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MODULE 1 : Coulomb’s Law, Electric Field Intensity and Flux Density 

 

1.1 Experimental Law of Coulomb 
 
1.1 .1 Force on a point charge 

 
1.1 .2   Force due to several charges 
 
1.2 Electric field intensity 
 
1.2 .1 Electric Field intensity due to several charges 

 
1.2 .2 Electric Field intensity at a point due to infinite sheet 

of charge 

 
1.2 .3 Electric Field at a point on the axis at a charges 

circular ring 
 
1.3 Electric Flux 
 
1.4 Electric Flux Density 
 
 
 

 

1.1 Experimental law of Coulomb 
 

 

Coulomb’s law states that the electrostatic force F between two point charges q1 and q2 is 

directly proportional to the product of the magnitude of the charges, and inversely proportional 

to the square of the distance between them., and it acts along the line joining the two charges.  
Then, as per the Coulomb’s Law, 

 

F  kq1q2  
Or F = (kq1q2)/(r²) N 

 
 
Where k is the constant of proportionality whose value varies with the system of units. R^ is the 
unit vector along the line joining the two charges. 
 
In SI unit, k= .   

Where is called the permittivity of the free space. 

It has an assigned value given as =8.834 F/m. 
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Force on Q1 is given by 
 
 

F1 = 
Newtons 

 
 
 

q1 q2 
 

 
 
 

 

 F2 

q1 q2 
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1.1 Objectives 
 

 

After going through this section, the students are able 
to 1. State Coulombs law 

Application of Coulombs Law to point charge as well as several charges 
 
 

 

1.2 Electric field intensity 
 

 

Electric field intensity at any point in an electric field is the force experienced by positive unit 
charge placed at that point. 
 

Consider a charge Q located at a point A. At the point B in the electric fields set up by Q, it is 
required to find the electric field intensity E.  

Let the charge at B be  and let the charge Q be fixed at A. Let r be the distance between A and  
B. As per the Coulomb’s Law, the force between Q and q is given by:  

F=   rˆ N 
 

If it is a unit positive charge, then by definition, F in the above equation gives the magnitude of 
the electric field intensity E.  

i.e. E=F when  
 

Therefore, the magnitude of the electric field 

strength is: E=Q/(4r  
 

Let r be the unit vector along the line joining A and B. Thus, the vector relation between E is 
written as:  

E=Q/(4 or²) V/m 
 

 

1.2.1 Electric Field intensity due to several charges 
 

 

Let there be many point charges q1,q2,q3......... qn at distances r1,r2,r3 .....rn be the corresponding 

unit vectors. The field E1, E2, E3.......... En at the charges q1,q2,q3........... qn respectively are: 
 

rˆ + 
 

E=Eq1+Eq2+Eq3 ............... 
 

Hence, 
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1.2 .2 Electric field intensity at a point due to a infinite sheet of charge 
 
 
 

Let us assume a straight line charge extending along Z axis in a cylindrical coordinate 
system from -∞ to +∞ as shown in the figure 1.1. Consider an incremental length dl at a point on 
the conductor. The incremental length has an incremental charge of dQ= ρl dl= ρldz’ Coulombs. 

Considering the charge dQ, the incremental field intensity at point p is given by, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Where 
 

 

, 
 
and 
 
 

 

Therefore, 
 
 
 

 

Integrating the above and substituting z’=ρ cot θ, we get 
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and 
 
 
 
 
 
 
 

1.2.3 Electric field intensity at a point due to a infinite sheet of 

charge: 
 

Let us assume a infinite sheet of charge with surface charge density ρs as shown in the 

figure 1.2. Divide the sheet of charge into differential width strips. number of str Consider an 

incremental length dl at a point on the conductor. The line charge density ρl= ρs dy’. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The differential Electric field intensity at point P, 
 
 
 
 
 
 

adding the effects of all the strips, 
 
 
 
 

 

Therefore, 
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1.2.4  Electric field at a point on the axis of charged circular ring: 

 

Let ρ be the charge density of the ring. 

 

So, ρ=dq/dl 
 

dq=ρdl 

 

Electric field due to an infinitely small element = dE = dq/4πεo r² rˆ 

 

where rˆ is the unit vector along AP.  
dE can resolved into two rectangular components, dEx and dEy. Now, dEx=dEcosθ. 

 
Taking the magnitude of dE from above, the equation becomes, 

 

dEx=  
 

cosθ=  

substituting for dq from above, we have; 

 

dEx= 
 

 

The component dEy is directed downwards. If we consider an element of the ring at a point 

diametrically opposite to A, then its dEy component points upwards and hence, cancels with 

that due to element A. The dEx components add up.  
∫dEy=0. 

 
The total field at P is the sum of the fields due to all the elements of the ring. 

 
Therefore, E=∫dE=∫dEx+∫dEy=∫dEx 

 

E=∫dEx=  

=  

 

But, r=(R²+x²)½ 
 

Therefore, E= ax 

 

Where, ax is the unit vector along the x axis. 
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1.2 Objectives 
 

At the end of this section the students are able to  
1. Define Electric field Intensity 

2. Derive  Electric field intensity at a due to several charges  
3. Derive Electric field Intensity at a point due to sheet of charge 

4. Derive Electric field intensity at a point on the axis of charged circular ring 
 
 

1.3 Electric flux: 
 

 

The concept of electric flux is useful in association with Gauss' law. The electric flux through a 

planar area is defined as the electric field times the component of the area perpendicular to the 

field. If the area is not planar, then the evaluation of the flux generally requires an area integral 

since the angle will be continually changing. 

 

When the area A is used in a vector operation like this, it is understood that the magnitude of the 
vector is equal to the area and the direction of the vector is perpendicular to the area.  

Consider a concentric sphere having radius of ‘a’m charged up to +Q C. This sphere is 
then placed in another sphere having a radius of ’b’ m as shown in the figure 1.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There is no electrical connection between them. The outer sphere is momentarily 
charged, then it found that the charge on the outer sphere is equal to the charge on the inner 
sphere. This is depicted by the radial lines. This is referred as displacement flux. Therefore,  

Ψ = Q. 
 

 

1.3.1 Electric flux density: 
 

 

If +Q C of charge on the inner sphere produces the electric flux of ψ, tthen electric flux ψ 

uniformly distributed over the surface area 4Πa
2

 m
2

 , where a is the radius of the inner sphere. 
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The electric flux density si given by 
 
 

 

Similarly for the outer sphere, 
 
 

 

If the inner sphere becomes smaller and smaller retaining a charge of Q C, it becomes a point 
charge. The flux density at appoint ‘r’ from the point charge is given by, 
 
 
 
 
 
 

 

The electric field intensity due to point charge in free space is given by, 
 
 
 
 

 

Therefore in free space, 
 
 
 
 
 
 
 
 

 

1.3 Objective 
 

After going through this section the students should be able to  
1. Define Electric flux 

2. Explain Electric flux density 
 
 

1.4 Gauss law: 
 

 

The Gauss's law states that. "The electric flux passing through any closed surface is equal to 
the total charge enclosed by the surface" 
 
 

For the Gaussian-surface shown in the following figure, the Gauss' law can 
be expressed mathematically, . 
 
 

 

Where 
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Ψ = flux passing through the closed surface 
 

§s =1 surface integral 
 

Ds =, flux density (vector quantity) normal to the 
surface Q = Total charge enclosed in the surface 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Gauss law for charge Q enclosed in a closed surface: 
 
 

Let Q be the point charge placed at the origin of imaginary sphere in spherical co-
ordinate system with a radius of "a" as illustrated in the figure 

The electrical field intensity cf the point charge is found to be equal to 
 
 
 
 

 

Where r = Cl 
 
and we al so know that the relation between E and D as, 
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Therefore from (1) and (2) we get. 
 
 
 
 
 
 
 
 
 
 

 

at the surface of the sphere, 
 
 
 

 

The differential element of area on a spherical surface is, in spherical coordinate form is 
given by, 
 
 
 

 

Then the required integrand 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Then the integration over the surface as required for Gauss' law. 
 
 
 
 
 
 
 

 

The limits placed for integral indicate that the integration over the entire sphere in spherical 
co-ordinate system on integration we get 
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Thus we get, comparing LHS of Gauss' law as 
 

 

This indicates that, Q coulombs of electric flux are crossing the surface as the enclosed charge is 
Q coulombs. 
 

 

1.4 .1   Application of Gauss law: 
 

 

In case of asymmetry, we need to choose a very closed surface such that D is almost 

constant over the surface. Consider any point P shown in the figure 1.6 located in the 

rectangular co-ordinate system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The value of D at point P, may be expressed in rectangular components as, 

D=Dx0ax+Dy0ay+Dz0az. . From Gauss law, we have 
 
 
 
 
 
 

 

In order to evaluate the integral over the closed surface, the integral must be broken into 
six integrals, one over each surface, 
 

=         + . 
 

The surface element is very small & hence D is essentially constant , 
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, 
 
Similarly, 
 
 
 
 

 

and, 
 

 

. 

Therefore collectively, 
 
 
 
 
 
 
 
 
 

 

Charge enclosed in volume ∆v, 
 
 
 
 
 
 
 
 
 

1.4 Objectives 
 

 

At the end of this section the students are able to  
1. State and prove Gauss Law 

2. Apply Gauss law to find the charge enclosed in differential volume 
 
 

 

1.5 Divergence: 
 

 

From Gauss law, we know that, 
 
 
 
 
 

 

And applying limits, 
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The last term in the equation is the volume charge density, ρv. 
 
 
 
 
 
 

 

We shall write it as two separate equations, 
 

And 
 
 

 

. 
Divergence is defined as, 
 
 
 
 
 
 

 

. 

 

Statement: The flux crossing the closed surface is equal to the integral of the divergence of the 
flux density throughout the enclosed volume, as the volume shrinks to zero. 
 
 

 

Divergence in Cartesian system, 
 
 
 
 
 
 
 

Divergence in Cylindrical system, 
 
 
 
 
 
 

 

Divergence in Spherical system, 
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1.6.1 Maxwell’s First equation: 
 

 

From divergence theorem, we have 
 
 
 
 
 
 
 
 
 
 

 

From Gauss law, 
 
 

 

Per unit volume, 
 
 
 
 

As the volume shrinks to zero, 
 
 
 

 

Therefore, div D = ρv. 
 

 

1.6.2 Divergence theorem: 
 

 

The del operator is defined as a vector operator. 
 

 

. 

 

In Cartesian coordinate system, 
 
 
 
 
 

Which is equal to,  

. 
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Therefore, 
 

 

. 
 

 

From Gauss law, we have 
 
 
 

 

And by letting,  

 & . 

Hence we have, 
 
 
 
 
 
 
 
 
 

1.6 Objectives 
 

At the end of this section the students are able to 
 

1. Explain the concept of divergence 
 

2. Derive Maxwell’s First Equation 
 

3. State and prove Divergence theorem  
4. 
5. 

 

1.7 Recommended Questions 
 
 
1. State Coulomb’s law of force between any 2 point charges & indicate the units of the 
quantities involved. 

 
2. Derive the general expression for electric field vector due to infinite line charge using Gauss law. 

 
3. State and prove Gauss law. 

 
4. Derive the general expression for E at a height h(h<a) , along the axis of the ring charge & 
normal to its plane. 

 

5. From gauss law show that .D=σv 
 
 
 

 

 

no
tes

4f
ree

.in



 

Dept of ECE, ATMECE  Page 17 
 

Engineering Electromagnetics                                                                                                                                      17EC36 
  

  

 

6. State and prove divergence theorem for symmetric condition. 

 
7. State and prove divergence theorem for asymmetric condition 
 
 

 

1.8 Further Readings 
 

1. Energy Electromagnetics, William H Hayt Jr. and John A Buck, Tata McGraw-Hill, 7
th

 
edition,2006. 

 
2. Electromagnetics with Applications, John Krauss and Daniel A Fleisch McGraw-Hill, 5th 

edition, 1999 
 

3. Electromagnetic Waves And Radiating Systems, Edward C. Jordan and Keith G Balmain, 

Prentice – Hall of India / Pearson Education, 2
nd

 edition, 1968.Reprint 2002 

 
4. Field and Wave Electromagnetics, David K Cheng, Pearson Education Asia, 2nd 

edition, 1989, Indian Reprint – 2001 
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MODULE 2: Gauss's law and Divergence, Energy and Potential, Conductors Dielectrics 

and Capacitance 
 
 

2.1 Energy expended in moving a point charge in an electric field  
2.2 Line integral  
2.3 Definition of potential difference and potential  
2.4 Potential field of a point charge & system of charges  
2.5 Potential gradient, 

 
2.6 Energy density in an electrostatic field. 

 
2.7 Current and current density  
2.8 Continuity of current  
2.9 metallic conductors  

2.11 Dielectric properties and boundary conditions for dielectrics, 

Conductor properties and boundary conditions for perfect 

2.12 dielectrics, 
 

 

2.0 Objectives 
 

1. To Understand the concept of Potential and Potential Difference 
 

2. To Learn the concepts of Energy density, current density 
 

3. To derive current continuity equation 
 

4. To understand the boundary Conditions 
 
 

 

2.1 Energy expended in moving a point charge in an electric field 
 
 
 
Electric field intensity is defined as the force experienced by unit test charge at a point p. 

