
Lecture notes on Automata Theory and

Computability(subject code: 15CS54) – Module -1:

By Prof B I Khodanpur, DSCE

Module – 1: Syllabus:-

Why study the theory of computation(ch-1)

Languages and strings(ch-2)

A Language Hierarchy(ch-3)

Computation(ch-4)

Finite State Machines(ch-5 from 5.1 to 5.10)

Why study the theory of computation(ch-1)

Defn: Automata is an abstract machine for modelling computations.

Why Abstract machines?

 Abstract machine allows us to model the essential parameters, and

ignore the non-essential parameters.

What is computability?

 It is very difficult to define, but Our notion of computation: Examples are
Add 2 numbers
Find the roots of a quadratic equation
Multiply 2 matrices
And so on…..
Important to note that: all the above have algorithms
What is not computable: Example-

• Halting problem of a program:

 simply write a program that examines other programs to determine if they

halt or loop forever. Obviously whether or not a program halts depends on the

data it is fed so in this case we mean program to be code plus the data it

operates on.

• Why it not computable:

 simple answer – No algorithm exists

Some computations take lot of time to be meaning full: Example

 Travelling salesman problem

• When computations are not finished within a reasonable time, such

computations are useless, also known as NP-problem(non-

deterministic polynomial problems)

Tractable/Intractable Problems:

Tractable Problem: a problem that is solvable by a polynomial-time algorithm.
The upper bound is polynomial. Examples: Quick sort(O(nlogn)
 Intractable Problem: a problem that cannot be solved by a polynomial-time
algorithm. The lower bound is exponential. Examples: Travelling Salesman
problem

Some important applications of automata theory in general:

Word search and Translation of Natural Languages
Parity checkers, Vending machines, communication protocols
Video games
DNA
Security
Artificial Intelligence
To model organic structures of molecules
Fluid Flow

Snowflake and crystal formation
Chaos theory
Cosmology
Financial analysis
Why not use English to Program?

• Firstly all Natural Languages like English, Kannada etc are Context
Sensitive Languages

• That is to say – meaning depends on the context.
• Example: Take a English word “ Charge “
• There are many meanings for this word
• Like - Cost, -Flight, - Charge the Battery
• - Positive Charge, etc

Characteristics of Natural Languages:
• In most of the situations – meaning depends on the context.
• They are developed for communication among the Human beings.
• Human beings are capable or trained to interpret a sentence depending

on the situations.
• Where as, Machine are not in Context.
• Machine will not be able to interpret depending on the situation.

Characteristics of Formal Languages:
• Meaning of a word or sentence does not depend on the context.
• Words and sentences have only one meaning irrespective of the context.
• They are simple.
• Easy to write Compilers and Interpreters
• They are precise in their meaning.
• With this Machine do what they are instructed to do

What is the gist of this subject?
A systematic way of depicting the problem so that it solution can be
understood and analysed.
What are the properties of various types of languages.
 Regular Languages(RL)
 Context Free languages(CFL)
 Context Sensitive Languages(CSL)
 Recursively Enumerable Languages(REL)
Various types of Automata will be studied:

• There are different types of automata for recognizing different
languages

• Deterministic Finite Automata - RL
• Pushdown Automata – CFL

• Linear Bounded Automata – CSL
• Turing Machine – REL

How to study:
• Subject is mathematical and lot of logical thinking is required.
• There are number of Theorems and proofs.
• Understand the definition – mathematically i.e. Examples are not

substitute for definitions.
• Examples are only to make the definition clear.
• Work out number of problems from various other books.
• Key to understanding this subject – attempt to work harder problems

even if you are not able get answers.
• If you plan to take up - Gate examination for PG studies – you must

understand it thoroughly.

Languages and Strings(chapter-2)

Alphabet -  definition:
Defn: An alphabet is a non-empty, finite set of characters/symbols

Use  to denote an alphabet set
Examples

= { a, b }

= { 0, 1, 2 }

 = { a, b, c,…z, A, B, … Z }

 = { #, $, *, @, & }
String definition: A string is a finite sequence, possibly empty, of characters

drawn from some alphabet .

 is the empty string

* is the set of all possible strings over an alphabet .

Examples of strings:

 = {a, b}

Strings derived from  are…..

…..  , a, b, aa, ab, ba, bb, aaa, aab, aba, ..

 = {0, 1}

Strings derived from  are…..

…..  , 0, 1, 00, 01, 10, 11, 000, 001, 010, ..

 = {a}

Strings derived from  are…..

…… , a, aa, aaa, aaaa, aaaaa, aaaaa,….

Functions on Strings
Length – to find the length of a string Operator used | |
Concatenation – to join two or more strings. Operator - s||t, or nothing i.e. st
Replication – strings raised to some power. Operator - a3
Reversal – reverse a string
Operator - (w)R
Examples of Length of a string

• |  | = 0
• |101| = 3
• |VTU_Edusat| = 10

Examples of Concatenation of a string
• x = good, y = student
• Concatenation operation x||y or xy
• xy = goodstudent

Examples of Replication of a string
• a3 = aaa
• (good)3 = goodgoodgood

• a0 b3 =  bbb = bbb
Examples of Reversal of a string

• (abc)R = cba
• x= ab, y=cd, (xy)R = dcba
• xR yR =badc

Relation on Strings
• Substring:
• aaa is substring of aaa and also aaabbccc
• Proper substring:

Defn: A string s is a proper substring of a string t iff s is a substring of t and s
≠t
Examples:
S = good then proper substrings are ..

..... , g, go, goo only
Prefix and Suffix functions

• A string s is a prefix of t iff ꓱx ϵ *(t = sx)

• , a, ab,abb are prefixes of string abb
• Proper prefix:

• , a, ab, are proper prefixes of string abb

• A string s is a suffix of t iff ꓱx ϵ *(t = xs)

• , b, bb, abb are suffixes of string abb
• Proper suffix:

• , b,bb,are proper suffixes of string abb

Languages:
Defn: A language is (finite or infinite) set of strings over a finite alphabet Σ
Example if Σ = { a } following languages can be derived

• Language L1= {a, aaa, aaaaa, aaaaaaa,.......}

• Language L2= {, aa, aaaa, aaaaaa,.......}
• Language L3= {a, aaaaa, aaaaaaaaa,.......}
• Language L4= {a, aaa, a7, a9 , a13 ,}

Note: number of languages that can be derived even from singe alphabet set
is INFINITE
Techniques for defining Languages by enumeration/defining property
Examples: (by enumeration)

• Let L = {w ϵ {a, b}* : all string begin with a}
• L={a, ab, aab, abbbb, ...}
• Strings not in L are:

• {b, ba, , bbbbb, baaaaaa, …..}
• Let L = {w ϵ {a}* : |w| is even}

• L={, aa, aaaa, aaaaaa, aaaaaaaa, ..}
• Strings not in L are:
• {a, aaa, aaaaa, aaaaaaa, …..} //odd no of a’s

Examples: (defining property)
• Let L = {w ϵ {a, b}* : all string ending in a}
• L={a, aba, aaba, bbbba, ...}
• Strings not in L are:

• {b, bb, , bbbbb, aaaaaab, …..}
• Let L = {w ϵ {a}* : |w| mod 3 =1}
• L={a, a4, a7, a10,}
• Strings not in L are:

• {, a2,a3, a5, a6, a8, a9,}, …..}
Functions on Languages.
Languages are sets. Therefore, all set operations like Union, Intersection,
Difference, and Complement can be applied.

• Example if Σ = { a }

• L1 = {, a2,a4, a6, a8, a10, a12,} //even no of a’s
L2 = {a1,a3, a5, a7, a9, a11,} //add no of a’s
Set Operations on Languages

• L1 = {, a2,a4, a6, a8, a10, a12,} //even no of a’s
• L2 = {a1,a3, a5, a7, a9, a11,} //add no of a’s
• L1 U L2 = Σ* or { a }* // union operation
• L1 ∩ L2 = Ф or {} // intersection operation
• L1 - L2 = L1 // difference operation

• L2 – L1 = L2 // difference operation
• ~(L1 - L2) = L2 // complement operation
• ~(L2 – L1) = L1 // complement operation

Concatenation of Languages
• L1 = {aa, ab}
• L2 = {xx, yy}
• L1L2={aaxx, aayy, abxx, abyy}

Some important results
• L1 = { } =Ф
• L2 = {xx, yy}
• L1L2={}
• In general for L

L Ф = ФL = Ф
Some important results

• L1 = {}
• L2 = {xx, yy}
• L1L2=L2
• In general for all L

• L {} = L {} = L
• (L1L2)L3= L1(L2L3) // associative
• L1 = { an | n >= 0}
• L2 = { bn | n >= 0}
• L1L2= {an bm | n,m >=0} = a*b* // note n & m
• Kleene star operation
• L*={ set of all strings that can be formed by concatenating zero or

more strings from L}

• a* = {, a, aa, aaa, aaaa, aaaaa,infinite}
What is L+ ?

• L+ = LL* //assuming L does not have Ꜫ

• L+ = L* - {}
Example

a* = {, a, aa, aaa, aaaa, aaaaa,infinite}

a+ = a* - {}
Assigning Meaning to the strings of a Language
Following codes of C/Java have the same meaning.
-- int x=4; x++;
-- int x=4; ++x;
-- int x=4; x=x+1;
-- int x=4; x=x-(-1)

chapter-5

Finite State Machines(FSM)
Defn: A FSM(DFSM) , M is a quintuple:
 (K, ∑, δ, s, A)

• K is a finite set of states,
• ∑ is the input alphabet,
• s ϵ K is the start state
• A subset of K is the set of accepting states and
• δ is the transition function it maps from:

 k x ∑ to k

Finite State Machines(FSM)
On any input if FSM reaches any of the states of A, i.e. accepting states, then
the input strings is accepted by FSM M.
Examples:

• Problem_1: Write a FSM to accept L, where
• L = {w ϵ {a,b}* | w contains a}
• L = {a, aa, aaa, baa, baaabbb,……}
• ~L = {ɛ, b, bb, bbb, bbbb,………….}
• All strings in L should reach any - A state

All strings in ~L should not reach any –A state
How to write a Transition Diagram: steps are…
Find the minimum string accepted, this decides the no of states in the FSM, in
most of the cases
Then, take longer strings and make them accepted, while modifying the
transitions,
Check for minimum strings that are not to be accepted, are really not
accepted as per the transition diagram.
See that each state has transitions equal to the no of alphabets present.
Two transition on the same alphabet do not go to different states.
Solution to the problem-1

• L = {a, aa, aaa, baa, baaabbb,……}
• ~L = {ɛ, b, bb, bbb, bbbb,………….}
• Whenever a string from L is input, it should land in final state.
• Whenever a string from ~L is input, it should not land in final state, it

can be in any other state.

Problem – 2:
Write a DFSM to accept the language
 L = { w ϵ {a, b}* | |w| is even length}
Step 1: Write strings accepted by L i.e.

L = { ɛ, aa, bb, ab, ba, aaaa, bbbb, bbaa, baba,..}
(note : ɛ is even, because its length is 0, which is even)
~L= { a, b, aaa, bbb, aba, bab, bba, aab, aabbb,..}

Step 2: since min string are {ɛ, aa}, 2 states are required.
Step 3: Write Transition Diagram.

Problem – 2

Problem – 3
Write a DFSM to accept the language
 L = { w ϵ {a, b}* | ab is a substring of w}
Step 1: Write strings accepted by L i.e.

L = { ab, abab, aaab, abaaa, abbbb, bbababab, babb, bbab, baba,..}
~L= { a, b, aa, bb, bbb, bba, bba, aaa, bbbbb,..}

Step 2: since min string is { ab}, 3 states are required.
Step 3:Write Transition Diagram.

Problem – 4
Write a DFSM to accept the language
 L = { w ϵ {a, b}* | every w ends in b }
 L = { b, ab, abab, aaab, abaab, abbbb, bbababab, babb, bbab, babb,..}
 ~L= { a, aa, ba, bba, baa, baba, aaa, bbbba,..}
Step 2: since min string are { b}, 2 states are required.
Step 3: Write Transition Diagram.

Difficulties with FSMs

Write a DFSM to accept the language

 L = { w ϵ {a, b}* | every w ends in ab or ba }

 L = { ab, ba, abab, aaba, abaab, abbba, bbababab, baba, bbab, baba,..}

 ~L= { a, aa, bb, abb, baa, babb, aaa, bbbbabb,..}

Step 2: since min string are {ab, ba}, we are not able to guess no of states.

Note : this is a difficult problem, we end up in spending lot of time to find the

solution

Write a DFSM to accept the language –another difficult problem

 L = { w ϵ {a, b}* | 3rd character from right is a}

L = { abb,bbbbabb, ababb, aaba, aaaaa, ababa, bbabababb, baba, bbabb,

baba,..}

~L= { a, aa, bb, abbb, baabbb, babba, bbb, bbbbbb,..}

Step 2: since min string are not there, we are not able to guess no of states.

Note : this is a difficult problem, we end up in spending lot of time to find the

solution

How to solve difficult problems – study Nondeteministic

finite state machines(NFSM)

Nondeterministic Finite State Machines(NFSM) –definition:

Defn: A NFSM , M is a quintuple:

 (K, ∑, ∆, s, A)

• K is a finite set of states,

• ∑ is the input alphabet,

• s ϵ K is the start state

• A subset of K is the set of accepting states and

• ∆ is the transition function it maps from:

 (K x (∑ U {Ꜫ})) to K

Example of NFSMs

Write a NFSM to accept the language

 L = { w ϵ {a, b}* | |w| ends in b} //problem 3 NFSM see below

Write a DFSM to accept the language

 L = { w ϵ {a, b}* | every w ends in ab or ba } //problem 3

 L = { ab, ba, abab, aaba, abaab, abbba, bbababab, baba, bbab, baba,..}

 ~L= { a, aa, bb, abb, baa, babb, aaa, bbbbabb,..}

Step 2: since min string are {ab, ba}, we are not able to guess no of states.

Note : this is a difficult problem, we end up in spending lot of time to find the

solution

 How to go about, with difficult problems

Write a DFSM to accept the language

 L = { w ϵ {a, b}* | 3rd character from right is a}

 L = { abb,bbbbabb, ababb, aaba, aaaaa, ababa, bbabababb, baba, bbabb,

 baba,..}

 ~L= { a, aa, bb, abbb, baabbb, babba, bbb, bbbbbb,..}

Step 2: since min string are not there, we are not able to guess no of states.

Note : this is a difficult problem, we end up in spending lot of time to find the

solution

Write a NFSM to accept the language

 L = { w ϵ {a, b}* | every w ends in b } //solution problem – 1 NFSM

 L = { b, ab, abab, aaab, abaab, abbbb, bbababab, babb, bbab, babb,..}

 ~L= { a, aa, ba, bba, baa, baba, aaa, bbbba,..}

Write NFSM to recognize L = { w ϵ {a, b}* | |w| contains ab}

• Solution: problem – 2 - NFSM

• regular expression (a+b)*ab(a+b)*

Write a NFSM to recognize the language

L = {w ϵ {a, b}*| w is made up of an optional a followed by aa, zero or more

b’s}

• L = { aa, aaa, aab, aaab, aabbb, aaabbb,....}

• ~L = { a, ba, baa, bbbbb, bbbbbba,}

• Regular expression = re = (a+ Ꜫ)aa(b}*

Solution:

Procedure to convert NFSM to DFSM

• Example of NFSMs

• Write a NFSM to accept the language

 L = { w ϵ {a, b}* | |w| ends in b}

We know all the parameter related to NFSM

• K is a finite set of states

• ∑ is the input alphabet

• s ϵ K is the start state

• A subset of K is the set of accepting states and

δ is the transition function. Consider the following problem

Procedure of conversion

We need to calculate the following parameter of DFSM,

note only three parameters, i.e. K’, A’, δ’ need to be

calculated

• K’ is a finite set of states = ?

• ∑ is the input alphabet = no change

• s ϵ K is the start state = no change

• A’ subset of K is the set of accepting states = ?

• δ' is the transition function = ?

• s’=s={1} // note the set notation

• Compute δ'

• Active states ={{1}}, consider {1}

δ‘({1},a)= {1} .. This exists

δ‘({1},b)= {1,2} .. This does not exists, add

New Active states ={{1},{1,2}}, consider {1,2}

δ‘({1,2},a)= δ({1},a)Uδ({2},a)={1} U Ф ={1} exists

δ‘({1,2},b)= δ({1},b)Uδ({2},b)={1,2} U Ф ={1,2} exists,

 No new states are added, therefore Procedure terminates

Solution is as follows:

Consider the following problem for which we know the

NFSM. And apply the procedure to convert it to FSM

Procedure:

s’=s={1} // note the set notation

Compute δ'

Active states ={{1}}, consider {1}

δ‘({1},a)= {1,2} .. add

δ‘({1},b)= {1,3} .. add

Active states ={{1},{1,2},{1,3}}, consider {1,2}

δ‘({1,2},a)= {1,2},a)U Ф ={1,2} ..exists

δ‘({1,2},b)= {1,3}U{4})={1,3,4} add

Active states ={{1},{1,2},{1,3},{1,3,4}}, consider {1,3}

δ‘({1,3},a)= {1,2} U {5} ={1,2,5} ..add

δ‘({1,3},b)= {1,3}U {} ={1,3} exists

Active states ={{1},{1,2},{1,3},{1,3,4}, {1,2,5}}, consider

{1,3,4}

δ‘({1,3,4},a)= {1,2}U {5} U {}={1,2,5} ..exists

δ‘({1,3,4},b)= {1,3}U{}U{} ={1,3} exists

Active states ={{1},{1,2},{1,3},{1,3,4},{1,2,5}}, consider

{1,2,5}

δ‘({1,2,5},a)= {1,2}U {} U{}={1,2,5} ..exists

δ‘({1,2,5},b)= {1,3}U{4}U{}={1,3,4} exists

no new states are added, therefore Procedure terminates

write transition table:

Write transition diagram.

Rename the states and check for some representative

strings in the fig given below.

Lecture – 5 : chapter 5

Procedure to convert NFSM to DFSM:

The problem which we are attempting to convert has Ꜫ

transition.

We need to calculate eps for each state using the algorithm

as follows:

Eps(q: state) // algorithm

 1. result = {q} and some

 2. while there exists p ϵ result r not ϵ of result and

 some transition(p, Ꜫ, r) ϵ transition function do:

 insert r into result.

 3. return result.

Note: It means connect all states that can be reached on Ꜫ

Example-1 for calculation of eps:

Example-2 for calculation of eps:

Problem – 3 – NFSM to DFSM:

Write a NFSM to recognize the language

L = {w ϵ {a, b}*| w is made up of an optional a followed by

aa zero or more b’s}

L = { aa, aaa, aab, aaab, aabbb, aaabbb,....}

~L = { a, ba, baa, bbbbb, bbbbbba,}

Regular expression = re = (a+ Ꜫ)aa(b}*

Write the transition diagram of NFSM

Procedure to convert NFSM to DFSM

We know all the parameter related to NFSM

• K is a finite set of states

• ∑ is the input alphabet

• s ϵ K is the start state

• A subset of K is the set of accepting states and

• δ is the transition function

Procedure of conversion:

We need to calculate the following parameter of DFSM,

note only three parameters, i.e. K’, A’, δ’ need to be

calculated

• K’ is a finite set of states = ?

• ∑ is the input alphabet = no change

• s ϵ K is the start state = no change

• A’ subset of K is the set of accepting states = ?

δ' is the transition function = ?

We need to calculate the following parameter of DFSM,

note only three parameters, i.e. K’, A’, δ’ need to be

calculated

• K’ is a finite set of states = ?

• ∑ is the input alphabet = no change

• s ϵ K is the start state = no change

• A’ subset of K is the set of accepting states = ?

• δ' is the transition function = ?

Procedure:

s’=s=eps{1} = {1,2}// this is start state DFSM

Compute δ'

Active states ={{1,2}}, consider {1,2}

δ‘({1,2},a)= eps{δ(1,a) U δ(2,a)} = eps(2) U eps(2)

 = {2,3} This state does not exist, therefore add

δ‘({1,2},b)= eps{δ(1,b) U δ(2,b)} = eps(Ф) U eps(Ф)

 = Ф, This state does not exist, therefore add

Now Active states ={{1,2},{2,3},Ф}, consider {2,3}

δ‘({2,3},a)= eps{δ(2,a) U δ(3,a)} = eps(3) U eps(4) = {3,4} this

state does not exists, add

δ‘({2,3},b)= eps{δ(2,b) U δ(3,b)} = eps(Ф) U eps(Ф) = Ф

already exists, do not add

Now Active states ={{1,2},{2,3},Ф,{3,4}}, consider {3,4}

δ‘({3,4},a)= eps{δ(3,a) U δ(4,a)} = eps(4) U eps(Ф) = {4} this

state does not exists, add

δ‘({3,4},b)= eps{δ(3,b) U δ(4,b)} = eps(Ф) U eps(4) = {4} does

not exists, add

Now Active states ={{1,2},{2,3},Ф,{3,4}{4}}, consider {4}

δ‘({4},a)= eps{δ(4,a)} = eps(Ф) = Ф this state exists, no need

to add

δ‘({4},b)= eps{δ(4,b)} = eps(4) = {4} this state exists, no

need to add

Note: No new states are added, therefore algorithm

terminates. Now we have all the states of DFSM and its

transition functions

DFSM is constructed as follows:

First find out the accepting states of NFSM In this case it is

{4}

Look at all final active states of DFSM. In this case it is:

Active states ={{1,2},{2,3},Ф,{3,4}{4}}

Find all the states containing state {4}

 There are two state namely {3,4} and {4}

 They will accepting states of DFSM

Transitin diagram- DFSM:

FSM to operational systems:

Now that we know how to design a DFSM if it is simple and

if it is complex, we write NFSM and convert the same to

DFSM, using the procedure discussed.

FSM can be simulated using Software or Hardware

depending on the requirement.

In the next section we will discuss simulating using a pseudo

code.

Simulation the deterministic FSM:

Hardcoding a Deterministic FSM:

Until accept or reject do:

1: s=get-next-symbol.

 If s=b go to 1.

 else if s=a then go to 2

2: s=get-next-symbol

 If s=a go to 2.

 else if s=b then go to 3

 3: If s=a or b go to 3.

 else if s= end-of-file then accept.

 else reject.

Simple interpreter for deterministicFSM:

dfsmsimulate(M:DFSM, w: string)

1 st = s

2 Repeat

2.1 c=get-next-symbol(w)

2.2 if c ≠ end-of-file then:

2.2.1 st = δ(st,c)

 until c = end-of-file

3 If st ϵ A then accept

 else reject.

Trace dfsmsimulate:

What is minimization of FSMs:

Note : The behaviour of state 1 and 3 are identical as shown

below:

• δ (1,a) = 2

• δ (3,a) = 2

Therefore there is no need to have two separate states 1

and 3 and they can be combined as shown in the above

diagram. Also note that two states are a must and it can not

be further minimized.

Lecture – 6:

Equivalence class: Definition

An equivalence relation has following properties.

• It is reflexive

• It is symmetric

• It is transitive.

Example:

-- relation- has the same birth date

-- relation- defined by =

Not an example: relation <=

Equivalence relations can also be represented by a digraph

since they are a binary relation on a set. For example the

digraph of the equivalence relation congruent mod 3 on {0,

1, 2, 3, 4, 5 , 6} is as shown below. It consists of three

connected components

Equivalence class –Example:

• 0 mod 3 = 0 The results are {0,1,2}

• 1 mod 3 = 1

• 2 mod 3 = 2

• 3 mod 3 = 0

• 4 mod 3 = 1

• 5 mod 3 = 2

• 6 mod 3 = 0

{0, 3, 6} --- have 0 as their remainder

{1, 4} --- have 1 as their remainder

{2, 5} --- have 2 as their remainder

Defn:Indistinguishable:

We say that x and y are indistinguishable with respect to L,

which we will write as

 x ≈L y iff:

 all z ϵ Σ* (either xz and yz ϵ L or neither is)

 consider x=aa and y = bb and z=ba

 since aaba and bbba are in L, therefore

 x ≈L y

Defn: Distinguishable:

We say that x and y are distinguishable with respect to L, iff

they are not indistinguishable. If x and y are distinguishable

then there exists at least one string z, such that one but not

both of xz and yz is in L

 consider x=aa and y = a and z=ba

 since aaba and aba both are in not L,

 aaba is in L and aba is not in L

• Note : indistinguishable is a equivalence class

Equivalence class-two partitions:

L = { ɛ, aa, bb, ab, ba, aaaa, bbbb, bbaa, baba,..}

All the elements are indistinguishable

~L= { a, b, aaa, bbb, aba, bab, bba, aab, aabbb,..}

All the elements are indistinguishable.

For example aa and a are distinguishable, because

Take an element bb from the language L, aabb is in L, abb

is not in L , therefore they are not in the same eq.class

For example aa and bb are indistinguishable, because

Take an element bb from the language L, aabb is in L, bbbb

is also in L , therefore they are in the same eq.class

Equivalence class-three partitions.

All the strings of L belong to state 3.

How to separate ~L into two separate states.

What is the basis?

• [1] = {Ꜫ, b, bb, bbb, bbbb,}

• [2] = {a ,aa, aaa, aaaa,}

For example consider b from block-1 and a from block-2,

take b from Σ*

bb is not in L whereas ab is in L, therefore they

are not indistinguishable, i.e. Distinguishable

• Equivalence class partitions:

In general equivalence partitions of L and ~L,

Can further partitions.

In the last example we saw partition of ~L

in to 2 eq classes.

We will see now how L can be partitioned into more than

one block or eq. Classes.

Equivalence class-more partitions

Find the equivalence partition of L , where

L = {w ϵ {a, b} | w has no adjacent characters are the same}

// problem 5.26(p-89)

L= {ɛ, a, aba, ababa, b, ab, bab, abab,….}

~L = { aa, abaa, ababb, bbbbbb, aaaa,}

Check any of L or ~L can be further separated,

Consider L= {ɛ, a, aba, ababa, b, ab, bab, abab,….} and select

a and b

Also select a from Σ*

Test: aa is in ~l and ba is L . Therefore L is not an eq class, it

should be further refined.

• [1] = {a, aba, ababa,...etc will get separated}

• [2] = {b, ab, bab, abab,}

• Consider L= {ɛ, a, aba, ababa, b, ab, bab, abab,….} and

select ɛ and a

• Also select a from Σ*

• Ɛa = a is in L, but

• aa is not in L, therefore ɛ and a are not in the same eq.

class, finally,

• [1] = {ɛ}

• [2] = {a, aba, ababa, …}

• [3] = {b, ab, bab, abab, …}

• [4] = {aa, abaa, ababb,…..}

The transition diagram for above partitions is ……

Equivalence class-solution.

Solution to the problem : (workout on the board.)

Finally how to know that DFSM is not possible. i.e. When

the partitions are infinite, no DFSM is possible.

