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1. What is Artificial Intelligence? 

 

Data: Raw facts, unformatted information.  

 

Information: It is the result of processing, manipulating and organizing data in response to a 
specific need. Information relates to the understanding of the problem domain.  

 

Knowledge: It relates to the understanding of the solution domain – what to do?  

 

Intelligence: It is the knowledge in operation towards the solution – how to do? How to apply 
the solution?  
 

Artificial Intelligence: Artificial intelligence is the study of how make computers to do things 
which people do better at the moment. It refers to the intelligence controlled by a computer 
machine. 

 

One View of AI is 
 About designing systems that are as intelligent as humans 
 Computers can be acquired with abilities nearly equal to human intelligence 
 How system arrives at a conclusion or reasoning behind selection of actions
 How system acts and performs not so much on reasoning process. 

 

Why Artificial Intelligence?  
 Making mistakes on real-time can be costly and dangerous. 
 Time-constraints may limit the extent of learning in real world. 

 

The AI Problem 
There are some of the problems contained within AI.  

1. Game Playing and theorem proving share the property that people who do them well are 
considered to be displaying intelligence.  

2. Another important foray into AI is focused on Commonsense Reasoning. It includes 
reasoning about physical objects and their relationships to each other, as well as 
reasoning about actions and other consequences.  

3. To investigate this sort of reasoning Nowell Shaw and Simon built the General Problem 
Solver (GPS) which they applied to several common sense tasks as well as the problem 
of performing symbolic manipulations of logical expressions. But no attempt was made to 
create a program with a large amount of knowledge about a particular problem domain. 
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Only quite simple tasks were selected.  
Perception of the world around us is crucial to our survival. Animals with much less intelligence 
than people are capable of more sophisticated visual perception. Perception tasks are difficult 
because they involve analog signals. A person who knows how to perform tasks from several of 
the categories shown in figure learns the necessary skills in standard order.  

 

First perceptual, linguistic and commonsense skills are learned. Later expert skills such as 
engineering, medicine or finance are acquired.  

 

Physical Symbol System Hypothesis 
At the heart of research in artificial intelligence, the underlying assumptions about intelligence lie 
in what Newell and Simon (1976) call the physical symbol system hypothesis. They define a 
physical symbol system as follows: 

1. Symbols  
2. Expressions 
3. Symbol Structure 
4. System 

A physical symbol system consists of a set of entities called symbols, which are physically 
patters that can occur as components of another type of entity called an expression (or symbol 
structure). A symbol structure is composed of a number of instances (or tokens) of symbols 
related in some physical way. At any instance of the time the system will contain a collection of 
these symbol structures. The system also contains a collection of processes that operate on 
expressions to produce other expressions: processes of creation, modification, reproduction and 
destruction.  

 

They state hypothesis as: 

“A physical symbol system has the necessary and sufficient means for general ‘intelligent 
actions’.”  
 

4. The following are the figures showing some of the tasks that are the targets of work in AI: 
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This hypothesis is only a hypothesis there appears to be no way to prove or disprove it on logical 
ground so, it must be subjected to empirical validation we find that it is false. We may find the 
bulk of the evidence says that it is true but only way to determine its truth is by experimentation” 
  

Computers provide the perfect medium for this experimentation since they can be programmed 
to simulate physical symbol system we like. The importance of the physical symbol system 
hypothesis is twofold. It is a significant theory of the nature of human intelligence and so is of 
great interest to psychologists. 

 

What is an AI Technique? 
 Artificial Intelligence problems span a very broad spectrum. They appear to have very little in 
common except that they are hard. There are techniques that are appropriate for the solution of 
a variety of these problems. The results of AI research tells that  

 

Intelligence requires Knowledge. Knowledge possesses some less desirable properties 
including: 
 It is voluminous 
 It is hard to characterize accurately 
 It is constantly changing 
 It differs from data by being organized in a way that corresponds to the ways it will 

be used.  

 

AI technique is a method that exploits knowledge that should be represented in such a 
way that:  

• The knowledge captures generalizations. In other words, it is not necessary to 
represent each individual situation. Instead situations that share important 
properties are grouped together.  

• It can be understood by people who must provide it. Most of the knowledge a 
program has must ultimately be provided by people in terms they understand. 

• It can be easily be modified to correct errors and to reflect changes in the world 
and in our world view.  

• It can be used in a great many situations even if it is not totally accurate or 
complete.  

• It can be used to help overcome its own sheer bulk by helping to narrow the 
range of possibilities that must usually be considered.  

 

It is possible to solve AI problems without using AI techniques. It is possible to apply AI 
techniques to solutions of non-AI problems.  

 

Important AI Techniques: 
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 Search: Provides a way of solving problems for which no more direct approach is 
available as well as a framework into which any direct techniques that are 
available can be embedded.  

 Use of Knowledge: Provides a way of solving complex problems by exploiting the 
structures of the objects that are involved.  

 Abstraction: Provides a way of separating important features and variations from 
the many unimportant ones that would otherwise overwhelm any process.  

 

Criteria for Success (Turing Test) 
In 1950, Alan Turing proposed the method for determining whether a machine can think. His 
method has since become known as the “Turing Test”. To conduct this test, we need two people 
and the machine to be evaluated. Turing Test 
provides a definition of intelligence in a machine 
and compares the intelligent behavior of human 
being with that of a computer.  

 

One person A plays the role of the interrogator, who 
is in a separate room from the computer and the 
other person. The interrogator can ask set of 
questions to both the computer Z and person X by 
typing questions and receiving typed responses. The interrogator knows them only as Z and X 
and aims to determine who the person is and who the machine is.   

 

The goal of machine is to fool the interrogator into believing that it is the person. If the machine 
succeeds we conclude that the machine can think. The machine is allowed to do whatever it can 
do to fool the interrogator.  

 

For example, if asked the question “How much is 12,324 times 73,981?” The machine 
could wait several minutes and then respond with wrong answer. 
 

The interrogator receives two sets of responses, but does not know which set comes from 
human and which from computer. After careful examination of responses, if interrogator cannot 
definitely tell which set has come from the computer and which from human, then the computer 
has passed the Turing Test. The more serious issue is the amount of knowledge that a machine 
would need to pass the Turing test.  

 

Overview of Artificial Intelligence 
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It was the ability of electronic machines to store large amounts of information and process it at 
very high speeds that gave researchers the vision of building systems which could emulate 
(imitate) some human abilities. 

 

We will see the introduction of the systems which equal or exceed human abilities and see them 
because an important part of most business and government operations as well as our daily 
activities. 

 

Definition of AI: Artificial Intelligence is a branch of computer science concerned with the study 
and creation of computer systems that exhibit some form of intelligence such as systems that 
learn new concepts and tasks, systems that can understand a natural language or perceive and 
comprehend a visual scene, or systems that perform other types of feats that require human 
types of intelligence. 

 

To understand AI, we should understand  
 Intelligence 
 Knowledge  
 Reasoning  
 Thought  
 Cognition: gaining knowledge by thought or perception learning  

The definitions of AI vary along two main dimensions: thought process and reasoning and 
behavior. 

 

AI is not the study and creation of conventional computer systems. The study of the mind, the 
body, and the languages as customarily found in the fields of psychology, physiology, cognitive 
science, or linguistics.  

 

In AI, the goal is to develop working computer systems that are truly capable of performing tasks 
that require high levels of intelligence.  
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2. Problems, Problem Spaces and Search 

 

Problem: 
A problem, which can be caused for different reasons, and, if solvable, can usually be 
solved in a number of different ways, is defined in a number of different ways. 

 

To build a system or to solve a particular problem we need to do four things. 
1. Define the problem precisely. This definition must include precise specification of what 

the initial situation will be as well as what final situations constitute acceptable solutions 
to the problem 

2. Analyze the problem 
3. Isolate and represent the task knowledge that is necessary to solve the problem 
4. Choose the best solving technique and apply it to the particular problem.  

 

Defining the Problem as a State Space Search 
Problem solving = Searching for a goal state 

 

It is a structured method for solving an unstructured problem. This approach consists of number 
of states. The starting of the problem is “Initial State” of the problem. The last point in the 
problem is called a “Goal State” or “Final State” of the problem.  

 

State space is a set of legal positions, starting at the initial state, using the set of rules to 
move from one state to another and attempting to end up in a goal state. 

 

Methodology of State Space Approach 
1. To represent a problem in structured form using different states 
2. Identify the initial state 
3. Identify the goal state 
4. Determine the operator for the changing state 
5. Represent the knowledge present in the problem in a convenient form 
6. Start from the initial state and search a path to goal state 

 

To build a program that could “Play Chess”  
 we have to first specify the starting position of the chess board  

Each position can be described by an 8-by-8 array. 
Initial position is the game opening position. 
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 rules that define the legal moves  
Legal moves can be described by a set of rules: 

 Left sides are matched against the current state. 
 Right sides describe the new resulting state. 

 board positions that represent a win for one side or the other 
Goal position is any position in which the opponent does not have a legal move 
and his or her king is under attack. 

 We must make explicit the preciously implicit goal of not only playing a legal game of 
chess but also winning the game, if possible. 

 

Production System 
The entire procedure for getting a solution for AI problem can be viewed as “Production 
System”. It provides the desired goal. It is a basic building block which describes the AI problem 
and also describes the method of searching the goal. Its main components are: 
 A Set of Rules, each consisting of a left side (a pattern) that determines the applicability 

of the rule and right side that describes the operation to be performed if the rule is 
applied.  

 Knowledge Base – It contains whatever information is appropriate for a particular task. 
Some parts of the database may be permanent, while the parts of it may pertain only to 
the solution of the current problem. 

 Control Strategy – It specifies the order in which the rules will be compared to the 
database and the way of resolving the conflicts that arise when several rules match at 
one.    

o The first requirement of a goal control strategy is that it is cause motion; a control 
strategy that does not cause motion will never lead to a solution.  

o The second requirement of a good control strategy is that it should be systematic.  
 A rule applier: Production rule is like below   if(condition) then consequence or          
action 

 

Algorithm for Production System: 
1. Represent the initial state of the problem 
2. If the present state is the goal state then go to step 5 else go to step 3 
3. Choose one of the rules that satisfy the present state, apply it and change the state to 

new state. 
4. Go to Step 2 
5. Print “Goal is reached ” and indicate the search path from initial state to goal state 6. 

Stop 
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Classification of Production System: 
Based on the direction they can be  

1. Forward Production System  
 Moving from Initial State to Goal State 
 When there are number of goal states and only one initial state, it is 

advantage to use forward production system.  
2. Backward Production System  

 Moving from Goal State to Initial State 
 If there is only one goal state and many initial states, it is advantage to 

use backward production system.  

 

Production System Characteristics 
Production system is a good way to describe the operations that can be performed in a search 
for solution of the problem.  
Two questions we might reasonably ask at this point are: 

 Can production systems, like problems, be described by a set of characteristics that shed 
some light on how they can easily be implemented? 

 If so, what relationships are there between problem types and the types of production 
systems best suited to solving the problems? 

 

The answer for the first question can be considered with the following definitions of classes of 
production systems:  
A monotonic production system is a production system in which the applications of a rule never 
prevents the later application of another rule that could also have been applied at the time the 
first rule was selected. 

 

A non-monotonic production system is one which this is not true. 

 

A partially commutative production system is a production system with the property that if the 
application of a particular sequence of rules transforms state X into state Y, then any 
permutation of those rules that is allowable also transforms state X into state Y.  

 

A commutative production system is a production system that is both monotonic and partially 
commutative. 

 

In a formal sense, there is no relationship between kinds of problems and kinds of production of 
systems, since all problems can be solved by all kinds of systems. But in practical sense, there 
definitely is such a relationship between kinds of problems and the kinds of systems that led 
themselves naturally to describing those problems.  
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The following figure shows the four categories of production systems produced by the two 
dichotomies, monotonic versus non-monotonic and partially commutative versus non-partially 
commutative along with some problems that can be naturally be solved by each type of system.  

 

 Monotonic Non-monotonic 

Partially commutative Theorem proving  Robot Navigation 

Not Partially commutative Chemical 
Synthesis Bridge 

The four categories of Production Systems 
 

 Partially commutative, monotonic production systems are useful for solving ignorable 
problems that involves creating new things rather than changing old ones generally 
ignorable. Theorem proving is one example of such a creative process partially 
commutative, monotonic production system are important for a implementation stand 
point because they can be implemented without the ability to backtrack to previous states 
when it is discovered that an incorrect path has been followed. 

 

 Non-monotonic, partially commutative production systems are useful for problems in 
which changes occur but can be reversed and in which order of operations is not critical. 
This is usually the case in physical manipulation problems such as “Robot navigation on 
a flat plane”. The 8-puzzle and blocks world problem can be considered partially 
commutative production systems are significant from an implementation point of view 
because they tend to read too much duplication of individual states during the search 
process.  

 

 Production systems that are not partially commutative are useful for many problems in 
which changes occur. For example “Chemical Synthesis” 

 

 Non-partially commutative production system less likely to produce the same node many 
times in the search process.  

 

Problem Characteristics 
In order to choose the most appropriate method (or a combination of methods) for a particular 
problem, it is necessary to analyze the problem along several key dimensions: 

• Is the problem decomposable? 
• Can solution steps be ignored or undone? 
• Is the universe predictable? 
• Is a good solution absolute or relative? 
• Is the solution a state or a path? 
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• What is the role of knowledge? 
• Does the task require human-interaction? 
• Problem Classification 

 

Is the problem decomposable? 
Decomposable problem can be solved easily. Suppose we want to solve the problem of 
computing the expression. 

 

 We can solve this problem by breaking it down into these smaller problems, each of which we 
can then solve by using a small collection of specific rules the following figure shows problem 
tree that as it can be exploited by a simple recursive integration program that works as follows.  

At each step it checks to see whether the problem it is working on is immediately solvable. If so, 
then the answer is returned directly. If the problem is not easily solvable, the integrator checks to 
see whether it can decompose the problem into smaller problems. It can create those problems 
and calls itself recursively on using this technique of problem decomposition we can often solve 
very large problem easily.  

 

Can solution steps be ignored or undone? 
Suppose we are trying to prove a mathematical theorem. We proceed by first proving a lemma 
that we think will be useful. A lemma that has been proved can be ignored for next steps as 
eventually we realize the lemma is no help at all.  

 

Now consider the 8-puzzle game. A sample game using the 8-puzzle is shown below: 
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In attempting to solve the 8 puzzle, we might make a stupid move for example; we slide the tile 5 
into an empty space. We actually want to slide the tile 6 into empty space but we can back track 
and undo the first move, sliding tile 5 back to where it was then we can know tile 6 so mistake 
and still recovered from but not quit as easy as in the theorem moving problem. An additional 
step must be performed to undo each incorrect step.  

 

Now consider the problem of playing chess. Suppose a chess playing problem makes a stupid 
move and realize a couple of moves later. But here solutions steps cannot be undone. 

 

The above three problems illustrate difference between three important classes of problems: 
1) Ignorable: in which solution steps can be ignored.  

Example: Theorem Proving 
2) Recoverable: in which solution steps can be undone.  

Example: 8-Puzzle 
3) Irrecoverable: in which solution steps cannot be undone.  

Example: Chess 

 

The recoverability of a problem plays an important role in determining the complexity of the 
control structure necessary for problem solution.  

 

Ignorable problems can be solved using a simple control structure that never backtracks. 
Recoverable problems can be solved by slightly complicated control strategy that does 
sometimes make mistakes using backtracking. Irrecoverable problems can be solved by 
recoverable style methods via planning that expands a great deal of effort making each decision 
since the decision is final. 

 

Is the universe predictable? 
There are certain outcomes every time we make a move we will know what exactly happen. This 
means it is possible to plan entire sequence of moves and be confident that we know what the 
resulting state will be. Example is 8-Puzzle. 



 

 

In the uncertain problems, this planning process may not be possible. Example: Bridge Game – 
Playing Bridge. We cannot know exactly where all the cards are or what the other players will do 
on their turns.  

 

We can do fairly well since we have available accurate estimates of a probabilities of each of 
the possible outcomes. A few examples of such problems are 
 Controlling a robot arm: The outcome is uncertain for a variety of reasons. Someone 

might move something into the path of the arm. The gears of the arm might stick.  
 Helping a lawyer decide how to defend his client against a murder charge. Here we 

probably cannot even list all the possible outcomes, which leads outcome to be 
uncertain. 

 

 For certain-outcome problems, planning can used to generate a sequence of operators that 
is guaranteed to lead to a solution.  

 For uncertain-outcome problems, a sequence of generated operators can only have a good 
probability of leading to a solution. 

 Plan revision is made as the plan is carried out and the necessary feedback is provided. 

 

Is a Good Solution Absolute or Relative? 
Consider the problem of answering questions based on a database of simple facts, such as the 
following: 

1) Marcus was a man.  
2) Marcus was a Pompeian. 
3) Marcus was born in 40 A.D. 
4) All men are mortal. 
5) All Pompeian’s died when the volcano erupted in 79 A.D. 
6) No mortal lives longer than 150 years. 7) It is now 1991 A.D. 

Suppose we ask a question “Is Marcus alive?” By representing each of these facts in a formal 
language such as predicate logic, and then using formal inference methods we can fairly easily 
derive an answer to the question.  



 

 

 

Since we are interested in the answer to the question, it does not matter which path we follow. If 
we do follow one path successfully to the answer, there is no reason to go back and see if some 
other path might also lead to a solution. These types of problems are called as “Any path 
Problems”. 

 

Now consider the Travelling Salesman Problem. Our goal is to find the shortest path route that 
visits each city exactly once



 

 

 

 

 

Suppose we find a path it may not be a solution to the problem. We also try all other paths. The 
shortest path (best path) is called as a solution to the problem. These types of problems are 
known as “Best path” problems. But path problems are computationally harder than any path 
problems.  

 

Is the solution a state or a path? 
Consider the problem of finding a consistent interpretation for the sentence 

The bank president ate a dish of pasta salad with the fork 
There are several components of this sentence, each of which may have more than one 
interpretation. Some of the sources of ambiguity in this sentence are the following: 
 The word “Bank” may refer either to a financed institution or to a side of river. But only 

one of these may have a President. 
 The word “dish” is the object of the word “eat”. It is possible that a dish was eaten.  
 But it is more likely that the pasta salad in the dish was eaten.  

Because of the interaction among the interpretations of the constituents of the sentence some 
search may be required to find a complete interpreter for the sentence. But to solve the problem 
of finding the interpretation we need to produce only the interpretation itself. No record of the 
processing by which the interpretation was found is necessary. But with the “water-jug” problem 
it is not sufficient to report the final state we have to show the “path” also. 



 

 

 

So the solution of natural language understanding problem is a state of the world. And the 
solution of “Water jug” problem is a path to a state. 

 

What is the role of knowledge? 
Consider the problem of playing chess. The knowledge required for this problem is the rules for 
determining legal move and some simple control mechanism that implements an appropriate 
search procedure.  
Now consider the problem of scanning daily newspapers to decide which are supporting ‘n’ 
party and which are supporting ‘y’ party. For this problems are required lot of knowledge.  

 

The above two problems illustrate the difference between the problems for which a lot of 
knowledge is important only to constrain the search for a solution and those for which a lot of 
knowledge is required even to be able to recognize a solution.  

 

Does a task require interaction with the person? 
Suppose that we are trying to prove some new very difficult theorem. We might demand a prove 
that follows traditional patterns so that mathematician each read the prove and check to make 
sure it is correct. Alternatively, finding a proof of the theorem might be sufficiently difficult that 
the program does not know where to start. At the moment people are still better at doing the 
highest level strategies required for a proof. So that the computer might like to be able to ask for 
advice. 
For Example:  

• Solitary problem, in which there is no intermediate communication and no demand for an 
explanation of the reasoning process.  

• Conversational problem, in which intermediate communication is to provide either 
additional assistance to the computer or additional information to the user. 

 

Problem Classification 
When actual problems are examined from the point of view all of these questions it becomes 
apparent that there are several broad classes into which the problem fall.  The classes can be 
each associated with a generic control strategy that is approached for solving the problem. 
There is a variety of problem-solving methods, but there is no one single way of solving all 
problems. Not all new problems should be considered as totally new. Solutions of similar 
problems can be exploited. 

 

PROBLEMS 



 

 

 

Water-Jug Problem 

Problem is “You are given two jugs, a 4-litre one and a 3-litre one. One neither has any 
measuring markers on it. There is a pump that can be used to fill the jugs with water. How can 
you get exactly 2 litres of water into 4-litre jug?” 
Solution: 
The state space for the problem can be described as a set of states, where each state 
represents the number of gallons in each state. The game start with the initial state described as 
a set of ordered pairs of integers: 

• State: (x, y) 
– x = number of lts in 4 lts jug 
– y = number of lts in 3 lts jug 

  x = 0, 1, 2, 3, or 4  y = 0, 1, 2, 3 
• Start state: (0, 0) i.e., 4-litre and 3-litre jugs is empty initially.  
• Goal state: (2, n) for any n that is 4-litre jug has 2 litres of water and 3-litre jug has any 

value from 0-3 since it is not specified.  
• Attempting to end up in a goal state. 

 

Production Rules: These rules are used as operators to solve the problem. They are 
represented as rules whose left sides are used to describe new state that result from 
approaching the rule. 



 

 

 
The solution to the water-jug problem is: 



 

 

 
 

Chess Problem 

Problem of playing chess can be defined as a problem of moving around in a state space where 
each state represents a legal position of the chess board.  

 

The game start with an initial state described as an 8x8 of each position contains symbol 
standing for the appropriate place in the official chess opening position. A set of rules is used to 
move from one state to another and attempting to end up on one of a set of final states which is 
described as any board position in which the opponent does not have a legal move as his/her 
king is under attacks. 

 

The state space representation is natural for chess. Since each state corresponds to a board 
position i.e. artificial well organized.  

 

Initial State: Legal chess opening position 
Goal State: Opponent does not have any legal move/king under attack 

 

Production Rules: 
These rules are used to move around the state space. They can be described easily as a set of 
rules consisting of two parts: 

1. Left side serves as a pattern to be matching against the current board position. 
2. Right side that serves decides the chess to be made to the board position to reflect the 

move.  
To describe these rules it is convenient to introduce a notation for pattern and substitutions 

 



 

 

E.g.: 
1. White pawn at square (file1,rank2) 

 Move pawn from square (file i, rank2) AND square (file i, rank2) 

  AND 
   Square (file i,rank3) is empty  To square (file i,rank4) 

  AND 

 Square (file i,rank4) is empty 

 

2. White knight at square (file i,rank1)  move 
Square(1,1) to  Square(i-1,3)  

   AND 

 Empty Square(i-1,3)  

3. White knight at square (1,1)   move 
Square(1,1) to  Square(i-1,3)  

   AND 

 Empty Square(i-1,3)  

 

8-Puzzle Problem 

The Problem is 8-Puzzle is a square tray in which 8 square tiles are placed. The remaining 9th 
square is uncovered. Each tile has a number on it. A file that is adjacent to the blank space can 
be slide into that space. The goal is to transform the starting position into the goal position by 
sliding the tiles around. 

 Solution: 
State Space: The state space for the problem can be written as a set of states where each state 
is position of the tiles on the tray. 

 

Initial State: Square tray having 3x3 cells and 8 tiles number on it that are shuffled 

2 8 3 

1 6 4 

7  5 

Goal State 

1 2 3 

8  4 

7 6 5 

 



 

 

Production Rules: These rules are used to move from initial state to goal state. These are also 
defined as two parts left side pattern should match with current position and left side will be 
resulting position after applying the rule. 

