Module 1:
Introduction

1.1.1 Signal definition

A signal is a function representing a physical quantity or variable, and typically it contains
information about the behaviour or nature of the phenomenon.

For instance, in a RC circuit the signal may represent the voltage across the capacitor or the
current flowing in the resistor. Mathematically, a signal is represented as a function of an
independent variable ‘t>. Usually t> represents time. Thus, a signal is denoted by x(t).

1.1.2 System definition

A system is a mathematical model of a physical process that relates the input (or excitation)
signal to the output (or response) signal.
Let x and y be the input and output signals, respectively, of a system. Then the system is

viewed as a transformation (or mapping) of x into y. This trans tion is represented by the
mathematical notation ¢
Y= TX =mmeemmmmeememmeeeceee e e e (1.1) \

|’ch X is transformed into y.
€ Input and/or output signals are
for the most part in this text to the

where T is the operator representing some well-defined
Relationship (1.1) is depicted as shown in Fig. 1-1(a)

possible as shown in Fig. 1-1(b). We will restrigounatte ﬁ
single-input, single-output case.
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1.1 S%/ith single or multiple input and output signals

1.2Classification of signals

Basically seven different classifications are there:

Continuous-Time and Discrete-Time Signals
Analog and Digital Signals

Real and Complex Signals

Deterministic and Random Signals

Even and Odd Signals

Periodic and Nonperiodic Signals

Energy and Power Signals

IS

Continuous-Time and Discrete-Time Signals

A signal x(t) is a continuous-time signal if t is a continuous variable. If t is a discrete
variable, that is, x(t) is defined at discrete times, then x(t) is a discrete-time signal. Since a



discrete-time signal is defined at discrete times, a discrete-time signal is often identified as a
sequence of numbers, denoted by {x,) or x[n], where n = integer. Illustrations of a continuous-
time signal x(t) and of a discrete-time signal x[n] are shown in Fig. 1-2.
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1.2 Graphical representation of (a) continuous-time and (b) discrete-time signals

0

Analog and Digital Signals

If a continuous-time signal x(t) can take on any value in the continuous interval (a, b), where
a may be - oo and b may be +oo then the continuous-time signal x(t) is called an analog signal. If a
discrete-time signal x[n] can take on only a finite number of distinct values, then we call this
signal a digital signal.

Real and Complex Signals
.
A signal x(t) is a real signal if its value is a real number, Na nal x(t) is a complex signal
if its value is a complex number. A general complex sig t)’l function of the form

X (1) = xa(t) + jx2 (€) 44 1.2
where X3 (t) and X (t) e%&als and j = -1

Note that in Eq. (1.2) “t’ represents ei tinuous or a discrete variable.

Deterministic and Random Sign

Deterministic signals are thi@s
time. Thus, a deterministic g
Random signals are dQ
characterized statistica

s whose values are completely specified for any given
gan be modelled by a known function of time “t’.
als that take random values at any given time and must be

Even and Odd Signals

A signal x (t) or x[n] is referred to as an even signal if

X (- 1) = x(t)
R D 1) e — (1.3)

A signal x (t) or x[n] is referred to as an odd signal if

x(-t) =-x(t)

Examples of even and odd signals are shown in Fig. 1.3.
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1.3 Examples of even signals (a and b) and od(&% and d).
Si

Any signal x(t) or X[n] can be expressed as a sum of Is, one of which is even
and one of which is odd. That is, *

x(N=x,(0)+x,(1)
Where, (1.5%

x, (1) = %( x(1)+x(-1))

Similarly for x[n],Q
x[n]=x,[n]+X [n]

4

1LLH B L7
Where,
x,[n]= é( x[n]+x[-n])
x,[n]= l(Jr[n] —x[—n])
20 e (1.8)

Note that the product of two even signals or of two odd signals is an even signal and
that the product of an even signal and an odd signal is an odd signal.

Periodic and Nonperiodic Signals

A continuous-time signal x (t) is said to be periodic with period T if there is a positive
nonzero value of T for which

x(t+T)=x(t) all ¢



An example of such a signal is given in Fig. 1-4(a). From Eq. (1.9) or Fig. 1-4(a) it follows
that

x(t+mT)=x(t)

------ -~(1.10)

for all t and any integer m. The fundamental period T, of x(t) is the smallest positive value of
T for which Eq. (1.9) holds. Note that this definition does not work for a constant

1)

signal). For a constant signal x(t) the fundamental period is
riodic for any choice of T (and so there is no smallest positive
value). Any continudus-time signal which is not periodic is called a nonperiodic (or
aperiodic) signal.

Periodic discrete-time signals are defined analogously. A sequence (discrete-time
signal) x[n] is periodic with period N if there is a positive integer N for which
x[n+N)]=x[n] all n

An example of such a sequence is given in Fig. 1-4(b). From Eq. (1.11) and Fig. 1-4(b) it
follows that

x[n+mN)| =x[n]

for all n and any integer m. The fundamental period N, of x[n] is the smallest positive integer
N for which Eq.(1.11) holds. Any sequence which is not periodic is called a nonperiodic (or
aperiodic sequence.



Note that a sequence obtained by uniform sampling of a periodic continuous-time signal may
not be periodic. Note also that the sum of two continuous-time periodic signals may not be
periodic but that the sum of two periodic sequences is always periodic.

Energy and Power Signals

Consider v(t) to be the voltage across a resistor R producing a current i(t). The
instantaneous power p(t) per ohm is defined as

v(e)i(t "
p(ry= S iz
............ (1.13)
Total energy E and average power P on a per-ohm basis are
E=[ i(1)dt joules
1 12
P= lim — 2(r) dr watt
lim Tf-r/zl (r) watts
...... L4, Q
For an arbitrary continuous-time signal x(t), the norm 'z%e gy content E of x(t) is
defined as *
E=[ |x(1)| dt
The normalized average power P of x
§ /2
P= lim — | x(1)
Toe T/2
Similarly, for a discret Xyal x[n], the normalized energy content E of x[n] is
defined as
E= Y |x[n]l
nEoe (1.17)
The normalized average power P of x[n] is defined as
N
P= lim x[n]|*
N—= 2N +1 ﬂ_;h.i [~]]

(1.18)

Based on definitions (1.15) to (1.18), the following classes of signals are defined:

1. x(t) (or x[n]) is said to be an energy signal (or sequence) if and only if 0 < E <m, and
soP=0.

2. X(t) (or x[n]) is said to be a power signal (or sequence) if and only if 0 <P < m, thus
implying that E = m.

3. Signals that satisfy neither property are referred to as neither energy signals nor power
signals.

Note that a periodic signal is a power signal if its energy content per period is finite, and

then the average power of this signal need only be calculated over a period
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Basic Operations on signals

The operations performed on signals can be broadly classified into two kinds

Operations on dependent variables
Operations on independent variables

Operations on dependent variables

The operations of the dependent variable can be classified into five types: amplitude scaling,
addition, multiplication, integration and differentiation.

= sin(2x3t)
o

X(t)

1
N

sin(2x4t)

x(t)

1.6

Amplitude scaling

Amplitude scaling of a signal x(t) given by equation 1.19, results in amplification of
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1.5 Amplitude scaling of sinusoidal signal

Addition

The addition of signals is given by equation of 1.21.

