8.3)

19 {

20 protected:

21 char sub[100],publication[100];

22 public:

23 void set_details(char *s,char *p)

24 {

25 strepy(sub,s);strepy(publication,p);

26 }

27 void show()

28 {

29 cout<<"name"<<setw(8)<<"code" <<satw(15)<<" subject" <<setw(25)
30 <<"publication"<<endl<<name<<setw(8)<<code<<setw(25)<<sub<<setw(22)<<publication<<endl;
31 }

32}

33

34 class officer:public staff

354 . Q
36 char grade[100];

37 public: \
38 void set_details(char * Q) 7S
39 {

40 strepy(grade,g); y

41 } \

42

43 void show()

44 {

45 cout<<" name "<<setw code"<<satw(15)<<"Category "<<endl
46 <<name<<setw(10) w(15)<<grade<<endl;
47 }

48 };

49 classtypist: pu

50 {

51 protected:

52 float speed;

53 public:

54 void set_speed(float s)

55 {

56 speed=s;

57 }

58 };

59 class regular:public typist

60 {

61 protected:

62 float wage;

63 public:

64 void set_wage(float w){ wage=w;}

65 void show()

66 {

67 cout<<"name" <<setw(16)<<"code" <<setw(15)<<"speed" <<setw(15)
68 <<"wage"'<<endl<<name<<setw(10)<<code<<setw(15)<<speed

69 <<setw(15)<<wage<<endl;

70)

71},

72 class causdl:public typist

73 {

74 float wage;

75 public:

76 void set_ wage(float w){ wage=w;}

77 void show()

78 {

79 cout<<"name"<<setw(16)<<"code"<<setw(15)<<"speed" <<setw(15)

80 <<"wage"<<endl<<name<<setw(10)<<code<<setw(15)<<speed
81 <<setw(15)<<wage<<end!;

82 }

83

84 };

85

86 int main() . Q
87 {

88 \

89 teacher t; 7S

20 t.set_info("Ataur",420);

91 t.set_details("programming with c++", raw Hill");
92 &

93 officer o;

94 o.set_info("Md. Rashed", 222

95 o.set_detail ("First class').Q
96

97 regular rt;
98 rt.set_info("' Roli
99 rt.set_speed(85.5);

100 rt.set_wage(@

101
102 causal ct;

103ct.set_info("Kaw hmed",333);
104ct.set_speed(78.9);

105ct.set_wage(10000);

106 cout<<" About teacher: "<<endl;

107 t.show();

108 cout<<" About officer:"<<endl;

109 0.show();

110 cout<<" About regular typist :"<<endl;
111 rt.show();

112 cout<<" About causa typist :"<<endl;
113 ct.show();

114

115 return O;

116}

output

About teacher:

name code subject publication
Ataur 420 programming with c++ TataMcGraw Hill

About officer;

name code Category

Md. Rashed 222 First class

About regular typist :

name code speed wage

Robiul Awal 333 85.5 15000

About causal typist : ’\Q
name code Speed wage 2

Kawser Ahmed 333 78.900002 1

8.4: The database created in exer cisghS. -

staff. It has been decided to add thiSimfosmation to teacher s and officers (and not for typists)

g:*' SigfMmaking with regard to training, promotions etc.
Jcatjon that holds two pieces of educational information

Add another data class called
namely highest qualification

Solution;

#include<iostream.h>
#include<iomanip.h>
#include<string.h>

class staff
{
protected:

int code;

char name[100];
10 public:
11 void set_info(char *n,int c)
12 {
13 strepy(name,n);
14 code=c;

©CoOoO~NOOUITA,WNPE

15 }

16 };

17 class education:public staff

18 {

19 protected:

20 char quali[100];

21 public:

22 void set_quaification(char *g){ strcpy(quali,q);}
23 };

24

25 classteacher : public education

26 {

27 protected:

28 char sub[100], publication[100];
29 public:

30 void set_details(char *s,char *p)

31 { B Q
32 strepy(sub,s);strepy(publication,p);

33 } \

34 void show()
35 {

36 cout<<" name "<<setw(8)<x
37 <<"subject" <<setwi2 &<
38 <<setw(25)<<"qual
39 <<name<<setw@R<Cag
40 <<sub<<setw(18) ﬂ'\gf’ |
41 }

a2 };

43

44 classofficer:public
45 {
46 char gr
47 public:
48 void set |

49 {

50 strepy(grade,g);

51

52 }

53

54 void show()

55 {

56 cout<<" name "<<setw(15)<<"code"<<setw(15)<<"Catagory "

57 <<setw(22)<<"Qudlification"<<endl<<name<<setw(10)

58 <<code<<setw(15)<<grade<<setw(25)<<quali<<endl<<endl;
59 }

60 };

61

62 classtypist: public staff

63 {

64 protected:

65 float speed;

66 public:

67 void set_speed(float s)

68 {

69 speed=s;

70 }

71},

72 classregular:public typist

73 {

74 protected:

75 float wage;

76 public:

77 void set_wage(float w){ wage=w;}

78 void show()

79 {

80 cout<<" name "<<setw(16)<<"code"<<setw(15)<<"speed"
81 <<setw/(15)<<"wage"<<endl<<name<<setw(10)sscode
82 <<setw/(15)<<speed<<setw(15)<<wage<gendig<endl;
83 }

84 };

85 class causdl:public typist 7S

86 {

87 float wage; 4
88 public \
89 void set_ wage(float w){ wage=v

90 void show()

91 {
92 cout<<" name "<< "code" <<setw(15)<<"speed"
93 <<satw(15)<<, dl<<name<<satw(10)<<code

setw(15)<<wage<<endl<<end!;

94 <<setw(1l

5 LN
96

97 };

98

99 int main()

100{

101

102 teacher t; t.set_info(" Ataur",420);
103t.set_detail (" programming with c++"," Tata McGraw Hill");
104t.set_qualification("PHD from programming ");

105

106 officer o;

107

108 o0.set_info("Md. Rashed",222);

109 o.set_details("First class');

110 o.set_qualification("2 years experienced");

111
112 regular rt;
113 rt.set_info("Robiul Awal",333);

114rt.set_speed(85.5);
115rt.set_wage(15000);
116

117 causal ct;

118 ct.set_info("Kawser Ahmed",333);
119 ct.set_speed(78.9);

120 ct.set_ wage(10000);

121

122 cout<<" About teacher: "<<end;
123 t.show();

124

125 cout<<" About officer:"<<endl;
126 0.show();

127

128 cout<<" About regular typist :"<<endl;
129 rt.show();

130 cout<<" About causa typist :"<<endl;
131 ct.show();

132
133 return O; PN
134} \

output *
About teacher: 2
name code subject publicéit \ qualification

Ataur 420 programming with c++
About officer:

cGraw Hill PHD from programming-

name code Catago Qualification

Md. Rashed 222 aSS 2 years experienced

About regular typist :
name code speed wage
Robiul Awa 333 85.5 15000

About causal typist :
name code speed wage

Kawser 333 78.900002 10000

8.5: Consider a class network of the following figure. The class master derivesinformation
from both account and admin classes which in turn derivesinformation from the class
person. Define all thefour classesand write a program to create, update and display the
information contained in master objects.

Person

Name
Code
Account
Pay
Person
Name
Code
Experience
Pay
Solution:
1 #include<iostream.h>
2 #include<iomanip.h>
3 #include<string.h> &
4
5 class stff O
6 {
7 protecteds
8 int code;
9 char name[100];
10 public:
11 void set_info(char *n,int c)
12 {
13 strecpy(name,n);
14 code=c;
15 }
16 };
17
18 class education:public staff
19 {
20 protected:
21 char quali[100];
22 public:
23 void set_qualification(char * q){ strepy(quali,g);}
24 };

25

\dmin

o

[0)

xperience

Ny

2

http://www.codingpractise.com/wp-content/uploads/2015/03/Ques-Figure.jpg

26 classteacher : public education

27 {

28 protected:

29 char sub[100],publication[100];

30 public:

31 void set_details(char *s,char *p)

32 {

33 strepy(sub,s);strepy(publication,p);
34

35 }

36

37 void show()

38 {

39 cout<<"name"<<setw(8)<<"code" <<satw(15)<<"subject" <<setw(22)

40 <<"publication"<<setw(25)<<"qualification"<<endl<<name<<setw(8)

41 <<code<<setw(25)<<sub<<setw(18)<<publication<<setw(25)ssguail
42 <<endl; .