• Example: L = {an bn | n > 0}

This will have infinite partitions, no DFSM is possible, and L

is not regular language.

Theorem 5.6(Myhill-Nerode):

Theorem: A language is regular iff the number of eq. Classes

of L is finite.

Minimization of FSMs-problem -1:

Procedure for Minimization of DFSM:
Partition the states in to non-accepting and accepting states.
{2} and {1,3}
Check whether they are distinguishable?
Workout(on the board)
Minimizied FSM-problem-1

Minimization of FSMs -Problem-2:

Start with what is clearly distinguishable i.e.

Non-Accepting states and accepting states

• {1, 2, 6} and {3, 4, 5} check further if they are

• Distinguishable input

Continue subdividing state, until all distinguishable states

are separated.

Lecture:7

Moore Machine(transducer)

Transducer: A device that converts variations in a physical

quantity, such as pressure or brightness, into an electrical

signal, or vice versa.

Defn: A Moore machine, M is a seven tuple:

(K, ∑, O, δ, D, s, A), where

• K is a finite set of states,

• ∑ is the input alphabet,

• O is the output alphabet,

• s ϵ K is the start state

• A subset of K is the set of accepting states(not imp)

• δ is the transition function it maps from K x ∑ to K

• D is the display or output function from K to (O)*

Example of Moore Machine:

Transition table for the Moore Machine(see fig a

bove):

Mealy machine(transducer):

Defn: A Mealy machine, M is a six tuple:

(K, ∑, O, δ, s, A), where

• K is a finite set of states,

• ∑ is the input alphabet,

• O is the output alphabet,

• s ϵ K is the start state

• A subset of K is the set of accepting states and

• δ is the transition function it maps from

 (K x ∑) to (K x O*)

Note: output is associated with each input.

Example of Mealy machine:

Transition table:

Computation(chapter 4):

In this chapter, effort is made to:

Define problems as languages to be decided

Define programs as state machines whose input is a string

and whose output is accept or reject

• Key ideas :

1. Decision procedures

2. Non determinism

3. Function on languages.

Decision Procedures

Defn: A decision problem is one for which we must make a

yes/no decision.

A decision procedure is an algorithm to solve a decision

problem.

It a program whose result is a Boolean value.

In order to return a Boolean value, a decision procedure

must be guarantee to halt on all inputs

Decision procedures are to answer question such as:

 -- Is string s in Language L?

 -- Given a machine, does it accept any string?

 -- Given two machines, do they accept the same strings?

 -- Given a machine, is it the smallest m/c that does its job?

Three imp things about Procedures:

1.Does there exist a decision procedure(algorithm)

2.If any decision procedures exist, find one

3. If exists, find the most efficient one, and how efficient it

is?

Decision procedures are programs, and they must have two

correctness properties:

1. Program must be guaranteed to halt.

2. The answer must be correct.

Example – 1:

Checking for even numbers:

even(x: integer)=

 If (x/2)*2=x then return True

 else return False.

If x=3 then x/2=1 and 1*2 != 3 therefore “false”

If x=8 then x/2=4 and 4*2 = 8 therefore “true”

Example – 2:

Checking for Prime numbers:

prime(x: positive integer) =

 For i = 2 to ceiling(sqrt(x)) do:

 If (x/i)*i = x then return False

 return True

Assume x = 7 then ceiling(sqrt(x))= ceiling(2.65) = 3

i = 2; 7/2*2 != 7 next iteration

i = 3; 7/3*2 != 7 next iteration(no more iterations)

Returns True

Example-3:

Checking for Programs that halt on a particular input.

haltOnw(p: program, w: string)=

 1. Simulate the execution of p on w

 2. If the simulation halts return True

 else return False.

note: 1. this is not a procedure, because it never returns

False.

 2. No decision procedure exists for this.

Determinism and non determinism:

Consider a program:

Choose(action 1;;

 action 2;;

 action n;;)

Observation on choose:

Returns some successful value, if there is one

If there is no successful value, the choose will:

- Halt and return False if all the actions halt and return

 False

 - Fail to halt if any of the actions fails to halt.

 (note that this has a potential to return successful value,

it may be taking more time)

Deterministic and non Deterministic:

If a program does not use choose then it is deterministic.

If a program includes choose then it is non deterministic.

Functions on Languages and Programs:

The function chop:

chop(L): is all the odd length strings in L with their middle

character chopped out.

The function firstchars:

firstchars(L): determines the first characters by looking at all

strings in L

Examples of chop(L):

Examples of firstchars(L)

Closure of Languages:

Langauage Hierarchy:

Hierarchy of Languages and corresponding automata

Regular languages: FSMs

Context-free languages: PDAs

D(decidable) Languages: Turing machine

SD(semi decidable) languages: Turing machine

Importance of classification:

The factors are:

1.Computational efficiency: As function of input length

FSMs - Linear with respect to input string

PDAs - cube of the length of input string

TM - exponentially with respect to input

 String

2.Decidability: Answer to the questions

FSM - accepts some string?

FSM - is it minimal?

FSMs- are two FSMs identical?

PDAs- only some of the above can be

 answered

TM - none of the above can be answered

3.Clarity: tools that enable analysis- exist?

FSM - yes

PDA - yes

TM - none

 End of Module – 1

Chapter 6

Concurrency: Deadlock and

Starvation

Operating Systems:

Internals and Design Principles, 6/E

William Stallings

Patricia Roy

Manatee Community College, Venice, FL

©2008, Prentice Hall

ATC-Module-2- Dr.Girijamma H A

1

Chapter-6

Regular Expressions

Regular Expression (RE)

A RE is a string that can be formed according to the following rules:

1. ø is a RE.

2. ε is a RE.

3. Every element in ∑ is a RE.

4. Given two REs α and β,αβ is a RE.

5. Given two REs α and β, α U β is a RE.

6. Given a RE α, α* is a RE.

7. Given a RE α, α+ is a RE.

8. Given a RE α, (α) is a RE.

if ∑ = {a,b}, the following strings are regular expressions:

ø, ε, a,b, (a U b)*, abba U ε.

Semantic interpretation function L for the language of regular expressions:

1. L (ø) = ø, the language that contains no strings.

2. L (ε) = {ε}, the language that contains empty string.

3. For any cϵ∑, L(c) = {c}, the language that contains single character string c.

4. For any regular expressions α and β, L (αβ) = L (α) L (β).

5. For any regular expressions α and β, L (α U β) = L (α) U L (β).

6. For any regular expression α, L (α*) = (L (α))*.

7. For any regular expression α, L (α+) = L (αα*) = L (α) (L (α))*

8. For any regular expression α, L ((α)) = L (α).

Analysing Simple Regular Expressions

1.L((a U b)*b) = L((a U b)*)L(b)

 = (L((a U b)))*L(b)

ATC-Module-2- Dr.Girijamma H A

2

 = (L(a) U L(b))*L(b)

 =({a} U {b})*{b}

 = {a,b}*{b}

(a U b)*b is the set of all strings over the alphabet {a, b} that end in b.

2. L(((a U b) (a U b))a(a U b)*)

 = L(((a U b)(a U b)))L(a) L((a U b)*)

 = L((a U b)(a U b)) {a} (L((a U b)})*

 = L((a U b))L((a U b)) {a} {a,b}*

 = {a, b} { a, b} {a} {a, b}*

• ((a U b)(a U b))a(a U b)* is

 {xay : x and y are strings of a's and b's and lxl = 2}.

Finding RE for a given Language

1.Let L = {w ϵ {a, b }*: |w| is even}.

 L = {aa,ab,abba,aabb,ba,baabaa,-------}

 RE = ((a U b)(a U b))* or (aa U ab U ba U bb)*

2. Let L = {w ϵ {a, b }*: w starting with string abb}.

 L = {abb,abba,abbb,abbab-------}

 RE = abb(a U b)*

3. Let L = {w ϵ {a, b }*: w ending with string abb}.

 L = {abb,aabb,babb,ababb-------}

 RE = (a U b)*abb

4. L = {w ϵ {0, 1}* : w have 001 as a substring}.

 L = {001,1001,000101,-------}

 RE = (0 U 1)*001(0 U 1)*

5. L = {w ϵ {0, 1}* : w does not have 001 as a substring}.

 L = {0,1,010,110,101,----}

 RE = (1 U 01)*0*

ATC-Module-2- Dr.Girijamma H A

3

6. L = {w ϵ {a, b}* : w contains an odd number of a's}.

 L = {a,aaa,ababa,bbaaaaba------}

 RE = b*(ab*ab*)* a b* or b*ab*(ab*ab*)*

7. L = {w ϵ {a, b}* :#a(w) mod 3 = 0}.

 L = {aaa,abbaba,baaaaaa,---}

 RE = (b*ab*ab*a)*b*

8. Let L = {w ϵ {a, b }*:#a(w) <= 3}.

 L = {a,aa,ba,aaab,bbbabb,-------}

 RE = b*(a U ε)b*(a U ε)b*(a U ε)b*

9. L = {w ϵ {0, 1}* : w contains no consecutive 0’s}

 L={0, ε,1,01,10,1010,110,101,-----}

 RE = (0 U ε)(1 U 10)

10. L = {w ϵ {0, 1}* : w contains at least two 0’s}

 L={00,1010,1100,0001,1010,100,000,-----}

 RE = (0 U 1)*0(0 U 1)*0(0 U 1)*

11.L = { anbm / n>=4 and m<= 3}

 RE= (aaaa)a*(ε U b U bb U bbb)

12.L = { anbm / n<=4 and m>= 2}

 RE= (ε U a U aa U aaa U aaaa)bb(b)*

13. L = { a2nb2m / n>=0 and m>= 0}

 RE= (aa)*(bb)*

14. L = { anbm:(m+n) is even}

 (m+n) is even when both a’s and b’s are even or both odd.

 RE = (aa)*(bb)* U a(aa)*b(bb)*

ATC-Module-2- Dr.Girijamma H A

4

Three operators of RE in precedence order(highest to lowest)

1. Kleene star

2. Concatenation

3. Union

Eg: (a U bb*a) is evaluated as (a U (b(b*)a))

Kleene's Theorem

Theorem 1:

Any language that can be defined by a regular expression can be accepted by some

finite state machine.

Theorem 2:

 Any language that can be accepted by a finite state machine can be defined by

some regular expressions.

Note: These two theorems are proved further.

Buiding an FSM from a RE

Theorem 1:For Every RE, there is an Equivalent FSM.

Proof: The proof is by construction.

We can show that given a RE α,

we can construct an FSM M such that L (α) = L (M).

Steps:

1. If α is any cϵ∑ ,we construct simple FSM shown in Figure(1)

 Figure (1)

ATC-Module-2- Dr.Girijamma H A

5

2. If α is any ø, we construct simple FSM shown in Figure(2).

 Figure (2)

3. If α is ε,we construct simple FSM shown in Figure(3).

 Figure (3)

4. Let β and γ be regular expressions.

If L(β) is regular,then FSM M1 = (K1, ∑ , δ1, s1, A1).

If L(γ) is regular,then FSM M2 = (K2, ∑ , δ2, s2, A2).

If α is the RE β U γ, FSM M3=(K3, ∑ , δ3, s3, A3) and

 L(M3)=L(α)=L(β) U L(γ)

 M3 = ({S3} U K1 U K2, ∑ , δ3, s3, A1 U A2), where

 δ3 = δ1 U δ2 U { ((S3, ε), S1),((S3, ε),S2)}.

α = β U γ

5. If α is the RE βγ, FSM M3=(K3, ∑ , δ3, s3, A3) and

 L(M3)=L(α)=L(β)L(γ)

M3 = (K1 U K2, ∑ , δ3, s1, A2), where

ATC-Module-2- Dr.Girijamma H A

6

δ3 = δ1 U δ2 U { ((q, ε), S2):qϵA1}.

 α = βγ

6. If α is the regular expression β*, FSM M2 = (K2, ∑, δ2 s2, A2) such that

L (M2) = L (α)) = L (β)*.

M2 = ({S2} U K1, ∑, δ2,S2,{S2} U A1), where

δ2 = δ1 U {((S2, ε),S1)} U {((q, ε),S1):q ϵ A1}.

 α = β*

Algorithm to construct FSM, given a regular expression α

regextofsm(α : regular expression) =

 Beginning with the primitive subexpressions of α and working

 outwards until an FSM for an of α has been built do:

 Construct an FSM as described in previous theorem.

Building an FSM from a Regular Expression

1. Consider the regular expression (b U ab)*.

 An FSM for b

ATC-Module-2- Dr.Girijamma H A

7

 An FSM for a

 An FSM for ab

 An FSM for (b U ab)

ATC-Module-2- Dr.Girijamma H A

8

 An FSM for (b U ab)*

2. Construct FSM for the RE (b(a U b)b)*

ATC-Module-2- Dr.Girijamma H A

9

ATC-Module-2- Dr.Girijamma H A

10

Building a Regular Expression from an FSM

Building an Equivalent Machine M

Algorithm for FSM to RE(heuristic)

fsmtoregexheuristic(M: FSM) =

1. Remove from M-any unreachable states.

2. No accepting states then return the RE ø.

3. If the start state of M is has incoming transitions into it, create a new start

state s.

4. If there is more than one accepting state of M or one accepting state with

outgoing transitions from it, create a new accepting state.

5. M has only one state, So L (M} = { ε } and return RE ε.

6. Until only the start state and the accepting state remain do:

 6.1. Select some state rip of M.

 6.2. Remove rip from M.

 6.3. Modify the transitions. The labels on the rewritten

 transitions may be any regular expression.

7. Return the regular expression that labels from the

 start state to the accepting state.

ATC-Module-2- Dr.Girijamma H A

11

Example 1 for building a RE from FSM

Let M be:

Step 1:Create a new start state and a new accepting state and link them to M

After adding new start state 4 and accepting state 5

Step 2: let rip be state 3

ATC-Module-2- Dr.Girijamma H A

12

After removing rip state 3

1-2-1:ab U aaa*b

1-2-5:a

Step 3: Let rip be state 2

After removing rip state 2

4-1-5: (ab U aaa*b)*(a U ε)

Step 4: Let rip be state 1

After removing rip state 1

RE = (ab U aaa*b)*(a U ε)

ATC-Module-2- Dr.Girijamma H A

13

Theorem 2 :For Every FSM ,there is an equivalent regular expression

Statement : Every regular language can be defined with a regular expression.

Proof : By Construction

 Let FSM M = (K,∑,δ,S,A),construct a regular expression α such that

 L(M) = L(α)

Collapsing Multiple Transitions

{C1,C2,C3.......Cn} - Multiple Transition

Delete and replace by {C1 U C2 U C3.......U Cn}

If any of the transitions are missing, add them without changing L(M) by labeling

all of the new transitions with the RE ø.

ATC-Module-2- Dr.Girijamma H A

14

Select a state rip and remove it and modify the transitions as shown below.

Consider any states p and q.once we remove rip,how can M get from p to q?

Let R(p,q) be RE that labels the transition in M from P to Q.Then the new machine

M' will be removing rip,so R'(p,q)

 R'(p,q) = R(p,q) U R(p,rip)R(rip,rip)*R(rip,q)

Ripping States out one at a time

R'(1,3) = R(1,3) U R(1,rip)R(rip,rip)*R(rip,3)

 = R(1,3) U R(1,2)R(2,2)*R(2,3)

 = ø U ab*a

 = ab*a

Algorithm to build RE that describes L(M) from any FSM M = (K,∑,δ,S,A)

Two Sub Routines:

1. standardize : To convert M to the required form

2. buildregex : Construct the required RE from

 modified machine M

1.Standardize (M:FSM)

i. Remove unreachable states from M

ii. Modify start state

iii. Modify accepting states

iv. If there is more than one transition between states p and q ,collapse them to

single transition

v. If there is no transition between p and q and p ∉A, q ∉S,then create a

transiton between p and q labled Φ

ATC-Module-2- Dr.Girijamma H A

15

2.buildregex(M:FSM)

i. If M has no accepting states then return RE Φ

ii. If M has only one accepting state ,return RE ε

iii. until only the start state and the accepting state remain do:

a. Select some state rip of M

b. Find R'(p,q) = R(p,q) U R(p,rip).R(rip,rip)*.R (rip,q)

c. Remove rip on d all transitions into ad out of it

iv. Return the RE that labels from start state to the accepting state

Example 2: Build RE from FSM

Step 1: let RIP be state 4

1-4-2 : bb

After removing rip state 4

Step 2: Collapse multiple transitions from state 1 to state 2

1-2: a U bb

After collapsing multiple transitions from state 1 to state 2

ATC-Module-2- Dr.Girijamma H A

16

Step 3: let rip be state 2

1-3: (a U bb)b*a

After removing rip state 2

RE = (a U bb)b*a

Example 3: Build RE From FSM

Step 1: Remove state s as it is dead state

After removing state s

Step 2: Add new start state t and new accepting state u

ATC-Module-2- Dr.Girijamma H A

17

After adding t and u

Step 3: Let rip be state q

p-q-p: 01

After removing rip state q

Step 4: Let rip be state r

p-r-p: 10

After removing rip state r

RE = (01 U 10)*

ATC-Module-2- Dr.Girijamma H A

18

Example 4:A simple FSM with no simple RE

L = {w ε {a,b}* : w contains an even no of a's and an odd number of b's}

[3] even a's odd b's

ATC-Module-2- Dr.Girijamma H A

19

ATC-Module-2- Dr.Girijamma H A

20

ATC-Module-2- Dr.Girijamma H A

21

Building DFSM

• It is possible to construct a DFSM directly from a set of patterns

• Suppose we are given a set K of n keywords and a text string s.

• Find the occurences of s in keywords K

• K can be defined by RE

 (Σ*(K1 U K2 U........U Kn)Σ*)+

• Accept any string in which at least one keyword occurs

Algorithm- buildkeywordFSM

• To build dfsm that accepts any string with atleast one of the specified

keywords

 Buildkeyword(K:Set of keywords)

• Create a start state q0

• For each element k of K do

 Create a branch corresponding to k

ATC-Module-2- Dr.Girijamma H A

22

• Create a set of transitions that describe what to do when a branch dies

• Make the states at the end of each branch accepting

Applications Of Regular Expressions

• Many Programming languages and scripting systems provide support for

regular expression matching

• Re's are used in emails to find spam messages

• Meaningful words in protein sequences are called motifs

• Used in lexical analysis

• To Find Patterns in Web

• To Create Legal passwords

• Regular expressions are useful in a wide variety of text processing tasks,

ATC-Module-2- Dr.Girijamma H A

23

• More generally string processing, where the data need not be textual.

• Common applications include data validation, data scraping (especially web

scraping), data wrangling, simple parsing, the production of syntax

highlighting systems, and many other tasks.

RE for Decimal Numbers

RE = -? ([0-9]+(\.[0-9]*)? | \.[0-9]+)

• (α)? means the RE α can occur 0 or 1 time.

• (α)* means the RE α can repeat 0 or more times.

• (α)+ means the RE α can repeat 1 or more times.

24.23,-24.23, .12, 12. ----- are some examples

Requirements for legal password

• A password must begin with a letter

• A password may contain only letters numbers and a underscore character

• A password must contain atleast 4 characters and no more than 8 characters

((a-z) U (A-Z))

((a-z) U (A-Z) U (0-9) U _)

((a-z) U (A-Z) U (0-9) U _)

((a-z) U (A-Z) U (0-9) U _)

((a-z) U (A-Z) U (0-9) U _ U ε)

((a-z) U (A-Z) U (0-9) U _ U ε)

((a-z) U (A-Z) U (0-9) U _ U ε)

((a-z) U (A-Z) U (0-9) U _ U ε)

Very lengthy regular expression

ATC-Module-2- Dr.Girijamma H A

24

Different notation for writing RE

• α means that the pattern α must occur exactly once.

• α* means that the pattern may occur any number of times(including zero).

• α+ means that the pattern α must occur atleast once.

• α{n,m} means that the pattern must occur atleast n times but not more than

m times

• α{n} means that the pattern must occur n times exactly

• So RE of a legal password is :

 RE = ((a-z) U (A-Z))((a-z) U (A-Z) U (0-9) U _){3,7}

Examples: RNSIT_17,Bangalor, VTU_2017 etc

• RE for an ip address is :

 RE = ((0-9){1,3}(\.(0-9){1,3}){3})

Examples: 121.123.123.123

 118.102.248.226

 10.1.23.45

Manipulating and Simplifying Regular Expressions

Let α, β, ү represent regular expressions and we have the following identities.

1. Identities involving union

2. Identities involving concatenation

3. Identities involving Kleene Star

Identities involving Union

• Union is Commutative

 α U β = β U α

ATC-Module-2- Dr.Girijamma H A

25

• Union is Associative

 (α U β) U ү = α U (β U ү)

• Φ is the identity for union

 α U Φ = Φ U α = α

• union is idempotent

 α U α = α

• For any 2 sets A and B, if B ⊆ A, then A U B = A

 a* U aa = a*, since L(aa) ⊆ L(a*).

Identities involving concatenation

• Concatenation is associative

 (αβ)ү = α(βү)

• ε is the identity for concatenation

 αε = εα = α

• Φ is a zero for concatenation.

 αΦ = Φα = Φ

• Concatenation distributes over union

 (α U β)ү = (αү) U (βү)

 ү(α U β) = (үα) U (үβ)

Identities involving Kleene Star

• Φ* = ε

• ε* = ε

• (α*)* = α*

• α*α* = α*

ATC-Module-2- Dr.Girijamma H A

26

• If α* ⊆ β* then α*β* = β*

• Similarly If β* ⊆ α* then α*β* = α*

 a*(a U b)* = (a U b)*, since L(a*) ⊆ L((a U b)*).

• (α U β)* = (α*β*)*

• If L(β) ⊆ L(α) then (α U β)* = α*

 (a U ε)* = a*,since {ε} ⊆ L(a*).

Simplification of Regular Expressions

1. ((a* U Φ)* U aa) = (a*)* U aa //L(Φ) ⊆ L(a*)

 = a* U aa //(α*)* = α*

 = a* // L(aa) ⊆ L(a*)

2. (b U bb)*b* = b*b* //L(bb) ⊆ L(b*)

 = b* // α*α* = α*

3. ((a U b)* b* U ab)*

 = ((a U b)* U ab)* //L(b*) ⊆ L(a U b)*

 = (a U b)* //L(a*) ⊆ L(a U b)*)

4. ((a U b)* (a U ε)b* = (a U b)* //L((a U ε)b*) ⊆ L(a u b)*

5. (Φ* U b)b* = (ε U b)b* //Φ* = ε

 = b* //L(ε U b) ⊆ L(b*)

6. (a U b)*a* U b = (a U b)* U b // L(a*) ⊆ L((a U b)*)

 = (a U b)* // L(b) ⊆ L((a U b)*)

7.((a U b)+)* = (a U b)*

ATC-Module-2- Dr.Girijamma H A

27

Chapter-7

Regular Grammars

Regular grammars sometimes called as right linear grammars.

A regular grammar G is a quadruple (V, ∑ , R, S)

• V is the rule alphabet which contains nonterminals

 and terminals.

• ∑ (the set of terminals) is a subset of V

• R (the set of rules) is a finite set of rules of the form

 X  Y

• S (the start symbol) is a nonterminal.

All rules in R must:

• Left-hand side should be a single nonterminal.

• Right-hand side is ε or a single terminal or a single terminal followed by a

single nonterminal.

Legal Rules

Sa

Sε

TaS

Not legal rules

SaSa

STT

aSaT

ST

ATC-Module-2- Dr.Girijamma H A

28

• The language generated by a grammar G = (V, ∑ , R, S) denoted by L(G) is

the set of all strings w in ∑* such that it is possible to start with S.

• Apply some finite set of rules in R, and derive w.

• Start symbol of any grammar G will be the symbol on the left-hand side of

the first rule in RG

Example of Regular Grammar

Example 1:Even Length strings

Let L = {wϵ {a, b }*: lwl is even}.

The following regular expression defines L:

((aa) U (ab) U (ba) U (bb))* or ((a U b)(a U b))*

 DFSM accepting L

Regular Grammar G defining L

Sε

SaT

SbT

TaS

TbS

Derivation of string using Rules

Derivation of string “abab”

ATC-Module-2- Dr.Girijamma H A

29

S => aT

 => abT

 => abaS

 => ababS

 => abab

Regular Grammars and Regular Languages

THEOREM

Regular Grammars Define Exactly the Regular Languages

Statement:

The class of languages that can be defined with regular grammars is exactly the

regular languages.

Proof: Regular grammar  FSM

 FSM  Regular grammar

The following algorithm constructs an FSM M from a regular grammar G = (V,

∑ , R, S) and assures that

 L (M) = L (G):

Algorithm-Grammar to FSM

grammartofsm (G: regular grammar) =

1. Create in M a separate state for each nonterminal in V.

2. Make the state corresponding to S the start state.

3. If there are any rules in R of the form Xw, for some

 w ϵ ∑, then create an additional state labeled #.

 4. For each rule of the form X wY,

ATC-Module-2- Dr.Girijamma H A

30

 add a transition from X to Y labeled w.

5. For each rule of the form Xw, add a transition from X

 to # labeled w.

6. For each rule of the form Xε, mark state X as

 accepting.

7. Mark state # as accepting.

8. If M is incomplete then M requires a dead state.

 Add a new state D. For every (q, i) pair for which no

 transition has already been defined, create a transition

 from q to D labeled i. For every i in Σ, create a transition

 from D to D labeled i.

Example 2:GrammarFSM

Strings that end with aaaa

Let L = {wϵ {a, b }*: w end with the pattern aaaa}.

RE = (a U b)*aaaa

Regular Grammar G

SaS

SbS

SaB

BaC

CaD

Da

ATC-Module-2- Dr.Girijamma H A

31

Example 3:The Missing Letter Language

Let ∑ = {a, b, c}.

LMissing = { w : there is a symbol a € ∑ not appearing in w}.

Grammar G generating LMissing

ATC-Module-2- Dr.Girijamma H A

32

ATC-Module-2- Dr.Girijamma H A

33

Algorithm FSM to Grammar

1. Make M deterministic (to get rid of ε-transitions).

2. Create a nonterminal for each state in the new M.

3. The start state becomes the starting nonterminal.

4. For each transition δ(T, a) = U, make a rule of the form T → aU.

5. For each accepting state T, make a rule of the form T → ε.

Example 7:Build grammar from FSM

ATC-Module-2- Dr.Girijamma H A

34

RE = (a U bb)b*a

Grammar

AaB

AbD

BbB

BaC

DbB

Cε

Derivation of string “aba”

A => aB

 => abB

 => abaC

 => aba

Derivation of string “bba”

 A => bB

 => bbB

 => bbaC

 => bba

Example 8:A simple FSM with no simple RE

L = {w ε {a,b}* : w contains an even no of a's and an odd

 number of b's}

ATC-Module-2- Dr.Girijamma H A

35

Grammar

AaB

AbC

BaA

BbD

CbA

CaD

DbB

DaC

Cε

Derivation of string “ababb”

A => aB

 => abD

 => abaC

 => ababA

 => ababbC

 => ababb

ATC-Module-2- Dr.Girijamma H A

36

Satisfying Multiple Criteria

Let L = { wϵ {a, b }*: w contain an odd number of a’s and

 w ends in a}.

