Engineering Electromagnetics

MODULE 1 : Coulomb’s Law, Electric Field Intensity and Flux Density

11 Experimental Law of Coulomb

1.1.1 Force on a point charge

1.1.2 Force due to several charges

1.2 Electric field intensity

1.2.1 Electric Field intensity due to several charges

1.2 .2 Electric Field intensity at a point due to infinite sheet

of charge
1.2 .3 Electric Field at a point on the axis at a charges P
circular ring \
1.3 Electric Flux ¢

14 Electric Flux Density

1.1 Experimental law of C

Coulomb’s law states that rostatic force F between two point charges ql and g2 is
directly proportional to the @ ct of the magnitude of the charges, and inversely proportional
anCeDERveen them., and it acts along the line joining the two charges.

F % kqlg2
Or F=(kglg2)/(r) N

Where k is the constant of proportionality whose value varies with the system of units. R" is the
unit vector along the line joining the two charges.
1

In SI unit, k= 2re® |
Where € s called the permittivity of the free space.
It has an assigned value given as € ° =8.834& 107" F/m,
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Force on a point charge:

The forces of attraction/repulsion between two point charges & and & (charges
whose size is much smaller than the distance between them) are given by Coulomb’s
law:

Fl =k'Q;?% an)

F2=k'gR§2312

where & ™ x10° m/F in SI units, and R is the distance between the two charges.
Here. T1 is the force exerted on & . and ¥2 s the force acting on €2 _ The unit vector
221 points from charge 2 toward charge 1. Accordingly, 8z ™ ~3a1

Force on Q1 is given by

2
Fl=_1 f2d&:
4ne K ewtons
«— QO
ql 12
O o
F2
ql q2

Force due to several charges

Let there be many point charges ql,q2.q3......... qn at distances r1.12r3....m from
charge q. The force F1, F2, F3.......__. Fn at the charges ql,q2.q3.......... qn respectively
are:

91 o, 92
+ 772 ean vanoar sanvar sen 1an sas sen seive
q{inerl r dxary’ - }

F=Fql+Fq2+Fq3.............

Hence, F= q{L nL fi} N

2 =1 ;2
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1.1 Objectives

After going through this section, the students are able
to 1. State Coulombs law
Application of Coulombs Law to point charge as well as several charges

1.2 Electric field intensity

Electric field intensity at any point in an electric field is the forc erienced by positive unit

charge placed at that point. *

Consider a charge Q located at a point A. At the point B in the'glectric fields set up by Q, it is
required to find the electric field intensity E. *

Let the charge at B be 9 and let the charge Q be fi et r be the distance between A and

B. As per the Coulomb’s Law, the force betwee is given by:
£= QAq/(4m €° r?

If it is a unit positive charge, then by defi
the electric field intensity E.

i.e. E=F when 24 = 1
Therefore, the magnitude of

in the above equation gives the magnitude of

written as:
E=0/(4 ™ Sor) Vim

1.2.1 Electric Field intensity due to several charges

Let there be many point charges 91,92,93......... gn at distances r1,r2,r3 ... rn be the corresponding
unit vectors. The field E1, E2, E3.......... En at the charges q1,92,93........... gn respectively are:
r+

E=Eql+EQg2+EQ3  .............

Hence, 42

Page 3



Engineering Electromagnetics

1.2 .2 Electric field intensity at a point due to a infinite sheet of charge

Let us assume a straight line charge extending along Z axis in a cylindrical coordinate
system from -oo to +oo as shown in the figure 1.1. Consider an incremental length dl at a point on
the conductor. The incremental length has an incremental charge of dQ= pl dI= pldz’ Coulombs.

Considering the charge dQ, the incremental field intensity at point p is given by,

JE = prdz"(r—r’)

drrey|r — r’l3

(0,0,2) K

Where
r=yay = pRp
r/ =z'a.
and
r—r'=pa,—z'a.
Therefore,

JV prpdz’
E‘J = 2 "
~ 4meg(po- + 2°-)

3/2

Integrating the above and substituting z’=p cot 6, we get
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and

| E, ==t
LTEQ P

1.2.3 Electric field intensity at a point due to a infinite sheet of
charge:

Let us assume a infinite sheet of charge with surface charge density ps as shown in the
figure 1.2. Divide the sheet of charge into differential width strips. number of str Consider an
incremental length dl at a point on the conductor. The line charge density pl= ps dy’.

N

The differential Electric fiel at point P,

ps _xdy'

~dy’
Ps a ¢80 =

dE & —————— e SN 1
2regy/ X2 + 2 2mep x* +y'*

adding the effects of all the strips,

E\=

0 ' o0

ps [* xdy ps 1y Ps
= I e P

2ren ).ooX*+ ¥+  2mep X

Therefore,
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1.2.4 Electric field at a point on the axis of charged circular ring:

Let p be the charge density of the ring.

So, p=dq/dl
dg=pdl

Electric field due to an infinitely small element = dE = dg/4meo 1> r*

where r” is the unit vector along AP.
dE can resolved into two rectangular components, dEx and dEy. Now, dEx=dEcos6.
Taking the magnitude of dE from above, the equation becomes,

dgcosf *
4msr? \

= L 4

cosf=r
substituting for dq from above, we have;

dEx=

dEx=224

dmers

The component dEy is directed ds. If we consider an element of the ring at a point
diametrically opposite to A y component points upwards and hence, cancels with
that due to element A. Th onents add up.

The total field at P i f the fields due to all the elements of the ring.

Therefore, E=|dE=[dEx+|dEy=]dEx
px LmK
—_— al
E=JdEx= prl
px(2nR)
= 4msrs
But, r=(R2+x?)%2
Therefore, E= 2zRpx ax

4ms(R2+x2)572

Where, ax is the unit vector along the x axis.
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1.2  Objectives

At the end of this section the students are able to
1. Define Electric field Intensity
2. Derive Electric field intensity at a due to several charges
3. Derive Electric field Intensity at a point due to sheet of charge
4. Derive Electric field intensity at a point on the axis of charged circular ring

1.3 Electric flux:

The concept of electric flux is useful in association with Gauss' law. The electric flux through a
planar area is defined as the electric field times the component e area perpendicular to the
field. If the area is not planar, then the evaluation of the flux @/ requires an area integral
since the angle will be continually changing.

*
When the area A is used in a vector operation like thi s understood that the magnitude of the
vector is equal to the area and the direction of th r i8 perpendicular to the area.
S
&

Consider a concentric sphere having{r; m charged up to +Q C. This sphere is
then placed in another sphere having a ragi as shown in the figure 1.4,

Metal
conducting
spheres ~

Insulating or
dielectric
matenal

There is no electrical connection between them. The outer sphere is momentarily
charged, then it found that the charge on the outer sphere is equal to the charge on the inner
sphere. This is depicted by the radial lines. This is referred as displacement flux. Therefore,

¥ =Q.

1.3.1 Electric flux density:

If +Q C of charge on the inner sphere produces the electric flux of v, tthen electric flux vy

) . 2 . . )
uniformly distributed over the surface areca 4I1a~ m~ , where a is the radius of the inner sphere.
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The electric flux density si given by

= a, (inner sphere)

Similarly for the outer sphere,
D 0

= —=—Q, ter sphere
= 1 (outer sphere)

If the inner sphere becomes smaller and smaller retaining a charge of Q C, it becomes a point
charge. The flux density at appoint ‘r’ from the point charge is given by,

Q

4mrr?

The electric field intensity due to point charge in free spacw\g@

Therefore in free space,

D

a,

1.3 Objective O

After going throtgh this section the students should be able to
1. Define Electric’flux
2. Explain Electric flux density

1.4 Gauss law:

The Gauss's law states that. "The electric flux passing through any closed surface is equal to
the total charge enclosed by the surface™

For the Gaussian-surface shown in the following figure, the Gauss' law can
be expressed mathematically, .

Where
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Y = flux passing through the closed surface
8s =1 surface integral

Ds =, flux density (vector quantity) normal to the

surface Q = Total charge enclosed in the surface

I

) 7S il

4

Let Q be the point charge placed
ordinate system with a radius
The electrical field intensity

Q

B = a
= 2
E = 4n Eg I

r

Where r=ClI

ustrated in the figure
charge is found to be equal to

and we al so know that the relation between E and D as,

L
L
LY D,
vy dS S
v
-
By \
Q —y
-
f \‘\\‘-.. ‘] A
-
A A Xk,

Page 10



Engineering Electromagnetics

Therefore from (1) and (2) we get.

- . . Q vi
TR
9
4ma
at the surface of the sphere, * \Q
. Q. o
= a5l
D=t

The differential element of area on a spherical 5( is#In spherical coordinate form is
given by, K

ds r’ sinf d6 d¢ = a? sind dé

Or d§ a*sinf dB dg a,
Then the required integrand

= D,-ds QO
= —Q—'dzsinﬂdﬁdq) avd,

BTG

= I sinddB d¢ (" a,-a,=1 from vector basics)

Then the integration over the surface as required for Gauss' law.
- S °=21 =1 )
§Ds d =j f Q inodado
2 4=0  Jo=0 dnm

The limits placed for integral indicate that the integration over the entire sphere in spherical
co-ordinate system on integration we get

Page 11



Engineering Electromagnetics

2r
9—(-%‘9)3 do

o —,

n‘ .
2r
" j Qi
2n
b
= Q
Thus we get, comparing LHS of Gauss' law as
y=Q
This indicates that, Q coulombs of electric flux are crossing the surface as the enclosed charge is
Q coulombs.
1.4 .1 Application of Gauss law: ’\Q
* .
In case of asymmetry, we need to choose a very clo age such that D is almost

constant over the surface. Consider any point P s{ e figure 1.6 located in the

rectangular co-ordinate system. \

The value of D at point P, may be expressed in rectangular components as,
D=Dx0ax+Dy0ay+Dz0az. . From Gauss law, we have

([\ I)-(IS:Q

JS

In order to evaluate the integral over the closed surface, the integral must be broken into
six integrals, one over each surface,
bt
Jop  Jbottom

% D-dS [ + l
Js Jirom Jback
The surface element is very small & hence D is essentially constant ,

= _|_ me
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. 9D,
+ = —=AxAyAz
Jirom back dx

Similarly,

aD,
J - J = —=AvAy Az
right left ‘i."

and,
ab.