43 }

44 };

45 ®

46 class officer:public education

47 { y
48 char grade[100]; \
49 public:

50 void set_details(char *q)

51 {

52 strepy(grade,g);

53 }

54

55 void show() \

56 {

57 cout<<" w(15)<<"code"<<setw(15)<<" Catagory
58 << "Quialification" <<endl <<name<<setw(10)
59 <<cod w(15)<<grade<<setw(25)<<quali<<endl<<end!;
60 }

61 };

62

63 classtypist: public staff

64 {

65 protected:

66 float speed;

67 public:

68 void set_speed(float 9)

69 {

70 speed=s,

71 }

72}

73 classregular:public typist

74 {

75 protected:

76 float wage;

77 public:

78 void set_wage(float w){ wage=w;}

79 void show()

80 {

81 cout<<"name"<<setw(16)<<"code" <<setw(15)<<"speed" <<setw(15)

82 <<"wage"<<endl<<name<<setw(10)<<code<<setw(15)<<speed
83 <<setw(15)<<wage<<endl<<end;

84 }

85 };

86 class causal:public typist

87 {

88 float wage;

89 public:

20 void set_wage(float w){ wage=w;}

91

92 void show()

93 { . Q
94 cout<<"name"<<setw(16)<<"code"<< 15) <" speed” <<setw(15)
95 <<"wage"<<endl<<name<<setw(10)<<code<<setw/(1 m

96 <<setw(15)<<wage<<endl<<end; V'S

97 }

98 :
929 }; \
100

101int main()

102{

103

104 teacher t;

105 t.set_info("Ata

106 t.set_details(" with c++"" TataMcGraw Hill");

D -ﬂ.‘i
107 t.set_qualifi ‘Q- D from programming ");

108 officer o;
109 o.set_info(tiMd. ed",222);
110 o.set_detail s("§irst class');

111 o.set_qualification("2 years experienced");
112 regular rt;

113 rt.set_info("Robiul Awa",333);

114 rt.set_speed(85.5);

115 rt.set wage(15000);

116 causal ct;

117 ct.set_info("Kawser Ahmed”,333);

118 ct.set_speed(78.9);

119 ct.set_ wage(10000);

120 cout<<" About teacher: "<<endl;

121 t.show();
122 cout<<" About officer:"<<endl;
123 0.show();

124 cout<<" About regular typist :"<<endl;
125 rt.show();

126 cout<<" About causa typist :"<<endl;
127 ct.show();

128

129 return O;

130}

output

name code Experience payment
Hasibul 111 3years 1500tk

8.6: In exercise 8.3 the classesteacher, officer, and typist are derived from the class staff. As
we know we can use container classesin place of inheritancein some situations. Redesign
the program of exercise 8.3 such that the classesteacher, officer and typist contain the
objects of staff.

2

Solution:
4

1 #include<iostream.h> .
2 #include<iomanip.h> :
3 #include<string.h>
4
5 class staff
6 {
7 public:
8 int code;
9 char name[100];
10 public:
11 void set_inf int c)
12 {
13 strepyigname,n);
14 code=c;
15 }
16};
17
18class teacher : public staff
1o
20 protected:
21 char sub[100], publication[100];
22 public:
23 void set_details(char *s,char *p)
24
25 strepy(sub,s);strepy(publication,p);
26 }
27 void show()
28 {
29 cout<<"name" <<setw(8)<<"code" <<satw(15)<<"subject" <<setw/(25)

30<<"publication"<<endl<<name<<setw(8)<<code<<setw(25)<<sub

3l<<setw(22)<<publication<<end!;

32 }

33},

34

35 class officer:public staff

36{

37 char grade[100];

38 public:

39 void set_details(char * Q)

40

41 strcpy(grade,g);

42 }

43 void show()

44 {

45 cout<<" name "<<setw(15)<<"code"'<<setw(15)<<"Catagory "<<endl
46 <<name<<setw(10)<<code<<setw(15)<<grade<<en
47 } . b
48} ;

49 \
50class typist: public staff V'S
51{

52 protected: y

53 float speed; \

54 public:

55 void set_speed(float s)

56 {

57 Speed=s,

58 }

59 void show()

60 {

61 cout<<" n (15)<<"code" <<setw(15)<<"speed"<<endl
62 <<n (10)<<code<<setw(15)<<speed<<endl<<end!;
63 }

64};

65

66 int main()

67{

68

69 teacher t;

70 t.set_info("Ataur",420);

71 t.set_details("programming with c++"," TataMcGraw Hill");
72

73 officer o;

74 o.set_info("Md. Rashed",222);

75 o.set_details("First class");

76

77 typist tp;

78 tp.set_info("Robiul Awal",333);

79 tp.set_speed(85.5);

80

81

cout<<" About teacher: "<<endl;

82 t.show();
83 cout<<" About officer:"<<endl;

84 o.show();

85 cout<<" About typist :"<<endl;

86 tp.show();

87 return0;

88}

output

About teacher:

name code subject publication

Ataur 420 programming with c++ TataMcGraw Hill

About officer: . \Q

name code Catagory

2

Md. Rashed 222 First class .
About typist : &
name code Speed
Robiul Awal 333 85.

N
8.7. We havelearn iswell suited for designing simulation programs. Using the
techniquesand tricks| ed so far, design a program that would simulate a simplereal-

world system familiar%e you

Solution:

#include<iostream.h>
#include<stdio.h>
#include<string.h>
#include<iomanip.h>
#include<conio.h>

char *sub[10]={"Bangla 1st paper","Bangla 2nd paper","English 1st paper",
"English 2nd paper","Mathematics',"Religion”,
"Physics’,"Chemistry"," Sociology","Higher Mathematics'};

O©CO~NOUILAWNBEF

10
11 class student_info
12 {

13

14 public:

15 char name[40];

16 char roll[20];

17 public:

18 void set_info();

19 };

20

21 void student_info::set_info()

22 {

23 cout<<"Enter student name: ";

24 gets(name);

25 cout<<"Enter roll: ";

26 getg(roll);

27 }

28

29 class subject :public student_info . Q
30 {

31 \
32 public: V'S
33 float mark[10];

34 .
35 public: \
36 void set_ mark();

37}

38

39 void subject::set_mark()

40 {

41 cout<<" marks Of;

42 for(int i=0;i<

43 {

44 C <" =727

45 in>>mark(i];

46 }

47

48 }

49 class conversion :public subject

50 {

51 float gpa[10];

52 char grade] 20][20];

53 public:

54 void convert_to_gpa();

55 void show();

56 };

57 void conversion::convert_to_gpa()

58 {

59 for(int i=0;i<10;i++)

60 {

61 if(mark[i]>=80)

62 {

63 gpa[i]=5.00;

64 strepy(grade]i],"A+");
}

65

66 else if(mark[i]>=70 & & mark[i]<80)

67 {

68 gpa[i]=4.00;

69 strepy(grade|i],"A");

70 }

71 else if(mark[i]>=60 & & mark[i]<70)

72 {

73 gpa[i]=3.50;

74 strepy(gradefi],"A-");

75 }

76 eseif(mark[i]>=50 & & mark][i]<60)

77 {

78 gpali]=3.00;

79 strepy(gradd|i],"B");

80 } . Q
81 else if(mark[i]>=40 & & mark[i]<50)

82 { \
83 gpa[i]=2.00; TS

84 strepy(gradefi],"C");
85 }

86 <40)
87 {

88

89

90 }

91 else

92 {

93

94

95

96 }

97 }

98

99 void conversion::show()

100{

101 cout<<" result of \n";

102 cout<<"npame :"<<name<<"\n";

103 cout<<"Raoll : "<<roll<<"\n";

104 cout<<setw(25)<<"Subject"<<setw(17)<<"Marks"
105 <<setw(14)<<"GPA"<<setw(12)<<"Grade \n";
106 for(int i=0;i<10;i++)

107 {

108 cout<<setw(25)<<subli]<<setw(15)<<mark]i]
109 <<setw(15)<<gpa[i]<<setw(10)<<gradei]<<"\n";
110 }

111}

112int main()

113{

114 clrser();

115 conversion A;

116 A.set_info();

117 A.set_mark();

118 A.convert_to_gpa();
119 A.show();

120 getch();
121 return O;
122}

output

Enter student name : santo
Enter roll: 156271

marks of :

Bangla 1st paper =? 74

Bangla 2nd paper = ? 87

English 1st paper = ? 45 &

English 2nd paper = ? 56
Mathematics = ? 87

Religion =759 &
Physics=?75 0
Chemistry = ?65

Sociology = ? 39

Higher Mathematics = ? 86

result of

name :santo

Roll : 156271

Subj ect Marks GPA
Bangla 1st paper 74 4

Bangla 2nd paper 87 5

Grade

A+

English 1st paper 45 2 C

English 2nd paper 56 3 B
Mathematics 87 5 A+
Religion 59 3 B
Physics 75 4 A
Chemistry 65 35 A-
Sociology 39 1 D
Higher Mathematics 86 5 A+
N
Chapter 9

Review Questions

9.1: What does polymor phism mean irj

‘.
3 * s g with severa district forms.
on§in different ways, depending on what they are

Ans:In short, polymorphism mea
—In details, using operators
Operating on, is called pol

9.2: How s ponm@

Ans:Polymorphism can be achieved at compile time by early binding. Early binding means an
object is bound to its function call at compile time.
And we can achieve run time polymorphism by a mechanism known as virtual function.

achieved at (a) compiletime, and (b) run time?

9.3: Discussthe different ways by which we can access public member functions of an
object.

Ans:We can access public member functions of an object by
(i) Object name and dot membership operator.
(i) Pointer to object and function name.

9.4: Explain, with an example, how you would create space for an array of objectsusing
pointers.

Ans:We can also create an array of objects using pointers. For example, the statement
item * ptr = new item [10]; // array of 10 objects.
creates memory space for an array of 10 objects of item.

9.5 What doesthis pointer point to?

Ans:‘this’ pointer point to invoking object.

9.6: What arethe applications of this pointer?

Ans:One important application of the pointer thisis to return the objegt it points to. For example,
the statement. PN
return * this;

inside a member function will return the object that invoked the faction.

4
Beth the base and derived classes the function in the
ord virtual preceding its normal declaration.

9.7: What isavirtual junction?

Ans:When we use the same function ﬁ"r‘
base class is declared as virtual usingitheke,

9.8: Why do we need vi@ions?

Ans:It we need m&n name at base class and derived class then, we need virtual function.

9.9: When do we make a virtual function “pure”? What are the implications of making a
function a purevirtual function?

