Advance Java and J2EE —Module 1

Module -1
Enumerations, Autoboxing, and Annotations(Metadata)

Enumerations

e Enumerations included in JDK 5. An enumeration is a list of named constants.
It is similar to final variables.

e Enumin java is a data type that contains fixed set of constants.

e An enumeration defines a class type in Java. By making enumerations into
classes, so it can have constructors, methods, and instance variables.

e Anenumeration is created using the enum keyword.
Ex:

enum Apple { Jonathan, GoldenDel, RedDel, Winesap, Cortland }

The identifiers Jonathan, GoldenDel, and so on, are called enumeration
constants.

Each is implicitly declared as a public, static final member of Apple.
Enumeration variable can be created like other primitive variable. It does not
use the new for creating object.

Ex:Apple ap;

Ap is of type Apple, the only values that it can be assigned (or can contain)
are those defined by the enumeration. For example, this assigns:

ap = Apple.RedDel;

Example Code-1

enum Apple { Jonathan, GoldenDel, RedDel, Winesap, Cortland }

class EnumDemo

{

public static void main(String args[])

{
Apple ap;

ap = Apple.RedDel;

System.out.printin("Value of ap: " + ap);// Value of ap: RedDel

ap = Apple.GoldenDel;

if(ap == Apple.GoldenDel)

System.out.printIn("ap contains GoldenDel.\n"); // ap contains GoldenDel.
switch(ap)

{

case Jonathan:

System.out.printIn(*Jonathan is red.");

break;

case GoldenDel:

System.out.printIn("Golden Delicious is yellow.");// Golden Delicious is yellow

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

break;

case RedDel:

System.out.printIn("Red Delicious is red.");
break;

case Winesap:
System.out.printin("Winesap is red.");
break;

case Cortland:
System.out.printin("Cortland is red.");
break;

¥
¥
¥

The values() and valueOf() Methods All enumerations automatically contain two predefined
methods: values() and valueOf().

Their general forms are shown here:
public static enum-type[] values()
public static enum-type valueOf(String str)

The values() method returns an array that contains a list of the enumeration
constants.

The valueOf() method returns the enumeration constant whose value corresponds to the
string passed in str.

Example Code-2:

enum Season { WINTER, SPRING, SUMMER, FALL } ;
class EnumExample1{
public static void main(String[] args) {
for (Season s : Season.values())
System.out.printin(s);
Season s = Season.valueOf("WINTER");

System.out.printIn("'S contains " + s);

¥ ¥

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

Example Code-3

class EnumExample5{

enum Day{ SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDA
Y, SATURDAY}

public static void main(String args[]){

Day day=Day.MONDAY;
switch(day){

case SUNDAY:
System.out.printin(*sunday");

break;

case MONDAY:
System.out.printin("monday");

break;

default:

System.out.printIn("other day");

k
i

Class Type Enumeration

enum Apple {

Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8);
private int price;

Apple(int p) { price = p; }

int getPrice() { return price; }

¥

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

class EnumDemo3 {

public static void main(String args[])

{ Apple ap;

System.out.printIn("Winesap costs " + Apple.Winesap.getPrice() + " cents.\n");
System.out.printin("All apple prices:");

for(Apple a : Apple.values())

System.out.printin(a + " costs " + a.getPrice() + " cents.");

k
¥

The Class type enumeration contains three things

The first is the instance variable price, which is used to hold the price of each
variety of apple.

The second is the Apple constructor, which is passed the price of an apple.

The third is the method getPrice(), which returns the value of price.

When the variable ap is declared in main(), the constructor for Apple is called once for
each constant that is specified.

the arguments to the constructor are specified, by putting them inside parentheses after each
constant, as shown here:

Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8);

These values are passed to the parameter of Apple(),which then assigns this value to price.
The constructor is called once for each constant.

Because each enumeration constant has its own copy of price, you can obtain the price of
a specified type of apple by calling getPrice().

For example, in main() the price of a Winesap is obtained by the following
call:Apple.Winesap.getPrice()

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

Enum Super class

All enumerations automatically inherit one: java.lang.Enum.

Enum class defines several methods that are available for use by all enumerations.

ordinal()

To obtain a value that indicates an enumeration constant’s position in the list of
constants. This is called its ordinal value, and it is retrieved by calling the ordinal(') method,
shown here:

final int ordinal()
It returns the ordinal value of the invoking constant. Ordinal values begin at zero. Thus, in

the Apple enumeration, Jonathan has an ordinal value of zero, GoldenDel has an ordinal
value of 1, RedDel has an ordinal value of 2, and so on.

compareTo()

To compare the ordinal value of two constants of the same enumeration by using the
compareTo() method. It has this general form:

final int compareTo(enum-type e)

equals()

equals method is overridden method from Object class, it is used to compare the
enumeration constant. Which returns true if both constants are same.

Program to demonstrate the use of ordinal(), compareTo(), equals()

enum Apple { Jonathan, GoldenDel, RedDel, Winesap, Cortiand }

class EnumDemo4

{ public static void main(String args[])

{ Apple ap, ap2, ap3;

System.out.printIn("Here are all apple constants” + " and their ordinal values: ");
for(Apple a : Apple.values())

System.out.printin(a + " " + a.ordinal());

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

ap = Apple.RedDel,;

ap2 = Apple.GoldenDel;

ap3 = Apple.RedDel,

System.out.printin();

if(ap.compareTo(ap2) < 0) System.out.printin(ap + " comes before " + ap2);
if(ap.compareTo(ap2) > 0) System.out.printin(ap2 + " comes before " + ap);
if(ap.compareTo(ap3) == 0) System.out.printin(ap + " equals " + ap3);
System.out.printin();

if(ap.equals(ap2)) System.out.printin("Error!™);

if(ap.equals(ap3)) System.out.printin(ap + " equals " + ap3);

if(ap == ap3) System.out.printin(ap + " ==" + ap3);

}

}

Wrappers Classes

Java uses primitive types such as int or double, to hold the basic data types supported
by the language.

The primitive types are not part of the object hierarchy, and they do not inherit Object.

Despite the performance benefit offered by the primitive types, there are times when you
will need an object representation.

Many of the standard data structures implemented by Java operate on objects, which
means that you can’t use these data structures to store primitive types.

To handle the above situation, Java provides type wrappers, which are classes that
encapsulate a primitive type within an object.

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and Boolean.

These classes offer a wide array of methods that allow you to fully integrate the primitive
types into Java’s object hierarchy.

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

Character:
Character is a wrapper around a char. The constructor for Character is
Character(char ch)

Here, ch specifies the character that will be wrapped by the Character object being
created.

To obtain the char value contained in a Character object, call charValue(), shown
here:

char charValue()
Boolean:
Boolean is a wrapper around boolean values. It defines these constructors:
Boolean(boolean boolValue)
Boolean(String boolString)
In the first version, bool\Value must be either true or false.

In the second version, if boolString contains the string “true” (in uppercase or
lowercase), then the new Boolean object will be true. Otherwise, it will be false.

To obtain a boolean value from a Boolean object, use booleanValue(), shown here:
boolean booleanValue()

It returns the boolean equivalent of the invoking object.

Integer Wrapper class example code:

Integer(int num)

Integer(String str)

class Wrap
{ public static void main(String args[])
{

Integer iOb = new Integer(100);

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

int i = 10b.intValue();
System.out.printin(i + " " + iODb);
¥
¥

This program wraps the integer value100 inside an Integer object called iOb.

The program then obtains this value by calling intValue() and stores the result in i.
The process of encapsulating a value within an object is called boxing.

Thus, in the program, this line boxes the value 100 into an Integer:

Integer iOb = new Integer(100);

The process of extracting a value from a type wrapper is called unboxing.

The program unboxes the value in 10b with this statement:

int i = i0Ob.intValue();

AutoBoxing

Auto boxing is the process by which a primitive type is automatically
encapsulated(boxed) into its equivalent type wrapper

whenever an object of that type is needed. There is no need to explicitly construct an
object.

Integer iOb = 100; // autobox an int

Auto-unboxing

Auto- unboxing is the process by which the value of a boxed object is automatically
extracted from a type wrapper when it is assigned to primitive type value is needed.

There is no need to call a method such as intValue().

int i = i0Ob; // auto-unbox

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

Example Program:

class AutoBoxUnBox

{

public static void main(String args[]) {

Integer iOb = 100; // autobox an int

int i = iOb; // auto-unbox

System.out.printin(i + " " + 10b); // displays 100 100
}

}

Explain auto boxing and auto unboxing during method call

class AutoBox2 {

static int m(Integer v)

{returnv;}

public static void main(String args[]) {
Integer iOb = m(100);
System.out.printIn(iOb);// 100

}

}

In the program, notice that m(') specifies an Integer parameter and returns an int
result.

Inside main(), m() is passed the value 100.
Because m() is expecting an Integer, this value is automatically boxed.
Then, m() returns the int equivalent of its argument. This causes v to be auto-unboxed.

Next, this int value is assigned to iOb in main(), which causes the int return value to be
autoboxed.

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

Explain auto boxing and unboxing during expression evaluation

Autoboxing/Unboxing Occurs in Expressions autoboxing and unboxing take place
whenever a conversion into an object or from an object is required.

This applies to expressions. Within an expression, a numeric object is automatically
unboxed.

The outcome of the expression is reboxed, if necessary. For example, consider the
following program:

class AutoBox3

{ public static void main(String args[]) {

Integer iOb, i0Ob2; int i;

iOb = 100;

System.out.printIn("Original value of iOb: " + iOb);
++i0b; // auto unbox and rebox
System.out.printin("After ++iOb: " + iOb);

iOb2 =iOb + (i0Ob / 3);

System.out.printin("iOb2 after expression: " + i0b2);
i =i0b + (i0Ob / 3); // auto unbox and rebox

System.out.printIn("i after expression: " + i);

}
}
++iOb;

This causes the value in iOb to be incremented.
It works like this: iODb is unboxed, the value is incremented, and the result is reboxed.
Auto-unboxing also allows you to mix different types of numeric objects in an
expression. Once the values are unboxed,the standard type promotions and conversions
are applied.For example, the following program is perfectly valid:
Integer iOb = 100; Double dOb = 98.6;
dOb = dOb + iOb; // type promoted to double

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

System.out.printIn("dOb after expression: " + dOb);
Integer iOb = 2;
switch(iOb) {
case 1: System.out.printin("one");

break;
case 2: System.out.printin("two");

break;
default:

System.out.printIn(“error");

}
When the switch expression is evaluated, iOb is unboxed and its int value is obtained.

As the examples in the program show, because of autoboxing/unboxing, using numeric
objects in an expression is both intuitive and easy.

Autoboxing/unboxing a Boolean and Character.

class AutoBox5 { public static void main(String args[]) {
Boolean b = true; // auto boxing boolean
if(b)
System.out.printin(“b is true");// auto unboxed when used in conditional expression
Character ch ='x'; // box a char
char ch2 = ch; // unbox a char
System.out.printin(*ch2 is " + ch2);
3s
The output is shown here:

b is true ch2 is x

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

Annotations

Annotations (Metadata) Beginning with JDK 5, a new facility was added to Java that
enables you to embed supplemental information into a source file.

This information, called an annotation, does not change the actions of a program.
Thus, an annotation leaves the semantics of a program unchanged.

However this information can be used by various tools during both development and
deployment.

For example, an annotation might be processed by a source-code generator. The term
metadata is also used to refer to this feature, but the term annotation is the most
descriptive and more commonly used.

An annotation is created through a mechanism based on the interface. Let’s begin
with an example.

Here is the declaration for an annotation called MyAnno:
@interface MyAnno { String str(); int val(); }

@ that precedes the keyword interface.

This tells the compiler that an annotation type is being declared.
Next, notice the two members str() and val().

All annotations consist solely of method declarations.
However, you don’t provide bodies for these methods.
Instead, Java implements these methods.

Moreover, the methods act much like fields.

An annotation cannot include an extends clause.
MyAnno(str = "Annotation Example”, val = 100)

public static void myMeth() { // ...

Notice that no parentheses follow str in this assignment.

What is retention policy ? Explain the use of retention tag.

¢ A retention policy determines at what point an annotation is discarded.

e Java defines three such policies, which are encapsulated within the
java.lang.annotation.

e RetentionPolicy enumeration.

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

They are SOURCE, CLASS, and RUNTIME.

e An annotation with a retention policy of SOURCE is retained only in
the source file and is discarded during compilation.

e An annotation with a retention policy of CLASS is stored in the .class
file during compilation. However, it is not available through the JVM
during run time.

e An annotation with a retention policy of RUNTIME is stored in the
.class file during compilation and is available through the JVM during
run time.

A retention policy is specified for an annotation by using one of Java’s built-in
annotations: @Retention.

e (@Retention(retention-policy)

Here, retention-policy must be one of the previously discussed
enumeration constants.

If no retention policy is specified for an annotation, then the default
policy of CLASS is used.

The following version of MyAnno uses @Retention to specify the
RUNTIME retention policy.

Thus, MyAnno will be available to the JVM during program execution.
@Retention(RetentionPolicy. RUNTIME)

@interface MyAnno { String str(); int val(); }

import java.lang.annotation.*;

import java.lang.reflect.*;

/I An annotation type declaration.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno { String str(); int val(); }
class Meta {

// Annotate a method.

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

@MyAnno(str = "Annotation Example”, val = 100)
public static void myMeth()

{ Meta ob = new Meta();

try {

/I First, get a Class object that represents // this class.
Class ¢ = ob.getClass();

/I Now, get a Method object that represents // this method.
Method m = c.getMethod("myMeth");

/I Next, get the annotation for this class.

MyAnno anno = m.getAnnotation(MyAnno.class);
System.out.printin(anno.str() + " " + anno.val()); }
catch (NoSuchMethodException exc)

{ System.out.printin("Method Not Found."); }

ks

public static void main(String args[]) { myMeth(); }
}

The output from the program is shown here:
Annotation Example 100

This program uses reflection as described to obtain and display the values of str and val in
the MyAnnoannotation associated with myMeth()in the Metaclass.

MyAnno anno = m.getAnnotation(MyAnno.class);

notice the expression MyAnno.class. This expression evaluates to a Class object of type
MyAnno, the annotation.

This construct is called a class literal. You can use this type of expression whenever a
Class object of a known class is needed.

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

However, to obtain a method that has parameters, you must specify class objects
representing the types of those parameters as arguments to getMethod(). For example,
here is a slightly different version of the preceding program:
import java.lang.annotation.*;

import java.lang.reflect.*;

@Retention(RetentionPolicy. RUNTIME)

@interface MyAnno { String str(); int val(); }

class Meta {

/[l myMeth now has two arguments.

@MyAnno(str = "Two Parameters”, val = 19)

public static void myMeth(String str, int 1)

{ Meta ob = new Meta();

try { Class ¢ = ob.getClass();

Il Here, the parameter types are specified.

Method m = c.getMethod("myMeth", String.class, int.class);
MyAnno anno = m.getAnnotation(MyAnno.class);
System.out.printin(anno.str() + " " + anno.val()); }

catch (NoSuchMethodException exc)

{ System.out.printIn("Method Not Found."); }

}

public static void main(String args[])

{ myMeth("test", 10); }

}

The output from this version is shown here:

Two Parameters 19

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

myMeth() takes a String and an int parameter.

To obtain information about this method, getMethod() must be called as shown here:
Method m = c.getMethod("myMeth", String.class, int.class);

Here, the Class objects representing String and int are passed as additional arguments.
Obtaining All Annotations

You can obtain all annotations that have RUNTIME retention that are associated with an
item by calling getAnnotations() on that item.

It has this general form:

Annotation[] getAnnotations()

It returns an array of the annotations.

getAnnotations() can be called on objects of type Class, Method, Constructor, and Field.
Here is another reflection example that shows how to obtain all annotations associated
with a class and with a method.

It declares two annotations.

It then uses those annotations to annotate a class and a method.

Example code:

import java.lang.annotation.*; import java.lang.reflect.*;
@Retention(RetentionPolicy.RUNTIME)

@interface MyAnno { String str(); int val(); }

@Retention(RetentionPolicy. RUNTIME)

@interface What { String description(); }

@What(description = "An annotation test class")

@MyAnno(str = "Meta2", val = 99) class Meta2 {

@What(description = "An annotation test method™)

@MyAnno(str = "Testing", val = 100)

public static void myMeth() { Meta2 ob = new Meta2();

try { Annotation annos[] = ob.getClass().getAnnotations();

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

/I Display all annotations for Meta2.
System.out.printIn("All annotations for Meta2:");
for(Annotation a : annos) System.out.printin(a);
System.out.printin();

I/ Display all annotations for myMeth.

Method m = ob.getClass().getMethod("myMeth");
annos = m.getAnnotations();
System.out.printIin("All annotations for myMeth:");
for(Annotation a : annos)

System.out.printin(a);

} catch (NoSuchMethodException exc) { System.out.printIn(*Method Not Found."); }

ks

public static void main(String args[]) { myMeth(); }

}

The output is shown here:

All annotations for Meta2:

@What(description=An annotation test class)

@MyAnno(str=Meta2, val=99)

All annotations for myMeth:

@What(description=An annotation test method)

@MyAnno(str=Testing, val=100)

The program uses getAnnotations() to obtain an array of all annotations associated with
the Meta2 class and with the myMeth() method. As explained, getAnnotations() returns

an array of Annotation objects.

Recall that Annotation is a super-interface of all annotation interfaces and that it overrides
toString() in Object.

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

Thus, when a reference to an Annotation is output, its toString() method is called to
generate a string that describes the annotation, as the preceding output shows.

The AnnotatedElement Interface
The methods declared in AnnotatedElement Interface

1. getAnnotation() --- It can be invoked with method, class. It return the used
annotation.

2. getAnnotations() --- It can be invoked with method, class. It return the used
annotations.

3. getDeclaredAnnotations() -- It returns all non-inherited annotations present in the
invoking object.

4. isAnnotationPresent(), which has this general form:

It returns true if the annotation specified by annoType is

associated with the invoking object. It returns false otherwise.

Default Values in annotation

You can give annotation members default values that will be used if no value is specified
when the annotation is applied.

A default value is specified by adding a default clause to a member’s declaration. It has
this general form:

type member() default value;
/I An annotation type declaration that includes defaults.
@interface MyAnno { String str() default "Testing"; int val() default 9000; }
@MyAnno() // both str and val default
@MyAnno(str = "some string") // val defaults
@MyAnno(val = 100) // str defaults
@MyAnno(str = "Testing", val = 100) // no defaults
Example:
import java.lang.annotation.*;
import java.lang.reflect.*;

@Retention(RetentionPolicy.RUNTIME)

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

@interface MyAnno { String str() default "Testing"; int val() default 9000; }
class Meta3 {
@MyAnno()
public static void myMeth() { Meta3 ob = new Meta3();
try { Class ¢ = ob.getClass();
Method m = c.getMethod("myMeth");
MyAnno anno = m.getAnnotation(MyAnno.class);
System.out.printin(anno.str() + " " + anno.val()); }
catch (NoSuchMethodException exc)

{

System.out.printin("Method Not Found."); }

ky

public static void main(String args[]) { myMeth(); }
}

Output:

Testing 9000

Marker Annotations

A marker annotation is a special kind of annotation that contains no members.
Its sole purpose is to mark a declaration. Thus, its presence as an annotation is sufficient.

The best way to determine if a marker annotation is present is to use the method
isAnnotationPresent(), which is a defined by the AnnotatedElement interface.

Here is an example that uses a marker annotation.

Because a marker interface contains no members, simply determining whether it is
present or absent is sufficient.

import java.lang.annotation.*;

import java.lang.reflect.*;

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

@Retention(RetentionPolicy. RUNTIME)

@interface MyMarker { }

class Marker {

@MyMarker

public static void myMeth() { Marker ob = new Marker();
try { Method m = ob.getClass().getMethod("myMeth");
if(m.isAnnotationPresent(MyMarker.class))
System.out.printIn("MyMarker is present.”);

} catch (NoSuchMethodException exc)

{ System.out.printIn("Method Not Found."); }

}

public static void main(String args[]) { myMeth(); }
}

Output

MyMarker is present.

public static void main(String args[]) { myMeth(); }

¥

Built in Annotations

Java Annotation is a tag that represents the metadata i.e. attached with class, interface,
methods or fields to indicate some additional information which can be used by java
compiler and JVM.

Built-In Java Annotations used in java code
e @Override

e @SuppressWarnings
e @Deprecated

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

Built-In Java Annotations used in other annotations

@Target
@Retention
@Inherited
@Documented

@Override

@Override annotation assures that the subclass method is overriding the parent class method.
If it is not so, compile time error occurs.Sometimes, we does the silly mistake such as
spelling mistakes etc. So, it is better to mark @Override annotation that provides assurity that
method is overridden.

Example: class Animal{

void eatSomething()
{System.out.printIn(*eating something");}
}
class Dog extends Animal{
@Override
void eatsomething()
{
System.out.printIn("eating foods");
H/Compile time error }

@SuppressWarnings

annotation: is used to suppress warnings issued by the compiler.

If you remove the @SuppressWarnings(“unchecked") annotation, it will show
warning at compile time because we are using non-generic collection.

import java.util.*;

class TestAnnotation2{
@SuppressWarnings("unchecked")
public static void main(String args[]){
ArrayList list=new ArrayL.ist();

list.add("'sonoo");

i

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

@Deprecated

@Deprecated annoation marks that this method is deprecated so compiler prints warning. It
informs user that it may be removed in the future versions.

So, it is better not to use such methods.
class A{
void m(){System.out.printIn("hello m");}
@Deprecated
void n(){System.out.printin("hello n*);}
¥
class TestAnnotation3{
public static void main(String args[]){
A a=new A();
a.n();
3s

Error message: Test.java uses or overrides a deprecated API.

@Inherited

is a marker annotation that can be used only on another annotation declaration. Furthermore,
it affects only annotations that will be used on class declarations. @ Inherited causes the
annotation for a superclass to be inherited by a subclass.

@Inherited
public @interface MyCustomAnnotation {

}
@MyCustomAnnotation

public class MyParentClass {

public class MyChildClass extends MyParentClass {

-

Here the class MyParentClass is using annotation @MyCustomAnnotation which is marked
with @inherited annotation. It means the sub class MyChildClass inherits the
@MyCustomAnnotation.

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

@Documented

@Documented annotation indicates that elements using this annotation should be
documented by JavaDoc.

@Documented
public @interface MyCustomAnnotation {
/[Annotation body

}
@MyCustomAnnotation

public class MyClass {
//Class body

¥

While generating the javadoc for class MyClass, the annotation @MyCustomAnnotation
would be included in that

@Target

It specifies where we can use the annotation.

For example: In the below code, we have defined the target type as METHOD which means
the below annotation can only be used on methods.

import java.lang.annotation.ElementType;
import java.lang.annotation. Target;

@Target({ElementType. METHOD})
public @interface MyCustomAnnotation {

}
public class MyClass {

@MyCustomAnnotation
public void myMethod()

{
//Doing something

¥
k

If you do not define any Target type that means annotation can be applied to any element.

@Retention is mention in earlier topic.

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE —Module 1

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advanced Java and J2EE —Module 2

Module 2-The collections and Framework

1. Explain brief about collection frame work.

e The Java Collections Framework standardizes the way in which groups of
objectsare handled by your programs.

e The framework had to be high-performance.

e The implementations for the fundamental collections(dynamic arrays, linked
lists, trees, and hash tables) are highly efficient.

e The framework had to allow different types of collections to work in a similar
manner and with a high degree of interoperability.

e Extending and/or adapting a collection had to be easy.

e Mechanisms were added that allow the integration of standard arrays into the
Collections Framework.

e Algorithms are another important part of the collection mechanism.

e Algorithms operate on collections and are defined as static methods within the
Collections class.

e An iterator offers a general-purpose, standardized way of accessing the
elements within a collection, one at a time. Thus, an iterator provides a means
of enumerating the contents of a collection.

e Because each collection implements Iterator, the elements of any collection
class can be accessed through the methods defined by lterator.

2. What are the recent changes to collection framework?

Recently, the Collections Framework underwent a fundamental change that
significantly increased its power and streamlined its use. The changes were the addition of
generics, autoboxing/unboxing, and the for-each style for loop.

Generics

The addition of generics caused a significant change to the Collections Framework
because the entire Collections Framework has been reengineered for it. All collections are
now generic, and many of the methods that operate on collections take generic type
parameters Generics add the one feature that collections had been missing: type safety.

Prior to generics, all collections stored Object references, which meant that any collection
could store any type of object. Thus, it was possible to accidentally store in compatible type s
in a collection.

Doing so could result in run-time type mismatch errors. With generics, it is possible to
explicitly state the type of data being stored, and run-time type mismatch errors can be
avoided.

Autoboxing/unboxing

Autoboxing facilitates the Use of Primitive Types.
Autoboxing/unboxing facilitates the storing of primitive types in collections.

As you will see, a collection can store only references, not primitive values. In the past, if you
wanted to store a primitive value, such as an int, in a collection, you had to manually box it
into its type wrapper.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

When the value was retrieved, it needed to be manually unboxed (by using an explicit cast)
into its proper primitive type.

Because of autoboxing/unboxing, Java can automatically perform the proper boxing and
unboxing needed when storing or retrieving primitive types. There is no need to manually
perform these operations.

The For-Each Style for Loop

collection can be cycled through by use of the for-each style for loop.
Earlier it was done with Iteratable interface. For each loop is easier than the earlier iterator.

3. List _the Collection Interfaces?

e The Collections Framework defines several interfaces. This section provides
an overview of each interface. Collection enables you to work with groups of
objects; it is at the top of the collections hierarchy.

e Deque extends Queue to handle a double-ended queue.

e List extends Collection to handle sequences

¢ NavigableSet extends SortedSet to handle retrieval of elements based on
closest-match searches.

¢ Queue extends Collection to handle special types of lists in which elements
are removed only from the head.

e Set extends Collection to handle sets, which must contain unique elements.

e SortedSet extends Set to handle sorted sets.

4. Give the syntax of collection interface. Explain the methods present in collection
interface.

interface Collection<E>
E specifies the type of objects that the collection
Collection extends the Iterable interface.
Iterating through the list cane be done through the iteratable interface.

Methods in collection interface

add
boolean add(E obj)
adds obj to the invoking collection.
Returns true if obj was added to the collection.
Returns false if obj is already a member of the collection and
the collection does not allow duplicates.
addAll

boolean addAll(Collection<? extends E> ¢)
Adds all the elements of c to the invoking collection.
Returns true if the operation succeeded

(i.e., the elements were added). Otherwise, returns false.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

PR, PSR GSN PE

Q. PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

clear

void clear()

Removes all elements from the invoking collection.

contains
boolean contains(Object obj)
Returns true if obj is an element of the invoking collection.
Otherwise, returns false.
containsAll
boolean containsAll(Collection<?> ¢)

Returns true if the invoking collection contains all elements of c.
Otherwise, returns false.

equals
boolean equals(Object obj)
Returns true if the invoking collection and obj are equal.
Otherwise, returns false.
hashCode
int hashCode() Returns the hash code for the invoking collection.
iSEmpty
boolean isEmpty()
Returns true if the invoking collection is empty.
Otherwise, returns false.
iterator
Iterator<E> iterator() Returns an iterator for the invoking collection.
remove
boolean remove(Object obj)
Removes one instance of obj from the invoking collection.

Returns true if the element was removed. Otherwise, returns false.

removeAll
boolean removeAll(Collection<?> ¢)

Removes all elements of ¢ from the invoking collection.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

PR, PSR GSN PE

Q. PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

Returns true if the collection changed (i.e., elements were removed).
Otherwise, returns false.

retainAll
boolean retainAll(Collection<?> ¢)
Removes all elements from the invoking collection except those in c.

Returns true if the collection changed (i.e., elements were removed).
Otherwise, returns false.

<2
N
)

int size(') Returns the number of elements held in the invoking
collection.

toArray
Object[] toArray()

Returns an array that contains all the elements stored in the
invoking collection.

The array elements are copies of the collection elements.
The array elements are copies of the collection elements.

If the size of array equals the number of elements, these are returned in
array.

5. Explain the methods present in List interface.

List interface extends collection interface. It includes new method. Which are
given below.

void add(int index , E obj)
Inserts obj into the invoking list at the index passed in index.
Any pre existing elements at or beyond the point of insertion are shifted up.
boolean addAll(int index , Collection<? extends E>c¢)
Inserts all elements of C into the invoking list at the index passed in

index . Any pre existing elements at or beyond the point of insertion are shifted up.
Thus, no elements are overwritten. Returns true if the invoking list changes and
returns false otherwise.

E get(int index)
Returns the object stored at the specified index within the invoking collection.
int indexOf(Object obj)

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

PR, PSR GSN PE

Q. PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

Returns the index of the first instance of obj in the invoking list. If obj is not an
element of the list, -1 is returned.

int lastindexOf(Object obj)

Returns the index of the last instance of obj in the invoking list. If obj is not an
element of the list, —1 is returned.

Listlterator<E> listlterator()

Returns an iterator to the start of the invoking list.

Listlterator<E> listlterator(int index)

Returns an iterator to the invoking list that begins at the specified index.
E remove(int index)

Removes the element at position index from the invoking list and returns the deleted
element. The resulting list is compacted. That is, the indexes of subsequent elements
are decremented by one.

E set(int index , E obj)
Assigns obj to the location specified by index within the invoking list.
List<E> subL.ist(int start , intend)

Returns a list that includes elements from start to end —1 in the invoking list.
Elements in the returned list are also referenced by the invoking object.

6. Explain Set Interface and set method:

The Set interface defines a set.

It extends Collection and declares the behaviour of a collection that does not allow
duplicate elements.

Therefore, the add() method returns false if an attempt.
Set is a generic interface that has this declaration:
interface Set<E>

Here, E specifies the type of objects that the set will hold.
The SortedSet Interface

The SortedSet interface extends Set and declares the behavior of a set sorted in
ascending order.

SortedSet is a generic interface that has this declaration: interface SortedSet<E> Here,
E specifies the type of objects that the set will hold.

In addition to those methods defined by Set, the SortedSet interface declares the
methods.

Comparator<? super E> comparator()

Returns the invoking sorted set’s comparator.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

If the natural ordering is used for this set, null is returned.

E first()

Returns the first element in the invoking sorted set.
SortedSet<E> headSet(E end)

Returns a SortedSet containing those elements less than end that are contained in the
invoking sorted set.

Elements in the returned sorted set are also referenced by the invoking sorted set.
E last()

Returns the last element in the invoking sorted set.

SortedSet<E> subSet(E start , E end)

Returns a SortedSet that includes those elements between start and end— 1. Elements
in the returned collection are also referenced by the invoking object.

SortedSet<E> tailSet(E start)

Returns a SortedSet that contains those elements greater than or equal to start that are
contained in the sorted set. Elements in the returned set are also referenced by the
invoking object.

Several methods throw a NoSuchElementException when no items are contained in
the invoking set.

A ClassCastException is thrown when an object is in compatible with the elements in
a set.

A NullPointerException is thrown if an attempt is made to use a null object and null
is not allowed in the set.

An lllegalArgumentException is thrown if an invalid argument is used.

7. NavigableSet Interface and method

The NavigableSet interface extends SortedSet and declares the behavior of a
collection that supports the retrieval of elements based on the closest match to a given value
or values.

NavigableSet is a generic interface that has this declaration:
interface NavigableSet<E>
Here, E specifies the type of objects that the set will hold.
NavigableSet adds the following
E ceiling(E obj)
Searches the set for the smallest element

If such an element is found, it is returned. Otherwise, null is returned.
Iterator<E> descendinglterator()

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

Returns an iterator that moves from the greatest to least. In other words, it returns a
reverse iterator.

NavigableSet<E> descendingSet()

Returns a NavigableSet that is the reverse of the invoking set. The resulting set is
backed by the invoking set.

E floor(E obj)

Searches the set for the largest element e such that e <= obj . If such an element is
found, it is returned. Otherwise, null is returned.

NavigableSet<E> headSet(E upperBound , boolean incl)

Returns a NavigableSet that includes all elements from the invoking set that are less
than upperBound . If incl is true, then an element equal to upperBound is included.
The resulting set is backed by the invoking set.

E higher(E obj) Searches the set for the largest element e such that e > obj . If such an
element is found, it is returned. Otherwise, null is returned.

E lower(E obj)

Searches the set for the largest element e such that e < obj . If such an element is
found, it is returned. Otherwise, null is returned.

E pollFirst()

Returns the first element, removing the element in the process. Because the set is
sorted, this is the element with the least value. null is returned if the set is empty.

E poliLast()

Returns the last element, removing the element in the process. Because the set is
sorted, this is the element with the greatest value. null is returned if the set is empty.

NavigableSet<E> subSet(E lowerBound , boolean lowlncl , E upperBound ,
boolean highlncl)

Returns a NavigableSet that includes all elements from the invoking set that are
greater than lowerBound and less than upperBound .

If lowlncl is true, then an element equal to lowerBound is included.
If highIncl is true, then an element equal to upperBound is included.
The resulting set is backed by the invoking set.

NavigableSet<E> tailSet(E lowerBound , boolean incl)

Returns a NavigableSet that includes all elements from the invoking set that are
greater than lowerBound . If incl is true, then an element equal to lowerBound is
included. The resulting set is backed by the invoking set

8. The Queue Interface and methods

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

The Queue interface extends Collection and declares the behaviour of a queue, which is
often a first-in, first-out list. However, there are types of queues in which the ordering is
based upon other criteria. Queue is a generic interface that has this declaration:

interface Queue<E>
E element()

Returns the element at the head of the queue. The element is not removed. It
throws NoSuchElementException if the queue is empty.

boolean offer(E obj)
Attempts to add obj to the queue. Returns true if obj was added and false otherwise.
E peek()

Returns the element at the head of the queue. It returns null if the queue is empty. The
element is not removed.

E poll()

Returns the element at the head of the queue, removing the element in the process. It
returns null if the queue is empty.

E remove()

Removes the element at the head of the queue, returning the element in the process. It
throws NoSuchElementException if the queue is empty.

9. Deque interface

It extends Queue and declares the behavior of a double-ended queue.

Double-ended queues can function as standard, first-in, first-out queues or as
last-in, first-out stacks.

Deque is a generic interface that has this declaration:
interface Deque<E>
void addFirst(E obj)

Adds obj to the head of the deque. Throws an lllegalStateException if a
capacity-restricted deque is out of space.

void addLast(E obj)

Adds obj to the tail of the deque. Throws an lllegalStateException if a
capacity-restricted deque is out of space.

Iterator<E> descendinglterator()

Returns an iterator that moves from the tail to the head of the deque. In other
words, it returns a reverse iterator.

E getFirst()

Returns the first element in the deque. The object is not removed from the
deque. It throws NoSuchElementException if the deque is empty.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

E getLast()
Returns the last element in the deque.

The object is not removed from the deque. It throws
NoSuchElementException if the deque is empty.

boolean offerFirst(E obj)

Attempts to add obj to the head of the deque. Returns true if obj was added
and false otherwise. Therefore, this method returns false when an attempt is made to
add obj to a full, capacity-restricted deque.

boolean offerLast(E obj)

Attempts to add obj to the tail of the deque. Returns true if obj was added and
false otherwise.

E peekFirst()

Returns the element at the head of the deque. It returns null if the deque is
empty. The object is not removed.

E peekLast()

Returns the element at the tail of the deque. It returns null if the deque is
empty. The object is not removed.

E pollFirst()

Returns the element at the head of the deque, removing the element in the process. It
returns null if the deque is empty.

E pollLast() Returns the element at the tail of the deque, removing the element in the
process. It returns null if the deque is empty.

E pop() Returns the element at the head of the deque, removing it in the process. It
throws NoSuchElementException if the deque is empty.

void push(E obj) Adds obj to the head of the deque. Throws an IllegalStateException
if a capacity-restricted deque is out of space.

E removeFirst() Returns the element at the head of the deque, removing the element
in the process. It throws NoSuchElementException if the deque is empty.

boolean removeFirstOccurrence(Object obj)

Removes the first occurrence of obj from the deque. Returns true if successful and
false if the deque did not contain obj .

E removelLast()

Returns the element at the tail of the deque, removing the element in the process. It
throws NoSuchElementException if the deque is empty.

boolean removelLastOccurrence(Object obj)

Removes the last occurrence of obj from the deque. Returns true if successful and
false if the deque did not contain

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

.
Py P NPT

[« PR -
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

10. The Collection Classes with example code

AbstractCollection

Implements most of the Collection interface.
AbstractList

Extends AbstractCollection and implements most of the List interface.
Queue interface.
AbstractSequentialList

Extends AbstractList for use by a collection that uses sequential rather than
random access of its elements.
AbstractSet

Extends AbstractCollection and implements most of the Set interface.
EnumSet

Extends AbstractSet for use with enum elements.
HashSet

Extends AbstractSet for use with a hash table.
LinkedHashSet

Extends HashSet to allow insertion-order iterations.
PriorityQueue

Extends AbstractQueue to support a priority-based queue.
TreeSet Implements a set stored in a tree. Extends AbstractSet.
LinkedList Implements a linked list by extending AbstractSequentialList.
ArrayList Implements a dynamic array by extending AbstractList.
ArrayDeque Implements a dynamic double-ended queue by extending
AbstractCollection and implementing the Deque interface.
ArrayList

ArrayL.ist class extends AbstractList and implements the List interface
ArrayList is a generic class that has this declaration:

class ArrayList<E>

ArrayList has the constructors shown here:

ArrayList()

constructor builds an empty array list

ArrayList(Collection<? extends E> c)

builds an array list that is initialized with the elements of the collection c.
ArrayList(int capacity)

builds an array list that has the specified initial capacity. The capacity is the
size of the underlying array that is used to store the elements. The capacity
grows automatically as elements are added to an array list.

class ArrayListDemo {

public static void main(String args[]) {
ArrayList<String> al = new ArrayList<String>();
System.out.printin("Initial size of al: " +
al.size());

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

al.add("C™);

al.add("A");

al.add("E");

al.add("B"™);

al.add("'D");

al.add("F");

al.add(1, "A2");

System.out.printin("Size of al after additions: " +
al.size());

System.out.printIn("Contents of al: " + al);
al.remove("F");

al.remove(2);

System.out.printIin("Size of al after deletions: " +
al.size());

s

Converting ArrayL ist to Array

class ArrayListToArray {
public static void main(String args[]) {
ArrayList<Integer> al = new ArrayList<Integer>();
al.add(1);
al.add(2);
al.add(3);
al.add(4);
System.out.printin("Contents of al: " + al);
Integer ia[] = new Integer[al.size()];
ia = al.toArray(ia);
int sum = 0;
for(inti :ia) sum +=1i;
System.out.printin("Sum is: " + sum);
}
}

LinkedL ist
The LinkedList class extends AbstractSequentialList and implements the List, Deque, and
Queue interfaces.
It provides a linked-list data structure. LinkedL.ist is a generic class that
has this declaration:
class LinkedList<E>

Here, E specifies the type of objects that the list will hold. LinkedL.ist has the two
constructors
LinkedList()
LinkedList(Collection<? extends E> c)
The first constructor builds an empty linked list.
The second constructor builds a linked list that is initialized with the elements of the
collection c.
Example code:
import java.util.*;
class LinkedListDemo {

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

PPN -y -

[« PR -
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

public static void main(String args[]) {
LinkedList<String> Il = new LinkedList<String>();
Il.add("F");

Il.add("B");

Il.add("D");

Il.add("E");

Il.add("C");

Il.addLast("Z");

Il.addFirst("A");

Il.add(1, "A2");

System.out.printin("Original contents of II: " + II);
Il.remove("F");

Il.remove(2);

System.out.printin("Contents of Il after deletion: "+ II);
Il.removeFirst();

Il.removeLast();

System.out.printIn("ll after deleting first and last: "+ Il);
String val = ll.get(2);

Il.set(2, val + " Changed");

System.out.printin("ll after change: " + Il);

¥
k

HashSet
HashSet extends AbstractSet and implements the Set interface. It creates a collection
that uses a hash table for storage.

Java HashSet class is used to create a collection that uses a hash table for storage.
It inherits the AbstractSet class and implements Set interface.
The important points about Java HashSet class are:

o HashSet stores the elements by using a mechanism called hashing.
o HashSet contains unique elements only.

HashSet is a generic class that has this declaration:
class HashSet<E>
Here, E specifies the type of objects that the set will hold.

Constructor

HashSet()

HashSet(Collection<? extends E> c)
HashSet(int capacity)

HashSet(int capacity, float fillRatio)

Example:

import java.util.*;

class HashSetDemo {

public static void main(String args[]) {
HashSet<String> hs = new HashSet<String>();

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

PPN -y -

[« PR -
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

hs.add("B");
hs.add("A");
hs.add("D");
hs.add("E");
hs.add("C");
hs.add("F");
System.out.printin(hs);
}

}

output
[D, A F, C, B, E]
LinkedHashSet

LinkedHashSet class is a Hash table and Linked list implementation of the set
interface. It inherits HashSet class and implements Set interface.

The important points about Java LinkedHashSet class are:

o Contains unique elements only like HashSet.
o Provides all optional set operations, and permits null elements.
o Maintains insertion order.

The LinkedHashSet class extends HashSet and adds no members of its own.
It is a generic class that has this declaration:
class LinkedHashSet<E>
Here, E specifies the type of objects that the set will hold.

LinkedHashSet maintains a linked list of the entries in the set, in the order in which
they were inserted.
This allows insertion-order iteration over the set.
That is, when cycling through a LinkedHashSet using an iterator, the elements will
be returned in the order in which they were inserted.
This is also the order in which they are contained in the string returned by
toString() when called on a LinkedHashSet object.
To see the effect of LinkedHashSet, try substituting LinkedHashSet for HashSet in
the preceding program. The output will be
[B,A,D,E,C,F]
which is the order in which the elements were inserted.
TreeSet
TreeSet extends AbstractSet and implements the NavigableSet interface.

It creates a collection that uses a tree for storage. Objects are stored in sorted,
ascending order. Access and retrieval times are quite fast, which makes TreeSet an
excellent choice when storing large amounts of sorted information that must be found
quickly.

TreeSet is a generic class that has this declaration:
class TreeSet<E>
Here, E specifies the type of objects that the set will hold.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

TreeSet has the following constructors:
TreeSet()
TreeSet(Collection<? extends E> c)
TreeSet(Comparator<? super E> comp)
TreeSet(SortedSet<E> ss)

Example

import java.util.*;

class TreeSetDemo {

public static void main(String args[]) {
TreeSet<String> ts = new TreeSet<String>();
ts.add("C");

ts.add("A");

ts.add("B");

ts.add("E");

ts.add("F");

ts.add("D");

System.out.printIn(ts);

k
¥

The output from this program is shown here:
[A,B,C,D, E, F]

PriorityQueue
PriorityQueue extends AbstractQueue and implements the Queue interface.
It creates a queue that is prioritized based on the queue’s comparator.
PriorityQueue is a generic class that has this declaration:
class PriorityQueue<E>
Here, E specifies the type of objects stored in the queue.
PriorityQueues are dynamic, growing as necessary.
PriorityQueue defines the six constructors shown here:
PriorityQueue()
PriorityQueue(int capacity)
PriorityQueue(int capacity, Comparator<? super E> comp)
PriorityQueue(Collection<? extends E> c)
PriorityQueue(PriorityQueue<? extends E> c)
PriorityQueue(SortedSet<? extends E> c)

ArrayDeque

Java SE 6 added the ArrayDeque class, which extends AbstractCollection and
implements the Deque interface.

It adds no methods of its own.

ArrayDeque creates a dynamic array and has no capacity restrictions.

ArrayDeque is a generic class that has this declaration:

class ArrayDeque<E>

Here, E specifies the type of objects stored in the collection.

ArrayDeque defines the following constructors:

ArrayDeque()

ArrayDeque(int size)

ArrayDeque(Collection<? extends E> c)

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

Example:

import java.util.*;

class ArrayDequeDemo {

public static void main(String args[]) {
ArrayDeque<String> adq = new ArrayDeque<String>();
adg.push("A");

adq.push("B");

adg.push("D");

adg.push("E");

adg.push("F");
System.out.print("Popping the stack: ");
while(adg.peek() != null)
System.out.print(adg.pop() + " ");
System.out.printin();

}

}

The output is shown here:
Popping the stack: FED B A

Accessing a collection Via an Iterator:

Before you can access a collection through an iterator, you must obtain one. Each of
the collection classes provides an iterator() method that returns an iterator to the start of
the collection.

By using this iterator object, you can access each element in the collection. Element
at a time. In general, to use an iterator to cycle through the contents of a collection, follow
these steps:

1. Obtain an iterator to the start of the collection by calling the collection’s iterator()
method.

2. Set up a loop that makes a call to hasNext(). Have the loop iterate as long as hasNext()
returns true.

3. Within the loop, obtain each element by calling next().

4. For collections that implement List, you can also obtain an iterator by calling
listlterator().

5.As explained, a list iterator gives you the ability to access the collection in either the
forward or backward direction and lets you modify an element.

