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Mark-off statistical model for information sources

Review questions.

Outcomes.

OBJECTIVES

After completion of this module the student will be able #

1.

To learn about the probability theory, i algebra, random processes and
communication systems. ¢
To learn the basic concept of information d coding.

To find the average information ck\
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INFORMATION THEORY 15EC54

1.1INTRODUCTION

The block diagram of an information system can be drawn as shown in figure. the
meaning of the word "information "in information theory is "message” or "intelligence™. This
message may be an electrical message such as voltage, current or power or speech message ¢
picture message such as fascimile or television or music message. A source which produces
these messages is called "information source™.

Information N encoder —_— > transmitter

source
’\Q l
receiver < ode?  SE— channel
‘ Noise
Figure: Block diagram of an Irffgpmatién source

Information sources ca ied into two categories: analog information sources id
discrete information soura alog information sources, such as a microphone actuated (
speech, ora TV came g a scene, emit one or more continuous amplitude electrical finals

with respect to time. Tge output of discrete information sources such as a teletype or the
numerical output of a computer consists of a sequence of discrete symbols or letters. An
analog information source can be transformed into a discrete information source through the
ocess of sampling and quantizing.

Discrete information sources are characterized by (a) source alphabet (b) symbol rate )
source alphabet probabilities and (d) probabilistic dependance of symbols in a sequence.

Example of source alphabet (discrete information source) a teletype having 26 letters of

the English Alphabet plus several special characters such as full stop, comma etc. along
with numerals.

The Symbol rate refers to the rate at which the teletype produces characters. Ex: If the
teletype operates at the speed of 10 characters/sec, then the symbol rate is said to be
symbols/sec.
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If the teletype is producing messages in English language, then some letters appear more
frequently than others. For example, the letter F appears more often than the letter Z and if a word
starts with Q, the next letter will be U and so on. These structural properties of symbol sequences
can be characterized by probability of occurrence of the individual symbols and by the conditional
properties of occurrence of symbols (i.e., probabilistic dependence).

SOURCE ENCODER: Let the input to the source encoder he a string Of source yymbti from
the source Alphabet S ={s1, s,, ..., sn }occurring at a rate of "'r,” symbols/sec.

The source encoder converts the symbol sequence into it binary sequence of U's and v by
assigning code-words to the symbols in the input sequence. Binary coding is preferit, because of its
high efficiency of transmission and also the case with which they can ii transmitted over the
channel [other types of coding such as ternary, quarternary coding etct discussed in unit 31. The
simplest way of coding is to assign a fixed length binary code-we, tg each symbol in the input
sequence. But, fixed-length coding of individual symbols in, sgur is efficient only if the
symbols occur with equal probabilities in a statistics indepem&c uence. In most practical
situations, the symbols occur with uricqt4 probabilities. Th C oder, then assigns variable
length code-words to these symb6 The important par ofa’source encoder namely block
size, length of code-words, average data rate and th{ ciency.

TRANSMITTER: The transmitter couplei put message signal to the channel. While it may
sometimes be possible to couple the i |np isdUeer directly to the channel. It is often necessary to

r nt transmission over the channel. Signal processing
ude arnplification, filtering and modulation. The most
ation - a process designed to match the properties of the
ough the use of carrier wave.

transmitted signal to the chal @

CHANNEL: A c&cation channel provides the electrical connection between the source
and the destination. The channel may be a pair of wires (2-line transmission system or a telephone
cable or free space over which the information bearing signal is radiated. Due to physical
limitations, communication channels have only finite bandwidth and the information bearing signal
suffers amplitude and phase distortion as it travels over the channel. In add® to the distortion, the
signal power also decreases due to attenuation of the channel.

DECODER AND RECEIVER: The source decoder converts the binary output of the
channel decoder into a symbol sequence. The decoder for fixed-length code-words is quite simple,
but the decoder for a system using variable-length code-words will be very complex. Therefore, the
function of the decoder is to convert the corrupted signals into a symbol sequence and the function
of the receiver is to identify the symbol sequence and match it with the correct sequence.

Dept. of ECE, ATMECE Page 3



INFORMATION THEORY 15EC54

In 1948, C.E. SHANNON, known as "Father of Information Theory", published a treatise on
the mathematical theory of communication in which he established basic theoretical bounds for the
performances of communication systems. Shannon's theory is based on probabilistic models for
information sources and communication channels. In the forthcoming sections, we present some of
the important aspects of Shannon's work.

1.2 MEASURE OF INFORMATION

In order to know and compare the “information content™ of various messages produced by an
information source, a measure is necessary to quantitatively know that information content. For
this, let us consider an information source producing independent sequence of symbols from source
alphabet S = {s1, s2,... sq} with probabilities P = {p1, p2, ...pq} respectively.

Let Sk be a symbol chosen for transmission at any instant of time with a probability equal to
pK. Then the "Amount of Information™ or "Self-lnformatiog" e Sk (provided it is
correctly identified by the receiver) is given by \

1k =log(1/Pk)

If the base of the logarithm is 2, then the units ar S", which is the short form of
"Binary Units". If the base is "10", the units are "HA "or "DECITS". If the base is "'e", the
units are "NATS" and if the base, in general, is%#, thewnits are called "r-ary units".

¢

The most widely used unit of information,is ¥BITS" where the base of the logarithm is 2.
Throughout this hook, log to the base 2 i ritten as log and the units can be assumed to the
bits, unless or otherwise specified.

Example 1.1 : The binar x!'O' and '1' are transmitted with probabilities Y2 and %
respectively. Find the ding self-informations.

Solution
Self-information in a'0' = Iy = log(1/ Po) = log 4 = 2 bits.
Self-information ina '1' = I; = log(1/ P1) = log 4/3
1,=0.415 bits.

Thus, it can be observed that more information is carried by a less likely message.
Logarithmic expression is chosen for measuring information because of the follow
reasons:

1. The information content or self-information of any message cannot be negative. Each
message must contain certain amount of information.

2.  The lowest possible self-information is "zero™ which occurs for a sure event since P
(sure event) = 1.
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1.2.1 Zero-Memory Source:- It represents a model of a discrete information source
emitting sequence of symbols from a fixed finite source alphabet S = {si, s2,....sq}
Successive symbols are selected according to some fixed probability law and are
statistically independent of one another. This means that there is no connection between any
two symbols and that the urce has no memory. Such type of sources are called
"memoryless™ or ""zero-memory"* sources.

1.3 AVERAGE INFORMATION CONTENT (ENTROPY) OF
SYMBOLS IN LONG INDEPENDENT SEQUENCES

Let us consider a zero-memory source producing independent sequences of symbols. while the

receiver of these sequences may interpret the entire message asqa Single unit, communication
systems often have to deal with individual symbols. Let us.con@ source alphabet S = {s1,
s2, sq} with probabilities P = (p1, p2, pq} respectively. \n

Let us consider a long independent sequence of le g
contains

P1L number of messages of type s1
P2L number of messages of type s2,

and PgL number of messages of type s
Average self-lnformatlon |s also called,g ,

bols. This long sequence en

Note that the def|n|t|on of
is valid for ensemble avera
equation (1.4) is simi xpression for entropy;.. statistical mechanics. The source entropy
can be interpreted ag follaws. On the average.., can expect to get H(S) bits of information per
symbol in long messages from the information source eventhough we cannot say in advance
what symbol sequences will occur in these messages. Thus H(S) represents the "average
uncertainty" or the 'average amount of the source.

Illustration: Let us consider a binary source with source alphabet S={s1,s2} with probabilities
P={1/256, 255/256}
Solution:

H(S)=X, pilog(ﬁ) bits/message symbol
The entropy H(s)=0.037 bits/message symbol
INFORMATION RATE : Let us suppose that the symbols are emitted by the source at fixed

time rate "rs" symbols/sec. The "average source information rate R," in bits/sec is fined as the
product of the average information content per symbol and the message symbol rate rs
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R =rsH(S) bits/sec or BPS

1.4 PROPERTIES OF ENTROPY

The entropy function is given by equation (1.4) for a source alphabet S = {s1, s2,..sq} with P =
{p1, p2, pq} where q = number of source symbols, as

H(S)=X, pilog(%) bits/message symbol

Many interesting properties can be observed as listed below:

The entropy function is continuous for every independent variable PK in the interval (0,1). i.e., if
Pi( varies continuously from 0 to 1, so does the entropy function.[Note: Entropy function
vanishes at both pK = 0 and pK = 1].

2. The entropy function is a symmetrical function of its arguments. i.e., H [pK, (1 — pK)] = H
[(1—pK), pK] forall K=1,2, ...q i.e., the value of H(S) yemains the same irrespective of
the locations of the probabilities. i.e., as long as the probabilit@me, it does not matter in
which order they are arranged. Thus the sources SA, SB ande probabilities.

PA ={P1,P2,P3} *

PB ={P2,P3,P1}

PA ={P3,P1,P2}

Such that Y'2_, Pi = 1 will all have the sn@ i.e.,,H(SA)= H(SB)= H(SC)

1.4.1 Extremal Property ‘

Let us consider the same sou q symbols S={s1, s2,........ sq} with probabilities
P={P1,P2,.....Pq}. the entro s’given by equation

H(S)=XLL, pilog()

The entropy has an @und is logg-H(S).
The lower bound for H{§) is zero.

1.4.2 Property of Additivity

Suppose that we split the symbol sq into ‘n’ subsymbols such that sq= sql, sq2....... sqn .
occurring with probabilities Pql, Pq2,......... Pqn such that

YL, Pqj

Source Efficiency=H(S)/H(S)max
Redundancy= 1-source efficiency
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1.5MARK OFF MODEL FOR INFORMATION SOURCES ASSUMPTION

A source puts out symbols belonging to a finite alphabet according to certain
probabilities depending on preceding symbols as well as the particular symbol in
question.

1.5.1. Define a random process

A statistical model of a system that produces a sequence of symbols stated above is
and which is governed by a set of probs. is known as a random process.

Therefore, we may consider a discrete source as a random process

And the converse is also true. Q
i.e. A random process that produces a discrete sequ symbols chosen from

a finite set may be considered as a discrete source.

1.5.2. Discrete stationary Mark off process

Provides a statistical model for % sequences emitted by a discrete source.

General description of the mode iven as below:

1. At the beginning O bol interval, the source will be in the one of “n”

possible states 1, Q

Where “n* is d@ds

n<(M)"
M = no of symbol / letters in the alphabet of a discrete stationery source,
m = source is emitting a symbol sequence with a residual influence lasting
M symbols.
i.e. m: represents the order of the source.

m = 2 means a 2" order source
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m = 1 means a first order source.

The source changes state once during each symbol interval from say i to j. The
probabilityy of this transition is Pj;. Pjj depends only on the initial state i and the final state |
but does not depend on the states during any of the preceeding symbol intervals.

2. When the source changes state from | to j it emits a symbol. Symbol emitted depends
on the initial state i and the transition ij.

3. Letsy, sy, ....5 m be the symbols of the alphabet, and let x1, X2, X, ...... X Koevennn be a
sequence of random variables, where X represents the k™ symbol in a sequence
emitted by the source. Then, the probability that the k™ symbol emitted is Sq will
depend on the previous symbols X1, X2, X3, .. ......... , X k.1 emitted by the source.

1.e., P (Xk=5q/ X1, Xo, ...... ,X k-1)
4. The residual influence of X1, Xo, ...... , X k1 ON Xk Mp sented by the state of the
system at the beginning of the k™ symbol interv
i.e. P (Xk=5q/ X1, X2, -..... , X k1) =
When Sk in a discrete random variable re§ the state of the system at the

beginning of the k™ interval. Term s “Yg,used to remember past history or residual
influence in the same context as t
sequential logic circuits.

sengf state variables in system theory / states in

1.5.3 System Analysis with re arkoff sources

Representation of Discr ionary Markoff sources:

1. Are represe@ graph form with the nodes in the graph to represent states and
the transition between states by a directed line from the initial to the final state.

2. Transition probs. and the symbols emitted corresponding to the transition will be
shown marked along the lines of the graph.

A typical example for such a source is given below.
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It is an example of a source emitting one of three symbols X, Y, and Z
e The probability of occurrence of a symbol depends on the particular symbol in
question and the symbol immediately proceeding it.

e Residual or past influence lasts only for a duration of one symbol.

Last symbol emitted by this source Q
.
The last symbol emitted by the source can be A or B (N ence past history can be
PO1s¢oT the alphabet.

State transition and symbol
generation can also be illustrated using a
tree diagram.
1.6 Tree diagram
Tree diagram is a planar graph
where the nodes correspond to states
and branches correspond to
transitions. Transitions  between  states
occur once every Ts seconds. Along the
branches of the tree, the transition
probabilities and  symbols
emitted will be indicated. Tree diagram
for the source considered
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Use of the tree diagram

Tree diagram can be used to obtain the probabilities of generating various symbol
sequences.

Generation a symbol sequence say AB

This can be generated by any one of the following transitions:
O—O—®
OR
O—O—G
OR ‘\Q

O—O ’
E— EE—
Therefore probabilities of the source e K&/o symbol sequence AB is given by

P(AB) = P(S; =1, =3

P (S, :2,&3 3) e (1)
P(slg =1,53 =3)

Note that the three transition paths are disjoint.

Therefore P (AB) =P (S1=1,S2 =1,S3=3)+P(S1 =2,S2 =1,S3 =3)
+P(S1 =2 S2=1,S3=3) - (2)

The first term on the RHS of the equation (2) can be written as

P(S1=2,S2 =1,S3 =3)

=P(S1=1)P(S2 =1/S1=1)P(S3 =3/S1=1,S2=1)
=P(S1=1)P(S2 =1/S1=1)P(S3 =3/S2=1)
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Review questions:

1. Explain the terms (i) Self information (ii) Average information (iii) Mutual
Information (iv) Efficiency (v) Redundancy.

2. Discuss the reason for using logarithmic measure for measuring the amount of
information.

3. Explain the concept of amount of information associated with message. Also explain
what infinite information is and zero information.

4. A binary source emitting an independent sequence of 0“s and 1“s with pro
babilities p and (1-p) respectively. Plot the entropy of the source.

5. Explain the concept of information, average hfo@ information rate and
redundancy as referred to information transmission.

6. Suppose that a large field is divided into 6 e I:the dark night, a cow has
entered in this field and it is equally lik; elin any of the squares. This cow
is located by a member of searchi a&vho sends back information giving
the location of the cow as 43 rd alculate the amount of information
obtained in the reception of t e.

Outcome
Able to understand the co
develop applications for
Able to apply the kn
Able to apply the kno

obability theory, linear algebra, random processes and
cation systems.

find the self-information, entropy and mutual information.
dge to analyze the Mark off statistical models.

Resources
® https://en.wikipedia.org/wiki
* www.inference.phy.cam.ac.uk/mackay/itprnn/1997/11/node7.html
* web.ntpu.edu.tw/~yshan/intro_lin_code.pdf
® users.ece.cmu.edu/~koopman/des_s99/coding/
® elearning.vtu.ac.in/P4/EC63/S11.pdf
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MODULE 2

SOURCE CODING

Structure:

1. Introduction- Encoding of the source output

2. Shannon’s encoding algorithm

3. Kraft McMillan Inequality property — KMI

4. Source coding theorem

5. QOutcome
Objective:

1. To study the different encoding algorithms
2. To understand the concept of channels.



2.1 Kraft McMillan Inequality Property

Encoding’ or ‘Enciphering’ is a procedure for asso ciating words constructed from a finite alphabet
of a language with given words of another language in a one-to- one manner.
Let the source be characterized by the set of symbols

S=
{s1,52..5q}
We shall call © S’ as the “ Source alphabet”. Consider another set, X, comprising of ‘ r’ symbols.

X={x1,x2...xr}

We shall call © X’ as the “ code alphabet”. We define ““ coding” as the mapping of all possible

sequences of symbols of S into sequences of symbol of X. In other words “ coding means representing
each and every symbol of S by a sequence of symbols of X such that there shall be a one- to-one
relationship” Any finite sequence of symbols from an alphabet will be called a “ Word”. Thus any
sequence from the alphabet ¢ X’ forms a “ code word”. The total number of symbols contained in the

word’ will be called “ word length”. For example the sequences { X1 ; X1X3X4 ; X3X5X7X9 ; X1X1X2X2X2}
form code words. Their word lengths are respectivelyl; 3; 4; and 5.The sequences
{100001001100011000} and {1100111100001111000111000} are binary code words with word lengths
18 and 25 respectively.

Basic properties ofcodes:

In order that the definition is useful in code synthesisew utke the codes to satisfy certain
properties. We shall intentionally take trivial examples in order t@yget a better understanding of the

desired properties.

The definition of codes given above is very broad andeW many undesirable properties.
q

¢

N\
QO



1. Block codes:

A block code is one in which a particular message of the source is always encoded into the
same “fixed sequence” of the code symbol. Although, in general, block m eans ° a group having
identical property’ we shall use the word here to mean a * fixed sequence’ only. Accordingly, the code can
be a ‘fixed length code’ or a “ variable length code” and we shall be concentrating on the latter type in
this chapter. To be more specific as to what we mean by a block code, consider a communication system
with one transmitter and one receiver. Information is transmitted using certain set of code words. If the
transmitter wants to change the code set, first thing to be done is to inform the receiver. Otherwise the
receiver will never be able to understand what is being transmitted. Thus, until and unless the receiver is
informed about the changes made you are not permitted to change the code set. In this sense the code
words we are seeking shall be always finite sequences of the code alphabet-they are fixed sequence
codes.

Example 2.1: Source alphabet is S = {s1, s2, 3, 4}, Code alphabet is X = {0, 1} and The Code words
are: C={0, 11, 10, 11}

2. Non - singularcodes:

A block code is said to be nonsingular if all the words of the code set X1, are “distinct”. The

Codes given in Example 6.1 do not satisfy this property as the codes for s2 and s4 are not different.
We cannot distinguish the code words. If the codes are not distinguishable on a simple inspection we

However, the codes given in Example 6.2 although
would pose problems in decoding. For, if th tra& ted
t

ippeartd be non-singular, upon transmission

sequence is 0011, it might be interpreted as

S1 81 S4 or s2 s4. Thus there is an ambiguity ab héycode. No doubt, the code is non-singular in the

small, but becomes “Singular in the large”

3. Uniquely decodable codes:

A non-singular cod ly decipherable, if every word immersed in a sequence of

e nt" extension of a code, that maps each message into the code
which maps the sequence of messages into a sequence of code words.
lustrated in the following example.

Example 2.3: Second extension of the code set given in Example 6.2.

52:{5131,3152,3153,5184; $251,5252,5253,5254,5351,5352,5353,5354,5451,5452,5453,5454 }

Source Codes Source Codes | Source | Codes | Source Codes
Symbols Symbols Symbols Symbols
S1S1 00 $2S1 110 S351 100 S4S1 010
$152 011 5252 1111 $3S2 1011 S4S2 0111
1S3 010 $253 1110 $3S3 1010 $4S3 0110
$154 001 5254 1101 $354 1001 S454 0101

Notice that, in the above example, the codes for the source sequences, s1s3 and s4s1 are not distinct and hence
the code is “Singular in the Large”. Since such singularity properties introduce ambiguity in the decoding

The nth

<«

stage, we therefore require, in general, for unique decidability of our codes that
extension of the code be non-singular for every finite n.”



4. Instantaneous Codes:

A uniquely decodable code is said to be “ instantaneous” if the end of any code word is
recognizable with out the need of inspection of succeeding code symbols. That is there is no time lag
in the process of decoding. To understand the concept, consider the following codes:

Example 2.4:
Source symbols Code A Code B Code C
s1 00 0 0
s2 01 10 01
$3 10 110 011
s4 11 1110 0111

Code A undoubtedly is the simplest possible uniquely decipherable code. It is non- singular and all
the code words have same length. The decoding can be done as soon as we receive two code symbols
without any need to receive succeeding code symbols.

Code B is also uniquely decodable with a special feature that the 0's indicate the termination of a
code word. It is called the “comma code”. When scanning a sequence of code symbols, we may use
the comma to determine the end of a code word and the beginnigg of the other. Accordingly, notice
that the codes can be decoded as and when they are receivgd a@ is, once again, no time lag in

the decoding process. \

odable code it cannot be decoded word

1’, we cannot decode it as © S2’ until we
‘0’, indeed the previous word corresponds to

Whereas, although Code C is a non- singular and ung

by word as it is received. For example, if we gec
receive the next code symbol. If the next co &

s2, while if itis a ‘1’ it may be the symbo

ich can be concluded so if only if we receive a ‘0’in
the fourth place. Thus, there is a defipit§ 4ime lag’ before a word can be decoded. Such a ‘time
waste’ is not there if we use either L g€ A or Code B. Further, what we are envisaging is the
property by which a sequence of rp@, opds is uniquely and instantaneously decodable even if there

is no spacing between succes The common English words do not posses this property. For
OUNDATION”! A sufficient condition for such property is that

example the words “ FOU ” and “ ION” when transmitted without spacing yield, at the
receiver, an altogether ne

“No encoded word can be'obtained from each other by the addition of more letters “This property
is called “ prefix property”.

Let Xk = xk1xk2....x km, be a code word of some source symbol sk. Then the sequences of
code symbols, (xk1xk2....x k j), j < m, are called “prefixes” of the code word. Notice that a code

word of length * m’ will have * m’ prefixes. For example, the code word 0111 has four prefixes, viz;
0, 01, 011 and 0111.The complete code word is also regarded as a prefix.

Prefix property:“A necessary and sufficient condition for a code to be ‘instantaneous’ is
that no complete code word be a prefix of some other code word”.

The sufficiency condition follows immediately from the definition of the word “Instantaneous”. If
no word is a prefix of some other word, we can decode any received sequence of code symbols
comprising of code words in a direct manner. We scan the received sequence until we come to
subsequence which corresponds to a complete code word. Since by assumption it is not a prefix of
any other code word, the decoding is unique and there will be no time wasted in the process of
decoding. The “necessary” condition can be verified by assuming the contrary and deriving its

“contradiction”. That is, assume that there exists some word of our code, say xi, which is a prefix of
some other code word xj. If we scan a received sequence and arrive at a subsequence that corresponds

to xi, this subsequences may be a complete code word or it may just be the first part of code word ;.
We cannot possibly tell which of these alternatives is true until we examine some more code symbols
of the sequence. Accordingly, there is definite time wasted before a decision can be made and hence
the code is not instantaneous.



5. Optimal codes:

An instantaneous code is said to be optimal if it has “minimum average word length”, for a source
with a given probability assignment for the source symbols. In such codes, source symbols with
higher probabilities of occurrence are made to correspond to shorter code words. Suppose that a

Source symbol sj has a probability of occurrence Pj and has a code word of length li assigned to it,
while a source symbol sj with probability Pj has a code word of length Ij. If Pi >Pj then let li<l j. For
the two code words considered, it then follows, that the average length L1 is given by

L1 = Pili+Pjlj

Now, suppose we interchange the code words so that the code word of length 1j corresponds to si and
that of length li corresponds to sj. Then, the average length becomes

L2 =Pilj + Pjli It then follows,
L2—-L1=Pi(li-1i)+Pj(li—1j)

=(Pi—-Pj) j-1i)
Since by assumption Pi>Pj and li<lj, it is clear that (L2 —L L)ais positive. That is assignment of
source symbols and code word length corresponding to thes@avesgge lepgth L1 is shorter, which is the
requirement for optimal codes.

A code that satisfies all the five properties is called an ¢ dw8ible code”.

All the above properties can be arranged as sho igl2.1 which serves as a quick reference of the

2.1 Codes Sub grouping

Non-block

Coes Singular Non‘-nniq.m
——  Deciphering

—— Non-Instantaneous
ek Non-Optimal
Non-singular — e

Unique

Deciphering Instantaneons

Optimal

2.2 Code Tree diagram



2.2 Construction of Instantaneous Codes:

Consider encoding of a 5 symbol source into Binary instantaneous codes i.e.
S = {s1, s2, $3, 84, 5}; X = {0, 1}

We may start by assigning ‘0’ to s1
i.e.s1—>0

If this is the case, to have prefix property, all other source symbols must correspond to code words

beginning with 1. If we let s2 correspond to © 1°, we would be left with no code symbol for encoding
the remaining three source symbols. We might have
s2— 10

This in turn would require the remaining code words to start with 11. If
s3— 110;

Then the only 3 bit prefix unused is 111 and we might set
sq4— 1110

s5— 1111

In the above code, notice that the starting of the code by letting s1 correspond ‘0’ has cut down the
number of possible code words. Once we have taken this step, W€ argyestricted to code words starting
with “1°. Hence, we might expect to have more freedom if we sélgct & 2-binit code word for

s1. We now have four prefixes possible 00, 01, 10 and 11; first@hree can be directly assigned to si, s2

*
and s3. With the last one we construct code words of 3.Thus the possible instantaneous code is

s1—> 00 \
s2—> 01 &

s3— 10
s4— 110
s5— 111 \
Thus, observe that shor e the first few code words, the longer we will have to make the

later code words.

One may wish to construct an instantaneous code by pre-specifying the word lengths. The
necessary and sufficient conditions for the existence of such a code are provided by the ‘Kraft
Inequality’.

Kraft Inequality:

Given a source S = {s1, s2...s q}.Let the word lengths of the codes corresponding to these symbols be
12,12 ceevees I gand let the code alphabet be X = {x1, x2 ...x r}. Then, an instantaneous code for the
source exists iffy is called Kraft Inequality.

q
sr k<1
k=1



Example 2.5:

A six symbol source is encoded into Binary codes shown below. Which of these codes are
instantaneous?

Source Code A CodeB CodeC Code D Code E

symbol

s1 00 0 0 0 (

2 01 1000 10 1000 10

S3 10 1100 110 1110 11)

4 110 1110 1110 111 1110
s5 1110 1101 11110 1011 11110
S6 1111 1111 11111 1100 1111
6

52 ik 1 13 g 1 l <1 1.1 >1
et 16 8 32

As a first test we apply the Kraft Inequality and the result is accordingly tabulated. Code E does
not satisfy Kraft Inequality and it is not an instantaneous code.

2.3 Source coding theorem:

Compact code: Huffman’s Minimum Redundancy code: *

Hngan, in 1952. Huffman’s procedure

The Huffman code was created by American,
i lear that a code with minimum average

is applicable for both Binary and Non- Binary enco
vaiminimum redundancy associated with it. A

length, L, would be more efficient and hence woyl
& or an optimum coding we require:

compact code is one which achieves this ob&
(1) Longer code word should corresp essage lowest probability.

Huffman has suggested a simple method that guarantees an optimal code even is not satisfied.
The procedure consists of step- by- step reduction of the original source followed by a code
construction, starting with the final reduced source and working backwards to the original source.

The procedure requires a steps, where
qg=r+qr-1)

Notice that a is an integer and if Eq.(6.24) is not satisfied one has to add few dummy
symbols with zero probability of occurrence and proceed with the procedure or the first step is

performed by setting r1 = g-a(r-1) while the remaining steps involve clubbing of the last r messages of
the respective stages. The procedure is as follows:

List the source symbols in the decreasing order of probabilities

Check if g =r + afr-1) is satisfied and find the integer * &’ . Otherwise add suitable number of
dummy symbols of zero probability of occurrence to satisfy the equation. This step is not required if
we are to determine binary codes.



1. Repeat steps 1 and 3 respectively on the resulting set of symbols until in the final step exactly
r- symbols are left.

2. Assign codes freely to the last r-composite symbols and work backwards to the original
source to arrive at the optimum code

3. Alternatively, following the steps carefully a tree diagram can be constructed starting
from the final step and codes read off directly.

4. Discard the codes of the dummy symbols.

Before we present an example, it is in order to discuss the steps involved. In the first step, after
arranging the symbols in the decreasing order of probabilities; we club the last r-symbols into a

composite symbol, say o1 whose probability equals the sum of the last r-probabilities. Now we
are left with g-r+1 symbols .In the second step, we again club the last r-symbols and the second
reduced source will now have (g-r+1)-r+1= g-2r+2 symbols .Continuing in this way we find the
k-th reduced source will have g- kr + k = g — k(r - 1) symbols. Accordingly, if a -steps are
required and the final reduced source should have exactly r-symbols, then we must haver =q - a
(r - 1) last r1=g-a( r — 1) symbols while the second and subsequent reductions involve last r-

symbols only. However, if the reader has any confusion, he can add the dummy messages as
indicated and continue with the procedure and the final result is no different at all.

Let us understand the meaning of “ working backwards”. Suppose ak is the composite symbol

obtained in the Kth step by clubbing the last r-Symbols of the ( th reduced source. Then
whatever code is assigned to ak will form the starting code k& e the code words of its

constituents in the (k-1) th reduction.

2
Example 2.5: (Binary Encoding)

S={s1, 52,53, 54,

s5, s6}, X={0, 1};

.Notice that the tree diagr%be easily constructed from the final step of the source reduction
and decomposing the composite symbols towards the original symbols. Further, observe that the
codes are originating from the same source and diverge out into different tree branches thus
ensuring prefix property to the resultant code. Finally, notice that there is no restriction in the
allocation of codes in each step and accordingly, the order of the assignment can be changed in
any or all steps. Thus for the problem illustrated there can be as many as 2. (2.2+2.2) = 16
possible instantaneous code patterns. For example we can take the compliments of First column,
Second column, or Third column and combinations there off as illustrated below.

Code | 1 i
SLevererns 00 10 11 11
e 10 00 01 01
X 010 110 100 101
S vererns 011 111 101 100
S5 vaeeen 110 010000 001

6 eeree 111 011 001 000



L, CODE S P Sy 83 S5 Sy

2 00  s; 13 sy 173 S 3 >03 512 —>04 712 0

2 10 s e s oups 202V | s 139 o512 1

o1 1/6 5y 4 da 14

3 010 3 '8 0| o1/ 1

3 011 S V8 | 55 U8 ey

3 111 ss VI2 7

()
Fig 5.7 (a) Reduction Diagram (D) Tree Diagram For
Binary Huffinan Coding of Example 5.12

Code I is obtained by taking complement of the first column of the @miginal code. Code Il is obtained by

taking complements of second column of Code I. Code Ill is optaingd bysaking complements of third

column of Code II. However, notice that, Ik, the word length ofNo e word for sk is a constant for all
possible codes. *

For the binary code generated, we have: &
6 1 1 29, . _ . .
1% 3 x 3 += x 3 =22 binits/sym=2.4167 binits/sym
12 12

L=Zpklk =lx2+lx2+—

k=1 3 4 12
=1 1 1
H(S)==log 3+=1log 4 + 2 2 x=log 12
3 4 Q 12
1 (6 log 3 + 19 ) bits/sym = 2.3758 bits/ sym
12
_6log 3+ 19

=98.31% ; Ec= 1.69%

Tc
29
Example 2.6 (Trinary Coding)

We shall consider the source of Example 6.12. For Trinary codes r=3, [X=(0, 1, 2)]

Since g = 6, we have from

q=r+arl)
a=0d-r =6-3 _3=15
r-1 2 2

Thus e is not an integer and hence we require one dummy message which makes a = 2.



L, CODE 8§ P 8y S
o 1 sr 13 sr 3 02 512 0 1
i 2 8§ 14 8 14 St 13 1 S
2 01 53 1/8 01 1_:"60 s 4 2
» 02 sq 18 53 178 1
3 000 ssVIiz—| s: U8 >
3 001 S 127
Dummy 002 s; 0 2
....... Discarded
() ®)

Fig 5.8 (n) Reduction Diagram (D) Tree Diagram
For Trinary Huffinan Coding of Example 5.13

For this code, we have
L=1x1+1x21+2x1+2xL+3xd+3xL=19 Trinits /sym.

3 4 8 8 12 12 12
Andp= 61l0a3+19 =94.672%, Ec=5.328% ’\Q

¢ 19 TS

Example 2.7:
We conclude this section with an exa l&ing Shannon’s noiseless coding theorem.

Consider a source S = {s1, s, s3} with P ={. /6}
A compact code for this source is; 2— 10, s3— 11
Hence we have Q\

L=1+24+2 =

2 3 6
HS)=1log2+11log3+llog6
2 3 6

= 1.459147917 bits/sym
ﬂc =97.28%

The second extension of this source will have 3% =9 symbols and the corresponding probabilities are
computed by multiplying the constituent probabilities as shown below

1 1 1
s1s1 4  Ss2s1 g s3sl 12

1 1 1
s1s2 6  S2529  s3s2 18

1 1 1
s1s3 12  S253 18  S3S3 36

These messages are now labeled ¢ mk”’ and are arranged in the decreasing order of probability.
M ={m1, m2, m3, m4, ms, mg, m7, mg, mg}



1 111 1 1 1 1 1

P=

[V S NS R ]

4 6 6 9 12 12 18 18 36

The Reduction diagram and tree diagram for code construction of the second extended source is
shown in Fig 5.9.