Ans:When afunction is defined as empty, then this function is called do nothing function.
The implications of making a function a pure virtual function is to achieve run time
polymorphism.

9.10: Statewhich of thefollowing statementsare TRUE or FALSE.

(a) Virtual functions are used to create pointers to base classes.

(b) Virtual functions allow us to use the same junction call to invoke member functions of objects
of different classes.

(c) A pointer to a base class cannot be made to point to objects of derived class.

(d) this pointer pointsto the object that is currently used to invoke a function.

(e) this pointer can be used like any other pointer to access the members of the object it pointsto.
(f) this pointer can be made to point to any object by assigning the address of the object.

(g) Pure virtual functions force the programmer to redefine the virtual function inside the derived
classes.

Ans.

(a) TRUE
(b) TRUE
(c) FALSE
(d) TRUE
(e) TRUE
(f) TRUE

(g) TRUE Q
L 2
N\

Debugging Exer cises *

9.1: Identify theerror in thefollowing pr r&
#include <iostream.h>;

class Info

{

char* name;
int Number;
public: &
void getinfo()
{

cout << "Infa@ifget ;

getName();
}
void getName()
{
cout << "Info::getName";
}
1
class Name: public Info
{
char * name;
public:
void getName()
{
cout << "Name::getName";
}

h

void main()

{
Info*P,
Namen;
P=n;
p->getinfo();

Solution: Here P=n will replace with P=&n in the main() function. Because P is a pointer.

9.2: ldentify theerror in thefollowing program.

#include <iostream.h>; *
class Person \

{
int age; 4
public:

Person() $
{ &
}

Person(int age)

this.age = age;

}
Person& operator < (%

{

}
int getAge()
{

return age < is;

return age;

}
h

void main()
{
Person P1 (15);
Person P2 (11);
Person P3;
/lif Plislessthan P2
P3 = P1< P2; Pl.lessthan(P2)
cout << P3.getAge();

}
/*

Solution:; The function

person (int age)

{
}

this.age = age;

should write like as...
person (int age)

{
—this> age = age;

} ‘\Q

9.3: Identify theerror in thefollowing program. 4

#include <iostream.h>; 2
class Human
{

public:
Human()

{

}
virtua -Human() &

{

}
b
class Student: public Human
{
public:
Student()
{
}
-Student()

{

cout << "Student::-Student()";

}

cout << "Hugpflan:® an'";

b

void main()

{
Human *H = new Student();
delete H;

Solution: Here we cannot write Human *H = new student(); in the main() function because base
class’s member includes in derived class’s object so we should write this as follow
student *H = new Student();

9.4: Correct theerrorsin thefollowing program.

class Human

{
private:
int m;

public:
void getdata() . \Q
{

cout << " Enter number:";
cn>>m; 2

}

1 o
main() &
{

test T;
T->getdata();
T->display();

test *p;

p = new test; &
p.getdata(); O
(*p).display(); Q

Solution: Here T->getdata replace with T.getdata and T->display replace with T.display in the
main() function. Because in this program T is object to pointer.

9.5: Debug and run thefollowing program. What will be the output?

#include<iostream.h>
class A
{
protected:
int ab;
public:
A(intx =0, inty)
{

b=y;

virtual void print ();
};
classB: public A

L
private:
float p,q;
public:
B(intm, int n, float u, float v)
{

p=u
a=v;

}
BO {p=p=0;}
void input(float u, float v); . Q
virtual void print(loat);
b \

void A::print(void) TS
{
cout << A values. << a<<""'<<b<<"\n";
})
void B:print(float) ~
{ Y

void B::input(float x, float y)

{ ’\v
p=Xx
q=y; O

}

main()

{

A a1(10,20), * ptr;
B b1l;
bl.input(7.5,3.142);

ptr = &al;
ptr->print();

ptr = &bl;
ptr->print();

Programming Exer cises

9.1: Createabase class called shape. Usethisclassto storetwo double type valuesthat
could be used to compute the area of figures. Derive two specific classes called triangle and
rectangle from the base shape. Add to the base class, a member function get_data() to
initialize base class data members and another member function display_area() to compute
and display the area of figures. Make display_area() asa virtual function and redefine this
function in the derived classesto suit their requirements.

Using these three classes, design a program that will accept dimensions of atriangle or a
rectangle interactively, and display the area.

Remember the two values given as input will be treated as lengths of two sidesin the case of
rectangles and as base and height in the case of triangles, and used as follows:

Areaof rectangle=x*y

Areaof triangle=%2* x * y Q
4

Solution;
L 2

1 #include<iostream.h>

2 #include<iomanip.h> ¢
3 class shape
4{

5 public:

6 double x,y;

7 public:

8 void get_data()

o \
10 CiN>>X>>Y;

11

12 }

13 doubleget x urn x;}

14 double get_y(){returny;}
15 virtua void display area(){}
16};

17

18class triangle:public shape

1o

20 public:

21 void display_area()

22 {

23 double &

24 a=(x*y)/2;

25 cout<<" Areaof triangle = "<<a<<endl;
26

27}

28};

29class rectangle:public shape
30{

31 public:

32 voiddisplay_area()
33 {

34 double &

35 a=x*y,;

36 cout<<" Area of rectangle = "<<a<<end!;
37}

38};

39 int main()

40{

41

42 shape *92];

43 trianglet;

44 q0]=&t;

45 rectangler;

46 g1]=&r;
47 cout<<" Enter the value of x & y for triangle: "3, Q
48 90]->get_data();
49 cout<<" Enter the value of x & y for rectangle: *; \

50 g[1]->get_data(); *

51 g 0]->display_area();
52 g 1]->display_area();

53 return O;

54 }

output

Enter the value of x & 'y for tri

Enter thevalueof x & y f
Areaof triangle = 1Q
Area of rectangle = 336

9.2: Extend the above program to display the area of circles. Thisrequiresaddition of a
new derived class ‘circle’ that computes the area of a circle. Remember, for a circle we need
only onevalue, itsradius, but the get_data() function in base classrequirestwo valuesto be
passed.(Hint: Make the second argument of get_data() function as a default one with zero
value)

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>
3 #define pi 3.1416

4 class shape

5 {

6 public:

7 double x,y;

8 public:

9 void get_data(double a,double b)
10 {

11 X=a,

12 y=Db;

13

14

}
15 double get x(){ return x;}
16 double get_y(){returny;}
17 virtual void display_area(){}
18};
19

20class triangle:public shape
21 PN
22 public: \

23 void display_area()
24 { 7S
25 double a;

26 a=(x*y)/2; y
27 cout<<" Areaof triangle = "<< &
28

29 }

30};

31

32 class rectangle:public sh

33
34 public: &
35 void displ ay_area(o

36 {

37 doubl&&a

38 a=x*y;

39 cout<<" Area of rectangle = "<<a<<end!;
40 }

41};

42class circle:public shape

43{

44 public:

45 void display_area()

46 {

47 double g;

48 a&EPIrX*X;

49 cout<<" Areaof circle = "<<a<<end;
50 }

51};

52

53int main()

4

55

56 shape *9 3];

57

58 trianglet;

59 q0]=&t;

60

61 rectangler;

62 q1]=&r;

63

64 circlec;

65 g2]=&c;

66 double x,y;

67 cout<<" Enter the value of x & y for triangle: ";
68 CIN>>X>>Y;

69 g0]->get_data(x,y);

70 cout<<" Enter the value of x & y for rectangle: ";

71 ciN>>x>>y;
72 1]->get_data(x,y); 4
73 cout<<" Enter the radius of circle: ", \

74 doublerd;

75 cin>>rd; TS
76 9 2]->get_data(rd,0);

77 cout<<endl<<end!; .

78 g0]->display_area(); \

79 g 1]->display_area();

80 g2]->display_area();

81

82 return O,

83}

output &

Enter the value of x ge10 24

Enter the value of x & Y¥or rectangle: 14 23

Enter the radius of circle ; 12

Areaof triangle = 120
Areaof rectangle = 322

Areaof circle=452.3904

9.3: Run the program above with the following modifications:
() Remove the definition of display_area() from one of the derived
classes.

(b) In addition to the above change, declare the display_area() as
virtual in the base class shape.
Comment on the output in each case.

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>
3 #define pi 3.1416

4 class shape

5 {

6 public:

7 doublex,y;

8 public:

9 void get_data(double a,double b)
10 { *
11 X=a, \

12 y=Db;

13 LS
14}

15double get_x(){ return x;} 2
16double get_y(){returny;}

17 virtua void display_area(){}

18};

19class triangle:public shape

20{

21 public:

22 void display_area()

23 { &

24 do

25 a=(x*y)/2;

26 cout<<" Aréaof trfangle = "<<a<<end!;
27}

28};

29class rectangle:public shape
30{

31 public:

32 void display_area()

33 {

34 double g;

35 a=x*y;

36 cout<<" Area of rectangle = "<<a<<end!;
37 }

38};

39class circle:public shape
40{

41 public:

42 void display_area()

43 {

44 double a;

45 aEPIrX*FX;
46 cout<<" Area of circle="<<a<<endl;
47 '}

48} ;

49

50int main()

51

52

53 shape*q3];
54 trianglet;

55 40]=&t;

56

57 rectangler;

58 d1]=&r;

59 circlec;

60 92]=&¢;

61 double x,y; . Q
62 cout<<" Enter thevalue of x & y for triangle: ";

63 Cin>>x>>y:; \

64 90]->get_data(x,y);

65 cout<<" Enter the value of x & y for rectangle: ;

66 cin>>x>>y; .