6. Otherwise, Listlterator is used just like Iterator.

import java.util.*;
class IteratorDemo {
public static void main(String args[]) {

ArrayList<String> al = new ArrayList<String>();
al.add("C");

al.add("A");
al.add("E");

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

al.add("B");
al.add("D");
al.add("F");

System.out.print("Original contents of al: ");

Iterator<String> itr = al.iterator();
while(itr.hasNext()) {

String element = itr.next();
System.out.print(element + " ™);

¥
System.out.printin();

Listlterator<String> litr = al.listlterator();
while(litr.hasNext()) {

String element = litr.next();

litr.set(element + "+");

}

System.out.print("Modified contents of al: ");
itr = al.iterator();

while(itr.hasNext()) {

String element = itr.next();
System.out.print(element + " ");

}

System.out.printin();
System.out.print("Modified list backwards: ");
while(litr.hasPrevious()) {

String element = litr.previous();
System.out.print(element + " ");

}

System.out.printin();

}

}
Output:

Original contentsofal. CAEBDF
Modified contents of al: C+ A+ E+ B+ D+ F+
Modified list backwards: F+ D+ B+ E+ A+ C+

For Each loop for iterating through collection:
import java.util.*;

class ForEachDemo {

public static void main(String args[]) {
ArrayList<Integer> vals = new ArrayList<Integer>();
vals.add(2);

vals.add(2);

vals.add(3);

vals.add(4);

vals.add(5);

System.out.print("Original contents of vals: *);
for(int v : vals)

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

System.out.print(v + " ");
System.out.printin();

int sum = 0;

for(int v : vals)

sum +=v;

System.out.printIn("Sum of values: " + sum);
}

}

Output:
Original contents of vals: 12345

Sum of values: 15

Storing User Defined Classes in Collections:

collections are not limited to the storage of built-in objects.

The power of collections is that they can store any type of object,
including objects of classes that you create.
User defined objects stored in LinkedList to store mailing addresses:

import java.util.*;

class Address {

private String name;

private String street;

private String city;

private String state;

private String code;

Address(String n, String s, String c,
String st, String cd) {

name = n;
street = s;
city = ¢;
state = st;
code = cd;
}

public String toString() {

return name + "\n" + street + "\n" +

city + " " + state + " " + code;

1}

class MailList {

public static void main(String args[]) {
LinkedList<Address> ml = new LinkedList<Address>();
ml.add(new Address("J.W. West", "11 Oak Ave",
"Urbana", "IL", "61801"));

ml.add(new Address("Ralph Baker", "1142 Maple Lane",
"Mahomet", "IL", "61853"));

ml.add(new Address(""Tom Carlton"”, "867 Elm St",
"Champaign”, "IL", "61820"));

for(Address element : ml)

System.out.printin(element + "\n");

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

PPN -y -

[« PR -
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

System.out.printin();

¥
¥

The output from the program is shown here:
J.W. West

11 Oak Ave

Urbana IL 61801

Ralph Baker

1142 Maple Lane

Mahomet IL 61853

Tom Carlton

867 EIm St

Champaign IL 61820

Random Access Interface:

RandomAccess interface contains no members.

However, by implementing this interface, a collection signals that it supports efficient
random access to its elements.

By checking for the RandomAccess interface, client code can determine at run time whether
a collection is suitable for certain types of random access operations—especially as they
apply to large collections.

RandomAccess is implemented by ArrayL.ist and by the legacy Vector class, among others.

Working With Maps:

A map is an object that stores associations between keys and values, or key/value pairs.
Keys and values are objects. Keys must be unique, but the values may be duplicated.
Some maps can accept a null key and null values, others cannot.

There is one key point about maps that is important to mention at the outset: they don’t
implement the Iterable interface. This means that you cannot cycle through a map using a
for-each style for loop. Furthermore, you can’t obtain an iterator to a map.

However, as you will soon see, you can obtain a collection-view of a map, which does allow
the use of either the for loop or an iterator.

The Map Interfaces
Because the map interfaces define the character and nature of maps, this discussion of maps
begins with them.

The following interfaces support maps:

The Map Interface

The Map interface maps unique keys to values. A key is an object that you use to retrieve a
value at a later date. Given a key and a value, you can store the value in a Map object. After
the value is stored, you can retrieve it by using its key.

Map is generic:
interface Map<K, V>

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

Here, K specifies the type of keys, and V specifies the type of values.
The methods declared by Map.

Several methods
throw a ClassCastException when an object is incompatible with the elements in a map.

A NullPointerException is thrown if an attempt is made to use a null object and null is not
allowed in the map.

An UnsupportedOperationException is thrown when an attempt is
made to change an unmodifiable map.

An lllegalArgumentException is thrown if an
invalid argument is used.

Maps revolve around two basic operations: get() and put(). To put a value into a map,
use put(), specifying the key and the value.

To obtain a value, call get(), passing the key as

an argument. The value is returned.

maps are not, themselves, collections because they do not implement the Collection
interface. However, you can obtain a collection-view of a map. To do this, you can use the
entrySet() method. It returns a Set that contains the elements in the map.

To obtain a collection-view of the keys,
use keySet().

To get a collection-view of the values, use values().

Collection-views are the means by which maps are integrated into the larger Collections
Framework.

SortedMap

The SortedMap interface extends Map. It ensures that the entries are maintained in
ascending

order based on the keys.

SortedMap is generic and is declared as shown here:
interface SortedMap<K, V>

K specifies the type of keys,

V specifies the type of values.

Several methods throw a NoSuchElementException when no items are in the invoking map.
A ClassCastException is thrown when an object is incompatible with the elements in a map.
A NullPointerException is thrown if an attempt is made to use a null object when null is not
allowed in the map.

An lllegalArgumentException is thrown if an invalid argument is used.
Sorted maps allow very efficient manipulations of submaps

To obtain a submap, use headMap(), tailMap(), or subMap().

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

To get the first key in the set, call firstKey().
To get the last key, use lastKey().

NavigableMap Interface

The NavigableMap interface was added by Java SE 6.

It extends SortedMap and declares the behavior of a map that supports the retrieval of
entries based on the closest match to a given key or keys. NavigableMap is a generic
interface that has this declaration:

interface NavigableMap<K,V>

Here, K specifies the type of the keys, and V specifies the type of the values associated with
the keys.

Several methods throw a ClassCastException when an object is incompatible with the keys
in the map.

A NullPointerException is thrown if an attempt is made to use a null object and null keys
are not allowed in the set.

An IllegalArgumentException is thrown if an invalid argument is used.

equal to start.

Map.Entry Interface

The Map.Entry interface enables you to work with a map entry. Recall that the entrySet()
method declared by the Map interface returns a Set containing the map entries.

Each of these set elements is a Map.Entry object. Map.Entry is generic and is declared like
this:

interface Map.Entry<K, V> Here, K specifies the type of keys, and V specifies the type of
values.

the methods declared by Map.Entry.

Map Classes
Several classes provide implementations of the map interfaces. The classes that can be used

for maps are summarized here:

HashMap:
The HashMap class extends AbstractMap and implements the Map interface. It uses a hash
table to store the map.

This allows the execution time of get() and put() to remain constant
even for large sets. HashMap is a generic class that has this declaration:

class HashMap<K, V>

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

Here, K specifies the type of keys, and V specifies the type of values.

The following constructors are defined:

HashMap()

HashMap(Map<? extends K, ? extends V> m)

HashMap(int capacity)

HashMap(int capacity, float fillRatio)

The first form constructs a default hash map. The second form initializes the hash map by
using the elements of m. The third form initializes the capacity of the hash map to capacity.
The fourth form initializes both the capacity and fill ratio of the hash map by using its
arguments.

The meaning of capacity and fill ratio is the same as for HashSet, described earlier. The
default capacity is 16.

The default fill ratio is 0.75.

HashMap implements Map and extends AbstractMap. It does not add any methods of
its own.

import java.util.*;

class HashMapDemo {

public static void main(String args[]) {
HashMap<String, Double> hm = new HashMap<String, Double>();
hm.put("John Doe", new Double(3434.34));
hm.put("Tom Smith", new Double(123.22));
hm.put("Jane Baker", new Double(1378.00));
hm.put("Tod Hall", new Double(99.22));
hm.put("Ralph Smith", new Double(-19.08));
Set<Map.Entry<String, Double>> set = hm.entrySet();
for(Map.Entry<String, Double> me : set) {
System.out.print(me.getKey() + *: *);
System.out.printin(me.getValue());

}

System.out.printin();

double balance = hm.get("John Doe");

hm.put("John Doe", balance + 1000);
System.out.printIn("John Doe's new balance: " +
hm.get("John Doe"));

¥
¥

Output from this program is shown here (the precise order may vary):
Ralph Smith: -19.08

Tom Smith: 123.22

John Doe: 3434.34

Tod Hall: 99.22

Jane Baker: 1378.0

John Doe’s new balance: 4434.34

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

The program begins by creating a hash map and then adds the mapping of names to
balances. Next, the contents of the map are displayed by using a set-view, obtained by calling
entrySet(). The keys and values are displayed by calling the getKey() and getValue()
methods

that are defined by Map.Entry. Pay close attention to how the deposit is made into John
Doe’s

account. The put() method automatically replaces any preexisting value that is associated
with the specified key with the new value. Thus, after John Doe’s account is updated, the
hash map will still contain just one “John Doe” account.

TreeMap

The TreeMap class extends AbstractMap and implements the NavigableMap interface.
It creates maps stored in a tree structure.

A TreeMap provides an efficient means of storing key/value pairs in sorted order and allows
rapid retrieval. You should note that, unlike a hash map, a tree map guarantees that its
elements will be sorted in ascending key order.

TreeMap is a generic class that has this declaration:
class TreeMap<K, V>

Here, K specifies the type of keys, and V specifies the type of values.

The following TreeMap constructors are defined:

TreeMap()

TreeMap(Comparator<? super K> comp)

TreeMap(Map<? extends K, ? extends V> m)

TreeMap(SortedMap<K, ? extends V> sm)

The first form constructs an empty tree map that will be sorted by using the natural order of
its keys. The second form constructs an empty tree-based map that will be sorted by using the
Comparator comp. (Comparators are discussed later in this chapter.) The third form
initializes

a tree map with the entries from m, which will be sorted by using the natural order of the
keys. The fourth form initializes a tree map with the entries from sm, which will be sorted in
the same order as sm.

TreeMap has no methods beyond those specified by the NavigableMap interface and

the AbstractMap class.

The following program reworks the preceding example so that it uses TreeMap:

import java.util.*;

class TreeMapDemo {

public static void main(String args[]) {

Il Create a tree map.

TreeMap<String, Double> tm = new TreeMap<String, Double>();

/[Put elements to the map.

tm.put("John Doe", new Double(3434.34));

tm.put("Tom Smith", new Double(123.22));

tm.put("Jane Baker", new Double(1378.00));

tm.put("Tod Hall", new Double(99.22));

tm.put("Ralph Smith", new Double(-19.08));

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

PPN -y -

[« PR -
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

Il Get a set of the entries.
Set<Map.Entry<String, Double>> set = tm.entrySet();
// Display the elements.

for(Map.Entry<String, Double> me : set) {
System.out.print(me.getKey() +": ");
System.out.printin(me.getValue());

}

System.out.printin();

double balance = tm.get("John Doe");
tm.put("John Doe", balance + 1000);
System.out.printin("John Doe's new balance: " +
tm.get("John Doe™));

¥
¥

The following is the output from this program:
Jane Baker: 1378.0

John Doe: 3434.34

Ralph Smith: -19.08

Todd Hall: 99.22

Tom Smith: 123.22

John Doe’s current balance: 4434.34
TreeMap sorts the keys.

However, in this case, they are sorted by first name
instead of last name.

You can alter this behavior by specifying a comparator when the map
is created, as described shortly.

LinkedHashMap
LinkedHashMap extends HashMap.

It maintains a linked list of the entries in the map, in the

lorder in which they were inserted. This allows insertion-order iteration over the map. That
iS, when iterating through a collection-view of a LinkedHashMap, the elements will be
returned in the order in which they were inserted.

LinkedHashMap that returns its elements in the order in which they were last accessed.

LinkedHashMap is a generic class that has this declaration:
class LinkedHashMap<K, V>
Here, K specifies the type of keys, and V specifies the type of values.

LinkedHashMap defines the following constructors:
LinkedHashMap()

LinkedHashMap(Map<? extends K, ? extends V> m)
LinkedHashMap(int capacity)

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

PR, PSR GSN PE

Q. PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

LinkedHashMap(int capacity, float fillRatio)
LinkedHashMap(int capacity, float fillRatio, boolean Order)
The first form constructs a default LinkedHashMap.

The second form initializes the LinkedHashMap with the elements from m. The third form
initializes the capacity. The fourth form initializes both capacity and fill ratio. The meaning
of capacity and fill ratio are the same as for HashMap. The default capactiy is 16. The
default ratio is 0.75. The last form allows you to specify whether the elements will be stored
in the linked list by insertion order, or by order of last access.

IdentityHashMap
IdentityHashMap extends AbstractMap and implements the Map interface.

It is similar to HashMap except that it uses reference equality when comparing elements.
IdentityHashMap is a generic class that has this declaration:

class IdentityHashMap<K, V>

Here, K specifies the type of key, and V specifies the type of value. The API documentation
explicitly states that IdentityHashMap is not for general use.

The EnumMap Class

EnumMap extends AbstractMap and implements Map. It is specifically for use with keys
of an enum type. It is a generic class that has this declaration:

class EnumMap<K extends Enum<K>, V>

Here, K specifies the type of key, and V specifies the type of value. Notice that K must
extend Enum<K>, which enforces the requirement that the keys must be of an enum type.
EnumMap defines the following constructors:

EnumMap(Class<K> kType)
EnumMap(Map<K, ? extends V> m)
EnumMap(EnumMap<K, ? extends V> em)

The first constructor creates an empty EnumMap of type kType. The second creates an
EnumMap map that contains the same entries as m. The third creates an EnumMap
initialized with the values in em.

Comparator interface

Comparator is a generic interface that has this declaration:

interface Comparator<T>

Here, T specifies the type of objects being compared.

The Comparator interface defines two methods: compare() and equals(). The compare()
method, shown here, compares two elements for order:

int compare(T objl, T obj2)

obj1 and obj2 are the objects to be compared.

This method returns zero if the objects are equal.
It returns a positive value if objl is greater than obj2. Otherwise, a negative value is returned.
ClassCastException if the types of the objects are not compatible for comparison.

By overriding compare(), you can alter the way that objects are ordered.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

AP -y -

Q. PR -
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

For example, to sort in reverse order, you can create a comparator that reverses the outcome
of a comparison. The equals() method, shown here, tests whether an object equals the
invoking comparator:

boolean equals(Object obj)

Here, obj is the object to be tested for equality. The method returns true if obj and the
invoking object are both Comparator objects and use the same ordering. Otherwise, it
returns false.

import java.util.*;

class MyComp implements Comparator<String> {
public int compare(String a, String b) {

String aStr, bStr;

astr = a;

bStr = b;

return bStr.compareTo(aStr);

}

}

class CompDemo {

public static void main(String args[]) {
TreeSet<String> ts = new TreeSet<String>(new MyComp());
ts.add("C");

ts.add("A");

ts.add("B");

ts.add("E");

ts.add("F");

ts.add("D");

for(String element : ts)
System.out.print(element + " ");
System.out.printin();

s

Output:
FEDCBA

The Collection Algorithms:
Collections Framework defines several algorithms that can be applied to collections
and maps.

algorithms are defined as static methods within the Collections class.
static <T> Boolean addAll(Collection <? super T>c, T ... elements)
Inserts the elements specified by elements into the
collection specified by c. Returns true if the elements were added and false otherwise.

static <T> Queue<T> asLifoQueue(Deque<T> c)
Returns a last-in, first-out view of c.
static <T>int binarySearch(List<? extends T> list, T value, Comparator<? super T> ¢)
Searches for value in list ordered according to c. Returns the position of value
in list, or a negative value if value is not found.

static <T> int binarySearch(List<? extends Comparable<? super T>> list, T value)

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

Searches for value in list. The list must be sorted. Returns the position of value

in list, or a negative value if value is not found.

static <E> Collection<E> checkedCollection(Collection<E> ¢, Class<E> t)

Returns a run-time type-safe view of a collection. An attempt to insert an

incompatible element will cause a ClassCastException.

static <E> List<E> checkedList(List<E> c, Class<E> t)
Returns a run-time type-safe view of a List. An attempt to insert an
incompatible element will cause a ClassCastException.

static <K, V> Map<K, V> checkedMap(Map<K, V> c, Class<K> keyT, Class<V>

valueT)
Returns a run-time type-safe view of a Map.

An attempt to insert an incompatible element will cause a ClassCastException.

static <E> List<E> checkedSet(Set<E> c, Class<E> t)
Returns a run-time type-safe view of a Set. An

attempt to insert an incompatible element will cause a ClassCastException.

static int frequency(Collection<?> c, Object obj)

Counts the number of occurrences of obj in ¢ and returns the result.
static int indexOfSubList(List<?> list, List<?> subL.ist)

Searches list for the first occurrence of subList.

Returns the index of the first match, or -1 if no match is found.
static int lastindexOfSubL.ist(List<?> list, List<?> subL.ist)

Searches list for the last occurrence of subList.

Returns the index of the last match, or —1 if no

match is found.

import java.util.*;

class AlgorithmsDemo {

public static void main(String args[]) {
LinkedList<Integer> Il = new LinkedList<Integer>();
Il.add(-8);

Il.add(20);

Il.add(-20);

Il.add(8);

Comparator<Integer> r = Collections.reverseOrder();
Collections.sort(ll, r);

System.out.print("List sorted in reverse:);

for(inti: 1)

System.out.print(i+ " ");

System.out.printin();

Collections.shuffle(ll);

System.out.print("List shuffled: ");

for(inti :)

System.out.print(i + " ");

System.out.printin();

System.out.printin("Minimum: " + Collections.min(ll));

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

System.out.printin("Maximum: " + Collections.max(ll));

¥
ki

Output:

List sorted in reverse: 20 8 -8 -20

List shuffled: 20 -20 8 -8

Minimum: -20

Maximum: 20

Notice that min() and max() operate on the list after it has been shuffled. Neither requires
a sorted list for its operation.

Why Generic Collections?
As mentioned at the start of this chapter, the entire Collections Framework was refitted for
generics when JDK 5 was released.

Furthermore, the Collections Framework is arguably the single most important use of
generics in the Java API.

The reason for this is that generics add type safety to the Collections Framework. Before
moving on, it is worth taking some time to examine in detail the significance of this
improvement.

import java.util.*;

class OldStyle {

public static void main(String args[]) {

ArrayList list = new ArrayList();

list.add(""one™);

list.add("two");

list.add("three");

list.add("four™);

Iterator itr = list.iterator();

while(itr.hasNext()) {

String str = (String) itr.next(); // explicit cast needed here.
System.out.printin(str + " is " + str.length() + " chars long.");
}

¥
¥

Prior to generics, all collections stored references of type Object.

This allowed any type of reference to be stored in the collection.

The preceding program uses this feature to store references to objects of type String in list,
but any type of reference could have been stored. Unfortunately, the fact that a pre-generics
collection stored Object references could easily lead to errors.

First, it required that you, rather than the compiler, ensure that only objects of

the proper type be stored in a specific collection. For example, in the preceding example, list

is clearly intended to store Strings, but there is nothing that actually prevents another type
of reference from being added to the collection.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

For example, the compiler will find nothing wrong with this line of code:
list.add(new Integer(100));

Because list stores Object references, it can store a reference to Integer as well as it can
store a reference to String.

However, if you intended list to hold only strings, then the preceding statement would corrupt
the collection. Again, the compiler had no way to know that the preceding statement is
invalid.

The second problem with pre-generics collections is that when you retrieve a reference
from the collection, you must manually cast that reference into the proper type.

This is why the preceding program casts the reference returned by next() into String. Prior
to generics, collections simply stored Object references. Thus, the cast was necessary when
retrieving

objects from a collection.

Aside from the inconvenience of always having to cast a retrieved reference into its proper
type, this lack of type safety often led to a rather serious, but surprisingly easy-to-create,
error. Because Object can be cast into any type of object, it was possible to cast a reference
obtained from a collection into the wrong type. For example, if the following statement were
added to the preceding example, it would still compile without error, but generate a run-time
exception when executed:

Integer i = (Integer) itr.next();

* Ensures that only references to objects of the proper type can actually be stored in

a collection. Thus, a collection will always contain references of a known type.

» Eliminates the need to cast a reference retrieved from a collection. Instead, a reference
retrieved from a collection is automatically cast into the proper type. This prevents
run-time errors due to invalid casts and avoids an entire category of errors.

The Legacy Classes and Interfaces

As explained at the start of this chapter, early versions of java.util did not include the
Collections Framework. Instead, it defined several classes and an interface that provided an
ad hoc method of storing objects.

When collections were added (by J2SE 1.2), several of the original classes were reengineered
to support the collection interfaces.

Thus, they are fully compatible with the framework. While no classes have actually been
deprecated, one has been rendered obsolete.

Of course, where a collection duplicates the functionality of a legacy class,you will usually
want to use the collection for new code. In general, the legacy classes are supported because
there is still code that uses them.

One other point: none of the collection classes are synchronized, but all the legacy classes
are synchronized.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

This distinction may be important in some situations. Of course, you can
easily synchronize collections, too, by using one of the algorithms provided by Collections.

The legacy classes defined by java.util are shown here:
Dictionary
Hashtable
Properties
Stack
Vector
There is one legacy interface called Enumeration.

The following sections examine Enumeration and each of the legacy classes, in turn.

The Enumeration Interface

The Enumeration interface defines the methods by which you can enumerate (obtain one at
a time) the elements in a collection of objects. This legacy interface has been superseded by
Iterator.

interface Enumeration<g>

where E specifies the type of element being enumerated.

Vector

Vector implements a dynamic array. It is similar to ArrayL.ist, but with two differences:
Vector is synchronized, and it contains many legacy methods that are not part of the
Collections.

Vector is declared like this:

class Vector<g>

Here, E specifies the type of element that will be stored.

Here are the Vector constructors:
Vector()

Vector(int size)

Vector(int size, int incr)
Vector(Collection<? extends E> c)

e The first form creates a default vector, which has an initial size of 10.
e The second form creates a vector whose initial capacity is specified by size.
e The third form creates a vector whose initial capacity is specified by size and whose
increment is specified by incr.
The increment specifies the number of elements to allocate each time that a vector is resized
upward.
The fourth form creates a vector that contains the elements of collection c.

Stack

Stack is a subclass of Vector that implements a standard last-in, first-out stack. Stack only
defines the default constructor, which creates an empty stack. With the release of JDK 5,
Stack was retrofitted for generics and is declared as shown here:

class Stack<E>

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

Here, E specifies the type of element stored in the stack.
Stack includes all the methods defined by Vector.

Dictionary

Dictionary is an abstract class that represents a key/value storage repository and operates
much like Map.

Given a key and value, you can store the value in a Dictionary object. Once

the value is stored, you can retrieve it by using its key. Thus, like a map, a dictionary can be
thought of as a list of key/value pairs.

Although not currently deprecated, Dictionary is

classified as obsolete, because it is fully superseded by Map. However, Dictionary is still in
use and thus is fully discussed here.

class Dictionary<K, V>

Here, K specifies the type of keys, and V specifies the type of values. The abstract methods
defined by Dictionary are listed in Table 17-17.

Hashtable

Hashtable was part of the original java.util and is a concrete implementation of a
Dictionary.

HashMap, Hashtable stores key/value pairs in a hash table. However, neither keys

nor values can be null. When using a Hashtable, you specify an object that is used as a key,
and the value that you want linked to that key. The key is then hashed, and the resulting
hash code is used as the index at which the value is stored within the table.

Hashtable was made generic by JDK 5.

It is declared like this: class Hashtable<K, V>

Hashtable()

Hashtable(int size)

Hashtable(int size, float fillRatio)
Hashtable(Map<? extends K, ? extends V> m)

The first version is the default constructor.

The second version creates a hash table that has
an initial size specified by size.

The third version creates a hash table that has an initial size specified by size and a fill ratio
specified by fillRatio. This ratio must be between 0.0 and 1.0, and it determines how full the
hash table can be before it is resized upward. Specifically, when the number of elements is
greater than the capacity of the hashtable multiplied by its fill ratio, the hash table is
expanded. If you do not specify a fill ratio,

then 0.75 is used.

Finally, the fourth version creates a hash table that is initialized with the

elements in m. The capacity of the hash table is set to twice the number of elements in m.
The default load factor of 0.75 is used.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

PPN -y -

[« PR -
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 2

Properties

Properties is a subclass of Hashtable. It is used to maintain lists of values in which the key
is a String and the value is also a String.

The Properties class is used by many other Java classes. For example, it is the type of object
returned by System.getProperties() when obtaining environmental values.

Although the Properties class, itself, is not generic, several of its methods are.
Properties defines the following instance variable:

Properties defaults;
This variable holds a default property list associated with a Properties object. Properties
defines these constructors:

Properties()
Properties(Properties propDefault)

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

- PSR GSN PE

[« PR - L :
LOUILE Ulylnutles. il

Advanced Java and J2EE —Module 3

Module 3

Syllabus -String Handling :

The String Constructors, String Length, Special String Operations, String Literals,
String Concatenation, String Concatenation with Other Data Types, String Conversion and
toString() Character Extraction, charAt(), getChars(), getBytes() toCharArray(), String
Comparison, equals() and equalsignoreCase(), regionMatches() startsWith() and endsWith(
), equals() Versus ==, compareTo() Searching Strings, Modifying a String, substring(),
concat(), replace(), trim(), Data Conversion Using valueOf(), Changing the Case of
Characters Within a String, Additional String Methods, StringBuffer , StringBuffer
Constructors, length() and capacity(), ensureCapacity(), setLength(), charAt() and
setCharAt(), getChars(),append(), insert(), reverse(), delete() and deleteCharAt(),
replace(), substring(), Additional StringBuffer Methods, StringBuilder.

1. What are the different types of String Constructors available in Java?
The String class supports several constructors.
a. To create an empty String
the default constructor is used.
Ex: String s = new String();
will create an instance of String with no characters in it.

b. To create a String initialized by an array of characters, use the constructor
shown here:
String(char chars[])
ex: charchars[]={"a,'b','c'};
String s = new String(chars);
This constructor initializes s with the string “abc”.
c. To specify a subrange of a character array as an initializer using the following
constructor:
String(char chars[], int startIndex, int numChars)

Here, startIndex specifies the index at which the subrange begins, and
numChars specifies the number of characters to use. Here is an example:
char chars[] ={'a', 'b’, 'c','d", 'e', 'f' };
String s = new String(chars, 2, 3);
This initializes s with the characters cde.
d. To construct a String object that contains the same character sequence as
another String object using this constructor:
String(String strObj)
Here, strObj is a String object.

class MakeString

{ public static void main(String args[])
{charcf] = {U,"a, v\, a}

String s1 = new String(c);

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

String s2 = new String(sl);
System.out.printin(sl);
System.out.printin(s2);

¥
¥

The output from this program is as follows:
Java
Java

As you can see, s1 and s2 contain the same string.

e. To Construct string using byte array:

Even though Java’s char type uses 16 bits to represent the basic Unicode
character set, the typical format for strings on the Internet uses arrays of 8-bit bytes
constructed from the ASCII character set.

Because 8-bit ASCII strings are common, the String class provides
constructors that initialize a string when given a byte array.

Ex: String(byte asciiChars[])

String(byte asciiChars]], int startindex, int numChars)

The following program illustrates these constructors:
class SubStringCons

{ public static void main(String args[])
{

byte ascii[] = {65, 66, 67, 68, 69, 70 };
String s1 = new String(ascii);
System.out.printIn(sl);

String s2 = new String(ascili, 2, 3);
System.out.printin(s2);

}

}

This program generates the following output:
ABCDEF
CDE

f. To construct a String from a StringBuffer by using the constructor shown
here:
Ex: String(StringBuffer strBufObj)

g. Constructing string using Unicode character set and is shown here:
String(int codePoints]], int startindex, int numcChars)

codePoints is an array that contains Unicode code points.

h. Constructing string that supports the new StringBuilder class.
Ex : String(StringBuilder strBuildObj)

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

Note:
String can be constructed by using string literals.
String s1="Hello World”

String concatenation can be done using + operator. With other data type also.

String Length
1. The length of a string is the number of characters that it contains. To obtain
this value, call the length(') method,
2. Syntax:
int length()
3. Example
char chars[] = { 'a’, 'b’, 'c' }; String s = new String(chars);
System.out.printIn(s.length());// 3

toString()

1. Every class implements toString() because it is defined by Object.
However, the default Implementation of toString() is sufficient.

2. For most important classes that you create, will want to override toString()
and provide your own string representations.

String toString()

3. To implement toString(), simply return a String object that contains the
human-readable string that appropriately describes an object of your class.

4. By overriding toString() for classes that you create, you allow them to be
fully integrated into Java’s programming environment. For example, they
can be used in print() and printIn() statements and in concatenation
expressions.

5. The following program demonstrates this by overriding
toString() for the Box class:

class Box

{

double width; double height; double depth;
Box(double w, double h, double d)

{ width = w; height = h; depth = d; }

public String toString()
{ return "Dimensions are " + width + " by " + depth + " by " + height + "."; }

¥

class toStringDemo {
public static void main(String args[])

{
Box b = new Box(10, 12, 14);

String s ="Box b: " + b;

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

System.out.printin(b);
System.out.printin(s);

¥
¥

The output of this program is shown here:
Dimensions are 10.0 by 14.0 by 12.0
Box b: Dimensions are 10.0 by 14.0 by 12.0

Character Extraction
The String class provides a number of ways in which characters can be
extracted from a String object. String object can not be indexed as if they
were a character array, many of the String methods employ an index (or
offset) into the string for their operation. Like arrays, the string indexes begin
at zero.
A. charAt()
1. description:

To extract a single character from a String, you can refer directly to an
individual character via the charAt() method.
2. Syntax

char charAt(int where)
Here, where is the index of the character that you want to obtain.
charAt() returns the character at the specified location.

3. example,

char ch;

ch ="abc".charAt(1);

assigns the value “b” to ch.

B. getChars()

1. to extract more than one character at a time, you can use the getChars()
method.

2. Syntax
void getChars(int sourceStart, int sourceEnd, char target[], int
targetStart)

Here, sourceStart specifies the index of the beginning of the substring,
sourceEnd specifies an index that is one past the end of the desired The array
that will receive the characters is specified by target. The index within target at
which the substring will be copied is passed in targetStart.

3. class getCharsDemo {
public static void main(String args[])
{ String s = "This is a demo of the getChars method.";
int start = 10;
int end = 14;
char buf[] = new char[end - start];
s.getChars(start, end, buf, 0);

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

System.out.printin(buf);

¥
¥

Here is the output of this program:

demo

C. getBytes()

1. This method is called getBytes(), and it uses the default character-to-byte
conversions provided by the platform.

Syntax:
byte[] getBytes()
Other forms of getBytes() are also available.

2. getBytes() is most useful when you are exporting a String value into an
environment that does not support 16-bit Unicode characters. For example,
most Internet protocols and text file formats use 8-bit ASCII for all text
interchange.

D. toCharArray()

If you want to convert all the characters in a String object into a character
array, the easiest way is to call toCharArray().

It returns an array of characters for the entire string.

It has this general form:
char[] toCharArray()

2. String Comparison:

The String class includes several methods that compare strings or
substrings within strings.
equals()

To compare two strings for equality, use equals().

It has this general form:
boolean equals(Object str)
Here, str is the String object being compared with the invoking String object.
It returns true if the strings contain the same characters in the same order, and
false otherwise. The comparison is case-sensitive.
A. equalslgnoreCase()

To perform a comparison that ignores case differences, call
equalslgnoreCase(). When it compares two strings, it considers A-Z to be the
same as a-Z.

It has this general form:

boolean equalsignoreCase(String str)

Here, str is the String object being compared with the invoking String object.
It, too, returns true if the strings contain the same characters in the same order,
and false otherwise.
/I Demonstrate equals() and equalsignoreCase().

class equalsDemo {

public static void main(String args[]) {

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

String s1 = "Hello™;

String s2 = "Hello™;

String s3 = "Good-bye";

String s4 = "HELLO";

System.out.printin(sl + " equals " + s2 + " -> " + s1.equals(s2));
System.out.printin(sl + " equals " + s3 + " -> " + s1.equals(s3));
System.out.printin(sl + " equals " + s4 + " -> " + sl.equals(s4));
System.out.printin(sl + " equalsignoreCase " + s4 + " ->" +
sl.equalsignoreCase(s4)); } }

The output from the program is shown here:
Hello equals Hello -> true

Hello equals Good-bye -> false

Hello equals HELLO -> false

Hello equalsignoreCase HELLO -> true

B. regionMatches()

1. The regionMatches() method compares a specific region inside a string with
another specific region in another string. There is an overloaded form that
allows you to ignore case in such comparisons.

2. Syntax:
boolean regionMatches(int startindex, String str2, int str2Startindex, int
numcChars)

boolean regionMatches(boolean ignoreCase, int startindex, String str2,
int str2StartIndex, int numChars)

3. For both versions, startindex specifies the index at which the
region begins within the invoking String object.
The String being compared is specified by str2. The index at which the
comparison will start within str2 is specified by str2 Startindex. The length of
the substring being compared is passed in numChars.

4. In the second version, if ignoreCase is true, the case of the
characters is ignored. Otherwise, case is significant.

C. startsWith() and endsWith()

1. The startsWith(') method determines whether a given String begins with a
specified string.

2. endsWith() determines whether the String in question ends with a
specified string.

3. Syntax

boolean startsWith(String str)
boolean endsWith(String str)

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

Here, str is the String being tested.

If the string matches, true is returned.

Otherwise, false is returned.

For example,
"Foobar".endsWith("bar")

"Foobar".startsWith("Foo")
are both true.

4. A second form of startsWith(), shown here, lets you specify a starting

point:

boolean startsWith(String str, int startindex)
Here, startIndex specifies the index into the invoking string at which point the
search will begin. For example,
"Foobar".startsWith("bar", 3)
returns true.

D. equals() Versus ==

It is important to understand that the equals() method and the == operator
perform two different operations.

the equals() method compares the characters inside a String object.

The == operator compares two object references to see whether they refer to
the same instance.

class EqualsNotEqualTo {

public static void main(String args[]) {

String s1 = "Hello";

String s2 = new String(sl);

System.out.printin(sl + " equals " + s2 + " -> " + sl.equals(s2));

System.out.printin(sl + " =="+s2 + " -> " + (s1 == 52));

}

}

E. compareTo()

1. Sorting applications, you need to know which is less than, equal to, or

greater than the next.
A string is less than another if it comes before the other in dictionary
order. A string is greater than another if it comes after the other in
dictionary order. The String method compareTo() serves this purpose.
3. It has this general form:
int compareTo(String str)
Here, str is the String being compared with the invoking String. The
result of the comparison is returned and is interpreted,
4. Less than zero when invoking string is less than str.
5. Greater than zero when invoking string is greater than str.
6. Zero The two strings are equal.

N

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

/I A bubble sort for Strings.

class SortString

{ static String arr[] = { "Now", "is", "the", "time", "for", "all", "good
"to", "come", "to", "the", "aid", "of", "their", "country" };
public static void main(String args[])

{ for(intj = 0; j < arr.length; j++)
{for(inti=j+1;i<arr.length; i++)

{ if(arr[i].compareTo(arr[j]) < 0)

{ String t = arr[j];

arr[j] = arr[i];

arrfi] = t;

}

} System.out.printin(arr[j]);

}

}

}

The output of this program is the list of words:

, 'men”,

Now aid all come country for good is men of the the their time to to
As you can see

7. Ignore case differences when comparing two strings, use
compareTolgnoreCase(), This method returns the same results as
compareTo(), except that case differences are ignored.

5. Searching String
A. indexOf() and lastindexOf()
1. indexOf() Searches for the first occurrence of a character or
substring.

2. lastindexOf() Searches for the last occurrence of a character or
substring.

3. These two methods are overloaded in several different ways

4. return the index at which the character or substring was found, or
—1 on failure.

5. To search for the first occurrence of a character, int indexOf(int ch)
6. To search for the last occurrence of a character,
int lastindexOf(int ch) Here, ch is the character being sought

7. To search for the first or last occurrence of a substring, use int

indexOf(String str) int lastindexOf(String str) Here, str specifies
the substring.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

8. You can specify a starting point for the search using these forms:
int indexOf(int ch, int startindex)
int lastindexOf(int ch, int startindex)

9. int indexOf(String str, int startindex) int lastindexOf(String str, int
startindex) Here, startindex specifies the index at which point the
search begins.

10. For indexOf(), the search runs from startindex to the end of the
string. For lastindexOf(), the search runs from startindex to zero.
The following example shows how to use the various index
methods to search inside of Strings:

// Demonstrate indexOf() and lastindexOf().

class indexOfDemo {

public static void main(String args[])

{ String s = "Now is the time for all good men " + "to come to the aid

of their country.";

System.out.printin(s);

System.out.printIn("indexOf(t) = " + s.indexOf('t"));

System.out.printin("lastindexOf(t) = " + s.lastindexOf('t"));

System.out.printin("indexOf(the) = " + s.indexOf("the™));

System.out.printin("lastindexOf(the) = " + s.lastindexOf(*'the™));

System.out.printin("indexOf(t, 10) = " + s.indexOf('t', 10));

System.out.printin("lastindexOf(t, 60) = " + s.lastindexOf('t", 60));

System.out.printin(“indexOf(the, 10) =" + s.indexOf(*'the", 10));

System.out.printin("lastindexOf(the, 60) = " + s.lastIndexOf(*'the",

60));

}

}

Output

Now is the time for all good men to come to the aid of their country.
indexOf(t) = 7

lastindexOf(t) = 65

indexOf(the) =7

lastindexOf(the) = 55

indexOf(t, 10) = 11

lastindexOf(t, 60) = 55

indexOf(the, 10) = 44

lastindexOf(the, 60) = 55

6. Modifying a String
String objects are immutable, whenever you want to modify a String,
you must either copy it into a StringBuffer or StringBuilder, or use one
of the following String methods, which will construct a new copy of
the string with your modifications complete.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

A. Substring()

1. You can extract a substring using substring(). It has two forms. The
first is String substring(int startindex)

2. Here, startindex specifies the index at which the substring will begin.
This form returns a copy of the substring that begins at startindex and
runs to the end of the invoking string.

3. The second form of substring() allows you to specify both the
beginning and ending index of the substring:

String substring(int startindex, int endindex)
Here, startindex specifies the beginning index, and endIndex specifies
the stopping point.

4. The string returned contains all the characters from the beginning
index, up to, but not including, the ending index. The following
program uses substring() to replace all instances of one substring with
another within a string:

/I Substring replacement.
class StringReplace {
public static void main(String args[]) {
String org = "This is a test. This is, t00.";
String search = "is";
String sub = "was";
String result =",
inti;
do {
System.out.printin(org);
I = org.indexOf(search);
if(i 1=-1) { result = org.substring(0, i);
result = result + sub;
result = result + org.substring(i + search.length());

org = result;

} } while(i '=-1);
}

}

The output from this program is shown here:
This is a test. This is, too.

Thwas is a test. This is, too.

Thwas was a test. This is, too.

Thwas was a test. Thwas is, too.

Thwas was a test. Thwas was, too.

B. concat()

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

1. concatenate two strings using concat()
String concat(String str)

2. This method creates a new object that contains the invoking string
with the contents of str appended to the end.
concat() performs the same function as +.
4. String s1 ="one";
String s2 = sl.concat("two");

C. replace()

1. The replace() method has two forms.

2. The first replaces all occurrences of one character in the

invoking string with another character.
Syntax:

w

String replace(char original, char replacement)
Here, original specifies the character to be replaced by the character
specified by replacement. The resulting string is returned.

Example
String s = "Hello".replace('l', 'w');
puts the string “Hewwo” into s.

The second form of replace() replaces one character sequence with
another. It has this general form:
String replace(CharSequence original, CharSequence replacement)

D. trim()
The trim() method returns a copy of the invoking string from which
any leading and trailing whitespace has been removed.
Syntax:
String trim()
Example:
Strings=" Hello World ".trim();
This puts the string “Hello World” into s.
The trim() method is quite useful when you process user commands.

/I Using trim() to process commands.

import java.io.*;

class UseTrim

{ public static void main(String args[]) throws IOException {
BufferedReader br = new BufferedReader(new
nputStreamReader(System.in));

String str;

System.out.printIn("Enter 'stop' to quit.");
System.out.printin("Enter State: ");

do { str = br.readLine();

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

str = str.trim();

if(str.equals("Illinois™))
System.out.printin("Capital is Springfield.");
else if(str.equals("Missouri™))
System.out.printin("Capital is Jefferson City.");
else if(str.equals("California™))
System.out.printin("Capital is Sacramento.");
else if(str.equals(""Washington™))
System.out.printin("Capital is Olympia."); // ... }
while(Istr.equals("stop™));

}

}

5. Data Conversion
1. The valueOf() method converts data from its internal format into
a human-readable form.
2. ltis a static method that is overloaded within String for all of
Java’s built-in types so that each type can be converted properly
into a string.

3. valueOf() is also overloaded for type Object, so an object of any
class type you create can also be used as an argument

Syntax:
static String valueOf(double num)

static String valueOf(long num)
static String valueOf(Object ob)
static String valueOf(char chars]])

4. valueOf() is called when a string representation of some other type
of data is needed. example, during concatenation operations.

5. Any object that you pass to valueOf() will return the result of a
call to the object’s toString() method.

6. There is a special version of valueOf() that allows you tospecify a
subset of a char array.

Syntax:
static String valueOf(char charg]], int startindex, int numChars)

7. Here, chars is the array that holds the characters, startindex is the
index into the array of characters at which the desired substring
begins, and numChars specifies the length of the substring.

6. Changing Case of Characters

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

A. toLowerCase()
converts all the characters in a string from uppercase to lowercase.

=

2. This method return a String object that contains the lowercase
equivalent of the invoking String.

3. Non alphabetical characters, such as digits, are unaffected.

Syntax
String toLowerCase()

B. toUpperCase()

1. converts all the characters in a string from lowercase to
uppercase.

2. This method return a String object that contains the uppercase
equivalent of the invoking String.

3. Non alphabetical characters, such as digits, are unaffected.

Syntax
String toUpperCase()

class ChangeCase {

public static void main(String args[]) {
String s = "This is a test.";
System.out.printIn("Original: " + s);

String upper = s.toUpperCase();

String lower = s.toLowerCase();
System.out.printin(*Uppercase: " + upper);
System.out.printin(Lowercase: " + lower);

ks

}
Output:

Original: This is a test.
Uppercase: THIS IS A TEST.
Lowercase: this is a test.

StringBuffer

StringBuffer is a peer class of String that provides much of the functionality of strings. As
you know, String represents fixed-length, immutable character sequences.

StringBuffer represents growable and writeable character sequences.

StringBuffer may have characters and substrings inserted in the middle or appended to the
end.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

StringBuffer will automatically grow to make room for such additions and often has more
characters pre allocated than are actually needed, to allow room for growth.

StringBuffer Constructors

StringBuffer defines these four constructors:
StringBuffer()

StringBuffer(int size)

StringBuffer(String str)
StringBuffer(CharSequence chars)

a. The default constructor (the one with no parameters) reserves room for 16 characters
without reallocation.

b. The second version accepts an integer argument that explicitly sets the size of the
buffer.

c. The third version accepts a String argument that sets the initial contents of the
StringBuffer object and reserves room for 16 more characters without reallocation.

d. StringBuffer allocates room for 16 additional characters when no specific buffer
length is requested, because reallocation is a costly process in terms of time.
A. length() and capacity()
a. The current length of a StringBuffer can be found via the length() method, while the
total allocated capacity can be found through the capacity() method.

Syntax
int length()
int capacity()
b. Example:
class StringBufferDemo

{

public static void main(String args[])

{
StringBuffer sb = new StringBuffer("Hello");

System.out.printin("buffer = + sb);
System.out.printIin("length =" + sh.length());
System.out.printIn("capacity =" + sh.capacity());

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

}
Output

buffer = Hello
length =5
capacity = 21

B. ensureCapacity()

a. If you want to pre allocate room for a certain number of characters after a
StringBuffer has been constructed, you can use ensureCapacity() to set the size of the
buffer.

b. This is useful if you know in advance that you will be appending a large number of
small strings to a StringBuffer.

Syntax

void ensureCapacity(int capacity)

Here, capacity specifies the size of the buffer.

C. setLength()
a. To set the length of the buffer with in a StringBufferobject,

Syntax:
void setLength(int len)

Here, len specifies the length of the buffer. This value must be nonnegative.

When you increase the size of the buffer, null characters are added to the end of the existing
buffer.

If you call setLength() with a value less than the current value returned by length(), then the
characters stored beyond the new length will be lost.

D. charAt() and setCharAt()

a. The value of a single character can be obtained from a StringBuffer via the
charAt()method. You can set the value of a character within a StringBuffer using
setCharAt().

b. Syntax

char charAt(int where)

void setCharAt(int where, char ch)

o

For charAt(), where specifies the index of the character being obtained.
d. For setCharAt(), where specifies the index of the character being set, and ch specifies
the new value of that character.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

/I Demonstrate charAt() and setCharAt().

class setCharAtDemo {

public static void main(String args[])

{ StringBuffer sb = new StringBuffer("Hello");
System.out.printin("buffer before =" + sh);
System.out.printin(charAt(1) before =" + sh.charAt(1));
sb.setCharAt(1, 'i");

sb.setLength(2);

System.out.printin("buffer after =" + sh);
System.out.printin(“charAt(1) after =" + sh.charAt(1)); } }
Output

buffer before = Hello

charAt(1) before = e

buffer after = Hi

charAt(1) after =i

E. getChars()

a. To copy a substring of a StringBuffer into an array, use the getChars() method.
Syntax
Syntax
void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)

Here, sourceStart specifies the index of the beginning of the substring, and sourceEnd
specifies an index that is one past the end of the desired substring.

b. This means that the substring contains the characters from sourceStart through
sourceEnd-1.

c. The array that will receive the characters is specified by target.
The index within target which the substring will be copied is passed in targetStart.

d. Care must be taken to assure that the target array is large enough to hold the number
of characters in the specified substring.

F. append()

1. The append() method concatenates the string representation of any other type of data
to the end of the invoking StringBuffer object. It has several overloaded versions.
Here are a few of its forms:

StringBuffer append(String str)

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

StringBuffer append(int num)
StringBuffer append(Object obj)

2. The result is appended to the current StringBuffer object.

The buffer itself is returned by each version of append().