0.5 1
t (time in seconds)

y(t)=1.25

2

y(t) = x1(t) +x2 (1)

t (time in seconds)

0.5 1

x(t) + y(t)

0.5 1
t (time in seconds)

Example of the addition of a sinusoidal signal with a signal of constant amplitude

(positive constant)



Physical significance of this operation is to add two signals like in the addition of the
background music along with the human audio. Another example is the undesired addition of
noise along with the desired audio signals.

sin(2x8t)

x(t)

Multiplication

The multiplication of signals is given by the simple equation of 1.22.
y(t) = x1(t).x2 (t)........ (1.22)
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1.7 Example of multiplication 08 nals

Differentiation

The differentiation of signals i r&he equation of 1.23 for the continuous.

..1.23

The operation of&‘j tion gives the rate at which the signal changes with
respect to time, #nd e computed using the following equation, with At being a
small interva

ix(r) = Lim X+ AN - x0)
at o N 124

If a signal doesn®t change with time, its derivative is zero, and if it changes at a fixed
rate with time, its derivative is constant. This is evident by the example given in
figure 1.8.

I+ 1 -
f’f\fr 52 37! \»?\ /3,7/% d
A - R

2

1.8 Differentiation of Sine - Cosine



Integration

The integration of a signal x(t) , is given by equation 1.25
t

v() = [ x(x)dz

- 1.25
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Time scaling

Time scaling operation is

YO =x(
This operation resu
evident from the e

............ 1.26
sion in time for a<1 and compression in time for a>1, as
of figure 1.10.
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1.10 Examples of time scaling of a continuous time signal

An example of this operation is the compression or expansion of the time scale that results in
the ,,fast-forward’ or the ,,slow motion’ in a video, provided we have the entire video in some

stored form.
Time reflection

Time reflection is given by equation (1.27), and some examples are contained in figl.11.

y(O) = X(—1) e ®. 1.Q

exp(t)

X(t)
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b —— o
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t (time in seconds) t (time in seconds)
(b)

1.11 Examples of time reflection of a continuous time signal

Time shifting

The equation representing time shifting is given by equation (1.28), and examples of this
operation are given in figure 1.12.



y(t) =x(t-t0)...cccvrennn 1.28
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1.12 Examples of ift of a continuous time signal

Time shifting ano%

The combined transformation of shifting and scaling is contained in equation (1.29),
along with examples in figure 1.13. Here, time shift has a higher precedence than time scale.

y(t) =x(at = t0 )evverrrierree 1.29
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x(t)
(=]
y(t)=x(t+3)
o
x(3t+3)=y(3t)

“ 5 0 5 -5 0 5 5 0 5
t (time in seconds) t (time in seconds) t (time in seconds)

(b)
1.13  Examples of simultaneous time shifting and scaling. The signal has to be shifted first
and then time scaled.

Elementary signals

Exponential signals:
The exponential signal given by equation (1.29), is a monotonically increasing function if

a >0, and is a decreasing function if a < 0.

x(t) =e”

................... 1.29
'S Q ( )
It can be seen tt 1at, for an exponential signal, \

x(f+a ') =ex ¢

x(1— a” & O (1.30)

Hence, equation (1.30), shows tha
magnitude by ex1 . The te ’ :
consider a decaying expo ;

for t = 0.

This signal has an initial value x(0) =1, and a final value x(oc) = 0 . The magnitude of this
signal at five times the time constant is,

x(5/a)=6.7x10"
while at ten times the time constant, it is as low as,

x(10/a) = 4.5x10°7

It can be seen that the value at ten times the time constant is almost zero, the final value of
the signal. Hence, in most engineering applications, the exponential signal can be said to
have reached its final value in about ten times the time constant. If the time constant is 1
second, then final value is achieved in 10 seconds!! We have some examples of the
exponential signal in figure 1.14.
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Fig 1.14 The continuous time exponential signar( est, (b) et, (c) e—t|, and (d) elt|
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The sinusoidal signal:
The sinusoidal continuous time periodic signad i by equation 1.34, and examples are
given in figure 1.15 &

X(t) = Asin(2n

The different parameters agg€"

Angular frequency adians,
Frequency f in He per second)
Amplitude A in OF Amperes)
Period T in 5€6g

Asin(27 fi)

— T=1/f ——

time (sec)
The complex exponential:
We now represent the complex exponential using the Euler's identity (equation (1.35)),

e’’ =(cos@+ jsinO)



to represent sinusoidal signals. We have the complex exponential signal given by
equation (1.36)

e’ =(cos(at)+ jsin(er))

e = (cos(ar)— j sin(er))

Since sine and cosine signals are periodic, the complex exponential is also periodic with
the same period as sine or cosine. From equation (1.36), we can see that the real periodic
sinusoidal signals can be expressed as:

ejrfor + e—jmr
cos(an) =

2

eja}f _efja)t
sin(wt) = 5
J

‘- Q ............... (1.37)
N

Let us consider the signal x(t) given by equation (1.

x(1) = A(t)e”;

etch of this is given in fig 1.15
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The unit impulse:
The unit impulse usually represented as 6 (t) , also known as the dirac delta function, is

given by,
5(1)=0 for t=0; and ja‘(r)dr:l

From equation (1.38), it can be seen that the impulse exists only at t = 0, such that its area is

1. This is a function which cannot be practically generated. Figure 1.16, has the plot of the
impulse function
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The unit step:
The unit step function, usually represented as u(t) , is given by,
I t=0
0 t<0

u(t)

t( sec)
(b)
0 0
2 1 0 1 2 2 1 0 1 2
t (sec) t ( sec)
() (d)
Fig 1.17 Plot of the unit step function along with a few of its transformations

The unit ramp:
The unit ramp function, usually represented as r(t) , is given by,
t t=0

r(t)=
® 0 t<0
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Fig 1.18 Plot of the unit ramp function anﬁ@w of its transformations
The signum function: *

The signum function, usually represented as { 7133given by

1
sgn(t) = 0
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Fig 1.19 Plot of the unit signum fLwKiQ ith a few of its transformations

System viewed as interconn operation:

This article is dealt in detail
connected in series or parahlel.

multipliers etc.

Properties of s@

In this article discrete systems are taken into account. The same explanation stands for
continuous time systems also.

chapter 2/3. This article basically deals with system
er these systems are connected with adders/subtractor,

The discrete time system:
The discrete time system is a device which accepts a discrete time signal as its input,
transforms it to another desirable discrete time signal at its output as shown in figure 1.20

. sulpul
Input Ldisrete fime p
ﬁ ﬁ
syvatemn
xIn| ¥[n]

Fig 1.20 DT system



Stability
A system is stable if ,,bounded input results in a bounded output®. This condition, denoted
by BIBO, can be represented by:

i|x[n]|c:m implies i|}-‘[n]|f:m for all n

ne e (1.42)
Hence, a finite input should produce a finite output, if the system is stable. Some examples of
stable and unstable systems are given in figure 1.21

Stable system
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Fig & amples for system stability

Memory O

The system is memary-I8ss if its instantaneous output depends only on the current input.
In memory-less systemgs, the output does not depend on the previous or the future input.

Examples of memory less systems:
yln]= ax[n]

yin] = ax’[n]

iln]=a, +ayvin] +::131=3[n] +a3v3[n] +rreas



Memoryless system
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Causality:

A system is causal, if its output at any instant depends on the current and past values of
input. The output of a causal system does not depend on the future values of input. This
can be represented as:

y[n] O OF Ox[m]C Ofor m O COn

For a causal system, the output should occur only after the input is applied, hence,
X[n] OO Oforn [J ) Oimplies y[n] OO Oforn JJ0



All physical systems are causal (examples in figure 7.5). Non-causal systems do not exist.
This classification of a system may seem redundant. But, it is not so. This is because,
sometimes, it may be necessary to design systems for given specifications. When a system
design problem is attempted, it becomes necessary to test the causality of the system, which

if not satisfied, cannot be realized by any means. Hypothetical examples of non-causal
systems are given in figure below.