67 g 1]->get_data(x,y); \
68 cout<<" Enter theradius of circle: ";

69 doublerd;

70 cin>>rd;

71 9 2]->get_data(rd,0);
72 cout<<endl<<endl;

73 §0]->display_area();

74 g[1]->display_area(); &
75 §[2]->display_area();

76

77 return O;

78}

output
Enter the value of x & y for triangle: 28 32
Enter the value of x & y for rectangle: 25 36

Enter the radius of circle: 20

Areaof triangle = 448
Area of rectangle = 900

Areaof circle= 1256.64

Input Source

(— | }! (keyboard, file,
npiitStreain network, program)
——

C++ Program

! Output Sink

(E— A\ (console, file,
Output Stream "\ Snetwork, program)

‘< —

Internal Data Formats: Ext “L a Formats:

* Text:char, wchar t = in various encodings
* int, float, double (US-ASCII, ISO-8859-1, UCS-2, UTF-8,
& UTF-16, UTF-16BE, UTF16-LE, etc.)

QO * Binary (raw bytes)
MODULE -5

STREAMS AND WORKING
WITH FILES

GANESH Y
Dept. of ECE RNSIT

MODULE -5
Streams and Working with files

Syllabus

C++ streams and stream classes, formatted and unformatted 1/0 operations, Output
with manipulators, Classes for file stream operations, opening and closing a file, EOF
(Selected topics from Chap-10, 11 of Text).

Introduction

following the familiar input-process-output cycle. 4t i fore, essential to know

Every program takes some data as input and gener@ocessed data as output
th
how to provide the input data and how to present th%s ts in a desired form.

We have, in the earlier chapters, used cin an ?th the operators >> and << for
the input and output operations. But we haw o far discussed as to how to control
the way the output is printed. C++ sup set of /0 functions and operations
to do this.

Since these functions use the advagcedffeatures of C++ (such as classes, derived classes
and virtual functions), we nee a lot about them before really implementing

the C++ 1/0 operations. x

Remember, C++ suppor 's rich set of I/0 functions. We can use any of them in
the C++ programs. B strained from using them due to two reasons. First, 1/0
methods in C++ supporythe concepts of 00P and secondly, I/O methods in C cannot
handle the user-defined data types such as class objects.

C++ uses the concept of stream and stream classes to implement its [/O operations
with the console and disk files. We will discuss in this module, how stream classes
support the console-oriented input-output operations and File-oriented 1/0
operations.

C++ Streams

The /0 system in C++ is designed to work with a wide variety of devices including
terminals, disks, and tape drives. Although each device is very different, the 1/0
system supplies an interface to the programmer that is independent of the actual
device being accessed. This interface is known as stream.

GANESH Y, Dept. of ECE RNSIT

A stream is a sequence of bytes. [t acts either as a source from which the input data can
be obtained or as a destination to which the output data can be sent.

The source stream that provides data to the program is called the input stream and
the destination stream that receives output from the program is called the output
stream.

In other words, a program extracts the bytes from an input stream and inserts bytes
into an output stream as illustrated in Fig. 10.1.

input stream

Input

: extraction
device ‘ from input
stream

L

Program

insertion
into output
stream

The data in the input strea e from the keyboard or any other storage device.
Similarly, the data in th wt stream can go to the screen or any other storage

device. Q

Hence, a stream acts as am interface between the program and the input/output device.
Therefore, a C++ program handles data (input or output) independent of the devices
used.

C++ contains several pre-defined streams that are automatically opened when a
program begins its execution. These include cin and cout, we know that cin represents
the input stream connected to the standard input device (usually the keyboard) and
cout represents the output stream connected to the standard output device (usually
the screen).

Note that the keyboard and the screen are default options. We can redirect streams to
other devices or files, if necessary.

GANESH Y, Dept. of ECE RNSIT

C++ Stream Classes

The C++ I/0 system contains a hierarchy of classes that are used to define various
streams to deal with both the console and disk files. These classes are called stream
classes.

Figure 10.2 shows the hierarchy of the stream classes used for input and output
operations with the console unit. These classes are declared in the header file
iostream. This file should be included in all the programs that communicate with the
console unit.

r + polnter

.
istream streambuf \ ostream
2

J output

input

3

istream_withassign Wi ' ostream_withassign

Fig. 1 @Eam classes for console 'O operafions

As seen in the Fig. 10.28%0s is the base class for istream (input stream) and ostream
(output stream) which are, in turn, base classes for iostream (input/output stream).
The class ios is declared as the virtual base class so that only one copy of its members
are inherited by the iostream.

The class ios provides the basic support for formatted and unformatted [/0
operations.

The class istream provides the facilities for formatted and unformatted input while
the class ostream (through inheritance) provides the facilities for formatted output.

The class iostream provides the facilities for handling both input and output streams.
Three classes, namely, istream_withassign, ostream_withassign, and
iostream_withassign add assignment operators to these classes. Table 10.1 gives the
details of these classes.

GANESH Y, Dept. of ECE RNSIT

Table 101 Stream classes for console operations

Class name Conlents

ios (Genearal inputfoutput stream class) * Contains basic facilities that are used
by all other inpul and output classes

« Also contains a pointer to a buffer
object (streambuf object)

« Declares constants and functions that
are necessary for handling farmaltled
input and output operations

istream (input stream) * Inherits the properties of los

* Declares input functions such as get(),
getline() and read()

= Contains overloaded extraction
nperawr
ostream {culpul stream) * Inherits perties of jos

*De @utput functions put{) and

K‘ ins overloaded insertion operator <<
lostream (input/output stream) & herils the properties of los istream

and ostream through multiple inheri-
tance and thus contains all the inpul
and cutput functions
streambuf \ * Provides an interface to physical
QO devices through buffers

» Acts as a hase for filebuf class used
ios files

Unformatted I/O Operations

Overloaded Operators >> and <<

We have used the objects cin and cout (pre-defined in the iostream file) for the input
and output of data of various types. This has been made possible by overloading the
operators >> and << to recognize all the basic C++ types.

The >> operator is overloaded in the istream class and << is overloaded in the
ostream class. The following is the general format for reading data from the keyboard:

cin >> variablel >> variable2 >>>> variableN

GANESH Y, Dept. of ECE RNSIT

variable 1, variable 2, ... are valid C++ variable names that have been declared already.
This statement will cause the computer to stop the execution and look for input data
from the keyboard. The input data for this statement would be:

datal data2

The input data are separated by white spaces and should match the type of variable in
the cin list. Spaces, newlines and tabs will be skipped.

The operator >> reads the data character by character and assigns it to the indicated
location. The reading for a variable will be terminated at the encounter of a white space
or a character that does not match the destination type. For example, consider the
following code:

int code;
cin >> code;

Suppose the following data is given as input: . Q

4258D

The operator will read the characters upto 8 value 4258 is assigned to code.
The character D remains in the input strearg I be input to the next cin statement.

The general form for displaying data

cout <<iteml<«j <R <itemN
variables or constants of any basic type.

Note: Whitespaceis a t t refers to characters that are used for formatting
purposes. In C++, this imarily to spaces, tabs, and (sometimes) newlines.

The classes istream and ostream define two member functions get() and put()
respectively to handle the single character input/output operations.

There are two types of get() functions. We can use both get(char *) and get(void)
prototypes to fetch a character including the blank space, tab and the newline
character.

The get(char *) version assigns the input character to its argument and the get(void)
version returns the input character.

Since these functions are members of the input/output stream classes, we must invoke
them using an appropriate object.

GANESH Y, Dept. of ECE RNSIT

char o;
cin.get{c}; // get a character [

!/ and assign it te ¢

rom keyboard

while(c |=

I.
couk: =< €7 [/ display the character on screen
cin.aet (e} ; [/ get another character

This code reads and displays a line of text (terminated by a newline character).
Remember, the operator >> can also be used to read a character but it will skip the
white spaces and newline character. The above while loop will not work properly if
the statement

cin >> c;

is used in place of . Q

cin.get(c);
2

The get(void) version is used as follows:

J’Q

c= cin.get(); // cin.g Nreplaced

() is assigned to the variable c.
The function put(), a me ostream class, can be used to output a line of text,
character by character, mple,
cout.put ('x"); Q
displays the character x and
cout.put(ch);

displays the value of variable ch.

The variable ch must contain a character value. We can also use a number as an
argument to the function put(). For example,

cout.put(68);

displays the character D. This statement will convert the int value 68 to a char value
and display the character whose ASCII value is 68.

The following segment of a program reads a line of text from the keyboard and displays
it on the screen.

GANESH Y, Dept. of ECE RNSIT

char c;
cin.get(c); // read a character

while (c !="\n")
{

cout.put(c); // display the character on screen
cin.get(c);

I JERER RN Character 1/O with get() and put()

H | =] '.:r]r:. B :i_-::-.':lj._r_r'._-‘lhl':-

using namespace std;

ink mainl)
i 'S
int count = Q; \
2

char o

cout =< *INPUT TEIT O™

cout .put (2}
count++;
cin.getic
!
Collt << " : of characters =

raturn W;

.".'jf}l.'.'
Objeck/ Oriented Programming
ot pud
Dbject Oriented Programming
Humber of characters = 217
Mote When we fype a line of Inpul, the lexl Is senl fo the program as soon as we press lhe RETURN key. The
program then reads one characler al a ime using the statemen! cin.getfc); and aisplays It using the
staferment cout.pul{e);. The process is terminated when the newline character is encounterad.