If the test charge is moved against the electric field, then we have to exert a force equal 

and opposite to that exerted by the field and this requires work to be done. 
 

Suppose we need to move a charge fo Q C a distance dl in an electric field 
E. The force on Q arising from the electric field is, 
 
 
 
The differential amount of work done in moving charge Q over a distance dl 

is given by, , as F =QE 
 
 
 
Thus the work done to move the charge for the finite distance is given by, 
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2.3 Definition of Potential Difference and potential 
 

 

Potential difference(V) is defined as the work done in moving unit positive 
charge from one point to another point in an electric field. 
 
We know that, 
 
 
 
 
 
 
 
 
 

 

Therefore V=W/Q= 

VAB signifies potential difference between points A & B and the work done in 
moving the unit charge from B to A. Thus B is the initial point & A is the final point. 
 
 
 

 

. 

 

From the previous example, the work done in moving charge Q from ρ= b to ρ= a was,  

. 
Thus the potential difference between the points a & b is given by, 
 
 
 

 

Absolute electric potential is defined as the work done in moving a unit positive 
charge from infinity to that point against the field. 
 
Electric field is defined as force on unit charge. 
 

E= F/Q. 
 
By moving the charge Q aganist an electric field between the two points a & b work 
is done. Thus , 
Edl= Fxdl/Q =work/ charge. 
 
This work done per charge is the electric potential difference. Potential difference 
between points a and b at a radial distance of ra and rb from a point charge Q is given 
by, If the potential at point a is VA and at point B is VB, then 

 

. 

 

Equipotential Surface is defined as "It is a surfacehaving the same value of potential" on 

composed of all- points such surfaces no work is charge, hence no potential difference  
involved in moving a unit between any two points on this 

surface. 
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2.4 Potential field of a point charge & system of charges 
 
 
 

Consider a point charge Q to be placed in the origin of a spherical coordinate system. Consider 
2 points A & B as shown in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Electric Potential difference between A & B, VAB is given by, 
 

 

dl in spherical co ordinate system is given the figure above and E=Q/ 4Π€r
2. 

Therefore, 
 
 

 

And 
 
 
 

 

Potential at a point has been defined as the work done in moving unit positive charge from zero 

reference to the point. Potential is independent of the path taken from one point to the other. 

Potential due to a single charge is given by 

V(r)= Q1/ 4Π€R. If Q1 is at r1 & point p at r, then 
 
 
 

Potential arising from 2 charges, Q1 at r1 and Q2 at r2, is given by 
 
 
 
 
 

 

Potential due to n number of charges, is given by 
 
 

 

Or 
 
 
 

 

If point charge is a small element in the continuous volume charge distribution then, 
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As number of point charges in the volume charge distribution tends to infinity, 
 
 
 

 

Similarly if the point charges takes the form of a straight line then, 
 
 

 

Similarly if the point charges takes the form of a surface charge then, 
 
 

 

Potential is a function of inverse distance. Hence we can conclude that for a zero reference at 
infinity, then:  
I Potential due to a single point charge is the work done in moving unit positive charge from 

zero reference to the point. Potential is independent of the path taken from one point to the other 

 

II Potential field due to number of charges is the sum of the individual potential fields arising 
from each charge.  
III. Potential due to continuous charge distribution is found by carrying a unit charge 
from infinity to the point under consideration. 
 
 

 

is independent on the path chosen for the line 

integral, regardless of the source of the E field.  
Hence we can conclude that no work is done in carrying a unit positive charge around any 
closed path, or 
 
 
 

 

Any field that satisfies an equation of the form above is said to be conservative field 
 

 

2.5 Potential Gradient 
 

 

Potential at any point is given by 
 

 

Potential difference between 2 points separated by a very short length ∆L along which E 
is essentially constant, is given by 
 

 

In rectangular co ordinate system, 
 
 

 

, As V is a unique function of x,y,z. Then, 
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.  

Since both the expressions are true with respect dx,dy & dz, we can write 
 
 
 
 
 
 
 

 

Therefore, 
 
 
 

 

In rectangular co ordinate system, 
 
 
 
 
 
 

 

Combining all the above equations allows us to use a compact expression that relates E & 

V,  
 

Gradient in other coordinate system is as given below, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Dept of ECE, ATMECE 

no
tes

4f
ree

.in



Page 6  
 

Engineering Electromagnetics                                                                 17EC36 
  

  

 

 

6 Energy Density in an Electric Field 
 

 

Consider a surface without charge. Bringing a charge Q1 from infinity to any point on the 

surface requires no work as there is no field present. The positioning of Q2 at appoint in the 

field of Q1 requires an amount of work to be done which is given by 
 
 

. 
 
Similarly work required to position each additional charge in the field is given by, 
 
 
 
 
 

 

Total positioning work = Potential energy of the field 
 
 
 
 
 

 

Bringing the charges in the reverse order, the work done is given by, 
 
 
 

 

Adding the 2 energy expressions, we get 
 
 
 
 
 

 

For n number of charges, 
 
 
 
 
 
 
 

 

2.7 Potential energy in a continuous charge distribution:  

For the region with continuous charge distribution, the equation for WE= 
By vector identity which is true for any scalar function V & vector D,  

, 
Then, 
 
 
 
 

 

. 
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From Guass law, We can write 
 
 

 

and from gradient 
 
 
 
 
 
 

 

2.8 Boundary condition for conductor free space interface: 

 

Consider a closed path at the boundary between conductor and a dielectric, such that 

∆h→0. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We know that work done in moving a charge over a closed path is zero i.e., 
 

 

. 

Therefore the integral can be broken up as, 
 

 

.  
Let the length from a to b or c to d be ∆W and from a to d or b to c be ∆h , hence we obtain, 

 

. Hence we obtain E∆W=0 & therefore Et=0 
 

Hence at the conductor dielectric interface tangential component of the electric field intensity 
is zero. 
 

Consider a gaussian cylinder of radius ρ and height ∆h at the boundary, Applying Gauss  
law,  

 & then integrating over the distinct surfaces we get 
 

 

. 
 
Flux experienced by the lateral surface is zero & Flux experienced by the bottom surface 
is zero as charge inside the conductor is zero. Therefore 

or . 
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At the conductor dielectric interface normal component of the electric flux density is equal 
to the surface charge density. 
 

2.8 Boundary condition for perfect dielectric: 
 
 

 

Consider a closed path abcda at the dielectric dielectric interface & ∆h→0. The work done 
in moving a unit charge over a closed path is zero. Therefore, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We know that the work done in moving a unit charge over a closed path is zero. Therefore,  

, and hence  

. 

The small contribution of the normal component of E due to ∆h becomes negligible. Therefore,  

. & as D = € E we get, 
 
 

 

or . 
 
At the dielectric – dielectric boundary tangential component of the E is continuous where as 
tangential component of electric flux density is discontinuous.  

Consider a gaussian cylinder of radius ρ and height ∆h at the boundary, Applying 
Gauss law, & then integrating over the distinct surfaces we get 
 
 

 

. Flux experienced by the lateral surface is zero. Therefore 
 

.  
From which, 
 

. 
 

For perfect dielectric, DN1= DN2, then €2E2 = €1E1. 
 
At the dielectric dielectric boundary normal component of the flux density is continuous. 
Normal components of D are continuous, 
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. The ratio of the tangential components, 
 
 
 
 
 
 

Or .  
And 

.  
The magnitude of D is given by, 
 

 

. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Out comes 
 

At the end of the unit the students are able to understand the concepts of Potential 

and Potential difference, energy and current densities, current continuity 

equation, and different boundary conditions. 

 

Recommended questions 
 

1. Define electric scalar potential. Establish the relationship between intensity and potential. 
 

2. Discuss the boundary conditions between 2 perfect dielectrics. 
 

3. State & explain the principle of charge conservation. 
 

4. Derive for energy stored in an electrostatic field. 
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5. Derive for energy expended in moving a point charge in an electric field. 
 

6. Define Potential & potential difference. 
 

7. Prove that E is Grad of V 
 

8. Write a short note on dipole 
 

9. Three point charges, 0.4 μC each, are located at (0,0,-1), (0,0,0) and (0,0,1) in free space.  
(a). Find an expression for the absolute potential as a function of Z along the lne x=0, y=1. 

(b) Sketch V(Z). 
 
 

 

Further Reading 
 

1. Energy Electromagnetics, William H Hayt Jr. and John A Buck, Tata McGraw-Hill, 7
th

 
edition,2006. 

 
2. Electromagnetics with Applications, John Krauss and Daniel A Fleisch McGraw-Hill, 5th 

edition, 1999 
 

3. Electromagnetic Waves And Radiating Systems, Edward C. Jordan and Keith G Balmain, 

Prentice – Hall of India / Pearson Education, 2
nd

 edition, 1968.Reprint 2002 

 

4. Field and Wave Electromagnetics, David K Cheng, Pearson Education Asia, 2nd 

edition, 1989, Indian Reprint – 2001 
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MODULE 3: POISSONS AND LAPLACES EQUATION, STEADY 

MAGNETIC FIELD 
 

 

STRUCTURE 
1.1 Derivation of Poisson’s equation and Laplace’s equation 
1.2 Uniqueness theorem, 
1.3 Examples of the solutions Laplace Equations and Poisson’s Equations 

 
 
 
 

 

Objectives 
 
 
 

1. To derive the Poissons and Laplaces equation 
2. To derive the Uniqueness theorem 
3. Application of Laplaces equation to parallel plate capacitor… 

 

 

Laplace’s & Poisson’s equation: 
 
 
 

 
Laplace’s & Poisson’s equation enable us to find potential fields within regions bounded by 
known potentials or charge densities. 

 

Derivation of Laplace’s & Poisson’s equation: 
 
 
 

 

From Gauss law in point form, we have 

-------------------------------(1).  
By definition, D = €E. & from gradient relationship, 
 

.  
By substituting the above in equation 1, we get 
 
 
 
 
 

Or --------------------2 
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For a homogeneous region in which € is constant. Equation 2 is poisson’s equation. 

In rectangular co-ordinates, 
 
 
 
 
 
 
 
 
 
 

 

Therefore, 
 
 
 
 
 
 

 

If ρv = 0, indicating zero volume charge density, but allowing point charges, line charges 

& surface charge density to exist at singular locations as sources of the field, then 

 

which is Laplace’s equation. The  operorator is called the Laplacian of V. 

 

In rectangular coordinates Laplace equation is, 
 
 

 

, In cylindrical coordinates, 
 
 
 
 

& in spherical coordinates, 
 
 
 

 

very conductor produces a field for which 

If ρv = 0, indicating zero volume charge density, but allowing point charges, line charges & 
surface charge density to exist at singular locations as sources of the field, then 

 

which is Laplace’s equation. The  operator is called the Laplacian of V. 

 

In rectangular coordinates Laplace equation is, 
 
 

 

, In cylindrical coordinates, 
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& in spherical coordinates, 
 
 
 

 

Every conductor produces a field for which V=0. In examples if it satisfies the 
boundary conditions and Laplace equation, then it is the only possible answer. 
 

V=0. In examples if it satisfies the boundary conditions and Laplace equation, then it 
is the only possible answer. 
 
 
 

Uniqueness theorem: 
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2.8 Example of solution of Laplace’s equation: 
 

Example 1: For a Parallel plate capacitor: 

 

Let us assume V is a function of x. Laplace’s equation reduces to,  
. 

 

 

Since V is not a function of y & z.  
Integrating the above equation twice we obtain, 
 

 

Where A & B are integration constants. 
 

If V=0 at x=0 and V= V0 at x = d, then, 

A= V0/d and B = 0. 

Therefore,  

. 
Hence we have, 
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And the capacitance is 
 

 

. 
 
 
 
 
 

Example 2: Capacitance of a co-axial cylindrical conductor: 

 

Assuming variation with respect to ρ Laplace equation becomes, 

 

. 

 

Integrating twice on both sides we obtain, 

 

, 
 

. 
 

Assuming V = V0 at ρ = A and V= 0 at ρ = B, We get 
 
 

 

. 
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. 
 
 
 
 
 
 
 
 

 

Example 3: Spherical capacitor: 

 

Assuming variation with respect to r Laplace equation becomes, 

 

. 

Integrating twice on both sides we obtain, 

,  

. 