CODES ' P $1 S S g .34 . s,., ons s 1-

10 my; 14 iy 1y iy 3 =

11 ny; 16 i iy ny ny :IJ—}C’S’ 05 1
000 m; 16 my; _ omg B3 m; niy

011 my 19 Mg “""'31)02 16 a0z m3 iy

0011 ms;  1/12 112 a; niy o0

0100 mg 1/12 s aj 0 m4

0101 my 1/18 773 0 i 7

00100 my; 1189 ne
00101 my 1/36 7
(@)

S 1 l\: iy 0&0

ny 00101

my 011
mg; 0100

ny 0101

)
Fig 5.9 (n) B Diagram (D) Tree Diagram jor Example 5.14

For the codes of seco@xion, we have the following:
H (S%) = 2 H(S)

L=2x1 +2xd +3xL+3xd +4x1 +4x1 +4x1 +5x1 +5x1
4 6 6 9 12 12 18 18 36

=107 pinits/symbol = 2.97222222
binits/sy
m 36
_H(S?) _2x1.459147917 _gg1869% Ec=1.814%

L log 2 2.97222222

a

An increase in efficiency of 0.909 % (absolute) is achieved.
This problem illustrates how encoding of extensions increase the efficiency of coding in
accordance with Shannon’s noiseless coding theorem.

One non- uniqueness in Huffman coding arises in making decisions as to where to move a
composite symbol when you come across identical probabilities. In Shannon- Fano binary encoding
you came across a situation where you are required to make a logical reasoning in deciding the
partitioning. To illustrate this point, consider the following example.



Example 2.8:
Consider a zero memory source with

S={s1, s2, 3, s4, s5}; P={0.55, 0.15, 0.15, 0.10, 0.05}; X= {0, 1}
Construct two different Huffman binary codes as directed below:

(@) Move the composite symbol as ‘high’ as possible.
(b) Move the composite symbol as ‘low’ as possible
(c) Ineach case compute the variance of the word lengths and comment on the results.

(a)We shall place the composite symbol as © high’ as possible. The source reduction and the
corresponding tree diagram are shown in Fig 6.10

S P Code S 52“ ' S5 y
s; 055 0 sy 055 0 57 055 0 sy 0.55

2 —>GC3 0.45 1
53 0.15 100 61015 11 G2 0.30 10:’J
53 0.15 101 §s2 0.15 100 Gy 0.15 11
840.10 110 53 0.15 101
S5 0.05 111

@ . XQ

@) Reduction Diagram (D) Tree Diagram
bols s1 S2 S3 S4 S5
Codes 0 100 101 110 111

Ik 1 3 3 3 3

We compute the average word length and variance of the word lengths as below:
L=0.55+3(0.15+0.15+0.10+0.05) =1.90 binits/symbol

2= 0.55(1-1.90)2 +0.45 (3-19)2 =0.99 is the variance of the word length.

(a) We shall move the composite symbol as ‘ low’ as possible. The source reduction and the

corresponding tree diagram are shown in Fig 5.11.We get yet another code, completely
different in structure to the previous one.

Symbols s1 Ss2 s3 sS4 S5
Codes O 11 100 10 10

10 11
Ik 1 2 3 4 4




For this case we have: L = 0.55 + 0.30 + 0.45 + 0.20= 1.90 binits/symbol

Notice that the average length of the codes is same.

S P Code S S*2. ] (-)3.3‘\ ;
57 055 0 57055 0 57055 0 87 0.5
5, 0.15 11 UL G10.30 10 [t
e Ay 0.13 100]_|_>S2 0.15 11
53 0.15 100 L
Gy 0.15 101
54 0.10 1010
85 0.05 1011
@
81\ ¢ .87 0
1 G3
- 1 * 52 11
0 02 0

————— w53 100

IS0 4 010
! : s5 1011
o) *
Fig 5.11 (n) Reduction Diagram (b) Tre%
0% =0.55(1-1.97 +0.15 (2-1.9)? + 0.15(3 - 1.9) 2 + 0. ©)2 +0.05(4 -1.9)°
2

= 1.29 is the variance of the word lengths.

Thus, if the composite symbol is ma igh as possible, the variance of the average code
word length over the ensemble of so Is would become smaller, which, indeed, is desirable.
Larger variance implies larger bu#f rement for storage purposes. Further, if the variance is
large, there is always a possiQili
d situation. Hence we always look for codes that have minimum
possible variance of the w @ oths. Intuitively “ avoid reducing a reduced symbol in the immediate

next step as far as poss the composite symbol as high as possible”

Outcome:

Able to understand the concept of Kraft McMillan Inequality property.
Able to understand and apply Shannon’s encoding algorithm steps and procedure.

Able to solve problem related to binary coding.
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MODULE - 3 INFORMATION CHANNELS

STRUCTURE

Obijectives

Introduction

Communication channel

Channel model and channel capacity
Mutual information

Review questions.

Outcomes.

No ok owhde

OBJECTIVES
After completion of this module the student will be able

1. To learn about different Communication channel in communication systems.
2. To find channel capacity of different channels in communication system.
3. To develop channel matrix and to find out mutual information in channel.

N

\&
NS
QO
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3.1 COMMUNICATION CHANNELS:

Observe that the matrix is necessarily a square matrix. The principal diagonal
entries are the self-impedances of the respective ports. The off diagonal entries
correspond to the transfer or mutual impedances. For a passive network the

impedance matrix is always symmetric i.e. 7T = Z, where the superscript indicates
transposition.

Similarly, a communication network may be uniquely described by
specifying the joint probabilities (JPM). Let us consider a simple communication
network comprising of a transmitter (source or input) and a receiver (sink or
output) with the interlinking medium-the channel as shown in Fig 4.1.

Transmitter X Channel h § Receiver

Fig 4.1 A Simple Communication System

This simple system may be uniquely characterized by the © Joint probability
matrix’ ( JPM),
P (X, Y) of the probabilities existent between the?& d otitput ports.

p(xi, v p(xi,yz P(xi,ys) .. s Yn

) ) P(x2, y3 ). 4.

P(x2, Vi P(xz, y2 P( ) ”(xz,yn)

) ) ‘i;~ M PCX3, pu) e (4.1)
P(x3, y1 M "

) T AT '

P( Xm, Y1
)

For jointly continuous ranQvariables, the joint density function satisfies the following:

+00+00

J' J’f ( X, y)dXdy=1 ...................... (4 2)
J‘f (%, y) dy="fx (e (43)
X)
- (4.4)
[f(x pdx=f (y)
We shall make use of their discrete counterpart as below:
\ ZZp( Xk, Yj) =1 ,Sumofall entriesof JpM ... (4.5)
vk Vj
D p(xk, ¥j) =p(xc) ,Sum ofall entries of JPM in the e “6)
vi
Zp( Xk, Yj) =pCyj) ,Sum of all entries of JPM inthejth
Cgumn ............ (4.7)
v

And also
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Thus the joint probabilities, as also the conditional probabilities (as we shall see shortly) form
complete finite schemes. Therefore for this simple communication network there are five probability
schemes of interest viz: P(X), P(Y), P(X, Y), P (X]Y) and P (Y[X). Accordingly there are five
entropy functions that can be described on these probabilities:

H(X) : Average information per character or symbol transmitted by the source or the entropy of the
source.

H(Y) : Average information received per character at the receiver or the entropy of the receiver.

H(X, Y): Average information per pair of transmitted and received characters or the average
uncertainty of the communication system as a whole.

H (X|Y) : A specific character yj being received. This may be the result of the transmission of one of the
xk with a given probability. The average value of the Entropy associated with this scheme when yj covers
all the received symbols i.e., E {H (X|yj)} is the entropy H (X|Y), called the ‘Equivocation’, a measure of
information about the source when it is known that Y is received.

H (Y|X) :Similar to H (X|Y), this is a measure of information about the receiver.

The marginal Entropies H(X) and H(Y) give indications of the probabilistic nature of the
transmitter and receiver respectively. H (Y|X) indicates a measure of the ‘noise’ or ‘error’ in t he
channel and the equivocation H(X |Y) tells about the awlit%overy or reconstruction of the
transmitted symbols from the observed output symbols. \

The above idea can be generalized to an n- port ication system, problem being similar
to the study of random vectors in a product space onal random variables Theory). In each
product space there are finite numbers of probabitityg@ssignments (joint, marginal and conditional) of
different orders, with which we may associaterentgopies and arrive at suitable physical interpretation.

However, concepts developed for a tw: siofial scheme will be sufficient to understand and
generalize the results for a higher order ation system.
3.2 JOINT AND CONDITIONAL S.

In view of Eq (4. 4.5), it is clear that all the probabilities encountered in a two

therefore, to the impe@lanceNer admittance matrices of an n-port electric network in giving a unique
description of the syste der consideration, notice that the JPM in general, need not necessarily be a
square matrix and even if it is so, it need not be symmetric.

dimensional commur% m could be derived from the JPM. While we can compare the JPM,

We define the following entropies, which can be directly computed from the JPM.
1 1 1

H (X, Y) = D(Xl,y1) p(Xl , yl) + p(Xl, y2) |Og p(x1 , y2) ..t p(Xl, yn) |Og p(Xl , yn)
log
1 —_—l —1

+p (x2, y1) log — +p(x2,y2) log +...+ p(x2,yn) log

p(x2,y1) p(x2,y2) p(x1,Yy1)
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1 1 1
+... p (Xm, y1)log ——— +p(Xm,y2) log _— p(Xm,yn) log—— Or
p(xm,y1) p(xm.,y2) p(xm, yn)
H(X, Y) =) > pkxk.yj)
log 49)
k=1j-1 P(Xk,Yj)

H(X) :ZrB(Xk ) log
k=1 P( Xk )
Using Eq (4.6) only for the multiplication term, this equation can be re-written as:
1

HOO =5 Sp(xy;  )log —— (4.10)
k=1 j=1 p(xk)
n m 1
Similarly, H(Y) =3 > p(x«,yj) log —_— i (4.11)
k=1 P(Yj)

Next, from the definition of the conditional probability we have:

P{X=xk,Y=VYij}

P{X=xk| Y=y} =

P(Y=yj} . Q
ie, pxk|yj)=pxk,yj)) /p(yi \

m 1 m 1 *
Then 3 p(xk|y )= Spxk Lyji )= =1 . (4.12)

k=1 P(Yj) k= x
Thus, the set [X | yjl = {x1 ] yj, x2| % jhs PIX Tyl = Ap(xalyj), p(x2]yj)-- p(xm|yph,
formsa

complete finite scheme and an entropy’ on may therefore be defined for this scheme as below:
m
HX | yp) = 2 p(xk|yj)log
k=1

ntropy function for all admissible characters received, we have the
” or “Equivocation”:

Taking the average of t
average ““ conditional

HX| Y) = E{HX| y)} j

= 2p(yj)HX |
_ i)
=1
n m 1
=2 p(yj) 2 p(xk lyj)log ——
1 k=1 P(Xk|Yj)
nm l
OrH(X | Y) =D > p(x,yj)log ——— . (4.13)
ETE P |Yj)

Eq (4.13) specifies the “ Equivocation . It specifies the average amount of information n eeded to
specify an input character provided we are allowed to make an observation of the output produced by
that input. Similarly one can define the conditional entropy H(Y | X) by:
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Information Channel ______________ DEA

m n 1

HY [ X) =3 >p(xk,Yj)log —_— (4.14)
k=1j1 pCYjlxk)
Observe that the manipulations, made in deriving Eq 4.10, Eq 4.11, Eq 4.13 and Eq 4.14, are
intentional. ¢ The entropy you want is simply the double summation of joint probability multiplied by
logarithm of the reciprocal of the probability of interest’ . For example, if you want joint entropy, then
the probability of interest will be joint probability. If you want source entropy, probability of interest will

be the source probability. If you want the equivocation or conditional entropy, H (X|Y) then probability
of

interest will be the conditional probability p (xK |yj) and so on.

All the five entropies so defined are all inter-related. For example, consider Eq (4.14). We have:

> p(Xk1YJ)l—

HY | X) = log
Ko pyjIx«)

1 p(Xk )
p(yjlxk)” p(Xk.Yj )

We can straight away write: . Q
H(YIX) =D p(xk,y 1 —N 1
j

lo % Y
oo < p(y j ML

Or HY | X) = H(X, Y)-

Since

That is: H(X, Y) =H(X) + (4.15)
Similarly, you can show: H(X, Y) = 'Yy (4.16)
Consider H(X) - H(X |Y). We

1 | 1

II;)ig(X) - HX|Y) = p(X )_ 0g p(X |y )
k kK j
P(xk,yj _—P(Xk,Yj)
(4.17)

ko p(xk) . p(y j)
Using the logarithm inequality derived earlier, you can write the above equation as:

HX) - HX|Y) =loge > > p(xk,y DOXKk.Yj)

j )In
K j p(xk) - p(Yj)
P(Xk ). p(Y]
| WVi)l- ———————
#1008 22 UYL TRy )
>loge ¥ Y p(Xk.Yj ) -3y p(xk)-p(yj)
k i kK j

Zloge 3 > p(x,yj ) -3 p(xK).3 pyi) =0

k j k J
Because ZZ p(xk,yj)= Zp(xk) = Zp(yj ) =1. Thus it follows that:
k j k j

HX) >HX]Y) (4.18
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Similarly, HY) >H(Y|X) (4.19)

Equalityin Eq (4.18) &Eq (4.19) holds iffy P (xk, yj) = p(xk) .p(yj); i.e., if and only if input symbols
and output symbols are statistically independent of each other.

NOTE : Whenever you write the conditional probability matrices you should bear in mind the property described in
Eq.(4.12),i.e. For the CPM (conditional probability matrix ) P(X|Y), if you add all the elements in any
column the sum shall be equal to unity. Similarly, if you add all elements along any row of the CPM, P
(Y|X) the sum shall be unity

Example 4.1
Determine different entropies for the JPM given below and verify their relationships.

0.2 0 02 0
Ol 001 001 0.01

PX,Y)= 0 002 002 O
004 0.04 0.01 0.06

0 006 002 02 O\Q

n
Using p (xk) = > p(Xk,Y j), we have, by adding entrie Y) row-wise we get:
j=1

P(X) = [0.4,0.1,0.04,0.15,0.28]
Similarly adding the entries column-wise WK&
P(Y) = [0.34,0.13, 0.26, 0.27]

Hence we have:

H(X,Y )=3x0.2 log + 0.8 4x0.01 logL +
0. 0.1 0.01

2
3% 0.02log x 0.04log—L  +2x0.06 log-L
2 0.04 0.06
= 3.188311023 Bits /sym

H(X) =0.4log=+0.13 log= + 0.04 log= + 0.15 log= + 0.28 log~
0.4 0.13 0.04 0.15 0.28
= 2.021934821 bits / sym

H(Y) =03410g —1—+0.13 log—2 +0 96 |og— + 0.27 log-—

0.34 0.13 0.26 0.27
=1.927127708 bits / sym
_ PXk,Yj)
Since p (xk | yj) = — " we have:
P(yj)
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(Divide the entries in the jth column of the JPM of p (yj)

0.2 0.2
937 0%
01 00l 001 001

034 O0I3 026 027
0.02 002
PXIV =" 973 026

0.04 0.04 0.01 0.06
0.34 0.13 026 0.27
0.06 0.02 0.20

N

0
0.13 026 0.27

~H(X|Y)=02logQ®34 4+ 0.2log2%26 4+ 0.1log 034

0.2 0.2 0.1

+0.01log 913 1 0.0110g0:26 1+ 0.01log0.27
0.01 0.01 0.01

+0.02log 913 4+ 0.0210g9:26 + 0.04l0g 034
0.02 0.02 . o.i >

+0.04log 013 4 001109926 o.oesm&zg
0.04 0.01

+006log 213 4+ 002109226

0.06 0.02
=1.261183315 bits / symbol &\

Similarly, dividing the entries in the ki M by p (xk,), we obtain the CPM P (Y |X). Then we
have:
0.2 ) 0
0.4 oz
0.1 0.01 0.01
013 |0. 013 013
2 0.02
PYVIX)= 0 goz gtz O

0.04 0.04 0.01 0.06

0.15 0.15 015 0.15
0.06 0.02 0.20

0.28 028 0.28

Thus by actual computation we have

H(X, Y) = 3.188311023 bits/Sym H(X)= 2.02193482 bit/Sym H(Y)= 1.927127708 bits/Sym
H(X | Y) = 1.261183315 bits/Sym H(Y | X) = 1.166376202 bits/Sym

Clearly, H(X, Y) = H(X) + H(Y | X) = H(Y) + H(X | V)

H(X) > HX| Y) and H(Y) > H(Y | X)

And H(Y | X) = 2 x 0.2log-0:4 + 0.110g 8-13 4 3 x 0.01 10g-0-13 + 2 x 0.02 log .04
0.2 0.1 0.01 0.02

+2x0.04 log 992 4 0.01 log 215 + 0.06 10g-2:12 + 0.06 log 9:28
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+2 x 0.02 log-9:28 — 1.166376202 bits / sym .
0.02

3.3 Mutual information:

On an average we require H (X) bits of information to specify one input symbol. However, if
we are allowed to observe the output symbol produced by that input, we require, then, only H (X]Y)
bits of information to specify the input symbol. Accordingly, we come to the conclusion, that on an
average, observation of a single output provides with [H(X) - H (X]Y)] bits of information. This
difference is called ¢ Mutual Information’ or ¢ Transinformation’ of the channel, denoted by 1(X,
Y). Thus:

IXKY)AHX) -HXY) wo

Notice that in spite of the variations in the source probabilities, p (xk) (may be due to noise in
the channel), certain probabilistic information regarding the state of the input is available, once the

conditional probability p (xk | yj) is computed at the receiver end. The difference between the initial
uncertainty of the source symbol xk, i.e. log 1/p(xk) and the final uncertainty about the same source
symbol xk, after receiving yj, i. e. logl/p(xk lyj) is the information gained through the channel. This

difference we call as the mutual information between the symbo@d yj. Thus
.
1 1 \
. — — _ log————
e yi) - =10gp60) gy (D e

zlog_P_(é&Jlj)

() \ |
Orl (xk,yj) = log NN 7 (4.21 b)

Notice from Eq. (4.21a) that

I (xk) =1 (XK, XK) K

This is the definition wi e started our discussion on information theory! Accordingly I (xk)
is also referred to as “Self Infprmation
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P(Xk,Yij)

It is clear from Eq (3.21b) that, as =p(yjlxk),
P(Xk )
Py j | Xk) 1 1
I (Xk,yj)=log =log - log
Py ;) p(y;) Pl il X«k)
Or Xk YD =10 -1k (4.22)

Eq (4.22) simply means that “the Mutual information ’ is symmetrical with respect to its
arguments.i.e.
Pk yj) =10 xk) (4.23)

Averaging Eq. (4.21b) over all admissible characters xk and yj, we obtain the average information
gain of the receiver:

1(X, Y) = E{l (xk, V)

"5 e
i )-p(Xk, Y j)
ko
_Zzp(xk,y XK., '0 Q
' dog 0 N : F E
j . ).log I § (4.24) rom Eq

(4.24) we have:

1
DI Y) =23 p0,y ) log Mpx y—, =HX - HX | Y)
j
k j ko

...... (4.25)
1(X, Y) :ZZ P(Xk , Y 1
2) .—log
- ’\ﬂ p(yj) p(y j | XK)
Q _________________________ (. 26)
I(X,Y) = ZZp _ 1 +.2> pxk,Yj 1
3)Yj log -
IO(Xk) Kj p(yj)
ZZ p(Xk,
|
% 19 ey i)
or 1(X, Y) = H(X) + H(Y) - H(X, Y) (4.27 )

Further, in view of Eqg.(4.18) & Eq.(4.19) we conclude that, “ even though for a particular received

symbol, yj, H(X) — H(X | Y]j) may be negative, when all the admissible ou tput symbols are covered, the
average mutual information is always non- negative”. That is to say, we cannot loose information on an
average by observing the output of a channel. An easy method, of remembering the various relationships,
is given in Fig 4.2.Althogh the diagram resembles a Venn-diagram, it is not, and the diagram is only a
tool to remember the relationships. That is all. You cannot use this diagram for proving any result.
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H(X,T)

e,

H(\X]Y) H(1X)
HY) —7 o H(V)

Fig 4.2 Entropy Relations

The entropy of X is represented by the circle on the left and that of Y by the circle on the right. The
overlap between the two circles (dark gray) is the mutual information so that the remaining (light
gray) portions of H(X) and H(Y) represent respective equivocations. Thus we have

HOX|Y) =HMX) - 1(X, Y) and H (Y| X) = H(Y) - I(X, Y)
The joint entropy H (X, Y) is the sum of H(X) and H(Y) excep he fact that the overlap is added
twice so that

L
H(X, Y) = HXX) + HY) - I(X, Y)
N\

Also observe H(X, Y) = H(X) + H (Y|X)

H(Y) + H(X|Y) &
For the JPM given in Example 4.1, 1( = 0.760751505 bits / sym

Shannon Theorem: Channel Capacity

Clearly, the mutual infor , 'Y) depends on the source probabilities apart from the
channel probabilities. For a gépér mation channel we can always make I(X, Y) = 0 by choosing
any one of the input symbo probability one or by choosing a channel with independent input
and output. Since I(X, Iways nonnegative, we thus know the minimum value of the

Transinformation. Howev question of max I(X, Y) for a general channel is not easily answered.

Our intention is to“introduce a suitable measure for the efficiency of the channel by making a
comparison between the actual rate and the upper bound on the rate of transmission of information.
Shannon’s contribution in this respect is most significant. Without botheration about the proof, let us
see what this contribution is.

Shannon’ s theorem: on channel capacity( “coding Theo rem” )

It is possible, in principle, to device a means where by a communication system will transmit
information with an arbitrary small probability of error, provided that the information rate R(=rxlI
(X,Y),where r is the symbol rate) is less than or equal to a rate * C’ called “channel capacity”.

The technique used to achieve this objective is called coding. To put the matter more
formally, the theorem is split into two parts and we have the following statements.
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Positive statement:

“ Given a source of M equally likely messages, with M>>1, which is generating information at a
rate R, and a channel with a capacity C. If R < C, then there exists a coding technique such that the
output of the source may be transmitted with a probability of error of receiving the message that can be
made arbitrarily small”.

This theorem indicates that for R< C transmission may be accomplished without error even in
the presence of noise. The situation is analogous to an electric circuit that comprises of only pure
capacitors and pure inductors. In such a circuit there is no loss of energy at all as the reactors have the
property of storing energy rather than dissipating.

Negative statement:

“ Given the source of M equally likely messages with M>>1, which is generating information at a
rate R and a channel with capacity C. Then, if R>C, then the probability of error of receiving the message
is close to unity for every set of M transmitted symbols”.

This theorem shows that if the information rate R exceeds a s ied value C, the error probability
will increase towards unity as M increases. Also, in genera?, inCgase in the complexity of the coding
results in an increase in the probability of error. Notice thatxf ation is analogous to an electric
network that is made up of pure resistors. In such a ci , Whatever energy is supplied, it will be
dissipated in the form of heat and thus is a “lossy ne

You can interpret in this way: Information | In to your communication channel. You
should receive this without any loss. Situatfon4s si to pouring water into a tumbler. Once the
tumbler is full, further pouring results i & flow. You cannot pour water more than your

tumbler can hold. Over flow is the loss.

Shannon defines “ C” the ¢
value of Transinformation, 1 (X,

acity of a communication channel a s the maximum

C=AMa
The maximizatigmi

= Max [H(X) -H (Y|X)] 4444444444444 (4.28)

.28) is with respect to all possible sets of probabilities that could be
assigned to the input Recall the maximum power transfer theorem: ‘In any network,
maximum power will be'delivered to the load only when the load and the source are properly
matched’. The device used for this matching purpose, we shall call a “transducer “. For example, in a
radio receiver, for optimum response, the impedance of the loud speaker will be matched to the
impedance of the output power amplifier, through an output transformer.

This theorem is also known as “The Channel Coding Theorem” (Noisy Coding Theorem). It may
be stated in a different form as below:

R <CorrsH(S) <rc I(X,Y)Max or{ H(S)/Ts} <{ 1(X,Y)Max/Tc}

“If a discrete memoryless source with an alphabet ‘S’ has an entropy H(S) and produces
symbols every ‘T s’ seconds; and a discrete memoryless channel has a capacity I(X,Y)Max and is
used once every Tc seconds; then if
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There exists a coding scheme for which the source output can be transmitted over the channel and

be reconstructed with an arbitrarily small probability of error. The parameter C/T¢ is called the
critical rate. When this condition is satisfied with the equality sign, the system is said to be
signaling at the critical rate.

H(S)>I(X,Y)|\/|ax

Conversely, if , It is not possible to transmit information over the Ts Tc

channel and reconstruct it with an arbitrarily small probability of error

A communication channel, is more frequently, described by specifying the source
probabilities P(X) & the conditional probabilities P (Y|X) rather than specifying the JPM. The CPM, P
(Y[X), is usually refereed to as the ° noise characteristic’ of the channel. Therefore unless otherwise
specified, we shall understand that the description of the channel, by a matrix or by a ‘Channel diagram’
always refers to CPM, P (Y|X). Thus, in a discrete communication channel with pre-specified noise
characteristics (i.e. with a given transition probability matrix, P (Y|X)) the rate of information
transmission depends on the source that drives the channel. Then, the maximum rate corresponds to a
proper matching of the source and the channel. This ideal characterization of the source depends in turn
on the transition probability characteristics of the given channel.

Redundancy and Efficiency: . Q

A redundant source is one that produces ‘d ent® symbols. (Example: The Markov
source). Such a source generates symbols that are no Aly essential to convey information. As
an illustration, let us consider the English langua lly unnecessary to write “U” following
the letter “Q”. The redundancy in English, te mated to be 50%(refer J Das etal, Sham
Shanmugam, Reza, Abramson, Hancock fofydetailed discussion.) This implies that, in the long run,

nconsider the following sentence.

—

“Y.ush.ldb. abl. t. re.d Lis e .. sev.r.l Lt..rs.r. m.s..ng >
However, we want red ithout this redundancy abbreviations would be impossible
and any two dimensional a efters would form a crossword puzzle! We want redundancy even

in  communications to f 2 error detection and error correction. Then how to measure
redundancy? Recall t a¥larkov source, H(S) < H('S), where S is an ad- joint, zero memory
source. That is, when ndence creeps in, the entropy of the source will be reduced and this can be
used as a measure indeed!

“ The redundancy of a sequence of symbols is measured by noting the amount by which the entropy
has been reduced”.

When there is no inter symbol influence the entropy at the receiver would be H(X) for any
given set of messages {X} and that when inter symbol influence occurs the entropy would be H (Y|X).
The difference [H(X) —H (Y|X) ] is the net reduction in entropy and is called “ Absolute Redundancy”.
Generally it is measured relative to the maximum entropy and thus we have for the “ Relative
Redundancy” or simply, ¢ redundancy’ , E

E = (Absolute Redundancy) + H(X)
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Oor E-q_ HOIX)

HOO e ( 4.29)

Careful observation of the statements made above leads to the following alternative definition for
redundancy,

R
E=l-% (4.30)

Where R is the actual rate of Transinformation (mutual information) and C is the channel
capacity. From the above discussions, a definition for the efficiency, » for the channel immediately
follows:

n =_Actual rate of mutual information
maximum possible rate

R
Thatis. ="
/] co e (431)
and n=1-E | (4.32)
3.4 Capacity of Channels: .

While commenting on the definition of ‘Chan
maximization should be with respect to all possible sets @
to arrive at the maximum value it is necessary to
problem, in general, is quite involved.

1

hity’, Eq. (4.28), we have said that
inPut symbol probabilities. Accordingly,
alculus of Variation techniques and the

Example 3.2: Consider a Binary channe &%y the following noise characteristic (channel matrix):

The source probabil@ p(x1) =p, p(x2) =q =1-p

Clearly, H(X) =-plogp-(1-p)log (1 - p)

We shall first find JPM and proceed as below:

p(xt)-pLIx1)  pxe).pO2|x1) I
PY)= o pnix 2) pox2).plyalxe) 1—p 3(L—p)
4 4

Adding column-wise, we get:
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p(y1):.9+1_'9 _1+p and p(yz):_Q:B(l-p):?)—D
2 4 4 2 4 4

1+p 4 3-p 4
Hence H(Y) = log t log
4 1+p 4 3-p
AndH(YX)= RPlog2 + Blog2 + 1=Djoga +3(=D)jpg4
2 2 4 4 3
3log 3 3log3 1+ 3(1 -
1(X, Y) = H(Y) = H (Y|X) = 1— g p+ 9 _ _pJng(1+p)— (_p)lag(S—p)
4 4 4 4
Writing log x = logex In x and setting dl 0 yields straight away:
dp
p=3a=1_0488372093, Where a=2(*109%) = 0 592592593

l1+a

With this value of p, we find 1(X, Y) Max = 0.048821 bits /sym
For other values of p it is seen that I(X, Y) is less than 1(X, ¥) m

Although, we have solved the problem in a straight forw, vmt will not be the case

*
p . 0.2 . 04 .0.5 .0.6 .0.8
1(X,Y) . 0.32268399 |.0.04730118 4 1.0.046439344 |.0.030518829
Bits / sym

capacity of a given channel indeed gepeg@ds on the source probabilities. The computation of the
channel capacity would become g

‘uniform’ channels. \

Muroga’s Theorem

The channel c@f a channel whose noise characteristic, P (Y|X), is square and non-
singular, the channel capaeity is given by the equation:
i=n
C=log22o (4 33)
i=1
Where Qij are the solutions of the matrix equation P (Y|X).Q = [h], where  h=[h1, h2, h3, h4... h n] t
are the row entropies of P (Y|X).

2ot P Q1 h1
pZI p22 p23 ..... pzn Q ) = IE
M M M M M Mo M
P P P P Q h
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From this we can solve for the source probabilities (i.e. Input symbol probabilities):

[p1, p2,p3...p n] =[p1,p2;p3:..p n’] pt [Y|X], provided the inverse exists.

However, although the method provides us with the correct answer for Channel capacity, this
value of C may not necessarily lead to physically realizable values of probabilities and if P~ [Y|X]
does not exist ,we will not have a solution for Qi's as well. One reason is that we are not able to

incorporate the inequality constraints 0< pi <1 .Still, within certain limits; the method is indeed very
useful.
Example 3.2: Consider a Binary channel specified by the following noise characteristic (channel matrix):

1 1
P(Y [ X) =

I~ ol
leo ol

The row entropies are:
h=2110og2+1log2=1bit/symbol .

2 2
h=1 log 4 +3 Iog_4 =0.8112781 bits / symbol .
2 4 4 3
3 -1
P1[y|x]= ¢
-1 2 \
h 1.3774438 .
=P [Y|X |
Q, h, 0.6225562

/

C=log[ 2 +2-92 ] 0.048821 bi

Further, p= 29C=037
1

pp PP PaY[X

[+ [ -]

Giving us p = 0.488372

b as before.
nd% '=2"%C=0.627907.

2
72 0.511628
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Example 3. 3:

Consider a 3x3 channel matrix as below:

04 0.6 0
P[vix]= . o 05

0 06 04

The row entropies are:
h1=h3=0.4log (1/0.4) + 0.6 log (1/0.6) = 0.9709505 bits / symbol.
h2 =2 x0.5 log (1/0.5) = 1 bit / symbol.
1.25 -1.25

1
P [vix]l= 56 -23 56

-125 1 1.25

Q1 1
o =10193633 ’\

Q I

3 1
C =log {27t + 2710193633 4 o-1y - 0.5785369 pitsyynibol.
pt =21 -C 203348213 = p§ pr=2 0.&3574.

43.

Therefore, p1 = p3 =0.2752978 and p2

Suppose we change the chaan :
0.8 @ 0 0.625 1 -0625

P[Y|X]=Q 05 PIYIX)} 25 -4 25
02 08 —0625 1 0625

We have:
h1 = h3=0.721928 bits / symbol, and h2 = 1 bit / symbol.

This results in:
Q1=Q3=1;Q2=-0.39036.

C =log {2 x 271 + 27039036 — 1 2083427 bits / symbol.
p1=20-C 202163827 = ps, ps = 279?~C =05672345

Giving: p1=p3=1.4180863 and p2 = Negative!
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Thus we see that, although we get the answer for C the input symbol probabilities computed are not
physically realizable. However, in the derivation of the equations, as already pointed out, had we
included the conditions on both input and output probabilities we might have got an excellent result!
But such a derivation becomes very formidable as you cannot arrive at a numerical solution! You will
have to resolve your problem by graphical methods only which will also be a tough proposition! The
formula can be used, however, with restrictions on the channel transition probabilities. For example,

in the previous problem, for a physically realizable p1, p11 should be less than or equal to 0.64.
(Problems 4.16 and 4.18 of Sam Shanmugam to be solved using this method)

Symmetric Channels:

The Muroga’s approach is useful only when the noise characteristic P [X|Y] is a square and
invertible matrix. For channels with m # n, we can determine the Channel capacity by simple
inspection when the channel is “ Symmetric” or “Uniform”.