GANESH Y, Dept. of ECE RNSIT

getline() and write() Functions

We can read and display a line of text more efficiently using the line-oriented
input/output functions getline() and write(). The getline() function reads a whole
line of text that ends with a newline character (transmitted by the RETURN key).

This function can be invoked by using the object cin as follows:

cin.getline (line, size); ‘

This function call invokes the function getline() which reads character input into the
variable line. The reading is terminated as soon as either the newline character "\n' is
encountered or size-1 characters are read (whichever occurs first).

The newline character is read but not saved. Instead, it is replaced by the null
character. For example, consider the following code:

char name[20] ; * Q
cin.getline{name, 20}; \

Assume that we have given the following input throy thnard;
Bjarne Stroustrup <press RETU

h"]}x
This input will be read correctly and as e character array name. Let us suppose the
input is as follows:

Cbject Oriented Progra resgs RETURN =
In this case, the input will b d after reading the following 19 characters:

Object Oriented

Remeamber, the two bﬁpanes contained In the string are also taken into account.

We can also read strings using the operator >> as follows:

ClTl »> TIame;

But remember ¢in can read strings that do not contain white spaces. This means that cln can read
just one word and not a series of words such as "Bjarne Strousirup”. But it can read the following
string correclly:

Bjarne Stroustrup
After reading the string, cin autormatically adds the terminating null character to the character array.

Pragram 10.2 demonstrates the use of >> and getline{) for reading the strings.

GANESH Y, Dept. of ECE RNSIT

|]] Program 10.2 BIEGI

finclude <iostreams

using namespace std;

int maini{}

i
int =size = 20;
char ocity[20];

cout << “"BEnker city name: “o";
cin »» city;
cout << "City pame:" << city << "\ni\n";

cout << "Enter city name again: wnY;
cin.gatline (city, size);

cout << "City name nowW: << city << MY
cout =< “Enter another city name: \ﬂ"'
cin.getline(city, =ize);

couk << "Hew city name: * << cit

return [i;

The output of Program 10.2 would be:

Firrst run

Enter city name;
Dalhi

City name: De

Enter cit

City name

Enter anocthef city nams:
Chennal

Hew city name: Chennal

Second run
Enter ity nams:
Mew D=2lhi
City name: Hew

Enter city name agalm:
City pame pow: Delhi

Enter ancther city name:
Greater Bombay
Hew city name: Greater Bombay

GANESH Y, Dept. of ECE RNSIT

" NOTE: During first run, the newling characler \n' af the and of “Delhi” which is wailing in the input queve is
read by the getlinef) thal follows immedialely and therefore it does nol wail for any respanse to the promp! ‘Enler iy
name again:’. The character '\n"is read &s an emply lire. During the second run, the word “Dedhi” (that was not read
by cin} is read by the function getline{) and, therafore, here again it does not wal for any input fo the prompf ‘Enfer
city mame again.”. Note that the line of lext “Grealter Bombay™ is correctly read by the second cin.getiine(cify,size);
slaternent.

The write() function displays an entire line and has the following form:

cout.write (line, size)

The first argument line represents the name of the string to be displayed and the
second argument size indicates the number of characters to display.

Note that it does not stop displaying the characters automatically when the null
character is encountered. If the size is greater than the length of line, then it displays
beyond the bounds of line.

Program 10.3 illustrates how write() method displﬁ

lF'rngram ('%] Displaying Strings with v.rita
dinclude <locatream:=
finclude <string=
uging namespace std;

int maing)
{
char * stringl =
char * stri
int m
int =

cout &: sbrifig?, i) ;

colt <ol "Nty

for{i=n; 41=0; 1--=]

cout .write(stringZ, i} ;
caut << "hYo“:
}

/! concatenating strings
cout.writefatringl,m) .writelstring2.nl;
CELE- €€ PR

!/ crossing the boundary

cout . writelatringl,l1l0};

return O;

GANESH Y, Dept. of ECE RNSIT

The output of Program 10.3 would be:

F

Fr

Fro

Prog

Progr
Frogra
Frogram
Programn
Frogrammi
Frogrammin
Frogramming
Frogrammin
Frogrammi
'F'rl::ll:_:| B8 rm
Program
Frogra
Frogr

Prog

Fro

Pr

P

C++ Programming
C++ Progr

The last line of the output indicates tha tement

cout.write(stringl, 10
displays more characters than w ntained in string1.
strings using the write() function. The statement
Mrite(skring2, nj;
is equivalent to the following two statements:

cout.write (stringls m);
gout.write(stringZ, nj;

FORMATTED CONSOLE I/O OPERATIONS

C++ supports a number of features that could be used for formatting the output. These
features include:

« ios class functions and flags

e Manipulators

e User-defined output functions

The ios class contains a large number of member functions that would help us to
format the output in a number of ways. The most important ones among them are
listed in Table 10.2.

GANESH Y, Dept. of ECE RNSIT

EEIACRIEY (o formal funclions
Function Task

width {) To specify the required field size for display-
ing an output value

precision () To specily the number of digils to be dis-
played after the decimal point of a float value

LT To specify a character that is used to fill the
unusad portion of a field

satf() To specify format flags that can control the
form of output display {such as lefi-justifica-
tion and right-justification)

unsaetf() To clear the flags spacified

Manlpulaiors are special functiens that can be Included In the 'O statements to alter the
format parameters of a stream, Table 10.3 shows some im@manipulatﬁr functions that
[

are frequently used. To access these manipulators, the i anip should be included in the
program. \

2

Table 10.3 QST

Manipuiafors Equivalent ios function
setw() width()

setprecision() precision()
setfill{) fill{)
setiosflags satf()
resetios unsetf()

In addition lo these fuNglions supported by the C++ library, we can creale our own manipulator
functions o provide any special oulput formalts. The following sections will provide deataills of how to
uze the pre-defined farmatting functions and how to create new ones,

Defining Field Width: width()

We can use the width() function to define the width of a field necessary for the oulpul of an item.
Since, it s a member function, we have to use an object to invoke it, as shown below:

cout . width (w) ;

wheare w is the fisld width (number of columne). The output will be printed in a field of w characters
wide al the right end of the field. The width() function can specify the field width for anly one item (the
item that follows immediataly). After printing one itern (as per the specifications) it will ravart back to
the default. For example, the slaternents

GANESH Y, Dept. of ECE RNSIT

cout.width(5);
cout << 543 << 12 << "“yn*;

will produce the following output:

The value 543 is printed right-justified in the first five columns, The spacification width(3) doas not
retain the setting for printing the number 12, This can be improved as follows:

coukt . width (%) ;
cout << 543;

codt.width{3) ;
couk << 12 <2 "\n";

This produces the following output:

&

Femember that the field width should be specified f i ’m separately. C++ never runcales
the values and therefore, if the specified field widlth | an the size of the valus to be printad,
C++ expands the field lo fit the value, Progrs 0 de strates how the funclion width{) works.

[I] [BOTS IR IE R Specifying Hield Size with width()

\Z £~

int main{)

{

finclude <iostream
UsSing namespaca s

int items[4] - {10,8,12,15);
int cost[d] = [75,100,60,99);

cout
cout
couk
cout

couk
cout

Maidthi(E)

<= "“ITEM5™;

ideh(8) ;

£a MOOSTY

Lidth{15)

<o PTOTAL VALUEY <« "\n";

GANESH Y, Dept. of ECE RNSIT

for{int i=0; 1<4; 144}

{
cout.width {51
cout << items[i]:

cout.width (B) ;
cout << cost[i];

int value = items[i] * costlil:
cout.widch (15} ;
cout << walus << "\n";
Sum = sum + value;
}
cout << "hp Grand Tetal = 7;

cout.width {2} ;
cout << sum << “\Zp©;

rebturn 0;

The output of Program 10.4 would be;

ITEMS COST TOTAL VALK\

10 [
8 100 a
12 60 20

15 99 & 1485

Grand Toctal =

/H OTE: A fisld of width twe has been used for printing the value of sum and the resultis ot trincated. A good
gesture of G+ |

Setting Precision: precision()

By defaull, the floating numbers ars printed with six digits after the decimal point. However, we can
specify the number of digits to be displayed after the decimal point while printing the floating-point
numbers. This can be done by using the precision() membear function as follows:

cout,precision (d};

whera d is the number of digits to the right of the decimal point, For exampla, the statemeants

cout.precisicnid) ;

cout << sgrk(2) << Y\a";
cout << 3.14159 << “\n¥;
cout <<€ 2. 50032 << “\n¥;

GANESH Y, Dept. of ECE RNSIT

will produce the following output:

1.141 (truncated}
3.142 (rounded ta the nearest cent)
2.5 ino trailing zeros)

Not that, unlike the function width(), precision() retains the setting in effect until it is reset. That
is why we have declared only one statement for the precision setting which Is used by all the three
outputs.