4. This allows subsequent calls to be chained together, as shown in the following
example:

w

class appendDemo {

public static void main(String args[])

{ String s; inta = 42;
StringBuffer sb = new StringBuffer(40);
s = sh.append(a = ").append(a).append(*'!").toString();
System.out.printIn(s);

}

}
Output

a =421

G. insert()

1. The insert() method inserts one string in to another.

2. ltis overloaded to accept values of all the simple types, plus Strings, Objects, and
CharSequences.

3. Like append(),it calls String.valueOf() to obtain the string representation of the value
it is called with.

4. This string is then inserted into the invoking StringBuffer object.

These are a few of its forms:

o1

StringBuffer insert(int index, String str)
StringBuffer insert(int index, char ch)
StringBuffer insert(int index, Object obyj)

Here, index specifies the index at which point the string will be inserted into the
invoking StringBuffer object.

6. The following sample program inserts “like” between “I”” and “Java™:

class insertDemo { public static void main(String args[]) {
StringBuffer sb = new StringBuffer("l Javal");
sb.insert(2, "like ™);

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

System.out.printin(sb);

}

}
7. Output

| like Javal

H. reverse()
You can reverse the characters within a StringBuffer object using reverse(), shown here:
StringBuffer reverse()
This method returns the reversed object on which it was called.
The following program demonstrates reverse()
class ReverseDemo {
public static void main(String args[])
{ StringBuffer s = new StringBuffer("abcdef");
System.out.printin(s);
s.reverse();

System.out.printin(s);

k
k

Output
abcdef
fedcba
I. delete() and deleteCharAt()

You can delete characters within a StringBuffer by using the methods delete() and
deleteCharAt().

Syntax:
StringBuffer delete(int startindex, int endIindex)

StringBuffer deleteCharAt(int loc)

The delete() method deletes a sequence of characters from the invoking object.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

Here, startIndex specifies the index of the first character to remove, and endIndex specifies
an index one past the last character to remove.

Thus, the substring deleted runs from startindex to endIndex—1. The resulting StringBuffer
object is returned.

The deleteCharAt() method deletes the character at the index specified by loc. It returns the
resulting StringBuffer object.

/I Demonstrate delete() and deleteCharAt()

class deleteDemo { public static void main(String args[])
{ StringBuffer sb = new StringBuffer("This is a test.");
sb.delete(4, 7);

System.out.printin("After delete: " + sb);
sb.deleteCharAt(0);

System.out.printin("After deleteCharAt: " + sb);

ks

}
Output

After delete: This a test.
After deleteCharAt: his a test.

J. replace()

a. You can replace one set of characters with another set inside a StringBuffer object by
calling replace().

b. Syntax

StringBuffer replace(int startindex, int endIndex, String str)
The substring being replaced is specified by the indexes startindex and endindex.

C. Thus, the substringatstartindexthroughendindex—1 is replaced.The replacement string
is passed in str.

The resulting StringBuffer object is returned.

class replaceDemo {

public static void main(String args[])

{ StringBuffer sb = new StringBuffer("This is a test.");
sb.replace(5, 7, "was");

System.out.printIn("After replace: " + sh);

¥

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

¥

Here is the output:

After replace: This was a test.

K. substring()

1. It has the following two forms:
Syntax
String substring(int startindex)

String substring(int startindex, int endIndex)

2. The first form returns the substring that starts at startindex and runs to the end of the
invoking StringBuffer object.

3.The second form returns the substring that starts at startindex and runs through endindex—1.

These methods work just like those defined for String that were described earlier.

Difference between StringBuffer and StringBuilder.

1. J2SE 5 adds a new string class to Java’s already powerful string handling capabilities.
This new class is called StringBuilder.

2. Itisidentical to StringBuffer except for one important difference: it is not
synchronized, which means that it is not thread-safe.

3. The advantage of StringBuilder is faster performance. However, in cases in which you
are using multithreading, you must use StringBuffer rather than StringBuilder.

Additional Methods in String which was included in Java 5

1. int codePointAt(int i)
Returns the Unicode code point at the location specified by i.

2. int codePointBefore(int i)
Returns the Unicode code point at the location that precedes that specified by i.
3. int codePointCount(int start , intend)
Returns the number of code points in the portion of the invoking String that are
between start and end- 1.
4. boolean contains(CharSequence str)
Returns true if the invoking object contains the string specified by str . Returns false,
otherwise.
5. boolean contentEquals(CharSequence str)
Returns true if the invoking string contains the same string as str. Otherwise, returns
false.
6. boolean contentEquals(StringBuffer str)
Returns true if the invoking string contains the same string as str. Otherwise, returns
false.
static String format(String fmtstr , Object ... args)

~

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

10.

11.

12.

13.

14.

15.

Returns a string formatted as specified by fmtstr.
static String format(Locale loc, String fmtstr , Object ... args)

Returns a string formatted as specified by fmtstr.
boolean matches(string regExp)

Returns true if the invoking string matches the regular expression passed in regExp.
Otherwise, returns false.
int offsetByCodePoints(int start , int num)

Returns the index with the invoking string that is num code points beyond the starting
index specified by start.

String replaceFirst(String regExp , String newStr)

Returns a string in which the first substring that matches the regular expression
specified by regExp is replaced by newsStr.

String replaceAll(String regExp , String newStr)

Returns a string in which all substrings that match the regular expression specified by
regExp are replaced by newStr

String[] split(String regExp)

Decomposes the invoking string into parts and returns an array that contains the
result. Each part is delimited by the regular expression passed in regEXp.

String]] split(String regExp , int max)

Decomposes the invoking string into parts and returns an array that contains the
result. Each part is delimited by the regular expression passed in regexp. The number
of pieces is specified by max. If max is negative, then the invoking string is fully
decomposed. Otherwise, if max contains a nonzero value, the last entry in the returned
array contains the remainder of the invoking string. If max is zero, the invoking string
is fully decomposed.

CharSequence subSequence(int startindex , int stoplndex)

Returns a substring of the invoking string, beginning at startindex and stopping at
stopIndex . This method is required by the CharSequence interface, which is now
implemented by String.

Additional Methods in StringBuffer which was included in Java 5
StringBuffer appendCodePoint(int ch)

Appends a Unicode code point to the end of the invoking object. A reference to the
object is returned.

int codePointAt(int i)

Returns the Unicode code point at the location specified by i.
int codePointBefore(int i)
Returns the Unicode code point at the location that precedes that specified by i.

int codePointCount(int start , intend)

Returns the number of code points in the portion of the invoking String that are
between start and end— 1.

int indexOf(String str)

Searches the invoking StringBuffer for the first occurrence of str. Returns the index of
the match, or —1 if no match is found.

int indexOf(String str, int startindex)

Searches the invoking StringBuffer for the first occurrence of str, beginning at
startindex. Returns the index of the match, or —1 if no match is found.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 3

int lastIndexOf(String str)
Searches the invoking StringBuffer for the last occurrence of str. Returns the index of

the match, or -1 if no match is found.
int lastindexOf(String str , int startindex)

Searches the invoking StringBuffer for the last occurrence of str, beginning at
startindex. Returns the index of the match, or —1 if no match is found.

Jayanthi M.G, Associate Professor, Dept of CSE, Cambridge Institute of Technology

source diginotes.in

Advance Java and J2EE -Module 4

Servlet
Introdution to servlet

Servlet is small program that execute on the server side of a web connection. Just as
applet extend the functionality of web browser the applet extend the functionality of web server.

In order to understand the advantages of servlet, you must have basic understanding of
how web browser communicates with the web server.

Consider a request for static page. A user enters a URL into browser. The browser generates http
request to a specific file. The file is returned by http response. Web server map this particular
request for this purpose. The http header in the response indicates the content. Source of web
page as MIME type of text/html.

1. What are the Advantage of Servlet Over "Traditional" CGI?

Java servlet is more efficient, easier to use, more powerful, more portable, and cheaper than
traditional CGI and than many alternative CGl-like technologies. (More importantly, servlet
developers get paid more than Perl programmers :-).
¢ Efficient. With traditional CGI, a new process is started for each HTTP request. If the
CGI program does a relatively fast operation, the overhead of starting the process can
dominate the execution time. With servlets, the Java Virtual Machine stays up, and each
request is handled by a lightweight Java thread, not a heavyweight operating system
process. Similarly, in traditional CGI, if there are N simultaneous request to the same
CGI program, then the code for the CGI program is loaded into memory N times. With
servlets, however, there are N threads but only a single copy of the servlet class.
¢ Convenient. Hey, you already know Java. Why learn Perl too? Besides the convenience
of being able to use a familiar language, servlets have an extensive infrastructure for
automatically parsing and decoding HTML form data, reading and setting HTTP headers,
handling cookies, tracking sessions, and many other such utilities.
¢ Powerful. Java servlets let you easily do several things that are difficult or impossible
with regular CGI. For one thing, servlets can talk directly to the Web server (regular CGI
programs can't). This simplifies operations that need to look up images and other data
stored in standard places. Servlets can also share data among each other, making useful

things like database connection pools easy to implement. They can also maintain

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE -Module 4

information from request to request, simplifying things like session tracking and caching
of previous computations.

¢ Portable. Servlets are written in Java and follow a well-standardized API. Consequently,
servlets written for, say I-Planet Enterprise Server can run virtually unchanged on
Apache, Microsoft IIS, or Web Star. Servlets are supported directly or via a plug in on
almost every major Web server.

¢ Inexpensive. There are a number of free or very inexpensive Web servers available that
are good for "personal" use or low-volume Web sites. However, with the major exception
of Apache, which is free, most commercial-quality Web servers are relatively expensive.
Nevertheless, once you have a Web server, no matter the cost of that server, adding
servlet support to it (if it doesn't come preconfigured to support servlets) is generally free

or cheap.
2. What is servlet? What are the phases of servlet life cycle? Give an example.
Servlets are small programs that execute on the server side of a web connection. Just as
applet extend the functionality of web browser the applet extend the functionality of web server.
Servlet class is loaded.
Servlet class is loaded when first request to web container.
servlet instance is created:
Web container creates the instance of servlet class only once.
init method is invoked:
It class the init method when it loads the instance. It is used to intialise servlet.
Syntax of init method is
public void init(ServietConfig config) throws ServletException
Service method is invoked:

Web container calls service method each time when request for the servlet is
received. If servlet is not initialized it calls init then it calls the service method. Syntax of
service method is as follows

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE -Module 4

public void service(Serviet request, ServletResponse response) throws ServletException,
1OException

Destroy method is invoked.

The web container calls the destroy method before it removes the servlet from
service. It gives servlet an opportunity to clean up memory, resources etc. Servlet destroy
method has following syntax.

public void destroy().

i

There are three states of servlet new, ready, end. It is in new state when servlet is created.
The servlet instance is created when it is in new state. After invoking the init () method servlet
comes to ready state. In ready state servlet invokes destroy method it comes to end state.

3. Explain about deployment descriptor

Deployment descriptor is a file located in the WEB-INF directory that controls the
behavior of a java servlet and java server pages. The file is called the web.xml file and contains
the header, DOCTYPE, and web app element. The web app element should contain a servlet
element with three elements. These are servlet name, servlet class, and init-param.

The servlet name elements contain the name used to access the java servlet. The servlet
class is the name of the java servlet class. init-param is the name of an initialization parameter
that is used when request is made to the java servlet.

Example file:

<?xml version="1.0" encoding-“ISO-8859=1"7>..... XML header

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE -Module 4

<!DOCTYPE web-app PUBLIC “~//Sun Microsystems, Inc.?? DTD Web
Application2.2//EN”> ..doctype

<web-app>

<servlet>

<servlet-name>MylJavaservlet</servlet-name>

<servlet-class>myPackage.MyJavaservletClass</servlet-class>

<init-param><param-name>parameter | </param-name>

<param-value>735</param-value>

</init-param>

</servlet>

</web-app>

4. How to read data from client in servlet?

A client uses either the GET or POST method to pass information
to a java servlet. Depending on the method used by the client either
doGet() or doPost() method is called in servlet.

Data sent by a client is read into java servlet by calling
getParameter() method of HttpservletRequest() object that
instantiated in the argument list of doGet() method and doPost()
method.

getParameter() requires one argument, which is the name of
parameter that contains the data sent by the client. getParameter()
returns the String object.

String object contains the value assigned by the client. An empty
string object is returned when it does not assign a value to the
parameter. Also a null is retuned when parameter is not returned in

the client.

getParameterValues() used to return the array of string objects.

Example code

Html code that calls a servlet:

<FORM ACTION=""/servlet/myservlets.js2”>

Enter Email Address :< INPUT TYPE="TEXT” NAME="email”>
<INPUT TYPE="SUBMIT”>

</FORM>

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE -Module 4

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class js2 extends Httpservlet {

public void doGet(HttpservletRequset request,HttpservletResponse response)

b
b

throws servletException , [OException {

//String email;
//Email=request.getParameter(“email”);
Respose.setContentType(“text/html”);
PrinterWriter pw=response.getWriter();
pw.printin(“<HTML>\n" +

“HEAD><TITLE> Java Servlet</TITLE></HEAD>\n" +
“<BODY>\n"+

//“<p>MY Email Address :” +email +”</p>\n" +
<h1> My First Servlet

“</BODY>\n" +

</HTML>");

5. How to read HTTP Request Headers?

A request from client contains two components these are implicit data,

such as email address explicit data at HTTP request header. Servlet can read these
request headers to process the data component of the request.

Example of HTTP header:

Accept: image.jpg, image.gif,*/*

Accept- Encoding: Zip

Cookie: CustNum-12345
Host:www.mywebsite.com

Referer: http:/www.mywebsite.com/index.html

The uses of HTTP header:

Accept: Identifies the mail extension

Accept-Charset : Identifies the character set that can be used by browser.
Cookie returns the cookies to server.

Host: contains host portal.

Referrer: Contains the URL of the web page that is currently displayed in

the browser.

A java servlet can read an HTTP request header by calling the getHeader()

method of the HttpservletRequest object. getHeader() requires one argument
which is the name of the http request header.

getHeader()

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

source: diginotes.in

http://www.mywebsite.com/index.html

Advance Java and J2EE -Module 4

6. How to send data to client and writing the HTTP Response Header?

A java servlet responds to a client’s request by reading client data and HTTP
request headers, and then processing information based on the nature of the request.

For example, a client request for information about merchandise in an online
product catalog requires the java servlet to search the product database to retrieve product
information and then format the product information into a web page, which is returned
to client.

There are two ways in which java servlet replies to client request. These are sent
by sending information to the response stream and sending information in http response
header. The http response header is similar to the http request header.

Explicit data are sent by creating an instance of the PrintWriter object and then
using println() method to transmit the information to the client.

Implcit data example: HTTP/1.1 200 OK
Content-Type:text/plain

My Response

Java servlet can write to the HTTP response header by calling setStatus() method
requires one argument which is an integer that represent the status code.

Response.setStatus(100);

7. Explain about Cookies in servlet.

Cookies are text files stored on the client computer and they are kept for various
information tracking purpose. Java Servlets transparently supports HTTP cookies.

There are three steps involved in identifying returning users:

e Server script sends a set of cookies to the browser. For example name, age, or
identification number etc.

e Browser stores this information on local machine for future use.

e When next time browser sends any request to web server then it sends those cookies
information to the server and server uses that information to identify the user.

Setting Cookies with Servlet:

Setting cookies with servlet involves three steps:

(1) Creating a Cookie object: You call the Cookie constructor with a cookie name and a cookie
value, both of which are strings.

nmn

Cookie cookie = new Cookie("key","value");

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE -Module 4

(2) Setting the maximum age: You use setMaxAge to specify how long (in seconds) the cookie
should be valid. Following would set up a cookie for 24 hours.

cookie.setMaxAge(60*60%*24);

(3) Sending the Cookie into the HTTP response headers: You use response.addCookie to
add cookies in the HTTP response header as follows:

response.addCookie(cookie);

Writing Cookie

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloForm extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

Cookie myCookie = new Cookie("user id", 123);
myCookie.setMaxAge(60*60);
response.addCookie(myCookie);
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<htmI>\n" +
"<head><title>" + My Cookie + "</title></head>\n" +

“<nody>\n”" +

“<h1>+ My Cookie +’<h1>\n” +

“<p> Cookie Written + </p>\n” +

“</body></HTML>");

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE -Module 4

Reading Cookies with Servlet:

To read cookies, you need to create an array of javax.servlet.http.Cookie objects by
calling the getCookies() method of HttpServietRequest. Then cycle through the array, and use
getName() and getValue() methods to access each cookie and associated value.

Example:Let us read cookies which we have set in previous example:

import java.io.*;import javax.servlet.*;import javax.servlet.http.*;
public class ReadCookies extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

Cookie cookie;
Cookie[] cookies;

cookies = request.getCookies();
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String title = "Reading Cookies Example";
out.println("<htmI>\n" +

"<head><title>" + title + "</title></head>\n"),

if(cookies !=null){
out.println("<h2> Found Cookies Name and Value</h2>");
for (int 1 = 0; 1 < cookies.length; 1++){
cookie = cookies|[i];
out.print("Name : " + cookie.getName() +", ");

out.print("Value: " + cookie.getValue()+"
");

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE -Module 4

telse{ out.println("<h2>No cookies founds</h2>");
} out.println("</body>"); out.println("</htmI>");
Iy

8. Explain Session Tracking:

1. A session is created each time a client requests service from a java servlet. The
java. The java servlet processes the request and response accordingly, after which
the session is terminated. Many times the same client follows with another request
to the same client follows with another request to the same java servlet, java
servlet requires information regarding the previous session to process request.

2. However, HTTP is stateless protocol, meaning that there is not hold over from
the previous sessions.

3. Java servlet is capable of tracking sessions by using Httpsession API. It
determines if the request is a continuation from an existing session or new
session.

4. A java servlet calls a getSession() method of HttpservletRequset object, which
returns a session object if it is a new session. The getSession() method requires
one argument which is Boolean true. Returns session object.

Syntax :

HttpSession s1=request.getSession(true);

JSP program

A jsp is java server page is server side program that is similar in design and functionality
to a java servlet.

A JSP is called by a client to provide web services, the nature of which depends on client
application.

A jsp is simpler to create than a java servlet because a jsp is written in HTML rather than
with the java programming language. . There are three methods that are automatically called
when jsp is requested and when jsp terminates normally. These are the jsplnit() method , the
jspDestroy()m ethod and service() method.

A jsplnit() is identical ti init() method of java servlet. It is called when first time jsp is
called.

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE -Module 4

A jspDestroy() is identical to destroy() method of servlet. The destroy() method is
automatically called when jsp erminates normally.It is not called when jsp terminates abruptly. It
is used for placing clean up codes.

1. Explain JSP tags(repeated question)

A jsp tag consists of a combination of HTML tags and JSP tags. JSP tags define
java code that is to be executed before the output of jsp program is sent to the browser.

A jsp tag begin with a <%, which is followed by java code , and wnds with %>,
There ia an XML version of jsp tag <jap:Tagld></jsp:Tagld>

A jsp tags are embedded into the HTML component of a jsp program and are
processed by Jsp virtual engine such as Tomcat.

Java code associated with jsp tag are executed and sent to browser.
There are five types of jsp tags :

Comment tag :A comment tag opens with <%-- and close with --%> and is follwed by a
comment that usually describes the functionality of statements that follow a comment tag.

Declaration statement tags: A declartion statement tag opens with <%! And is
followed by declaration statements that define the variables, object, and methods that are avilabe
to other component of jsp program.

Directive tags: A directive tag opens with <%(@ and commands the jsp virtual engine to
perform a specific task, such as importing java package required by objects and methods used in
a declaration statement. The directive tag closes with %> . There are commonly used in
directives import, include , and taglib. The import tag is used to import java packages into the jsp
program. Include is used for importing file. Taglib is used for including file.

Example:

<%(@ page import="import java.sql.*” ; %>
<%(@ include file="keogh\books.html” %>
<% (@ taglib url="myTags.tld” ; %>

Expression tags: An expression tag opens with <%= and is used for an expression
statement whose result page replaces the expression tag when the jsp virtual engine resolves JSP
tags. An expression tag closes with %>

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE -Module 4

Scriptlet tag: A sciptlet tag opens with <% and contains commonly used java control
statements and loops. And Scriptlet tag closes with %>

2. How variables and objcts declared in JSP program?

You can declare java variables and objects that are used in a JSP program by
using the same codin technique used to declare them in java. JSP declaration
statements must appear as jsp tag

Ex:
<htmlI>
<head>
<title> Jsp Programming </title>
<.head>
<body>
<%! Int age=29; %><p> Your age is : <%=age%> </p>
</body>
</html>

3. How method are declared and used in jsp programs?

Methods are defined same way as it is defined in jsp program, except these
are placed in JSP tag.methods are declared in JSP decalration tag. The jsp calls
method in side the expression tag.

Example:

<html>

<head>

<title> Jsp programming</title>

</head>

<body>

<%! int add(int n1, int n2)

{

int c;
c=atb;
return c;

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE -Module 4

%>
<p> Addition of two numbers : <%= add(45,46)%> </p>

</body></html>

4. Explain the control statements of JSP with example program:

1. One of the most powerful features avilable in JSP is the ability to change the
flow of the program to truly create dynamic content for a web based on
conditions received from the browser.

2. Ther are two control statements used to change the flow of program are “if
and “switch” statement , both of which are also used to direct the flow of a
java program.

Ex:
<htmI>
<head>
<title> JSP Programming </title>
</head>
<body>
<%! int grade=26; %>
</body>
<% if(grade >69) { %>
<p> You Passed !</p>
<% } else { %>
<p> Better Luck Next Time</p>
<% } %>
</body>
</html>
5. Looping Statement of JSP
Jsp loops are nearly identical to loops that you use in your java program
except you can repeat the html tags
There are three kind of jsp loop that are commonly used in jsp program.
Ex: for loop , while loop , do while .
Loop plays an important role in JSP database program. The following
program is example for “FOR LOOP”.

<html><head><title>For Loop Example</title></head>

<body>

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE -Module 4

<%

for (inti=0; i <10;5i++) {

%>

<p> Hello World</p>

<% } %> </body>

</html>

6. Explain Requset String generated by browser. how to read a request string in

isp?

1.

A browser generate requst string whenever the submit button is selected. The
user requests the string consists of URL and the query the string.

Example of request string:

http://www.jimkeogh.com/jsp/?fhame=" Bob” & Iname ="Smith”

Your jsp programneeds to parse the query string to extract the values of fields
that are to be processed by your program. You can parse the query string by
using the methods of the request object.

getParameter(Name) method used to parse a value of a specific field that are
to be processed by your program

code to process the requset string

<%! String FirstName =requst.getParameter(fname);

String LastName =requst.getParameter(Ilname); %>
Copying from multivalued field such as selection list field can be tricky
multivalued fields are handled by using getParameterValues()
Other than requset string url has protocols, port no, the host name
Write the JSP program to create and read cookie called “EMPID” and
that has value “AN2536”.

Cookie is small piece of information created b a JSP program that is stored

on the clien’s hard dik by the browser. Cookie isare used to store various kind of
information, such as user preference. The cookies are created by using Cookie
class.

Create cookie:

<htmlI>

<head>

<title> creating cookie</title>

</head>

<body>

<%! String MyCookieName="EMPID”;

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

source: diginotes.in

http://www.jimkeogh.com/jsp/?fname

Advance Java and J2EE -Module 4

String UserValue="AN2536";

%>

</body>

</html>

Reading Cookie:

<htmlI>

<head>

<title>reading cookie </title>

</head>

<body>

<% String myCookieName="EMPID”;

String myCookieValue;

String CName, CValue;

int found=0;

Cookie[] cookies=request.getCoookies();
for(int i=0;i<cookies.length;i++) {
CName= cookies[i].getName();
CValue =cookies[i].getValue();
If(myCookieName.equals(CName)) {
found=1;
myCookieValue=Cvalue; } }
If(found==1) { %>
<p> Cookie Name = < %= CName %> </p>
<p> Cookie Value = < %= CValue %> </p>
<% } %> </body></html>

8. Explain steps to configure tomcat.
i. Jsp program programs are executed by a JSP virtual machine that
run on a web server.
ii. We can download and install JSP virtual machine.
iii. Installation Steps
Connect to Jakarta.apache.org.
Select down load
Select Binaries to display the binary Download Page.
Create a folder from the root directory called tomcat.
Download latest release.
Unzip Jakarta-tomcat.zip.
The extraction process creates the following folder in the
tomcat directory: bin, conf, doc, lib, src, and webapps
Modify the batch file , which is located in the \tomcat\bin
folder. Change the JAVA_ _HOME variable is assigned the pathe where
JDK is installed on your computer.
Open dos window and type \tomcat\bin\tomcat to start
Tomcat.

Open your browser. Enter http://localhost:8080.

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

source: diginotes.in

http://localhost:8080/

Advance Java and J2EE -Module 4

Tomcat home page is displayed on the screen verifying that Tomcat is
running.

9. Explain how session objects are created.

A JSP database system ia able to share information among JSP programs
within a session by using a session object. Each time a session is created , a unique ID is
assigned to the session and stored as acookie.

A unique ID enables JSP program to track multiple session session
simultaneously while maintaining data integrity of each session. The session ID is used to
prevent the intermingling of each session.

Create session Object:
<htmI><head><title> Jsp Session</title></head>
<body>
<% ! String AtName=""Product”;
String AtValue =71234";
Session.setAttributes(AtName, AtValue);
%></body></html>

In session object we can store information about purchases as session attributes
can be retrived and modified each time the jsp program runs. setAttributes() used for creating
attributes.

Read Session Object:

getAttributeNames() methos returns names of all the attribbutes as Enumeration ,
the attributes are processsed.

<htmI><head><title> Jsp Session</title></head>

<body><% !
Enumaration purchases=session.getAttributeNames();
String AtName=(String) attributeNames.nextElement();
String AtValu=(String) session.getAttribute(AtName); %>
<p> Attirbute Name <%= AtName %> </p>
<p> Attribute Value <% = Atvalue %> </p>

<% } %> %></body></html>

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advance Java and J2EE -Module 4

IIT Internal Questions

1.

e

10.

11.

12.

13.

14.
15.

16.

17.
18.

19.
20.

What are different types of JSP tags describe the JSP tags with example.(Dec 2011)

. Define JSP. Explain two types of control statements with example.(Dec 2012)

Write the JSP program to create and read cookie called “EMPID” and that has value
“AN2536"(Dec 2012)

What is RMI? Briefly explain working of RMI in java.(Dec 2012)

Department has set the grade for the subject Java as follows:

Above 90: A, 80-89:B, 70-79:C
Below 70 = fail. Sham enters his marks for the subject Java in the interface provided.
Write a JSP program to accept the mark and display the grade.(Jun 2011)

Briefly explain the RMI in Java (June 2011)
Discuss different types of JSP tags (Jun 2011)

Write a program using RMI such as client and server program in which client sends hello
message to server and replies to client (June 2012)

Develop simple java servlet that handle HTTP Request and Response (June 2012)
Explain javax.servlet packages(June 2012)

What is difference between JSP and Servlet? (june 2012)

What are the advantages of JSP program?(jun 2010)

What are servlets? Briefly explain the application of servlets in web programming (dec
2010)

Explain the life cycle of a servlet. (dec 2010)
Write a java servlet which reads two parameters from the webpage, say value 1 and value

2 , which are type integer and finds the sum of the two value and return back the result as
a webpage.(dec 2010)

Provide java syntax for the following: (dec 2010)

1) Handling HTTP requests and responses

i1) Using cookies

1i1) Session tracking

List out difference between CGI and servlet.

What is cookie list out methods defined by cookie. Write a servlet program to read
cookie.

Write a jsp program to add cookie name “User I1d” and value”JB007”

Describe in detail how tomcat web server is configured in develop of servlet life cycle.

Jayanthi M.G, Associate Professor ,Department of CSE, Cambridge Institute of Technology.

Advanced Java and J2EE —Module 5

Unit -5
The Concept of JDBC:

1. Java was not considered industrial strength programming language since java was
unable to access the DBMS.

2. Each dbms has its own way to access the data storage. low level code required to
access oracle data storage need to be rewritten to access db2.

3. JDBC stands for Java Database Connectivity, which is a standard Java API for
database-independent connectivity between the Java programming language and a
wide range of databases

4. JDBC drivers has to do the following

e Open connection between DBMS and J2EE environment.

s Translate low level equivalents of sql statements sent by J2EE
component into messages that can be processed by the DBMS.

e Return the data that conforms to JDBC specifications to the JDBC
driver

e Return the error messages that conforms to JDBC specifications to
the JDBC driver

e Provides transaction management routines that conforms to JDBC
specifications to the JDBC driver
e Close connection between the DBMS and the J2EE component.

JDBC Architecture

Java Application

JDBC API

~ JDBC Driver
Manager

ST

N

June 2012 (Briefly discuss the various JDBC driver types 10 M)

JDBC Driver Types

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

Type 1 driver JDBC to ODBC Driver

1.
2.

3.
4.

It is also called JDBC/ODBC Bridge , developed by MicroSoft.

It receives messages from a J2EE component that conforms to the
JDBC specifications

Then it translates into the messages understood by the DBMS.
This is DBMS independent database program that is ODBC open
database connectivity.

Type 2 JAVA / Native Code Driver

1.

2.
3.
4.

Type 3 IDBC Driver

Type 4 IDBC Driver

14
2.
3.

JDBC Packages

Generates platform specific code that is code understood by platform
specific code only understood by specific databases.

Manufacturer of DBMS provides both java/ Native code driver.
Using this provides lost of portability of code.

It won’t work for another DBMS manufacturer

1. Most commonly used JDBC driver.

2. Coverts SQL queries into JDBC Formatted statements.

3. Then JDBC Formatted statements are translated into the format
required by the DBMS.

4. Referred as Java protocol

Referred as Type 4 database protocol
SQL statements are transferred into the format required by the DBMS.
This is the fastest communication protocol.

JDBC API contains two packages. First package is called java.sqgl, second package is
called javax.sgl which extends java.sql for advanced JDBC features.

Explain the various steps of the JDBC process with code snippets.
1. Loading the JDBC driver

e The jdbc driver must be loaded before the J2EE compnet can be connected to
the database.
e Driver is loaded by calling the method and passing it the name of driver

Class.forName(“sun:jdbc.odbc.JdbcOdbceDriver”);

2. Connecting to the DBMS.

e Once the driver is loaded , J2EE component must connect to the DBMS using
DriverManager.getConnection() method.

e ltishighest class in hierarchy and is responsible for managing driver
information.

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

e |t takes three arguments URL, User, Password
e It returns connection interface that is used through out the process to reference
a database

String url="jdbc:odbc:JdbcOdbcDriver”;
String userld="jim”

String password="Keogh”;

Statement DatRequest;

Private Connection db;

try{
Class.forName(“sun:jdbc.odbe.JdbecOdbceDriver”);

Db=DriverManager.getConnection(url,userld,password);

}

3. Creating and Executing a statement.

The next step after the JDBC is loaded and connection is successfully
made with a particular database managed by the dbms, is to end a
particular query to the DBMS for processing.
SQL query consists series of SQL command that direct DBMS to do
something example Return rows.
Connect.createStatement() method is used to create a statement Object.
The statement object is then used to execute a query and return result
object that contain response from the DBMS

Statement DataRequest;

ResultSet Results;

try {
String query=*“select * from Customers”;
DataRequest=Database.createStatement();
Results= DataRequests.executeQuery(query);
}

4. Processing data returned by the DBMS

java.sql.ResultSet object is assigned the result received from the DBMS
after the query is processed.
java.sgl.ResultSet contain method to interct with data that is returned by
the DBMS to the J2EE Component.

Results= DataRequests.executeQuery(query);

do

{

Fname=Results.getString(Fname)

}

While(Results.next())

In the above code it return result from the query and executes the
query. And getString is used to process the String retrived from the
database.

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

5.

Terminating the connection with the DBMS.
To terminate the connection Database.close() method is used.

With proper syntax, explain three types of getConnection() method.

1

2

After the JDBC driver is successfully loaded and registered, the J2EE component
must connect to the database. The database must be associated with the JDBC driver.
The datasource that JDBC component will connect to is identified using the URL
format. The URL consists of three format.
e These are jdbc which indicate jdbc protocol is used to read the URL.
e <subprotocol> which is JDBC driver name.
e <subname> which is the name of database.
Connection to the database is achieved by using one of three getConnection()
methods. It returns connection object otherwise returns SQLEXception
Three getConnection() method

e getConnection(String url)

e getConnection(String url, String pass, String user)

e getConnection(String url, Properties prop)

getConnection(String url)
e Sometimes the DBMS grant access to a database to anyone that time
J2EE component uses getConnection(url) method is used.
String url=" jdbc:odbc:JdbcOdbeDriver ™;
try{
Class.forName(“sun:jdbc.odbc.JdbcOdbeDriver”);
Db=DriverManager.getConnection(url);

¥

getConnection(String url, String pass, String user)

e Database has limited access to the database to authorized user and require
J2EE to supply user id and password with request access to the database.
The this method is used.

try{
Class.forName(“sun:jdbc.odbc.JdbcOdbceDriver™);

Db=DriverManager.getConnection(url,userld,password);

¥

7 getConnection(String url, Properties prop)

e There might be occasions when a DBMS require information besides
userid and password before DBMS grant access to the database.

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

e This additional information is called properties and that must be
associated with Properties object.
e The property is stored in text file. And then loaded by load method of
Properties class.
Connection db;
Properties props=new Properties();
try {
FileInputStream inputfile=new FileInputStream(“text.txt”);
Prop.load(inputfile);
}

Write short notes on Timeout:

1.

2.

Competition to use the same database is a common occurrence in the J2EE
environment and can lead to performance degradation of J2EE application
Database may not connect immediately delayed response because database may not
available.

Rather than delayed waliting timeJ2EE component can stop connection. After some
time. This time can bet set with the following method:
DriverManager.setLoginTimeout(int sec).

DriverManager.getLoginTimeout(int sec) return the current timeout in seconds.

Explain Connection Pool

1.

6.
7.

Client needs frequent that needs to frequently interact with database must either open
connection and leave open connection during processing or open or close and
reconnect each time.

Leaving the connection may open might prevent another client from accessing the
database when DBS have limited no of connections. Connecting and reconnecting is
time consuming.

The release of JDBC 2.1 Standard extension API introduced concept on connection
pooling

A connection pool is a collection of database connection that are opened and loaded
into memory so these connection can be reused with out reconnecting to the
database.

DataSource interface to connect to the connection pool. connection pool is
implemented in application server.

There are two types of connection to the database 1.) Logical 2.) Physical

The following is code to connect to connection pool.

Context ctext= new IntialContext()
DataSource pool =(DataSource) ctext.lookup(“java:comp/env/jdbc/pool”);
Connection db=pool.getConnection();

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

Briefly explain the Statement object. Write program to call a stored procedure.(10)

1. Statement object executes query immediately with out precompiling.
2. The statement object contains the excuteQuery() method , which accept query as
argument then query is transmitted for processing. It returns ResultSet as object.

Example Program
String url="jdbc:odbc:JdbcOdbceDriver”;
String userld="jim”
String password="Keogh”;
Statement DatRequest;
Private Connection db;
ResultSet rs;

/I code to load driver

//code to connect to the database

try{

String query="SELECT * FROM Customers;
DatRequest=Db.createStaement();
rs=DatRequest.executeQuery(query);// return result set object
}catch(SQLEXxception err)

{

System.err.println(“Error’);

System.exit(1);

3. Another method is used when DML and DDL operations are used for processing
query is executeUpdate(). This returns no of rows as integer.

try{
String query="UPDATE Customer set PAID="Y’ where BALANCE =’0’;

DatRequest=Db.createStaement();

int n=DatRequest.executeUpdate(query);// returns no of rows updated
}catch(SQLEXception err)

{

System.err.println(“Error’);

System.exit(1);

}

Briefly explain the prepared statement object. Write program to call a stored
procedure.(10)
1. A SQL query must be compiled before DBMS processes the query. Query is
precompiled and executed using Prepared statements.
2. Question mark is placed as the value of the customer number. The value will be
inserted into the precompiled query later in the code.

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

3. Setxxx() is used to replace the question mark with the value passed to the setxxx()
method . xxx represents data type of the field.
Example if it is string then setString() is used.
It takes two arguments on is position of question mark and other is value to the filed.
This is referred as late binding.

String url="jdbc:odbc:JdbcOdbcDriver”;

String userld="jim”

String password="Keogh”;

ResultSet rs;

ok~

/I code to load driver
/Icode to connect to the database

try{

String query="SELECT * FROM Customers where cno=?";
PreparedStatement pstatement=db.preparedStatement(query);
pstatement.setString(1,”123”); // 1 represents first place holder, 123 is value
rs= pstatement.executeQuery();

}catch(SQLEXxception err)
{

System.err.printin(“Error”);
System.exit(1);
}

Briefly explain the callable statement object. Write program to call a stored procedure.(10)
1. The callableStatement object is used to call a stored procedure from with in J2EE
object. A stored procedure is block of code and is identified by unique name. the
code can bewritten in Transact-C ,PL/SQL.
2. Stored procedure is executed by invoking by the name of procedure.

3. The callableStatement uses three types of parameter when calling stored procedure.
The parameters are IN ,OUT,INOUT.

4. IN parameter contains data that needs to be passed to the stored procedure whose
value is assigned using setxxx() method.

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

10.

11.

12.

ResultSet

OUT parameter contains value returned by stored procedure.the OUT parameter
should be registers by using registerOutParameter() method and then later retrieved
by the J2EE component using getxxx() method.

INOUT parameter is used to both pass information to the stored procedure and
retrieve the information from the procedure.

Suppose, you need to execute the following Oracle stored procedure:
CREATE OR REPLACE PROCEDURE getEmpName
(EMP_ID IN NUMBER, EMP_FIRST OUT VARCHAR) AS
BEGIN
SELECT first INTO EMP_FIRST FROM Employees WHERE ID = EMP_ID;
END;
The following code snippets is used
CallableStatement cstmt = null;
try { String SQL = "{call getEmpName (?, ?)}";
cstmt = conn.prepareCall (SQL);catch (SQLException e) { }

Using CallableStatement objects is much like using PreparedStatement objects. You
must bind values to all parameters before executing the statement, or you will
receive an SQLException.

If you have IN parameters, just follow the same rules and techniques that apply to a
PreparedStatement object; use the setXXX() method that corresponds to the Java
data type you are binding.

When you use OUT and INOUT parameters you must employ an additional
CallableStatement method, registerOutParameter(). The registerOutParameter()
method binds the JDBC data type to the data type the stored procedure is expected
to return.

Once you call your stored procedure, you retrieve the value from the OUT
parameter with the appropriate getXXX() method. This method casts the retrieved
value of SQL type to a Java data type.

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

1. ResultSet object contain the methods that are used to copy data from
ResultSet into java collection object or variable for further processing.

2. Data in the ResultSet is logically organized into the virtual table for further
processing. Result set along with row and column it also contains meta data.

3. ResultSet uses virtual cursor to point to a row of the table.

4. J2EE component should use the virtual cursor to each row and the use other
methods of the ResultSet to object to interact with the data stored in column of
the row.

5. The virtual cursor is positioned above the first row of data when the ResultSet
is returned by executeQuery () method.

6. The virtual cursor is moved to the first row with help of next() method of
ResultSet

7. Once virtual cursor is positioned getxxx() is used to return the data. Data type
of data is represents by xxx. It should match with column data type.

8. getString(fname)fname is column name.

9. setString(1)........... in this 1 indicates first column selected by query.

stmt = conn.createStatement();
String sql;
sql = "SELECT id, first, last, age FROM Employees™;
ResultSet rs = stmt.executeQuery(sql);
while(rs.next()){
intid =rs.getint(*"id");/ / rs.getint(1);
int age = rs.getint(*'age™);
String first = rs.getString(**first™);
String last = rs.getString(*'last™);
System.out.print("'ID: " + id);

System.out.print(**, Age: " + age);

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

System.out.print(*, First: ** + first);

System.out.printin(*, Last: ** + last);

Explain the with an example Scrollable Result Set (6 Marks)

1.

No ok~ ow

o

10.

11.

12.

Until the release of JDBC 2.1 API, the virtual cursor can move only in forward
directions. But today the virtual cursor can be positioned at a specific row.

There are six methods to position the cursor at specific location in addition to next() in
scrollable result set. firs() ,last(), absolute(), relative(), previous(), and getRow().

first() position at first row.

last()............ position at last row.

previous().......... position at previous row.

absolute().......... To the row specified in the absolute function

relative()............ move relative to current row. Positive and negative no can be given.
Ex. relative(-4) ... 4 position backward direction.

getRow() returns the no of current row.

There are three constants can be passed to the createStatement()
Default is TYPE_FORWARD_ONLY. Otherwise three constant can be passed to the
create statement 1.) TYPE_SCROLL_INSENSITIVE

2) TYPE_SCROLL_SENSITIVE

TYPE_SCROLL makes cursor to move both direction. INSENSITIVE makes changes
made by J2EE component will not reflect. SENSITIVE means changes by J2EE will
reflect in the result set.
Example code.
String sql=" select * from emp”’;
DR=Db.createStatement(TYPE_SCROLL_INSENSITIVE);
RS= DR.executeQuery(sql);
Now we can use all the methods of ResultSet.

Explain the with an example updatable Result Set.

1. Rows contained in the result set is updatable similar to how rows in the table can
be updated. This is possible by sending CONCUR_UPDATABLE.

2. There are three ways in which result set can be changed. These are updating row ,
deleting a row, inserting a new row.

3. Update ResultSet

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

e Once the executeQuery() method of the statement object returns a
result set. updatexxx() method is used to change the value of
column in the current row of result set.

e It requires two parameters, position of the column in query. Second
parameter is value

e updateRow() method is called after all the updatexxx() methods
are called.

Example:

try{

}

String query= “select Fname, Lname from Customers
where Fname= ‘Mary’ and Lanme="Smith’;
DataRequest= Db.
createStatement(ResultSet. CONCUR_UPDATABLE);
Rs= DataRequest.executeQuery(query);
Rs.updateString(“LastName”,”Smith”);
Rs.updateRow();

4. Delete row in result set

% By using absolute method positioning the virtual
cursor and calling deleteRow(int n) n is the number
of rows to be deleted.

% Rs.deleteRow(0) current row is deleted.

5. Insert Row in result set

try{

¥

+“» Once the executeQuery() method of the statement
object returns a result set. updatexxx() method is
used to insert the new row of result set.

< It requires two parameters, position of the column
in query. Second parameter is value

¢ insertRow() method is called after all the
updatexxx() methods are called.

String query= “select Fname, Lname from Customers
where Fname= ‘Mary’ and Lanme="Smith’;
DataRequest= Db.
createStatement(ResultSet. CONCUR_UPDATABLE);
Rs= DataRequest.executeQuery(query);
Rs.updateString(1 ,”Jon”);

Rs.updateString(2 ,”Smith”);

Rs.insertRow();

6. Whatever the changes making will affect only in the result set not in the table. To
update in the table have to execute the DML (update, insert, delete) statements.

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

Explain the Transaction processing with example

1.

7.
8.
9.

A transaction may consists of a set of SQL statements, each of which must be
successfully completed for the transaction to be completed. If one fails SQL statements
successfully completed must be rolled back.
Transaction is not completed until the J2EE component calls the commit() method of the
connection object. All SQL statements executed prior to the call to commit() method can
be rolled back.
Commit() method was automatically called in the program. DBMS has set AutoCommit
feature.
If the J2EE component is processing a transaction then it has to deactivate the auto
commit() option false.
try {
DataBase.setAutoCommit(false)
String query="UPDATE Customer set Street =’5 main Street’ “+
“WHERE FirstName =’Bob’ ”’;
DR= DataBase.createStatement();
DataRequest=DataBase.createStatement();
DataRequest.executeUpdate(queryl);
DataBase.commit();
}
Transaction can also be rolled back. When not happened. Db.roliback().
A transaction may consists of many tasks , some of which no need to roll back . in such
situation we can create a savepoints, in between transactions. It was introduced in JDBC
3.0. save points are created and then passed as parameters to rollback() methods.
releseSavepint() is used to remove the savepoint from the transaction.
Savepoint s1=DataBase.setSavePoint(“sp1”);to create the savepoint.
Database.rollback(spl); to rollback the transaction.

Batch Execution of transaction

10. Another way to combine sql statements into a single into a single transaction and then

11.

12.

execute the entire transaction .
To do this the addBatch() method of statement object. The addBatch() method receives a
SQL statement as a parameter and places the SQL statement in the batch.
executeBatch() method is called to execute the entire batch at the same time. It returns an
array that contains no of SQL statement that execute successfully.

String queryl="UPDATE Customers SET street =" 5 th Main’” +

“Where Fname="BoB’ *;
String query2="UPDATE Customers SET street =" 10 th Main’” +

“Where Fname="Tom” *;
Statement DR=DB.createStatement();

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

DR.addBatch(queryl);
DR.addBatch(query?2);
int [] updated= DR.executeBatch();

Write notes on metadata interface Metadata

1. Metadata is data about data. MetaData is accessed by using the
DatabaseMetaData interface.

2. This interface is used to return the meta data information about database.

Meta data is retrieved by using getMetaData() method of connection object.