 

1. Tile in square (1,1) 
      AND                                             Move tile from square (1,1) to (2,1)     
Empty square (2,1) 
 
2. Tile in square (1,1) 
 AND                                      Move tile from square (1,1) to (1,2)     Empty 
square (1,2) 
 
3. Tile in square (2,1) 
           AND                                     Move tile from square (2,1) to (1,1)      
Empty square (1,1) 

1,1 
2 

1,2 
3 

1,3 
2 

2,1 
3 

2,2 
4 

2,3 
3 

3,1 
2 

3,2 
3 

3,3 
2 

 

No. of Production Rules:  2 + 3 + 2 + 3 + 4 + 3 + 2 + 3 + 2 = 24  

 

Solution:  

 
Travelling Salesman Problem 



 

 

The Problem is the salesman has a list of cities, each of which he must visit exactly once. There 
are direct roads between each pair of cities on the list. Find the route the salesman should 
follow for the shortest possible round trip that both states and finishes at any one of the cities.  

 

Solution: 
State Space: The state space for this problem represents states in which the cities traversed by 
salesman and state described as salesman starting at any city in the given list of cities. A set of 
rules is applied such that the salesman will not traverse a city traversed once. These rules are 
resulted to be states with the salesman will complex the round trip and return to his starting 
position.  

 

Initial State  
 Salesman starting at any arbitrary city in the given list of cities 

Goal State  
 Visiting all cities once and only and reaching his starting state 

 

Production rules: 
These rules are used as operators to move from one state to another. Since there is a path 
between any pair of cities in the city list, we write the production rules for this problem as 

• Visited(city[i]) AND Not Visited(city[j])  

– Traverse(city[i],city[j]) 

• Visited(city[i],city[j]) AND Not Visited(city[k]) 

– Traverse(city[j],city[k]) 

• Visited(city[j],city[i]) AND Not Visited(city[k]) 

– Traverse(city[i],city[k]) 

• Visited(city[i],city[j],city[k]) AND Not Visited(Nil) 

– Traverse(city[k],city[i]) 

 

Towers of Hanoi Problem 

Problem is the state space for the problem can be described as each state representing position 
of the disk on each pole the position can be treated as a stack the length of the stack will be 
equal to maximum number of disks each post can handle. The initial state of the problem will be 
any one of the posts will the certain the number of disks and the other two will be empty.  

Initial State: 



 

 

 Full(T1) | Empty(T2) | 
Empty(T3) Goal State: 
 Empty(T1) | Full(T2) | Empty 

(T3) 

 

Production Rules: 
These are rules used to reach the Goal State. These rules use the following operations: 
 POP(x)  Remove top element x from the stack and update top 
 PUSH(x,y)  Push an element x into the stack and update top. [Push an element x on to 

the y] 
Now to solve the problem the production rules can be described as follows: 

1. Top(T1)<Top(T2)   PUSH(POP(T1),T2) 
2. Top(T2)<Top(T1)  PUSH(POP(T2),T1) 
3. Top(T1)<Top(T3)  PUSH(POP(T1),T3) 
4. Top(T3)<Top(T1)  PUSH(POP(T3),T1) 
5. Top(T2)<Top(T3)  PUSH(POP(T2),T3) 
6. Top(T3)<Top(T2)  PUSH(POP(T3),T2) 
7. Empty(T1)  PUSH(POP(T2),T1) 
8. Empty(T1)  PUSH(POP(T3),T1) 
9. Empty(T2)  PUSH(POP(T1),T3) 
10. Empty(T3)  PUSH(POP(T1),T3) 
11. Empty(T2)  PUSH(POP(T3),T2) 
12. Empty(T3)  PUSH(POP(T2),T3) 

Solution: Example: 3 Disks, 3 Towers 
1) T1  T2 
2) T1  T3 
3) T2  T3 
4) T1  T2 
5) T3  T1 
6) T3  T2 
7) T1  T2 

 

Monkey and Bananas Problem 

Problem: A hungry monkey finds himself in a room in which a branch of bananas is hanging 
from the ceiling. The monkey unfortunately cannot reach the bananas however in the room 
there are also a chair and a stick. The ceiling is just right high so that a monkey standing on a 
chair could knock the bananas down with the stick. The monkey knows how to move round, 



 

 

carry other things around reach for the bananas and wave the stick in the air. What is the best 
sequence of actions for the monkey to acquire lunch? 

 

Solution: The state space for this problem is a set of states representing the position of the 
monkey, position of chair, position of the stick and two flags whether monkey on the chair & 
whether monkey holds the stick so there is a 5-tuple representation. 
(M, C, S, F1, F2) 

– M: position of the monkey 
– C: position of the chair 
– S: position of the stick 
– F1: 0 or 1 depends on the monkey on the chair or not 
– F2: 0 or 1 depends on the monkey holding the stick or not 

 

Initial State (M, C, S, 0, 0)  
• The objects are at different places and obviously monkey is not on the chair and not 

holding the stick 
Goal State (G, G, G, 1, 1)  

• G is the position under bananas and all objects are under it, monkey is on the chair and 
holding stick 

 Production Rules:  
These are the rules which have a path for searching the goal state here we assume that when 
monkey hold a stick then it will swing it this assumption is necessary to simplify the 
representation.  
Some of the production rules are: 

1) (M,C,S,0,0)  (A,C,S,0,0) {An arbitrary position A} 

2) (M,C,S,0,0)  (C,C,S,0,0) {monkey moves to chair position} 

3) (M,C,S,0,0)  (S,S,S,0,0) {monkey brings chair to stick position} 

4) (C,C,S,0,0)  (A,A,S,0,0) {push the chair to arbitrary position A} 

5) (S,C,S,0,0)  (A,C,A,0,1) {Taking the stick to arbitrary position} 

6) (S,C,S,0,0)  (C,C,S,0,0) {monkey moves from stick position to chair position} 

7) (C,C,C,0,1)  (C,C,C,1,1)  

• {monkey and stick at the chair position, monkey on the chair and holding stick} 8) 

(S,C,S,0,1)  (C,C,C,0,1) 

 

Solution: 
1) (M,C,S,0,0) 



 

 

2) (C,C,S,0,0) 
3) (G,G,S,0,0) 
4) (S,G,S,0,0) 
5) (G,G,G,0,0) 
6) (G,G,G,0,1) 
7) (G,G,G,1,1) 

 

Missionaries and Cannibals Problem 

Problem is 3 missionaries and 3 cannibals find themselves one side of the river. They have 
agreed that they would like to get the other side. But the missionaries are not sure what else the 
cannibals have agreed to. So the missionaries want to manage the trip across the river on either 
side of the river is never less than the number of cannibals who are on the same side. The only 
boat available holds only two people at a time. How can everyone get across without 
missionaries risking hang eager? 

 

Solution: 
The state space for the problem contains a set of states which represent the present number of 
cannibals and missionaries on the either side of the bank of the river. (C,M,C1,M1,B) 

– C and M are number of cannibals and missionaries on the starting bank 
– C1 and M1 are number of cannibals and missionaries on the destination bank 
– B is the position of the boat wither left bank (L) or right bank (R)  

 

Initial State  C=3,M=3,B=L so (3,3,0,0,L) 
Goal State  C1=3, M1=3, B=R so (0,0,3,3,R) 

 

Production System: These are the operations used to move from one state to other state. Since 
at any bank the number of cannibals must less than or equal to missionaries we can write two 
production rules for this problem as follows: 

• (C,M,C1,M1,L / C=3, M=3)  (C-2,M,C1+2,M1,R) 
• (C,M,C1,M1,L / C=3, M=3)  (C-1,M-1,C1+1,M1+1,R) 
• (C,M,C1,M1,L / C=3, M=3)  (C-1,M,C1+1,M1,R) 
• (C,M,C1,M1,R / C=1, M=3)  (C+1,M,C1-1,M1,L) 
• (C,M,C1,M1,R / C=0, M=3,C1=3,M1=0)  (C+1,M,C1-1,M1,L) 

 

The solution path is  

LEFT BANK  RIGHT BANK 

C M BOAT POSITION C1 M1 



 

 

3 3  0 0 

1 3  2 0 

2 3  1 0 

0 3  3 0 

1 3  2 0 

1 1  2 2 

2 2  1 1 

2 0  1 3 

3 0  0 3 

1 0  2 3 

2 0  1 3 

0 0  3 3 

 
  
 

3. Heuristic Search Techniques 

 

Control Strategy 
The question arises  

"How to decide which rule to apply next during the process of searching for a 
solution to a problem?" 

Requirements of a good search strategy: 
1. It causes motion. It must reduce the difference between current state and goal state. 

Otherwise, it will never lead to a solution. 
2. It is systematic. Otherwise, it may use more steps than necessary.  
3. It is efficient. Find a good, but not necessarily the best, answer.  

 

Breadth First Search 
To solve the water jug problem systemically construct a tree with limited states as its root.  
Generate all the offspring and their successors from the root according to the rules until some 
rule produces a goal state. This process is called Breadth-First Search. 

 



 

 

Algorithm: 
1) Create a variable called NODE_LIST and set it to the initial state. 
2) Until a goal state is found or NODE_LIST is empty do: 

a. Remove the first element from NODE_LIST and call it E. If NODE_LIST was 
empty quit. 

b. For each way that each rule can match the state described in E do: 
i. Apply the rule to generate a new state ii. If the new 
state is goal state, quit and return this state 

Explanation of Algorithm: 
– Initially put (0,0) state in the queue 
– Apply the production rules and generate new state 
– If the new states are not the goal state, (not generated before and not expanded) 

then only add these states to queue. 
Depth First Search 
There is another way of dealing the Water Jug Problem. One should construct a single 
branched tree utility yields a solution or until a decision terminate when the path is reaching a 
dead end to the previous state. If the branch is larger than the pre-specified unit then 
backtracking occurs to the previous state so as to create another path. This is called 
Chronological Backtracking because the order in which steps are undone depends only on the 
temporal sequence in which the steps were originally made. This procedure is called Depth-First 
Search. 

 

Algorithm: 
1) If the initial state is the goal state, quit return success. 
2) Otherwise, do the following until success or failure is signaled 

a. Generate a successor E of the initial state, if there are no more successors, 
signal failure 

iii.  Otherwise add the new state to the end of NODE_LIST 

 
The data structure used in this algorithm is QUEUE.  



 

 

b. Call Depth-First Search with E as the initial state 
c. If success is returned, signal success. Otherwise continue in this loop. 

 

 
The data structure used in this algorithm is STACK. 
Explanation of Algorithm:  

– Initially put the (0,0) state in the stack.  
– Apply production rules and generate the new state.  
– If the new states are not a goal state, (not generated before and no expanded) 

then only add the state to top of the Stack.  
– If already generated state is encountered then POP the top of stack elements 

and search in another direction. 

 

Advantages of Breadth-First Search 
• BFS will not get trapped exploring a blind alley.  

– In case of DFS, it may follow a single path for a very long time until it has no 
successor. 

• If there is a solution for particular problem, the BFS is generated to find it. We can 
find minimal path if there are multiple solutions for the problem.  

 

Advantages of Depth –First Search 
• DFS requires less memory since only the nodes on the current path are stored. 
• Sometimes we may find the solution without examining much.  

 

Example: Travelling Salesman Problem 
To solve the TSM problem we should construct a tree which is simple, motion causing and 
systematic. It would explore all possible paths in the tree and return the one with the shortest 
length. If there are N cities, then the number of different paths among them is 1.2...(N-1) or (N-
1)! 
The time to examine a single path is proportional to N. So the total time required to perform this 
search is proportional to N! 

 

Another strategy is, begin generating complete paths, keeping track of the shorter path so far 
and neglecting the paths where partial length is greater than the shortest found. This method is 
better than the first but it is inadequate.  

 

To solve this efficiently we have a search called HEURISTIC SEARCH. 

 



 

 

HEURISTIC SEARCH 
Heuristic:  

– It is a "rule of thumb" used to help guide search 
– It is a technique that improves the efficiency of search process, possibly by 

sacrificing claims of completeness. 
– It is involving or serving as an aid to learning, discovery, or problem-solving by 

experimental and especially trial-and-error methods. 

 

Heuristic Function: 
– It is a function applied to a state in a search space to indicate a likelihood of 

success if that state is selected 
– It is a function that maps from problem state descriptions to measures of 

desirability usually represented by numbers – Heuristic function is problem 
specific. 

 

The purpose of heuristic function is to guide the search process in the most profitable direction 
by suggesting which path to follow first when more than one is available (best promising way).  

 

We can find the TSM problem in less exponential items. On the average Heuristic improve the 
quality of the paths that are explored. Following procedure is to solve TRS problem 

– Select a Arbitrary City as a starting city 
– To select the next city, look at all cities not yet visited, and select one closest to 

the current city 
– Repeat steps until all cities have been visited 

 

Heuristic search methods which are the general purpose control strategies for controlling search 
is often known as "weak methods" because of their generality and because they do not apply a 
great deal of knowledge. 

 

Weak Methods 
a) Generate and Test 
b) Hill Climbing  
c) Best First Search 
d) Problem Reduction 
e) Constraint Satisfaction 
f) Means-ends analysis 

 Generate and Test 
The generate-and-test strategy is the simplest of all the approaches. It consists of the following 
steps: 



 

 

 

Algorithm: 
1. Generate a possible solution. For some problems, this means generating a particular 

point in the problem space. For others, it means generating a path from a start state.  

 

2. Test to see if this is actually a solution by comparing the chosen point or the endpoint of 
the chosen path to the set of acceptable goal states.  

 

3. If a solution has been found, quit. Otherwise return to step 1. 

 

If there exists a solution for one problem then this strategy definitely finds the solution. Because 
the complete solution must be generated before they can be tested. So, we can say that 
Generate-and-test algorithm is a Depth-First Search procedure. It will take if the problem space 
is very large. In the strategy we can operate by generating solution randomly instead of 
systematically. Then we cannot give the surety that we will set the solution.  

 

To implement this generate and test usually, we will use depth-first tree. If there are cycles then 
we use graphs rather than a tree. This is not an efficient (mechanism) technique when the 
problem is much harder. It is acceptable for simple problems. When it is combined with the 
other techniques it will restrict the space.  

 

For example, one of the most successful AI program is DENDRAL, which informs the structure 
of organ i.e. components using mass spectrum and nuclear magnetic resonance data. It uses 
the strategy called plan-generate-test, in which a planning process that uses constraint 
satisfaction techniques, which creates lists of recommended structures. The generate-and-test 
procedure then uses those lists so that it can explain only a limited set of structures, which is 
proved highly effective. 

 

Examples:  
- Searching a ball in a bowl (Pick a green ball) - State 
- Water Jug Problem – State and Path 

 

Hill Climbing 
A GENERATE and TEST procedure, if not only generates the alternative path but also the 
direction of the path in the alternatives which be near, than all the paths in Generate and Test 
procedures the heuristic function responds only yes or no but this heuristic function responds 
only yes will generate an estimate of how close a given state is to a goal state. 

 

Searching for a goal state = Climbing to the top of a hill Hill 
Climbing is Generate-and-test + direction to move.  

 



 

 

Simplest Hill Climbing 
 

- Apply only one particular rule at a time. 
Algorithm: 

1. Evaluate the initial state. If it is also goal state then return it, otherwise continue with the 
initial states as the current state. 

2. Loop until the solution is found or until there are no new operators to be applied in the 
current state 

a) Select an operator that has not yet been applied to the current state and apply it 
to produce new state 

b) Evaluate the new state 
i. If it is a goal state then return it and quit 
ii. If it is not a goal state but it is better than the current state, then make it as 
current state iii. If it is not better than the current state, then continue in loop.  

 

The key difference between this algorithm and generate and test algorithm is the use of an 
evaluation function as a way to inject task-specific knowledge into the control process.  

 

Steepest Hill Climbing 
A useful variation on simple hill climbing considers all the moves from the current state and 
selects the best one as the next state. This method is called steepest-ascent hill climbing or 
gradient search.  
 

Algorithm: 
1. Evaluate the initial state. If it is also a goal state then return it and quit. Otherwise 

continue with the initial state as the current state. 
2. Loop until a solution is found or until a complete iteration produces no change to current 

state: 
a. Let SUCC be a state such that any possible successor of the current state will be 

better than SUCC. 
b. For each operator that applies to the current state do: 

i. Apply the operator and generate a new state. 
ii. Evaluate the new state. If it is a goal state, then return it and quit. If not 

compare it to SUCC. If it is better, then set SUCC to this state. If it is not 
better, leave SUCC alone.  

c. IF the SUCC is better than current state, then set current state to SUCC. 

 



 

 

Bothe basic and steepest-ascent hill climbing may fail to find a solution. Either algorithm may 
terminate not by finding a goal state but by getting a state from which no better states can be 
generated. This will happen if the program has reached a local maximum, a plateau or a ridge. 

 

A local maximum is a state that is better than all its neighbors 
but it not better than some other states farther away. At the 
local maximum, all moves appear to make things worse. Local 
maxima are particularly frustrating because they often occur 
almost within sight of a solution. In this case, they are called 
foothills. 
A plateau is a flat area of the search space in which a whole set of neighboring states 
has the same value. In this, it is not possible to determine the best direction in which to 
move by making local comparisons. 

 

A ridge is a special kind of maximum. It is an area of the search space that is higher than 
surrounding areas and that itself has a slope.  

 

There are some ways of dealing with these problems, although these methods are by no means 
guaranteed: 
 Backtrack to some earlier node and try going in a different direction. This is particularly 

reasonable if at that node there was another direction that looked as promising or almost 
as promising as the one that was chosen earlier. This is a fairly good way to deal with 
local maxima. 

 Make a big jump in some direction to try to get to a new section of the search space. 
This is a good way of dealing with plateaus. 

 Apply two or more rules before doing the test. This corresponds to moving in several 
directions at once. This is a good strategy for dealing with ridges.  

 

Simulated Annealing: 
A variation of hill climbing in which, at the beginning of the process, some downhill moves may 
be made.  

 

In simulated annealing at the beginning of the process some hill moves may be made. The idea 
is to do enough exploration of the whole space early on. So that the final solution in relatively 
insensitive to the starting state. By doing so we can lower the chances of getting caught at local 
maximum, plateau or a ridge. 

 

In this we attempt to minimize rather than maximize the value of the objective function. Thus this 
process is one of valley descending in which the object function is the energy level.  



 

 

 

Physical Annealing 
• Physical substances are melted and then gradually cooled until some solid state is 

reached. 
• The goal is to produce a minimal-energy state. 
• Annealing schedule: if the temperature is lowered sufficiently slowly, then the goal will be 

attained. 

• Nevertheless, there is some probability for a transition to a higher energy state: e- E/kT. 

 

The probability that a transaction to a higher energy state will occur and so given by a function: 

 
 E is the +ve level in the energy level 
 T is the temperature 
 k is Boltzmann’s constant 

The rate at which the system is cooled is called annealing schedule in an analogous process. 
The units for both E and T are artificial. It makes sense to incorporate k into T.  
Algorithm: 

1. Evaluate the initial state. If it is also a goal state then return and quit. Otherwise continue 
with the initial state as a current state. 

2. Initialize Best-So-Far to the current state.  
3. Initialize T according to the annealing schedule.  
4. Loop until a solution is found or until there are no new operators left to be applied in the 

current state: 
a. Select an operator that has not yet been applied to the current state and apply it 

to produce a new state. 
b. Evaluate the new state. Compute 

 

(i) If the new state is goal state then return it and quit 
(ii) If it is not a goal state but is better than the current state then make it the 

current state. Also set BEST-SO-FAR to this new state. 
(iii) If it is not better than the current state, then make it the current state with 

probability  as defined above. This step is usually implemented by 
invoking a random number generator to produce a number in the range 
[0,1]. If that number is less than  then the move is accepted. Otherwise 
do nothing. 

c. Revise T as necessary according to the annealing schedule. 
5. Return BEST-SO-FAR as the answer. 

 



 

 

Note: 
For each step we check the probability of the successor with the current state. If it is greater 
than the current state the move is accepted. Otherwise move is rejected and search in other 
direction. 
 

 

Best-First Search 
Best-First Search (BFS) is a way of combining the advantages of both depth-first search and 
breadth first search into a single method, i.e., is to follow a single path at a time but switch paths 
whenever completing path looks more promising than the current one does.  

 

The process is to select the most promising of the new nodes we have generated so far. We 
then expand the chosen node by using the rules to generate its successors. If one of them is a 
solution, then we can quit, else repeat the process until we search goal.  

 

In BFS, one move is selected, but others are kept around so that they can be revisited later if 
the selected path becomes less promising. This is not the case steepest ascent climbing. 

 

OR Graphs 
A graph is called OR graph, since each of its branches represents alternative problems solving 
path.  
To implement such a graph procedure, we will need to use lists of nodes: 

1) OPEN: nodes that have been generated and have had the heuristic function applied to 
them which have not yet been examined. It is a priority queue in which the elements 
with highest priority are those with the most promising value of the heuristic function.  

2) CLOSED: nodes that have already been examined whenever a new node is generated 
we need to check whether it has been generated before. 

3) A heuristic function f which will estimate the merits of each node we generate.  
Algorithm: 

1. Start with OPEN containing just the initial state 
2. Until a goal is found or there are no nodes left on OPEN do: 

a. Pick the  best node on OPEN 
b. Generate its successors 
c. For each successor do: 

i. If it is not been generated before, evaluate it, add it to OPEN and record 
its parent. 

ii. If it has been generated before, change the parent if this new path is 
better than the previous one. In that case update the cost of getting to 
this node and to any successors that this node may already have. 



 

 

 

Step 1:  

A  NIL 
 

  
Step 2: 

A  NIL 
B  A 
C  A 
D  A 

 
  
Step 3:  

A  NIL 
B  A 
C  A 
D  A 
E  D 
F  D 

 
Step 4: 

 
Step 5: 



 

 

The Element with the low cost is the first element. The new states are added according to the 
cost value. 

 

A* Algorithm: 
A* algorithm is a best first graph search algorithm that finds a least cost path from a given 
initial node to one goal node. The simplification of Best First Search is called A* algorithm. 
This algorithm uses ,   functions as well as the lists OPEN and CLOSED. 
 

For many applications, it is convenient to define function as the sum of two components 
that we call g and h’.  

 
• g :  

– Measures of the cost of getting from the initial state to the current node. 
– It is not the estimate; it is known to be exact sum of the costs. 

• h’ : 
– is an estimate of the additional cost of getting from current node to goal state. 

Algorithm: 
1) Start with OPEN containing only the initial state (node) set that node g value 0 its ’ value 

to whatever it is and its ’ value ’+ 0 or ’. Set CLOSED to the empty list. 

 

2) Until a goal node is found repeat the following procedure: If there are no nodes on OPEN, 
report failure. Otherwise pick the node on OPEN with lowest ’ value. CALL it BESTNODE. 
Remove from OPEN. Place it on CLOSED. If BESTNODE is the goal node, exit and 
report a solution. Otherwise, generate the successors of BESTNODE. For each 
successor, do the following 

a) Set successors to point back to BESTNODE this backwards links will make 
possible to recover the path once a solution is found. 



 

 

b) Compute 
 

c) If successor is already exist in OPEN call that node as OLD and we must decide 
whether OLD’ s parent link should reset to point to BESTNODE (graphs exist in 
this case) 

If OLD is cheaper then we need do nothing. If successor is cheaper then reset 
OLD’s parent link to point to BESTNODE. Record the new cheaper path in ( ) 

and update ’( ).  
d) If SUCCESSOR was not on OPEN, see if it is on CLOSED. If so, call node on 

CLOSED OLD and add OLD to the list of BESTNODE successors. Calculate all the 
g, f’ and h’ values for successors of that node which is better then move that. 

So to propagate the new cost downward, do a depth first traversal of the tree 
starting at OLD, changing each nodes value (and thus also its ’ value), 
terminating each branch when you reach either a node with no successor or 
a node which an equivalent or better path has already been found.  

e) If successor was not already on either OPEN or CLOSED, then put it on OPEN 
and add it to the list of BESTNODE successors. Compute 

                     

A* algorithm is often used to search for the lowest cost path from the start to the goal location in 
a graph of visibility/quad tree. The algorithm solves problems like 8-puzzle problem and 
missionaries & Cannibals problem. 

 

Problem Reduction: 
• Planning how best to solve a problem that can be recursively decomposed into 

subproblems in multiple ways.  