SbS

SaT

T ε

TaS

TbX

XaS

XbX

ATC-Module-2- Dr.Girijamma H A

37

Conclusion on Regular Grammars

• Regular grammars define exactly the regular languages.

• But regular grammars are often used in practice as FSMs and REs are easier

to work.

• But as we move further there will no longer exist a technique like regular

expressions.

• So we discuss about context-free languages and context-free-grammars are

very important to define the languages of push-down automata.

Chapter-8

Regular and Nonregular Languages

• The language a*b* is regular.

• The language AnBn = {anbn :n>=0} is not regular.

• The language {w Є {a,b}*:every a is immediately followed by b} is regular.

• The language {w Є {a, b}*:every a has a matching b somewhere and no b

 matches more than one a} is not regular.

• Given a new language L, how can we know whether or not it is regular?

Theorem 1: The Regular languages are countably infinite

Statement:

There are countably infinite number of regular languages.

Proof:

• We can enumerate all the legal DFSMs with input alphabet ∑.

• Every regular language is accepted by at least one of them.

• So there cannot be more regular languages than there are DFSMs.

ATC-Module-2- Dr.Girijamma H A

38

• But the number of regular languages is infinite

 because it includes the following infinite set of

 languages:

 {a}, { aa} , { aaa}, { aaaa}. { aaaaa}, { aaaaaa } ----

• Thus there are at most a countably infinite number of

 regular languages.

Theorem 2 : The finite Languages

Statement: Every finite language is regular.

Proof:

• If L is the empty set, then it is defined by the R.E Ø and so

 is regular.

• If it is any finite language composed of the strings

 s1,s2,….sn for some positive integer n, then it is defined by

 the R.E: s1
 U s2 U …U sn

• So it too is regular

 Regular expressions are most useful when the elements of L match one or

more patterns.

 FSMs are most useful when the elements of L share some simple structural

properties.

ATC-Module-2- Dr.Girijamma H A

39

Examples:

• L1 = {w Є {0-9}*: w is the social security number of the

 current US president}.

L1 is clearly finite and thus regular. There exists a simple

FSM to accept it.

• L2 = {1 if Santa Claus exists and 0 otherwise}.

• L3 = {1 if God exists and 0 otherwise}.

L 2 and L3 are perhaps a little less clear.

So either the simple FSM that accepts { 0} or the simple

FSM that accepts { 1} and nothing else accepts L2 and L3.

• L
4
= {1 if there were people in north America more than

 10000 years age and 0 otherwise}.

• L
5
= {1 if there were people in north America more than

 15000 years age and 0 otherwise}.

L
4
 is clear. It is the set { 1}.

L
5
 is also finite and thus regular.

• L
6
= {w Є {0-9}*: w is the decimal representation, without

 leading 0’s, of a prime Fermat number}

• Fermat numbers are defined by

 Fn = 22n + 1 , n >= 0.

• The first five elements of F are {3, 5, 17, 257,65537}.

• All of them are prime. It appears likely that no other Fermat numbers are

prime. If that is true,then L6

 is finite and thus regular.

ATC-Module-2- Dr.Girijamma H A

40

• lf it turns out that the set of Fermat numbers is infinite,then it is almost

surely not regular.

Four techniques for showing that a language L(finite or infinite) is regular:

1. Exhibit a R.E for L.

2. Exhibit an FSM for L.

3. Show that the number of equivalence of ≈L is finite.

4. Exhibit a regular grammar for L.

Closure Properties of Regular Languages

The Regular languages are closed under

• Union

• Concatenation

• Kleene star

• Complement

• Intersection

• Difference

• Reverse

• Letter substitution

Closure under Union, Concatenation and Kleene star

Theorem: The regular languages are closed under union,

 concatenation and Kleene star.

Proof: By the same constructions that were used in the

 proof of Kleene’s theorem.

Closure under Complement

ATC-Module-2- Dr.Girijamma H A

41

Theorem:

The regular languages are closed under complement.

Proof:

• If L1 is regular, then there exists a DFSM M1=(K,∑,δ,s,A)

 that accepts it.

• The DFSM M2=(K, ∑,δ,s,K-A), namely M1 with accepting

 and nonaccepting states swapped, accepts ¬(L(M1)

 because it rejects all strings that M1 accepts and rejects

 all strings that M1 accepts.

Steps:

1. Given an arbitrary NDFSM M1,construct an equivalent

 DFSM M' using the algorithm ndfsmtodfsm.

2. If M1 is already deterministic, M' = M1.

3. M' must be stated completely, so if needed add dead

 state and all transitions to it.

4. Begin building M2 by setting it equal to M'.

5. Swap accepting and nonaccepting states. So

 M2=(K, ∑,δ,s,K-A)

Example:

• Let L = {w Є {0,1}* : w is the string ending with 01}

 RE = (0 U 1)*01

• The complement of L(M) is the DFSM that will accept

 strings that do not end with 01.

ATC-Module-2- Dr.Girijamma H A

42

Closure under Intersection

Theorem:

The regular languages are closed under intersection.

Proof:

• Note that

 L(M1) ∩ L(M2) = ¬ (¬L(M1) U ¬L(M2)).

• We have already shown that the regular languages are closed under both

complement and union.

• Thus they are closed under intersection.

• Example:

• Fig (a) is DFSM L1 which accepts strings that have 0.

• Fig(b) is DFSM L2 which accepts strings that have 1.

ATC-Module-2- Dr.Girijamma H A

43

• Fig(c) is Intersection or product construction which accepts that have both 0

and 1.

The Divide and Conquer Approach

• Let L = {w Є {a,b}* : w contains an even number of a’s and an odd number

of b’s and all a’s come in runs of three }.

• L is regular because it is the intersection of two regular languages,

L = L1 ∩ L2, where

• L1 = {w Є {a,b}* : w contains an even number of a’s

 and an odd number of b’s},and

 L2 = {w Є {a,b}*: all a’s come in runs of three}.

• L1 is regular as we have an FSM accepting L1

• L2 = {w Є {a,b}*: all a’s come in runs of three}.

• L2 is regular as we have an FSM accepting L2

ATC-Module-2- Dr.Girijamma H A

44

L = {w Є {a,b}* : w contains an even number of a’s and an odd number of b’s and

all a’s come in runs of three }.

L is regular because it is the intersection of two regular languages,L = L1 ∩ L2

Closure under Set difference

Theorem:

The regular languages are closed under set difference.

Proof:

 L(M1) - L(M2) = L(M1) ∩ ¬L(M2)

• Regular languages are closed under both complement

 and intersection is shown.

• Thus regular languages are closed under set difference.

Closure under Reverse

Theorem:

The regular languages are closed under reverse.

Proof:

• LR = { w Є ∑* : w = xR for some x Є L}.

Example:

1. Let L = {001,10,111} then LR = {100,01,111}

2. Let L be defined by RE (0 U 1)0* then LR is 0*(0 U 1)

reverse(L) = {x ∈ Σ* : x = wR for some w ∈ L}.

By construction.

• Let M = (K, Σ, δ, s, A) be any FSM that accepts L.

• Initially, let M′ be M.

ATC-Module-2- Dr.Girijamma H A

45

• Reverse the direction of every transition in M′.

• Construct a new state q. Make it the start state of M′.

• Create an ε-transition from q to every state that was an accepting state in M.

• M′ has a single accepting state, the start state of M.

Closure under letter substitution or Homomorphism

• The regular languages are closed under letter substitution.

• Consider any two alphabets, ∑1 and ∑2.

• Let sub be any function from ∑1 to ∑2*.

• Then letsub is a letter substitution function from L1 to L2 iff letsub(L1) = {

w Є ∑2*:Ǝy Є L1(w = y except that every character c of y has been replaced

by sub(c))}.

• Example 1

Consider ∑1 = {a,b} and ∑2 = {0,1}

Let sub be any function from ∑1 to ∑2*.

 sub(a) = 0, sub(b) = 11

letsub(anbn : n >= 0}) = { 0n12n : n >= 0}

• Example 2

Consider ∑1 = {0,1,2} and ∑2 = {a,b}

Let h be any function from ∑1 to ∑2*.

 h(0) = a, h(1) = ab, h(2) = ba

h(0120) = h(0)h(1)h(2)h(0)

= aabbaa

ATC-Module-2- Dr.Girijamma H A

46

 h(01*2) = h(0)(h(1))*h(2)

= a(ab)*ba

Long Strings Force Repeated States

Theorem: Let M=(K,∑,δ,s,A) be any DFSM. If M accepts any string of length |K |

or greater, then that string will force M to visit some state more than once.

Proof:

• M must start in one of its states.

• Each time it reads an input character, it visits some state. So ,in processing a

string of length n, M creates a total of n+1 state visits.

• If n+1 > | K |, then, by the pigeonhole principle, some state must get more

than one visit.

• So, if n>= | K |,then M must visit at least one state more than once.

The Pumping Theorem for Regular Languages

Theorem: If L is regular language, then:

Ǝk >= 1 (∀strings w ϵ L, where |w| >= k (Ǝx, y, z (w = xyz,

 |xy| <= k,

 y ≠ ε,and

 ∀q >= 0(xyqz ϵ L)))).

Proof:

• If L is regular then it is accepted by some DFSM M=(K,∑,δ,s,A).

Let k be |K|

• Let w be any string in L of length k or greater.

• By previous theorem to accept w, M must traverse some loop at least once.

ATC-Module-2- Dr.Girijamma H A

47

• We can carve w up and assign the name y to the first substring to drive M

through a loop.

• Then x is the part of w that precedes y and z is the part of w that follows y.

• We show that each of the last three conditions must then hold:

• |xy| <= k

 M must not traverse thru a loop.

 It can read k - 1 characters without revisiting any states.

 But kth character will take M to a state visited before.

• y ≠ ε

 Since M is deterministic, there are no loops traversed by ε.

• ∀q >= 0 (xyqz ϵ L)

 y can be pumped out once and the resulting string must

 be in L.

Steps to prove Language is not regular by contradiction method.

1. Assume L is regular.

2. Apply pumping theorem for the given language.

3. Choose a string w, where w ϵ L and IwI >= k.

4. Split w into xyz such that |xy| <= k and y ≠ ε.

5. Choose a value for q such that xyqz is not in L.

6. Our assumption is wrong and hence the given language is not regular.

ATC-Module-2- Dr.Girijamma H A

48

Problems on Pumping theorem (Showing that the language is not regular)

1. Show that AnBn is not Regular

 Let L be AnBn = { anbn : n >= 0}.

 Proof by contradiction.

 Assume the given language is regular.

 Apply pumping theorem and split the string w into xyz

 Choose w to be akbk (We get to choose any w).

 1 2

 a a a a a … a a a a a b b b b … b b b b b b

 x y z

We show that there is no x, y, z with the required properties:

 k |xy| ,

y

 q > = 0 (xyqz is in L y must be in region 1.

So y = apSince |xy| 1.for some p Let q = 2, producing: ak+pbk L, since it has

more awhich ’s than b’ s.

2. {aibj : i, j ≥ 0 and i - j = 5}.

• Not regular.

• L consists of all strings of the form a*b* where the number of a’s is five

more than the number of b’s.

• We can show that L is not regular by pumping.

• Let w = ak+5bk.

• Since |xy| ≤ k, y must equal ap for some p > 0.

ATC-Module-2- Dr.Girijamma H A

49

• We can pump y out once, which will generate the string ak+5-pbk, which is not

in L because the number of a’s is is less than 5 more than the number of b’s.

ATC-Module-2- Dr.Girijamma H A

50

1

Subject: Automata Theory and Computability
Sub Code: 15CS54

Module -III
Context-Free Grammars and Pushdown Automata (PDA)

Course Outcomes-(CO)
At the end of the course student will be able to:

i. Explain core concepts in Automata and Theory of Computation.
ii. Identify different Formal language Classes and their Relationships.

iii. Design Grammars and Recognizers for different formal languages.
iv. Prove or disprove theorems in automata theory using their properties.
v. Determine the decidability and intractability of Computational problems.

Syllabus of Module 3
i. Context-Free Grammars(CFG): Introduction to Rewrite Systems and Grammars

ii. CFGs and languages, designing CFGs,
iii. Simplifying CFGs,
iv. Proving that a Grammar is correct,
v. Derivation and Parse trees, Ambiguity,

vi. Normal Forms.
vii. Pushdown Automata (PDA): Definition of non-deterministic PDA,

viii. Deterministic and Non-deterministic PDAs,
ix. Non-determinism and Halting, Alternative equivalent definitions of a PDA,
x. Alternatives those are not equivalent to PDA.

Text Books:
1. Elaine Rich, Automata, Computability and Complexity, 1st Edition, Pearson

Education, 2012/2013. Text Book 1: Ch 11, 12: 11.1 to 11.8, 12.1 to 12.6 excluding
12.3.

2. K L P Mishra, N Chandrasekaran , 3rd Edition, Theory of Computer Science, PHI,
2012

Reference Books:
1. John E Hopcroft, Rajeev Motwani, Jeffery D Ullman, Introduction to Automata

Theory, Languages, and Computation, 3rd Edition, Pearson Education, 2013
2. Michael Sipser : Introduction to the Theory of Computation, 3rd edition, Cengage

learning,2013
3. John C Martin, Introduction to Languages and The Theory of Computation, 3rd

Edition,Tata McGraw –Hill Publishing Company Limited, 2013
4. Peter Linz, “An Introduction to Formal Languages and Automata”, 3rd Edition,

Narosa Publishers, 1998
5. Basavaraj S. Anami, Karibasappa K G, Formal Languages and Automata theory,

WileyIndia, 2012

2

Learning Outcomes:
At the end of the module student should be able to:

Sl.No TLO’s
1. Define context free grammars and languages

2. Design the grammar for the given context free languages.
3. Apply the simplification algorithm to simplify the given grammar
4. Prove the correctness of the grammar
5. Define leftmost derivation and rightmost derivation
6. Draw the parse tree to a string for the given grammar.
7. Define ambiguous and inherently ambiguous grammars.
8. Prove whether the given grammar is ambiguous grammar or not.
9. Define Chomsky normal form. Apply the normalization algorithm to

convert the grammar to Chomsky normal form.
10. Define Push down automata (NPDA). Design a NPDA for the given

CFG.
11. Design a DPDA for the given language.
12. Define alternative equivalent definitions of a PDA.

1. Introduction to Rewrite Systems and Grammars

What is Rewrite System?
A rewrite system (or production system or rule based system) is a list of rules, and an
algorithm for applying them. Each rule has a left-hand side and a right hand side.

X → Y
(LHS) (RHS)

Examples of rewrite-system rules: S aSb, aS , aSb bSabSa

When a rewrite system R is invoked on some initial string w, it operates as follows:
simple-rewrite(R: rewrite system, w: initial string) =

1. Set working-string to w.
2. Until told by R to halt do:

1.1 Match the LHS of some rule against some part of working-string.
1.2 Replace the matched part of working-string with the RHS of the rule that

was matched.
3. Return working-string.

If it returns some string s then R can derive s from w or there exists a derivation in R of s
from w.
Examples:

1. A rule is simply a pair of strings where, if the string on the LHS matches, it is
replaced by the string on the RHS.

2. The rule axa aa squeeze out whatever comes between a pair of a’s.
3. The rule ab*ab*a aaa squeeze out b’s between a’s.

3

Rewrite systems can be used to define functions. We write rules that operate on an input
string to produce the required output string. Rewrite systems can be used to define languages.
The rewrite system that is used to define a language is called a grammar.

Grammars Define Languages
A grammar is a set of rules that are stated in terms of two alphabets:

• a terminal alphabet, , that contains the symbols that make up the strings in L(G),
• a nonterminal alphabet, the elements of which will function as working symbols that

will be used while the grammar is operating. These symbols will disappear by the
time the grammar finishes its job and generates a string.

• A grammar has a unique start symbol, often called S.

A rewrite system formalism specifies:
• The form of the rules that are allowed.
• The algorithm by which they will be applied.
• How its rules will be applied?

Using a Grammar to Derive a String
Simple-rewrite (G, S) will generate the strings in L(G). The symbol ⇒ to indicate steps in a
derivation.
Given: S aS ---- rule 1

S  ---- rule 2
A derivation could begin with: S⇒ aSb ⇒ aaSbb⇒ aabb

Generating Many Strings
LHS of Multiple rules may match with the working string.
Given: S aSb ----- rule 1

S bSa ----- rule 2

S  ----- rule 3
Derivation so far: S⇒ aSb⇒ aaSbb⇒
Three are three choices at the next step:
S⇒ aSb⇒ aaSbb⇒ aaaSbbb (using rule 1),
S⇒ aSb⇒ aaSbb⇒ aabSabb (using rule 2),
S⇒ aSb⇒ aaSbb⇒ aabb (using rule 3).

One rule may match in more than one way.
Given: S aTTb ----- rule 1

T bTa ----- rule 2

T  ----- rule 3
Derivation so far: S⇒ aTTb⇒
Two choices at the next step:
S⇒ aTTb⇒ abTaTb⇒
S⇒ aTTb⇒ aTbTab⇒

4

When to Stop
Case 1: The working string no longer contains any nonterminal symbols (including, when it
is ). In this case, we say that the working string is generated by the grammar.
Example: S⇒ aSb⇒ aaSbb⇒ aabb
Case 2: There are nonterminal symbols in the working string but none of them appears on the
left-hand side of any rule in the grammar. In this case, we have a blocked or non-terminated
derivation but no generated string.
Given: S aSb ----- rule 1

S bTa ----- rule 2

S  ----- rule 3
Derivation so far: S⇒ aSb⇒ abTab⇒
Case 3: It is possible that neither case 1 nor case 2 is achieved.
Given: S Ba -----rule 1

B bB -----rule 2
Then all derivations proceed as: S⇒ Ba⇒ bBa⇒ bbBa⇒ bbbBa⇒ bbbbBa⇒ ...
The grammar generates the language Ø.

2. Context –Free Grammar and Languages

Recall Regular Grammar which has a left-hand side that is a single nonterminal and have a
right-hand side that is  or a single terminal or a single terminal followed by a single
nonterminal.

X → Y
(NT) ( or T or T NT)

Example: L = {w Î {a, b}* : |w| is even} RE = ((aa) (ab) (ba) (bb))*

Context Free Grammars
X → Y

(NT) (No restriction)
No restrictions on the form of the right hand sides. But require single non-terminal on left
hand side.
Example: S , S a, S T, S aSb, S aSbbT are allowed.

ST aSb, a aSb,   a are not allowed.
The name for these grammars “Context Free” makes sense because using these rules the
decision to replace a nonterminal by some other sequence is made without looking at the
context in which the nonterminals occurs.

4

When to Stop
Case 1: The working string no longer contains any nonterminal symbols (including, when it
is ). In this case, we say that the working string is generated by the grammar.
Example: S⇒ aSb⇒ aaSbb⇒ aabb
Case 2: There are nonterminal symbols in the working string but none of them appears on the
left-hand side of any rule in the grammar. In this case, we have a blocked or non-terminated
derivation but no generated string.
Given: S aSb ----- rule 1

S bTa ----- rule 2

S  ----- rule 3
Derivation so far: S⇒ aSb⇒ abTab⇒
Case 3: It is possible that neither case 1 nor case 2 is achieved.
Given: S Ba -----rule 1

B bB -----rule 2
Then all derivations proceed as: S⇒ Ba⇒ bBa⇒ bbBa⇒ bbbBa⇒ bbbbBa⇒ ...
The grammar generates the language Ø.

2. Context –Free Grammar and Languages

Recall Regular Grammar which has a left-hand side that is a single nonterminal and have a
right-hand side that is  or a single terminal or a single terminal followed by a single
nonterminal.

X → Y
(NT) ( or T or T NT)

Example: L = {w Î {a, b}* : |w| is even} RE = ((aa) (ab) (ba) (bb))*

Context Free Grammars
X → Y

(NT) (No restriction)
No restrictions on the form of the right hand sides. But require single non-terminal on left
hand side.
Example: S , S a, S T, S aSb, S aSbbT are allowed.

ST aSb, a aSb,   a are not allowed.
The name for these grammars “Context Free” makes sense because using these rules the
decision to replace a nonterminal by some other sequence is made without looking at the
context in which the nonterminals occurs.

4

When to Stop
Case 1: The working string no longer contains any nonterminal symbols (including, when it
is ). In this case, we say that the working string is generated by the grammar.
Example: S⇒ aSb⇒ aaSbb⇒ aabb
Case 2: There are nonterminal symbols in the working string but none of them appears on the
left-hand side of any rule in the grammar. In this case, we have a blocked or non-terminated
derivation but no generated string.
Given: S aSb ----- rule 1

S bTa ----- rule 2

S  ----- rule 3
Derivation so far: S⇒ aSb⇒ abTab⇒
Case 3: It is possible that neither case 1 nor case 2 is achieved.
Given: S Ba -----rule 1

B bB -----rule 2
Then all derivations proceed as: S⇒ Ba⇒ bBa⇒ bbBa⇒ bbbBa⇒ bbbbBa⇒ ...
The grammar generates the language Ø.

2. Context –Free Grammar and Languages

Recall Regular Grammar which has a left-hand side that is a single nonterminal and have a
right-hand side that is  or a single terminal or a single terminal followed by a single
nonterminal.

X → Y
(NT) ( or T or T NT)

Example: L = {w Î {a, b}* : |w| is even} RE = ((aa) (ab) (ba) (bb))*

Context Free Grammars
X → Y

(NT) (No restriction)
No restrictions on the form of the right hand sides. But require single non-terminal on left
hand side.
Example: S , S a, S T, S aSb, S aSbbT are allowed.

ST aSb, a aSb,   a are not allowed.
The name for these grammars “Context Free” makes sense because using these rules the
decision to replace a nonterminal by some other sequence is made without looking at the
context in which the nonterminals occurs.

5

Definition Context-Free Grammar
A context-free grammar G is a quadruple, (V, , R, S), where:

• V is the rule alphabet, which contains nonterminals and terminals.
•  (the set of terminals) is a subset of V,
• R (the set of rules) is a finite subset of (V - ) V*,
• S (the start symbol) is an element of V - .

Given a grammar G, define x ⇒G y to be the binary relation derives-in-one-step, defined so

that ∀ x,y  V* (x ⇒G y iff x = A, y =    and there exists a rule A  is in RG)
Any sequence of the form w0 ⇒G w1 ⇒G w2 ⇒G . . . ⇒G wn is called a derivation in G. Let⇒G* be the reflexive, transitive closure of⇒G. We’ll call⇒G* the derive relation.

A derivation will halt whenever no rules on the left hand side matches against working-string.
At every step, any rule that matches may be chosen.

Language generated by G, denoted L(G), is: L(G) = {w  * : S ⇒G* w}. A language L is
context-free iff it is generated by some context-free grammar G. The context-free languages
(or CFLs) are a proper superset of the regular languages.

Example: L = AnBn = {anbn : n ≥ 0} = {, ab, aabb, aaabbb, …}
G = {{S, a, b}, {a, b}, R, S}, where: R = { S aSb , S }
Example derivation in G: S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb or S ⇒* aaabbb

Recursive Grammar Rules
A grammar is recursive iff it contains at least one recursive rule. A rule is recursive iff it is

X  w1Yw2, where: Y ⇒* w3Xw4 for some w1, w2, w3, and w4 in V*. Expanding a non-
terminal according to these rules can eventually lead to a string that includes the same non-
terminal again.

Example1: L = AnBn = {anbn : n ≥ 0} Let G = ({S, a, b}, {a, b}, {S a S b, S }, S)

Example 2: Regular grammar whose rules are {S a T, T a W, W a S, W a }

Example 3: The Balanced Parenthesis language
Bal = {w  {),(}*: the parenthesis are balanced} = { , (), (()), ()(), (()()) ……………..........}
G={{S,),(}, {),(},R,S} where R={ S  S SS S (S) }
Some example derivations in G:
S⇒ (S)⇒ ()
S⇒ (S)⇒ (SS)⇒ ((S)S)⇒ (() S))⇒ (() (S))⇒ (()())
So, S⇒* () and S⇒* (()())
Recursive rules make it possible for a finite grammar to generate an infinite set of strings.

6

Self-Embedding Grammar Rules
A grammar is self-embedding iff it contains at least one self-embedding rule. A rule in a

grammar G is self-embedding iff it is of the form X w1Yw2, where Y ⇒* w3Xw4 and both

w1w3 and w4w2 are in +. No regular grammar can impose such a requirement on its strings.

Example: S aSa is self-embedding

S aS is recursive but not self- embedding

S aT

T Sa is self-embedding

Example : PalEven = {wwR : w  {a, b}*}= The L of even length palindrome of a’s and b’s.
L = {, aa, bb, aaaa, abba, baab, bbbb, ..…….}
G = {{S, a, b}, {a, b}, R, S}, where:

R = { S aSa ----- rule 1

S bSb ----- rule 2

S  ----- rule 3 }.
Example derivation in G:
S⇒ aSa⇒ abSba⇒ abba

Where Context-Free Grammars Get Their Power
If a grammar G is not self-embedding then L(G) is regular. If a language L has the property
that every grammar that defines it is self-embedding, then L is not regular.

More flexible grammar-writing notations
a. Notation for writing practical context-free grammars. The symbol | should be read as

“or”. It allows two or more rules to be collapsed into one.
Example:
S a S b

S b S a

S 

b. Allow a nonterminal symbol to be any sequence of characters surrounded by angle
brackets.

Example1: BNF for a Java Fragment
<block> ::= {<stmt-list>} | {}
<stmt-list> ::= <stmt> | <stmt-list> <stmt>
<stmt> ::= <block> | while (<cond>) <stmt> |

if (<cond>) <stmt> |
do <stmt> while (<cond>); |
<assignment-stmt>; |
return | return <expression> |
<method-invocation>;

can be written as S  a S b | b S a | 

7

Example2: A CFG for C++ compound statements:
<compound stmt> { <stmt list> }

<stmt list> <stmt> <stmt list> | epsilon

<stmt> <compound stmt>

<stmt> if (<expr>) <stmt>

<stmt> if (<expr>) <stmt> else <stmt>

<stmt> while (<expr>) <stmt>

<stmt> do <stmt> while (<expr>) ;

<stmt> for (<stmt> <expr> ; <expr>) <stmt>

<stmt> case <expr> : <stmt>

<stmt> switch (<expr>) <stmt>

<stmt> break ; | continue ;

<stmt> return <expr> ; | goto <id> ;

Example3: A Fragment of English Grammar
Notational conventions used are

• Nonterminal = whose first symbol is an uppercase letter
• NP = derive noun phrase
• VP = derive verb phrase

S NP VP
NP the Nominal | a Nominal | Nominal | ProperNoun | NP PP

Nominal  N | Adjs N

N cat | dogs | bear | girl | chocolate | rifle

ProperNoun Chris | Fluffy

Adjs Adj Adjs | Adj

Adj young | older | smart

VP V | V NP | VP PP

V like | likes | thinks | shots | smells

PP Prep NP

Prep with

3. Designing Context-Free Grammars

If L has a property that every string in it has two regions & those regions must bear some
relationship to each other, then the two regions must be generated in tandem. Otherwise,
there is no way to enforce the necessary constraint.