[ + [ = —Ax Ay Az
Jiop  Jbottom oz

Therefore collectively,

aD. aD, aD.
D-dS = : AxAyA®
i ¢ ( =t a:) ¥ A) \Q

¢

or
¢ D

f# D-dS=0Q = (?_%+f—'+a

S o,

QA

3 D.
- +—‘) x volume Av

Charge enclosed in volume Av,

Charge enclosed in volume Av =

1.4 ObjectivesQ

At the end of this section the students are able to
1. State and prove Gauss Law
2. Apply Gauss law to find the charge enclosed in differential volume

1.5 Divergence:

From Gauss law, we know that,

Av Av

st-dSz Q

aD, o aD, ” aD.\ .
ax ay 0z

And applying limits,
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aD, 5 aD, aD 395 ds e Q
ax 3." az _\. .u Av  Avs0Aw
The last term in the equation is the volume charge density, pv.
oD, 8Dy 3D\ _ . §sD-dS
ax ady oz e Y TR
We shall write it as two separate equations,
9D, _ 9D, aﬁ;’\d_ §D-dS
ax A L Ay

1
(dD R aD, . 3D: '
x "y o ) =&

Divergence is defined as,

Statement: The flux crossing the

flux density throughout the en&
Divergence in Cartesi@n,

. aD, aD, aD. .
div D = o s (cartesian)
ax a0z

Divergence in Cylindrical system,

1 d 18D,  aD. S——
divD = ;—(pD,,) % +a—: (cylindncal)
Divergence in Spherical system,
: L9 1 | Dy .
' D==— - — (sin@ D, « y
div D = ar(r'D,) ~inG 3 (sm( Dy) + FSin0 90 (sphencal)

ace is equal to the integral of the divergence of the
me, as the volume shrinks to zero.
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1.6.1 Maxwell’s First equation:

From divergence theorem, we have

diviD = fim 325
S ;\3-'1:‘0 Av
aD, @D, aD.
D= ———
ek ax ay oz
div D = Po

From Gauss law,
.
% A-dS=0Q \

Per unit volume,

As the volume shrinks to zero,

= lim -g
Av—+0 Av
Therefore, :\
1.6.2 Divergen@rem:
The del operator is defined as a vector operator.
d d d
Nt 3_.\-"“" -+ adv +EJ;

In Cartesian coordinate system,

a d a
VD= E;(D_\-) +-5(D‘-) '.-5;(’):)

Which is equal to,
aD. D, aD.

V:D=
ax K ay > z
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Therefore,
g abD,. 8D, aD.
; =V =
div D D o + 3 4 =
From Gauss law, we have
»% D-dS=0Q
JS
And by letting,
Q= [ pdv
Jvol &V-D—p,

Hence we have,

‘ I
JS Jvol

1.6 Objectives

At the end of this section the students@resaile to

1. Explain the concept of div if

2. Derive Maxwell’s FissteEquation
3. State and prove PiyBkgence theorem
4,
5
1.7 Recommended Questions

1. State Coulomb’s law of force between any 2 point charges & indicate the units of the

quantities involved.

2. Derive the general expression for electric field vector due to infinite line charge using Gauss law.

3. State and prove Gauss law.

4. Derive the general expression for E at a height h(h<a) , along the axis of the ring charge &

normal to its plane.

5. From gauss law show that .D=cv
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6. State and prove divergence theorem for symmetric condition.

7. State and prove divergence theorem for asymmetric condition

1.8 Further Readings

1. Energy Electromagnetics, William H Hayt Jr. and John A Buck, Tata McGraw-Hill, 7th
edition,2006.

2. Electromagnetics with Applications, John Krauss and Daniel A Fleisch McGraw-Hill, 5th
edition, 1999

3. Electromagnetic Waves And Radiating Systems, Edward C. Jordan and Keith G Balmain,
Prentice — Hall of India / Pearson Education, an editiofiy, 1968,Reprint 2002

4. Field and Wave Electromagnetics, David K }”earson Education Asia, 2nd
edition, 1989, Indian Reprint — 2001

A
N
QO
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MODULE 2: Gauss's law and Divergence, Energy and Potential, Conductors Dielectrics
and Capacitance

2.1 Energy expended in moving a point charge in an electric field
2.2 Line integral

2.3 Definition of potential difference and potential

2.4 Potential field of a point charge & system of charges

2.5 Potential gradient,

2.6 Energy density in an electrostatic field.

2.7 Current and current density
2.8 Continuity of current
2.9 metallic conductors

2.11 Dielectric properties and boundary conditions for diglectrics,
Conductor properties and boundary conditions for pesfect

2.12 dielectrics, \

2.0 Objectives

1. To Understand the concept o and Potential Difference
2. To Learn the concepts of En ity, current density
3. To derive current contin
4

. To understand the b nditions

2.1 Energye n moving a point charge in an electric field

Electric field intensity is defined as the force experienced by unit test charge at a point p.
If the test charge is moved against the electric field, then we have to exert a force equal
and opposite to that exerted by the field and this requires work to be done.

Suppose we need to move a charge fo Q C a distance dl in an electric field
E. The force on Q arising from the electric field is,

Fp = QFE |
The differential amount of work done in moving charge Q over a distance dl

dW = —QE -dL

is given by, ‘ as F =QE

Thus the work done to move the charge for the finite distance is given by,

final
W=-Q I E-dL

Jomat
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2.3 Definition of Potential Difference and potential

Potential difference(V) is defined as the work done in moving unit positive
charge from one point to another point in an electric field.

We know that,

final
W=—-Q I E-dL

Jmit

final

Therefore V:W/Q;[ Bl

V AB signifies potential difference between points A & Bsandithe k done in
moving the unit charge from B to A. Thus B is the initial p& is the final point.

Thus the potential differenc& pointsa & b is.given by,

O - QO 2ne a
Absolute electric po@ defined as the work done in moving a unit positive

charge from infinity to that point against the field.
Electric field is defined as force on unit charge.
E=F/Q.

By moving the charge Q aganist an electric field between the two points a & b work
is done. Thus,

EdI= Fxdl/Q =work/ charge.

This work done per charge is the electric potential difference. Potential difference
between points a and b at a radial distance of ra and rb from a point charge Q is given
by, If the potential at point a is VA and at point B is Vs, then

Vap=Va— Vg

Equipotential Surface is defined as "It is a surfacehaving the same value of potential” on
composed of all- points such surfaces no work is charge, hence no potential difference
involved in moving a unit between any two points on this

surface.

—~ . fAT A T AT
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2.4  Potential field of a point charge & system of charges

Consider a point charge Q to be placed in the origin of a spherical coordinate system. Consider
2 points A & B as shown in the figure.

Alry, 00, 94) ey

— dL=dra +rdfag*rsintdoa,

- —® B(rg, Og. ¢p)

3

Electric Potential difference between A & B, Vag is given by,Q
.

1
V== [F.-dl.
JB

Potential at a point has beg
reference to the point

O

4renlr — 1y
Potential arising from 2 charges, Q1 at r1 and Q2 at r2, is given by

Oy 0>

Vir)=

Vir) =

{
dneplr — ry|  4dmwep|r — r2|

Potential due to n number of charges, is given by

l'(r): Ql { Q: Q"
dreglr — 1| dnglr—r| T dweglr — 1,
Or

n
V=)
“tdmegr — 1y

If point charge is a small element in the continuous volume charge distribution then,
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vy = LA plr) A, pulrn) AU,
T dnelr—n|  4relr—r| T dmeolr —
As number of point charges in the volume charge distribution tends to infinity,

po(r)dv'

Vv =| ————
Jvol 4.7(-()|l' l"|

Similarly if the point charges takes the form of a straight line then,

, pr(r')dL’
J = | ——
(r) J-‘he‘.lr r'|
Similarly if the point charges takes the form of a surface charge then,
; [ ps(r)dS’
J (P):= —
J s 4meg|r — 1’|

Potential is a function of inverse distance. Hence we can conclude that for a zero reference at
infinity, then:

| Potential due to a single point charge is the work done in mo nit positive charge from
zero reference to the point. Potential is independent of thé’patTtaker™rom one point to the other

Il Potential field due to number of charges is the sum edndividual potential fields arising
from each charge.

I11. Potential due to continuous charge distributi falind by carrying a unit charge

from infinity to the point under considerat {

A
Vaie=Vi4—Vg= E-dlL
2 i ndent on the path chosen for the line
ield.

done in carrying a unit positive charge around any

integral, regardless of the sourc

Hence we can conclude that
closed path, or O

[ E-dL=0

Any field that satisfies an equation of the form above is said to be conservative field

2.5 Potential Gradient

Potential at any point is given by & [r i
— L (

Potential difference between 2 points separated by a very short length AL along which E
is essentially constant, is given by

AV=-E-:AL

In rectangular co ordinate system,

v av aV
dVv :(__—.d_\' f—=—dy +4 (,_—_d:

ax ay 2

, As V is a unique function of x,y,z. Then,
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dV = ~E+dl.= —E.dx — E,dy — E. dz
Since both the expressions are true with respect dx,dy & dz, we can write
av
E\' — e e—
: ax
v
E, = ——
ay
v
Ly
Therefore,
o . Jd r v
L= T\"l" “+ -QTJJ. -gd:
In rectangular co ordinate system,
av av aVe
L V= o ax . AR .
grad a2t P a1, P
L 2
Combining all the above equations allows us mpact expression that relates E &
E=-VV
Vv,
Gradient in other coordinate system en below,
(cylindrical)
1 av .
e g E% (spherical)

Given the potential field, ¥ = 2x%y — 5z, and a point P(—4, 3, 6), we wish to find several
numerical values at point P: the potential V', the electric ficld intensity E, the direction
of E, the electric flux density D, and the volume charge density p,.
Solution. The potential at P(—4, 5,06) is

Vp=2(—4)%(3)— 5(6) =66 V
Next, we may use the gradient operation to obtain the electric field intensity,

E=—VV=—dxya, — 2‘\'1:1, + S5a: V/m

The value of E at point P is
Ep =48a, —32a,+5a. V/m
and

[Ep| = /482 +(—32)+ 52 =579 V/m
The direction of E at P is given by the unit vector
ag p= (48a, — 32a, + Sa.)/579
= 0.829a, —0.553a, + 0.086a.
If we assume these fields exist in free space, then

D =k = —35.4xpa, — 17.71x%a, +44.3a2, pC/m’
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6 Energy Density in an Electric Field

Consider a surface without charge. Bringing a charge Q1 from infinity to any point on the
surface requires no work as there is no field present. The positioning of Q2 at appoint in the

field of Q1 requires an amount of work to be done which is given by
Work to position Q> = Qs V>,
Similarly work required to position each additional charge in the field is given by,

Work to position Q3 = Q1 V3.1 + O3V
Work to position Qs = Qs Va1 + QaVisr+ QsVas

Total positioning work = Potential energy of the field
.

4V

=Wg= 0V, +03V3, + )3\*'

+ QaVi2+ QsVas + ..

{; (Va4 Vis+Viat..))
+ Qa(Vay+ Vas+ Vag+...)