Consider a channel defined by the noise characteristic:

pll p1z p13 . pln
P p P )
21 22 B, 2 n
P[Y' X] =p31 paz pss .. p3n (434)
M M M M M 4
This channel is paid po begsymmetrigyor Uniform,if thg,second and subsequent rows of the
channel matrix are certain permutations of the first hat is the elements of the second and
subsequent rows are exactly the same as those o row except for their locations. This is
illustrated by the following matrix: \
Pl p2  p3
pn -1
P2 p 4
PIY|X]= p3 p2 P5 (435)
M M M M
p -2 .. Pl

Remembering the impoktant'property of the conditional probability matrix, P [Y|X], that the sum of
all elements in any row sReuld add to unity; we have:

Ypi=l (4.36)

The conditional entropy H (Y|X) for this channel can be computed from:

m n 1
H(Y[X)= sspxkyj )og———
k=1j=1 pP(Xk,Yj)
=Zg( Xk)-zg(yjl xk) log —1
k=1 j=1 p( Yj| Xk )

However, for the channel under consideration observe that:
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m n n
D p(xk).) p(yjlxk)log —1=ij log L -h. . (4.37)

k=1 j=1 p(yjlxk) j=1 Pj
IS a constant, as the entropy function is symmetric with respect to its arguments and depends only on
the probabilities but not on their relative locations. Accordingly, the entropy becomes:

H(Y| X)=Zp(Xk).h=h ................. (4.38)

k=1
as the source probabilities all add up to unity.

Thus the conditional entropy for such type of channels can be computed from the elements of any
row of the channel matrix. Accordingly, we have for the mutual information:

10X, Y) = H(Y) — H (Y|X)
=H(Y)-h
Hence, C = Max I(X, Y) =Max
{H(Y)- h} =
Max H(Y) —h

Since, H(Y) will be maximum if and only if all the received symbgls are equally probable and as
there are n — symbols at the output, we have:

H(Y) Max=log n ’\
Thus we have for the symmetric channel: *
C=logn-h N J .. (439)
The channel matrix of a channel X/e the form described in Eq (3.35) but still it can

be a symmetric channel. This will becom you interchange the roles of input and output. That
is, investigate the conditional probabi rix P (X]Y).

We define the channel& etric if the CPM, P (X]|Y) has the form:
p1 p2 .. Pm
p
1 m-1
p pé
P(X|Y)=p3s p bm .. P (440)
M M M M M
p
Pm  P1 m3 .,  P1

That is, the second and subsequent columns of the CPM are certain permutations of the first column.
In other words entries in the second and subsequent columns are exactly the same as in the first
column but for different locations. In this case we have:

nm 1 n m 1
H(X[Y)=D D p(xk.yj ————=2p(yi)2 p(xkly;)log
)log pP(xk|yj) j=1 k=1 P(XKk|Yj)
j=lk=1
Since ¥ pn(yj) =1and i p( X, |yj)log—1=mﬂogk _Ll="his a constant, because
i=1 k=1 P(Xk[Yj) k=1 Pk

all entries in any column are exactly the same except for their locations, it then follows that:
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H(X|Y)=h= Spog L ... (@4
k=1 Pk
*Remember that the sum of all entries in any column of Eq (3.40) should be unity.
As a consequence, for the symmetry described we have:
C= Max [H(X) - H ( X|Y)] = Max H(X) - h’
Or C= |Og m-h" (4.42)

Thus the channel capacity for a symmetric channel may be computed in a very simple and
straightforward manner. Usually the channel will be specified by its noise characteristics and the
source probabilities [i.e. P (Y|X) and P (X)]. Hence it will be a matter of simple inspection to identify
the first form of symmetry described. To identify the second form of symmetry you have to first
compute P (X|Y) —tedious!

Example 3.4:

Consider the channel represented by the channel diagram shown in Fig 3.3:

The channel matrix can be read off from the channel diagram as:
1 1 1 1

P(Y|X)= 3366 Q
1111 AN
6 3

o

¥

INPUT ' OUTPUT
F3

5 o Y

Oig 4.3 A Symmetric Channel

Clearly, the second rowais a permutation of the first row (written in the reverse order) and hence the
channel given is a symmetric channel. Accordingly we have, for the noise entropy, h (from either of

the rows):
H (Y]X) =h =2 X —%Iog 3+2x %Iog 6= 1.918295834 bits / symbol.
C=1logn- h=log4 - h=0.081704166 bits / symbol.
Example 4.5:
A binary channel has the following noise characteristic:
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0 1
02 1
3 3
. =2

1
3 3

@ If the input symbols are transmitted with probabilities 3 /4 and 1 / 4 respectively, find H(X),

H(Y), H(X, Y), H (Y|X) and I(X, Y).
() Find the channel capacity, efficiency and redundancy of the channel.
(© What are the source probabilities that correspond to the channel capacity?

To avoid confusion, let us identify the input symbols as x1 and x2 and the output symbols by y1 and

y2. Then we have:

P(x1))=3/4andp(x2)=1/4

2 1
P(X|Y)=3 3
1 2
3 3
H(Y|X)=h=2log3 ,1log3=log 3—2=0918®bits/symbol.
3 4312 3% 3 38 3\
H(X)=_log_+_logd=1logd—- log3=2 i_ 0.811278125 bits / symbol . 4
3444

Multiplying first row of P (Y|X) by p(x1) an%( y p(x2) we get:

Adding the elements of thi &olumnwise, we get: p (y1) = 7/12, p (y2) = 5/12.

Dividing the first colu@eg of P (X, Y) by p (y1) and those of second column by

p (y2), we get:
6
P(X[Y)="

H
N ¥

-
From these valu%es we :tf%ve:s 12
H(Y)= log + log — =0.979868756 bits / symbol .
12 7 12 5
H(X,Y)=1llog2+1 log4+-_1 0g12+1log6 = 1.729573958 bits / symbol .

2 / 12 6
H(X|Y)=L logZ ZLlogd . 1log7+1Llog.3 =0.74970520 bits/symbol
2 6 4 3 12 6 2
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H(Y|X)=21log3 +llog3+Lllog3+Llog3=1log3-2=h (ashefore).
2 2 4 12 6 2 3
I(X,Y)=H(X)=H(X]|Y)=0.061572924 bits / symbol .
=H(Y)-h=0.061572923 bits / symbol .
C=logn—h=log2-h-1-h=0.081704167 bits / symbol .
Efficiency ,n=1(X.Y) - 0753608123 0r75.3608123%
C
Re dundancy , E =1 —7=0.246391876 or 24.6391876%

To find the source probabilities, let p(x1) = pand p(x2) = = 1- p.Then the JPM becomes:

2 1
=P =p
P(X,Y)= 3 3
1(1-p) 2
3 3
Adding columnwise we get: p(y1) =L (1 +p) and p(y2) =1 @-p
3 3
ForH(Y) = H(Y) max,wewantp (y1) = p (y2)andhence 1+p=2-p or p _1
2
).

Therefore the source probabilities corresponding to the channel capacity are: =1/2 =p(x2
L 4
k1

Binary Symmetric Channels (BSC): (Problem 2.6.2 - S imon

The channel considered in Example 3.6 is ca i gry Symmetric Channel” or ( BSC). It
is one of the most common and widely used chann annel diagram of a BSC is shown in Fig
3.4. Here ° p’ is called the error probability.

For this channel we have: &
H(Y| X) =plogl+qlogl =H (4.43)
p
_1_
H) =[p-al F_ +Llg+a( p—q)llog ...(4.44)
o) Ilog

(p-q] [g+a( p-q)]

(X, Y) = H(Y) -l ( and the channel capacity is:
C=1 +plogp+qlogg ... (4.45)

This occurs when a = 0.5 i.e. P(X=0) = P(X=1) = 0.5

In this case it is interesting to note that the equivocation, H (X]Y) =H (Y|X).
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0 1

ole pP| prtq=1
Y P(Y|X) = P(X=0) =«
ilqa p P(X=1)=1-«a

X

>
q
Fig4.4 Channel diagram of a BSC and its Channel Mafrix.

An interesting interpretation of the equivocation may be given if consider an idealized
communication system with the above symmetric channel as shown in Fig 4.5.

7 X = ¥ Y
Binary Receiver Emor |
Seurce Carrection
h

Comparator
K

A4

Fig4.5 An I(Iealized% Ommunication System.

The observer is a noiseless chann mpares the transmitted and the received symbols.
Whenever there is an error a “ 1’ 1 the receiver as a correction signal and appropriate
correction is effected. When there j r the observer transmits a 0’ indicating no change. Thus
the observer supplies additional i on to the receiver, thus compensating for the noise in the
channel. Let us compute this &' information .With P (X=0) = P (X=1) = 0.5, we have:
Probability of sendi

Probability of error in the channel .
Probability of error =% (Y=1|X=0).P(X=0) + P (Y=0|X=1).P(X=1)
=px05+px05=p
.+ Probability of noerror=1-p=q
Thuswe have P (Z=1)=pand P (Z=0) =q

Accordingly, additional amount of information supplied is:
1 1
=plog—p+qloga:H(X|Y)=H(Y|X) ........ (4.46)

Thus the additional information supplied by the observer is exactly equal to the equivocation of the
source. Observe that if © p’ and © g are interchanged in the channel matrix, the trans -information of
the channel remains unaltered. The variation of the mutual information with the probability of error is
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shown in Fig 3.6(a) for P (X=0) = P (X=1) = 0.5. In Fig 4.6(b) is shown the dependence of the mutual
information on the source probabilities.

b R =C-- 1-Hp
1 0.25 1 :
ixXn Xy :
08 02 1 1
1
1
06 . \
0.15 |
1
1
0.4 011 1
1
1
02 0.05 - :
1
1
0 T T T T 0 T T T t
0 025 05 075 1 0 0.25 05 0.75 1
Prodability of Erver, p ————» =
) — P(X=0)

(@)
Fig4.6 Mutual Information of a BSC

Binary Erasure Channels (BEC):

The channel diagram and the channel matrix of a BEC are shown in Fig 3.7.

0o 1
q
0e ! ® () P

0 >0

INPUT Y OoUTPUT P(Y|X)=

)
(@)
Fig 4.7 Binary Erqsu Turrigel.

BEC is one of the important ‘ hannels used in digital communications. Observe that
whenever an error occurs, the symbolGwid#™®e received as ¢ y’ and no decision will be made about the
information but an immediate requeg made for retransmission, rejecting what have been received
(ARQ techniques), thus ensuri

channel and we have with P ,PX=1)=1-a
Qe
H (Y] X) +qlog= (4.47)
plog p q
H(X):alog—1+(1—a)log e (4.48)
o (l-x)
The JPM is obtained by multiplying first row of P (Y|X) by e and second row by (1- a).
We get:
pxy)= da@ P 0 (4.49)

p(l-a)q(l -a)
Adding column wise we get: P (Y) = [ge, p,q (1-a@)] ... (4.50)
From which the CPM P (X|Y) is computed as:
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1 a 0

e o0 (4.51)
(1-a) 1
~H(X|Y)=aglogl+aplogl+(1-a)plog—2Ll+(1-a)glogl
a (1-a)
=pH (X)

AAG Y) =sHX)-HXIY) =0 -p HX) =g . - (452
H(X)
~.C = MaxI(X,Y)=qbits/symbol. .. (4.53)

In this particular case, use of the equation 1(X, Y) = H(Y) — H(Y | X) will not be correct, as H(Y)
involves ‘ y’ and the information given by  y’ is rejected at the receiver.

Deterministic and Noiseless Channels: (Additional Information)

Suppose in the channel matrix of Eq (3.34) we make the following modifications.

a) Each row of the channel matrix contains one and iny e ngnzero entry, which necessarily
should be a  1°. That is, the channel matrix is symmetrichgand has the property, for a given k
and j, P (yj|xk) = 1and all other entries are * 0°. Hgage givVen Xk, probability of receiving it as yj is

one. For such a channel, clearly
HY[X) =0and (X, Y) =HQ Pt

input symbol xk unique
output, no decisions ca

ade regarding the transmitted symbol!!

1
. = 4 010
: {100
Y2 P(1X) = 010
X3 1
0 0 1
Vs
x4./-//’ly-".
Fig4.8

b) Each column of the channel matrix contains one and only one nonzero entry. In this case,
since each column has only one entry, it immediately follows that the matrix P (X|Y) has also
one and only one non zero entry in each of its columns and this entry, necessarily be a * 1’
because:

Ifp (yjixk) =a, p(yj | x) =0, r£k, r=1,23- m.

Thenp (xk, yj) = p (xk) X p (yjlxk) =a X p (xk),
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pxr, vp) =0,r#k, r=12 3 m.
Sp ) = Zp( Xr, Vi) =p Xk, Yj) = ap (k)
r=1

ap(xk]yj)=POKYD) — 1 andp(xr|yj)=0, Vrek,r=123..m.
p(Yij)

Itthen followsthatH (X|Y) = 0and1 (X, Y) = ceeeen (4.55)
H (X)

Notice again that it is not necessary to have H(Y) = H(X). However in this case, converse of (a)
holds. That is one output symbol uniquely specifies the transmitted symbol, whereas for a given
input symbol we cannot make any decisions about the received symbol. The situation is exactly
the complement or mirror image of (a) and we call this channel also a deterministic channel
(some people call the channel pertaining to case (b) as ‘Noiseless Channel’, a classification can be
found in the next paragraph). Notice that for the case (b), the channel is symmetric with respect to
the matrix P (X|Y).

Example 3.7:
Consider the channel diagram, the associated channel ix, P (Y|X) and the conditional
probability matrix P (X|Y) shown in Fig 3.9. For this Gh& le
p (x1)=0.5, p(x2) = p(x3) = 0.25. o
Thenp (y») = p (y2) = p(ys) =0.25, p(ye& y4) =0.0625 and p(ys) = 0.125.
S

&

="0.875 bits / symbol and H (X|Y) = 0.

It then follows 1(X, Y) = H(X) =1 bol,

H(Y) = 2.375 bits / symbol, H

' o 0o o o o0 1
® ys
x2 ge . i 1 1 0 0 0 0
v\og\. ys SPMB=|0 0 1 1 1 0

X3 ® —> ® Vo o 0 0 o0 o0 1

{(frrespective aof P(X), the
Fig4.9 Channel diagram for Example 4.7 reader should verify this)

¢) Now let us consider a special case: The channel matrix in Eq (3.34) is a square matrix and all
entries except the one on the principal diagonal are zero. That is:

p (YKkIxk) = 1 and p(yj|xk)=0 Pk

Or in general, p (yjIxk) =djk, where djk, is the * Kronecker delta’, i.e. dk =1 if j =k
=0 if j=k.

Thatis, P (Y|X) is an Identity matrix of order ‘ n’ and that P (X|Y) = P (Y|X) and
p (Xk, yj) = p (XK) = p (yj) can be easily verified.
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For such a channel it follows:

HX|Y) =H(Y[X) =0and1(X, Y) =H(X) = H(Y) =H(X, Y) (4.56)

We call such a channel as “ Noiseless Channel”. Notice that for the channel to be noiseless, it
IS necessary that there shall be a one-one correspondence between input and output symbols. No
information will be lost in such channels and if all the symbols occur with equal probabilities, it
follows then:

C=I(X, Y) MaxcH(X) Max=H(Y) Mmax=log n bits / symbol.

Thus a noiseless channel is symmetric and deterministic with respect to both descriptions
P (Y|X) and P (X|Y).

Finally, observe the major concept in our classification. In case (a) for a given transmitted
symbol, we can make a unique decision about the received symbol from the source end. In case
(b), for a given received symbol, we can make a decision about the transmitted symbol from the
receiver end. Whereas for case (c), a unique decision can be made with regard to the transmitted
as well as the received symbols from either ends. This uniqueness property is vital in calling the
channel as a ‘Noiseless Channel’.

d) To conclude, we shall consider yet another channel descri@e following JPM:

p1 p1 p1 ... p1
P(X,)Y)= P2 p2 p2 .. p2 TS
M M M M

This means that there is no co G’V osbetween xk and yj and an input xk may be received as any

one of the yj’s with equal . In other words, the input-output statistics are independent!!
This can be verifi have p (xk, yj) = pk

=npk. _Pk=p (XK)-p (¥j)

k=1
. p(xklyj) = npk and p(yj|xk) = 1/n

Thus we have:

m 1 m 1 m 1 1
H(X,Y)=n% pk log, H (X)=3 npk log =n > pk log + log

k=1 Pkk =1 npk k=1 pk n

n
H(Y)=%¥p(yj )log = logn,
j=1 pP(yj)

H(X[Y)=H(X),H(Y|X)=H(Y)andl(X,Y)=
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~.Such a channel conveys no information whatsoever. Thus a channel with independent input-
output structure is similar to a network with largest internal loss (purely resistive network), in
contrast to a noiseless channel which resembles a lossless network.

Some observations:

For a deterministic channel the noise characteristics contains only one nonzero entry,
which is a ¢ 1°, in each row or only one nonzero entry in each of its columns. In either case there
exists a linear dependence of either the rows or the columns. For a noiseless channel the rows as
well as the columns of the noise characteristics are linearly independent and further there is only
one nonzero entry in each row as well as each column, which is a ¢ 1’ that appears only on the
principal diagonal (or it may be on the skew diagonal). For a channel with independent input-
output structure, each row and column are made up of all nonzero entries, which are all equal and
equal to 1/n. Consequently both the rows and the columns are always linearly dependent!!

Franklin.M.Ingels makes the following observations:

1) If the channel matrix has only one nonzero entry in each column then the channel is termed
as “ loss-less channel”. True, because in this case H (X|Y) = 0 and I(X, Y) =H(X), i.e. the
mutual information equals the source entropy.

2) If the channel matrix has only one nonzero entry in each row (which necessarily should be a
¢ 1’), then the channel is called “ deterministic channegl” S this case there is no ambiguity
about how the transmitted symbol is going to be f&geived although no decision can be made
from the receiver end. In this case H (Y|X) =0, and 1(RY)= H(Y).

3) An “ Ideal channel” is one whose channel only one nonzero element in each row
and each column, i.e. a diagonal matrix. al channel is obviously both loss-less and
deterministic. Lay man’s knowl e%h equal number of inputs and outputs-you
cannot transmit 25 symbols an ive 8igher 30 symbols or 20 symbols, there shall be no
difference between the numbers itted and received symbols. In this case

1(X,Y) = H(X) =H(Y), [Y) =H(Y|X) =0

4 A *“ uniform channg
permutations OR jdenti

e whose channel matrix has identical rows ex cept for
olumns except for permutations. If the channel matrix is square,
column are simply permutations of the first row.

then every ro d e
Observe thatonssible to use the concepts of “ sufficient reductions” and make the

channel described in (1) a deterministic one. For the case (4) observe that the rows and
columns of the matrix (Irreducible) are linearly independent.
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Additional Illustrations:

Example 3.9

A
|
—_—

'hﬁ
>

p 2y X : Z;

X N . V7 Xy
2 » T, 7 2 A2

Fig4.10 Two BSC's in Cascade

>y

Consider two identical BSC*s cascaded as shown in Fig 4.10. Tracing along the transitions indicated
we find:

p (z1/x1) = p%+ g% = (p + q) * - 2pq =(1 - 2pq) = p(z 2Ix2) and p(z1/x2) = 2pq = p(z2|x1)
Labeling p=1-2pq, ¢" =2 pq it then follows that:
IX,Y)=1-H(g)=1+plogp+qlogq
I(X,2) = 1 - H (2pq) = 1 + 2pq log 2pq + (1 - 25) IQZW)-
If one more identical BSC is cascaded giving the output me ave:
I(X, U) =1—H (3pg 2+ p°) .

The reader can easily verify that I1(X, Y) 2 I(X,

Example 4.9: \ >

Let us consider the cascade of; isy channels with channel matrices:
1 1
7 20
P(Y|X)= 1 2 0 , with p(x1) = p(x2) =0.5
3 3
1 2
o — —
3 3

Fig 4.11 Cascade of two noisy channels.

The above cascade can be seen to be equivalent to a single channel with channel matrix:
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5 5 4
P(Z] X) = 36 12 9
I 1 1
3 2 6

The reader can verify that: 1(X, Y) = 0.139840072 bits / symbol.

I(X, Z) =0.079744508 bits / symbol.
Clearly I(X, Y) > I(X, 2).

Example 3.10: Let us consider yet another cascade of noisy channels described by:

1

Py x)= 3 33 PCZ]Y) =0
1
2

In—-wl [NC )
ow| —o

that the cascade is equivalent to a channel described by:

(&

Inspite of the fact, that neither channeli seless, here we have 1(X, Y) = I(X, 2).

0
33
The channel diagram for this cascade is shown in Fig 4.12.?@% easily verify in this case

¢

p(z| x) =8

l\:l»—wl»—
l\')r—‘wlr—t

Fig 4.12 Cascade of noisy channels of Example 4.10
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Review Questions:

1. What are important properties of the codes?
2. what are the disadvantages of variable length coding?

3. Explain with examples:
4. Uniquely decodable codes, Instantaneous codes

5. Explain the Shannon-Fano coding procedure for the construction of an optimum code
6. Explain clearly the procedure for the construction of compact Huffman code.

7. A discrete source transmits six messages symbols with probabilities of 0.3, 0.2, 0.2, 0.15, 0.1,
0.5. Device suitable Fano and Huffmann codes for the messages and determine the average
length and efficiency of each code.

8. Consider the messages given by the probabilities 1/16, 1/16, 1/8, ¥4, ¥.. Calculate H. Use the
Shannon-Fano algorithm to develop a efficient code and,for that code, calculate the average
number of bits/message compared with H. ¢

»

9. Consider a source with 8 alphabets and respectiv killties as shown:
A BCDEFGH
0.200.18 0.150.10 0.08 0.05 0.02 0.01
Construct the binary Huffman codg f; is.‘€0nstruct the quaternary Huffman and code
and show that the efficiency of thi &m orse than that of binary code

10. Define Noiseless channel and tic channel.

11. A source produces sy ,Z with equal probabilities at a rate of 100/sec. Owing to
noise on the channel
shown:

abilities of correct reception of the various symbols are as

X Y z

Ya Ya 0
y Y, Y Vs
z 0 Ya Ya

Determine the rate at which information is being received.

12. Determine the rate of transmission I(X,y) through a channel whose noise characteristics is
shown in fig. P(A1)=0.6, P(A2)=0.3, P(A3)=0.1

Al 0.5 Bl
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OUTCOME:

1. Able to understand different Communication channel in communication systems.
2. Capable of finding channel capacity of different channels in communication system.
3. Able to develop channel matrix and mutual information in channel.
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MODULE 4
CHAPTER 1: ERROR CONTROL CODING

STRUCTURE

¢ Rationale for Coding

e Discrete memory less channel

e Shannon’s theorem on channel capacity Revisited
e Types of errors

e Types of codes

e Example of Error Control Coding

e Block codes 4 Q
e Minimum Distance Considerations \

e Standard Array and Syndrome Decoding *

e Hamming Codes

OBJECTIVE

e To analyze different types of
e To develop procedures fo
errors in digital communi

e To Study various @

schemes. Q

g efficient coding schemes for controlling various types of
ystem.
of detecting and/or correcting error and compare different coding
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INTRODUCTION

The earlier chapters have given you enough background of Information theory and Source
encoding. In this chapter you will be introduced to another important signal - processing
operation, namely, “Channel Encoding”, which is used to provide ‘reliable’ transmission of
information over the channel. In particular, we present, in this and subsequent chapters, a survey
of ‘Error control coding’ techniques that rely on the systematic addition of ‘Redundant’ symbols
to the transmitted information so as to facilitate two basic objectives at the receiver: ‘Error-
detection’ and ‘Error correction’. We begin with some preliminary discussions highlighting the
role of error control coding.

4.1 RATIONALE FOR CODING:

The main task required in digital communication i¢ to@ct ‘cost effective systems’ for
transmitting information from a sender (one end of the systemj, at‘@rate and a level of reliability that
are acceptable to a user (the other end of the syst The two key parameters available are
transmitted signal power and channel band width. parameters along with power spectral
density of noise determine the signal energy ew& e power density ratio, Ex/Ng and this ratio,

as seen in chapter 4, uniquely determines thgebiterror for a particular scheme and we would like to
transmit information at a rate Ryax = 1.
that we can assign. Accordingly,
acceptable data quality (i.e. low e

Practical considerations restrict the limit on Ep/Ng
rrive at modulation schemes that cannot provide
ror performance). For a fixed Ep/No, the only practical
ity from problematic to acceptable is to use “coding”.

alternative available for chang&

Another practical @ for the use of coding is to reduce the required Ep/N, for a fixed
error rate. This reductign, , may be exploited to reduce the required signal power or reduce the
hardware costs (exampl@g by requiring a smaller antenna size).

The coding methods discussed in chapter 2 deals with minimizing the average word length of
the codes with an objective of achieving the lower bound viz. H(S) / log r, accordingly, coding is
termed “entropy coding”. However, such source codes cannot be adopted for direct transmission over

the channel. We shall consider the coding for a source having four symbols with probabilities
p (s1) =1/2, p (S2)=1/4, p (S3) = p (Sa) =1/8. The resultant binary code using Huffman’s procedure is:

Clearly, the code efficiency is 100% and L = 1.75 bints/sym = H(S). The sequence s3s45; will
then correspond to 1101110. Suppose a one-bit error occurs so that the received sequence is 0101110.
This will be decoded as “S15,8481”, which is altogether different than the transmitted sequence. Thus
although the coding provides 100% efficiency in the light of Shannon’s theorem, it suffers a major
disadvantage. Another disadvantage of a ‘variable length’ code lies in the fact that output data rates
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measured over short time periods will fluctuate widely. To avoid this problem, buffers of large length
will be needed both at the encoder and at the decoder to store the variable rate bit stream if a fixed
output rate is to be maintained.

Some of the above difficulties can be resolved by using codes with “fixed length”. For
example, if the codes for the example cited are modified as 000, 100, 110, and 111. Observe that even
if there is a one-bit error, it affects only one “block™ and that the output data rate will not fluctuate.
The encoder/decoder structure using ‘fixed length’ code words will be very simple compared to the
complexity of those for the variable length codes.

Here after, we shall mean by “Block codes”, the fixed length codes only. Since as discussed
above, single bit errors lead to ‘single block errors’, we can devise means to detect and correct these
errors at the receiver. Notice that the price to be paid for the efficient handling and easy

manipulations of the codes is reduced efficiency and hence incre redundancy.
In general, whatever be the scheme adopted for trans iofyof

probability of error is a function of signal-to-noise po

rate. However, the constraints like maximum signal

Governmental regulations on public channels) e:&/
0

digital/analog information, the

i the input of a receiver and the data
d bandwidth of the channel (mainly the
impossible to arrive at a signaling scheme
given application. The answer to this problem
own as ‘channel coding’. In brief, “error control
cy”. The block diagram of a typical data transmission

which will yield an acceptable probability o
is then the use of ‘error control coding
coding is the calculated addition of r.
system is shown in Fig. 4.1

The information sour
output, which is to be co
sequence of discrete s

ither a person or a machine (a digital computer). The source
d to the destination, can be either a continuous wave form or a
e ‘source encoder’ transforms the source output into a sequence of
binary digits, the information sequence u. If the source output happens to be continuous, this involves
A-D conversion as well. The source encoder is ideally designed such that (i) the number of bints per
unit time (bit rate, rp) required to represent the source output is minimized (ii) the source output can
be uniquely reconstructed from the information sequence u.
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Information | g | Sewrce |y | Channel |V | Modulator

Source Y| Encoder Encoder - {Writing Unit)
Noise Channel
{Storage Medium)

¥

Destinati it | Source _ﬁ Channel | y| De-Modulater
estinaion ¢ Decoder Decoder | | (Reading Unit)

Fig 4.1: Block diagram of a typical data transmission

The ‘Channel encoder’ transforms u to the erféodedyseqience v, in general, a binary
sequence, although non-binary codes can also be used for so pplications. As discrete symbols are
not suited for transmission over a physical channel, the @ gguences are transformed to waveforms
hannel get corrupted by noise. Typical
ks, Telemetry links, Microwave links, and
Satellite links and so on. Core and semicon emories, Tapes, Drums, disks, optical memory
1 itching impulse noise, thermal noise, cross talk and
pance over a physical channel. A surface defect on a
he demodulator processes each received waveform and
produces an output, which her continuous or discrete — the sequence r. The channel
decoder transforms r into aoig equence, U which gives the estimate of u, and ideally should be

this to the destination:

Error control for data integrity may be exercised by means of ‘forward error correction’
(FEC) where in the decoder performs error correction operation on the received information
according to the schemes devised for the purpose. There is however another major approach known
as ‘Automatic Repeat Request’ (ARQ), in which a re-transmission of the ambiguous information is
effected, is also used for solving error control problems. In ARQ, error correction is not done at all.
The redundancy introduced is used only for ‘error detection’ and upon detection, the receiver
requests a repeat transmission which necessitates the use of a return path (feed back channel).

In summary, channel coding refers to a class of signal transformations designed to improve
performance of communication systems by enabling the transmitted signals to better withstand the
effect of various channel impairments such as noise, fading and jamming. Main objective of error
control coding is to reduce the probability of error or reduce the Ep/Ng at the cost of expending more
bandwidth than would otherwise be necessary. Channel coding is a very popular way of providing
performance improvement. Use of VLSI technology has made it possible to provide as much as
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8 — dB performance improvement through coding, at much lesser cost than through other methods
such as high power transmitters or larger Antennas.

We will briefly discuss in this chapter the channel encoder and decoder strategies, our major
interest being in the design and implementation of the channel ‘encoder/decoder’ pair to achieve fast
transmission of information over a noisy channel, reliable communication of information and
reduction of the implementation cost of the equipment.

4.2 Discrete memory less channel:

Referring to the block diagram in Fig. 4.2 the channel is said to be memory less if the de-
modulator (Detector) output in a given interval depends only on the signal transmitted in the
interval, and not on any previous transmission. Under this condition, we may model (describe) the
combination of the modulator — channel — and the demodulator as a “Discrete memory less
channel”. Such a channel is completely described by the, setef sition probabilities p (y;j | X«)
where X is the modulator input symbol. \

The simplest channel results from the use of

3 b

ols (both as input and output). When
‘s as inputs. Similarly, the inputs to the
Inary quantization is used. If so we say a

output so as to identify which symbol was actually
metric channel’ (BSC). The BSC when derived

binary coding us used the modulator has only

‘Hard decision’ is made on the demod
transmitted. In this case we have a ‘BI

probability ‘p’. The majority of @' d ,digital communication systems employ binary coding with
hard-decision decoding due to of implementation offered by such an approach.

The use of har
receiver. To overcom oblem “soft-decision” coding is used. This can be done by including a
multilevel quantizer at the demodulator output as shown in Fig. 4.2(a) for the case of binary PSK
signals. The input-output characteristics and the channel transitions are shown in Fig. 4.2(b) and
Fig. 4.2(c) respectively. Here the input to the demodulator has only two symbols ‘0’'s and ‘1’"s
However, the demodulator output has ‘Q’ symbols. Such a channel is called a “Binary input-Q-ary
output DMC”. The form of channel transitions and hence the performance of the demodulator,
depends on the location of representation levels of the quantizer, which inturn depends on the signal
level and variance of noise. Therefore, the demodulator must incorporate automatic gain control, if an
effective multilevel quantizer is to be realized. Further the soft-decision decoding offers significant
improvement in performance over hard-decision decoding.
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Product Device

|

Moadiuleated

Signal T Uniform
Ja’f » Multilevel >
v Onentizer

Fig. 4.2 (a) - Reciever

Fig 6.2 (D) Transfer Characteristics
aof the § - level Quaniize

4.3 Shannon’s theorem el capacity Revisited:

The “Shannon’s on channel capacity” is re-stated here and call it the “Coding
Theorem”.

“It is possible in principle, to devise a means where by a communication system will transmit
information with an arbitrarily small probability of error, provided the information rate R (=r 1(X,Y)
where r-is the symbol rate) is less than or equal to a rate ‘C’ called the ‘channel capacity”. The
technique used to achieve this goal is called “Coding”. For the special case of a BSC, the theorem
tells us that if the code rate, R. (defined later) is less than the channel capacity, then it is possible to
find a code that achieves error free transmission over the channel. Conversely, it is not possible to
find such a code if the code rate R is greater than C.

The channel coding theorem thus specifies the channel capacity as a “Fundamental limit” on
the rate at which reliable transmission (error-free transmission) can take place over a DMC. Clearly,
the issue that matters is not the signal to noise ratio (SNR), so long as it is large enough, but how the
input is encoded.