8

Example 1: L = {anbncm : n, m ≥ 0} = L = {, ab, c, abc, abcc, aabbc, …….}
The cm portion of any string in L is completely independent of the anbn portion, so we should
generate the two portions separately and concatenate them together.
G = ({S, A, C, a, b, c}, {a, b, c}, R, S} where:

R = { S AC /* generate the two independent portions

A aAb |  /* generate the anbn portion, from the outside in

C cC |  } /* generate the cm portion
Example derivation in G for string abcc:
S⇒ AC⇒ aAbC⇒ abC⇒ abcC⇒ abccC⇒ abcc

Example 2: L={ aibjck : j=i+k, i ,k ≥ 0} on substituting j=i+k⇒ L = {aibibkck : i, k ≥ 0}

L = {, abbc, aabbbbcc, abbbcc …….}
The aibi portion of any string in L is completely independent of the bkck portion, so we should
generate the two portions separately and concatenate them together.
G = ({S, A, B, a, b, c}, {a, b, c}, R, S} where:

R = { S AB /* generate the two independent portions

A aAb |  /* generate the aibi portion, from the outside in

B bBc |  } /* generate the bkck portion
Example derivation in G for string abbc:
S⇒ AB⇒ aAbB⇒ abB⇒ abbBc⇒ abbc

Example 3: L={ aibjck : i=j+k, j ,k ≥0} on substituting i=j+k⇒ L = {akajbjck : j, k ≥0}

L = {, ac, ab, aabc, aaabcc, …….}
The aibi is the inner portion and akck is the outer portion of any string in L.
G = ({S, A, a, b, c}, {a, b, c}, R, S} where:

R = { S aSc | A /* generate the akck outer portion

A aAb |  /* generate the ajbj inner portion}
Example derivation in G for string aabc:
S⇒ aSc⇒ aAc⇒ aaAbc⇒ aabc

Example 4: L = {anwwR bn: w  {a, b}*} = {, ab, aaab, abbb, aabbab, aabbbbab, ..…….}
The anbn is the inner portion and wwR is the outer portion of any string in L.
G = {{S, A, a, b}, {a, b}, R, S}, where:

R = {S aSb ----- rule 1

S A ----- rule 2

A aAa ----- rule 3

A bAb ----- rule 4

A  ----- rule 5 }.
Example derivation in G for string aabbab:
S⇒ aSb⇒ aAb⇒ aaAab⇒ aabAbab⇒ aabbab

9

Example 5: Equal Numbers of a’s and b’s. = {w  {a, b}*: #a(w) = #b(w)}.

L = {, ab, ba, abba, aabb, baba, bbaa, …….}
G = {{S, a, b}, {a, b}, R, S}, where:

R = { S aSb ----- rule 1

S bSa ----- rule 2

S SS ----- rule 3

S  ----- rule 4 }.
Example derivation in G for string abba:
S⇒ aSa⇒ abSba⇒ abba

Example 6
L = {aibj : 2i = 3j + 1} = {a2b1 , a5b3 , a8b5 …….}
G = {{S, a, b}, {a, b}, R, S}, where:

aibj 2i = 3j + 1
a2b1 2*2= 3*1 + 1 = 4
a5b3 2*5= 3*3 + 1 = 10
a8b5 2*8= 3*5 + 1 = 16

R={ S aaaSbb | aab }
Example derivation in G for string aaaaabbb:
S⇒ aaaSbb⇒ aaaaabbb

4. Simplifying Context-Free Grammars

Two algorithms used to simplify CFG
a. To find and remove unproductive variables using removeunproductive(G:CFG)
b. To find and remove unreachable variables using removeunreachable(G:CFG)

a. Removing Unproductive Nonterminals:

Removeunproductive (G: CFG) =
1. G = G.

2. Mark every nonterminal symbol in G as unproductive.

3. Mark every terminal symbol in G as productive.
4. Until one entire pass has been made without any new symbol being marked do:

For each rule X  in R do:

If every symbol in  has been marked as productive and X has not
yet been marked as productive then:
Mark X as productive.

5. Remove from G every unproductive symbol.

6. Remove from G every rule that contains an unproductive symbol.

7. Return G.

10

Example: G = ({S, A, B, C, D, a, b}, {a, b}, R, S), where
R = { S AB | AC

A aAb | 
B bA

C bCa

D AB }
1) a and b terminal symbols are productive
2) A is productive(because A aAb)

3) B is productive(because B bA)

4) S & D are productive(because S AB & D AB)
5) C is unproductive
On eliminating C from both LHS and RHS the rule set R obtained is

R = { S AB A aAb |  B bA D AB }

b. Removing Unreachable Nonterminals
Removeunreachable (G: CFG) =

1. G = G.
2. Mark S as reachable.
3. Mark every other nonterminal symbol as unreachable.
4. Until one entire pass has been made without any new symbol being marked do:

For each rule X A (where A  V - ) in R do:
If X has been marked as reachable and A has not then:
Mark A as reachable.

5. Remove from G every unreachable symbol.

6. Remove from G every rule with an unreachable symbol on the left-hand side.

7. Return G.

Example
G = ({S, A, B, C, D, a, b}, {a, b}, R, S), where

R = {S AB

A aAb | 
B bA

D AB }
S, A, B are reachable but D is not reachable, on eliminating D from both LHS and RHS the
rule set R is

R = { S AB

A aAb | 
B bA }

11

5. Proving the Correctness of a Grammar

Given some language L and a grammar G, can we prove that G is correct (ie it generates
exactly the strings in L)
To do so, we need to prove two things:

1. Prove that G generates only strings in L.
2. Prove that G generates all the strings in L.

6. Derivations and Parse Trees

Algorithms used for generation and recognition must be systematic. The expansion order is
important for algorithms that work with CFG. To make it easier to describe such algorithms,
we define two useful families of derivations.

a. A leftmost derivation is one in which, at each step, the leftmost nonterminal in the
working string is chosen for expansion.

b. A rightmost derivation is one in which, at each step, the rightmost nonterminal in the
working string is chosen for expansion.

Example 1 : S → AB | aaB A → a | Aa B → b
Left-most derivation for string aab is S⇒ AB⇒ AaB ⇒ aaB ⇒ aab
Right-most derivation for string aab is S⇒ AB⇒ Ab⇒ Aab⇒ aab

Example 2: SiCtS | iCtSeS | x Cy
Left-most Derivation for string iytiytxex is S ⇒ iCtS ⇒ iytS ⇒ iytiCtSeS ⇒ iytiytSeS ⇒
iytiytxe⇒ iytiytxex
Right-most Derivation for string iytiytxex is S ⇒ iCtSeS ⇒ iCtSex ⇒ iCtiCtSex ⇒ iCtiCtxex⇒ iCtiytxex⇒ iytiytxex

Example 3: A Fragment of English Grammar are
S NP VP

NP the Nominal | a Nominal | Nominal | ProperNoun | NP PP

Nominal  N | Adjs N

N cat | dogs | bear | girl | chocolate | rifle

ProperNoun Chris | Fluffy

Adjs Adj Adjs | Adj

Adj young | older | smart

VP V | V NP | VP PP

V like | likes | thinks | shots | smells

PP Prep NP

Prep with

12

Left-most Derivation for the string “the smart cat smells chocolate”
S⇒ NP VP⇒ the Nominal VP⇒ the Adjs N VP⇒ the Adj N VP⇒ the smart N VP⇒ the smart cat VP⇒ the smart cat V NP⇒ the smart cat smells NP⇒ the smart cat smells Nominal⇒ the smart cat smells N⇒ the smart cat smells chocolate

Right-most Derivation for the string “the smart cat smells chocolate”
S⇒ NP VP⇒ NP V NP⇒ NP V Nominal⇒ NP V N⇒ NP V chocolate⇒ NP smells chocolate⇒ the Nominal smells chocolate⇒ the Adjs N smells chocolate⇒ the Adjs cat smells chocolate⇒ the Adj cat smells chocolate⇒ the smart cat smells chocolate

Parse Trees
Regular grammar: in most applications, we just want to describe the set of strings in a
language. Context-free grammar: we also want to assign meanings to the strings in a
language, for which we care about internal structure of the strings. Parse trees capture the
essential grammatical structure of a string. A program that produces such trees is called a
parser. A parse tree is an (ordered, rooted) tree that represents the syntactic structure of a
string according to some formal grammar. In a parse tree, the interior nodes are labeled by
non terminals of the grammar, while the leaf nodes are labeled by terminals of the grammar
or .
A parse tree, derived by a grammar G = (V, S, R, S), is a rooted, ordered tree in which:

1. Every leaf node is labeled with an element of ∑ ∪{  },
2. The root node is labeled S,
3. Every other node is labeled with some element of: V –∑, and
4. If m is a nonleaf node labeled X and the children of m are labeled x1, x2, …,

xn, then R contains the rule X → x1, x2, …, xn.

13

Example 1: S AB | aaB A a | Aa B b
Left-most derivation for the string aab is S⇒ AB⇒ AaB ⇒ aaB ⇒ aab
Parse tree obtained is

Example 2: SiCtS | iCtSeS | x Cy
Left-most Derivation for string iytiytxex isS⇒ iCtS ⇒ iytS ⇒ iytiCtSeS ⇒ iytiytSeS⇒ iytiytxeS ⇒ iytiytxex

Example 3: Parse Tree -Structure in English for the string “the smart cat smells
chocolate”. It is clear from the tree that the sentence is not about cat smells or smart cat
smells.

the smart cat smells chocolate

A parse tree may correspond to multiple derivations. From the parse tree, we cannot tell
which of the following is used in derivation:

S⇒ NP VP⇒ the Nominal VP⇒
S⇒ NP VP⇒ NP V NP⇒

Parse trees capture the important structural facts about a derivation but throw away the details
of the nonterminal expansion order. The order has no bearing on the structure we wish to
assign to a string.

Generative Capacity
Because parse trees matter, it makes sense, given a grammar G, to distinguish between:

1. G’s weak generative capacity, defined to be the set of strings, L(G), that G generates,
and

2. G’s strong generative capacity, defined to be the set of parse trees that G generates.
When we design grammar, it will be important that we consider both their weak and their
strong generative capacities.

7. Ambiguity

Sometimes a grammar may produce more than one parse tree for some (or all) of the strings
it generates. When this happens we say that the grammar is ambiguous. A grammar is
ambiguous iff there is at least one string in L(G) for which G produces more than one parse
tree.

13

Example 1: S AB | aaB A a | Aa B b
Left-most derivation for the string aab is S⇒ AB⇒ AaB ⇒ aaB ⇒ aab
Parse tree obtained is

Example 2: SiCtS | iCtSeS | x Cy
Left-most Derivation for string iytiytxex isS⇒ iCtS ⇒ iytS ⇒ iytiCtSeS ⇒ iytiytSeS⇒ iytiytxeS ⇒ iytiytxex

Example 3: Parse Tree -Structure in English for the string “the smart cat smells
chocolate”. It is clear from the tree that the sentence is not about cat smells or smart cat
smells.

the smart cat smells chocolate

A parse tree may correspond to multiple derivations. From the parse tree, we cannot tell
which of the following is used in derivation:

S⇒ NP VP⇒ the Nominal VP⇒
S⇒ NP VP⇒ NP V NP⇒

Parse trees capture the important structural facts about a derivation but throw away the details
of the nonterminal expansion order. The order has no bearing on the structure we wish to
assign to a string.

Generative Capacity
Because parse trees matter, it makes sense, given a grammar G, to distinguish between:

1. G’s weak generative capacity, defined to be the set of strings, L(G), that G generates,
and

2. G’s strong generative capacity, defined to be the set of parse trees that G generates.
When we design grammar, it will be important that we consider both their weak and their
strong generative capacities.

7. Ambiguity

Sometimes a grammar may produce more than one parse tree for some (or all) of the strings
it generates. When this happens we say that the grammar is ambiguous. A grammar is
ambiguous iff there is at least one string in L(G) for which G produces more than one parse
tree.

13

Example 1: S AB | aaB A a | Aa B b
Left-most derivation for the string aab is S⇒ AB⇒ AaB ⇒ aaB ⇒ aab
Parse tree obtained is

Example 2: SiCtS | iCtSeS | x Cy
Left-most Derivation for string iytiytxex isS⇒ iCtS ⇒ iytS ⇒ iytiCtSeS ⇒ iytiytSeS⇒ iytiytxeS ⇒ iytiytxex

Example 3: Parse Tree -Structure in English for the string “the smart cat smells
chocolate”. It is clear from the tree that the sentence is not about cat smells or smart cat
smells.

the smart cat smells chocolate

A parse tree may correspond to multiple derivations. From the parse tree, we cannot tell
which of the following is used in derivation:

S⇒ NP VP⇒ the Nominal VP⇒
S⇒ NP VP⇒ NP V NP⇒

Parse trees capture the important structural facts about a derivation but throw away the details
of the nonterminal expansion order. The order has no bearing on the structure we wish to
assign to a string.

Generative Capacity
Because parse trees matter, it makes sense, given a grammar G, to distinguish between:

1. G’s weak generative capacity, defined to be the set of strings, L(G), that G generates,
and

2. G’s strong generative capacity, defined to be the set of parse trees that G generates.
When we design grammar, it will be important that we consider both their weak and their
strong generative capacities.

7. Ambiguity

Sometimes a grammar may produce more than one parse tree for some (or all) of the strings
it generates. When this happens we say that the grammar is ambiguous. A grammar is
ambiguous iff there is at least one string in L(G) for which G produces more than one parse
tree.

14

Example 1: Bal={w  {),(}*: the parenthesis are balanced}.

G={{S,),(}, {),(},R,S} where R={ S  S SS S (S) }
Left-most Derivation1 for the string (())() is S⇒ S⇒(S)S ⇒ ((S))S⇒ (())S⇒ (())(S)⇒ (())()
Left-most Derivation2 for the string (())() is S ⇒ SS ⇒SSS ⇒SS ⇒ (S)S ⇒ ((S))S ⇒ (())S⇒ (())(S)⇒ (())()

Since both the parse trees obtained for the same string (())() are different, the grammar is ambiguous.

Example 2: S iCtS | iCtSeS | x C y
Left-most Derivation for the string iytiytxex is S⇒ iCtS⇒ iytS⇒ iytiCtSeS ⇒ iytiytSeS⇒
iytiytxeS⇒ iytiytxex
Right-most Derivation for the string iytiytxex is S⇒ iCtSeS⇒ iCtSex ⇒ iCtiCtSex⇒iCtiCtxex⇒ iCtiytxex ⇒ iytiytxex

Since both the parse trees obtained for the same string iytiytxex are different, the grammar is
ambiguous.

Example 3: S AB | aaB A a | Aa B b
Left-most derivation for string aab is S⇒ AB⇒ AaB ⇒ aaB ⇒ aab
Right-most derivation for string aab is S⇒ aaB⇒ aab

Since both the parse trees obtained for the same string aab are different, the grammar is
ambiguous.

15

Why Is Ambiguity a Problem?
With regular languages, for most applications, we do not care about assigning internal
structure to strings.
With context-free languages, we usually do care about internal structure because, given a
string w, we want to assign meaning to w. It is generally difficult, if not impossible, to assign
a unique meaning without a unique parse tree. So an ambiguous G, which fails to produce a
unique parse tree is a problem.

Example : Arithmetic Expressions
G = (V, , R, E), where

V = {+, *, (,), id, E},
 = {+, *, (,), id},

R = {E E + E, E E  E, E (E), E id }

Consider string 2+3*5 written as id +id*id, left-most derivation for string id +id*id is
E⇒ E*E⇒ E+E*E⇒ id+E*E⇒ id+id*E⇒ id+id*id.
Similarly the right-most derivation for string id +id*id is
E⇒ E+E⇒ E+E*E⇒ E+E*id⇒ E+id*id⇒ id+id*id.
The parse trees obtained for both the derivations are:-

Should the evaluation of this expression return 17 or 25? Designers of practical languages
must be careful that they create languages for which they can write unambiguous grammars.
Techniques for Reducing Ambiguity
No general purpose algorithm exists to test for ambiguity in a grammar or to remove it when
it is found. But we can reduce ambiguity by eliminating

a.  rules like S → 

b. Rules with symmetric right-hand sides
• A grammar is ambiguous if it is both left and right recursive.
• Fix: remove right recursion
• S → SS or E → E + E

c. Rule sets that lead to ambiguous attachment of optional postfixes.

15

Why Is Ambiguity a Problem?
With regular languages, for most applications, we do not care about assigning internal
structure to strings.
With context-free languages, we usually do care about internal structure because, given a
string w, we want to assign meaning to w. It is generally difficult, if not impossible, to assign
a unique meaning without a unique parse tree. So an ambiguous G, which fails to produce a
unique parse tree is a problem.

Example : Arithmetic Expressions
G = (V, , R, E), where

V = {+, *, (,), id, E},
 = {+, *, (,), id},

R = {E E + E, E E  E, E (E), E id }

Consider string 2+3*5 written as id +id*id, left-most derivation for string id +id*id is
E⇒ E*E⇒ E+E*E⇒ id+E*E⇒ id+id*E⇒ id+id*id.
Similarly the right-most derivation for string id +id*id is
E⇒ E+E⇒ E+E*E⇒ E+E*id⇒ E+id*id⇒ id+id*id.
The parse trees obtained for both the derivations are:-

Should the evaluation of this expression return 17 or 25? Designers of practical languages
must be careful that they create languages for which they can write unambiguous grammars.
Techniques for Reducing Ambiguity
No general purpose algorithm exists to test for ambiguity in a grammar or to remove it when
it is found. But we can reduce ambiguity by eliminating

a.  rules like S → 

b. Rules with symmetric right-hand sides
• A grammar is ambiguous if it is both left and right recursive.
• Fix: remove right recursion
• S → SS or E → E + E

c. Rule sets that lead to ambiguous attachment of optional postfixes.

15

Why Is Ambiguity a Problem?
With regular languages, for most applications, we do not care about assigning internal
structure to strings.
With context-free languages, we usually do care about internal structure because, given a
string w, we want to assign meaning to w. It is generally difficult, if not impossible, to assign
a unique meaning without a unique parse tree. So an ambiguous G, which fails to produce a
unique parse tree is a problem.

Example : Arithmetic Expressions
G = (V, , R, E), where

V = {+, *, (,), id, E},
 = {+, *, (,), id},

R = {E E + E, E E  E, E (E), E id }

Consider string 2+3*5 written as id +id*id, left-most derivation for string id +id*id is
E⇒ E*E⇒ E+E*E⇒ id+E*E⇒ id+id*E⇒ id+id*id.
Similarly the right-most derivation for string id +id*id is
E⇒ E+E⇒ E+E*E⇒ E+E*id⇒ E+id*id⇒ id+id*id.
The parse trees obtained for both the derivations are:-

Should the evaluation of this expression return 17 or 25? Designers of practical languages
must be careful that they create languages for which they can write unambiguous grammars.
Techniques for Reducing Ambiguity
No general purpose algorithm exists to test for ambiguity in a grammar or to remove it when
it is found. But we can reduce ambiguity by eliminating

a.  rules like S → 

b. Rules with symmetric right-hand sides
• A grammar is ambiguous if it is both left and right recursive.
• Fix: remove right recursion
• S → SS or E → E + E

c. Rule sets that lead to ambiguous attachment of optional postfixes.

16

a. Eliminating -Rules
Let G =(V, , R, S) be a CFG. The following algorithm constructs a G such that L(G) =

L(G)-{} and G contains no  rules:
removeEps(G: CFG) =

1. Let G = G.

2. Find the set N of nullable variables in G.
3. Repeat until G contains no modifiable rules that haven’t been processed:

Given the rule PQ, where Q  N, add the rule P if it is not already present

and if    and if P  .

4. Delete from G all rules of the form X .
5. Return G.

Nullable Variables & Modifiable Rules
A variable X is nullable iff either:

(1) there is a rule X , or

(2) there is a rule X PQR… and P, Q, R, … are all nullable.
So compute N, the set of nullable variables, as follows:
2.1. Set N to the set of variables that satisfy (1).
2.2. Until an entire pass is made without adding anything to N do

Evaluate all other variables with respect to (2).
If any variable satisfies (2) and is not in N, insert it.

A rule is modifiable iff it is of the form: P Q, for some nullable Q.
Example: G = {{S, T, A, B, C, a, b, c}, {a, b, c}, R, S),

R = {S aTa T ABC A aA | C B Bb | C C c |  }
Applying removeEps
Step2: N = { C }
Step2.2 pass1: N = { A, B, C }
Step2.2 pass2: N = { A, B, C, T }
Step2.2 pass3: no new element found.
Step2: halts.
Step3: adds the following new rules to G.
{ S aa

T AB | BC | AC | A | B | C

A a

B b }

The rules obtained after eliminating -rules :
{ S aTa | aa

T ABC | AB | BC | AC | A | B | C

A aA | C | a

B Bb | C | b

C c }

17

What If   L?
Sometimes L(G) contains  and it is important to retain it. To handle this case the algorithm
used is
atmostoneEps(G: CFG) =

1. G = removeEps(G).

2. If SG is nullable then /* i. e.,   L(G)

2.1 Create in G a new start symbol S*.

2.2 Add to RG the two rules:S*  and S* SG.

3. Return G.

Example: Bal={w  {),(}*: the parenthesis are balanced}.

The new grammar built is better than the original one. The string (())() has only one parse
tree.

But it is still ambiguous as the string ()()() has two parse trees?

Replace S SS with one of:

S S S1 /* force branching to the left

S S1S /* force branching to the right

So we get: S*  | S

S SS1 /* force branching only to the left

S S1 /* add rule

S1 (S) | ()

R={ S  SS

S (S)

S  }

R={ S SS

S (S)

S () }

R={ S* 
S* S

S SS

S (S)

S ()}

18

Unambiguous Grammar for Bal={w  {),(}*: the parenthesis are balanced}.
G={{S,),(}, {),(},R,S} where

S* n | S

S SS1 | S1

S1 (S) | ()
The parse tree obtained for the string ()()() is

Unambiguous Arithmetic Expressions
Grammar is ambiguous in two ways:

a. It fails to specify associatively.
Ex: there are two parses for the string id + id + id, corresponding to the bracketing (id +
id) + id and id + (id + id)
b. It fails to define a precedence hierarchy for the operations + and *.

Ex: there are two parses for the string id + id * id, corresponding to the bracketing (id +
id)* id and id + (id * id)

The unambiguous grammar for the arithmetic expression is:
E E + T

E T

T T * F

T F

F (E)

F id
For identical operators: forced branching to go in a single direction (to the left). For
precedence Hierarchy: added the levels T (for term) and F (for factor)
The single parse tree obtained from the unambiguous grammar for the arithmetic expression
is:

19

Proving that the grammar is Unambiguous
A grammar is unambiguous iff for all strings w, at every point in a leftmost derivation or
rightmost derivation of w, only one rule in G can be applied.

S*  ---(1)

S* S ---(2)

S SS1 ---(3)

S S1 ---(4)

S1 (S) ---(5)

S1 () ---(6)
S*⇒ S⇒SS1⇒SS1S1⇒S1S1S1⇒ () S1S1⇒ () () S1⇒ () () ()

Inherent Ambiguity
In many cases, for an ambiguous grammar G, it is possible to construct a new grammar G
that generate L(G) with less or no ambiguity. However, not always. Some languages have the
property that every grammar for them is ambiguous.We call such languages inherently
ambiguous.
Example: L = {aibjck: i, j , k  0, i=j or j=k}.
Every string in L has either (or both) the same number of a’s and b’s or the same number of
b’s and c’s. L = {anbncm: n, m  0}  {anbmcm: n, m  0}.
One grammar for L has the rules:

S S1 | S2

S1 S1c | A /* Generate all strings in {anbncm}.

A aAb | 
S2 aS2 | B /* Generate all strings in {anbmcm}.

B bBc | 
Consider the string a2b2c2 .
It has two distinct derivations, one through S1 and the other through S2

S⇒ S1⇒ S1c⇒ S1cc⇒Acc⇒ aAbcc⇒ aaAbbcc⇒ aabbcc
S⇒ S2⇒ aS2⇒ aaS2⇒ aaB⇒ aabBc⇒ aabbBcc⇒ aabbcc
Given any grammar G that generates L, there is at least one string with two derivations in G.

Both of the following problems are undecidable:
• Given a context-free grammar G, is G ambiguous?
• Given a context-free language L, is L inherently ambiguous

20

8. Normal Forms
We have seen in some grammar where RHS is  , it makes grammar harder to use. Lets see

what happens if we carry the idea of getting rid of  -productions a few steps farther. To
make our tasks easier we define normal forms.
Normal Forms - When the grammar rules in G satisfy certain restrictions, then G is said to be
in Normal Form.

• Normal Forms for queries & data can simplify database processing.
• Normal Forms for logical formulas can simplify automated reasoning in AI systems

and in program verification system.
• It might be easier to build a parser if we could make some assumptions about the form

of the grammar rules that the parser will use.
Normal Forms for Grammar
Among several normal forms, two of them are:-

• Chomsky Normal Form(CNF)
• Greibach Normal Form(GNF)

Chomsky Normal Form (CNF)
In CNF we have restrictions on the length of RHS and the nature of symbols on the RHS of
the grammar rules.
A context-free grammar G = (V, Σ, R, S) is said to be in Chomsky Normal Form (CNF), iff
every rule in R is of one of the following forms:

X a where a   , or

X BC where B and C  V-
Example: S AB, A a,B b
Every parse tree that is generated by a grammar in CNF has a branching factor of exactly 2
except at the branches that leads to the terminal nodes, where the branching factor is 1.
Using this property parser can exploit efficient data structure for storing and manipulating
binary trees. Define straight forward decision procedure to determine whether w can be
generated by a CNF grammar G. Easier to define other algorithms that manipulates
grammars.

Greibach Normal Form (GNF)
GNF is a context free grammar G = (V, , R, S), where all rules have one of the following

forms: X a where a   and   (V-)*

Example: SaA | aAB, A a,B b
In every derivation precisely one terminal is generated for each rule application. This
property is useful to define a straight forward decision procedure to determine whether w can
be generated by GNF grammar G. GNF grammars can be easily converted to PDA with no 
transitions.

21

Converting to Chomsky Normal Form
Apply some transformation to G such that the language generated by G is unchanged.