:- 2
FO:Vi + Vas+Vig+...)
For n number of char

m=N

Wg=H0V,+ Q:V>+ 03V .-.)=-§-Z OV

m

2.7 Potential energy in a continuous charge distribution:

For the region with continuous charge distribution, the equation for WE=

By vector identity which is true for any scalar function V & vector D,
V-(VD)= V(V-D)+ D-(VV)

Then,
Wi = %[ pVde = ’;J (V-D)YV dv
F ~ Jvol

Jvol

g[ [V-(VD) - D-(VV)]dv
Jvol
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From Guass law, We can write
Wg = %J) (VD). dS %J D . (VV)dv
S vol

and from gradient

Wg= %J D-Edv=3 [ €0’ dv
vol

Jvol

2.8 Boundary condition for conductor free space interface:

Consider a closed path at the boundary between conductor and a dielectric, such that
Ah—0.

Free space

Condu{

ver a closed path is zero i.e.,

'\#Ii -dL =0
Therefore the integral carb%n up as,
b : d a
J + I. + f +J =0
Jb  Je

d

We know that work done in moving

a

Let the length from a to b or c to d be AW and from a to d or b to ¢ be Ah , hence we obtain,
E AW — Exap s Ah+ Ey aio 2 AR =0
. Hence we obtain EAW=0 & therefore Et=0

Hence at the conductor dielectric interface tangential component of the electric field intensity
is zero.

Consider a gaussian cylinder of radius p and height Ah at the boundary, Applying Gauss
law,

# D-dS=0Q

S & then integrating over the distinct surfaces we get

op bottom sides

Flux experienced by the lateral surface is zero & Flux experienced by the bottom surface
is zero as charge inside the conductor is zero. Therefore

DN AS = Q = [)SAS or D,\f = ps
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At the conductor dielectric interface normal component of the electric flux density is equal
to the surface charge density.

2.8 Boundary condition for perfect dielectric:

Consider a closed path abcda at the dielectric dielectric interface & Ah—0. The work done
in moving a unit charge over a closed path is zero. Therefore,

Region 1
£

. ¢ Region 2
P ////E‘ &2

e . \Q
. L 4
We know that the work done in moving a i&tﬁ er a closed path is zero. Therefore,
N0

Eun 1

, and hence
W= Eun Aw =0

onent of E due to Ah becomes negligible. Therefore,

.&asD= Q&t,
i Dh‘ml -Dw.m €]

:L“ :E“:;: —
€ at o € Dun2 &
At the dielectric — dielectric boundary tangential component of the E is continuous where as
tangential component of electric flux density is discontinuous.
Consider a gaussian cylinder of radius p and height Ah at the boundary, Applying

Gauss law, & then integrating over the distinct surfaces we get

I
Jiop  Jbottom sides
. Flux experienced by the lateral surface is zero. Therefore

D_\qAS — D‘\'QAS — AQ = p.\'AS

The small contribution of the n

Eun1 = Eun>

From which,

l Dyy — Dy> = ps

For perfect dielectric, DN1= DN2, then €2E2 = €1E].

At the dielectric dielectric boundary normal component of the flux density is continuous.
Normal components of D are continuous,
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D,w = D| cos ) = D: C()SH: = D‘\'}_
. The ratio of the tangential components,
Diny Dy siné; €

D(;ml ; Dl sin ‘)3 - “_2-

Or 6D sinfy; = €, D> sind,

And
tant; €

tan &, B €5

The magnitude of D is given by,

-+

[ A\ 2
D> = D;VCOS: 6, + (6—.) sinzH,

XS

tn |

Out comes
At the end of the unit the students are able to understand the concepts of Potential

and Potential difference, energy and current densities, current continuity

equation, and different boundary conditions.

Recommended questions

1. Define electric scalar potential. Establish the relationship between intensity and potential.
2. Discuss the boundary conditions between 2 perfect dielectrics.
3. State & explain the principle of charge conservation.

4. Derive for energy stored in an electrostatic field.
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5. Derive for energy expended in moving a point charge in an electric field.
6. Define Potential & potential difference.

7. Prove that E is Grad of V

8. Write a short note on dipole

9. Three point charges, 0.4 pC each, are located at (0,0,-1), (0,0,0) and (0,0,1) in free space.
(a). Find an expression for the absolute potential as a function of Z along the Ine x=0, y=1.
(b) Sketch V(2).

Further Reading

1. Energy Electromagnetics, William H Hayt Jr. and John ck, Tata McGraw-Hill, 7th

edition,2006. ¢

2. Electromagnetics with Applications, John Kraus Eiel A Fleisch McGraw-Hill, 5th
edition, 1999 ¢

Syéte ward C. Jordan and Keith G Balmain,
Nd ¢ ition, 1968 Reprint 2002

3. Electromagnetic Waves And Radiati

)

Prentice — Hall of India / Pearson io

4. Field and Wave Electromagu€ti
edition, 1989, Indian Reprig

David K Cheng, Pearson Education Asia, 2nd



Engineering Electromagnetics 17EC36

MODULE 3: POISSONS AND LAPLACES EQUATION, STEADY
MAGNETIC FIELD

STRUCTURE

1.1 Derivation of Poisson’s equation and Laplace’s equation
1.2 Uniqueness theorem,
1.3 Examples of the solutions Laplace Equations and Poisson’s Equations

Objectives

’
1. To derive the Poissons and Laplaces equation \ :

2. To derive the Unigueness theorem
3. Application of Laplaces equation to parallel

Laplace’s & Poisson’s equa

Laplace’s & Poisson’s equati ab to find potential fields within regions bounded by
known potentials or charge i

Derivation of & Poisson’s equation:

From Gauss law in point form, we have

V-D= Pv e __(1).
By definition, D = €E. & from gradient relationship,
By substituting the above in equation 1, we get
V:-D=V-(eE)=-=V-(eVV) =p,
Oor e 2
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.
-

V.VV =

For a homogeneous region in which € is constant. Equation 2 is poisson’s equation.
In rectangular co-ordinates,

o g D OFY B (a N 9 faV
s o B A

Fv " ol & aFr
S ) -2

Y 5 5 ) ’
V"l"ﬁu."- a- V' ”"‘: &' \
 J

Therefore,

T @R 8z €

If py = 0, indicating zero volume charge densitygbu ing point charges, line charges
& surface charge density to exist at singu & as sources of the field, then
BN 0

~

) Py ;
- — == 0 (cartesian)
X } dz*
\
2 El [ vV 1 [V\ &V
i) o gl 7 (RS _?(__) o et (cylindrical)
p »P(p /’) p>\o¢*) = 0z

& in spherical coordinates,

vy 1 3,81 5, 1 o o0 1) " | (ophisiianiD
T Pt ] I s e | BTN e 5 \spherical)
re ar ar r-sinf o 5 e Psinc g dg g

very conductor produces a field for whidh

If pv = 0, indicating zero volume charge density, but allowing point charges, line charges &
surface charge density to exist at singular locations as sources of the field, then

V2V =0
which is Laplace’s equation. The V~ operator is called the Laplacian of V.

In rectangular coordinates Laplace equation is,
,

N FV FV PV
VoV ==

- — =0 cartesian
x> a2 oz ( )

, In cylindrical coordinates,
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vp=l2 (30 1O EY (indsical
“p\"op) T ag) T2 Y

& in spherical coordinates,
) 13,0V 1 8. v [ ;
V'V =—sa—|r— —_— | sinf— —— —— (spherical
2 ar(' Hr)+i'351n9 m(b m)+,zginlﬁ;i¢- rpimial

Every conductor produces a field for which ¥=0. In examples if it satisfies the
boundary conditions and Laplace equation, then it is the only possible answer.

V=0. In examples if it satisfies the boundary conditions and Laplace equation, then it
is the only possible answer.

Uniqueness theorem:

¢ -
Let us assume we have two solutions of Laplace equation, V) and\?geueral functions of

the coordinates used. Therefore *
¥ V;=0and V'V, = 0. From which Viily= V) m@.
On the boundary, Vui=Vw2 Let the differ &m 1 & Vabe Vy Therefore Ve= V1-V2

From Laplace equation,
¥ VeV, he boundary V=0
From Divergen _
Q \ <{>D-ds=l V.Ddo ‘
JS Jvaol
Using vector identity.
V- (VD)= V(V D)+D:(VV)
We get,

[ Y[V = VaV() = P)lde
Jvol

EJ (Vi — IV V(¥ — F)ldv+ [V(V) — V)P dv
vol 4

AsVi=V,

V [( 1’1 - "': )V( "'; - V:)l (h' = (J‘ l('lh\ - "":f.)V( l’”, _— l‘”._)] . l{S = 0
Jvol S
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vvim vo

Surface consists of boundaries and hence

[ [(V(V, = Vy)*dv=0
Vol
Therefore
V(Y =W))P =0
And
V(Vy =¥V =0
As
Vy- I"'_‘ = V- l'y, =0
We obtain,
l'l - "’3 )
L 4
2.8 Example of solution of Laplace’s equ :
Example 1: For a Parallel plate capacitor: \
Let us assume V is a function of x. Lapla &m n reduces to,

FV

—= ()
ax=

Since V is not a funeti
Integrating the above equati

Z.
ice We obtain,

V=Ax+ B
Where A & B are integration®constants.

If V=0 at x=0 and V=V at x = d, then,

A=V(Q/dand B =0.
Therefore,
Vox
d

Hence we have,
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-
V= ""ng
Fa
E=——a
d
Vo
D=—e—a,
. g
’ "”ﬂ
[)_g- =D = —€=—_,
=0 d

And the capacitance is

Example 2: Capacitance of a co-

indrical conductor:

Assuming variation with respf& ace equation becomes,

1 3 vV -
pap ”ap .

Integrating twice on both sides we obtain,

)dV_ ;
¢ dp =
V=Alnp+ B

Assuming V =V(Q at p=A and V=0 at p =B, We get

y — . n(b/p)
- In(b/a)
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S Vo 1 .
* =0 In(b/a)
eVy
Divpar = aln(b/a)
_€ Vo2rral
"~ aln(b/a)

B 2mel
“In(b/a)

Example 3: Spherical capacitor:
Assuming variation with respect to r Laplace equation beco’n&Q

1 :
—— = (sing
r=siné dH(

Integrating twice on both sides we obtain,

Assuming V = V(Q at 0 =T11/2 t0=a, We get

e
Q In(tan;)
l', —_— l/ -—a‘

. In (tani)

: 1 3V Vo
E= -V = —ay = — :
rw rsim’)ln(lang)‘uJ
5

—€eVy

ps == v
rsino ln(lan ;—)

—eVy J" r’rsin adodr

O=- 7]
smaln(lan;) 0 Jo r

—2reaVo [
<€ Vo
o e— dr

B ln(lan%)

0
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and
.. 2mer)
( Pl

" nlcot®)
n(uol;)

Outcomes

The students are able to state and derive the poisons and laplace’s equation and apply it
to derive the capacitance of parallel plate capacitor, cylindrical conductor and spherical
ring & show that Laplaces equation has only one solution

Recommended Questions

1. Derive Poisson’s & Laplace’s equation. *

2. Using Laplace’s equation , Provegthag!th ntial distribution at any point in the
region between two concentric cylind iil A&B as

V=VolIn p/B /In A/B

3. State and prove uniqueness t --}

4. Derive for Capacitance g ﬁ

5. Derive for Capaci &oncentric spherical capacitor.

6. Let V = 2x an@ye = go. Given point P(1,2,-1), Find (a) V at P; (b) E at P; (c) pv at P;
(d) the equation "of the equipotential surface passing through P; (e) the equation of the
streamline passing through P; (f) Does V satisfy the Laplaces Equation

Further Reading

TEXT BOOK:
1. Energy Electromagnetics, William H Hayt Jr . and John A Buck, Tata McGraw-Hill, 7
edition,2006.