Assuming V = V0 at θ = Π/2 and V= 0 at θ = α, We get 
 
 
 
 

 

. 
 
 

 

, 
 
 

 

, 
 
 
 
 
 
 
 
 

, 
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and 
 

 

. 
 
 
 
 

 

Outcomes 
 

The students are able to state and derive the poisons and laplace’s equation and apply it 

to derive the capacitance of parallel plate capacitor, cylindrical conductor and spherical 

ring & show that Laplaces equation has only one solution 
 

 

Recommended Questions 
 

1. Derive Poisson’s & Laplace’s equation. 

 
2. Using Laplace’s equation , Prove that the potential distribution at any point in the 
region between two concentric cylinders of radii A & B as  
V=Voln ῤ/B /ln A/B  
3. State and prove uniqueness theorem 

 
4. Derive for Capacitance of Parallel plate capacitor 

 
5. Derive for Capacitance of Concentric spherical capacitor. 

 
6. Let V = 2xy2z3 and ε = ε0. Given point P(1,2,-1), Find (a) V at P; (b) E at P; (c) ρv at P; 
(d) the equation of the equipotential surface passing through P; (e) the equation of the 
streamline passing through P; (f) Does V satisfy the Laplaces Equation 

 
 

 

Further Reading  
TEXT BOOK:  
1. Energy Electromagnetics, William H Hayt Jr . and John A Buck, Tata McGraw-Hill, 7th 
edition,2006. 

 

REFERENCE BOOKS:  
2. Electromagnetics with Applications, John Krauss and Daniel A Fleisch McGraw-Hill, 5th 
edition, 1999  
3. Electromagnetic Waves And Radiating Systems, Edward C. Jordan and Keith G Balmain, 
Prentice – Hall of India / Pearson Education, 2nd edition, 1968.Reprint 2002  
4. Field and Wave Electromagnetics, David K Cheng, Pearson Education Asia, 2nd edition, - 
1989, Indian Reprint – 2001. 
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MODULE-IV 
 
Plane Wave:  

   
A uniform plane wave is the wave that the electric field, E or magnetic field, H in same direction, same 
magnitude and same phase in infinite planes perpendicular to the direction of propagation. A plane wave 
has no electric field, and magnetic field, components along its direction of propagation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Wave Equations: 
 
If the wave is in simple ( linear, isotropic and homogeneous ) nonconducting medium ( =0), Maxwell’s 

equation reduce to, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
   

The first-order differential equations in the two variables E and H . They can combine to give E or H 
alone using second-order equation. 
 
Using Maxwell’s equation,  
 
 
 
 

 

The curl of equation of (1) 
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Replacing in equation (2)  
 
 
 
 

 

We know that  because of equation (3), thus the wave equation is  
 
 
 
 
 

 
The wave equation also can written as  
 
 

 
--------------------------(a)  

 
 
Assuming an implicit time dependence in the field vector. Equation (a) also called Helmholtz  
equation. The k  is called the wave number or propagation constant.  
 
 
 
 
 
 
 
 
 
where c is the velocity of light in free space. 
 
 

For magnetic intensity domain, H , we have,  
 
 
 
 
 

^  
For a uniform plane wave with an electric field E x Ex traveling in the z-direction, the wave equation 
can be reduced as  
 
 
 
 

 
The solution of this wave equation, 
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Where is the attenuation constant of the medium and is its phase constant. 
 
The associated magnetic field, H ,  
 
 
 
 
 
 
 
 
 
 

 
where is the intrinsic impedance of the medium. 
 
The k  is called the wave number or propagation constant.  
 
 
 
 
 

 
The wave number can also be written in terms of and .  
 
 
 
 
 
 
Thus,  
 
 
 
 
 
 
By solving (1) & (2),  
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So for different medium,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Electromagnetic Phenomena are described by using four Maxwell’s equations:   
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Poynting Vector and Power Flow in Electromagnetic Fields:  
Electromagnetic waves can transport energy from one point to another point. The electric and magnetic 
field intensities associated with a travelling electromagnetic wave can be related to the rate of such energy 
transfer. 
Let us consider Maxwell's Curl Equations:  
 
 
 
 
 

 
Using vector identity  
 
 
The above curl equations we can write  
 
 

,  

And . 
In simple medium where  and  are constant, we can write  
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Applying Divergence theorem we can write,  
 
 

…………….(a)  
 

 
The term 

 

 
represents the rate of change of energy stored in the electric and  

 

magnetic fields and the term 
 

represents the power dissipation within the volume. Hence right  
hand side of the equation (a) represents the total decrease in power within the volume under 
consideration.  
 

The left hand side of equation (6.36) can be written as where  (W/mt2) is called the Poynting 
vector and it represents the power density vector associated with the electromagnetic field. The 
integration of the Poynting vector over any closed surface gives the net power flowing out of the surface. 
Equation (6.36) is referred to as Poynting theorem and it states that the net power flowing out of a given 
volume is equal to the time rate of decrease in the energy stored within the volume minus the conduction 
losses. 
Poynting vector for the time harmonic case:  

For time harmonic case, the time variation is of the form , and we have seen that instantaneous value 

of a quantity is the real part of the product of a phasor quantity and  when  is used as 
reference. For example, if we consider the phasor  
 
 
 
 
 
 
then we can write the instanteneous field as  
 

 

when E0 is real.  
Let us consider two instanteneous quantities A and B such that 

,   
 
where A and B are the phasor quantities. i.e,  

 

Therefore,  
 
 
 
 
 

 
Since A and B are periodic with period , the time average value of the product form AB, denoted  

by  can be written as 
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Further, considering the phasor quantities A and B, we find that  
 
 
 
and , where * denotes complex conjugate.  
 
 
 

 

The poynting vector  can be expressed as  
 

 

..............................(b) 

 

If we consider a plane electromagnetic wave propagating in +z direction and has only  
component, from (b) we can write:  
 
 
Using (6.41)  
 
 
 
 
 

 

where  and 
For a general case, we can write 

 
 
 
 
 
 

 
, for the plane wave under consideration.  

 

 

We can define a complex Poynting vector  
 
 
 

and time average of the instantaneous Poynting vector is given by  . 
 
Polarisation of plane wave:  
The polarization of a plane wave can be defined as the orientation of the electric field vector as a 
function of time at a fixed point in space. For an electromagnetic wave, the specification of the 
orientation of the electric field is sufficient as the magnetic field components are related to electric field 
vector by the Maxwell's equations. 
Let us consider a plane wave travelling in the +z direction. The wave has both Ex and Ey components. 
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The corresponding magnetic fields are given by,  
 
 
 
 
 
 
 
 
 
 
 

Depending upon the values of Eox and Eoy we can have several possibilities: 
1. If Eoy = 0, then the wave is linearly polarised in the x-direction.  
2. If Eoy = 0, then the wave is linearly polarised in the y-direction.  
3. If Eox and Eoy are both real (or complex with equal phase), once again we get a linearly polarised wave  
 
 
with the axis of polarisation inclined at an 
angle fig 6.4.  

 
 
, with respect to the x-axis. This is shown in 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6.4 : Linear Polarisation  

If Eox and Eoy are complex with different phase angles,   
This is explained as follows: 

 
will not point to a single spatial direction. 

 

Let  ,  

 
Then, 
 
and 

 
....................................(c)  

 
 
To keep the things simple, let us consider a =0 and  
field on the z =0 plain. 
From equation (c) we find that,  

 
 
. Further, let us study the nature of the electric 
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and the electric field vector at z = 0 can be written as  
 

………(d)  

Assuming  , the plot of  for various values of t is hown in figure 6.5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.5 : Plot of E(o,t) 

 
From equation (d) and figure (6.5) we observe that the tip of the arrow representing electric field 
vector traces an ellipse and the field is said to be elliptically polarized.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.6: Polarisation ellipse  
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The polarisation ellipse shown in figure 6.6 is defined by its axial ratio(M/N, the ratio of semimajor to  
semiminor axis), tilt angle  (orientation with respect to xaxis) and sense of rotation(i.e., CW or 
CCW). Linear polarisation can be treated as a special case of elliptical polarisation, for which the axial 
ratio is infinite. 

In our example, if , from equation (6.47), the tip of the arrow representing electric field 
vector traces out a circle. Such a case is referred to as Circular Polarisation. For circular polarisation 
the axial ratio is unity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.7: Circular Polarisation (RHCP) 

 
Further, the circular polarisation is aside to be right handed circular polarisation (RHCP) if the electric 
field vector rotates in the direction of the fingers of the right hand when the thumb points in the direction 
of propagation-(same and CCW). If the electric field vector rotates in the opposite direction, the 
polarisation is asid to be left hand circular polarisation (LHCP) (same as CW).  

In AM radio broadcast, the radiated electromagnetic wave is linearly polarised with the  field vertical 
to the ground( vertical polarisation) where as TV signals are horizontally polarised waves. FM 
broadcast is usually carried out using circularly polarised waves.  
In radio communication, different information signals can be transmitted at the same frequency at 
orthogonal polarisation ( one signal as vertically polarised other horizontally polarised or one as RHCP 
while the other as LHCP) to increase capacity. Otherwise, same signal can be transmitted at 
orthogonal polarisation to obtain diversity gain to improve reliability of transmission. 
 
Behaviour of Plane waves at the inteface of two media:  
We have considered the propagation of uniform plane waves in an unbounded homogeneous medium. In 

practice, the wave will propagate in bounded regions where several values of will be present. 
When plane wave travelling in one medium meets a different medium, it is partly reflected and partly 
transmitted. In this section, we consider wave reflection and transmission at planar boundary between two 
media. 
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Fig 6.8 : Normal Incidence at a plane boundary  
Case1: Let z = 0 plane represent the interface between two media. Medium 1 is characterised 

by and medium 2 is characterized by .  
Let the subscripts 'i' denotes incident, 'r' denotes reflected and 't' denotes transmitted field 
components respectively. 
 
The incident wave is assumed to be a plane wave polarized along x and travelling in medium 1 along 

 direction. From equation (6.24) we can write  

 ..................(e)  
 
 

......................(f)  
 

where  and .  
Because of the presence of the second medium at z =0, the incident wave will undergo partial reflection 
 
and partial transmission. The reflected wave will travel along  
The reflected field components are: 

 in medium 1. 

 ...............................................(g)  
 
 

.........(h) 

 
The transmitted wave will travel in medium 2 along 

 

 for which the field components are  

............................................(i) 
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............................................(j)  
 

 

where  and 
In medium 1,  

 and   
and in medium 2, 

 and   
Applying boundary conditions at the interface z = 0, i.e., continuity of tangential field components and 
noting that incident, reflected and transmitted field components are tangential at the boundary, we can 
write  
 

 

&  
From equation (e) to (j) we get,   

................................................................(k)  
 
 

..............................................................(l) 
Eliminating Eto ,  
 
 
 
 

 

or,   
or,  

 
 

...............(m)  
is called the reflection coefficient. 
From equation (k) & (l), we can write  
 
 
 
 

 

or,  
 
 
 

 
is called the transmission coefficient. 

no
tes

4f
ree

.in



ENGINEERING ELECTROMAGNETICS [15EC36] 

DEPT.OF  ECE, ACE  74 
 

We observe that,  
 
 
 
The following may be noted  
(i) both  and T are dimensionless and may be complex 

(ii)   
Let us now consider specific cases: 
Case I: Normal incidence on a plane conducting boundary 

The medium 1 is perfect dielectric  and medium 2 is perfectly conducting .  
 
 
 
 
 
 
 
 
 
From (k) and (l)  

= -1  
and T =0 

Hence the wave is not transmitted to medium 2, it gets reflected entirely from the interface to the 
medium 1.  
 
 

 
&  

Proceeding in the same manner for the magnetic field in region 1, we can show that,  
 
 
 
The wave in medium 1 thus becomes a standing wave  due to the super position of a forward travelling  

wave and a backward travelling wave. For a given ' t', both  and  vary sinusoidally with distance 
measured from z = 0. This is shown in figure 6.9.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.9: Generation of standing wave  
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Zeroes of E1(z,t) and  
 
 
 
 

Maxima ofH1(z,t). 
 

Maxima of E1(z,t) and  
 
 

 

zeroes ofH1(z,t). 
 
Case2: Normal incidence on a plane dielectric boundary  

If the medium 2 is not a perfect conductor (i.e. ) partial reflection will result. There will be a  
reflected wave in the medium 1 and a transmitted wave in the medium 2.Because of the reflected wave,  
standing wave is formed in medium 1.  
From above equations we can write  

 
Let us consider the scenario when both the media are dissipation less i.e. perfect dielectrics  

( )  
 
 
 
 
 
 

 

In this case both  and  become real numbers.  
 