Causal system

5 . 5
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Invertibility: \
A system is invertible if, ¢
input o & input Inverse output
—_— System: A  — of —b
x|n| v[n] Svstem A x|n|

Linearity: O&

The system is a de@ich accepts a signal, transforms it to another desirable signal, and is
available at its output:WVe give the signal to the system, because the output is s

Amplivmle scaling

if then
input uutput input output
—_— Svslem: .\ g —_— System A i
x[n] ¥[n] ax[n] ay[n




Supcrposition principle

if
%, (0 ¥, (© 3,0 1,0
—_— System: A —— —_— System A —r
then
(:IuH- %,(1)) (¥, 0+ .\'3{1))
—_ System: A Y

Time invariance:

A system is time invariant, if its output depends on the input applied, and not on the time of

application of the input. Hence, time invariant systems, giveydelayed outputs for delayed
inputs. .

Given input-oulput relation ol Timg invoridgh system

input: x[n]

| ]TTT%??GO

-1

input: x[n]
N

output: y[n]

<C0 000000 € 0009

A -




Recommended Questions

oo

What are even and Odd signals
Find the even and odd components of the following signals
a X(t) =cost+sint +sintcost

b. x(t)+1+3t*+5t°+0ot*

c. x(t)+(1+ t3)cost310t

What are periodic and A periodic signals. Explain for both continuous and discrete cases.
Determine whether the following signals are periodic. If they are periodic find the fundamental
period.

a. x(t) =(cos(2nt))?

b. x(n)=cos(2n)

¢ X(n)=cos2nn

Define energy and power of a signal for both continuous and discrete case.
Which of the following are energy signals and power signals and find the power or energy of the

signal identified.
t, 0<t<1 S Q
a. x(t)=J2-t, 1<t<?2 \

0 otherwise .
(n, 0<n<5
b. x(n)=J10-n,5<n<10

0 otherwise &
Scosnt _05<t<0.5

0
d X(n):(sinnn, -4<n<4

0 otherwi\
QO

¢ x(b) ={






Module 2: Time-domain representations for LTI systems — 1

Time-domain representations for LTI systems — 1: Convolution, impulse response representation,
Convolution Sum and Convolution Integral.
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Module 2
Time-domain representations for LTI systems — 1

2.1 Introduction:
The Linear time invariant (LTI) system:

Systems which satisfy the condition of linearity as well as time invariance are known as linear time
invariant systems. Throughout the rest of the course we shall be dealing with LTI systems. If the
output of the system is known for a particular input, it is possible to obtain the output for a number

of other inputs. We shall see through examples, the procedure to compute the output from a given
input-output relation, for LTI systems.

Example — I:

Given input-output relation of LTT system

N bl O T TR e

input: x[n]
N

gutput: ¥[n]

2.1.1 Convolution:

A continuous time syste below, accepts a continuous time signal x(t) and gives out
a transformed continuouS®ime Stgnal y(t).

input Continuous time output
t
x(t) system v (O '

Figure 1: The continuous time system

Some of the different methods of representing the continuous time system are:

) Differential equation
i) Block diagram
iii) Impulse response

iv) Freguency response
V) Laplace-transform



Vi) Pole-zero plot

It is possible to switch from one form of representation to another, and each of the representations
is complete. Moreover, from each of the above representations, it is possible to obtain the system
properties using parameters as: stability, causality, linearity, invertibility etc. We now attempt to

develop the convolution integral.

2.2 Impulse Response

The impulse response of a continuous time system is defined as the output of the system when its
input is an unit impulse, o (t) . Usually the impulse response is denoted by h(t) .

o Continuous time h(t)
g system >
unit impulse . impulse response

.
Figure 2: The impulse response of a continuouwastem
L 4

2.3 Convolution Sum:

We now attempt to obtain the output of a digita & n arbitrary input x[n], from
the knowledge of the system impulse respons

Se response output
-
h[n] ¥[n]

An input impulse response corrcsponding output
x[n] ¥[n]
> h[n] ”
xn]l=.... x 1ani 1] Mu]=...+x[-1jAn+1]
+ x[016Tx] LTI svstem + x] 04 m]
+ 18 n—1] + x{1}A[n—1]
+x[2]é[n - 2]+ ... L X2 2]




An input impulse response corresponding ocutput
x[n] ¥In]
- o h[n] - g
x[n] = x|m|&|n—m Mnl= x[m|hln—m]
7] m;,., e ] LTI system mgm
fime-dmnain analysiy
impulse response
input ut
> hi[n] >
x[n] = x[r]* H[n]
LTI syvstem

Methods of evaluating the oion sum:

Given the system impulse onse h[n], and the input x[n], the system output y[n], is

given by the convolution sum:

(el

x[n|*h[n]

ylnl= > x{mlhln —ml]

ra

=00

Problem:

To obtain the digital system output y[n], given the system impulse response h[n], and the

system input x[n] as:
h[n]=[1, -1.5

z[r]=[-1.

-1 4 -595 7.55 0.525

. 3]

2.5, 0.8,

3.75

1.25]




1. Evaluation as the weighted sum of individual responses
The convolution sum of equation (...), can be equivalently represented as:

y[n] O 0 .....0 X[ Th[n 0 1]0 X[0]h[n] 0 CX[A]h[n O 10 .......

input x[n] impulse response: h[n]
10 T . ' 10 .
gk 8 ;
sl - sl ]
al- 4

X[n]
N

x[-1].h[n+1]

10 .




h[n-1]

h[n-2]

Convolution as matrix multiplication:

Given

and

Step 1:
Step 2:

Step 3:

x[n]= [x] X,

Hnl=[ é\.'hﬂ]

coftvolved sequence 1s NUM = (L+M-1)

Length

%[11.h[n-1]

A

starting from N,

starting from N,

The convolved sequence starts at i=N, + N,

The convolution is given by the following matrix multiplication

] ]
yli+1]
yli+2]
yli+3]
yli+4]
yli+3]

th

= o

o o o o

U

&5 = o

Da:r'

s oo oo

A




The dimensions of the above matrices are:
[NUM by l]=[NUM by M][M by ]]=[NUM by L][L by l]

For the given example:
x[n] is of length L=4, and starts at N, = -1

h[n] is of length M=3 and starts at N, =0

Step 1: Length of convolved sequence is NUM = (L+M-1)=6
Step 2: The convolved sequence starts at 1=(-1+0)=(-1)
V-1 [ -1 0 0 -1 ]
v[0] 25 -1 0 | 4
y[1] _ 08 25 -1 N —5.95
v[2] 1.25 08 25 \ 7.55
v[3] 0 125 0 2 0.525

41| L0 0 3.75

S
T 1] 4
2.5 | |-5.95
08 | | 755
1.25] 0525

] 375

Evaluation using graphical representation:

Another method of computing the convolution is through the direct computation of each value of the
output y[n]. This method is based on evaluation of the convolution sum for a single value of n, and

varying n over all possible values.

o

y[nl=>" x[mlhln —m]

=0

Step 1: Sketch x[m]
Step 2: Sketch h[-m]



Step 3: Compute y[0] using:

oo

y0]= > x{m]h[—m]

m=-—co

which is the ‘sum of the product of the two signals x[m] & h[-m]’