1. Rule Substitution.
Example: X aYc Y b Y ZZ equivalent grammar constructed is X abc | aZZc

There exists 4-steps algorithm to convert a CFG G into a new grammar Gc such that: L(G) =
L(Gc) – {}
convertChomsky(G:CFG) =

1. G' = removeEps(G:CFG) S  
2. G'' = removeUnits(G':CFG) A  B
3. G''' = removeMixed(G'':CFG) A  aB
4. G'v = removeLong(G''' :CFG) S  ABCD

return Gc

Remove Epsilon using removeEps(G:CFG)
Find the set N of nullable variables in G.
X is nullable iff either X  or (X A, A ) : X 
Example1: G: S aACa

A B | a

B C | c

C cC | 
Now, since C , C is nullable

since B C , B is nullable

since A B , A is nullable
Therefore N = { A,B,C}

removeEps returns G':
S aACa | aAa | aCa | aa

A B | a

B C | c

C cC | c

Remove Unit Productions using removeUnits(G:CFG)
Unit production is a rule whose right hand side consists of a single nonterminal symbol.
Ex: A B. Remove all unit production from G'.
Consider the remaining rules of G'.
G: S aACa | aAa | aCa | aa

A B | a

B C | c

C cC | c

Remove A B But B C | c, so Add A C | c

Remove B C Add B cC (B c, already there)

Remove A C Add A cC (A c, already there)

22

removeUnits returns G'' :
S aACa | aAa | aCa | aa

A cC | a | c

B cC | c

C cC | c

Remove Mixed using removeMixed(G'':CFG)
Mixed is a rule whose right hand side consists of combination of terminals or terminals with
nonterminal symbol. Create a new nonterminal Ta for each terminal a  . For each Ta, add

the rule Ta a
Consider the remaining rules of G'' :

S aACa | aAa | aCa | aa

A cC | a | c

B cC | c

C cC | c

removeMixed returns G''' :
S TaACTa | TaATa | TaCTa | TaTa

A TcC | a | c

B TcC | c

C TcC | c

Ta a

Tc c

Remove Long using removeLong(G''' :CFG)
Long is a rule whose right hand side consists of more than two nonterminal symbol.
R: A BCDE is replaced as: A BM2

M2 CM3

M3 DE
Consider the remaining rules of G''':
S TaACTa | TaATa | TaCTa

Now, by applying removeLong we get :
S TaS1

S1 AS2

S2 CTa

S TaS3

S3 ATa

S TaS2

23

Now, by apply removeLong returns G'v :
S TaS1 | TaS3 | TaS2 | TaTa

S1 AS2

S2 CTa

S3 ATa

A TcC | a | c

B TcC | c

C TcC | c

Ta a

Tc c

Example 2: Apply the normalization algorithm to convert the grammar to CNF

G: S aSa | B

B bbC | bb

C cC | 
removeEps(G:CFG) returns

G: S aSa | B

B bbC | bb

C cC | c
removeUnits(G':CFG) returns

G : S aSa | bbC | bb

B bbC | bb

C cC | c
removeMixed(G'':CFG) returns

G''': S TaSTa | TbTbC | TbTb

B TbTbC | TbTb

C TcC | c

Ta a

Tb b

Tc c
removeLong(G''' :CFG) returns

G'v: S Ta S1 | Tb S2 | TbTb

S1 S Ta

S2 Tb C

B Tb S2 | TbTb

C TcC | c

Ta a

Tb b

Tc c

24

Example 3: Apply the normalization algorithm to convert the grammar to CNF
G: S → ABC

A → aC | D
B → bB | ε | A
C → Ac | ε | Cc
D → aa

removeEps(G:CFG) returns
G: S → ABC | AC | AB | A

A → aC | D | a
B → bB | A | b
C → Ac | Cc | c
D → aa

removeUnits(G':CFG) returns
G : S → ABC | AC | AB | aC | aa | a

A → aC | aa | a
B → bB | aC | aa | a | b
C → Ac | Cc | c
D → aa

removeMixed(G'':CFG) returns
G : S → ABC | AC | AB | Ta C | Ta Ta | a

A → Ta C | Ta Ta | a
B → Tb B | Ta C | Ta Ta | a | b
C → A Tc | C Tc | c
D → Ta Ta

Ta a

Tb b

Tc c

removeLong(G''' :CFG) returns
Gv: S → AS1 | AC | AB | Ta C | Ta Ta | a

S1 → BC
A → Ta C | Ta Ta | a
B → Tb B | Ta C | Ta Ta | a | b
C → A Tc | C Tc | c
D → Ta Ta

Ta a

Tb b

Tc c

25

9. Pushdown Automata

An acceptor for every context-free language. A pushdown automata , or PDA, is a finite state
machine that has been augmented by a single stack.
Definition of a (NPDA) Pushdown Automaton
M = (K, S, G, Δ , s, A), where:

K is a finite set of states,
S is the input alphabet,
G is the stack alphabet,
s ∈ K is the initial state,
A ⊆ K is the set of accepting states, and
Δ is the transition relation.



Configuration
A configuration of PDA M is an element of K X S* X G*. Current state, Input that is still left
to read and, Contents of its stack.
The initial configuration of a PDA M, on input w, is (s, w, ).

will be written as cba

If s1s2…sn is pushed onto the stack: the value after the push is s1s2…sncba
Yields-in-one-step
Yields-in-one-step written |-M relates configuration1 to configuration2 iff M can move from

configuration1 to configuration2 in one step. Let c be any element of ∑ U { }, let 1,2 and be any elements of G*, and let w be any element of S*. Then:
(q1, cw, 1) |-M (q2, w, 2) iff ((q1, c, 1), (q2, 2)) ∈ Δ .

The relation yields, written |-M* is the reflexive, transitive closure of |-M C1 yields
configuration C2 iff C1 |-M* C2

25

9. Pushdown Automata

An acceptor for every context-free language. A pushdown automata , or PDA, is a finite state
machine that has been augmented by a single stack.
Definition of a (NPDA) Pushdown Automaton
M = (K, S, G, Δ , s, A), where:

K is a finite set of states,
S is the input alphabet,
G is the stack alphabet,
s ∈ K is the initial state,
A ⊆ K is the set of accepting states, and
Δ is the transition relation.



Configuration
A configuration of PDA M is an element of K X S* X G*. Current state, Input that is still left
to read and, Contents of its stack.
The initial configuration of a PDA M, on input w, is (s, w, ).

will be written as cba

If s1s2…sn is pushed onto the stack: the value after the push is s1s2…sncba
Yields-in-one-step
Yields-in-one-step written |-M relates configuration1 to configuration2 iff M can move from

configuration1 to configuration2 in one step. Let c be any element of ∑ U { }, let 1,2 and be any elements of G*, and let w be any element of S*. Then:
(q1, cw, 1) |-M (q2, w, 2) iff ((q1, c, 1), (q2, 2)) ∈ Δ .

The relation yields, written |-M* is the reflexive, transitive closure of |-M C1 yields
configuration C2 iff C1 |-M* C2

25

9. Pushdown Automata

An acceptor for every context-free language. A pushdown automata , or PDA, is a finite state
machine that has been augmented by a single stack.
Definition of a (NPDA) Pushdown Automaton
M = (K, S, G, Δ , s, A), where:

K is a finite set of states,
S is the input alphabet,
G is the stack alphabet,
s ∈ K is the initial state,
A ⊆ K is the set of accepting states, and
Δ is the transition relation.



Configuration
A configuration of PDA M is an element of K X S* X G*. Current state, Input that is still left
to read and, Contents of its stack.
The initial configuration of a PDA M, on input w, is (s, w, ).

will be written as cba

If s1s2…sn is pushed onto the stack: the value after the push is s1s2…sncba
Yields-in-one-step
Yields-in-one-step written |-M relates configuration1 to configuration2 iff M can move from

configuration1 to configuration2 in one step. Let c be any element of ∑ U { }, let 1,2 and be any elements of G*, and let w be any element of S*. Then:
(q1, cw, 1) |-M (q2, w, 2) iff ((q1, c, 1), (q2, 2)) ∈ Δ .

The relation yields, written |-M* is the reflexive, transitive closure of |-M C1 yields
configuration C2 iff C1 |-M* C2

26

Computation
A computation by M is a finite sequence of configurations C0, C1, C2,,,,,,,,,,,,,Cn for some n ≥0
such that:

• C0 is an initial configuration,
• Cn is of the form (q, ,), for some q ∈ K and some string in G*, and
• C0 |-M C1 |-M C2 |-M ,,,,,,,,,,,, |-M Cn.

Nondeterminism
If M is in some configuration (q1, s,) it is possible that:

● Δ contains exactly one transition that matches. In that case, M makes the specified
move.

● Δ contains more than one transition that matches. In that case, M chooses one of
them.

● Δ contains no transition that matches. In that case, the computation that led to that
configuration halts.

Accepting
Let C be a computation of M on input w then C is an accepting configuration

iif C= (s, w,) |-M* (q, ,), for some q ∈ A.
A computation accepts only if it runs out of input when it is in an accepting state and the
stack is empty.

C is a rejecting configuration iif C= (s, w,) |-M* (q, w, ),
where C is not an accepting computation and where M has no moves that it can makes from
(q, w, ). A computation can reject only if the criteria for accepting have not been met and
there are no further moves that can be taken.
Let w be a string that is an element of S* . Then:

• M accepts w iif atleast one of its computations accepts.
• M rejects w iif all of its computations reject.

The language accepted by M, denoted L(M), is the set of all strings accepted by M. M rejects
a string w iff all paths reject it.
It is possible that, on input w, M neither accepts nor rejects. In that case, no path accepts and
some path does not reject.

Transition
Transition ((q1, c, 1), (q2, 2)) says that “If c matches the input and g1 matches the current
top of the stack, the transition from q1 to q2 can be taken. Then, c will be removed from the
input, 1 will be popped from the stack, and 2 will be pushed onto it. M cannot peek at the
top of the stack without popping

• If c = , the transition can be taken without consuming any input.
• If 1 = , the transition can be taken without checking the stack or popping anything.

Note: it’s not saying “the stack is empty”.
• If 2 = , nothing is pushed onto the stack when the transition is taken.

27

Example1: A PDA for Balanced Parentheses. Bal={w  {),(}*: the parenthesis are
balanced}
M = (K, S, G, Δ, s, A),
where:

K = {s} the states
S = {(,)} the input alphabet

 = {(} the stack alphabet
A = {s} the accepting state
Δ = { ((s, (,), (s, ()) ----- (1)

((s,), (), (s,)) ----- (2) }

An Example of Accepting -- Input string = (())()
(S, (())(),) |- (S, ())(), () |- (S,))()),(() |- (S,)(), () |- (S, (),) |- (S,), () |- (S, ,)
The computation accepts the string ((())() as it runs out of input being in the accepting state S
and stack empty.

Transition State Unread
input

Stack

S (())()
1 S ())() (
1 S))() ((
2 S)() (
2 S ()
1 S) (
2 S

Example1 of Rejecting -- Input string = (()))

(S, ())),) |- (S, ())),() |- (S,))),(() |- (S,)),() |- (S,), )

Transition State
Unread
input

Stack

S (()))
1 S ())) (
1 S))) ((
2 S)) (
2 S)

The computation has reached the final state S and stack is empty, but still the string is
rejected because the input is not empty.

27

Example1: A PDA for Balanced Parentheses. Bal={w  {),(}*: the parenthesis are
balanced}
M = (K, S, G, Δ, s, A),
where:

K = {s} the states
S = {(,)} the input alphabet

 = {(} the stack alphabet
A = {s} the accepting state
Δ = { ((s, (,), (s, ()) ----- (1)

((s,), (), (s,)) ----- (2) }

An Example of Accepting -- Input string = (())()
(S, (())(),) |- (S, ())(), () |- (S,))()),(() |- (S,)(), () |- (S, (),) |- (S,), () |- (S, ,)
The computation accepts the string ((())() as it runs out of input being in the accepting state S
and stack empty.

Transition State Unread
input

Stack

S (())()
1 S ())() (
1 S))() ((
2 S)() (
2 S ()
1 S) (
2 S

Example1 of Rejecting -- Input string = (()))

(S, ())),) |- (S, ())),() |- (S,))),(() |- (S,)),() |- (S,), )

Transition State
Unread
input

Stack

S (()))
1 S ())) (
1 S))) ((
2 S)) (
2 S)

The computation has reached the final state S and stack is empty, but still the string is
rejected because the input is not empty.

27

Example1: A PDA for Balanced Parentheses. Bal={w  {),(}*: the parenthesis are
balanced}
M = (K, S, G, Δ, s, A),
where:

K = {s} the states
S = {(,)} the input alphabet

 = {(} the stack alphabet
A = {s} the accepting state
Δ = { ((s, (,), (s, ()) ----- (1)

((s,), (), (s,)) ----- (2) }

An Example of Accepting -- Input string = (())()
(S, (())(),) |- (S, ())(), () |- (S,))()),(() |- (S,)(), () |- (S, (),) |- (S,), () |- (S, ,)
The computation accepts the string ((())() as it runs out of input being in the accepting state S
and stack empty.

Transition State Unread
input

Stack

S (())()
1 S ())() (
1 S))() ((
2 S)() (
2 S ()
1 S) (
2 S

Example1 of Rejecting -- Input string = (()))

(S, ())),) |- (S, ())),() |- (S,))),(() |- (S,)),() |- (S,), )

Transition State
Unread
input

Stack

S (()))
1 S ())) (
1 S))) ((
2 S)) (
2 S)

The computation has reached the final state S and stack is empty, but still the string is
rejected because the input is not empty.

28

Example2 of Rejecting -- Input string = ((())

Transition State Unread input Stack
S ((()) 

1 S (()) (
1 S ()) ((
1 S)) (((
2 S) ((
2 S  (

(S, ((()),) |- (S, (()),(|- (S,()),(() |- (S,)),((() |- (S,),(() |- (S,  ,()
The computation has reached the final state S and runs out of input, but still the string is
rejected because the stack is not empty.

Example 2: A PDA for AnBn = {anbn: n ≥ 0}
M = (K, S, G, Δ, s, A),
where:

K = {s, f} the states
S = {a, b} the input alphabetΓ = {a} the stack alphabet
A = {s, f} the accepting state
Δ = { ((s, a, ), (s, a)) -----(1)

((s, b, a), (f, )) -----(2)

((f, b, a), (f, )) } -----(3)

An Example of Accepting -- Input string = aabb

(f, aabb,) |- (f, abb, a) |- (f, bb, aa) |- (f, b, a) |- (f, ,)
The computation has reached the final state f, the input string is consumed and the stack is
empty. Hence the string aabb is accepted.

Example3: A PDA for {wcwR: w ∈ {a, b}*}
M = (K, S, G, Δ, s, A),
where:

K = {s, f} the states
S = {a, b, c} the input alphabetΓ = {a, b} the stack alphabet
A = {f} the accepting state

28

Example2 of Rejecting -- Input string = ((())

Transition State Unread input Stack
S ((()) 

1 S (()) (
1 S ()) ((
1 S)) (((
2 S) ((
2 S  (

(S, ((()),) |- (S, (()),(|- (S,()),(() |- (S,)),((() |- (S,),(() |- (S,  ,()
The computation has reached the final state S and runs out of input, but still the string is
rejected because the stack is not empty.

Example 2: A PDA for AnBn = {anbn: n ≥ 0}
M = (K, S, G, Δ, s, A),
where:

K = {s, f} the states
S = {a, b} the input alphabetΓ = {a} the stack alphabet
A = {s, f} the accepting state
Δ = { ((s, a, ), (s, a)) -----(1)

((s, b, a), (f, )) -----(2)

((f, b, a), (f, )) } -----(3)

An Example of Accepting -- Input string = aabb

(f, aabb,) |- (f, abb, a) |- (f, bb, aa) |- (f, b, a) |- (f, ,)
The computation has reached the final state f, the input string is consumed and the stack is
empty. Hence the string aabb is accepted.

Example3: A PDA for {wcwR: w ∈ {a, b}*}
M = (K, S, G, Δ, s, A),
where:

K = {s, f} the states
S = {a, b, c} the input alphabetΓ = {a, b} the stack alphabet
A = {f} the accepting state

28

Example2 of Rejecting -- Input string = ((())

Transition State Unread input Stack
S ((()) 

1 S (()) (
1 S ()) ((
1 S)) (((
2 S) ((
2 S  (

(S, ((()),) |- (S, (()),(|- (S,()),(() |- (S,)),((() |- (S,),(() |- (S,  ,()
The computation has reached the final state S and runs out of input, but still the string is
rejected because the stack is not empty.

Example 2: A PDA for AnBn = {anbn: n ≥ 0}
M = (K, S, G, Δ, s, A),
where:

K = {s, f} the states
S = {a, b} the input alphabetΓ = {a} the stack alphabet
A = {s, f} the accepting state
Δ = { ((s, a, ), (s, a)) -----(1)

((s, b, a), (f, )) -----(2)

((f, b, a), (f, )) } -----(3)

An Example of Accepting -- Input string = aabb

(f, aabb,) |- (f, abb, a) |- (f, bb, aa) |- (f, b, a) |- (f, ,)
The computation has reached the final state f, the input string is consumed and the stack is
empty. Hence the string aabb is accepted.

Example3: A PDA for {wcwR: w ∈ {a, b}*}
M = (K, S, G, Δ, s, A),
where:

K = {s, f} the states
S = {a, b, c} the input alphabetΓ = {a, b} the stack alphabet
A = {f} the accepting state

29

Δ = {((s, a, ), (s, a) -----(1)

((s, b, ), (s, b)) -----(2)

((s, c, ), (f, )) -----(3)

((f, a, a), (f, )) -----(4)

((f, b, b), (f, ))} -----(5)

An Example of Accepting -- Input string = abcba

(s, abcba,) |- (s, bcba, a) |- (s, cba,ba) |- (f, ba, ba) |- (f, a, a) |- (f, ,)
The computation has reached the final state f, the input string is consumed and the stack is
empty. Hence the string abcba is accepted.

Example 4: A PDA for AnB2n = {anb2n: n ≥ 0}
M = (K, S, G, Δ, s, A),
where:

K = {s, f} the states
S = {a, b} the input alphabetΓ = {a} the stack alphabet
A = {s, f} the accepting state

Δ = { ((s, a, ), (s, aa)) -----(1)
((s, b, a), (f, )) -----(2)
((f, b, a), (f, )) } -----(3)

An Example of Accepting -- Input string = aabbbb

(s, aabbbb,) |- (s, abbbb, aa) |- (s, bbbb,aaaa) |- (f, bbb, aaa) |- (f, bb, aa) |-(f, b, a) |- (f, ,)

29

Δ = {((s, a, ), (s, a) -----(1)

((s, b, ), (s, b)) -----(2)

((s, c, ), (f, )) -----(3)

((f, a, a), (f, )) -----(4)

((f, b, b), (f, ))} -----(5)

An Example of Accepting -- Input string = abcba

(s, abcba,) |- (s, bcba, a) |- (s, cba,ba) |- (f, ba, ba) |- (f, a, a) |- (f, ,)
The computation has reached the final state f, the input string is consumed and the stack is
empty. Hence the string abcba is accepted.

Example 4: A PDA for AnB2n = {anb2n: n ≥ 0}
M = (K, S, G, Δ, s, A),
where:

K = {s, f} the states
S = {a, b} the input alphabetΓ = {a} the stack alphabet
A = {s, f} the accepting state

Δ = { ((s, a, ), (s, aa)) -----(1)
((s, b, a), (f, )) -----(2)
((f, b, a), (f, )) } -----(3)

An Example of Accepting -- Input string = aabbbb

(s, aabbbb,) |- (s, abbbb, aa) |- (s, bbbb,aaaa) |- (f, bbb, aaa) |- (f, bb, aa) |-(f, b, a) |- (f, ,)

29

Δ = {((s, a, ), (s, a) -----(1)

((s, b, ), (s, b)) -----(2)

((s, c, ), (f, )) -----(3)

((f, a, a), (f, )) -----(4)

((f, b, b), (f, ))} -----(5)

An Example of Accepting -- Input string = abcba

(s, abcba,) |- (s, bcba, a) |- (s, cba,ba) |- (f, ba, ba) |- (f, a, a) |- (f, ,)
The computation has reached the final state f, the input string is consumed and the stack is
empty. Hence the string abcba is accepted.

Example 4: A PDA for AnB2n = {anb2n: n ≥ 0}
M = (K, S, G, Δ, s, A),
where:

K = {s, f} the states
S = {a, b} the input alphabetΓ = {a} the stack alphabet
A = {s, f} the accepting state

Δ = { ((s, a, ), (s, aa)) -----(1)
((s, b, a), (f, )) -----(2)
((f, b, a), (f, )) } -----(3)

An Example of Accepting -- Input string = aabbbb

(s, aabbbb,) |- (s, abbbb, aa) |- (s, bbbb,aaaa) |- (f, bbb, aaa) |- (f, bb, aa) |-(f, b, a) |- (f, ,)

30

10. Deterministic and Nondeterministic PDAs

A PDA M is deterministic iff:
• ΔM contains no pairs of transitions that compete with each other, and
• whenever M is in an accepting configuration it has no available moves.
• If q is an accepting state of M, then there is no transition ((q, e , e) ,(p, a)) for

any p or a.
Unfortunately, unlike FSMs, there exist NDPDA s for which no equivalent DPDA exists.

Exploiting Nondeterministic
Previous examples are DPDA, where each machine followed only a single computational
path. But many useful PDAs are not deterministic, where from a single configuration there
exist multiple competing moves. As in FSMs, easiest way to envision the operation of a
NDPDA M is as a tree.

Each node in the tree corresponds to a configuration of M and each path from the root to a
leaf node may correspond to one computation that M might perform. The state, the stack and
the remaining input can be different along different paths. As a result, it will not be possible
to simulate all paths in parallel, the way we did for NDFSMs.

Example 1: PDA for PalEven ={wwR: w ∈ {a, b}*}.

The L of even length palindrome of a’s and b’s. = {, aa, bb, aaaa, abba, baab, bbbb, ..…….}
M = (K, S, G, Δ, s, A),
where:

K = {s, f} the states
S = {a, b} the input alphabetΓ = {a, b} the stack alphabet
A = {f} the accepting state
Δ = {((s, a, ), (s, a)) -----(1)

((s, b, ), (s, b)) -----(2)
((s, , ), (f, )) -----(3)
((f, a, a), (f, )) -----(4)
((f, b, b), (f, ))} -----(5)

30

10. Deterministic and Nondeterministic PDAs

A PDA M is deterministic iff:
• ΔM contains no pairs of transitions that compete with each other, and
• whenever M is in an accepting configuration it has no available moves.
• If q is an accepting state of M, then there is no transition ((q, e , e) ,(p, a)) for

any p or a.
Unfortunately, unlike FSMs, there exist NDPDA s for which no equivalent DPDA exists.

Exploiting Nondeterministic
Previous examples are DPDA, where each machine followed only a single computational
path. But many useful PDAs are not deterministic, where from a single configuration there
exist multiple competing moves. As in FSMs, easiest way to envision the operation of a
NDPDA M is as a tree.

Each node in the tree corresponds to a configuration of M and each path from the root to a
leaf node may correspond to one computation that M might perform. The state, the stack and
the remaining input can be different along different paths. As a result, it will not be possible
to simulate all paths in parallel, the way we did for NDFSMs.

Example 1: PDA for PalEven ={wwR: w ∈ {a, b}*}.

The L of even length palindrome of a’s and b’s. = {, aa, bb, aaaa, abba, baab, bbbb, ..…….}
M = (K, S, G, Δ, s, A),
where:

K = {s, f} the states
S = {a, b} the input alphabetΓ = {a, b} the stack alphabet
A = {f} the accepting state
Δ = {((s, a, ), (s, a)) -----(1)

((s, b, ), (s, b)) -----(2)
((s, , ), (f, )) -----(3)
((f, a, a), (f, )) -----(4)
((f, b, b), (f, ))} -----(5)

30

10. Deterministic and Nondeterministic PDAs

A PDA M is deterministic iff:
• ΔM contains no pairs of transitions that compete with each other, and
• whenever M is in an accepting configuration it has no available moves.
• If q is an accepting state of M, then there is no transition ((q, e , e) ,(p, a)) for

any p or a.
Unfortunately, unlike FSMs, there exist NDPDA s for which no equivalent DPDA exists.

Exploiting Nondeterministic
Previous examples are DPDA, where each machine followed only a single computational
path. But many useful PDAs are not deterministic, where from a single configuration there
exist multiple competing moves. As in FSMs, easiest way to envision the operation of a
NDPDA M is as a tree.

Each node in the tree corresponds to a configuration of M and each path from the root to a
leaf node may correspond to one computation that M might perform. The state, the stack and
the remaining input can be different along different paths. As a result, it will not be possible
to simulate all paths in parallel, the way we did for NDFSMs.

Example 1: PDA for PalEven ={wwR: w ∈ {a, b}*}.

The L of even length palindrome of a’s and b’s. = {, aa, bb, aaaa, abba, baab, bbbb, ..…….}
M = (K, S, G, Δ, s, A),
where:

K = {s, f} the states
S = {a, b} the input alphabetΓ = {a, b} the stack alphabet
A = {f} the accepting state
Δ = {((s, a, ), (s, a)) -----(1)

((s, b, ), (s, b)) -----(2)
((s, , ), (f, )) -----(3)
((f, a, a), (f, )) -----(4)
((f, b, b), (f, ))} -----(5)

31

Example 2: PDA for {w  {a, b}* : #a(w) = #b(w)}= Equal Numbers of a’s and b’s.

L = {, ab, ba, abba, aabb, baba, bbaa, …….}
M = (K, S, G, Δ, s, A),
where:

K = {s} the states
S = {a, b} the input alphabetΓ = {a, b} the stack alphabet
A = {s} the accepting state
Δ ={((s, a, ), (s, a)) -----(1)

((s, b, ), (s, b)) -----(2)
((s, a, b), (s, )) -----(3)
((s, b, a), (s, ))} -----(4)

Example 3: The a Region and the b Region are Different. L = {ambn : m ≠ n; m, n > 0}
It is hard to build a machine that looks for something negative, like ≠. But we can break L
into two sublanguages: {ambn : 0 < n < m} and {ambn : 0 < m < n}

• If stack and input are empty, halt and reject
• If input is empty but stack is not (m > n) (accept)
• If stack is empty but input is not (m < n) (accept)

Start with the case where n = m

Δ = { ((1, a, ), (1, a)) -----(1)
((1, b, a), (2, )) -----(2)
((2, b, a), (2, )) } -----(3)

If input is empty but stack is not (m > n) (accept):

31

Example 2: PDA for {w  {a, b}* : #a(w) = #b(w)}= Equal Numbers of a’s and b’s.

