


 

Mr.Santosh Hiremath                                    Advanced Java Page 2 
 

1. Enumerations: 

 Enumerators contain a list of constant values that apply to a certain type of data, 

or object. 

 They can be useful in setting a scope of values for a particular object. 

 An enumeration defines a class type. 

 An enumeration can have constructors, methods, and instance variables. 
 

 An enum is actually a new type of class. 
 

 You can declare them as inner classes or outer classes. 
 

 You can declare variables of an enum type. 
 

 Each declared value is an instance of the enum class. 
 

 Enums are implicitly public, static, and final. 
 

 enums extend java.lang.Enum and implement java.lang.Comparable. 
 

 Supports equals, “==”, compareTo, ordinal, etc. 
 

 Enums override toString() and provide valueOf(é), name(). 

Points to remember for Java Enum 

 enum improves type safety 

 enum can be easily used in switch 

 enum can be traversed 

 enum can have fields, constructors and methods 

 enum may implement many interfaces but cannot extend any class because it 

internally extends Enum class 

 
 

1.1 Enumeration fundamentals : 

enumeration is a special kind of class that includes a list of constant values.  The values 

in the enumeration list define the values an object can have 

Creating Enumerations 

 

 When creating an enumeration list, we don't use the keyword class and when you 

create a enumeration object, we don't use the keyword new  

 To create an enumeration list we need to import java.util.Enumeration 

 An enumeration is created using the enum keyword followed by the variable 

Name we want associated with the list 

Syntax: 

public enum variableName{ 

    ITEM1 



http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+unknown
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+unknown




 

Mr.Santosh Hiremath                                    Advanced Java Page 5 
 

 public static void main( String args[] ) 

 { 

   Gender s=Gender.FEMALE; 

  if(s==Gender.MALE) 

   System.out.println("Both are not equal"); 

 

} 

} 

program 2: To find Smallest of given number. 

enum Value { 

  a(10), b(20); 

   

  int a1; 

  int getValue(){ return a1;} 

  Value(int value) 

  { 

   this.a1=value; 

  } 

 } 

 

class Enu 

{ 

 public static void main( String args[] ) 

 { 

   int s=Value.a.getValue(); 

  

  if(s<Value.b.getValue()) 

   System.out.println("a value is small"); 

} 

}   

2)if else: The Java if-else statement also tests the condition. It executes the if block if condition is true 

otherwise else block is executed. 

Syntax: if(condition)  //code if condition is true   

else   

 //code if condition is false   

 } 

program 1: 

enum Gender { 

  MALE, FEMALE, UNKNOWN; 

   



 

Mr.Santosh Hiremath                                    Advanced Java Page 6 
 

   

 } 

 

class cont 

{ 

 public static void main( String args[] ) 

 { 

   Gender s=Gender.FEMALE; 

  if(s==Gender.MALE) 

   System.out.println("both are equal"); 

  else 
   System.out.println("Both are not equal"); 

   

  } 

 } 

output: Both are not equal 

 

Program 2:To find Smallest of two numbers 

 

 enum Value { 

  a(10), b(20); 

   

  int a1; 

  int getValue(){ return a1;} 

  Value(int value) 

  { 

   this.a1=value; 

  } 

 } 

 

class Enu 

{ 

 public static void main( String args[] ) 

 { 

   int s=Value.a.getValue(); 

  

  if(s<Value.b.getValue()) 

   System.out.println("a value is small"); 

  else  
   System.out.println("b value is small"); 

   

   

 } 

} 

output: a value is small 

 



 

Mr.Santosh Hiremath                                    Advanced Java Page 7 
 

3)else if: 

This statement perform a task depending on whether a condition  is  true or false.  

Syntex: if(condition ) 

             Statement 

  Else if(condition) 

  Statement 

 Else  

Statement 

 

 

program 1: 

enum Gender { 

  MALE, FEMALE, UNKNOWN; 

   

   

 } 

 

class cont 

{ 

 public static void main( String args[] ) 

 { 

   Gender s=Gender.FEMALE; 

  if(s==Gender.MALE) 

   System.out.println("both are equal"); 

  else if (s==Gender.UNKNOWN) 

   System.out.println("Both are  equal"); 

  else 
   System.out.println("Both are not equal"); 

   

   

 } 

} 

program 2: 

 

 enum Value { 

  a(10), b(20), c(30); 

   

  int a1; 

  int getValue(){ return a1;} 





 

Mr.Santosh Hiremath                                    Advanced Java Page 9 
 

   

   

 } 

 

class cont 

{ 

 public static void main( String args[] ) 

 { 

   Gender s=Gender.FEMALE; 

  switch(s) 

  { 

  case MALE:System.out.print("Gender is mail"); 

              break; 

  case FEMALE:System.out.print("Gender is femail"); 

  break; 

  case UNKNOWN:System.out.print("Gender is unknown"); 

   

  break; 

  default:System.out.print("NON of these"); 

  } 

 } 

} 

output: Gender is femail 

Java’s Iteration Statements: Javaôs iteration statements are for, while and do-while. These 

statements are used to repeat same set of instructions specified number of times called loops 

Types of looping statements are: 

1)while 

2)do while 

3)for 

1) while Loop: while loop repeats a group of statements as long as condition is true. Once  

the condition is false, the loop is terminated. In while loop, the condition is tested first; if  

it is true, then only the statements are executed. while loop is called as entry control loop.  

Syntax:  while (condition)  

    {  

      statements;  

    } 

Program: To find Sum of given number: 

 



 

Mr.Santosh Hiremath                                    Advanced Java Page 10 
 

 enum Value { 

  NUM(10); 

   

  int a1; 

  int getValue(){ return a1;} 

  Value(int value) 

  { 

   this.a1=value; 

  } 

 } 

 

class Enu 

{ 

 public static void main( String args[] ) 

 { 

  int n=Value.NUM.getValue(); 

  int sum=0,i=0; 

  while( i<n) 

  { 

   sum+=i; 

   i++; 

  } 

  System.out.println("sum of given number is="+sum); 

} 

} 

output: sum of given number is=45 

2)do while Loop: doéwhile  loop  repeats a group of  statements as  long as condition  is  

true. In do...while loop, the statements are executed first and then the condition is tested.  

doéwhile loop is also called as exit control loop.  

Syntax:  do  

    {  

      statements;  

    } while (condition);  

Program: To find sum of given number: 

 

 enum Value { 

  NUM(10); 

   

  int a1; 

  int getValue(){ return a1;} 

  Value(int value) 



 

Mr.Santosh Hiremath                                    Advanced Java Page 11 
 

  { 

   this.a1=value; 

  } 

 } 

 

class Enu 

{ 

 public static void main( String args[] ) 

 { 

  int n=Value.NUM.getValue(); 

  int sum=0,i=0; 

  do 
  { 

   sum+=i; 

   i++; 

  }while( i<n); 

  System.out.println("sum of given number is="+sum); 

} 

} 

output: sum of given number is=45 

3.for Loop: The for loop is also same as doéwhile or while loop, but it is more compact 

syntactically.  The for loop executes a group of statements as long as a condition is true.  

Syntax:  for (expression1; expression2; expression3)  

    {    statements;  

    }  

Here,  expression1  is  used  to  initialize  the  variables,  expression2  is  used  for  condition  

checking and expression3 is used for increment or decrement variable value.  

program : To find the sum of given number. 

 

 enum Value { 

  NUM(10); 

   

  int a1; 

  int getValue(){ return a1;} 

  Value(int value) 

  { 

   this.a1=value; 

  } 

 } 

 

class Enu 



 

Mr.Santosh Hiremath                                    Advanced Java Page 12 
 

{ 

 public static void main( String args[] ) 

 { 

  int n=Value.NUM.getValue(); 

  int sum=0; 

  for(int i=0;i<n;i++) 

  { 

   sum+=i; 

  } 

  System.out.println("sum of given number is="+sum); 

} 

} 

output: sum of given number is=45 

2. Java Enumerations Are Class Types 

 Enumerations in Java can have methods, members and constructors just as any other class 

can have. 

 Each enumeration constant is an object of its enumeration type.  

 Thus, when you define a constructor for an enum, the constructor is called when each 

enumeration constant is created.  

 Also, each enumeration constant has its own copy of any instance variables defined by 

the enumeration. 

 the enum constants have initial value that starts from 0, 1, 2, 3 and so on. But we can 

initialize the specific value(default value) to the enum constants by defining fields and 

constructors. 

Syntax:     

enum variableName 

{ 

 ITEM1(1), ITEM2(20), ITEM3(30);  

data-typevariableName; 

             data-type methodName()  

            { statement;} 

enumName (parameter-list) { 

statements; 

} 

                                    } 

Progarm: 

enum Value { 

  A(10), B(20), C(30); 

   

  int a; 

  int getValue(){ return a;} 







 

Mr.Santosh Hiremath                                    Advanced Java Page 15 
 

  } 

   

    }} 

 

output: 

January:31 

February:28 

March:31 

April:30 

May:31 

June:30 

July:31 

August:31 

September:30 

October:31 

November:30 

December:31 

 

2.ValueOf(): 

 method returns the enumeration constant whose value corresponds to the string 

passed in str. 

 method takes a single parameter of the constant name to retrieve and returns the constant 

from the enumeration, if it exists. 

Syntax:  enumerationVariable = enumerationName.valueOf("EnumerationValueInList"); 

Example 

 

WeekDays wd = WeekDays.valueOf("MONDAY"); 

System.out.println(wd); 

program: 

enum Days { 

  monday,tuesday; 

   

   

 } 

 

class cont 

{ 

 public static void main( String args[] ) 

 { 

  Days d=Days.valueOf("monday"); 

  System.out.println("day selected is:"+d); 

 } 

} 

output: day selected is:Monday 

 



 

Mr.Santosh Hiremath                                    Advanced Java Page 16 
 

Note: An enumeration cannot inherit another class and an enum cannot be a superclass for other 

class. 

 

4.Enumerations Inherit Enum: 

All enumerations in Java inherit the Enum class, java.lang.Enum, which provide a set of 

methods for all enumerations.  The four mentioned here are ordinal( ) and compareTo( 

),equals() and toString(). 

1.ordinal(): 

 Returns the value of the constant's position in the list (the first constant has a position 

of zero). 

 The ordinal value provides the order of the constant in the enumeration, starting with 

0 

Example 

 

WeekDays wd = WeekDays.MONDAY; 

System.out.println(wd.ordinal()); 

 

 

program: To find index of Enum List. 

 

enum Days { 

  mon,tue,wed; 

  } 

class cont 

{ 

 public static void main( String args[] ) 

 { 

  Days wd = Days.mon; 

  System.out.println("Index of list:"+wd.ordinal()); 

 } 

} 

output: Index of list:0 

 

Program 2: Using foreach loop 

enum Days { 

  mon,tue,wed; 

  } 

class cont 

{ 

 public static void main( String args[] ) 

 { 

  Days wd[] = Days.values(); 

  for(Days w:wd) 





 

Mr.Santosh Hiremath                                    Advanced Java Page 18 
 

3.equals(): 

 method returns true if the specified object is equal to this enum constant. 

public final boolean equals(Object other) 

 where other ī This is the object to be compared for equality with this object. 

 This method returns true if the specified object is equal to this enum constant 

 Example: 

 enum Days { 

  mon,tue,wed; 

  } 

class cont 

{ 

 public static void main( String args[] ) 

 { 

  Days d1,d2,d3; 

  d1=Days.mon; 

  d2=Days.tue; 

  d3=Days.wed; 

System.out.println(d1.equals(d2)); 

System.out.println(d2.equals(d3)); 

System.out.println(d2.equals(d2)); 

} 

} 

Output: 

false 

false 

true 

4.toString(): 

method returns the name of this enum constant, as contained in the declaration. 

public String toString() 

This method returns the name of this enum constant. 