Step 4: Sketch h[1-m], which is right shift of h[-m] by I.
Step 5: Compute y[1] using:
y[1]= i x[m]h[1—m]
which is the ‘sum of the product of the two signals x[m] & h[1-m]’
Step 6: Sketch h[2-m], which is right shift of h[-m] by 2.
Step 7: Compute y[2] using:
y[2]= Zm: x[m]h[2—m]
which is the ‘sum of the producfof thg tw® signals x[m] & h[2-m]’
Step 8: Proceed this way until all pes kvalues of y[n], for positive ‘n’ are
computed ¢

Step 9: Sketch h[-1-m], i& ift of h[-m] by 1.
Step 10: Compute y[-1 '

o0

> x[m]h[-1-m]

m=—co

‘1

sum of the product of the two signals x[m] & h[-1-m]’
2-m], which is left shift of h[-m] by 2.
pute y[-2] using:

Step 11:
Step 12:

oo

y-2]= Z x[m]h[-2—m]

m=-—ca

which is the ‘sum of the product of the two signals x[m] & h[-2-m]’

Step 13: Proceed this way until all possible values of y[n], for negative ‘n’ are
computed
x[m] h[-1-m] y[-11=(-1)
10 : 10 ; 10 .
£ ? e g~ =
"
5 0 5 5 0 5 -5 a 5
m m m



x[m]

Jof

x[m]

x[m
st [m]

x[m]

2o

h{-m]

h{-m]

h[1-m]

hl[4-m]

X[m].h[4-m]

x[m].h[-m]

x{m].h[3-m]

-
[~

x[m].h[1-m]

Q O

ot

yv[0]=(1.5+2.5)

0
m

v[11={-3-3.75+0.8)

o y[3]=(2.4-1.875)

30}



Output: y[nj=x[-1].h[n+1]+x[0] h[n}+Xx[1].h[n-1]+x[2].h[n-2]

10 : T T _ ; T
-~ ,
=1 O b
-2 -1 0 1 2 3 4 €
n IS

Evaluation from direct convolution sum: .

While small length, finite duration sequences can be,c by any of the above three methods,

when the sequences to be convolved are of infinitéilengthe’the convolution is easier performed by
direct use of the ,,convolution sum" of equationy(:

jo

@z 0 for (n=m)<0
Q 1 for (n=-m)=0
B {ﬂr for (—m)<n
1 for (—m)zn
{0 for m=>n

1 for m=n

Example: A system has impulse response h[n] [J [ exp([] 0.n8)u[n]. Obtain the unit g
response.
Solution:

yln]= Z hlm|x|m]|

m=—oo

— Z {exp(—O.S(m))ulml}{uln—ml}

m=—co



e i{exp(—().S(m))}{uln—ml}

m=0

= i{exp(—O.S(m))}

m

=0

= i{exp(—O.S(m))}

m

=0

(1-(-0.8)"")

oo

(1-(=0.8))

ylnl= 3 {(—0.8)‘"*'"'11[11—11‘1]}

m=—oo

= i {exp(—O.S(n —m))uln- m]}
m=0

x[n]=u[n]

x[n]=un]

x[n]=u[n]

input:x[n]

0T7900§mo¢

0 5 10

n

impulse response: h[n]

h[n]=u[n]

2

ouput: y[n]
g - »
£
=
3
ﬁ_
=
.;_1 S :
0 § 10 15
n
ouput: y[n]
L : @
=
i 0do!
c |
> gl
0 5 10
n
ouput: y[n]
CRT I
£,
c
;‘ 5,
I
c
=




X[n]=sin(xn/5) y[n]=x[n]*h[n]

h[n]=(-0.8)"u[n]

y[nj=x[n]*h[n]

input:x[n] impulse response: h[n] ouput: y[n]
s : : = : c :
=] =] : =
S 3 é = ¢
o Y : 3
g o il . L
= 5 : - . :
=gl = 4 ‘ =4 '
0 5 10 0 5 10 0 5 10
n n h
—_ input:x[n]
Q 2 1 1 1 1 L] 1
o Q . K - : ?
L : ; - : : :
E loctlle, JPITe. .8 : i
g1 | . LI 4lis
5 _2 1 1 1 1 L 1
= 0 5 10 15 20 25 30
n
= impulse response: hin]
? 2 I L] L] ! l
g : |
< 90000000009
il =
: 1
=) 25 30

2

15 20 25
n

impulse response: h[n]

10 30

o.oTTTTTTTTOOOOOOO#OOOOOOODO OOOOO")

3

15 20 25 30
n

ouput: y[n]

0 5 10

L]

-

B s QTTqu,TTTQ
0 S Y © L .

[ ]
10 15 25 30

n

20






2.4 Convolution Integral:

We now attempt to obtain the output of a continuous time/Analog digital system for an arbitrary
input x(t), from the knowledge of the system impulse response h(t), and the properties of the impulse
response of an LTI system.

The output y(t) is given by, using the notation, y(t)=R{x(t)}.
y(t) = R{x(1)}

= R{j xX(7)o(t— 'Z')d'Z'-

= [ x(0)R{6(t -1)}dr

4

= [ x(o)hs k&
:\)K'{

An input mpulse response corresponding output
x(l) ¥(1)
h(1) >
()= | ()60 r)de ——— Y= [ x(e)h(t - 1)dr

Methods of evaluating the convolution integral: (Same as Convolution sum)

Given the system impulse response h(t), and the input x(t), the system output y(t), is given by the
convolution integral:

y(t) = j x(0)h(t—7)dt

Some of the different methods of evaluating the convolution integral are: Graphical representation,
Mathematical equation, Laplace-transforms, Fourier Transform, Differential equation, Block
diagram representation, and finally by going to the digital domain.



Recommended Questions

1. Show that if x(n) is input of a linear time invariant system having impulse response h(n), then
the output of the system due to x(n) is

y(n)= > x(k)h(n - k)
k = o0

Use the definition of convolution sum to prove the following properties

x(n) * [h(n)+g(n)]=x(n)*h(n)+x(n)*g(n) (Distributive Property)

x(n) * [h(n)*g(n)]=x(n)*h(n) *g(n) (Associative Property)

x(n) * h(n) =h(n) * x(n) (Commutative Property)

Prove that absolute summability of the impulse response is a necessary condition for stability
of a discrete time system.

4. Compute the convolution y(t)= x(t)*h(t) of the following pair of signals:

wwhEN

1 —a<t<a _ /1 —a<Il<aq
(@) X{r)_{ﬂ otherwise 'h“}_{ﬂ otherwise
b) J{,m=j.r 0<r=T {]__ 0<t=<2T

| 0 otherwise ’ u[herw
(c) x(t)=ult — 1), h(1)=e"ult) 9
5. Compute the convolution sum y[n] =x[n]* h[n] of the fol airs of sequences:
(a) x(nl=uln],hln]=2"ul—n]
(b) xlnl=uln]—uln-N) hin]=a"uln), 0

(¢) x[n]=(1)uln), hln)=8[n] - L8[ —.K
6. Show that if y (t) =x(t)* h(t), then g\

y'(t)=x"(t)*h(t) =x(t)*»h'(s
7. Lety[n] =x[n]* h[n]. Then sho

x[n—n,)*h[n—n,] =y
8. Show that

x(n)@x(n) = NIk ][0 - k)

for an arbitrary starting point no.






Fourier representation for signals

Introduction:

Fourier series has long provided one of the principal methods of analysis for mathematical
physics, engineering, and signal processing. It has spurred generalizations and applications that
continue to develop right up to the present. While the original theory of Fourier series applies to
periodic functions occurring in wave motion, such as with light and sound, its generalizations often
relate to wider settings, such as the time-frequency analysis underlying the recent theories of wavelet
analysis and local trigonometric analysis.