We can sat different values to different precision as follows:

cout.precision (3);

cout << sgrt{2} << "\n";

cout.preciaion (5) ; /! Reset the preciaion
cout << 3.1415% << “\n";

We can also combine the field specification with the precisi gtting. Example:

L g
cout.precision(2); \
couk . widkh {5 ; .
cout << 1.2345;

The first two statements instruct: "print% r the decimal point in a field of five character

width". Thus, the output will be:

1 | 2|3

Program 10.5 shows ho ions width() and precision() are jointly used to control the
output format. N\

ﬂ] ¥ GIuElnW R i'recision Setting with precision()

finclude <iostream>
finclude <cmath>

Bsing namespace std;

int main(}

{
cout << “"Precision set to 3 digits snhn";
cout.precision{3) ;

cout.width (10} ;

cout << “WALUE";

cout.widthi1l35);

cout << “SQRT OF VALUE" << "\n";

GANESH Y, Dept. of ECE RNSIT

for{int n=1; n<=5; n++)
i

cout.width (8);

calut =< [}

cout.width(l3}:

cout << sgref{nl << “LWn";
I
cout << "\n Precision set to 5 digita ‘n\n";
coutb.precision{S); ff precisicon parameter changed
cout << ™ sqrt(l0) = " << =sqgrt(l0) << “\n\n";

cout.precisian(0); !/ precision set to default

cout << sgrt(ll} = sgrt(ll) << * ({default
setting)Xn”™;

return 0;

i
*
The output of Program 10.5 would be: Q
Precision set to 3 digits \
VALUE SQRT OF VALUE

1

1.41

1.73

-

o

2,24

Frecision set to 5 digi
egrt (10} = 3.1623
sark (10} = 3.162278 gatting}

& oufpuf:
d fo the nearest cent (ie., 1.6666 wil be 1.67 for two ol precision but 1.3333
will be 1..33).
Trailing zeros are frincated.
. Precision setfing stays in effect until it s reset.
4. Defaull precision is § digils.
rogram 10.6 shaws another program demonstrating the functionality of width and precision
manipulators:

GANESH Y, Dept. of ECE RNSIT

I LI ETL UK Width and Precision Manipulators

finclude «iostreams

volid maind)

I. i

' float pi=22.0/7.0;
imt i

coute< "Valuae of PI:\n%;

for{i=1;i<=10;1++)
cout.widthii+l) ;
cout . precision{i);
coubk<cepica®in® ;

]

l

The output of Program 10.6 would be:

Valua of PI:

i \’Q

- 143
4

R

-12ZE6

14 2E57T
1428571
-14285707

14 ZEE70TE

1428570747

Filling and Padding: fi

Wa have been printing the v g mueh largar field widths than requirad by the values. The

unused positions of the fi ed with white spaces, by default. However, we can use the fill()
function to fill the unuse ifens by any desired character. It is used in the following form;

Lad Rl Lad sl

el L sl

3
=
=
3

cout.£1i11 {chl;

| E—— s

Where ch represents the character which is used for filling the unused positions, Example:

cout EIiTT {v*') .
cout .width{io) ;
eout <= 5250 <« """l._;u"';

The output would be;
% e 2[5 0]

Financial institutions and banks use this kind of padding white printing cheques so that no cne can

change the amount easily. Like precision(), fill() slays in effect till we change il. See Program 10.7
and its output.

GANESH Y, Dept. of ECE RNSIT

E Program 10.7 §

finclude <ipstreams
uging namespace std;

int main()
{ cout.£ill(‘<');

cout.precision(3};
for(int n=1; n<=6; n++)
{
cout . width(5s) ;
cout =< n;
cout . width(10};
cout << 1.0 / floatin) << "\né:

if (== 1) ‘s-
cout . F111 (') ;

1 2

cout << “\nPadding changed\
“N: e

cout.fill (*#§'); ff fi
cout .width (15) :
coubt =< 13 .345678 =< 4

return 0;

| o\
The output of F'mgfam Id be:

LEselocangs 1
g g e,

e lescsal, 333
penedeeraasl, 25
PrE0RrR222220 .2
peaagsaa»»0 167

Padding Schangead

AHAFEE4E312. 2406

GANESH Y, Dept. of ECE RNSIT

Formatting Flags, Bit-fields and setf{)

We have sean that when the function width() is used, the value (whather text or number) is prinfed
right-justifiad in the field width created. But, it is a usual practice to print the taxt left-justified. How do
we get a value prinlad laft-justified? Or, how do wea get a fleating-point number printed in the scientific
ratation?

The setf(}), 3 member function of the los class, can provide answers to these and many other
formatting quastions. The setf() (setf stands for set fiags) function can be used as follows:

cout.eekf (argl, argl)

The arg1 is one of the formaltling flags defined in the class ios. The formaltling flag specifies the
format action required for the output. Another los constant, arg2, known as bit feld specifies the
group to which the formalling flag belongs.

Table 10.4 shows the bit fizlds, flags and their format actions. There are three bit fields and each
has a group of format flags which are mutually exclusive. Exgm :

cout .setf (ios::left, iosi:adjustfield}y
cout .setf (los: rsclientific,

Table 10.4 Flags and hit felds for g

Formal regquired \ - Bit-field (arg2)
Left-justified output P :: adjustfield

Right-justified cutpul Ta - ies o adjusifield
Padding after sign or bEiss 0 o ios: adjusifield

Indicator (like +
:: scientific ios o floatfield
1 fixed ice o floatfield
Decimal base i0s ;; dec o5 o basefield
Octal base ios o oct ios o basefield

Hezadecima! base o5 o ios o basefield

Note that the first argument should be one of the group members of the second argument.

GANESH Y, Dept. of ECE RNSIT

Considar tha following segment of coda:

ol FA1] {awn)y
.setfiios:ilefr,
cout .widch{l5) ;
CoUut =&

ot

"TABLE 1% << *\n"

iosdadjustfisld) ;

This will produce the following output:

Tla|B|L]|E

The statements

LI L T
L BT

cout .Cill

cnut-prnc1=1nnll};

cout.setflice:1internal,

rout .geltf {ios
cout . width{1s) ;

cout o= =132,34567 =< *\n

will produce the following oulput;

srEclencifie,

icai:adjustfield) ;

cfloacfisld) ;

Lo

I Note

Program 10.8 demonsirates the

The sign is left{ustified and the valug
The value is printed accurafe fo fhree

1

finclude =ioo¢
using namespac
vold main(}

1

d0C TEUM§

cout<<"Enter an integer wvalue:

Clmsanum;

coutgs="The hoxadecimal.

Toeflime<™ 181 ™
cout @atf | iaa: :hr::-'...

coutggnum<g ™, *;

cout .a=tf{ias: :act,

coutecnum<<* and 3

cout .setf(ioe: 1dec,

COWLT ot < ®

cctal and

:uu::haﬁn!iﬂ]dli

ims: thasefi=1d] ;

icBribagefield] ;

regpectively®;

decimal representaclion of

GANESH Y, Dept. of ECE RNSIT

The cutput of Program 10.8 would ba:
Enter an Lt‘.ltE‘lilEl‘.' value: 92

The hexadecimal, octal and decimal representaticn of %2 1s: 5¢, 134
and 92 respectiwvely

Displaying Trailing Zeros and Plus Sign

If we print the numbers 10,75, 25.00 and 15.50 using a field width of, say, =ight pasitions, with two
digils precision, than the sutput will be as follows:

HNote that the trailing zeros in the second and third items have b truncated.

2
Certain situations, such as a list of prices of ltems or the sm ment of employees, require
f

trailing zeros to be shown, The above outpul would ook ara printad as follows:

1073

25.00
15.50 \

The setf(} can be used with the flag i H’.‘Ii. shewpeint as a single argumeant to achigve this form of
output, For example,

cout.ecbf{ios: iahowpaid ’ display trailing zeres

would cause cout to displa eras and frailing decimal point. Under default precision, the
value 3.25 will be displa 0000, Rermember, the defaull precision assumes a pracision of
six digits,

Similarly, a plus sign car be printed before a positive number using the following statement:

cout,.sstf{ia8: :showpoa) ; // ahow +8ign

For exampls, the statements

cout.sektf {1os;::showpoint) ;

cout . satf{ics::showpoa) ;

coult pErecision (i) ;

cout . setf [ioe:sfixed, ilogi:floatfield);
cout .secf{iom: iinternal, ica::adijustcfield}
cout . widthi{1a);

pout == 275.5 ze *\p"

i

will produce the following output:

2T]

GANESH Y, Dept. of ECE RNSIT

The flags such as shewpeint and showpos do not have any bit fields and therefore are used as
single arguments in setf{). This is possible because the setf{) has been declared as an overlcaded
function in the class ios. Table 10.5 lists the flags that do not possess a named bit field. These flags
are not mutually exclusive and therefore can be set or cleared independently.

Table 10.5 Flags thal g2 not have bit frelds

Flag Meaning

i35 - showbase IUsa base indicator on oulput

i35 - showpos Print + bafore positive numbers

igs o showpaoint Show trailing decimal point and zeroes
i05 ;I Uppercase Use uppercase |etters for hax output
i2s i skipus Skip white space on input

ios = unitbul Flush all streams after insertion

oS 2 sidie Flush stdout and stderr after insertion

Program 10.9 demonsirates the selling of various formatlinggllag®using the overloaded setf()
function.