Database metadata

The method used to retrieve meta data informations are

getDatabaseProductNAme()...returns the product name of database.

getUserNAme() returns the usernamr()

getURL() returns the URL of the databse.

getSchemas() returns all the schema name

getPrimaryKey() returns primary key

getTables() returns names of tables in the database

ResultSet Metadata

ResultSetMetaData rm=Result.getMeatData()

w

© oo N ok

The method used to retrieve meta data information about result set are
10. getColumnCount() returns the number of columns contained in result set

Data types of Sql used in setXXX() and getXXX() methods.

sQL JDBC/Java

VARCHAR java.lang.String
CHAR java.lang.String
LONGVARCHAR java.lang.String

BIT boolean

NUMERIC java.math.BigDecimal
TINYINT byte

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

SMALLINT short
INTEGER int

BIGINT long

REAL float

FLOAT float
DOUBLE double
VARBINARY byte[]
BINARY byte[]

DATE java.sqgl.Date
TIME java.sgl.Time
TIMESTAMP java.sgl.Timestamp
CLOB java.sql.Clob
BLOB java.sql.Blob
ARRAY java.sgl.Array
REF java.sqgl.Ref

Exceptions handling with jdbc

Exception handling allows you to handle exceptional conditions such as program-defined errors
in a controlled fashion.

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

. When an exception condition occurs, an exception is thrown. The term thrown
means that current program execution stops, and control is redirected to the
nearest applicable catch clause. If no applicable catch clause exists, then the
program's execution ends.

JDBC Exception handling is very similar to Java Excpetion handling but for
JDBC.

There are three kind of exception thrown by jdbc methods.
SQLException ,SQLWarnings, DataTruncation
SQLException

The most common exception you'll deal with is java.sql.SQLException
which result in SQL sysntax errors.

getNextException() method returns details about the error.
getErrorCode() method retrieves vendor specific error codes.
SQLWarnings

it throws warnings related to connection from DBMS. getWarnings() method
of connecction object retrieves t warnings. getNextWarnings() returns
subsequent warnings.

DataTruncation

Whenever data is lost due to truncation of the data value , a truncation
exception is thrown.

Differentiate between a Statement and a PreparedStatement.

* A standard Statement is used for creating a Java representation for a literal SQL statement and

for executing it on the database.
* A PreparedStatement is a precompiled Statement.

* A Statement has to verify its metadata in the database every time.

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

* But ,the prepared statement has to verify its metadata in the database only once.
* I[f we execute the SQL statement, it will go to the STATEMENT.

* But, if we want to execute a single SQL statement for the multiple number of times, it’1l go to
the PreparedStatement.

Explain the classes, interface , methods available in java.sgl.* package.

Java.sql.package include classes and interface to perform almost all JDBC operation such
as creating and executing SQL queries

=

java.sgl.BLOB -------- provide support to BLOB SQL data type.
java.sqgl.Connection----- creates connection with specific data type
Methods in Connection
setSavePoint()

N

rollback()
commit()
setAutoCommit()
3. java.sgl.CallableStatement-------- Executes stored procedures
Methods in CallableStatement
execute()
registerOutParameter()
java.sql.CLOB ------------ support for CLOB data type.
java.sgl.Date------------ support for Date SQL type.

Java.sql.Driver ----- create instance of driver with the DriverManager

java.sql.DriverManager---- manages the data base driver
getConnection()
setLoginTimeout()
getLoginTimeout()
8. java.sgl.PreparedStatement—create parameterized query
executeQuery()
executeUpdate()
9. java.sgl.ResultSet------------- it is interface to access result row by row
rs.next()
rs.last()
rs.first()
10. java.sql.Savepoint------- Specify savepoint in transaction.
11. java.sql.SQLException--------- Encapsulates JDBC related exception.
12. java.sql.Statement........... interface used to execute SQL statement.

N o ok

13. java.sql.DataBaseMetaData..... returns mata data

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE —Module 5

University Questions

Write a program to display current content of table in database.
Exceptions handling with jdbc program.

Write notes on metadata interface Metadata

Explain the with an example updatable Result Set.

Explain the Transaction processing with example

Explain the with an example updatable Result Set.

Explain the with an example Scrollable Result Set (6 Marks)

Explain the various steps of the JDBC process with code snippets.

Briefly explain the callable statement object. Write program to call a stored procedure
10 (Briefly discuss the various JDBC driver types 10 M)

11. With proper syntax, explain three types of getConnection() method.

12. Explain J2ee multitier architecture.

©COo N Ok N

13. Explain the classes, interface available in java.sql.* package.

Jayanthi M.G , Associate Professor, Dept of CSE, Cambridge Institute of Technology

Advanced Java and J2EE 15CS553

ADVANCED JAVA and J2EE
Subject Code: 15CS553 IA Marks: 20
Hours/Week: 3 Exam Hours: 3
Total Hours: 40 Exam Marks: 80
MODULE-I 8 Hours

Enumerations, Autoboxing and Annotations(metadata): Enumerations, Enumeration
fundamentals, the values() and valueOf() Methods, java enumerations are class types,
enumerations Inherits Enum, example, type wrappers, Autoboxing, Autoboxing and
Methods, Autoboxing/Unboxing occurs in Expressions, Autoboxing/Unboxing, Boolean and
character values, Autoboxing/Unboxing helps prevent errors, A word of Warning.
Annotations, Annotation basics, specifying retention policy, Obtaining Annotations at
runtime by use of reflection, Annotated element Interface, Using Default values, Marker
Annotations, Single Member annotations, Built-In annotations.

MODULE-IT 8 Hours

The collections and Framework: Collections Overview, Recent Changes to Collections,
The Collection Interfaces, The Collection Classes, Accessing a collection Via an Iterator,
Storing User Defined Classes in Collections, The Random Access Interface, Working With
Maps, Comparators, The Collection Algorithms, Why Generic Collections?, The legacy
Classes and Interfaces, Parting Thoughts on Collections.

MODULE-III 8 Hours

String Handling :The String Constructors, String Length, Special String Operations, String
Literals, String Concatenation, String Concatenation with Other Data Types, String
Conversion and toString() Character Extraction, charAt(), getChars(), getBytes()
toCharArray(), String Comparison, equals() and equalsIignoreCase(), regionMatches()
startsWith() and endsWith(), equals() Versus == , compareTo() Searching Strings,
Modifying a String, substring(), concat(), replace(), trim(), Data Conversion Using
valueOf(), Changing the Case of Characters Within a String, Additional String Methods,
StringBuffer , StringBuffer Constructors, length() and capacity(), ensureCapacity(),
setLength(), charAt() and setCharAt(), getChars(),append(), insert(), reverse(), delete()
and deleteCharAt(), replace(), substring(), Additional StringBuffer Methods, StringBuilder

MODULE-IV 8 Hours

Servlet: Background; The Life Cycle of a Servlet; Using Tomcat for Servlet Development;
A simple Servlet; The Servlet API; The Javax.servlet Package; Reading Servlet Parameter;
The Javax.servlet.http package; Handling HTTP Requests and Responses; Using Cookies;
Session Tracking. Java Server Pages (JSP): JSP, JSP Tags, Tomcat, Request String, User
Sessions, Cookies, Session Objects

MODULE-V 8 Hours

Dept. of CSE, SJBIT Pagei

Advanced Java and J2EE 15CS553

The Concept of JDBC; JDBC Driver Types; JDBC Packages; A Brief Overview of the
JDBC process; Database Connection; Associating the JDBC/ODBC Bridge with the
Database; Statement Objects; ResultSet; Transaction Processing; Metadata, Data types;
Exceptions.

Reference / Text Book Details

SL.No. Title of Book Author Publication Edition
| | JAVA The Complete Herbert Schildt | L@ MeGraw 79t
Reference Hill
. Tata McGraw
2 | J2EE The Complete Reference | Jim Keogh Hill 2007
i P
3 Introductm‘n to JAVA Y. Daniel Liang earsor.l 7
Programming Education, 2007
Stephanie Pearson nd
4 i 2
The J2EE Tutorial Bodoff Education, 2004
5 | Advanced JAVA | Uttam K Roy Oxford University 2015
Programming Press

Dept. of CSE, SJBIT Page ii

Advanced Java and J2EE 15CS553

Table of Contents

SL No Module Description Page No
1 Module 1 — Enumeration, AutoBoxing and Annotations 1-23
2 Module 2 — Collection Framework 24-57
3 Module 3 — String Methods 58-119
4 Module 4 — Servlets and JSP 120-149
5 Module 5 — JDBC Methods 150-166

Dept. of CSE, SJBIT Page iii

Advanced Java and J2EE 15CS553

Module — 1
Enumerations, Autoboxing and Annotations

Enumerations

Enumerations was added to Java language in JDKS. Enumeration means a list of named constant. In Java,
enumeration defines a class type. An Enumeration can have constructors, methods and instance variables. It
is created using enum keyword. Each enumeration constant is public, static and final by default. Even
though enumeration defines a class type and have constructors, you do not instantiate an enum using new.
Enumeration variables are used and declared in much a same way as you do a primitive variable.

How to Define and Use an Enumeration

1. An enumeration can be defined simply by creating a list of enum variable. Let us take an example
for list of Subject variable, with different subjects in the list.

enum Subject //Enumeration defined
{

Java, Cpp, C, Dbms
}

2. Identifiers Java, Cpp, C and Dbms are called enumeration constants. These are public, static and
final by default.
3. Variables of Enumeration can be defined directly without any new keyword.

Subject sub;

4. Variables of Enumeration type can have only enumeration constants as value. We define an enum
variable as enum_variable = enum_type.enum_constant;

sub = Subject.Java;
5. Two enumeration constants can be compared for equality by using the = = relational operator.
Example:
if(sub == Subject.Java) {

}

Dept. of CSE, S]BIT Page 1

Advanced Java and J2EE 15CS553

Example of Enumeration

enum WeekDays
{ sun, mon, tues, wed, thurs, fri, sat }

class Test

{

public static void main(String args[])

{

WeekDays wk; //wk is an enumeration variable of type WeekDays
wk = WeekDays.sun; //wk can be assigned only the constants defined under

//lenum type Weekdays
System.out.printin("Today is "+wk);
}

}
Output :

Today is sun
The enum can be defined within or outside the class because it is similar to a class.

enum Season { WINTER, SPRING, SUMMER, FALL }
class EnumExample2 {

public static void main(String[] args) {

Season s=Season. WINTER;

System.out.println(s);

i

Output: WINTER

class EnumExample3 {

enum Season { WINTER, SPRING, SUMMER, FALL;}//semicolon; is optional here
public static void main(String[] args) {

Season s=Season. WINTER;//enum type is required to access WINTER
System.out.println(s);

1

Output: WINTER

Example of Enumeration using switch statement

class EnumExample5 {

enum Day{ SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY}

public static void main(String args[]){

Day day=Day.MONDAY;

Dept. of CSE, S]BIT Page 2

Advanced Java and J2EE 15CS553

switch(day){

case SUNDAY:
System.out.println("sunday");
break;

case MONDAY:
System.out.println("monday");
break;

default:
System.out.printIn("other day");
b

3

Output:monday
Values() and ValueOf() method

All the enumerations has predefined methods values() and valueOf(). values() method returns an array of
enum-type containing all the enumeration constants in it. Its general form is,

public static enum-type/ | values()

valueOf() method is used to return the enumeration constant whose value is equal to the string passed in as
argument while calling this method. It's general form is,

public static enum-type valueOf (String str)

Example of enumeration using values() and valueOf() methods:

enum Restaurants {

dominos, kfc, pizzahut, paninos, burgerking

}

class Test {

public static void main(String args[])

{

Restaurants r;

System.out.println("All constants of enum type Restaurants are:");
Restaurants rArray[] = Restaurants.values(); //returns an array of constants of type Restaurants
for(Restaurants a : rArray) //using foreach loop
System.out.println(a);

r = Restaurants.valueOf("dominos");
System.out.println("I AM " + r);

}

}
Output:

All constants of enum type Restaurants are:
dominos

Dept. of CSE, S]BIT Page 3

Advanced Java and J2EE 15CS553

kfc

pizzahut
paninos
burgerking

I AM dominos

Instead of creating array we can directly obtain all values.
class EnumExamplel {
public enum Season { WINTER, SPRING, SUMMER, FALL }
public static void main(String[] args) {
for (Season s : Season.values())

System.out.println(s);
}
}
Output: WINTER
SPRING
SUMMER
FALL

Points to remember about Enumerations

—

Enumerations are of class type, and have all the capabilities that a Java class has.
Enumerations can have Constructors, instance Variables, methods and can even implement
Interfaces.

Enumerations are not instantiated using new keyword.

All Enumerations by default inherit java.lang.Enum class.

As a class can only extend one parent in Java, so an enum cannot extend anything else.

enum may implement many interfaces but cannot extend any class because it internally extends
Enum class

N

kW

Java Enum are class type and can contain Constructor, instance variable and Method & implement
interface.

enum Student

{
John(11), Jonny(10), Sam(13), Viraaj(9);
private int age; //variable defined in enum Student

int getage() { return age; } //method defined in enum Student
Student(int age) //constructor defined in enum Student

{

this.age= age;

¥
}

Dept. of CSE, S]BIT Page 4

Advanced Java and J2EE 15CS553

class EnumDemo

{

public static void main(String args[])

{

Student S; //is enum variable or enum object. Constructor is called when
//each enum object is created.

System.out.println("Age of Viraaj is " +Student. Viraaj.getage()+ "years");

//display all student and ages
System.out.println("All students age is:");
for (Student a : Student.values())
System.out.println(a +" age is " +a.getage());

}
}Output :
Age of Viraaj is 9 years

All students age is:
John age is 11
Jonny age is 10
Sam age is 13
Viraaj age is 9

In this example as soon as we declare an enum variable(Student S), the constructor is called, and it initializes
age for every enumeration constant with values specified with them in parenthesis.

Each enum constant(John, Jonny...) has its own copy of value(age...)
Student. Viraaj.getage()returns age of Viraaj.

Java Enum containg overloaded constructor
class EnumExamp {

enum Season {

WINTER(S), SPRING(10), SUMMER(15), FALL;

private int value;
Season(int v){
value=v;

}

//default constructor initializes value to -1
Season(){
value=-1;

}

Dept. of CSE, S]BIT Page 5

Advanced Java and J2EE 15CS553

}

public static void main(String args[]){
//printing enum constant and its value
System.out.println("Season is "+ Season.SUMMER+ " value is "+ Season.SUMMER .value);
//printing all enum constant and its value
for (Season s : Season.values())
System.out.println(s+" "+s.value);

}} output

Season is SUMMER value is 15
WINTER 5

SPRING 10

SUMMER 15

FALL -1

Enumerations Inherits Enum

All enumerations automatically inherit java.lang.Enum. The Enum class defines several methods such as
ordinal(), compareTo(), equals() and so on, that are available for use by all enumerations. You can
obtain a value that indicates an enumeration constant’s position in the list of constants. This is called its
‘ordinal value’ and it is retrieved by calling the ordinal() method. This method returns the ordinal value of
the invoking constant. Ordinal values begin at ‘0°.

final int ordinal()

//example using ordinal() method
enum Season { WINTER, SPRING, SUMMER, FALL }
class EnumExample2 {
public static void main(String[] args) {
Season s=Season. WINTER;
System.out.println(s.ordinal());

i

Output:
0

//lexample using compareTo() method

You can compare the ordinal value of two contents of the same enumeration by using the compareTo()
method. This method returns a negative integer, zero, or a positive integer as this object ordinal value less
than, equal to, or greater than the specified object ordinal value.

enum Tutorials {
topicl, topic2, topic3;

}

public class EnumDemo {

Dept. of CSE, S]BIT Page 6

Advanced Java and J2EE 15CS553

public static void main(String args[]) {
Tutorials tl1, t2, t3;

t1 = Tutorials.topicl;
t2 = Tutorials.topic2;
t3 = Tutorials.topic3;

if(tl.compareTo(t2) > 0) {
System.out.println(t2 + " completed before " + t1);

}

if(tl.compareTo(t2) < 0) {
System.out.println(tl + " completed before " + t2);

}

if(tl.compareTo(t3) == 0) {
System.out.println(tl + " completed with " + t3);

h
h
h

topicl completed before topic2

You can compare an enumeration constant with any other object by using equal(), which overrides the
equals() method defined by Object. Although equals() can compare an enumeration constant to any other
object, those two objects will only be equal if they both refer to the same constant, within the same
enumeration.

enum Tutorials {
topicl, topic2, topic3;
}

public class EnumDemo {
public static void main(String args[]) {
Tutorials tl1, t2, t3;

t1 = Tutorials.topicl;
t2 = Tutorials.topic2;
t3 = Tutorials.topicl;

if(tl.equals(t2)) {
System.out.println(“Error”);

}

if (tl.equals(t3)) {

Dept. of CSE, S]BIT Page 7

Advanced Java and J2EE

15CS553

System.out.println(tl +" Equals " + t3);

}

}

}

topicl Equals topicl

We can compare 2 enumerations references for equality using ==(operator).

enum Apple {
shimla, ooty, wood, green, red

}

public class EnumDemo4567 {
public static void main(String args[])

{

Apple ap, ap2, ap3;

// Obtain all ordinal values using ordinal().
System.out.println("Here are all apple constants" +
" and their ordinal values: ");
for(Apple a : Apple.values())
System.out.println(a + " " + a.ordinal());

ap = Apple.wood;

ap2 = Apple.ooty;

ap3 = Apple.wood;

System.out.println();

// Demonstrate compareTo() and equals()
if(ap.compareTo(ap2) < 0)

System.out.println(ap + " comes before " + ap2);

if(ap.compareTo(ap2) > 0)
System.out.println(ap2 + " comes before " + ap);

if(ap.compareTo(ap3) == 0)
System.out.println(ap + " equals " + ap3);

System.out.println();

if(ap.equals(ap2))
System.out.println("Error!");

if(ap.equals(ap3))
System.out.println(ap + " equals " + ap3);

if(ap == ap3)

Dept. of CSE, SJBIT

Page 8

Advanced Java and J2EE 15CS553

System.out.println(ap + " =" + ap3);

h
}

Here are all apple constants and their ordinal values:
shimla 0

ooty 1

wood 2

green 3

red 4

ooty comes before wood
wood equals wood

wood equals wood
wood == wood

Type Wrapper

Java uses primitive data types such as int, double, float etc. to hold the basic data types.

Eg. Int a=10;

Float =24.7;

Char ch="c’;

Despite the performance benefits offered by the primitive data types, there are situations when you will
need an object representation of the primitive data type. For example, many data structures in Java operate
on objects. So you cannot use primitive data types with those data structures. To handle such type of
situations, Java provides type Wrappers which provide classes that encapsulate a primitive type within an
object.

Need of Wrapper Classes

1. They convert primitive data types into objects. Objects are needed if we wish to modify the
arguments passed into a method (because primitive types are passed by value).

2. The classes in java.util package handles only objects and hence wrapper classes help in this case
also.

3. Data structures in the Collection framework, such as ArrayList and Vector, store only objects
(reference types) and not primitive types.

4. An object is needed to support synchronization in multithreading.

Character : It encapsulates primitive type char within object.
Character (char ch) //constructor for Character class
ch-specifies character that will be wrapped by Character object being created.
To obtain primitive char value contained in Character object call
char charValue()

Dept. of CSE, S]BIT Page 9

Advanced Java and J2EE 15CS553

Boolean : It encapsulates primitive type boolean within object.

Boolean (boolean b) //constructor for Boolean class
To obtain primitive bool value contained in Boolean object call
boolean booleanValue()

Likewise for below wrapper classes
Numeric type wrappers : It is the most commonly used type wrapper.

Byte Short Integer Long Float Double
‘PrimitiveHWrapper ClassH Constructor Argument HMethods to get primitive Valuesl
boolean |[Boolean Boolea}n (el b) booleanValue()

or String
‘byte HByte HByte (byte b) or String Hbyte Value() ‘
‘char HCharacter HCharacter (char ch) Hchar Value() ‘
‘int HInteger HInteger(int a) or String Hint Value() ‘
‘ﬂoat HFloat HFloat(ﬂoat f) or double or StringHﬂoat Value() ‘
‘double HDouble HDouble (double d) or String Hdouble Value() ‘
‘long HLong HLong (long 1)or String Hlong Value() ‘
‘short HShort HShort (short) or String Hshort Value() |

Following example shows constructors in wrapper classes.

public class WrapperClasses

{

public static void main(String[] args)

{

Byte B1 = new Byte((byte) 10); //Constructor which takes byte value as an argument
Byte B2 = new Byte("10"); //Constructor which takes String as an argument

//Byte B3 = new Byte("abc"); //Run Time Error : NumberFormatException
//Because, String abc can not be parse-able to byte

Short S1 =new Short((short) 20); //Constructor which takes short value as an argument
Short S2 = new Short("10"); //Constructor which takes String as an argument

Integer 11 = new Integer(30); //Constructor which takes int value as an argument
Integer 12 = new Integer("30"); //Constructor which takes String as an argument

Long L1 =new Long(40); //Constructor which takes long value as an argument
Long L2 =new Long("40"); //Constructor which takes String as an argument

Float F1 = new Float(12.2f); //Constructor which takes float value as an argument
Float F2 = new Float("15.6"); //Constructor which takes String as an argument

Dept. of CSE, S]BIT Page 10

Advanced Java and J2EE 15CS553

Float F3 = new Float(15.6d); //Constructor which takes double value as an argument

Double D1 =new Double(17.8d); //Constructor which takes double value as an argument
Double D2 =new Double("17.8"); //Constructor which takes String as an argument

Boolean BLN1 = new Boolean(false); //Constructor which takes boolean value as an argument
Boolean BLN2 = new Boolean("true"); //Constructor which takes String as an argument

Character C1 = new Character('D'); //Constructor which takes char value as an argument
Character C2 = new Character("abc"); //Compile time error : String abc can not be converted to
character

}
¥
Type Wrapper Hierarchy
Object
| I |
Number Boolean Character
Zil boolean char
| | | | | |
Byte Short Integer Long Float Double
byte short int long float double

Boxing : Process of converting primitive type to corresponding wrapper.
Eg. Integer i = new Integer(10);
Integer j = 20;

UnBoxing : Process of extracting value for type wrapper.
int a = i.intValue(i);

Autoboxing and Unboxing

o Autoboxing and Unboxing features was added in Java5.

e Autoboxing is a process by which primitive type is automatically encapsulated(boxed) into its
equivalent type wrapper

o Auto-Unboxing is a process by which the value of an object is automatically extracted from a type
Wrapper class.

Benefits of Autoboxing / Unboxing

1. Autoboxing / Unboxing lets us use primitive types and Wrapper class objects interchangeably.
Dept. of CSE, S]BIT Page 11

Advanced Java and J2EE 15CS553

2. We don't have to perform Explicit typecasting.

It helps prevent errors, but may lead to unexpected results sometimes. Hence must be used with care.

4. Auto-unboxing also allows you to mix different types of numeric objects in an expression. When the
values are unboxed, the standard type conversions can be applied.

(98]

Simple Example of Autoboxing in java:

class BoxingExamplel {
public static void main(String args[]){
int a=50;
Integer a2=new Integer(a);//Boxing

Integer a3=5;//Boxing

System.out.println(a2+" "+a3);

}

}
Output:50 5

Simple Example of Unboxing in java:
class UnboxingExamplel {

public static void main(String args[]){
Integer i=new Integer(50);

int a=i;
System.out.println(a);
}
}
Output:50

Autoboxing / Unboxing in Expressions

Whenever we use object of Wrapper class in an expression, automatic unboxing and boxing is done by
JVM.

Integer 10b;
i0b = 100; //Autoboxing of int
++iOb;

When we perform increment operation on Integer object, it is first unboxed, then incremented and then
again reboxed into Integer type object.

This will happen always, when we will use Wrapper class objects in expressions or conditions etc.

Dept. of CSE, S]BIT Page 12

Advanced Java and J2EE 15CS553

Example 2

class Test {

public static void main(String args[]) {
Integer i = 35;

Double d = 33.3;

d=d+1;

System.out.println("Value of d is " + d);
}

}
Ouput:

Value of d is 68.3

Note: When the statement d = d + i; was executed, 1 was auto-unboxed into int, d was auto-unboxed into
double, addition was performed and then finally, auto-boxing of d was done into Double type Wrapper
class.

Autoboxing / Unboxing in Methods
class Boxingl {
static void m(int 1)
{System.out.println("int");}
public static void main(String args[]){
Integer s=30;
m(s);
}
}

Output:int
Autoboxing / Unboxing Boolean
class UnboxingExample2 {

public static void main(String args[]){
Integer i=new Integer(50);

1f(i<100){ /lunboxing internally
System.out.println(i);
b
}
}
Output:50

Autoboxing / Unboxing Boolean and character values

// Autoboxing/unboxing a Boolean and Character.
class AutoBox5 {

Dept. of CSE, S]BIT Page 13

Advanced Java and J2EE 15CS553

public static void main(String args[]) {

// Autobox/unbox a boolean.

Boolean b = true;

// Below, b is auto-unboxed when used in
// a conditional expression, such as an if.
if(b) System.out.println("b is true");

// Autobox/unbox a char.

Character ch = 'x'; // box a char

char ch2 = ch; // unbox a char
System.out.println("ch2 is " + ch2);

}
j

The output is shown here:
b is true
ch2 is x

Autoboxing / Unboxing helps preventing errors

/I An error produced by manual unboxing.

class UnboxingError {

public static void main(String args[]) {

Integer 10b = 1000; // autobox the value 1000

int 1 = 10b.byteValue(); // manually unbox as byte !!!
System.out.println(i); // does not display 1000 !

}
h

Annotations (Metadata)

Java Annotations allow us to add metadata information into our source code,

Annotations were added to the java from JDK 5.

Annotations, does not change the actions of a program.

Thus, an annotation leaves the semantics of a program unchanged.

However, this information can be used by various tools during both development and deployment.
'] Annotations start with ‘@’.

T] Annotations do not change action of a compiled program.

"1 Annotations help to associate metadata (information) to the program elements i.e. instance variables,
constructors, methods, classes, etc.

T] Annotations are not pure comments as they can change the way a program is treated by compiler.

Annotations basics

An annotation always starts with the symbol @ followed by the annotation name. The symbol (@ indicates
to the compiler that this is an annotation.

Where we can use annotations?
Annotations can be applied to the classes, interfaces, methods and fields.

Dept. of CSE, S]BIT Page 14

Advanced Java and J2EE 15CS553

Built-In Java Annotations

There are 7 built-in annotations in java. Some annotations are applied to java code and some to other
annotations.

Built-In Java Annotations used in java code imported from java.lang

e (@Override
e (@SuppressWarnings
e (@Deprecated

Built-In Java Annotations used in other annotations
4 Annotations imported from java.lang.annotation

e (@Target

e (@Retention

e (@Inherited

e (@Documented

1. @Override It is a marker annotation that can be used only on methods. A method annotated with
@Override must override a method from a superclass. If it doesn’t, a compile-time error will result .
It is used to ensure that a superclass method is actually overridden, and not simply overloaded.

class Base

{
public void Display()

{
System.out.println("Base display()");

}

public static void main(String args[])
{
Base t1 = new Derived();
t1.Display();
h
§
class Derived extends Base
{
@Override
public void Display()
{
System.out.println("Derived display()");
H

}
Output:

Derived display()

Dept. of CSE, S]BIT Page 15

Advanced Java and J2EE 15CS553

2. @SuppressWarnings
It is used to inform the compiler to suppress specified compiler warnings. The warnings to suppress
are specified by name, in string form. This type of annotation can be applied to any type of
declaration.

Java groups warnings under two categories. They are : deprecation and unchecked.. Any
unchecked warning is generated when a legacy code interfaces with a code that use generics.

class DeprecatedTest
{
@Deprecated
public void Display()
{
System.out.println("Deprecatedtest display()");
H
h

public class SuppressWarningTest
{
// If we comment below annotation, program generates
// warning
@SuppressWarnings({"checked", "deprecation"})
public static void main(String args[])
{
DeprecatedTest d1 = new DeprecatedTest();
d1.Display();
}

}
Output:

Deprecatedtest display()

3. @Deprecated It is a marker annotation. It indicates that a declaration is obsolete and has been

replaced by a newer form.The Javadoc (@deprecated tag should be used when an element has been
deprecated.

public class DeprecatedTest

{
@Deprecated

public void Display()

{
System.out.println("Deprecatedtest display()");

}

public static void main(String args[])

{
DeprecatedTest d1 = new DeprecatedTest();

Dept. of CSE, S]BIT Page 16

Advanced Java and J2EE 15CS553

d1.Display();

}

}
Output:

Deprecatedtest display()

Types of Annotation

There are 3 categories of Annotations:-

1. Marker Annotations:

The only purpose is to mark a declaration. These annotations contain no members and do not consist any
data. Thus, its presence as an annotation is sufficient. Since, marker interface contains no members, simply
determining whether it is present or absent is sufficient. @Override , @Deprecated is an example of
Marker Annotation.

Example: - @TestAnnotation()

2. Single value Annotations:

These annotations contain only one member and allow a shorthand form of specifying the value of the
member. We only need to specify the value for that member when the annotation is applied and don’t need
to specify the name of the member. However in order to use this shorthand, the name of the member must
be value.

Example: - @TestAnnotation(‘“testing”);

3. Multivalue Annotations:
These annotations consist of multiple data members/ name, value, pairs.

Example:- @TestAnnotation(owner="Umesh”, value="Tutor”)

Java Custom Annotation

Java Custom annotations or Java User-defined annotations are easy to create and use. The @interface
element is used to declare an annotation. For example:

@interface MyAnnotation{ }
Here, MyAnnotation is the custom annotation name.
Points to remember for java custom annotation signature
There are few points that should be remembered by the programmer.
1. Annotations are created by using @interface, followed by annotation name as shown in the below
example.

2. An annotation can have elements as well. They look like methods. For example in the below code,
we have four elements. We should not provide implementation for these elements.

Dept. of CSE, S]BIT Page 17

Advanced Java and J2EE 15CS553

3. Method should return one of the following: primitive data types, String, Class, enum or array of
these data types.

4. Method should not have any parameter.

We should attach @ just before interface keyword to define annotation.

6. It may assign a default value to the method.

e

Declaring custom Annotation

@interface MyAnnotation {
int valuel() default 1;
String value2() default "";
String value3() default "xyz";

}

How to apply custom Annotation

@MyAnnotation(value1=10,value2="Umesh",value3="SJBIT")

4. @Documented It is a marker interface that tells a tool that an annotation is to be documented.
Annotations are not included by Javadoc comments. Use of @Documented annotation in the code
enables tools like Javadoc to process it and include the annotation type information in the generated
document.

java.lang.annotation.Documented

@Documented

public @interface MyCustomAnnotation {
//Annotation body

}

@MyCustomAnnotation
public class MyClass {
//Class body

}

While generating the javadoc for class MyClass, the annotation @MyCustomAnnotation would be
included in that.
5. @Inherited

The @Inherited annotation signals that a custom annotation used in a class should be inherited by all of its
sub classes. For example:

java.lang.annotation.Inherited

Dept. of CSE, S]BIT Page 18

Advanced Java and J2EE 15CS553

@]Inherited
public @interface MyCustomAnnotation {

}
(@MyCustomAnnotation

public class MyParentClass {

b
public class MyChildClass extends MyParentClass {

}

Here the class MyParentClass is using annotation @MyCustomAnnotation which is marked with
@inherited annotation. It means the sub class MyChildClass inherits the @MyCustomAnnotation.

6. @Target

It specifies where we can use the annotation. For example: In the below code, we have defined the target
type as METHOD which means the below annotation can only be used on methods.

The java.lang.annotation.ElementType enum declares many constants to specify the type of element where
annotation is to be applied such as TYPE, METHOD, FIELD etc.

‘ Element Types HWhere the annotation can be applied‘

‘TYPE Hclass, interface or enumeration
[FIELD |fields

ICONSTRUCTOR |lconstructors
ILOCAL_VARIABLE |llocal variables
IANNOTATION_TYPE|[annotation type
‘PARAMETER Hparameter

|
|
IMETHOD Imethods |
|
|
|
|

import java.lang.annotation.ElementType;
import java.lang.annotation. Target;

@Target({ElementType. METHOD})

//u can also target multiple elements

//@Target({ ElementType.FIELD, ElementType. METHOD})
public @interface MyCustomAnnotation {

b
public class MyClass {

@MyCustomAnnotation
Dept. of CSE, S]BIT Page 19

Advanced Java and J2EE 15CS553

public void myMethod()
{

//Doing something
}
}

7. @Retention
It indicates how long annotations with the annotated type are to be retained.

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy. RUNTIME)
@interface MyCustomAnnotation {

}

Here we have used RetentionPolicy. RUNTIME. There are two other options as well. Lets see what do they
mean:

RetentionPolicy. RUNTIME: The annotation should be available at runtime, for inspection via java
reflection.

RetentionPolicy.CLASS: The annotation would be in the .class file but it would not be available at runtime.
RetentionPolicy. SOURCE: The annotation would be available in the source code of the program, it would
neither be in the .class file nor be available at the runtime.

Complete in one example

import java.lang.annotation.Documented;

import java.lang.annotation.ElementType;

import java.lang.annotation.Inherited;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

import java.lang.annotation. Target;

@Documented
@Target(ElementType. METHOD)
@]Inherited
@Retention(RetentionPolicy. RUNTIME)
public @interface MyCustomAnnotation {
int studentAge() default 18;
String studentName();
String stuAddress();
String stuStream() default "CSE";
}
@MyCustomAnnotation(studentName="umesh", stuAddress="India")
public class MyClass {

Dept. of CSE, S]BIT Page 20

Advanced Java and J2EE 15CS553

}

Obtaining annotation at runtime using reflection

Reflection is an API which is used to examine or modify the behavior of methods, classes, interfaces at
runtime.

e The required classes for reflection are provided under java.lang.reflect package.
Reflection can be used to get information about —

e Class The getClass() method is used to get the name of the class to which an object belongs.

e Constructors The getConstructors() method is used to get the public constructors of the class to
which an object belongs.

e Methods The getMethods() method is used to get the public methods of the class to which an
objects belongs.

import java.lang.annotation.*;

import java.lang.reflect.*;

// An annotation type declaration.
@Retention(RetentionPolicy. RUNTIME)
@interface MyAnno {

String str();

int val();

}

class Meta {

// Annotate a method.

@MyAnno(str = "Annotation Example", val = 100)
public static void myMeth() {

Meta ob = new Meta();

// Obtain the annotation for this method
// and display the values of the members.

try {
// First, get a Class object that represents

// this class.

Class ¢ = ob.getClass();

// Now, get a Method object that represents

// this method.

Method m = c.getMethod("myMeth");

// Next, get the annotation for this class.

MyAnno anno = m.getAnnotation(MyAnno.class);
// Finally, display the values.
System.out.println(anno.str() + " " + anno.val());

} catch (NoSuchMethodException exc) {

Dept. of CSE, S]BIT Page 21

Advanced Java and J2EE 15CS553

System.out.println("Method Not Found.");

h
h

public static void main(String args[]) {
myMeth();

}

h

The output from the program is shown here:
Annotation Example 100
Obtaining All Annotations

You can obtain all annotations that have RUNTIME retention that are associated with an
item by calling getAnnotations() on that item. It has this general form:

Annotation| | getAnnotations()

It returns an array of the annotations. getAnnotations() can be called on objects of type
Class, Method, Constructor, and Field.

/I Show all annotations for a class and a method.
import java.lang.annotation.*;
import java.lang.reflect.*;
@Retention(RetentionPolicy. RUNTIME)
@interface MyAnno {

String str();

int val();

}

@Retention(RetentionPolicy. RUNTIME)
@interface What {
String description();

}

@What(description = "An annotation test class")
@MyAnno(str = "Meta2", val = 99)

class Meta2 {
@What(description = "An annotation test method")
@MyAnno(str = "Testing", val = 100)
public static void myMeth() {
Meta2 ob = new Meta2();
try {
Annotation annos|] = ob.getClass().getAnnotations();
// Display all annotations for Meta2.
System.out.println("All annotations for Meta2:");

Dept. of CSE, S]BIT Page 22

Advanced Java and J2EE 15CS553

for(Annotation a : annos)
System.out.println(a);
System.out.println();
// Display all annotations for myMeth.
Method m = ob.getClass().getMethod("myMeth");
annos = m.getAnnotations();
System.out.println("All annotations for myMeth:");
for(Annotation a : annos)
System.out.println(a);
} catch (NoSuchMethodException exc) {
System.out.println("Method Not Found.");

}
}
public static void main(String args[]) {
myMeth();
h
}

The output is shown here:

All annotations for MetaZ2:
@What(description=An annotation test class)
@MyAnno(str=Meta2, val=99)

All annotations for myMeth:
@What(description=An annotation test method)
@MyAnno(str=Testing, val=100)

The AnnotatedElement Interface
The methods getAnnotation() and getAnnotations() used by the preceding examples are defined
by the AnnotatedElement interface, which is defined in java.lang.reflect. This interface supports
reflection for annotations and is implemented by the classes Method, Field,Constructor, Class, and Package.
In addition to getAnnotation() and getAnnotations(), AnnotatedElement defines two other
methods. The first is getDeclared Annotations(), which has this general form:

Annotation| | getDeclared Annotations()

It returns all non-inherited annotations present in the invoking object. The second is
isAnnotationPresent(), which has this general form:

boolean isAnnotationPresent(Class annoType)

It returns true if the annotation specified by annoType is associated with the invokingobject. It returns false
otherwise.

Dept. of CSE, S]BIT Page 23

Advanced Java and J2EE 15CS553

MODULE -2
COLLECTION FRAMEWORK

Introduction to Collections

A collection — sometimes called a container — is simply an object that groups multiple
elements into a single unit. Collections are used to store, retrieve, manipulate, and communicate
aggregate data. Typically, they represent data items that form a natural group, such as a poker
hand (a collection of cards), a mail folder (a collection of letters), or a telephone directory (a
mapping of names to phone numbers). If you have used the Java programming language — or
just about any other programming language — you are already familiar with collections.

What Is a Collections Framework?

A collections framework is a unified architecture for representing and manipulating collections.
All collections frameworks contain the following:

o Interfaces: These are abstract data types that represent collections. Interfaces allow
collections to be manipulated independently of the details of their representation. In
object-oriented languages, interfaces generally form a hierarchy.

o Implementations: These are the concrete implementations of the collection interfaces. In
essence, they are reusable data structures.

o Algorithms: These are the methods that perform useful computations, such as searching
and sorting, on objects that implement collection interfaces. The algorithms are said to be
polymorphic: that is, the same method can be used on many different implementations of
the appropriate collection interface. In essence, algorithms are reusable functionality.

Apart from the Java Collections Framework, the best-known examples of collections frameworks
are the C++ Standard Template Library (STL) and Smalltalk's collection hierarchy. Historically,
collections frameworks have been quite complex, which gave them a reputation for having a
steep learning curve. We believe that the Java Collections Framework breaks with this tradition,
as you will learn for yourself in this chapter.

Benefits of the Java Collections Framework

The Java Collections Framework provides the following benefits:

e Reduces programming effort: By providing useful data structures and algorithms, the
Collections Framework frees you to concentrate on the important parts of your program
rather than on the low-level "plumbing" required to make it work. By facilitating
interoperability among unrelated APIs, the Java Collections Framework frees you from
writing adapter objects or conversion code to connect APIs.

Dept. of CSE, S]BIT Page 24

Advanced Java and J2EE 15CS553

e Increases program speed and quality: This Collections Framework provides high-
performance, high-quality implementations of useful data structures and algorithms. The
various implementations of each interface are interchangeable, so programs can be easily
tuned by switching collection implementations. Because you're freed from the drudgery
of writing your own data structures, you'll have more time to devote to improving
programs' quality and performance.

o Allows interoperability among unrelated APIs: The collection interfaces are the
vernacular by which APIs pass collections back and forth. If my network administration
API furnishes a collection of node names and if your GUI toolkit expects a collection of
column headings, our APIs will interoperate seamlessly, even though they were written
independently.

e Reduces effort to learn and to use new APIs: Many APIs naturally take collections on
input and furnish them as output. In the past, each such API had a small sub-API devoted
to manipulating its collections. There was little consistency among these ad hoc
collections sub-APIs, so you had to learn each one from scratch, and it was easy to make
mistakes when using them. With the advent of standard collection interfaces, the problem
went away.

e Reduces effort to design new APIs: This is the flip side of the previous advantage.
Designers and implementers don't have to reinvent the wheel each time they create an
API that relies on collections; instead, they can use standard collection interfaces.

o Fosters software reuse: New data structures that conform to the standard collection
interfaces are by nature reusable. The same goes for new algorithms that operate on
objects that implement these interfaces.

Interfaces

The core collection interfaces encapsulate different types of collections, which are shown in the
figure below. These interfaces allow collections to be manipulated independently of the details of
their representation. Core collection interfaces are the foundation of the Java Collections
Framework. As you can see in the following figure, the core collection interfaces form a
hierarchy.

Collection Map
—
[[I |
Set List Queue Deque | SortedMap
I
SortedSet

The core collection interfaces.

A set is a special kind of collection, a sortedset is a special kind of set, and so forth. Note
also that the hierarchy consists of two distinct trees — a Map 1S not a true Collection.

Dept. of CSE, S]BIT Page 25

Advanced Java and J2EE 15CS553

Note that all the core collection interfaces are generic. For example, this is the declaration of the
Collection interface.

public interface Collection<E>...

The <E> syntax tells you that the interface is generic. When you declare a collection instance
you can and should specify the type of object contained in the collection. Specifying the type
allows the compiler to verify (at compile-time) that the type of object you put into the collection
is correct, thus reducing errors at runtime. For information on generic types, see the Generics

(Updated) lesson.

When you understand how to use these interfaces, you will know most of what there is to know
about the Java Collections Framework. This chapter discusses general guidelines for effective
use of the interfaces, including when to use which interface. You'll also learn programming
idioms for each interface to help you get the most out of it.

To keep the number of core collection interfaces manageable, the Java platform doesn't provide
separate interfaces for each variant of each collection type. (Such variants might include
immutable, fixed-size, and append-only.) Instead, the modification operations in each interface
are designated optional — a given implementation may elect not to support all operations. If an
unsupported operation is invoked, a collection throws an UnsupportedOperationException.
Implementations are responsible for documenting which of the optional operations they support.
All of the Java platform's general-purpose implementations support all of the optional operations.

The following list describes the core collection interfaces:

e Collection — the root of the collection hierarchy. A collection represents a group of
objects known as its elements. The Collection interface is the least common
denominator that all collections implement and is used to pass collections around and to
manipulate them when maximum generality is desired. Some types of collections allow
duplicate elements, and others do not. Some are ordered and others are unordered. The
Java platform doesn't provide any direct implementations of this interface but provides
implementations of more specific subinterfaces, such as set and rList. Also see The
Collection Interface section.

e set — a collection that cannot contain duplicate elements. This interface models the
mathematical set abstraction and is used to represent sets, such as the cards comprising a
poker hand, the courses making up a student's schedule, or the processes running on a
machine. See also The Set Interface section.

e List — an ordered collection (sometimes called a sequence). Lists can contain
duplicate elements. The user of a List generally has precise control over where in the list
each element is inserted and can access elements by their integer index (position). If
you've used vector, you're familiar with the general flavor of List. Also see The List
Interface section.

e Queue — a collection used to hold multiple elements prior to processing. Besides basic
Collection operations, a Queue provides additional insertion, extraction, and inspection
operations.

Dept. of CSE, S]BIT Page 26

Advanced Java and J2EE 15CS553

Queues typically, but do not necessarily, order elements in a FIFO (first-in, first-out)
manner. Among the exceptions are priority queues, which order elements according to a
supplied comparator or the elements' natural ordering. Whatever the ordering used, the
head of the queue is the element that would be removed by a call to remove or poll.Ina
FIFO queue, all new elements are inserted at the tail of the queue. Other kinds of queues
may use different placement rules. Every gueue implementation must specify its ordering
properties. Also see The Queue Interface section.

e Deque — a collection used to hold multiple elements prior to processing. Besides basic
Collection operations, a Deque provides additional insertion, extraction, and inspection
operations.

Deques can be used both as FIFO (first-in, first-out) and LIFO (last-in, first-out). In a
deque all new elements can be inserted, retrieved and removed at both ends. Also see The
Deque Interface section.

e Map — an object that maps keys to values. A Map cannot contain duplicate keys; each key
can map to at most one value. If you've used Hashtable, you're already familiar with the
basics of Map. Also see The Map Interface section.

The last two core collection interfaces are merely sorted versions of set and Map:

e SortedSet — a set that maintains its elements in ascending order. Several additional
operations are provided to take advantage of the ordering. Sorted sets are used for
naturally ordered sets, such as word lists and membership rolls. Also see The SortedSet
Interface section.

e SortedMap — a Map that maintains its mappings in ascending key order. This is the Map
analog of sortedset. Sorted maps are used for naturally ordered collections of key/value
pairs, such as dictionaries and telephone directories. Also see The SortedMap Interface
section.

To understand how the sorted interfaces maintain the order of their elements, see the Object
Ordering section.

The Collection Interface

A Collection represents a group of objects known as its elements. The collection interface is
used to pass around collections of objects where maximum generality is desired. For example, by
convention all general-purpose collection implementations have a constructor that takes a
Collection argument. This constructor, known as a conversion constructor, initializes the new
collection to contain all of the elements in the specified collection, whatever the given
collection's subinterface or implementation type. In other words, it allows you to convert the
collection's type.

Dept. of CSE, S]BIT Page 27

Advanced Java and J2EE 15CS553

Suppose, for example, that you have a Collection<String> c, which may be a List, a Set, or
another kind of collection. This idiom creates a new ArrayList (an implementation of the
List interface), initially containing all the elements in c.

List<String> list = new ArrayList<String>(c);
Or — if you are using JDK 7 or later — you can use the diamond operator:

List<String> list = new ArrayList<>(c);

The collection interface contains methods that perform basic operations, such as int size(),
boolean isEmpty (), boolean contains (Object element), boolean add(E element),

boolean remove (Object element),andlterator<E> iterator ().

It also contains methods that operate on entire collections, such as boolean
containsAll (Collection<?> c¢), boolean addAll(Collection<? extends E> c),
boolean removeAll (Collection<?> c), boolean retainAll (Collection<?> c), and void

clear ().