 
 
 

 

..................(n)  
From (n), we can see that, in medium 1 we have a traveling wave component with amplitude TEio and 
a standing wave component with amplitude 2JEio.  
The location of the maximum and the minimum of the electric and magnetic field components in 
the medium 1from the interface can be found as follows. The electric field in medium 1 can be 
written as  
 
 

If  i.e. >0  
The maximum value of the electric field is  
 
 
and this occurs when  
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or ,  n = 0, 1, 2, 3....................... (o) 

The minimum value of is  

And this occurs when 
.................(p)  

   
 
 

 
or , n = 0, 1, 2, 3.............................(q)  

For  i.e. <0 

The maximum value of  is which occurs at the zmin locations and the minimum value  

of  is  which occurs at zmax locations as given by the equations (o) and (q).  
 

 
From our discussions so far we observe that can be written as  

 
 

 

The quantity S is called as the standing wave ratio.  

As  the range of S is given by   
We can write the expression for the magnetic field in medium 1 as  

 
 
 

 
From above equation we can see that 

 
 
 

 
will be maximum at locations where 

 
 
 

 is minimum and  
vice versa.  
In medium 2, the transmitted wave propagates in the + z direction. 

 
Oblique Incidence of EM wave at an interface  

 
So far we have discuss the case of normal incidence where electromagnetic wave traveling in a lossless 
medium impinges normally at the interface of a second medium. In this section we shall consider the case 
of oblique incidence. As before, we consider two cases 

 
i.  When the second medium is a perfect conductor.  

ii.  When the second medium is a perfect dielectric. 
 

A plane incidence is defined as the plane containing the vector indicating the direction of propagation 
of the incident wave and normal to the interface. We study two specific cases when the incident electric  

field  is perpendicular to the plane of incidence (perpendicular polarization) and  is parallel to the 
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plane of incidence (parallel polarization). For a general case, the incident wave may have arbitrary 

polarization but the same can be expressed as a linear combination of these two individual cases. 
 

Oblique Incidence at a plane conducting boundary 
 
i. Perpendicular Polarization 

The situation is depicted in figure 6.10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.10: Perpendicular Polarization  

As the EM field inside the perfect conductor is zero, the interface reflects the incident plane wave.  

and respectively represent the unit vector in the direction of propagation of the incident and 

reflected waves,  is the angle of incidence and  is the angle of reflection. 
 
 
 
 
 

 
We find that  

 
 
 
 

Since the incident wave is considered to be perpendicular to the plane of incidence, which for the 
present case happens to be xz plane, the electric field has only y-component. Therefore,  

 
 
 
 

 
The corresponding magnetic field is given by  

 
 
 
 
 

 

Similarly, we can write the reflected waves as 
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Since at the interface z=o, the tangential electric field is zero.  

 
The above equation is satisfied if we have  
 
 

 

The condition  is Snell's law of reflection.  
 
 
 
 
 
 
 
 

 
The total electric field is given by  
 
 
 
 
Similarly, total magnetic field is given by  
 
 
 
From above two equations we observe that  

1. Along z direction i.e. normal to the boundary 

y component of  and x component of  maintain standing wave patterns according 

to  and  where . No average power propagates along z as 

y component of  and x component of  are out of phase. 
2. Along x i.e. parallel to the interface 

y component of  and z component of  are in phase (both time and space) and 
propagate with phase velocity  

 
 
 
 
 
 

 
The wave propagating along the x direction has its amplitude varying with z and hence constitutes a non 
 
uniformplane wave. Further, only electric field is perpendicular to the direction of propagation (i.e.  x), 
the magnetic field has component along the direction of propagation. Such waves are called transverse 
electric or TE waves. 
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ii. Parallel Polarization:  

In this case also and are given by the derived equations. Here and have only 
y component.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.11: Parallel Polarization 

With reference to fig (6.11), the field components can be written as: 
 
Incident field components:  
 
 
 
 
 

............................(r)  
Reflected field components:  
 
 
 
 
 
 
 
 
 
 
Since the total tangential electric field component at the interface is zero.  

 

Which leads to  and  as before.  
Substituting these quantities in (r) and adding the incident and reflected electric and magnetic 
field components the total electric and magnetic fields can be written as  
 
 
 
 
 
 
Once again, we find a standing wave pattern along z for the x and y components of and , while a  
 
 
non uniform plane wave propagates along x with a phase velocity given by 
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where . Since, for this propagating wave, magnetic field is in transverse direction, such waves are 

called transverse magnetic or TM waves.  
Oblique incidence at a plane dielectric interface  
We continue our discussion on the behavior of plane waves at an interface; this time we consider a plane 
dielectric interface. As earlier, we consider the two specific cases, namely parallel and perpendicular 
polarization.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6.12: Oblique incidence at a plane dielectric interface   
For the case of a plane dielectric interface, an incident wave will be reflected partially and transmitted 
partially.  

In Fig(6.12),  corresponds respectively to the angle of incidence, reflection and transmission.   
1. Parallel Polarization  

As discussed previously, the incident and reflected field components can be written as  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In terms of the reflection coefficient   
 
 
 
 
 
 
The transmitted filed can be written in terms of the transmission coefficient T 
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We can now enforce the continuity of tangential field components at the boundary i.e. z=0  
 
 
 
 
 

 
If both 

 
 
 
 
 
 

 and 

 
 
 

 
..........................(s)   

are to be continuous at z=0 for all x , then form the phase matching we have  

 
We find that  

 

 
..........................(t)  

Further, from equations (s) and (t) we have  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

or  
 
 
 
 
 
 

 

From equation (u) we find that there exists specific angle  

 
 
 
 

 
..........................(u)  
 

for which 

 
 
 
 
 
 

 
= 0 such that 

 
 
 
 

or 
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Further,  

For non magnetic material   
Using this condition  
 
 
 
 

 
.........................(v)  

rom equation (v), solving for  we get  
 
 
 
 
 

This angle of incidence for which  = 0 is called Brewster angle. Since we are dealing with 

parallel polarization we represent this angle by  so that  
 
 
 

 

2. Perpendicular 

Polarization For this case 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using continuity of field components at z=0  
 
 
 
 
 
As in the previous case  
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Using these conditions we can write  
 
 
 
 

.........................(w)  
From equation (w) the reflection and transmission coefficients for the perpendicular polarization can 
be computed as  
 
 
 
 
 
 
 

We observe that if  = 0 for an angle of incidence  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Again  
 
 
 
 
 
 
 
 

 
or  
 

 
or  
 

 
or .........................(x)  

We observe if  i.e. in this case of non magnetic material Brewster angle does not exist 
as the denominator or equation (x) becomes zero. Thus for perpendicular polarization in dielectric 
media, there is Brewster angle so that  can be made equal to zero.  
From our previous discussion we observe that for both polarizations 
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If   
 
 

 

For ;   

 

The incidence angle for which i.e. is called the critical angle of 

incidence. If the angle of incidence is larger than  total internal reflection occurs. For such case an 
evanescent wave exists along the interface in the x direction (w.r.t. fig (6.12)) that attenuates 
exponentially in the normal i.e. z direction. Such waves are tightly bound to the interface and are 
called surface waves. 
 
QUESTIONS: 
 
1.Write down Maxwell’s field equations in the differential and integral form for time harmonic fields   
2.Derive the expressions for energy stored in electric and magnetic field. Which field is efficient.  
 
3.In a uniform plane wave, E and H are at right angles to each other. Prove.  
4.A lossy dielectric is characterized by R=1.5, R=1 and / =2.5x10-4. At a frequency of 200MHz, how far 
can a uniform plane wave propagate in the material before 
 

(i)it undergoes an attenuation 1Np 
 

(ii)its amplitude is halved 
 
5. Deduce the integral form of the theoram of Poynting and state the significance of the three terms 

appearing in the equation. 
 
6.What are the properties of uniform plane wave? 
 
7.Write Maxwell’s equation in integral form and interpret 
 
8.Show that characteristic impedance of free space is 377ohm 
 
9.State and explain Poynting Vector(P) and Poynting theorem. 
 

10.A brass(conductivity=107mho/m) pipe with inner and outer diameter of 3.4 and 4 cm carries a total 

current of 100A dc. Find Electric field (E), Magnetic field(H) and Poynting Vector(P) within the brass 
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TIME VARYING MAGNETIC FIELDS AND MAXWELL’S EQUATIONS 
 

 

Introduction 
 

 

Electrostatic fields are usually produced by static electric charges whereas 

magnetostatic fields are due to motion of electric charges with uniform velocity 

(direct current) or static magnetic charges (magnetic poles); time-varying fields 

or waves are usually due to accelerated charges or time-varying current. 

 

 Stationary charges  Electrostatic fields 



 Steady current  Magnetostatic fields 



 Time-varying current  Electromagnetic fields (or waves) 
 
 

 

Faraday discovered that the induced emf, Vemf (in volts), in any closed circuit is 

equal to the time rate of change of the magnetic flux linkage by the circuit 

 

This is called Faraday’s Law, and it can be expressed as 
 

 

V
emf  

d 

N 

d  
 

dt dt 1.1  
   

 

 

 

where N is the number of turns in the circuit and  is the flux through each 

turn. The negative sign shows that the induced voltage acts in such a way as to 

oppose the flux producing it. This is known as Lenz’s Law, and it emphasizes 

the fact that the direction of current flow in the circuit is such that the induced 

magnetic filed produced by the induced current will oppose the original 

magnetic field. 
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Fig. 1 A circuit showing emf-producing field Ef and electrostatic field Ee 
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TRANSFORMER AND MOTIONAL EMFS 
 

 

Having considered the connection between emf and electric field, we may 

examine how Faraday's law links electric and magnetic fields. For a circuit with 

a single (N = 1), eq. (1.1) becomes 

V
emf N 

d 
1.2 

 

dt  

     
In terms of E and B, eq. (1.2) can be written as 

V
emf  E dl  

d 
B dS 1.3 

 

dt  

 L S  
 

    

where,  has been replaced by B dS  and S is the surface area of the circuit 
S 

 
bounded by the closed path L. It is clear from eq. (1.3) that in a time-varying 

situation, both electric and magnetic fields are present and are interrelated. 

Note that dl and dS in eq. (1.3) are in accordance with the right-hand rule as 

well as Stokes's theorem. This should be observed in Figure 2. The variation of 

flux with time as in eq. (1.1) or eq. (1.3) may be caused in three ways: 

 
1. By having a stationary loop in a time-varying B field  

 
2. By having a time-varying loop area in a static B field  

 
3. By having a time-varying loop area in a time-varying B field.  

 

 

A. STATIONARY LOOP IN TIME-VARYING B FIELD (TRANSFORMER EMF)  
 

 

This is the case portrayed in Figure 2 where a stationary conducting loop is in 

a time varying magnetic B field. Equation (1.3) becomes 
 

V
emf  E dl  

B
 dS 1.4 

 

  L S t  
 

     

      
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2: Induced emf due to a stationary loop in a time varying B field. 
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This emf induced by the time-varying current (producing the time-varying B 

field) in a stationary loop is often referred to as transformer emf in power 

analysis since it is due to transformer action. By applying Stokes's theorem to 

the middle term in eq. (1.4), we obtain 

E dS  
B

 dS 1.5 
 

S S t  
 

   

 

 

For the two integrals to be equal, their integrands must be equal; that is, 
 

 

 E  B 1.6 

 t  
 

 

This is one of the Maxwell's equations for time-varying fields. It shows that the 

time varying E field is not conservative ( x E  0). This does not imply that the 

principles of energy conservation are violated. The work done in taking a 

charge about a closed path in a time-varying electric field, for example, is due 

to the energy from the time-varying magnetic field. 

 

B. MOVING LOOP IN STATIC B FIELD (MOTIONAL EMF) 
 

 

When a conducting loop is moving in a static B 

loop. We recall from eq. (1.7) that the force on 

velocity u in a magnetic field B is 

 

 

field, an emf is induced in the 

a charge moving with uniform 

 

Fm = Qu x B 1.7 
 

 

We define the motional electric field Em as 
 

 

Em  
Fm 

 u B 1.8  
Q  

    
 

 

 

If we consider a conducting loop, moving with uniform velocity u as consisting 

of a large number of free electrons, the emf induced in the loop is 

Vemf    Em  dl u Bdl 1.9  
L L 
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This type of emf is called motional emf or flux-cutting emf because it is due to 

motional action. It is the kind of emf found in electrical machines such as 

motors, generators, and alternators. 

 

C. MOVING LOOP IN TIME-VARYING FIELD 
 

 

This is the general case in which a moving conducting loop is in a time-varying 

magnetic field. Both transformer emf and motional emf are present. Combining 

equation 1.4 and 1.9 gives the total emf as 
 

Vemf    E dl 
B

 dS u Bdl 1.10 
 

L S t L  
 

   

 Em  u  B 1.11 
 

or from equations 1.6 and 1.11.     
 