The most un-satisfactory feature of Shannon’s theorem is that it stresses only about the
“existence of good codes”. But it does not tell us how to find them. So, we are still faced with the
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task of finding a good code that ensures error-free transmission. The error-control coding techniques
presented in this and subsequent chapters provide different methods of achieving this important
system requirement.

4.4 Types of errors:

The errors that arise in a communication system can be viewed as ‘independent errors’ and
‘burst errors’. The first type of error is usually encountered by the ‘Gaussian noise’, which is the
chief concern in the design and evaluation of modulators and demodulators for data transmission. The
possible sources are the thermal noise and shot noise of the transmitting and receiving equipment,
thermal noise in the channel and the radiations picked up by the receiving antenna. Further, in
majority situations, the power spectral density of the Gaussian noise at the receiver input is white.
The transmission errors introduced by this noise are such that the error during a particular signaling
interval does not affect the performance of the system during the_subsequent intervals. The discrete
channel, in this case, can be modeled by a Binary symmetgic cRannel, These transmission errors due
to Gaussian noise are referred to as ‘independent errors’ (OK m errors).

ﬁulse noise’, which is characterized by
S (As in switching and lightning). A noise
will be dependence of errors in successive

The second type of error is encountered due
long quiet intervals followed by high amplitude ngi
burst usually affects more than one symb %
transmitted symbols. Thus errors occur i

4.5 Types of codes:

There are mainly two tyg ror control coding schemes — Block codes and convolutional
codes, which can take care (Tetype of errors mentioned above.

In a block cod drmation sequence is divided into message blocks of k bits each,

here, is used to denote @k — bit message rather than the entire information sequence. The encoder
then transforms u into an n-tuple v = (vy, v ....vp). Here v represents an encoded block rather than
the entire encoded sequence. The blocks are independent of each other.

The encoder of a convolutional code also accepts k-bit blocks of the information sequence u
and produces an n-symbol block v. Here u and v are used to denote sequences of blocks rather than a
single block. Further each encoded block depends not only on the present k-bit message block but
also on m-pervious blocks. Hence the encoder has a memory of order ‘m’. Since the encoder has
memory, implementation requires sequential logic circuits.

If the code word with n-bits is to be transmitted in no more time than is required for the
transmission of the k-information bits and if T, and <. are the bit durations in the encoded and coded
words, i.e. the input and output code words, then it is necessary that

n.7. = k.tp

We define the “rate of the code” by (also called rate efficiency)
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R

(1>2

C

k
n

Accordingly, with sz% and fcz% , We have %:TA:
b c

4.6 Example of Error Control Coding:

Better way to understand the important aspects of error control coding is by way of an
example. Suppose that we wish transmit data over a telephone link that has a useable bandwidth of 4
KHZ and a maximum SNR at the out put of 12 dB, at a rate of 1200 bits/sec with a probability of
error less than 103, Further, we have DPSK modem that can operate at speeds of 1200, 1400 and
3600 bits/sec with error probabilities 2x(107%), 4x(10%) and 8x(107®) respectively. We are asked to
design an error control coding scheme that would yield an overall probability of error < 10°. We
have:

.
C = 16300 bits/sec, R, = 1200, 2400 or 3600 bits/sNQ
2

Since R < C, according to Shannon’s thgo
small probability of error. We shall consi

(i) Error detection: Single&

Messa 0 (001 |010 |O11 |100 |101 |110 |111

should be able to transmit data with arbitrarily

[C=Blog, (1+%)%=12d8 or15.85, B:4K§ (10, 4(10®) and 8(10) respectively.
oding schemes for this problem.

-coding. Consider the (4, 3) even parity check code.

Parity 0 1 1 0 1 0 0 1

Codeword | 0000 | 0011 | 0101 | 0110 | 1001 | 1010 | 1100 | 1111

Parity bit appears at the right most symbol of the codeword.

This code is capable of ‘detecting’ all single and triple error patterns. Data comes out of the channel
encoder at a rate of 3600 bits/sec and at this rate the modem has an error probability of 8x(10®). The
decoder indicates an error only when parity check fails. This happens for single and triple errors only.

pq = Probability of error detection.
= p(X =1) + p(X = 3), where X = Random variable of errors.

Using binomial probability law, we have with p = 8(10°%):
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P(X = k) :@pk(l— p)*

(M- py+[f e Moac,=4?]=4c, =4
P =| | [P(L=p) +| o [p°(1=p). | |=4C; =4, [=4Cs=

Expanding we get p; =4p—12p*+16p*-8p*
Substituting the value of p we get:
Pa = 32x (10°®) - 768x (10°) +8192x (10°%) — 32768 x(10™?) = 0.031240326 > > (10°%)

However, an error results if the decoder does not indicate any error when an error indeed has
occurred. This happens when two or 4 errors occur. Hence pr, ility of a detection error = ppq
(probability of no detection) is given by:

0\
P =P(X =2)+P(X =4)=@p2(1— P)° &l P)1—p)’ =6p”—12p° +7p*

Substituting the value of p we get pnq=0.4

Thus probability of error is less than 102

triplets 000 and 111 are transmitted whenever 0 and 1 are
ogic decoding, as shown below, is employed assuming only single

(i) Error Correctig
inputted. A mga
errors.

Received | 000 | 001 |010 |100 |011 |101 (110 |111
Triplet

Output |0 0 0 0 1 1 1 1
message

Probability of decoding error, pge= P (two or more bits in error)

3 3
=(2J p® (1-p) + (3) p® (1-p) ° =3p°-2p°
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=190.464 x 10°=0.19x 10 < p=10°®
Probability of no detection, png =P (All 3 bits in error) = p*=512 x 10”° < < pg!
In general observe that probability of no detection, pnq < < probability of decoding error, pge.

The preceding examples illustrate the following aspects of error control coding. Note that in
both examples with out error control coding the probability of error =8x(107%) of the modem.

1. It is possible to detect and correct errors by adding extra bits-the check bits, to the message
sequence. Because of this, not all sequences will constitute bonafied messages.

2. It is not possible to detect and correct all errors.

3. Addition of check bits reduces the effective data rate through the channel.

4. Since probability of no detection is always very” mu ller than the decoding error
probability, it appears that the error detection schemes, Which do not reduce the rate efficiency

as the error correcting schemes do, are well sui our application. Since error detection
schemes always go with ARQ techniques, he speed of communication becomes a
major concern, Forward error corregtio{( using error correction schemes would be
desirable.

4.7 Block codes:

We shall assume that the an information source is a sequence of Binary digits. In
‘Block coding’ this informatia ce is segmented into ‘message’ blocks of fixed length, say k.
Each message block, deng Dy then consists of k information digits. The encoder transforms

' yde words v, each an n- tuple ‘according to certain rules’. Clearly,
corresponding to 2¥ infe on blocks possible, we would then have 2% code words of length n > k.
This set of 2% code words 1s called a “Block code”. For a block code to be useful these 2 code words
must be distinct, i.e. there should be a one-to-one correspondence between u and v. u and v are also
referred to as the ‘input vector’ and ‘code vector’ respectively. Notice that encoding equipment
must be capable of storing the 2X code words of length n > k. Accordingly, the complexity of the
equipment would become prohibitory if n and k become large unless the code words have a special
structural property conducive for storage and mechanization. This structural is the ‘linearity’.

4.7.1 Linear Block Codes:

A block code is said to be linear (n ,k) code if and only if the 2¥ code words from a k-
dimensional sub space over a vector space of all n-Tuples over the field GF(2).

Fields with 2™ symbols are called ‘Galois Fields’ (pronounced as Galva fields), GF (2™).Their
arithmetic involves binary additions and subtractions. For two valued variables, (0, 1).The modulo —
2 addition and multiplication is defined in Fig 4.3.

10
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¥ ¥
@ 1 ® /] 1
0|0 |1 o0
X X
(1|0 0| 1 |1
XY AX®F
Fig 4.3

The binary alphabet (0, 1) is called a field of two elements (a binary field and is denoted by
GF (2). (Notice that & represents the EX-OR operation and ® represents the AND operation).Further
in binary arithmetic, —=X=X and X — Y = X @ Y. similarly for 3-valued variables, modulo — 3
arithmetic can be specified as shown in Fig 6.4. However, for br while representing polynomials
involving binary addition we use + instead of @ and there sﬂ@mfusion about such usage.
&

Polynomials f(X) with 1 or 0 as the co-effi be manipulated using the above
relations. The arithmetic of GF(2™) can be derived ynomial of degree ‘m’, with binary co-
efficients and using a new variable a. called the ive element, such that p(a) = 0.When p(X) is
irreducible (i.e. it does not have a factor o r&m and >0, for example X° + X%+ 1, X3+ X + 1,
X* +Xx3 +1, X> +X® +1 etc. are irragcible polynomials, whereas f(X)=X*+X3+X%+1 is not as
f(1) =0 and hence has a factor X+1) is said to be a ‘primitive polynomial’.

If v, represents a vector s n-tuples, then a subset S of vy is called a subspace if (i)
the all Zero vector is in S (ii of any two vectors in S is also a vector in S. To be more
specific, a block code is sa @ Minear if the following is satisfied. “If v, and v, are any two code

words of length n of the 0de then v; ¢ V2 is also a code word length n of the block code”.

Example 4.1: Linear BloCk code with k= 3, and n =6

Weight
Messages Codewords | (No. of I's in the code word )
my 000 vi 000000 0
my 001 vy 001110 3
mz 010 v; 010101 3
my 100 w 100 011 3
ms; 011 v 011011 4
mg 101 vs 101101 4
mz 110 v 110110 4
my; 111 vy 111000 3

Observe the linearity property: With v; = (010 101) and v4 = (100 011), v3 @ v4 = (110 110) = v>.

11
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Remember that n represents the word length of the code words and k represents the number
of information digits and hence the block code is represented as (n, k) block code.

Thus by definition of a linear block code it follows that if gi, g2...0k are the k linearly
independent code words then every code vector, v, of our code is a combination of these code words,
le.

VU 0i®u; 2 ®...0 Uk Gk e (4.1)

Whereu;=00r1,V1<j<k

Eq (6.1) can be arranged in matrix form by nothing that each g; is an n-tuple, i.e.

9= (91, Gj2s+++Ein) (4.2)
Thus we have v=uG (4.3)
Where: u = (Ug, Uz...uy) 4.4
represents the data vector and
11 912 " O1n
“Noa 02 0
G= gz : 21 :22 2n (45)
g3

a1 @
is called the “generator ma

Notice that any independent code words of an (n, K) linear code can be used to form
a Generator matrix forte code. Thus it follows that an (n, k) linear code is completely specified by
the k-rows of the generator matrix. Hence the encoder need only to store k rows of G and form linear

combination of these rows based on the input message u.

Example 4.2: The (6, 3) linear code of Example 6.1 has the following generator matrix:

g |1 000 11
G=|g,|=[0 1 0 1 0 1
O3 001110

If u =ms (say) is the message to be coded, i.e. u = (011)
Wehavev=u.G=0.9; +1.g> +1.03
=(0,0,0,0,0,0) + (0,1,0,1,0,1) + (0,0,1,1,1,0)=(0,1, 1,0, 1, 1)

Thus v=(011011)

12
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“v can be computed simply by adding those rows of G which correspond to the locations of
1'sofu.”

4.7.2 Systematic Block Codes (Group Property):

A desirable property of linear block codes is the “Systematic Structure”. Here a code word is
divided into two parts —Message part and the redundant part. If either the first k digits or the last k
digits of the code word correspond to the message part then we say that the code is a “Systematic
Block Code”. We shall consider systematic codes as depicted in Fig.4.5.

«—— Kk digits —»|«— (n - k) digits —
Message Port Redundant Part

Fig 4.5 Systematic format 01; co@
In the format of Fig.4.5 notice that: \

L 2
Vi=U;,Vo=Up V3=Us...Vk=Ux =8 J ... (4.6 a)
Vicer =Ug Ppy + Uy Poy + Uz P3g +...+ Uy Py
Vieg2 =Up Prp + Uy Pop +Uz Pap +.00+ Uy K (4.6 b)
Va=Up Pk + Uz Ponk + Uz P3pi HE-. k Pk n-k
Or in matrix from we have \
vy vo v 2 o Vol=
100 0 Py P2 - Prnx
1 0 .. 0 pyy Py oo Popci | ceeeee 4.7)
[ul U - uk] S - : : e :
0 00 1 P Pr2 Pk n-k
e, v=u.G
WhereG=[l,P] (4.8)
Puu Pz o Prmk
Where P = ?21 .pzz p.z R (4.9)
[ Pi P2 o PR |

13



Error Control Coding And Binary Cyclic Code 15EC54

I is the k x k identity matrix (unit matrix), P is the k x (n — k) ‘parity generator matrix’, in
which p; j are either 0 or 1 and G is a k x n matrix. The (n — k) equations given in Eq (4.6b) are
referred to as parity check equations. Observe that the G matrix of Example 4.2 is in the systematic
format.The n-vectors a = (ai, az...ay) and b = (by, b, ...by) are said to be orthogonal if their inner
product defined by:

a.b = (ay, a...an) (by, by ...bn) T =0.

where, ‘T’ represents transposition. Accordingly for any kxn matrix, G, with k linearly independent
rows there exists a (n-k) x n matrix H with (n-k) linearly independent rows such that any vector in
the row space of G is orthogonal to the rows of H and that any vector that is orthogonal to the rows
of H is in the row space of G. Therefore, we can describe an (n, K) linear code generated by G
alternatively as follows:

“An n —tuple, v is a code word generated by G, if and® I@ =0" ......... (4.92)
(O represents an all zero row vector.) \

This matrix H is called a “parity check matrix” of| @ ts dimension is (n — K) xn.
If the generator matrix has a systematic fg arity check matrix takes the following form.
P11 0
0
H=[P .l = p}Z N (4.10)
pl,n—k p 1
The i row of G is: Q
gi= ©00...1...0...0 Pi1  Piz2..Pije--Pi, n—k)
T T
i " element (k + j) ™ element
The j™ row of H is:
i ™element (k +j) " element
) 2
hj =( P1jP2j ««-Pij --Pk,j 00...010...0)
Accordingly the inner product of the above n — vectors is:
gixhj=(00...1...0...0 pi1 Pi2-..Pije--Pi,nk) (P1j P2j -+Pijj Pk j00...010 ...O)T
T T T T

14
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i™ element (k +j) M element i™ element (k +j) M element
Pl,_;l'
Pij
i element :
| >
00 0...1... Piz~+11ij+~11z',n—k:| I:;:,j
()
¢
1
th + i) element 0
0
S
= pjj + pij. = 0 (as the pjj are either 0 or 1 and in modul Mmetic X+ X=0)
*
This implies simply that:
G.H" = Okxn-k (4.11)
Where Ok x(n -k is an all zero matrix
Further, since the (n of the matrix H are linearly independent, the H matrix of
Eq. (4.10) is a parity chec pef the (n, K) linear systematic code generated by G. Notice that the
parity check equations of L6bh) can also be obtained from the parity check matrix using the fact

Alternative Method of proving v.H" = O.:
We have v = u.G = u. [Ix: P]=[uy, Us... uk, P1, P2 «.-. Pri]

Where p; =( Uy pyi + Uz P2+ U3 P3i ...+ Uk Pk i) are the parity bits found from Eq (4.6b).

p
Now HTz[ }
In—k

. T
S VH' = [U1 P11 t U2 P21 teeee +oeee T Uk Pra + P1, U1 P12 T U2 P22 + eeeee T Uk P2 + P2, ...
U1 Pz, nk + U2 P2, n-k + eeee + Uk Pk nk + Prok]

= [p1 + p1, P2 + P2--- Pk T+ Pkl

15
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=10, 0... 0]
Thus v. H™ = O. This statement implies that an n- Tuple v is a code word generated by G if and only
if

vVH =0
Since v=u G, Thismeansthatt uGH' =0
If this is to be true for any arbitrary message vector v then this implies: G H' = Ok x(n-k)

Example 4.3:

Consider the generator matrix of Example 4.2, the corresponding parity check matrix is

4.7.3 Circuit implementation of Block

The implementation of Block ¢
Implementation of Eq (4.6) is sh

very simple. We need only combinational logic circuits.
encoding circuit of Fig.4.6. Notice that pj; is either a ‘0’
or a ‘1’ and accordingly — px cates a connection if p;j = 1 only (otherwise no connection).
The encoding operation is le. The message u = (uy, Uz ... Uk) to be encoded is shifted into
the message register al eously into the channel via the commutator. As soon as the entire
message has entered t@age register, the parity check digits are formed using modulo -2 adders,
which may be serialized U8ing, another shift register — the parity register, and shifted into the channel.
Notice that the complexity of the encoding circuit is directly proportional to the block length of the
code. The encoding circuit for the (6, 3) block code of Example 2 is shown in Fig 4.7

16
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Committator
Hpl| #uy| #s | == == |#pa| Uy #, [+— Data Inpuit

Message Register (k - Dit shift register)

Chianrel

Moduio - 2 Adders

Fig 4.6 Encoding circuit for systegnat

Clhiannel

coder for the (6,3) block code of example 4.2
4.7.4 Syndrome and Error Detection:
Suppose v = (V1, V... v,) be a code word transmitted over a noisy channel and let:

r = (ry, r ....ry) be the received vector. Clearly, r may be different from v owing to the channel
noise. The vector sum

E=Tr—V=(81,€2.e.€n) i (4.12)

is an n-tuple, where e;= 1 if rj # vjand e; = 0 if rj = vj. This n — tuple is called the “error vector” or
“error pattern”. The 1’s in e are the transmission errors caused by the channel noise. Hence from
Eq (4.12) it follows:

Fr=ve@e (4.12a)
Observer that the receiver noise does not know either v or e. Accordingly, on reception of r
the decoder must first identify if there are any transmission errors and, then take action to locate these

17
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errors and correct them (FEC — Forward Error Correction) or make a request for re—transmission
(ARQ). When r is received, the decoder computes the following (n-k) tuple:

s=r.HY (4.13)
= (Sl, Soeee Sn-k)

It then follows from Eq (4.9a), that s = 0 if and only if r is a code word and s # 0 iffy r is not
a code word. This vector s is called “The Syndrome” (a term used in medical science referring to
collection of all symptoms characterizing a disease). Thus if s = 0, the receiver accepts r as a valid
code word. Notice that there are possibilities of errors undetected, which happens when e is identical
to a nonzero code word. In this case r is the sum of two code words which according to our linearity
property is again a code word. This type of error pattern is referred to an “undetectable error
pattern”. Since there are 2 -1 nonzero code words, it follows that there are 2X -1 error patterns as
well. Hence when an undetectable error pattern occurs the deco akes a “decoding error”.
EqQ. (4.13) can be expanded as below: Q \

A
Proy s
s=r i = %, Sa... 1 Pr2 o PRa
1] 0
1 0
1] 1 ]

S .
Q rl pl,n—k + r-2 p2,n—k +...+ rk pk,n—k + rn

A careful examination of Eq. (4.14) reveals the following point. The syndrome is simply the vector
sum of the received parity digits (rk+1, r+2 ...n) and the parity check digits recomputed from the
received information digits (ry, r ... ry). Thus, we can form the syndrome by a circuit exactly similar
to that of Fig.6.6 and a general syndrome circuit is as shown in Fig. 4.8.

From which we have

Example 4.4:
We shall compute the syndrome for the (6, 3) systematic code of Example 4.2. We have

S = (S1, S2, S3) = (1, 2, I'3, 4, I's, Ig)

O ORrRr RO
OFr OFR O p
HOOOHH

18
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Or S1=ry+r3+ry
So=r1+r3+Ig
S3=Ir1+r +I¢

The syndrome circuit for this code is given in Fig.4.9.

Received Received Message Register
coidevvord —le'n |r,,.1‘r'n-z | ” ‘ ” ‘ _,.._, ‘

¥ P Fog Peer Pr Fug s

oF

Sk

ssfrge Register
Received
. —» 3 ¥y ¥y
Date input
+ ,
L Nl RS
Q ’—
Y
N RN 53
N
¥
:'/ ‘\—> 53
%

Fig 4.8 Syndrome circuit for the (6,3) systematic block code

In view of Eq. (4.12a), and Eq. (4.9a) we have
s=r.H =(v®e)H'

=v.H @eH"

19
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ors=eH" (4.15)

as v.H'= O. Eq. (4.15) indicates that the syndrome depends only on the error pattern and not on the
transmitted code word v. For a linear systematic code, then, we have the following relationship
between the syndrome digits and the error digits.

S1=€1P11 TEPy Feeen FE P T Ey

S; =€ Py tTePyp Tt P, T,
Sn-k = el pl,n-k + ez pz,n-k o + ek pk,n-k + en

Thus, the syndrome digits are linear combinations of error digits. Therefore they must provide
us information about the error digits and help us in error correction.

Notice that Eq. (4.16) represents (n-k) linear equations f@r digits — an under-determined
set of equations. Accordingly it is not possible to have a unigugsolation for the set. As the rank of the

H matrix is k, it follows that there are 2% non-trivial 'ogs. In other words there exist 2 error
patterns that result in the same syndrome. Therefore ergiine the true error pattern is not any easy
task!

Example 4.5:

For the (6, 3) code considered in .2, the error patterns satisfy the following equations:
S1 =€ +e €; te3 +e5, S3=e; +er +€g
Suppose, the transmi eived code wordsarev=(010101),r=(011101)
Thens=r.H"=(1, 1, 0)
Then it follows that:
e, +estes=1
g1 +e3+es =1
e1+ey;+eg =0
There are 2° = 8 error patterns that satisfy the above equations. They are:
{001000,10000,000110,010011,2100101,02121101,201011,211110}
To minimize the decoding error, the “Most probable error pattern” that satisfies Eq (4.16) is

chosen as the true error vector. For a BSC, the most probable error pattern is the one that has the
smallest number of nonzero digits. For the Example 4.5, notice that the error vector (0 0 1 0 0 0) has

20
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the smallest number of nonzero components and hence can be regarded as the most probable error
vector. Then using Eq. (4.12) we have

V=r®e
=(011101)+(001000)=(010101)

Notice now thatV indeed is the actual transmitted code word.

4.8 Minimum Distance Considerations:

The concept of distance between code words and single error correcting codes was first
developed by R .W. Hamming. Let the n-tuples,

L 4
o = (otg, 02 ... otn), B =B, B2 ... \Q

be two code words. The “Hamming distance” d (a, egfl such pair of code vectors is defined
as the number of positions in which they differ.( , using Modulo-2 arithmetic, we have
n
d(e.B) 4 _Zl( & ......................... (4.17)
J:

(Notice that X represents the usu summation and @ is the modulo-2 sum, the EX-OR

function).
The “Hammin ” o(a) of a code vector o is defined as the number of nonzero
elements in the code@ quivalently, the Hamming weight of a code vector is the distance
between the code vector agd the ‘all zero code vector’.
Example4.6: Let a=(011101),p=(:01011)
Notice that the two vectors differ in 4 positions and hence d (a.,) = 4. Using Eq (4.17) we find
dap)=0@+1e0+(1dl)+1@0)+(0®1)+(1 1)
= 1 + 1 + 0 + 1 + 1 + 0
=4 ..... (Here + is the algebraic plus not modulo — 2 sum)
Further, o(a)=4and o(B) = 4.

The “Minimum distance” of a linear block code is defined as the smallest Hamming
distance between any pair of code words in the code or the minimum distance is the same as the
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smallest Hamming weight of the difference between any pair of code words. Since in linear block
codes, the sum or difference of two code vectors is also a code vector, it follows then that “the
minimum distance of a linear block code is the smallest Hamming weight of the nonzero code
vectors in the code”.

The Hamming distance is a metric function that satisfies the triangle inequality. Leto, and &
be three code vectors of a linear block code. Then

d(@p)+d@, 82 d@d (4.18)
From the discussions made above, we may write
d@f)=0(@®B) (4.19)
Example 4.7: For the vectors a and B of Example 4.6, Weban
a @ B = (0801), (180), (181) (160), (01Y(T®1)= (1101 1 0)

s o(a®p)=4=d(ap)

d(a.8) +d (a,p) =9>d (B.5)

Similarly, the minimum distance of a linear block code, ‘C’ may be mathematically
represented as below:

dmin =Min {d (a.p):ap€C, a= B} ... (4.20)
=Min {o(a ®B):a,p € C, o = B}
=Min{o(v),ve C,v 0} ... (4.21)

Thatisd,;, 4 @, . The parameter @, is called the “minimum weight” of the linear

code C.The minimum distance of a code, dmin, is related to the parity check matrix, H, of the code in
a fundamental way. Suppose Vv is a code word. Then from Eq. (4.9a) we have:
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0= v.H'
= V1h1 ® Vzhz ®...dD Vnhn

Here hy, h, ... hy, represent the columns of the H matrix. Let vji, Vjz ...vj be the ‘I’ nonzero
components of v i.e. vj1 = Vjp = .... vji = 1. Then it follows that:

hjy ®hp® ...®h;=0" (4.22)

That is “if v is a code vector of Hamming weight ‘I’, then there exist ‘I’ columns of H such
that the vector sum of these columns is equal to the zero vector”. Suppose we form a binary n-
tuple of weight ‘I’, viz. X = (X1, X2 ... Xn) WhOse nonzero components are X1, X2 ... Xj. Consider the
product:

4
X.HT = X1h1 &) thz @.... @thn = lehjl (&) nghjg (&) .% = hjl @ hjz ®...0 hj|
L 2
If Eq. (4.22) holds, it follows x.H™ = O and isfa code vector. Therefore, we conclude
that “if there are ‘I’ columns of H matrix who opsum is the zero vector then there exists a
code vector of Hamming weight ‘I’ ”. K
From the above discussions, it follows th

)} If no (d-1) or fewer colu dd to O, the all zero column vector, the code has a
minimum weight of &
i) The minimum wei e minimum distance) of a linear block code C, is the smallest
number of co that sum to the all zero column vector.
011100
For the H matrix of Example 6.3, i.e. H=|101010 |, notice that all columns of H are non
110001

zero and distinct. Hence no two or fewer columns sum to zero vector. Hence the minimum weight of
the code is at least 3.Further notice that the 1%, 2" and 3" columns sum to O'. Thus the minimum
weight of the code is 3. We see that the minimum weight of the code is indeed 3 from the table of
Example 4.1.

4.8.1 Error Detecting and Error Correcting Capabilities:
The minimum distance, dmin, Of @ linear block code is an important parameter of the code. To
be more specific, it is the one that determines the error correcting capability of the code. To

understand this we shall consider a simple example. Suppose we consider 3-bit code words plotted at
the vertices of the cube as shown in Fig.4.10.
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011 111

FL)

110

a0

V}ﬂj

a0d 1009

Fig 4.10 The distance concept

Clearly, if the code words used are {000, 101, 110, 011}, the Hamming distance between the
words is 2. Notice that any error in the received words Iocages mQn the vertices of the cube which

are not code words and may be recognized as single erro code word pairs with Hamming
distance = 3 are: (000, 111), (100, 011), (101, 010) an 1, ). If a code word (000) is received
as (100, 010, 001), observe that these are nearer to Pto (111). Hence the decision is made

that the transmitted word is (000).

&ed to detect and correct all error patterns (over a
ifve transmit a code vector oo and the received vector
be & = a subject to the condition w(e) < t.

Suppose an (n, K) linear block ¢
BSC), whose Hamming weight, @ < t. Th
is B = o & e, we want the decoder ou

Further, assume that 2&6 tors are transmitted with equal probability. The best decision
for the decoder then is t@ piC code vector nearest to the received vector B for which the
Hamming distance is thé eSt. i.e., d (a,B) is minimum. With such a strategy the decoder will be
able to detect and corréet all"error patterns of Hamming weight w(e) < t provided that the minimum
distance of the code is such that:

Auin= (2t+1) e, (4.23)

dmin is either odd or even. Let ‘t” be a positive integer such that
2t + 1 S dmin S 2t + 2 ..................... (424)

Suppose 8 be any other code word of the code. Then, the Hamming distances among
o,p and & satisfy the triangular inequality:

d@B)+ dBS) > d@d) e, (4.25)
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Suppose an error pattern of ‘t’ ’ errors occurs during transmission of a. Then the received vector
differs from a in ‘t’ ’ places and hence d(a,f) =1t'. Since a and & are code vectors, it follows from
Eq. (6.24).

d(a,8) 2dmin22t+1 (4.26)
Combining Eq. (4.25) and (4.26) and with the fact that d(a.,B) = t', it follows that:

d@ B)=2t+1-t e, (4.27)

Hence if t'<t, then:d 8)>t ...l (4.28)

Eq 4.28 says that if an error pattern of ‘t” or fewer e occurs, the received vector B is
closer (in Hamming distance) to the transmitted code vectdt o any other code vector 8 of the

code. For a BSC, this means P (B|a) > P (B|8) for a # 3. s Dased on the maximum likelihood
decoding scheme, B is decoded as o , which indeed dctual transmitted code word and this
results in the correct decoding and thus the errors ar d.

On the contrary, the code is not ca&&:errecting error patterns of weight I>t. To show

this we proceed as below:
Suppose d (a,8) = dmin, and let be two error patterns such that:
i) e1Pe,=add

i) ei;and e, do %@nzero components in common places. Clearly,

o(e1) + o(er) @) =d(a,8) =dmin e, (4.29)

Suppose, a. is the transmitted code vector and is corrupted by the error pattern e;. Then the received
vector is:
B=oa®er (4.30)

and d@B)=o(@®@B)=w(E1) i (4.31)

d (8,) = o(3p)

o@D a®e)=mdE2) 0 (4.32)
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If the error pattern e; contains more than‘t’ errors, i.e. @(e1) > t, and since 2t + 1 < dmin <2t + 2,
it follows

OE)SEL ] (4.33)

o d@B)2d (BB) e, (4.34)

This inequality says that there exists an error pattern of | > t errors which results in a received
vector closer to an incorrect code vector i.e. based on the maximum likelihood decoding scheme
decoding error will be committed.

To make the point clear, we shall give yet another illustration. The code vectors and the
received vectors may be represented as points in an n- dimensional space. Suppose we construct two
spheres, each of equal radii,’t’ around the points that represent the code vectors o and 8. Further let

these two spheres be mutually exclusive or disjoint as shown in@l (a).
.
>

For this condition to be satisfied, we then require d (ot} t+ 1.Insuch acase ifd (a,B)<t,
it is clear that the decoder will pick a as the transmitted @» Ol'q

() d( 1 (D) d(q o) <2t

Fig. 4.11(a)

On the other hand, if d (a,8) < 2t, the two spheres around a and & intersect and if ‘B’ is located as in
Fig. 4.11(b), and a is the transmitted code vector it follows that even if d (a.,B)< t, yet B is as close to
6 as it is toa. The decoder can now pick & as the transmitted vector which is wrong. Thus it is
imminent that “an (n, K) linear block code has the power to correct all error patterns of weight‘t’ or
less if and only if d (a,8) > 2t + 1 for all a andd”. However, since the smallest distance between any
pair of code words is the minimum distance of the code, dmin , ‘guarantees’ correcting all the error
patterns of

t< {% (doyr — 1)} ............................... (4.35)
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where {% (din — 1)} denotes the largest integer no greater than the number{% (diin — 1)}. The

parameter‘t’ = {% (diin — 1)} is called the “random-error-correcting capability” of the code and

the code is referred to as a “t-error correcting code”. The (6, 3) code of Example 4.1 has a
minimum distance of 3 and from Eq. (6.35) it follows t = 1, which means it is a ‘Single Error
Correcting’ (SEC) code. It is capable of correcting any error pattern of single errors over a block of
six digits.

For an (n, k) linear code, observe that, there are 2" syndromes including the all zero
syndrome. Each syndrome corresponds to a specific error pattern. If ‘j’ is the number of error

locations in the n-dimensional error pattern e, we find in general, there are = nC; multiple error

t
patterns. It then follows that the total number of all posable\ atterns = Z , where‘t’ is the

maximum number of error locations in e. Thus we ar ag®h important conclus10n “If an (n, k)
linear block code is to be capable of correctin rrors, the total number of syndromes
shall not be less than the total number of ;{ ror patterns”,

2mk > Zt:(nj ............................ (4.36)
j=o\J

Eq (6.36) is usually referred &e Hamming bound”. A binary code for which the Hamming
Bound turns out to be equald d a “Perfect code”.

.9 Standard Arraygandzsyndrome Decoding:

The decoding strategy we are going to discuss is based on an important property of the
syndrome.