Additional methods for array operations (such as Object[] toArray() and <T> T[]
toArray (T[] a) exist as well.

In JDK 8 and later, the collection interface also exposes methods stream<E> stream() and
Stream<E> parallelStream(), for obtaining sequential or parallel streams from the underlying
collection. (See the lesson entitled Aggregate Operations for more information about using
streams.)

The collection interface does about what you'd expect given that a Collection represents a
group of objects. It has methods that tell you how many elements are in the collection (size,
isEmpty), methods that check whether a given object is in the collection (contains), methods
that add and remove an element from the collection (add, remove), and methods that provide an
iterator over the collection (iterator).

The add method is defined generally enough so that it makes sense for collections that allow
duplicates as well as those that don't. It guarantees that the col1ection will contain the specified
element after the call completes, and returns true if the collection changes as a result of the
call. Similarly, the remove method is designed to remove a single instance of the specified
element from the collection, assuming that it contains the element to start with, and to return
true if the Collection was modified as a result.

Traversing Collections

There are three ways to traverse collections: (1) using aggregate operations (2) with the for-
each construct and (3) by using Tterators.

Dept. of CSE, S]BIT Page 28

Advanced Java and J2EE 15CS553

Aggregate Operations

In JDK 8 and later, the preferred method of iterating over a collection is to obtain a stream and
perform aggregate operations on it. Aggregate operations are often used in conjunction with
lambda expressions to make programming more expressive, using less lines of code. The
following code sequentially iterates through a collection of shapes and prints out the red objects:

myShapesCollection.stream()
.filter(e -> e.getColor() == Color.RED)
.forEach (e -> System.out.println(e.getName()));

Likewise, you could easily request a parallel stream, which might make sense if the collection is
large enough and your computer has enough cores:

myShapesCollection.parallelStream/()
.filter(e -> e.getColor() == Color.RED)
.forEach(e -> System.out.println(e.getName()))

There are many different ways to collect data with this APL. For example, you might want to
convert the elements of a Collection to string objects, then join them, separated by commas:

String joined = elements.stream()
.map (Object::toString)
.collect (Collectors.joining (", "))

Or perhaps sum the salaries of all employees:

int total = employees.stream/()
.collect (Collectors.summingInt (Employee::getSalary)));

These are but a few examples of what you can do with streams and aggregate operations. For
more information and examples, see the lesson entitled Aggregate Operations.

The Collections framework has always provided a number of so-called "bulk operations" as part
of its APIL. These include methods that operate on entire collections, such as containsall,
addall, removeAll, etc. Do not confuse those methods with the aggregate operations that were
introduced in JDK 8. The key difference between the new aggregate operations and the existing
bulk operations (containsAll, addAll, etc.) is that the old versions are all mutative, meaning
that they all modify the underlying collection. In contrast, the new aggregate operations do not
modify the underlying collection. When using the new aggregate operations and lambda
expressions, you must take care to avoid mutation so as not to introduce problems in the future,
should your code be run later from a parallel stream.

for-each Construct

The for-each construct allows you to concisely traverse a collection or array using a for loop
— see The for Statement. The following code uses the for-each construct to print out each
element of a collection on a separate line.

Dept. of CSE, S]BIT Page 29

Advanced Java and J2EE 15CS553

for (Object o : collection)
System.out.println (o) ;

Iterators

An Iterator is an object that enables you to traverse through a collection and to remove
elements from the collection selectively, if desired. You get an Tterator for a collection by
calling its iterator method. The following is the Tterator interface.

public interface Iterator<E> {
boolean hasNext ():;
E next();
void remove (); //optional

The nhasNext method returns true if the iteration has more elements, and the next method
returns the next element in the iteration. The remove method removes the last element that was
returned by next from the underlying collection. The remove method may be called only once
per call to next and throws an exception if this rule is violated.

Note that Tterator.remove is the only safe way to modify a collection during iteration; the
behavior is unspecified if the underlying collection is modified in any other way while the
iteration is in progress.

Use Tterator instead of the for-each construct when you need to:

e Remove the current element. The for-each construct hides the iterator, so you cannot call
remove. Therefore, the for-each construct is not usable for filtering.
e Iterate over multiple collections in parallel.

The following method shows you how to use an Iterator to filter an arbitrary collection —
that is, traverse the collection removing specific elements.

static void filter (Collection<?> c) {
for (Iterator<?> it = c.iterator(); it.hasNext();)
if (!cond(it.next()))
it.remove () ;

This simple piece of code is polymorphic, which means that it works for any collection
regardless of implementation. This example demonstrates how easy it is to write a polymorphic
algorithm using the Java Collections Framework.

Collection Interface Bulk Operations

Bulk operations perform an operation on an entire Collection. You could implement these
shorthand operations using the basic operations, though in most cases such implementations
would be less efficient. The following are the bulk operations:

Dept. of CSE, S]BIT Page 30

Advanced Java and J2EE 15CS553

e containsAll — returns true if the target Collection contains all of the elements in the
specified Collection.

e addAll — adds all of the elements in the specified Collection to the target Collection.

e removeAll — removes from the target Collection all of its elements that are also contained
in the specified Collection.

e retainAll — removes from the target Collection all its elements that are not also
contained in the specified Collection. That is, it retains only those elements in the target
Collection that are also contained in the specified Collection.

e clear — removes all elements from the Collection.

The addall, removeall, and retainall methods all return true if the target collection was
modified in the process of executing the operation.

As a simple example of the power of bulk operations, consider the following idiom to remove a//
instances of a specified element, e, from a Collection, c.

c.removeAll (Collections.singleton(e));
More specifically, suppose you want to remove all of the nu11 elements from a collection.

c.removeAll (Collections.singleton (null));

This idiom uses Collections.singleton, which is a static factory method that returns an
immutable set containing only the specified element.

Collection Interface Array Operations

The toarray methods are provided as a bridge between collections and older APIs that expect
arrays on input. The array operations allow the contents of a collection to be translated into an
array. The simple form with no arguments creates a new array of object. The more complex
form allows the caller to provide an array or to choose the runtime type of the output array.

For example, suppose that c is a Collection. The following snippet dumps the contents of c
into a newly allocated array of object whose length is identical to the number of elements in c.

Object[] a = c.toArray();

Suppose that c¢ is known to contain only strings (perhaps because c is of type
Collection<String>). The following snippet dumps the contents of c into a newly allocated
array of string whose length is identical to the number of elements in c.

String[] a = c.toArray(new Stringl[0]);

The Set Interface

Dept. of CSE, S]BIT Page 31

Advanced Java and J2EE 15CS553

A set is a Collection that cannot contain duplicate elements. It models the mathematical set
abstraction. The set interface contains only methods inherited from collection and adds the
restriction that duplicate elements are prohibited. set also adds a stronger contract on the
behavior of the equals and hashCode operations, allowing set instances to be compared
meaningfully even if their implementation types differ. Two set instances are equal if they
contain the same elements.

The Java platform contains three general-purpose set implementations: HashSet, Treeset, and
LinkedHashSet. Hashset, which stores its elements in a hash table, is the best-performing
implementation; however it makes no guarantees concerning the order of iteration. Treeset,
which stores its elements in a red-black tree, orders its elements based on their values; it is
substantially slower than Hashset. LinkedHashSet, which is implemented as a hash table with a
linked list running through it, orders its elements based on the order in which they were inserted
into the set (insertion-order). LinkedHashset spares its clients from the unspecified, generally
chaotic ordering provided by Hashset at a cost that is only slightly higher.

Here's a simple but useful set idiom. Suppose you have a Collection, c, and you want to create
another Ccollection containing the same elements but with all duplicates eliminated. The
following one-liner does the trick.

Collection<Type> noDups = new HashSet<Type>(c);

It works by creating a set (which, by definition, cannot contain duplicates), initially containing
all the elements in c. It uses the standard conversion constructor described in the The Collection
Interface section.

Or, if using JDK 8 or later, you could easily collect into a set using aggregate operations:

c.stream/()
.collect (Collectors.toSet()); // no duplicates

Here's a slightly longer example that accumulates a Collection of names into a TreeSet:

Set<String> set = people.stream()
.map (Person: :getName)
.collect (Collectors.toCollection (TreeSet: :new));

And the following is a minor variant of the first idiom that preserves the order of the original
collection while removing duplicate elements:

Collection<Type> noDups = new LinkedHashSet<Type>(c);

The following is a generic method that encapsulates the preceding idiom, returning a set of the
same generic type as the one passed.

public static <E> Set<E> removeDups (Collection<E> c) {
return new LinkedHashSet<E> (c);

}

Dept. of CSE, S]BIT Page 32

Advanced Java and J2EE 15CS553

Set Interface Basic Operations

The size operation returns the number of elements in the set (its cardinality). The isEmpty
method does exactly what you think it would. The add method adds the specified element to the
set if it is not already present and returns a boolean indicating whether the element was added.
Similarly, the remove method removes the specified element from the set if it is present and
returns a boolean indicating whether the element was present. The iterator method returns an
Iterator over the set.

The following program prints out all distinct words in its argument list. Two versions of this
program are provided. The first uses JDK 8 aggregate operations. The second uses the for-each
construct.

Using JDK 8 Aggregate Operations:

import java.util.x*;
import java.util.stream.*;

public class FindDups {
public static void main (String[] args) {
Set<String> distinctWords = Arrays.aslList(args) .stream()
.collect (Collectors.toSet());
System.out.println(distinctWords.size () +
" distinct words: " +
distinctWords) ;

Using the for-each Construct:
import java.util.x*;

public class FindDups {
public static void main(String[] args) {
Set<String> s = new HashSet<String>();
for (String a : args)
s.add (a) ;
System.out.println(s.size() + " distinct words: " + s);

Now run either version of the program.
java FindDups i1 came i saw i left
The following output is produced:

4 distinct words: [left, came, saw, 1i]

Dept. of CSE, S]BIT Page 33

Advanced Java and J2EE 15CS553

Note that the code always refers to the collection by its interface type (set) rather than by its
implementation type. This is a strongly recommended programming practice because it gives
you the flexibility to change implementations merely by changing the constructor. If either of the
variables used to store a collection or the parameters used to pass it around are declared to be of
the collection's implementation type rather than its interface type, all such variables and
parameters must be changed in order to change its implementation type.

Furthermore, there's no guarantee that the resulting program will work. If the program uses any
nonstandard operations present in the original implementation type but not in the new one, the
program will fail. Referring to collections only by their interface prevents you from using any
nonstandard operations.

The implementation type of the set in the preceding example is Hashset, which makes no
guarantees as to the order of the elements in the set. If you want the program to print the word
list in alphabetical order, merely change the set's implementation type from Hashset to
TreeSet. Making this trivial one-line change causes the command line in the previous example
to generate the following output.

java FindDups 1 came 1 saw 1 left

4 distinct words: [came, 1, left, saw]

Set Interface Bulk Operations

Bulk operations are particularly well suited to sets; when applied, they perform standard set-
algebraic operations. Suppose s1 and s2 are sets. Here's what bulk operations do:

e sl.containsAll (s2) — returns true if s2 is a subset of s1. (s2 is a subset of s1 if set
s1 contains all of the elements in s2.)

e sl.addall(s2) — transforms s1 into the union of s1 and s2. (The union of two sets is
the set containing all of the elements contained in either set.)

e sl.retainAll (s2) — transforms s1 into the intersection of s1 and s2. (The intersection
of two sets is the set containing only the elements common to both sets.)

e sl.removeAll (s2) — transforms s1 into the (asymmetric) set difference of s1 and s2.

(For example, the set difference of s1 minus s2 is the set containing all of the elements
found in s1 but not in s2.)

To calculate the union, intersection, or set difference of two sets nondestructively (without
modifying either set), the caller must copy one set before calling the appropriate bulk operation.
The following are the resulting idioms.

Set<Type> union = new HashSet<Type>(sl);
union.addAll (s2) ;

Set<Type> intersection = new HashSet<Type>(sl);
intersection.retainAll (s2);

Dept. of CSE, S]BIT Page 34

Advanced Java and J2EE 15CS553

Set<Type> difference = new HashSet<Type>(sl);
difference.removelAll (s2);

The implementation type of the result set in the preceding idioms is Hashset, which is, as
already mentioned, the best all-around set implementation in the Java platform. However, any
general-purpose set implementation could be substituted.

Let's revisit the Findbups program. Suppose you want to know which words in the argument list
occur only once and which occur more than once, but you do not want any duplicates printed out
repeatedly. This effect can be achieved by generating two sets — one containing every word in
the argument list and the other containing only the duplicates. The words that occur only once
are the set difference of these two sets, which we know how to compute. Here's how the
resulting programlook&

import java.util.*;

public class FindDups2 {
public static void main (String[] args) {
Set<String> uniques = new HashSet<String>();
Set<String> dups = new HashSet<String>();

for (String a : args)
if (!'uniques.add(a))
dups.add(a) ;

// Destructive set-difference
uniques.removeAll (dups) ;

System.out.println ("Unique words: " + uniques);
System.out.println ("Duplicate words: " + dups);

When run with the same argument list used earlier (i came i saw i left), the program yields
the following output.

Unique words: [left, saw, came]
Duplicate words: [1]

A less common set-algebraic operation is the symmetric set difference — the set of elements
contained in either of two specified sets but not in both. The following code calculates the
symmetric set difference of two sets nondestructively.

Set<Type> symmetricDiff = new HashSet<Type>(sl);
symmetricDiff.addAll (s2);

Set<Type> tmp = new HashSet<Type>(sl);
tmp.retainAll (s2);

symmetricDiff.removeAll (tmp) ;

Dept. of CSE, S]BIT Page 35

Advanced Java and J2EE 15CS553

The List Interface

A List is an ordered Collection (sometimes called a sequence). Lists may contain duplicate
elements. In addition to the operations inherited from collection, the List interface includes
operations for the following:

e Positional access — manipulates elements based on their numerical position in the
list. This includes methods such as get, set, add, addall, and remove.

e sSearch — searches for a specified object in the list and returns its numerical position.
Search methods include index0f and lastIndexOf.

e Iteration — extends Iterator semantics to take advantage of the list's sequential
nature. The 1istIterator methods provide this behavior.

e Range-view — The sublist method performs arbitrary range operations on the list.

The Java platform contains two general-purpose List implementations. ArrayList, which is
usually the better-performing implementation, and LinkedList which offers better performance
under certain circumstances.

Collection Operations

The operations inherited from collection all do about what you'd expect them to do, assuming
you're already familiar with them. If you're not familiar with them from col1lection, now would
be a good time to read The Collection Interface section. The remove operation always removes
the first occurrence of the specified element from the list. The add and adda11 operations always
append the new element(s) to the end of the list. Thus, the following idiom concatenates one list
to another.

listl.addAll (1ist2);

Here's a nondestructive form of this idiom, which produces a third List consisting of the second
list appended to the first.

List<Type> list3 = new ArrayList<Type>(listl);
list3.addAll (1ist2);

Note that the idiom, in its nondestructive form, takes advantage of ArrayList's standard
conversion constructor.

And here's an example (JDK 8 and later) that aggregates some names into a List:

List<String> list = people.stream()
.map (Person: :getName)
.collect (Collectors.toList()):

Dept. of CSE, S]BIT Page 36

Advanced Java and J2EE 15CS553

Like the set interface, List strengthens the requirements on the equals and hashCode methods
so that two List objects can be compared for logical equality without regard to their
implementation classes. Two List objects are equal if they contain the same elements in the
same order.

Positional Access and Search Operations

The basic positional access operations are get, set, add and remove. (The set and remove
operations return the old value that is being overwritten or removed.) Other operations (index0f
and lastIndexOf) return the first or last index of the specified element in the list.

The addail1l operation inserts all the elements of the specified Collection starting at the
specified position. The elements are inserted in the order they are returned by the specified
Collection's iterator. This call is the positional access analog of Collection's addall
operation.

Here's a little method to swap two indexed values in a List.

public static <E> void swap (List<E> a, int 1, int J) {
E tmp = a.get(i);
a.set(i, a.get(3));
a.set(j, tmp);

}

Of course, there's one big difference. This is a polymorphic algorithm: It swaps two elements in
any List, regardless of its implementation type. Here's another polymorphic algorithm that uses
the preceding swap method.

public static void shuffle(List<?> list, Random rnd) {
for (int i = list.size(); 1 > 1; i--)
swap(list, i - 1, rnd.nextInt(i));

This algorithm, which is included in the Java platform's collections class, randomly permutes
the specified list using the specified source of randomness. It's a bit subtle: It runs up the list
from the bottom, repeatedly swapping a randomly selected element into the current position.
Unlike most naive attempts at shuffling, it's fair (all permutations occur with equal likelihood,
assuming an unbiased source of randomness) and fast (requiring exactly 1ist.size () -1 swaps).
The following program uses this algorithm to print the words in its argument list in random
order.

import java.util.x*;

public class Shuffle {
public static void main(String[] args) {
List<String> list = new ArrayList<String>();
for (String a : args)
list.add(a);

Dept. of CSE, S]BIT Page 37

Advanced Java and J2EE 15CS553

Collections.shuffle(list, new Random()) ;
System.out.println(list);

In fact, this program can be made even shorter and faster. The arrays class has a static factory
method called asList, which allows an array to be viewed as a List. This method does not copy
the array. Changes in the List write through to the array and vice versa. The resulting List is not
a general-purpose List implementation, because it doesn't implement the (optional) add and
remove operations: Arrays are not resizable. Taking advantage of Arrays.asList and calling
the library version of shuffle, which uses a default source of randomness, you get the following
tiny program whose behavior is identical to the previous program.

import java.util.x*;

public class Shuffle {
public static void main(String[] args) {
List<String> list = Arrays.asList (args);
Collections.shuffle(list);
System.out.println(list);

Iterators

As you'd expect, the Tterator returned by List's iterator operation returns the elements of
the list in proper sequence. List also provides a richer iterator, called a ListIterator, which
allows you to traverse the list in either direction, modify the list during iteration, and obtain the
current position of the iterator.

The three methods that ListIterator inherits from Iterator (hasNext, next, and remove) do
exactly the same thing in both interfaces. The hasPrevious and the previous operations are
exact analogues of hasNext and next. The former operations refer to the element before the
(implicit) cursor, whereas the latter refer to the element after the cursor. The previous operation
moves the cursor backward, whereas next moves it forward.

Here's the standard idiom for iterating backward through a list.

for (ListIterator<Type> it = list.listIterator(list.size());
it.hasPrevious();) {
Type t = it.previous();

Note the argument to 1istIterator in the preceding idiom. The List interface has two forms
of the 1istIterator method. The form with no arguments returns a ListIterator positioned
at the beginning of the list; the form with an int argument returns a ListIterator positioned at
the specified index. The index refers to the element that would be returned by an initial call to

Dept. of CSE, S]BIT Page 38

Advanced Java and J2EE 15CS553

next. An initial call to previous would return the element whose index was index-1. In a list of
length n, there are n+1 valid values for index, from 0 to n, inclusive.

Intuitively speaking, the cursor is always between two elements — the one that would be
returned by a call to previous and the one that would be returned by a call to next. The n+1
valid index values correspond to the n+1 gaps between elements, from the gap before the first
element to the gap after the last one. The following figure shows the five possible cursor
positions in a list containing four elements.

Element(0) Element{1] Elemaent(2) Element{3)

- b

The five possible cursor positions.

Calls to next and previous can be intermixed, but you have to be a bit careful. The first call to
previous returns the same element as the last call to next. Similarly, the first call to next after a
sequence of calls to previous returns the same element as the last call to previous.

It should come as no surprise that the nextIndex method returns the index of the element that
would be returned by a subsequent call to next, and previousIndex returns the index of the
element that would be returned by a subsequent call to previous. These calls are typically used
either to report the position where something was found or to record the position of the
ListIterator so that another ListIterator with identical position can be created.

It should also come as no surprise that the number returned by nextIndex is always one greater
than the number returned by previousIndex. This implies the behavior of the two boundary
cases: (1) a call to previousIndex when the cursor is before the initial element returns -1 and
(2) a call to nextIndex when the cursor is after the final element returns 1ist.size (). To make
all this concrete, the following is a possible implementation of List . indexOf.

public int indexOf (E e) {
for (ListIterator<E> it = listIterator(); it.hasNext();)
if (e == null ? it.next() == null : e.equals(it.next()))
return it.previousIndex () ;
// Element not found
return -1;

}

Note that the indexof method returns it.previousIndex () even though it is traversing the list
in the forward direction. The reason is that it.nextIndex() would return the index of the
element we are about to examine, and we want to return the index of the element we just
examined.

Dept. of CSE, S]BIT Page 39

Advanced Java and J2EE 15CS553

The 1terator interface provides the remove operation to remove the last element returned by
next from the Collection. For ListIterator, this operation removes the last element returned
by next or previous. The ListIterator interface provides two additional operations to modify
the list — set and add. The set method overwrites the last element returned by next or
previous with the specified element. The following polymorphic algorithm uses set to replace
all occurrences of one specified value with another.

public static <E> void replace(List<E> list, E val, E newVal) {
for (ListIterator<E> it = list.listIterator(); it.hasNext();)
if (val == null ? it.next() == null : val.equals(it.next()))
it.set (newVal) ;

The only bit of trickiness in this example is the equality test between val and it.next. You
need to special-case a val value of null to prevent a NullPointerException.

The add method inserts a new element into the list immediately before the current cursor
position. This method is illustrated in the following polymorphic algorithm to replace all
occurrences of a specified value with the sequence of values contained in the specified list.

public static <E>
void replace(List<E> list, E val, List<? extends E> newVals) {
for (ListIterator<E> it = list.listIterator(); it.hasNext ();){
if (val == null ? it.next() == null : val.equals(it.next())
it.remove () ;
for (E e : newVals)
it.add(e);

) |

Range-View Operation

The range-view operation, subList (int fromIndex, int toIndex), returns a List view of
the portion of this list whose indices range from fromIndex, inclusive, to toIndex, exclusive.
This half-open range mirrors the typical for loop.

for (int i = fromIndex; 1 < tolIndex; i++) {

}

As the term view implies, the returned List is backed up by the List on which subList was
called, so changes in the former are reflected in the latter.

This method eliminates the need for explicit range operations (of the sort that commonly exist
for arrays). Any operation that expects a List can be used as a range operation by passing a
subList view instead of a whole List. For example, the following idiom removes a range of
elements from a List.

Dept. of CSE, S]BIT Page 40

Advanced Java and J2EE 15CS553

list.subList (fromIndex, tolIndex).clear();

Similar idioms can be constructed to search for an element in a range.

int 1 = list.sublList (fromIndex, toIndex) .indexOf (o) ;
int j list.sublList (fromIndex, tolIndex) .lastIndexOf (0o);

Note that the preceding idioms return the index of the found element in the subList, not the
index in the backing List.

Any polymorphic algorithm that operates on a List, such as the replace and shuffle
examples, works with the List returned by subList.

Here's a polymorphic algorithm whose implementation uses subList to deal a hand from a deck.
That is, it returns a new List (the "hand") containing the specified number of elements taken
from the end of the specified List (the "deck"). The elements returned in the hand are removed
from the deck.

public static <E> List<E> dealHand (List<E> deck, int n) {
int deckSize = deck.size();
List<E> handView = deck.sublList (deckSize - n, deckSize);
List<E> hand = new ArrayList<E> (handView) ;
handView.clear () ;
return hand;

Note that this algorithm removes the hand from the end of the deck. For many common List
implementations, such as ArrayList, the performance of removing elements from the end of the
list is substantially better than that of removing elements from the beginning.

The following is a program that uses the dealHand method in combination with
Collections.shuffle to generate hands from a normal 52-card deck. The program takes two
command-line arguments: (1) the number of hands to deal and (2) the number of cards in each
hand.

import java.util.x*;

public class Deal {
public static void main(String[] args) {

if (args.length < 2) {
System.out.println ("Usage: Deal hands cards");
return;

}

int numHands = Integer.parselnt (args[0]);

int cardsPerHand = Integer.parselnt(args[l]);

// Make a normal 52-card deck.

String[] suit = new String[] {
"spades", "hearts",
"diamonds"™, "clubs"

b

Dept. of CSE, S]BIT Page 41

Advanced Java and J2EE 15CS553

String[] rank = new String[] {
"ace", "2", "3", "4",
"5"’ "6"’ "7"’ "8", "9", "10",
"jack"’ "queen", "king"

b

List<String> deck = new ArrayList<String>();
for (int 1 = 0; 1 < suit.length; i++)
for (int j = 0; j < rank.length; j++)
deck.add (rank[j] + " of " + suitl[i]);

// Shuffle the deck.
Collections.shuffle (deck);

if (numHands * cardsPerHand > deck.size()) {
System.out.println ("Not enough cards.");
return;

}

for (int i = 0; 1 < numHands; 1i++)

System.out.println (dealHand (deck, cardsPerHand)) ;
}

public static <E> List<E> dealHand (List<E> deck, int n) {
int deckSize = deck.size();
List<E> handView = deck.sublList (deckSize - n, deckSize);
List<E> hand = new ArrayList<E> (handView) ;
handView.clear () ;
return hand;

Running the program produces output like the following.

% java Deal 4 5

[8 of hearts, jack of spades, 3 of spades, 4 of spades,
king of diamonds]

[4 of diamonds, ace of clubs, 6 of clubs, jack of hearts,
queen of hearts]

[7 of spades, 5 of spades, 2 of diamonds, queen of diamonds,
9 of clubs]

[8 of spades, 6 of diamonds, ace of spades, 3 of hearts,
ace of hearts]

Although the subList operation is extremely powerful, some care must be exercised when using
it. The semantics of the List returned by subList become undefined if elements are added to or
removed from the backing List in any way other than via the returned rist. Thus, it's highly
recommended that you use the List returned by subList only as a transient object — to perform
one or a sequence of range operations on the backing rist. The longer you use the subList
instance, the greater the probability that you'll compromise it by modifying the backing nist
directly or through another subList object. Note that it is legal to modify a sublist of a sublist
and to continue using the original sublist (though not concurrently).

Dept. of CSE, S]BIT Page 42

Advanced Java and J2EE 15CS553

List Algorithms

Most polymorphic algorithms in the collections class apply specifically to List. Having all
these algorithms at your disposal makes it very easy to manipulate lists. Here's a summary of
these algorithms, which are described in more detail in the Algorithms section.

e sort — sorts a List using a merge sort algorithm, which provides a fast, stable sort. (A
stable sort is one that does not reorder equal elements.)

e shuffle — randomly permutes the elements in a List.

e reverse — reverses the order of the elements in a List.

e rotate — rotates all the elements in a List by a specified distance.

e swap — swaps the elements at specified positions in a List.

e replaceall — replaces all occurrences of one specified value with another.

e fill — overwrites every element in a List with the specified value.

e copy — copies the source List into the destination List.

e binarySearch — searches for an element in an ordered List using the binary search

algorithm.

e indexOfsubList — returns the index of the first sublist of one List that is equal to
another.

e lastIndexOfSubList — returns the index of the last sublist of one List that is equal to
another.

. The Queue Interface

e A Queue is a collection for holding elements prior to processing. Besides basic
Collection operations, queues provide additional insertion, removal, and inspection
operations. The Queue interface follows.

e public interface Queue<E> extends Collection<E> {

. E element () ;

° boolean offer (E e);
° E peek();

° E poll();

. E remove () ;

o |}

e FEach gueue method exists in two forms: (1) one throws an exception if the operation
fails, and (2) the other returns a special value if the operation fails (either nul1l or false,
depending on the operation). The regular structure of the interface is illustrated in the
following table.

Queue Interface Structure
Type of Operation Throws exception Returns special value

Insert add (e) offer (e)
Remove remove () poll ()
Examine element () peek ()

Dept. of CSE, S]BIT Page 43

Advanced Java and J2EE 15CS553

e Queues typically, but not necessarily, order elements in a FIFO (first-in-first-out) manner.
Among the exceptions are priority queues, which order elements according to their values
— see the Object Ordering section for details). Whatever ordering is used, the head of the
queue is the element that would be removed by a call to remove or poll. In a FIFO
queue, all new elements are inserted at the tail of the queue. Other kinds of queues may
use different placement rules. Every gueue implementation must specify its ordering
properties.

e [t is possible for a gueue implementation to restrict the number of elements that it holds;
such queues are known as bounded. Some oQueue implementations in
java.util.concurrent are bounded, but the implementations in java.util are not.

e The add method, which Queue inherits from collection, inserts an element unless it
would violate the queue's capacity restrictions, in which case it throws
IllegalStateException. The offer method, which is intended solely for use on
bounded queues, differs from add only in that it indicates failure to insert an element by
returning false.

e The remove and poll methods both remove and return the head of the queue. Exactly
which element gets removed is a function of the queue's ordering policy. The remove and
poll methods differ in their behavior only when the queue is empty. Under these
circumstances, remove throws NoSuchElementException, While poll returns null.

e The element and peek methods return, but do not remove, the head of the queue. They
differ from one another in precisely the same fashion as remove and po11: If the queue is
empty, element throws NoSuchElementException, While peek returns null.

e Queue Iimplementations generally do not allow insertion of null elements. The
LinkedList implementation, which was retrofitted to implement Queue, is an exception.
For historical reasons, it permits null elements, but you should refrain from taking
advantage of this, because null is used as a special return value by the pol1 and peek
methods.

e Queue implementations generally do not define element-based versions of the equals
and hashCode methods but instead inherit the identity-based versions from object.

e The gueue interface does not define the blocking queue methods, which are common in
concurrent programming. These methods, which wait for elements to appear or for space
to become available, are defined in the interface
java.util.concurrent.BlockingQueue,VthﬂleXIendSQueue.

e In the following example program, a queue is used to implement a countdown timer. The
queue is preloaded with all the integer values from a number specified on the command
line to zero, in descending order. Then, the values are removed from the queue and
printed at one-second intervals. The program is artificial in that it would be more natural
to do the same thing without using a queue, but it illustrates the use of a queue to store
elements prior to subsequent processing.

import java.util.*;

public class Countdown ({
public static void main(String[] args) throws InterruptedException {
int time = Integer.parselnt(args[0]);
Queue<Integer> queue = new LinkedList<Integer>();

Dept. of CSE, S]BIT Page 44

Advanced Java and J2EE 15CS553

for (int i = time; i >= 0; i--)
queue.add (1) ;

while (!queue.isEmpty()) {
System.out.println (queue.remove ()) ;
Thread.sleep(1000) ;

In the following example, a priority queue is used to sort a collection of elements. Again this
program is artificial in that there is no reason to use it in favor of the sort method provided
in Collections, but it illustrates the behavior of priority queues.

static <E> List<E> heapSort (Collection<E> c) {
Queue<E> queue = new PriorityQueue<E>(c);
List<E> result = new ArrayList<E>();

while (!queue.isEmpty())
result.add (queue.remove()) ;

return result;

The Map Interface

A Map 1s an object that maps keys to values. A map cannot contain duplicate keys: Each key can
map to at most one value. It models the mathematical function abstraction. The Map interface
includes methods for basic operations (such as put, get, remove, containsKey,
containsValue, size, and empty), bulk operations (such as putall and clear), and collection
VIEWS (SuCh as keySet, entrySet, and values).

The Java platform contains three general-purpose Map implementations: HashMap, TreeMap, and
LinkedHashMap. Their behavior and performance are precisely analogous to HashSet, TreeSet,
and LinkedHashsSet, as described in The Set Interface section.

The remainder of this page discusses the Map interface in detail. But first, here are some more
examples of collecting to Maps using JDK 8 aggregate operations. Modeling real-world objects is
a common task in object-oriented programming, so it is reasonable to think that some programs
might, for example, group employees by department:

// Group employees by department
Map<Department, List<Employee>> byDept = employees.stream()
.collect (Collectors.groupingBy (Employee: :getDepartment)) ;

Or compute the sum of all salaries by department:

// Compute sum of salaries by department

Dept. of CSE, S]BIT Page 45

Advanced Java and J2EE 15CS553

Map<Department, Integer> totalByDept = employees.stream/()
.collect (Collectors.groupingBy (Employee: :getDepartment,
Collectors.summingInt (Employee: :getSalary)));

Or perhaps group students by passing or failing grades:

// Partition students into passing and failing
Map<Boolean, List<Student>> passingFailing = students.stream()
.collect (Collectors.partitioningBy (s -> s.getGrade ()>= PASS THRESHOLD)) ;

You could also group people by city:

// Classify Person objects by city
Map<String, List<Person>> peopleByCity
= personStream.collect (Collectors.groupingBy (Person::getCity));

Or even cascade two collectors to classify people by state and city:

// Cascade Collectors

Map<String, Map<String, List<Person>>> peopleByStateAndCity
= personStream.collect (Collectors.groupingBy (Person::getState,
Collectors.groupingBy (Person::getCity)))

Again, these are but a few examples of how to use the new JDK 8 APIs. For in-depth coverage
of lambda expressions and aggregate operations see the lesson entitled Aggregate Operations.

Map Interface Basic Operations

The basic operaﬁons of Map (put, get, containsKey, containsValue, size,and isEmpty)
behave exactly like their counterparts in Hashtable. The following program generates a
frequency table of the words found in its argument list. The frequency table maps each word to
the number of times it occurs in the argument list.

import java.util.*;

public class Freq {
public static void main(String[] args) {
Map<String, Integer> m = new HashMap<String, Integer>();

// Initialize frequency table from command line
for (String a : args) {

Integer freqg = m.get(a);

m.put (a, (freq == null) ? 1 : freqg + 1);
}

System.out.println(m.size() + " distinct words:");
System.out.println(m);

Dept. of CSE, S]BIT Page 46

Advanced Java and J2EE 15CS553

The only tricky thing about this program is the second argument of the put statement. That
argument is a conditional expression that has the effect of setting the frequency to one if the
word has never been seen before or one more than its current value if the word has already been
seen. Try running this program with the command:

java Freq if it is to be it is up to me to delegate

The program yields the following output.

8 distinct words:
{to=3, delegate=1l, be=1, it=2, up=1l, if=1, me=1l, is=2}

Suppose you'd prefer to see the frequency table in alphabetical order. All you have to do is
change the implementation type of the Map from HashMap to TreeMap. Making this four-
character change causes the program to generate the following output from the same command
line.

8 distinct words:
{be=1, delegate=1l, if=1, is=2, it=2, me=1, to=3, up=1l}

Similarly, you could make the program print the frequency table in the order the words first
appear on the command line simply by changing the implementation type of the map to
LinkedHashMap. Doing so results in the following output.

8 distinct words:
{if=1, it=2, is=2, to=3, be=1, up=1l, me=1, delegate=1}

This flexibility provides a potent illustration of the power of an interface-based framework.

Like the setand Listinterfaces, Map strengthens the requirements on the equals and hashCode
methods so that two Map objects can be compared for logical equality without regard to their
implementation types. Two Map instances are equal if they represent the same key-value
mappings.

By convention, all general-purpose Map implementations provide constructors that take a Map
object and initialize the new Map to contain all the key-value mappings in the specified Map. This
standard Map conversion constructor is entirely analogous to the standard collection
constructor: It allows the caller to create a Mmap of a desired implementation type that initially
contains all of the mappings in another map, regardless of the other Map's implementation type.
For example, suppose you have a Map, named m. The following one-liner creates a new HashMap
initially containing all of the same key-value mappings as m.

Map<K, V> copy = new HashMap<K, V> (m);

Map Interface Bulk Operations

Dept. of CSE, S]BIT Page 47

Advanced Java and J2EE 15CS553

The c1ear operation does exactly what you would think it could do: It removes all the mappings
from the Map. The putal1l operation is the Map analogue of the collection interface's adda1l
operation. In addition to its obvious use of dumping one Map into another, it has a second, more
subtle use. Suppose a Map is used to represent a collection of attribute-value pairs; the putall
operation, in combination with the Map conversion constructor, provides a neat way to implement
attribute map creation with default values. The following is a static factory method that
demonstrates this technique.

static <K, V> Map<K, V> newAttributeMap (Map<K, Vv>defaults, Map<K, V>
overrides) {

Map<K, V> result = new HashMap<K, V>(defaults);

result.putAll (overrides);

return result;

Collection Views

The collection view methods allow a Map to be viewed as a Collection in these three ways:

e keyset — the set of keys contained in the Map.

e values — The collection of values contained in the Map. This Collection is not a
set, because multiple keys can map to the same value.

e entryset — the set of key-value pairs contained in the map. The Map interface provides
a small nested interface called Map.Entry, the type of the elements in this set.

The collection views provide the only means to iterate over a Map. This example illustrates the
standard idiom for iterating over the keys in a Map with a for-each construct:

for (KeyType key : m.keySet())
System.out.println (key) ;

and with an iterator:

// Filter a map based on some
// property of its keys.
for (Iterator<Type> it = m.keySet () .iterator(); it.hasNext();)
if (it.next () .isBogus())
it.remove () ;

The idiom for iterating over values is analogous. Following is the idiom for iterating over key-
value pairs.

for (Map.Entry<KeyType, ValType> e : m.entrySet())
System.out.println(e.getKey () + ": " + e.getValue());

At first, many people worry that these idioms may be slow because the Map has to create a new
Collection instance each time a Collection view operation is called. Rest easy: There's no

Dept. of CSE, S]BIT Page 48

Advanced Java and J2EE 15CS553

reason that a Map cannot always return the same object each time it is asked for a given
Collection view. This is precisely what all the Map implementations in java.util do.

With all three collection views, calling an Iterator's remove operation removes the
associated entry from the backing Map, assuming that the backing Map supports element removal
to begin with. This is illustrated by the preceding filtering idiom.

With the entryset view, it is also possible to change the value associated with a key by calling a
Map.Entry's setValue method during iteration (again, assuming the Map supports value
modification to begin with). Note that these are the only safe ways to modify a Map during
iteration; the behavior is unspecified if the underlying Map is modified in any other way while the
iteration is in progress.

The collection views support element removal in all its many forms — remove, removeall,
retainall, and clear operations, as well as the Iterator.remove operation. (Yet again, this
assumes that the backing mMap supports element removal.)

The collection views do not support element addition under any circumstances. It would make
no sense for the keyset and values views, and it's unnecessary for the entryset view, because
the backing Map's put and puta11 methods provide the same functionality.

Fancy Uses of Collection Views: Map Algebra

When applied to the Collection views, bulk operations (containsAll, removeall, and
retainAll) are surprisingly potent tools. For starters, suppose you want to know whether one
Map 1s a submap of another — that is, whether the first Map contains all the key-value mappings
in the second. The following idiom does the trick.

if (ml.entrySet().containsAll (m2.entrySet())) {

}

Along similar lines, suppose you want to know whether two Map objects contain mappings for all
of the same keys.

if (ml.keySet () .equals(m2.keySet())) {

}

Suppose you have a Map that represents a collection of attribute-value pairs, and two sets
representing required attributes and permissible attributes. (The permissible attributes include the
required attributes.) The following snippet determines whether the attribute map conforms to
these constraints and prints a detailed error message if it doesn't.

static <K, V> Dboolean validate(Map<K, V> attrMap, Set<K> requiredAttrs,
Set<K>permittedAttrs) {
boolean valid = true;

Dept. of CSE, S]BIT Page 49

Advanced Java and J2EE 15CS553

Set<K> attrs = attrMap.keySet():;

if (! attrs.containsAll (requiredAttrs)) {
Set<K> missing = new HashSet<K> (requiredAttrs);
missing.removeAll (attrs);

System.out.println("Missing attributes: " + missing);
valid = false;

}

if (! permittedAttrs.containsAll (attrs)) {

Set<K> illegal = new HashSet<K>(attrs);
illegal.removeAll (permittedAttrs);
System.out.println("Illegal attributes: " + illegal);
valid = false;

}

return valid;

Suppose you want to know all the keys common to two Map objects.

Set<KeyType>commonKeys = new HashSet<KeyType> (ml.keySet());
commonKeys.retainAll (m2.keySet ());

A similar idiom gets you the common values.

All the idioms presented thus far have been nondestructive; that is, they don't modify the backing
Map. Here are a few that do. Suppose you want to remove all of the key-value pairs that one Map
has in common with another.

ml.entrySet () .removeAll (m2.entrySet());

Suppose you want to remove from one Map all of the keys that have mappings in another.

ml.keySet () .removeAll (m2.keySet ());

What happens when you start mixing keys and values in the same bulk operation? Suppose you
have a Map, managers, that maps each employee in a company to the employee's manager. We'll
be deliberately vague about the types of the key and the value objects. It doesn't matter, as long
as they're the same. Now suppose you want to know who all the "individual contributors" (or
nonmanagers) are. The following snippet tells you exactly what you want to know.

Set<Employee> individualContributors = new
HashSet<Employee> (managers.keySet());
individualContributors.removeAll (managers.values());

Suppose you want to fire all the employees who report directly to some manager, Simon.

Employee simon = ... ;
managers.values () .removeAll (Collections.singleton (simon)) ;

Note that this idiom makes use of Collections.singleton, a static factory method that returns
an immutable set with the single, specified element.

Dept. of CSE, S]BIT Page 50

Advanced Java and J2EE 15CS553

Once you've done this, you may have a bunch of employees whose managers no longer work for
the company (if any of Simon's direct-reports were themselves managers). The following code
will tell you which employees have managers who no longer works for the company.

Map<Employee, Employee> m = new HashMap<Employee, Employee>(managers);
m.values () .removeAll (managers.keySet());
Set<Employee> slackers = m.keySet () ;

This example is a bit tricky. First, it makes a temporary copy of the Map, and it removes from the
temporary copy all entries whose (manager) value is a key in the original Map. Remember that
the original Map has an entry for each employee. Thus, the remaining entries in the temporary
Map comprise all the entries from the original Map whose (manager) values are no longer
employees. The keys in the temporary copy, then, represent precisely the employees that we're
looking for.

There are many more idioms like the ones contained in this section, but it would be impractical
and tedious to list them all. Once you get the hang of it, it's not that difficult to come up with the
right one when you need it.

Multimaps

A multimap is like a Map but it can map each key to multiple values. The Java Collections
Framework doesn't include an interface for multimaps because they aren't used all that
commonly. It's a fairly simple matter to use a Map whose values are List instances as a
multimap. This technique is demonstrated in the next code example, which reads a word list
containing one word per line (all lowercase) and prints out all the anagram groups that meet a
size criterion. An anagram group is a bunch of words, all of which contain exactly the same
letters but in a different order. The program takes two arguments on the command line: (1) the
name of the dictionary file and (2) the minimum size of anagram group to print out. Anagram
groups containing fewer words than the specified minimum are not printed.

There is a standard trick for finding anagram groups: For each word in the dictionary,
alphabetize the letters in the word (that is, reorder the word's letters into alphabetical order) and
put an entry into a multimap, mapping the alphabetized word to the original word. For example,
the word bad causes an entry mapping abd into bad to be put into the multimap. A moment's
reflection will show that all the words to which any given key maps form an anagram group. It's
a simple matter to iterate over the keys in the multimap, printing out each anagram group that
meets the size constraint.

The following program is a straightforward implementation of this technique.

import java.util.*;
import Jjava.io.*;

public class Anagrams {
public static void main(String[] args) {
int minGroupSize = Integer.parselnt (args[l]);

Dept. of CSE, S]BIT Page 51

Advanced Java and J2EE 15CS553

// Read words from file and put into a simulated multimap
Map<String, List<String>> m = new HashMap<String, List<String>>();

try {
Scanner s = new Scanner (new File(args[0]));
while (s.hasNext()) {

String word = s.next();
String alpha = alphabetize (word);
List<String> 1 = m.get (alpha);

if (1 == null)
m.put (alpha, l=new ArrayList<String>());
1l.add (word) ;

}

} catch (IOException e) {
System.err.println (e);
System.exit (1) ;

}

// Print all permutation groups above size threshold
for (List<String> 1 : m.values())
if (l.size () >= minGroupSize)
System.out.println(l.size() + ": " + 1);
}

private static String alphabetize (String s) {
char[] a = s.toCharArray();
Arrays.sort (a);
return new String(a);

Running this program on a 173,000-word dictionary file with a minimum anagram group size of
eight produces the following output.

[estrin, inerts, insert, inters, niters, nitres, sinter,
triens, trines]
[lapse, leaps, pales, peals, pleas, salep, sepal, spale]
[aspers, parses, passer, prases, repass, spares, sparse,
spears]
[least, setal, slate, stale, steal, stela, taels, tales,
teals, tesla]
[enters, nester, renest, rentes, resent, tenser, ternes,
treens]
[arles, earls, lares, laser, lears, rales, reals, seral]
[earings, erasing, gainers, reagins, regains, reginas,
searing, seringa]
[peris, piers, pries, prise, ripes, speir, spier, spire]
[apers, apres, asper, pares, parse, pears, prase, presa,
rapes, reaps, spare, spear]
[alerts, alters, artels, estral, laster, ratels, salter,
slater, staler, stelar, talers]
[capers, crapes, escarp, pacers, parsec, recaps, Sscrape,
secpar, spacer]
[palest, palets, pastel, petals, plates, pleats, septal,
staple, tepals]

Dept. of CSE, S]BIT Page 52

Advanced Java and J2EE 15CS553

9: [anestri, antsier, nastier, ratines, retains, retinas,
retsina, stainer, stearin]

8: [ates, east, eats, etas, sate, seat, seta, teas]

8: [carets, cartes, caster, caters, crates, reacts, recast,
traces]

The SortedSet Interface

A sortedset is a Set that maintains its elements in ascending order, sorted according to the
elements' natural ordering or according to a Comparator provided at sortedset creation time.
In addition to the normal set operations, the sortedset interface provides operations for the
following:

e Range view — allows arbitrary range operations on the sorted set
e Endpoints — returns the first or last element in the sorted set
e Comparator access — returns the Comparator, if any, used to sort the set

The code for the sortedset interface follows.

public interface SortedSet<E> extends Set<E> ({
// Range-view
SortedSet<E> subSet (E fromElement, E toElement);
SortedSet<E> headSet (E toElement);
SortedSet<E> tailSet (E fromElement) ;

// Endpoints
E first();
E last();

// Comparator access
Comparator<? super E> comparator();

Set Operations

The operations that sortedset inherits from set behave identically on sorted sets and normal
sets with two exceptions:

e The 1terator returned by the iterator operation traverses the sorted set in order.
o The array returned by toarray contains the sorted set's elements in order.