REFERENCE BOOKS:

2. Electromagnetics with Applications, John Krauss and Daniel A Fleisch McGraw-Hill, 5th
edition, 1999

3. Electromagnetic Waves And Radiating Systems, Edward C. Jordan and Keith G Balmain,
Prentice — Hall of India / Pearson Education, 2nd edition, 1968.Reprint 2002

4. Field and Wave Electromagnetics, David K Cheng, Pearson Education Asia, 2nd edition, -
1989, Indian Reprint — 2001.
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MODULE-1V

Plane Wave:

A uniform plane wave is the wave that the electric field, E or magnetic field, H in same direction, same
magnitude and same phase in infinite planes perpendicular to the direction of propagation. A plane wave
has no electric field, and magnetic field, components along its direction of propagation.

1 £ ElédﬂC
~ = Waveleng field

Wave Equations:

If the wave is in simple ( linear, isotropic and Ao nonconducting medium ( =0), Maxwell’s
equation reduce to,

— —

V x :—,[

6\
g AE
Wi :8% V-H=0

V-E=0

Thefirst-order differential equations in the two variables E and H . They can combine to give E or H
alone using second-order equation.

Using Maxwell’s equation

|

<
X
o]
[
V)

VxE= 2 W.E=o (3)

Q)IQ)
~

(1)

Thecurl of equation of (1)
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-

VxVxE=—u=—(VxH)
or
Replacing in equation (2)
VxVxE=—us L

or’

We know that VxVxE= 6(6 'E)— V’E because of equation (3), thus the wave equation is

o 32
E e )

The wave equation also canwritten as Q
.

VE—FK’
— €
Assuming an implicit time dependence e’ “ t&ie ector. Equation (@) also called Helmholtz
equation. Thek is called the wave number or jof constant.

S N

and C_.\/g_,u

W

C

where c is the velocity @

For magnetic intensity domain, H , we have,

= 7 r ¥ ﬁ:I—j
V’H—,ué'c -
ot~

ree space.

—

=0 or YV H— sk H=10

n

For auniform plane wave with an electric field E x Ey traveling in the z-direction, the wave equation
can be reduced as

The solution of this wave equation,
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El(z)= xE,
=XE e™*

X -3 _—jps
=xE e ""e™ "
Where isthe attenuation constant of the medium and s its phase constant.

The associated magnetic field, H ,

where s theintrinsic impedance of the medium.
Thek is called the wave number or propagation const

= ’QK-.

Thus, Q
2

By solving (1) & (2),
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So for different medium,

=@\ us

ell’s equations:

ell’s equation

Gauss’s  Law

(Electric fields)

Information

through to a closed surface. .§

Right side:
Total amount of charge. ¢
contained within that surface. .

Differential form:
& V-E=
\ J (9}
Left Right

Left side:

Divergence of the electric
field. E — the tendency of the
field to “flow™ away from a
specified location.

Right side:
Electric charge density. p

Electric charge produces an
electric field, £ and the flux of
that field passing through any
closed surface is proportional to
the total charge. ¢ contained
within that surface.

Charge on an insulated
conductor moves  outward
surface.

The electric field. £ produced
by electric charge diverges from
positive charge and converges
upon negative charge.

The electric field. Eis tendency
to propagate perpendicularly
away from a surface charge.
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Gauss’s Law Integral form:
Left side: The total magnetic flux passing
(Magnetic fields) U H-dS= 0 The number of magnetic field | through any closed surface 1s
— m;h. lmnes - perpendicularly | zero.
Lt passing through a closed
surface. Flux enter the closed swmface 15
same with the flux come out
Right side: from the surface.
Identically zero.
The divergence of the
Differential form: magnetic field at any point 1s
- - Left side: zero.
N H=0 Divergence of the magnetic
T L R |field — the tendency of the
field to “flow™ away frox
point than toward it. ®
Right side: §
Identically zeg
Integral form:
Faraday’s Law _ - Changing magnetic flux
- = cH e Turculation of the vector|through a surface induces
“T'(E -di :—llojs ctric field. £ around a closed |an emf in any boundary
= —

path. C.

Right side:

The rate of change with time
(d/dr) of magnetic field. through
any surface. S.

path. C of that surface.
and a changing magnetic
field, H induces a
circulating electnic field.

Differential form:

Left side:

Curl of the electric field. — the
tendency of the field lines to
circulate around a point.

Right side:
The rate of change of the

maguetic field. H over time
{didr)

A crculaung elecmic
field. is produced by a
magnetic field. H that
changes with time.
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Integral form:

Ampere’s Law

Left side:

The circulation of the
magnenc field, Haround a
closed path. C

Right side:

Two sources for the magnetic
field. A a steady conduction
current. J'._ and a chanzing
electric field. F through any

An electnic current or a

changing electric flux
through a surface
produces a circulating

magnetric field around any
path, C that bounds that
surface.

Poynting Vector and Power Flow i

to circulate arou®id a
Right side:

Two

rem

surface. bounded by closed
path. C.
Differential form:
. Left side: A cuculating  elecmic
VxH=J +& i Curl of the magnetic field. —[field. is produced by a
> ‘ ° ot the tendency of the { es | magnenc field, A thar
' R:éhr changes with tme.

An electnc cuwrrent, or a
changing elecmic field.
through a surface
produces a circulanng

magnetic field. AHaround
any path that bounds that
surface.

Electromagnetic waves can tr
field intensities associated wi
transfer.

Let us consider Maxwelks C ations:
VxE:-a_B
ot
VXH=?+%
Using vector identity
V.(EX§)=§.VXE—§.VXE
The above curl equations we canwrite
o8 011 BEE 01
gt |2 ; dt| 2

And J_éj = O'Eg_

In simple medium where & # and @ are constant, we canwrite

.‘.V.(EXE) L +l,aH2]— ok’
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Applying Divergence theorem we canwrite,

(Exﬁ)d&'hi e ym|av - (orrar
a2 2

d o1 1

—J[—e EY¥ H’]dV

Theterm dep\2 represents the rate of change of energy stored in the electric and
JJE%JV
magnetic fields and theterm represents the power dissipation within the volume. Hence right

hand side of the equation (a) represents the total decrease in power within the volume under
consideration.

fiﬁxj\g§= Bas
The left hand side of equation (6.36) can be written aswheré £ = EXH  \Wimt?) is called the Poynting
vector and it represents the power density vector associated with the electromagnetic field. The
integration of the Poynting vector over any closed surface gives the er flowing out of the surface.

Equation (6.36) is referred to as Poynting theorem and it statesthat er flowing out of a given

volume is equal to the time rate of decrease in the energy stored Withinghe volume minus the conduction
losses.

Poynting vector for the time harmonic case:

of a quantity is the real part of the product
reference. For example, if we consider the pl

then we can write the instantey % as

E(z.t)=Re[E(2) (@t - 82)a,

when Eg is real.
Let us consider two instanteneous quantities A and B such that

A=Re (Aej"") = |A|cos (@t + @) ’ B=Re (Be”""’) =|B|cos(at + 8)

where A and B are the phasor quantities. i.e, A=|ale™
B =|Ble”*
Therefore,
AB = |A|cos(mt + a:)|B|cos(<2E * ,3)

- %|A||B|[cos(a’— 8)+ cos (20t +a+ )]

i

Since A and B are periodic with period @ , the time average value of the product form AB, denoted
by AB can be written as
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—_ 17
AR = —JAB.:;&
T
AE = ~|4||B|cos(a- 8)
2

Further, considering the phasor quantities Aand B, we find that

AB" =|A|e’™|Ble# =|4||B]e"*
and RC(AB.) = |A]|B|cos (@~ ﬁ),where* denotes complex conjugate.

. :
..AB=§Re(AB)

The poynting vector P=ExH can be expressed as

P=a,(E,H,-EH,)+a (EH,-EH,)+a, (Eflry@ ............................. (b)

If we consider aplane electromagnetic wave propagatin igection and has only
component, from (b) we canwrite:

P k{&(u)é
Using (6.41)
()

' %Re(ﬁ‘x (2)xH, (2))

o

where 2@ = E,(2)a, £ =#,(2)a, for the plane wave under consideration,
For a genera case, we can Wgite

Pa =—Re(§xﬁ°)

Do | —

We can define a complex Poynting vector

S=—ExH

Do | =

. . . .. _bm' =Re (§)
and time average of the instantaneous Poynting vector is given by .

Polarisation of plane wave:

The polarization of aplane wave can be defined asthe orientation of the electric field vector asa
function of time at a fixed point in space. For an electromagnetic wave, the specification of the
orientation of the electric field is sufficient asthe magnetic field components are related to electric field

vector by the Maxwell's equations.
Let us consider a plane wave travelling in the +z direction. The wave has both E, and E, components.
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—_

A= [a::,r B, ta, B, ]cs_‘m
The corresponding magnetic fields are given by,
H=laxE
7
= l; ><[aA E +a E ]e'”’x
n z x Tox » Toy

'1 n n )
= ;[_Ew ayt Eow ax]e_mx

Depending upon the values of Eqx and Eqy we can have several possibilities:
1. If Egy = 0, then the waveis linearly polarised in the x-direction.

2. 1f Egy = 0, then the waveiis linearly polarised in the y-direction.
3. If Egyx and Eqy are both real (or complex with equal phase), oncegair@ linearly polarised wave

“E
with the axis of polarisation inclined at an B , t to the x-axis. Thisis shownin
angle fig 6.4.