+ In 1807, Jean Baptiste Joseph Fourier Submitted a paper of using trigonometric series to represent
“any” periodic signal.

* But Lagrange rejected it!

* In 1822, Fourier published a book “The Analytical Theory ot;He riers main contributions:
Studied vibration, heat diffusion, etc. and found that a series onically related sinusoids is
useful in representing the temperature distribution through a body.

*
* He also claimed that “any” periodic signal could be re y Fourier series. These arguments

were still imprecise and it remained for P. L. Diric& 1829 to provide precise conditions under

which a periodic signal could be represented by&
 He however obtained a representation for ap iCsignals i.e., Fourier integral or transform

« Fourier did not actually contribute to

matical theory of Fourier series.

« Hence out of this long history wha
of continuous- time and disc
existing and potential applig@ti

ed is a powerful and cohesive framework for the analysis
signals and systems and an extraordinarily broad array of

The Response of LTI Systems to Complex Exponentials:

We have seen in previous chapters how advantageous it is in LTI systems to represent signals as a
linear combinations of basic signals having the following properties.

Key Properties: for Input to LTI System

1. To represent signals as linear combinations of basic signals.

2. Set of basic signals used to construct a broad class of signals.

3. The response of an LTI system to each signal should be simple enough in structure.
4. It then provides us with a convenient representation for the response of the system.
5. Response is then a linear combination of basic signal.

Eigenfunctions and Values :
 One of the reasons the Fourier series is so important is that it represents a signal in terms of eigen

functions of LTI systems.



* When I put a complex exponential function like x(t) = ejwt through a linear time-invariant system,
the output is y(t) = H(s)x(t) = H(s) ejot where H(s) is a complex constant (it does not depend on
time).

* The LTI system scales the complex exponential ejmt .

Historical background

There are antecedents to the notion of Fourier series in the work of Euler and D. Bernoulli on
vibrating strings, but the theory of Fourier series truly began with the profound work of Fourier on
heat conduction at the beginning of the century. In [5], Fourier deals with the problem of describing
the evolution of the temperature of a thin wire of length X. He proposed that the initial temperature
could be expanded in a series of sine functions:

fo's)
flz) = Z b, sin na (1)
1

2 7
by, = — / flz) sinnzde. (2)
0

2
The Fourier sine series, defined in Eq.s (1) and (2), is@case of a more gen-
eral concept: the Fourier series for a periodic fu 2. riodic functions arise in
the study of wave motion, when a basic wavefog ats itself periodically. Such
@dne waves of electromagnetic
e just a few examples. Periodic

periodic waveforms occur in musical tones, i1
vibrations, and in the vibration of strings. dhe
effects also arise in the motion of the etSQin ac-electricity, and (to a degree) in

animal heartbeats.

A function [ is said to have >°if f(x + P) = f(x) for all . For

our discussion to functions of period 2.
0, since we can always use a simple change

of scale x = (I?/27)1 to coife nction of period /? into one of period 2.
If the function f has 2y, then its Fourier series is

{(1‘,, COS T [,” sin .“JJ‘.} (4)

notational simplicity, we shall re
There is no loss of generality i

n—1
with Fourier coefficientS ¢, a,,, and b,, defined by the integrals

l s

w = 75— f(z)dz (5)
._71— . I8
1

Gy = —/ f(x) cos nx dx. (6)
ik i

By = S / f(x) sinnzdz. (7)
™ J o oa

The following relationships can be readily established, and will be used in subsequent sections for
derivation of useful formulas for the unknown Fourier coefficients, in both time and frequency
domains.



l sin(kw,t)dt = 1[ cos (kw,t)dt @)

=0
Y[sin 2 (kwo t)dt = ! cos? (kwat)dt 2
_T
2
t[ cos(kwt)sin(gw,t)dt =0 3
t[ sin(kw,t) sin(gw,t)dt = 0 (4)
t[ cos(kw,t)cos(gw,t)dt = 0 ®)

where

where fand T represents the frequency (in cycles/time) and seconds) respectively. Also,
k and g are integers.

w,= 2af (6)
1
f=_ ¢ Q ™)
_
%

A periodic function f (t) with a period T should satisf; ollowing equation

fE+T)=f(0) s\& @®)
Example 1
Prove that

T

1[ sin(kwyt) =0

N
O

=t

|
and k is an integer.

Solution
Let
A= ‘[ sin(kwt)dt 9)
(1) T
= lcoskwt)],
(P
A=|__ [coskw,T)—cos©)] (10)

QLR

=| 4o I[cos(k27) -1]

=0



Example 2

Prove that
¢ T
jsin 2 (kwot) = o
0
for
=27t
ol
T

and k is an integer.

Solution
Let

T

B= gsin 2 (kwt)dt

Recall

sin? () = cos(Za)

Thus,
j - cos(2kw t)Tdt

IoNaEN -

lLf) L2\ 2kw,

sin(2kw T)—|

| o |
2 dkw,
IT (1) J

= -] Jsin(
Prove that

2 \4kw0} Q

T
2
l[sin(gwot) coskw,t) =0

Example 3

for

and k and g are integers.
Solution

Let

.
C= 1[sin(gwot)cos(kwot)dt
Recall that

N\

(11)

(12)

(13)

(14)

(15)



sin(ae+ B) =sin(a) cos(f) + sin(f) cos(x)
Hence,
C= ! [sin[(g + k)w,t]—sin(kw,t) cos(gw,t) Jdt
= lsm[(g + k)w,t]dt —lsin(kwot)cos(gwot)dt
From Equation (1),

l[sin(g + K)w,t]dt = 0
then

;
C=0- 1[ sin(kwyt) cos(gw,t)dt

T

Adding Equations (15), (19), 2c = I[sin(gwot)cos(kwot)dt —jsin(kwot)cos(gwot)dt
0

T T

= 1[ sinf(gw,t)— (kwgt)Jdt = [sin[(g — K)wt ]t

2C =0, since the right side of the above equation is zero (

C= jsin(gwot)cos(kwot)dt =0 @

\
Example 4

Prove that
T

t[ sin(kw,t) sin(gw,t)dt = 0
for &
W, = 27f
1 Q
T

k, g = integers
Solution

T

1£tD=£gmm%oﬁM@%0m

Since

cos(a+ B) = cos() cos(f) —sin(ex)sin(f)
or

sin(@)sin(f) = cos(e) cos(f) —cos(a + f)
Thus,

T

D= 1 cos(kwyt) cos(gwt)dt — [ cos|(k + g)wt it

From Equation (1)

ugtion 1). Thus,

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)



]
1[ cog(k + g)wyt]dt =0
then

T

D= lcos(kwot)cos(gwot)dt -0
Adding Equations (23), (26)

T

.
2D = l sin(kwyt)sin(gw,t) + Icos(kwot) cos(gw,t)dt
; 0
= !cos[kwot — gw,t[dt
;

= l‘cos[(k — g)w,t]dt

2D =0, since the right side of the above equation is zero (see Equation 1). Thus,
T

D = [ sin(kwgt) sin(gw,t)dt =0
Recommended Questions TS \Q

1. Find x(t) if the Fourier series coefficients are shown j
fig. The phase spectrum is a null spectrum.

A

2. Prove the followinﬁrties of Fourier series. i)

Convolution property ii) Parsevals relationship.

3. Find the DTFS harmonic function of x(n) = A Cos (2nn/No).
Plot the magnitude and phase spectra.

4. Determine the complex Fourier coefficients for the signal.
X(t)= {t+1 for -1 < t< 0; 1-t for 0 <t < 1 which repeats
periodically with T=2 units. Plot the amplitude and phase
spectra of the signal.