Although the interface doesn't guarantee it, the tostring method of the Java platform's

SortedSet implementations returns a string containing all the elements of the sorted set, in
order.

Standard Constructors

Dept. of CSE, S]BIT Page 53

Advanced Java and J2EE 15CS553

By convention, all general-purpose collection implementations provide a standard conversion
constructor that takes a Collection; SortedSet implementations are no exception. In Treeset,
this constructor creates an instance that sorts its elements according to their natural ordering.
This was probably a mistake. It would have been better to check dynamically to see whether the
specified collection was a sortedset instance and, if so, to sort the new TreeSet according to
the same criterion (comparator or natural ordering). Because Treeset took the approach that it
did, it also provides a constructor that takes a Sortedset and returns a new TreeSet containing
the same elements sorted according to the same criterion. Note that it is the compile-time type of
the argument, not its runtime type, that determines which of these two constructors is invoked
(and whether the sorting criterion is preserved).

SortedSet implementations also provide, by convention, a constructor that takes a Comparator
and returns an empty set sorted according to the specified comparator. If null is passed to this
constructor, it returns a set that sorts its elements according to their natural ordering.

Range-view Operations

The range-view operations are somewhat analogous to those provided by the 1.ist interface, but
there is one big difference. Range views of a sorted set remain valid even if the backing sorted
set is modified directly. This is feasible because the endpoints of a range view of a sorted set are
absolute points in the element space rather than specific elements in the backing collection, as is
the case for lists. A range-view of a sorted set is really just a window onto whatever portion of
the set lies in the designated part of the element space. Changes to the range-view write back to
the backing sorted set and vice versa. Thus, it's okay to use range-views on sorted sets for long
periods of time, unlike range-views on lists.

Sorted sets provide three range-view operations. The first, subset, takes two endpoints, like
subList. Rather than indices, the endpoints are objects and must be comparable to the elements
in the sorted set, using the set's Comparator or the natural ordering of its elements, whichever
the set uses to order itself. Like subList, the range is half open, including its low endpoint but
excluding the high one.

Thus, the following line of code tells you how many words between "doorbel1" and "pickle",
including "doorbel1" but excluding "pickle", are contained in a Sortedset of strings called
dictionary:

int count = dictionary.subSet ("doorbell", "pickle").size();
In like manner, the following one-liner removes all the elements beginning with the letter f.

dictionary.subSet ("f", "g").clear();

A similar trick can be used to print a table telling you how many words begin with each letter.

ch <= "z"';) {

for (char ch = 'a';
= String.valueOf (ch++) ;

String from

Dept. of CSE, S]BIT Page 54

Advanced Java and J2EE 15CS553

String to = String.valueOf (ch);
System.out.println(from + ": " + dictionary.subSet (from, to).size());

}

Suppose you want to view a closed interval, which contains both of its endpoints, instead of an
open interval. If the element type allows for the calculation of the successor of a given value in
the element space, merely request the subset from = lowEndpoint to
successor (highEndpoint). Although it isn't entirely obvious, the successor of a string s in
string's natural ordering is s + "\0" — that is, s with a nu11 character appended.

Thus, the following one-liner tells you how many words between "doorbell" and "pickle",
including doorbell and pickle, are contained in the dictionary.

count = dictionary.subSet ("doorbell", "pickle\0").size();

A similar technique can be used to view an open interval, which contains neither endpoint. The
open-interval view from lowEndpoint to highEndpoint 1is the half-open interval from
successor (lowEndpoint) to highEndpoint. Use the following to calculate the number of
words between "doorbel1" and "pickle", excluding both.

count = dictionary.subSet ("doorbell\0", "pickle").size();

The sortedset interface contains two more range-view operations — headset and tailSet,
both of which take a single object argument. The former returns a view of the initial portion of
the backing sortedset, up to but not including the specified object. The latter returns a view of
the final portion of the backing sortedset, beginning with the specified object and continuing to
the end of the backing sortedset. Thus, the following code allows you to view the dictionary as
two disjoint volumes (a-m and n-z).

ll)
ll)

SortedSet<String> volumel = dictionary.headSet ("n
SortedSet<String> volume?2 dictionary.tailSet ("n

’
’

Endpoint Operations

The sortedset interface contains operations to return the first and last elements in the sorted set,
not surprisingly called first and last. In addition to their obvious uses, last allows a
workaround for a deficiency in the sortedset interface. One thing you'd like to do with a
Sortedset is to go into the interior of the set and iterate forward or backward. It's easy enough
to go forward from the interior: Just get a tailset and iterate over it. Unfortunately, there's no
easy way to go backward.

The following idiom obtains the first element that is less than a specified object o in the element
space.

Object predecessor = ss.headSet (o) .last();

Dept. of CSE, S]BIT Page 55

Advanced Java and J2EE 15CS553

This is a fine way to go one element backward from a point in the interior of a sorted set. It could
be applied repeatedly to iterate backward, but this is very inefficient, requiring a lookup for each
element returned.

Comparator Accessor

The sortedset interface contains an accessor method called comparator that returns the
Comparator used to sort the set, or null if the set is sorted according to the natural ordering of
its elements. This method is provided so that sorted sets can be copied into new sorted sets with
the same ordering.

The SortedMap Interface

A sortedmMap is a Map that maintains its entries in ascending order, sorted according to the keys'
natural ordering, or according to a Comparator provided at the time of the sortedMap creation.
Natural ordering and comparators are discussed in the Object Ordering section. The sortedMap
interface provides operations for normal Map operations and for the following:

e Range view — performs arbitrary range operations on the sorted map
e Endpoints — returns the first or the last key in the sorted map
e Comparator access — returns the Comparator, if any, used to sort the map

The following interface is the Map analog of sortedset.

public interface SortedMap<K, V> extends Map<K, V>{
Comparator<? super K> comparator();
SortedMap<K, V> subMap (K fromKey, K toKey);
SortedMap<K, V> headMap (K toKey) ;
SortedMap<K, V> tailMap (K fromKey) ;
K firstKey () ;
K lastKey () ;

Map Operations

The operations sortedMap inherits from Map behave identically on sorted maps and normal maps
with two exceptions:

e The Iterator returned by the iterator operation on any of the sorted map's
Collection views traverse the collections in order.

e The arrays returned by the Collection views' toArray operations contain the keys,
values, or entries in order.

Dept. of CSE, S]BIT Page 56

Advanced Java and J2EE 15CS553

Although it isn't guaranteed by the interface, the tostring method of the collection views in
all the Java platform's sortedvap implementations returns a string containing all the elements of
the view, in order.

Standard Constructors

By convention, all general-purpose Map implementations provide a standard conversion
constructor that takes a Map; SortedMap implementations are no exception. In TreeMap, this
constructor creates an instance that orders its entries according to their keys' natural ordering.
This was probably a mistake. It would have been better to check dynamically to see whether the
specified Map instance was a SortedMap and, if so, to sort the new map according to the same
criterion (comparator or natural ordering). Because TreeMap took the approach it did, it also
provides a constructor that takes a SsortedMap and returns a new TreeMap containing the same
mappings as the given sortedMap, sorted according to the same criterion. Note that it is the
compile-time type of the argument, not its runtime type, that determines whether the sortedmap
constructor is invoked in preference to the ordinary map constructor.

SortedMap implementations also provide, by convention, a constructor that takes a Comparator

and returns an empty map sorted according to the specified Comparator. If null is passed to this
constructor, it returns a Map that sorts its mappings according to their keys' natural ordering.

Comparison to SortedSet

Because this interface is a precise Map analog of sortedset, all the idioms and code examples in
The SortedSet Interface section apply to sortedmap with only trivial modifications.

Dept. of CSE, S]BIT Page 57

Advanced Java and J2EE 15CS553

MODULE -3
STRING METHODS

public final class String

extends Object

implements Serializable, Comparable<String>, CharSequence

The String class represents character strings. All string literals in Java programs, such as "abc",
are implemented as instances of this class.

Strings are constant; their values cannot be changed after they are created. String buffers support
mutable strings. Because String objects are immutable they can be shared. For example:

String str = "abc";

is equivalent to:

char data[] = {'a', 'b, 'c'};
String str = new String(data);

Here are some more examples of how strings can be used:

System.out.println("abc");
String cde = "cde";
System.out.println("abc" + cde);
String ¢ = "abc".substring(2,3);
String d = cde.substring(1, 2);

The class String includes methods for examining individual characters of the sequence, for
comparing strings, for searching strings, for extracting substrings, and for creating a copy of a
string with all characters translated to uppercase or to lowercase. Case mapping is based on
the Unicode Standard version specified by the Character class.

The Java language provides special support for the string concatenation operator (+), and for
conversion of other objects to strings. String concatenation is implemented through the
StringBuilder(or StringBuffer) class and its append method. String conversions are
implemented through the method toString, defined by Object and inherited by all classes in
Java. For additional information on string concatenation and conversion, see Gosling, Joy,
and Steele, The Java Language Specification.

Unless otherwise noted, passing a null argument to a constructor or method in this class will
cause a NullPointerException to be thrown.

Dept.. of CSE, S]BIT Page 58

Advanced Java and J2EE 15CS553

A String represents a string in the UTF-16 format in which supplementary characters are
represented by surrogate pairs (see the section Unicode Character Representations in the
Character class for more information). Index values refer to char code units, so a
supplementary character uses two positions in a String.

The String class provides methods for dealing with Unicode code points (i.e., characters), in
addition to those for dealing with Unicode code units (i.e., char values).

Constructors

Constructor and Description

String()
Initializes a newly created String object so that it represents an empty character sequence.

String(byte[] bytes)
Constructs a new String by decoding the specified array of bytes using the platform's default
charset.

String(byte[] bytes, Charset charset)

Constructs a new String by decoding the specified array of bytes using the specified charset.

String(byte[] ascii, int hibyte)

Deprecated.

This method does not properly convert bytes into characters. As of JDK 1.1, the preferred way to
do this is via the String constructors that take a Charset, charset name, or that use the
platform's default charset.

String(byte[] bytes, int offset, int length)
Constructs a new String by decoding the specified subarray of bytes using the platform's default
charset.

String(byte[] bytes, int offset, int length, Charset charset)
Constructs a new String by decoding the specified subarray of bytes using the specified charset.

String(byte[] ascii, int hibyte, int offset, int count)

Deprecated.

This method does not properly convert bytes into characters. As of JDK 1.1, the preferred way to
do this is via the String constructors that take a Charset, charset name, or that use the
platform's default charset.

String(byte[] bytes, int offset, int length, String charsetName)
Constructs a new String by decoding the specified subarray of bytes using the specified charset.

String(byte[] bytes, String charsetName)
Constructs a new String by decoding the specified array of bytes using the specified charset.

String(char[] value)
Allocates a new String so that it represents the sequence of characters currently contained in the
character array argument.

String(char[] value, int offset, int count)
Allocates a new String that contains characters from a subarray of the character array argument.

String(int[] codePoints, int offset, int count)

Dept.. of CSE, S]BIT Page 59

Advanced Java and J2EE 15CS553

Allocates a new String that contains characters from a subarray of the Unicode code point array
argument.

String(String original)

Initializes a newly created String object so that it represents the same sequence of characters as
the argument; in other words, the newly created string is a copy of the argument string.

String(StringBuffer buffer)
Allocates a new string that contains the sequence of characters currently contained in the string
buffer argument.

String(StringBuilder builder)
Allocates a new string that contains the sequence of characters currently contained in the string
builder argument.

public static final Comparator<String> CASE INSENSITIVE ORDER
A Comparator that orders String objects as by compareTolgnoreCase. This comparator is
serializable.

Note that this Comparator does not take locale into account, and will result in an unsatisfactory
ordering for certain locales. The java.text package provides Collators to allow locale-sensitive
ordering.

o String
public String()

Initializes a newly created String object so that it represents an empty character sequence. Note
that use of this constructor is unnecessary since Strings are immutable.

o String

public String(String original)

Initializes a newly created String object so that it represents the same sequence of characters as
the argument; in other words, the newly created string is a copy of the argument string. Unless
an explicit copy of original is needed, use of this constructor is unnecessary since Strings are

immutable.

Parameters:
original - A String

o String

public String(char[] value)

Dept.. of CSE, S]BIT Page 60

Advanced Java and J2EE 15CS553

Allocates a new String so that it represents the sequence of characters currently contained in the
character array argument. The contents of the character array are copied; subsequent
modification of the character array does not affect the newly created string.

Parameters:
value - The initial value of the string

o String
o public String(char[] value,
o int offset,

int count)

Allocates a new String that contains characters from a subarray of the character array argument.
The offset argument is the index of the first character of the subarray and the count argument
specifies the length of the subarray. The contents of the subarray are copied; subsequent
modification of the character array does not affect the newly created string.

Parameters:

value - Array that is the source of characters

offset - The initial offset

count - The length

Throws:

IndexOutOfBoundsException - If the offset and count arguments index characters outside the
bounds of the value array

o String
o public String(int[] codePoints,
o int offset,

int count)

Allocates a new String that contains characters from a subarray of the Unicode code point array
argument. The offset argument is the index of the first code point of the subarray and the
count argument specifies the length of the subarray. The contents of the subarray are
converted to chars; subsequent modification of the int array does not affect the newly created
string.

Parameters:

codePoints - Array that is the source of Unicode code points

offset - The initial offset

count - The length

Throws:

lllegal ArgumentException - If any invalid Unicode code point is found in codePoints

IndexOutOfBoundsException - If the offset and count arguments index characters outside the
bounds of the codePoints array

Since: 1.5

Dept.. of CSE, S]BIT Page 61

Advanced Java and J2EE 15CS553

String
(@Deprecated
public String(byte[] ascii,
int hibyte,
int offset,
int count)

o O O O O

Deprecated. This method does not properly convert bytes into characters. As of JDK 1.1, the
preferred way to do this is via the String constructors that take a Charset, charset name, or that
use the platform's default charset.

Allocates a new String constructed from a subarray of an array of 8-bit integer values.

The offset argument is the index of the first byte of the subarray, and the count argument
specifies the length of the subarray.

Each byte in the subarray is converted to a char as specified in the method above.

Parameters:

ascii - The bytes to be converted to characters

hibyte - The top 8 bits of each 16-bit Unicode code unit

offset - The initial offset

count - The length

Throws:

IndexOutOfBoundsException - If the offset or count argument is invalid

See Also:

String(byte[], int), String(byte[], int, int, java.lang.String), String(byte[], int, int,
java.nio.charset.Charset), String(byte[], int, int), String(byte[], java.lang.String), String(byte[],
java.nio.charset.Charset), String(byte[])

o String

o (@Deprecated

o public String(byte[] ascili,
int hibyte)

Deprecated. This method does not properly convert bytes into characters. As of JDK 1.1, the
preferred way to do this is via the String constructors that take a Charset, charset name, or that
use the platform's default charset.

Allocates a new String containing characters constructed from an array of 8-bit integer values.
Each character cin the resulting string is constructed from the corresponding component b in
the byte array such that:

¢ = (char)(((hibyte & 0xff) << 8)
| (b & 0xfY))

Dept.. of CSE, S]BIT Page 62

Advanced Java and J2EE 15CS553

Parameters:

ascii - The bytes to be converted to characters

hibyte - The top 8 bits of each 16-bit Unicode code unit

See Also:

String(byte[], int, int, java.lang.String), String(byte[], int, int, java.nio.charset.Charset),
String(byte[], int, int), String(byte[], java.lang.String), String(byte[], java.nio.charset.Charset),

String(byte[])

o String

o public String(byte[] bytes,

o int offset,

o int length,

o String charsetName)

throws UnsupportedEncodingException

Constructs a new String by decoding the specified subarray of bytes using the specified charset.
The length of the new String is a function of the charset, and hence may not be equal to the
length of the subarray.

The behavior of this constructor when the given bytes are not valid in the given charset is
unspecified. The CharsetDecoder class should be used when more control over the decoding
process is required.

Parameters:

bytes - The bytes to be decoded into characters

offset - The index of the first byte to decode

length - The number of bytes to decode

charsetName - The name of a supported charset

Throws:

UnsupportedEncodingException - If the named charset is not supported

IndexOutOfBoundsException - If the offset and length arguments index characters outside the
bounds of the bytes array

Since:

JDKI.1

String
public String(byte[] bytes,
int offset,
int length,
Charset charset)

O O O O

Constructs a new String by decoding the specified subarray of bytes using the specified charset.
The length of the new String is a function of the charset, and hence may not be equal to the
length of the subarray.

Dept.. of CSE, S]BIT Page 63

Advanced Java and J2EE 15CS553

This method always replaces malformed-input and unmappable-character sequences with this
charset's default replacement string. The CharsetDecoder class should be used when more
control over the decoding process is required.

Parameters:

bytes - The bytes to be decoded into characters
offset - The index of the first byte to decode

length - The number of bytes to decode

charset - The charset to be used to decode the bytes

Throws:

IndexOutOfBoundsException - If the offset and length arguments index characters outside the
bounds of the bytes array

Since:

1.6

o String

o public String(byte[] bytes,

o String charsetName)

throws UnsupportedEncodingException

Constructs a new String by decoding the specified array of bytes using the specified charset. The
length of the new String is a function of the charset, and hence may not be equal to the length
of the byte array.

The behavior of this constructor when the given bytes are not valid in the given charset is
unspecified. The CharsetDecoder class should be used when more control over the decoding
process is required.

Parameters:

bytes - The bytes to be decoded into characters

charsetName - The name of a supported charset

Throws:

UnsupportedEncodingException - If the named charset is not supported
Since:

JDK1.1

o String
o public String(byte[] bytes,
Charset charset)

Constructs a new String by decoding the specified array of bytes using the specified charset. The
length of the new String is a function of the charset, and hence may not be equal to the length
of the byte array.

Dept.. of CSE, S]BIT Page 64

Advanced Java and J2EE 15CS553

This method always replaces malformed-input and unmappable-character sequences with this
charset's default replacement string. The CharsetDecoder class should be used when more
control over the decoding process is required.

Parameters:
bytes - The bytes to be decoded into characters
charset - The charset to be used to decode the bytes

Since:

1.6

o String

o public String(byte[] bytes,
o int offset,

int length)

Constructs a new String by decoding the specified subarray of bytes using the platform's default
charset. The length of the new String is a function of the charset, and hence may not be equal
to the length of the subarray.

The behavior of this constructor when the given bytes are not valid in the default charset is
unspecified. The CharsetDecoder class should be used when more control over the decoding
process is required.

Parameters:

bytes - The bytes to be decoded into characters

offset - The index of the first byte to decode

length - The number of bytes to decode

Throws:

IndexOutOfBoundsException - If the offset and the length arguments index characters outside
the bounds of the bytes array

Since:

JDKI.1

o String
public String(byte[] bytes)

Constructs a new String by decoding the specified array of bytes using the platform's default
charset. The length of the new String is a function of the charset, and hence may not be equal
to the length of the byte array.

The behavior of this constructor when the given bytes are not valid in the default charset is
unspecified. The CharsetDecoder class should be used when more control over the decoding
process is required.

Parameters:

Dept.. of CSE, S]BIT Page 65

Advanced Java and J2EE 15CS553

bytes - The bytes to be decoded into characters
Since:
JDK1.1

o String

public String(StringBuffer buffer)

Allocates a new string that contains the sequence of characters currently contained in the string
buffer argument. The contents of the string buffer are copied; subsequent modification of the

string buffer does not affect the newly created string.

Parameters:
buffer - A StringBuffer

o String

public String(StringBuilder builder)

Allocates a new string that contains the sequence of characters currently contained in the string
builder argument. The contents of the string builder are copied; subsequent modification of

the string builder does not affect the newly created string.

This constructor is provided to ease migration to StringBuilder. Obtaining a string from a string
builder via the toString method is likely to run faster and is generally preferred.

Parameters:

builder - A StringBuilder
Since:

1.5

¢ Method Detail
o length

public int length()

Returns the length of this string. The length is equal to the number of Unicode code units in the
string.

Specified by:
length in interface CharSequence
Returns:

the length of the sequence of characters represented by this object.

o isEmpty

Dept.. of CSE, S]BIT Page 66

Advanced Java and J2EE 15CS553

public boolean isEmpty()
Returns true if, and only if, length() is 0.

Returns:

true if length() is 0, otherwise false
Since:

1.6

o charAt
public char charAt(int index)

Returns the char value at the specified index. An index ranges from 0 to length() - 1. The first
char value of the sequence is at index 0, the next at index 1, and so on, as for array indexing.

If the char value specified by the index is a surrogate, the surrogate value is returned.

Specified by:

charAt in interface CharSequence

Parameters:

index - the index of the char value.

Returns:

the char value at the specified index of this string. The first char value is at index 0.

Throws:

IndexOutOfBoundsException - if the index argument is negative or not less than the length of
this string.

o codePointAt
public int codePointAt(int index)

Returns the character (Unicode code point) at the specified index. The index refers to char values
(Unicode code units) and ranges from 0 to length()- 1.

If the char value specified at the given index is in the high-surrogate range, the following index is
less than the length of this String, and the char value at the following index is in the low-
surrogate range, then the supplementary code point corresponding to this surrogate pair is
returned. Otherwise, the char value at the given index is returned.

Parameters:

index - the index to the char values

Returns:

the code point value of the character at the index
Throws:

Dept.. of CSE, S]BIT Page 67

Advanced Java and J2EE 15CS553

IndexOutOfBoundsException - if the index argument is negative or not less than the length of
this string.

Since:

1.5

o codePointBefore
public int codePointBefore(int index)

Returns the character (Unicode code point) before the specified index. The index refers to char
values (Unicode code units) and ranges from 1 to length.

If the char value at (index - 1) is in the low-surrogate range, (index - 2) is not negative, and the
char value at (index - 2) is in the high-surrogate range, then the supplementary code point
value of the surrogate pair is returned. If the char value at index - 1 is an unpaired low-
surrogate or a high-surrogate, the surrogate value is returned.

Parameters:

index - the index following the code point that should be returned

Returns:

the Unicode code point value before the given index.

Throws:

IndexOutOfBoundsException - if the index argument is less than 1 or greater than the length of
this string.

Since:

1.5

o codePointCount
o public int codePointCount(int beginIndex,
int endIndex)

Returns the number of Unicode code points in the specified text range of this String. The text
range begins at the specified beginlndex and extends to the char at index endIndex - 1. Thus
the length (in chars) of the text range is endIndex-beginlndex. Unpaired surrogates within the
text range count as one code point each.

Parameters:

beginIndex - the index to the first char of the text range.

endIndex - the index after the last char of the text range.

Returns:

the number of Unicode code points in the specified text range

Throws:

IndexOutOfBoundsException - if the beginlndex is negative, or endIndex is larger than the
length of this String, or beginlndex is larger than endIndex.

Since:

1.5

Dept.. of CSE, S]BIT Page 68

Advanced Java and J2EE 15CS553

o offsetByCodePoints
o public int offsetByCodePoints(int index,
int codePointOffset)

Returns the index within this String that is offset from the given index by codePointOffset code
points. Unpaired surrogates within the text range given by index and codePointOffset count as
one code point each.

Parameters:

index - the index to be offset

codePointOffset - the offset in code points

Returns:

the index within this String

Throws:

IndexOutOfBoundsException - if index is negative or larger then the length of this String, or if
codePointOffset is positive and the substring starting with index has fewer than
codePointOffset code points, or if codePointOffset is negative and the substring before index
has fewer than the absolute value of codePointOffset code points.

Since:

1.5

getChars
public void getChars(int srcBegin,
int srcEnd,
char[] dst,
int dstBegin)

O O O O

Copies characters from this string into the destination character array.

The first character to be copied is at index srcBegin; the last character to be copied is at index
srcEnd-1 (thus the total number of characters to be copied is srcEnd-srcBegin). The characters
are copied into the subarray of dst starting at index dstBegin and ending at index:

dstBegin + (srcEnd-srcBegin) - 1

Parameters:

srcBegin - index of the first character in the string to copy.
srcEnd - index after the last character in the string to copy.
dst - the destination array.

dstBegin - the start offset in the destination array.

Throws:

IndexOutOfBoundsException - If any of the following is true:

= srcBegin is negative.
= srcBegin is greater than srcEnd
= srcEnd is greater than the length of this string

Dept.. of CSE, S]BIT Page 69

Advanced Java and J2EE 15CS553

= dstBegin is negative
dstBegint(srcEnd-srcBegin) is larger than dst.length

o getBytes

o (@Deprecated

o public void getBytes(int srcBegin,

o int srcEnd,

o byte[] dst,
int dstBegin)

Deprecated. This method does not properly convert characters into bytes. As of JDK 1.1, the
preferred way to do this is via the getBytes() method, which uses the platform's default
charset.

Copies characters from this string into the destination byte array. Each byte receives the 8 low-
order bits of the corresponding character. The eight high-order bits of each character are not
copied and do not participate in the transfer in any way.

The first character to be copied is at index srcBegin; the last character to be copied is at index
srcEnd-1. The total number of characters to be copied is srcEnd-srcBegin. The characters,
converted to bytes, are copied into the subarray of dst starting at index dstBegin and ending at
index:

dstBegin + (srcEnd-srcBegin) - 1

Parameters:

srcBegin - Index of the first character in the string to copy
srcEnd - Index after the last character in the string to copy

dst - The destination array

dstBegin - The start offset in the destination array

Throws:

IndexOutOfBoundsException - If any of the following is true:

= srcBegin is negative
= srcBegin is greater than srcEnd
= srcEnd is greater than the length of this String
= dstBegin is negative
= dstBegint+(srcEnd-srcBegin) is larger than dst.length
o getBytes
o public byte[] getBytes(String charsetName)
throws UnsupportedEncodingException

Encodes this String into a sequence of bytes using the named charset, storing the result into a
new byte array.

Dept.. of CSE, S]BIT Page 70

Advanced Java and J2EE 15CS553

The behavior of this method when this string cannot be encoded in the given charset is
unspecified. The CharsetEncoder class should be used when more control over the encoding
process is required.

Parameters:

charsetName - The name of a supported charset

Returns:

The resultant byte array

Throws:

UnsupportedEncodingException - If the named charset is not supported
Since:

JDK1.1

o getBytes
public byte[] getBytes(Charset charset)

Encodes this String into a sequence of bytes using the given charset, storing the result into a new
byte array.

This method always replaces malformed-input and unmappable-character sequences with this
charset's default replacement byte array. The CharsetEncoder class should be used when more
control over the encoding process is required.

Parameters:

charset - The Charset to be used to encode the String
Returns:

The resultant byte array

Since:

1.6

o getBytes

public byte[] getBytes()

Encodes this String into a sequence of bytes using the platform's default charset, storing the
result into a new byte array.

The behavior of this method when this string cannot be encoded in the default charset is
unspecified. The CharsetEncoder class should be used when more control over the encoding
process is required.

Returns:

The resultant byte array
Since:

JDK1.1

Dept.. of CSE, S]BIT Page 71

Advanced Java and J2EE 15CS553

o equals
public boolean equals(Object anObject)

Compares this string to the specified object. The result is true if and only if the argument is not
null and is a String object that represents the same sequence of characters as this object.

Overrides:

equals in class Object

Parameters:

anObject - The object to compare this String against
Returns:

true if the given object represents a String equivalent to this string, false otherwise
See Also:
compareTo(String), equalslgnoreCase(String)

o contentEquals
public boolean contentEquals(StringBuffer sb)

Compares this string to the specified StringBuffer. The result is true if and only if this String
represents the same sequence of characters as the specified StringBuffer. This method
synchronizes on the StringBuffer.

Parameters:

sb - The StringBuffer to compare this String against

Returns:

true if this String represents the same sequence of characters as the specified StringBuffer, false
otherwise

Since:

1.4

o contentEquals
public boolean contentEquals(CharSequence cs)

Compares this string to the specified CharSequence. The result is true if and only if this String
represents the same sequence of char values as the specified sequence. Note that if the
CharSequence is a StringBuffer then the method synchronizes on it.

Parameters:

cs - The sequence to compare this String against

Returns:

true if this String represents the same sequence of char values as the specified sequence, false
otherwise

Since:

Dept.. of CSE, S]BIT Page 72

Advanced Java and J2EE 15CS553

1.5

o equalsIgnoreCase

public boolean equalsignoreCase(String anotherString)

Compares this String to another String, ignoring case considerations. Two strings are considered
equal ignoring case if they are of the same length and corresponding characters in the two

strings are equal ignoring case.

Two characters cl and c¢2 are considered the same ignoring case if at least one of the following is
true:

= The two characters are the same (as compared by the == operator)
= Applying the method Character.toUpperCase(char) to each character produces the same result
= Applying the method Character.toLowerCase(char) to each character produces the same result

Parameters:

anotherString - The String to compare this String against

Returns:

true if the argument is not null and it represents an equivalent String ignoring case; false
otherwise

See Also:

equals(Object)

o compareTo
public int compareTo(String anotherString)

Compares two strings lexicographically. The comparison is based on the Unicode value of each
character in the strings. The character sequence represented by this String object is compared
lexicographically to the character sequence represented by the argument string. The result is a
negative integer if this String object lexicographically precedes the argument string. The
result is a positive integer if this String object lexicographically follows the argument string.
The result is zero if the strings are equal; compareTo returns O exactly when the
equals(Object) method would return true.

This is the definition of lexicographic ordering. If two strings are different, then either they have
different characters at some index that is a valid index for both strings, or their lengths are
different, or both. If they have different characters at one or more index positions, let k be the
smallest such index; then the string whose character at position & has the smaller value, as
determined by using the < operator, lexicographically precedes the other string. In this case,
compareTo returns the difference of the two character values at position k in the two string --
that is, the value:

this.charAt(k)-anotherString.charAt(k)

Dept.. of CSE, S]BIT Page 73

Advanced Java and J2EE 15CS553

If there is no index position at which they differ, then the shorter string lexicographically
precedes the longer string. In this case, compareTo returns the difference of the lengths of the
strings -- that is, the value:

this.length()-anotherString.length()

Specified by:

compareTo in interface Comparable<String>

Parameters:

anotherString - the String to be compared.

Returns:

the value O if the argument string is equal to this string; a value less than 0 if this string is
lexicographically less than the string argument; and a value greater than 0 if this string is
lexicographically greater than the string argument.

o compareTolgnoreCase
public int compareTolgnoreCase(String str)

Compares two strings lexicographically, ignoring case differences. This method returns an
integer whose sign is that of calling compareTo with normalized versions of the strings where
case differences have been eliminated by calling
Character.toLowerCase(Character.toUpperCase(character)) on each character.

Note that this method does not take locale into account, and will result in an unsatisfactory
ordering for certain locales. The java.text package provides collators to allow locale-sensitive
ordering.

Parameters:

str - the String to be compared.

Returns:

a negative integer, zero, or a positive integer as the specified String is greater than, equal to, or
less than this String, ignoring case considerations.

Since:

1.2

See Also:

Collator.compare(String, String)

regionMatches
public boolean regionMatches(int toffset,
String other,
int ooffset,
int len)

O O O O

Dept.. of CSE, S]BIT Page 74

Advanced Java and J2EE 15CS553

Tests if two string regions are equal.

A

substring of this String object is compared to a substring of the argument other. The result is
true if these substrings represent identical character sequences. The substring of this String
object to be compared begins at index toffset and has length len. The substring of other to be
compared begins at index ooffset and has length len. The result is false if and only if at least
one of the following is true:

toffset is negative.

ooffset is negative.

toffset+len is greater than the length of this String object.

ooffset+len is greater than the length of the other argument.

There is some nonnegative integer k less than len such that: this.charAt(toffset + k) !=
other.charAt(ooffset + k)

Parameters:

toffset - the starting offset of the subregion in this string.

other - the string argument.

ooffset - the starting offset of the subregion in the string argument.

len - the number of characters to compare.

Returns:

true if the specified subregion of this string exactly matches the specified subregion of the string

o O O O O

argument; false otherwise.

regionMatches
public boolean regionMatches(boolean ignoreCase,
int toffset,
String other,
int ooffset,
int len)

Tests if two string regions are equal.

A

substring of this String object is compared to a substring of the argument other. The result is
true if these substrings represent character sequences that are the same, ignoring case if and
only if ignoreCase is true. The substring of this String object to be compared begins at index
toffset and has length len. The substring of other to be compared begins at index ooffset and
has length len. The result is false if and only if at least one of the following is true:

toffset is negative.

ooffset is negative.

toffset+len is greater than the length of this String object.

ooffset+len is greater than the length of the other argument.

ignoreCase is false and there is some nonnegative integer & less than len such that:
this.charAt(toffset+k) != other.charAt(ooffset+k)

Dept.. of CSE, S]BIT Page 75

Advanced Java and J2EE 15CS553

= ignoreCase is true and there is some nonnegative integer & less than len such that:
» Character.toLowerCase(this.charAt(toffsettk)) !=
. Character.toLowerCase(other.charAt(ooffset+k))

and:

Character.toUpperCase(this.charAt(toffset+k)) !=
Character.toUpperCase(other.charAt(ooffset+k))

Parameters:

ignoreCase - if true, ignore case when comparing characters.

toffset - the starting offset of the subregion in this string.

other - the string argument.

ooffset - the starting offset of the subregion in the string argument.

len - the number of characters to compare.

Returns:

true if the specified subregion of this string matches the specified subregion of the string
argument; false otherwise. Whether the matching is exact or case insensitive depends on the
ignoreCase argument.

o startsWith
o public boolean startsWith(String prefix,
int toffset)

Tests if the substring of this string beginning at the specified index starts with the specified
prefix.

Parameters:

prefix - the prefix.

toffset - where to begin looking in this string.

Returns:

true if the character sequence represented by the argument is a prefix of the substring of this
object starting at index toffset; false otherwise. The result is false if toffset is negative or
greater than the length of this String object; otherwise the result is the same as the result of the
expression

this.substring(toffset).starts With(prefix)

o startsWith
public boolean startsWith(String prefix)
Tests if this string starts with the specified prefix.

Parameters:

Dept.. of CSE, S]BIT Page 76

Advanced Java and J2EE 15CS553

prefix - the prefix.

Returns:

true if the character sequence represented by the argument is a prefix of the character sequence
represented by this string; false otherwise. Note also that true will be returned if the argument
is an empty string or is equal to this String object as determined by the equals(Object)
method.

Since:

1.0

o endsWith
public boolean endsWith(String suffix)
Tests if this string ends with the specified suffix.

Parameters:

suffix - the suffix.

Returns:

true if the character sequence represented by the argument is a suffix of the character sequence
represented by this object; false otherwise. Note that the result will be true if the argument is
the empty string or is equal to this String object as determined by the equals(Object) method.

o hashCode

public int hashCode()

Returns a hash code for this string. The hash code for a String object is computed as

s[0]*317(n-1) + s[1]*31"(n-2) + ... + s[n-1]

using int arithmetic, where s[i] is the ith character of the string, n is the length of the string, and
indicates exponentiation. (The hash value of the empty string is zero.)

Overrides:

hashCode in class Object

Returns:

a hash code value for this object.
See Also:
Object.equals(java.lang.Object), System.identityHashCode(java.lang.Object)

o indexOf

public int indexOf{(int ch)

Dept.. of CSE, S]BIT Page 77

Advanced Java and J2EE 15CS553

Returns the index within this string of the first occurrence of the specified character. If a
character with value ch occurs in the character sequence represented by this String object,
then the index (in Unicode code units) of the first such occurrence is returned. For values of
ch in the range from 0 to OxFFFF (inclusive), this is the smallest value & such that:

this.charAt(k) == ch

is true. For other values of ch, it is the smallest value & such that:

this.codePointAt(k) == ch

is true. In either case, if no such character occurs in this string, then -1 is returned.

Parameters:

ch - a character (Unicode code point).

Returns:

the index of the first occurrence of the character in the character sequence represented by this
object, or -1 if the character does not occur.

o indexOf
o public int indexOf{(int ch,
int fromIndex)

Returns the index within this string of the first occurrence of the specified character, starting the
search at the specified index.

If a character with value ch occurs in the character sequence represented by this String object at
an index no smaller than fromIndex, then the index of the first such occurrence is returned.
For values of ch in the range from 0 to OXFFFF (inclusive), this is the smallest value & such
that:

(this.charAt(k) == ch) && (k >= fromIndex)

is true. For other values of ch, it is the smallest value & such that:

(this.codePointAt(k) == ch) && (k >= fromIndex)

is true. In either case, if no such character occurs in this string at or after position fromIndex,
then -1 is returned.

Dept.. of CSE, S]BIT Page 78

Advanced Java and J2EE 15CS553

There is no restriction on the value of fromIndex. If it is negative, it has the same effect as if it
were zero: this entire string may be searched. If it is greater than the length of this string, it
has the same effect as if it were equal to the length of this string: -1 is returned.

All indices are specified in char values (Unicode code units).

Parameters:

ch - a character (Unicode code point).

fromIndex - the index to start the search from.

Returns:

the index of the first occurrence of the character in the character sequence represented by this
object that is greater than or equal to fromIndex, or -1 if the character does not occur.

o lastIndexOf
public int lastindexOf(int ch)

Returns the index within this string of the last occurrence of the specified character. For values
of ch in the range from 0 to OXFFFF (inclusive), the index (in Unicode code units) returned is
the largest value & such that:

this.charAt(k) == ch

is true. For other values of ch, it is the largest value & such that:

this.codePointAt(k) == ch

is true. In either case, if no such character occurs in this string, then -1 is returned. The String is
searched backwards starting at the last character.

Parameters:

ch - a character (Unicode code point).

Returns:

the index of the last occurrence of the character in the character sequence represented by this
object, or -1 if the character does not occur.

o lastIndexOf
o public int lastIndexOf(int ch,
int fromIndex)

Returns the index within this string of the last occurrence of the specified character, searching
backward starting at the specified index. For values of ch in the range from 0 to OXxFFFF
(inclusive), the index returned is the largest value & such that:

Dept.. of CSE, S]BIT Page 79

Advanced Java and J2EE 15CS553

(this.charAt(k) == ch) && (k <= fromIndex)

is true. For other values of ch, it is the largest value & such that:

(this.codePointAt(k) == ch) && (k <= fromIndex)

is true. In either case, if no such character occurs in this string at or before position fromIndex,
then -1 is returned.

All indices are specified in char values (Unicode code units).

Parameters:

ch - a character (Unicode code point).

fromIndex - the index to start the search from. There is no restriction on the value of fromIndex.
If it is greater than or equal to the length of this string, it has the same effect as if it were equal
to one less than the length of this string: this entire string may be searched. If it is negative, it
has the same effect as if it were -1: -1 is returned.

Returns:

the index of the last occurrence of the character in the character sequence represented by this
object that is less than or equal to fromIndex, or -1 if the character does not occur before that
point.

o indexOf

public int indexOf(String str)

Returns the index within this string of the first occurrence of the specified substring.
The returned index is the smallest value & for which:

this.startsWith(str, k)

If no such value of & exists, then -1 is returned.

Parameters:

str - the substring to search for.

Returns:

the index of the first occurrence of the specified substring, or -1 if there is no such occurrence.

o indexOf
o public int indexOf{(String str,
int fromIndex)

Dept.. of CSE, S]BIT Page 80

Advanced Java and J2EE 15CS553

Returns the index within this string of the first occurrence of the specified substring, starting at
the specified index.

The returned index is the smallest value & for which:

k >= fromIndex && this.startsWith(str, k)

If no such value of & exists, then -1 is returned.

Parameters:

str - the substring to search for.

fromIndex - the index from which to start the search.

Returns:

the index of the first occurrence of the specified substring, starting at the specified index, or -1 if
there is no such occurrence.

o lastIndexOf
public int lastindexOf(String str)

Returns the index within this string of the last occurrence of the specified substring. The last
occurrence of the empty string "" is considered to occur at the index value this.length().

The returned index is the largest value & for which:

this.startsWith(str, k)

If no such value of k& exists, then -1 is returned.

Parameters:

str - the substring to search for.

Returns:

the index of the last occurrence of the specified substring, or -1 if there is no such occurrence.

o lastIndexOf
o public int lastIndexOf{(String str,

int fromIndex)

Returns the index within this string of the last occurrence of the specified substring, searching
backward starting at the specified index.

The returned index is the largest value & for which:

k <= fromIndex && this.startsWith(str, k)

Dept.. of CSE, S]BIT Page 81

Advanced Java and J2EE 15CS553

If no such value of & exists, then -1 is returned.

Parameters:

str - the substring to search for.

fromIndex - the index to start the search from.

Returns:

the index of the last occurrence of the specified substring, searching backward from the specified
index, or -1 if there is no such occurrence.

o substring
public String substring(int beginIndex)

Returns a string that is a substring of this string. The substring begins with the character at the
specified index and extends to the end of this string.

Examples:

"unhappy".substring(2) returns "happy"
"Harbison".substring(3) returns "bison"
"emptiness".substring(9) returns "" (an empty string)

Parameters:

beginlndex - the beginning index, inclusive.

Returns:

the specified substring.

Throws:

IndexOutOfBoundsException - if beginlndex is negative or larger than the length of this String
object.

o substring
o public String substring(int beginIndex,
int endIndex)

Returns a string that is a substring of this string. The substring begins at the specified beginlndex
and extends to the character at index endIndex - 1. Thus the length of the substring is
endIndex-beginlndex.

Examples:

"hamburger".substring(4, 8) returns "urge"
"smiles".substring(1, 5) returns "mile"

Parameters:

Dept.. of CSE, S]BIT Page 82

Advanced Java and J2EE 15CS553

beginlndex - the beginning index, inclusive.

endIndex - the ending index, exclusive.

Returns:

the specified substring.

Throws:

IndexOutOfBoundsException - if the beginlndex is negative, or endIndex is larger than the
length of this String object, or beginIndex is larger than endIndex.

o subSequence
o public CharSequence subSequence(int beginlndex,
int endIndex)
Returns a character sequence that is a subsequence of this sequence.
An invocation of this method of the form
str.subSequence(begin, end)

behaves in exactly the same way as the invocation

str.substring(begin, end)

Specified by:
subSequence in interface CharSequence
API Note:

This method is defined so that the String class can implement the CharSequence interface.

Parameters:

beginlndex - the begin index, inclusive.

endIndex - the end index, exclusive.

Returns:

the specified subsequence.

Throws:

IndexOutOfBoundsException - if beginlndex or endIndex is negative, if endIndex is greater than
length(), or if beginIndex is greater than endIndex

Since:

1.4

o concat

public String concat(String str)

Concatenates the specified string to the end of this string.

If the length of the argument string is 0, then this String object is returned. Otherwise, a String
object is returned that represents a character sequence that is the concatenation of the

character sequence represented by this String object and the character sequence represented
by the argument string.

Dept.. of CSE, S]BIT Page 83

Advanced Java and J2EE 15CS553

Examples:

"cares".concat("s") returns "caress"
"to".concat("get").concat("her") returns "together"

Parameters:

str - the String that is concatenated to the end of this String.

Returns:

a string that represents the concatenation of this object's characters followed by the string
argument's characters.

o replace
o public String replace(char oldChar,
char newChar)

Returns a string resulting from replacing all occurrences of oldChar in this string with newChar.

If the character oldChar does not occur in the character sequence represented by this String
object, then a reference to this String object is returned. Otherwise, a String object is returned
that represents a character sequence identical to the character sequence represented by this
String object, except that every occurrence of oldChar is replaced by an occurrence of
newChar.

Examples:

"mesquite in your cellar".replace('e', '0")
returns "mosquito in your collar"
"the war of baronets".replace('r', 'y")
returns "the way of bayonets"
"sparring with a purple porpoise".replace('p’, 't")
returns "starring with a turtle tortoise"
"JonL".replace('q’, 'x') returns "JonL" (no change)

Parameters:

oldChar - the old character.

newChar - the new character.

Returns:

a string derived from this string by replacing every occurrence of oldChar with newChar.

o matches
public boolean matches(String regex)

Tells whether or not this string matches the given regular expression.

Dept.. of CSE, S]BIT Page 84

Advanced Java and J2EE 15CS553

An invocation of this method of the form s#7.matches(regex) yields exactly the same result as the
expression

Pattern.matches(regex, str)

Parameters:

regex - the regular expression to which this string is to be matched
Returns:

true if, and only if, this string matches the given regular expression
Throws:

PatternSyntaxException - if the regular expression's syntax is invalid
Since:

1.4

See Also:

Pattern

o contains
public boolean contains(CharSequence s)
Returns true if and only if this string contains the specified sequence of char values.

Parameters:

s - the sequence to search for

Returns:

true if this string contains s, false otherwise
Since:

1.5

o replaceFirst
o public String replaceFirst(String regex,
String replacement)

Replaces the first substring of this string that matches the given regular expression with the given
replacement.

An invocation of this method of the form s#r.replaceFirst(regex, repl) yields exactly the same
result as the expression

Pattern.compile(regex).matcher(s#r).replaceFirst(rep/)

Note that backslashes (\) and dollar signs ($) in the replacement string may cause the results to
be different than if it were being treated as a literal replacement string; see
Matcher.replaceFirst(java.lang.String). Use Matcher.quoteReplacement(java.lang.String) to
suppress the special meaning of these characters, if desired.

Dept.. of CSE, S]BIT Page 85

Advanced Java and J2EE 15CS553

Parameters:

regex - the regular expression to which this string is to be matched
replacement - the string to be substituted for the first match
Returns:

The resulting String

Throws:

PatternSyntaxException - if the regular expression's syntax is invalid
Since:

1.4

See Also:

Pattern

o replaceAll
o public String replaceAll(String regex,
String replacement)

Replaces each substring of this string that matches the given regular expression with the given
replacement.