\ //] Eox X
Fig 6.4 : Linear Polarisation

If Eox and Eoy are Comp&jiffqmt phase angles, £ will not point to a single spatial direction.
This is explained asfollows:

et By = |Em|eﬂ‘ Eoy - |Eoy|ejo

L
Then,
7
To keep the things simple, let us consider a =0 and 2 . Further, let us study the nature of the electric

field onthe z =0 plain.
From equation (c) we find that,
E,(0,8) =|E,|cos at

b3
cos|@+—| =
[=3)

Foo

E,(o,0) = (—sin aJZ)

B,
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. [Ex(-mf)

|Z

|

s

2+[Ey (0.0)\

=rcos @f +sin® @ =1
|z

and the electric field vector at z = 0 can be written as

E(o,£)=lE‘,x|cos(m£)¢§— E, sin(mﬁ)cgy ......... %)
Assuming IE‘”" : 1, the plot of E(O’Z) for various values of tis hown in figure 6.5.
J
t=3720
. o
{=wo . =0

Eoy

= 72
.5 : Plot of E(o,t)

From equation (d) and figure (6. ethat thetip of the arrow representing electric field
vector tracesan ellipse and t id to be elliptically polarized.

Q ¥

N

Figure 6.6: Polarisation ellipse
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The polarisation ellipse shown in figure 6.6 is defined by its axial ratio(M/N, the ratio of semimajor to

semiminor axis), tilt angle % (orientation with respect to xaxis) and sense of rotation(i.e., CW or
CCW). Linear polarisation can be treated as a special case of elliptical polarisation, for which the axial
ratio is infinite.

L |E =& . . . e

In our example, if | ‘”‘| ?1, from equation (6.47), the tip of the arrow representing electric field
vector traces out acircle. Such acaseisreferredto as Circular Polarisation. For circular polarisation
the axial ratio is unity.

Further, the circular polarisation is asi
field vector rotatesin the directiaon of

eleCtric field vector rotatesin the opposite direction, the
polarisation is asid to be left hé gular polarisation (LHCP) (same as CW).

In AM radio broadcast, Sdiated electromagnetic wave is linearly polarised with the E field vertical
to the ground( vertica 3ation) where as TV signals are horizontally polarised waves. FM
broadcast is usually carri using circularly polarised waves.

In radio communication, different information signals can be transmitted at the same frequency at
orthogonal polarisation ( one signal asvertically polarised other horizontally polarised or one as RHCP
while the other as LHCP) to increase capacity. Otherwise, same signal can be transmitted at

orthogonal polarisation to obtain diversity gain to improve reliability of transmission.

Behaviour of Plane waves at the inteface of two media:
We have considered the propagation of uniform plane wavesin an unbounded homogeneous medium. In

practice, the wave will propagate in bounded regions where several values of £+# < wiill be present.
When plane wave travelling in one medium meets a different medium, it is partly reflected and partly
transmitted. In this section, we consider wave reflection and transmission at planar boundary betweentwo
media.
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Medium 1 Medium 2
&, 4, O e, jo, @

1 E, Ifr
6.!7 H, 6’7!7

r

Fig 6.8 : Normal Incidence at a ndary
Casel: Let z=0 plane represent the interface betweentwo jum 1 is characterised

L et the subscripts 'i* denotes incident, 'r* denotestref

by (&, 44.0) and medium 2 is characterized by (&,
components respectively. ’&

Theincident wave is assumed to be a planga
@;a prite

%z direction. From equation (6.24)
i =Eeay G

: axE, (z)="Le™a,
; e ®
7 = J @4
where 11 =‘\[Jme“1 (o +j@g) and aties

Because of the presence of the second medium at z=0, the incident wave will undergo partial reflection

and partial transmission. The reflected wave will travel along %z in medium 1.
The reflected field components are:

— ~
Er = Eme"x dx

..(Q)

51 T

N

Thetransmitted wavewill travel in medium 2 aong 9 for which thefield components are

— N
- -8

0
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Hy="0 & a?y
fis J @y
where /2 = Jﬂ% o, + jog) and o+ e
In medium 1,
§1=§i+;§r and §1=§i+§r
and in medium 2,

Ez = Ez and EQ = Ez
Applying boundary conditions at the interface z = 0, i.e., continuity of tangential field components and
noting that incident, reflected and transmitted field components are tangential at the boundary, we can

write
& (0)+E7 Ez(O)
g Hi(0)+H:(0)=Hi o\

From equation (e) to (j) we get,

Ez’o +E?’0 = E ..........................
B B _ B
T Th M2 &(I)
Eliminating E ,
E

1
7

is called the reflection coefficient.
From equation (k) & (I), we canwrite

is called the transmission coefficient.
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We observe that,
T = 2??2 =??2"7?1+’?1+7?2 =1+
Mt Mt

Thefollowing may be noted
(i) both © and T are dimensionless and may be complex

Let us now consider specific cases:
Case |: Normal incidence on aplane conducting boundary

The medium 1 is perfect dielectric (Jl - 0) and medium 2 is perfectly conducting (Jﬁ - m) .

72

% J(Jawl Jwe Q
= JOJHE) =

t=-1

and T 5

Hence the wave is not transmitted to medium 2, it g
medium 1.

From (k) and (I)

entirely from the interface to the

El( )= B, e U NEN" a, = -2 jE, sin ,Blza,:;
(.

& .'.EI(Z,a‘,) Re

Proceeding in the same manner f

. n n
1n ﬁze"""]a =2E,sin fzsin@ta,

4‘ etic field in region 1, we can show that,

N

z;t) = ]

1

Thewavein medium 1 astanding wave due to the super position of aforward travelling

wave and a backward travelling wave. For agiven ' t', both £1 and 1 vary sinusoidally with distance
measured from z = 0. This is shown in figure 6.9.
wt = 3gq/2

\_//

@l =3 @t -\ﬂ/.2

(a) E; versus z o=

peyret
conductor
@l = O
Wl =
@t = 7/2
{b) Hyversus 2 e

Figure 6.9: Generation of standing wave
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Zeroes of E4(z,t) and

occurat Sz =-nr orz= _HE
Maxima ofH1(zt).

Maxima of Eq(z,t) and

occur at ,1312=-(2n+1)%r orz=-(2n+1)%, 7=012..

zeroes ofH1(zt).

Case2: Normal incidence on a plane dielectricboundary

If the medium 2 is not a perfect conductor (i.e. Ry ) partial reflection will result. Therewill be a
reflected wave in the medium 1 and a transmitted wave in the medlu .Because of the reflected wave,
standing waveis formed in medium 1.

From above equations we canwrite

E1=E, (e" ¥ + e ¢

Let us consider the scenario when both the media are di i.e. perfect dielectrics
(G=0,0,=0y \
W =@ = " h= J%
1
= f@ ‘ 72 = o]
3

In this case both 71 and 72 '- numbers
Q IR remx

1+T e i +I"(e“"""—e mr))
—axE Te mx+I"(2j sin ;?nlz))

From (n), we can seethat, in medlum 1 we have a traveling wave component with amplitude TE;, and
astanding wave component with amplitude 2JE;o.

Thelocation of the maximum and the minimum of the electric and magnetic field components in

the medium 1from the interface can be found asfollows. The electric field in medium 1 canbe
written as

B1 = ax By (14T ™)

it 722 Mie T'>0
The maximum value of the electric field is

B =E,(1+7)
and this occurswhen
2B2Zp = 2N
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, o BT __ nn -2,
or A 2% ‘ ,N=0,12 3 (0
The minimum value of |El| is
Bl -&0-D) ®)

And this occurswhen

Zon T (2?2 + l)i
or 4.,n=0,123 e (o)
For 72 <™ je T'<0
| B &0-m) g
Themaximum value of is ¥ which occurs a the zmig loc d the minimum value
|El| B (1+I") . . . .
of is 7% which occurs at zg locations asgiven by t ions (0) and (Q).
|2l .
From our discussions so far we observe that |E Lnn c as
1
=|r

The quantity Sis called asthe standing wave ra
As 0< |l"| L1

the range of Sis givel w2 S
We can write the expression for efic field in medium 1 as

1= ay E'g- g IhE (1 = I‘ef”")

. |H 1| . . . )El‘
From above equation wec that will be maximum at locations where is minimum and

vice versa
In medium 2, the transmitted wave propagatesin the + z direction.

Oblique Incidence of EM wave at an interface

So far we have discuss the case of normal incidence where electromagnetic wave traveling in alossless
medium impinges normally at the interface of a second medium. In this section we shall consider the case
of oblique incidence. Asbefore, we consider two cases

I. When the second medium is a perfect conductor.
ii. When the second medium is a perfect dielectric.

A plane incidence is defined asthe plane containing the vector indicating the direction of propagation
of theincident wave and normal to the interface. We study two specific cases when the incident electric

field £t is perpendicular to the plane of incidence (perpendicular polarization) and Eijs parallel to the
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plane of incidence (parallel polarization). For a genera case, theincident wave may have arbitrary
polarization but the same can be expressed as a linear combination of thesetwo individual cases.

Obligue I ncidence at a plane conducting boundary

i Perpendicular Polarization
The situation is depicted in figure 6.10.

A3t 4 Perfect Conductor

~ /_x—/
6, P ssas o o

Y

- P e ®

E @<'Ii *

G|=0 a, =

L 2
Figure 6.10: Perpendi ization

Asthe EM field inside the perfect conductor is o,g ereflectsthe incident plane wave. @xi
and @w» respectively represent the unit vectol irection of propagation of the incident and

& is the angle of incide is the angle of reflection.

S\
QO

@wi = azcos 8 +axsin G,

reflected waves,

Gw = —az COS g, + &y sin 8,
Since the incident wave is considered to be perpendicular to the plane of incidence, which for the
present case happensto be xz plane, the electric field hasonly y-component. Therefore,

E: (x.z)= ayEz.,e"-""*lE"- &
_ aygoé—;',el(xsineﬁzcosq)

The corresponding magnetic field is given by

— 16 —
Hi > e El )
(x.2) o (xz)]

o [— cos qéx +51n 6‘,-:3;3] Eiae_’%(
"

xsiny+zcost; )

Similarly, we canwritethe reflected waves as
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—

Er(xz)= &;-Eme_j’gla_" "

~ —J B[ xaind— 2 0ad,
=y, e 2l ' ")

Since at the interface z=o, the tangential electric field is zero.

Eiae"'j'slxsm'gi 4 Eme_fﬁlxsmer =0
The above equation is satisfied if we have
E?’r}‘ = _E;O
and & =8

Thecondition & =& is Snell's law of reflection.

- F, (x,2) = —;y I e‘.}‘}el(xsmé‘,-—zcoségj

and Er (X,Z) =l ;nrxz_ér(x,Z)]

Ay
E, ¢ .
: - - — Sing—2cos
=—"’[—ax cos &, —azsin 8, A )

|

Thetotal electric field is given by

f—

B (x.2)= E (x,2)+E
= -, ’&&z cos &, )e_j’glxsm%

e

Smilarly, total magnetic field is given by
Hi (x,2) = —25_”[& cos & cos

7
From above two equations we ol
1. Along z direction i.e.

—

y component of £
o Sin &z o where A= = A cosé average power propagates along z as

y component of X component of H are out of phase.