Example: 

enum Days { 

  mon,tue,wed; 

  } 

class cont 

{ 

 public static void main( String args[] ) 

 { 

  Days d1,d2,d3; 

  d1=Days.mon; 

  d2=Days.tue; 

  d3=Days.wed; 

System.out.println(d1.toString()); 

System.out.println(d2. toString()); 

System.out.println(d3. toString()); 

} 



 

Mr.Santosh Hiremath                                    Advanced Java Page 19 
 

} 

Output: mon tue wed 

4.Type wrappers: 

 Java uses primitive types (also called simple types), such as int or double, to 

hold the basic data types supported by the language. 

• Instead of primitive types if objects are used everywhere for even simple 

calculations then performance overhead is the problem. 

• So to avoid this java had used primitive types. 

• So primitive types do not inherit Object class 

• But there are times when you will need an object representation for 

primitives like int and char. 

• Example, you canôt pass a primitive type by reference to a method. 

• Many of the standard data structures implemented by Java operate on objects, 

which mean that you canôt use these data structures to store primitive types. 

• To handle these (and other) situations, Java provides type wrappers, which 

are classes that encapsulate a primitive type within an object. 
 

 

The type wrappers are : 
 

 

Double, Float, Long, Integer, Short, Byte, 

Character, and Boolean. 
 

 
Character: 

• Character is a wrapper around a char. 

• The constructor for Character is Character(char ch) here ch is a character 

variable whose values will be wrapped to character object by the wrapper class 
 

• To obtain the char value contained in a Character object, call charValue( ), shown 

here: 

char charValue( )     

                         It returns the encapsulated character. 

Boolean 

 Boolean is a wrapper around boolean values. It defines these constructors: 

                                                    Boolean(boolean boolValue) 

                                                    Boolean(String boolString) 

 In the first version, boolValue must be either true or false. In the second version, if 

boolString contains the string "true" (in uppercase or lowercase), then the new Boolean 

object will be true. Otherwise, it will be false. 

 To obtain a boolean value from a Boolean object, use booleanValue( ), shown here:    



 

Mr.Santosh Hiremath                                    Advanced Java Page 20 
 

                             boolean booleanValue( ) 

 It returns the boolean equivalent of the invoking object. 

The Numeric Type Wrappers 

 The most commonly used type wrappers are those that represent numeric values. These 

are Byte, Short, Integer, Long, Float, and Double. All of the numeric type wrappers 

inherit the abstract class Number.  

 Number declares methods that return the value of an object in each of the different 

number formats. These methods are shown here: 

1. byte byteValue( )  

2. double doubleValue( ) 

3. float floatValue( ) 

4. int intValue( )  

5. long longValue( ) 

6. short shortValue( ) 

 doubleValue( ): returns the value of an object as a double 

 floatValue( ): returns the value as a float, and so on.  

 All of the numeric type wrappers define constructors that allow an object to be 

constructed from a given value, or a string representation of that value. For example, here 

are the constructors defined for Integer: 

     Integer(int num) Integer(String str) 

 If str does not contain a valid numeric value, then a NumberFormatException is 

thrown. All of the type wrappers override toString( ). It returns the human-readable form 

of the value contained within the wrapper. This allows you to output the value by passing 

a type wrapper object to println( ), for example, without having to convert it into its 

primitive type. 

Program : All wrapper class 

class Wrap { 

public static void main(String args[]) { 

 

Character c=new Character('@'); // character type 

char c1=c.charValue(); 

System.out.println("Character wrapper class"+c1); 

 

Boolean b=new Boolean(true); 

boolean b1=b.booleanValue(); 

System.out.println("Boolean wrapper class"+b1); 



 

Mr.Santosh Hiremath                                    Advanced Java Page 21 
 

 

  

Integer i1 = new Integer(100);  // integre type 

int i = i1.intValue(); 

System.out.println("Integer wrapper class"+i); // displays 100 100 

 

Float f1 = new Float(12.5);  // Float type 

float f = f1.floatValue(); 

System.out.println("Float wrapper class"+f); 

 

} 

} 

output: 

Character wrapper class@ 

Boolean wrapper classtrue 

Integer wrapper class100 

Float wrapper class12.5 

 

Autoboxing 

 

 Autoboxing is the process by which a primitive type is automatically encapsulated 

(boxed) into its equivalent type wrapper whenever an object of that type is needed. 

There is no need to explicitly construct an object. 

 For example, converting int to Integer class. The Java compiler applies autoboxing 

when a primitive value is: 

 Passed as a parameter to a method that expects an object of the corresponding  

wrapper class. 

 Assigned to a variable of the corresponding wrapper class. 

 Auto-unboxing is the process by which the value of a boxed object is automatically 

extracted(unboxed) from a type wrapper when its value is needed. There is no need 

to call a method such as intValue( ) or doubleValue( ). 

 For example conversion of Integer to int. The Java compiler applies unboxing when an 

object of a wrapper class is: 

 Passed as a parameter to a method that expects a value of the corresponding 

primitive type. 

 Assigned to a variable of the corresponding primitive type. 

Uses of Autoboxing and Unboxing 

• Useful  in  removing  the  difficulty  of  manually  boxing  and  unboxing  

values  in  several algorithms. 

•    it is very important to generics, which operates only on objects. 

•    It also helps prevent errors. 

•    autoboxing makes working with the Collections Framework 

• here is the modern way to construct an Integer object that 

http://www.geeksforgeeks.org/wrapper-classes-java/
http://www.geeksforgeeks.org/wrapper-classes-java/






 

Mr.Santosh Hiremath                                    Advanced Java Page 24 
 

//    Autobox/unbox a char. 

    Character ch = 'x'; // box a char 

    char ch2 = ch; // unbox a char 

    System.out.println("ch2 is " + ch2); 

 

} 

} 

output: 

b is true 

ch2 is x 
 

Autoboxing/Unboxing Helps Prevent Errors: 

 Autoboxing always creates the proper object and auto unboxing always produce the 

proper value. 

 There is no wayfor the process to produce the wrong type of object or value. 

Program: 
class auto { 

public static void main(String args[]) { 

 

Integer iOb = 1000; // autobox the value 1000 

int i = iOb.byteValue(); // manually unbox as byte !!! 

System.out.println("unbox value:"+i); // does not display 1000 ! 

} 

} 

output: 

unbox value:-24 

 This program displays not the expected value of 1000, but ï24! The reason is that 

the value inside iOb is manually unboxed by calling byteValue( ), which causes the 

truncation of the value stored in iOb, which is 1,000. 

 This results in the garbage value of ï24 being assigned to i. 

 Auto-unboxing prevents this type of error because the value in iOb will always 

autounbox into a value compatible with int. 

 

A Word of Warning: 

Because of autoboxing and auto-unboxing, some might be tempted to use objects such as 

Integer or Double exclusively, abandoning primitives altogether. 

Double a, b, c; 

a = 10.0; 
 

b = 4.0; 
 

c = Math.sqrt(a*a + b*b); 
 

System.out.println("Hypotenuse is " + c); 

 



 

Mr.Santosh Hiremath                                    Advanced Java Page 25 
 

 

 

Annotation : 

 Java Annotation is a tag that represents the metadata i.e. attached with class, interface, 

methods or fields to indicate some additional information which can be used by java 

compiler and JVM. 

 Annotations in java are used to provide additional information, so it is an alternative 

option for XML and java marker interfaces 

What’s the use of Annotations? 

1) Instructions to the compiler: There are three built-in annotations available in Java 

(@Deprecated, @Override & @SuppressWarnings) that can be used for giving certain 

instructions to the compiler. For example the @override annotation is used for instructing 

compiler that the annotated method is overriding the method.  

2) Compile-time instructors: Annotations can provide compile-time instructions to the compiler 

that can be further used by sofware build tools for generating code, XML files etc. 

3) Runtime instructions: We can define annotations to be available at runtime which we can 

access using java reflection and can be used to give instructions to the program at runtime.  

Annotation basics 

 An annotation is created through a mechanism based on the interface. 

 A Java annotation in its shortest form looks like this:  

Systex:  @interface MyAnno 

 

 The @ that precedes the keyword interface. This tells the compiler that an annotation 

type is being declared  The name following the @interface character is the name of the 

annotation. 

 All annotations consist solely of method declarations.  

 However, you donôt provide bodies for these methods. Instead, Java implements these 

methods. Moreover, the methods act much like fields. 

 Annotations can be applied to the classes, interfaces, methods and fields. For example the 

below annotation is being applied to the method. 

@Override 

void myMethod() {  

    //Do something  

} 

 An annotation cannot include an extends clause. However, all annotation types 

automatically extend the Annotation interface. Thus, Annotation is a super-interface of 

http://docs.oracle.com/javase/tutorial/reflect/




 

Mr.Santosh Hiremath                                    Advanced Java Page 27 
 

 

Example: 

@Retention(RetentionPolicy.RUNTIME)  

@interface MyAnno { 

 String str(); int val(); 

 } 

 

Obtaining Annotations at Run Time by Use of Reflection: 
 Reflection is the feature that enables information about a class to be obtained at 

run time. The reflection API is contained in the java.lang.reflect package.  

 The first step to using reflection is to obtain a Class object that represents the 

class whose annotations you want to obtain. Class is one of Javaôs built-in classes 

and is defined in java.lang. There are various ways to obtain a Class object. One 

of the easiest is to call getClass( ), which is a method defined by Object. Its 

general form is shown here:  

final Class<?> getClass( ) 

 It returns the Class object that represents the invoking object. 

 After you have obtained a Class object, you can use its methods to obtain information 

about the various items declared by the class, including its annotations Class supplies 

(among others) the getMethod( ), getField( ), and getConstructor( ) methods, which 

obtain information about a method, field, and constructor, respectively. These methods 

return objects of type Method, Field, and Constructor. 

Method getMethod(String methName, Class<?> ... paramTypes) 

 From a Class, Method, Field, or Constructor object, you can obtain a specific 

annotation associated with that object by calling getAnnotation( ). 

               <A extends Annotation> getAnnotation(Class<A> annoType) 

 

Program: 

import java.lang.annotation.*; 

 

import java.lang.reflect.*; 

  @Retention(RetentionPolicy.RUNTIME) @interface MyAnno { 



 

Mr.Santosh Hiremath                                    Advanced Java Page 28 
 

String str(); int val(); 

 

} 

class annu { 

 

@MyAnno(str = "This is Retention method", val = 100) 

 

public static void show() {  

 annu ob = new annu(); 

     try { 

Class<?> c = ob.getClass(); 

Method m = c.getMethod("show"); 

 

     MyAnno anno = m.getAnnotation(MyAnno.class); 

     System.out.println(anno.str() + " " + anno.val()); 

} catch (NoSuchMethodException exc) { 

 

System.out.println("Method Not Found."); 

} 

} 

public static void main(String args[]) { show(); 

} 

} 

OUTPUT: 

This is Retention method  100 

 

Program 2: Passing an argument to the method. 

import java.lang.annotation.*; 

import java.lang.reflect.*; 

 

@Retention(RetentionPolicy.RUNTIME) 

 

@interface MyAnno { 

String str(); int val(); 

} 

class mymethod { 

 

 @MyAnno(str = "Two Parameters", val = 19) 

 

public static void myMeth(String str, int i) 

{ 

mymethod ob = new mymethod(); 

 

try {            



 

Mr.Santosh Hiremath                                    Advanced Java Page 29 
 

 

Class<?>    c = ob.getClass(); 

 

Method m   = c.getMethod("myMeth",       String.class, int.class); 

 

MyAnno anno = m.getAnnotation(MyAnno.class); 

 

System.out.println(anno.str() + " " + anno.val());  

}  

catch (NoSuchMethodException exc) { 

System.out.println("Method Not Found."); 

 

} 

} 

public static void main(String args[]) { myMeth("test", 10); 

} 

OUTPUT: 

Two Parameters 19 

 

 

The Annotated Element Interface: 

 The methods getAnnotation( ) and getAnnotations( ) are defined by the 

AnnotatedElement interface, which is defined in java.lang.reflect.  