 E  
B

 u  B 1.12 
 

 t   
 

 
 

DISPLACEMENT CURRENT 
 

 

For static EM fields, we recall that 
 

 

 x H = J 1.13 
 

 

But the divergence of the curl of any vector field is identically zero. 
 

 

Hence, 
 

 

 . ( x H) = 0 =  . J 1.14 
 

 

The continuity of current requires that 
 

 

 J  v  0 1.15 

 t   
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Thus eqs. 1.14 and 1.15 are obviously incompatible for time-varying 

conditions. We must modify eq. 1.13 to agree with eq. 1.15. To do this, we add 

a term to eq. 1.13, so that it becomes 

 

 x H = J + Jd 1.16 
 

 

where Jd is to be determined and defined. Again, the divergence of the curl of 

any vector is zero. Hence: 

 

 . ( x H) = 0 =  . J +  . Jd 1.17 
 

 

In order for eq. 1.17 to agree with eq. 1.15, 
 

 

 J d  J  
v 

 
 
D 

D 
1.18  

t t t  

      
 

or         
 

J d   

D       

1.19 

 

t       
 

Substituting eq. 1.19 into eq. 1.15 results in  
 

 H  J  D      1.20 
 

  t       
  

This is Maxwell's equation (based on Ampere's circuit law) for a time-varying 

field. The term Jd = D/t is known as displacement current density and J is the 

conduction current density (J = E)3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3 Two surfaces of integration showing the need for Jd in Ampere’s circuit 
law 

 

 

The insertion of Jd into eq. 1.13 was one of the major contribution of Maxwell. 

Without the term Jd, electromagnetic wave propagation (radio or TV waves, for 

example) would be impossible. At low frequencies, Jd is usually neglected 
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compared with J. however, at radio frequencies, the two terms are comparable. 

At the time of Maxwell, high-frequency sources were not available and eq. 1.20 

could not be verified experimentally. 

 

Based on displacement current density, we define the displacement current as 
 

I d 


 
J

 d dS   D 
dS 1.21   

 

   t  
 

 

 

We must bear in mind that displacement current is a result of time-varying 

electric field. A typical example of such current is that through a capacitor 

when an alternating voltage source is applied to its plates. 

 

PROBLEM: A parallel-plate capacitor with plate area of 5 cm2 and plate 

separation of 3 mm has a voltage 50 sin 103 t V applied to its plates. Calculate 

the displacement current assuming  = 2 0. 

 

Solution:  

D  E   
V

 

     d   
 

J   D    dV    
 

d d  dt 
   

  t    
 

Hence,            
 

I d  J d S  
S

 dV 
 C 

dV 
 

 

dt 
 

       d  dt  
 

 
 

which is the same as the conduction current, given by 

 

I c  
dQ 

 S 
ds  S 

dD 
 S 

dE 
 S dV 

 C 
dV 

 

dt dt dt 
  

dt 
 

     dtd  dt  
 

 

 

I 
 
 2  

10 9 
 

5 10 4 
10

3
 50 cos10

3
 t  

d 
      

 

36 3 10
3
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= 147.4 cos 103 t nA 
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EQUATION OF CONTINUITY FOR TIME VARYING FIELDS 
 

 

Equation of continuity in point form is 
 

 

 . J = -v 
 

 

where, 
 

J = conduction current density (A/M2)   

P = volume charge density (C/M3), v  v 

  t 

 = vector differential operator (1/m)   
 

 

  a 
  

 a 
  

 a 
  

 

x
  x 

y
  y 

z
  z 

 

   
 

 

 

Proof: Consider a closed surface enclosing a charge Q. There exists an outward 

flow of current given by 

I JdS 
 

S 
 

 

This is equation of continuity in integral form. 
 

 

From the principle of conservation of charge, we have 

 

I JdS
dQ

 
dt 

S 
 

 

From the divergence theorem, we have  

I JdSJd 
 

S v 
 

Thus,  J d  


 
dQ

 
 

  dt 
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By definition,   Q   d 
 

 
 

 

where,  = volume charge density (C/m3) 
 

 

 J d    
. 

 

So, d    d 
 

t  

      
 

       

where 
.     

 


  

     

t   
 

      

 

 

The volume integrals are equal only if their integrands are equal. 
 
 
 
 
 

Thus,  . J = - 
.
 

 
 
 

MAXWELL'S EQUATIONS FOR STATIC EM FIELDS 
 

 

Differential (or 
Integral Form Remarks 

 

Point) Form 
 

     
 

       
 

 . D = v   S 

D
 

dS
 


 


v 

dv
  Gauss's law 

 

   v    
 

        
 

 . B = 0 

  

SB dS  0 
  Nonexistence of magnetic 

 

    monopole  

       
 

        
 

B   

L E dl  
 

B

 
  

 

 x E =- t 
   

dS Faraday’s Law 
 

  t 
 

     s   
 

      
 

 x H = J + 


D  

L H dl  J dS  
Ampere's circuit law  

t 
 

 

 s    
 

        
 

 

MAXWELL’S EQUATIONS FOR TIME VARYING FIELDS 
 

 

These are basically four in number. 
 
Maxwell's equations in differential form are given by 

 x H = 
D

  + J 

t 

 x E = - 
B
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t 
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.D = 

.B = 0 

Here, 
 

H = magnetic field strength (A/m) 

D = electric flux density, (C/m2) 

(D/t) = displacement electric current density 

(A/m2) J = conduction current density (A/m 2) 
 

E = electric field (V/m) 
 

B = magnetic flux density wb/m2 or Tesla 
 

(B/t) = time-derivative of magnetic flux density (wb/m2 -

sec) B is called magnetic current density (V/m2) or Tesla/sec 
 

P = volume charge density (C/m3)  
Maxwell's equations for time varying fields in integral form are given by 
 

 
.
  

dS  

H dL  D J  
 

L S 


   

 

E dL B dS   
 

L S   
 

D dS   d   
 

S    
 

BdS0 
S 

 
MEANING OF MAXWELL'S EQUATIONS 
 

 

1. The first Maxwell's equation states that the magnetomotive force around 

a closed path is equal to the sum of electric displacement and, 

conduction currents through any surface bounded by the path.  

 

2. The second law states that the electromotive force around a closed path 

is equal to the inflow of magnetic current through any surface bounded 

by the path.  

 

3. The third law states that the total electric displacement flux passing 

through a closed surface (Gaussian surface) is equal to the total charge 

inside the surface.  

 

4. The fourth law states that the total magnetic flux passing through any 

closed surface is zero.  
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MAXWELL’S EQUATIONS FOR STATIC FIELDS 
 

 

Maxwell’s Equations for static fields are:  

 H  J  HdLJdS 
 

L S  

E  0  EdL0 
 

L  

D     DdS d 
 

S  
 

 B  0  BdS0
 

S 
 

 

As the fields are static, all the field terms which have time derivatives are zero, 

that is, D = 0, 
B

  = 0. 

 t  t 
 

 

PROOF OF MAXWELLS EQUATIONS 
 

 

1. From Ampere's circuital law, we have 
 

 

 x H = J 
 

 

Take dot product on both sides 
 

 

 .  x H =  . J 
 

 

As the divergence of curl of a vector is zero, 
 

 

RHS =  . J = 0 
 

 

But the equation of continuity in point form is 
 

 

 J  
 

  

t  

  
  

no
tes

4f
ree

.in



This means that if  x H = J is true, it is resulting in  . J = 0. 
 

 

As the equation of continuity is more fundamental, Ampere's circuital 

law should be modified. Hence we can write 

 

 x H = J + F Take 

dot product on both sides 


 .  x H =  . J +  . F 

that is,  .  x H = 0 =  . J +  . F 

 
Substituting the value of .J from the equation of continuity in the 

above expression, we get 

 

 . F + (-) = 0 
 

 

or,  . F = - 
 

 

The point form of Gauss's law is 
 

 

 . D =  
 

 

or,  . D =  
 

 

From the above expressions, we get 
 

 

 . F =  . D 
 

 

The divergence of two vectors are equal only if the vectors are identical, 
 

 

that is,   F = D 
 

 

So,  x H = D + J 
 
Hence proved. 
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2. According to Faraday's law, 
 
 
 
 
 

emf  


 
d

 
dt 

 

 

 = magnetic flux, (wb) 
 

 

and by definition,  

 emf  E dL  
 

 L    
 

 E dL  
d

  
 

 L dt  
 

     

But   B dS    
 

 S    
 

 E dL 
B

 dS 
 

 L S t  
 

    

 B dS,  B  B 
 

 S   t 
 

     

 
Applying Stoke's theorem to LHS, we get  

EdLEdS 
 

L S  

 E dS   B dS 
 

S S 
 

 

Two surface integrals are equal only if their integrands are equal, 
 

 

that is,    x E = - B 
 

 

Hence proved. 
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3. From Gauss's law in electric field, we have 
 

DdSQd 
 

S  
 

 

Applying divergence theorem to LHS, we get  

DdSDdd 
 

S   
 

 

Two volume integrals are equal if their integrands are equal, 
 

 

that is,       . D =  
 

 

Hence proved. 
 
 
 

 

4. We have Gauss's law for magnetic fields as 
 

BdS0 
 

S 
 

 

RHS is zero as there are no isolated magnetic charges and the magnetic flux 

lines are closed loops. 

 

Applying divergence theorem to LHS, we get  

B d0 
 

 
 
or, 
 

 . B = 0   Hence proved. 
 

 

PROBLEM 1: 
 

Given E = 10 sin (t - y) ay V/m, in free space, determine D, B and H. 
 

 

Solution: 
 

E = 10 sin (t - y) ay, V/m 
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D = 0 E, 0 = 8.854 x 10-12 F/m 
 
 

D = 100 sin (t - y) ay, C/m2 
 
 

Second Maxwell’s equation is 
 

 

 x E = -B 

 

  
a

x 
a

 y  
a

z       
 

That is,  E  
           

 

x y 
 

z 
    

 

       
 

  0  E y 0       
 

           
 

or, E  ax  
  E

 y  0 
 
a

z   E
 y   

z x 
 

          
 

 
 

As  Ey = 10 sin (t - z) V/m 

 

E
 y   0 

x 
 

 

Now,  x E becomes 
 

 

E 
E

 
y
 a 

z 
x
 

 

 

= 10  cos (t - z) ax 

 

 
B

      
 

  t      
 

 B 10 cost  zdt ax 
 

or B   
10 

sint  z az , wb / m 
2
  

  
 

         
 

and H  
  B 

 
10 

sint  zaz , A / m  

     
 

    

0 
   

 

     0  
  

no
tes

4f
ree

.in



PROBLEM 2: If the electric field strength, E of an electromagnetic wave in free  

  z  V/m, find the magnetic field, H.  

   
space is given by E = 2 cos  t  

0 

a

 y  

   
 

Solution:  We have     
 

B/t = - x E     
 

 

 

 ax  a y  az  
 

 
      

 

       

x 
 

y 
 

z 
 

 

    
 

 0 E y 0  
 

        

 
 
 



a

x 





 

z 

E
 y 


 


 

a
 y 

(0)
 


 

a
z 





x 

E
 y 




 

 
 

 

   E y a                          
 

      

x 

                        

   z                             
 

  2 sin 

 t    z  


 a           

 

        

x          

  

0 
          

0 
             

 

                           
 

    2  
 
          z       

 

 B         sin t         dt a 
x 

 

                

    

0 
       

0 
    

 

                    
 

or, B  
 2       

 
  z   

      
 

                            

0 

 cost        

a
x     

 

                


0        
 

or, H  
   B   

 
   2   

cos 


    z 


  

                  

  

 

         t     

a
x 
 

      0      00            


0   
 

Thus, H  
   2              z  

      
 

                              

  

0 
  cost  

0 
 

a
x      

 

                         
 

       1              z         
 

 H            cos t         a 
x A / m  

                   

      

60 
          

0 
       

 

                        
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
0 
 0   120 

 

          
 

     0      
 

       
1 
  

 

         

0         

     

 
   

0 
 

      0   
 

            
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PROBLEM 3: If the electric field strength of a radio broadcast signal at a TV 

receiver is given by 

 
E = 5.0 cos (t - y) az, V/m, 

 

determine the displacement current density. If the same field exists in a 

medium whose conductivity is given by 2.0 x 103 (mho)/cm, find the 

conduction current density. 