2. Along x i.e. parallel to the interface
y component of £ and z component of # arein phase (both time and space) and
propagate with phase velocity

and 2y, = L =
B, sing,
The wave propagating along the x direction hasits amplitude varying with z and hence constitutes a non

uniformplane wave. Further, only electric field is perpendicular to the direction of propagation (i.e. X),
the magnetic field has component along the direction of propagation. Such waves are called transverse
electric or TE waves.
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ii. Parallel Polarization:

In this case also @x and @» are given by the derived equations. Here /i and #Z» have only
y component.

X

k3
/?;‘ Perfect Conductor
= /—\/
o¥
9} N
9. /_\_/ i3
\@/ ;m’
E’! e
ag1=0 g, =«

Figure 6.11: Parallel Polarlzal n
With referenceto fig (6.11), thefield components can be written as:

Incident field components:
E; (x z [cosé‘ax - sin Sax!i )

Hi(x,2) =ay 2o AL
4|
Reflected field components:

xsmf? —2C080,
sg, + ax sin & ] EL! ")

E, (x,z&
T

Since the total tangential electric field component at the interfaceis zero.
E (x,0)+ E(x,O) =0

Which leads to £, ==&, and 6=6 * asbefore.

Substituting these quantities in (r) and adding the incident and reflected electric and magnetic

field components the total electric and magnetic fields can be written as

B (x,z) --2F, ;x_j cos &, sin (,éiz cos 6:) + g sin 8 cos (,812 cos 9,)] g AT

and Hi (x,2) = (82 Cosq)e-J'AXSMBi

Gl
Once again, we find a standing wave pattern along z for the x and y components of E and ﬁ, while a
_ ¥A
vplx o
non uniform plane wave propagates along x with a phase velocity given by S04
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&
Y15 —

where. §1nce;f1'10r this propagating wave, magnetic field is in transverse direction, suchwavesare
called transverse magnetic or TM waves.

Oblique incidence at aplane dielectric interface

We continue our discussion on the behavior of plane waves at aninterface; this time we consider a plane
dielectric interface. Asearlier, we consider the two specific cases, namely parallel and perpendicular
polarization.

A
X
E?’, H?’ - -
Er Ht
0,
Sl =) 0, 2
0 3
Ei, Hi \
:  J
Medium 1 Medium 2

g, ., =0 £ Mo 0
Fig 6.12: Oblique incid %\)/Iane dielectric interface
For the case of a plane dielectric interface, [ ewill bereflected partially and transmitted
partially.
InFig(6.12), !t corresponds

1. ParaIIeI Polarlzatlon
Asdiscussed prewously, the inci

y to the angle of incidence, reflection and transmission.

lected field components can be written as

[cos 8.ax —sin 9a ] _J&(mmﬁﬂcosa)

(x ) a —;,q(xanégw.coség)
J'

— - &y 2,
po (X [ax cosd, + ax sin & ] J A andy-sceady)
Hr (x,2) = -Gy 2z g HAlnG-20558)

”1

In terms of the reflection coefficient I

E,(xz)=TE, [ax cos 8, +assin & ] o8 apmoy.scesdy]

ol T A s

1
The transmitted filed can be written in terms of the transmission coefficient T

DEPT.OF ECE,ACE 80



ENGINEERING ELECTROMAGNETICS [15EC36]

E“ [L z) =T1E, [ax cos8, - &x eify gr]g‘i'ﬁg[mnﬁﬁamsgtj

TE, E—j,&g(xsmﬁt +20056} )

Hi(xz2)=a
2
We cannow enforce the continuity of tangential field components at the boundary i.e. z=0
cos 9!_9".}.481}’@'11% +Tcos gre—.;,alxﬂner =T cos aﬁ—;,&;xanﬁ
1 mpsing _ T -japsing | T -japsing
?31 )21 ?22

and

If both & and 1, areto be continuous at z=0 for all X, then form the phase matching we have
Gsind = 8sind, = G510 §
.+ Wefind that

Further, from equations (s) and (t) we have
cosd +I cos g 5

8-
il Boing =Aifnd e \Q
A

Ocosgi(l+ ) =n—2(l—l“)cos€,

|
incosgi +n,cos8 ) =n,cos8,—n cos g
_%c0s8, —ncosf,

r
or n,cos8, +n,c0s8,

2
and T=22(1-T
=La?

2n, cos &,

nyco88, + 1 cos Q

From equation (u) wefind that there exists specific angle & =& for which I' = 0 suchthat
7, cos8, = cos 8,

Ji-sin’g =2 fi-sin’s,
or e
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sn g, = ﬁsiﬂ a,
Further,

For non magnetic material #1 = #2 = %
Using this condition

; & ;
1-sin*8 =2{1-sin* 4

- 2(-5070)
2 _ 8 . 2

and sin® &, = —sin” 8,
€2 e —— (v)
rom equation (v), solving for 5% & we get
1

sind, =
&
1

1+ =2

& ’

This angle of incidence for which I" = 0is called Brewster angle% e are dealing with
parallel polarization we represent this angle by & so that .

2. Perpendicular

Polarization For this case
B (x,z)

;i (’0 : —ax cosé‘i + az sin a}]e‘f;&l(z\’smﬁwcmq)
o1
: ,q(mn“"f -zcos&,)

- J [ xsingy -zcossy)

Hy(xz)= rf’"’ [&x cos 8, +as sin 9,] e
1
E, [%.2)= ayTE;,e_j’al(
78,
%
Using continuity of field components at z=0
g JAarsing | o -jgxsing _ TE, oS xsinGy

XSG +zcosé§)

7, (x, A= —J B[ xsindy+ 2c0s 6y )

[—ax cos &, +azsin 9,] e

and —..l_cos 9,-6'3"81*9“% + _l: cos gre-jﬁlxsin&y 50 z a5 gze—j,szxsine,
% N 7,
Asin the previous case

Gsind = 8sind, = G510 §
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8-8
and sin &, = ﬁsin 2
Using these conditions we canwrite
1+T'=7T
cos8  [cos@ Tcosd,
- + —_ -
2y o B ———— (W)

From equation (w) the reflection and transmission coefficients for the perpendicular polarization can
be computed as

- 7, cos8, —ncos8,
nycos 8 +ncos 8,

and T = 2n, cos 8,

n, cos &, +nlco’sgz Q
We observethat if I' = 0for anangle of incidence =6 \
L 2

7, CO8 8y =1 o8

i

cos? § = 2 cos’ 6,

7 K
= Hah cos® &, \
H&
" 1-sin* 6, =229 (1-5in%8, )
HEy

sin g, = ﬁsin &,

Again e O\
C.sin?g, = A8 g2
&

3

e HEy K&
i3 e _ He | _ 1- HE
or Hagy  HE HEy
et 8 #‘12 ‘P’zz g = HEy ~ HyE)
or My & H&
sin’ g = Hy (#1‘5;2 ‘ﬂzfl)
or alw =) X)

We observe if #1~ %27 #0 je in this case of non magnetic material Brewster angle does not exist
as the denominator or equation (x) becomes zero. Thus for perpendicular polarization in dielectric

media, there is Brewster angle so that I" can be made equal to zero.
From our previous discussion we observe that for both polarizations
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sAn g = %siné‘i

: K&' :
sing, = |-Lsing,
2

8, = el 8, =sin™ \/g
The incidence angle & = & for which 2 e 4 s called thecritical angle of

incidence. If the angle of incidence is larger than & total internal reflection occurs. For such case an

evanescent wave exists along the interface in the x direction (w.r.t. fig (6.12)) that attenuates
exponentially in the normal i.e. z direction. Such wavesaretightly bound.to the interface and are
called surface waves. .

QUESTIONS: \

If £ = H = Hy

For 676 & 28

1.Write down Maxwell’s field equations in the differentia tegral form for time harmonic fields
2.Derive the expressions for energy stored in electric an field. Which field is efficient.

each other. Prove.

 =2.5x10°%. At afrequency of 200MHz, how far
ore

3.In auniform plane wave, E and H are at right

4.A lossy dielectric is characterized by g=1.5
canauniform plane wave propagatein t

(it undergoes an attenuatio

(ii)its amplitude is halve&

5. Deducethe integral fo .% eoram of Poynting and state the significance of the three terms
appearing in the equati

6.What are the properties of uniform plane wave?
7.Write Maxwell’s equation in integral form and interpret
8.Show that characteristic impedance of free spaceis 3770hm

9.State and explain Poynting V ector(P) and Poynting theorem.

10.A brass(conductivity=107mho/m) pipe with inner and outer diameter of 3.4 and 4 cm carriesatotal
current of 100A dc. Find Electric field (E), Magnetic field(H) and Poynting V ector(P) within the brass
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TIME VARYING MAGNETIC FIELDS AND MAXWELL’S EQUATIONS

Introduction

Electrostatic fields are usually produced by static electric charges whereas
magnetostatic fields are due to motion of electric charges with uniform velocity
(direct current) or static magnetic charges (magnetic poles); time-varying fields

or waves are usually due to accelerated charges or time-varying current.

» Stationary charges — Electrostatic fields
» Steady current —» Magnetostatic fields

*
» Time-varying current — Electromagnetic ﬁeNo waves)
*

Faraday discovered that the induced, endf, in volts), in any closed circuit is
equal to the time rate of change o agnetic flux linkage by the circuit

This is called Faraday’s Law

an be expressed as

Q\V i ¥
Q == g ==N g 1.1

where N is the number of turns in the circuit and vy is the flux through each
turn. The negative sign shows that the induced voltage acts in such a way as to
oppose the flux producing it. This is known as Lenz’s Law, and it emphasizes
the fact that the direction of current flow in the circuit is such that the induced
magnetic filed produced by the induced current will oppose the original

magnetic field.




Fig. 1 A circuit showing emf-producing field Er and electrostatic field Ee



TRANSFORMER AND MOTIONAL EMFS

Having considered the connection between emf and electric field, we may
examine how Faraday's law links electric and magnetic fields. For a circuit with
a single (N = 1), eq. (1.1) becomes

v aw
enf =—N gt 1.2

In terms of E and B, eq. (1.2) can be written as

V d
emf = J‘E -dl = _-[B -dS 1.3
L dt S )

where, y has been replaced by J.B -dS and S is the surface area of the circuit
S

bounded by the closed path L. It is clear from eq. (1.3) that in a time-varying

situation, both electric and magnetic fields are pr t and are interrelated.
Note that dl and dS in eq. (1.3) are in accordan’ the right-hand rule as
well as Stokes's theorem. This should be obs p Figure 2. The variation of
flux with time as in eq. (1.1) or eq. (1.3) m sed in three ways:

1. By having a stationary loop% ime-varying B field

2. By having a time-varying ea in a static B field

3. By having a time-va op area in a time-varying B field.

A. STATIONARY LOO E-VARYING B FIELD (TRANSFORMER EMF)

This is the case p(@d in Figure 2 where a stationary conducting loop is in

a time varying magnetic B field. Equation (1.3) becomes

V

o

-ds 1.4
s ot

Increasing B(r)

1

induced B

Fig. 2: Induced emf due to a stationary loop in a time varying B field.