 

 

• There can be more than one decompositions of the same problem. We have to decide 
which is the best way to decompose the problem so that the total solution or cost of the 
solution is good. 

• Examples: 

o Matrix Multiplication 

o Towers of Hanoi 

o Blocks World Problem 

o Theorem Proving 
• Formulations: (AND/OR Graphs)

o An OR node represents a choice between possible decompositions.

o An AND node represents a given decomposition.  

 

The AND-OR graph (or tree) is useful for representing the solution of problems that can be 
solved by decomposing them into a set of smaller problems, all of which must then be solved. 
This decomposition or reduction generate arcs that we call AND arcs.  

 One AND arc may point to any number of successors nodes all of which must be solved in 
order for the arc to point to a solution. Just as in OR graph, several arcs may emerge from a 
single node, indicating a variety of ways in which the original problem might be solved.  

In order to find solutions in an AND-OR graph, we need an algorithm similar to best-first search 
but with the ability to handle the AND arcs appropriately.  

 

To see why our Best-First search is not adequate for searching AND-OR graphs, consider Fig 
(a).  



 

 

– The top node A has been expanded, producing 2 arcs, one leading to B and one leading 
to C and D. The numbers at each node represent the value of f' at that node.  

– We assume for simplicity that every operation has a uniform cost, so each arc with a 
single successor has a cost of 1 and each AND arc with multiple successors has a cost 
of 1 for each of its components.  

– If we look just at the nodes and choose for expansion the one with the lowest f' value, we 
must select C. It would be better to explore the path going through B since to use C we 
must also use D, for a total cost of 9 (C+D+2) compared to the cost of 6 that we get 
through B.  

– The choice of which node to expand next must depend not only on the f' value of that 
node but also on whether that node is part of the current best path from the initial node. 

 

The tree shown in Fig (b) 
– The most promising single node is G with an f' value of 3. It is even part of the most 

promising arc G-H, with a total cost of 9. But that arc is not part of the current best path 
since to use it we must also use the arc I-J, with a cost of 27.  

– The path from A, through B, to E and F is better, with a total cost of 18. So we should not 
expand G next; rather we should examine either E or F. 

 

In order to describe an algorithm for searching an AND-OR graph we need to exploit a value 
that we call FUTILITY. If the estimated cost of a solution becomes greater than the value of 
FUTILITY, then we abandon the search. FUTILITY should be chosen to correspond to a 
threshold such any solution with a cost above it is too expensive to be practical even if it could 
ever be found.  

 

Algorithm: 
1. Initialize the graph to the starting node.  
2. Loop until the starting node is labeled SOLVED or until its cost goes above FUTILITY: 

a. Traverse the graph, starting at the initial node following the current best path and 
accumulate the set of nodes that are on that path and have not yet been 
expanded or labeled solved.  

b. Pick up one of those unexpanded nodes and expand it. If there are no 
successors, assign FUTILITY as the value of this node. Otherwise add the 
successors to the graph and each of this compute f’ (use only h’ and ignore g). If 
f’ of any node is “0”, mark the node as SOLVED. 

c. Change the f’ estimate of the newly expanded node to reflect the new information 
provided by its successors. Propagate this change backward through the graph. 
If any node contains a successor whose descendants are all solved, label the 
node itself as SOLVED. At each node that is visible while going up the graph, 
decide which of its successors arcs is the most promising and mark it as part of 
the current best path. This may cause the current best path to change. The 



 

 

propagation of revised cost estimates backup the tree was not necessary in the 
best-first search algorithm because only unexpanded nodes were examined. But 
now expanded nodes must be reexamined so that the best current path can be 
selected. Thus it is important that their f’ values be the best estimates available.   

 
 At Step 1, A is the only node, so it is at the end of the current best path. It is expanded, 

yielding nodes B, C and D. The arc to D is labeled as the most promising one emerging from 
A, since it costs 6 compared to B and C, which costs 9.  

 In Step 2, node D is chosen for expansion. This process produces one new arc, the AND arc 
to E and F, with a combined cost estimate of 10. So we update the f' value of D to 10. 

 We see that the AND arc B-C is better than the arc to D, so it is labeled as the current best 
path. At Step 3, we traverse that arc from A and discover the unexpanded nodes B and C. If 
we are going to find a solution along this path, we will have to expand both B and C 
eventually. SO explore B first. 

 This generates two new arcs, the ones to G and to H. Propagating their f' values backward, 
we update f' to B to 6. This requires updating the cost of AND arc B-C to 12 (6+4+2). Now 
the arc to D is again the better path from A, so we record that as the current best path and 
either node E or F will be chosen for the expansion at Step 4. 

This process continues until either a solution is found or all paths have led to dead ends, 
indicating that there is no solution. 

 

Limitations 
1. A longer path may be better In Fig 

(a), the nodes were generated. 
Now suppose that node J is 
expanded at the next step and 
that one of its successors is node E, producing the graph shown in Fig (b). The new path 
to E is longer than the previous path to E going through C. Since the path through C will 



 

 

only lead to a solution if there is also a solution to D, which there is not. The path through 
J is better. 

 

While solving any problem please don’t try to travel the nodes which are already labeled 
as solved because while implementing it may be struck in loop. 

 

2. Interactive Sub-goals 
Another limitation of the algorithm fails to take into account any 
interaction between sub-goals. Assume in figure that both node 
C and node E ultimately lead to a solution; our algorithm will 
report a complete solution that includes both of them. The 
AND-OR graph states that for A to be solved, both C and D 
must be solved. But the algorithm considers the solution of D as a completely separate 
process from the solution of C. 

 

While moving to the goal state, keep track of all the sub-goals we try to move which one 
is giving an optimal cost.  

 

AO* Algorithm: 
AO* Algorithm is a generalized algorithm, which will always find minimum cost solution. It is 
used for solving cyclic AND-OR graphs The AO* will use a single structure GRAPH representing 
the part of the search graph that has been explicitly generated so far. Each node in the graph 
will point both down to its immediate successors and up to immediate predecessors.  The top 
down traversing of the best-known path which guarantees that only nodes that are on the best 
path will ever be considered for expansion. So h’ will serve as the estimate of goodness of a 
node.  

 

Algorithm (1): 
1) Initialize:    Set G* = {s}, f(s) = h(s).  

If  , label s as SOLVED, where T is terminal node. 
 

2) Terminate:   If s is SOLVED then Terminate 

 

3) Select:    Select a non-terminal leaf node n from the marked sub tree 
4) Expand:   Make explicit the successors of n. 

For each new successor, m: Set f(m) = h(m) 
If m is Terminal, label m as SOLVED. 

 

5) Cost Revision:   Call cost-revise(n) 

         6) Loop:     Goto Step 2. 

 



 

 

Cost Revision 
1. Create Z = { n } 
2. Z = { } return 
3. Otherwise: Select a node m from z such that m has no descendants in Z 
4. If m is an AND node with successors  r1, r2, …, rk 

Set (m) = ∑ [ ( ) + ( , ) ] 
Mark the edge to each successor of m. If each successor is labeled SOLVED then label 
m as SOLVED.  

5. If m is an OR node with successors  r1, r2, …, rk 

Set (m) = min{ ( ) + ( , ) } 
Mark the edge to each successor of m. If each successor is labeled SOLVED then label 
m as SOLVED.  

6. If the cost or label of m has changed, then insert those parents of m into Z for which m is 
marked successor.  

 



 

 

Algorithm ( 2): 

 

 

Means-Ends Analysis: 
One general-purpose technique used in AI is means-end analysis, a step-by-step, or 
incremental, reduction of the difference between the current state and the final goal. The 
program selects actions from a list of means—in the case of a simple robot this might consist of 
PICKUP, PUTDOWN, MOVEFORWARD, MOVEBACK, MOVELEFT, and MOVERIGHT—until 
the goal is reached. This means we could solve major parts of a problem first and then return to 
smaller problems when assembling the final solution. 

 



 

 

Usually, we search strategies that can reason either forward or backward. Often, however a 
mixture of the two directions is appropriate. Such mixed strategy would make it possible to solve 
the major parts of problem first and solve the smaller problems arise when combining them 
together. Such a technique is called "Means - Ends Analysis". 

 

This process centers on the detection of difference between the current state and goal state. 
After the difference had been found, we should find an operator which reduces the difference. 
But this operator cannot be applicable to the current state. Then we have to set up a sub-
problem of getting to the state in which it can be applied if the operator does not produce the 
goal state which we want. Then we should set up a sub-program of getting from state it does 
produce the goal. If the chosen inference is correct, the operator is effective, then the two sub-
problems should be easier to solve than the original problem.  

 

The means-ends analysis process can be applied recursively to them. In order to focus system 
attention on the big problems first, the difference can be assigned priority levels, in which high 
priority can be considered before lower priority.  
Like the other problems, it also relies on a set of rules rather than can transform one state to 
another these rules are not represented with complete state description. The rules are 
represented as a left side that describes the conditions that must be met for the rule applicable 
and right side which describe those aspects of the problem state that will be changed by the 
application of the rule.  

 

Consider the simple HOLD ROBOT DOMAIN. The available operators are as follows: 

OPERATOR  PRECONDITIONS  RESULTS  

PUSH(obj,loc)  
At(robot,obj)^large(obj)^clear(obj)^ 
armempty  At(obj,loc)^at(robot,loc)  

CARRY(obj,loc)  At(robot,obj)^small(obj)  At(obj,loc)^at(robot,loc)  

WALK(loc)  NONE  At(robot,loc)  

PICKUP(obj)  At(robot,obj)  Holding(obj)  

PUTDOWN(obj)  Holding(obj)  7 Holding(obj)  

PLACE(obj1,obj2
)  

At(robot,obj2)^Holding 
(obj1)  

On(obj1,obj2)  

 



 

 

Difference Table 

 
The difference table describes where each of the 
operators is appropriate table: 

 
Suppose that the robot were given the problems of 
moving desk with two things on it from one room 
to another room. The objects on top must also be 
moved the difference between start and goal is the 
location of the desk. 
To reduce the difference either PUSH or CARRY can be chosen. If the CARRY is chosen first 
its precondition must be met. These results in two more differences that must be reduced; the 
location of the robot and the size of the desk. The location of the robot can be handled by 
applying WALK, but there are no operators that can change the size of the objects. So their path 
problem solve program will be shown above AND here also the thing does not get it quit to the 
goal state. So now the difference between A, B and between C, D must be reduced. 

 

PUSH has 4-preconditions. Two of which produce difference between start and goal states 
since the desks is already large. One precondition creates no difference. The ROBOT can be 
brought to the location by using WALK, the surface can be cleared by two uses of pickup but 
after one pickup the second results in another difference – the arm must be empty. PUTDOWN 
can be used to reduce the difference.  

 
One PUSH is performed; the problem state is close to the goal state, but not quite. The objects 
must be placed back on the desk. PLACE will put them there. But it cannot be applied 
immediately. Another difference must be eliminated, since the robot is holding the objects. Then 
we will find the progress as shown above. The final difference between C and E can be reduced 
by using WALK to get the ROBOT back to the objects followed by PICKUP and CARRY.  

 Algorithm: 
1. Until the goal is reached or no more procedures are available: 

– Describe the current state, the goal state and the differences between the two. 



 

 

– Use the difference the describe a procedure that will hopefully get nearer to goal. 
– Use the procedure and update current state. 

2. If goal is reached then success otherwise fail.  

 

Algorithm: 

 
Constraint Satisfaction 

• Search procedure operates in a space of constraint sets. Initial state contains the original 
constraints given in the problem description.  

• A goal state is any state that has been constrained enough – Cryptarithmetic: “enough” 
means that each letter has been assigned a unique numeric value.  

• Constraint satisfaction is a 2-step process: 
o Constraints are discovered and propagated as far as possible. 
o If there is still not a solution, then search begins. A guess about is made and 

added as a new constraint.  
• To apply the constraint satisfaction in a particular problem domain requires the use of 2 

kinds of rules: 
o Rules that define valid constraint propagation 
o Rules that suggest guesses when necessary 



 

 

 



 

 

 
 

 
 

Goal State: 
 We have to assign unique digit for the above specified alphabets. 



 

 

 

 



 

 

 
FREQUENTLY ASKED QUESTIONS 

 
 



 

 

1) Define Intelligence, Artificial Intelligence. 
2) List four things to build a system to solve a problem. 
3) What is Production System? 
4) Explain water Jug problem as a state space search. 
5) Explain production system characteristics. 
6) Explain A* algorithm with example. 
7) What is Means-Ends Analysis? Explain with an example. 
8) What do you mean by heuristic? 
9) Write a heuristic function for travelling salesman problem. 
10) What is heuristic search? 
11) Explain problem characteristics. 
12) Write AO* algorithm and explain the steps in it. 
13) What is constraint satisfaction problem? Explain it. 
14) Explain annealing schedule. 
15) Explain Breadth-first search and depth-first search. List down the advantages and 

disadvantages of both?  
16) What do you mean by an AI technique? 
17) Discuss the tic-tac-toe problem in detail and explain how it can be solved using AI 

techniques. 
18) What are the advantages of Heuristic Search? 
19) Explain Turing Test as Criteria for success. 
20) Explain Hill Climbing and give its disadvantages.  
21) Define Control Strategy and requirements for good search strategy. 
22) Define State Space Search. Write algorithm for state space.   
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5. Predicate Logic 

 

Introduction 
Predicate logic is used to represent Knowledge. Predicate logic will be met in Knowledge 
Representation Schemes and reasoning methods. There are other ways but this form is popular.  
 

Propositional Logic 
It is simple to deal with and decision procedure for it exists. We can represent real-world facts as 
logical propositions written as well-formed formulas. 
To explore the use of predicate logic as a way of representing knowledge by looking at a specific 
example.  

 

The above two statements becomes totally separate assertion, we would not be able to draw any 
conclusions about similarities between Socrates and Plato. 

 

These representations reflect the structure of the knowledge itself. These use predicates applied to 
arguments.  

 

It fails to capture the relationship between any individual being a man and that individual being a 
mortal. 
 

We need variables and quantification unless we are willing to write separate statements.  
 

Predicate: 
A Predicate is a truth assignment given for a particular statement which is either true or false. To solve 
common sense problems by computer system, we use predicate logic.  
 

Logic Symbols used in predicate logic 
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Predicate Logic 
• Terms represent specific objects in the world and can be constants, variables or functions. 
• Predicate Symbols refer to a particular relation among objects. 
• Sentences represent facts, and are made of terms, quantifiers and predicate symbols. 
• Functions allow us to refer to objects indirectly (via some relationship). 
• Quantifiers and variables allow us to refer to a collection of objects without explicitly naming 

each object. 
• Some Examples 

o Predicates: Brother, Sister, Mother , Father 
o Objects: Bill, Hillary, Chelsea, Roger 
o Facts expressed as atomic sentences a.k.a. 
literals:

o Father(Bill,Chelsea)
o Mother(Hillary,Chelsea) 
o Brother(Bill,Roger) 
o Father(Bill,Chelsea) 

 

Variables and Universal Quantification 
Universal Quantification allows us to make a statement about a collection of objects: 
 

Variables and Existential Quantification 
Existential Quantification allows us to state that an object does exist (without naming it): 

Nested Quantification 
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Functions 
• Functions are terms - they refer to a specific object. 
• We can use functions to symbolically refer to objects without naming them. 
• Examples: 

fatherof(x)  age(x)   times(x,y)  succ(x) 
• Using functions 

If we use logical statements as a way of representing knowledge, then we have available a good 
way of reasoning with that knowledge.  
Representing facts with Predicate Logic

 

1) Marcus was a man   man(Markus) 
2) Marcus was a Pompeian   pompeian(Markus) 

3) All Pompeians were Romans  
4) Caeser was a ruler.   ruler(caeser) 
5) All romans were either loyal to caeser or hated him. 

6) Everyone loyal to someone. 
7) People only try to assassinate rulers they are not loyal to. 

8)   Marcus try to assassinate Ceaser   

Q. Prove that Marcus is not loyal to Ceaser by backward substitution 
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Representing Instance and Isa Relationships 
Two attributes isa and instance play an important role in many aspects of knowledge representation. 
The reason for this is that they support property inheritance.  

isa - used to show class inclusion, e.g. isa (mega_star,rich). instance - 
used to show class membership, e.g. instance(prince,mega_star). 

In the figure above,  
 The first five sentences of the represent the pure predicate logic. In these 

representations, class membership is represented with unary predicates (such as 
Roman), each of which corresponds to a class. Asserting that P(x) is true is equivalent to 
asserting that x is an instance of P.  

 The second part of the figure contains representations that use the instance predicate 
explicitly. The predicate instance is a binary one, whose first argument is an object and 
whose second argument is a class to which the object belongs. But these 
representations do not use an explicit isa predicate.  

 The third part contains representations that use both the instance and isa predicates 
explicitly. The use of the isa predicate simplifies the representation of sentence 3, but it 
requires that one additional axiom be provided. This additional axiom describes how an 
instance relation and an isa relation can be combined to derive a new instance relation. 
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Computable Functions and Predicates 
This is fine if the number of facts is not very large or if the facts themselves are sufficiently 
unstructured that there is little alternative. But suppose we want to express simple facts, such as 
the following greater-than and less-than relationships: 
gt(1,0)   It(0,1) 
gt(2,1)  It(1,2) 
gt(3,2)  It( 2,3) 
Clearly we do not want to have to write out the representation of each of these facts individually. 
For one thing, there are infinitely many of them. But even if we only consider the finite number of 
them that can be represented, say, using a single machine word per number, it would be 
extremely inefficient to store explicitly a large set of statements when we could, instead, so easily 
compute each one as we need it. Thus it becomes useful to augment our representation by 
these computable predicates.  
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Resolution: 
A procedure to prove a statement, Resolution attempts to show that Negation of Statement gives 
Contradiction with known statements. It simplifies proof procedure by first converting the 
statements into canonical form. Simple iterative process; at each step, 2 clauses called the 
parent clauses are compared, yielding a new clause that has been inferred from them. 
 

Resolution refutation:  
• Convert all sentences to CNF (conjunctive normal 

form) 
• Negate the desired conclusion (converted to CNF) 

Apply resolution rule until either  
– Derive false (a contradiction)  
– Can’t apply any more  

Resolution refutation is sound and complete  
• If we derive a contradiction, then the conclusion follows from the axioms  
• If we can’t apply any more, then the conclusion cannot be proved from the axioms. 

 

Sometimes from the collection of the statements we have, we want to know the answer of this 
question - "Is it possible to prove some other statements from what we actually know?" In order 
to prove this we need to make some inferences and those other statements can be shown true 
using Refutation proof method i.e. proof by contradiction using Resolution. So for the asked goal 
we will negate the goal and will add it to the given statements to prove the contradiction.  
 

So resolution refutation for propositional logic is a complete proof procedure. So if the thing that 
you're trying to prove is, in fact, entailed by the things that you've assumed, then you can prove it 
using resolution refutation. 

 

Clauses:  
 Resolution can be applied to certain class of wff called clauses.  
 A clause is defined as a wff consisting of disjunction of literals. 

 

Conjunctive Normal Form or Clause Normal Form: 
Clause form is an approach to Boolean logic that expresses formulas as conjunctions of clauses 
with an AND or OR. Each clause connected by a conjunction or AND must be wither a literal or 
contain a disjunction or OR operator. In clause form, a statement is a series of ORs connected 
by ANDs. 
 

A statement is in conjunctive normal form if it is a conjunction (sequence of ANDs) consisting of 
one or more conjuncts, each of which is a disjunction (OR) of one or more literals (i.e., statement 
letters and negations of statement letters). 
 

All of the following formulas in the variables A, B, C, D, and E are in conjunctive normal form: 
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Conversion to Clause Form:  

 
 Clause Form: 

 
Algorithm:  

1. Eliminate implies relation ( )  Using (Ex:  →  =>  ) 

 
2. Reduce the scope of each  to a single term 

 
3. Standardize variables so that each quantifier binds a unique variable.  

4. Move all quantifiers to the left of the formulas without changing their relative order.  

 
5. Eliminate existential quantifiers.  We can eliminate the quantifier by substituting for the variable 

a reference to a function that produces the desired value.  y: President(y) => President(S1) 

In general the function must have the same number of arguments as the number of universal 
quantifiers in the current scope.  
Skolemize to remove existential quantifiers. This step replaces existentially quantified 
variables by Skolem functions. For example, convert (  x)P(x) to P(c) where c is a brand 
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new constant symbol that is not used in any other sentence (c is called a Skolem 
constant). More generally, if the existential quantifier is within the scope of a universal 
quantified variable, then introduce a Skolem function that depends on the universally 
quantified variable. For example, " x y P(x,y) is converted to " x P(x, f(x)). f is called a 
Skolem function, and must be a brand new function name that does not occur in any 
other part of the logic sentence. 
 

6. Drop the prefix.  At this point, all remaining variables are universally quantified. 

 
7. Convert the matrix into a conjunction of disjunctions.  

  

 
8. Create a separate clause corresponding to each conjunct in order for a well formed formula to 

be true, all the clauses that are generated from it must be true. 
9. Standardize apart the variables in set of clauses generated in step 8. Rename the variables. 

So that no two clauses make reference to same variable. 
 

Convert the statements to clause form  
1. man(marcus) 
2. pompeian(marcus) 
3.  pompeian(x)  roman(x) 
4. ruler(caeser) 
5. x: roman(x)  loyalto(x,caeser) V hate(x,caeser) 
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The resultant clause form is  

 

 

Basis of Resolution: 
Resolution process is applied to pair of parent clauses to produce a derived clause. Resolution 
procedure operates by taking 2 clauses that each contain the same literal. The literal must occur 
in the positive form in one clause and negative form in the other. The resolvent is obtained by 
combining all of the literals of two parent clauses except ones that cancel. If the clause that is 
produced in an empty clause, then a contradiction has been found. 
Eg: winter and  winter will produce the empty clause.  
 

If a contradiction exists, then eventually it will be found. Of course, if no contradiction exists, it is 
possible that the procedure will never terminate, although as we will see, there are often ways of 
detecting that no contradiction exists.  

 

Resolution in Propositional Logic: 

 

Example: Consider the following axioms 
P (P Q) →  R (S T)  →   Q T 

Convert them into clause form and prove that R is true 
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Unification Algorithm 
• In propositional logic it is easy to determine that two literals cannot both be true at the same 

time.  
• Simply look for L and ~L . In predicate logic, this matching process is more complicated, since 

bindings of variables must be considered. 
• In order to determine contradictions we need a matching procedure that compares two literals 

and discovers whether there exist a set of substitutions that makes them identical.  
• There is a recursive procedure that does this matching. It is called Unification algorithm. 
• The process of finding a substitution for predicate parameters is called unification. 
• We need to know: 

– that 2 literals can be matched. 
– the substitution is that makes the literals identical. 

• There is a simple algorithm called the unification algorithm that does this. 
 

The Unification Algorithm 
1. Initial predicate symbols must match. 
2. For each pair of predicate arguments: 

– Different constants cannot match. 
– A variable may be replaced by a constant. 
– A variable may be replaced by another variable. 
– A variable may be replaced by a function as long as the function does not contain an 

instance of the variable. 
 

• When attempting to match 2 literals, all substitutions must be made to the entire literal. 
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• There may be many substitutions that unify 2 literals; the most general unifier is always 
desired. 