An invocation of this method of the form str.replaceAll(regex, repl) yields exactly the same
result as the expression

Pattern.compile(regex).matcher(str).replaceAll(repl)

Note that backslashes (\) and dollar signs ($) in the replacement string may cause the results to
be different than if it were being treated as a literal replacement string; see
Matcher.replaceAll. Use Matcher.quoteReplacement(java.lang.String) to suppress the special
meaning of these characters, if desired.

Parameters:

regex - the regular expression to which this string is to be matched
replacement - the string to be substituted for each match

Returns:

The resulting String

Throws:

PatternSyntaxException - if the regular expression's syntax is invalid
Since:

1.4

See Also:

Pattern

o replace

o public String replace(CharSequence target,
CharSequence replacement)

Dept.. of CSE, S]BIT Page 86

Advanced Java and J2EE 15CS553

Replaces each substring of this string that matches the literal target sequence with the specified
literal replacement sequence. The replacement proceeds from the beginning of the string to
the end, for example, replacing "aa" with "b" in the string "aaa" will result in "ba" rather than
Hab".

Parameters:
target - The sequence of char values to be replaced
replacement - The replacement sequence of char values

Returns:

The resulting string

Since:

1.5

o split

o public String[] split(String regex,

int limit)

Splits this string around matches of the given regular expression.

The array returned by this method contains each substring of this string that is terminated by
another substring that matches the given expression or is terminated by the end of the string.
The substrings in the array are in the order in which they occur in this string. If the expression
does not match any part of the input then the resulting array has just one element, namely this
string.

When there is a positive-width match at the beginning of this string then an empty leading
substring is included at the beginning of the resulting array. A zero-width match at the
beginning however never produces such empty leading substring.

The limit parameter controls the number of times the pattern is applied and therefore affects the
length of the resulting array. If the limit # is greater than zero then the pattern will be applied
at most n - 1 times, the array's length will be no greater than n, and the array's last entry will
contain all input beyond the last matched delimiter. If n is non-positive then the pattern will
be applied as many times as possible and the array can have any length. If n is zero then the
pattern will be applied as many times as possible, the array can have any length, and trailing
empty strings will be discarded.

The string "boo:and:foo", for example, yields the following results with these parameters:

Regex Limit Result
: 2 { "boo", "and:foo" }
5 { "boo", "and", "foo" }
: -2 { "boo", "and", "foo" }
0 5 {"pb","", ":and:f", """, "" }

1) _2 { HbH, HH’ "ZaIlef', HH’ nn }
1) O { "bH’ H"’ H:and:F! }

Dept.. of CSE, S]BIT Page 87

Advanced Java and J2EE 15CS553

An invocation of this method of the form str.split(regex, n) yields the same result as the
expression

Pattern.compile(regex).split(str, n)

Parameters:

regex - the delimiting regular expression

limit - the result threshold, as described above

Returns:

the array of strings computed by splitting this string around matches of the given regular
expression

Throws:

PatternSyntaxException - if the regular expression's syntax is invalid

Since:

1.4

See Also:

Pattern

o split

public String[] split(String regex)

Splits this string around matches of the given regular expression.

This method works as if by invoking the two-argument split method with the given expression
and a limit argument of zero. Trailing empty strings are therefore not included in the resulting
array.

The string "boo:and:foo", for example, yields the following results with these expressions:

Regex Result
: { "boo", "and", "foo" }
0 {"b","", ":and:f" }
Parameters:
regex - the delimiting regular expression
Returns:
the array of strings computed by splitting this string around matches of the given regular
expression
Throws:
PatternSyntaxException - if the regular expression's syntax is invalid
Since:
1.4
See Also:
Pattern
o join

Dept.. of CSE, S]BIT Page 88

Advanced Java and J2EE 15CS553

o public static String join(CharSequence delimiter,
CharSequence... elements)

Returns a new String composed of copies of the CharSequence elements joined together with a
copy of the specified delimiter.

For example,

n ons nn

String message = String.join("-", "Java", "is", "cool");
// message returned is: "Java-is-cool"

Note that if an element is null, then "null" is added.

Parameters:

delimiter - the delimiter that separates each element

elements - the elements to join together.

Returns:

a new String that is composed of the elements separated by the delimiter
Throws:

NullPointerException - If delimiter or elements is null

Since:

1.8

See Also:

StringJoiner

o join
o public static String join(CharSequence delimiter,
Iterable<? extends CharSequence> elements)

Returns a new String composed of copies of the CharSequence elements joined together with a
copy of the specified delimiter.

For example,

List<String> strings = new LinkedList<>();
strings.add("Java");strings.add("is");
strings.add("cool");

String message = String.join(" ", strings);
//message returned is: "Java is cool"

Set<String> strings = new LinkedHashSet<>();
strings.add("Java"); strings.add("is");
strings.add("very"); strings.add("cool");

Dept.. of CSE, S]BIT Page 89

Advanced Java and J2EE 15CS553

String message = String.join("-", strings);
//message returned is: "Java-is-very-cool"

Note that if an individual element is null, then "null" is added.

Parameters:

delimiter - a sequence of characters that is used to separate each of the elements in the resulting
String

elements - an Iterable that will have its elements joined together.

Returns:

a new String that is composed from the elements argument

Throws:

NullPointerException - If delimiter or elements is null

Since:

1.8

See Also:

join(CharSequence.CharSequence...), StringJoiner

o toLowerCase

public String toLowerCase(Locale locale)

Converts all of the characters in this String to lower case using the rules of the given Locale.
Case mapping is based on the Unicode Standard version specified by the Character class.
Since case mappings are not always 1:1 char mappings, the resulting String may be a different
length than the original String.

Examples of lowercase mappings are in the following table:

Language Code of Upper Lower

Locale Case Case Description
tr (Turkish) 0130 \u0069 capital letter I' with dot above ->
small letter 1
tr (Turkish) \u0049 w0131 capital letter I -> small letter

dotless 1
French french

(all) Fries fries lowercased all chars in String
(all) IXE':@ Y olix 8 v < |[lowercased all chars in String
Parameters:
locale - use the case transformation rules for this locale
Returns:
the String, converted to lowercase.
Since:

Dept.. of CSE, S]BIT Page 90

Advanced Java and J2EE 15CS553

1.1
See Also:
toLowerCase(), toUpperCase(), toUpperCase(Locale)

o toLowerCase
public String toLowerCase()

Converts all of the characters in this String to lower case using the rules of the default locale.
This is equivalent to calling toLowerCase(Locale.getDefault()).

Note: This method is locale sensitive, and may produce unexpected results if used for strings that
are intended to be interpreted locale independently. Examples are programming language
identifiers, protocol keys, and HTML tags. For instance, "TITLE".toLowerCase() in a Turkish
locale returns "t\uO131tle", where "u0131' is the LATIN SMALL LETTER DOTLESS 1
character. To obtain correct results for locale insensitive strings, use
toLowerCase(Locale. ROOT).

Returns:

the String, converted to lowercase.
See Also:

toLowerCase(Locale)

o toUpperCase

public String toUpperCase(Locale locale)

Converts all of the characters in this String to upper case using the rules of the given Locale.
Case mapping is based on the Unicode Standard version specified by the Character class.
Since case mappings are not always 1:1 char mappings, the resulting String may be a different

length than the original String.

Examples of locale-sensitive and 1:M case mappings are in the following table.

Language Code

of Locale Lower Case |Upper Case Description
. small letter i -> capital
tr (Turkish) \u0069 \u0130 letter T with dot above
tr (Turkish) 0131 \10049 small letter dotless i ->
capital letter I
small letter sharp s ->
(all) \u00df \u0053 \u0053 two letters: SS
(all) Fahrvergniigen FAHRVERGNUGEN

Parameters:

Dept.. of CSE, S]BIT Page 91

Advanced Java and J2EE 15CS553

locale - use the case transformation rules for this locale
Returns:

the String, converted to uppercase.

Since:

1.1

See Also:

toUpperCase(), toLowerCase(), toLowerCase(Locale)

o toUpperCase
public String toUpperCase()

Converts all of the characters in this String to upper case using the rules of the default locale.
This method is equivalent to toUpperCase(Locale.getDefault()).

Note: This method is locale sensitive, and may produce unexpected results if used for strings that
are intended to be interpreted locale independently. Examples are programming language
identifiers, protocol keys, and HTML tags. For instance, "title".toUpperCase() in a Turkish
locale returns "T\uO130TLE", where "u0130' is the LATIN CAPITAL LETTER I WITH
DOT ABOVE character. To obtain correct results for locale insensitive strings, use
toUpperCase(Locale.ROOT).

Returns:

the String, converted to uppercase.
See Also:

toUpperCase(Locale)

o trim
public String trim()
Returns a string whose value is this string, with any leading and trailing whitespace removed.

If this String object represents an empty character sequence, or the first and last characters of
character sequence represented by this String object both have codes greater than "\u0020' (the
space character), then a reference to this String object is returned.

Otherwise, if there is no character with a code greater than "u0020' in the string, then a String
object representing an empty string is returned.

Otherwise, let k be the index of the first character in the string whose code is greater than
"u0020', and let m be the index of the last character in the string whose code is greater than
"u0020'. A String object is returned, representing the substring of this string that begins with
the character at index £ and ends with the character at index m-that is, the result of
this.substring(k, m + 1).

Dept.. of CSE, S]BIT Page 92

Advanced Java and J2EE 15CS553

This method may be used to trim whitespace (as defined above) from the beginning and end of a
string.

Returns:

A string whose value is this string, with any leading and trailing white space removed, or this
string if it has no leading or trailing white space.

o toString

public String toString()

This object (which is already a string!) is itself returned.

Specified by:

toString in interface CharSequence
Overrides:

toString in class Object

Returns:

the string itself.

o toCharArray

public char[] toCharArray()

Converts this string to a new character array.

Returns:

a newly allocated character array whose length is the length of this string and whose contents are

initialized to contain the character sequence represented by this string.

o format
o public static String format(String format,

Object... args)

Returns a formatted string using the specified format string and arguments.

The locale always used is the one returned by Locale.getDefault().

Parameters:

format - A format string

args - Arguments referenced by the format specifiers in the format string. If there are more
arguments than format specifiers, the extra arguments are ignored. The number of arguments
is variable and may be zero. The maximum number of arguments is limited by the maximum
dimension of a Java array as defined by The Java™ Virtual Machine Specification. The
behaviour on a null argument depends on the conversion.

Returns:

Dept.. of CSE, S]BIT Page 93

Advanced Java and J2EE 15CS553

A formatted string

Throws:

IllegalFormatException - If a format string contains an illegal syntax, a format specifier that is
incompatible with the given arguments, insufficient arguments given the format string, or
other illegal conditions. For specification of all possible formatting errors, see the Details
section of the formatter class specification.

Since:

1.5

See Also:

Formatter

o format
o public static String format(Locale 1,
o String format,

Object... args)

Returns a formatted string using the specified locale, format string, and arguments.

Parameters:

1 - The locale to apply during formatting. If | is null then no localization is applied.

format - A format string

args - Arguments referenced by the format specifiers in the format string. If there are more
arguments than format specifiers, the extra arguments are ignored. The number of arguments
is variable and may be zero. The maximum number of arguments is limited by the maximum
dimension of a Java array as defined by The Java™ Virtual Machine Specification. The
behaviour on a null argument depends on the conversion.

Returns:

A formatted string

Throws:

lllegalFormatException - If a format string contains an illegal syntax, a format specifier that is
incompatible with the given arguments, insufficient arguments given the format string, or
other illegal conditions. For specification of all possible formatting errors, see the Details
section of the formatter class specification

Since:

1.5

See Also:

Formatter

o valueOf
public static String valueOf(Object obyj)
Returns the string representation of the Object argument.

Parameters:
obj - an Object.

Dept.. of CSE, S]BIT Page 94

Advanced Java and J2EE 15CS553

Returns:

if the argument is null, then a string equal to "null"; otherwise, the value of obj.toString() is
returned.

See Also:

Object.toString()

o valueOf
public static String valueOf{char[] data)

Returns the string representation of the char array argument. The contents of the character array
are copied; subsequent modification of the character array does not affect the returned string.

Parameters:

data - the character array.

Returns:

a String that contains the characters of the character array.

o valueOf
o public static String valueOf(char[] data,
o int offset,

int count)
Returns the string representation of a specific subarray of the char array argument.

The offset argument is the index of the first character of the subarray. The count argument
specifies the length of the subarray. The contents of the subarray are copied; subsequent
modification of the character array does not affect the returned string.

Parameters:

data - the character array.

offset - initial offset of the subarray.

count - length of the subarray.

Returns:

a String that contains the characters of the specified subarray of the character array.

Throws:

IndexOutOfBoundsException - if offset is negative, or count is negative, or offset+count is larger
than data.length.

o copyValueOf
o public static String copyValueOf{char[] data,
o int offset,

int count)

Equivalent to valueOf{char[], int, int).

Dept.. of CSE, S]BIT Page 95

Advanced Java and J2EE 15CS553

Parameters:

data - the character array.

offset - initial offset of the subarray.

count - length of the subarray.

Returns:

a String that contains the characters of the specified subarray of the character array.

Throws:

IndexOutOfBoundsException - if offset is negative, or count is negative, or offset+count is larger
than data.length.

o copyValueOf
public static String copyValueOf(char[] data)

Equivalent to valueOf{char[]).

Parameters:

data - the character array.

Returns:

a String that contains the characters of the character array.

o valueOf

public static String valueOf(boolean b)

Returns the string representation of the boolean argument.

Parameters:

b - a boolean.

Returns:

if the argument is true, a string equal to "true" is returned; otherwise, a string equal to "false" is
returned.

o valueOf

public static String valueOf(char c)

Returns the string representation of the char argument.

Parameters:

c - a char.

Returns:

a string of length 1 containing as its single character the argument c.

o valueOf

Dept.. of CSE, S]BIT Page 96

Advanced Java and J2EE 15CS553

public static String valueOf{(int 1)
Returns the string representation of the int argument.
The representation is exactly the one returned by the Integer.toString method of one argument.

Parameters:

1-an int.

Returns:

a string representation of the int argument.
See Also:

Integer.toString(int, int)

o valueOf

public static String valueOf(long 1)

Returns the string representation of the long argument.

The representation is exactly the one returned by the Long.toString method of one argument.

Parameters:

1 - along.

Returns:

a string representation of the long argument.
See Also:

Long.toString(long)

o valueOf

public static String valueOf(float f)

Returns the string representation of the float argument.

The representation is exactly the one returned by the Float.toString method of one argument.

Parameters:

f - a float.

Returns:

a string representation of the float argument.
See Also:

Float.toString(float)

o valueOf

public static String valueOf(double d)

Dept.. of CSE, S]BIT Page 97

Advanced Java and J2EE 15CS553

Returns the string representation of the double argument.
The representation is exactly the one returned by the Double.toString method of one argument.

Parameters:

d - a double.

Returns:

a string representation of the double argument.
See Also:

Double.toString(double)

o intern

public String intern()

Returns a canonical representation for the string object.

A pool of strings, initially empty, is maintained privately by the class String.

When the intern method is invoked, if the pool already contains a string equal to this String
object as determined by the equals(Object) method, then the string from the pool is returned.
Otherwise, this String object is added to the pool and a reference to this String object is

returned.

It follows that for any two strings s and t, s.intern() == t.intern() is true if and only if s.equals(t)
is true.

All literal strings and string-valued constant expressions are interned. String literals are defined
in section 3.10.5 of the The Java™ Language Specification.

Returns:
a string that has the same contents as this string, but is guaranteed to be from a pool of unique
strings.

Class StringBuffer

¢ java.lang.Object

o java.lang.StringBuffer

o All Implemented Interfaces:
Serializable, Appendable, CharSequence

Dept.. of CSE, S]BIT Page 98

Advanced Java and J2EE 15CS553

public final class StringBuffer
extends Object
implements Serializable, CharSequence

A thread-safe, mutable sequence of characters. A string buffer is like a String, but can be
modified. At any point in time it contains some particular sequence of characters, but the
length and content of the sequence can be changed through certain method calls.

String buffers are safe for use by multiple threads. The methods are synchronized where
necessary so that all the operations on any particular instance behave as if they occur in some
serial order that is consistent with the order of the method calls made by each of the individual
threads involved.

The principal operations on a StringBuffer are the append and insert methods, which are
overloaded so as to accept data of any type. Each effectively converts a given datum to a
string and then appends or inserts the characters of that string to the string buffer. The append
method always adds these characters at the end of the buffer; the insert method adds the
characters at a specified point.

For example, if z refers to a string buffer object whose current contents are "start", then the
method call z.append("le") would cause the string buffer to contain "startle", whereas
z.insert(4, "le") would alter the string buffer to contain "starlet".

In general, if sb refers to an instance of a StringBuffer, then sb.append(x) has the same effect as
sb.insert(sb.length(), x).

Whenever an operation occurs involving a source sequence (such as appending or inserting from
a source sequence), this class synchronizes only on the string buffer performing the operation,
not on the source. Note that while StringBuffer is designed to be safe to use concurrently from
multiple threads, if the constructor or the append or insert operation is passed a source
sequence that is shared across threads, the calling code must ensure that the operation has a
consistent and unchanging view of the source sequence for the duration of the operation. This
could be satisfied by the caller holding a lock during the operation's call, by using an
immutable source sequence, or by not sharing the source sequence across threads.

Every string buffer has a capacity. As long as the length of the character sequence contained in
the string buffer does not exceed the capacity, it is not necessary to allocate a new internal
buffer array. If the internal buffer overflows, it is automatically made larger.

Unless otherwise noted, passing a null argument to a constructor or method in this class will
cause a NullPointerException to be thrown.

As of release JDK 5, this class has been supplemented with an equivalent class designed for use
by a single thread, StringBuilder. The StringBuilder class should generally be used in

Dept.. of CSE, S]BIT Page 99

Advanced Java and J2EE 15CS553

preference to this one, as it supports all of the same operations but it is faster, as it performs
no synchronization.

Constructor and Description

StringBuffer()
Constructs a string buffer with no characters in it and an initial capacity of 16 characters.

StringBuffer(CharSequence seq)
Constructs a string buffer that contains the same characters as the specified CharSequence.

StringBuffer(int capacity)
Constructs a string buffer with no characters in it and the specified initial capacity.

StringBuffer(String str)
Constructs a string buffer initialized to the contents of the specified string.

o StringBuffer

public StringBuffer()

Constructs a string buffer with no characters in it and an initial capacity of 16 characters.
o StringBuffer

public StringBuffer(int capacity)

Constructs a string buffer with no characters in it and the specified initial capacity.
Parameters:

capacity - the initial capacity.

Throws:

NegativeArraySizeException - if the capacity argument is less than 0.

o StringBuffer
public StringBuffer(String str)

Constructs a string buffer initialized to the contents of the specified string. The initial capacity of
the string buffer is 16 plus the length of the string argument.

Parameters:

str - the initial contents of the buffer.

Dept.. of CSE, S]BIT Page 100

Advanced Java and J2EE 15CS553

o StringBuffer
public StringBuffer(CharSequence seq)

Constructs a string buffer that contains the same characters as the specified CharSequence. The
initial capacity of the string buffer is 16 plus the length of the CharSequence argument.

If the length of the specified CharSequence is less than or equal to zero, then an empty buffer of
capacity 16 is returned.

Parameters:

seq - the sequence to copy.

Since:

1.5

e Method Detail

o length

public int length()

Returns the length (character count).
Specified by:

length in interface CharSequence
Returns:

the length of the sequence of characters currently represented by this object
o capacity

public int capacity()

Returns the current capacity. The capacity is the amount of storage available for newly inserted
characters, beyond which an allocation will occur.

Returns:
the current capacity
o ensureCapacity

public void ensureCapacity(int minimumCapacity)

Dept.. of CSE, S]BIT Page 101

Advanced Java and J2EE 15CS553

Ensures that the capacity is at least equal to the specified minimum. If the current capacity is less
than the argument, then a new internal array is allocated with greater capacity. The new
capacity is the larger of:

* The minimumCapacity argument.
= Twice the old capacity, plus 2.

If the minimumCapacity argument is nonpositive, this method takes no action and simply
returns. Note that subsequent operations on this object can reduce the actual capacity below
that requested here.

Parameters:

minimumCapacity - the minimum desired capacity.
o trimToSize

public void trimToSize()

Attempts to reduce storage used for the character sequence. If the buffer is larger than necessary
to hold its current sequence of characters, then it may be resized to become more space
efficient. Calling this method may, but is not required to, affect the value returned by a
subsequent call to the capacity() method.

Since:

1.5

o setLength

public void setLength(int newLength)

Sets the length of the character sequence. The sequence is changed to a new character sequence
whose length is specified by the argument. For every nonnegative index £ less than
newLength, the character at index & in the new character sequence is the same as the character
at index k in the old sequence if k is less than the length of the old character sequence;
otherwise, it is the null character "uw0000'. In other words, if the newLength argument is less
than the current length, the length is changed to the specified length.

If the newLength argument is greater than or equal to the current length, sufficient null
characters ("\u0000') are appended so that length becomes the newLength argument.

The newLength argument must be greater than or equal to 0.

Parameters:

Dept.. of CSE, S]BIT Page 102

Advanced Java and J2EE 15CS553

newLength - the new length

Throws:

IndexOutOfBoundsException - if the newLength argument is negative.
See Also:

length()

o charAt

public char charAt(int index)

Returns the char value in this sequence at the specified index. The first char value is at index 0,
the next at index 1, and so on, as in array indexing.

The index argument must be greater than or equal to 0, and less than the length of this sequence.
If the char value specified by the index is a surrogate, the surrogate value is returned.

Specified by:

charAt in interface CharSequence

Parameters:

index - the index of the desired char value.

Returns:

the char value at the specified index.

Throws:

IndexOutOfBoundsException - if index is negative or greater than or equal to length().
See Also:

length()

o codePointAt

public int codePointAt(int index)

Returns the character (Unicode code point) at the specified index. The index refers to char values
(Unicode code units) and ranges from 0 to length()- 1.

Dept.. of CSE, S]BIT Page 103

Advanced Java and J2EE 15CS553

If the char value specified at the given index is in the high-surrogate range, the following index is
less than the length of this sequence, and the char value at the following index is in the low-
surrogate range, then the supplementary code point corresponding to this surrogate pair is
returned. Otherwise, the char value at the given index is returned.

Parameters:

index - the index to the char values

Returns:

the code point value of the character at the index
Since:

1.5

o codePointBefore

public int codePointBefore(int index)

Returns the character (Unicode code point) before the specified index. The index refers to char
values (Unicode code units) and ranges from 1 to length().

If the char value at (index - 1) is in the low-surrogate range, (index - 2) is not negative, and the
char value at (index - 2) is in the high-surrogate range, then the supplementary code point
value of the surrogate pair is returned. If the char value at index - 1 is an unpaired low-
surrogate or a high-surrogate, the surrogate value is returned.

Parameters:

index - the index following the code point that should be returned
Returns:

the Unicode code point value before the given index.

Since:

1.5

o codePointCount

o public int codePointCount(int beginIndex,

int endIndex)

Dept.. of CSE, S]BIT Page 104

Advanced Java and J2EE 15CS553

Returns the number of Unicode code points in the specified text range of this sequence. The text
range begins at the specified beginlndex and extends to the char at index endIndex - 1. Thus
the length (in chars) of the text range is endIndex-beginlndex. Unpaired surrogates within this
sequence count as one code point each.

Parameters:
beginlndex - the index to the first char of the text range.
endIndex - the index after the last char of the text range.
Returns:
the number of Unicode code points in the specified text range
Since:
1.5
o offsetByCodePoints
o public int offsetByCodePoints(int index,

int codePointOffset)

Returns the index within this sequence that is offset from the given index by codePointOffset
code points. Unpaired surrogates within the text range given by index and codePointOffset
count as one code point each.

Parameters:

index - the index to be offset
codePointOffset - the offset in code points
Returns:

the index within this sequence

Since:

1.5

o getChars

o public void getChars(int srcBegin,

o int srcEnd,

Dept.. of CSE, S]BIT Page 105

Advanced Java and J2EE 15CS553

o char[] dst,
int dstBegin)

Characters are copied from this sequence into the destination character array dst. The first
character to be copied is at index srcBegin; the last character to be copied is at index srcEnd-
1. The total number of characters to be copied is srcEnd-srcBegin. The characters are copied
into the subarray of dst starting at index dstBegin and ending at index:

dstbegin + (srcEnd-srcBegin) - 1

Parameters:

srcBegin - start copying at this offset.
srcEnd - stop copying at this offset.
dst - the array to copy the data into.
dstBegin - offset into dst.

Throws:

IndexOutOfBoundsException - if any of the following is true:

= srcBegin is negative

dstBegin is negative

= the srcBegin argument is greater than the srcEnd argument.
= srcEnd is greater than this.length().

= dstBegin+srcEnd-srcBegin is greater than dst.length

o setCharAt

o public void setCharAt(int index,

char ch)

The character at the specified index is set to ch. This sequence is altered to represent a new
character sequence that is identical to the old character sequence, except that it contains the
character ch at position index.

Dept.. of CSE, S]BIT Page 106

Advanced Java and J2EE 15CS553

The index argument must be greater than or equal to 0, and less than the length of this sequence.
Parameters:

index - the index of the character to modify.

ch - the new character.

Throws:

IndexOutOfBoundsException - if index is negative or greater than or equal to length().

See Also:

length()
o append

public StringBuffer append(Object obj)
Appends the string representation of the Object argument.

The overall effect is exactly as if the argument were converted to a string by the method
String.valueOf(Object), and the characters of that string were then appended to this character

sequence.
Parameters:

obj - an Object.

Returns:

a reference to this object.

o append

public StringBuffer append(String str)

Appends the specified string to this character sequence.

The characters of the String argument are appended, in order, increasing the length of this
sequence by the length of the argument. If str is null, then the four characters "null" are
appended.

Let n be the length of this character sequence just prior to execution of the append method. Then
the character at index & in the new character sequence is equal to the character at index £ in
the old character sequence, if & is less than n; otherwise, it is equal to the character at index -
n in the argument str.

Dept.. of CSE, S]BIT Page 107

Advanced Java and J2EE 15CS553

Parameters:

str - a string.

Returns:

a reference to this object.

o append

public StringBuffer append(StringBuffer sb)
Appends the specified StringBuffer to this sequence.

The characters of the StringBuffer argument are appended, in order, to the contents of this
StringBuffer, increasing the length of this StringBuffer by the length of the argument. If sb is
null, then the four characters "null" are appended to this StringBuffer.

Let n be the length of the old character sequence, the one contained in the StringBuffer just prior
to execution of the append method. Then the character at index k in the new character
sequence is equal to the character at index £ in the old character sequence, if £ is less than n;
otherwise, it is equal to the character at index k-» in the argument sb.

This method synchronizes on this, the destination object, but does not synchronize on the source

(sb).
Parameters:
sb - the StringBuffer to append.
Returns:
a reference to this object.
Since:
1.4
o append
public StringBuffer append(CharSequence s)
Appends the specified CharSequence to this sequence.

The characters of the CharSequence argument are appended, in order, increasing the length of
this sequence by the length of the argument.

Dept.. of CSE, S]BIT Page 108

Advanced Java and J2EE 15CS553

The result of this method is exactly the same as if it were an invocation of this.append(s, 0,
s.length());

This method synchronizes on this, the destination object, but does not synchronize on the source

().
If s is null, then the four characters "null" are appended.
Specified by:
append in interface Appendable
Parameters:
s - the CharSequence to append.
Returns:
a reference to this object.
Since:
1.5
o append
o public StringBuffer append(CharSequence s,
o int start,

int end)

Appends a subsequence of the specified CharSequence to this sequence.

Characters of the argument s, starting at index start, are appended, in order, to the contents of this
sequence up to the (exclusive) index end. The length of this sequence is increased by the
value of end - start.

Let n be the length of this character sequence just prior to execution of the append method. Then
the character at index £ in this character sequence becomes equal to the character at index & in
this sequence, if & is less than n; otherwise, it is equal to the character at index k+start-n in the
argument s.

If s is null, then this method appends characters as if the s parameter was a sequence containing
the four characters "null".

Specified by:

Dept.. of CSE, S]BIT Page 109

Advanced Java and J2EE 15CS553

append in interface Appendable

Parameters:

s - the sequence to append.

start - the starting index of the subsequence to be appended.
end - the end index of the subsequence to be appended.
Returns:

a reference to this object.

Throws:

IndexOutOfBoundsException - if start is negative, or start is greater than end or end is greater
than s.length()

Since:

1.5

o append

public StringBuffer append(char[] str)

Appends the string representation of the char array argument to this sequence.

The characters of the array argument are appended, in order, to the contents of this sequence.
The length of this sequence increases by the length of the argument.

The overall effect is exactly as if the argument were converted to a string by the method
String.valueOf(char[]), and the characters of that string were then appended to this character
sequence.

Parameters:

str - the characters to be appended.
Returns:

a reference to this object.

o append

o public StringBuffer append(char][] str,

o int offset,

Dept.. of CSE, S]BIT Page 110

Advanced Java and J2EE 15CS553

int len)
Appends the string representation of a subarray of the char array argument to this sequence.

Characters of the char array str, starting at index offset, are appended, in order, to the contents of
this sequence. The length of this sequence increases by the value of len.

The overall effect is exactly as if the arguments were converted to a string by the method
String.valueOf{char[].int,int), and the characters of that string were then appended to this
character sequence.

Parameters:

str - the characters to be appended.

offset - the index of the first char to append.
len - the number of chars to append.
Returns:

a reference to this object.

Throws:

IndexOutOfBoundsException - if offset < 0 or len < 0 or offset+len > str.length

o append
public StringBuffer append(boolean b)
Appends the string representation of the boolean argument to the sequence.

The overall effect is exactly as if the argument were converted to a string by the method
String.valueOf{(boolean), and the characters of that string were then appended to this character
sequence.

Parameters:

b - a boolean.

Returns:

a reference to this object.
o append

public StringBuffer append(char c)

Dept.. of CSE, S]BIT Page 111

Advanced Java and J2EE 15CS553

Appends the string representation of the char argument to this sequence.

The argument is appended to the contents of this sequence. The length of this sequence increases
by 1.

The overall effect is exactly as if the argument were converted to a string by the method
String.valueOf(char), and the character in that string were then appended to this character
sequence.

Specified by:

append in interface Appendable

Parameters:

C - a char.

Returns:

a reference to this object.

o append

public StringBuffer append(int 1)

Appends the string representation of the int argument to this sequence.

The overall effect is exactly as if the argument were converted to a string by the method
String.valueOf{int), and the characters of that string were then appended to this character
sequence.

Parameters:

1-an int.

Returns:

a reference to this object.

o appendCodePoint

public StringBuffer appendCodePoint(int codePoint)

Appends the string representation of the codePoint argument to this sequence.

The argument is appended to the contents of this sequence. The length of this sequence increases
by Character.charCount(codePoint).

Dept.. of CSE, S]BIT Page 112

Advanced Java and J2EE 15CS553

The overall effect is exactly as if the argument were converted to a char array by the method
Character.toChars(int) and the character in that array were then appended to this character

sequence.
Parameters:
codePoint - a Unicode code point
Returns:
a reference to this object.
Since:
1.5
o append
public StringBuffer append(long Ing)
Appends the string representation of the long argument to this sequence.

The overall effect is exactly as if the argument were converted to a string by the method
String.valueOf(long), and the characters of that string were then appended to this character

sequence.
Parameters:

Ing - a long.

Returns:

a reference to this object.

o append

public StringBuffer append(float f)

Appends the string representation of the float argument to this sequence.

The overall effect is exactly as if the argument were converted to a string by the method
String.valueOf{(float), and the characters of that string were then appended to this character

sequence.
Parameters:

f - a float.

Dept.. of CSE, S]BIT Page 113

Advanced Java and J2EE 15CS553

Returns:

a reference to this object.

o append

public StringBuffer append(double d)

Appends the string representation of the double argument to this sequence.

The overall effect is exactly as if the argument were converted to a string by the method
String.valueOf(double), and the characters of that string were then appended to this character
sequence.

Parameters:

d - a double.

Returns:

a reference to this object.

o delete

o public StringBuffer delete(int start,
int end)

Removes the characters in a substring of this sequence. The substring begins at the specified start
and extends to the character at index end - 1 or to the end of the sequence if no such character
exists. If start is equal to end, no changes are made.

Parameters:

start - The beginning index, inclusive.
end - The ending index, exclusive.
Returns:

This object.

Throws:

StringIndexOutOfBoundsException - if start is negative, greater than length(), or greater than
end.

Since:

Dept.. of CSE, S]BIT Page 114

Advanced Java and J2EE 15CS553

1.2
o deleteCharAt
public StringBuffer deleteCharAt(int index)

Removes the char at the specified position in this sequence. This sequence is shortened by one
char.

Note: If the character at the given index is a supplementary character, this method does not
remove the entire character. If correct handling of supplementary characters is required,
determine the number of chars to remove by calling
Character.charCount(thisSequence.codePointAt(index)), where thisSequence is this sequence.

Parameters:

index - Index of char to remove
Returns:

This object.

Throws:

StringIndexOutOfBoundsException - if the index is negative or greater than or equal to length().

Since:

1.2

o replace

o public StringBuffer replace(int start,
o int end,

String str)

Replaces the characters in a substring of this sequence with characters in the specified String.
The substring begins at the specified start and extends to the character at index end - 1 or to
the end of the sequence if no such character exists. First the characters in the substring are
removed and then the specified String is inserted at start. (This sequence will be lengthened to
accommodate the specified String if necessary.)

Parameters:

start - The beginning index, inclusive.

Dept.. of CSE, S]BIT Page 115

Advanced Java and J2EE 15CS553

end - The ending index, exclusive.

str - String that will replace previous contents.
Returns:

This object.

Throws:

StringlndexOutOfBoundsException - if start is negative, greater than length(), or greater than
end.

Since:

1.2

o substring

public String substring(int start)

Returns a new String that contains a subsequence of characters currently contained in this
character sequence. The substring begins at the specified index and extends to the end of this
sequence.

Parameters:

start - The beginning index, inclusive.
Returns:

The new string.

Throws:

StringIndexOutOfBoundsException - if start is less than zero, or greater than the length of this
object.

Since:

1.2

o subSequence

o public CharSequence subSequence(int start,
int end)

Returns a new character sequence that is a subsequence of this sequence.

Dept.. of CSE, S]BIT Page 116

Advanced Java and J2EE 15CS553

An invocation of this method of the form

sb.subSequence(begin, end)

behaves in exactly the same way as the invocation

sb.substring(begin, end)
This method is provided so that this class can implement the CharSequence interface.
Specified by:
subSequence in interface CharSequence
Parameters:
start - the start index, inclusive.
end - the end index, exclusive.
Returns:
the specified subsequence.
Throws:

IndexOutOfBoundsException - if start or end are negative, if end is greater than length(), or if
start is greater than end

Since:

1.4

o substring

o public String substring(int start,
int end)

Returns a new String that contains a subsequence of characters currently contained in this
sequence. The substring begins at the specified start and extends to the character at index end
- 1.

Parameters:

Dept.. of CSE, S]BIT Page 117

Advanced Java and J2EE 15CS553

start - The beginning index, inclusive.
end - The ending index, exclusive.
Returns:

The new string.

Throws:

StringlndexOutOfBoundsException - if start or end are negative or greater than length(), or start
is greater than end.

Since:
1.2
o insert

o public StringBuffer insert(int index,

o charf] str,
o int offset,
int len)

Inserts the string representation of a subarray of the str array argument into this sequence. The
subarray begins at the specified offset and extends len chars. The characters of the subarray
are inserted into this sequence at the position indicated by index. The length of this sequence
increases by len chars.

Parameters:

index - position at which to insert subarray.

str - A char array.

offset - the index of the first char in subarray to be inserted.
len - the number of chars in the subarray to be inserted.
Returns:

This object

Throws:

Dept.. of CSE, S]BIT Page 118

Advanced Java and J2EE 15CS553

StringIndexOutOfBoundsException - if index is negative or greater than length(), or offset or len
are negative, or (offset+len) is greater than str.length.

Since:
1.2
o insert
o public StringBuffer insert(int offset,
Object obj)
Inserts the string representation of the Object argument into this character sequence.

The overall effect is exactly as if the second argument were converted to a string by the method
String.valueOf(Object), and the characters of that string were then inserted into this character

sequence at the indicated offset.

The offset argument must be greater than or equal to 0, and less than or equal to the length of this
sequence.

Parameters:

offset - the offset.

obj - an Object.

Returns:

a reference to this object.
Throws:

StringIndexOutOfBoundsException - if the offset is invalid.

Dept.. of CSE, S]BIT Page 119

Advanced Java and J2EE 15CS553

MODULE - 4
SERVLETS

Introduction to Web

The web clients make requests to web server. When a server answers a request, it usually sends
some type of content(MIME- Multi purpose Internet Mail Exchange) to the client. The client uses web
browser to send request to the server. The server often sends response to the browser with a set of

instructions written in HTML(HyperText Markup Language)

Web Server
HTIF Reguest

HTTP Resgorise pum—

Server

Web Browser

Client

Before Servlets, CGI(Common Gateway Interface) programming was used to create web applications.

Here's how a CGI program works :

Drawbacks of CGI programs

o High resposne time because CGI programs execute in their own OS shell.

e CGl is not scalable.

e CGI programs are not always secure or object-oriented.

o Itis Platform dependent.

Because of these disadvantages, developers started looking for better CGI solutions. And then Sun

Microsystems developed Servlet as a solution.

Servlet

Dept. of CSE, S]BIT Page 120

Advanced Java and J2EE 15CS553

Servlet technology is used to create web application (resides at server side and generates dynamic web
page).
Servlet can be described in many ways, depending on the context.

e Servlet is server side program.

e Servlet is an API that provides many interfaces and classes.

e Servlet is a web component that is deployed on the server to create dynamic web page.

Advantages of using Servlets
1. better performance: because it creates a thread for each request not process.
2. Portability: Servlets are platform independent because it uses java language.

3. Robust: Servlets are managed by JVM so we don't need to worry about memory leak, garbage

collection etc.
4. Secure: servlets are object oriented and runs inside JVM.

5. Servlets are scalable.

Life Cycle of a Servlet

The web container maintains the life cycle of a servlet instance

1. Load Servlet Class ‘
5. Callthe
destrov ()
method

2. Create Servlet Instance
3. Callthe init () method

4. Callthe service () method

1. Loading Servlet Class : A Servlet class is loaded when first request for the servlet is received
by the Web Container.

2. Servlet instance creation :After the Servlet class is loaded, Web Container creates the instance
of it. Servlet instance is created only once in the life cycle.

3. Call to the init() method : init() method is called by the Web Container on servlet instance to
initialize the servlet.

public void init(ServletContig config) throws ServletException

Dept. of CSE, S]BIT Page 121

Advanced Java and J2EE

15CS553

4. Call to the service() method : The containers call the service() method each time the request for

servlet is received. The service() method will then call the doGet() or doPost() methos based ont

eh type of the HTTP request, as explained in previous lessons.

public void service(ServletRequest request, ServletResponse response) throws ServletException,

IOException

Call to destroy() method: The Web Container call the destroy() method before removing servlet

instance, giving it a chance for cleanup activity.

Steps to Create Servlet Application using tomcat server

To create a Servlet application you need to follow the below mentioned steps. These steps are common

for all the Web server. In our example we are using Apache Tomcat server. Apache Tomcat is an open

source web server for testing servlets and JSP technology. Create directory structure for your

application.
1. Create directory structure for your application.
2. Create a Servlet
3. Compile the Servlet
4. Create Deployement Descriptor for your application
5. Start the server and deploy the application
6.

1. Creating the Directory Structure

Sun Microsystem defines a unique directory structure that must be followed to create a servlet

application.

Dept. of CSE, SJBIT

Page 122

Advanced Java and J2EE 15CS553

Create the above directory structure
< "ijp”;ﬁf;}';?#r inside Apache-Tomcat\webapps
directory.

Static
Resources
(css,images efc)

| All HTML, static files(images, css
WEBAINF etc) are kept directly under Web
application folder.

html and jsp file

| \ While all the Servlet classes are kept

lib e chcias inside classes folder.

<.

webxml |

= The web.xm1 (deployement
00100 descriptor) file is kept under wEB-INF
001550

folder.

MySendet.class

2. Creating a Servlet

There are three different ways to create a servlet.
o By extending HttpServlet class
o By extending GenericServlet class

e By implementing Servlet interface

import javax.servlet.*;
import javax.servlet.http.*;

import java.io.*;

// extending HttpServlet class

public MyServlet extends HttpServlet
{
public void doGet(HttpServletRequest request,HttpServletResposne response)
throws ServletException
{
response.setContentType("text/html"); // set content type

//get the stream to write the data

Dept. of CSE, S]BIT Page 123

Advanced Java and J2EE 15CS553

PrintWriter out = response.getWriter(); / create printwriter object

out.println("<h1>Hello Readers</h1>"); // print ur content on client web browser

h
b

Write above code and save it as MyServlet.java anywhere on your PC. Compile it from there
and paste the class file into WEB-INF/classes/ directory that you have to create inside

Tomcat/webapps directory.

import javax.servlet.*;

import java.io.*;

// extending GenericServlet class

public MyServlet extends GenericServlet

{

public void service(ServletRequest request,ServletResponse response)
throws IOException,ServletException {

{
response.setContentType("text/html"); // set content type
//get the stream to write the data
PrintWriter out = response.getWriter(); // create printwriter object

out.println("<h1>Hello Readers</h1>"); // print ur content on client web browser

}

3. Compiling a Servlet
To compile a Servlet a JAR file is required. Different servers require different JAR files. In Apache

Tomcat server servlet-api.jar file is required to compile a servlet class.

"1 Download servlet-api.jar file.

1 Paste the servlet-api.jar file inside Java\jdk\jre\lib\ext directory.

Dept. of CSE, S]BIT Page 124

Advanced Java and J2EE 15CS553

NOTE: After compiling your Servlet class you will have to paste the class file into WEB-INF/classes/
directory.

4. Create Deployment Descriptor
Deployment Descriptor(DD) is an XML document that is used by Web Container to run Servlets and
JSP pages.

web.xml file

<web-app>
<servlet>
<servlet-name> MyServlet </servlet-name>
<servlet-class> MyServlet </servlet-class>

</servlet>

<servlet-mapping>
<servlet-name> MyServlet </servlet-name>
<url-pattern>/hello</url-pattern>
</servlet-mapping>

</web-app>

5. Starting Tomcat Server for the first time
set JAVA_HOME or JRE_ HOME in environment variable (It is required to start server).

Go to My Computer properties -> Click on advanced tab then environment variables -> Click on
the new tab of user variable -> Write JAVA_HOME in variable name and paste the path of jdk folder in

variable value -> ok

Run Serviet Application
Open Browser and type http:localhost:8080/First/hello

Servlet API

Dept. of CSE, S]BIT Page 125

Advanced Java and J2EE

15CS553

Servlet API consists of two important packages that encapsulates all the important classes and interface,

namely :

1. javax.servlet.*;

INTERFACES CLASSES
Servlet ServletInputStream
ServletContext ServletOutputStream
ServletConfig ServletException
ServletRequest UnavailableException
ServletResponse GenericServlet
Interface Summary
Servlet Defines methods that all servlets must implement.
ServletRequest Defines an object to provide client request information to a servlet.
ServletResponse Defines an object to assist a servlet in sending a response to the client.

A servlet configuration object used by a servlet container to pass information to a

ServletConfig S

servlet during initialization.

Defines a set of methods that a servlet uses to communicate with its servlet
ServletContext container, for example, to get the MIME type of a file, dispatch requests, or write

to a log file.

Dept. of CSE, SJBIT

Page 126

Advanced Java and J2EE

Interface Servlet

15CS553

Method

Description

void destroy()

Called when the servlet is unloaded.

ServietConfig getServietConfig()

Returns a ServletConfig object that contains any initialization
parameters.

String getServletinfo()

Returns a string describing the servlet.

void init(ServletConfig sc)
throws ServlietException

Called when the servlet is initialized. Initialization
parameters for the servlet can be obtained from sc.
An UnavailableException should be thrown if the
servlet cannot be initialized.

void service(ServletRequest req,
ServletResponse res)
throws ServletException,

Called to process a request from a client. The request from
the client can be read from req. The response to the client
can be written to res. An exception is generated if a servilet

I0Exception

or |O problem occurs.

Interface ServletRequest

Method

Description

Object getAttribute(String attr)

Returns the value of the attribute named atir.

String getCharacterEncoding()

Returns the character encoding of the request.

int getContentLength()

Returns the size of the request. The value —1 is returned if the
size is unavailable.

String getContentType()

Returns the type of the request. A null value is returned if the
type cannot be determined.

ServletinputStream getinputStream()
throws 10 Exception

Returns a ServletinputStream that can be used to read binary
data from the request. An lllegalStateException is thrown if
getReader{) has already been invoked for this request.

String getParameter(String pname)

Returns the value of the parameter named pname.

Enumeration getParameterNames()

Returns an enumeration of the parameter names for this request.

String[] getParameterValues(String name)

Returns an array containing values associated with the parameter
specified by name.

String getProtocol()

Returns a description of the protocol.

BufferedReader getReader()
throws 10Exception

Returns a buffered reader that can be used to read text from the
request. An lllegalStateException is thrown if getlnputStream()
has already been invoked for this request.

String getRemoteAddr()

Returns the string equivalent of the client IP address.

String getRemoteHost()

Returns the string equivalent of the client host name.

String getSchemel()

Returns the transmission scheme of the URL used for the request
(for example, “http”, “ftp”).

String getServerName()

Returns the name of the server.

int getServerPort()

Returns the port number.