This emf induced by the time-varying current (producing the time-varying B
field) in a stationary loop is often referred to as transformer emf in power
analysis since it is due to transformer action. By applying Stokes's theorem to

the middle term in eq. (1.4), we obtain

JkaE)dS:—IQB-dS 1.5
N Sat

For the two integrals to be equal, their integrands must be equal; that is,

Vx E=- 0B 1.6
ot

This is one of the Maxwell's equations for time—v’ary@ds. It shows that the
1

time varying E field is not conservative (V x E # 0). does not imply that the

principles of energy conservation are viola e work done in taking a

charge about a closed path in a time-v

to the energy from the time-varyin %

B. MOVING LOOP IN STATIC (MOTIONAL EMF)

ectric field, for example, is due

When a conducting logpsi ving in a static B field, an emf is induced in the

loop. We recall fch .7) that the force on a charge moving with uniform

velocity u in a magnetic field B is

Fm = Qu x B 1.7

We define the motional electric field Em as

i

En=3

=u xB 1.8

If we consider a conducting loop, moving with uniform velocity u as consisting

of a large number of free electrons, the emf induced in the loop is

Vemf =ojEm -dl ﬁj(u xB)-dl 1.9
L L



This type of emf is called motional emf or flux-cutting emf because it is due to
motional action. It is the kind of emf found in electrical machines such as

motors, generators, and alternators.

C. MOVING LOOP IN TIME-VARYING FIELD
This is the general case in which a moving conducting loop is in a time-varying

magnetic field. Both transformer emf and motional emf are present. Combining

equation 1.4 and 1.9 gives the total emf as

-~ =OJ.E dl = —JﬁB -dS + .‘:(u xB)-dl 1.10

L s Ot L

VxEm—Vx(uxB)\Q 1.11
. *
or from equations 1.6 and 1.11.
Vx %VX@ x B) 1.12

DISPLACEMENT CURRK

For static EM field 11 that

VxH=J 1.13
But the divergence of the curl of any vector field is identically zero.
Hence,

V.(VxH)=0=V.J 1.14

The continuity of current requires that

V-J=— 0p, #0 1.15
ot



Thus eqgs. 1.14 and 1.15 are obviously incompatible for time-varying
conditions. We must modify eq. 1.13 to agree with eq. 1.15. To do this, we add

a term to eq. 1.13, so that it becomes

VxH=J + Jd 1.16

where Jd is to be determined and defined. Again, the divergence of the curl of

any vector is zero. Hence:

V.VxH)=0=V.J+V.Jd 1.17

In order for eq. 1.17 to agree with eq. 1.15,

B B .Q
ViJg=-V-J= 6t_8t(VD)_v o \ 1.18

or *
oD
Jg =0t 1.19
Substituting eq. 1.19 into eq. 1.1 s in
VxH=J+ 0D 1.20
Ot
This is Maxwell's equati d on Ampere's circuit law) for a time-varying

field. The term Jd = gD % known as displacement current density and J is the

conduction current\d

(b)

Fig. 3 Two surfaces of integration showing the need for Ja in Ampere’s circuit
law

The insertion of Jd into eq. 1.13 was one of the major contribution of Maxwell.
Without the term Jd, electromagnetic wave propagation (radio or TV waves, for

example) would be impossible. At low frequencies, Jd is usually neglected



compared with J. however, at radio frequencies, the two terms are comparable.
At the time of Maxwell, high-frequency sources were not available and eq. 1.20

could not be verified experimentally.

Based on displacement current density, we define the displacement current as

=
| d'dSz,[a—D-dS 1.21
ot

'y

We must bear in mind that displacement current is a result of time-varying
electric field. A typical example of such current is that through a capacitor

when an alternating voltage source is applied to its plates.

PROBLEM: A parallel-plate capacitor with plate rea%of 5 cm? and plate

separation of 3 mm has a voltage 50 sin 103 t ) applied to its plates. Calculate

the displacement current assuming ¢ = 2 &g ¢

Solution: \
Vv

which is the same as the conduction current, given by

1,99 _ g0 _gdD _ dE _ g dV _ -4V
dt dt dt dtd dt dt
1, =2 1020 510 103 50 cos1o} ¢

3672 3x107






EQUATION OF CONTINUITY FOR TIME VARYING FIELDS
Equation of continuity in point form is
V.Jd= -pv

where,

J = conduction current density (A/M?2)

Puv = volume charge density (C/M3), p, =8 X
ot

V = vector differential operator (1/m)

0 0 0

VTR ’Q
*

Proof: Consider a closed surface enclosing a § There exists an outward

flow of current given by

This is equation of contigtit

From the principl@nservation of charge, we have

—dQ

dt

integral form.

I= oIJ dS =

S
From the divergence theorem, we have

I= OIJ dS = J'(v- J )dv
—dQ

Thus, J(V J)dv=
. dt



By definition, Q= J.pu dv

1%

where, pv = volume charge density (C/mb5)
_|0 '
So, [CRAZ
Y t
. Opy
where P, = ot

The volume integrals are equal only if their integrands are equal.

Thus, V.d=-p, \
L 2

MAXWELL'S EQUATIONS FOR STATI LDS
Differential (or
In Form Remarks
Point) Form
D av
V.D=pv v Gauss's law

v

Nonexistence of magnetic

V.B=0 lSB ds=0 monopole
0B | 0 J'B |
VXE-=-p ([L E-dl=-3) .4s Faraday’s Law
0
= D _ e
VxH=J+ > ?LH -dl —IJ dS Ampere's circuit law
¢ s

MAXWELL’S EQUATIONS FOR TIME VARYING FIELDS

These are basically four in number.
Maxwell's equations in differential form are given by

oD
VxH-= +J
Ot

OB
VXE=-







V.D =pv
V.B=0
Here,
H = magnetic field strength (A/m)
D = electric flux density, (C/m?2)
(0D/ot) = displacement electric current density
(A/m?2) J = conduction current density (A/ m 2)
E = electric field (V/m)
B = magnetic flux density wb/m? or Tesla
(6B/ot) = time-derivative of magnetic flux density (wbh/m?2 -
sec) B is called magnetic current density (V/m?2) or Tesla/sec

P, = volume charge density (C/m?3)
Maxwell's equations for time varying fields in integral form are given by

()

L 2
o7 dL =)D+ [ -dS \
\
L S } V'S

£ -dL=-[B ds
L N

fo as=fpu v 5\\

ojB dS = 0
S

MEANING OF MAXWEL& ATIONS

1. The first M ell§s equation states that the magnetomotive force around
a closed path is equal to the sum of electric displacement and,

conduction currents through any surface bounded by the path.

2. The second law states that the electromotive force around a closed path
is equal to the inflow of magnetic current through any surface bounded

by the path.

3. The third law states that the total electric displacement flux passing
through a closed surface (Gaussian surface) is equal to the total charge

inside the surface.

4. The fourth law states that the total magnetic flux passing through any

closed surface is zero.



MAXWELL’S EQUATIONS FOR STATIC FIELDS

Maxwell’s Equations for static fields are:

VxH=J< OJ.H dL = IJ -dS

L S

VxE =0 O.[E dL = 0

L

V-D=p, & OID dS = oJ.pU dv

S v

V-B=0< OIB dS = 0 * Q

2
As the fields are static, all the field term& ch) have time derivatives are zero,

0B
that is, 0D =0, = 0.
ot ot

PROOF OF MAXWELLS E

1. From Ampere sbt@x aw, we have

VxH=J

Take dot product on both sides
V.VxH=V.J

As the divergence of curl of a vector is zero,
RHS=VvV.J=0

But the equation of continuity in point form is

_ =0y __
V-J= ot ==Puv



This means that if V x H = J is true, it is resultingin V . J = 0.

As the equation of continuity is more fundamental, Ampere's circuital

law should be modified. Hence we can write
VxH=J +F Take

dot product on both sides
V.VxH=V.J+V.F

thatis, V.VxH=0=V.J+V.F
L 4
Substituting the value of V.J from the equatio f&tinuity in the

. *
above expression, we get

V.F+(—po)=0 \K

or, V.F=-—pv

The point form of Ga is
oY

or, V.D=po

From the above expressions, we get

V.F=V.D

The divergence of two vectors are equal only if the vectors are identical,

thatis, F=D

So, VxH=D+J

Hence proved.



2. According to Faraday's law,

=d¢

emf =
dt

¢ = magnetic flux, (wb)

and by definition,

[ra-= \’Q

¢

But ¢= J;B dS \K

:‘J'E’@: 0B

Applying Stoke's theorem to LHS, we get

oJ.E -dL =—I(Vx E )dS

L N

J.(Vx E)-dS= I— B -dS

Two surface integrals are equal only if their integrands are equal,
thatis, VXE=-B

Hence proved.



3. From Gauss's law in electric field, we have

oID dS = 0 :_[pu dv

N v
Applying divergence theorem to LHS, we get

OID -dS =j(V-D)du = jpu dv
S v v

Two volume integrals are equal if their integrands are equal,

that is, V.D=pv

L 4
Hence proved. \Q

¢

4. We have Gauss's law for magn@ as

OJ.B dS = 0

N

RHS is zero as there lated magnetic charges and the magnetic flux

lines are closed lo@ps.
Applying divergence theorem to LHS, we get

ojV-BdU =0

or,

V.B =0 Hence proved.

PROBLEM 1:

Given E = 10 sin (ot - By) ay V/m, in free space, determine D, B and H.

Solution:

E =10 sin (ot - By) ay, V/m



D=ecoE, e0=8.854x 1012 F/m

D = 10eo0 sin (ot - By) ay, C/m?