L = {, ab, ba, abba, aabb, baba, bbaa, …….}
M = (K, S, G, Δ, s, A),
where:

K = {s} the states
S = {a, b} the input alphabetΓ = {a, b} the stack alphabet
A = {s} the accepting state
Δ ={((s, a, ), (s, a)) -----(1)

((s, b, ), (s, b)) -----(2)
((s, a, b), (s, )) -----(3)
((s, b, a), (s, ))} -----(4)

Example 3: The a Region and the b Region are Different. L = {ambn : m ≠ n; m, n > 0}
It is hard to build a machine that looks for something negative, like ≠. But we can break L
into two sublanguages: {ambn : 0 < n < m} and {ambn : 0 < m < n}

• If stack and input are empty, halt and reject
• If input is empty but stack is not (m > n) (accept)
• If stack is empty but input is not (m < n) (accept)

Start with the case where n = m

Δ = { ((1, a, ), (1, a)) -----(1)
((1, b, a), (2, )) -----(2)
((2, b, a), (2, )) } -----(3)

If input is empty but stack is not (m > n) (accept):

31

Example 2: PDA for {w  {a, b}* : #a(w) = #b(w)}= Equal Numbers of a’s and b’s.

L = {, ab, ba, abba, aabb, baba, bbaa, …….}
M = (K, S, G, Δ, s, A),
where:

K = {s} the states
S = {a, b} the input alphabetΓ = {a, b} the stack alphabet
A = {s} the accepting state
Δ ={((s, a, ), (s, a)) -----(1)

((s, b, ), (s, b)) -----(2)
((s, a, b), (s, )) -----(3)
((s, b, a), (s, ))} -----(4)

Example 3: The a Region and the b Region are Different. L = {ambn : m ≠ n; m, n > 0}
It is hard to build a machine that looks for something negative, like ≠. But we can break L
into two sublanguages: {ambn : 0 < n < m} and {ambn : 0 < m < n}

• If stack and input are empty, halt and reject
• If input is empty but stack is not (m > n) (accept)
• If stack is empty but input is not (m < n) (accept)

Start with the case where n = m

Δ = { ((1, a, ), (1, a)) -----(1)
((1, b, a), (2, )) -----(2)
((2, b, a), (2, )) } -----(3)

If input is empty but stack is not (m > n) (accept):

32

Δ = { ((1, a, ), (1, a)) -----(1)
((1, b, a), (2, )) -----(2)
((2, b, a), (2, )) -----(3)
((2, , a), (3, )) -----(4)
((3, , a), (3, )) } -----(5)

If stack is empty but input is not (m < n) (accept):

Δ = { ((1, a, ), (1, a)) -----(1)
((1, b, a), (2, )) -----(2)
((2, b, a), (2, )) -----(3)
((2, b, ), (4, )) -----(4)
((4, b, ), (4, )) } -----(5)

Putting all together the PDA obtained is
M = (K, S, G, Δ, s, A),
where:

K = {1,2,3,4} the states
S = {a, b} the input alphabetΓ = {a} the stack alphabet
A = {3,4} the accepting state

Δ = { ((1, a, ), (1, a)) -----(1)
((1, b, a), (2, )) -----(2)
((2, b, a), (2, )) -----(3)
((2, , a), (3, )) -----(4)
((3, , a), (3, )) } -----(5)
((2, b, ), (4, )) -----(6)
((4, b, ), (4, )) } -----(7)

32

Δ = { ((1, a, ), (1, a)) -----(1)
((1, b, a), (2, )) -----(2)
((2, b, a), (2, )) -----(3)
((2, , a), (3, )) -----(4)
((3, , a), (3, )) } -----(5)

If stack is empty but input is not (m < n) (accept):

Δ = { ((1, a, ), (1, a)) -----(1)
((1, b, a), (2, )) -----(2)
((2, b, a), (2, )) -----(3)
((2, b, ), (4, )) -----(4)
((4, b, ), (4, )) } -----(5)

Putting all together the PDA obtained is
M = (K, S, G, Δ, s, A),
where:

K = {1,2,3,4} the states
S = {a, b} the input alphabetΓ = {a} the stack alphabet
A = {3,4} the accepting state

Δ = { ((1, a, ), (1, a)) -----(1)
((1, b, a), (2, )) -----(2)
((2, b, a), (2, )) -----(3)
((2, , a), (3, )) -----(4)
((3, , a), (3, )) } -----(5)
((2, b, ), (4, )) -----(6)
((4, b, ), (4, )) } -----(7)

32

Δ = { ((1, a, ), (1, a)) -----(1)
((1, b, a), (2, )) -----(2)
((2, b, a), (2, )) -----(3)
((2, , a), (3, )) -----(4)
((3, , a), (3, )) } -----(5)

If stack is empty but input is not (m < n) (accept):

Δ = { ((1, a, ), (1, a)) -----(1)
((1, b, a), (2, )) -----(2)
((2, b, a), (2, )) -----(3)
((2, b, ), (4, )) -----(4)
((4, b, ), (4, )) } -----(5)

Putting all together the PDA obtained is
M = (K, S, G, Δ, s, A),
where:

K = {1,2,3,4} the states
S = {a, b} the input alphabetΓ = {a} the stack alphabet
A = {3,4} the accepting state

Δ = { ((1, a, ), (1, a)) -----(1)
((1, b, a), (2, )) -----(2)
((2, b, a), (2, )) -----(3)
((2, , a), (3, )) -----(4)
((3, , a), (3, )) } -----(5)
((2, b, ), (4, )) -----(6)
((4, b, ), (4, )) } -----(7)

33

Two problems with this M:
1. We have no way to specify that a move can be taken only if the stack is empty.
2. We have no way to specify that the input stream is empty.
3. As a result, in most of its moves in state 2, M will have a choice of three paths to take.

Techniques for Reducing Nondeterminism
We saw nondeterminism arising from two very specific circumstances:

• A transition that should be taken only if the stack is empty competes against one or
more moves that require a match of some string on the stack.

• A transition that should be taken only if the input stream is empty competes against
one or more moves that require a match against a specific input character.

Case1: A transition that should be taken only if the stack is empty competes against one or
more moves that require a match of some string on the stack.
Problem: Nondeterminism could be eliminated if it were possible to check for an empty
stack.
Solution: Using a special bottom-of-stack marker (#)
Before doing anything, push a special character onto the stack. The stack is then logically
empty iff that special character (#) is at the top of the stack. Before M accepts a string, its
stack must be completely empty, so the special character must be popped whenever M
reaches an accepting state.

Now the transition back to state 2 no longer competes with the transition to state 4, which can
only be taken when the # is the only symbol on the stack. The machine is still
nondeterministic because the transition back to state 2 competes with the transition to state 3.

33

Two problems with this M:
1. We have no way to specify that a move can be taken only if the stack is empty.
2. We have no way to specify that the input stream is empty.
3. As a result, in most of its moves in state 2, M will have a choice of three paths to take.

Techniques for Reducing Nondeterminism
We saw nondeterminism arising from two very specific circumstances:

• A transition that should be taken only if the stack is empty competes against one or
more moves that require a match of some string on the stack.

• A transition that should be taken only if the input stream is empty competes against
one or more moves that require a match against a specific input character.

Case1: A transition that should be taken only if the stack is empty competes against one or
more moves that require a match of some string on the stack.
Problem: Nondeterminism could be eliminated if it were possible to check for an empty
stack.
Solution: Using a special bottom-of-stack marker (#)
Before doing anything, push a special character onto the stack. The stack is then logically
empty iff that special character (#) is at the top of the stack. Before M accepts a string, its
stack must be completely empty, so the special character must be popped whenever M
reaches an accepting state.

Now the transition back to state 2 no longer competes with the transition to state 4, which can
only be taken when the # is the only symbol on the stack. The machine is still
nondeterministic because the transition back to state 2 competes with the transition to state 3.

33

Two problems with this M:
1. We have no way to specify that a move can be taken only if the stack is empty.
2. We have no way to specify that the input stream is empty.
3. As a result, in most of its moves in state 2, M will have a choice of three paths to take.

Techniques for Reducing Nondeterminism
We saw nondeterminism arising from two very specific circumstances:

• A transition that should be taken only if the stack is empty competes against one or
more moves that require a match of some string on the stack.

• A transition that should be taken only if the input stream is empty competes against
one or more moves that require a match against a specific input character.

Case1: A transition that should be taken only if the stack is empty competes against one or
more moves that require a match of some string on the stack.
Problem: Nondeterminism could be eliminated if it were possible to check for an empty
stack.
Solution: Using a special bottom-of-stack marker (#)
Before doing anything, push a special character onto the stack. The stack is then logically
empty iff that special character (#) is at the top of the stack. Before M accepts a string, its
stack must be completely empty, so the special character must be popped whenever M
reaches an accepting state.

Now the transition back to state 2 no longer competes with the transition to state 4, which can
only be taken when the # is the only symbol on the stack. The machine is still
nondeterministic because the transition back to state 2 competes with the transition to state 3.

34

Case2: A transition that should be taken only if the input stream is empty competes against
one or more moves that require a match against a specific input character.
Problem: Nondeterminism could be eliminated if it were possible to check for an empty input
stream.
Solution: using a special end-of-string marker ($)
Adding an end-of-string marker to the language to be accepted is a powerful tool for reducing
nondeterminism. Instead of building a machine to accept a language L, build one to accept
L$, where $ is a special end-of-string marker.

Now the transition back to state 2 no longer competes with the transition to state 3, since the
can be taken when the $ is read. The $ must be read on all the paths, not just the one where
we need it.

11. Nondeterminism and Halting

Recall Computation C of a PDA M = (K, S, G, Δ, s, A) on a string w is an accepting
computation iif C= (s, w, ) |-M* (q, , ), for some q  A.
A computation C of M halts iff at least one of the following condition holds:
 C is an accepting computation, or

 C ends in a configuration from which there is no transition in Δ that can be taken.
M halts on w iff every computation of M on w halts. If M halts on w and does not accept,
then we say that M rejects w.
For every CFL L, we’ve proven that there exists a PDA M such that L(M) = L.
Suppose that we would like to be able to:

1. Examine a string and decide whether or not it is L.
2. Examine a string that is in L and create a parse tree for it.
3. Examine a string that is in L and create a parse tree for it in time that is linear in the

length of the string.
4. Examine a string and decide whether or not it is in the complement of L.

For every regular language L, there exists a minimal deterministic FSM that accepts it. That
minimal DFSM halts on all inputs, accepts all strings that are in L, and rejects all strings that
are not in L.

34

Case2: A transition that should be taken only if the input stream is empty competes against
one or more moves that require a match against a specific input character.
Problem: Nondeterminism could be eliminated if it were possible to check for an empty input
stream.
Solution: using a special end-of-string marker ($)
Adding an end-of-string marker to the language to be accepted is a powerful tool for reducing
nondeterminism. Instead of building a machine to accept a language L, build one to accept
L$, where $ is a special end-of-string marker.

Now the transition back to state 2 no longer competes with the transition to state 3, since the
can be taken when the $ is read. The $ must be read on all the paths, not just the one where
we need it.

11. Nondeterminism and Halting

Recall Computation C of a PDA M = (K, S, G, Δ, s, A) on a string w is an accepting
computation iif C= (s, w, ) |-M* (q, , ), for some q  A.
A computation C of M halts iff at least one of the following condition holds:
 C is an accepting computation, or

 C ends in a configuration from which there is no transition in Δ that can be taken.
M halts on w iff every computation of M on w halts. If M halts on w and does not accept,
then we say that M rejects w.
For every CFL L, we’ve proven that there exists a PDA M such that L(M) = L.
Suppose that we would like to be able to:

1. Examine a string and decide whether or not it is L.
2. Examine a string that is in L and create a parse tree for it.
3. Examine a string that is in L and create a parse tree for it in time that is linear in the

length of the string.
4. Examine a string and decide whether or not it is in the complement of L.

For every regular language L, there exists a minimal deterministic FSM that accepts it. That
minimal DFSM halts on all inputs, accepts all strings that are in L, and rejects all strings that
are not in L.

34

Case2: A transition that should be taken only if the input stream is empty competes against
one or more moves that require a match against a specific input character.
Problem: Nondeterminism could be eliminated if it were possible to check for an empty input
stream.
Solution: using a special end-of-string marker ($)
Adding an end-of-string marker to the language to be accepted is a powerful tool for reducing
nondeterminism. Instead of building a machine to accept a language L, build one to accept
L$, where $ is a special end-of-string marker.

Now the transition back to state 2 no longer competes with the transition to state 3, since the
can be taken when the $ is read. The $ must be read on all the paths, not just the one where
we need it.

11. Nondeterminism and Halting

Recall Computation C of a PDA M = (K, S, G, Δ, s, A) on a string w is an accepting
computation iif C= (s, w, ) |-M* (q, , ), for some q  A.
A computation C of M halts iff at least one of the following condition holds:
 C is an accepting computation, or

 C ends in a configuration from which there is no transition in Δ that can be taken.
M halts on w iff every computation of M on w halts. If M halts on w and does not accept,
then we say that M rejects w.
For every CFL L, we’ve proven that there exists a PDA M such that L(M) = L.
Suppose that we would like to be able to:

1. Examine a string and decide whether or not it is L.
2. Examine a string that is in L and create a parse tree for it.
3. Examine a string that is in L and create a parse tree for it in time that is linear in the

length of the string.
4. Examine a string and decide whether or not it is in the complement of L.

For every regular language L, there exists a minimal deterministic FSM that accepts it. That
minimal DFSM halts on all inputs, accepts all strings that are in L, and rejects all strings that
are not in L.

35

But the facts about CFGs and PDAs are different from the facts about RLs and FSMs.
1. There are context-free languages for which no deterministic PDA exists.
2. It is possible that a PDA may

● not halt,
● not ever finish reading its input.

However, for an arbitrary PDA M, there exists M that halts and L(M) = L(M).
There exists no algorithm to minimize a PDA. It is undecidable whether a PDA is minimal.
Problem 2 : Let M be a PDA that accepts some language L. Then, on input w, if w  L then
M will halt and accept. But if w L then, while M will not accept w, it is possible that it will
not reject it either.
Example1: Let S = {a} and consider M =

For L(M) = {a}. The computation (1, a, e) |- (2, a, a) |- (3, e, e) causes M to accept a.
Example2: Consider M =

For L(M) = {aa} or on any other input except a:
(1, aa, e) |- (2, aa, a) |-(1, aa, aa) |- (2, aa, aaa) |- (1, aa, aaaa) |- (2, aa, aaaaa) |- ……..
M will never halt because of one path never ends and none of the paths accepts.
The same problem with NDFSMs had a choice of two solutions.
 Converting NDFSM to and equivalent DFSM using ndfsmtodfsm algorithm.

 Simulating NDFSM using ndfsmsimulate.
Neither of these approaches work on PDAs. There may not even be an equivalent
deterministic PDA.
Solution fall into two classes:
 Formal ones that do not restrict the class of the language that are being considered-

converting grammar into normal forms like Chomsky or Greibach normal form.
 Practical ones that work only on a subclass of the CFLs- use grammars in natural

forms.

12. Alternative Equivalent Definitions of a PDA

PDA M = (K, S, G, Δ , s, A):
1. Allow M to pop and to push any string in G*.
2. M may pop only a single symbol but it may push any number of them.
3. M may pop and push only a single symbol.

M accepts its input w only if , when it finishes reading w, it is in an accepting state and its
stack is empty.

35

But the facts about CFGs and PDAs are different from the facts about RLs and FSMs.
1. There are context-free languages for which no deterministic PDA exists.
2. It is possible that a PDA may

● not halt,
● not ever finish reading its input.

However, for an arbitrary PDA M, there exists M that halts and L(M) = L(M).
There exists no algorithm to minimize a PDA. It is undecidable whether a PDA is minimal.
Problem 2 : Let M be a PDA that accepts some language L. Then, on input w, if w  L then
M will halt and accept. But if w L then, while M will not accept w, it is possible that it will
not reject it either.
Example1: Let S = {a} and consider M =

For L(M) = {a}. The computation (1, a, e) |- (2, a, a) |- (3, e, e) causes M to accept a.
Example2: Consider M =

For L(M) = {aa} or on any other input except a:
(1, aa, e) |- (2, aa, a) |-(1, aa, aa) |- (2, aa, aaa) |- (1, aa, aaaa) |- (2, aa, aaaaa) |- ……..
M will never halt because of one path never ends and none of the paths accepts.
The same problem with NDFSMs had a choice of two solutions.
 Converting NDFSM to and equivalent DFSM using ndfsmtodfsm algorithm.

 Simulating NDFSM using ndfsmsimulate.
Neither of these approaches work on PDAs. There may not even be an equivalent
deterministic PDA.
Solution fall into two classes:
 Formal ones that do not restrict the class of the language that are being considered-

converting grammar into normal forms like Chomsky or Greibach normal form.
 Practical ones that work only on a subclass of the CFLs- use grammars in natural

forms.

12. Alternative Equivalent Definitions of a PDA

PDA M = (K, S, G, Δ , s, A):
1. Allow M to pop and to push any string in G*.
2. M may pop only a single symbol but it may push any number of them.
3. M may pop and push only a single symbol.

M accepts its input w only if , when it finishes reading w, it is in an accepting state and its
stack is empty.

35

But the facts about CFGs and PDAs are different from the facts about RLs and FSMs.
1. There are context-free languages for which no deterministic PDA exists.
2. It is possible that a PDA may

● not halt,
● not ever finish reading its input.

However, for an arbitrary PDA M, there exists M that halts and L(M) = L(M).
There exists no algorithm to minimize a PDA. It is undecidable whether a PDA is minimal.
Problem 2 : Let M be a PDA that accepts some language L. Then, on input w, if w  L then
M will halt and accept. But if w L then, while M will not accept w, it is possible that it will
not reject it either.
Example1: Let S = {a} and consider M =

For L(M) = {a}. The computation (1, a, e) |- (2, a, a) |- (3, e, e) causes M to accept a.
Example2: Consider M =

For L(M) = {aa} or on any other input except a:
(1, aa, e) |- (2, aa, a) |-(1, aa, aa) |- (2, aa, aaa) |- (1, aa, aaaa) |- (2, aa, aaaaa) |- ……..
M will never halt because of one path never ends and none of the paths accepts.
The same problem with NDFSMs had a choice of two solutions.
 Converting NDFSM to and equivalent DFSM using ndfsmtodfsm algorithm.

 Simulating NDFSM using ndfsmsimulate.
Neither of these approaches work on PDAs. There may not even be an equivalent
deterministic PDA.
Solution fall into two classes:
 Formal ones that do not restrict the class of the language that are being considered-

converting grammar into normal forms like Chomsky or Greibach normal form.
 Practical ones that work only on a subclass of the CFLs- use grammars in natural

forms.

12. Alternative Equivalent Definitions of a PDA

PDA M = (K, S, G, Δ , s, A):
1. Allow M to pop and to push any string in G*.
2. M may pop only a single symbol but it may push any number of them.
3. M may pop and push only a single symbol.

M accepts its input w only if , when it finishes reading w, it is in an accepting state and its
stack is empty.

36

There are two alternatives to this:
1. PDA by Final state: Accept if, when the input has been consumed, M lands in an

accepting state, regardless of the contents of the stack.
2. PDA by Empty stack: Accept if, when the input has been consumed, the stack is

empty, regardless of the state M is in.
All of these definitions are equivalent in the sense that, if some language L is accepted by a
PDA using one definition, it can be accepted by some PDA using each of the other definition.
For example:- If some language L is accepted by a PDA by Final state then it can be accepted
by PDA by Final state and empty stack. If some language L is accepted by a PDA by Final
state and empty stack then can be accepted by PDA by Final state.
We can prove by showing algorithms that transform a PDA of one sort into and equivalent
PDA of the other sort.
Equivalence

1. Given a PDA M that accepts by accepting state and empty stack, construct a new
PDA M that accepts by accepting state alone, where L(M) = L(M).

2. Given a PDA M that accepts by accepting state alone, construct a new PDA M that

accepts by accepting state and empty stack, where L(M) = L(M).

Hence we can prove that M and M accept the same strings.
1. Accepting by Final state Alone

Define a PDA M = (K, S, G, Δ , s, A). Accepts when the input has been consumed, M lands
in an accepting state, regardless of the contents of the stack. M accepts if C= (s, w, ) |-M* (q,

, g), for some q  A.

M will have a single accepting state qa. The only way for M to get to qa will be to land in an
accepting state of M when the stack is logically empty. Since there is no way to check that

the stack is empty, M will begin by pushing a bottom-of-stack marker #, onto the stack.
Whenever # is the top symbol of the stack, then stack is logically empty.
The construction proceeds as follows:

1. Initially, let M = M.

2. Create a new start state s.
Add the transition ((s,  , ),(s, #)),

3. For each accepting state a in M do:
Add the transition ((a,  ,#),(qa, )),

4. Make qa the only accepting state in M
Example:

36

There are two alternatives to this:
1. PDA by Final state: Accept if, when the input has been consumed, M lands in an

accepting state, regardless of the contents of the stack.
2. PDA by Empty stack: Accept if, when the input has been consumed, the stack is

empty, regardless of the state M is in.
All of these definitions are equivalent in the sense that, if some language L is accepted by a
PDA using one definition, it can be accepted by some PDA using each of the other definition.
For example:- If some language L is accepted by a PDA by Final state then it can be accepted
by PDA by Final state and empty stack. If some language L is accepted by a PDA by Final
state and empty stack then can be accepted by PDA by Final state.
We can prove by showing algorithms that transform a PDA of one sort into and equivalent
PDA of the other sort.
Equivalence

1. Given a PDA M that accepts by accepting state and empty stack, construct a new
PDA M that accepts by accepting state alone, where L(M) = L(M).

2. Given a PDA M that accepts by accepting state alone, construct a new PDA M that

accepts by accepting state and empty stack, where L(M) = L(M).

Hence we can prove that M and M accept the same strings.
1. Accepting by Final state Alone

Define a PDA M = (K, S, G, Δ , s, A). Accepts when the input has been consumed, M lands
in an accepting state, regardless of the contents of the stack. M accepts if C= (s, w, ) |-M* (q,

, g), for some q  A.

M will have a single accepting state qa. The only way for M to get to qa will be to land in an
accepting state of M when the stack is logically empty. Since there is no way to check that

the stack is empty, M will begin by pushing a bottom-of-stack marker #, onto the stack.
Whenever # is the top symbol of the stack, then stack is logically empty.
The construction proceeds as follows:

1. Initially, let M = M.

2. Create a new start state s.
Add the transition ((s,  , ),(s, #)),

3. For each accepting state a in M do:
Add the transition ((a,  ,#),(qa, )),

4. Make qa the only accepting state in M
Example:

36

There are two alternatives to this:
1. PDA by Final state: Accept if, when the input has been consumed, M lands in an

accepting state, regardless of the contents of the stack.
2. PDA by Empty stack: Accept if, when the input has been consumed, the stack is

empty, regardless of the state M is in.
All of these definitions are equivalent in the sense that, if some language L is accepted by a
PDA using one definition, it can be accepted by some PDA using each of the other definition.
For example:- If some language L is accepted by a PDA by Final state then it can be accepted
by PDA by Final state and empty stack. If some language L is accepted by a PDA by Final
state and empty stack then can be accepted by PDA by Final state.
We can prove by showing algorithms that transform a PDA of one sort into and equivalent
PDA of the other sort.
Equivalence

1. Given a PDA M that accepts by accepting state and empty stack, construct a new
PDA M that accepts by accepting state alone, where L(M) = L(M).

2. Given a PDA M that accepts by accepting state alone, construct a new PDA M that

accepts by accepting state and empty stack, where L(M) = L(M).

Hence we can prove that M and M accept the same strings.
1. Accepting by Final state Alone

Define a PDA M = (K, S, G, Δ , s, A). Accepts when the input has been consumed, M lands
in an accepting state, regardless of the contents of the stack. M accepts if C= (s, w, ) |-M* (q,

, g), for some q  A.

M will have a single accepting state qa. The only way for M to get to qa will be to land in an
accepting state of M when the stack is logically empty. Since there is no way to check that

the stack is empty, M will begin by pushing a bottom-of-stack marker #, onto the stack.
Whenever # is the top symbol of the stack, then stack is logically empty.
The construction proceeds as follows:

1. Initially, let M = M.

2. Create a new start state s.
Add the transition ((s,  , ),(s, #)),

3. For each accepting state a in M do:
Add the transition ((a,  ,#),(qa, )),

4. Make qa the only accepting state in M
Example:

37

It is easy to see that M lands in its accepting state(qa) iff M lands in some accepting state

with an empty stack. Thus M and M accept the same strings.
2. Accepting by Final state and Empty stack

The construction proceeds as follows:
1. Initially, let M = M.
2. Create a new accepting state F
3. From each accepting state a in M do:

Add the transition ((a,  , ),(F, )),

4. Make F the only accepting state in M
5. For every element g of Γ,

Add the transition to M ((F, , g), (F, )).
In other words, iff M accepts, go to the only accepting state of M′ and clear the stack. Thus
M′ will accept by accepting state and empty stack iff M accepts by accepting state.
Example:-

Thus M and M accept the same strings.

13. Alternatives that are not equivalent to the PDA

We defined a PDA to be a finite state machine to which we add a single stack.
Two variants of that definition, each of which turns out to define a more powerful class of a
machine.
1. First variant: add a first-in, first-out (FIFO) queue in place of a stack. Such machines

are called tag systems or Post machines.
2. Second variant: add two stacks instead of one. The resulting machines are equivalent in

computational power to Turing Machines.

38

Sl.No Sample Questions

1. Define context free grammars and languages.

2. Show a context-free grammar for each of the following languages L:
a) BalDelim = {w : where w is a string of delimeters: (,), [,], {, }, that are properly balanced}.

b) {aibj : 2i = 3j + 1}.

c) {aibj : 2i ≠ 3j + 1}.

d) {aibjck : i, j, k ≥ 0 and (i ≠ j or j ≠ k)}.

3. Define CFG. Design CFG for the language L={ anbm : n ≠ m}
4. Apply the simplification algorithm to simplify the given grammar

S → AB|AC A → aAb | ε B → bA C →bCa D → AB
5. Prove the correctness of the grammar for the language:

L={w ∈ {a, b}* : #a(w) = #b(w)}.

6. Define leftmost derivation and rightmost derivation. Given the following CFG.
E E + T|T T T*F|F F(E)|a|b|c
Draw parse tree for the following sentences and also derive the leftmost and rightmost derivations
i) (a+b)*c ii) (a) + b*c

7. Consider the following grammar G: S → 0S1 | SS | 10
Show a parse tree produced by G for each of the following strings:
a) 010110
b) 00101101

8. Define ambiguous and explain inherently ambiguous grammars.

9. Prove whether the given grammar is ambiguous grammar or not.
E E + E E E*E|a|b|c

10. Prove that the following CFG is ambiguous SiCtS|iCtSeS|x Cy for the sting iytiytxex

11. Define Chomsky normal form. Apply the normalization algorithm to convert the grammar to
Chomsky normal form.

a. S → aSa S → B B → bbC
B → bb C → ε C → cC

b. S → ABC A → aC | D B → bB | ε | A
C → Ac | ε | Cc D → aa

12. Define Push down automata (NPDA). Design a NPDA for the CFG given in Question (2).

13. Design a PDA for the given language.L$, where L = {w ∈ {a, b}* : #a(w) = #b(w)}.

14. Design a PDA for the language: L={ aibjck : i+j=k ,i>=0,j>=0}

15. Design a PDA for the language L={ anb2n : n>=1}

16. Design a PDA for the language: L={ aibjck : i+k=j ,i>=0,k>=0}

17. Design a PDA for the language: L={ aibjck : k+j=i ,k>=0,j>=0}

Module-4
 Context-Free and Non-Context-Free Languages

 Where Do the Context-Free Languages Fit in the Big Picture?