5. State and prove the following of Fourier transform. i)
Time shifting property ii) Time differentiation property
iii) Parseval's theorem.






Fourier representation for signals — 2

Fourier representation for signals — 2: Discrete and continuous Fourier transforms(derivations of
transforms are excluded) and their properties.
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Fourier representation for signals

Introduction:

Fourier Representation for four Signal Classes

5.1 The Fourier transform

5.1.1 From Discrete Fourier Serie r Transform:
Let x [ n ] be a nonperiodic se
integer N ,

x[n] =0

Such a sequence is shown in Fig. 6-1(a). Let x,Jn] be a periodic sequence formed by
repeating x [ n ] with fundamental period No as shown in Fig. 6-I(b). If we let NoO -, m, we
have

lim x, [n] =x[n]

Ny
The discrete Fourier series of XNo[n] is given by
. 2
xNu[n] = ). c ek o= —



1 |
o= T xyln] e

0 n={Ny

x[n]

[ ]
N, 0 N "
Znglnl
.N]
Fig. 6-1 (a) Nonperiodic finite sequence x[n]; (b digkequence formed by periodic extension of
x[n]
1 ) &
co=— 2, x[n 2o Y. x[n]e ko
No »="n, No ="

-IN.,["]= > Fx{kﬂn)ejkﬂun
k={N[]} a

1 _
xw,,[”] == X X(kQg)eH M,
21"." k=<"""'u}‘

Properties of the Fourier transform

Periodicity
As a consequence of Eq. (6.41), in the discrete-time case we have to consider values of
R(radians) only over the range0 < Q <2z or = < Q <, while in the continuous-time case we
have to consider values of 0 (radians/second) over the entire range —oo < @ < oo.
X(Q+27)=X(Q)
Linearity:
ax [n] +ayx;[n] > a, X, () +a,X,(Q2)



Time Shifting:
x[n —ng) ese X ()
Erequency Shifting:
eMx[n] > X(Q-Q,)
njugation:
x*[n] «=>X*(—Q)

Time Reversal:

x[-n] > X(-0)
N

Time Scaling:

x(at)c—»I—:TIX(—(;i)

Duality:
The duality property of a continuous

There is no discrete-time cuntg of this property. However, there is a duality between
the discrete-time Fourier and the continuous-time Fourier series. Let

Q x[n] > X(Q)

X(Q)= Y x[n]e0n

n= —w

X(Q+27)=X(Q)
Since () is a continuous variable, letting =t and n = —k
X()= Y, x[—k]e*

k= —m

Since X(t) is periodic with period To =2 « and the fundamental frequency w, = 2m/To =1,
Equation indicates that the Fourier series coefficients of X(t) will be X [ - k ] . This duality
relationship is denoted by

X(t) S, =x[—k]
where FS denotes the Fourier series and c, are its Fourier coefficients.



Differentiation in Frequency:

dX(Q)
meln] e i= e

Differencing:

x[n] —x[n—1] e (1 —e )X (Q)
The sequence X[Nn] -x[n — 1] is called the first difference sequence. Equation is easily obtained
from the linearity property and the time-shifting property .

Accumulation:

4 1
Note that accumulation is the discrete-time counterpart of integration. The impulse term on the
right-hand side of Eq. (6.57) reflects the dc or average value that can result from the

accumulation.
O\Q
*
plays an important role in the

Convolution:

xi[n]* x,[n] & X,(2) X,(Q
As in the case of the z-transform, this convoluti party
study of discrete-time LTI systems.

)
Multiplication: &

1
xl["]le"]""ﬁxl »(€2)

.-

where @ denotes the peri ution defined by
X,(0) & X,(Q :01 8)X,(Q2 - 6) dé
The multiplicationaropetrty (6.59) is the dual property of Eq. (6.58).

Parseval's Relations:

= 1

_Z: xy[n]xy[n] . EHX1(Q)X2(_Q)¢£Q
- 2 _ 0 2
Y. Ix[n]l*= . 2ﬁ[}&’(ﬂ)i d()



Summary

Property x(Lh vil) XUjw), ¥(jw)
Linearity axl(t) + byvie) aX(jw) + b Y (jw)
Time Shifting it =t g e X )
Frequency Shifting ed ot y(1) X(jlar — wg))
Conjugation x'{L) A (—ju)
Time Reversal x(—t) K(—jow)
Time and Frequency xlat) L Jjw
Scaling |T:H i
Convaolotion xl(E) =+ y(it) X ) ¥ (je)
Multiphcation y(t)p(t) X{jea) =4 Y (j)
[hfferentiation in Tume l_i!‘ (0] JeX (Jeor)

= L 1
Integration ‘ (O — X(jw) + 1X (0)S(w)

1 TS j

Differentiation in Lx(t) d

Frequency

—_X( ]
T )

Recommended Questions

1.

2.

Determine the DTFT of unit ste

The system produces the
impulse response and ff,
The input and the o

div(ty edy()

Ar? dar

Obtain the Fourier transform of the si

&u(t) and plot spectrum.

esponse of the system.

i) Find the i'mpulse response of this system
ii) What is the response of this system if x(t) = te® u(t)?

signals corresponding to the following DTFTSs :

i) X (€Y= Cos(Q)+j Sin(Q)

i)

for the following signals:
i) X(t)= eu(t-1)
i)

transform. (4 Marks)

X(@?)={1, for 1/2<Q< =; 0 otherwise

and X(e"))=-4 Q

X(t)=e" Sketch the magnitude and phase spectra.

t) = e u(t), for an input of x(t) =

e X(n) = u(n) its magnitude and phase.

e-2t.u(t). Determine

ausal LTI system are related by differential equation

Discuss the effects of a time shift and a frequency shift on the Fourier representation.

Use the equation describing the DTFT representation to determine the time-domain

Use the defining equation for the FT to evaluate the frequency-domain representations

Show that the real and odd continuous time non periodic signal has purely imaginary Fourier




Fourier Series and LTI System
» Fourier series representation can be used to construct any periodic signals in

discrete as well as continuous-time signals of practical importance.

* We have also seen the response of an LTI system to a linear combination of
complex exponentials taking a simple form.

* Now, let us see how Fourier representation is used to analyze the response of
LTI System.

Consider the CTFS synthesis equation for x(t) given by
Suppose we apply this signal as an mput to an LTI System with impulse respose h(t).
Then, since each of the complex exponentials in the expression is an eigen function of

sk = jkwo, it follows that the output 1s
+ o0

y(t) = kZm akH(ej’“"o)ejk“’Qf\Q

Thus y(t) 1s periodic with frequency as x(t). Further, 1 1s ghe set of Fourier series

L
coefficients for the mput x(t), then {akH (e’ wo)} of coefficient for the
y(t). Hence in LTI, modify each of the Fouger doefficient of the input by multiplying
by the frequency response at the corresp & quency.