I HhIel TR B Formatting with Flag= I se ()
A

firiclude <ciostraams
finclude <cmaths>

uging namesapace atbd;

int mainil

{

ios::adjustfield) ;

cout getf (io2::right, 1oa::adjuatfield);
coukl width{ls) ;
couf <« *SQRT OF WALUE"™ <« “hnT:

- R T By I L [

cout.precigionid) ;

cout.gsetf (ios: :ahowpoint) ;

cout .setf (ios: i showposl ;
cout.eebf{ios:ifixed, ico;:flecatfiald);

ne=10; n++)
cout.sebf {ics::internal, i1os::adjustfield);

cout . width(5) ;
COUE =<4 Ti;

GANESH Y, Dept. of ECE RNSIT

cout.setf{iogrsright, igoz::adjustfield);
coukt .width {(£0] ;
couk =% Sgrein) =< “\a"i

fd Floacfield changed
cout .sebf({ilos:iscientific, los:i:floatfield);
coulb << "W\nSQRT(190) = " << agre {100} << "*\n";

return 0

The cutpul of Frogram 10.9 would be;

VALUE**#*=##v**50RT OF VALUE
Faos LOaoa
o PR L4142
' 7321
< 0a00
L2361
2 4495
« Bd548
L8284
L Oa0a
L1623

SQRT {100)

/': OTE:

1. The flags st by setf() tive wnlil they are resel or unsel,

2. Aformal flag can be Mags! anWnumber of fimes M a program.

3. We can apply more than e fomat conlrals jaintly an an outpul value,
4. Tha self]) sets tha specified flags and leaves others unchanged.

GANESH Y, Dept. of ECE RNSIT

I[l 10.6 Managing Output with Manipulators ”l

The header file lomanip provides a set of functions called manipulafors which can be used to manip-
ulate the output formats. They provide the same features as that of the jos member functions and
flags. Some manipulalors are more convenient o use than their counterparts in the class jos. For
example, two or more manipulators can be used as a chain in one stalement as shown below:

cout << manipl << manip? << manip3d << iktem;
cout << manipl << iteml << manip? << item2;

This kind of concatenation is useful when we wanl o display several columns of sutput.

The most commonly used manipulators are shown in Table 10.6. The table alzso gives their
meaning and equivalants, To access thess manipulators, wa must include the file jomanip in the

program.

Manipulators and Heir meanings .
Manipulator Meaning \ Eguivalent
L 2

selw (int w)

selprecision{int d) Sat thea field width widihy)
pracision()
setfill{int c) I ; 3 fill{)
seliosflags(long 1 ‘ g T, sefff)
resetiosfags(long f) 8 {Igf) spe unsetf{)

end| M e

Some exampies of manipuls

cout << setw(l

This statement prints the value 12345 right-jusiified in a fizld width of 10 characters. The oulput
can be made lefi-justified by modifying the statement as follows:

cout << setw{lD) << setilosflags{ics::left) << 12345;

One statement can be used to format oulput for twoe or more values. For example, the statement

cout < setw by < gatprecisioni?) << 1,2345
< setw{ll] << setprecisioni(d) << sgrti{?)
<< satWw{l5] << setiosflags(ios::scientific) =< sgrt(3):
L o mpdl s

will print all the three valuas in one line with the fisld sizes of 5, 10, and 15 respectively. Nota that
each cutput is controlled by different seis of format specifications.

We can jointly use the manipulators and the ios functions in & program. The following segmeant of
code is valid:

GANESH Y, Dept. of ECE RNSIT

cout.getf{ios: iashowpoint}
cout.setfi{ios::showpos) ;

cout << setprecisicn(d);

cout << sebicsflaga|ica:rscientific);
cout << setw({ld) << 123.45&78;

//gﬂTE: There i5 a major differance in the way the manipulators are implemenled as compared to the ios
mamber funchions. The fos member function return the previous formal sfate which can be used later, If nacessary.
But the manipulafor does not refum the pravious format state. In case, we need to save the old format stafes, we must
uze the ios member funcfions rather than the manipitafors. Example:.

cout.precisicniZ); !/ previous state
int p = couk.precision{4d); [/ current state;

When these staternenis are executed, p will hold the value of 2 {previous state) and the new
format state will be 4. We can restore the previous format state as follows:

cout.precision(p); fEp £
*
Program 10.10 illustrates the formatting of the output uall.N both manipulators and ios
functions 7S

[I] BOTAcl RN R Formatting w ith Manipulators

finclude <iostream>
finclude <iomanip=>

using Namespace =

int maini) Q
i

cout. sebf (ioss: showpoink) ;

cout =< getw(s) << “n*
< oeetw(ls) << “Inverse of n”
<< setw(li) << “Eum of termsin‘n";

doubkle term, sum = 0;

for(int n=1; n<=10; n++)

{
term = 1.0 / flaat(n)
SUum = Sum + Lerm;

cout << setwi{b) << n
<< setw(ld) << setprecisionid)
<z petiocsflagsi{ios::scientific) << term
<% setw(l3d) << resetiosflagsiios::iscientific)

GANESH Y, Dept. of ECE RNSIT

<4 s5um << endl;:

return 0;

The output of Program 10.10 would be:

n Inverse of n Sum of terms

1.0000e+000 1.00QO0
5.0000e-001 1.5000
3.3333e-001 1.8333
2.5000e-001 2.0833
£2.0000e-00] 2.2B833
1.6667e=-001 2.4500
1.4280m-001 2.559249
1.2500e=-001 2.7178
1.1111e-0001 2.8290
0 1.0000e-001 2.9280

= L 0D -l o N s Ll B

Designing Our Own Manipulators

We can design our own manipulalors for cert s&ai purposes. The general form for crealing a
manipulator without any amguments is:

ostream & manipul stream & ocutput]

Here, the manipuwlalor is the name of the manipulalor under creation, The following funciion
defines a man:pulator called unit that displays “inches":

gstream & unit{ostrsam & -EIUT_PIJT_II

{
cutput << ™ inches™;
raeturn DL;.tI:IL:.t,'
i
The sfatement

cout << 36 << unit:

will produce tha following output

36 inches

GANESH Y, Dept. of ECE RNSIT

We can also create manipulators that could represent a sequence of operations.
Example:

ostream & show(ostream & output)

{
output.setf(ios::showpoint);
output.setf(ios::showpos);
output<< setw(10);
return output;

}

This function defines a manipulator called show that turns on the flags showpoint and
showpos declared in the class ios and sets the field width to 10.

Program 10.11 illustrates the creation and use of the user-defined manipulators. The
program creates two manipulators called currency and form which are used in the
main program.

EFrnrarn 10.11

#include <iostream>
#include <iomanip>
using namespace std;
// user-defined manipulators
ostream & currency(ostream
{
output << "Rs";
return output;

}

ostream & For‘m(ostr‘e& tput)
{

output.se showpos) ;
output. tf % ios: -: showpoint) ;
output .fi ("*');
output.precision(2);
output<<setiosflags(ios::£ixed)
<< setw(10);

return output;

}

int main()

{
cout <<currency<< form<< 7864.5;
return 0;

}

The output of Program 10.11 would be:
Rs**+7864.50

Note that form represents a complex set of format functions and manipulators.

GANESH Y, Dept. of ECE RNSIT

Working with files

Many real-life problems handle large volumes of data and, in such situations, we need
to use some devices such as floppy disk or hard disk to store the data. The datais stored
in these devices using the concept of files.

A file is a collection of related data stored in a particular area on the disk.

Programs can be designed to perform the read and write operations on these files. A
program typically involves either or both of the following kinds of data
communication:

1. Data transfer between the console unit and the program.
2. Data transfer between the program and a disk file.

This is illustrated in Fig. 11.1.

Exlermal mamory

Data filas

Writa ! | I J i)
data pad datn Frogram-file interaction
(to files) {Froarm files)

CoOUl =< Cangole-progeam
. {put data interaction
cin == = o Soresen)
(pet data
frearm
karyticaardd)

Keybaard
Fig. 11.1 Conrsol-program-file inleraciion

In this section we will discuss various methods available for storing and retrieving the
data from files.

The I/0 system of C++ handles file operations which are very much similar to the
console input and output operations. It uses file streams as an interface between the
programs and the files.

The stream that supplies data to the program is known as input stream and the one
that receives data from the program is known as output stream. In other words, the
input stream extracts (or reads) data from the file and the output stream inserts (or
writes) data to the file. This is illustrated in Fig. 11.2.

GANESH Y, Dept. of ECE RNSIT

Input stream

read data

—_— ——— dala

input

L
‘ Disk | Program l

L

Output stream cala
; output
write data | | |

-

Fig. 11.2 Fils input and output streams

The input operation involves the creation of an input stream and linking it with the
program and the input file. Similarly, the output operation involves establishing an
output stream with the necessary links with the program and the output file.

CLASSES FOR FILE STREAM OPERATI@O

The 1/0 system of C++ contains a set of classes that define the file handling methods.
These include ifstream, ofstream and fstr / Jese classes are derived from
fstreambase and from the corresponding ig class as shown in Fig. 11.3.

These classes, designed to manage th s, are declared in fstream and therefore,
we must include this file in any pro uses files. Table 11.1 shows the details of
file stream classes. Note that thes es contain many more features.

jostream

| Y
file i l streambuf I ostream |

Y y
iostream |

Fig. 11.3 Stream classes for file operations (contained in fstream file)

GANESH Y, Dept. of ECE RNSIT

Table 11.1 Detalls of e stream classses

Clazs Contants

filebuf | ts purpose is o set the file buffers to read and wrile.
Confains Openprot constant used in the open() of fils
siream classes. Also conlain close() and openi) as
members.

fstreambase Provides operations common to the file streams.
Serves as a basze for fstream, ifstream and ofstream
class. Contains open() and clese{) functions.

Provides input operations. Contains open() with default
input moda. Inherils the functions get(), getline(),
read(), seekg() and tellg() functions from istream.