 This interface supports reflection for annotations and is implemented by the classes 

Method,Field, Constructor, Class, and Package, among others. 

 In addition to getAnnotation( ) and getAnnotations( ), AnnotatedElement defines 

several other methods. 

 getDeclaredAnnotations( ) 

 isAnnotationPresent( ) 

 getDeclaredAnnotation( ),  

 getAnnotationsByType( ),  

 getDeclaredAnnotationsByType( ).  

 





 

Mr.Santosh Hiremath                                    Advanced Java Page 31 
 

} 

} 

output: 

@MyAnno(str=This is Retention method and  value  is , val=100) 

isAnnotationPresent( ): 

 Method returns true if an annotation for the specified type is present on this element, else 

false. This method is designed primarily for convenient access to marker annotations. 

Syntax: public boolean isAnnotationPresent(Class<? extends Annotation> 

annotationClass) 

Program: 

import java.lang.annotation.*; 

 

import java.lang.reflect.*; 

 

@Retention(RetentionPolicy.RUNTIME) @interface MyAnno { 

String str(); int val(); 

 

} 

class annu { 

 

@MyAnno(str = "This is Retention method and  value  is ", val = 100) 

 

public static void main(String args[]) {  

 

Package[] pack = Package.getPackages(); 

 

 

// check if annotation hello exists 

for (int i = 0; i < pack.length; i++) { 

   System.out.println("" + pack[0].isAnnotationPresent(MyAnno.class)); 

} 

} 



 

Mr.Santosh Hiremath                                    Advanced Java Page 32 
 

OUTPUT: Falseé. 

 

getDeclaredAnnotation( ): 

Method returns this element's annotation for the specified type if such an annotation is present, 

else null.This methods throws an exception 

 NullPointerException ī if the given annotation class is null 

 IllegalMonitorStateException ī if the current thread is not the owner of the object's 

monitor. 

Syntax: public <A extends Annotation> A getAnnotation(Class<A> annotationClass) 

Program: 

import java.lang.annotation.*; 

import java.lang.reflect.*; 

  @Retention(RetentionPolicy.RUNTIME) @interface MyAnno { 

String str(); int val(); 

} 

class annu { 

@MyAnno(str = "This is Retention method and  value  is ", val = 100) 

 

public static void show() {  

 annu ob = new annu(); 

 

     try { 

Class<?> c = annu.class; 

Method m = c.getMethod("show"); 

    MyAnno anno = m.getAnnotation(MyAnno.class); 

     System.out.println(anno.str() + " " + anno.val()); 

} catch (NoSuchMethodException exc) { 

 

System.out.println("Method Not Found."); 

} 

} 

public static void main(String args[]) { show(); 

} 

} 



 

Mr.Santosh Hiremath                                    Advanced Java Page 33 
 

output: 

This is Retention method and  value  is  100 

getAnnotationsByType( ): 

Returns annotations that are associated with this element. If there are no annotations associated 

with this element, the return value is an array of length 0. 

program: 

import java.lang.annotation.Repeatable; 

import java.lang.annotation.Retention; 

import java.lang.annotation.RetentionPolicy; 

 

@Retention(RetentionPolicy.RUNTIME) 

@interface LogHistory { 

  Log[] value(); 

} 

@Repeatable(LogHistory.class) 

@interface Log { 

  String date(); 

  String comments(); 

} 

 

@Log(date = "02/01/2014", comments = "A") 

@Log(date = "01/22/2014", comments = "B") 

 

public class HelloWorld { 

  public static void main(String[] args) { 

    Class<HelloWorld> mainClass = HelloWorld.class; 

 

    Log[] annList = mainClass.getAnnotationsByType(Log.class); 

    for (Log log : annList) { 

      System.out.println("Date=" + log.date() + ", Comments=" + log.comments()); 

    } 

} 

} 

output: 

Date=02/01/2014, Comments=A                                                                                                       

                                        

Date=01/22/2014, Comments=B 





 

Mr.Santosh Hiremath                                    Advanced Java Page 35 
 

 

 

Using Default Values: 

we can give annotation members default values that will be used if no value is specified when 

the annotation is applied. A default value is specified by adding a default clause to a memberôs 

declaration. It has this general form: 

type member( ) default value ; 

Program: 

import java.lang.annotation.*; 

import java.lang.reflect.*; 

import java.lang.annotation.*; 

@Retention(RetentionPolicy.RUNTIME) 

@interface MyINF { 

String str() default "WELCOME"; 

int val() default 5; 

 

} 

class annu { 

@MyINF() 

public static void myMeth() { 

annu ob = new annu(); 

try { 

Class<?> c = ob.getClass(); 

Method m = c.getMethod("myMeth"); 

MyINF anno = m.getAnnotation(MyINF.class); 

System.out.println(anno.str() + " " + anno.val());  

} 

catch (NoSuchMethodException exc) { 

System.out.println("Method Not Found."); 

} 

} 

public static void main(String args[]) { 

myMeth(); 

} 

} 





 

Mr.Santosh Hiremath                                    Advanced Java Page 37 
 

MyMarker is present 

 

Single-Member Annotations: 

 A single-member annotation contains only one member. It works like a normal 

annotation except that it allows a shorthand form of specifying the value of the member. 

When only one member is present, you can simply specify the value for that member 

when the annotation is appliedðyou donôt need to specify the name of the member. 

However, 

 In order to use this shorthand, the name of the member must be value. Here is an 

example that creates and uses a single-member annotation: 

Syntax: 

public @interface Example{ 

 

  String showSomething(); 

 

   } 

Program: 

import java.lang.annotation.*; 

import java.lang.reflect.*; 

import java.lang.annotation.*; 

@Retention(RetentionPolicy.RUNTIME) 

@interface MyINF { 

//String str() ; 

 int value(); 

} 

class annu { 

@MyINF(100) 

public static void myMeth() { 

annu ob = new annu(); 

try { 

Class<?> c = ob.getClass(); 

Method m = c.getMethod("myMeth"); 

MyINF anno = m.getAnnotation(MyINF.class); 



 

Mr.Santosh Hiremath                                    Advanced Java Page 38 
 

System.out.println(anno.value());  

} 

catch (NoSuchMethodException exc) { 

System.out.println("Method Not Found."); 

} 

} 

public static void main(String args[]) { 

myMeth(); 

} 

} 

output: 

100 

The Built-In Annotations: 

 Java defines seven built-in annotations out of which three (@Override, @Deprecated, 

and @SuppressWarnings) are applied to Java code and they are included in java.lang 

library. These three annotations are called regular Java annotations.  

 Rest four (@Retention, @Documented, @Target, and @Inherited) are applied to other 

annotations and they are included in java.lang.annotation library. These annotations are 

called meta Java annotations. 

Annotation Name Applicable To Use Included in 

Java Annotations Applied to Java code 

@Override 
Member 

Methods 

Checks that this method 

overrides a method from its 

superclass 

java.lang 

@Deprecated 
All annotable 

items 
Marks item as deprecated java.lang 

@SuppressWarnings 

All annotable 

items except 

packages and 

annotations 

Suppress warning of given 

type 
java.lang 

Java Annotations Applied to Other Annotations 

@Retention Annotations 
Specifies how long this 

annotation is retained - 
java.lang.annotation 



 

Mr.Santosh Hiremath                                    Advanced Java Page 39 
 

whether in code only, 

compiled into the class, or 

available at run time through 

reflection. 

@Documented Annotations 

Specifies that this annotation 

should be included in the 

documentation of annotated 

items 

java.lang.annotation 

@Target Annotations 
Specifies the items to which 

this annotation can be applied 
java.lang.annotation 

@Inherited Annotations 

Specifies that this annotation, 

when applied to a class, is 

automatically inherited by its 

subclasses. 

java.lang.annotation 

@Override: 

 @Override is a marker annotation that can be used only on methods. A method annotated with 

@Override must override a method from a superclass. If it doesnôt, a compile-time error will 

result. It is used to ensure that a superclass method is actually overridden, and not simply 

overloaded 

Example: 

public class Animal { 

  

    public void makeSound(){ 

          

    } 

} 

  

class Cat extends Animal{ 

      

    @Override 

    public void makeSound(){ 

        System.out.println("myyyyyaaawwwwww"); 

    } 

} 



 

Mr.Santosh Hiremath                                    Advanced Java Page 40 
 

@Deprecated 

Use this annotation on methods or classes which you need to mark as deprecated. Any class that 

will try to use this deprecated class or method, will get a compiler ñwarningñ. 

@Deprecated public Integer myMethod() 

{ 

    return null; 

} 

@SuppressWarnings 

This annotation instructs the compiler to suppress the compile time warnings specified in the 

annotation parameters. e.g. to ignore the warnings of unused class attributes and methods use 

@SuppressWarnings("unused") either for a given attribute or at class level for all the unused 

attributes and unused methods. 

@SuppressWarnings("unused") 

public class DemoClass 

{ 

     //@SuppressWarnings("unused") 

     private String str = null;      

        //@SuppressWarnings("unused") 

     private String getString(){ 

        return this.str; 

     } 

} 

@Target Java Annotation 

 While defining a custom Java annotation we have to specify which element (class, 

method, field, constructor etc.) this newly defined annotation would be applicable on. 

The @Target annotation is used for that purpose to set the target elements on which the 

custom annotation can be applied 



 

Mr.Santosh Hiremath                                    Advanced Java Page 41 
 

 The possible values of elements for @Target annotation. They belong to the enumerated 

type ElementType. 

Element Type Annotation Applies To 

ANNOTATION_TYPE Annotation type declarations 

PACKAGE Packages 

TYPE Classes (including enum) and interfaces (including annotation types) 

METHOD Methods 

CONSTRUCTOR Constructors 

FIELD Fields (including enum constants) 

PARAMETER Method or constructor parameters 

LOCAL_VARIABLE Local variables 

example: 

import java.lang.annotation.ElementType; 

import java.lang.annotation.Target; 

 

@Target({ElementType.METHOD}) 

public @interface MyCustomAnnotation { 

 

} 

public class MyClass { 

   @MyCustomAnnotation 

   public void myMethod() 

   { 

       //Doing something 

   } 

} 

@Retention Java Annotation 

 As name suggets, @Retention meta annotation specifies till what level an annotation will 

be retained. To decide the scope of the custom annotation we have to specify one of the 

three values (SOURCE, CLASS, or RUNTIME) of RetentionPolicy. The default is 

RetentionPolicy.CLASS.  

o RetentionPolicy.SOURCE specifies the scope of custom annotation to the 

compile time. Annotations having retention policy RetentionPolicy.SOURCE are 

not included in bytecode.  

o Annotations those are carrying RetentionPolicy.CLASS policy of retention are 

included in .class files, but the virtual machine need not to load them.  

o Annotations having RetentionPolicy.RUNTIME policy are included in class files 

and loaded by the virtual machine. Java annotations that are given RUNTIME 

retention policy can be accessed at run time through the reflection API.  