 

Unification Example: 

 
The object of the Unification procedure is to discover at least one substitution that causes two 
literals to match. Usually, if there is one such substitution there are many  

In 
Unification algorithm each literal is represented as a list, where first element is the name of a 
predicate and the remaining elements are arguments. The argument may be a single element 
(atom) or may be another list. 
The unification algorithm recursively matches pairs of elements, one pair at a time. The matching 
rules are: 

• Different constants, functions or predicates cannot match, whereas identical ones can. 
• A variable can match another variable, any constant or a function or predicate 

expression, subject to the condition that the function or [predicate expression must not 
contain any instance of the variable being matched (otherwise it will lead to infinite 

recursion). 
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• The substitution must be consistent. Substituting y for x now and then z for x later is 

Example:  
Suppose we want to unify p(X,Y,Y) with p(a,Z,b). 
Initially E is {p(X,Y,Y)=p(a,Z,b)}.  
The first time through the while loop, E becomes {X=a,Y=Z,Y=b}.  
Suppose X=a is selected next.  
Then S becomes{X/a} and E becomes {Y=Z,Y=b}.  
Suppose Y=Z is selected.  
Then Y is replaced by Z in S and E.  
S becomes{X/a,Y/Z} and E becomes {Z=b}.  
Finally Z=b is selected, Z is replaced by b, S becomes {X/a,Y/b,Z/b}, and 
E becomes empty.  
The substitution {X/a,Y/b,Z/b} is returned as an MGU. 
 Unification: 

inconsistent. (a substitution y for x written as y/x) 
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Resolution in Predicate Logic  
• Two literals are contradictory if one can be unified with the negation of the other.  

• For example man(x) and man (Himalayas) are contradictory since man(x) and man(Himalayas 
) can be unified.  

• In predicate logic unification algorithm is used to locate pairs of literals that cancel out.  
• It is important that if two instances of the same variable occur, then they must be given identical 

substitutions 

 

Prove that Marcus hates ceaser using resolution. 
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Example:  
John likes all kinds of food. 
Apples are food.  
Chicken is food.  

(a) Convert all the above statements into predicate 
logic 

(b) Show that John likes peanuts using back chaining 
(c) Convert the statements into clause form  
(d) Using Resolution show that “John likes peanuts” Anything anyone eats and it is not killed is food. 

Bill eats peanuts and is still alive.  
Swe eats everything bill eats 
Answer:  
(a) Predicate Logic: 

 

(b) Backward Chaining Proof: 
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(c) Clause Form: 

(d) Resolution Proof: 

 

Answering Questions 
We can also use the proof procedure to answer questions such as “who tried to assassinate 
Caesar” by proving: 

– Tryassassinate(y,Caesar). 
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– Once the proof is complete we need to find out what was substitution was made for 
y. 

We show how resolution can be used to answer fill-in-the-blank questions, such as "When did 
Marcus die?" or "Who tried to assassinate a ruler?” Answering these questions involves finding a 
known statement that matches the terms given in the question and then responding with another 
piece of the same statement that fills the slot demanded by the question.  
From Clause Form to Horn Clauses  
The operation is to convert Clause form to Horn Clauses. This operation is not always possible. 
Horn clauses are clauses in normal form that have one or zero positive literals. The conversion 
from a clause in normal form with one or zero positive literals to a Horn clause is done by using 
the implication property. 

 
Example: 
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4. Knowledge Representation Issues 
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Introduction: 
Knowledge plays an important role in AI systems. The kinds of knowledge might need to be 
represented in AI systems: 
 Objects: Facts about objects in our world domain. e.g. Guitars have strings, trumpets are brass 

instruments. 
 Events: Actions that occur in our world. e.g. Steve Vai played the guitar in Frank Zappa's 

Band. 
 Performance: A behavior like playing the guitar involves knowledge about how to do things. 
 Meta-knowledge: Knowledge about what we know. e.g. Bobrow's Robot who plan's a trip. It 

knows that it can read street signs along the way to find out where it is. 
 

Representations & Mappings: 
In order to solve complex problems in AI we need: 

- A large amount of knowledge 
- Some mechanisms for manipulating that knowledge to create solutions to new problem. 

 

A variety of ways of representing knowledge have been exploited in AI problems. In this regard we 
deal with two different kinds of entities: 
 Facts: truths about the real world and these are the things we want to represent.  
 Representation of the facts in some chosen formalism. These are the things which we will 

actually be able to manipulate.  
 

One way to think of structuring these entities is as two levels: 
• Knowledge Level, at which facts are described.  
• Symbol Level, at which representations of objects at the knowledge level are defined in terms 

of symbols that can be manipulated by programs.  
 

Mappings between Facts and Representations: 

 
The model in the above figure focuses on facts, representations and on the 2-way mappings that 
must exist between them. These links are called Representation Mappings.  

- Forward Representation mappings maps from Facts to Representations.  
- Backward Representation mappings maps from Representations to Facts.  

English or natural language is an obvious way of representing and handling facts. Regardless of 
representation for facts, we use in program, we need to be concerned with English 
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Representation of those facts in order to facilitate getting information into or out of the system.  
 

Mapping functions from English Sentences to Representations: Mathematical logic as representational 
formalism.  
Example:  
 “Spot is a dog” 

The fact represented by that English sentence can also be represented in logic as: 
dog(Spot) 

Suppose that we also have a logical representation of the fact that  

Then, using the deductive mechanisms of logic, we may generate the new 
representation object:  astail(Spot) 
Using an appropriate backward mapping function the English sentence “Spot has a 
tail” can be generated. 

 

Fact-Representation mapping may not be one-to-one but rather are many-to-many which are a 
characteristic of English Representation. Good Representation can make a reasoning program 
simple.  
Example: 
 “All dogs have tails” 
 “Every dog has a tail” 

From the two statements we can conclude that “Each dog has a tail.” From the 
statement 1, we conclude that “Each dog has more than one tail.”  

 When we try to convert English sentence into some other represent such as logical propositions, we 
first decode what facts the sentences represent and then convert those facts into the new 
representations. When an AI program manipulates the internal representation of facts these new 
representations should also be interpretable as new representations of facts. 
 

Mutilated Checkerboard Problem: 
Problem: In a normal chess board the opposite corner squares have been eliminated. The given 
task is to cover all the squares on the remaining board by dominoes so that each domino covers 
two squares. No overlapping of dominoes is allowed, can it be done? Consider three data 
structures 
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The first representation does not directly suggest the answer to the problem. The second may 
suggest. The third representation does, when combined with the single additional facts that each 
domino must cover exactly one white square and one black square.   
 

 
The puzzle is impossible to complete. A domino placed on the chessboard will always cover one 
white square and one black square. Therefore a collection of dominoes placed on the board will 
cover an equal numbers of squares of each color. If the two white corners are removed from the 
board then 30 white squares and 32 black squares remain to be covered by dominoes, so this is 
impossible. If the two black corners are removed instead, then 32 white squares and 30 black 
squares remain, so it is again impossible.  
 

The solution is number of squares must be equal for positive solution. 

 
In the above figure, the dotted line across the top represents the abstract reasoning process that 
a program is intended to model. The solid line across the bottom represents the concrete 
reasoning process that a particular program performs. This program successfully models the 
abstract process to the extent that, when the backward representation mapping is applied to the 
program’s output, the appropriate final facts are actually generated.  
 

If no good mapping can be defined for a problem, then no matter how good the program to solve 
the problem is, it will not be able to produce answers that correspond to real answers to the 
problem.  
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Using Knowledge 
Let us consider to what applications and how knowledge may be used. 
 Learning: acquiring knowledge. This is more than simply adding new facts to a knowledge 

base. New data may have to be classified prior to storage for easy retrieval, etc.. Interaction 
and inference with existing facts to avoid redundancy and replication in the knowledge and 
also so that facts can be updated. 

 Retrieval: The representation scheme used can have a critical effect on the efficiency of the 
method. Humans are very good at it. Many AI methods have tried to model human.  

 Reasoning: Infer facts from existing data. 
 

If a system on only knows: 
• Miles Davis is a Jazz Musician. 
• All Jazz Musicians can play their instruments well. 

If things like Is Miles Davis a Jazz Musician? or Can Jazz Musicians play their instruments well? are 
asked then the answer is readily obtained from the data structures and procedures. 
 

However a question like “Can Miles Davis play his instrument well?” requires reasoning. The 
above are all related. For example, it is fairly obvious that learning and reasoning involve 
retrieval etc. 
 

Approaches to Knowledge Representation 
A good Knowledge representation enables fast and accurate access to Knowledge and understanding 
of content. The goal of Knowledge Representation (KR) is to facilitate conclusions 
from knowledge.  
 

The following properties should be possessed by a knowledge representation system. 
• Representational Adequacy: the ability to represent all kinds of knowledge that are 

needed in that domain; 
 

• Inferential Adequacy: the ability to manipulate the knowledge represented to produce 
new knowledge corresponding to that inferred from the original; 

 

• Inferential Efficiency: the ability to incorporate into the knowledge structure additional 
information that can be used to focus the attention of the inference mechanisms in 
the most promising directions.  

 

• Acquisitional Efficiency: the ability to acquire new information easily. The simplest 
case involves direct insertion, by a person of new knowledge into the database. 
Ideally, the program itself would be able to control knowledge acquisition.  

 

No single system that optimizes all of the capabilities for all kinds of knowledge has yet been found. 
As a result, multiple techniques for knowledge representation exist.  
 

Knowledge Representation Schemes 
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There are four types of Knowledge Representation: 
 Relational Knowledge:  

– provides a framework to compare two objects based on equivalent attributes 
– any instance in which two different objects are compared is a relational type of 

knowledge 
 Inheritable Knowledge: 

– is obtained from associated objects  
– it prescribes a structure in which new objects are created which may inherit all or a 

subset of attributes from existing objects. 
 Inferential Knowledge 

– is inferred from objects through relations among objects  
– Example: a word alone is simple syntax, but with the help of other words in 

phrase the reader may infer more from a word; this inference within linguistic is 
called semantics. 

 Declarative Knowledge 
– a statement in which knowledge is specified, but the use to which that knowledge is to 

be put is not given.  
– Example: laws, people’s name; there are facts which can stand alone, not dependent 

on other knowledge 
 Procedural Knowledge 

– a representation in which the control information, to use the knowledge is embedded in 
the knowledge itself.  

– Example: computer programs, directions and recipes; these indicate specific use or 
implementation 

 

Simple relational knowledge 
The simplest way of storing facts is to use a relational method where each fact about a set of 
objects is set out systematically in columns. This representation gives little opportunity for 
inference, but it can be used as the knowledge basis for inference engines. 

• Simple way to store facts. 
• Each fact about a set of objects is set out systematically in columns. 
• Little opportunity for inference. 
• Knowledge basis for inference engines. 
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Given the facts it is not possible to answer simple question such as "Who is the heaviest 
player?" but if a procedure for finding heaviest player is provided, then these facts will enable 
that procedure to compute an answer. We can ask things like who "bats - left" and "throws - 
right". 
 

Inheritable Knowledge 
Here the knowledge elements inherit attributes from their parents. The knowledge is embodied in 
the design hierarchies found in the functional, physical and process domains. Within the 
hierarchy, elements inherit attributes from their parents, but in many cases not all attributes of 
the parent elements be prescribed to the child elements.  
 

The inheritance is a powerful form of inference, but not adequate. The basic KR needs to be 
augmented with inference mechanism.  
 

The KR in hierarchical structure, shown below, is called “semantic network” or a collection of 
“frames” or “slot-and-filler structure”. The structure shows property inheritance and way for 
insertion of additional knowledge. 
 

Property inheritance: The objects or elements of specific classes inherit attributes and values from 
more general classes. The classes are organized in a generalized hierarchy.  

 
Baseball Knowledge 
- isa: show class inclusion 
- instance: show class membership 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

• The directed arrows represent attributes (isa, instance, team) originates at object being described 
and terminates at object or its value. 

• The box nodes represent objects and values of the attributes.  
 

Viewing a node as a frame 
Example: Baseball-player 
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 Isa:  Adult-Male 
 Bats:  EQUAL handed 
 Height: 6-1 
 Batting-average: 0.252 
 

 
This algorithm is simple. It describes the basic mechanism of inheritance. It does not say what to do 
if there is more than one value of the instance or “isa” attribute. 
 

This can be applied to the example of knowledge base, to derive answers to the following queries: 
 team (Pee-Wee-Reese) = Brooklyn-Dodger 
 batting-average (Three-Finger-Brown) = 0.106 
 height (Pee-Wee-Reese) = 6.1 
 bats (Three-Finger-Brown) = right 

 

Inferential Knowledge: 
This knowledge generates new information from the given information. This new information 
does not require further data gathering from source, but does require analysis of the given 
information to generate new knowledge. In this, we represent knowledge as formal logic.  
 

Example:  
- given a set of relations and values, one may infer other values or relations 
- a predicate logic (a mathematical deduction) is used to infer from a set of attributes. 
- inference through predicate logic uses a set of logical operations to relate individual data. 
- the symbols used for the logic operations are: 
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Procedural Knowledge 
Procedural knowledge can be represented in programs in many ways. The most common way is 
simply as for doing something. The machine uses the knowledge when it executes the code to 
perform a task. Procedural Knowledge is the knowledge encoded in some procedures.  
 

Unfortunately, this way of representing procedural knowledge gets low scores with respect to the 
properties of inferential adequacy (because it is very difficult to write a program that can reason 
about another program’s behavior) and acquisitional efficiency (because the process of updating 
and debugging large pieces of code becomes unwieldy). 
 

The most commonly used technique for representing procedural knowledge in AI programs is the 
use of production rules.  

 
Production rules, particularly ones that are augmented with information on how they are to be 
used, are more procedural than are the other representation methods. But making a clean 
distinction between declarative and procedural knowledge is difficult. The important difference is 
in how the knowledge is used by the procedures that manipulate it.  
 

Heuristic or Domain Specific knowledge can be represented using Procedural Knowledge.  
 

Issues in Knowledge Representation 
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Below are listed issues that should be raised when using knowledge representation techniques:  

 

 
The attributes are called a variety of things in AI systems, but the names do not matter. What 
does matter is that they represent class membership and class inclusion and that class inclusion is 
transitive. The predicates are used in Logic Based Systems.  
 

Relationship among Attributes  
 The attributes to describe objects are themselves entities that we represent. 
 The relationship between the attributes of an object, independent of specific knowledge they 

encode, may hold properties like: 
Inverses, existence in an isa hierachy, techniques for reasoning about values and 
single valued attributes. 
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The second way can be realized using semantic net and frame based systems. This Inverses  is 
used in Knowledge Acquisition Tools.  
 

  
This also provides information about constraints on the values that the attribute can have and 
mechanisms for computing those values.  
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Several kinds of information can play a role in this reasoning, including: 

 Information about the type of the value.  
• Constraints on the value often stated in terms of related entities. 
• Rules for computing the value when it is needed. (Example: of such a rule in for bats 

attribute). These rules are called backward rules. Such rules have also been called ifneeded 
rules. 

• Rules that describe actions that should be taken if a value ever becomes known. These rules 
are called forward rules, or sometimes if-added rules. 

 

 
 Introduce an explicit notation for temporal interval. If two different values are ever asserted for 

the same temporal interval, signal a contradiction automatically.  
 Assume that the only temporal interval that is of interest is now. So if a new value is asserted, 

replace the old value.  
 Provide no explicit support. Logic-based systems are in this category. But in these systems, 

knowledge base builders can add axioms that state that if an attribute has one value then it is 
known not to have all other values.  
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Choosing the Granularity of Representation Primitives are fundamental concepts such as holding, 
seeing, playing and as English is a very rich language with over half a million words it is clear we will 
find difficulty in deciding upon which words to choose as our primitives in a series of situations. 
Separate levels of understanding require different levels of primitives and these need many rules to 
link together similar primitives.
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6. Representing Knowledge using Rules 

 

Procedural versus Declaration Knowledge 
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Declarative Knowledge Procedural Knowledge 
Factual information stored in memory and 
known to be static in nature. 

the knowledge of how to perform, or how to 
operate 

knowledge of facts or concepts a skill or action that you are capable of 
performing 

knowledge about that something true or false Knowledge about how to do something to 
reach a particular objective or goal 

knowledge is specified but how to use to 
which that knowledge is to be put is not given 

control information i.e., necessary to use the 
knowledge is considered to be embedded in 
the knowledge itself 

E.g.: concepts, facts, propositions, assertions, 
semantic nets … 

E.g.: procedures, rules, strategies, agendas, 
models 

It is explicit knowledge (describing) It is tacit knowledge (doing) 
 

The declarative representation is one in which the knowledge is specified but how to use to which that 
knowledge is to be put is not given.  

• Declarative knowledge answers the question 'What do you know?'  
• It is your understanding of things, ideas, or concepts.  
• In other words, declarative knowledge can be thought of as the who, what, when, and 

where of information.  
• Declarative knowledge is normally discussed using nouns, like the names of people, 

places, or things or dates that events occurred.  
 

The procedural representation is one in which the control information i.e., necessary to use the 
knowledge is considered to be embedded in the knowledge itself.  

• Procedural knowledge answers the question 'What can you do?'  
• While declarative knowledge is demonstrated using nouns,  
• Procedural knowledge relies on action words, or verbs.  
• It is a person's ability to carry out actions to complete a task.  

 

The real difference between declarative and procedural views of knowledge lies in which the control 
information presides. 
 

Example: 

The statements 1, 2 and 3 are procedural knowledge and 4 is a declarative knowledge.  
 



MODULE-2

 Forward & Backward Reasoning 
The object of a search procedure is to discover a path through a problem space from an initial 
configuration to a goal state. There are actually two directions in which such a search could 
proceed: 

• Forward Reasoning,  
 from the start states 
 LHS rule must match with initial state 
 Eg: A → B, B→C   => A→C 

• Backward Reasoning,  
 from the goal states 
 RHS rules must match with goal state 
 Eg: 8-Puzzle Problem 

 

In both the cases, the control strategy is it must cause motion and systematic. The production 
system model of the search process provides an easy way of viewing forward and backward 
reasoning as symmetric processes. 
 

Consider the problem of solving a particular instance of the 8-puzzle problem. The rules to be 
used for solving the puzzle can be written as: 

 
Reasoning Forward from Initial State:  
 Begin building a tree of move sequences that might be solved with initial configuration at root 

of the tree. 
 Generate the next level of the tree by finding all the rules whose left sides match the root 

node and using their right sides to create the new configurations.  
 Generate the next level by taking each node generated at the previous level and applying to it 

all of the rules whose left sides match it.   
 Continue until a configuration that matches the goal state is generated. 

 

Reasoning Backward from Goal State: 
 Begin building a tree of move sequences that might be solved with goal configuration at root 

of the tree. 
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 Generate the next level of the tree by finding all the rules whose right sides match the root 
node. These are all the rules that, if only we could apply them, would generate the state we 
want. Use the left sides of the rules to generate the nodes at this second level of the tree.  

 Generate the next level of the tree by taking each node at the previous level and finding all 
the rules whose right sides match it. Then use the corresponding left sides to generate the 
new nodes.  

 Continue until a node that matches the initial state is generated.  
 This method of reasoning backward from the desired final state is often called goaldirected 

reasoning. 
 

To reason forward, the left sides (preconditions) are matched against the current state and the 
right sides (results) are used to generate new nodes until the goal is reached. To reason 
backward, the right sides are matched against the current node and the left sides are used to 
generate new nodes representing new goal states to be achieved. 
 

The following 4 factors influence whether it is better to reason Forward or Backward: 
1. Are there more possible start states or goal states? We would like to move from the 

smaller set of states to the larger (and thus easier to find) set of states. 
2. In which direction branching factor (i.e, average number of nodes that can be reached 

directly from a single node) is greater? We would like to proceed in the direction with 
lower branching factor.  

3. Will the program be used to justify its reasoning process to a user? If so, it is important to 
proceed in the direction that corresponds more closely with the way the user will think. 

4. What kind of event is going to trigger a problem-solving episode? If it is arrival of a new 
fact, forward reasoning makes sense. If it is a query to which a response is desired, 
backward reasoning is more natural.  

 

Backward-Chaining Rule Systems 
 Backward-chaining rule systems are good for goal-directed problem solving.  
 For example, a query system would probably use backward chaining to reason about and 

answer user questions.  
 Unification tries to find a set of bindings for variables to equate a (sub) goal with the head of 

some rule.  
 Medical expert system, diagnostic problems 

 

Forward-Chaining Rule Systems 
 Instead of being directed by goals, we sometimes want to be directed by incoming data.  
 For example, suppose you sense searing heat near your hand. You are likely to jerk your hand 

away.  
 Rules that match dump their right-hand side assertions into the state and the process repeats.  
 Matching is typically more complex for forward-chaining systems than backward ones.   

Synthesis systems – Design/Configuration 
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Example of Typical Forward Chaining 
Rules 

1) If hot and smoky then ADD fire 
2) If alarm_beeps then ADD smoky 
3) If fire then ADD switchon_sprinkles 

Facts 
1) alarm_beeps (given) 
2) hot (given) 
……… 

 

(3) smoky (from F1 by R2) 
(4) fire (from F2, F4 by R1) 
(5) switch_on_sprinklers (from F2 by R3) 
 

Example of Typical Backward Chaining 
Goal: Should I switch on sprinklers? 

 

Combining Forward and Backward Reasoning 
Sometimes certain aspects of a problem are best handled via forward chaining and other 
aspects by backward chaining. Consider a forward-chaining medical diagnosis program. It might 
accept twenty or so facts about a patient’s condition then forward chain on those concepts to try 
to deduce the nature and/or cause of the disease.  
 Now suppose that at some point, the left side of a rule was nearly satisfied – nine out of ten of its 
preconditions were met. It might be efficient to apply backward reasoning to satisfy the tenth 
precondition in a directed manner, rather than wait for forward chaining to supply the fact by accident. 
 

Whether it is possible to use the same rules for both forward and backward reasoning also 
depends on the form of the rules themselves. If both left sides and right sides contain pure 
assertions, then forward chaining can match assertions on the left side of a rule and add to the 
state description the assertions on the right side. But if arbitrary procedures are allowed as the 
right sides of rules then the rules will not be reversible.  
 

Logic Programming 
 Logic Programming is a programming language paradigm in which logical assertions are 

viewed as programs.  
 There are several logic programming systems in use today, the most popular of which is 

PROLOG.  
 A PROLOG program is described as a series of logical assertions, each of which is a Horn 

clause.  
 A Horn clause is a clause that has at most one positive literal. Thus p, p  q, p  q are all 

Horn clauses. 
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Programs written in pure PROLOG are composed only of Horn Clauses. 
Syntactic Difference between the logic and the PROLOG representations, including: 

 In logic, variables are explicitly quantified. In PROLOG, quantification is provided implicitly 
by the way the variables are interpreted.  
o The distinction between variables and constants is made in PROLOG by having all 

variables begin with uppercase letters and all constants begin with lowercase 
letters. 

 In logic, there are explicit symbols for and ( ) and or ( ). In PROLOG, there is an explicit 
symbol for and (,), but there is none for or.  

 In logic, implications of the form “p implies q” as written as pq. In PROLOG, the same 
implication is written “backward” as q: -p.  

 
Example: 

 
 
The first two of these differences arise naturally from the fact that PROLOG programs are actually 
sets of Horn Clauses that have been transformed as follows: 

1. If the Horn Clause contains no negative literals (i.e., it contains a single literal which is 
positive), then leave it as it is.  

2. Otherwise, return the Horn clause as an implication, combining all of the negative literals 
into the antecedent of the implication and leaving the single positive literal (if there is one) 
as the consequent.  

 
This procedure causes a clause, which originally consisted of a disjunction of literals (all but one 
of which were negative), to be transformed to single implication whose antecedent is a 
conjunction of (what are now positive) literals.   
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Matching 
We described the process of using search to solve problems as the application of appropriate 
rules to individual problem states to generate new states to which the rules can then be applied 
and so forth until a solution is found.  
 

How we extract from the entire collection of rules those that can be applied at a given point? To 
do so requires some kind of matching between the current state and the preconditions of the 
rules. How should this be done? The answer to this question can be critical to the success of a 
rule based system.  
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A more complex matching is required when the preconditions of rule specify required properties 
that are not stated explicitly in the description of the current state. In this case, a separate set of 
rules must be used to describe how some properties can be inferred from others. An even more 
complex matching process is required if rules should be applied and if their pre condition 
approximately match the current situation. This is often the case in situations involving physical 
descriptions of the world. 
 