Suppose vj, j =1, 2... 2% be the 2 distinct code vectors of an (n, k) linear block code.
Correspondingly let, for any error pattern e, the 2% distinct error vectors, ej, be defined by

gg=e®vj,j=1,2...2% . (4.37)

The set of vectors {ej,j=1,2 ... 2"} so defined is called the “co- set” of the code. That is, a
‘co-set’ contains exactly 2" elements that differ at most by a code vector. It then fallows that there are
2" co- sets for an (n, k) linear block code. Post multiplying Eq (4.37) by H', we find

eH = eH' @v;H"

e H (4.38)
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Notice that the RHS of Eq (4.38) is independent of the index j, as for any code word the term
Vj H' = 0. From Eq (4.38) it is clear that “all error patterns that differ at most by a code word
have the same syndrome”. That is, each co-set is characterized by a unique syndrome.

Since the received vector r may be any of the 2" n-tuples, no matter what the transmitted code
word was, observe that we can use Eq (4.38) to partition the received code words into 2 disjoint sets
and try to identify the received vector. This will be done by preparing what is called the “standard
array”. The steps involved are as below:

Stepl: Place the 2% code vectors of the code in a row, with the all zero vector
v1=(0, 0, 0... 0) = O as the first (left most) element.

Step 2: From among the remaining (2" — 2%) - n — tuples, e, is chosen and placed below the
all-zero vector, v;. The second row can now be formed by placing (e; @ vj),

j=2,3... 2under v;
.
Step 3: Now take an un-used n-tuple e; and complete\ row as in step 2.
Step 4: continue the process until all the n-tu e %d

The resultant array is shown in Fig.

V= o Ve o feasean ‘I'gk
, &

ez ]*36.1_’2 ...... 12 @ 82
k

83 ‘1'3@ es Pr—— "2@&’3

-k k -k
Va B €r "3®ezn-k ceeeees | V2 €D

Fig 4.12: Standard Array for an (n,k) linear block code

Since all the code vectors, v; are all distinct, the vectors in any row of the array are also
distinct. For, if two n-tuples in the I-th row are identical, say e; @ v;- e @ vm, j # m; we should have
Vj = Vi Which is impossible. Thus it follows that “ne twe n-tuples in the same row of a slandered
array are identical”.

Next, let us consider that an n-tuple appears in both I-th row and the m-th row. Then for some
j1 and j, this implies e @ vj1 = em @ Vjp, which then implies e = e, @ (vj2 @ Vj1); (remember that
X @ X = 0 in modulo-2 arithmetic) or e = ey, @ vj3 for some js. Since by property of linear block
codes vjs is also a code word, this implies, by the construction rules given, that e, must appear in the
m-th row, which is a contradiction of our steps, as the first element of the m-th row is e, and is an
unused vector in the previous rows. This clearly demonstrates another important property of the
array: “Every n-tuple appearance in one and only one row”.
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From the above discussions it is clear that there are 2" disjoint rows or co-sets in the standard
array and each row or co-set consists of 2% distinct entries. The first n-tuple of each co-set, (i.e., the
entry in the first column) is called the “Co-set leader”. Notice that any element of the co-set can be
used as a co-set leader and this does not change the element of the co-set - it results simply in a
permutation.

Suppose D,-T is the j™ column of the standard array. Then it follows

Dj={vj &2® V) 3®Vj... " OV} .. (4.39)

where vj is a code vector and e,, e; ... e,"* are the co-set leaders.

The 2* disjoints columns D;", D"... Dsz can now be used for decoding of the code. If v; is

the transmitted code word over a noisy channel, it follows from,Eq 8.39) that the received vector r is
in DjT if the error pattern caused by the channel is a co-set erNif this is the case r will be decoded
correctly as v;. If not an erroneous decoding will result eror pattern € which is not a co-set
leader must be in some co-set and under some nonzer SBtor is, say, in the i-th co-set and under

v # 0. Then it follows
_%&Vj DEdVv)=¢® vn

| be decoded as v, and a decoding error has been
committed. Hence it is explicitly “Correct decoding is possible if and only if the error
pattern caused by the chan -set leader”. Accordingly, the 2"* co-set leaders (including

the all zero vector) are callcdsth rrectable error patterns”, and it follows “Every (n, k) linear
block code is capable o ng 2"K error patterns”.

So, from the aBeve discussion, it follows that in order to minimize the probability of a
decoding error, “The most likely to occur” error patterns should be chosen as co-set leaders. For a
BSC an error pattern of smallest weight is more probable than that of a larger weight. Accordingly,
when forming a standard array, error patterns of smallest weight should be chosen as co-set leaders.

Then the decoding based on the standard array would be the ‘minimum distance decoding’ (the
maximum likelihood decoding). This can be demonstrated as below.

e =e;® v, , and the received vector is

Thus the received vector is in D"

Suppose a received vector r is found in the j™ column and I

decoded as vj. We have

row of the array. Then r will be

d(r, Vj) = o(r @Vj) = w(e ® Vi @ Vj) = o(e)

where we have assumed v; indeed is the transmitted code word. Let vs be any other code word, other
than v;. Then

d(r,vs) =o(ré vs) = oe® v ® vs) o(e)) = o(e @ vi)
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as vj and v; are code words, v; = v; @ vs is also a code word of the code. Since e, and (e, @ v;) are in
the same co set and, that e has been chosen as the co-set leader and has the smallest weight it follows
o(er) < o(e @ vi)and hence d(r, vj) < d(r, vs). Thus the received vector is decoded into a closet
code vector. Hence, if each co-set leader is chosen to have minimum weight in its co-set, the standard
array decoding results in the minimum distance decoding or maximum likely hood decoding.

Suppose “ay, ai, az ..., 8, denote the number of co-set leaders with weights 0, 1, 2... n. This
set of numbers is called the “Weight distribution” of the co-set leaders. Since a decoding error will
occur if and only if the error pattern is not a co-set leader, the probability of a decoding error for a
BSC with error probability (transition probability) p is given by

P(E)=1—i a;p! (1-p)" (4.40)
j=0

Example 4.8:

he

For the (6, 3) linear block code of Example 4.1

tandard array, along with the syndrome
table, is as below: ¢

Syndrome | Co-set
Leader
000 000 000|001 110 1011011100011 101101 |110110|111000
001 000 001 00 (011 010|100 010 |101 100 |110 111 | 111 001
010 000 010 011001100001 (101111 (110100 | 111010
100 000 100 |0 , 011111100111 (101001 (110010 | 111100
110 001 000 ] 011101\010011\101011 100101 (111110110000

101 010 000 101|001 011110011 |111101|100110)| 101000
011 10 110101111011 000 011|001101|010110|011 000
111 001 001|000111|011 100|010 010| 101010 100100 (111111110001

The weight distribution of the co-set leaders in the array shownareap=1,a1=6,a,=1,a3= a4 = as
= ag = 0.From Eq (5.40) it then follows:

P (E) = 1- [(1-p) ° +6p (1-p) ° + p° (1-p) ]
With p = 10, we have P (E) = 1.3643879 x 107

A received vector (010 001) will be decoded as (010101) and a received vector (100 110) will be
decoded as (110 110).

Notice that an (n, k) linear code is capable of detecting (2" -2%) error patterns while it is
capable of correcting only 2" error patterns. Further, as n becomes large 2"/ (2"-2%) becomes
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smaller and hence the probability of a decoding error will be much higher than the probability of an
undetected error.

Let us turn our attention to Eq (5.35) and arrive at an interpretation. Let x;and X, be two n-
tuples of weights‘t’ or less. Then it follows

® (X1 ® X2) £ ©(X1) + ®(X2) £ 2t < dmen

Suppose x; and X, are in the same co-set then it follows that (x; @© x») must be a nonzero code
vector of the code. This is impossible because the weight of (x; @ Xy) is less than the minimum
weight of the code. Therefore, “No two n-tuples, whose weights are less than or equal to‘t’, can
be in the same co-set of the code and all such n-tuples can be used as co-set leaders”.

Further, if v is @ minimum weight code vector, i.e. ®(v) = dmin and if the n-tuples, x; and x;

satisfy the following two conditions: Q
.
i) X1 ® Xy =V \
N4

i) X1 and X, do not have nonzero componentssighgdminon places

It follows from the definition, x; wjxﬁ in the same co-set and

@ (X1) + @(X2) = @(V) = dmin

Suppose we choose X, such that @ 1. Since 2t+1< dpin £ 2t+2, we have @ (x;) = t or (t+1).

If X, is used as a co-set leader ot be a co-set leader.
The above discussi e summarized by saying “For an (n , k) linear block code with
- . . 1
minimum distance d@-tuples of weight t < [E (dpin — 1)} can be used as co-set leaders of

a standard array. Further, if all n-tuples of weight <t are used as co-set leaders, there is at least
one n-tuple of weight (t + 1) that cannot be used as a co-set leader”.

These discussions once again re-confirm the fact that an (n, k) linear code is capable of
: 1 . .
correcting error patterns of [E (dpin — 1)} or fewer errors but is incapable of correcting all the

error patterns of weight (t + 1).

We have seen in Eq. (4.38) that each co-set is characterized by a unique syndrome or there is
a one- one correspondence between a co- set leader (a correctable error pattern) and a syndrome.
These relationships, then, can be used in preparing a decoding table that is made up of 2"* co-set
leaders and their corresponding syndromes. This table is either stored or wired in the receiver. The
following are the steps in decoding:

Step 1: Compute the syndrome s = r.H"
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Step 2: Locate the co-set leader e; whose syndrome is s. Then e; is assumed to be the error
pattern caused by the channel.

Step 3: Decode the received vector r into the code vector v =r @ e;

This decoding scheme is called the “Syndrome decoding” or the “Table look up decoding”.
Observe that this decoding scheme is applicable to any linear (n, k) code, i.e., it need not necessarily
be a systematic code. However, as (n-k) becomes large the implementation becomes difficult and
impractical as either a large storage or a complicated logic circuitry will be required.

For implementation of the decoding scheme, one may regard the decoding table as the truth
table of n-switching functions:

e1 =1 (S1, S2... Sn-k); €2 = T2 (S1, S2... Sn-k)3 =+ €n = T (S1, S2... Snk)

where sy, ... Spk are the syndrome digits and are regarded,as thle swigching variables and ey, €; ... en
are the estimated error digits. The stages can be releaseN ing suitable combinatorial logic

circuits as indicated in Fig 4.13.

r—p\_Refez‘ved Vector

| LGN ]
¥ - v

r
Syrdy m\ crtlation Civenit |

-------- Skl Suk
b h J
gFy m fernt Detecying Cirenit |

Corrected Outpt
Fig. 4.13 General Decoding scheme for an (n,k) linear block code
Example 4.9:

From the standard array for the (6, 3) linear block code of Example 4.8, the following truth table can
be constructed.
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5t |52 sz |er | €2l €5 | €| &5 | €
O|jojloj0o |00 0 0|0
0joj1]0 o njo]o0o |1
D)j1|j]0]o0 ojnjo] 1|0
l1|ojojo o] 0|10 0D
1|]1|]01]0 o] 1|0 0|0
l1|o0)j1]0 1| 0|0 0|0
0)j1)]11]11 o] 0|0 0|0
1)]1]1]0 0] 1|00 |1

Truth teehle for the Error paiterns from the
Sitandarnd Aray af Example 6.8

The two shaded portions of the truth table are to begoliserved carefully. The top shaded
one corresponds to the all-zero error pattern and the bottom ongycorrésponds to a double error patter
which cannot be corrected by this code. From the table can now write expressions for the
correctable single error patterns as below: *

€, =555 € =555 €S

The implementation of the decoder is 19.4.14.

eceived Message Register

Fs| ¥ | Fq | P3| F2 | F1
:

Fig 4.14: Decodlng circuit for (6,3) code
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Comments:

1) Notice that for all correctable single error patterns the syndrome will be identical to a
column of the H matrix and indicates that the received vector is in error corresponding to
that column position.

For Example, if the received vector is (010001), then the syndrome is (100). This is identical
withthe4™ column of the H- matrix and hence the 4™ — position of the received vector is in error.
Hence the corrected vector is 010101. Similarly, for a received vector (100110), the syndrome is 101
and this is identical with the second column of the H-matrix. Thus the second position of the
received vector is in error and the corrected vector is (110110).

2) A table can be prepared relating the error locations and the syndrome. By suitable
combinatorial circuits data recovery can be achieved. For the (6, 3) systematic linear code we have
the following table for r = (ry ra ra ra rs rs).

*
Error Iocation | Errorin digits | Sy IR

(FL 3

ar

1ra

2 Iaa
L

L

aaa

Notice that for the systematig g considered by us (r; r, r3) corresponds to the data digits and

(rq rs rg) are the parity digits
Accordingly the correctign for the data digits would be
Uy =11+ (S2. S3), V, =2+ (S1. S3), V3= T3+ (S1. S2)

Hence the circuit of Fig 6.14 can be modified to have data recovery by removing only the
connections of the outputs V,,Vs and V.

4.10 Hamming Codes:

Hamming code is the first class of linear block codes devised for error correction. The single error
correcting (SEC) Hamming codes are characterized by the following parameters.

Code length: n = (2™-1)
Number of Information symbols: k = (2™ — m — 1)

Number of parity check symbols :(n—k) =m
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Error correcting capability: t = 1, (dmin= 3)

The parity check matrix H of this code consists of all the non-zero m-tuples as its columns. In
systematic form, the columns of H are arranged as follows

H=[Q: In]
Where I, is an identity (unit) matrix of order m x m and Q matrix consists of

(2™-m-1) columns which are the m-tuples of weight 2 or more. As an illustration for k=4 we have
fromk=2"-m-1.

m=1 k=0,m=2 k=1, m=3 k=4

Thus we require 3 parity check symbols and the length of the code 2® — 1 = 7. This results in the

(7, 4) Hamming code. . Q
The parity check matrix for the (7, 4) linear systematic H r%c de is then
*

1110 glﬂﬂ
H=|1101in10
lol1l:0Q1 &
The generator matrix of the code can in the form

G = [I 2m _m_\
And for the (7, 4) systemat It follows:

0:l11
olo0:110
0010:101
opolioll

A non systematic Hamming code can be constructed by placing the parity check bits at 2" 1=0, 1,
2...locations. It was the conventional method of construction in switching and computer applications
(Refer, for example ‘Switching circuits and applications -Marcus).One simple procedure for
construction of such code is as follows:

Step 1: Write the BCD of length (n — k) for decimals from 1 to n.
Step 2: Arrange the sequences in the reverse order in a matrix form.

Step 3: Transpose of the matrix obtained in step 2 gives the parity check matrix H for the code.
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The code words are in the form
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Pr P2 M1 P3s M2 M3 Mg Pg M5 Mg mz Mg Mg Mip M1 Ps M1

Where p1, p2, ps3...are the parity digits and ms, m,, ms...are the message digits. For example, let us
consider the non systematic (7, 4) Hamming code.

Stepl:
Numerals BCDoflength (n-k) =3
1 001
2 010
3 011
4 100
5 101 ¢
6 110 \
7 111 *
[100]
010 &
110
Step2: H'=[{001
101
01
1
Step3: H=(0110011
0001111

Notice that the parity check bits, from he above H matrix apply to positions.
p:=1,3,5,7,9,11, 13, 15...
p2=2,3,6,7,10,11,14, 15 ...
ps=4,5,6,7,12,13, 14, 15...
p;=38,9, 10,11, 12, 13, 14, 15 and so on

Accordingly, the check bits can be represented as linear combinations of the message bits.
For the (7, 4) code under consideration we have
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P1=mg+ Mz +My
P2 =mg + M3z +My
P3=mz+ M3+ My

Accordingly, the generator matrix can written as

LT S
TR S ke S

B kS S
o S S R

i 23 4 5 6 7
.
Notice that the message bits are located at the os\n other than 2', 1 = 0, 1, 2, 3....

locations. i.e., they are located in the positions of 3, 5, > LIy 13, 15, 17, 18..... The k- columns of
the identity matrix Iy are distributed successivel locations. The Q sub-matrix in the H
matrix can be identified to contain those co ave weights more than one. The transpose
of this matrix then gives the columns to m&succession, in the G- matrix. For the Example of

the (7, 4) linear code considered, the Q- s is:
110
1101
Q= |1 0 1 1 henceQT—101
’ 011
0 11
111

The first two column&his matrix then are the first two columns of the G: matrix and the third
column is the Forth column of the G matrix. Table below gives the codes generated by this method.
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Observe that the procedure o
matrix which is unique and hence thé
patterns and the corresponding s

Table: Error patterns a

Tabie: Non systemmiic (7, 4) Hamering code.

Niessages Codes

mf e ms md plp mf p3 m? m8 omd
g @ & I I r & 1 6 8 I
# a4 I 4 ] # [
# 8 I I I a & & & I I
# I o @8 I a & 1 I @ @
# I 0 I @ X 8 o I 8 I
# I I @8 Ir & & I I @
# I I I a8 & & I I I
I & @@ Ir 1 & & @ @
I & ¢ I a8 I I & & 1
I & I # I e I I GQ

4

I & I f 6 1 I F)

I 5 @@ 4 1 I \0
I 5 ¢ I F) I‘ﬂf
I 5 I# ] I I 4
I I IF 24 I 1 5 1 1

mes for the (7, 4) linear non-systematic code

Error Pattern Syndrome
€1 € €3 € €5 € S10S2 Ss
1 0 0 00O 1 0 0
0 1 0 00O 0 1 0
0 0 10 00O 1 1 0
0 0 01 00O 0 0 1
0 0 0 01O 1 0 1
0O 00 O0O0O1 0 1 1
0 00 O0O0OO 1 1 1
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If the syndrome is read from right to left i.e. if the sequence is arranged as ‘Sz S S1” it is interesting to
observe that the decimal equivalent of this binary sequence corresponds to the error location. Thus if
the code vector 101 1 01 0 is received as 1010010, the corresponding syndrome is ‘0 0 1°,
which is exactly the same as the 4™ column of the H-matrix and also the sequence 100 corresponds to
decimal 4.

It can be verified that (7, 4), (15, 11), (31, 26), (63, 57) are all single error correcting
Hamming codes and are regarded quite useful.

An important property of the Hamming codes is that they satisfy the condition of Eq. (4.36)
with equality sign, assuming that t=1.This means that Hamming codes are “single error correcting
binary perfect codes”. This can also be verified from Eq. (4.35)

We may delete any ‘I’columns from the parity check matrix H of the Hamming code resulting
in the reduction of the dimension of H matrix to m x (2™-1-1)#8ing this new matrix as the parity
check matrix we obtain a “shortened” Hamming code with’t& owthg parameters.

Code length: n=2"--1 .
Number of Information symbols: k=27-maA*1
Number of parity check symbols: &&m

Minimum distance: min =3

Notice that if the deletion of
with dpin = 4.For example i
obtainan m x 2™ matrix

of the H matrix is proper, we may obtain a Hamming code
e from the sub-matrix Q all the columns of even weight, we

A

Where (3 contains (2™* -m) columns of odd weight. Clearly no three columns add to zero as all
columns have odd weight .However, for a column inQ , there exist three columns in I, such that four

columns add to zero .Thus the shortened Hamming codes with H as the parity check matrix has
minimum distance exactly 4. The distance — 4 shortened Hamming codes can be used for correcting
all single error patterns while simultaneously detecting all double error patterns. Notice that when
single errors occur the syndromes contain odd number of one’s and for double errors it contains even
number of ones. Accordingly the decoding can be accomplished in the following manner.

(1) If s =0, no error occurred.

(2) If s contains odd number of ones, single error has occurred . The single error pattern pertaining
to this syndrome is added to the received code vector for error correction.
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(3) If s contains even number of one’s an uncorrectable error pattern has been detected.

Alternatively the SEC Hamming codes may be made to detect double errors by adding an extra
parity check in its (n+1) ™" position. Thus (8, 4), (6, 11) etc. codes have dmin = 4 and correct single
errors with detection of double errors.

RECOMMENDATION QUESTIONS

1. Consider a (7, 4) linear code whose generator matrix is
1000 101

0100 111
0010 110

0001 011
a) Find all code vectors of this code b) Find the parity @atrix for this code

¢) Find the minimum weight of this code ¢

- }-ﬂ is the parity check matrix.
L 4

2. For linear (n, k) block code, C, prove that CH' = Q

3. The parity check bits of a ( 8,4) block code are, gﬁ".

Cs=d;+dy+dy4
Cg=d;+dy+ds
C;=d;+d;+d,4 ‘

Cg=dr+d3;+ds

Where d;, dy, d3, and d, are Sa
a) Find the generator matix afd parity check matrix for this code.
b) Find the minimum weight of this code

4. Construct an encoderor the code given in problem 3.
5. Construct a syndrome circuit for the code given in problem 3.

6. Let H be the parity check matrix of an (n, k) linear code C that has both odd and even weight
code vectors. Construct new linear codes C; and C, with the following parity check matrices
respectively.

0 0
(4] (4]
Hu,=|n H = |H 0
0 0
171 1...... T | 771 71...... I

(Note that the last row of H; (H,) consists of all 1°s)
a) Show that C; and C,, called extensions of C, are (n+1, k) linear block codes.
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7.

10.

11.

12.

13.

14.

15.

b) Show that every code vector of C; (C,) has an even weight.
c) Show that the minimum distance of C; (Cy) is (d+1),), where d is the minimum distance of C.
d) Show that C; can be obtained from C by adding an extra parity check digit denoted by v, to

the left of each code vector v as follows (1) If v has odd weight then v, = 1 and (2) If v has even
weight v, = 0. The parity check digit v, is called an “overall parity check digit”.

Let C be a linear code with both even and odd-weight code words. Show that the number of
even weight code vectors is equal to the number of odd weight code vectors.

Since the (8, 4) linear code of problem 3 has a minimum distance 4, it is capable of correcting all
the single error patterns and simultaneously detecting any combination of double errors.
Construct a decoder for this code. The decoder must be capable of correcting any single error
and detecting any double error.

The (8, 4) linear code of problem 3 is capable of correcting 16 error patterns (The co-set leaders
of a standard array). Suppose that this code is used for a . Device a decoder for this code
based on the table-look up decoding scheme. The decodeg is dgsigned to correct the 16 most

probable error patterns. \

Verify whether the dual code of the (8, 4) linear ¢ fgproblem 3 is identical to the code itself.
Is the code self dual?

Form a parity check matrix for a (15, &%matic Hamming code. Device a decoder for this

code. ‘

atie€0de with dmin = d; and generator matrix G; = [Py, I4]. Let
gode with dmin = dz and Generator matrix G, = [Pz, Iy].

Let C; be an (ng, K) linear syste
C, be an (ny, k) linear sys ‘V

Consider an (ny + ny, K) I&

Show that this code has minimum distance at least (d; +d,).

|
|
!
Inq+=nr1 '
1
|
1

The “design distance” of an (n, K) linear block code is defined as being equal to (n - k +1).
Show that the minimum distance of the code can never exceed its design distance.

“Repetition codes” represent the simplest type of linear block codes. The generator ~ matrix
of a (5, 1) repetition code isgivenas G =[111 1| 1]

a) Write its parity check matrix.
b) Evaluate the syndrome for:

i) All five possible single error patterns. ii) All 10 possible double error patterns.

Show that the decoder for a Hamming code fails if there are two or more than two transmission
errors in the received sequence.
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OUTCOMES

Detection of the errors.
Correction of the errors using different techniques.

RESOURCES

https://en.wikipedia.org/wiki/Block_code
www.inference.phy.cam.ac.uk/mackay/itprnn/1997/11/node7.html
web.ntpu.edu.tw/~yshan/intro_lin_code.pdf
users.ece.cmu.edu/~koopman/des_s99/coding/
elearning.vtu.ac.in/P4/EC63/S11.pdf
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CHAPTER 2 - BINARY CYCLIC CODES

STRUCTURE

e Generator Polynomial for Cyclic Codes

e Multiplication Circuits

e Dividing Circuits

e Systematic Cyclic Codes

e Generator Matrix for Cyclic Codes

e Syndrome Calculation - Error Detection and Error

Correction
OBJECTIVE ,\
.
e Discuss about cyclic codes and also study about impl%kion methods using feedback shift
registers. .

e Study about syndrome calculator for cyclic ¢

A
N
QO
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INTRODUCTION

"Binary cyclic codes” form a sub class of linear block codes. Majority of important linear
block codes that are known to-date are either cyclic codes or closely related to cyclic codes. Cyclic
codes are attractive for two reasons: First, encoding and syndrome calculations can be easily
implemented using simple shift registers with feed back connections. Second, they posses well
defined mathematical structure that permits the design of higher-order error correcting codes.

A binary code is said to be "cyclic" if it satisfies:

1. Linearity property — sum of two code words is also a code word.
2. Cyclic property — Any lateral shift of a code word is also a code word.

row vector, we have represented it along a circle. The direction rse may be either clockwise or

The second property can be easily understood from Fig, Instead of writing the code as a
tra
counter clockwise (right shift or left shift).

*
For example, if we move in a counter clock ion then starting at ‘A’ the code word is

110001100 while if we start at B it would be 0 00:. Clearly, the two code words are related in
that one is obtained from the other by a cycliegh

el

¥3 Vs

1 bit shift ¢ Rofation

¥u_2

2 it shift v, _

¥u_yg

Fig 4.1: lllustrating the cyclic property

If the n - tuple, read from ‘A’ in the CW direction in Fig 4.1,
V=(Vo, Vi, V2, V3, V2, Vi) e (4.1)

is a code vector, then the code vector, read from B, in the CW direction, obtained by a one bit cyclic
right shift:

VO = (Vna ) Vo, VI, Vay eoe Vi Vnz)  eeeeeeeeeeeeeeeeeee, (4.2)
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is also a code vector. In this way, the n - tuples obtained by successive cyclic right shifts:

VO = (Voo Vot Vi Vo, VI Vi) e (4.33)
V® = (Voa Viz, Vit Vi Vo, VI, Vi) e (4.3b)
V(I) = (Vn-il Vn_i+1’...Vn_1’ VO) Vl’.... Vn_i_]_) --------------- (4'3C)

are all code vectors. This property of cyclic codes enables us to treat the elements of each code vector
as the co-efficients of a polynomial of degree (n-1).

This is the property that is extremely useful in the analysis and implementation of these codes.

Thus we write the "code polynomial' V(X) for the code in Eq (Ei@vector polynomial as:
.

V(X) = Vo + Vi X + Vo X2+ Vg X3 Hurb vig XL 4.+ Vg X”Nn- X2 4y, XM (44)

*
Notice that the co-efficients of the polynomial are gi r '1' (binary codes), i.e. they belong to

GF (2) as discussed in sec 5.7.1. x
sﬁ\cn shift in time.

be viewed as a cyclic shift or rotation to the right subject
restores XV(X) to the degree (n-1) (ii) Implies that right

. Each power of X in V(X) represents a o

. Therefore multiplication of V(X)

to the condition X" = 1. This ¢
most bit is fed-back at the le &
. This special form of Qon is called "Multiplication modulo “X" + 1”
. Thus for a single shift, we have
XV(X) = VoX + vy X2+ Vo X2+ ¥ Vo X+ vy X°

(+ Vn1 + Vpa) ... (Manipulate A + A =0 Binary Arithmetic)

=Vt + Vo X+ Vp X2 ++ Vi XM+ vy (X" + 1)

=V ® (X) = Remainder obtained by dividing XV(X) by X"+ 1
(Remember: X mod Y means remainder obtained after dividing X by Y)

Thus it turns out that

VO X)=vpg + Vo X+ v X2+ + v X (4.5)
| is the code polynomial for v . We can continue in this way to arrive at a general format:
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X'VX)=VOX) +q(X) (X" +1) e (4.6)
T T
Remainder Quotient
Where
VD (X) = Vi + Vneisn X + Viaiso X2+ wovina X+ cavoX v X L vnio X2 +via X 4.7)

4.1 GENERATOR POLYNOMIAL FOR CYCLIC CODES:

An (n, K) cyclic code is specified by the complete set of code polynomials of degree < (n-1)
and contains a polynomial g(X), of degree (n-k) as a factor, called the "generator polynomial” of
the code. This polynomial is equivalent to the generator matrix G, of block codes. Further, it is the
only polynomial of minimum degree and is unique. Thus we hav, important theorem

.
Theorem 4.1 "If g(X) is a polynomial of degree (n-k) and is afactor of (X" +1) then g(X) generates
an (n, k) cyclic code in which the code polynomial V( gata vector u = (Up, Uj... Uk-1) §

generated by
s\& ..................... (4.8)

ua XY (4.9)

V(X) = U(X) xg(X)

Where UX)=up+us X+

is the data polynomial of degrees(

The theorem can be justifi€
add the two polynomig
arithmetic). Not possiblé

ontradiction: - If there is another polynomial of same degree, then
et a polynomial of degree < (n, k) (use linearity property and binary
gecause minimum degree is (n-k). Hence g(X) is unique

Clearly, there are 2X code polynomials corresponding to 2 data vectors. The code vectors
corresponding to these code polynomials form a linear (n, k) code. We have then, from the theorem

n—k-1 .
g(X)=1+ D gX'+X" (4.10)
i=1
As  g(X)=go+ g X+0o X2 +....... + Ot XK+ g XTRO (4.11)

is a polynomial of minimum degree, it follows that go = gnk = 1 always and the remaining co-
efficients may be either' 0' of '1". Performing the multiplication said in Eq (4.8) we have:

U (X) g(X) = Uo g(X) + U1 X g(X) +...tmen Xg(X) .l (4.12)
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Suppose up=1 and u;=u,= ...=uy1=0. Then from Eq (4.8) it follows g(X) is a code word polynomial
of degree (n-k). This is treated as a ‘basis code polynomial’ (All rows of the G matrix of a block
code, being linearly independent, are also valid code vectors and form ‘Basis vectors’ of the code).
Therefore from cyclic property X' g(X) is also a code polynomial. Moreover, from the linearity
property - a linear combination of code polynomials is also a code polynomial. It follows therefore
that any multiple of g(X) as shown in Eq (4.12) is a code polynomial. Conversely, any binary
polynomial of degree < (n-1) is a code polynomial if and only if it is a multiple of g(X). The code
words generated using Eq (4.8) are in non-systematic form. Non systematic cyclic codes can be
generated by simple binary multiplication circuits using shift registers.

In this book we have described cyclic codes with right shift operation. Left shift version can

be obtained by simply re-writing the polynomials. Thus, for left shift operations, the various
polynomials take the following form

U(X) = Xt + u X% +...... + U2 X + U1 @ \Q .............. (4.13a)

V(X) = vo X"+ viXM2 ..+ VX + o s, (4.13b)

g(xX) = goX™ K+ g X" 4Lt n-kx ............... (4.13¢)

n-k .
=X+ Qg X! @ ..................... (4.13d)

i=1

Other manipulation and imple

4.2 MULTIPLIC CIRCUITS

Construction of 8gcoders and decoders for linear block codes are usually constructed with
combinational logic circuits with mod-2 adders. Multiplication of two polynomials A(X) and B(X)
and the division of one by the other are realized by using sequential logic circuits, mod-2 adders and
shift registers. In this section we shall consider multiplication circuits.

As a convention, the higher-order co-efficients of a polynomial are transmitted first. This is
the reason for the format of polynomials used in this book.

For the polynomial: A(X) =ag + a1 X + @, X? +..+ ana X" ... (4.14)

where a;’s are either a' 0" or a '1', the right most bit in the sequence (ap, ai, a; ... an-1) is transmitted
first in any operation. The product of the two polynomials A(X) and B(X) yield:

C(X) = A(X) xB(X)
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= (ao +a X+a X2 o + an-lxn'l) (bo + b X+ ngZ +...+bma Xm-l)
= aghbo+ (a1b0+aob1) X+ (aobz + boa2+a1b1) X2 F+eoee (an.zbm.1+ an-lbm.g) xmm 3 +an.1bm-1X”+m 2

This product may be realized with the circuits of Fig 4.2 (a) or (b), where A(X) is the input and the
co-efficient of B(X) are given as weighting factor connections to the mod - 2 .adders. A '0'" indicates
no connection while a '1' indicates a connection. Since higher order co-efficients are first sent, the
highest order co-efficient an.1x by, of the product polynomial is obtained first at the output of
Fig 6.2(a). Then the co-efficient of X™™? is obtained as the sum of {an-2bm1 + an1 bmo}, the first
term directly and the second term through the shift register SR1. Lower order co-efficients are then
generated through the successive SR's and mod-2 adders. After (n + m - 2) shifts, the SR's contain
{0, 0... 0, ap, a1} and the output is (ap b; + a; bo) which is the co-efficient of X. After (n + m-1)
shifts, the SR's contain (0, 0, 0,0, ag) and the out put is agxbg. The product is now complete and the
contents of the SR's become (0, 0, 0 ...0, 0). Fig 4.2(b) performs the multiplication in a similar way
but the arrangement of the SR's and ordering of the co-efficientg=are different (reverse order!). This
modification helps to combine two multiplication operations in@ shown in Fig 4.2(c).