 

Mr.Santosh Hiremath                                    Advanced Java Page 42 
 

example: 

import java.lang.annotation.Retention; 

import java.lang.annotation.RetentionPolicy; 

  

//@Retention(RetentionPolicy.CLASS) 

@Retention(RetentionPolicy.RUNTIME) 

//@Retention(RetentionPolicy.SOURCE) 

public @interface MyCustomAnnotation 

{ 

    //some code 

} 

@Documented Java Annotation 

The @Documented meta annotation hints Javadoc tool to include this annotation in the 

documentation wherever it is used. Documented Java annotations should be treated just like 

other modifiers, such as protected or static, for documentation purposes. The use of other 

annotations is not included in the documentation.  

Example: 

java.lang.annotation.Documented 

@Documented 

public @interface MyCustomAnnotation { 

  //Annotation body 

} 

@MyCustomAnnotation 

public class MyClass {  

     //Class body 

} 

@Inherited Java Annotation 

The @Inherited annotation can be applied only to annotations for classes. When a superclass is 

annotated with an @Inherited Java annotation then all of its subclasses automatically have the 

same annotation.  

Example: 

java.lang.annotation.Inherited 

 

@Inherited 

public @interface MyCustomAnnotation { 

 

} 









 

 

4.2 Queueing Notation(Kendal’s Notation) 
 Kendal’s proposal a notational s/m for parallel server s/m which has been widely adopted. 

 An a bridge version of this convention is based on format A|B|C|N|K 

 These letters represent the following s/m characteristics: 

A-Represents the InterArrival Time distribution 

B-Represents the service time distribution 

C-Represents the number of parallel servers 

N-Represents the s/m capacity 

K-Represents the size of the calling populations 

 

 Common symbols for A & B include M(exponential or Markov), D(constant or 

deterministic), Ek (Erlang of order k), PH (phase-type), H(hyperexponential), G(arbitrary or 

general), & GI(general independent). 

 For eg, M|M|1|∞|∞ indicates a single server s/m that has unlimited queue capacity & an 

infinite population of potential arrivals 

 The interarrival tmes & service times are exponentially distributed when N & K are 

infinite, they may be dropped from the notation. 

 For eg, , M|M|1|∞|∞ is often short ended to M|M|1. The tire-curing s/m can be initially 

represented by G|G|1|5|5. 





 

 
 

 
4.3.2 Average Time spent in s/m per customer (w): 

 Average s/m time is given as: 
 

 
 

 For stable s/m N-> ∞ 

 

 



 
 

With probability 1, where w is called the long-run average s/m time. 

 

 Considering the equation 1 & 2 are written as, 

 

 

 
 

 

 

 

 

 
 



 

 

 

 

4.3.3 Server utilization: 
 Server utilization is defined as the population of time server is busy 

 Server utilization is denoted by ƥ is defined over a specified time interval[01] 

 Long run server utilization is denoted by p 

 

Ƥ -> P                                                 as T -> ∞ 

 
 

 

 Server utilization in G|G|C|∞|∞ queues 

 Consider a queuing s/m with c identical servers in parallel 

 If arriving customer finds more than one server idle the customer choose a server 

without favoring any particular server. 

 The average number of busy servers say Ls  is given by,  

 

Ls = λ / μ                                       0<= Ls <= C 

 The long run average server utilization is defined by 

 

 
 The utilization P can be interpreted as the proportion of time an arbitrary server is busy in 

the long run  

 



 

 
 

 

 

4.4 STEADY-STATE BEHAVIOUR OF INFINITE-

POPULATION MARKOVIAN MODLES 

 For the infinite population models, the arrivals are assumed to follow a poisson process 

with rate λ arrivals per time unit 

 The interarrival times are assumed to be exponentially distributed with mean 1/λ 

 Service times may be exponentially distributed(M) or arbitrary(G) 

 The queue discipline will be FIFO because of the exponential distributed assumptions on 

the arrival process, these model are called “MARKOVIAN MODEL”. 

 The steady-state parameter L, the time average number of customers in the s/m can be 

computed as 

𝐿 =  ∑ 𝑛𝑃𝑛

∞

𝑛=0

 

 

Where Pn are the steady state probability of finding n customers in the s/m 



 
 Other steady state parameters can be computed readily from little equation to whole 

system & to queue alone 

                                       w = L/λ 

      wQ = w – (1/μ) 

       LQ = λwQ   

Where λ is the arrival rate & μ is the service rate per server 

 

4.4.1 SINGLE-SERVER QUEUE WITH POISSON ARRIVALS & UNLIMITED 

CAPACITY: M|G|1 

 Suppose that service times have mean 1/μ & variance σ² & that there is one server 

 If P = λ / μ <1, then  the M|G|1 queue has a steady state probability distribution with 

steady state characteristics 

 The quantity P = λ / μ is the server utilization or lon run proportion of time the server 

is busy 

 Steady state parameters of the M|G|1 are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 



 
 

 

 

4.4 2 MULTISERVER QUEUE: M|M|C|∞|∞ 

 

 Suppose that there are c channels operating in parallel 

 Each of these channels has an independent  & identical exponential service time 

distribution with mean 1/μ 

 The arrival process is poisson with rate λ. Arrival will join a single queue & enter the first 

available service channel 



 
 For the M|M|C queue to have statistical equilibrium the offered load must satisfy λ/μ <c 

in which case  λ/ (cμ) = P the server utilization. 

 

 

 

WHEN THE NUMBER OF SERVERS IS INFINITE (M|c|∞|∞ ) 

 There are at least three situations in which it is appropriate to treat the number of server 

as infinite 

1. When each customer is its own server in other words in a self service s/m 

2. When service capacity far exceeds service demand as in a so called ample server 

s/m 

3. When wee want to know how many servers are required so that customer will 

rarely be delayed. 

 





 

 
 

The effective arrival rate λe has several valid interpretations: 

Λe = long-run effective arrival rate of customers to queue 

     = long-run effective arrival rate of customers entering service 

     = long-run rate at which customers exit from service 

     = long-run rate at which customers enter the calling population 

     =long-run rate at which customers exit from the calling population. 

 

 





UNIT 5:Random number generation And Variation Generation

RANDOM-NUMBER GENERATION Random numbers are a necessary basic ingredient in the

simulation of almost all discrete systems. Most computer languages have a subroutine, object, or function

that will generate a random number. Similarly simulation languages generate random numbers that are

used to generate event times and other random variables.

5.1 Properties of Random Numbers A sequence of random numbers, R1, R2... must have two

important statistical properties, uniformity and independence. Each random number Ri, is an independent

sample drawn from a continuous uniform distribution between zero and 1.

That is, the pdf is given by

The density function is shown below:



Some consequences of the uniformity and independence properties are the following:

1. If the interval (0, 1) is divided into n classes, or subintervals of equal length, the expected number of

observations m each interval ii N/n where A' is the total number of observations.

2. The probability of observing a value in a particular interval is of the previous values drawn.

5.2 Generation of Pseudo-Random Numbers

Pseudo means false, so false random numbers are being generated. The goal of any generation scheme, is

to produce a sequence of numbers between zero and 1 which simulates, or initiates, the ideal properties of

uniform distribution and independence as closely as possible. When generating pseudo-random numbers,

certain problems or errors can occur. These errors, or departures from ideal randomness, are all related to

the properties stated previously. Some examples include the following

1) The generated numbers may not be uniformly distributed.

2) The generated numbers may be discrete -valued instead continuous valued

3) The mean of the generated numbers may be too high or too low.

4) The variance of the generated numbers may be too high or low

5) There may be dependence.

The following are examples:

a) Autocorrelation between numbers.

b) Numbers successively higher or lower than adjacent numbers.

c) Several numbers above the mean followed by several numbers below the mean.

Usually, random numbers are generated by a digital computer as part of the simulation. Numerous

methods can be used to generate the values. In selecting among these methods, or routines, there are a

number of important considerations.



1. The routine should be fast. The total cost can be managed by selecting a computationally efficient

method of random-number generation.

2. The routine should be portable to different computers, and ideally to different programming languages

.This is desirable so that the simulation program produces the same results wherever it is executed.

3. The routine should have a sufficiently long cycle. The cycle length, or period, represents the length of

the random-number sequence before previous numbers begin to repeat themselves in an earlier order.

Thus, if 10,000 events are to be generated, the period should be many times that long.

A special case cycling is degenerating. A routine degenerates when the same random numbers appear

repeatedly. Such an occurrence is certainly unacceptable. This can happen rapidly with some methods.

4. The random numbers should be replicable. Given the starting point (or conditions), it should be

possible to generate the same set of random numbers, completely independent of the system that is being

simulated. This is helpful for debugging purpose and is a means of facilitating comparisons between

systems.

5. Most important, and as indicated previously, the generated random numbers should closely

approximate the ideal statistical properties of uniformity and independences

5.3 Techniques for Generating Random Numbers

5.3.1 The linear congruential method

It widely used technique, initially proposed by Lehmer [1951], produces a sequence of integers, X1,

X2,... between zero and m — 1 according to the following recursive relationship:

Xi+1 = (aXi + c) mod m, i = 0, 1, 2.... (7.1)

The initial value X0 is called the seed, a is called the constant multiplier, c is the increment, and m is the

modulus.

If c ≠ 0 in Equation (7.1), the form is called the mixed congruential method. When c = 0, the form is

known as the multiplicative congruential method.

The selection of the values for a, c, m and X0 drastically affects the statistical properties and the cycle

length. An example will illustrate how this technique operates.







§±= ³¬§¤°«ª·= ¢§±²°§ ³²£¢= ¬= ²¦£= §¬²£¥£°±= M= ²= «§ OK q= ±££= ¦µ= ²¦§±= °£±³ª²= ¡~¬=  £= ³±£¢= ²= ¤°«= ¡« §¬£¢

¥£¬£°~²°±I=ª£²=u§INI=u§IOIKKKI=u §I©  £=²¦£ i ²¦=³²®³²=¤°«=©=¢§¤¤£°£¬²=«³ª²§®ª§¡~²§´£=¡¬¥°³£¬²§~ª=¥£¬£°~²°±I=µ¦£°£=²¦£

j ²¦=¥£¬£°~²°=¦~±=®°§«£=«¢³ª³±=«¨I=~¬¢=²¦£=«³ª²§®ª§£°=~¨ §±=¡¦±£¬=±=²¦~²= ²¦£=®£°§¢= §±=«¨ NK=q¦£¬=²¦£= ¨D²¦

¥£¬£°~²°=§±=®°¢³¡§¬¥=§¬²£¥£°±=u§I¨ ²¦~²=~°£=~®®°¶§«~²£ª·=³¬§¤°«ª·=¢§±²°§ ³²£¢=¬=N=²=«¨ J NI=~¬¢=t§I¨ Z=u §I¨ N=§±

~®®°¶§«~²£ª·=³¬§¤°«ª·=¢§±²°§ ³²£¢=¬=M=²=«¨ J OK=iDb¡³·£°=xNVUUz=²¦£°£¤°£=±³¥¥£±²±=¡« §¬£¢=¥£¬£°~²°±=¤=²¦£

¤°«

5.4 Tests for Random Numbers

1. Frequency test. Uses the Kolmogorov-Smirnov or the chi-square test to compare the distribution

of the set of numbers generated to a uniform distribution.

2. Autocorrelation test. Tests the correlation between numbers and compares the sample

correlation to the expected correlation of zero.



5.4.1 Frequency Tests

A basic test that should always be performed to validate a new generator is the test of

uniformity. Two different methods of testing are available.

1. Kolmogorov-Smirnov(KS test) and

2. Chi-square test.

• Both of these tests measure the degree of agreement between the distribution of a sample of

generated random numbers and the theoretical uniform distribution.