Example:
Consider a periodic signal x(t), yi amental frequency 2, that is expressed in
the form

the system. Then, with

k=-3
where, ®ao=1, Qi=Q1=1/4, Q2=A2=1/2, A3=A3=1/3,
Suppose that the this periodic signal is mnput to an LTI system with impulse response
To calculate the FS Coeff. Of o/p y(t), lets compute the frequency response.The
impulse response 1s therefore,

+3
@ Y e
Q (M)

H(]'oo) = fooe—r e joTdr — _;e—‘te—fw‘r 9
0 1 +j(1) 0
and
Hjo) = 1+ jw
Y(t) at ®o = 2m . We obtain,
+3

(i) = Z bke /2™t
-t with bx = axH (jk2m), so that



b—l 1 b—l( 1 )b
1_4(1+;‘2n) T 2\1+jan/)

b _1( 1 )b 1 1
T 4\1 —j2r '2_2(1—j4n)

bc):l

The above o/p coefficients. Could be substituted in

+3
y(t) = Z brelkZrt

k=-3

_1( 1
- 3\1+jé6r

)

b 1( 1
7T 3\1 —jen

)



Finding the Frequency Response

We can begin to take advantage of this way of finding the output for any input once
we have H(m).
To find the frequency response H(®) for a system, we can:
1.  Put the input x(t) = &' into the system definition
2. Put in the corresponding output y(t) = H(w) &'*
3. Solve for the frequency response H(®). (The terms depending on t will
cancel.)

Example:

Consider a system with impulse response

1
h(t)— 1z fort<[05]

0O otherwise
Find the output corresponding to the input x{t) = cos(10 t).

) 5
y(t)= Ih(t) x(t—t)dt= j %cos(10(t —t))d<t
T=—00 =0
1 1
y{t)=— ( —sin(10{t — ))J — (sin{10t)— ( t—5))
5 10 s’ D™ 50( \{ I W )
Differential and Difference ti; ﬁ Descriptions

differential and difference-equation desc1 1 for a system, the frequency response
description cannot represent initial con an only describe a system in a

steady state condition. The differential- 19n representation for a continuous-time
system is

Frequency Response is the system’s stead siﬁ sponse to a sinusoid. In contrast to
1

2




V() S, be(jo)*
X(w) YN axc(jw)k

The frequency of the response is

H(jw) =

. M E
Y(jw) Yo bx(jw)*

. e N .
X(lw) Zk:o ak(/w)k
Hence, the equation implies the frequency response of a system described by a linear
constant-coefficient differential equation is a ratio of polynomials in jo.

The difference equation representation for a discrete-time system is of the form.

N M

Z axy[ln — k] = 2 bxx[n — kj

k=0 k=0
Take the DTFT of both sides of this equation, using the time-shift property.
gln — k] — =ik G(e®)
To obtain
N N .
i sl ; ; ;

Z ac(e77*)7Y(e/?) = Z ax (e& (/)

k=0 k=0 .

» Rewrite this equation as the ratio

Differential E@ Descriptions

Ex: Solve the following differential Eqn using FT.

2 d d

ﬁy(t) + 4Ey(t) +5y(t) =3 ax(t) +2(t)
x(t) =0+ e HDu(t)

For all t where,

Soln:we have
2

d d d
—5Y(0) +4—y(0) + 5y(t) = 3——x() + x(1)

FT gives,
[(0)? +4(jw) + 5]Y o) = Bjo + DX(jw)



and x(t) = (1 + e Hu(t) x(t) =u(t) + (e Hu(t)

1 1 i |
X(jjw) = + md(w e St
(w) = ( ( )) (jw + 1) Since u(t) 7t6(w)+jw
1
3 < >
and(e Hu(t) o+
X(jw) = ( 2 + 7t6((u)> -
Hence we have HareD)

And LU®)? +4(0) + 5]Y o) = GBjw + DX(jw)
1.e
Bjw+1)
[Gw)? +4(jw) + 5]
Bjw + 1) 1

Fljo)= [Go+2)2+ 1] + RO (w+1)

_ (Bjw +1) 1
Y(jw) = [(/ )2+4(/w)+5] <w+n'8(w)a+

Y(jw) = X(jw)

FGw) = Y1) + V(D)

Vein) — Bjw+1) Bjow+1)
Vo) =G+ 27+ 10 [Gw+2)2+ 1w+ 1)
vy = —FO+D © = 0) + Dr[5(0) = 1]

+[U€@
Bjw+ C
V(D) = 3+ 1) ()_ jw

(o +2)? + 1]jw [(I +2)% +1]
i 1 B = 1 = 11
Performing partial fractionwe get =~ Rt
_ 1/5 —1/5jw+ 115
el = [ow+2)? +1]
Similarly
_ Bjw + 1)
@) = et 22 +1IGa+ D
R Pjw +
Y(3) = Ll

iotd) Gt 22 + 1)

Performing partial fractionwe get R=-1,P=1,0=6



—1 jo+ 6
Go+1)  [Goi2P+1]
—1 jo+6
Go+1)  [Go+2)?+1]Y(w) = Y1) +¥(2) +Y(3)
Hence,we have

Y(3) =

Y(3) =

/ —1/5]w+11/5

r(1)= [(]w + 22 +1]
Y(2) = 38((0)
Readjusting
V(o )_1/5 —=1/5jw+ 115 né‘(w)+ - jw+6

[+ 2)?+1]

T Y __ 1 EP_@%‘”

Y (jw) —S[jw'i-T[(S(w)l Go 1)+5 6 2 2+1]]
1/5 m 11/5 1/51w

we know that,

(jw +1) [(w+2)2+1]

+jw
_Bt B
e COS wo tu(t
e [(B ¥ ja) ¥ o]
Wo
—Bt o N
e SInwot >
[(B+jw)? + wo?]
Readjusting the las e get

! 4 jow + 2 33
(]w+1) 5 [Gw+ 2)% + 1] 5 [(,w+2)2+1]

Y(jw) = %[]iw +uBw)]~

Now, taking the inverse Fourier Transform,we get

1 - 33
V() = gu(t) —e fu(t) + E® ~2t cos tu(t) +e 2t sint u(t)

Differential Equation Descriptions

* Ex: Find the frequency response and impulse response of the system described
by the differential equation.

2 d d
TV +3y() + 2y(1) = 2 x(t) +x(1)



Here we have N=2, M=1. Substituting the coefficients of this differential equation in

Hejay = YU _ Zio i)
X(w) Xi_,ax(w)k
Differential Equation Descriptions

2jw + 1
(jw)*+3jw +2

We obtain

H(jw) =

The impulse response is given by the inverse FT of H(jo). Rewrite H(jo)
using the partial fraction expansion.

H(w) = —o— +—
Do+l jo+2
Solving for A and B we get, A=-1 and B=3. Henee Q
: =3 3 \
H(jw) :

Ex: Consider an LTI s& racterized by the following second order
linear constant coef] sfference equation.
y[n] = 1.3 1] — 0.9025y[n — 2] + x[n]
—44M2x[n — 1] + x[n — 2]

Find the frequency response of the system.

y[n] = 1.3433y[n — 1] —SOO.ICI)IOZSy[n — 2] + x[n]
—1.4142x[n — 1] + x[n — 2]
Y(e/®) = 13433(e /@)Y (e/)
—0.9025(e /2@y (e/®) + X(e’®)
~14142(e7?)X(e’?) + (e772@) X (e/?)

we know, y[n — k] — e~ Tkoy(el@)



1— 1.4142e 7@ 4 e~ /2@
" 1 —1.3433eJ/® 4+ 0.9025¢ /2@

Ex: If the unit impulse response of an LTI System is h(n)=c"u[n], find the response of

the system to an input defined by x[n] = gruln], where Bra < landa#(3

Soln:
y[nl = hln] * x[n]
Taking DTFT on both sides of the equation,we get
. 1 1
Y(ejw) = H(ejw)x(ejw) v(er) = 1 —qeJ® 1 — pe—J@

. 1 1 A B
Y(e/®) = — X — = —X —
1—ae 7« 1—pe 7/« 1—ae™7* 1—fe 7®
where A and B are constants to be found by using partial fractions

. A B
) Then, Y(ef"’) =
Let, e /¥ =v 1-— — pv

By performing partial fractions,we g
o

Therefore, Y(ef“’) = " a_eﬁ . %
—

Taking inverse DTFT,we ge

Q

| | &

=
ve
Il

(0.4

y[n] = [a

Sampling

In this chapter let us understand the meaning of sampling and which are the different
methods of sampling. There are the two types. Sampling Continuous-time signals and
Sub-sampling. In this again we have Sampling Discrete-time signals.