Indexing 
One way to select applicable rules is to do a simple search though all the rules comparing each 
one’s precondition to the current state and extracting all the one’s that match. There are two 
problems with this simple solution: 

i. The large number of rules will be necessary and scanning through all of them at every step 
would be inefficient. 

ii. It’s not always obvious whether a rule’s preconditions are satisfied by a particular state. 
 

Solution: Instead of searching through rules use the current state as an index into the rules and 
select the matching one’s immediately.  

 

 
 

Matching process is easy but at the price of complete lack of generality in the statement of the 
rules. Despite some limitations of this approach, Indexing in some form is very important in the 
efficient operation of rule based systems. 
 

Matching with Variables 
The problem of selecting applicable rules is made more difficult when preconditions are not 
stated as exact descriptions of particular situations but rather describe properties that the 
situations must have. It often turns out that discovering whether there is a match between a 
particular situation and the preconditions of a given rule must itself involve a significant search 
process.  
 

Backward-chaining systems usually use depth-first backtracking to select individual rules, but 
forward-chaining systems generally employ sophisticated conflict resolution strategies to choose 
among the applicable rules.  
 

While it is possible to apply unification repeatedly over the cross product of preconditions and state 
description elements, it is more efficient to consider the many-many match problem, in which many 
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rules are matched against many elements in the state description simultaneously. One efficient 
many-many match algorithm is RETE. 
 

RETE Matching Algorithm 
The matching consists of 3 parts 

1. Rules & Productions 
2. Working Memory 
3. Inference Engine 

The inference Engine is a cycle of production system which is match, select, execute.  
 

INFERENCE ENGINE 
The above cycle is repeated until no rules are put in the conflict set or until stopping condition is 
reached. In order to verify several conditions, it is a time consuming process. To eliminate the 
need to perform thousands of matches of cycles on effective matching algorithm is called RETE. 
 

The Algorithm consists of two Steps. 
1. Working memory changes need to be examined. 
2. Grouping rules which share the same condition & linking them to their common terms. 

 

RETE Algorithm is many-match algorithm (In which many rules are matched against many 
elements). RETE uses forward chaining systems which generally employee sophisticated conflict 
resolution strategies to choose among applicable rules. RETE gains efficiency from 3 major 
sources. 

1. RETE maintains a network of rule condition and it uses changes in the state 
description to determine which new rules might apply. Full matching is only 
pursued for candidates that could be affected by incoming/outgoing data. 

2. Structural Similarity in rules: RETE stores the rules so that they share structures 
in memory, set of conditions that appear in several rules are matched once for 
cycle.  

3. Persistence of variable binding consistency. While all the individual preconditions 
of the rule might be met, there may be variable binding conflicts that prevent the 
rule from firing. 
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can be minimized. RETE remembers its previous calculations and is able to merge 
new binding information efficiently. 

 

Approximate Matching: 
Rules should be applied if their preconditions approximately match to the current situation 
Eg: Speech understanding program 

Rules: A description of a physical waveform to phones 
Physical Signal: difference in the way individuals speak, result of background noise. 

 

Conflict Resolution: 
When several rules matched at once such a situation is called conflict resolution. There are 3 
approaches to the problem of conflict resolution in production system. 

1. Preference  based on rule match: 
a. Physical order of rules in which they are presented to the system 
b. Priority is given to rules in the order in which they appear  

 

2. Preference based on the objects match: 
a. Considers importance of objects that are matched 
b. Considers the position of the match able objects in terms of Long Term Memory 

(LTM) & Short Term Memory(STM) 
LTM: Stores a set of rules 
STM (Working Memory): Serves as storage area for the facts deduced by rules in long 
term memory 

3. Preference based on the Action:  
a. One way to do is find all the rules temporarily and examine the results of each. Using a 

Heuristic Function that can evaluate each of the resulting states compare the merits of 
the result and then select the preferred one. 

 

Search Control Knowledge: 
 It is knowledge about which paths are most likely  to lead quickly to a goal state 
 Search Control Knowledge requires Meta Knowledge.  
 It can take many forms. Knowledge about 

which states are more preferable to 
others.
which rule to apply in a given situation 
the Order in which to pursue sub goals 
useful Sequences of rules to apply. 
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7. Symbolic Reasoning under Uncertainty  

 

We have described techniques for reasoning with a complete, consistent and unchanging model 
of the world. But in many problem domains, it is not possible to create such models. So here we 
are going to explore techniques for solving problems with incomplete and uncertain models. 
 

What is reasoning? 
 When we require any knowledge system to do something it has not been explicitly told 

how to do it must reason. 
 The system must figure out what it needs to know from what it already knows. 

◦ Reasoning is the act of deriving a conclusion from certain premises using a given 
methodology. (Process of thinking/ Drawing inference) 

 

How can we Reason? 
 To a certain extent this will depend on the knowledge representation chosen.  
 Although a good knowledge representation scheme has to allow easy, natural and 

plausible reasoning. 
 

Broad Methods of how we may reason 
 Formal reasoning –  

◦ Basic rules of inference with logic knowledge representations. 
 Procedural reasoning –  

◦ Uses procedures that specify how to perhaps solve (sub) problems. 
 Reasoning by analogy –  

◦ Humans are good at this, more difficult for AI systems. E.g. If we are asked Can 
robins fly?. The system might reason that robins are like sparrows and it knows 
sparrows can fly so ... 

 Generalization and abstraction –  
◦ Again humans effective at this. This is basically getting towards learning and 

understanding methods. 
 Meta-level reasoning –  

◦ Once again uses knowledge about what you know and perhaps ordering it in some 
kind of importance.  

 

Uncertain Reasoning 
 Unfortunately the world is an uncertain place. 
 Any AI system that seeks to model and reasoning in such a world must be able to deal 

with this. 
 In particular it must be able to deal with: 

◦ Incompleteness – compensate for lack of knowledge. 



◦ Inconsistencies – resolve ambiguities and contradictions. 
◦ Change – it must be able to update its world knowledge base over time. 

 Clearly in order to deal with this some decision that a made are more likely to be true (or 
false) than others and we must introduce methods that can cope with this uncertainty.  

Monotonic Reasoning 
Predicate logic and the inferences we perform on it is an example of monotonic reasoning. In 
monotonic reasoning if we enlarge at set of axioms we cannot retract any existing assertions or 
axioms.  
A monotonic logic cannot handle   

Reasoning by default 
◦ Because consequences may be derived only because of lack of evidence of the 

contrary 
 Abductive Reasoning  

◦ Because consequences are only deduced as most likely explanations. 
 Belief Revision 

◦ Because new knowledge may contradict old beliefs.  
 

Non-Monotonic Reasoning 
 Non monotonic reasoning is one in which the axioms and/or the rules of inference are 

extended to make it possible to reason with incomplete information. These systems 
preserve, however, the property that, at any given moment, a statement is either

 believed to be true,
 believed to be false, or 
 not believed to be either. 

 Statistical Reasoning: in which the representation is extended to allow some kind of 
numeric measure of certainty (rather than true or false) to be associated with each 
statement.  

 In a system doing non-monotonic reasoning the set of conclusions may either grow or 
shrink when new information is obtained.  

 Non-monotonic logics are used to formalize plausible reasoning, such as the following 
inference step: 
Birds typically fly.  
Tweety is a bird.  
--------------------------  
Tweety (presumably) flies. 

 Such reasoning is characteristic of commonsense reasoning, where default rules are 
applied when case-specific information is not available. The conclusion of non-monotonic 
argument may turn out to be wrong. For example, if Tweety is a penguin, it is 
incorrect to conclude that Tweety flies.  

 Non-monotonic reasoning often requires jumping to a conclusion and subsequently 
retracting that conclusion as further information becomes available.   

 All systems of non-monotonic reasoning are concerned with the issue of consistency.  



 Inconsistency is resolved by removing the relevant conclusion(s) derived previously by 
default rules.  

 Simply speaking, the truth value of propositions in a nonmonotonic logic can be classified 
into the following types: 

o facts that are definitely true, such as "Tweety is a bird" 
o default rules that are normally true, such as "Birds fly" 
o tentative conclusions that are presumably true, such as "Tweety flies" 

 When an inconsistency is recognized, only the truth value of the last type is changed.  
 

Properties of FOPL 
 It is complete with respect to the domain of interest. 
 It is consistent. 
 The only way it can change is that new facts can be added as they become available.   

◦ If these new facts are consistent with all the other facts that have already have been 
asserted, then nothing will ever be retracted from the set of facts that are known 
to be true.  

◦ This is known as “monotonicity”.  
If any of these properties is not satisfied, conventional logic based reasoning systems become 
inadequate.  

Non monotonic reasoning systems, are designed to be able to solve problems in which all of 
these properties may be missing Issues to be addressed: 
 How can the knowledge base be extended to allow inferences to be made on the basis of 

lack of knowledge as well as on the presence of it? 
o We need to make clear the distinction between  

 It is known that  P. 
 It is not known whether P. 

o First-order predicate logic allows reasoning to be based on the first of these.  o In 
our new system, we call any inference that depends on the lack of some piece of 
knowledge a non-monotonic inference.  

o Traditional systems based on predicate logic are monotonic. Here number of 
statements known to be true increases with time.  

o New statements are added and new theorems are proved, but the previously 
known statements never become invalid.  

 How can the knowledge base be updated properly when a new fact is added to the 
system(or when the old one is removed)? 

o In Non-Monotonic systems, since addition of a fact can cause previously 
discovered proofs to become invalid,  
 how can those proofs, and all the conclusions that depend on them be 

found? 
 Solution: keep track of proofs, which are often called justifications.  

o Such a recording mechanism also makes it possible to support,  



 monotonic reasoning in the case where axioms must occasionally be 
retracted to reflect changes in the world that is being modeled.  

 How can knowledge be used to help resolve conflicts when there are several in consistent 
non monotonic inferences that could be drawn? 

o It turns out that when inferences can be based  
 on the lack of knowledge as well as on its presence,  
 contradictions are much likely to occur than they were in conventional 

logical systems in which the only possible contradictions.  

Default Reasoning 
 Non monotonic reasoning is based on default reasoning or “most probabilistic choice”.  

◦ S is assumed to be true as long as there is no evidence to the contrary. 
 Default reasoning ( or most probabilistic choice) is defined as follows: 

◦ Definition 1 : If X is not known, then conclude Y. 
◦ Definition 2 : If X can not be proved, then conclude Y. 
◦     Definition 3: If X can not be proved in some allocated amount of time then 

conclude Y. 
 

Logics for Non-Monotonic Reasoning 
 Monotonicity is fundamental to the definition of first-order predicate logic, we are forced 

to find some alternative to support non-monotonic reasoning. 
 We examine several because no single formalism with all the desired properties has yet 

emerged. 
 We would like to find a formalism that does all of the following things: 

o Defines the set of possible worlds that could exist given the facts that we do have.  
o More precisely, we will define an interpretation of a  

 set of wff’s to be a domain (a set of objects), together with a function that 
assigns; to each predicate, a relation;  

 to each n-ary function, an operator that maps from D’’ to D; and to each 
constant, an element of D.  

o A model of a set of wff’s is an interpretation that satisfies them.  
 Provides a way to say that we prefer to believe in some models rather than others.  
 Provides the basis for a practical implementation of this kind of reasoning. 
 Corresponds to our intuitions about how this kind of reasoning works.  

Default Reasoning 
 This is a very common form of non-monotonic reasoning.  
 Here we want to draw conclusions based on what is most likely to be true. 
 Two Approaches to do this 

◦ Non-Monotonic Logic 



◦ Default Logic  
 Non-Monotonic reasoning is generic descriptions of a class of reasoning.  
 Non-Monotonic logic is a specific theory.  
 The same goes for Default reasoning and Default logic.  

 
Non-monotonic Logic 

 One system that provides a basis for default reasoning is Non-monotonic Logic (NML).  
 This is basically an extension of first-order predicate logic to include a modal operator, M.  

◦ The purpose of this is to allow for consistency.  

states that  
• for all x is x plays an instrument and if the fact that x can improvise is consistent with all 

other knowledge  
• then we can conclude that x is a jazz musician.  

            states that  
• for all x and y, if x and y are related and if the fact that x gets along with y is consistent 

with everything else that is beleieved,  
• then we can conclude that x will defend y  

 
How do we define consistency? 
One common solution (consistent with PROLOG notation) is to show that fact P is true attempt 
to prove. If we fail we may say that P is consistent (since is false). However consider the famous 
set of assertions relating to President Nixon. 

  
Now this states that Quakers tend to be pacifists and Republicans tend not to be. BUT Nixon 
was both a Quaker and a Republican so we could assert: 
 Quaker(Nixon) 
 Republican(Nixon) 
This now leads to our total knowledge becoming inconsistent.  
 

What conclusions does the theory actually support? 
NML defines the set of theorems that can be derived from a set of wff’s A to be the intersection 
of the sets of theorems that result from the various ways in which the wff’s of A might be 
combined.  
 

Default Logic 



An alternative logic for performing default based reasoning is Reiter’s Default Logic (DL).  
Default logic introduces a new inference rule of the form: 

which states if A is provable and it is consistent to assume B then conclude C.  
 

Now this is similar to Non-monotonic logic but there are some distinctions: 
New inference rules are used for computing the set of plausible extensions. So in the 
Nixon example above Default logic can support both assertions since is does not say 
anything about how choose between them -- it will depend on the inference being made. 
In Default logic any nonmonotonic expressions are rules of inference rather than 
expressions. They cannot be manipulated by the other rules of inference. This leads to 
some unexpected results.  

In Default Logic, A indicates prerequisite, B indicates justification, and C indicates Consequence. 
 

Example: Typically “An American adult owns a car.” 

 
If we can prove from our beliefs that x is American and adult and believing that there is some car 
that is owned by x does not lead to an inconsistency.  
 

Inheritance:  
One very common use of nonmonotonic reasoning is as a basis for inheriting attribute values 
from a prototype description of a class to the individual entities that belong to the class. 
Considering the Baseball example in Inheritable Knowledge, and try to write its inheriting 
knowledge as rules in DL. 
We can write a rule to account for the inheritance of a default value for the height of a baseball 
player as: 

 
Now suppose we assert Pitcher(Three-Finger-Brown). Since this enables us to conclude that 
Three-Finger-Brown is a baseball player, our rule allows us to conclude that his height is 6-1. If, 
on the other hand, we had asserted a conflicting value for Three Finger had an axiom like: 

 
Which prohibits someone from having more than one height, then we would not be able to apply 
the default rule. Thus an explicitly stated value will block the inheritance of a default value, which 
is exactly what we want.  
 

Let's encode the default rule for the height of adult males in general. If we pattern it after the one 
for baseball players, we get 

 



Unfortunately, this rule does not work as we would like. In particular, if we again assert 
Pitcher(Three-Finger-Brown) then the resulting theory contains 2 extensions: one in which our 
first rule fires and brown’s height is 6-1 and one in which this rule applies and Brown’s height is 
510. Neither of these extensions is preferred. In order to state that we prefer to get a value from 
the more specific category, baseball player, we could rewrite the default rule for adult males in 
general as:  

 
This effectively blocks the application of the default knowledge about adult males in this case 
that more specific information from the class of baseball players is available. Unfortunately, this 
approach can become widely as the set of exceptions to the general rule increases. We would 
end up with a rule like: 

 
A clearer approach is to say something like. Adult males typically have a height of 5-10 unless 
they are abnormal in some way. We can then associate with other classes the information that 
they are abnormal in one or another way. So we could write, for example: 

 
 
Abduction 
Abductive reasoning is to abduce (or take away) a logical assumption, explanation, inference, 
conclusion, hypothesis, or best guess from an observation or set of observations.  Because the 
conclusion is merely a best guess, the conclusion that is drawn may or may not be true. Daily 
decision-making is also an example of abductive reasoning.  
 

Standard logic performs deductions. Given 2 axioms 

 

If we notice Spots, we might like to conclude measles, but it may be wrong. But may be a best 
guess, we can make about what is going on. Deriving conclusions in this way is abductive 
reasoning (a form of default reasoning).  

 Given 2 wff’s (AB) & (B), for any expression A & B, if it is consistent to assume A, 
do so. 

 



Minimalist Reasoning 
We describe methods for saying a very specific and highly useful class of things that are 
generally true. These methods are based on some variant of the idea of a minimal model. We 
will define a model to be minimal if there are no other models in which fewer things are true. The 
idea behind using minimal models as a basis for non-monotonic reasoning about the world is the 
following –  

 There are many fewer true statements than false ones.  
 If something is true and relevant it makes sense to assume that it has been entered into 

our knowledge base.  
 Therefore, assume that the only true statements are those that necessarily must be true 

in order to maintain the consistency.  
 
The Closed World Assumption 

 CWA  
◦ Simple kind of minimalist reasoning.  
◦ says that the only objects that satisfy any predicate P are those that must.  
◦ Eg. A company’s employee database, Airline example 

 CWA is powerful as a basis for reasoning with Databases, which are assumed to be 
complete with respect to the properties they describe.  

 Although the CWA is both simple & powerful, it can fail to produce an appropriate answer 
for either of the two reasons. 
◦ The assumptions are not always true in the world; some parts of the world are not 

realistically “closable”.  - unrevealed facts in murder case 
◦ It is a purely syntactic reasoning process. Thus, the result depends on the form of 

assertions that are provided. 
 

Consider a KB that consists of just a single statement A(Joe) v B(Joe) 
The CWA allows us to conclude both ?A(Joe) and ?B(Joe), since neither A nor B must 
necessarily be true of Joe.  

 

The extended KB  
(

 
The problem is that we have assigned a special status to the positive instances of predicates as 
opposed to negative ones. CWA forces completion of KB by adding negative assertion whenever 
it is consistent to do so.  
 

CWA captures part of the idea that anything that must not necessarily be true should be 
assumed to be false, it does not capture all of it.  



It has two essential limitations: 
 It operates on individual predicates without considering interactions among predicates 

that are defined in the KB.  
 It assumes that all predicates have all their instances listed. Although in many database 

applications this is true, in many KB systems it is not.  
 
Circumscription 

 Circumscription is a rule of conjecture (conclusion formed on the basis of incomplete 
information) that allows you  
◦ to jump to the conclusion that the objects you can show that posses a certain 

property, p, are in fact all the objects that posses that property. 
 Circumscription can also cope with default reasoning. Several theories of circumscription 

have been proposed to deal with the problems of CWA.  
 Circumscription together with first order logic allows a form of Non-monotonic Reasoning. 

 

Suppose we know: 

And we wish to add the fact that typically, birds fly. 
 

In circumscription this phrase would be stated as: 
    A bird will flyif it is not abnormal      

and can thus be represented by: 
: ( ) ( )  ( ). 

 
However, this is not sufficient. We cannot conclude 

( ) since we cannot prove ( ). 
 
This is where we apply circumscription and, in this case, we will assume that those things that 
are shown to be abnormal are the only things to be abnormal. Thus we can rewrite our default 
rule as: 

: ( ) ( )  ( ) 
and add the following 

( ) 
since there is nothing that cannot be shown to be abnormal. 
 
If we now add the fact: ( ) Clearly 
we can prove ). 
 



If we circumscribe abnormal now we would add the sentence, penguin (tweety) is the abnormal 
thing: 

: ( )  ( ). 
 
Note the distinction between Default logic and circumscription: 
 Defaults are sentences in language itself not additional inference rules. 

 

Dependency Directed Backtracking 
• To reduce the computational cost of non-monotonic logic, we need to be able to avoid re-

searching the entire search space when a new piece of evidence is introduced 
– otherwise, we have to backtrack to the location where our assumption was 

introduced and start searching anew from there 
• In dependency directed backtracking, we move to the location of our assumption, make 

the change and propagate it forward from that point without necessarily having to 
research from scratch 

– as an example, you have scheduled a meeting on Tuesday at 12:15 because 
everyone indicated that they were available 

– but now, you cannot find a room, so you backtrack to the day and change it to 
Thursday, but you do not re-search for a new time because you assume if 
everyone was free on Tuesday, they will be free on Thursday as well  

 
 
Implementations: Truth Maintenance Systems 
A variety of Truth Maintenance Systems (TMS) have been developed as a means of 
implementing Non-Monotonic Reasoning Systems. 
 tracking the order in which sentences are told to the knowledge base by numbering 

them, this implies that the KB will be consistent. 
 

The idea of truth maintenance system arose as a way of providing the ability to do 
dependencydirected backtracking and so to support nonmonotonic reasoning.  
 

Types of TMS:  
 justification-based TMS (JTMS)  
 assumption-based TMS (ATMS)  
 logic-based TMS (LTMS) 

 

Basically TMSs: 
• all do some form of dependency directed backtracking  Assertions are connected via a 

network of dependencies. 
 

Justification-Based Truth Maintenance Systems (JTMS) 



• This is a simple TMS in that it does not know anything about the structure of the 
assertions themselves. 

• JTMS is one element of a TMS design space, a good model for most dependency 
systems and can quickly focus on how to use it. 

• This TMS itself does not know anything about the structure of the assertions themselves.   
• The only role is to serve as a bookkeeper for a separate problem solving system which in 

turn provides it with both assertions and dependencies among assertions.  
How JTMS works? 

 Each supported belief (assertion) in has a justification. 
• Each justification has two parts: 

o An IN-List -- which supports beliefs held. 
o An OUT-List -- which supports beliefs not held. 

• An assertion is connected to its justification by an arrow. 
• One assertion can feed another justification thus creating the network. 
• Assertions may be labelled with a belief status. 
• An assertion is valid if every assertion in the IN-List is believed and none in the OUT-List 

are believed. 
• An assertion is non-monotonic is the OUT-List is not empty or if any assertion in the IN-

List is non-monotonic.  

 
 
A Justification-based truth maintenance system (JTMS) is a simple TMS where one can examine 
the consequences of the current set of assumptions. In JTMS labels are attached to arcs from 
sentence nodes to justification nodes. This label is either "+" or "-". Then, for a justification node 
we can talk of its IN-LIST, the list of its inputs with "+" label, and of its OUT-LIST, the list of its 
inputs with "-" label. 
 

The meaning of sentences is not known. We can have a node representing a sentence p and 
one representing ~p and the two will be totally unrelated, unless relations are established 
between them by justifications. For example, we can write: 
  ~p^p Contradiction Node 
    o     
| 
    x     'x' denotes a justification node 
  /   \     'o' denotes a sentence node 



      +/     \+        o       o        
p      ~p which says that if both p and ~p are IN we have a 
contradiction. 
 
The association of IN or OUT labels with the nodes in a dependency network defines an in-
outlabeling function. This function is consistent if: 

• The label of a junctification node is IN iff the labels of all the sentence nodes in its in-list 
are all IN and the labels of all the sentence nodes in its out-list are OUT. 

• The label of a sentence node is IN iff it is a premise, or an enabled assumption node, or it 
has an input from a justification node with label IN. 

 

A set of important reasoning operations that a JTMS does not perform, including: 
• Applying rules to derive conclusions  
• Creating justifications for the results of applying rules  
• Choosing among alternative ways of resolving a contradiction 
• Detecting contradictions 

All of these operations must be performed by the problem-solving program that is using the 
JTMS.  
 

Logic-Based Truth Maintenance Systems (LTMS) 
Similar to JTMS except: 

• Nodes (assertions) assume no relationships among them except ones explicitly stated in 
justifications. 

• JTMS can represent P and P IN simultaneously. No contradiction will be detected 
automatically.  An LTMS would throw a contradiction automatically in such a case here. 

• If this happens network has to be reconstructed. 
 

Assumption-Based Truth Maintenance Systems (ATMS) 
• JTMS and LTMS pursue a single line of reasoning at a time and backtrack 

(dependencydirected) when needed  depth first search. 
• ATMS maintain alternative paths in parallel  breadth-first search 
• Backtracking is avoided at the expense of maintaining multiple contexts. 
• However as reasoning proceeds contradictions arise and the ATMS can be pruned o 

Simply find assertion with no valid justification. 
 

The ATMS like the JTMS is designed to be used in conjunction with a separate problem solver. 
The problem solver’s job is to: 

• Create nodes that correspond to assertions (both those that are given as axioms and 
those that are derived by the problem solver). 