• Both tests are on the null hypothesis of no significant difference between the sample distribution

and the theoretical distribution.

1. The Kolmogorov-Smirnov test. This test compares the continuous cdf, F(X), of the uniform

distribution to the empirical cdf, SN(x), of the sample of N observations. By definition,

F(x) = x, 0 ≤ x ≤ 1

If the sample from the random-number generator is R1 R2, ,..., RN, then the empirical cdf, SN(x), is

defined by

The Kolmogorov-Smirnov test is based on the largest absolute deviation between F(x) and SN(X) over the

range of the random variable. That is. it is based on the statistic D = max |F(x) -SN(x)| For testing

against a uniform cdf, the test procedure follows these steps:

Step 1: Rank the data from smallest to largest. Let R (i) denote the i th smallest observation, so that

R(1) ≤ R(2) ≤ … ≤ R(N)

Step 2: Compute



Step 3: Compute D = max (D+, D-).

Step 4: Determine the critical value, Dα, from Table A.8 for the specified significance level α and the

given sample size N.

Step 5:

We conclude that no difference has been detected between the true distribution of {R1, R2,... RN} and the

uniform distribution.

EXAMPLE 6: Suppose that the five numbers 0.44, 0.81, 0.14, 0.05, 0.93 were generated, and it is

desired to perform a test for uniformity using the Kolmogorov-Smirnov test with a level of significance α

of 0.05.

Step 1: Rank the data from smallest to largest. 0.05, 0.14, 0.44, 0.81, 0.93

Step 2: Compute D+ and D-



Step3: Compute D = max (D+, D-)

. D=max (0.26, 0.21) = 0.26

Step 4: Determine the critical value, Dα, from Table A.8 for the specified significance level α and the

given sample size N. Here α=0.05, N=5 then value of Dα = 0.565

Step 5: Since the computed value, 0.26 is less than the tabulated critical value, 0.565,

the hypothesis of no difference between the distribution of the generated numbers and the uniform

distribution is not rejected.

compare F(x) with Sn(X)



2. The chi-square test.

The chi-square test uses the sample statistic

Where, Oi is observed number in the i th class

Ei is expected number in the i th class,

N – No. of observation

n – No. of classes

Note: sampling distribution of approximately the chi square has n-1 degrees of freedom

Example 7: Use the chi-square test with α = 0.05 to test whether the data shown below are uniformly

distributed. The test uses n = 10 intervals of equal length, namely [0, 0.1), [0.1, 0.2)... [0.9, 1.0).

(REFER TABLE A.6)



5.4.2 Tests for Auto-correlation

The tests for auto-correlation are concerned with the dependence between numbers in a sequence. The list

of the 30 numbers appears to have the effect that every 5th number has a very large value. If this is a

regular pattern, we can't really say the sequence is random.

The test computes the auto-correlation between every m numbers (m is also known as the lag) starting

with the ith number. Thus the autocorrelation
ρ

im between the following numbers would be of interest.





2.Random Variate Generation TECHNIQUES:

• INVERSE TRANSFORMATION TECHNIQUE

• ACCEPTANCE-REJECTION TECHNIQUE

All these techniques assume that a source of uniform (0,1) random numbers is available R1,R2….. where

each R1 has probability density function and cumulative distribution function.

Note: The random variable may be either discrete or continuous.

2.1 Inverse Transform Technique The inverse transform technique can be used to sample

from exponential, the uniform, the Weibull and the triangle distributions.

2.1.1 Exponential Distribution The exponential distribution, has probability density function (pdf)

given by

and cumulative distribution function (cdf) given by







Uniform Distribution :
Consider a random variable X that is uniformly distributed on the interval [a, b]. A reasonable guess
for generating X is given by

X = a + (b - a)R ……….5.5

[Recall that R is always a random number on (0,1).

The pdf of X is given by

f (x) =    1/ ( b-a ), a ≤ x ≤ b
0,             otherwise

The derivation of Equation (5..5)   follows steps 1 through 3 of Section 5.1.1:

Step 1. The cdf is given by

F(x) =    0, x < a

( x – a ) / ( b –a ), a ≤ x ≤ b

1, x > b

Step 2. Set F(X) = (X - a)/(b -a) = R

Step 3. Solving for X in terms of R yields

X = a + (b — a)R,

which agrees with Equation (5.5).



Weibull Distribution:

The weibull distribution was introduce for test  the  time to  failure of the machine or electronic

components. The location of the parameters V is set to 0.

where α>0 and β>0 are the scale and shape of parameters.

Steps for Weibull distribution are as follows:

step 1: The cdf is given by

step2 :set f(x)=R

step 3:Solving for X in terms of R yields.

Empirical continuous distribution:

Respampling of data from the sample data in systamtic manner is called empirical continuos

distribution.

Step1:Arrange data for smallest to largest order of interval

x(i-1)<x<X(i)  i=0,1,2,3….n

Step2:Compute probability 1/n

Step3:Compute cumulative probability i.e i/n    where n is interval

step4:calculate a slope i.e

without frequency     ai=x(i)-x(i-1)/(1/n)

with frequency  ai= x(i)-x(i-1)/(c(i)-c(i-1)    where c(i) is cumulative probability



2.1 Acceptance-Rejection technique

• Useful particularly when inverse cdf does not exist in closed form
• Illustration: To generate random variants, X ~ U(1/4, 1)
• Procedures:

Step 1: Generate a random number R ~ U [0, 1]

Step 2a: If R ≥ ¼, accept X=R.

Step 2b: If R < ¼, reject R, return to Step 1

• R does not have the desired distribution, but R conditioned (R’) on the event {R ³ ¼} does.

• Efficiency: Depends heavily on the ability to minimize the number of rejections.

2.1.1 Poisson Distribution A Poisson random variable, N, with mean a > 0 has pmf

• N can be interpreted as number of arrivals from a Poisson arrival process during one unit of time

• Then time between the arrivals in the process are exponentially distributed with rate α.

• Thus there is a relationship between the (discrete) Poisson distribution and the (continuous)

exponential distribution, namely









































1

unit 6: INPUT MODELING

6. INPUT MODELING

• Input data provide the driving force for a simulation model. In the simulation of a queuing

system, typical input data are the distributions of time between arrivals and service times.

• For the simulation of a reliability system, the distribution of time-to=failure of a

component is an example of input data.

There are four steps in the development of a useful model of input data:

• Collect data from the real system of interest. This often requires a substantial time and

resource commitment. Unfortunately, in some situations it is not possible to collect data

• Identify a probability distribution to represent the input process. When data are

available, this step typically begins by developing a frequency distribution, or histogram,

of the data.

• Choose parameters that determine a specific instance of the distribution family.

When data are available, these parameters may be estimated from the data.

• Evaluate the chosen distribution and the associated parameters for good-of- fit.

Goodness-of-fit may be evaluated informally via graphical methods, or formally via

statistical tests. The chisquare and the Kolmo-gorov-Smirnov tests are standard

goodness-of-fit tests. If not satisfied that the chosen distribution is a good approximation

of the data, then the analyst returns to the second step, chooses a different family of

distributions, and repeats the procedure. If several iterations of this procedure fail to yield

a fit between an assumed distributional form and the collected data

6.1 Data Collection

• Data collection is one of the biggest tasks in solving real problem. It is one of the most

important and difficult problems in simulation. And even if when data are available, they

have rarely been recorded in a form that is directly useful for simulation input modeling.



2

The following suggestions may enhance and facilitate data collection, although they are not

all – inclusive.

1. A useful expenditure of time is in planning. This could begin by a practice or

pre   observing session. Try to collect data while pre-observing.

2. Try to analyze the data as they are being collected. Determine if any data being

collected are useless to the simulation. There is no need to collect superfluous

data.

3. Try to combine homogeneous data sets. Check data for homogeneity in

successive time periods and during the same time period on successive days.

4. Be aware of the possibility of data censoring, in which a quantity of interest is

not observed in its entirety. This problem most often occurs when the analyst is

interested in the time required to complete some process (for example, produce

a part, treat a patient, or have a component fail), but the process begins prior to,

or finishes after the completion of, the observation period.

5. To determine whether there is a relationship between two variables, build a

scatter diagram.

6. Consider the possibility that a sequence of observations which appear to be

independent may possess autocorrelation. Autocorrelation may exist in

successive time periods or for successive customers.

7. Keep in mind the difference between input data and output or performance

data, and be sure to collect input data. Input data typically represent the

uncertain quantities that are largely beyond the control of the system and will

not be altered by changes made to improve the system.

6.2 Identifying the Distribution with Data.

• In this section we discuss methods for selecting families of input distributions when data

are available.

6.2.1 Histogram

• A frequency distribution or histogram is useful in identifying the shape of a distribution.

A histogram is constructed as follows:

1. Divide the range of the data into intervals (intervals are usually of equal width;



3

however, unequal widths however, unequal width may be used if the heights of the

frequencies are adjusted).

2.  Label the horizontal axis to conform to the intervals selected.

3.  Determine the frequency of occurrences within each interval.

4.  Label the vertical axis so that the total occurrences can be plotted for each interval.

5.  Plot the frequencies on the vertical axis.

• If the intervals are too wide, the histogram will be coarse, or blocky, and its shape and

other details will not show well. If the intervals are too narrow, the histogram will be

ragged and will not smooth the data.

• The histogram for continuous data corresponds to the probability density function of a

theoretical distribution.

Example  6.2 : The number of vehicles arriving at the northwest corner of an intersection in a 5

min period between 7 A.M. and 7:05 A.M. was monitored for five workdays over a 20-week

period. Table shows the resulting data. The first entry in the table indicates that there were 12:5

min periods during which zero vehicles arrived, 10 periods during which one vehicles arrived,

and so on,

Table 6:1 Number of Arrivals in a 5 Minute period



4

Fig 6.2 Histogram of number of arrivals per period.

6.2.2 Selecting the Family of Distributions

• Additionally, the shapes of these distributions were displayed. The purpose of preparing

histogram is to infer a known pdf or pmf. A family of distributions is selected on the

basis of what might arise in the context being investigated along with the shape of the

histogram.

• Thus, if interarrival-time data have been collected, and the histogram has a shape similar

to the pdf in Figure 5.9.the assumption of an exponential distribution would be warranted.

• Similarly, if measurements of weights of pallets of freight are being made, and the

histogram appears symmetric about the mean with a shape like that shown in Fig 5.12,

the assumption of a normal distribution would be warranted.

• The exponential, normal, and Poisson distributions are frequently encountered and are

not difficult to analyze from a computational standpoint. Although more difficult to

analyze, the gamma and Weibull distributions provide array of shapes, and should not be

overlooked when modeling an underlying probabilistic process. Perhaps an exponential



5

distribution was assumed, but it was found not to fit the data. The next step would be to

examine where the lack of fit occurred.

• If the lack of fit was in one of the tails of the distribution, perhaps a gamma or Weibull

distribution would more adequately fit the data.

• Literally hundreds of probability distributions have been created, many with some

specific physical process in mind. One aid to selecting distributions is to use the physical

basis of the distributions as a guide. Here are some examples:

6.2.3 Quantile-Quantile Plots

• Further, our perception of the fit depends on widths of the histogram intervals. But even

if the intervals are well chosen, grouping of data into cells makes it difficult to compare a

histogram to a continues probability density function

• If X is a random variable with cdf F, then the q-quintile of X is that y such that F(y) =

P(X < y) = q, for 0 < q < 1. When F has an invererse, we write y = F-1(q).