 Showing that a Language is Context-Free

 Pumping theorem for CFL

 Important closure properties of CFLs

 Deterministic CFLs

 Algorithms and Decision Procedures for CFLs: Decidable questions

 Undecidable questions

 Turing Machine: Turing machine model

 Representation

 Language acceptability by TM

 Design of TM

 Techniques for TM construction.

Context-Free and Non-Context-Free Languages

● The language AnBn = {anbn | n≥ 0} is context-free.

● The language AnBnCn ={ anbncn |n≥0} is not context free because a PDA's stack cannot count

all three of the letter regions and compare them.

Where Do the Context-Free Languages Fit in the Big Picture?
THEOREM: The Context-Free Languages Properly Contain the Regular

Languages.

Theorem: The regular languages are a proper subset of the context-free languages.

 Proof: We first show that every regular language is context-free. We then show that there

exists at least one context-free language that is not regular.

Every regular language is context-free : We show this by construction.

 If L is regular then it is accepted by some DFSM M = (K, Σ, δ, s, A).

 From M we construct a PDA

M' = (K',Σ’, Γ’,Δ’,s’,A’) to accept L. where Δ' is constructed as follows:

 For every transition (qi,c,qj)in δ, add to Δ' the transition ((qi,c,ε),(qi,ε)),So

L(M)=L(M').

So, the set of regular languages is a subset of the CFL.

There exists at least one context-free language that is not regular : The regular languages

are a proper subset the context-free languages because there exists at least one language anbn

that is context –free but not regular.

Theorem: There is a countably infinite number of context-free

languages.

Proof:

 Every context-free language is generated by some context-free grammar G = (V,Σ,R,S).

There cannot be more CFLs than CFGs. So there are at most a countably infinite number of

context-free languages. There is not a one-to-one relationship between CFLs and CFGs, since

there are an infinite number of grammars that generate any given language. But we know that,

every regular language is context free and there is a countably infinite number of regular

languages.

 So there is at least and at most a countably infinite number of CFLs.

Showing That a Language is Context-Free

Two techniques that can be used to show that language L is context-free:

 •Exhibit a context-free grammar for it.

 •Exhibit a (possibly nondeterministic) PDA for it.

Theorem: The length of the yield of any tree T with height h and

branching factor b is <= b
h
.

Proof:

 If h is 1, then a single rule applies. So the longest yield is of length less than or equal to b.

Assume the claim is true for h=n. We show that it is true for h=n+1.

Consider any tree with h=n+1. It consists of a root, and some number of subtrees, each of height

<=n. By the induction hypothesis, the length of the yield of each of those subtrees is <= bn. So the

length of the yield must be <=b.(bn)=bn+1=bh.

The Pumping Theorem for Context-Free languages

Statement: If L is CFL, then: ∃k≥1 (∀strings w∈L, where |w|≥k (∃u,v,x,y,z

(w=uvxyz, vy≠Ɛ, |vxy| ≤ k and ∀q ≥ 0 (uv
q
xy

q
z is in L))))

Proof: If L is context-free, then there exists a CFG G=(V,Σ,R,S) with n nonterminal symbols and

branching factor b.

Let k be bn+1.

Any string that can be generated by G and whose parse tree contains no paths with repeated

nonterminals must have length less than or equal to bn. Assuming that b≥2, it must be the case that

bn+1 > bn. So let w be any string in L(G) where |w|≥k.

Let T be any smallest parse tree for w. T must have height at least n+1. Choose some path in T of

length at least n + 1. Let X be the bottom-most repeated non terminal along that path. Then w can be

rewritten as uvxyz as shown in below tree,

 The tree rooted at [1] has height at most n+1.Thus its yield, vxy, has length less than or equal

to bn+1,which is k. Further, vy≠Ɛ .Since if vy were Ɛ then there would be a smaller parse tree for w

and we choose T so that h at wasn't so.

Finally, v and y can be pumped: uxz must be in L because rule2 could have been used immediately

at[1]. And, for any q≥1, uvqxyqz must be in L because rule1 could have been used q times before

finally using rule2.

Application of pumping lemma (Proving Language is Not Context Free)

 Ex1: Prove that the Language L = {a
n
b

n
c

n
| n>=0} is Not Context-Free.

Solution: If L is CFL then there would exist some k such that any string w, where |w|>=k must

satisfy the conditions of the theorem.

 Let w = akbkck, where ‘k’ is the constant from the Pumping lemma theorem. For w to satisfy

the conditions of the Pumping Theorem there must be some u,v,x,y and z, such that w=uvxyz, vy≠Ɛ,

|vxy|≤k and ∀q ≥ 0 , uvqxyqz is in L.

 w=aaa…aaabbb…bbbccc…ccc, select v and y as follows:

 w=aaa…aaabbb…bbbccc…ccc

Let q=2, then

 w=aaa…aaabbaabb b..bbccccc…ccc

v y

V2 y2

The resulting string will have letters out of order and thus not in L.

So L is not context-free.

Ex 2: Prove that the Language L= {WcW: w∈{a,b}*}is Not Context-Free.

For w to satisfy the conditions of the Pumping Theorem there must be some u,v,x,y,and z, such that

w = uvxyz , vy≠Ɛ, |vxy| ≤ k and ∀q≥0, uvqxyqz is in L. We show that no such u,v,x,y and z exist.

Imagine w divided into five regions as follows:

 Call the part before the c the leftside and the part after the c the right side. We consider all the

cases for where v and y could fall and show that in none of them are all the condition so f the theorem met:

• If either v or y overlaps region 3, set q to 0. The resulting string will no longer contain a c and so is

not in WcW.

• If both v and y occur before region 3 or they both occur after region 3, then set q to 2. One side will

be longer than the other and so the resulting string is not in WcW.

• If either v or y overlaps region1 ,then set q to 2. In order to make the right side match. Something

would have to be pumped into region 4. But any v,y pair that did that would violate the requirement

that lvxyl ≤ k.

• If either v or y overlaps region2, then set q to 2. In order to make the right side match, something

would have to be pumped into region 5. But any v,y pair that did that would violate the requirement

that lvxyl ≤ k.
• There is no way to divide w into uvxyz such that all the conditions of the Pumping Theorem

are met . So WcW is not context-free.

Some Important Closure Properties of Context-Free Languages

Theorem: The context- free languages are closed under Union,
Concatenation, Kleene star, Reverse, and Letter substitution.

(1) The context-free languages are closed under union:

• If L1 and L2 are context free languages then there exists a context-free grammar G1= (V1,Σ1, R1,S1)

and G2=(V2,Σ2,R2,S2) such that L1=L(G1) and L2=L(G2).

• We will build a new grammar G such that L(G)=L(G1)UL(G2). G will contain all the rules of both

G1 and G2.

• We add to G a new start symbol S and two new rules. S→S1 and S→S2. The two new rules allow G

to generate a string iff at least one of G1or G2 generates it.

So, G = (V1 U V2 U {S}, Σ1 U Σ2, R1 U R2 U {S→ S1,S→S2}, S)

(2)The context-free languages are closed under concatenation

• If L1 and L2 are context free languages then there exist context-free grammar G1= (V1,Σ1,R1,S1) and

 G2=(V2,Σ2,R2,S2) such that L1= L(G1) and L2= L(G2).

• We will build a new grammar G such that L (G) = L(G1)L(G2).

• G will contain all the rules of both G1and G2.

• We add to G a new start symbol S and one new rule. S→S1S2

 So G= (V1UV2U{S}, Σ1 U Σ2, R1UR2U{S→S1S2),S)

(3) The context-free Languages are closed under Kleene star:

• If L1 is a context free language then there exists a context-free grammar G1=(V1,Σ1,R1,S1) such that

 L1= L(G1).

• We will build a new grammar G such that L(G)=L(G1)* G will contain all the rules of G1.

• We add to G a new start symbol S and two new rules. S→ℇ and S→SS1

 So G = (V1 U {S}, Σ1, R1U {S→ℇ, S→SS1), S)

(4) The context-free languages are closed under reverse

• If L is a context free language then it is generated by some Chomsky Normal Form from grammar

G= (V,Σ,R, S).

• Every rule in G is of the form X→BC or X→a, where X, B, and C are elements of (V-Σ) and a ϵ Σ

• So construct, from G, a new grammar G1 , Such that L(G1)= LR .

• G1= (VG, ΣG, R', SG) , Where R' is constructed as follows:

 For every rule in G of the form X→BC, add to R' the rule X→CB

 For every rule in G of the form X→ a then add to R' the rule X→ a

(5)The context-free languages are closed under letter Substitution

• Consider two alphabets Σ1 and Σ2 .

•Let sub be any function from Σ1 to Σ2
*.

•Then letsub is a letter substitution function from L1 to L2 iff letsub(L1) ={ w∈ Σ2
*: ∃y ∈ L1 (w=y

except that every character c of y has replaced by sub(c))}.

Example : Let y= VTU ∈ L1 And sub(c) is given as : sub(V) = Visvesvaraya

 sub(T) = Technological

 sub(U)= University

 Then , sub(VTU) = Visvesvaraya Technological University

Closure Under Intersection, Complement, and Difference

Theorem:The Context-free language are not closed under intersection,

complement or difference.

1) The context-free languages are not closed under intersection

 The proof is by counter example. Let: L1={anbncm|n,m≥0} L2={ambncn|n,m≥0} Both L1and L2

are context-free since there exist straight forward CFGs for them.

 But now consider: L =L1∩L2= { anbncn | n,m≥0}. If the context-free languages were closure under

intersection. L would have to be context-free. But we have proved that L is not CFG by using

pumping lemma for CFLs.

(2) The context-free languages are not closure under

 Given any sets L1and L2 , L1∩ L2 = ￢(￢L1∪￢L2)

• The context-free languages are closed under union.

• But we just showed that they are not, thus they are not closed under complement either.

• So, if they were also closed under complement, they would necessarily be closed under

intersection.

(3) The context-free languages are not closed under difference

(subtraction) :

 Given any language L and ￢L=Σ*- L.

Σ* is context-free So, if the context-free languages were closed under difference, the complement of

any CFL would necessarily be context-free But we just showed that is not so.

Closure Under Intersection With the Regular Languages

Theorem: The context-free languages are closed under intersection with the

regular languages.

Proof: The proof is by construction.

• If L1 is context-free, then there exists some PDA M1= (K1,Σ,𝛤1,𝚫1,S1,A1) that accepts it.

• If L2 is regular then there exists a DFSM M2= (K2,Σ,𝛿,S2,A2) that accepts it.

• We construct a new PDA, M3 that accepts L1 ∩ L2. M3 will work by simulating the parallel

execution of M1 and M2.

• M3= (K1X K2, Σ , 𝛤1, 𝚫3,(S1,S2),A1X A2), Where 𝚫3 is built as follows:

•For each transition ((q1, a, 𝛃) ,(p1, 𝛄)) in 𝚫1 and each transition ((q2, a) ,p2) in 𝛿, add 𝚫3 the

transition: (((q1,q2),a,𝛃) ,((p1,p2), 𝛄)).

•For each transition ((q1,ℇ,𝛃) ,(p1, 𝛄)) in 𝚫1and each state q2 in k2, add to 𝚫3 the transition:

 (((q1,q2),ℇ,𝛃) ,((p1,p2), 𝛄)).

Closure Under Difference with the Regular Language.

Theorem: The difference (L1-L2) between a context-free language L1 and a

regular language L2is context-free.

Proof: L1-L2= L1∩￢L2

 • If L2 is regular, then, since the regular languages are closed under complement,￢L2 is also

regular.

 • Since L1 is context-free, by Theorem we already proved that L1∩ ￢L2 is context-free.

Using the Pumping Theorem in Conjunction with the Closure

Properties

 Languages that impose no specific order constraints on the symbols contained in their strings

are not always context-free. But it may be hard to prove that one isn't just by using the Pumping

Theorem. In such a case it is proved by considering the fact that the context-free languages are

closed under intersection with the regular languages.

Deterministic Context-Free Languages

The technique used to show that the regular languages are closed under complement starts with a

given (possibly nondeterministic) FSM M1, we used the following procedure to construct a new

FSM M2 such that L(M2)=￢L(M1):

The regular languages are closed under complement, intersection and difference. Why are the

context-free languages different? Because the machines that accept them may necessarily be

nondeterministic.

1. From M1, construct an equivalent DFSM M', using the algorithm ndfsmtodfsm, presented in the

 proof of Theorem5.3. (If M1is already deterministic. M'=M1.)

2. M' must be stated completely. so if it is described with an implied dead state, add the dead state

and all required transitions to it.

3. Begin building M2 by setting it equal to M'. Then swap the accepting and the non-accepting states.

So M2 M'= (KM',.Σ,𝜹M',sM',KM'-AM').

We have no PDA equivalent of ndfstodfsm because there provably isn't one. We defined a PDA M

to be deterministic iff:

•ΔM contains opairs of transitions that compete with each other, and

• if q is an accepting state of M, then there is no transition ((q,ε,ε),(p,a)) for any p or a.

What is a Deterministic Context-Free language?

 Let $ be an end-of-string marker. A language L is deterministic context-free iff L$ can be

accepted by some deterministic PDA.

EXAMPLE: Why an End-of-String Marker is Useful

Let L= a* ∪ { anbn| n>0}

 Consider any PDA M that accepts L. When it begins reading a’s, M must push them onto the

stack in case there are going to be b's. But if it runs out of input without seeing b's, it needs a way to

pop those a's from the stack before it can accept. Without an end-of-string marker, there is no way to

allow that popping to happen only when all the input has been read.

For example, the PDA accepts L, but it is nondeterministic because the transition to state3 (where the

a's will be popped) can compete with both of the other transitions from state1.

With an end-of-string marker, we can build the deterministic PDA, which can only take the transition

to state3, the a-popping state. When it sees the $:

NOTE: Adding the end-of-string marker cannot convert a language that was not

context-free into one that is.

CFLs and Deterministic CFLs

Theorem: Every deterministic context-free language is context-free.

Proof:

If L is deterministic context-free, then L$ is accepted by some deterministic PDA M=(K,Σ,𝜞,𝜟,s,A) .

From M, we construct M' such that L (M') = L. We can define the following procedure to construct

M':

without$(M:PDA)=

 1.Initially. set M' to M.

 /*Make the copy that does not read any input.

 2.For every state q in M, add to M' a new state q'.

 3.For every transition ((q, ε ,𝜸1),(p,𝜸2)) in 𝜟 M do:

 3.1. Add to 𝜟M the transition ((q',ε,𝜸1),(p',𝜸2)).

 /*Link up the two copies.

 4.For every transition ((q,$,𝜸1),(p,𝜸2)) in 𝜟 M do:

 4.1. Add to 𝜟M’ the transition ((q,ε,𝜸1),(p',𝜸2)).

 4.2. Remove ((q,$,𝜸1),(p,𝜸2)) from 𝜟M’

 /*Set the accepting state s of M'.

 5.AM' = {q':q∈A}.

Closure Properties of the Deterministic Context-Free

Languages

1) Closure Under Complement

Theorem: The deterministic context-free languages are closed under

complement.

Proof: The proof is by construction. If L is a deterministic context-free language over the alphabet Σ,

then L$ is accepted by some deterministic PDA M = (K, Σ U{$}, 𝜞, 𝜟, s, A).

We need to describe an algorithm that constructs a new deterministic PDA that accepts (￢L)$.

We defined a construction that proceeded in two steps:

• Given an arbitrary FSM, convert it to an equivalent DFSM, and then

• Swap accepting and non accepting states.

A deterministic PDA may fail to accept an input string w for any one of several reasons:

 1. Its computation ends before it finishes reading w.

 2. Its computation ends in an accepting state but the stack is not empty.

 3. Its computation loops forever, following ε-transitions, without ever halting in either an

 accepting or a non accepting state.

 4. Its computation ends in a non accepting state.

If we simply swap accepting and non accepting states we will correctly fail to accept every string

that M would have accepted (i.e., every string in L$). But we will not necessarily accept every string

in (￢L)$. To do that, we must also address issues 1through 3 above.

An additional problem is that we don't want to accept ￢L(M). That includes strings that do not end

in $. We must accept only strings that do end in $ and that are in (￢L)$.

2) Non closure Under Union

Theorem: The deterministic context-free languages are not closed under union.

Proof: We show a counter example:

 Let, L1={ aibjck| i,j,k ≥0 and i≠ j } and L2={ aibjck | i,j,k≥0 and j ≠ k}

 Let, L' = L1U L2= { aibjck | i,j,k≥0 and ((i≠ j) and (j ≠ k)) }.

 Let, L" = ￢L'.

 ={ aibjck |i,j,k≥0 and (i=j=k)} U {w∈{a,b,c}*: the letters are out of order}.

 Let, L"'=L"∩a*b*c* = {anbncn | n ≥ 0}

But L'" is AnBnCn={ anbncn |n≥0},which we have shown is not context-free.

3) Non Closure Under Intersection

Theorem: The deterministic context-free languages are not closed under inter

section.

Proof: We show a counter example:

 Let, L1= { aibjck | i,j,k≥0 and i= j }and L2={ aibjck |i,j,k≥0 and j=k}

 Let, L' = L1∩ L2 ={ anbncn | n ≥ 0}

L1 and L2 are deterministic context-free. The

deterministic PDA shown accepts L1$, A similar one

accepts L2. But we have shown that their intersection L'

is not context-free much less deterministic context-free.

A hierarchy within the class of context-free languages

Some CFLs are not Deterministic

Theorem: The class of deterministic context-free languages is a proper subset of

the class of context-free languages. Thus there exist nondeterministic PDAs for

which no equivalent deterministic PDA exists.

Proof: We show that there exists at least one context-free language that is not deterministic

context-free.

Consider L = { aibjck |i,j,k ≥ 0 and ((i≠ j) or (j ≠ k)) }. L is context-free.

If L were deterministic context-free, then, its complement

 L'={ aibjck |i,j,k ≥ 0 and (i=j=k) } U {w∈{a,b,c}*:the letters are out of order}

Would also be deterministic context-free and thus context-free. If L' were context-free, then

L"=L'∩ a*b*c* would also be context-free (since the context-free languages are closed under inter

section with the regular languages).

But L"= AnBnCn ={anbncn|n≥0},which is not context free.

So L is context-free but not deterministic context-free.

 Since L is context-free, it is accepted by some (non deterministic) PDA M. M is an example

of an on deterministic PDA for which no equivalent deterministic PDA L exists. If such a

deterministic PDA did exist and accept L, it could be converted into a deterministic PDA that

accepted L$. But, if that machine existed. L would be deterministic context-free and we just showed

that it is not.

Inherent Ambiguity versus Non determinism

 There are context-free languages for which unambiguous grammars exist and there are others

that are inherently ambiguous, by which we mean that every corresponding grammar is ambiguous.

Example:

 The language L1= {aibjck | i, j, k ≥ 0 and ((i= j) or (j = k))} can also be described as

{anbncm|n,m ≥0}U{ anbmcm |n,m ≥0}. L1 is inherently ambiguous because every string that is also in

AnBnCn ={anbncn|n≥0} is an element of both sub languages and so has at least two derivations in any

grammar for L1.

• Now consider the language L2={anbncmd|n,m≥0}U{anbmcme| n,m≥0} is not inherently ambiguous.

• Any string in is an element of only one of them (since each such string must end in d or e but not

both).

There exists no PDA that can decide which of the two sublanguages a particular string is in until it

has consumed the entire string.

What is the relationship between the deterministic context-free languages and the

languages that are not inherently ambiguous?

The answer is shown in below Figure.

There exist deterministic context-free languages that are not

regular. One example is AnBn={anbn|n,m≥0}.

•There exist context-free languages and not inherently

ambiguous. Examples:

 (a) PalEven={wwR:w∈{a,b}*}.

(b) {anbncmd|n,m≥0}U{anbmcme|n,m≥0}.

•There exist languages that are in the outer donut because they are inherently ambiguous. Two

examples are:

 {aibjck|i,j,k ≥ 0 and ((i≠j)or(j≠k))}

 {aibjck|i,j,k ≥ 0 and ((i=j) or (j=k))}

Regular Language is Deterministic Context-Free

Theorem: Every regular language is deterministic context-free.

Proof: The proof is by construction. {$} is regular. So, if L is regular then so is L$ (since the

regular languages are closed under concatenation).So there is a DFSM M that accepts it. Using the

construction to show that every regular language is context-free Construct, from M a PDA P that

accepts L$. P will be deterministic.

Every Deterministic CFL has an Unambiguous Grammar

Theorem: For every deterministic context-free language there exists an

unambiguous grammar.

Proof: If a language L is deterministic context-free, then there exists a deterministic PDA M that

accepts L$. We prove the theorem by construction of an unambiguous grammar G such that L(M)=

L(G). We construct G as follows:

The algorithm PDAtoCFG proceeded in two steps:

1.Invoke convenPDAtorestricted(M) to build M', an equivalent PDA in restricted normal form.

2. Invoke buildgrammar(M'), to build an equivalent grammar G

So the construction that proves the theorem is:

 buildunambiggrammar(M:deterministicPDA)=

 1. Let G=buildgrammar(convertPDAtodetnormalform(M)).

 2. Let G' be the result of substituting ε for $ in each rule in which $ occurs.

 3. Return G'.

NOTE: The algorithm convertPDAtodetnormalform, is described in the theorem that proves the

deterministic context-free languages are closed under complement.

The Decidable Questions

Membership

 "Given a language L and a string w, is w in L?'

 This question can be answered for every context-free language and for every context-free

language L there exists a PDA M such that M accepts L. But existence of a PDA that accepts L does

not guarantee the existence of a procedure that decides it.

It turns out that there are two alternative approaches to solving this problem, both of which

work:

● Use a grammar: Using facts about every derivation that is produced by a grammar in

Chomsky normal form, we can construct an algorithm that explores a finite number of

derivation paths and finds one that derives a particular string w iff such a path exists.

● Use a PDA : While not all PDAs halt, it is possible, for any context-free language L, to

craft a PDA M that is guaranteed to halt on all inputs and that accepts all strings in L and

rejects all strings that are not in L.

Using a Grammar to Decide

Algorithm for deciding whether a string w is in a language L:

decideCFLusingGrammar(L: CFL,w: string) =

1. If L is specified as a PDA, use PDA to CFG, to construct a grammar G such that L(G) =L (M).

2. If L is specified as a grammar G, simply use G.

3. If w =ε then if SG is nullable then accept, otherwise reject.

4. If w ≠ ε then:

 4.1. From G, construct G' such that L (G') = L(G)-{ε} and G' is in Chomsky normal form.

 4.2. If G derives to, it does so in (2 • |w| - 1) steps. Try all derivations in G of that number

 of steps. If one of them derives w, accept. Otherwise reject.

Using a PDA to Decide

A two-step approach.

 We first show that, for every context-free language L, it is possible to build a PDA that

accepts L-{ε} and that has no ε-transitions.

 Then we show that every PDA with no ε-transitions is guaranteed to halt

Elimination of ε-Transitions

Theorem: Given any context-free grammar G=(V,Σ,R,S), there exists a PDA M

such that L(M)=L(G)-{ε} and M contains no transitions of the form

((q1,ε,α),(q2,𝜷)). In other words, every transition reads exactly one input

character.

Proof: The proof is by a construction that begins by converting G to Greibach normal form. Now

consider again the algorithm cfgtoPDAtopdown, which builds, from any context-free grammar G, a

PDA M that, on input w, simulates G deriving w, starting from S.

M= ({p,q},Σ,V,Δ, p,{q}), where Δ contains:

1. The start-up transition ((p,ε,ε),(q,S)), which pushes the start symbol on to the stack and

goes to state q.

2. For each rule X→s1s2...sn, in R, the transition ((q,ε,X),(q,s1s2...sn)), which replaces X by

s1s2...sn. If n=0 (i.e., the right-hand side of the rule is ε), then the transition ((q, ε, X), (q, ε)).

3. For each character c ∈ Σ. the transition ((q, c, c), (q,ε)), which compares an expected

character from the stack against the next input character.

If G contains the rule X→cs2...sn, (where c ∈Σ and s2 through sn, are elements of V-Σ), it is not

necessary to push c onto the stack, only to pop it with a rule from step 3.

Instead, we collapse the push and the pop into a single transition. So we create a transition that can

be taken only if the next input character is c. In that case, the string s2 through sn is pushed onto the

stack.

Since terminal symbols are no longer pushed onto the stack. We no longer need the transitions

created in step3 of the original algorithm.

So, M=({p,q},Σ,V,Δ,p,{q}), where Δ contains:

1. The start-up transitions: For each rule S→cs2...sn the transition ((p,c,ε),(q,s2...sn)).

 2. For each rule X→cs2...sn (where c∈Σ and s2 through sn, are elements of V-Σ), the

 transition ((q,c,X),(q,s2...sn)).

cfgtoPDAnoeps(G:context-freegrammar)=

1. Convert G to Greibach normal form, producing G'.

2. From G' build the PDA M described above.

Halting Behavior of PDAs Without ε-Transitions

Theorem: Let M be a PDA that contains no transitions of the form ((q1,ε,s1),(q2,s2)). i.e., no ε-

transitions. Consider the operation of M on input w∈Σ*. M must halt and either accept or reject w.

Let n=|w|.

We make three additional claims:

a) Each individual computation of M must halt within n steps.

b) The total number of computations pursued by M must be less than or equal to bn, where b

is the maximum number of competing transitions from any state in M.

c) The total number of steps that will be executed by all computations of M is bounded by nbn

Proof:

a) Since each computation of M must consume one character of w at each step and M will halt when

it runs out of input, each computation must halt within n steps.

b) M may split into at most b branches at each step in a computation. The number of steps in a

computation is less than or equal to n. So the total number of computations must be less than or equal

to bn.

c) Since the maximum number of computations is bn and the maximum length of each is n, the

maximum number of steps that can be executed before all computations of M halt is nbn.

So a second way to answer the question, "Given a context-free language L and a string w, is w

in L?" is to execute the following algorithm:

decideCFLusingPDA(L:CFL,w:string)=

1. If L is specified as a PDA, use PDAtoCFG, to construct a grammar G such that L(G)=L(M).

2. If L is specified as a grammar G, simply use G.

3. If w=ε then if SG is nullable then accept, otherwise reject.

4.If w≠ε then:

 4.1. From G, construct G' such that L(G')=L(G)-{ε} and G' is in Greibach normal form.

 4.2. From G' construct, using cfgtoPDAnoeps, a PDA M' such that L(M')=L(G') and M' has

 no ε-transitions.