• Associate with each such node one or more justifications, each of which describes 
reasoning chain that led to the node.  

• Inform the ATMS of inconsistent contexts.  
 



This is identical to the role of the problem solver that uses a JTMS, except that no explicit 
choices among paths to follow need to be made as reasoning proceeds. Some decision may be 
necessary at the end, though, if more than one possible solution still has a consistent context. 
The role of the ATMS system is then to: 

• Propagate inconsistencies, thus ruling out contexts that include subcontexts (set of 
assertions) that are known to be inconsistent. 

• Label each problem solver node with the contexts in which it has a valid justification. This 
is done by combining contexts that correspond to the components of a justification. In 
particular, given a justification of the form 

1 2  … →  
assign as a context for the node corresponding to C the intersection of the contexts 
corresponding to the nodes A1 through An. 

Contexts get eliminated as a result of the problem-solver asserting inconsistencies and the 
ATMS propagating them. Nodes get created by the problem-solver to represent possible 
components of a problem solution. They may then get pruned from consideration if all their 
context labels get pruned.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8. Statistical Reasoning 

 

Introduction:  
Statistical Reasoning: The reasoning in which the representation is extended to allow some kind 
of numeric measure of certainty (rather than true or false) to be associated with each statement.  
A fact is believed to be true or false. For some kind of problems, describe beliefs that are not 
certain but for which there is a supporting evidence. 
There are 2 class of problems: 



• First class contain problems in which there is genuine randomness in the word.  
o Example: Cards Playing 

• Second class contains problems that could in principle be modeled using the technique 
we described (i.e. resolution from predicate logic) o Example: Medical Diagnosis  

 

Probability & Baye’s Theorem 
An important goal for many problem-solving systems is to collect evidence as the system goes 
along and to model its behavior on the basis of the evidence. To model this behavior, we need 
statistical theory of evidence. Bayesian statistics is such a theory. The fundamental notion of 
Bayesian statistics is that of conditional probability. Conditional Probability is the probability of an 
event given that another event has occurred.  
 

Read this expression as the probability of hypothesis H given that we have observed evidence 
E. To compute this, we need to take into account the prior probability of H and the extent to 
which E provides evidence of H.  

 
 P(H/E) = probability of hypothesis H given that we have observed evidence E 
 P(Hi/E) = probability of hypothesis Hi is true under the evidence E 
 P(E/Hi) = probability that we will observe evidence E given that hypothesis Hi is true 
 P(Hi) = a priori probability that hypothesis is true in absence of any specific evidence 
 k = number of possible hypothesis  

 

Suppose, for example, that we are interested in examining the geological evidence at a 
particular location to determine whether that would be a good place to dig to find a desired 
mineral. If we know the prior probabilities of finding each of the various minerals and we know 
the probabilities that if a mineral is present then certain physical characteristics will be observed, 
then we use the Baye’s formula to compute from the evidence we collect, how likely it is that the 
various minerals are present.  
 
The key to using Baye’s theorem as a basis for uncertain reasoning is to recognize exactly what 
it says.  



 

 

 
Suppose we are solving a medical diagnosis problem. Consider the following assertions:  

:    
:     
:    . 

• Without any additional evidence, the presence of spots serves as evidence in favor of 
measles. It also serves as evidence of fever since measles would cause fever. 

• Suppose we already know that the patient has measles. Then the additional evidence 
that he has spots actually tells us nothing about fever. 

• Either spots alone or fever alone would constitute evidence in favor of measles. 
• If both are present, we need to take both into account in determining the total weight of 

evidence. 



 

 



Disadvantages with Baye’s Theorem 
 The size of set of joint probability that we require in order to compute this function grows 

as 2n if there are n different propositions considered.  
 Baye’s Theorem is hard to deal with for several reasons: 

◦ Too many probabilities have to be provided 
◦ the space that would be required to store all the probabilities is too large. 
◦ time required to compute the probabilities is too large.  

 

Mechanisms for making easy to deal with uncertain reasoning 
 Attaching Certainty factor to rules 
 Bayesian Networks 
 Dempster-Shafer Theory 
 Fuzzy Logic  

 

Certainty Factors and Rule-Based Systems 
The certainty-factor model was one of the most popular model for the representation and 
manipulation of uncertain knowledge in the early 1980s Rule-based expert systems. Expert 
systems are an example for the certainty factors.  
 

We describe one practical way of compromising on a pure Bayesian system. MYCIN system is 
an example of an expert system, since it performs a task normally done by a human expert. 
MYCIN system attempts to recommend appropriate therapies for patients with bacterial 
infections. It interacts with the physician to acquire the clinical data it needs. We concentrate on 
the use of probabilistic reasoning. 
 

MYCIN represents most of its diagnostic knowledge as a set of rules. Each rule has associated 
with it a certainty factor, which is a measure of the extent to which the evidence is described by 
antecedent of the rule, supports the conclusion that is given in the rule’s consequent. It uses 
backward reasoning to the clinical data available from its goal of finding significant 
diseasecausing organisms.  
 

What do Certainty Factor Mean? 
 It is an expert estimate of degree of belief or disbelief in an evidence hypothesis relation.  
 A certainty factor (CF[h,e]) is defined in terms of two components  ◦ MB [h, e]: 

 A measure between 0 & 1 of belief in hypothesis h given the evidence e. 
 MB measures the extent to which the evidence supports the hypothesis 
 MB=0, if the evidence fails to support hypothesis ◦ MD [h, e]: 
 A measure between 0 & 1 of disbelief in hypothesis h given by the 

evidence ‘e’ 
 MD measures the extent to which the evidence does not support 

hypothesis 
 MD=0, if the evidence supports the hypothesis. 



 [ , ] = [ , ] – [ , ]  
Any particular piece of evidence either supports or denies a hypothesis (but not both), a single 
number suffices for each rule to define both the MB and MD and thus the CF. CF’s reflect 
assessments of the strength of the evidence in support of the hypothesis. 
 

CF’s need to be combined to reflect the operation of multiple 
pieces of evidence and multiple rules applied to a problem. The 
combination scenarios are: 

1. Several rules all provide evidence that relates to a 
single hypothesis 

2. Our belief is a collection of several propositions taken 
together 

3. The output of one rule provides the input to another 
 

We must first need to describe some properties that we like combining functions to satisfy: 
◦ Combining function should be commutative and Associative 
◦ Until certainty is reached additional conforming evidence should increase MB  
◦ If uncertain inferences are chained together then the result should be less certain than 

either of the inferences alone  
 

Several rules provide evidences that related to single hypothesis 
The measure of belief and disbelief of a hypothesis given two observations s1 and s2 are 
computed from: 

 
 
One way to state these formulas in English is that 

• The measure of belief in h is 0 if h is disbelieved with certainty. 
• Otherwise, the measure of belief in h given two observations is the measure of belief 

given only one observation plus some increment for the second observation. 
• This increment is computed by first taking the difference 1 (certainty) and the belief given 

only the first observation. 
• This difference is the most that can be added by the second observation. The difference 

is then scaled by the belief in h given only the second observation.  
 
From MB and MD, CF can be computed. If several sources of corroborating evidence are 
pooled, the absolute value of CF will increase. If conflicting evidence is introduced, the absolute 
value of CF will decrease. 



 

 

 

 
 
Our belief is a collection of several propositions taken together 
We need to compute the certainty factor of a combination of hypothesis. This is necessary when 
we need to know the certainty factor of a rule antecedent that contains several clauses. The 
combination certainty factor can be computed from its MB and MD. The formula for the MB of 
the conjunction {condition of being joined, proposition resulting from the combination of two or 
more propositions using the ^ operator} and disjunction {proposition resulting from the 
combination of two or more propositions using the v (OR) operator} of two hypotheses are: 

[ 1  2, ] = min( [ 1, ], [ 2, ]) 
[ 1  2, ] = max( [ 1, ], [ 2, ]) 

MD can be computed analogously.  
 

Output of one rule provides the input to another 
In this rules are chained together with the result that the uncertain outcome of one rule must 
provide the input to another. The solution to this problem will also handle the case in which we 
must assign a measure of uncertainty to initial inputs. This could easily happen in situations 
where the evidence is the outcome of an experiment or a laboratory test whose results are not 
completely accurate. 
 

The certainty factor of the hypothesis must take into account both the strength with which the 
evidence suggests the hypothesis and the level of confidence in the evidence. Let MB’[h,s] be 
the measure of belief in h given that we are absolutely sure of the validity of s. Let e be the 



evidence that led us to believe in s (for example, the actual readings of the laboratory 
instruments or 
results of applying other rules). Then: 

 
MB which can be thought of as a proportionate decrease in disbelief in h as a result of e as: 

 
MD is the proportionate decrease in belief in h as a result of e 

 
definitions are incompatible with a Bayesian view of conditional It turns out that these 

probability. Small changes to them however make them compatible. We can redefine MB as 

 
The definition of MD must also be changed similarly. 
 

MYCIN uses CF. The CF can be used to rank hypothesis in order of importance. Example, if a 
patient has certain symptoms that suggest several possible diseases. Then the disease with 
higher CF would be investigated first. If E then H  CF(rule) = level of belief of H given E. 
 

Example: CF(E) = CF(it will probably rain today) = 0.6 Positive 
CF means evidence supports hypothesis. 
 

MYCIN Formulas for all three combinations: 
(i) Make the assumptions that all the rules are independent (ii) 
The burden of guarantee independence is on rule writer 
(iii) If each combination of scenarios are considered then independent assumption is violated 

because of large volumes of conditions 
 
The first scenario (a), Our example rule has three antecedents with a single CF rather than three 
separate rules; this makes the combination rules unnecessary. The rule writer did this because 
the three antecedents are not independent.  
 

To see how much difference MYCIN’s independence assumption can make, suppose for the 
moment that we had instead had three separate rules and that the CF of each was 0.6. This 
could happen and still be consistent with the combined CF of 0.7 if three conditions overlap 



substantially. If we apply the MYCIN combination formula to the three separate rules, we get 

This is a substantially different result than the true value, as expressed by the expert of 0.7. 
  
Let’s consider what happens when independence assumptions are violated in the scenario of 
(c): 

 
 
BAYESION NETWORKS 
CFs is a mechanism for reducing the complexity of a Bayesian reasoning system by making 
some approximations to the formalism. Bayesian networks in which we preserve the formalism 
and rely instead on the modularity of the world we are trying to model. Bayesian Network is also 
called Belief Networks.  
 

The basic idea of Bayesian Network is knowledge in the world is modular. Most events are 
conditionally independent of other events. Adopt a model that can use local representation to 
allow interactions between events that only affect each other. The main idea is that to describe 
the real world it is not necessary to use a huge list of joint probabilities table in which list of 
probabilities of all conceivable combinations of events. Some events may only be unidirectional 
others may be bidirectional events may be casual and thus get chained tighter in network.  
 

Implementation: 
A Bayesian Network is a directed acyclic graph. A graph where the directions are links which 
indicate dependencies that exist between nodes. Nodes represent propositions about events 
or events themselves. Conditional probabilities quantify the strength of dependencies.  
Eg: Consider the following facts 

S: Sprinklers was on the last night 



W: Grass is wet 
R: It rained last night 
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From the above diagram, Sprinkler suggests Wet and Wet suggests Rain. (a) shows the flow of 
constraints. 
There are two different ways that propositions can influence the likelihood of each other. 

• The first is that causes. Influence the likelihood of their symptoms. 
• The second is that the symptoms affect the likelihood of all of its possible causes. 

 

Rules: 
(i) If the sprinkler was ON last night then the grass will be wet this morning 
(ii) If grass is wet this morning then it rained last night 
(iii) By chaining (if two rules are applied together) we believe that it rained because we 

believe that sprinkler was ON. 
 

The idea behind the Bayesian network structure is to make a clear distinction between these two 
kinds of influence. 
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Bayesian Network Example: 
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Consider the following set of propositions: 

patient has spots 
patient has measles 
patient has high fever 
patient has Rocky Mountain Spotted Fever patient has 
previously been innoculated against measles patient 
was recently bitten by a tick 
patient has an allergy 

Create a network that defines the casual connections among these nodes. 
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Conditional Probability Table  
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Each node in Bayesian Network has an associated Conditional Probability table (CPT). This 
gives the probability values for the random variable at the node conditioned on values for its 
parents. 

 
Since each row must sum to one. Since the C node has no parents, its CPT specifies the prior 
probability that is cloudy (in this case, 0.5). 
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Dempster-Shafer Theory 
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So far we considered individual propositions and assign each of them a point of degree of belief 
that is warranted for given evidence. The Dempster Shafer theory approach considers sets of 
propositions and assigns each of them an interval 

{ , } 
in which the degree of belief must lie. 
Belief measures the strength of evidence in favor of the set of propositions. It ranges from 0 to 1 
where 0 indicates no evidence and 1 denoting certainty. 
Plausability (PL) is defined as 

( ) = 1 −  
It also ranges from 0 to 1 and measures the extent to which evidence in favour of S leaves 
room for belief in S. 
 

The confidence interval is then defined as [B(E),PL(E)]  
where  

 

where  i.e. all the evidence that makes us believe in the correctness of P, and  

 where  i.e. all the evidence that contradicts P. 

 

Set up a confidence interval – an interval of probabilities within which the true probability lies 
with a certain confidence based on belief B and plausibility PL provided by some evidence E for 
a proposition P. 
 

Suppose we are given two belief statements M1  M2. Let S be the subset of Θ which M1 
assigns a 
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non-zero value & let y be corresponding set to M2. We define the combination M3 of M1 & M2.  

 

 

E.g.: 
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Fuzzy Logic 
Fuzzy logic is an alternative for representing some kinds of uncertain knowledge. Fuzzy logic is 
a form of many-valued logic; it deals with reasoning that is approximate rather than fixed and 
exact. Compared to traditional binary sets (where variables may take on true or false values), 
fuzzy logic variables may have a truth value that ranges in degree between 0 and 1. Fuzzy logic 
has been extended to handle the concept of partial truth, where the truth value may range 
between completely true and completely false. Fuzzy set theory defines set membership as a 
possibility distribution. 
 

Fuzzy logic is a totally different approach to representing uncertainty: 
• It focuses on ambiguities in describing events rather the uncertainty about the 

occurrence of an event. 
• Changes the definitions of set theory and logic to allow this. 
• Traditional set theory defines set memberships as a boolean predicate. 

 
Fuzzy Set Theory 

• Fuzzy set theory defines set membership as a possibility distribution. The general rule for 
this can expressed as: 

 
where n some number of possibilities. 
This basically states that we can take n possible events and us f to generate as single 
possible outcome. 
This extends set membership since we could have varying definitions of, say, hot curries. 
One person might declare that only curries of Vindaloo strength or above are hot whilst 
another might say madras and above are hot. We could allow for these variations 
definition by allowing both possibilities in fuzzy definitions. 

• Once set membership has been redefined we can develop new logics based on 
combining of sets etc. and reason effectively. 
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Weak slot and filler structures turns out to be useful one for reasons besides the support of 
inheritance, though, including

It enables attribute values to be retrieved quickly assertions are indexed by the entities 
binary predicates are indexed by first argument. 

.
Properties of relations are easy to describe.

It allows ease of consideration as it embraces aspects of object oriented programming 
including modularity and ease of viewing by people.

Weak slot and filler structures describe two views: . These talk about 
the representations themselves and about techniques for reasoning with them. They do not say 
much about the specific knowledge that the structures should contain. We call these as 
“knowledge poor” structures.

A is an attribute value pair in its simplest form. A is a value that a slot can take -- could be 
a numeric, string (or any data type) value or a pointer to another slot. A   
does not consider the of the representation.

Semantic Nets were originally designed as a way to represent the meaning of English words. 
The main idea is that the meaning of a concept comes from the ways in which it is connected to 
other concepts. The information is stored by interconnecting nodes with labeled arcs. Semantic 
nets

we could use inheritance to derive the additional relation

The Semantic Nets can be represented in different ways by using relationships. Semantic nets 
have been used to represent a variety of knowledge in a variety of different programs.
One of the early ways that semantic nets were used was to find relationships among objects by
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object representing the entire predicate statement and then introducing binary predicates to 
describe the relationship to this new object of each of the original arguments.  
score(Cubs, Dodgers, 5-3) can be represented in semantic net by creating a node to represent 
the specific game & then relating each of the three pieces of information to it.

This technique is particularly useful for representing the contents of a typical declarative 
sentence
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In the networks, some distinctions are glossed that are important in reasoning. For example, 
there should be difference between a link that defines a new entity and one that relates two 
existing entities.

Both nodes represent objects that exist independently of their relationship to each other. 

H1 and H2 are new concepts representing John’sheight and Bill’sheight. They are defined by 

To represent simple quantified expressions in semantic nets. The way is to partition the 
semantic net into a hierarchical set of spaces, each of which corresponds to the scope of one or 
more variables.
The statement: 
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The nodes Dogs, Bite, Mail-Carrier represent the classes of dogs, bitings and mail carriers 
respectively, while the nodes d, b, m represent a particular dog, biting and a particular 
mailcarrier. This fact can be represented easily by a single net without no partitioning.
The node g stands for the assertion given above. Node g is an instance of the special class GS 
of general statements about the world (i.e., those with universal quantifiers). Every element of 
GS

it is not viewed as an existentially quantified variable whose value may depend on the value of 
d.

T

he statement:
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As we expand the range of problem solving tasks that the representation must 
support, the representation necessarily begins to become more complex.
It becomes useful to assign more structure to nodes as well as to links.
The more structure the system has, the more likely it is to be termed a frame system.

Natural language understanding requires inference i.e., 
assumptions about what is typically true of the objects or 
Situations under consideration.

Such information can be coded in structures known as frames.
A is a collection of attributes or slots and associated values that describe some real 
world entity.
Frames on their own are not particularly helpful but frame systems are a powerful 
way of encoding information to support reasoning.
Frame is a type of schema used in many AI applications including vision and natural 
language processing.
Frames provide a convenient structure for representing objects that are typical to 
stereotypical situations. The situations to represent may be visual scenes, structure 
of complex physical objects, etc.

Frames are also useful for representing commonsense knowledge. As frames allow 
nodes to have structures they can be regarded as three-dimensional representations of 
knowledge.
A frame is similar to a record structure and corresponding to the fields and values are 
slots and slot fillers. Basically it is a group of slots and fillers that defines a stereotypical 
object.

A single frame is not much useful.
Frame systems usually have collection of frames connected to each other. Value of 
an attribute of one frame may be another frame. A frame for a book is given below.

Set theory provides a good basis for understanding frame systems.
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The set of major league baseball players is a subset of adult males and so forth 
Theinstance relation corresponds to the relation element-of.

Pee- Wee-Reese is the element of Fielder.
A class represents a set.

There are 2 kinds of attributes that can be associated with it:
Attributes about the set itself and
Attributes that are to be inherited by each element of the set

Prefixed with *



Artificial Intelligence Notes 

 

K S V KRISHNA SRIKANTH, DEPT OF CSE, PESIT Page 41 
 

Weak Slot Filler Structures (Continued) 
 
 Slot and Filler Structures are a device to support property inheritance along isa and instance 

links.  
◦ Knowledge in these is structured as a set of entities and their 

attributes.   This structure turns out to be useful for following reasons: 
◦ It enables attribute values to be retrieved quickly  

 assertions are indexed by the entities  
 binary predicates are indexed by first argument. E.g. team(Mike-Hall , Cardiff). 

◦ Properties of relations are easy to describe .  
◦ It allows ease of consideration as it embraces aspects of object oriented programming.  

 Modularity  
 Ease of viewing by people.  

 

 

 
Inheritance 

-- the isa and instance representation provide a mechanism to implement this. 
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Inheritance also provides a means of dealing with default reasoning. E.g. we could represent: 

 Emus are birds. 
• Typically birds fly and have wings. 
• Emus run. 

in the following Semantic net: 

 
A Semantic Network for a Default Reasoning 

 
Partitioned Networks  
Partitioned Semantic Networks allow for: 

• propositions to be made without commitment to truth. 
• expressions to be quantified. 

Basic idea: Break network into spaces which consist of groups of nodes and arcs and regard 
each space as a node. 
 

Consider the following: Andrew believes that the earth is flat. We can encode the proposition the 
earth is flat in a space and within it have nodes and arcs the represent the fact. We can the have 
nodes and arcs to link this space the the rest of the network to represent Andrew's belief.  
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WHAT ARE FRAMES? 
Natural language understanding requires inference i.e., assumptions about what is typically true 
of the objects or situations under consideration. Such information can be coded in structures 
known as frames. 
 

NEED OF FRAMES 
Frame is a type of schema used in many AI applications including vision and natural language 
processing. Frames provide a convenient structure for representing objects that are typical to 
stereotypical situations. The situations to represent may be visual scenes, structure of complex 
physical objects, etc. Frames are also useful for representing commonsense knowledge. As 
frames allow nodes to have structures they can be regarded as three-dimensional 
representations of knowledge. 
 

A frame is similar to a record structure and corresponding to the fields and values are slots and 
slot fillers. Basically it is a group of slots and fillers that defines a stereotypical object. A single 
frame is not much useful. Frame systems usually have collection of frames connected to each 
other. Value of an attribute of one frame may be another frame. A frame for a book is given 
below. 

Slots Fillers 

publishe
r

 Thomson 

title Expert 
Systems

author Giarratano 
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edition Third 

year 1998 

pages 600 
The above example is simple one but most of the frames are complex. Moreover with filler slots 
and inheritance provided by frames powerful knowledge representation systems can be built. 
 

Frames can represent either generic or frame. Following is the example for generic frame. 

Slot Fillers 

name computer 

specialization_o
f

 a_kind_of machine 

types (desktop, laptop,mainframe,super) if-
added: Procedure ADD_COMPUTER

speed default: faster 
if-needed: Procedure FIND_SPEED 

location (home,office,mobile) 

under_warranty (yes, no) 
The fillers may values such as computer in the name slot or a range of values as in type’s slot. 
The procedures attached to the slots are called procedural attachments. There are mainly three 
types of procedural attachments: if-needed, default and if-added. As the name implies if-needed 
types of procedures will be executed when a filler value is needed. Default value is taken if no 
other value exists. Defaults are used to represent commonsense knowledge. Commonsense is 
generally used when no more situation specific knowledge is available. 
 

The if-added type is required if any value is to be added to a slot. In the above example, if a new 
type of computer is invented ADD_COMPUTER procedure should be executed to add that 
information. An if-removed type is used to remove a value from the slot. 
 
Frame Knowledge Representation 
Consider the example first discussed in Semantics Nets : 
  
Person 
   isa:      Mammal    Cardinality:     
Adult-Male 
  isa:    Person 
   Cardinality:     
Rugby-Player 
   isa:    Adult-Male   Cardinality:     
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   Height: 
  Weight: 
   Position: 
   Team: 
  Team-Colours: 
Back 
   isa:   Rugby-Player    Cardinality:  
   
   Tries: 
Mike-Hall 
   instance:    Back    Height:   
 6-0 
   Position:    Centre 
   Team:    Cardiff-RFC 
   Team-Colours:    Black/Blue 
Rugby-Team 
   isa:    Team    Cardinality:        Team-size:    15    
Coach: 

   
Figure: A simple frame system 
Here the frames Person, Adult-Male, Rugby-Player and Rugby-Team are all classes and the 
frames Robert-Howley and Cardiff-RFC are instances. 
 
Note 

• The isa relation is in fact the subset relation. 
• The instance relation is in fact element of. 
• The isa attribute possesses a transitivity property. This implies: Robert-Howley is a Back 

and a Back is a Rugby-Player who in turn is an Adult-Male and also a Person. 
• Both isa and instance have inverses which are called subclasses or all instances. 
• There are attributes that are associated with the class or set such as cardinality and on 

the other hand there are attributes that are possessed by each member of the class or 
set. 