• Now let {Xi, i = 1, 2,...,n} be a sample of data from X. Order the observations from

the smallest to the largest, and denote these as {yj, j =1,2 ,,,n}, where y1 < y2 < ….. <

yn- Let j denote the ranking or order number. Therefore, j = 1 for the smallest and j = n

for the largest. The q-q plot is based on the fact that y1 is an estimate of the (j — 1/2)/n

quantile of X other words,

• Now suppose that we have chosen a distribution with cdf F as a possible representation of

the distribution of X. If F is a member of an appropriate family of distributions, then a

plot of yj versus F-1((j —1/2)/n) will be approximately a straight line.



6

6.3 Parameter Estimation

• After a family of distributions has been selected, the next step is to estimate the

parameters of the distribution. Estimators for many useful distributions are described in

this section. In addition, many software packages—some of them integrated into

simulation languages—are now available to compute these estimates.

6.3.1 Preliminary Statistics: Sample Mean and Sample Variance

• In a number of instances the sample mean, or the sample mean and sample variance, are

used to estimate of the parameters of hypothesized distribution;

• If the observations in a sample of size n are X1, X2,..., Xn, the sample mean ( X) is

defined by

and the sample variance, s2 is defined by

If the data are discrete and grouped in frequency distribution, Equation (9.1) and (.2) can

be modified to provide for much greater computational efficiency, The sample mean can be

computed by



7

And the sample variance by

where k is the number of distinct values of X and fj is the observed frequency of the value Xj, of

X.

6.3.2 Suggested Estimators

• Numerical estimates of the distribution parameters are needed to reduce the family of

distributions to a specific distribution and to test the resulting hypothesis.

• These estimators are the maximum-likelihood estimators based on the raw data. (If the

data are in class intervals, these estimators must be modified.)

• The triangular distribution is usually employed when no data are available, with the

parameters obtained from educated guesses for the minimum, most likely, and maximum

possible value's; the uniform distribution may also be used in this way if only minimum

and maximum values are available.





9

H0: the random variable, X, conforms to the distributional assumption with the

parameter(s) given by the parameter estimate(s)

H1 : the random variable X does not conform

• If the distribution being tested is discrete, each value of the random variable should be a

class interval, unless it is necessary to combine adjacent class intervals to meet the

minimum expected cell-frequency requirement. For the discrete case, if combining

adjacent cells is not required,

Pi = P(XI) = P(X Xi)

Otherwise, pi, is determined by summing the probabilities of appropriate adjacent cells.

• If the distribution being tested is continuous, the class intervals are given by [ai-1,ai),

, where ai-1 and ai, are the endpoints of the ith class interval. For the continuous case

with assumed pdf f(x), or assumed cdf F(x), pi, can be computed By

Pi= ai-1
ai f(x) dx= F(ai) – F(ai -1 )

6.4.2 Chi-Square Test with Equal Probabilities

• If a continuous distributional assumption is being tested, class intervals that are equal in

probability rather than equal in width of interval should be used.

• Unfortunately, there is as yet no method for deter mining the; probability associated with

each interval that maximize the; power of a test o f a given size.

Ei = n p i 5

• Substituting for p i yields n/k 5

• and solving for k yields k n/5





11

• The arrival times T1, T1+T2, T1+T2+T3,…..,T1+…..+T50 are obtained by

adding interarrival times.

• On a (0,1) interval, the points will be [T1/T, (T1+T2)/T,…..,(T1+….+T50)/T].

6.5 Selecting Input Models without Data

Unfortunately. it is often necessary in practice to develop a simulation model

for demonstration purposes or a preliminary study—before any i data are available.) In this

case the modeler must be resourceful in choosing input models and must carefully check

the sensitivity of results to the models.

Engineering data : Often a product or process has performance ratings pro vided by the

manufacturer.

Expert option : Talk to people who are experienced with the procesws or similar

processes. Often they can provide optimistic, pessimistic and most likely

times.

Physical or conventional limitations : Most real processes have physical limit on

performance. Because of company policies, there may be upper limits on

how long a process may take. Do not ignore obvious limits or bound: that

narrow the range of the input process.

The nature of the process It can be used to justify a particular choice even when no data

are available.

6.6 Multivariate and Time-Series Input Models

The random variables presented were considered to be independent of any other variables

within the context of the problem. However, variables may be related, and if the variables

appear in a simulation model as inputs, the relationship should be determined and taken into

consideration.



12

6.7 Time series input model:

If X1,X2..Xn is a sequence of identically distributed,but dependent and convarianc stationary

random variables,then there are a number of times series model that can be used to represent the

process. The two models that have the characteristics that the autocorrelatrion take the form.

for h=1,2,..n that the log-h autocorrelation decreases geometrically as the lag increases.

AR(1) Model:

consider the time series model

for t=2,3,..n where ε2, ε3 are the independent and identically distributed with men 0 and variance

σ2
ε and -1< ϕ<1. If the initial value x1 is chosen appropriately,then x1,x2..are all normal

distributed with mean u and variance

EAR(1) Model:

Consider the time series model

for t=2,3,..n where ε2, ε3 are the independent and identically distributed with mean and 0<

ϕ<1. If the initial value x1 is chosen appropriately, then x1,x2.. are all exponentially distributed

with mean and variance



13

































http://docs.oracle.com/cd/E19509-01/820-5069/ggzba/index.html
http://docs.oracle.com/cd/E19509-01/820-5069/ggzci/index.html
http://docs.oracle.com/cd/E19509-01/820-5069/ggzbd/index.html


Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 2 
 

 

 

 A JDBC/ODBC bridge provides JDBC API access through one or more ODBC drivers. 

Some ODBC native code and in many cases native database client code must be loaded 

on each client machine that uses this type of driver. 

 The advantage for using this type of driver is that it allows access to almost any database 

since the database ODBC drivers are readily available. 

 Disadvantages for using this type of driver include the following: 

 Performance is degraded since the JDBC call goes through the bridge to 

the ODBC driver then to the native database connectivity interface. The 

results are then sent back through the reverse process 

 Limited Java feature set 

 May not be suitable for a large-scale application 

Type Two Driver:Native API/JAVA protocal 

 In a Type 2 driver, JDBC API calls are converted into native C/C++ API calls, which are 

unique to the database. These drivers are typically provided by the database vendors and 

used in the same manner as the JDBC-ODBC Bridge. The vendor-specific driver must be 

installed on each client machine. 

 If we change the Database, we have to change the native API, as it is specific to a 

database and they are mostly obsolete now, but you may realize some speed increase with 

a Type 2 driver, because it eliminates ODBC's overhead.  



Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 3 
 

 

The Oracle Call Interface (OCI) driver is an example of a Type 2 driver. 

Advantages for using this type of driver include the following: 

 Allows access to almost any database since the databases ODBC drivers are readily 

available 

 Offers significantly better performance than the JDBC/ODBC Bridge 

 Limited Java feature set 

Disadvantages for using this type of driver include the following: 

 Applicable Client library must be installed 

 Type 2 driver shows lower performance than type 3 or 4 

 

Type 3: JDBC-Net pure Java(JDBC PROTOCAL) 

 In a Type 3 driver, a three-tier approach is used to access databases. The JDBC clients 

use standard network sockets to communicate with a middleware application server. The 

socket information is then translated by the middleware application server into the call 

format required by the DBMS, and forwarded to the database server. 

 This kind of driver is extremely flexible, since it requires no code installed on the client 

and a single driver can actually provide access to multiple databases. 



Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 4 
 

 

Advantages for using this type of driver include the following: 

 Allows access to almost any database since the databases ODBC drivers are readily 

available 

 Offers significantly better performance than the JDBC/ODBC Bridge and Type 2 Drivers 

 Advanced Java feature set 

 Scalable 

 Caching 

 Advanced system administration 

 Does not require applicable database client libraries 

The disadvantage for using this type of driver is that it requires a separate JDBC middleware 

server to translate specific native-connectivity interface. 

Type 4: Pure Java protocal 

 In a Type 4 driver, a pure Java-based driver communicates directly with the vendor's 

database through socket connection. This is the highest performance driver available for 

the database and is usually provided by the vendor itself. 

 This kind of driver is extremely flexible, you don't need to install special software on the 

client or server. Further, these drivers can be downloaded dynamically. 



Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 5 
 

 

 

Advantages for using this type of driver include the following: 

 Allows access to almost any database since the databases ODBC drivers are readily 

available 

 Offers significantly better performance than the JDBC/ODBC Bridge and Type 2 Drivers 

 Scalable 

 Caching 

 Advanced system administration 

 Superior performance 

 Advance Java feature set 

 Does not require applicable database client libraries 

The disadvantage for using this type of driver is that each database will require a driver 

 

3.A brief overview of the JDBC process: 

This process is divided into five steps: 

 Loading the jdbc drivers 

 Connecting to dbms 

 Creating and executing statements 

 Processing data returned by dbms 

 Terminating the connection with the dbms 





Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 7 
 

S.o.p(e);     } 

Create and execute sql statements: 

 After jdbc driver is loaded and connection is successfully made with the databse. 

 Now database is managed by the dbms is to send a sql query to the dbms for processing. 

 The createStatement() method is used to create the statement object. The 

createStatement() method is belongs to connection interface. 

 The return value of createStatement() method is the Statement interface. 

 The statement object is used to execute queryand return a resultset interface objectthat 

conatains the response from the dbms. 

 The different methods are used to execute the query are as follows: 

 executeQuery(String) 

 executeUpadate(String) 

 execute(string) 

Code snippet : 

try 

{ 

Class.forName(“com.mysql.jdbc.Driver”); 

Connection 

c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””); 

Statement s=c.createStatement(); 

ResultSet r=s.executeQuery(“Select *from emp”); 

} 

catch(Exception e) 

{ 

S.o.p(e); 

} 

Process data returned by the dbms: 

 ResultSet object is assigned to receive the data from the DBMS after the query processed. 

 ResultSet object conatins the method used to intract with the data that is returned by 

DBMS to the j2ee components. 





Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 9 
 

 

 

program to retrieve the data from the database: 

import java.sql.*; 

class A 

{ 

A() 

{ 

try 

{ 

Class.forName(“com.mysql.jdbc.Driver”); 

Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””); 

Statement s=c.createStatement(); 

ResultSet r=s.executeQuery(“Select *from emp”); 

while(r.next()) 

{ 

String name=r.getString(1); 

String usn=r.getString(2); 

System.out.println(“name=”+name); 

System.out.println(“USN=”+usn); 

} 

c.close(); 

} 

catch(Exception e) 

{ 

S.o.p(e); 

} 

} 

public stataic void main(String ar[]) 

{ 







Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 12 
 

} 

catch(Exception e) 

{ 

Sysetm.out.println(e); 

} 

 

NOTE:just for reference-Following table lists down the popular JDBC driver names and 

database URL. 

RDBMS JDBC driver name URL format 

MySQL com.mysql.jdbc.Driver jdbc:mysql://hostname/ databaseName 

ORACLE oracle.jdbc.driver.OracleDriver 
jdbc:oracle:thin:@hostname:port 

Number:databaseName 

DB2 COM.ibm.db2.jdbc.net.DB2Driver jdbc:db2:hostname:port Number/databaseName 

Sybase com.sybase.jdbc.SybDriver 
jdbc:sybase:Tds:hostname: port 

Number/databaseName 

Connection conn = DriverManager.getConnection(URL, USER, PASS); 

 

5.The Statement Objects 

 Once connection to the databse is opened,the j2ee component creates and sends 

a query to access data contained in database. 