Sampling Continuous-time signals

Sampling of continuous-time signals 1s performed to process the signal using digital
processors. The sampling operation generates a discrete-time signal from a
continuous-time signal DTFT 1s used to analyze the effects of uniformly sampling a
signal Let us see, how a DTFT of a sampled signal 1s related to FT of the continuous-
time signal.

* Sampling: Spatial Domain: A continuous signal x(f) 1s measured at fixed
instances spaced apart by an interval “17. The data points so obtained form a
discrete signal x[n]=x[nT]. Here. AT 1s the sampling period and 1/ AT 1s the
sampling frequency Hence, sampling is the multiplication of the signal with an
impulse signal.
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Sampling: Spatial Domain

From the Figure we can see

Where x[n] is equal to the -~

samples of x(t) at integer xs(t) = Z x(n)8(t — n1)
multiples of a sampling Mt

interval T

... Now substitute x(nT) for x[n]to obtain
xs(t) = Z x(nt) 86(t — n1)

n=—w

since x(t)6(t — nt) = x(n1)d(t — n1)

we may rewrite xs(t) as a product of time functions

xs(t) = x(t)p(t) where, p(t) (t —n1)
Hence, Sampling is the multiplication of the signal with anﬂ& train.
L 2

The effect of sampling is determined by relating the FT,

x(t) _. . : :
f ( ) Since Multiplication in the time doma nds to

convolution in the frequency domain, we haye
1
Xs(jw) = z—x(; )

T
Substituting the value of PU®) 4 th

to the FT

(o]

the pulse train i.e

We get, Q
“+ oo
_ 21

2T -
where, ws = e is the sampling frequency. Now
1 21~
T
Xs(w) = —XGw) » — Z 5(w — kaws)
2T T
n=—aoo
1 —
Xs(w) = = Z X(j(lw — kws))

The FT of the sampled signal is given by an infinite sum of shifted version of
the original signals FT and the offsets are integer multiples of mg



Aliasing : an example

Frequency of original signal is 0.5 oscillations per time unit). Sampling
frequency is also 0.5 oscillations per time unit). Original signal cannot be

recovered.
Aliasing Ex:1

Sampling
~  points x[n]

Original signal

Sampling frequency x(t)
ws =0.5cycles/unit
time
0\

Aliased signal

which is

reconstructed

Aliasing Ex:2
Sampling
points x[n]

-~ Original signal
Sampli x(t)
pling frequengy
ws =0.7cycles/u
time

Aliased signal appear like a sine"wave but of
lower frequency, original signal is lost

Non-Aliasing: Ex 3

Sampling
points x[n]

~ Original signal
x(t)

ws =1.0 cycles/unit
time i.e twice the
frequency of the
input
z —»

Sampling frequency l

Non-Aliased signal appear like a sine wave but of
lower frequency, original signal is lost



Sampling below the Nyquist rate

xX(t)

Reconstruction below

xX(t)



FT of sampled signal for different sampling frequenc

X(w)
(a) Spectrum of continuous-time signal \
-W o w

Xs(Gw) (b) Spectrum of sampled signal, w; =3W

K=-2 K=-1 } K=0 K=1 K=2
w wWe zws

-2w, “wg -W 0

; (c) Spectrum of sampled signal, w; =3/2W
Xs(Gaw)

K=-1

K=-2

1 1 1
-'40\»S -'Sws -'2(»S -wW 0 w éws 5(»5 ‘iws

* Reconstruction problem is addressed as follows.

* Alasing 1s prevented by choosing the sampling interval T s&¢hat ©>2W,
where W is the highest frequency component in the®si

» This implies we must satisfy T<n/W. S
* Also, DTFT of the sampled signal is obtained fi SQ

relationship Q= oT, that is

using the

DTFT j
x[n] X(€?) = xs(jw) log=
» This scaling of the independent vy imphes that ®=wm, corresponds to
Q=2n

ling discrete-time signal
e FT i1s also used in dis

e Let Y[nl=xlgn]
* Relating DTFT

1pled version x[n], where q is a positive integer.

the DTFT of x[n], by using FT to represent x[n] as a
sampled versi ontinuous time signal x(t).

* Expressing now $n] as a sampled version of the sampled version of the same
underlying CT x(t) obtained using a sampling interval q that associated with
x[n]

»  We know to represent the sampling version of x[n] as the impulse sampled CT
signal with sampling interval T.

+co

xs(t) = Z x(n)é6(t —n1)

n=—aoo

* Suppose, x[n] are the samples of a CT signal x(t), obtained at integer multiples

of T. That is, x[n]=x[nT]. Let *(©)

X(®) and applying it to obtain

1 —
Xs(jw) = - Z X((w — kws))

k=—co




- Since y[n] is formed using every qth sample of x[n], we may also express y[n]

yln] = xlgn] = x(nq7)

as a sampled version of x(t).we have

- Hence, active sampling rate for yn] is T°=qT. Hence

vs(t) = x(t) Z d(t — nt") Ya(Gw) = % Z XU (w — kws"))
n=—co K=—o=

- Hence substituting T ’=q T, and o= ws'q
“+ oo
. 1 : k
Ys(w) = — E XU(w — — ws))
qT L q

Ys(Gw) and Xs(jw)

- Expressing XGa) as a function ofXSQw) . Let us write k/q as a proper
function, we get

- We have expressed both as a function of

I m
— =14+ —,
q q

Kk
where l is the integer portion ofa, and m is the remainder

allowing k to range from — oo to + oo corresponds

to having [ range from — oo to + coand m from0Oto g — 1

Yo(iw) = %qz—: {— X.s( (w Y N ws))}

Ys(w) = E Xs\|J — Cl)s)
6(] o . q )
which represents a sum f ted versions of
Xs(jw) zed by q.
Converting from¢t resentation back to DTFT
and sub ting Q0 = wt’'above

(n22/7t) ,we write this result as

q—1i
1 X
—— X J(R2—m27m)
7 >, Xale )
m=0

where, fﬂ) = X(efﬂfq) — a scaled DTFT version

and also X(e’?)




Recommended Questions

1.

3.

4.

Find the frequency response of the RLC circuit shown in the figure. Also
find the impulse response of the circuit

) .Dibt} C

— P

Fig.Q6(b)

The input and output of causal LTI system are des@ the differential equation.
dy 0 +3dy® 12y =x(1)

dt’ dt
1) Find the frequency response of the sy,
i) Find impulse response of the syste
iil) What is the response of the i =te " u (b). (10 Marks)

*

The input x (t) =e>' u

the frequency respo&

applied to a system, results in an output y (t) = e* u(t). Find
pulse response of the system. (07 Marks)

Find the DTFS co-efficients of the signal shown in figure Q4 (b),

Ly $o . s\ "i"?
qlJmL“;

Y T -e e hh

State sampling theorem. Explain sampling of continuous time
signals with relevant expressions and figures.

Find the Nyquist rate for each of the following signals:
i) X (t) = sinc(200t) ii) x (t) =sinc? (500t)