 
Solution: 
 

E at a TV receiver in free space 

 

= 5.0 cos (t - y) az, V/m 

 

Electric flux density 
 

 

D = 0 E = 5 0 cos (t - y) az, V/m 

 

The displacement current density 
 

 

J d  D  D   
 

    t   
 

   5  cost  ya   

   

  
t 

0 z  
 

     
 

 

 

Jd = -50  sin (t - y) az, V/m2 
 
 

The conduction current density, 

 

Jc =  E 

 

 = 2.0 x 103 (mho) /cm 



= 2 x 105 mho /m  

 

Jc = 2 x 105 x 5 cos (t - y) az 
 

Jc = 10
6
 cos (t - y) az V/m

2
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UNIFORM PLANE WAVES 

In free space ( source-less regions where 
0J   

), The wave equation for electric field, in free-space 

is, 

2
2

2
________ (2)

E
E

t



  

  

The wave equation (2) is a composition of these equations, one each component wise, 

ie,   

2 2

2 2

2 2

2 2

2 2

2 2

_______(2)

_______(2)

_______(2)

Ex Ey
a

x t

Ey Ey
b

y t

Ez Ez
c

z t







 
 

 

 
 

 

 
 

   

Further, eqn. (1) may be written as 

0 ________ (1)
Ex Ey Ez

a
x y z

  
  

  
 

For the UPW, E is independent of two coordinate axes; x and y axes, as we have assumed. 

0
x y

 
  

 
 

Therefore eqn. (1) reduces to 

0 ______ (3)zE

z




  

ie., there is no variation of Ez in the z direction. 

Also we find from 2 (a) that 

2

2

Ez

t



 = 0 ____(4) 
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These two conditions (3) and (4) require that Ez can be 

(1) Zero 

(2) Constant in time or 

(3) Increasing uniformly with time. 

A field satisfying the last two of the above three conditions cannot be a part of wave motion. Therefore Ez can be put 

equal to zero, (the first condition). 

     

The uniform plane wave (traveling in z direction) does not have any field components of E & H in its direction of 

travel. 

Therefore the UPWs are transverse., having field components (of E & H ) only in directions perpendicular to the 

direction of propagation does not have any field component only the direction of travel. 

RELATION BETWEEN E & H in a uniform plane wave. 

We have, from our previous discussions that, for a UPW traveling in z direction, both E & H are independent of x 

and y; and E & H have no z component. For such a UPW, we have, 

ˆˆ ˆ

ˆ ˆ( 0) ( 0) _____ (5)

( 0)

ˆˆ ˆ

ˆ ˆ( 0) ( 0) _____ (6)

( 0)

y x

z z

y x

z z

i j k

E E
E i j

x y z

Ex Ey Ez

i j k

H H
H i j

x y z

Hx Hy Hz

     
         

       



     
         

       


 

Then Maxwell’s curl equations (1) and (2), using (5) and (6), (2) becomes, 

ˆ ˆ ˆ ˆ ______ (7)

ˆ ˆ ˆ ______ (8)

E Ex Ey Hy Hx
H i j i j

t t t z z

and

H Hx Hy Ey Ex
E i j i j

t t t z z
  

       
          

       

       
          

       

 

   Ez = 0 
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Thus, rewriting (7) and (8) we get 

ˆ ˆ ˆ ˆ ______ (7)

ˆ ˆ ˆ ˆ ______ (8)

Hy Hx Ex Ey
i j i j

z z t t

Ey Ex Hx Hy
i j i j

z z t t


    
     

    

    
     
    

 

Equating î th and j th terms, we get 

 

   

1 0 0

1 0 0 0 1

' '0 0
1

0

'

1

0

______ 9 ( )

______ 9 ( )

ˆ ______ 9( )

______ 9 ( )

1
; . ,

. .

. 9( ), ,

Hy Ex
a

z t

Hx Ey
b

z t

Ey Hx
i c

z t

and

Ex Hy
d

z t

Let

Ey f z t Then
E

Ey
f z t f

t

From eqn c we get

Hx
f f

t

Hx f dz





 


  



 



 
  

 

 
 

 

 
 
 

 


 

  


    






   




    .c
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 '
0' '1

1 1

1
z

Now

z tf
f f

z z

f
H C

z





 
 

 


   


 

 '
0' '1

1 1

1
1

Now

z tf
f f

z z

f
dz c f c

z

Hx Ey c



 



 
 

 

 
     




  



 

The constan C indicates that a field independent of Z could be present. Evidently this is not a part of the wave 

motion and hence is rejected. 

Thus the relation between HX and EY becomes, 

__________ (10)

x y

y

x

H E

E

H






 

  


 

Similarly it can be shown that 

x

y

E

H





_____________ (11) 
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In our UPW, 
ˆ ˆ

x yE E i E j 
 

 

2

2
2

2

0

_______ ( )

E
E E

t t

E E
E xi

t t

But E

E

 

 



  
    

  

 
    

 

 


 

 

DERIVATION OF WAVE EQUATION FOR A CONDUCTING MEDIUM: 

 

0 0. Surface charges and hence surface currents exist, static fields or charges 

do not exist. 

For the case of conduction media, the point form of maxwells equations are: 
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________ ( )

_________ ( )

0 _________ ( )

0 _________ ( )

( ),

D E
H J E i

t t

B H
E ii

t t

D E E iii

B H H iv

Taking curl on both sides of equation i we get

E
H E

t





 





 
    

 

 
    

 

     

     

 
    

 

 

 

 

2

2

2

2
2

2

________ ( )

. ( ) . ( ),

_________ ( )

_________ ( )

. ( )

_________ (

E E v
t

substituting eqn ii in eqn v we get

H H
H vi

t t

But H H H vii

eqn vi becomes

H H
H H vii

t t

  

 


 



    
       

    

    



 
      

 

2
2

2

)

1 1
0 0

. ( ) ,

0 ________ ( )

i

B
But H B

eqn viii becomes

H H
H ix

t t

  

 

      



 
    

   
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This is the wave equation for the magnetic field H in a conducting medium. 

Next we consider the second Maxwell’s curl equation (ii) 

________ ( )
H

E ii
t




  
  

Taking curl on both sides of equation (ii) we get 

 

  2

________ ( )

;

HH
E x

t t

But E E E

 
 

     
 

    
 

Vector identity and substituting eqn. (1) in eqn (2), we get 

  2

2

2

0

_______ ( )

E
E E E

t t

E E
xi

t t

But E

 

 



  
      

  

 
   

 

 


 

 conductor, 

Therefore we get 0E   

Therefore eqn. (xi) becomes, 

2
2

2

E E
E

t t
 

 
    

   ____________ (xii) 

This is the wave equation for electric field E in a conducting medium. 

Wave equations for a conducting medium: 

1. Regions where conductivity is non-zero. 

2. Conduction currents may exist. 

For such regions, for time varying fields 

The Maxwell’s eqn. Are: 
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_________ (1)

__________ (2)

: ( / )

E
H J

t

H
E

t

J E Conductivity m



 


  




  



 
 

    = conduction current density. 

Therefore eqn. (1) becomes, 

_________ (3)
E

H E
t




  
  

Taking curl of both sides of eqn. (2), we get 

 

 

 

2

2

2

2
2

2

________ (4)

( )

sin . (4) ,

_______ (5)

1
tan ,

E H
t

E E

t t

But

E E E vector identity

u g this eqn becomes vector identity

E E
E E

t t

But D

is cons t E D



 

 




   



 
  

 

    

 
     

 

  

   
  

Since there is no net charge within a conductor the charge density is zero ( there can be charge on the surface ), we 

get. 

1
0E D   

  

 Therefore using this result in eqn. (5) 

 we get 

2
2

2
0 ________(6)

E E
E

t t
 

 
    

   

This is the wave eqn. For the electric field E in a conducting medium. 

This is the wave eqn. for E . The wave eqn. for H is obtained in a similar manner. 

Taking curl of both sides of (1), we get 
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2

2

________ (7)

________ (2)

(1) ,

________ (8)

E
H E

t

H
But E

t

becomes

H H
H

t t





 


   




  





 
    

 

 

As before, we make use of the vector identity. 

  2H H H    
 

in eqn. (8) and get 

 
2

2

2

2
2

2

________ (9)

1 1
0 0

.(9)

________ (10)

H H
H H

t t

But

B
H B

eqn becomes

H H
H

t t

 

  

 

 
      

 

      



 
   

   

This is the wave eqn. for H in a conducting medium. 

Sinusoidal Time Variations: 

In practice, most generators produce voltage and currents and hence electric and magnetic fields which vary 

sinusoidally with time. Further, any periodic variation can be represented as a weight sum of fundamental and 

harmonic frequencies. 

Therefore we consider fields having sinusoidal time variations, for example, 

  E = Em  

  E = Em  

 

Therefore every field or field component varies sinusoidally, mathematically by an additional term. Representing 

sinusoidal variation. For example, the electric field E can be represented as 
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 

   

, , ,

., , ; , ,

E x y z t as

ie E r t r x y z
 

Where E is the time varying field. 

The time varying electric field can be equivalently represented, in terms of corresponding phasor quantity E (r) as 

   , ________ (11)j t

eE r t R E r e      

The symbol ‘tilda’ placed above the E vector represents that E is time – varying quantity. 

The phasor notation: 

We consider only one component at a time, say Ex. 

The phasor Ex is defined by 

     , ________ (12)j t

x e xE r t R E r e 
 

 

                                                            |  Ex | 

                                                                                                             |  Ex | 

                                                                                   

 

 

 

 

 xE r
denotes Ex as a function of space (x,y,z). In general 

 xE r
is complex and hence can be represented as a 

point in a complex and hence can be represented as a point in a complex plane. (see fig) Multiplication by 
jwte

results in a rotation through x 
jwte traces out a 

circle with center at the origin. Its projection on the real axis varies sinusoidally with time & we get the time-

harmonically varying electric field Ex (varying sinusoidally with time). We note that the phase of the sinusoid is 

x. 

Therefore the time varying quantity may be expressed as 

  ________ (13)

cos( ) ________ (14)

j j t

x e x

x

E R E e e

E t

 

 



 
 

Maxwell’s eqn. in phasor notation: 

In time – harmonic form, the Maxwell’s first curl eqn. is: 

 

            t     

                          
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_______ (15)
D

H J
t


  

  

using phasor notation, this eqn. becomes, 

  ________ (16)j t j t j t

e e eR He R De R Je
t

  
          

The diff. Operator & Re part operator may be interchanged to get, 

   

  0

j t j t j t

e e e

j t j t

e e

j t

e

R He R De R Je
t

R j D e R Je

R H j D J e

  

 







 
    

       



      

This relation is valid for all t. Thus we get 

________ (17)H J j D    

This phasor form can be obtained from time-varying form by replacing each time derivative by 

.,jw ie is to be replaced by
t


 

 
   

For the sinusoidal time variations, the Maxwell’s equation may be expressed in phasor form as: 

 (17)

(18)

(19)

(20) 0 0

L
S

L
S

V V
S

V

S

H J j D H dL J j D ds

E j B E dl j B ds

D D ds d

B B ds

 

 

 

    

    

  

  

 

 

 


 

The continuity eqn., contained within these is, 

_______ (21)
S

vol

J j J ds j dv      
 

The constitutive eqn. retain their forms: 

  

D E

B H

J E









 ____ (22) 
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For sinusoidal time variations, the wave equations become 

 

 

2 2

2 2

( )

( )

E E for electric field

H H for electric field

 

 

   

   
_________ (23) 

Vector Helmholtz eqn. 

In a conducting medium, these become 

 

 

2 2

2 2

0

0

E j E

H j H

  

  

   

   
  ________ (24) 

Wave propagation in a loss less medium: 

In phasor form, the wave eqn. for VPW is 

2
22

22

2

2

1 2

; _______ (25)

_______ (26)

y

y

j x j x

y

E
EE

Ex
x

E

E C e C e 

 







   

  
  

  
 

C1 & C2 are arbitrary constants. 

The corresponding time varying field is 

   

   

   

1 2

1 2

,

______ (27)

cos cos ______ (28)

j t

y e y

t z t zj j

e

E x t R E x e

R C e C e

C t z C t z



   

   

 

   

  
 

   
 

When C1 and C2 are real. 

Therefore we note that, in a homogeneous, lossless medium, the assumption of sinusoidal time variations results in a 

space variation which is also sinusoidal. 

Eqn. (27) and (28) represent sum of two waves traveling in opposite directions. 

If C1 = C2 , the two traveling waves combine to form a simple standing wave which does not progress. 

If we rewrite eqn. (28) with Ey as a fn of (x-  




 

Let us identify some point in the waveform and observe its velocity; this point is 
 t x a  

constant 

Then  

' 'a t

dx x

dt t



 


  

 
 
  

   

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This velocity is called phase velocity, the velocity of a phase point in the wave. 

e. 

 

 

Wavelength:  

ie., 

 

0

2

2 2

2

;

1
:

Z

or

But

f

or

f f in H

 

 
 

 

  
 

 

 


 

 



 

   



 


 

Wave propagation in a conducting medium 

We have, 
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Where         
 

2 2

2 2

0E E

j

j j



   

  

  

  

  
 

propagation constant is, in general, complex. 