 There are three ways statement object are used: 

 Statement object 

 preparedStatemnt object 

 callableStatement object 

 

Creating Statement Object 

 Before you can use a Statement object to execute a SQL statement, you need to create 

one using the Connection object's createStatement( ) method, as in the following example    

                            Statement s=c.createStatement(); 





Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 14 
 

} 

catch(Exception e) 

{ 

S.o.p(e); 

} 

} 

Public stataic void main(String ar[]) 

{ 

A a1=new A(); 

} 

} 

The PreparedStatement Objects 

 The PreparedStatement interface extends the Statement interface, which gives you added 

functionality with a couple of advantages over a generic Statement object. 

 This statement gives you the flexibility of supplying arguments dynamically. 

PreparedStatement p=new PrepareStatement(“select name from emp where 

usn=?”); 

 

 The setXXX() methods bind values to the parameters, where XXX represents the Java 

data type of the value you wish to bind to the input parameter.  

o setXXX(int,string); 

 First parameter represent the column index and second parameter represent the values 

that replace the ? mark in the query. 

 Next different execut methods of the preparedStatement object are called. 

import java.sql.*; 

class A 

{ 

A() 

{ 

try 

{ 



Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 15 
 

Class.forName(“com.mysql.jdbc.Driver”); 

Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””); 

PreparedStatement p=c.PreapareStatement(“select name from emp where usn=?”); 

p.setSting(2, ”12cs001”); 

ResultSet r=p.executeQuery(); 

while(r.next()) 

{ 

String name=r.getString(1); 

String usn=r.getString(2); 

System.out.println(“name=”+name); 

System.out.println(“USN=”+usn); 

} 

c.close(); 

} 

catch(Exception e) 

{ 

S.o.p(e); 

} 

} 

public static void main(String ar[]) 

{ 

A a1=new A(); 

} 

} 

The CallableStatement Objects 

 Just as a Connection object creates the Statement and PreparedStatement objects, it also 

creates the CallableStatement object, which would be used to execute a call to a database 

stored procedure. 

 Three types of parameters exist: IN, OUT, and INOUT. The PreparedStatement object 

only uses the IN parameter. The CallableStatement object can use all the three. 

 Here are the definitions of each − 





Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 17 
 

Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””); 

CallableStatement p=c. prepareCall (“Call lastOrderNumber(?)”); 

p.registerOutParameter(1,TYPES.VARCHAR); 

            p.executeQuery(); 

            String name=p.getString(1); 

System.out.println(“name=”+name); 

} 

c.close(); 

} 

catch(Exception e) 

{ 

S.o.p(e); 

} 

} 

public stataic void main(String ar[]) 

{ 

A a1=new A(); 

} 

            } 

6. ResultSet  

A ResultSet consists of records. Each records contains a set of columns.  

A ResultSet can be of a certain type. The type determines some characteristics and abilities of the 

ResultSet. 

 

Scrollable ResultSet: 

At the time of writing there are three ResultSet types:  

1. ResultSet.TYPE_FORWARD_ONLY 

2. ResultSet.TYPE_SCROLL_INSENSITIVE 

3. ResultSet.TYPE_SCROLL_SENSITIVE 

The default type is TYPE_FORWARD_ONLY  



Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 18 
 

 TYPE_FORWARD_ONLY means that the ResultSet can only be navigated forward. That is, 

you can only move from row 1, to row 2, to row 3 etc. You cannot move backwards in 

the ResultSet.  

 TYPE_SCROLL_INSENSITIVE means that the ResultSet can be navigated (scrolled) both 

forward and backwards. You can also jump to a position relative to the current position, 

or jump to an absolute position. The ResultSet is insensitive to changes in the 

underlying data source while the ResultSet is open. That is, if a record in the 

ResultSet is changed in the database by another thread or process, it will not be 

reflected in already opened ResulsSet's of this type.  

 TYPE_SCROLL_SENSITIVE means that the ResultSet can be navigated (scrolled) both 

forward and backwards. You can also jump to a position relative to the current position, 

or jump to an absolute position. The ResultSet is sensitive to changes in the underlying 

data source while the ResultSet is open. That is, if a record in the ResultSet is changed 

in the database by another thread or process, it will be reflected in already opened 

ResulsSet's of this type.  

Method Description 

absolute() Moves the ResultSet to point at an absolute position. The position is a row 

number passed as parameter to the absolute() method.  

afterLast() Moves the ResultSet to point after the last row in the ResultSet.  

beforeFirst() Moves the ResultSet to point before the first row in the ResultSet.  

first() Moves the ResultSet to point at the first row in the ResultSet.  

last() Moves the ResultSet to point at the last row in the ResultSet.  

next() Moves the ResultSet to point at the next row in the ResultSet.  

previous() Moves the ResultSet to point at the previous row in the ResultSet.  

relative() Moves the ResultSet to point to a position relative to its current position. The 

relative position is passed as a parameter to the relative method, and can be 



Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 19 
 

both positive and negative.  

 Moves the ResultSet 

PROGRAM: 

import java.sql.*; 

class A 

{ 

A() 

{ 

try 

{ 

Class.forName(“com.mysql.jdbc.Driver”); 

Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””); 

Statement s=c.createStatement(ResultSet.TPYE_SCROLL_SENSITIVE); 

ResultSet r=s.executeQuery(“Select *from emp”); 

While(r.next()) 

{ 

String name=r.getString(1); 

String usn=r.getString(2); 

System.out.println(“name=”+name); 

System.out.println(“USN=”+usn); 

} 

r.first(); 

System.out.println(r.getString(1)); 

r.last(); 

System.out.println(r.getString(1)); 

r.previous(); 

System.out.println(r.getString(1)); 

r.absolute(2); 

System.out.println(r.getString(1)); 

r.relative(2); 



Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 20 
 

System.out.println(r.getString(1)); 

r.relative(-2); 

System.out.println(r.getString(1)); 

c.close(); 

} 

catch(Exception e) 

{ 

S.o.p(e); 

} 

} 

public static void main(String ar[]) 

{ 

A a1=new A(); 

} 

} 

Updatable ResultSet : 

 The ResultSet concurrency determines whether the ResultSet can be updated, or only 

read.  

 A ResultSet can have one of two concurrency levels:  

1. ResultSet.CONCUR_READ_ONLY 

2. ResultSet.CONCUR_UPDATABLE 

 CONCUR_READ_ONLY means that the ResultSet can only be read.  

 CONCUR_UPDATABLE means that the ResultSet can be both read and updated.  

 If a ResultSet is updatable, you can update the columns of each row in the ResultSet. You 

do so using the many updateXXX() methods. 

 updateRow() is called that the database is updated with the values of the row 

import java.sql.*; 

class A 

{ 

A() 

{ 





Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 22 
 

import java.sql.*; 

class A 

{ 

A() 

{ 

try 

{ 

Class.forName(“com.mysql.jdbc.Driver”); 

Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””); 

Statement s=c.createStatement(ResultSet.CONCUR_UPDATABLE); 

ResultSet r=s.executeQuery(“Select *from emp ”); 

r.updateString(1, ”Avinash”); 

r.updateString(2, ”4cb16cs001”); 

 

r.insertRow(); 

while(r.next()) 

{ 

String name=r.getString(1); 

String usn=r.getString(2); 

System.out.println(“name=”+name); 

System.out.println(“USN=”+usn); 

} 

c.close(); 

} 

catch(Exception e) 

{ 

S.o.p(e); 

} 

} 

public stataic void main(String ar[]) 

{ 



Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 23 
 

A a1=new A(); 

} 

} 

 

 

 

Deleteing row from a ResultSet: 

 Deleterow() method is nused to delete the row from the databse. 

 DeleteRow() method pass as an integer argument ,which specify the row to be deleted. 

ResultSet.deleteRow(int); 

Program: 

import java.sql.*; 

class A 

{ 

A() 

{ 

Try 

{ 

Class.forName(“com.mysql.jdbc.Driver”); 

Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””); 

Statement s=c.createStatement(ResultSet.CONCUR_UPDATABLE); 

ResultSet r=s.executeQuery(“Select *from emp ”); 

r.deleteRow(1); 

while(r.next()) 

{ 

String name=r.getString(1); 

String usn=r.getString(2); 

System.out.println(“name=”+name); 

System.out.println(“USN=”+usn); 

} 

c.close(); 





Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 25 
 

{ 

A() 

{ 

try 

{ 

Class.forName(“com.mysql.jdbc.Driver”); 

Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””); 

Statement s=c.createStatement(); 

c.setAutoCommit(false); 

c.setSavePoint(“csb”); 

ResultSet r=s.executeQuery(“Select *from emp where usn=2”); 

                            r=s.executeQuery(“Select *from emp”); 

c.releaseSavePoint(“csb”); 

c.commit(); 

} 

c.close(); 

} 

catch(Exception e) 

{ 

S.o.p(e); 

c.rollback(); 

} 

} 

public static void main(String ar[]) 

{ 

A a1=new A(); 

} 

} 

 

8.Metadata: 

Metadata is data about data. J2ee component can access metadata by using  



Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 26 
 

 DatabaseMetaData interface. 

 ResultSetMetaData interface 

DatabaseMetaData interface: 

 The DatabaseMetaData interface is used to retrieve information about database,table,columns 

and index amoung other information about dbms. 

 J2ee component retrives metadata about the database by calling getMetaData() method of the 

connection interface object. The getMetaData() method return a DatabaseMetaData object that 

contain information of database and components. 

 Most commonly used DatabaseMetaData interface methods as follows: 

 getDataBaseProductName()- returns the product name of the database. 

 getUserName()-returns the username of database 

 getURL()- returns the URL of the database 

 getSchemas()-returns the all schemas of the database which are available 

 getPrimaryKeys()-returns the primary key available in the database 

 getTables()-returns the table name in the database 

program: 

import java.sql.*; 

class A 

{ 

A() 

{ 

try 

{ 

Class.forName(“com.mysql.jdbc.Driver”); 

Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””); 

Statement s=c.createStatement(); 

ResultSet  r=s.executeQuery(“Select *from emp”); 

DatabaseMetaData d=c.getMetaData(); 

System.out.println(d.getUserNAme()); 

System.out.println(d.getTables()); 

System.out.println(d.getURL()); 

} 



Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 27 
 

c.close(); 

} 

catch(Exception e) 

{ 

S.o.p(e); 

} 

} 

public static void main(String ar[]) 

{ 

A a1=new A(); 

} 

} 

 

ResultSetMetaData interface: 

 ResultSetMetaData interface is used to retrieve the information by calling the getMetaData() 

method of ResultSet interface. 

 Different methods in the ResultSetMetaData inetface are as follows: 

 getColunmCount()-returns the number of column available in the table 

 getColunmName(int)-returns the name of column specified by the column 

number 

 getColunmTye(int)-returns the type of column specified by the column number 

program: 

import java.sql.*; 

class A 

{ 

A() 

{ 

try 

{ 

Class.forName(“com.mysql.jdbc.Driver”); 

Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””); 



Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 28 
 

Statement s=c.createStatement(); 

ResultSet  r=s.executeQuery(“Select *from emp”); 

ResultSetMetaData d=r.getMetaData(); 

System.out.println(d.getColunmName(1)); 

System.out.println(d.getColunmCount()); 

System.out.println(d.getColunmType(1)); 

} 

c.close(); 

} 

catch(Exception e) 

{ 

S.o.p(e); 

} 

} 

public static void main(String ar[]) 

{ 

A a1=new A(); 

} 

} 

 

Data Types: 

The JDBC driver converts the Java data type to the appropriate JDBC type, before sending it to the 

database. It uses a default mapping for most data types. The following table summarizes the default 

JDBC data type that the Java data type is converted to, when you call the setXXX() method. 