From the above description, it is clear that a non-systemé gliC code may be generated using
(n-Kk) shift registers. Following examples illustrate

AN

-
=
=
L
Y
Y
Y
L

g Coefficients of B; (X)
(¢} Two input multiplier to perform CO) =A420 B; 00+ A; () B2 (%)
Fig 4.2: Multiplication circuits

Example 4.1: Consider that a polynomial A(X) is to be multiplied by
BOX) =1+ X+ X3+ X*+X°

The circuits of Fig 4.3 (a) and (b) give the product C(X) = A(X). B(X)
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- > >z »L— (X}
by by by by jb“
A(X) = SR;—>{SRy - *SR3——>{SR4*SRs—*SRs
(@)
SR+ SR » SR> SR3 >+ SR, *| SR> C(X)
bo by b3 b, bs

A(X) — >

T
4
¥

P
-

(D)
Fig 4.3: Circuit to perform C(X)*(1+X*+X3+X*+X°)

L J

Example 4.2: Consider the generation of a (7, 4) cyclic code. Here (n- k) = (7-4) = 3 and we have to
find a generator polynomial of degree 3 which is a factor of X" + 1 = X’ + 1.

To find the factors of® degree 3, divide X"+1 by Xg X+1, where 'a’ and 'b' are binary
numbers, to get the remainder as abX?+ (1 +a +b) X+ J&). Only condition for the remainder
to be zero is a +b=1 which means eithera =1, b = a ’0, b = 1. Thus we have two possible
polynomials of degree 3, namely

g (X) = X3+ X%+ 1 an &3+x+1

In fact, X’ + 1 can be factored as:

(X'+1) = (& 241) (X3+X+1)

Thus selection of a 'go r polynomial seems to be a major problem in the design of cyclic
codes. No clear-cut progedures are available. Usually computer search procedures are followed.

Let us choose g (x) = X3+ X + 1 as the generator polynomial. The encoding circuits are shown
in Fig 4.4(a) and (b).

D D » 1Y)
U(X) ——=— SRI » SR2 > SR3
()
r SR3 —-6%—- SR2 | SR1 —?—- 1(X)
U(X) —»—4 > ! >
()

Fig 4.4 Generation of Non-systematic cyclic codes

49



Error Control Coding And Binary Cyclic Code 15EC54

To understand the operation, Let us consideru=(1011) i.e.
U (X) = 1 +X%+X3,

We have V (X) = (1 +X%+X3) (1 +X+X3).

= 1+ XA+ XX+ XE

=1+ X+ X%+ X3+ X*+ X%+ X® because (X3+ X3=0)

=>v=(1111111)
The multiplication operation, performed by the circuit of Fig 6.4(a), is listed in the Table below step
by step. In shift number 4, ‘000° is introduced to flush the reglste s seen from the tabulation the
product polynomial is:
V(X)=1 +x+x2+x3+x4+x5+x6,

and hence out put code vectorisv=(1111111),a
can verify the operation of the circuit in Fig 4.4

circuits of Fig 6.4 can be used for generation of&
u

by direct multiplication. The reader
h same manner. Thus the multiplication

Shift Input i 7' Contents of shift | Ou | Remarks
Number | Queue Shif registers. t
SR2 | SR3 | put
0 00010 - 0 0 0 - Circuit In reset
mode
1 000101 1 1 0| o 1 | Co-efficient of X°
2 00010 1 1 1 0 1 Co-efficient of X°
3 0001 0 0 1 1 1 X* co-efficient
*/ 000 1 1 0 1 1 X co-efficient
5 00 0 0 1] 0 1 X? co-efficient
6 0 0 0 0 1 1 X* co-efficient
7 - 0 0 0 0 1 X co-efficient

4.3 DIVIDING CIRCUITS:

As in the case of multipliers, the division of A (X) by B (X) can be accomplished by using
shift registers and Mod-2 adders, as shown in Fig 4.5. In a division circuit, the first co-efficient of the
quotient is (an. +(bm-1) = q1, and q1.B(X) is subtracted from A (X). This subtraction is carried out by
the feed back connections shown. This process will continue for the second and subsequent terms.
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However, remember that these coefficients are binary coefficients. After (n-1) shifts, the entire
quotient will appear at the output and the remainder is stored in the shift registers.

» O(Y)
b&% be bz% bm—S bm‘?f bmﬁ
A(X) —E— SR1 (—+L—{ SRZ —PH---- SR, , >P—»| SR,

b1 bz % bm-3§ by bx{? by
AX) SRI >~ SRI —+4----- SR, 5 —+——* SR, Ox)

)

Fig 4.5: Dividingcir it
It is possible to combine a divider circuit with a multiplier circuit to build a “composite
multiplier-divider circuit” which is useful in various encQéli g&uits. An arrangement to accomplish
this is shown in Fig 4.6(a) and an illustration is shown,

We shall understand the operation 0& [
other circuits can be understood in a simi n

Example 4.3:

r circuit through an example. Operation of

Let A(X) = X3+X>+X
remainder after dividing
drawn using the format

01011), B(X) = 1 +X+X3. We want to find the quotient and
(X). The circuit to perform this division is shown in Fig 4.7,
(a). The operation of the divider circuit is listed in the table:

c;i) - czl - 031 _l Conz - Conn-1
R T S .
t

3;1% b

r ry " ry Oﬂ-}pﬂf

A(X) —» > »
(t] Cfmtigfor sirmiltane ously pultiplying A(X) by
(I+X2+X%) and divide by (I+X+X7+XY)

Fig 4.6 Circuits for Simultaneous Multiplication and division
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F 3

&
%

r

L/ » ;S.R:

¥

L 4

AN) A .
. » SRI
(0001011)

T
r

SR3 s 00

Fig 4.7 Circuits for dividing A(x) by (1 + X + X®)

Table Showing the Sequence of Operations of the Dividing circuit

Shift Input Bit Contents of shift | Ou | Remarks
Numbe Queue shifted | Registers. t
r IN SRI| SR SR put
2 3
0 0001011 - 0 0 0 - Circuit in reset
mode
1 000101 Co-efficient of X°
2 00010 Co-efficient of X°
3 0001 X* co-efficient
4 *000 X co-efficient
5 00 X? co-efficient
6 0 X* co-efficient
7 - X° co-efficient

The quotient co-efficients
result in entering the first 3-hi
is zero.

vailable only after the fourth shift as the first three shifts
ift registers and in each shift out put of the last register, SR3,

The quotient co%efficient serially presented at the out put are seen to be (1111) and hence the
quotient polynomial is Q(X) =1 + X + X? + X3, The remainder co-efficients are (1 0 0) and the
remainder polynomial is R(X) = 1.

44 SYSTEMATIC CYCLIC CODES:

Let us assume a systematic format for the cyclic code as below:
V = (Po, P1, P2 «++ Pr-k-1s Ug, Ug, Uzeee Wie1) e (4.15)
The code polynomial in the assumed systematic format becomes:
V(X) = po + poX + PaX? + o #pnac X +UeX ™ + U XM L b X (4.16)
=PX) + X"UX) e, (4.17)

Since the code polynomial is a multiple of the generator polynomial we can write:

52



Error Control Coding And Binary Cyclic Code 15EC54

VX)=PX)+X"™"UX)=QX)g(X) e, (4.18)
XU (X) P(X)

2 QX))+ ——2 4.19

) M) (419

Thus division of X" U (X) by g (X) gives us the quotient polynomial Q (X) and the
remainder polynomial P (X). Therefore to obtain the cyclic codes in the systematic form, we
determine the remainder polynomial P (X) after dividing X™* U (X) by g(X). This division process
can be easily achieved by noting that "multiplication by X" amounts to shifting the sequence by
(n-k) bits". Specifically in the circuit of Fig 4.5(a), if the input A(X) is applied to the Mod-2 adder
after the (n-k) ™ shift register the result is the division of X"* A (X) by B (X).

Accordingly, we have the following scheme to generate systematic cyclic codes. The

generator polynomial is written as:
.
g (X) = 1 +gX+goX2+gaX .. ctgnic XM +XMK Q .......... (4.20)
The circuit of Fig 4.8 does the job of dividing X" U §(X). The following steps describe the

encoding operation.

O Q0 .
A na
—— Ty 1 -1 Ty Pruiet i
iy T b{pe} e
(n-k) zeroes for 7 2
. . ..
JMshing the registers ﬁ register stages Soiteh S e

U(X) > o
1
Fig 4.8 @e encoding of cyclic codes using (n-k) shift register stages

1. The switch S is in position 1 to allow transmission of the message bits directly to an
out put shift register during the first k-shifts.

2. At the same time the 'GATE' is 'ON' to allow transmission of the message bits into the
(n-k) stage encoding shift register

3. After transmission of the k™ message bit the GATE is turned OFF and the switch S is
moved to position 2.

4. (n-K) zeroes introduced at "A" after step 3, clear the encoding register by moving the
parity bits to the output register

5. The total number of shifts is equal to n and the contents of the output register is the
code word polynomial V (X) =P (X) + X" ¥ U (X).

6. After step-4, the encoder is ready to take up encoding of the next message input

Clearly, the encoder is very much simpler than the encoder of an (n, k) linear block code and the
memory requirements are reduced. The following example illustrates the procedure.
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Example 4.4:

Letu=(1011)and we want a (7, 4) cyclic code in the systematic form. The generator polynomial
chosenisg (X)=1+ X+ X3

For the given message, U (X) = 1 + X*+X?
X" U (X) = X3U (X) = X3+ X+ X°

We perform direct division X"*U (X) by g (X) as shown below. From direct division observe that
pPo=1, p1=p>=0. Hence the code word in systematic format is:

V = (Po, P1, P2; Uo, U1, Up, U3) =(1,0,0,1,0,1,1)

B D oD
d 2 PEENAES Q
AV vty *
A \
X+
X2 ¢

2
s
Switch S|
(x) > »e

1
Fig 4.9 Encoder for the (7,4) cyclic code
The encoder circuit for the problem on hand is shown in Fig 4.9. The operational steps are as follows:

Iy

Shift Number Input Bit shifted IN | Register Output
Queue contents
0 1011 - 000 -
1 101 1 110 1
2 10 1 101 1
3 1 0 100 0
4 - 1 100 1

After the Fourth shift GATE Turned OFF, switch S moved to position 2, and the parity bits
contained in the register are shifted to the output. The out put code vector is v = (100 1011) which
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agrees with the direct hand calculation.

45 GENERATOR MATRIX FOR CYCLIC CODES:

The generator polynomial g(X) and the parity check polynomial h(X) uniquely specify the
generator matrix G and the parity check matrix H respectively. We shall consider the construction of
a generator matrix for a (7, 4) code generated by the polynomial g(X) = 1 +X+X°.

We start with the generator polynomial and its three cyclic shifted versions as below:
gxX)=1+X+X?
X g(X) = X + X*+ Xx*
X2g(X) = X2+ X3+ X°
X3g(X) = X3+ X* + X°
The co-efficients of these polynomials are used as the elements of the rows of a (4x7) matrix to get
the following generator matrix:

1101000 ’Q
0110100 \
G= ’
0011010
0001101

Clearly, the generator matrix so construc %‘ a systematic format. We can transform this into
a systematic format using Row manipula » Bhe manipulations are:

First row = First row; Second row row; Third row = First row + Third row; and Fourth row

= First row + second row + Fa

-

=[P:l,]

o O - O
o = O O
= O O O

Using this generator matrix, which is in systematic form the code word for u=(101 1) is
v=(1001011) (obtained as sum of 1st row + Third row + Fourth row of the G-matrix). The result
agrees with direct hand calculation.

To construct H-matrix directly, we start with the reciprocal of the parity check
polynomial defined by X*h(X™). Observe that the polynomial X*h(X™) is also a factor of the
polynomial X"+ 1. For the polynomial (X’+1) we have three primitive factors namely, (X + 1),
(X3+X+1) and (X3+X%+1). Since we have chosen (X*+X+1) as the generator polynomial the
other two factors should give us the parity check polynomial.

h(X) = (X +1) (X3+X3+1) = X*+X*+X+1

There fore with h(X) = 1 +X+X%*+X*, we have
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h(X™?) = 1 +X*+X?+X™ and
XKh(X™) = X*h(X 1) = XAH4X3+X2+1
The two cyclic shifted versions are:
XPh(X™?) = X° + X* +X3 + X
XOP(XY) = X+ X%+ X4 + X2
Or X*h(X™1) = X*+X3+X%+1

Xh(X™1) = X° + X* +X3 + X

Xoh(X™) = X8+ X° + X* + X?
. .. . *
Using the co-efficients of these polynomials, we have: Q

¢

1011100
H=(0 1 0 1 1 1 O
0010111

in this case is simply.

Observe the systematic format adopted: G =[P:1,Jand H =[1,_,:P"]

4.6 SYNDROME CALCULATION - ERROR DETECTION AND ERROR
CORRECTION :

Suppose the code vector v= (Vo, V1, V2 ...vn.1) IS transmitted over a noisy channel. Hence the
received vector may be a corrupted version of the transmitted code vector. Let the received code
vector be r = (ro, Iy, r2...rn.1). The received vector may not be anyone of the 2¥ valid code vectors.
The function of the decoder is to determine the transmitted code vector based on the received vector.

The decoder, as in the case of linear block codes, first computes the syndrome to check
whether or not the received code vector is a valid code vector. In the case of cyclic codes, if the
syndrome is zero, then the received code word polynomial must be divisible by the generator
polynomial. If the syndrome is non-zero, the received word contains transmission errors and needs
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error correction. Let the received code vector be represented by the polynomial
R(X) = ro+rX+rX2+...4rp XM

Let A(X) be the quotient and S(X) be the remainder polynomials resulting from the division
of R(X) by g(X) i.e.

RO _axy+200 (4.21)

g(X) g(X)

The remainder S(X) is a polynomial of degree (n-k-1) or less. It is called the "Syndrome
polynomial”. If E(X) is the polynomial representing the error pattern caused by the channel, then we
have:

R(X)=V(X)+EX) (4.22)
And it follows as V(X) = U(X) g(X), that: . Q
E(X) = [AX) + UX)] g(X) +S(X) ... \ ..... (4.23)
That is, the syndrome of R(X) is equal to the remai es Iﬁng from dividing the error pattern by

be used for error correction. Fig 4.5. A “Sy lator” is shown in Fig 4.10.

the generator polynomial; and the syndrome co{ rmation about the error pattern, which can
C

|GATE2

51 gmmf
¥
R(X) —EH— 55 : 5 Sni2 > Suki

The syndrome calcula@ carried out as below:

1 The register is first initialized. With GATE 2 -ON and GATE1- OFF, the received vector is
entered into the register

GATE1l— $(X)

2 After the entire received vector is shifted into the register, the contents of the register will be
the syndrome, which can be shifted out of the register by turning GATE-1 ON and GATE-2
OFF. The circuit is ready for processing next received vector.

Cyclic codes are extremely well suited for 'error detection' .They can be designed to
detect many combinations of likely errors and implementation of error-detecting and error correcting
circuits is practical and simple. Error detection can be achieved by employing (or adding) an
additional R-S flip-flop to the syndrome calculator. If the syndrome is nonzero, the flip-flop sets and
provides an indication of error. Because of the ease of implementation, virtually all error detecting
codes are invariably ‘cyclic codes'. If we are interested in error correction, then the decoder must be
capable of determining the error pattern E(X) from the syndrome S(X) and add it to R(X) to
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determine the transmitted V(X). The following scheme shown in Fig 6.11 may be employed for the
purpose. The error correction procedure consists of the following steps:

Stepl.

Step2.

Step3.

Step4.

Steps.

Received data is shifted into the buffer register and syndrome registers with switches
Sin closed and Sput open and error correction is  performed with S,y open and Sout
closed.

After the syndrome for the received code word is calculated and placed in the
syndrome register, the contents are read into the error detector. The detector is a
combinatorial circuit designed to output a ‘1’ if and only if the syndrome corresponds
to a correctable error pattern with an error at the highest order position X™'. That is, if
the detector output is a '1' then the received digit at the right most stage of the buffer
register is assumed to be in error and will be corrected. If the detector output is '0' then
the received digit at the right most stage of the buffer is assumed to be correct. Thus
the detector output is the estimate error value thendigit coming out of the buffer
register.

Input |
M D
NN
\ Error Pattern Detector /
(Combinational Logic Circui ) [ S our ’
ASHV
A BUFFER REGISTER —»/A—.ér —
Received Sy Sorr 9 Corrected
Code word Code Word

Fig 4.11 General decoder for cyclic code

In the third step, the first received digit in the syndrome register is shifted right once.
If the first received digit is in error, the detector output will be '1' which is used for
error correction. The output of the detector is also fed to the syndrome register to
modify the syndrome. This results in a new syndrome corresponding to the ‘altered
‘received code word shifted to the right by one place.

The new syndrome is now used to check and correct the second received digit, which
is now at the right most position, is an erroneous digit. If so, it is corrected, a new
syndrome is calculated as in step-3 and the procedure is repeated.

The decoder operates on the received data digit by digit until the entire
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received code word is shifted out of the buffer.

At the end of the decoding operation, that is, after the received code word is shifted out of the
buffer, all those errors corresponding to correctable error patterns will have been corrected, and the
syndrome register will contain all zeros. If the syndrome register does not contain all zeros, this
means that an un-correctable error pattern has been detected. The decoding schemes described in Fig
6.10 and Fig6.11 can be used for any cyclic code. However, the practicality depends on the
complexity of the combinational logic circuits of the error detector. In fact, there are special classes
of cyclic codes for which the decoder can be realized by simpler circuits. However, the price paid for
such simplicity is in the reduction of code efficiency for a given block size.

A decoder of the form described above operates on the received data bit by bit; and each bit is
tested in turn for error and is corrected whenever an error is located. Such a decoder is called
a“Meggitt decoder”.

¢

For illustration let us consider a decoder for a (7, 4) ¢ de generated by

ic
9 =1+ X+ X287 9*

vector R(X) is entered in to the SR’s bit i t the same time it is stored in the buffer memory.
The division process will start after the x» Shift and after the seventh shift the syndrome will be
stored in the SR’s. If S(X) = (000) t efl E(X) = 0 and R(X) is read out of the buffer. Since S(X) can

The circuit implementation of the gg& r is shown on Fig 6.12. The entire received
an

be found from E(X) with nonzero w ts, suppose E(X) = (000 0001). Then the SR contents are
given as: (001, 110, 011, 111920 owing that S(X) = (101) after the seventh shift. At the eighth
shift, the SR content is (100 s may be used through a coincidence circuit to correct the error
bit coming out of the b %' the eighth shift. On the other hand if the error polynomial were
E(X) = (000 1000) (g SR content will be (100) at he eleventh shift and the error will be
corrected when the buffég delivers the error bit at the eleventh shift. The SR contents for different
shifts, for two other error patterns are as shown in the table below:
SR contents for the error patterns (1001010) and (1001111)

Shift | Input | SR-content for | Input SR- content for
Number (1001010) (1001111)
1 0 000 1 100
2 1 100 1 110
3 0 010 1 111
4 1 101 1 001
5 0 100 0 110
6 0 010 0 011
7 1 101 1 011 *Indicates an error
8 0 100 0 111
9 - - 0 101
10 - - 0 100
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* * Coincidence Gate
Outpnet = I if Ingret =(1 0 0,
R(X) A U iring ( }

U NV >

7 0 0 Correction

v Signal
_'/G:v o] O

Con’ecf £2(X)
'X)

L2 AN 3

7 - bit Buffer
Fig 4.12 Meggitt decoder for (7,4) cyclic code

For R(X) = (1001010), the SR content is (100) at the 8-th shift and the bit in X° position of
R(X) is corrected giving correct V(X) = (1001011). On the other hand , if R(X) = (1001111), then it
is seen from the table that at the 10-th shift the syndrome content will detect the error and correct the
X*bit of R(X) giving V(X) = (1001011).

The decoder for the (15, 11) cyclic code, using g(X¥ = Qx * is shown in Fig 6.13. It is
easy to check that the SR content at the 16-th shift is lOONr (X) =X . Hence a coincidence

circuit gives the correction signal to the buffer out put G’ ained earlier.
Although the Meggitt decoders are intended g’r. agle error correcting cyclic codes, they may

be generalized for multiple error correcting codes’asWelly for example (15, 7) BCH code.
An error trapping decoder is a modifi a% Meggitt decoder that is used for certain cyclic

Coincidence Gate
Out Put = 1 if In Put =(1000)

o,
Bit

£ Correct "
; -
15 - bit Buffer | ey

Fig 4.13 Meggitt decoder for (15,11) cyclic code

WA
¥

LA A

[48Y,

The syndrome polynomial is computed as: S(X) = Remainder of [E(X) / g(X)]. If the error
E(X) is confined to the (n-k) parity check positions (1, X, X%... X"*%) of R(X), then E(X) = S(X),
since the degree of E(X) is less than that of g(X). Thus error correction can be carried out by simply
adding S(X) to R(X). Even if E(X) is not confined to the (n-k) parity check positions of R(X) but has
nonzero values clustered together such that the length of the nonzero values is less than the syndrome
length, then also the syndrome will exhibit an exact replica of the error pattern after some cyclic
shifts of E(X). For each error pattern, the syndrome content S(X) (after the required shifts) is
subtracted from the appropriately shifted R(X), and the corrected VV(X) recovered.

“If the syndrome of R(X) is taken to be the remainder after dividing X" R(X) by g(X),
and all errors lie in the highest-order (n-k) symbols of R(X), then the nonzero portion of the
error pattern appears in the corresponding positions of the syndrome”. Fig 4.14 shows an error
trapping decoder for a (15, 7) BCH code based on the principles described above. A total of 45 shifts
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are required to correct the double error, 15 shifts to generate the syndrome, 15 shifts to correct the
first error and 15 shifts to correct the second error.

R(Y) XR)

&

-
Tie
e

Test for ail '0's or one '1' |

| 3 Ir(%)

L A

"| 15 - Stage shift register

C .
Close for shifty
16 thronugl

Fig 4.14 Error trapping dec r (15,7) BCH code

Ilustration: \

UX)=X°+1; g(X) =X+ X"+ 1

E(X) = X" + X \

R(X) = X* + X+ X+ X+ X+ X+ X +1

r =(110010011011111

Shift Syndrome | Shift Middle | Shift Bottom

Number | Generator | Number | Register | Number | Register
Register

1 10001011 | 16 01100011 | 31 00000100

2 01000101 | 17 10111010 | 32 00000010

3 00100010 | 18 01011101 | 33 00000001

4 10011010 |19 10100101 | 34 00000000

5 11000110 |20 11011001 | 35 ;

6 01100011 |21 11100111 | 36 :

7 00110001 | 22 11111000 | 37 :

8 00011000 | 23 01111100 | 38 All zeros

9 00001100 | 24 00111110 | 39 :

10 00000110 | 25 00011111 | 40

11 10001000 | 26 10000100 | 41

12 01000100 | 27 01000010 | 42
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13 00100010 |28 00100001 | 43
14 10011010 |29 00010000 | 44
15 11000110 | 30 00001000 | 45

Errors trapped at shift numbers 28 and 33.

Some times when error trapping cannot be used for a given code, the test patterns can be
modified to include the few troublesome error patterns along with the general test. Such a modified
error trapping decoder is possible for the (23, 12) Golay code in which the error pattern E(X) will be
of length 23 and weight of 3 or less (t < 3). The length of the syndrome register is 11 and if E(X) has
a length greater than 11the error pattern is not trapped by cyclically shifting S(X). In this case, it is
shown that one of the three error bits must have at least five zeros on one side of it and at least six
zeros the other side. Hence all error patterns can be cyclically shifted into one of the following three
configurations (numbering the bit positions, eg, €1, €, ... €2):

Q) All errors (t < 3) occur in the 11 high-Ofger bits
(i) One error occurs in positio mhe other two errors occur in the 11
high-order bits. *
11 high-order
In the decoder shown in Fig 4.15, h- eceived code vector R(X) is fed at the rightmost stage

of the syndrome generator (as was dog€ ip¥ig 6.14), equivalent to multiplying R(X) by X**. Then the
ained (using g1(X) as the generator polynomial) as:

(iii) ~ One error occurs in{ on/es and the remaining two errors occur in the

S (es) = Remaingel B [X° /g1 (X)] = X + XZ + X° + X° + X® + X° and
S (es) = Remai Y Ig1(X)] = X2+ X3+ X8+ X+ X%+ X
-1
Input— . N RXY)
Gy ¥
* l + + + < L..._{‘?
ANy . A e Y. SN . N
Sp, 51 520 83 54 S5) S5, S7| Sa Sol S10]
Tiwreshold gate '
i l I
Ty T 2 Gy

-

Corrected onfput

Y

23 - Stage Buffer

¥

&

Gs
Fig 4.15 Error trapping decoder for (23,12) Golay code

The syndrome vectors for the errors es and eg will be (01100110110) or (00110011011)
respectively. Two more errors occurring in the 11 high-order bit positions will cause two 1’s in the
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appropriate positions of the syndrome vectors, thereby complementing the vector for es or es. Based
on the above relations, the decoder operates as follows:

(i).The entire received vector is shifted into the syndrome generator (with switch G; closed)
and the syndrome S(X) corresponding to X ** R(X) is formed.

(ii).If all the three or less errors are confined to X *2, X * ... X% of R(X), then the syndrome
matches the errors in these positions. The weight of the syndrome is now 3 or less. This is
checked by a threshold gate and the gate output T, switches G, ON and G; OFF. R(X) is now
received from the buffer and corrected by the syndrome bits (as they are clocked bit by bit)
through the modulo-2 adder circuit.

(ii1).If the test in (ii) fails then it is assumed that one error is either at es or at e, and the other
two errors are in the 11 high-order bits of R(X). Then if the weight of S(X) is more than 3 (in
test (ii)), then the weights of [S(X) + S (es)] and  [S(X) + S (ee)] are tested. The decisions
are:
1. If weight of [S(X) + S (es)] < 2 then the détisiom(T; 2 1) is that one error
is at position es and two errors are at positioN e [S(X) + S (es)] are nonzero.

2. If weight of [S(X) + S (eg)] < t ’decision (T2 = 1) is that one error

is at position eg and two errors ar positions where [S(X) + S (es)] are nonzero.

The above tests are arraj g- combinatorial switching circuits and the
appropriate corrections i aréymade as R(X) is read from the buffer.

(iv). If the above tests fail then 1%@nd G3 ON and G, OFF, the syndrome and buffer

contents are shifted by one bi and (iii) are now repeated. Bit by bit shifting of S(X)

and R(X) is continued till the g are located, and then corrected. A maximum of 23 shifts

will be required to ¢

further processed thro der circuit to obtain the message U(X) = V(X) / g(X).

Assuming that ng the block of 23 bits with t < 3 cyclically, ‘at most one error will
lie outside the 11 highsgrde®bits of R(X)’ at some shift, an alternative decoding procedure can be
devised for a Golay coder”™ The systematic search decoder. Here the test (ii) is first carried out. If the
test fails, then first bit of R(X) is inverted and a check is made to find if the weight of S(X) < 2. If
this test is successful, then the nonzero positions of S(X) give the two error locations (similar to test
(iii) above) and the other error is at first position. If this test fails, then the syndrome content is
cyclically shifted, each time testing for weight of S(X) < 3; and if not, invert 2™, 3™ ... and 12" bit
of R(X) successively and test for weight of S(X) < 2. Since all errors are not in the parity check
section, an error must be detected in one of the shifts. Once one error is located and corrected, the
other two errors are easily located and corrected by test (ii). Some times the systematic search
decoder is simpler in hardware than the error trapping decoder, but the latter is faster in operation.
The systematic search decoder can be generalized for decoding other multiple-error-correcting cyclic
codes. It is to be observed that the Golay (23, 12) code cannot be decoded by majority-logic
decoders.
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RECOMMENDATION QUESTIONS

1. Sketch the shift register circuit for multiplying A(X) by B(X) = 1 + X3 + X* + X° + X°. Compute
the circuit output for A(X) = 1 + X + X* by examining the shift register contents at each shift.

2. Draw a shift register circuit for simultaneous multiplication by B(X) and division by D(X), where
BOX)=1+X*+X>+X%and D(X) =1+ X3+ X* + X° + X®
If the input to the circuit is A(X) = 1 + X', calculate the quotient and the remainder.

3. Determine which, if any, of the following polynomials can generate a cyclic code with code word
length n < 7. Find the (n, k) values of any such codes that can be generated.

(a) 1+x'°;+ x‘; (d)1+X3+ x25+ x*
b) 1+ X?+X &)1+ X3+ X
Ec))1+x+x3+x4 ©

4. A (15, 5) linear cyclic code has a generator polynomial:09(>Q(+X2+X4+X5+X8+X10

a) Draw block diagrams of an encoder and syndro
b) Find the code polynomial for the message pol ) =1+X%*+X*in systematic form.
) Is V(X) =1+X*+X%+X3+X a code polynom , find the syndrome of v (X).

d) Hard-decision detection gives the rec 'veﬂ rd as:
R(X)=1+X*+ X"+ X8 &( +X. Locate the errors.
5. Write the H Matrix for the (15,
code polynomial for U(X) = 1

ulator for this code.

¢ code using g(X) =1 + X + X% + X3 + X* determine the
+ X% Construct the decoder for the code.

code. Find the code pal lal for the message:
UX)=1+X+ X4Q>raw the Meggitt decoder circuit for the code.

7. Write the G matrix for the (15, 11) SEC code. Show that by successively removing some of the
rows of G, one obtains (14, 10), (13, 9), (12, 8), (11, 7), (10, 6) etc. SEC codes. Write H matrix
for the (10, 6) code. Construct the coder and decoder for the code.

6. Write the generator p0|‘|! r (31, 26) SEC cyclic code. Write the G and H matrices for the

8. Construct a Meggitt decoder for the (15, 7) BCH code. What are the error patterns which will
form the test syndromes for the decoder? Is it possible to reduce the test syndromes to only 8
error patterns as below:

00000001,00000011
00000101,00001001
00010001,00100001
01000001,10000001

What is the modification required in the new decoder? What is the total number of shifts required
to complete the decoding of a block?
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9. The generator polynomial for a cyclic code is g(X) =1+X*+X%+X"+X®
a) Show that its length is 15.
b) Find the generator matrix and parity check matrix in systematic form.
c) Devise two shift register encoder circuits using k = 7 stages and (n — k) = 8 stages.
d) Find the code vector (In systematic form) for the message polynomial
U(X) =1+X3+X3+x*
e) Assume that the first and last bits of the code vector V(X) for U(X) given in (a)
Suffer transmission errors. Find the syndrome of V(X).

10. The decoder for a class of single error correcting cyclic codes (Hamming codes) is shown in Fig
P7.1 Show by way of an example, that single error in a (15, 11) Hamming code generated by
g(X) = 1+X+X* can be decoded using the decoder shown in the figure.

N, Corrected
Output

JS
Q&P 7.1 Decoder for Hamming codes.
11. A t-error correcting co S

aid to be a “perfect code” if it is possible to form a standard array,
with all patterns of 8, or fewer errors and no others as co-set leaders. Show that a (7, 4) linear
block code generated by g(X) =1+X+X3 is a perfect code.

12. The “Expurgated (n, k-1) Hamming code” is obtained from the original (n, k) Hamming code
by discarding some of the code words. Let g(X) Denote the generator polynomial of the original
code. The most common expurgated code is the one generated by g1(X) = (1+X) g(X), where
(1+X) is a factor of (1+X"). Consider the (7, 4) Hamming code generated by  g(X) =1+X?+X°.

a) Construct the eight code words in the expurgated (7, 3) Hamming code, assuming a
systematic format. Hence show that the minimum distance of the code is 4.

b) Determine the generator matrix G and the parity check matrix H of the expurgated
Hamming code.

c) Device the encoder and syndrome calculator for the expurgated Hamming code.
Hence determine the syndrome for the received sequence 0111110.

13. A systematic (7, 4) cyclic code is generated by g(X) = 1 + X*> + X3 The message is

U(X) =1+X+X°, and after detection the effective error polynomial is E(X) = X*. Find the first
syndrome word generated by a Meggitt decoder for decoding the first received symbol.
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14.

15.

16.

17.

18.

For the (7, 4) cyclic code generated by g(X) of problem 9, write the generator matrix and the
parity check matrices. Delete the last three columns in the H matrix in order to generate a (4, 1)
shortened cyclic code. If the code word v = (1101) is received as r = (1111), show that the
decoder corrects the error on the fifth clock pulse.

Show that a binary cyclic code of length n generated by g(X) has minimum weight of at least 3 if
n is the smallest integer for which g(X) divides (X" + 1).

Let G = [I: P] be the generator matrix of a cyclic code. If h(X)=1+hX+h,X?+...+h X< 1+X*
is the parity check polynomial of the code, show that the last column of the matrix P is:
(hk-1, hx_2 .....hp, hy, 1)

A (31, 21) binary double error correcting code has the generator polynomial:
g(X) =1+ X3+ X°+ X%+ X% + XX
.
i. Show that an error-trapping decoder cannot dec@ge this code to the designed distance.
ii. Show a simple modification of the erro pMg decoder that will decode to the
designed distance. *
The triple-error-correcting Golay (23, 1 esmay be constructed with the generator

polynomial: g(X) = 1 + X + X° + X° 4" RX® + X*. Find the parity check polynomial h(X).
Construct a decoder for the code. Wha ‘ e test syndromes to be checked in the decoder?