Dept. of CSE, S]JBIT

Page 127

Advanced Java and J2EE

15CS553

Interface ServletResponse

Method Description
String getCharacterEncoding()} |Returns the character encoding for the response.
ServletOutputStream Returns a ServletOutputStream that can be used to write binary data to the
getOutputStream() response. An lllegalStateException is thrown if getWriter() has already
throws |0OException been invoked for this request.
PrintWriter getWriter() Returns a PrintWriter that can be used to write character data to the
throws |OException response. An lllegalStateException is thrown if getOutputStream()

has already been invoked for this request.

void setContentlength(int size) |Sets the content length for the response to size.

void setContentType(String type) |Sets the content type for the response to fype.

Interface ServletConfig

Method

Description

ServletContext getServletContext()

Returns the context for this serviet.

String getlnitParameter(String param)

Returns the value of the initialization parameter
named param.

Enumeration getlnitParameterNames()

Returns an enumeration of all initialization parameter
names.

String getServietName()

Returns the name of the invoking servlet.

Interface ServletContext

Method

Description

Object getAttribute(String attr)

Returns the value of the server attribute named attr.

String getMimeType(String file)

Returns the MIME type of file.

String getRealPath(String vpath)

Returns the real path that corresponds to the virtual
path vpath.

String getServerinfo()

Returns information about the server.

void log(5tring s)

Writes s to the servlet log.

void log(String s, Throwable g)

Writes s and the stack trace for e to the servlet log.

void setAttribute(String attr, Object val)

Sets the attribute specified by atir to the value
passed in val.

Dept. of CSE, S]JBIT

Page 128

Advanced Java and J2EE

15CS553

Class Summary

GenericServlet Defines a generic, protocol-independent servlet.

Provides an input stream for reading binary data from a client request,

ServletInputStream

ServletOQutputStream | Provides an output stream for sending binary data to the client.

including an efficient readLine method for reading data one line at a time.

ServletException Defines a general exception a servlet can throw when it encounters difficulty.

Defines an exception that a servlet or filter throws to indicate that it is

UnavailableException

Class GenericServlet
java.lang.Object
L javax.servlet.GenericServlet

All Implemented Interfaces: Servlet, ServletConfig

Class ServletInputStream
java.lang.Object
L java.io.InputStream

L javax.servlet.ServletInputStream

Method Summary

int |readLine(byte[] b, int off,

Reads the input stream, one line at a time.

Class ServletOutputStream
Method Summary
void |println()

void | print(java.lang.String s)

permanently or temporarily unavailable.

int len)

Writes a String to the client, without a carriage return-line feed (CRLF) character at

the end.

Dept. of CSE, SJBIT

Page 129

Advanced Java and J2EE 15CS553

void | println()
Writes a carriage return-line feed (CRLF) to the client.

void | println(java.lang.String s)
Writes a String to the client, followed by a carriage return-line feed (CRLF).

2. javax.servlet.http.*;

CLASSES

INTERFACES

Cookie HttpServletRequest
HttpServlet HttpServletResponse
HttpSessionBindingEvent HttpSession

Interface Summary

Extends the ServletRequest interface to provide request information for

HTTP servlets.

HttpServletRequest

Extends the ServletResponse interface to provide HTTP-specific

HttpServletResponse

functionality in sending a response.

Provides a way to identify a user across more than one page request or

HttpSession o)])
visit to a Web site and to store information about that user.

Dept. of CSE, S]BIT Page 130

Advanced Java and J2EE 15CS553

Interface HttpServletResponse

Method Description

void addCookie(Cookie cookie) Adds cookie to the HTTFP response.

boolean containsHeader(String field) Returns true if the HTTFP response header contains a field
named fiald.

String encodeURL{String w) Determines if the session 1D must be encoded in the URL

identified as un. If so, returns the modified version of uri.
Otherwise, returns ur. All URLs generated by a serviet should
be processed by this method.

String encodeRedirectURL{String wrd) Determines if the session 1D must be encoded in the URL
identified as ur. If so, returns the modified version of ur.
Otherwise, returns ur. All URLs passed to sendRedirect()
should be processed by this method.

void sendError{int c) Sends the error code ¢ to the client.
throws I0Exception

void sendError(int ¢, String s) Sends the error code ¢ and message s to the client.
throws 10Exception

void sendRedirect{String) Redirects the client to ur.

throws 10OException

void setDateHeader(String field, long msec) Adds feld to the header with date value egual to msec
{milliseconds since midnight, January 1, 1970, GMT).

void setHeader(String field, String value) Adds fleld to the header with value equal to vaiuea.
void setintHeader{String flield, int vaiue) Adds field to the header with value equal to value.
void setStatus(int code) Sets the status code for this response to code.

Dept. of CSE, S]JBIT Page 131

Advanced Java and J2EE

Interface HttpServletRequest

15CS553

Method

Description

5String getAuthType()

Returns authentication scheme.

Cookie[] getCookies()

Returns an array of the cookies in this request.

long getDateHeader(String fiald)

Returns the value of the date header field named figld.

5String getHeader(String field)

Returns the value of the header field named field.

Enumeration getHeaderNames()

Returns an enumeration of the header names.

int getintHeader{String field)

Returns the Int equivalent of the header field named field.

String getMethod()

Returns the HTTP method for this request.

5tring getPathinfo{)

Returns any path information that is located after the serviet path
and before a query string of the URL.

String getPathTranslated|)

Returns any path information that is located after the servlet path
and before a guery string of the URL after translating it to a real
path.

String getQueryString)

Returns any guery string in the URL.

String getRemotelser|)

Returns the name of the user who issued this request.

5tring getRequestedSessionlid()

Returns the 1D of the session.

String getRequestURI()

Returns the URL.

StringBuffer getRequestURL{)

Returns the URL.

String getServietPathi()

Returns that part of the URL that identifies the serviet.

HttpSession getSession()

Returns the session for this request. If a session does not exist,
one s created and then returned.

HttpSession getSession(boolean new)

If new is true and no session exists, creates and returns a session
for this request. Otherwise, returns the existing session for this
request.

boolean
isRequestedSessionldFromCookie()

Returns true if a cookie contains the session ID. Otherwise, returns
false.

boolean
isReqguestedSessionldFromURLL)

Returns true if the URL contains the session ID. Otherwise, returns
false.

boolean isReguestedSessionldyalid()

Returns true if the requested session 1D is valid in the current
session context.

Dept. of CSE, S]JBIT

Page 132

Advanced Java and J2EE 15CS553
Interface HttpSession
Method Description

Object getAttribute(String attr)

Returns the value associated with the name passad in attr. Returns
null it attr is not found.

Enurmeration getAttriouteMNames{) Returns an enumeration of the attribute names associated with the

session.

long getCreationTime()

Returns the time (in milliseconds since midnight, January 1, 1970,
GMT) when this session was created.

String getld({)

Returns the session 1D.

long getlastAccessedTime|)

Returns the time (in milliseconds since midnight, January 1, 1970,
GMT) when the client last made a request for this session.

void invalidate()

Invalidates this session and removes it from the context.

boolean isMNew()

Returns true if the server created the session and it has not yet
been accessed by the client.

void removeAttribute(String attr) Removes the attribute specified by attr from the session.

void setAttribute(String attr, Object val) | Associates the value passed in val with the attribute name passed

in attr.

Class Summary

Cookie

Creates a cookie, a small amount of information sent by a servlet to a Web

browser, saved by the browser, and later sent back to the server.

HttpServlet

Provides an abstract class to be subclassed to create an HTTP servlet

suitable for a Web site.

HttpSessionBindingEvent

Events of this type are either sent to an object that implements

HttpSessionBindingListener when it is bound or unbound from a session, or

to a HttpSessionAttributeListener that has been configured in the

deployment descriptor when any attribute is bound, unbound or replaced in

a session.

HttpSessionEvent

This is the class representing event notifications for changes to sessions

within a web application.

Dept. of CSE, S]JBIT

Page 133

Advanced Java and J2EE

Class Cookie

15CS553

Method

Description

Object clone()

Returns a copy of this object.

String getComment()

Returns the comment.

String getDomain(}

Returns the domain.

int getMaxAge()

Returns the maximum age (in seconds).

String getName()

Returns the name.

String getPath()

Returns the path.

boolean getSecure()

Returns true if the cookie is secure. Otherwise, returns false.

String getValue()

Returns the value.

int getVersion()

Returns the version.

void setComment({String c)

Sets the comment to c.

void setDomain{String d)

Sets the domain to d.

void setMaxAge(int secs)

Sets the maximum age of the cookie to secs. This is the
number of seconds after which the cooklie is deleted.

void setPath(String p)

Sets the path to p.

void setSecure(boolean secure)

Sets the security flag to secure.

void setValue(String v}

Sets the value to v

void setVersion(int v)

Sets the version to v

Dept. of CSE, S]JBIT

Page 134

Advanced Java and J2EE 15CS553

Class HttpServlet
Methodd Description
void doDelete(HttpServletReguest rag, Handles an HTTP DELETE request.

HitpServletResponse res)
throws |0Exception, ServietException

vold doGet{HttpServietRequest regq, Handles an HTTP GET request.
HttpServietResponse res)
throws I0Exception, ServietException

void doHead({HittpServietRequest req, Handles an HTTP HEAD request.
HtipServietResponse res)

throws 10Exception,
ServietException

void doOptions(HttpServietRequest req, Handles an HTTP OPTIONS request.
HitpServietResponse ras)
throws |QOException, ServietException

void doPost{HttpServietRequest rag, Handles an HTTP POST request.
HitpServietResponsa res)
throws 10Exception, ServietException

void doPut{HtipServietRequest reg, Handles an HTTP PUT request.
HitpServietResponse res)
throws 10Exception, ServietException

void doTrace(HttpServietRequest req, Handles an HTTP TRACE request.
HttpServietResponse res)
throws I0Exception, ServietException

long Returns the time (in milliseconds since midnight, January 1,
getlastModifiediHttpServietRequest req) | 1970, GMT) when the requested resource was last modified.
void service(HttpServietRequest req, Called by the server when an HTTP request arrives for this
HttpServietResponse res) servlet. The arguments provide access to the HTTP request and

throws |0Exception, ServietException response, respectively.

Class HttpSessionBindingEvent

lMethod Summary

| java.lang.String | getName()

Returns the name with which the attribute is bound to or unbound from the

session.

HttpSession getSession()

Return the session that changed.

| java.lang.Object getValue()

Dept. of CSE, S]JBIT Page 135

Advanced Java and J2EE 15CS553

Returns the value of the attribute that has been added, removed or replaced.

Class HttpSessionEvent

Method Summary

HttpSession getSession()

Return the session that changed.

Reading Servlet parameters

In this example, we will show how a parameter is passed to a
index.html
<form method="post" action="check">

Name <input type="text" name="user" >

—_n

<input type="submit" value="submit">

</form>

MyServlet.java
public class MyServiet extends HttpServlet {

protected void doPost(request, response){
... // set content type . . .

String user=request.getParameter(''user');

out.println("<h2> Welcome "+user+"</h2>");

}

NOTE: getParameter() returns string to get int value use

Integer.parselnt(“sting”);

Dept. of CSE, S]BIT Page 136

Advanced Java and J2EE 15CS553

Handling HTTP request and Response

HttpServlet class provides various methods that handle various types of HTTP request.
A servlet typically must override at least one method, usually one of these:

o doGet, if the servlet supports HTTP GET requests

e doPost, for HTTP POST requests

e doPut, for HTTP PUT requests

e doDelete, for HTTP DELETE requests

GET and POST methods are commonly used when handling form input.
NOTE: By default a request is Get request.
Difference between GET and POST requests

/GET Request POST Request

Data is sent in header to the server Data is sent in the request body

Get request can send only limited amount of data Large amount of data can be sent.

Get request is not secured because data is exposed Post request is secured because data is not exposed

in URL in URL.

Session

Session simply means a particular interval of time. Session Tracking is a way to maintain state

(data) of an user. It is also known as session management in servlet.
Http protocol is a stateless so we need to maintain state using session tracking techniques. Each time
user requests to the server, server treats the request as the new request. So we need to maintain the state
of an user to recognize to particular user.
There are 2 techniques used in Session tracking:

1. Cookies

2. HttpSession

Dept. of CSE, S]BIT Page 137

Advanced Java and J2EE 15CS553

Cookies in Servlet

A cookie is a small piece of information that is persisted between the multiple client requests.
By default, each request is considered as a new request. In cookies technique, we add cookie with
response from the servlet. So cookie is stored in the cache of the browser. After that if request is sent by

the user, cookie is added with request by default. Thus, we recognize the user as the old user.

23 Aequest+ Cogkie

>
1} Request >
2} Aesponse + Cookis

Advantage of Cookies
1. Simplest technique of maintaining the state.
2. Cookies are maintained at client side.
Disadvantage of Cookies
1. Tt will not work if cookie is disabled from the browser.

2. Only textual information can be set in Cookie object.

Creating a new Cookie

Cookie ck = new Cookie (™username",name) ;
Fe . crealing a new cookie
object

Setting up lifespan for a cookie

ck.setMaxAge (30%c0) ;
setting maximum age of
i SRt cookie
Sending the cookie to the client

response . addCookie (ck) ;)
B ot adding cookie to

P " response object

Getting cookies from client request

Cookie[] cks = reguest.getCookies () ;

e ™

getting the cookie for
request object

Example demonstrating usage of Cookies

index.html

Dept. of CSE, S]BIT Page 138

Advanced Java and J2EE 15CS553

<form method="post" action=" MyServlet ">
Name:<input type="text" name="user" />

Password:<input type="text" name="pass" >

<input type="submit" value="submit">

</form>

MyServlet.java
public class MyServiet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)

String name = request.getParameter("user");

String pass = request.getParameter("pass");

if(pass.equals("1234"))
{
Cookie ck = new Cookie(""username" ,name);

response.addCookie(ck);

/Iresponse.sendRedirect(" First");//call ur servlet

//creating submit button
out.print("<form action= First >");
out.print("<input type='submit' value='go">");

out.print("</form>");

First.java

public class First extends HttpServlet {

Dept. of CSE, S]BIT Page 139

Advanced Java and J2EE

15CS553

protected void doGet(HttpServletRequest request, HttpServletResponse response)

/.

Cookie[] cks = request.getCookies();

out.println("Welcome "+cks[0].getValue());

Name: []

Password: ;L

Useful Methods of Cookie class

if password = "1234"

Method

Description

public void setMaxAge(int
expiry)

Sets the maximum age of the cookie in seconds.

public String getName()

Returns the name of the cookie. The name cannot be changed after

creation.

public String getValue()

Returns the value of the cookie.

public void setName(String

name)

changes the name of the cookie.

public void setValue(String

value)

changes the value of the cookie.

Other methods required for using Cookies

Dept. of CSE, SJBIT

Page 140

Advanced Java and J2EE

15CS553

For adding cookie or getting the value from the cookie, we need some methods provided by other

interfaces. They are:

1. public void addCookie(Cookie ck):method of HttpServletResponse interface is used to add

cookie in response object.

2. public Cookie[| getCookies():method of HttpServletRequest interface is used to return all the

cookies from the browser.

HttpSession

HttpSession object is used to store entire session with a specific client. We can store, retrieve and

remove attribute from HttpSession object. Any servlet can have access to HttpSession object

throughout the getSession() method.

Creating a new session

HttpSession session

HttpSession session

getSession() method returns a session.
If the session already exist, it return the
esisting session else create a new
sesion

reguest.getSession();

request.getSession (true) ;

L getSession(true) always return

a new session

Getting a pre-existing session

HttpSession session

Destroying a session

session.invalidate () :

request.getSession(false) ;

L return a pre-existing

session

<—— destroy a session

Some Important Methods of HttpSession

Methods

Description

long getCreationTime()

milliseconds since midnight January 1, 1970 GMT.

returns the time when the session was created, measured 1

Dept. of CSE, SJBIT

Page 141

Advanced Java and J2EE 15CS553

' returns a string containing the unique identifier assigned to the
String getld() .
session.
int getMaxInactivelnterval() returns the maximum time interval, in seconds.
void invalidate() destroy the session
boolean isNew() returns true if the session is new else false

Complete Example demonstrating usage of HttpSession

index.html
<form method="post" action="Validate">
User: <input type="text" name="uname " />

<input type="submit" value="submit">

</form>

Validate.java

public class Validate extends HttpServlet {

protected void doPost(request, response)

{
/...
String name = request.getParameter("user");
//creating a session

HttpSession session = request.getSession();

session.setAttribute("user", uname);

response.sendRedirect("Welcome");

}

}

Dept. of CSE, S]BIT Page 142

Advanced Java and J2EE 15CS553

Welcome.java

public class Welcome extends HttpServlet {

protected void doGet(request, response){
/...
HttpSession session = request.getSession();
String user = (String)session.getAttribute("user");

out.printin("Hello "+user);

Dept. of CSE, S]BIT Page 143

Advanced Java and J2EE 15CS553

JSP
e Java Server Page technology is used to create dynamic web applications.
e JSP pages are easier to maintain then a Servlet.
e JSP pages are opposite of Servlets as a servlet adds HTML code inside Java code, while JSP
adds Java code inside HTML using JSP tags.
e Everything a Servlet can do, a JSP page can also do it.
e JSP enables us to write HTML pages containing tags, inside which we can include powerful Java
programs
Why JSP is preffered over servlets?
o JSP provides an easier way to code dynamic web pages.
o JSP does not require additional files like, java class files, web.xml etc
e Any change in the JSP code is handled by Web Container(Application server like tomcat), and
doesn't require re-compilation.
o JSP pages can be directly accessed, and web.xml mapping is not required like in servlets.
Advantage of JSP
o [Easy to maintain and code.
e High Performance and Scalability.
e JSP is built on Java technology, so it is platform independent.
Life cycle of a JSP Page
The JSP pages follows these phases:
o Initialization (jspInit() method is invoked by the container).
e Request processing (_jspService() method is invoked by the container).
e Destroy (jspDestroy() method is invoked by the container).

0 @ s

First.jsp _J/_’ First_jsp.java _J/_. First_jsp.class _J/_’First_';sp serviet

translated to compiles to loaded as

In the end a JSP becomes a Servlet

e As depicted in the above diagram, JSP page is translated into servlet by the help of JSP
translator. The JSP translator is a part of webserver that is responsible to translate the JSP page
into servlet. After that Servlet page is compiled by the compiler and gets converted into the class
file.

o Web Container translates JSP code into a servlet class source(.java) file, then compiles that
into a java servlet class. In the third step, the servlet class bytecode is loaded using classloader.
The Container then creates an instance of that servlet class.

o The initialized servlet can now service request. For each request the Web Container call the
_jspService() method. When the Container removes the servlet instance from service, it calls the
jspDestroy() method to perform any required clean up.

Do we need to follow directory structure to run a simple JSP ?

No, put jsp files in a folder directly and deploy that folder. It will be running fine. But if you are using
bean class, Servlet or tld file then directory structure is required.

JSP Scripting Element

Dept. of CSE, S]BIT Page 144

Advanced Java and J2EE 15CS553

JSP Scripting element are written inside <% %> tags. These code inside <% %> tags are processed by
the JSP engine during translation of the JSP page. Any other text in the JSP page is considered as HTML
code or plain text.

There are five different types of scripting elements

1. JSP scriptlet tag A scriptlet tag is used to execute java source code in JSP.
<% java source code %>

In this example, we are displaying a welcome message.
<htmI>

<body>

<% out.print("welcome to jsp"); %>

</body>

</html>

2. JSP Declaration Tag
The JSP declaration tag is used fo declare variables, objects and methods.
The code written inside the jsp declaration tag is placed outside the service() method of auto generated
servlet.
So it doesn't get memory at each request.
<%! field or method declaration %>

Difference between JSP Scriptlet tag and Declaration tag

|Jsp Scriptlet Tag ||Jsp Declaration Tag |
The jsp scriptlet tag can only declare variables |[The jsp declaration tag can declare variables as well
not methods. as methods.

The declaration of scriptlet tag is placed inside ||The declaration of jsp declaration tag is placed

the jspService() method. outside the _jspService() method.

declaration tag with variable declaration tag that declares method

In index.jsp

index.jsp <htmI>

<body> <%!

<%! int data=50; %> int cube(int n){
<%= "Value of the variable is:"+data %> return n*n*n*;
</body> Y

</html> %>

<%= "Cube of 3 is:"+cube(3) %>

3. JSP Expression Tag

Dept. of CSE, S]BIT Page 145

Advanced Java and J2EE 15CS553

Expression Tag is used to print out java language expression that is put between the tags. An expression
tag can hold any java language expression that can be used as an argument to the out.print() method.
Syntax of Expression Tag

<%= JavaExpression %>

<%=(2*5) %> //note no ; at end of statement.
4. JSP directives
The jsp directives are messages that tells the web container how to translate a JSP page into the
corresponding servlet.
Syntax <% @ directive attribute="value" %>
There are three types of directives:
A. import directive
B. include directive
C. taglib directive
a. import
The import attribute is used to import class,interface or all the members of a package.lIt is similar to
import keyword in java class or interface.

<% @ page import=""java.util.Date" %>
Today is: <%= new Date() %>
b. Include Directive
The include directive tells the Web Container to copy everything in the included file and paste it into
current JSP file. The include directive is used to include the contents of any resource it may be jsp file,
html file or text file. Syntax of include directive is:
<% @ include file="filename.jsp" %>

c¢. JSP Taglib directive
The JavaServer Pages API allow you to define custom JSP tags that look like HTML or XML tags and a
tag library is a set of user-defined tags that implement custom behavior. The taglib directive declares
that your JSP page uses a set of custom tags, identifies the location of the library, and provides means
for identifying the custom tags in your JSP page.
syntax <% @ taglib uri = "uri" prefix = "prefixOfTag" >
For example, suppose the custlib tag library contains a tag called hello. If you wanted to use the hello
tag with a prefix of mytag, your tag would be <mytag:hello> and it will be used in your JSP file as
follows

<% @ taglib uri = "http://www.example.com/custlib" prefix = "mytag" %>

<htmI>
<mytag:hello/>
</body>
</htm]>
5. JSP Comments
JSP comment marks text or statements that the JSP container should ignore.
syntax of the JSP comments <%- - This is JSP comment - -%>
Request String
e The query string contains the attribute & the value of the html form or JSP form, which sends
with the POST /GET method to Servlet or JSP page for any request.

Dept. of CSE, S]BIT Page 146

Advanced Java and J2EE 15CS553

e A query string is the part of a URL which is attached to the end, after the file name. It begins
with a question mark and usually includes information in pairs. The format is parameter=value,
as in the following example:

www.mediacollege.com/cgi-bin/myscript.cgi?name="Umesh”

¢ Query strings can contain multiple sets of parameters, separated by an ampersand (&) like so:

www.mediacollege.com/cgi-bin/myscript.cgi?fname="Umesh” &Ilname="M"

e to parse this info we use method of JSP request object

e we can easily get using request.getParameter() with name of parameter as argument, to get its

value.
welcome.jsp
index.html
<htmI>

<form action="welcome.jsp"> <body>

<input type="text" name="uname"> <% .

<input type="submit" value="go">
 String

</form> name=request.getParameter("uname");

out.print("Welcome "+name);

welcome.jsp session.setAttribute("'user' ,name);

<% second jsp page

String name=request.getParameter('"uname');

out.print("welcome "+name); %>

%> </body>

</html>
Following are the JSP implicit object
Implicit o
. D
Object escription
|request ||The HttpServletRequest object associated with the request. |
The HttpServletRequest object associated with the response that is sent back to the

response browser.
|0ut ||The JspWriter object associated with the output stream of the response. |
|sessi0n ||The HttpSession object associated with the session for the given user of request. |

Session implicit object (concept same as servlet)

In JSP, session is an implicit object of type HttpSession. The Java developer can use this object to
set,get or remove attribute or to get session information.

Example of session implicit object

index.html

<htmlI>

<body>

<form action="welcome.jsp">

<input type="text" name="uname'">
<input type="submit" value="go">

</form>

Dept. of CSE, S]BIT Page 147

Advanced Java and J2EE 15CS553

</body>
</html>

second.jsp

<htmI>

<body>

<%

String name=(String)session.getAttribute(''user");
out.print("Hello "+name);
%>

</body>

</html>
//other methods of Session what u used in servlets can be used here.
Cookie (concept same as servlet)
Step 1: Creating a Cookie object
Cookie cookie = new Cookie("key","value");
Step 2: Setting the maximum age
You use setMaxAge to specify how long (in seconds) the cookie should be valid. The following code
will set up a cookie for 24 hours.
cookie.setMaxAge(60*60*24);
Step 3: Sending the Cookie into the HTTP response headers
You use response.addCookie to add cookies in the HTTP response header as follows
response.addCookie(cookie);

<%
// Create cookies for first and last names.
Cookie firstName = new Cookie("'first name', request.getParameter("first name'));
Cookie lastName = new Cookie("'last_name'", request.getParameter(''last_name'));

// Set expiry date after 24 Hrs for both the cookies.
firstName.setMaxAge(60%60%24);
lastName.setMaxAge(60*60%24);

/I Add both the cookies in the response header.
response.addCookie(firstName);
response.addCookie(lastName);

%>

<htmlI>
<body>
p>First Name:
<%= request.getParameter(" first_name')%>
</p>
<p>Last Name:

Dept. of CSE, S]BIT Page 148

Advanced Java and J2EE 15CS553

<%= request.getParameter(''last_name')%>
</p>
</body>
</htmI>
Reading Cookies with JSP
<htmI>
<body>
<%
Cookie cookie = null;
Cookie[] cookies = null;

/I Get an array of Cookies associated with the this domain
cookies = request.getCookies();

if(cookies !=null) {
out.println("<h2> Found Cookies Name and Value</h2>");

for (int i = 0; i < cookies.length; i++) {
cookie = cookies|i];
out.print("Name : " + cookie.getName() + ", ");
out.print("Value: " + cookie.getValue()+"
");
b
}else {
out.println("<h2>No cookies founds</h2>");
h
%>
</body>

</html>
//other methods of Cookie what u used in serviets can be used here.

Dept. of CSE, S]BIT Page 149

Advanced Java and J2EE 15CS553

MODULE -5
JDBC

e Java Database Connectivity(JDBC) is an Application Programming Interface(API)

used to connect Java application with Database.

Java Application

Database

e JDBC is used to interact with various type of Database such as Oracle, MS Access, My
SQL and SQL Server.

e JDBC can also be defined as the platform-independent interface between a relational
database and Java programming.

e [t allows java program to execute SQL statement and retrieve result from database.

JDBC Model
JAVA
Application

| JDBC API | * JDBC consists of two parts:

v JDBC — JDBC AP, a purely Java-based
| JpBCDriver | API

— JDBC driver
""""""""""" * Communicates with
. vendor-specific drivers
L’S’é‘?l’)ﬁszfmc | JDBC-0DBC Bridgd — JDBC driver classified into 4
categories
Vender Specific

Y ODBC Driver

v

Dept. of CSE, S]BIT Page 150

Advanced Java and J2EE 15CS553

JDBC Driver

JDBC Driver is a software component that enables java application to interact with the database.

There are 4 types of JDBC drivers:

JDBC-ODBC bridge driver
Native-API driver (partially java driver)

Network Protocol driver (fully java driver)

b=

Thin driver (fully java driver)

1) JDBC-ODBC bridge driver

The JDBC-ODBC bridge driver uses ODBC driver to connect to the database. The JDBC-ODBC
bridge driver converts JDBC method calls into the ODBC function calls. This is now

discouraged because of thin driver.

JDBC Java Driver ODBC Bridge ODBC Driver Database
Interfaces Part

Advantages:

e casy to use.
e can be easily connected to any database.
Disadvantages:
e Performance degraded because JDBC method call is converted into the ODBC function
calls.

e The ODBC driver needs to be installed on the client machine.

2) Native-API driver

The Native API driver uses the client-side libraries of the database. The driver converts JDBC

method calls into native calls of the database API. It is not written entirely in java.

Dept. of CSE, S]BIT Page 151

Advanced Java and J2EE 15CS553

JDBC Java Driver MNative Driver

Advantage:

e performance upgraded than JDBC-ODBC bridge driver.
Disadvantage:
o The Native driver needs to be installed on the each client machine.

e The Vendor client library needs to be installed on client machine.

3) Network Protocol driver
The Network Protocol driver uses middleware (application server) that converts JDBC calls

directly or indirectly into the vendor-specific database protocol. It is fully written in java.

JDBC Java Driver Intermediate

Advantage:

e No client side library is required because of application server that can perform many
tasks like auditing, load balancing, logging etc.
Disadvantages:
o Network support is required on client machine.
e Requires database-specific coding to be done in the middle tier.
e Maintenance of Network Protocol driver becomes costly because it requires database-

specific coding to be done in the middle tier.

4) Thin driver

The thin driver converts JDBC calls directly into the vendor-specific database protocol. That is

why it is known as thin driver. It is fully written in Java language.

JDBC Jawva Driver
[Interfaces } *{ Part H Database]

Advantage:

o Better performance than all other drivers.

Dept. of CSE, S]BIT Page 152

Advanced Java and J2EE 15CS553

o No software is required at client side or server side.
Disadvantage:
e Drivers depends on the Database.

Various Database drivers

MS Access sun.jdbc.odbe.JdbeOdbeDriver

Oracle oracle.jdbc.driver.OracleDriver

Microsoft com.microsoft.sqlserver.jdbc.SQLServerDriver
SQL Server

2000

MySQL org.gjt.mm.mysql.Driver

JDBC Packages

JDBC API is contained in 2 packages.
— import java.sql.*;
* contains core java data objects of JDBC API. It’s a part of J2SE.
— import javax.sql.* ;

» It extends java.sql and is in J2EE

5 Steps to connect to the database in java

There are 5 steps to connect any java application with the database in java using JDBC. They are as
follows:

e Register the driver class

e Creating connection

e Creating statement

e Executing queries

e Closing connection

1) Register the driver class

Dept. of CSE, S]JBIT Page 153

Advanced Java and J2EE 15CS553

The forName() method of Class class is used to register the driver class. This method is used to

dynamically load the driver class.

Class.forName("driverClassName");

2) Create the connection object

The getConnection() method of DriverManager class is used to establish connection with the database.

Connection con = DriverManager.getConnection(url, user, password);

3) Create & Execute query

The createStatement() method of Connection interface is used to create statement. The object of statement
is responsible to execute queries with the database.
The executeQuery() method of Statement interface is used to execute queries to the database. This method
returns the object of ResultSet that can be used to get all the records of a table.
Statement st = con.createStatement();
ResultSet rs = st.executeQuery(sql);
4) Process data returned form DBMS
while(rs.next()){

System.out.printIn(rs.getInt(1)+" "+rs.getString(2));

5) Close the connection object

By closing connection object statement and ResultSet will be closed automatically. The close() method of
Connection interface is used to close the connection.

rs.close();

st.close();

con.close();

complete example

import java.sql.*;
import java.sql.*;

Class Dbconnection

Dept. of CSE, S]BIT Page 154

Advanced Java and J2EE 15CS553

{ public static void main(String args[])
{ //Dynamically loads a driver class, for Oracle database

Class.forName("oracle.jdbc.driver.OracleDriver");

//Establishes connection to database by obtaining a Connection object
Connection con = DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:XE",
“scott”, “tiger”);
/* jdbc-is API
oracle- is DB name
thin- is the driver
localhost-is sever name on which oracle is running (can giv IP address)
1521- is port number
XE- is oracle service name */
Statement statement = con.createStatement();

_n

String sql = "select * from users";
ResultSet result = statement.executeQuery(sql);
while(result.next()) {
String name = result.getString(''name");
long age = result.getInt(“age");
System.out.println(name);
System.out.println(age);
b
result.close();

statement.close();

con.close();

}

Process results

When you execute an SQL query you get back a ResultSet. The ResultSet contains the result of your
SQL query. The result is returned in rows with columns of data. You iterate the rows of the
ResultSet like this:

while(result.next()) {

DeptofCSESBIT Ppagels5

Advanced Java and J2EE 15CS553

String name = result.getString("name");

long age =result.getLong ("age");

}

The ResultSet.next() method moves to the next row in the ResultSet, if there are anymore rows. If
there are anymore rows, it returns true. If there were no more rows, it will return false.

You can also pass an index of the column instead, like this:

while(result.next()) {
result.getString(1);
result.getnt (2);

Statement Object

There are 3 types of statement objects to execute the sql query

Interfaces Recommended Use

Use the for general-purpose access to your database. Useful when
Statement you are using static SQL statements at runtime. The Statement

interface cannot accept parameters.

Use the when you plan to use the SQL statements many times. The

PreparedStatement ‘ ‘ ‘
PreparedStatement interface accepts input parameters at runtime.
Use the when you want to access the database stored procedures. The
CallableStatement CallableStatement interface can also accept runtime input

parameters.

1. Statement object

e The Statement interface provides methods to execute queries with the database.
e The statement interface is a factory of ResultSet i.e. it provides factory method to get the

object of ResultSet.

The important methods of Statement interface are as follows:

Dept. of CSE, S]BIT Page 156

Advanced Java and J2EE 15CS553

1) ResultSet executeQuery(String sql): is used to execute SELECT query. It returns the object of
ResultSet.

Example show above

2) int executeUpdate(String sql): is used to execute specified query, it may be create, drop, insert,
update, delete etc.

Snippet

Statement stmt=con.createStatement();

// for insert

int result=stmt.executeUpdate("insert into emp values(33,'Irfan',50000)");

// for update

int result=stmt.executeUpdate(''update empset name='Vimal',salary=10000 where id=33");
// for delete

int result=stmt.executeUpdate('' delete from emp where id=33");

System.out.println(result+" records affected");

con.close();

3) boolean execute(String sql): is used to execute queries that may return multiple results.

boolean status = stmt.execute(anyquery);
if(status){
//query is a select query.
ResultSet rs = stmt.getResultSet()

2. PreparedStatement object

The PreparedStatement interface is a subinterface of Statement. It is used to execute
parameterized query.
Improves performance: The performance of the application will be faster if you use

PreparedStatement interface because query is compiled only once.

// PreparedStatement to insert record
PreparedStatement stmt=con.prepareStatement("insert into Emp values(?,?)");
stmt.setInt(1,101);//1 specifies the first parameter in the query stmt.setString(2,"Ratan"");

int i=stmt.executeUpdate();

Dept. of CSE, S]BIT Page 157

Advanced Java and J2EE 15CS553

System.out.println(i+" records inserted");
The setXXX() methods are used to supply values to the parameters
All of the Statement object's methods for interacting with the database execute(), executeQuery(), and

executeUpdate() also work with the PreparedStatement object.

// PreparedStatement to update record
PreparedStatement stmt=con.prepareStatement(''update emp set name=? where id=?");
stmt.setString(1," Ratan ");//1 specifies the first parameter in the query i.e. name
stmt.setInt(2,101);
int i=stmt.executeUpdate();

System.out.println(i+" records updated");

// PreparedStatement to delete record

PreparedStatement stmt=con.prepareStatement('' delete from emp where id=?"");
stmt.setInt(1,101);
int i=stmt.executeUpdate();

System.out.println(i+" records deleted");

3. CallableStatement Objects

CallableStatement interface is used to call the stored procedures and functions.

Suppose you need the get the age of the employee based on the date of birth, you may create a

function that receives date as the input and returns age of the employee as the output.

Snippet

String SQL = "{call getEmpName (?, ?)}"; // stored procedure called
cs = conn.prepareCall (SQL);
cs.setlnt(100);
// resisterOutParameter() used to register OUT type used by stored procedure
cs.resisterOutParameter(2, VARCHAR);
cs.execute();
String Name = cs.getString(1);
Cs.close();

Dept. of CSE, S]BIT Page 158

Advanced Java and J2EE 15CS553

Oracle stored procedure —

CREATE OR REPLACE PROCEDURE getEmpName
(EMP_ID IN NUMBER, EMP_FIRST OUT VARCHAR) AS
BEGIN
SELECT first INTO EMP_FIRST
FROM Employees
WHERE ID = EMP_ID;
END;

Three types of parameters exist: IN, OUT, and INOUT.

Parameter Description
Data that needs to be passed to stored procedure. values to IN parameters
N with the setXXX() methods.
contains value supplied by the SQL statement it returns. You retrieve values
out from the OUT parameters with the getXXX() methods.
INOUT A parameter that provides both input and output values.

ResultSet interface

The object of ResultSet maintains a cursor pointing to a row of a table. Initially, cursor points to before

the first row.

first() Moves the cursor to the first row
last() Moves the cursor to the last row.
previous() Moves the cursor to the previous row. This method returns false if

the previous row is off the result set

next() Moves the cursor to the next row. This method returns false if

there are no more rows in the result set

Dept. of CSE, S]JBIT Page 159

Advanced Java and J2EE 15CS553

absolute(int row) Moves the cursor to the specified row

relative(int row) Moves the cursor the given number of rows from where it

getRow()
beforeFirst()

afterLast()

currently is pointing.
Returns the row number that the cursor is pointing to.
Moves the cursor to just before the first row

Moves the cursor to just after the last row

When you create a ResultSet there are three attributes you can set. These are:

ResultSet. TYPE_ FORWARD ONLY (default type)- TYPE_ FORWARD ONLY
means that the ResultSet can only be navigated forward

ResultSet. TYPE_SCROLL_INSENSITIVE- TYPE SCROLL_INSENSITIVE means
that the ResultSet can be navigated (scrolled) both forward and backwards. The ResultSet
is insensitive to changes while the ResultSet is open. That is, if a record in the ResultSet is
changed in the database by another thread or process, it will not be reflected in already
opened ResulsSet's of this type.

ResultSet. TYPE_SCROLL_SENSITIVE- means that the ResultSet can be
navigated (scrolled) both forward and backwards. The ResultSet is sensitive to changes in

the underlying data source while the ResultSet is open.

2. Concurrency determines whether the ResultSet can be updated, or only read.

1.

2.

ResultSet. CONCUR_READ_ONLY- means that the ResultSet can only be read.

ResultSet. CONCUR_UPDATABLE- means that the ResultSet can be both read
and updated.

/[Inserting Rows into a ResultSet u have updateXXX()
rs.updateString (1, "raj");

rs.updatelnt (2, 55);

rs.insertRow(); // call this method

Dept. of CSE, S]BIT Page 160

Advanced Java and J2EE 15CS553

//updating Rows into a ResultSet u have updateXXX()

Updates the current row by updating the corresponding row in the database.
rs.updateString ("name" , "ram");

rs.updatelnt ("age" , 55);

rs.updateRow();// call this method

//Delete Rows from a ResultSet
Deletes the current row from the database

rs.deleteRow(3); //delete current row

3. Holdability- determines if a ResultSet is closed when the commit() method of the underlying
connection is called.

1. ResultSet. CLOSE_CURSORS_OVER_COMMIT- means that all ResultSet
instances are closed when connection.commit() method is called on the connection that
created the ResultSet.

2. ResultSet. HOLD_CURSORS_OVER_COMMIT- means that the ResultSet is kept
open when the connection.commit() method is called on the connection that created the

ResultSet.

The HOLD_CURSORS_OVER_COMMIT holdability might be useful if you use the ResultSet to update
values in the database. Thus, you can open a ResultSet, update rows in it, call connection.commit() and still

keep the same ResultSet open for future transactions on the same rows.

e U can set resultset attribute for Statement Or PreparedStatement, like this:

Statement statement = connection.createStatement(
ResultSet. TYPE_ FORWARD_ONLY, ResultSet. CONCUR_READ_ ONLY,
ResultSet. CLOSE_CURSORS_OVER_COMMIT

)

PreparedStatement statement = connection.prepareStatement(sql,
ResultSet. TYPE_ FORWARD_ONLY,ResultSet. CONCUR_READ_ONLY,
ResultSet. CLOSE_CURSORS_OVER_COMMIT

);

Dept. of CSE, S]BIT Page 161

Advanced Java and J2EE 15CS553

Transaction

e A transaction is a set of actions to be carried out as a single, atomic action. Either all of

the actions are carried out, or none of them are.

e Advantage is fast performance It makes the performance fast because database is hit at

the time of commit.

Transaction succeeded

commit o

rollback o

Transaction failed

Initial state

In JDBC, Connection interface provides methods to manage transaction.

Method Description

void setAutoCommit(boolean status)||It is true bydefault means each transaction is committed bydefault.

void commit() commits the transaction.
void rollback() cancels the transaction.
try{

//Assume a valid connection object conn
conn.setAutoCommit(false);

Statement stmt = conn.createStatement();

String SQL = "INSERT INTO Employees " +
"VALUES (106, 20, 'Rita', 'Tez")";

stmt.executeUpdate(SQL);

//Submit a malformed SQL statement that breaks

String SQL = "INSERTED IN Employees " +
"VALUES (107, 22, 'Sita', 'Singh")";

Dept. of CSE, S]BIT Page 162

Advanced Java and J2EE 15CS553

stmt.executeUpdate(SQL);

// If there is no error.

conn.commit();
}catch(SQLException se){

/1 If there is any error.

conn.rollback();

}

Savepoints
e When you set a savepoint you define a logical rollback point within a transaction. If an

error occurs past a savepoint, you can use the rollback method to undo either all the

changes or only the changes made after the savepoint.

The Connection object has two new methods that help you manage savepoints —

o setSavepoint(String savepointName): Defines a new savepoint. It also returns a
Savepoint object.

o releaseSavepoint(Savepoint savepointName): Deletes a savepoint. Notice that it
requires a Savepoint object as a parameter. This object is usually a savepoint generated

by the setSavepoint() method.

try{

//Assume a valid connection object conn
conn.setAutoCommit(false);

Statement stmt = conn.createStatement();

//set a Savepoint

Savepoint savepointl = conn.setSavepoint(''Savepointl");

String SQL = "INSERT INTO Employees " + "VALUES (106, 20, 'Rita', 'Tez")";
stmt.executeUpdate(SQL);

//Submit a malformed SQL statement that breaks

String SQL = "INSERTED IN Employees " + "VALUES (107, 22, 'Sita', '"Tez")";
stmt.executeUpdate(SQL);

Dept. of CSE, S]BIT Page 163

Advanced Java and J2EE 15CS553

// If there is no error, commit the changes.

conn.commit();
+catch(SQLException se){

// If there is any error.

conn.rollback(savepointl);

Batch Processing in JDBC

Instead of executing a single query, we can execute a batch (group) of queries. It makes the

performance fast.
Methods of Statement interface

The required methods for batch processing are given below:

Method Description

void addBatch(String query)||It adds query into batch.

int[] executeBatch() It executes the batch of queries.

clearBatch() Clears the batch

Statement stmt=con.createStatement();
stmt.addBatch("insert into user values(190,'abhi',40000)");
stmt.addBatch("insert into user values(191,'umesh’,50000)");

int[] count = stmt.executeBatch();

//u can get number of sql stmt that was executed by count[] array.

MetaData

DatabaseMetaData interface provides methods to get meta data of a database such as database product name,

database product version, driver name, name of total number of tables, name of total number of views etc.

Dept. of CSE, S]BIT Page 164

Advanced Java and J2EE 15CS553

methods of DatabaseMetaData interface

e String getDriverName(): it returns the name of the JDBC driver.

e String getDriverVersion(): it returns the version number of the JDBC driver.

e String getUserName(): it returns the username of the database.

e String getDatabaseProductName(): it returns the product name of the database.

e String getDatabaseProductVersion(): it returns the product version of the database.
e String getSchemas()

o String getPrimaryKeys()

e String getProcedures()

o String getTables()

DatabaseMetaData dbmd=con.getMetaData();

System.out.println("Driver Name: "+dbmd.getDriverName());
System.out.println("Driver Version: "+dbmd.getDriverVersion());
System.out.println("UserName: "+dbmd.getUserName());
System.out.println("Database Product Name: "+dbmd.getDatabaseProductName());

System.out.println("Database Product

ResultSetMetaData Interface

The metadata means data about data i.e. we can get further information from the data.

If you have to get metadata of a table like total number of column, column name, column type
etc. , ResultSetMetaData interface is useful because it provides methods to get metadata from the

ResultSet object.

methods of ResultSetMetaData interface

Method Description

public int getColumnCount() it returns the total number of columns in the ResultSet object.

public String getColumnName(int index) |fit returns the column name of the specified column index.

public String getColumnTypeName(int |[it returns the column type name for the specified index.

Dept. of CSE, S]BIT Page 165

Advanced Java and J2EE 15CS553

index)

public String getTableName(int index) it returns the table name for the specified column index.

Exceptions

JDBC methods throws 3 types of exceptions

1. SQLException
2. SQLWarnings

3. DataTruncation.

1. SQLException Methods - An SQLException can occur both in the driver and the

database.
Method Description
getErrorCode() Gets the error number associated with the exception.
Gets the JDBC driver's error message for an error, handled by the driver or
getMessage()

gets the Oracle error number and message for a database error.

getNextException() Gets the next Exception object in the exception chain.

2. SQLWarnings - An exception that provides information on database access warnings.

getWarnings()-Retrieves the first warning reported by calls on this Connection object.

getNextWarning()-Retrieves subsequent warnings.

3. DataTruncation — this exception is thrown when a data values is unexpectedly truncated

Dept. of CSE, S]BIT Page 166

	ajj mod1
	Built-In Java Annotations used in java code
	Built-In Java Annotations used in other annotations
	@Override
	@Deprecated

	ajj mod2
	ajj mod3
	ajj mod4
	Servlet
	Consider a request for static page. A user enters a URL into browser. The browser generates http request to a specific file. The file is returned by http response. Web server map this particular request for this purpose. The http header in the response indicates the content. Source of web page as MIME type of text/html.
	1. What are the Advantage of Servlet Over "Traditional" CGI?
	Setting Cookies with Servlet:
	Reading Cookies with Servlet:
	Example:Let us read cookies which we have set in previous example:

	ajj mod5