 

         

         

The eqn. for UPW of electric field strength is 

  

2
2

2

E
E

x





  

One possible solution is 

  
  0

xE x E e 
 

Therefore in time varying form, we get 

  

 

0

, x j t

e

x jwt

e

E x t R E e e

e R E e

 







   

     

This eqn. shown that a up wave traveling in the +x direction and attenuated by a factor 
xe 

. 

The phase shift factor 

 

2

and velocity f













 

 

 j j t  
 

   =    

2

2 2

2

2 2

1 1
2

1 1
2

 




 
 



 
  

 
 

 
   

 
 

 

Conductors and dielectrics: 

We have the phasor form of the 1
st
 Maxwell’s curl eqn. 

c dispH E j E J J      
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where cJ E 
conduction current density ( A/m

2
 ) 

          dispJ j E  
displacement current density ( A/m

2
 ) 

cond

disp

J

J




 


 

We can choose a demarcation between dielectrics and conductors; 

1





  

*  

1





  is conductor.  Cu: 3.5*10
8
 @ 30 GHz 

*  

1





  is dielectric.  Mica: 0.0002 @ audio and RF 

*  For good conductors,   are independent of freq. 

*  For most dialectics,    are function of freq. 

*   



   is relatively constant over frequency range of interest 

  Therefore dielectric “ constant “ 

*   



   dissipation factor D 

if D is small, dissipation factor is practically as the power factor of the dielectric. 

  

 
-1

D 

PF & D difference by <1% when their values are less than 0.15. 

Example 11.1 

1. Express 

 
6 0

8 0

2 10 0.5 30

100 cos 2 10 0.5 30 /

100

y

j t z

y e

E t z v m as a phasor

E R e 



  

  

 
   

 Drop Re and suppress e
jwt

 term to get phasor 

Therefore phasor form of Eys = 

00.5 30100 ze 

 

Whereas Ey is real, Eys  is in general complex. 

Note: 0.5z is in radians; 
030 in degrees. 

Example 11.2 

Given   
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0 0 0ˆ ˆ ˆ100 30 20 50 40 210 , /sE ax ay az V m     
 

find its time varying form representation 

Let us rewrite sE
as 

     

     

0 0 0

0 0 0

30 50 210

30 50 210

0 0 0

ˆ ˆ ˆ100 20 40 . /

100 20 40 /

100 cos 30 20 cos 50 40 cos 210 /

j j j

s

j t

e s

j t j t j t

e

E e ax e ay e az V m

E R E e

R e e e V m

E t t t V m



  

  



  

  

    

   
  

    

 

None of the amplitudes or phase angles in this are expressed as a function of x,y or z. 

Even if so, the procedure is still effective. 

2. Consider 

 

 
 

 

 

 

0.1 20

0.1 20

0.1

ˆ20 /

ˆ20

ˆ20 cos 20 /

, ,

: , ,

j z

j z

s

j t

e

z

x x

j tx
e x

j t

e x

H e ax A m

H t R e ax e

e t z ax A m

E E x y z

E
Note consider R E x y z e

t t

R j E e











 

 





 
 

 



 
    

     

Therefore taking the partial derivative of any field quantity wrt time is equivalent to multiplying the corresponding 

 

Example 

Given 

  
 

   

   

   

0 0.4

0
ˆ ˆ500 40 200 600 /

2,3,1 0

2,3,1 10 .

3,4,2 20 .

j x

sE ay j az e V m

Find a

b E at at t

c E at at t ns

d E at at t ns



   






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Q. Fro

m given data, 

    

0 0

8
6

9
7

9

6

0.4

0.4 3 10
120 10

10
4 10

36

19.1 10f Hz

  











  

 
   

 

 
 

R. Giv

en, 

     

  

   

 
   

0

0 0

0 0

0 0.4

40 0.4 71.565 0.4

0.4 40 0.4 71.565

0.4 40 0.4 71.565

ˆ ˆ500 40 200 600

ˆ ˆ500 632.456

ˆ ˆ500 632.456

ˆ ˆ500 632.456

500 cos 0

j x

s

j j x j j x

j x j x

j x j xj t j t

e

E ay j az e

e e ay e e az

e ay e az

E t R e e ay e e az

t

 





   

   

   

   

 

 

  
  

    

     

0

0

ˆ ˆ.4 40 632.456 cos 0.4 71.565

ˆ ˆ2,3,1 0 500 cos 0.4 40 632.456 0.4 71.565

ˆ ˆ36.297 291.076 /

x ay t x az

E at t x ay x az

ay az V m

   

      

 

  

c) 

   

 

 

6 9 0

6 9 0

10 2,3,1

ˆ500 cos 120 10 10 10 0.4 2 40

ˆ632.456 cos 120 10 10 10 0.4 2 71.565

ˆ ˆ477.823 417.473 /

E at t ns at

ay

az

ay az V m







      

      

 

 

d) 

at t = 20 ns,  

                     

 2,3,1

ˆ ˆ438.736 631.644 /

E at

ay az V m 
 

D 11.2: 
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Given 
 0 0.07ˆ ˆ2 40 3 20 /j z

sH ax ay e A m   
  for a UPW traveling in free space. Find 

x at p(1,2,3) at t = 31 ns.                (c)  
H

 at  t=0 at the origin. 

(a)  we have   p = 0.07                 
( )j ze term

 

8 6

6

0.07

0.07
0.07 3 10 21.0 10 / sec

21.0 10 / sec

rad

rad

 




  

     


 
 

(b) 

   
   

 
 

 

 

0 040 0.07 20 0.07

0 0

0

6 0

6 9 0

3

ˆ ˆ2 3

ˆ ˆ2 cos 0.07 40 3 cos 0.07 20

( ) 2cos 0.07 40

( ) 1,2,3

2cos 2.1 10 0.21 40

31 sec; 2cos 2.1 10 31 10 0.21 40

2cos 651 10

j j z j j z j t

e

x

x

H t R e e ax e e ay e

t z ax t z ay

H t t z

H t at p

t

At t n



 



  





  
 

     

  

   

      

  00.21 40

1.9333 /A m

 



 

(c) 

     

     

ˆ ˆ0 2cos 0.07 0.7 3cos 0.7 0.35

ˆ ˆ2cos 0.7 3cos 0.3

ˆ ˆ1.53 2.82

3.20666 /

H t at t z ax z ay

H t ax ay

ax ay

A m

      

 

 


 

In free space, 
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   

 

 

 

   

ˆ, 120sin /

,

120

120
ˆsin

120 120

1
sin

1
ˆ, sin

y

x

y

x

E z t t z ay V m

find H z t

E
we have

H

E
H t z ay

t z

H z t t z ax

 

 

 
 

 


 


 

   

     

  

   
 

Problem 3. J&B 

Non uniform plans waves also can exist under special conditions. Show that the function 

 sinzF e x t 




 
 

satisfies the wave equation 

2
2

2 2

1 F
F

c t


 

  

provided the wave velocity is given by 

2 2

2
1

c
e






 
  

 
 

Ans: 

From the given eqn. for F, we note that F is a function of x and z, 

 

 

 

 

2 2
2

2 2

2 2

2 2

2
2 2

2

cos

sin

sin

sin

z

z
z

z

z

F F
F

x y

F
e x t

x

F e
e x t F

x

F
e x t

z

F
e x t F

z










 


 

   


   







  












 
  

 


 



   
      

   


  




   

  
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   

    

2
2 2

2

2

2

2

cos

sin

z

z

F F

dF
e x t

dt

d F
e x t

dt

F










 
 

 

 
  

 







 
    

 

 
   

 

 
     

 

 
 

The given wave equation is 

 

2
2

2 2

2
2 2

2 2

2 2
2

2 2

2 2
2

2 2

2
2

2
2

2

2 2 2
2

2 22 2 2

2

2 2

2

1

1

1

1

F
F

c t

F F
c

c

c

c

c c

cc

c
or

c


 



 




 













 









 



 
    
 

   

 





  







 

Example 

The electric field intensity of a uniform plane wave in air has a magnitude of 754 V/m and is in the z direction. 

ting in the y direction. 

Find 

(i) Freq

 cosA t z 
. 

(ii) Find 

an expression for H . 
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In air or free space, 

      
83 10 / secc m   

 

(i)   

 

8
8

6

3 10
/ sec 1.5 10 150

2

2 2
3.14 /

2

754cos 2 150 10z

e
f m Hz MHz

m

rad m
m

E t y



 




 


    

  

    
 

 

(ii) 

For a wave propagating in the +y direction, 

xz

z z

EE

H H
  

 

For the given wave, 

 6

754 / ; 0

754 754
754 /

120 377

ˆ2cos 2 150 10 /

z x

x

E V m E

H A m

H t y ax A m




 

 

    

    
 

Example 

7
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7 7

3

2 2

3
3

3
5

6

3
7

6

2 1

1 1 1 1

4 10 5.8 10

1 1 1 66 10

4 5.8 23.2

66 10
( ) 9.3459 10

50

66 10
( ) 3.8105 10

3 10

66 10
( ) 3.8105 10

3 10

f

f

f f f

i m

ii m

iii m


  

 

 














 

   
 


   




  


  




  

  

Wave Propagation in a loss less medium: 

Definition of uniform plane wave in Phasor form: 

In phasor form, the uniform plane wave is defined as one for which the equiphase surface is also an 

equiamplitude surface, it is a uniform plane wave. 

For a uniform plane wave having no variations in x and y directions, the wave equation in phasor form may be 

expressed as 

2 2
2 2

2 2
0 ________ ( )

E E
E r E i

Z Z
  

 
    

   

where 
   

. Let us consider eqn.(i) for, the Ey component, we get 

                                         

2

2

2

y

y

E
E

Z



 

  

yE
has a solution of the form, 

                        1 2 ________ (2)j z j z

yE C e C e   
 

Where C1 and C2 are arbitrary complex constants. The corresponding time varying form of  yE
 is 

                        

    

 1 2

,

_______ (3)

j t

y e y

j z j z j t

e

E z t R E z e

R C e C e e



  



       

If  C1 and C2 are real, the result of real part extraction operation is, 
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     1 2, cos cos _______ (4)yE z t C t z C t z       
 

From (3) we note that, in a homogeneous lossless medium, sinusoidal time variation results in space variations 

which is also sinusoidal. 

Equations (3) and (4) represent sum of two waves traveling in opposite directions. 

If  C1 =  C2, the two wave combine to form a standing wave which does not progress. 

Phase velocity and wavelength: 

The wave velocity can easily obtained when we rewrite Ey as a function and 
 z t

, as in eqn. (4). This 

shows that 

                         

________(5)







 

In phasor form, identifying a some reference point on the waveform and observing its velocity may obtain the 

same result. For a wave traveling in the +Z direction, this point is given by 
t z a  

constant. 

dz

dt





  

, as in eqn. (5) 

This -shift 

constant and is a measure of  phase shift in radians per unit length. 

Wavelength: Wavelength is defined as that distance over which the sinusoidal waveform passes through a full 

 

ie., 

2

2 2 2 1
; ________(7)

2

, ________(8)

ff

f f in Hz

 

   
 

     

 



     
  

 
 

 

0

8

0

1
_______(9)

; 3 10 / secC C m

 
 

   



   
 

  
 

Wave propagation in conducting medium: 

The wave eqn. written in the form of Helmholtz eqn. is 

   

2 2

2 2

0 _______(10)

_______(11)

E E

where j j j



      

  

    
. 
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We have, for the uniform plane wave traveling in the z direction, the electric field E must satisfy 

       

2
2

2
_______(13)

E
E

Z





  

This equation has a possible solution 

       
  0 _______(14)ZE Z E e 

 

In time varying form this is becomes 

       
   0, _______(15)Z j t

eE z t R E e e 
 

     = 

  0 ________(16)
j t zz

ee R E e
  

 

This is the equation of a wave traveling in the +Z direction and attenuated by a factor 
Ze 

. The phase shift 

factor and the wavelength phase, velocity, as in the lossless case, are given by    

2
f

 
  

 
  

 

The propagation constant 

We have,             
  ________(11)j j     

 

 
22 2 2 22 ________(17)j j j                

 

2 2 2 2 2 2; ________(18)

________(19)
2

       

 






       



 

 

Therefore (19) in (18) gives: 
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2

2 2

4 2 2 2 2 2

2 2 2
4 2 2

2 4 2 2 2 2 2

2

2 2
2 2

2

2 2 2

2 2

2

2 2

2

2 2

4

4 4 0

0
4

2

1

2

1 1
2

1 1 _________(20)
2

1 1 _______
2

and


  



      

  
   

       


 
   

   



 
 



 
 



 
   
 

  

  

 


 
   

 


 
   

 
 

 
    

 

 
   

 
____(21)

 

 

We choose some reference point on the wave, the cosine function,(say a rest). The value of the wave ie., the 

 

                        0 2k z m 
   at m

th
 erest. 