Second Maxwell’s equation is

VxE=-B
a a a
X y z
. 0 o0 0
That is, VxE= | — — —
at is x < o
0 E, O

or, VxE = a,| - — 7,1 +0

As Ey =10 sin (ot - Bz) V/m

e s\\

ox

Now, V x E becomes

X
S

a
X
0z

= 10 B cos (ot - Bz) ax

0B

ot

B=- I 108 cos( t — fBz)dt ay

or B=1%in(wr - f )a, , wh I m>
a
and H=3_ 1O'Bsin((ot—/i’z)az,A/m

Y2 U

0 0



PROBLEM 2: If the electric field strength, E of an electromagnetic wave in free

| [ Lh V/m, find the magnetic field, H.
U v/

Solution: We have
oB/ot=-VXE

O @y O

o2 2
ox Oy Oz
0 E, 0

|_|a|_—8E—| +a(0)+a|_ O E | ]

L« IL v = ox— 1

e .
0z K
_ 2a)s1nd _z Da \
K oo )
2
B= —a)J.sin 7 ‘Idta .
UOQ vy /)
or, B= —£@ |C_ih
LY@ K 0}
_ \ e
or, H= b _ =2 cosw‘l, Z | . n Z\/HO =1207€Q
¥ : EO
wo wmw o)
( [ 1
Thus, H= _—2 | 2 . E 1 |
wo o) L Jmeo |
L ]
-1 [ z)
H= —— cosalt ——la Alm



PROBLEM 3: If the electric field strength of a radio broadcast signal at a TV

receiver is given by
E = 5.0 cos (ot - By) az, V/m,
determine the displacement current density. If the same field exists in a

medium whose conductivity is given by 2.0 x 103 (mho)/cm, find the

conduction current density.

Solution:

E at a TV receiver in free space
= 5.0 cos (ot - By) az, V/m

Electric flux density

D=eoE=5€0cos(mt—By)az‘VQ

The displacement current density, .

Ja=D= 0D

Jd = -Q€o (ot - By) az, V/m?

The conduction current density,
Je=c E
o =2.0x 103 (mho) /cm
=2 x 10% mho /m

Jc=2x105x5(:os(o;)t-[3y)az

¢ = 10° cos (ot - By) az V/m2



UNIFORM PLANE WAVES

—

. =J=0=0 . U
In free space ( source-less regions where P ), The wave equation for electric field, in free-space

is,

= 0°E
VE=pue 2
He—7 (2)
The wave equation (2) is a composition of these equations, one each coznpo@
ie,
O’EX - O°Ey 2) §
oxz S Tar
O%E S2E &
Y _ 2By b
oy ot
O0°Ez O°Ez
0z Y ST (2)c
Further, eqn. (1) may be written Q\
OEx OBy 0 a
ox oy 0

For the UPW, Eis independent of two coordinate axes; x and y axes, as we have assumed.

.92 _ 92 _o
OX oY

Therefore eqn. (1) reduces to

oE
2 =0 3
oz —©

ie., there is no variation of E, in the z direction.
2
o " Ez
2

Also we find from 2 (a) that



These two conditions (3) and (4) require that E, can be

1) Zero
2 Constant in time or
(3) Increasing uniformly with time.

A field satisfying the last two of the above three conditions cannot be a part of wave motion. Therefore E, can be put
equal to zero, (the first condition).

EZ:0

The uniform plane wave (traveling Th Z airection) does not have any field components of E & Hinits direction of

travel.

Therefore the UPWs are transverse., having field components (of Eeg H ) only in directions perpendicular to the

direction of propagation does not have any field component only the direction of travel.

RELATION BETWEEN E & H in a uniform plane wave. ¢

We have, from our previous discussions that, for a UPW traveling j

%n, both E& H are independent of x

and y; and E& Hhavenoz component. For such a UPW,

PN

i j

o 8
VxE = &(=0)@(=0)—

——L |+ =|____ (5

Ex Ey E
] \ k
_ O b, ~( oH -( OoH
v H = |— (= = O —_ =1 — Y -+ X 6
<H =15 ¢ ) 22 o |t ) —©

Hx Hy Hz(=0)

Then Maxwell’s curl equations (1) and (2), using (5) and (6), (2) becomes,

Ve - E@f+€@j=f oy + ] o _ @)
and
VXE:—ﬂa_H: ﬂ@ f_ﬂaHyjzl _@ +'\ @



Thus, rewriting (7) and (8) we get

_ OHy . OHX P— e OEX . oE jj @
0z oz ot ot
oy ~ OEX =z OoHx ~ oJOHy =
— 1+ — = — I —— 8
oz oz J # ot ot Jj ®)
Equating IAth and j th terms, we get
_ OHy _ OoEX 9 (a)
oz ot
OoHXx _ oky (b)
oz ot \
oz ot
and s\\
OoEX oy
= O (d
oz a4 ot ()
Let \
Ey = f,( t); VO:#_ Then,
J 4 E
oE
8ty = f,(z—vot)(—vy).=—v, f,
.. From egn. 9(c), we get,
OHX Vo ¢+ _ _ [So £
ot y 24 Ao
CHx = — = J-fl'dz—|—c



N owv

of, £ O(z—vot) £

T 1 - 1

oz oz

TR [ c
y7; oz

Now

of, _ fl.a(z—vot): £/

oz oz
.°.=—/€J'af1 dz +c = — EQC
y7; oz ,Ll\
.
Hx = — EEy+c &
\ x

The constan C indicates that a field independen Id®be present. Evidently this is not a part of the wave
motion and hence is rejected.

Thus the relation between Hy and Ey beco

A, Ve 9

y R ¢ £




— A

ZE:—,ug O'E+ea—E
ot ot
~ OE O0%E .
VE=—nioc——1u ¢ Xl
HO —-—HE—5 (xi)
But ViE = 2
=

E .§

DERIVATION OF WAVE EQUATION FOR > TING MEDIUM:

In a conducting medium, [1 = [y, [1 = [1o. Surface chargegran@ithenge surface currents exist, static fields or charges
do not exist.

For the case of conduction media, the point form s equations are:

S\
QO



VxH=J+—=0cE+e— )
t ot
~ oB oH .
VxE=——=—pu——- i
ot et ()
VID=VIEE=eVI[E=0 (iii)
VIB=VluH =xVIH =0 (iv)

Taking curl on both sides of equation (i), we get
VxVxH=Vx[aE+e§j Q
ot \
— o VxE+ e —Vx E
ot &i

substituting eqgn. (ii) ine

-
VxVxH ZG(—,U —,ua I;Ij (vi)
ot
But VxVxH DH)—VZH (vii)
-.egn. (vi) be&s
— = oH o°H
V(VDH)—V H = —,uo-g—,u pve (viit)

. egn. (viii) becomes,
S oH o’H
V’H — o — —
"ot T T e

-0 (ix)




This is the wave equation for the magnetic field Hina conducting medium.
Next we consider the second Maxwell’s curl equation (ii)
= oH .

Taking curl on both sides of equation (ii) we get

. ol G(Vxﬁ)
VxVxE=—-—WuWVx—=—pyy— = X
i P Yz, it _ (x)

But VxVxE:V(V[E)—VZE;

Vector identity and substituting eqn. (1) in egn (2), we get

_ _ o - oGEY Q
V(VIE)-V°E=—u—| cE+e—
(VIE) ot ) ot §

=—u _ (xp)
But VLE = £
o
(Point form of Gauss law) However, in a @f, | =0, since there is no net charge within a conductor,

Therefore we get VIE ﬂ\

Therefore eqn. (xi) becom
— 0 O°E
VE=—puoc——uc
O T S o (i)

This is the wave equation for electric field Eina conducting medium.

Wave equations for a conducting medium:

1. Regions where conductivity is non-zero.
2. Conduction currents may exist.
For such regions, for time varying fields

The Maxwell’s eqn. Are:



VxH=J4+e=——= 1
ot @)

~ oH
VXxE=—pu— 2
M (2)

J=cE o : Conductivity (Q/m)

= conduction current density.

Therefore eqgn. (1) becomes,

= - OE

VxH =cE+e— 3

ot
Taking curl of both sides of eqn. (2), we get

— o — S
VxVxE:-ﬂE(VxH) \Q
O°E OE TS
= — — U — 4
M — MO — 4)

But
V=xVxE = V(VDE)—VZ = e&r identity)

usin g this egn. (4) beco ector identity,
V(VDE)—Vzéz—,u ,uazE 5)
ot?

S.But viD = p Q\j

. — 1 —
e lI1s consta , E=—VLD
=
Since there is no net charge within a conductor the charge density is zero ( there can be charge on the surface ), we

get.

VIE =1VDE3 =0
=

Therefore using this result in egn. (5)

we get
- OE O°E
V’E—puo——pue e =0 (6)

This is the wave eqn. For the electric field Eina conducting medium.

This is the wave eqgn. for E . The wave eqn. for H is obtained in a similar manner.

Taking curl of both sides of (1), we get



VXVXI:IzeraG—ItE+O'V><E (7)

ButhE:—,u% (2)
.. (1) becomes,
= o°H oH
VxVxH =— — — 8
ME—F ~HT— (8)

As before, we make use of the vector identity.

V<V <H :V(VDFi)—VZFi
in egn. (8) and get ’\Q

o H 0’H

V(VIH)-V*H =—puoc——p e
( ) H ot H ot?
But \
v =vie = tvie-to-0 s\
J U
.. egn.(9)becomes
oH

V2H :yaﬁ—ye

This is the wave eqn. for Q\ducting medium.
Sinusoidal Time Variations:

In practice, most generators produce voltage and currents and hence electric and magnetic fields which vary

sinusoidally with time. Further, any periodic variation can be represented as a weight sum of fundamental and
harmonic frequencies.
Therefore we consider fields having sinusoidal time variations, for example,
E=Encos [t
E = E, sin [t
Here, w = 2[1f, f = frequency of the variation.

Therefore every field or field component varies sinusoidally, mathematically by an additional term. Representing

sinusoidal variation. For example, the electric field E can be represented as



E(x,y,z,t)as
ie., é(?,t); r(x,y,z)
Where é is the time varying field.

The time varying electric field can be equivalently represented, in terms of corresponding phasor quantity E (r) as
E(F,t)=R,[ E(r)e | (1)

The symbol ‘tilda’ placed above the E vector represents that Eiis time — varying quantity.

The phasor notation:

We consider only one component at a time, say E,.

The phasor E, is defined by .

£, (F,t)=R,{E,(r) ") 12) \

| Exl

r .
X( )denotes Ex as a fupeti ce (x,,2). In general —* is complex and hence can be represented as a

jwt
point in a complex and henceéSean be represented as a point in a complex plane. (see fig) Multiplication by e

. . . . jwt
results in a rotation through an angle wt measured from the angle []. At t increases, the point Ex €™ traces out a

circle with center at the origin. Its projection on the real axis varies sinusoidally with time & we get the time-

harmonically varying electric field Ex (varying sinusoidally with time). We note that the phase of the sinusoid is
determined by [, the argument of the complex number E,.

Therefore the time varying quantity may be expressed as
E, =R {|E,|e" ej“"} @13
=|E,| cos(et + @) (14)

Maxwell’s eqn. in phasor notation:

In time — harmonic form, the Maxwell’s first curl eqn.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>