SQL JDBC/Java 

VARCHAR String 

CHAR String 

LONGVARCHAR String 

BIT boolean 

NUMERIC java.math.BigDecimal 

TINYINT byte 

SMALLINT short 





Dept of CSE,CEC                                            Advanced  java and J2EE (15CS553) Page 30 
 

 


	Points to remember for Java Enum
	Creating Enumerations
	Creating an enumeration object
	Assigning values to the enumeration object
	Assigning default values

	3)else if:
	What’s the use of Annotations?
	@Deprecated
	@SuppressWarnings
	@Target Java Annotation
	example:
	@Retention Java Annotation
	@Documented Java Annotation
	@Inherited Java Annotation

	UNIT 5.pdf
	unit5.pdf
	shabrin1_0005.pdf
	ssss.pdf
	ssss_0001.pdf
	ssss_0002.pdf
	ssss_0003.pdf
	ssss_0004.pdf
	ssss_0005.pdf
	ssss_0006.pdf
	ssss_0007.pdf
	ssss_0008.pdf
	ssss_0009.pdf
	ssss_0010.pdf
	ssss_0011.pdf
	ssss_0012.pdf
	ssss_0013.pdf
	ssss_0014.pdf
	ssss_0015.pdf
	ssss_0016.pdf

	Unit6.pdf
	unit 6.pdf

	combinepdf.pdf
	Module 5: J2EE and JDBC(database access)
	1.Java Database Connectivity (JDBC)
	2.JDBC Drivers

	Type 1: JDBC-ODBC Bridge Driver
	Type Two Driver:Native API/JAVA protocal

	Type 3: JDBC-Net pure Java(JDBC PROTOCAL)
	Type 4: Pure Java protocal
	3.A brief overview of the JDBC process:
	This process is divided into five steps:
	 Loading the jdbc drivers
	 Connecting to dbms
	 Creating and executing statements
	 Processing data returned by dbms
	 Terminating the connection with the dbms
	Loading the JDBC drivers:
	 The jdbc must be loaded before the j2ee components can connect to the dbms.
	 The Class.forName() method is used to load the jdbc driver and passing it the name of driver as an arguments to the method.
	 code snippet is shown below:
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	}
	catch(Exception e)
	{
	S.o.p(e);
	}
	Connect to the dbms:
	 Once driver is loaded, the j2ee components must connect to the dbms using the static method getConnection().
	 Where getConnection() methods belong to class called as DriverManager.
	 getConnection() method passed the URL as argument of database and username ,password if necessary to database.Where URL is the string object that contains the driver name and databse name that is being accessed by the j2ee components.
	 DriverManager.getConnection() methods returns a connection interface that is used throughout the process to reference the database.
	 Code snippet is shown below:
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””);
	}
	catch(Exception e)
	{
	S.o.p(e);     }
	Create and execute sql statements:
	 After jdbc driver is loaded and connection is successfully made with the databse.
	 Now database is managed by the dbms is to send a sql query to the dbms for processing.
	 The createStatement() method is used to create the statement object. The createStatement() method is belongs to connection interface.
	 The return value of createStatement() method is the Statement interface.
	 The statement object is used to execute queryand return a resultset interface objectthat conatains the response from the dbms.
	 The different methods are used to execute the query are as follows:
	 executeQuery(String)
	 executeUpadate(String)
	 execute(string)
	Code snippet :
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””);
	Statement s=c.createStatement();
	ResultSet r=s.executeQuery(“Select *from emp”);
	}
	catch(Exception e)
	{
	S.o.p(e);
	}
	Process data returned by the dbms:
	 ResultSet object is assigned to receive the data from the DBMS after the query processed.
	 ResultSet object conatins the method used to intract with the data that is returned by DBMS to the j2ee components.
	 Next() method is used to process the data from the DBMS.it is pointing to the first row of table. Next() method is always used in iterative process.
	 getString() methods of ResultSet object is used to copy the value of specified columns in the current row of the ResultSet to a string object.
	 The getString() methods is passed the name of the column or column index in the ResultSet whose content need to be copied.
	Code snippet:
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””);
	Statement s=c.createStatement();
	ResultSet r=s.executeQuery(“Select *from emp”);
	while(r.next())
	{
	String name=r.getString(1);
	System.out.println(“name=”+name);
	}
	catch(Exception e)
	{
	S.o.p(e);
	}
	Terminating the connection to the DBMS:
	The connection to the dbms is terminated by the close() method of the connection interface once the j2ee component is finished accessing the dbms.
	c.close();
	program to retrieve the data from the database:
	import java.sql.*;
	class A
	{
	A()
	{
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””);
	Statement s=c.createStatement();
	ResultSet r=s.executeQuery(“Select *from emp”);
	while(r.next())
	{
	String name=r.getString(1);
	String usn=r.getString(2);
	System.out.println(“name=”+name);
	System.out.println(“USN=”+usn);
	}
	c.close();
	}
	catch(Exception e)
	{
	S.o.p(e);
	}
	}
	public stataic void main(String ar[])
	{
	A a1=new A();
	}
	}
	4.Import JDBC Packages
	5.Database connection:
	Using Only a Database URL
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”);
	Using a Database URL with a username and password
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,”12345”);
	Using a Database URL and a Properties Object
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”, p);
	5.The Statement Objects
	 Once connection to the databse is opened,the j2ee component creates and sends a query to access data contained in database.
	 There are three ways statement object are used:
	 Statement object
	 preparedStatemnt object
	 callableStatement object
	Creating Statement Object

	import java.sql.*;
	class A
	{
	A()
	{
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””);
	Statement s=c.createStatement();
	ResultSet r=s.executeQuery(“Select *from emp”);
	while(r.next())
	{
	String name=r.getString(1);
	String usn=r.getString(2);
	System.out.println(“name=”+name);
	System.out.println(“USN=”+usn);
	}
	c.close();
	}
	catch(Exception e)
	{
	S.o.p(e);
	}
	}
	Public stataic void main(String ar[])
	{
	A a1=new A();
	}
	}
	The PreparedStatement Objects
	 Next different execut methods of the preparedStatement object are called.
	import java.sql.*;
	class A
	{
	A()
	{
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””);
	PreparedStatement p=c.PreapareStatement(“select name from emp where usn=?”);
	p.setSting(2, ”12cs001”);
	ResultSet r=p.executeQuery();
	while(r.next())
	{
	String name=r.getString(1);
	String usn=r.getString(2);
	System.out.println(“name=”+name);
	System.out.println(“USN=”+usn);
	}
	c.close();
	}
	catch(Exception e)
	{
	S.o.p(e);
	}
	}
	public static void main(String ar[])
	{
	A a1=new A();
	}
	}
	The CallableStatement Objects
	Program:
	import java.sql.*;
	class A
	{
	A()
	{
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””);
	CallableStatement p=c. prepareCall (“Call lastOrderNumber(?)”);
	p.registerOutParameter(1,TYPES.VARCHAR);
	p.executeQuery();
	String name=p.getString(1);
	System.out.println(“name=”+name);
	}
	c.close();
	}
	catch(Exception e)
	{
	S.o.p(e);
	}
	}
	public stataic void main(String ar[])
	{
	A a1=new A();
	}
	}
	6. ResultSet
	PROGRAM:
	import java.sql.*;
	class A
	{
	A()
	{
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””);
	Statement s=c.createStatement(ResultSet.TPYE_SCROLL_SENSITIVE);
	ResultSet r=s.executeQuery(“Select *from emp”);
	While(r.next())
	{
	String name=r.getString(1);
	String usn=r.getString(2);
	System.out.println(“name=”+name);
	System.out.println(“USN=”+usn);
	}
	r.first();
	System.out.println(r.getString(1));
	r.last();
	System.out.println(r.getString(1));
	r.previous();
	System.out.println(r.getString(1));
	r.absolute(2);
	System.out.println(r.getString(1));
	r.relative(2);
	System.out.println(r.getString(1));
	r.relative(-2);
	System.out.println(r.getString(1));
	c.close();
	}
	catch(Exception e)
	{
	S.o.p(e);
	}
	}
	public static void main(String ar[])
	{
	A a1=new A();
	}
	}
	Updatable ResultSet :
	import java.sql.*;
	class A
	{
	A()
	{
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””);
	Statement s=c.createStatement(ResultSet.CONCUR_UPDATABLE);
	ResultSet r=s.executeQuery(“Select *from emp where usn=2”);
	r.updateString(1, ”Avinash”);
	r.updateRow();
	while(r.next())
	{
	String name=r.getString(1);
	String usn=r.getString(2);
	System.out.println(“name=”+name);
	System.out.println(“USN=”+usn);
	}
	c.close();
	}
	catch(Exception e)
	{
	S.o.p(e);
	}
	}
	public stataic void main(String ar[])
	{
	A a1=new A();
	}
	}
	Inserting Rows into a ResultSet
	import java.sql.*;
	class A
	{
	A()
	{
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””);
	Statement s=c.createStatement(ResultSet.CONCUR_UPDATABLE);
	ResultSet r=s.executeQuery(“Select *from emp ”);
	r.updateString(1, ”Avinash”);
	r.updateString(2, ”4cb16cs001”);
	r.insertRow();
	while(r.next())
	{
	String name=r.getString(1);
	String usn=r.getString(2);
	System.out.println(“name=”+name);
	System.out.println(“USN=”+usn);
	}
	c.close();
	}
	catch(Exception e)
	{
	S.o.p(e);
	}
	}
	public stataic void main(String ar[])
	{
	A a1=new A();
	}
	}
	import java.sql.*;
	class A
	{
	A()
	{
	Try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””);
	Statement s=c.createStatement(ResultSet.CONCUR_UPDATABLE);
	ResultSet r=s.executeQuery(“Select *from emp ”);
	r.deleteRow(1);
	while(r.next())
	{
	String name=r.getString(1);
	String usn=r.getString(2);
	System.out.println(“name=”+name);
	System.out.println(“USN=”+usn);
	}
	c.close();
	}
	catch(Exception e)
	{
	S.o.p(e);
	}
	}
	public static void main(String ar[])
	{
	A a1=new A();
	}
	}
	7.Transactions
	import java.sql.*;
	class A
	{
	A()
	{
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””);
	Statement s=c.createStatement();
	c.setAutoCommit(false);
	c.setSavePoint(“csb”);
	ResultSet r=s.executeQuery(“Select *from emp where usn=2”);
	r=s.executeQuery(“Select *from emp”);
	c.releaseSavePoint(“csb”);
	c.commit();
	}
	c.close();
	}
	catch(Exception e)
	{
	S.o.p(e);
	c.rollback();
	}
	}
	public static void main(String ar[])
	{
	A a1=new A();
	}
	}
	import java.sql.*;
	class A
	{
	A()
	{
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””);
	Statement s=c.createStatement();
	ResultSet  r=s.executeQuery(“Select *from emp”);
	DatabaseMetaData d=c.getMetaData(); System.out.println(d.getUserNAme());
	System.out.println(d.getTables());
	System.out.println(d.getURL());
	}
	c.close();
	}
	catch(Exception e)
	{
	S.o.p(e);
	}
	}
	public static void main(String ar[])
	{
	A a1=new A();
	}
	}
	import java.sql.*;
	class A
	{
	A()
	{
	try
	{
	Class.forName(“com.mysql.jdbc.Driver”);
	Connection c=DriverManager.getConnection(“JDBC:mysql://localhost:3306/CSB”,”root”,””);
	Statement s=c.createStatement();
	ResultSet  r=s.executeQuery(“Select *from emp”);
	ResultSetMetaData d=r.getMetaData(); System.out.println(d.getColunmName(1));
	System.out.println(d.getColunmCount());
	System.out.println(d.getColunmType(1));
	}
	c.close();
	}
	catch(Exception e)
	{
	S.o.p(e);
	}
	}
	public static void main(String ar[])
	{
	A a1=new A();
	}
	}
	SQLException Methods