 
DISTINCTION BETWEEN SETS AND INSTANCES 
It is important that this distinction is clearly understood. 
Cardiff-RFC can be thought of as a set of players or as an instance of a Rugby-Team. 
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If Cardiff-RFC were a class then 
• its instances would be players 
• it could not be a subclass of Rugby-Team otherwise its elements would be members of 

Rugby-Team which we do not want. 
Instead we make it a subclass of Rugby-Player and this allows the players to inherit the 
correct properties enabling us to let the Cardiff-RFC to inherit information about teams. This 
means that Cardiff-RFC is an instance of Rugby-Team. 
 
BUT There is a problem here: 

• A class is a set and its elements have properties. 
• We wish to use inheritance to bestow values on its members. 
• But there are properties that the set or class itself has such as the manager of a team. 

This is why we need to view Cardiff-RFC as a subset of one class players and an 
instance of teams. We seem to have a CATCH 22.  

 

Solution: MetaClasses 
A metaclass is a special class whose elements are themselves classes. 
Now consider our rugby teams as: 
The basic metaclass is Class, and this allows us to 

• define classes which are instances of other classes, and (thus)  inherit properties from 
this class. 

Inheritance of default values occurs when one element or class is an instance of a class. 
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Figure: A Metaclass frame system 
 
Slots as Objects 
How can we to represent the following properties in frames? 

• Attributes such as weight, age be attached and make sense. 
• Constraints on values such as age being less than a hundred 
• Default values 
• Rules for inheritance of values such as children inheriting parent's names  Rules for 
computing values  Many values for a slot. 

A slot is a relation that maps from its domain of classes to its range of values. 
A relation is a set of ordered pairs so one relation is a subset of another. 
Since slot is a set the set of all slots can be represent by a metaclass called Slot, say. 
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Consider the following:  
SLOT 
   isa:    Class 
   instance:   Class 
   domain: 
   range: 
   range-constraint: 
   definition: 
   default: 
   to-compute: 
  
Coach 

 single-valued: 

   instance:    SLOT 
   domain:    Rugby-Team 
   range:    Person 
   range-constraint:     (experience x.manager) 
   default: 
  
Colour 

 single-valued:    TRUE 

   instance:    SLOT 
   domain:    Physical-Object 
   range:    Colour-Set 
  
Team-Colours 

 single-valued:    FALSE 

   instance:    SLOT 
   isa:    Colour 
   domain:    team-player 
   range:    Colour-Set 
   range-constraint:    not Pink 
  
Position 

 single-valued:    FALSE 

   instance:    SLOT 
   domain:    Rugby-Player 
   range:    { Back, Forward, Reserve } 
   to-compute:     x.position    single-valued:    TRUE 
 
NOTE the following: 

• Instances of SLOT are slots 
• Associated with SLOT are attributes that each instance will inherit. 
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• Each slot has a domain and range. 
• Range is split into two parts one the class of the elements and the other is a constraint 

which is a logical expression if absent it is taken to be true. 
• If there is a value for default then it must be passed on unless an instance has its own 

value. 
• The to-compute attribute involves a procedure to compute its value. E.g. in Position 

where we use the dot notation to assign values to the slot of a frame. 
• Transfers through lists other slots from which values can be derived from inheritance. 

 

 

 
 
 
 
 
 
 
 



Individual semantic networks and frame systems may have specialized links and inference 
procedures, but no hard and fast rules about what kinds of objects and links are good in general 
for knowledge representation.

embody specific notions of what types of
objects and relations are permitted. They stand for powerful theories of how AI programs can 
represent and use knowledge about common situations.

It is the theory of how to represent the kind of knowledge about events that is usually contained 
in natural language sentences. The goal is to represent the knowledge in a way that Facilitates 
drawing inferences from the sentences.

Is independent of the language in which the sentences are originally stated. CD 
provides a structure into which nodes representing information can be placed a specific set of 
primitives at a given level of granularity.



Representation of Conceptual Dependency: 

In CD representation of actionsare built from a set of primitive Acts. 

A second set of CD building blocks is the set of allowable dependencies among the 
conceptualizations described in a sentence. There are 4 primitive conceptual categories from 
which dependency structures can be built.

In addition, dependency structures are themselves conceptualizations and can serve as 
components of larger dependency structures.

The dependencies among conceptualizations correspond to semantic relations among the 
underlying concepts. The  contains the rules; the  contains examples of 

theircontains an English version of each example. The rules are interpreted 
as

describes the relationship between an actor and the event he or she causes. This is a two-way 
dependency since neither actor nor event can be considered primary. The letter p above the 
dependency link indicates past tense.

use and the
follows: 



describes the relationship between a PP and a PA that is being asserted to describe
it. Many state descriptions, such as height, are represented in CD as numeric scales.

                     describes the relationship between two PPs, one of which belongs to the set 
defined by the other.

                   describes the relationship between a PP and an attribute that has already been
predicated of it. The direction of the arrow is toward the PP being described.

            describes the relationship between two PPs, one of which provides a particular 
kind of information about the other. The three most common types of information to be 
provided in this way are o possession (shown as POSS-BY), o location (shown as 
LOC) and o physical containment (shown as CONT).

The direction of the arrow isagain toward the concept being described. 

 describes the relationship between an ACT and the PP that is the object of that 
ACT. The direction of the arrow is toward the ACT since the context of the specific ACT 
determines the meaning of the object relation.

describes the relationship between an ACT and the source and the recipient of the

describes the relationship between an ACT and the instrument with which it is 
performed. The instrument must always be a full conceptualization (i.e., it must contain 

ACT. 



so point in the opposite direction of the implication arrows. The two forms of the rule

human information processing system.

 describes relationship between a conceptualization and the place at which it
occurred.



Conceptualizations representing events can be modified in a variety of ways to supply the 
information normally indicated in language by the tense, mood or aspect of a verb form. The set



values it may contain as well as a default value to be used if no other information is available.

A script is a structure that prescribes a set of circumstances which could be expected to follow 
on from one another. It is similar to a thought sequence or a chain of situations which could be 
anticipated. It could be considered to consist of a number of slots or frames but with more 
specialized roles.

Scripts provide an ability for default reasoning when information is not available that directly 
states that an action occurred. So we may assume, unless otherwise stated, that a diner at a 
restaurant was served food, that the diner paid for the food, and that the dinner was served by a 
waiter/waitress.

Scripts are beneficial because:

• Events tend to occur in known runs or patterns.

• Causal relationships between events exist.

• Entry conditions exist which allow an event to take place

• Prerequisites exist upon events taking place. E.g. when a student progresses through a 
degree scheme or when a purchaser buys a house.

The important components of the script are: these must be satisfied before events in the 
script can occur.

Conditions that will be true after events in script occur.

s representing objects involved in events.
s involved in the events.

Variations on the script. Different tracks may share components of the 
same script.

The sequence of events that occur. Events are represented in conceptual dependency form.

Scripts are useful in describing certain situations such as robbing a bank. This might involve:



Getting a gun.

Hold up a bank.
Escape with the money.





The script does not contain typical actions although there are options such as whether the 
customer was pleased or not. There are multiple paths through the scenes to make for a robust 
script what would a “going to the movies” script look like? Would it have similar props, actors,

scenes? How about “ going to class” ?

• Ability to predict events. 
• A single coherent interpretation may be build up from a collection of observations.



• Less general than frames.

• May not be suitable to represent all kinds of knowledge.

CYC is a very large knowledge base project aimed at capturing human commonsense 
knowledge. The goal of CYC is to encode the large body of knowledge that is so obvious that it 
is easy to forget to state it explicitly. Such a knowledge base could then be combined with 
specialized knowledge bases to produce systems that are less brittle than most of the ones 
available today.

-- Specialized knowledge bases are . Hard to encode new situations and 
non-graceful degradation in performance. Commonsense based knowledge bases 
should have a firmer foundation.

-- Knowledge representation may not be suitable for AI. Commonsense
strategies could point out where difficulties in content may affect the form.

-- Should allow greater communication among systems with common
bases and assumptions.

Building an immense knowledge base is a staggering task. There are two possibilities for 
acquiring this knowledge automatically:

1.  In order for a system to learn a great deal, it must already know a 
great deal. In particular, systems with a lot of knowledge will be able to employ



Strong Slot and Filler Structures (Continued) 
 
Conceptual Dependency Examples:  
Consider the sentence, “Bill threatened John with a broken Nose”. 

 
The CD representation of the information contained in the sentence is shown above. It says that 
Bill informed John that he (Bill) will do something to break John’s nose. Bill did this so that John 
will believe that if he (John) does something (different from what Bill will do to break his nose), 
then Bill will break John’s nose. In this representation, the word believe has been used to 
simplify the example. But the idea behind believe can be represented in CD as MTRANS of a 
fact into John’s memory. The actions do1 and do2 are dummy placeholders that refer to some 
as yet unspecified actions.  



 

 

 



 
 
 
 

 
CYCL 
 CYCs knowledge is encoded in a representation language called CYCL.  
 CYCL is a frame based system that incorporates most of the techniques.  
 Generalizes the notion of inheritance so that properties can be inherited 

along any link, not just isa and instance.  
 CYCL contains a constraint language that allows the expression of arbitrary 

first-order logical expressions.  



 



11. Learning 

 

What is Learning? 
Learning is an important area in AI, perhaps more so than planning. 

• Problems are hard -- harder than planning. 
• Recognised Solutions are not as common as planning. 
• A goal of AI is to enable computers that can be taught rather than programmed. 

 

Learning is a an area of AI that focusses on processes of self-improvement. 
Information processes that improve their performance or enlarge their knowledge bases are said 
to learn. 
 

Why is it hard? 
• Intelligence implies that an organism or machine must be able to adapt to new situations. 
• It must be able to learn to do new things. 
• This requires knowledge acquisition, inference, updating/refinement of knowledge base, 

acquisition of heuristics, applying faster searches, etc. 
 

How can we learn? 
Many approaches have been taken to attempt to provide a machine with learning capabilities. 
This is because learning tasks cover a wide range of phenomena. Listed below are a few 
examples of how one may learn. We will look at these in detail shortly 
 Skill refinement o one can learn by practicing, e.g playing the piano. 
 Knowledge acquisition o one can learn by experience and by storing the experience in a 

knowledge base. One basic example of this type is rote learning. 
 Taking advice o Similar to rote learning although the knowledge that is input may need to 

be transformed (or operationalised) in order to be used effectively. 
 Problem Solving o if we solve a problem one may learn from this experience. The next 

time we see a similar problem we can solve it more efficiently. This does not usually 
involve gathering new knowledge but may involve reorganisation of data or remembering 
how to achieve to solution. 

 Induction o One can learn from examples. Humans often classify things in the world 
without knowing explicit rules. Usually involves a teacher or trainer to aid the 
classification. 

 Discovery o Here one learns knowledge without the aid of a teacher. 
 Analogy 

o If a system can recognise similarities in information already stored then it may be 
able to transfer some knowledge to improve to solution of the task in hand. 

 

Rote Learning 



Rote Learning is basically memorisation. 
• Saving knowledge so it can be used again. 
• Retrieval is the only problem. 
• No repeated computation, inference or query is necessary. 

 
A simple example of rote learning is caching 

• Store computed values (or large piece of data)  Recall this information when required 
by computation. 

• Significant time savings can be achieved. 
• Many AI programs (as well as more general ones) have used caching very effectively. 

 
Memorisation is a key necessity for learning: 

• It is a basic necessity for any intelligent program -- is it a separate learning process? 
• Memorisation can be a complex subject -- how best to store knowledge? 

 

Samuel's Checkers program employed rote learning (it also used parameter adjustment which 
will be discussed shortly). 

• A minimax search was used to explore the game tree. 
• Time constraints do not permit complete searches. 
• It records board positions and scores at search ends. 
• Now if the same board position arises later in the game the stored value can be recalled 

and the end effect is that more deeper searched have occurred. 
 

Rote learning is basically a simple process. However it does illustrate some issues that are 
relevant to more complex learning issues. 

• Organisation o access of the stored value must be faster than it would be to recompute it. 
Methods such as hashing, indexing and sorting can be employed to enable this. 

o E.g Samuel's program indexed board positions by noting the number of pieces. 
• Generalisation o The number of potentially stored objects can be very large. We may 

need to generalise some information to make the problem manageable. 
o E.g Samuel's program stored game positions only for white to move. Also 

rotations along diagonals are combined. 
• Stability of the Environment o Rote learning is not very effective in a rapidly changing 

environment. If the environment does change then we must detect and record exactly 
what has changed -- the frame problem. 

Store v Compute 

• Rote Learning must not decrease the efficiency of the system. 
• We be must able to decide whether it is worth storing the value in the first place. 
• Consider the case of multiplication -- it is quicker to recompute the product of two 

numbers rather than store a large multiplication table. 



 
How can we decide? 
 Cost-benefit analysis o Decide when the information is first available whether it should be 

stored. An analysis could weigh up amount of storage required, cost of computation, 
likelihood of recall. 

 Selective forgetting o here we allow the information to be stored initially and decide later if 
we retain it. Clearly the frequency of reuse is a good measure. We could tag an object 
with its time of last use. If the cache memory is full and we wish to add a new item we 
remove the least recently used object. Variations could include some form of costbenefit 
analysis to decide if the object should be removed. 

 

Learning by Taking Advice 
 The idea of advice taking in AI based learning was proposed as early as 1958 

(McCarthy). 
However very few attempts were made in creating such systems until the late 1970s.  

 Expert systems providing a major impetus in this area. 
There are two basic approaches to advice taking: 

• Take high level, abstract advice and convert it into rules that can guide performance 
elements of the system. Automate all aspects of advice taking 

• Develop sophisticated tools such as knowledge base editors and debugging. These are 
used to aid an expert to translate his expertise into detailed rules. Here the expert is an 
integral part of the learning system. Such tools are important in expert systems area of AI. 

Automated Advice Taking 
The following steps summarise this method: 
 Request o This can be simple question asking about general advice or more complicated 

by identifying shortcomings in the knowledge base and asking for a remedy. 
 Interpret o Translate the advice into an internal representation. 
 Operationalise o Translated advice may still not be usable so this stage seeks to provide 

a representation that can be used by the performance element. 
 Integrate 

o When knowledge is added to the knowledge base care must be taken so that bad 
side-effects are avoided. 

o E.g. Introduction of redundancy and contradictions. 
 Evaluate o The system must assess the new knowledge for errors, 

contradictions etc. 
 

The steps can be iterated. 
 Knowledge Base Maintenance o Instead of automating the five steps above, 

many researchers have instead assembled tools that aid the development and 
maintenance of the knowledge base. 

Many have concentrated on: 



• Providing intelligent editors and flexible representation languages for integrating new 
knowledge. 

• Providing debugging tools for evaluating, finding contradictions and redundancy in the 
existing knowledge base. 

EMYCIN is an example of such a system. 

Example Learning System - FOO 

Learning the game of hearts 
FOO (First Operational Operationaliser) tries to convert high level advice (principles, problems, 
methods) into effective executable (LISP) procedures. 
Hearts: 

• Game played as a series of tricks. 
• One player - who has the lead - plays a card.  Other players follow in turn and play 

a card. 
o The player must follow suit. 
o If he cannot he play any of his cards. 

• The player who plays the highest value card wins the trick and the lead. 
• The winning player takes the cards played in the trick. 
• The aim is to avoid taking points. Each heart counts as one point the queen of spades is 

worth 13 points. 
• The winner is the person that after all tricks have been played has the lowest points 

score. 
Hearts is a game of partial information with no known algorithm for winning. 
Although the possible situations are numerous general advice can be given such as: 

• Avoid taking points. 
• Do not lead a high card in suit in which an opponent is void. 
• If an opponent has the queen of spades try to flush it. 

In order to receive advice a human must convert into a FOO representation (LISP clause) 
(avoid (take-points me) (trick)) 
FOO operationalises the advice by translating it into expressions it can use in the game. It can 
UNFOLD avoid and then trick to give: 
(achieve (not (during 
               (scenario 
                 (each p1 (players) (play-card p1)) 
                 (take-trick (trick-winner))) 
                 (take-points me)))) 
However the advice is still not operational since it depends on the outcome of trick which is 
generally not known. Therefore FOO uses case analysis (on the during expression) to determine 
which steps could case one to take points. Step 1 is ruled out and step 2's take-points is 
UNFOLDED: 
(achieve (not (exists c1 (cards-played) 



                  (exists c2 (point-cards) 
                  (during (take (trick-winner) c1) 
                           (take me c2)))))) 
FOO now has to decide: Under what conditions does (take me c2) occur during (take 
(trickwinner) c1). 
A technique, called partial matching, hypothesises that points will be taken if me = trickwinner 
and c2 = c1. We can reduce our expression to: 
(achieve (not (and (have-points(card-played)) 
                   (= (trick-winner) me )))) 
This not quite enough a this means Do not win trick that has points. We do not know who the 
trick-winner is, also we have not said anything about how to play in a trick that has point led in 
the suit. After a few more steps to achieve this FOO comes up with: 
(achieve (>= (and (in-suit-led(card-of me)) 
                   (possible (trick-has-points))) 
              (low(card-of me))) 
FOO had an initial knowledge base that was made up of: 

• basic domain concepts such as trick, hand, deck suits, avoid, win etc. 
• Rules and behavioural constraints -- general rules of the game. 
• Heuristics as to how to UNFOLD. 

FOO has 2 basic shortcomings: 
• It lacks a control structure that could apply operationalisation automatically. 
• It is specific to hearts and similar tasks. 

 
Learning by Problem Solving 
There are three basic methods in which a system can learn from its own experiences. 

Learning by Parameter Adjustment 

Many programs rely on an evaluation procedure to summarize the state of search etc. Game 
playing programs provide many examples of this. 
However, many programs have a static evaluation function. 
In learning a slight modification of the formulation of the evaluation of the problem is required. 
Here the problem has an evaluation function that is represented as a polynomial of the form such 
as: 

 
The t terms values of features and the c terms are weights. 
In designing programs it is often difficult to decide on the exact value to give each weight initially. 
So the basic idea of idea of parameter adjustment is to: 

• Start with some estimate of the correct weight settings. 
• Modify the weight in the program on the basis of accumulated experiences. 



• Features that appear to be good predictors will have their weights increased and bad 
ones will be decreased. 

Samuel's Checkers programs employed 16 such features at any one time chosen from a pool of 
38. 

Learning by Macro Operators 

The basic idea here is similar to Rote Learning: 
Avoid expensive recomputation 
Macro-operators can be used to group a whole series of actions into one. 
 
For example: Making dinner can be described a lay the table, cook dinner, serve dinner. We 
could treat laying the table as on action even though it involves a sequence of actions. 
 
The STRIPS problem-solving employed macro-operators in it's learning phase. 
 
Consider a blocks world example in which ON(C,B) and ON(A,TABLE) are true. 
STRIPS can achieve ON(A,B) in four steps: 
UNSTACK(C,B), PUTDOWN(C), PICKUP(A), STACK(A,B) 
STRIPS now builds a macro-operator MACROP with preconditions ON(C,B), ON(A,TABLE), 
postconditions ON(A,B), ON(C,TABLE) and the four steps as its body. 
MACROP can now be used in future operation. 
But it is not very general. The above can be easily generalised with variables used in place of the 
blocks. 
However generalisation is not always that easy (See Rich and Knight). 

Learning by Chunking 

Chunking involves similar ideas to Macro Operators and originates from psychological ideas on 
memory and problem solving. 
The computational basis is in production systems (studied earlier). 
SOAR is a system that use production rules to represent its knowledge. It also employs chunking 
to learn from experience. 
Basic Outline of SOAR's Method 

• SOAR solves problems it fires productions these are stored in long term memory. 
• Some firings turn out to be more useful than others. 
• When SOAR detects are useful sequence of firings, it creates chunks. 
• A chunk is essentially a large production that does the work of an entire sequence of 

smaller ones. 
• Chunks may be generalised before storing. 

 



Inductive Learning 
This involves the process of learning by example -- where a system tries to induce a general rule 
from a set of observed instances. 
This involves classification -- assigning, to a particular input, the name of a class to which it 
belongs. Classification is important to many problem solving tasks. 
A learning system has to be capable of evolving its own class descriptions: 

• Initial class definitions may not be adequate. 
• The world may not be well understood or rapidly changing. 

The task of constructing class definitions is called induction or concept learning 

A Blocks World Learning Example -- Winston (1975) 

• The goal is to construct representation of the definitions of concepts in this domain. 
• Concepts such a house - brick (rectangular block) with a wedge (triangular block) suitably 

placed on top of it, tent - 2 wedges touching side by side, or an arch - two non-touching 
bricks supporting a third wedge or brick, were learned. 

• The idea of near miss objects -- similar to actual instances was introduced. 
• Input was a line drawing of a blocks world structure. 
• Input processed (see VISION Sections later) to produce a semantic net representation of 

the structural description of the object (Fig. 27) 

   
Fig. 27 House object and semantic net 

• Links in network include left-of, right-of, does-not-marry, supported-by, has-part, and isa. 
• The marry relation is important -- two objects with a common touching edge are said to 

marry. Marrying is assumed unless does-not-marry stated. 
 
There are three basic steps to the problem of concept formulation: 

1. Select one know instance of the concept. Call this the concept definition. 
2. Examine definitions of other known instance of the concept. Generalise the definition to 

include them. 
3. Examine descriptions of near misses. Restrict the definition to exclude these. 

Both steps 2 and 3 rely on comparison and both similarities and differences need to be identified. 

Version Spaces 



Structural concept learning systems are not without their problems. 
The biggest problem is that the teacher must guide the system through carefully chosen 
sequences of examples. 
In Winston's program the order of the process is important since new links are added as and 
when now knowledge is gathered. 
The concept of version spaces aims is insensitive to order of the example presented. 
To do this instead of evolving a single concept description a set of possible descriptions are 
maintained. As new examples are presented the set evolves as a process of new instances and 
near misses. 
We will assume that each slot in a version space description is made up of a set of predicates 
that do not negate other predicates in the set -- positive literals. 
Indeed we can represent a description as a frame bases representation with several slots or 
indeed use a more general representation. For the sake of simplifying the discussion we will 
keep to simple representations. 
If we keep to the above definition the Mitchell's candidate elimination algorithm is the best known 
algorithm. 
Let us look at an example where we are presented with a number of playing cards and we need 
to learn if the card is odd and black. 
We already know things like red, black, spade, club, even card, odd card etc. 

So the  is red card, an even card and a heart. 
This illustrates on of the keys to the version space method specificity: 

• Conjunctive concepts in the domain can be partially ordered by specificity. 
• In this Cards example the concept black is less specific than odd black or spade. 
• odd black and spade are incomparable since neither is more (or less) specific. 
• Black is more specific than any card, any 8 or any odd card 

The training set consist of a collection of cards and for each we are told whether or not it is in the 
target set -- odd black 
The training set is dealt with incrementally and a list of most and least specific concepts 
consistent with training instances are maintained. 
Let us see how can learn from a sample input set: 

• Initially the most specific concept consistent with the data is the empty set. The least 
specific concept is the set of all cards. 

• Let the  be the first card in the sample set. We are told that this is odd black. 

• So the most specific concept is  alone the least is still all our cards. 

• Next card : we need to modify our most specific concept to indicate the generalisation of 
the set something like ``odd and black cards''. Least remains unchanged. 

• Next card : Now we can modify the least specific set to exclude the . As more exclusion 
are added we will generalise this to all black cards and all odd cards. 



• NOTE that negative instances cause least specific concepts to become more specific and 
positive instances similarly affect the most specific. 

• If the two sets become the same set then the result is guaranteed and the target concept 
is met. 

 

The Candidate Elimination Algorithm 
Let us now formally describe the algorithm. 
Let G be the set of most general concepts. Let S be the set of most specific concepts. 
Assume: We have a common representation language and we a given a set of negative and 
positive training examples. 
Aim: A concept description that is consistent with all the positive and none of the negative 
examples. 
Algorithm: 

• Initialise G to contain one element -- the null description, all features are variables. 
• Initialise S to contain one element the first positive example. 
• Repeat o Input the next training example o If a positive example -- first remove from G 

any descriptions that do not cover the example. Then update S to contain the most 
specific set of descriptions in the version space that cover the example and the current 
element set of S. I.e. Generalise the elements of S as little as possible so that they cover 
the new training example. 

o If a negative example -- first remove from S any descriptions that cover the 
example. Then update G to contain the most general set of descriptions in the 
version space that do not cover the example. I.e. Specialise the elements of S as 
little as possible so that negative examples are no longer covered in G's 
elements. 

until S and G are both singleton sets. 
• If S and G are identical output their value. 
• S and G are different then training sets were inconsistent. 