Provides output operations. Contains open() with default
cutput mode, Inherits put(), seekpi}, tellp(). and write(),
functions from ostream,

fstream Provides support for si ous input and output
oparations. Inherit® gl Mg futions from istream and
_ | ostream classes thr stream.

its intended use:
1. Suitable name for the file
2. Data type and structur

3. Purpose
4. Opening method Q

The filename is a string of characters that make up a valid filename for the operating
system. It may contain two parts, a primary name and an optional period with
extension. Examples:

Input.data
Test.doc
INVENT.ORY
student
salary
OUTPUT

As stated earlier, for opening a file, we must first create a file stream and then link it to
the filename. A file stream can be defined using the classes ifstream, ofstream, and
fstream that are contained in the header file fstream.

GANESH Y, Dept. of ECE RNSIT

The class to be used depends upon the purpose, that is, whether we want to read data
from the file or write data to it. A file can be opened in two ways:

1. Using the constructor function of the class.
2. Using the member function open() of the class.

The first method is useful when we use only one file in the stream. The second method
is used when we want to manage multiple files using one stream.

Opening Files Using Constructor

We know that a constructor is used to initlalize an object whila it is being creatad, Here, a filename [s
used to initialize the file stream object. This involves the fallowing steps:

1. Create a file stream object to manage the stream using the appropriate class. That is to say,
the class ofstream is used {o create the oulpul stream and the class ifstream 1o creale the
input stream

2. Initialize the file object with the desired filename.

*
For example, the following statement cpens a file named "re &uutput

ofsbtreamn Dut:"i_]i.-.l:“::ﬂ::u';l;n"':l; ? -:hl.l'-.'.Ft.I.L Drl.]:,l'

This creales outfile as an ofstream objeci th g the output stream. This object can be
any valid C++ name such as o_file, myfile Thiz statement alsc opens the file results and
gttaches it to the output stream outfile. Thi ilgtrated in Fig. 11.4.

o

cutfia

Input atream

ata
file

il
Fig. 11.4 Twe file streams warking on separate files

Similarly, the following statemeant declares infile as an ifstream object and atlaches it to the file
data for reading (input).

ifatream infile{*data®); JJ/ inmput only

The program may contain statements like:

cuefile <o *TOTAL™
cucfile =< sum;
infila => number:

infile >» atring:

GANESH Y, Dept. of ECE RNSIT

We can also use the same file for both reading and writing data as shown in Flg. 11.5. The pro-
grams would contain the fallowing statements:

ff ecreates outfile and
conneckts
fF "malary® to it

f ! ereatee Lnfile and conneets
J/ rsalarygfes it

ol

S

infile

Twa file slreams working on one fife

The conneclion with a file is clesed aulomatically when the stream object expires (when the pro-
gram terminates). In tha above statement, when the program 1 is tarminated, the salary filz is discon-
nected from the outfile stream. Similar action takes place when the program 2 terminates.

Instead of using two programs, one for writing data (output) and another for reading data (input),
We can use a single program to do both the operations on a file. Example.

outfile.close(); // Disconnect salary from outfile
ifstream infile(“salary”); // and connect to infile

infile.close(); // Disconnect salary from infile

Although we have used a single program, we created two file stream objects, outfile (to put data
into the file) and infile (to get data from the file). Note that the use of a statement like

GANESH Y, Dept. of ECE RNSIT

outfile.close();

disconnects the file salary from the output stream outfile. Remember, the object outfile still exists
and the salary file may again be connected o outfile later or to any other stream. In this example,
we are connecting the salary file to infile stream to read data.

Program 11.1 uses a single file for both writing and reading the data. First, it takes data from the
keyboard and writes it to the file. After the writing is completed, the file is closed. The program again
opens the same file, reads the information already writlen 1o it and displays the same on the screen,

[l] Program 11.1 PAIISHEATIE ST 40 S

// Creating files with constructor function

finclude <jiostream.h>

#include <fstream.h>
*
int main{) \

{

ofstream outf (“ITEM"); o 3Ect ITEM file to outf

cout << “Enter item "
char name[30];

cin >> name; /f. get name from key board and

outf << name < f! write to file ITEM

cout << “E 3d.
float co
cin >> .Q // get cost from key board and

outf <Y cost << "\n*; // write to flle ITEM
ocutf.close {): // Disconnect ITEM file from outf
ifstream inf (“ITEM"); /! connect ITEM file tc inf

inf >> name; /! read name from file ITEM
inf >> cost; /! read cost from file ITEM

cout << "\
cout << "Ttem name:" << pame << "“\Wn';
Cout << “Item cosC:” << cosf << “"I.J'I”.-‘

inf.closel}; Ff Pisconnect ITEM from inf

return 0O

GANESH Y, Dept. of ECE RNSIT

The output of Program 11.1 would be:

Enter item namse:CD-R0M
Enter item cost:250

Item name:Ch-REOM
[tem cost:25%0

/CH.UTI{}H: When a fle is opened for writing only, a new file is created if there is no fike of that name. If

a filte by that name exisls already, then ifs conlents are deleted and the file iz presenied as a clean fle. We shall
discuss fater how fo open an exising file for updating if without fosing ifs onginal contents.

Opening Files Using open()

As stated earier, the function open{) can be used to open mulliple files that use the same stream

object. For example, we may want to process a set of files sequamlially. In such cases, we may create
a single stream object and use il o opan each file in turmeThi%yis e as follows:

file-stream-class stream-object/
stream-obiject.opan (“filenams"} ;

Example: \\

ofstream cutfile; Create stream {(for ouiput)
outfile,open{“DATARL" Connect stream Eo DATAI

2

Confect stream to DATAZ

ocutfile.claae Q Dizconnect stream from DATAL
cutfile.open®NDRNZ ")

Dispaonnect stream from DATAZ

The pravious program sagment opens two files in sequence for writing the data, Note that the first
file is closed before opening the second one. This is necessary because a stream can be connected
to only one file at a time. See Program 11.2 and Fig. 11.6.

GANESH Y, Dept. of ECE RNSIT

|I[pOTaciuN il Working with Multiple Files

// Creating files with open{) function

finclude <iostream.h>
finclude <fastream.h>

int maini)

1

ofatream fout; 4 create output stream
fout.open{"countcy”}: /{ connect “country™.to it

fout << *United Stateszs of Americaiwn™:
fout << “United HKingdomhn™;
fout << *South EKoreawn™;

fout.cloza () ; F) ‘:li ocnMgct Yoocuntry” and

fout.open (“capital™); 5l et “capital”
2

fout << “"Washingtonhn™;

fout << “London'\n®;

fout << “Segul\n®™: \K
iy

fout.closel(); disceonnect “capital”

// Beading the fil

conskt int W = sizre of line
char line|[H]}: :

ifstream f f/ ocreate inpub stream
fin.open| 5 Ad connect “country™ to Lt

cout <<¥contfentevof country file\n";

whilai{fin) /4 check end-of-file
{

Fin.getline (lin=s, H); S/ read a line
cout << line ; Jdodisplay it

fin.closa ()} A disconnect Yocountry™ and
fin.open{“capital®™}; /Y oconnect “capital®

cout << "\nContents of capital file wn™:

while(fin)

{
fin.getline{line, MW);
cout << line ;

GANESH Y, Dept. of ECE RNSIT

}

fin.closel) ;

return 0

The ocutput of Program 11.2 would be:

Contents of country file
United States of America
United Kingdom

South EKorea

Contents of capital file
Washington

London

S=onl

connect one
fike Lo fout

rect one
fila to fin
Streams workig on wuliple files

At times we may require to use two or more files simultaneously. For example, we may require to
merge two sorted files inlo a third sorted file, This means, both the sorted files have to be kept opan
for reading and the third one kept open for writing. In such cases, we need to creale two separate
input streams for handling the two input files and one output stream for handling the cutput file. See
Pragram 11.3.

]] SOlaslnmeE Reading from Two Files Simultaneously

/) Reads the files created in Program 11.2
$include <icstream.h>
finclude <fstream.h>

finclude <stdlib.h> ff for exit{} function

int maini}

GANESH Y, Dept. of ECE RNSIT

const int SIZE = 80;
char line[S5IZE] /[

ifstream fiml, finl; /! create two input streams
finl.opan{"countcy™) !
fin2.opan(“capital”);

foriint i=1; 1<=10; i++}
1
1f{finl.ecf{) 1= 0]
1
cout << "Exit from country ‘m™;
exit{l);

finl.geclina{line, SIZE};
cout << “Capital of "<< lime ;

LE(find.eaf () 1= M)

E|
1

*

cout << "Exit from capital'W';
exit (1) ¢

finZ.getlina{lige ZE
ar

cout << lime -

return O;

The autput of Program 1

Capital of U ates of America
Washington

Capital of United Kingdom

London

Capital of Scuth Eorea

Sesonl

“ 11.4 Detecting end-of-file "l

Cetection of the end-of-file condition is necessary for preventing any further attempt to read data from
the file, This was illustrated in Program 11.2 by using the statement

while(fin)

An ifstream object, such as fin, returns a value of 0 if any error occurs in the file operation inchud-
ing the end-of-file condition. Thus, the while loop terminafes whan fin returns a value of zero on
reaching the end-of-file condition,. Remember, this loop may terminate due to other failures as well,
(We will discuss other error conditions later.)

GANESH Y, Dept. of ECE RNSIT

Thera is ancther approach o delect the end-of-file condition. Mote that we have used the following
stalerment in Program 11.3:

if(finl.aaf{} != 0} [exit{l):)
eofl) is a member function of los class. It returns a non-zero value if the end-of-Me{ECQF) condition

is encountered, and a Zero, otherwise, Therefore, the above statement terminates the program on
reaching the and of the file.

GANESH Y, Dept. of ECE RNSIT