OUTCOMES

e How the cyclic codes™ce

e How the errors ¢ scted and corrected.
REFERENCE 2

www.mcs.csueastbay.edu/~malek/Class/Cyclic.pdf
www.fi.muni.cz/usr/.../.CHAPTER%2003%20-%20Cyclic%20codes.ppt
elearning.vtu.ac.in/P4/EC63/S11.pdf
nptel.ac.in/courses/IIT...Of.../Lecture40-41 ErrorControlCoding.pdf
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MODULE 5
CHAPTER 1: SOME IMPORTANT CYCLIC CODES

STRUCTURE

e Golay codes
e BCH codes

OBJECTIVE

e Discuss about BCH codes and Golay codes.
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5.1 GOLAY CODES

Golay code is a (23, 12) perfect binary code that is capable of correcting any combination of
three or fewer random errors in a block of 23 bits. It is a perfect code because it satisfies the
Hamming bound with the equality sign for t = 3 as:

23 23 23 23
+ |+ L] 21 =27
0 1 2 3
The code has been used in many practical systems. The generator polynomial for the code is
obtained from the relation (X**+1) = (X+ 1) g1(X) g2(X), where:

gX) =1 +X2+ X+ X+ X0+ X0+ XMand go (X) =1+ X + X°+ X8+ X"+ X+ X!

The encoder can be implemented using shift registers usﬁxe@rq (X) or g2 (X) as the divider

polynomial. The code has a minimum distance, dmin =7. The etended Golay code, a (924, 12) code
has dmin =8. Besides the binary Golay code, there is
dmin = 5.

fect ternary (11, 6) Golay code with

5.2 BCH CODES

»
v
BCH codes can also be used for ‘ or correction. If correction of single bursts is the only
requirement, implementation g o’o uch simpler. The additional error correcting ability can be
used to error detection (anym€rQr pattern that the code would correct, if fully utilized, it could
certainly still detect) or ie used to correct bursts beyond its guaranteed burst correcting

capability.
5.2.1 Decoding:

Burst error correcting cyclic codes can be decoded with an extremely simple version of the
error trapping decoder. Fig 5.1 illustrates a scheme for decoding an (n, k) cyclic code with burst error
correcting ability ‘b’ (The following description assumes a Binary code. Defining suitable g-ary logic
gates it can be easily generalized for q — ary codes). To understand the operation of the circuit we
proceed as below.

e Assume that a burst of length ‘b’ or less has occurred.

e The circuit computes a shifted version of the syndrome of the error pattern which is contained
in the received word.

e If the burst is confined to the ‘b’ high-order positions of the received word, then the ‘b’ right
most stages of the syndrome generator contain the burst and the (n-k-b) left stages will
contain zeros.
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e The logical OR gate detects this situation. Since its output is now 0, the feedback path in the
syndrome generator is opened and the path to the binary adder is closed.

e Upon shifting the syndrome generator and buffer register, the syndrome, which is the error
burst, is added to the received word, thereby correcting it.

e If the burst has occurred elsewhere in the word, it would be corrected in exactly the same
manner. For, after shifting, the burst will occupy the ‘b’ high-order positions of the buffer. At
this time the ‘b’ high-order bits of the syndrome will be identical to the burst as before.

e This decoding procedure does not correct “bursts” that occupy only the ‘i’ high-order
positions of the word and (b-i) low-order positions. Such bursts are correctable with a burst-b-
correcting cyclic code, however. It is possible, even simple; to do this if a syndrome generator
which does not pre multiply the received word by X" is used.

I 41

SYNDPROME GENERATOR

d

Consider a (15 7) Q generated by g(X) = 1+X+X%X*+X® For this code dmin=5,
t= MM~ — 2 With . W

e can construct a (75, 35) interleaved code with a burst error correcting

capablllty of b= A=10. A 35-bit message block is divided into five 7-bit message blocks and five
code words of length 15 are generated using g(X).These code words are arranged as 5-rows of a 5x15
matrix. The columns of the matrix are transmitted in the sequence shown as a 75-bit long code vector.

Each rows is 15 —bit code word —

-
1 [6 [11]...]31 [(36)]..... [(66)[71
2 |7 [12]...76) @] ... [67 [72
3
4
5

8 [13....1(33)|(38)|..... |68 |73
914 ]....1(34) (39 |.... |69 |74
10 | 15 (35) |40 |...... (70) | 75
Fig 5.2 Block Interleaver for a (15, 7) BCH code.
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To illustrate the burst and random error correcting capabilities of this code, we have put the bit
positions 9, 32 to 38, 66 and 70 in parenthesis, indicating errors occurred in these positions .The de-
interleaver now feeds the rows of Fig 5.1 to the decoder. Clearly each row has a maximum of two
errors and since the (15, 7) BCH code, from which the rows were constructed, is capable of
correcting up to two errors per row. Hence the error pattern shown in parenthesis in the Figure can be
corrected. The isolated errors in bit positions 9, 66 and 70 may be thought of as random errors while
the cluster of errors in bit positions 32 to 38 as a burst error.

Example 5.2: The polynomial: G(X) = (1+X+ X*)(1+X") = 1+X+X*+X'+X3+X | generates a binary
fire code of length n=7(2*-1)=105, which corrects any single burst of length 4 or less. It has 11 check
symbols and 105-11=94 information symbols. The encoder for the code is shown in Fig 5.3(a) and
the decoder in Fig 5.3(b).
INPUT
{Information Symbols)

GI 2 Y
| ROV
LD—-GLD—-D—-EI—%B*EI—- [+ P—— ovTPUT

L (Encoded Synibols)

{n) Encoder

INPUT

TEST FOR

INPUT

e
v

STORAGE, n = 105
oUTPUT

(D) Decoder

Fig 5.3 Encoder/Decoder for a (105,94)
e The decoder has a local encoder.

e The entire received vector is read into the buffer and simultaneously in to the syndrome
generator with G; closed and G, open.

e After the syndrome bits have been formed, the received bits are read out from the buffer
bit by bit and the syndrome bits are also shifted with flushing zero input.

e When allzero bits appear in the first 7 syndrome positions, the test circuit indicates the
allzero pattern, at the same time the error pattern must be in the last 5 positions.

e The erroneous symbols are now ready to leave the buffer and they are corrected by the last
4 syndrome bits by addition while they are shifted bit by bit with gates G, closed and G;
open.

It may be desirable to shorten a burst error correcting code either because (i) bursts occur too
frequently or (ii) the total length or number of information bits is constrained by other system
requirements. If a code of suitable natural length is not available or it cannot be found, an available
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code can be shortened simply by making some high-order information bits completely ‘0’ and
omitting them. By doing this, the encoding and parity check calculations are not affected, since the
leading 0’s do not affect them. However, such shortening of codes do affect the error correction
procedure. Suppose we want to form a shortened cyclic code of length (n-s) from an existing cyclic
code of natural length n. This requires omitting ‘s’ information symbols from the original n. Then, to
have an unaltered correction procedure, we must first shift the ‘S’ omitted information bits which are
assumed to be 0’s before reading the actual received code word out of the buffer. One possible
simplification could be achieved by an automated pre-multiplication by ‘X° mod g(X)’.

OUTCOMES

e To know how the decoding can be done.

e How the interleaving of coded data can be obtained for b rror correction.
*
REFERENCE ®
e nptel.ac.in/Clarify_doubts.php?subjectld= &lectureld=16
o elearning.vtu.ac.in/EC63.html
o www.inference.phy.cam.ac.uk/itp k.pef

N\
QO
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CHAPTER 2 CONVOLUTIONAL CODES

STRUCTURE

e Connection Pictorial Representation

e Convolutional Encoding — Time domain approach

e Encoding of Convolutional Codes; Transform Domain Approach
e Systematic Convolutional Codes

e Structural Properties of Convolutional Codes

e Maximum Likely-hood decoding of Convolutional Codes

e Sequential Decoding

OBJECTIVE .

e Discuss about Convolution codes which is usge
sequence on bit by bit basis. '

e Discuss about the decoding of convolutiona @ with the help of Viterbi algorithm.

A

% rate encoded sequences for input

S\
QO
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INTRODUCTION

In block codes, a block of n-digits generated by the encoder depends only on the block of k-
data digits in a particular time unit. These codes can be generated by combinatorial logic circuits. In a
convolutional code the block of n-digits generated by the encoder in a time unit depends on not only
on the block of k-data digits with in that time unit, but also on the preceding ‘m’ input blocks. An (n,
k, m) convolutional code can be implemented with k-input, n-output sequential circuit with input
memory m. Generally, k and n are small integers with k < n but the memory order m must be made
large to achieve low error probabilities. In the important special case when k = 1, the information
sequence is not divided into blocks but can be processed continuously.

Similar to block codes, convolutional codes can be designed to either detect or correct errors.
However, since the data are usually re-transmitted in blocks, block codes are better suited for error
detection and convolutional codes are mainly used for error corr

Convolutional codes were first introduced by Elias |N as an alternative to block codes.
This was followed later by Wozen Craft, Massey, Viterbi, Omura and others. A detailed
discussion and survey of the application of convolusk es to practical communication channels
can be found in Shu-Lin & Costello Jr., J. Das e% other standard books on error control coding.

To facilitate easy understanding
encoders starting with a connection pi
vectors.

the popular methods of representing convolutional
needed for all descriptions followed by connection

5.1 CONNECTION PI REPRESENTATION

The encoder fo 2, K=23) or (2, 1, 2) convolutional code is shown in Fig.5.1. Both
sketches shown are on e same. While in Fig.5.1 (a) we have shown a 3-bit register, by noting
that the content of the third stage is simply the output of the second stage, the circuit is modified
using only two shift register stages. This modification, then, clearly tells us that" the memory
requirement m = 2. For every bit inputted the encoder produces two bits at its output. Thus the
encoder is labeled (n, k, m)— (2, 1, 2) encoder.

e

~

ald

‘7(01:12}1:1‘

[ —
R s
2 Commutator e
or MUX

() (D)
Fig 5.1 A (2,1,2) Encoder (a) Representation using 3-bit shift register (b) Equivalent representation
requires only two shift register stages

Inpur
7

by
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At each input bit time one bit is shifted into the left most stage and the bits that were present
in the registers shifted to the right by one position. Output switch (commutator /MUX) samples the
output of each X-OR gate and forms the code symbol pairs for the bits introduced. The final code is
obtained after flushing the encoder with "m" zero's where 'm'- is the memory order (In Fig.8.1, m =
2). The sequence of operations performed by the encoder of Fig.5.1 for an input sequence u = (101)
are illustrated diagrammatically in Fig 5.2.

Time Unit v ey @

w10

v

Two

Flushing
ZEFOS

by

matl zero will clear
> register completely.

From Fig 5.2, the encoding procedure can be understood clearly. Initially the registers are in
Re-set mode i.e. (0, 0). At the first time unit the input bit is 1. This bit enters the first register and
pushes out its previous content namely ‘0’ as shown, which will now enter the second register and
pushes out its previous content. All these bits as indicated are passed on to the X-OR gates and the
output pair (1, 1) is obtained.The same steps are repeated until time unit 4, where zeros are
introduced to clear the register contents producing two more output pairs. At time unit 6, if an
additional ‘0’ is introduced the encoder is re-set and the output pair (0, 0) obtained. However, this
step is not absolutely necessary as the next bit, whatever it is, will flush out the content of the second
register. The ‘0’ and the ‘1’ indicated at the output of second register at time unit 5 now vanishes.
Hence after (L+m) = 3 + 2 = 5 time units, the output sequence will read v = (11, 10, 00, 10, 11).
(Note: L = length of the input sequence). This then is the code word produced by the encoder. It is
very important to remember that “Left most symbols represent earliest transmission”.

As already mentioned the convolutional codes are intended for the purpose of error
correction. However, it suffers from the ‘problem of choosing connections’ to yield good distance
properties. The selection of connections indeed is very complicated and has not been solved yet. Still,
good codes have been developed by computer search techniques for all constraint lengths less than
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20. Another point to be noted is that the convolutional codes do not have any particular block size.
They can be periodically truncated. Only thing is that they require m-zeros to be appended to the
end of the input sequence for the purpose of ‘clearing’ or ‘flushing’ or ‘re-setting’ of the encoding
shift registers off the data bits. These added zeros carry no information but have the effect of
reducing the code rate below (k/n). To keep the code rate close to (k/n), the truncation period is
generally made as long as practical. The encoding procedure as depicted pictorially in Fig 5.2 is
rather tedious. We can approach the encoder in terms of “Impulse response” or “generator sequence”
which merely represents the response of the encoder to a single ‘1’ bit that moves through it.

5.2 Convolutional Encoding — Time domain approach:

The encoder for a (2, 1, 3) code is shown in Fig. 8.3. Here the encoder consists of m=3 stage
shift register, n=2 module-2 adders (X-OR gates) and a multiplexer for serializing the encoder
outputs.  Notice that module-2 addition is a linear operation and it follows that all convolution
encoders can be implemented using a “linear feed forward shift register circuit”.

The “information sequence’ U = (U, Uz, U3 «eveee. ) enters the engodem™one bit at a time starting from
ui. As the name implies, a convolutional encoder operaN erforming convolutions on the

information sequence. S§Jecifical|y, the encoder outpu ences, in this case VAN (VA VACRVAS
... tand V@ = {v;®v,® v;@ ...} are obtained screte convolution of the information
sequence with the encoder "impulse responses'. e responses are obtained by determining

the output sequences of the encoder produced
responses so defined are called 'genera
unit memory the impulse responses can |
are necessary for a message bit to ente

t ut sequence u = (1, 0, 0, 0...).The impulse
uences' of the code. Since the encoder has a m-time
st (m+ 1) time units (That is a total of (m+ 1) shifts
register and finally come out) and are written as:

7
1'!

N b
'j'\'f_
S

1’

-

Fig 5.3 (2,1,3) binary encoder
For the encoder of Fig.5.3, we require the two impulse responses,
g M= {91(1), gz(l), s (1)’ G (1)} and
09={0:%, ¢®,0:?, 9. ¥}
By inspection, these can be written as: g P={1,0,1, 1}andg ®={1, 1, 1, 1}

Observe that the generator sequences represented here is simply the '‘connection vectors' of the
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encoder. In the sequences a '1' indicates a connection and a '0" indicates no connection to the
corresponding X - OR gate. If we group the elements of the generator sequences so found in to pairs,
we get the overall impulse response of the encoder, Thus for the encoder of Fig 5.3, the over-all
impulse response’ will be:

v =(11, 01, 11, 11)

The encoder outputs are defined by the convolution sums:

vO=y*g® (5.1 a)
v@=u*xg® (5.1b)
Where * denotes the ‘discrete convolution’, which implies:
m
(1 (0
Vi =Zul—i'gi+1 ¢ Q
i=0
:U|g]_0)+ U_1 gg(J)'l' U|_zg3(")+ .es Ngmq-l('l) ................ (5.2)

forj=1,2and where uj=0forall I <iandall o @"- are modulo - 2. Hence for the encoder of

Fig 5.3, we have: &\

irect inspection of the encoding circuit. After encoding, the

v = U+ U+ Uy
vi® = U+ Ut u

This can be easily ve

two output sequences are d into a single sequence, called the "code word" for transmission
over the channel. TheQ s given by:

— 1 1 2 1 2
Example 5.1:

Suppose the information sequence be u = (10111). Then the output sequences are:

vW=(10111)*(1011)
=(10000001),

v@=@10111)*(111)
=(11011101),

and the code word is
v = (11, 01, 00, 01, 01, 01, 00, 11)

The discrete convolution operation described in Eq (8.2) is merely the addition of shifted
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impulses. Thus to obtain the encoder output we need only to shift the overall impulse response by
‘one branch word', multiply by the corresponding input sequence and then add them. This is
illustrated in the table below:

INPUT OouT PUT
1 110111 11
0 0000 0000 --—-- one branch word shifted
sequence
1 11 011111 ---Two branch word
shifted
1 11011111
1 110111 11
Modulo-2sum 11 01000101010011

The Modulo-2 sum represents the same sequence asob@efore. There is no confusion at
all with respect to indices and suffices! Very easy approacxj er position or linear addition of
shifted impulse response - demonstrates that the convolygtegal c@des are linear codes just as the block
codes and cyclic codes. This approach then permi tg Yefine a 'Generator matrix' for the
convolutional encoder. Remember, that interlaci generator sequences gives the overall
impulse response and hence they are used as thglro the matrix. The number of rows equals the
number of information digits. Therefore the fétrixythat results would be “Semi-Infinite”. The second
and subsequent rows of the matrix are e shifted versions of the first row -They are each
shifted with respect to each other by " h word". If the information sequence u has a finite
length, say L, then G has L rows an m +L) columns (or (m +L) branch word columns) and v
has a length of n x (m +L) or a (m +L) branch words. Each branch word is of length 'n’.
Thus the Generator matrix G, oders of type shown in Fig 8.3 is written as:

1 2 1 1 2 1 2
0,g,* g, Q 92 g,Mg,*

2 1
G= g, M, (1)

9> 92(2) 93(1)93(2) 94(1)94(2) e (5:3)
0.9, 9,9, g,Vg? g, Vg,
(Blank places are zeros.)

The encoding equations in Matrix form is:
v=u.G (5.4)

Example 5.2:

For the information sequence of Example 5.1, the G matrix has 5 rows and 2(3 +5) =16 columns and
we have
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1101111100000O0O0TO0
0011011111000 U0U0T0O0
G=(0 0001101111100 O00P0
0 000O0O6O11O01111100
|0 0 000O0O0O0CI1IT1O01111 1]

Performing multiplication, v = u G as per Eq (5.4), we get: v = (11, 01, 00, 01, 01, 00, 11) same as
before.

As a second example of a convolutional encoder, consider the (3, 2, 1) encoder shown in
Fig.8.4. Here, as k =2, the encoder consists of two m = 1 stage shift registers together with n = 3
modulo -2 adders and two multiplexers. The information sequence enters the encoder k = 2 bits at a
time and can be written as U = {u; @ u; (2), U, @ U, (2), Us @ Us @ ...} Or as two separate input
sequences:

u®={u® " u® . dand u®={u? “0(2) TN S

é’Fig 5.4 (3,2,1) Convolution encoder

There are three generatgf es corresponding to each input sequence. Letting
g D=1 P gis &, ®s P ... gimer P} represent the generator sequence corresponding to
he

input i and output j. T nerator sequences for the encoder are:
0:=(11),0.9=(10),0=(10)

9:7=(0,1),9.=(11),9.9=(0,0)

The encoding equations can be written as:

vO=yOxg @y y@xg @ (5.54)
vO=yWxg @4 y@xg, @ (5.5D)
vO=yOxg @y y@xg, @ (5.5¢)

The convolution operation implies that:

ViO=y, Osy,Oyy,,@
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Vvi@=u, W5y, @4y, @
v,®@=y,®
as can be seen from the encoding circuit.
After multiplexing, the code word is given by:
v ={V1(1)V1(2)V1(3)’V2(1)V2(2)V2(3)’V3(1)V3(2)V3(3) o}
Example 5.3:
Supposeu=(110110). Henceu W =(101)andu® =(110). Then
v =(101)*(1,1)+(110)*0,1)=(100
v@=(101)*(1,0)+(110)*1,1) = (6\0
v®=(101)*(1,0)+ (1 1 0) *(0, 10

.-,v=(101,000,001,%

The generator matrix for a (3, 2, m) code ritten as:

(L)y (2)4 (3) Ly (2) (1) (2) (3)
011 911 "On 012 Op0 O1met 9rmet Yrmst
Dy (2)4 (3) (1
021 92 "Ux 02

G= . 011

(1) (2) (3)
92,m+1 gz,m+1 92,m+1

) Dy (2)y (3)
92 O O B (5.6)
1 2 3
922( )922( )922( )

The encoding equations in matrix form are again given by v = u G. observe that each set of k = 2
rows of G is identical to the preceding set of rows but shifted by n = 3 places or one branch word to
the right.

Example 5.4:

For the Example 5.3, we have

u={u Y u @ u,®u,® uMu;®=(11,01,10)

The generator matrix is:
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O P P
R B P O
O - o o

O R L B
[ = =}
OI—‘OO

100
, 110

*Remember that the blank places in the matrix are all zeros.
Performing the matrix multiplication, v = u G, we get: v = (101,000,001,100), again agreeing
with our previous computation using discrete convolution.

This second example clearly demonstrates the complexities involved, when the number of
input sequences are increased beyond k > 1, in describing the codg., In this case, although the encoder
contains k shift registers all of them need not have the samg length. i is the length of the i-th shift
register, then we define the encoder "memory order, m" by\

*

mAa Maxk;  emud. D (5.7)
T I<i<k
(i.e. the maximum length of all k-shift regi )\
An example of a (4, 3, 2) convolutional e which the shift register lengths are 0, 1 and 2 is

shown in Fig 5.5.

E‘f‘\
T

Fig 5.5 (4,3,2) Binary convolution code encoder

Since each information bit remains in the encoder up to (m + 1) time units and during each
time unit it can affect any of the n-encoder outputs (which depends on the shift register connections)
it follows that "the maximum number of encoder outputs that can be affected by a single
information bit" is

n, An(m+1) (5.8)

‘na’ is called the 'constraint length" of the code. For example, the constraint lengths of the encoders
of Figures 5.3, 5.4 and 5.5 are 8, 6 and 12 respectively. Some authors have defined the constraint
length (For example: Simon Haykin) as the number of shifts over which a single message bit can
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influence the encoder output. In an encoder with an m-stage shift register, the “memory” of the
encoder equals m-message bits, and the constraint length na = (m + 1). However, we shall adopt the
definition given in Eq (5.8).

The number of shifts over which a single message bit can influence the encoder output is
usually denoted as K. For the encoders of Fig 5.3, 5.4 and 5.5 have values of K = 4, 2 and 3
respectively. The encoder in Fig 8.3 will be accordingly labeled as a ‘rate 1/2, K = 4’ convolutional
encoder. The term K also signifies the number of branch words in the encoder’s impulse response.

Turning back, in the general case of an (n, k, m) code, the generator matrix can be put in the
form:

C':'1 G2 G3 Gm Gm+1
G= G G Cnt Gn Gor (5.9)
Gl Gm—Z Gm 1
Where each G;jis a (k x n) sub matrix with entries as b TS
gl,i(l) gl,i(2)
(1) (2)
G =|%i Y T RERIS (5.10)
_gk,i(l) gk,i(Z)

Notice that each set of k-r
the right. For an informati
V = (V1, V2...) Where
combination of rows 0

re identical to the previous set of rows but shifted n-places to
e u = (uy, Up...) where uj = {u; , u; @...u; ¥}, the code word is
v @ vi ™) and v = u G. Since the code word is a linear
matrix it follows that an (n, k, m) convolutional code is a linear code.

Since the convolutional encoder generates n-encoded bits for each k-message bits, we define
R = k/n as the "code rate". However, an information sequence of finite length L is encoded into a
code word of length n x(L +m), where the final nxm outputs are generated after the last non zero
information block has entered the encoder. That is, an information sequence is terminated with all
zero blocks in order to clear the encoder memory. The terminating sequence of m-zeros is called the
"Tail of the message". Viewing the convolutional-code as a linear block code, with generator matrix
G, then the block code rate is given by kL/n(L +m) - the ratio of the number of message bits to the
length of the code word. If L >> m, then, L/ (L +m) = 1 and the block code rate of a convolutional
code and its rate when viewed as a block code would appear to be same. Infact, this is the normal
mode of operation for convolutional codes and accordingly we shall not distinguish between the rate
of a convolutional code and its rate when viewed as a block code. On the contrary, if ‘L’ were small,
the effective rate of transmission indeed is kKL/n (L + m) and will be below the block code rate by a
fractional amount:
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k/n—-kL/n(L+m) m
k/n " L+m
and is called "fractional rate loss". Therefore, in order to keep the fractional rate loss at a minimum
(near zero), ‘L’ is always assumed to be much larger than ‘m’. For the information 'sequence of
Example 8.1, we have L =5, m =3 and fractional rate loss = 3/8 = 37.5%. If L is made 1000, the
fractional rate loss is only 3/1003= 0.3%.

.......................... (5.11)

5.3 Encoding of Convolutional Codes; Transform Domain Approach:

In any linear system, we know that the time domain operation involving the convolution
integral can be replaced by the more convenient transform domain operation, involving polynomial
multiplication. Since a convolutional encoder can be viewed as a 'linear time invariant finite state
machine, we may simplify computation of the adder outputs by applying appropriate transformation.
As is done in cyclic codes, each 'sequence in the encodingggquations can' be replaced by a
corresponding polynomial and the convolution operation rsph@olynomial multiplication. For
example, for a (2, 1, n;) code, the encoding equations become?

vOX)=uX) g Xx) (5.12a)

(5.12h)

are the “generator polynomials” of' the code; and all operations are modulo-2. After multiplexing, the
code word becomes:

viX) = v + XVvOXD (5.13)

The indeterminate X' can be regarded as a “unit-delay operator”, the power of X defining
the number of time units by which the associated bit is delayed with respect to the initial bit in the
sequence.
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Example 5.5:

For the (2, 1, 3) encoder of Fig 8.3, the impulse responses were: g®= (1,0, 1, 1), and g® = (1,1, 1, 1)
The generator polynomials are: g(X) = 1 + X? + X3, and g@(X) = 1 + X + X* + X*

For the information sequence u = (1, 0, 1, 1, 1); the information polynomial is: u(X) = 1+X*+X3+X*
The two code polynomials are then:

VO =uX) gP(X) = (@ + X2+ X3+ XH @1+ X2+ X} =1+ X’

VOX) =uX) g@(X) =@+ X2+ X3+ XH L+ X+ X2+ X =1+ X+ X3+ X+ X+ X!

From the polynomials so obtained we can immediately write:

v@W=(10000001),and v@=(11011101),
Pairing the components we then get the code word v = (11, \ 01, 01, 01, 00, 11).
We may use the multiplexing technique of Eq (5.13) an ¢

v (X)) =1+ Xx¥and v@ (X?) = 1+X%+ 6+>( EXvO (X =X+ X3+ X+ X+ XM+

X15 .

and the code polynomial is: v(X) =v® @ (X2 =1+ X+ X3+ X+ X0+ X+ XM 4 X

Hence the code word is: v =
obtained earlier.

0,01,01,01, 00,1 1); this is exactly the same as

The generator pol @x of an encoder can be determined directly from its circuit diagram.
Specifically, the co-effiCie "is a'1"if there is a "connection” from the I-th shift register stage to
the input of the adder Ofinterest and a '0" otherwise. Since the last stage of the shift register in an
(n, 1) code must be connected to at least one output it follows that at least one generator polynomial
should have a degree equal to the shift register length 'm’, i.e.

l<j<n{deg g(”(X)} .................. (5.14)

m =

In an (n, k) code, where k > 1, there are n-generator polynomials for each of the k-inputs,

each set representing the connections from one of the shift registers to the n-outputs. Hence, the
length K, of the I-th shift register is given by:

Max

:1<j<n{deg g,“)(X)}, 11K e (5.15)

Where g @ (X) is the generator polynomial relating the I-th input to the j-th output and the encoder
memory order m is:
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M Max
ax _ -
m= K =1<j< {deg g,“)(X)} ............ (5.16)
1<1<k
1<I1<k

Since the encoder is a linear system and u ¥ (X) represents the I-th input sequence and v @
(X) represents the j-th output sequence the generator polynomial g; ¥ (X) can be regarded as the
‘encoder transfer function' relating the input - | to the output — j. For the k-input, n- output linear
system there are a total of kxn transfer functions which can be represented as a (k x n) "transfer
function matrix".

[0, 0(X), 6,2(X),

G(X)= gz(l).(x)’ 92(2).()()! (517)

L9V (X), g P (Xx),

Using the transfer function matrix, the encoding equatio Nn, k, m) code can be expressed as

V(X) = U(X) G(X) (5.18)

eetor, representing the information polynomials, and.

UX) = [u® X), u® (x)..u® ()]s the
-vector representing the encoded sequences. After

VX)=[v®P (X),v@ X)... v ™ (X)]
multiplexing, the code word becomes:

v(X) = V(X" + X v( XMt XTVOXTY (5.19)
Example 5.6:

For the encoder of Fi

917 () =1+ X, Ng 2" (X) =X
g9 X)) =1, g,? (X) =1+ X
9.9 =1, 9.2 (X)=0
1+ X 1 1
5 G(X)=
X 1+ X O

For the information sequence u® = (1 0 1), u® = (1 1 0), the information polynomials are:
uB (X)=1+ X% ud(X)=1+X

Then  V(X) = [v® (X), v (X), v (X)]

1+ X 1 1

=[1+X%1+X]
X 1+ X 0

} =[1+X3,0, 1+X?]

Hence the code word is:
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v(X) = v (X) + XvO () + XA (X
= (1+ X% + X (0) + X*(1 + X%
=1+ X2+ X%+ X°

~v=(101,000,001,100).

This is exactly the same as that obtained in Example 5.3.From Eq (5.17) and (5.18) it follows that:

. ko .
v (X) =Y u(X)g,(X)
i=1
And using Eq (8.19) we have:

0= X N\
=1 *
»

n . k . .
_ ZX J—lzu(l)(xn)gi(l)(xn)
j=1 i=1

v(X)= ﬁum(xn )gi(X) LA e (5.20)
i=1

Where g, (X )= 3 X11g. (D (x")
j=1

= g (X" + Xg,*)(
is called the "composite generato

Example 5.7: Q\

From Example 5.6, W?
9:00) =91 O X3 + X @ (X% + X9 @ (X3 =1+ X+ X2+ X°

92(X) = g2 @ X3) + Xgo @ (X3 + X%, (X=X + X3+ X*

9B (XM )+ X" g M(XTY (5.21)
ial" relating the i-th input sequence to v(X).

For the input sequence u @ (X) =1+ X% u@ (X) = 1 + X, we have

v(X)=u®(x3) gu(X) +u@ (X3 g, (X) = 1+ X2 + X% + X°. This is exactly the same as obtained
before.

5.4 Systematic Convolutional Codes:

In a systematic code, the first k-output sequences are exact replica of the k-input sequences

ie.

v =u® =12k (5.22)
and the generating sequences satisfy:

giV=8, i=123..k e (5.23)
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where §; j is the Kronecker delta, having values: 9; j=1...ifj=1i

=0...if j #i
The generator matrix for such codes is given by
I Pl O P2 O P3 b O Pm+1
Go .. 1 PR O P - O P, O P, (5.24)
g

| P, - O P,, O P

Where | is a k x k identity (unit) matrix, O is the k x k all zero matrix and P; is a k x (n - k) matrix
given by:

gl,i(k+1) gl,i(k+2) gl,i(n)

(k+1) (k+2) (n)
p | % % G2 Q ........... (5.25)

: : : : ¢

_gk,i(k+1) gk,i(k+2) gk,i(n)_ \

Further, the transfer function matrix of the code is givellhy” 4 ¢

_ - -

1 00 1 (X)

010 9,"(X)

0 01

(n)
G(X)= 9s :(X) ................. (5.26)

0 0 té‘\l, XY gl M)

The first k-output sequé€nces,=*mnput sequences — Information sequences
Last (n-k) sequences —%arity sequences.

Number of sequences required to specify a general (n, k, m) code = kn.

For a systematic code we require only k x (n-k) sequences. Thus systematic codes form a sub class of
the set of all possible convolutional codes. Any code not satisfying Eq (5.22) to Eq (5.26) is said to
be "non systematic".

Example 5.8:

Consider a (2, 1, 3) systematic code whose encoder is shown in Fig 5.6.
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1

- nformation
K_x
H— -
‘7_/3
T Parity

Fig 8.6 (2,1,3) systematic encoder

The generator sequences are: g ) = (100 0) and g ® = (1 1 0 1); and the generator matrix is:

1 1 0

1
1 1

B O

0
0

', O O
"k =, O
‘o o o

1
0 0 1

. . .
The transfer function matrix is: \Q
2 2

G(X)=[1,1+ X+ X%

For an input sequence u(X) = 1+X+X3, the inforg séquence is:

VI =uX) gP(X) =(1

and the parity sequence is:
vA(X) = u(X) g X (L+X+X0) = (1+ X2+ X°)
One advantage of
systematic codes - because
needs only one modulo
number of inputs to t

encoding schemes that
following simple example.

codes is that encoding is much simpler than for the non
ardware is required. For example, the (2, 1, 3) encoder of Fig 5.6
J¢ hile that of Fig 5.5 requires three such adders. Notice also the total
2 adders required. Further, for systematic (n, k, m) codes with K > n — k,
ormally require fewer than K-shift registers exist as illustrated in the

Example 5.9:

Consider a systematic (3, 2, 2) code with the transfer function matrix

G(X){l 0 1+X+X2:|

0 1 1+X?