Let us now look at the problem of learning the concept of a flush in poker where all five cards are 
of the same suit. 

Let the first example be positive: 

Then set  

No the second example is negative:  
We must specialise G (only to current set): 
 



S is unaffected. 
Our third example is positive:  
Firstly remove inconsistencies from G and then generalise S: 
 

Once more remove inconsistencies from G and then generalise S: 
 

 
• We can continue generalising and specialising 
• We have taken a few big jumps in the flow of specialising/generalising in this example. 

Many more training steps usually required to reach this conclusion. 
 It might be hard to spot trend of same suit etc. 

Decision Trees 
Quinlan in his ID3 system (986) introduced the idea of decision trees. 
ID3 is a program that can build trees automatically from given positive and negative instances. 
Basically each leaf of a decision tree asserts a positive or negative concept. To classify a 
particular input we start at the top and follow assertions down until we reach an answer (Fig 28) 

 
Fig. 28 Edible Mushroom decision tree 

Building decision trees 
• ID3 uses an iterative method. 
• Simple trees preferred as more accurate classification is afforded. 



• A random choice of samples from training set chosen for initial assembly of tree -- the 
window subset. 

• Other training examples used to test tree. 
• If all examples classified correctly stop. 
• Otherwise add a number of training examples to window and start again. 

 
Adding new nodes 
When assembling the tree we need to choose when to add a new node: 

• Some attributes will yield more information than others. 
• Adding a new node might be useless in the overall classification process. 
• Sometimes attributes will separate training instances into subsets whose members share 

a common label. Here branching can be terminates and a leaf node assigned for the 
whole subset. 

Decision tree advantages: 
• Quicker than version spaces when concept space is large.  Disjunction easier. 

Disadvantages: 
• Representation not natural to humans -- a decision tree may find it hard to explain its 

classification. 
 
Explanation Based Learning (EBL) 

• Humans appear to learn quite a lot from one example. 
• Basic idea: Use results from one examples problem solving effort next time around. 
• An EBL accepts 4 kinds of input: 
• A training example 

 what the learning sees in the world. 
• A goal concept 
 a high level description of what the program is supposed to learn. 
• A operational criterion 
 a description of which concepts are usable. 
• A domain theory 
 a set of rules that describe relationships between objects and actions in a 

domain. 
• From this EBL computes a generalization of the training example that is 

sufficient not only to describe the goal concept but also satisfies the operational 
criterion.  This has two steps: 

• Explanation 
 the domain theory is used to prune away all unimportant aspects of the 

training example with respect to the goal concept. 
• Generalisation 
 the explanation is generalized as far possible while still describing the goal 

concept. 



EBL example 
Goal: To get to Brecon -- a picturesque welsh market town famous for its mountains (beacons) 
and its Jazz festival. The training data is:    near(Cardiff, Brecon),    airport(Cardiff) 
 
The Domain Knowledge is:     

near(x,y)  holds(loc(x),s)  holds(loc(y), 
result(drive(x,y),s))    airport(z)  loc(z), result(fly(z),s))) 

 
In this case operational criterion is: We must express concept definition in pure description 
language syntax. 
 
Our goal can expressed as follows: 
holds(loc(Brecon),s) -- find some situation s for this holds. 
 
We can prove this holds with s defined by: 
       result(drive(Cardiff,Brecon),                   
result(fly(Cardiff), s'))) 
 
We can fly to Cardiff and then drive to Brecon. 
 
If we analyse the proof (say with an ATMS). We can learn a few general rules from it. 
 
Since Brecon appears in query and binding we could abstract it to give: 
  holds(loc(x),drive(Cardiff,x),              result(fly(Cardiff), s'))) but this 
not quite right - we cannot get everywhere by flying to Cardiff. 
 
Since Brecon appears in the database when we abstract things we must explicitly record the use 
of the fact: 
near(Cardiff,x)  holds(loc(x),drive(Cardiff,x), result(fly(Cardiff), s'))) 
 
This states if x is near Cardiff we can get to it by flying to Cardiff and then driving. We have learnt 
this general rule. 
 
We could also abstract out Cardiff instead of Brecon to get: 
near(Brecon,x)  airport(x)  holds(loc(Brecon),  result(drive(x,Brecon), 
result(fly(x),s'))) 
 
This states we can get top Brecon by flying to another nearby airport and driving from there. 
We could add airport(Swansea) and get an alternative means of travel plan. Finally 
we could actually abstract out both Brecon and Cardiff to get a general plan: 
near(x,y)  airport(y)  holds(loc(y), result(drive(x,y),result(fly(x),s'))) 



 
Discovery 
Discovery is a restricted form of learning in which one entity acquires knowledge without the help 
of a teacher. 

Theory Driven Discovery - AM (1976) 
AM is a program that discovers concepts in elementary mathematics and set theory. 
AM has 2 inputs: 

• A description of some concepts of set theory (in LISP form). E.g. set union, intersection, 
the empty set. 

• Information on how to perform mathematics. E.g. functions. 
Given the above information AM discovered: 

• Integers o it is possible to count the elements of this set and this is an the image of this 
counting function -- the integers -- interesting set in its own right. 

• Addition o The union of two disjoint sets and their counting function. 
• Multiplication o Having discovered addition and multiplication as laborious set-theoretic 

operations more effective descriptions were supplied by hand. 

• Prime Numbers o factorisation of numbers and numbers with only one factor were 
discovered. 

• Golbach's Conjecture o Even numbers can be written as the sum of 2 primes. E.g. 28 = 
17 + 11. 

• Maximally Divisible Numbers o numbers with as many factors as possible. A number k is 
maximally divisible is k has more factors than any integer less than k. E.g. 12 has six 
divisors 1,2,3,4,6,12. 

 
How does AM work? 
AM employs many general-purpose AI techniques: 

• A frame based representation of mathematical concepts. 
o AM can create new concepts (slots) and fill in their values. 

• Heuristic search employed 
o 250 heuristics represent hints about activities that might lead to interesting 

discoveries. 
o How to employ functions, create new concepts, generalisation etc. 

• Hypothesis and test based search. 
• Agenda control of discovery process. 

Data Driven Discovery -- BACON (1981) 
Many discoveries are made from observing data obtained from the world and making sense of it 
-- E.g. Astrophysics - discovery of planets, Quantum mechanics - discovery of sub-atomic 
particles. 
BACON is an attempt at provided such an AI system. 



BACON system outline: 
• Starts with a set of variables for a problem. 

o E.g. BACON was able able to derive the ideal gas law. It started with four 
variables p - gas pressure, V -- gas volume, n -- molar mass of gas, T -- gas 
temperature. Recall pV/nT = k where k is a constant. 

• Values from experimental data from the problem are inputted. 
• BACON holds some constant and attempts to notice trends in the data.  Inferences 

made. 
BACON has also been applied to Kepler's 3rd law, Ohm's law, conservation of momentum and 
Joule's law. 
 

Analogy 
Analogy involves a complicated mapping between what might appear to be two dissimilar 
concepts. 
   Bill is built like a large outdoor brick lavatory. 
   He was like putty in her hands 
Humans quickly recognise the abstractions involved and understand the meaning. 
There are two methods of analogical problem methods studied in AI. 

Transformational Analogy 
Look for a similar solution and copy it to the new situation making suitable substitutions where 
appropriate.  
E.g. Geometry. 
If you know about lengths of line segments and a proof that certain lines are equal (Fig. 29) then 
we can make similar assertions about angles. 

 
Fig. 29 Transformational Analogy Example 

• We know that lines RO = NY and angles AOB = COD  We have seen that RO + ON 
= ON + NY - additive rule. 

• So we can say that angles AOB + BOC = BOC + COD 
• So by a transitive rule line RN = OY 
• So similarly angle AOC = BOD 

Carbonell (1983) describes a T-space method to transform old solutions into new ones. 
• Whole solutions are viewed as states in a problem space -- the T-space. 
• T-operators prescribe methods of transforming existing solution states into new ones. 



Derivational Analogy 

Transformational analogy does not look at how the problem was solved -- it only looks at the final 
solution. 
The history of the problem solution - the steps involved - are often relevant. 
Carbonell (1986) showed that derivational analogy is a necessary component in the transfer of 
skills in complex domains: 

• In translating Pascal code to LISP -- line by line translation is no use. You will have to 
reuse the major structural and control decisions. 

• One way to do this is to replay a previous derivation and modify it when necessary. 
• If initial steps and assumptions are still valid copy them across. 
• Otherwise alternatives need to found -- best first search fashion. 
• Reasoning by analogy becomes a search in T-space -- means-end analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12. Expert Systems 

 

Expert Systems 
• Expert systems (ES) are one of the prominent research domains of AI. It is introduced by 

the researchers at Stanford University, Computer Science Department. 



• Expert systems solve problems that are normally solved by human “experts”. To solve 
expert-level problems, expert systems need access to a substantial domain knowledge 
base, which must be built as efficiently as possible. They also need to exploit one or more 
reasoning mechanisms to apply their knowledge to the problems they are given. Then 
they need a mechanism for explaining what they have done to the users who rely on 
them.  

• The problems that expert systems deal with are highly diverse. There are some general 
issues that arise across these varying domains. But it also turns out that there are 
powerful techniques that can be defined for specific classes of problems.  

• What are Expert Systems? 
o The expert systems are the computer applications developed to solve complex 

problems in a particular domain, at the level of extra-ordinary human intelligence 
and expertise. 

 

Capabilities of Expert Systems 
• The expert systems are capable of − o Advising o Instructing and assisting human in 

decision making o Demonstrating o Deriving a solution o Diagnosing o Explaining o 
Interpreting input o Predicting results o Justifying the conclusion o Suggesting alternative 
options to a problem 

• They are incapable of − o Substituting human decision makers o Possessing human 
capabilities o Producing accurate output for inadequate knowledge base o Refining their 
own knowledge 

 

Components of Expert Systems 
• The components of ES include − o Knowledge Base o Inference Engine o User Interface 

 
Knowledge Base 

• It contains domain-specific and high-quality knowledge. Knowledge is required to exhibit 
intelligence. The success of any ES majorly depends upon the collection of highly 
accurate and precise knowledge. 

• What is Knowledge? 
o The data is collection of facts. The information is organized as data and facts 

about the task domain. Data, information, and past experience combined together 
are termed as knowledge. 



• Components of Knowledge Base o The knowledge base of an ES is a store of both, 
factual and heuristic knowledge. 

 Factual Knowledge − It is the information widely accepted by the 
Knowledge Engineers and scholars in the task domain. 

 Heuristic Knowledge − It is about practice, accurate judgment, one’s ability 
of evaluation, and guessing. 

• Knowledge representation o It is the method used to organize and formalize the 
knowledge in the knowledge base. It is in the form of IF-THEN-ELSE rules. 

• Knowledge Acquisition o The success of any expert system majorly depends on the 
quality, completeness, and accuracy of the information stored in the knowledge base. 

o The knowledge base is formed by readings from various experts, scholars, and 
the Knowledge Engineers. The knowledge engineer is a person with the qualities 
of empathy, quick learning, and case analyzing skills. 

o He acquires information from subject expert by recording, interviewing, and 
observing him at work, etc.  

o He then categorizes and organizes the information in a meaningful way, in the 
form of IF-THEN-ELSE rules, to be used by interference machine. The knowledge 
engineer also monitors the development of the ES. 

 

Inference Engine 
 Use of efficient procedures and rules by the Inference Engine is essential in deducting a 

correct, flawless solution. 
 In case of knowledge-based ES, the Inference Engine acquires and manipulates the 

knowledge from the knowledge base to arrive at a particular solution. 
 In case of rule based ES, it − o Applies rules repeatedly to the facts, which are obtained 

from earlier rule application. 
o Adds new knowledge into the knowledge base if required. 
o Resolves rules conflict when multiple rules are applicable to a particular case. 

 To recommend a solution, the Inference Engine uses the following strategies − o Forward 
Chaining o Backward Chaining 

 

User Interface 
 User interface provides interaction between user of the ES and the ES itself.  
 It is generally Natural Language Processing so as to be used by the user who is well-

versed in the task domain.  
 The user of the ES need not be necessarily an expert in Artificial Intelligence. 
 It explains how the ES has arrived at a particular recommendation. The explanation may 

appear in the following forms − o Natural language displayed on screen. o Verbal 
narrations in natural language. o Listing of rule numbers displayed on the screen. 

o The user interface makes it easy to trace the credibility of the deductions. 
 
Requirements of Efficient ES User Interface 



• It should help users to accomplish their goals in shortest possible way. 
• It should be designed to work for user’s existing or desired work practices. 
• Its technology should be adaptable to user’s requirements; not the other way round. 
• It should make efficient use of user input. 

 

Expert Systems Limitations 
No technology can offer easy and complete solution. Large systems are costly; require 
significant development time, and computer resources. ESs have their limitations which include 
− 

• Limitations of the technology 
• Difficult knowledge acquisition 
• ES are difficult to maintain 
• High development costs 

 

Applications of Expert System 
The following table shows where ES can be applied. 

Application Description 
Design Domain Camera lens design, automobile design. 
Medical Domain Diagnosis Systems to deduce cause of disease from 

observed data, conduction medical operations on humans. 
Monitoring Systems Comparing data continuously with observed system or with 

prescribed behavior such as leakage monitoring in long 
petroleum pipeline. 

Process Control 
Systems 

Controlling a physical process based on monitoring. 

Knowledge Domain Finding out faults in vehicles, computers. 

Finance/Commerce Detection of possible fraud, suspicious transactions, stock 
market trading, Airline scheduling, cargo scheduling. 

 
Expert System Technology 
 There are several levels of ES technologies available. Expert systems technologies 

include 
− o Expert System Development Environment − The ES development environment 

includes hardware and tools. They are −  Workstations, minicomputers, mainframes. 
 High level Symbolic Programming Languages such as LISt Programming (LISP) and 

PROgrammation en LOGique (PROLOG).  Large databases. 
 Tools − They reduce the effort and cost involved in developing an expert system to large 

extent. 
o Powerful editors and debugging tools with multi-windows. 



o They provide rapid prototyping o Have Inbuilt definitions of model, knowledge 
representation, and inference design. 

 Shells − A shell is nothing but an expert system without knowledge base.  
 A shell provides the developers with knowledge acquisition, inference engine, user 

interface, and explanation facility. For example, few shells are given below − o Java 
Expert System Shell (JESS) that provides fully developed Java API for creating an expert 
system. 

o Vidwan, a shell developed at the National Centre for Software Technology, 
Mumbai in 1993. It enables knowledge encoding in the form of IF-THEN rules. 

 
Representing and Using Domain Knowledge 
Expert systems are complex AI programs. The most widely used way of representing domain 
knowledge in expert systems is as a set of production rules, which are often coupled with a 
frame system that defines the objects that occur in the rules.  
 
MYCIN is one example of an expert system rule.  All the rules we show are English versions of 
the actual rules that the systems use.  
 
 RI (sometimes are called XCON) is a program that configures DEC VAX systems. Its 

rules look like this: 

 
Notice that RI’s rules, unlike MYCIN’s, contain no numeric measures of certainty. In the 
task domain with which RI deals, it is possible to state exactly the correct thing to be 
done in each particular set of circumstances. One reason for this is that there exists a 
good deal of human expertise in this area. Another is that since RI is doing a design task, 
it is not necessary to consider all possible alternatives; one good one is enough. As a 
result, probabilistic information is not necessary in RI.  

 
 PROSPECTOR is a program that provides advice on mineral exploration. Its rules look 

like this: 



 
In PROSPECTOR, each rule contains two confidence estimates. The first indicates the 
extent to which the presence of the evidence described in the condition part of the rule 
suggests the validity of the rule’s conclusion. In the PROSPECTOR rule shown above, 
the number 2 indicates that the presence of the evidence is mildly encouraging. The 
second confidence estimate measures the extent to which the evidence is necessary to 
the validity of the conclusion or stated another way, the extent to which the lack of the 
evidence indicates that the conclusion is not valid.  

 
 DESIGN ADVISOR is a system that critiques chip designs. Its rules look like: 

 
This gives advice to a chip designer, who can accept or reject the advice. If the advice is 
rejected,, the system can exploit a justification-based truth maintenance system to revise 
its model of the circuit. The first rule shown here says that an element should be criticized 
for poor resetability if the sequential level count is greater than two, unless its signal is 
currently believed to be resettable.  

 

Reasoning with the Knowledge 
Expert systems exploit many of the representation and reasoning mechanisms that we have 
seen. Because these programs are usually written primarily as rule-based systems, forward 
chaining, backward chaining, or some combination of the two is usually used. For example, 
MYCIN used backward chaining to discover what organisms were present; then it used forward 
chaining to reason from the organisms to a treatment regime. RI, on the other hand, used 
forward chaining. As the field of expert systems matures, more systems that exploit other kinds 
of reasoning mechanisms are being developed. The DESIGN ADVISOR is an example of such a 
system; in addition to exploiting rules, it makes extensive use of a justification-based truth 
maintenance system.  
 

EXPERT SYSTEM SHELLS 
Initially, each expert system that was built was created from scratch, usually in LISP. In 
particular, since the systems were constructed as a set of declarative representations combined 
with an interpreter for those representations, it was possible to separate the interpreter from the 
domainspecific knowledge and thus to create a system that could be used to construct new 
expert systems by adding new knowledge corresponding to the new problem domain. The 
resulting interpreters are called shells. One influential example of such a shell is EMYCIN (for 
empty MYCIN) which was derived from MYCIN. 
 



There are now several commercially available shells that serve as the basis for many of the 
expert systems currently being built. These shells provide much greater flexibility in representing 
knowledge and in reasoning with it than MYCIN did. They typically support rules, frames, truth 
maintenance systems, and a variety of other reasoning mechanisms.  
 

Early expert systems shells provided mechanisms for knowledge representation, reasoning and 
explanation. But as experience with using these systems to solve real world problem grew, it 
became clear that expert system shells needed to do something else as well. They needed to 
make it easy to integrate expert systems with other kinds of programs.  
 
EXPLANATION 
In order for an expert system to be an effective tool, people must be able to interact with it easily. 
To facilitate this interaction, the expert system must have the following two capabilities in 
addition to the ability to perform its underlying task: 
 Explain its reasoning:  

o In many of the domains in which expert systems operate, people will not accept 
results unless they have been convinced of the accuracy of the reasoning process 
that produced those results. This is particularly true, for example, in medicine, 
where a doctor must accept ultimate responsibility for a diagnosis, even if that 
diagnosis was arrived at with considerable help from a program.  

 Acquire new knowledge and modifications of old knowledge: 
o Since expert systems derive their power from the richness of the knowledge 

bases they exploit, it is extremely important that those knowledge bases be as 
complete and as accurate as possible. One way to get this knowledge into a 
program is through interaction with the human expert. Another way is to have the 
program learn expert behavior from raw data.  

 
KNOWLEDGE ACQUISITION 
How are expert systems built? Typically, a knowledge engineer interviews a domain expert to 
elucidate expert knowledge, when is then translated into rules. After the initial system is built, it 
must be iteratively refined until it approximates expert-level performance. This process is 
expensive and time-consuming, so it is worthwhile to look for more automatic ways of 
constructing expert knowledge bases.  
 

While no totally automatic knowledge acquisition systems yet exist, there are many programs 
that interact with domain experts to extract expert knowledge efficiently. These programs provide 
support for the following activities: 
 Entering knowledge 
 Maintaining knowledge base consistency 
 Ensuring knowledge base completeness 

 
The most useful knowledge acquisition programs are those that are restricted to a particular 
problem-solving paradigm e.g. diagnosis or design. It is important to be able to enumerate the 
roles that knowledge can play in the problem-solving process. For example, if the paradigm is 



diagnosis, then the program can structure its knowledge base around symptoms, hypotheses 
and causes. It can identify symptoms for which the expert has not yet provided causes.  
 

Since one symptom may have multiple causes, the program can ask for knowledge about how to 
decide when one hypothesis is better than another. If we move to another type of 
problemsolving, say profitably interacting with an expert.  
MOLE (Knowledge Acquisition System) 
It is a system for heuristic classification problems, such as diagnosing diseases. In particular, it is 
used in conjunction with the cover-and-differentiate problem-solving method. An expert system 
produced by MOLE accepts input data, comes up with a set of candidate explanations or 
classifications that cover (or explain) the data, then uses differentiating knowledge to determine 
which one is best. The process is iterative, since explanations must themselves be justified, until 
ultimate causes the ascertained.  
 
MOLE interacts with a domain expert to produce a knowledge base that a system called MOLE-p 
(for MOLE-performance) uses to solve problems. The acquisition proceeds through several 
steps: 

1. Initial Knowledge base construction. 
MOLE asks the expert to list common symptoms or complaints that might require 
diagnosis. For each symptom, MOLE prompts for a list of possible explanations. 
MOLE then iteratively seeks out higher-level explanations until it comes up with a 
set of ultimate causes. During this process, MOLE builds an influence network 
similar to the belief networks.  
The expert provides covering knowledge, that is, the knowledge that a 
hypothesized event might be the cause of a certain symptom.  

2. Refinement of the knowledge base. 
MOLE now tries to identify the weaknesses of the knowledge base. One approach 
is to find holes and prompt the expert to fill them. It is difficult, in general, to know 
whether a knowledge base is complete, so instead MOLE lets the expert watch 
MOLE-p solving sample problems. Whenever MOLE-p makes an incorrect 
diagnosis, the expert adds new knowledge. There are several ways in which 
MOLE-p can reach the wrong conclusion. It may incorrectly reject a hypothesis 
because it does not feel that the hypothesis is needed to explain any symptom.  

 

MOLE has been used to build systems that diagnose problems with car engines, problems in 
steelrolling mills, and inefficiencies in coal-burning power plants. For MOLE to be applicable, 
however, it must be possible to preenumerate solutions or classifications. It must also be 
practical to encode the knowledge in terms of covering and differentiating.   
 

One problem-solving method useful for design tasks is called propose-and-revise. Propose-
andrevise systems build up solutions incrementally. First, the system proposes an extension to 
the current design. Then it checks whether the extension violates any global or local constraints. 
Constraints violations are then fixed, and the process repeats.  
 

SALT Program 



The SALT program provides mechanisms for elucidating this knowledge from the expert. Like 
MOLE, SALT builds a dependency network as it converses with an expert. Each node stands for 
a value of a parameter that must be acquired or generated. There are three kinds of links: 
 Contributes-to: Associated with the first type of link are procedures that allow SALT to 

generate a value for one parameter based on the value of another.  
 Constraints: Rules out certain parameter values.  
 Suggests-revision-of: points of ways in which a constraint violation can be fixed.  

 
SALT uses the following heuristics to guide the acquisition process: 

1. Every non-input node in the network needs at least one contributes-to link coming into it. 
If links are missing, the expert is prompted to fill them in.  

2. No contributes-to loops are allowed in the network. Without a value for at least one 
parameter in the loop, it is impossible to compute values for any parameter in that loop. If 
a loop exists, SALT tries to transform one of the contributes-to links into a constraints link.  

3. Constraining links should have suggests-revision-of links associated with them. These 
include constraints links that are created when dependency loops are broken.  

 
Control Knowledge is also important. It is critical that the system propose extensions and 
revisions that lead toward a design solution. SALT allows the expert to rate revisions in terms of 
how much trouble they tend to produce.  
 
SALT compiles its dependency network into a set of production rules. As with MOLE, an expert 
can watch the production system solve problems and can override the system’s decision. At the 
point, the knowledge base can be changes or the override can be logged for future inspection.  
 
  