Now let us fix our position on the wave as this m
th

  erest and observe time variation at this position, nothing that 

 

ie.,             
 0 0 2 /t k z m t z c      

 

Thus at t increases, position z must also increase to satisfy eqn. (   ). Thus the wave erest (and the entire wave 

moves in a +ve direction) with a speed given by the above eqn. Similarly, eqn. (  ) having a cosine argument 

 0t z 
describes a wave that moves in the negative direction (as + increases z must decrease to keep the 

argument constant). These two waves are called the traveling waves. 

Let us further consider only +ve z traveling wave: 

We have    
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ˆˆ ˆ

0 0

0x y

i j k

x y z

E E

  
 

  

              

 

 

   

0 0

0 0

0

0
0 0

0

0
0 0

0

0

ˆ

1

, cos

; 377 120

s s

y x
y

xs
y

jk z j z

oy z x

y x

x

y

E j H

E E
i j k j iH x j b

z z

E
j H

z

H E e E e
j

H z t E t z

E

H









 

 



   

 

  

  
       
  


  




   


  

      


 

Ey and Hx 

constant. 

Energy flow is in +Z direction. 

E and H are perpendicular to the direction of propagation; both lie in a plane that is transverse to the direction of 

propagation. Therefore also called a TEM wave. 

11.1.  The electric field amplitude of a UPW in the âz direction is 250 V/m. If E = 
ˆ

xE ax

H . 
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62 10
159.155

2 2 2

1.88495

1
6.283

120

250
0.6631 /

120 120

x
y

y

x
y

f
f KHz

C
km

f

period s
f

E
amplitude of H

H

E
H A m

 

  





 

 

   

 

 

  

   
 

 

1. Giv

en 
 0 0 0.07ˆ ˆ2 40 3 20 /j z

sH ax ay e A m   
for a certain UPW traveling in free space. 

x at p(1,2,3) at t = 31ns and (iii) 
H

at t = 0 at the orign.  

Wave propagation in dielectrics: 

For an isotopic and homogeneous medium, the wave equation becomes 

2 2

0 0

s s

r r r r

E k

k k    

   

     
 

For Ex component 

We have 

2
2

2

xs
xs

d E
k E

dz
 

  for Ex  comp. Of electric field wave traveling in Z – direction. 

k can be complex one of the solutions of this eqn. is, 

0

z j z

xs x

jk j

E E e e 

 
 

 


 

Therefore its time varying part becomes, 

 0 cosz

xs xE E e t z   
This is UPW that propagates in the +Z direction with phase 

constant 
 zZ e 

. Thus the general effect of a complex valued k is 

to yield a traveling wave that changes its amplitude with distance. 
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-ve   

 

–ve. 

Wave propagation in a conducting medium for medium for time-harmonic fields: 

(Fields with sinusoidal time variations) 

 

                       

2 2E E    
      

In a conducting medium, the wave eqn. becomes for sinusoidal time variations: 

 2 2 0E j E     
 

Problem: 

Using Maxwell’s eqn. (1) show that 

. 0D     in a conductor 

if ohm’s law and sinusoidal time variations are assumed. When ohm’s law and sinusoidal time variations are 

assumed, the first Maxwell’s curl equation is 

H E j E    
 

Taking divergence on both sides, we get, 

 
 

0

0

0

, &

H E j E

E j

or D j

are

 

 




 

      

   

 
   

 


 

constants and of finite values and 
0

 

0D   

 

 

Wave propagation in free space: 

The Maxwell’s equation in free space, ie., source free medium are, 

no
tes

4f
ree

.in



0 _________(1)

_________(2)

0 _________(3)

0 _________(4)

E
H H

t

H
E

t

D

B




 




  



 

 
 

Note that wave motion can be inferred from the above equation. 

How? Let us see, 

Eqn. (1) states that if electric field E is changing with time at some, point then magnetic field H has a curl at that 

point; thus H varies spatially in a direction normal to its orientation direction. Further, if E varies with time, then 

H will, in general, also change with time; although not necessarily in the same way. 

Next 

From (2) we note that a time varying H generates E ; this electric field, having a curl, therefore varies spatially in 

a direction normal to its orientation direction. 

We thus have once more a time changing electric field, our original hypothesis, but this field is present a small 

distance away from the point of the original disturbance. 

The velocity with which the effect has moved away from the original disturbance is the velocity of light as we are 

going to prove later. 

 

UNIFORM PLANE WAVE: 

Uniform plane wave is defined as a wave in which (1) both fields E and H lie in the transverse plane. Ie., the 

plane whose normal is the direction of propagation; and (2) both E and H are of constant magnitude in the 

transverse plane. 

Therefore we call such a wave as transverse electro magnetic wave or TEM wave. 

The spatial variation of both E and H fields in the direction normal to their orientation (travel) ie., in the 

direction normal to the transverse plane. 

 

Differentiating eqn. (7) with respect to Z1 we get 

2 2

0 02
________(9)xE Hy H

Z Z t t Z
 

    
    

     

 

Differentiating (8) with respect to t1 we get 
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22

0 2
_________(10)xEH

t Z t


 

    

Therefore substituting (10) into (9) gives, 

2 2

0 02 2
_________(11)x xE E

t t


 
  

   

This eqn.(11) is the wave equation for the x-polarized TEM electric field in free space. 

The constant 0 0

1

 
is the velocity of the wave in free space, denoted c and has a value 

83 10 / secm , on 

substituting the values, 

9
7

0 0

10
4 10 /

36
H m and 




   

Differentiating (10) with respect to 

Z and differentiating (9) with respect to ‘t’ and following the similar procedure as above, we get 

2 2

0 02 2
_________(13)

y yH H

Z t


 
 

   

eqn. (11 and (13) are the second order partial differential eqn. and have solution of the form, for instance, 

         
     1 2, / / ________(14)xE Z t f t Z f t Z    

 

Let 
ˆ

xE E ax
(ie., the electric field is polarized (!) in the x- direction !) traveling along Z direction. Therefore 

variations of E occurs only in Z direction. 

Form (2) in this case, we get 

    0 0

ˆ ˆ ˆ

ˆ ˆ0 0 _________(5)

0 0

x y z

x

x

a a a

E H H
E j j

x y z z t t

E

 
    

         
     

 

Note that the direction of the electric field E determines the direction of H , we is now along the y direction. 

Therefore in a UPW, E and H are mutually orthogonal. (ie., perpendicular to each other). This in a UPW . 

(i)  E  and H are perpendicular to each other (mutually orthogonal and 

(ii) E and H are also perpendicular to the direction of travel. 

Form eqn. (1), for the UPW, we get 

0 0
ˆ ˆy x

H EE
H ax t ax

Z t t

 
    

    
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(using the mutually orthogonal property) _______________(6) 

Therefore we have obtained so far, 

0

0

________(7)

________(8)

yx

y x

HE

Z t

H E

Z t




 
 

 
 

   

f1 and f2 can be any functions who se argument is of the form /t Z  . 

The first term on RHS represents a forward propagating wave ie., a wave traveling along positive Z direction. 

The second term on RHS represents a reverse propagating wave ie., a wave traveling along negative Z direction. 

(Real instantaneous form and phaser forms). 

The expression for Ex (z,t) can be of the form 

     

   

     

1

1

0 1 0 2

1

0 0 1 0 0 2

, , ,

cos / cos /

cos cos _______ 15

x x x

x p x p

x x

E z t E z t E z t

E t Z E t Z

E t k z E t k z

     

   

 

        
   

     
 

p is called the phase velocity = c in free space k0 is called the wave number in free space = c



rad/m 

_________(16) 

eqn. (15) is the real instantaneous forms of the electric (field) wave. ( experimentally measurable) 

0t and k0z have the units of angle usually in radians. 

 rad/sec. 

k0 : spatial frequency, phase shift per unit distance in rad/m. 

k0 is the phase constant for lossless propagation. 

 

ie., 

0 0

0

2

2

k z k

or
k

 




 



(in free space) _________(17) 

Let us consider some point, for instance, the crest or trough or zero crossing (either –ve to +ve or +ve to –ve). 

Having chosen such a reference, say the crest, on the forward-propagating cosine function, ie., the function 

 0 1cos t k z  

the m
th

 erest of the wave from our reference point, the condition becomes, 

K0  

This point on the cosine wave we have chosen, let us see what happens as time increases. 
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point. 

Therefore we get,     
 0 / 2 _______(18)t k z t Z m      

 

As time increases, the position Z must also increase to satisfy (18). The wave erest, and the entire wave, moves in 

the positive Z-direction with a phase velocity C (in free space). 

Using the same reasoning, the second term on the RHS of eqn. (15) having the cosine argument 
 0t k z 

represents a wave propagating in the Z direction, with a phase velocity C, since as time t increases, Z must decrease 

to keep the argument constant. 

 

POLARISATION: 

It shows the time varying behavior of the electric field strength vector at some point in space. 

Consider of a UPW traveling along Z direction with E and H vectors lying in the x-y plane. 

1. If 
0Ey 

and only Ex is present, the wave is said to be polarized in the x-direction. 

2. If  Ex = 0 and only 
Ey

is present, the wave is said to be polarized in the y-direction. 

Therefore the direction of E is the direction of polarization 

3. If both Ex and 
Ey

are present and are in phase, then the resultant electric field E has a 

direction that depends on the relative magnitudes of Ex and 
Ey

. 

The angle which this resultant direction makes with the x axis is tan
-1

 

Ey

Ex ; and this angle will be constant with 

time. 

1. Linear polarization: 

In all the above three cases, the direction of the resultant vector is constant with time and the wave is said to be 

linearly polarized. 

If  Ex  and 
Ey

are not in phase ie., they reach their maxima at different instances of time, then the direction of the 

resultant electric vector will vary with time. In this case it can be shown that the locus of the end point of the 

resultant E will be an ellipse and the wave is said to be elliptically polarized. 

In the particular case where Ex and 
Ey

have equal magnitudes and a 90
0
 phase difference, the locus of the resultant 

E is a circle and the wave is circularly polarized. 

Linear Polarisation: 

Consider the phasor form of the electric field of a UPW traveling in the Z-direction: 
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  0

j zE Z E e  
 

Its time varying or instanious time form is 

   0, j z j t

eE Z t R E e e 
 

The wave is traveling in Z-direction. 

Therefore zE
lies in the x-y plane. In general, 0E

is a complex vector ie., a vector whose components are complex 

numbers. 

Therefore we can write 0E
as, 

0 0r iE E jE 
 

Where 0E
and 0iE

are real vectors having, in general, different directions. 

At some point in space, (say z = 0) the resultant time varying electric field is 

    0 0

0 0

0,

cos sin

j t

e r i

r i

E t R E j E e

E t E t



 

 

 
 

Therefore E not only changes its magnitude but also changes its direction as time varies. 

Circular Polarisation: 

Here the x and y components of the electric field vector are equal in magnitude. 

If Ey leads Ex by 90
0
 and Ex  and Ey have the same amplitudes, 

Ie., 
x yE E

, we have, 
  0

ˆ ˆE ax j ay E 
 

The corresponding time varying version is, 

    0

0

0

2 2 2

0

ˆ ˆ0, cos sin

cos

sin

x

y

x y

E t ax t ay t E

E E t

and E E t

E E E

 





 

 



  
 

Which shows that the end point of 
 0 0,E t

traces a circle of radius 0E
as time progresses. 

Therefore the wave is said to the circularly polarized. Further we see that the sense or direction of rotation is that of 

a left handed screw advancing in the Z-direction ( ie., in the direction of propagation). Then this wave is said to be 

left circularly polarized. 

Similar remarks hold for a right-circularly polarized wave represented by the complex vector, 

  0
ˆ ˆE ax j ay E 
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It is apparent that a reversal of the sense of rotation may be obtained by a 180
0
 phase shift applied either to the x 

component of the electric field. 

Elliptical Polarisation: 

Here x and y components of the electric field differ in amplitudes 
 x yE E

. 

Assume that Ey leads Ex by 90
0
. 

Then, 

            0
ˆ ˆE ax A j ay B

 

Where A and B are +ve real constants. 

Its time varying form is 

 

22

2 2

ˆ ˆ0, cos sin

cos

sin

1

x

y

yx

E t axA t ayB t

E A t

E B t

EE

A B

 





 

 

 

  
 

Thus the end point of the 
 0,E t

vector traces out an ellipse and the wave is elliptically polarized; the sense of 

polarization is left-handed. 

Elliptical polarization is a more general form of polarization. The polarization is completely specified by the 

orientation and axial ratio of the polarization ellipse and by the sense in which the end point of the electric field 

moves around the ellipse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

no
tes

4f
ree

.in



 

 

 

 

 

 

 

 

no
tes

4f
ree

.in