The straight forward realization requires a total of K=K;+K,=2+2=4 shift registers and is
shown in Fig b5.7(a). However, since the parity sequences are generated by:
vOX) = uP(X). 9:¥(X) + uP(X) g (X), an alternative realization as shown in Fig 5.7(b) can be
obtained.
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i

e W

(a) Straight forward Realization

A

> - > 1

N S T N . -

(b) Alternative Realizatior
Fig 5.7 Realization of encoder ¥gr example 5.9

N

In majority of situations, the straight forwar at n is the most efficient. However, in the
case of systematic codes simpler realizations usuall shown in Example 5.9.
Another advantage of' systemati &at no inverting circuit is needed for recovering

information from the code word. For inf
required in the form of an (n x k) matgi
G(X).G '(X) =

for some | >0 and I is the (k&

V(X).G* )G(X) G H(X) = UX).X" (5.28)
and the information se ce can be recovered with an I-time unit delay from the code word by

letting V(X) to be the input to the n-input, k-output linear sequential circuit whose transfer function
matrix is G ~1(X).

recovery from a non systematic code, inversion is
such that
.................. (5.27)

atrix. Then it follows that:

For an (n, I, m) code the transfer function matrix G(X) will have a "feed forward" inverse
G~ (X) of delay | units if and only if :

GCDOY(X), 9@ X)..g™ X)]=X" (5.29)

for some | > 0; where G.C.D denotes the 'greatest common divisor'. For an (n, k, m) code with k >
n n
1, let A; (X), i=1,2 (k] be the determinants of the (k) distinct k x k sub-matrices of the transfer

function matrix G(X).Then a feed forward inverse of delay I-units exists if an only if:

GGD [A (X), i=1,2 [D 1=X' (5.3
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Example 5.10:
For the (2, 1, 3) encoder of Fig 5.3, we have, from Example 8.5, the generator matrix as
G(X) = [1+X?+ X3 1+X + X2+ X)
Its inverse can be computed as:
2
G(X) = 1+ X +)2(
X+ X
and the implementation of the inverse is shown in Fig 5.8.
Example 5.11:
For the (3, 2, 1) encoder of Fig 5.4, the generator matrix as foun QExample 5.61s:
1+ X 1
G(X)=
X 1+X 0
The determinants of the (2 x 2) sub matricesfare®i+ 2 X and 1 + X. Their GCD is 1.
A feed forward inverse with no delay exi campe computed as:
X
1+ X |
1+ X2
Implementation of this g hown in Fig 5.9
i . e
/ v v — . > _; I ‘?—»,.__\
- e e
\%}»—D»@ >

Fig 5.8 Feed forward encoder of (2,1,3) code  Fig 5.9 Feed forward encoder of (3,2,1) code

To understand what happens when a feed forward inverse does not exist consider an example

of a (2, 1, 2) encoder with generator matrix

G(X) = [1+X, 1 + X?]

Since the GCD of g @ (X) and g @ (X) is (1+ X) (not of the form X '), a feed forward inverse does

not exist. Suppose the input sequence is:

Dept. of ECE, ATMECE
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u(x)= X2 X%+ Thenthe output sequences are: V9(X) = 1, v@(X) = 1 + X.
1+ X

That is, the code word contains only three nonzero bits even though the information sequence has
infinite weight. If this code word is transmitted over a BSC and the three nonzero bits are changed to
zeros by the channel noise, the received sequence will be all zeros. A maximum likely hood decoder
(MLD) will then produce the all-zero code word as its estimate, since this a valid code word and it
agrees exactly with the received sequence. Thus, the estimated information sequence will be
a(X)=0, implying an infinite number of decoding errors caused by a finite number (only three in

this case) of channel errors. Clearly this is a very undesirable situation and the code is said to be
subject to "Catastrophic error propagation™ and the code is called a "catastrophic code".

Equations (5.29) and (5.30) can be shown to be necessary and sufficient conditions for a code
to be "'non-catastrophic'. Hence any code for which a feed forward inverse exists is non-catastrophic.
Another advantage of systematic codes is that they are always non-catastrophic.

4

8.5 STATE DIAGRAMS:
The state of an encoder is defined as its shift regi opfents. For an (n, k, m) code with k > 1,

i=1
ichwe have defined as the maximum length of any
en the encoder inputs are, {u @, u; @...u; ™}, are

k
i-th shift register contains ‘K;> previous informJKV itsy Defining K =ZKi as the total encoder -

memory (m - represents the memory or
shift register), the encoder state at time u
the binary k-tuple of inputs:

1) K)

|-2(2, uis @... u |-k (2); eee s U1 ®y -2 (k), u |-3( eoe Uk (k)},

U Pu®uE® . u Y
and there are a total of 2% ossible states. For a (n, 1, m) code, K = K; = m and the encoder
1 U2 ... U|_m}.

of K-inputs causes a transition to a new state. Hence there are 2% branches
leaving each state, one each corresponding to the input block. For an (n, 1, m) code there are only
two branches leaving each state. On the state diagram, each branch is labeled with the k-inputs
causing the transition and the n-corresponding outputs. The state diagram for the convolutional
encoder of Fig 8.3 is shown in Fig 8.10. A state table would be, often, more helpful while drawing
the state diagram and is as shown.

State table for the (2, 1, 3) encoder of Fig 5.3

State So S1 S, S3 Sy Sg Sé S5

Binary | 500 | 100 | 010 | 120 | 001 | 101 | 011 | 111
Description
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0(0 0)
Fig 5.10 State diagram of encoder of Fig 5.3
Recall (or observe from Fig 8.3) that the two out sequences are:

vO=u+u_,+u_3 and

V(Z):U|+U|_1+UI—2+UI—3 Q
.
Till the reader, gains some experience, it is advisable to fiN)r pare a transition table using the

output equations and then translate the data on to the stz @ aggam. Such a table is as shown below:

State transition table forghelencoder of Fig 5.3

Previou Binary 3inary U U-_1 U_2 U-3 | Output

S Descriptio Descriptio
State n n

So 000 000 0 0 0O O0|O0O

100 1 0 0 o011

S 1 0 Sz 010 0 1 0 0|01

Q 1 [ s | 110 ] 1 1 0 o|1o0

Sz 0 0 S4 001 0 0 1 0|11

1 Ss 101 1 0 1 0/00

Ss 110 0 Se 011 0 1 1 o010

1 S; 111 1 1 1 0|0 1

Sy 001 0 So 000 0O 0 0 1|11

1 Sy 100 1 0 0 1100

Ss 101 0 Sz 010 0 1 0 1|10

1 Ss 110 1 1 0 1|0 1

Se 011 0 S4 001 0O 0 1 100

1 Ss 101 1 0 1 1|1 1

Sy 111 0 Se 011 0 1 1 1|01

1 S; 111 1 1 1 1110
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For example, if the shift registers were in state Ss, whose binary description is 101, an input
‘1’ causes this state to change over to the new state Sz whose binary description is 110 while
producing an output (0 1). Observe that the inputs causing the transition are shown first, followed by
the corresponding output sequences shown with in parenthesis.

Assuming that the shift registers are initially in the state Sy (the all zero state) the code word
corresponding to any information sequence can be obtained by following the path through the state
diagram determined by the information sequence and noting the corresponding outputs on the branch
labels. Following the last nonzero block, the encoder is returned to state Sy by a sequence of m-all-
zero block appended to the information sequence. For example, in Fig 5.10, if u = (11101), the code
word is v = (11, 10, 01, 01, 11, 10, 11, 10) the path followed is shown in thin gray lines with arrows
and the input bit written along in thin gray. The m = 3 zeros appended are indicated in gray which is
much lighter compared to the information bits.

Apart from obtaining the output sequence for a given input sequence, the state diagram can be
modified to provide a complete description of the Hamming wei of all nonzero code words. (That
is, the state diagram is useful in determining a weight- distrgbuti@n folthe code).

%itial and a final state. The self loop
éh gain', ‘X ", where 'i' is the weight
path that connects the initial state to the
0, €xactly once, represents a nonzero code

This is achieved as follows: The state Sy is split
around Sy is discarded. Each branch is labeled with
(number of ones) of the n-encoded bits on that bra

final state which diverges from and remerges vﬂ

word.
sequence of shorter code words. The gain" is the product of the branch gains along a path and
he power of X in the path gain. As an lustration, let us

consider the modified state diagram he (2, 1, 3) code of Fig 5.3 as shown in Fig 5.11 and another
version of the same as shovb' 12.
Q ‘XY
N e~
S5 X S
L e
X 4
1 5%
spo X’ X ¥ v,

Ay} Ss Ay

1
Fig 5.11 Modified state diagram for the (2,1,3) code

Example 5.12: A (2, 1, 2) Convolutional Encoder:

Consider the encoder shown in Fig 5.15. We shall use this example for discussing further
graphical representations viz. Trees, and Trellis.
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WARY
D%
" e | it
T
For this encoder we have: v WP =u,+u,_;+u,_,andv, K=
The state transition table is as follows.
State transition table for the (2, 1, 2) cqQ phal encoder of Example 5.12
Previous Binary Uj Uj_1 Uj.2 | Output
state | description description
SO 00 0O 0 O 00
10 1 0 0 11
S1 01 0 1 0 10
11 1 1 0 01
S2 00 0 0 1 11
10 1 0 1 00
S3 01 0o 1 1 01
11 1 1 1 10

The state diagram and the augmented state diagram for computing the ‘complete path
enumerator function’ for the encoder are shown in Fig 5.16.

(a) State diagram (b) Augmented State diagram
Fig 5.16 State diagram for the (2,1,2) encoder
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There are three loops in the augmented state diagram:

S3— S3: Iy =DLI, S;— S, — S1: I, =DL?I, S; — S3 — S, — SL:3 =D°L°I°
The loops I; and I, are non-touching and their gain product is: lyxl, = D*L31?

A=+ L+ 1) =1 ]
=1-DLI(1+L)
There are two forward paths: F1 = Sy — S1 — S,— So. Path gain = D°L°I
F,= So— S1 — S3— S, — So, Path gain = D°L*I?

The loop |; does not touch the forward path F;. ... A;j=1-1;,=1-DLI.

All the three loops touch the forward path F,. . A, =1 ¢ \Q
*

Now use Mason’s gain formula to get:

DL
1-DLI(1+L)
D'LI3(1+ L) + ...

D°L*1(1-DLI )+ DPLI
1-DLI(1
=D°L31 + D®L*12

T(D,L,1)=

Thus there is one code wor
sequence of weight 1, Two cod

information sequence of wei Y
of weight 2 and so on.

eight 5 that has length 3 branches and an information
weight 6, of which one has length 4 branches and an
he other has length 5 branches and an information sequence

8.6 TREE AND TRELLIS DIAGRAMS:

Let us now consider other graphical means of portraying convolutional codes. The state
diagram can be re-drawn as a 'Tree graph'. The convention followed is: If the input is a '0', then the
upper path is followed and if the input is a '1', then the lower path is followed. A vertical line is called
a 'Node' and a horizontal line is called 'Branch'. The output code words for each input bit are shown
on the branches. The encoder output for any information sequence can be traced through the tree
paths. The tree graph for the (2, 1, 2) encoder of Fig 5.15 is shown in Fig 5.18. The state transition
table can be conveniently used in constructing the tree graph.
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1y 32
0310 ¢
Fig 5.18: The tree graph for the (2, 1, 2) encoder of Fig 5.15

Following the procedure just described we find that the encoded sequence for an information
sequence (10011) is (11, 10, 11, 11, 01) which agrees with the first 5 pairs of bits of the actual
encoded sequence. Since the encoder has a memory = 2 we require two more bits to clear and re-set
the encoder. Hence to obtain the complete code sequence corresponding to an information sequence
of length KL, the tree graph is to extended by n(m-I) time units and this extended part is called the
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"Tail of the tree", and the 2kL right most nodes are called the "Terminal nodes" of the tree. Thus
the extended tree diagram for the (2, 1, 2) encoder, for the information sequence (10011) is as in Fig
5.19 and the complete encoded sequence is (11, 10, 11, 11, 01, 01, 11).

4 .LS.Q
11 3'&1 Terminal node
10 . kY . .
Ss b1 1/01 S$271 Se
11 _ St
St Tail of the tree

Fig 5.19 Illustration of the “Tail of the tree”

At this juncture, a very important clue for the student in drawing tree diagrams neatly and
correctly, without wasting time appears pertinent. As the length e input sequence L increases the
number of right most nodes increase as 2-. Hence for a wec%uence length, L, compute 2"-.
Mark 2" equally spaced points at the rightmost portion of yofigpade, leaving space to complete the m
tail branches. Join two points at a time to obtain 2" n R
one node at the left most portion of your page. T
Fig 5.20 for L = 3. Once you get the tree structure,

looking back to the state transition table or workifig

at the procedure until you get only
re is illustrated diagrammatically in
can fill in the needed information either
gically.

Portion needed to

Taidl of the tree
complete fire tril of the tre 7

il

f -
¥ = . ? Join the points in pairs as shhonn
2" = § nodes at the richt most ¢ Px P
margin of the page toget 2° " = 4 nodes
() Step - 1 (D) Step - 2

ml

& & -

9
n
!
1

— . )

Join the four nodes obtained Jeoin the two nodes obtained
in Step- 2 to get 2 - nodes in Step- 3 to get the tree structure
{c) Step -3 () Step - 4

Fig 5.20 Procedure for drawing neat tree diagram
From Fig 5.18, observe that the tree becomes "repetitive' after the first three branches.
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Beyond the third branch, the nodes labeled Sy are identical and so are all the other pairs of nodes that
are identically labeled. Since the encoder has a memory m = 2, it follows that when the third
information bit enters the encoder, the first message bit is shifted out of the register. Consequently,
after the third branch the information sequences (000usus---) and (100usus---) generate the same code
symbols and the pair of nodes labeled Sy may be joined together. The same logic holds for the other
nodes.

Accordingly, we may collapse the tree graph of Fig 5.18 into a new form of Fig 5.21 called a
"Trellis". It is so called because Trellis is a tree like structure with re-merging branches (You will
have seen the trusses and trellis used in building construction).

S0 00
I
k9 :
S2
S; |
0 2 3 6
Fig f lis diagram for encoder of fig 5.15
The Trellis diagram caontai + m + 1) time units or levels (or depth) and these are labeled
from 0 to (L + m) (0 to 7 fofthe with L =5 for encoder of Fig 5.15 as shown in Fig 5.21.

made from the Trellis diagram

1. There are no fundamental paths at distance 1, 2 or 3 from the all zero path.
2. There is a single fundamental path at distance 5 from the all zero path. It diverges from the all-zero
path three branches back and it differs from the all-zero path in the single input bit.

3. There are two fundamental paths at a distance 6 from the all zero path. One path diverges from the
all zero path four branches back and the other five branches back. Both paths differ from the all zero
path in two input bits. The above observations are depicted in Fig 8.24(a).

4. There are four fundamental paths at a distance 7 from the all-zero path. One path diverges from the
all zero path five branches back, two other paths six branches back and the fourth path diverges seven
branches back as shown in Fig 8.24(b). They all differ from the all zero path in three input bits. This
information can be compared with those obtained from the complete path enumerator function found
earlier.
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8.7 THE VITERBI ALGORITHM:

The Viterbi algorithm, when applied to the received sequence r from a DMC finds the path
through the trellis with the largest metric. At each step, it compares the metrics of all paths entering
each state and stores the path with the largest metric called the "survivor" together with its metric.

The Algorithm:

Step: 1. Starting at level (i.e. time unit) j = m, compute the partial metric for the single path
entering each node (state). Store the path (the survivor) and its metric for each state.
Step: 2. Increment the level j by 1. Compute the partial metric for all the paths entering a
state by adding the branch metric entering that state to the metric of the connecting
survivor at the preceding time unit. For each state, store the path with the largest

metric (the survivor), together with its metric a iminate all other paths.
Step: 3. If j < (L + m), repeat Step 2. Otherwise step.

Notice that although we can use the Tree forsthe above decoding, the number of
nodes at any level of the Trellis does not continue t %the number of incoming message bits
increases, instead it remains a constant at 2™.

There are 2" survivors from time
L time units there are fewer survivors, s
the all-zero state. Finally, at time uni

1 &to time unit L, one for each of the 2"states. After
e are fewer states while the encoder is returning to
here is only one state, the all-zero state and hence

’
’
.
g W
1&2 ’ 1

Sz ;
Fig 5.22 Survivor after time unit
Suppose that the maximum likely hood path is eliminated by the algorithm at time unit j as
shown in Fig 8.22. This implies that the partial path metric of the survivor exceeds that of the
maximum likely hood path at this point. Now, if the remaining portion of the maximum likely hood
path is appended onto the survivor at time unit j, then the total metric of this path will exceed the total
metric of the maximum likely hood path. But this contradicts the definition of the 'maximum likely
hood path' as the 'path with largest metric'. Hence the maximum likely hood path cannot be
eliminated by the algorithm and it must be the final survivor and it follows
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M(r|V)= M(r|v), VY v=V.Thus it is clear that the Viterbi algorithm is optimum in the sense that it
always finds the maximum likely hood path through the Trellis. From an implementation point of
view, however, it would be very inconvenient to deal with fractional numbers. Accordingly, the bit
metric M (rilvi) = In P (ri]vi) can be replaced by “C; [In P (rilvi) + C1]”, C; is any real number and C,
is any positive real number so that the metric can be expressed as an integer. Notice that a path v

N N N
which maximizesM(r |v) =Y M(r; |v;)=2InP(r;|v;) also maximizes ZCZ[In P(r; |vi)+C1].
i=1 i=1 i=1
Therefore, it is clear that the modified metrics can be used without affecting the performance of the
Viterbi algorithm. Observe that we can always choose C; to make the smallest metric as zero and
then C, can be chosen so that all other metrics can be approximated by nearest integers. Accordingly,
there can be many sets of integer metrics possible for a given DMC depending on the choice of C,.
The performance of the Viterbi algorithm now becomes slightly sub-optimal due to the use of
modified metrics, approximated by nearest integers. However the degradation in performance is
typically very low.

The bit metrics In P (ri| v;) are shown in Fig 5.23(b). 1=—23and C,=7.195 yields the

"integer metric table™ shown in Fig 5.23(c).
,&\ Wty ¥ oy«

0 -091 -12 -1e6l -2.3

Example 5.13: R 9
As an illustration let us consider a binary input-quateM tput DMC shown in Fig 5.23(a).
ing,

1 -23 -161 -12 -0.91

(D) Metric Table
L 1 B T I
H

o 10 $ N} )

Y4 7 a 3 & I0

(1) Binary input — Onaternary ontput DMC (c) Integer Metric Table

Fig 5.23 Diagran for example 5.13

Now suppose that a code word from the (2,1,2) encoder of Fig 5.15, whose Trellis diagram is
shown in Fig 5.21, is transmitted over the DMC of Fig 8.26 and the quaternary received sequence is:

r={Ysys YaV1, YaV¥2 Y3Ya Y3 Vs Y2Ya Y1Ys}
Let us apply Viterbi algorithm to determine the transmitted sequence.
In the first time unit (j = 1) there are two branches originating from the state So with output

vectors (00) terminating at Sp and (11) terminating at S;. The received sequence in this time unit is
(ysYs) and using the integer metric table of Fig 8.23(c) we have:
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M [rivi @] = M (y3 y4|00) = M (y5]0) + M (Y4)0) =5+ 0 =5, and

M [rivi @1 = M (y3 ya11) = M (y3|1) + M (Y41) =8 + 10 =18
These computations are indicated in Fig 8.24(a). The path discarded is shown by a cross. Note that
the branch metrics are also indicated along the branches with in brackets and the state metrics are

indicated at the nodes.

For j = 2 there are single branches entering each state and the received sequence in this time
unit is (ys y1). The four branch metrics are computed as below.

M3 = M (ys y2{00) = M (y3[0) + M (y1|0) =5 + 10 =15
M2z =M (ys y1|/11) = M (y3[1) + M (y1[1) =8 + 0 =8

Ms= M (y3 y1/10) = M (y3|1) + M (y1/0) =8 + 10 =18 O\Q
L 4

M4 =M (ys y1|01) = M (y3[0) + M (y1[1) =5+ 0 =5

The metrics at the four states are obtained by addin ch metrics to the metrics of the previous
states (survivors) and are shown in Fig 8.24%
- N 20 g 43
S, 00 se g 00 205, 00 00,2000, 9
~ ’ Selq @977 TN ’

i \ w SI
. SONJ0
N2
(18) \\\\ O \\?I 3 52
‘ Q (3
18 75" N
(@) Time unit j =1 (b) Time unit j =2 (¢) Time unit j =3

Fig 5.24 Computation for time units j=1, j=2 and j=3

Next for j = 3, notice that there are two branches entering each state as shown in Fig 8.24(c).
The received sequence in this time unit is (ys, Y2) and the branch metrics are computed as below:

M1 =M (y3 y2[00) = M (ys|0) + M (y-|0) =5 + 8 =13
Mz =M (Y3 Y2[11) = M (y3[1) + M (y2[1) =8 + 5 =13
M3z =M (y3 y2|10) = M (y3|1) + M (y,|0) =8 + 8 =16
M4 =M (y3 y2|01) = M (y3|0) + M (y|1) =5+ 5 =10

Following the above steps, we arrive at the following diagram.
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Fig 5.25 Application of \/it€rbi rithm
Notice that, in the last step we have ignor est metric computed! Indeed, if the
sequence had continued we should take this int t. However, in the last m-time units

remember that the path must remerge wi

From the path that has survived, e that the transmitted sequence is:

v=(11,10,1 01, 11)
and the information sequence% oder inputis: 0 =(10011)
Notice that “th ranches in any trellis path always corresponds to ‘0’ inputs and

hence not considered¥part'ef the information sequence”.

As already mentioned, the MLD reduces to a ‘'minimum distance decoder’ for a BSC (see
Eqg 8.40). Hence the distances can be reckoned as metrics and the algorithm must now find the path
through the trellis with the smallest metric (i.e. the path closest to r in Hamming distance). The
details of the algorithm are exactly the same, except that the Hamming distance replaces the log
likely hood function as the metric and the survivor at each state is the path with the smallest metric.
The following example illustrates the concept.

Example 5.14:

Suppose the rode word r = (01, 10, 10, 11, 01, 01, 11), from the encoder of Fig 5.15 is received
through a BSC. The path traced is shown in Fig 5.25 as dark lines.
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SI
JS.Q
AS.S
Fig 5.26 Viterbi algorithm?K C
The estimate of the transmitted code word is *

v =(11, 10, 11, 11, 01, 01, 11)
and the corresponding information seque &&(1 0011)

Notice that the distances of the ¢ s of each branch with respect to the corresponding
received words are indicated in bra oté also that at some states neither path is crossed out
indicating a tie in the metric val two paths entering that state. If the final survivor goes
through any of these states therg i an one maximum likely hood path (i.e. there may be more

than one path whose distancefre a minimum). From an implementation point of view whenever
path is arbitrarily selected as survivor, because of the non-

probability. Finally, the Viterbi algorithm cannot give fruitful results
when more errors in the transmitted code word than permissible by the dsc. of the code occur. For the
example illustrated, the reader can verify that the algorithm fails if there are three errors. Discussion
and details about the performance bounds, convolutional code construction, implementation of the
Viterbi algorithm etc are beyond the scope of this book.

RECOMMENDATION QUESTIONS

1. Fig P 8.1 shows a convolutional encoder. i) What is the constraint length and rate efficiency?
i) Find the encoder output produced by the sequence 101101........ iii) Is the code systematic?
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Input——s—— Flip E!opJ

Output Fig P 8.1

i

fan)

FigP 8.2

° ° > Output

¢
2. Consider the convolutional encoder shown in Fig P 8.2. T essage bits are shifted into the
encoder two bits at a time. Repeat the questions asked in’p&m A

3. A convolution encoder has a single shift register o%tages (i.e. m=2), three Modulo-2
adders and Output multiplexer. The generator se e encoder are as follows:

g=(1,0,1); g?=(1,1,0) ; g®¥=(1
Draw the block diagram of the encoder,
ey 1/2, constraint length =4 convolutional encoder.
the information sequence (10111...) using the following

\z& Output  Fio P 8.4

4. Fig P8.4 shows the encoder o

5. For the encoder of problem 3,
a) Find the generator matrix G
b) Find the code word corresponding to the information sequence (11101...)

6. For the encoder of problem 3,
a) Find the transfer function matrix G(X)
b) Find the set of output sequences V(X) and the code word v(X) corresponding to the
information sequence u(X)=1=X*+X3+x",

7. Determine which of the following rate 1/2 convolutional codes are ‘catastrophic’:
@gW ) =X%g® (X)=1+X+X°
b0 g® (X)=1+X?+X* g@(X)=1+X+X3+x*
© g X)) =1+X+X+X* g@ (X)=1+X%4x*
@g®PX) =1+ X +X>+ X5 g@ (X)=1+X+X3+X°

37



8. Consider the encoder of problem 3,
a) Draw the state diagram of the encoder
b) Draw the modified state diagram
c) Find the generating function T(X)
d) Draw the augmented state diagram
e) Find the Complete Path Enumerator function T (D, L, I)

8. Consider the (3, 1, 5) systematic code with g ® = (101101), g® = (110011)
a) Find the generator matrix
b) Find the parity sequences corresponding to the information sequence
u=(1101...)

9. Consider the &3, 2, 3) systematic code with
91 @ (X) = 1+x% X3 and g2 @ (X) = 1+X+X3

a) Draw the straight forward realization of the encoder
b) Draw a simple encoder realization which requires wly@iﬂ register stages.

10. Consider the (2, 1, 2) code with G(X) = [1+X?, 1+X X2

a) Find the GCD of its generator polynomials 24
b) Find the transfer function matrix G™(X) of i watm delay feed forward
inverse.

11. Consider a (2, 1, 3) code with G(X)
a) Find the GCD of its generator po
b) Draw the encoder state diagra
c) Find the infinite-weight

weight
d) Is this code catastrop \

12. Construct the cod
that corresponds t
determined in problent21.

2 Mex+x? +X3]

ion sequence that generates a code word of finite

e convolutional encoder of Fig P 8.1. Trace the path through the tree
formation sequence (101101...) and  compare the output with that

2. The code tree for the encoder of Fig 8.15, assuming that the incoming message sequence has L =
2 is shown in Fig P 8.13.Validate this tree.

0o 00 00

00
1]? 11 10 , 11 ,
1 10 , 11 , 00
1 11
01 , 01 . 11 ,

Fig P 8.13
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14. Construct the code tree  for the encoder of Fig P 8.4. Trace the path through the tree that
corresponds to the information sequence (10111...). Compare the resulting encoder output with
that found in problem 4.

15. Draw the state diagram and augmented state diagram for the encoder of Fig P.8.4.
i) Show that generating function is

X84+ X" x?

1-2X = X8

i) What is the free distance of this code? How many errors it can correct?

iii) Find the path enumerator function T (D, L, I)

T(X) =

16. Construct the Trellis diagram for the encoder of Fig P.8.4, assuming a message sequence of
length 5. Trace the path through the Trellis diagram corresponding to the message sequence
(10111...). Compare the resulting encoder output with that found in problem 4.

17. Consider the encoder of Fig P 8.17. ’\Q

Input Oulput

i)

i) ‘
information seqlignce (10111...).
iii) Construct the state diagram.
iv) Starting from the all zero state, trace the path that corresponds to the information sequence
(10111...). Compare your answer with that in part (ii).
18. For a (3, 1, 2) code the transfer function matrix is: G(X) = [1+X, 1+X?, 1+X+X7]

a) Draw the Trellis diagram for an information sequence of length L = 5.
b) Trace the path and write the code word corresponding to information sequence
(11101).

19. Find the integer metric table for the DMC of Fig 8.26(a) with C; =-2.3 and C, = 3.0.
Decode the receiver sequence for the encoder of problem 18:

r = (YaYay1, YaYaY2, YaYaY1, YaYaYa, Y1Y3Y1, YaY2Ya, Yay1Ya) using the Viterbi algorithm
Also decode the same sequence using the integer metric table of Fig 8.26(c). Compare the results.

20. Consider a binary input 8-ary output DMC with transition probabilities P (rilvi) given by the
following table.
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21.

22.

23.

24,

25.

26.

27.

v; il yi ¥z Vs Y Vs Ve yr e

0 ||0.434)0.197|0.167| 0.111 | 0.058 | 0.023 | 0.008 | 0.002

1 0.002)0.008 |0.023|0.058 | 0.111 | 9.167 | 0.197 | 0.434

Find the metric table and integer table for this channel.

Consider the (2, 1, 3) code with G(X) = [1+X? +X3, 1+X+X? +X7]
a) Draw the trellis diagram for an information sequence of length L = 4.
b) Assume code vector is transmitted over the DMC of problem 20.

Decode the received sequence: r = [y7Ys Y7Y1, YaY1, Y1Ye, Y7Y2, Y3Ys, YaY2l
The DMC of problem 20 is converted to BSC by combinin oft decision outputs
Y1, Y2, Y3 and y, into a single hard decision output ‘0’ combining the soft  decision outputs
Vs, Y6, Y7 and yg into a single hard decision output ‘1’. A¢gdc®word from code of problem 21 is
f ‘h

transmitted over this channel. The hard decision ver; received sequence is:

K&t of problem 21.

£,01) and g(1,2) = (1,1,1)
diagram.

r =[11, 10, 00, 01, 10, 01, 00]

Decode this sequence and compare wij

For a rate 1/3 systematic code: g(
a) Draw the tree graph, Trellis
b) Find dsree and‘t’ for the co
c) For the information sequenc
d) If the received vectg
r = {001, 110, 140 % 100, 001, 011, 000}
Find the transmit sing Viterbi algorithm.

allCeSTal

(00110100....) find v.

Repeat the problem 23. For a systematic code if g (1, 1) =(1,0,1,1)andg (1,2)=(1,1,0,1)

For a non systematic rate 1/2 code given by: g(1,1) = (1, 1,1) and g(1,2) = (1, 0,1,) Repeat parts
(@) and (b) of problem 23 for this code. Show, by an example, that the code corrects 2 errors in six
channel bits.

A rate 1/3 non systematic code is given by the sub generators
g(1,1) =(1,1,0,1),9(1,2) =(1,0,0,1) and g(3,1) =(1,1,1,0)
a) Construct the coder
b) Draw the tree graph, Trellis and state diagrams
¢) Find dfree andt.
d) Tabulate the survivor paths and their Hamming distances for a given error vector e = (001,
010, 101, 000)

Consider the (2, 1, 3) code of problem 21.

a) Draw the code tree for an information sequence of length L= 4.
b) Find the code word corresponding to an information sequence u = (1001).
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28.

29.

30.

31.

Consider the (2, 1, 3) code of problem 21.
a) For a BSC with p =0.045, find an integer metric table for the Fano metric.
b) Decode the received sequence: r = (11, 00, 11, 00, 01, 10, 11) using the stack algorithm.
Compare the number of decoding steps with the number required by the Viterbi algorithm.
c) Repeat part (b) for the received sequence r = (11, 10, 00,01,10,01,00)

Consider again the (2, 1, 3) code of problem 21.
a) For the binary input-8-ary-output DMC of problem 20, find an integer metric table for the
Fano metric.(Hint: Use appropriate scale factor for each metric and round to the nearest
integer).
b) Decode the received sequence: r = [y7Ys. Y7Y1, YaY1, Y1i¥Ye, YeY2, YaYs, YaY2] using the Stack
algorithm. Compare the final decoded path with the result of problem 21(b) where the same
received sequence is decoded using Viterbi algorithm.

A = 9.Compare the final decoded path and the number of computagions with the

Stack algorithm. \

Refer to the code tree of Fig P 8.13. The branch m specified as below.

M(rrfvjvi)=1-4 if & i = viorr=v;and r,=v;
-9 if vand r, #v;

Calculate the path metrics at the e tree for an all zero transmitted sequence, and the
received sequence (10, 00, 01, hree transmissions errors. Then apply Fano algorithm to
decode the received sequepce assumptions:

a) The decoder chooses th&ylo ranch in the case of a tie in path metrics.

b) The decoder choos r branch in the case of a tie in path metrics.

N\

Repeat problem 29 using Fano algorithm with threshold in{m of A=5and

OUTCOMES

e To know the encoding of convolutional codes.
e How to decode the convolutional codes using algorithm.

REFERENCE

e Www.youtube.com/watch?v=AnyVu5eDhAQ
e nptel.ac.in/courses/117106031/
e elearning.vtu.ac.in/P4/EC63/S11.pdf
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