 4.3. We have proved previously that, all paths of M' are guaranteed to halt within a finite

 number of steps. So run M' on w, Accept if M' accepts and reject otherwise.

Emptiness and Finiteness

Decidability of Emptiness and Finiteness

Theorem: Given a context-free language L. There exists a decision procedure that answers each of

the following questions:

 1. Given a context-free language L, is L=⦰?

 2. Given a context-free language L, is L infinite?

Since we have proven that there exists a grammar that generates L iff there exists a PDA that accepts

it. These questions will have the same answers whether we ask them about grammars or about PDAs.

Proof :

decideCFLempty(G: context-free grammar) =

 1. Let G' =removeunproductive(G).

 2. If S is not present in G' then return True else return False.

decideCFLinfinite(G:context-freegrammar)=

 1. Lexicographically enumerate all strings in Σ* of length greater than bn and less than or

 equal to bn+1+bn.

 2. If, for any such string w, decideCFL(L,w) returns True then return True. L is infinite.

 3. If, for all such strings w, decideCFL(L,w) returns False then return False. L is not infinite.

The Undecidable Questions

• Given a context-free language L, is L=Σ*?

• Given a CFL L, is the complement of L context-free?

• Given a context-free language L, is L regular?

• Given two context-free languages L1 and L2 is L1=L2?

• Given two context-free languages L1 and L2, is L1⊆ L2?

• Given two context-free languages L1and L2, is L1∩L2=⦰?

• Given a context-free language L, is L inherently ambiguous?

• Given a context-free grammar G, is G ambiguous?

TURING MACHINE

The Turing machine provides an ideal theoretical model of a computer. Turing machines are useful

in several ways:

 • Turing machines are also used for determining the undecidability of certain languages and

 • As an automaton, the Turing machine is the most general model, It accepts type-0

languages.

 • It can also be used for computing functions. It turns out to be a mathematical model of

partial recursive functions.

 • Measuring the space and time complexity of problems.

Turing assumed that while computing, a person writes symbols on a one-dimensional paper (instead

of a two dimensional paper as is usually done) which can be viewed as a tape divided into cells. In

Turing machine one scans the cells one at a time and usually performs one of the three simple

operations, namely:

 (i) Writing a new symbol in the cell being currently scanned,

 (ii) Moving to the cell left of the present cell, and

 (iii) Moving to the cell right of the present cell.

Turing machine model

•Each cell can store only one symbol.

•The input to and the output from the finite state automaton are affected by the R/W head which can

examine one cell at a time.

In one move, the machine examines the present symbol under the R/W head on the tape and the

present state of an automaton to determine:

 (i) A new symbol to be written on the tape in the cell under the R/W head,

 (ii) A motion of the R/W head along the tape: either the head moves one cell left (L),or one

 cell right (R).

 (iii) The next state of the automaton, and

 (iv) Whether to halt or not.

Definition:

Turing machine M is a 7-tuple, namely (Q, Σ, 𝚪, 𝛅, q0, b, F), where

 1. Q is a finite nonempty set of states.

 2. 𝚪 is a finite nonempty set of tape symbols,

 3. b∈𝚪 is the blank.

 4. Σ is a nonempty set of input symbols and is a subset o f 𝚪 and b∉Σ.

 5. 𝛅 is the transition function mapping (q,x) onto (q',y,D) where D denotes the direction of

 movement of R/W head; D=L orR according as the movement is to the left or right.

 6. q0∈Q is the initial state, and

 7. F⊆Q is the set of final states.

Notes:

(1)The acceptability of a string is decided by the reachability from the initial state to some final state.

(2) 𝛅 may not be defined for some elements of QX 𝚪.

REPRESENTATION OF TURINGMACHINES

We can describe a Turing machine employing

 (i) Instantaneous descriptions using move-relations.

 (ii) Transition table, and

 (iii) Transition diagram (Transition graph).

REPRESENTATION BY INSTANTANEOUS DESCRIPTIONS

Definition: An ID of a Turing machine M is a string 𝛼𝛽𝛾, where 𝛽 is the present state of M, the

entire input string is split as 𝛼𝛾, the first symbol of 𝛾 is the current symbol a under the R/W head and

𝛾 has all the subsequent symbols of the input string, and the string 𝛼 is the substring of the input

string formed by all the symbols to the left of a.

EXAMPLE: A snapshot of Turing machine is shown in below Fig. Obtain the instantaneous

description.

 The present symbol under the R/W

head is a1. The present state is q3. So a1 is written to the right of q3 The nonblank symbols to the left

of al form the string a4a1a2a1a2a2, which is written to the left of q3. The sequence of nonblank

symbols to the right of a1 is a4a2. Thus the ID is as given in below Fig.

Notes: (1) For constructing the ID, we simply insert the current state in the input string to the left of
the symbol under the R/W head.

(2) We observe that the blank symbol may occur as part of the left or right substring.

REPRESENTATION BY TRANSITION TABLE

We give the definition of 𝛅 in the form of a table called the transition table If (q, a)=(𝛾,𝛼,𝛽). We

write 𝛼𝛽𝛾 under the 𝛼-column and in the q-row. So if we get 𝛼𝛽𝛾 in the table, it means that 𝛼 is

written in the current cell, 𝛽 gives the movement of the head (L or R) and 𝛾 denotes the new state

into which the Turing machine enters.

EXAMPLE:

Consider, for example, a Turing machine with five states q1,...,q5 where q1 is the initial state and q5 is

the (only) final state. The tape symbols are 0,1and b. The transition table given below describes 𝛅:

REPRESENTATION BY TRANSITION DIAGRAM (TD)

 The states are represented by vertices. Directed edges are used to represent transition of

states. The labels are triples of the form (𝛼,𝛽,𝛾)where 𝛼,𝛽∈𝚪and𝛾∈{L,R}.When there is a directed

edge from qi to qj with label (𝛼,𝛽,𝛾),it means that 𝛅(qi,𝛼)=(qj,𝛽,𝛾).
EXAMPLE:

LANGUAGE ACCEPTABILITY BY TURING MACHINES

Let us consider the Turing machine M=(Q,Σ,𝚪,𝛅,q0,b,F). A string w in Σ* is said to be

𝛼1p𝛼2 for some P∈F and 𝛼1,𝛼2∈𝚪*. accepted by M, if q0w

EXAMPLE: Consider the Turing machine M described by the table below

IDs for the strings (a) 011 (b)0011 (c)001

 As (q5,1) is not defined, M halts; so the input string 011 is not accepted

 M halts. As q6 is an accepting state, the input string 0011is accepted byM.

M halts. As q2 is not an accepting state,001 is not accepted by M.

DESIGN OF TURING MACHINES

Basic guidelines for designing a Turing machine:

1. The fundamental objective in scanning a symbol by the R/W head is to know what to do in

the future. The machine must remember the past symbols scanned. The Turing machine can

remember this by going to the next unique state.

2. The number of states must be minimized. This can be achieved by changing the states only

when there is a change in the written symbol or when there is a change in the movement of the R/W

head.

EXAMPLE 1

Design aTuring machine to recognize all strings consisting of an even number of 1's.

Solution:

The construction is made by defining moves in the following manner:

 (a) ql is the initial state. M enters the state q2 on scanning 1 and writes b.

 (b) If M is in state q2 and scans 1, it enters ql and writes b.

 (c) ql is the only accepting state.

Symbolically M= ({ql,q2},{1,b},{1,b},𝛅,q,b,{ql}), Where 𝛅 is defined by ,

EXAMPLE 2: Design a TM that accepts {0n1n| n≥ 0}

Solution: We require the following moves:

(a) If the leftmost symbol in the given input string w is 0, replace it by x and move right till we

encounter a leftmost 1in w. Change it to y and move backwards.

(b) Repeat (a) with the leftmost 0. If we move back and forth and no 0 or 1 remains. Move to a final

state.

(c) For strings not in the form 0n1n, the resulting state has to be non-final.

we construct a TM M as follows:M = (Q, Σ,𝚪, 𝛅, q0,b, F)

 Q = {q0,q1,q2,q3,qf}

 F = {qf}

 Σ = { 0,1}

 𝚪= { 0,1,x,y,b}

Computation sequence of 0011:

 q4 is final state, hence 0011 is accepted by M.

TECHNIQUES FOR TM CONSTRUCTION

1. TURING MACHINE WITH STATIONARY HEAD

 Suppose, we want to include the option that the head can continue to be in the same cell for

some input symbol. Then we define (q,a) as (q',y,S).This means that the TM, on reading the input

symbol a, changes the state to q' and writes y in the current cell in place of a and continues to remain

in the same cell. In this model (q, a) =(q', y, D) where D = L, R or S.

2. STORAGE IN THE STATE

 We can use a state to store a symbol as well. So the state becomes a pair(q,a) where q is the

state and a is the tape symbol stored in (q, a). So the new set of states becomes Qx𝚪.

EXAMPLE: Construct a TM that accepts the language 0 1* + 1 0*.

 We have to construct a TM that remembers the first symbol and checks that it does not

appear afterwards in the input string.

So we require two states, q0, q1. The tape symbols are 0,1 and b. So the TM, having the 'storage

facility in state‘, is M=({q0,q1}X{0,1,b},{0,1},{0,1,b},𝛅,[q0,b],[q1,b]})

We describe 𝛅 by its implementation description.

1. In the initial state, M is in q0 and has b in its data portion. On seeing the first symbol of the input

sting w, M moves right, enters the state q1 and the first symbol, say a, it has seen.

2. M is now in [q1,a].

 (i) If its next symbol is b, M enters [q1,b], an accepting state.

 (ii) If the next symbol is a, M halts without reaching the final state (i.e.𝛅 is not defined).

 (iii) If the next symbol is ā, (ā=0 if a=1 and ā=1 if a=0), M moves right without changing

 state.

3. Step2 is repeated until M reaches [q1,b] or halts (𝛅 is not defined for an input symbol in w).

3. MULTIPLE TRACK TURING MACHINE

 In a multiple track TM, a single tape is assumed to be divided into several tracks. Now the

tape alphabet is required to consist of k-tuples of tape symbols, k being the number of tracks. In the

case of the standard Turing machine, tape symbols are elements of r; in the case of TM with multiple

tracks, it is 𝚪k.

4. SUBROUTINES

 First a TM program for the subroutine is written. This will have an initial state and a 'return'

state. After reaching the return state, there is a temporary halt for using a subroutine, new states are

introduced. When there is a need for calling the subroutine, moves are effected to enter the initial

state for the subroutine. When the return state of the subroutine is reached, return to the main

program of TM.

EXAMPLE: Design a TM which can multiply two positive integers.

Solution: The input (m,n), m,n being given ,the positive integers represented by 0m10n. M starts

with 0m10n in its tape. At the end of the computation, 0mn (mn in unary representation) surrounded by

b's is obtained as the output.

The major steps in the construction are as follows:

 1. 0m10n1 is placed on the tape (the output will be written after the rightmost 1).

 2. The leftmost 0 is erased.

 3. A block of n 0's is copied onto the right end.

 4. Steps 2 and 3 are repeated m times and 10m10mn is obtained on the tape.

 5. The prefix 10m1of 10m10mn is erased, leaving the product 0mn as the output.

For every 0 in 0m, 0n is added onto the right end. This requires repetition of step3. We define a

subroutine called COPY for step3. For the subroutine COPY the initial state is q1 and the final state

is q5
 is given by the transition table as below:

The Turing machine M has the initial state q0. The initial ID for M is q00m10n. On seeing 0,the

following moves take place

q1 is the initial state of COPY. The following moves take place for M1:

 After exhausting 0s, q1 encounters 1. M1 moves to state q4. All 2's are converted back to 0's

and M1 halts in q5. The TM M picks up the computation by starting from q5 The q0 and q6 are the

states of M. Additional states are created to check whether reach 0 in 0m gives rise to 0m at the end of

the rightmost 1 in the input string. Once this is over, M erases 10n1 and finds 0mn in the input tape.

M can be defined by M=({q0,q1,....q12}{0,1},{0,,2,b},𝛅,q0,b,{q12}) where 𝛅 is defined by table given

below:

ADDITIONAL PROBLEMS

1. Design a Turing machine to obtain complement of a binary number.

IDEA OF CONSTRUCTION:

1) If symbol is 0 change it to 1, move read write head to RIGHT

2) If symbol is 1 change it to 0, move read write head to RIGHT

3) Symbol is b (blank) don’t change, move read write head to RIGHT, and HALT.

The construction is made by defining moves in the following manner:

(a) ql is the initial state. On scanning 1, no change in state and write 0 and move head to RIGHT.

(c) If M is in state q1and scans blank, it enters q2 and writes b move to right.

(d) q2 is the only accepting state.

Symbolically, M=({ql,q2},{1,0,b},{1,0,b},𝛅,ql,b,{q2}) Where 𝛅 is defined by:

The computation sequence of 1010:

2. Design a TM that converts binary number into its 2’s complement representation.

IDEA OF CONSTRUCTION:

 Read input from left to right until right end blank is scanned.

 Begin scan from right to left keep symbols as it is until 1 found on input file.

 If 1 found on input file, move head to left one cell without changing input.

 Now until left end blank is scanned, change all 1’s to 0 and 0’s to 1.

We require the following moves:

(a) Let q1 be initial state, until blank is scanned, move head to RIGHT without changing

anything. On scanning blank, move head to RIGHT change state to q2 without changing the

content of input.

(b) If q2 is the state, until 1 is scanned, move head to LEFT without changing anything. On

reading 1, change state to q3, move head to LEFT without changing input.

(c) If q3 is the state, until blank is scanned, move head to LEFT, if symbol is 0 change to 1,

otherwise if symbol is 1 change to 0.On finding blank change state to q4, move head to LEFT

without Changing input.

(d) q4 is the only accepting state.

We construct a TM M as follows:

M = (Q, Σ,, 𝛅, q0,b, F)

Q = {q1,q2,q3,q4}

F = {q4 }

Σ = {0,1}

𝚪= {0,1,b}

3.Design a TM that add two integers

IDEA OF CONSTRUCTION:

 Read input from LEFT to RIGHT until blank (separator of two numbers) is found.

 Continue LEFT to RIGHT until blank (end of second number) is found.

 Change separator b to 1 move head to RIGHT.

 move header to Left (to point rightmost 1)

 Change 1 to b and move right, Halt.

We require the following moves:

(a) In q1 TM skips1’s until it reads b (separator),changes to1and goes to q1

(b) In q2 TM skips1’s until it reads b (end of input), turns left and goes to q3

(c) In q3, TM reads 1 and changes to b go to q4.

(d) q4 is the final state, TM halts.

we construct a TM M as follows: M = (Q, Σ, 𝚪, 𝛅, q0,b, F)

 Q = {q1,q2,q3,q4}

 F = {q4}

 Σ = { b,1}

 𝚪= {1,b}

4. Design a TM that accepts the set of all palindromes over {0,1}*

IDEA OF CONSTRUCTION:

 If it is 0 and changes to X, similarly if it is 1, it is changed to Y, and moves right until it finds

blank.

 Starting at the left end it checks the first symbol of the input,

 Nowmovesonestepleftandcheckwhetherthesymbolreadmatchesthemostrecentlychanged.Ifsoiti

salsochangedcorrespondingly.

 Now machine moves back left until it finds 0 or 1.

 This process is continued by moving left and right alternately until all 0’s and 1’s have been

matched.

We require the following moves:

1.If state is q0and it scans 0.

 Then go to state q1 and change the 0 to an X,

 move RIGHT over all 0’s and 1’s, until it finds either X or Y or B

 Now move one step left and change state to q3

 It verifies that the symbol read is 0, and changes the 0 to X and goes to state q5.

2. If state is q0 and it scans 1

 Then go to state q2 and change the 1 to an Y,

 Move RIGHT over all 0’s and 1’s, until it finds either X or Y or B

o Now move one step left and change state to q4

o It verifies that the symbol read is 1, and changes the 1 to Y and goes to state q5.

3. If state is q5

 Move LEFT over all 0’s and 1’s, until it finds either X or Y.

 Now move one step RIGHT and change state to q0.

 Now at q0 there are two cases:

1. If 0’s and 1’s are found on input , it repeats the matching cycle just described.

2. If X’s and Y’s are found on input, then it changes all the 0’s to X and all the 1’s to Y’s.

 The input was a palindrome of even length, Thus, state changed to q6.

4.If state is q3 or q4

If X’s and Y’s are found on input, it concludes that: The input was a palindrome of odd

length, thus, state changed to q6.

We construct a TM M as follows:

 M = (Q, Σ, 𝚪, 𝛅, q0,b,F)

 Q = {q0,q1,q2,q3,q4,q5,q6}

 F = {q6}

 Σ = { b,1,0}

 𝚪 = {X,Y,b}

PRACTICE PROBLEMS

1. Design a Turing machine to replace all a’s with X and all b’s with Y.

2. Design a Turing machine to accept anbm n>m.

3. Design a Turing machine to accept anbn n<m.

4. Design a Turing machine to accept (0+1)*00(0+1)* .

5. Design a Turing machine to increment a given input.

6. Design a Turing machine to decrement a given input.

7. Design a Turing machine to subtract two unary numbers.

8. Design a Turing machine to multiply two unary numbers.

9. Design a Turing machine to accept a string 0’s followed by a 1.

10. Design a Turing machine to verify if the given binary number is an even number or not.

11. Design a Turing machine to shift the given input by one cell to left.

12. Design a Turing machine to shift the given input to the right by one cell .

13. Design a Turing machine to rotate a given input by one cell.

14. Design a Turing machine to erase the tape.

15. Design a Turing machine to accept anbncn .

16. Design a Turing machine to accept any string of a’s & b’s with equal number of a’s & b’s.

17. Design a Turing machine to accept anb2n.

18. Design a Turing machine to accept anbkcm: where n=m+k.

19. Design a Turing machine to accept anbkcm: where m=n+k.

20. Design a Turing machine to accept anbkcm: where k=m+n.

From: Dr shreedhara K S, Professor in CSE, UBDT college of engineering, Davanagere

 Automata Theory and Computability

 Module 5

The model of Linear Bounded automata: Decidability: Definition of an algorithm, decidability,

decidable languages, Undecidable languages, halting problem of TM, Post correspondence

problem. Complexity: Growth rate of functions, the classes of P and NP, Quantum Computation:

quantum computers, Church-Turing thesis.

• A word automata is a plural of word “automation”, which means to automate or mechanize.

Mechanization of a process means performing it on a machine without human intervention.

• The basic aim of Computer Science is to design Computing Machine (CM).

• To design Computing Machine for a problem it is necessary to ensure that the problem is

solvable and computable.

• If it is not solvable in a reasonable amount of time, it is solvable in principle only

• As a student of Computer Science , we should know what is computable, and if it is

computable, how it can be implemented on a machine.

• Aim of automata theory is to draw a boundary between what is computable and what is not,
 if computation is performed on a machine,
 Machine may be of two types
 1. problem specific dedicated machine
 2. Generic machine.

Church-Turing thesis-1936
• Any algorithmic procedure that can be carried out by a human or a computer, can also be

carried out by a Turing machine.

• Now it is universally accepted by computer scientists that TM is a Mathematical model of an

algorithm.

• TM has an algorithm and an algorithm has a TM. If there is an algorithm problem is

decidable, TM solves that problem

• The statement of the thesis –

 “ Every function which would naturally be regarded as computable can be

 computed by a Turing machine”
Implies

• Any mechanical computation can be performed by a TM

• For every computable problem there is a TM

• If there is no TM that decides P there is no algorithm that can solve problem P.

• In our general life, we have several problems and some of these have solutions, but some

have not, we simply say a problem is decidable if there is a solution otherwise undecidable.

 example:

• Does Sun rises in the East? YES

• Will tomorrow be a rainy day ? (YES/NO ?)

Decidable and Undecidable Languages
• A problem is said to be decidable if its language is recursive OR it has solution.

 Example:

 Decidable :

 -Does FSM accept regular language?

 - is the power of NFA and DFA same

 Undecidable:

 - For a given CFG is L(G) ambiguous?

L is Turing decidable (or just decidable) if there exists a Turing machine M that accepts all strings in L

and rejects all strings not in L. Note that by rejection means that the machine halts after a finite

number of steps and announces that the input string is not acceptabl e.

• There are two types of TMs (based on halting):

1. (Recursive)
 TMs that always halt, no matter accepting or

 non-accepting  DECIDABLE PROBLEMS

2. (Recursively enumerable)
 TMs that are guaranteed to halt only on acceptance.

 If non-accepting, it may or may not halt (i.e., could loop forever).

• Undecidable problems are those that are not recursive

Recursive languages

A Language L over the alphabet∑ is called recursive if there is a TM M that accepts every word in L

and rejects every word in L’

Accept (M)=L

Reject(M)=L’

loop(M)= ø

Example: b(a+b)*

Recursively Enumerable Language:
A Language L over the alphabet∑ is called recursively enumerable if there is a TM M that accepts

every word in L and either rejects or loops every word in L’ the complement of L

Accept (M)=L

Reject(M) +Loop(M)= L’

Example: (a+b)*bb(a+b)*

 Recursively Enumerable Languages closed under complementation? (NO)

1. Prove that Recursive Languagess are closed under Union

2. Prove that Recursive Languages are closed under Intersection

3. Recursive languages are also closed under:

a. Concatenation

b. Kleene closure (star operator)

c. Homomorphism, and inverse homomorphism

4. RE languages are closed under:

a. Union, intersection, concatenation, Kleene closure

5. RE languages are not closed under:

a. Complementation

1. Decidable Languages about DFA : Prove that

2. Prove that

3. Prove that

PCP is a combinatorial problem formulated by Emil Post in 1946. This problem has many applications

in the field theory of formal languages. A correspondence system P is a finite set of ordered pairs of

non empty strings over some alphabet. Let

Index wj Vi
1 100 001

2 11 111
3 111 11

 Let W = w2w1w3=v2v1v3 = 11100111 we have got a solution. But we may not get solution always

for various other combinations and strings of different length. Hence PCP is undecidable.

If the index start with 1 and then any other sequence then it is called MPCP

Algorithm: An algorithm is “a finite set of precise instructions for performing a

 computation or for solving a problem”

• A program is one type of algorithm

• All programs are algorithms

• Not all algorithms are programs!

• The steps to compute roots of quadratic equation is an algorithm

• The steps to compute the cosine of 90° is an algorithm

Algorithms generally share a set of properties:

• Input: what the algorithm takes in as input

• Output: what the algorithm produces as output

• Definiteness: the steps are defined precisely

• Correctness: should produce the correct output

• Finiteness: the steps required should be finite

• Effectiveness: each step must be able to be performed in a finite amount of

time

nwwwA ,,, 21  nvvvB ,,, 21 

kji ,,, 

kjikji vvvwww  

nwwwA ,,, 21  nvvvB ,,, 21 

kji ,,,,1 

kjikji vvvvwwww  11 

• Generality: the algorithm should be applicable to all problems of a similar

form

Comparing Algorithms (While comparing two algorithm we use time and space complexities)

 Time complexity

◦ The amount of time that an algorithm needs to run to completion

 Space complexity

◦ The amount of memory an algorithm needs to run

 To analyze running time of the algorithm we use following cases

◦ Best case

◦ Worst case

 Average case

Asymptotic analysis
 The big-Oh notation is used widely to characterize running times and space bounds

 The big-Oh notation allows us to ignore constant factors and lower order terms and focus on

the main components of a function which affect its growth

 Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants

c and n0 such that

 f(n)  cg(n) for n  n0

 Example: 2n + 10 is O(n)

◦ 2n + 10  cn

◦ (c  2) n  10

◦ n  10/(c  2)

 It is true for c = 3 and n0 = 10

 7n-2 is O(n)
 need c > 0 and n0  1 such that 7n-2  c•n for n  n0

 this is true for c = 7 and n0 = 1

f(n)= O(g(n)) iff there exist positive constants c and n0 such that f(n) ≤ cg(n) for all n ≥ n0

O-notation to give an upper bound on a function

Big oh provides an asymptotic upper bound on a function.

Omega provides an asymptotic lower bound on a function.

 The big-Oh notation gives an upper bound on the growth rate of a function

 The statement “f(n) is O(g(n))” means that the growth rate of f(n) is no more than the

growth rate of g(n)

 We can use the big-Oh notation to rank functions according to their growth rate

 If is f(n) a polynomial of degree d, then f(n) is O(nd), i.e.,

1. Drop lower-order terms

2. Drop constant factors

 Use the smallest possible class of functions

1. Say “2n is O(n)” instead of “2n is O(n2)”

 Use the simplest expression of the class

Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

 Following are the terms usually used in algorithm analysis:

1. Constant  1

2. Logarithmic  log n

3. Linear  n

4. N-Log-N  n log n

5. Quadratic  n2

6. Cubic  n3

7. Exponential  2n

 Class P Problems:
P stands for deterministic polynomial time. A deterministic machine at each time executes an

instruction. Depending on instruction, it then goes to next state which is unique. Hence time

complexity of DTM is the maximum number of moves made by M is processing any input string of

length n, taken over all input of length n.

 The class P consists of those problems that are solvable in polynomial time.

 More specifically, they are problems that can be solved in time O(nk) for some constant k,

where n is the size of the input to the problem

 The key is that n is the size of input

Def: A language L is said to be in class P if there exists a DTM M such that M is of time complexity

P(n) for some polynomial P and M accepts L.

  d

d nananaanf  ...2

210

Class NP Problems
Def: A language L is in class NP if there is a nondeterministic TM such that M is of time complexity

P(n) for some polynomial P and M accepts L.

 NP is not the same as non-polynomial complexity/running time. NP does not stand for not

polynomial.

 NP = Non-Deterministic polynomial time

 NP means verifiable in polynomial time

 Verifiable?

◦ If we are somehow given a ‘certificate’ of a solution we can verify the legitimacy in

polynomial time

 Problem is in NP iff it is decidable by some non deterministic Turing machine in polynomial

time.

 It is provable that a Non Deterministic Turing Machine is equivalent to a Deterministic Turing

Machine

 Remember NFA to DFA conversion?

◦ Given an NFA with n states how many states does the equivalent DFA have?

◦ Worst case …. 2n

◦ The deterministic version of a polynomial time

 non deterministic Turing machine will run in exponential time (worst case)

 Since it takes polynomial time to run the program, just run the program and get a sol ution

 But is NP a subset of P? It is not yet clear whether P = NP or not

Quantum Computers
 Computers are physical objects, and computations are physical processes. What

computers can or cannot compute is determined by the law of physics alone, and not by

pure mathematics. Computation with coherent atomic-scale dynamics.

The behavior of a quantum computer is governed by the laws of quantum mechanics.

 In 1982 Richard Feynmann, a Nobel laurite in physics suggested to build computer based on

quantum mechanics.

 Quantum mechanics arose in the early 1920s, when classical physics could not explain

everything.

 QM will provide tools to fill up the gulf between the small and the relatively complex

systems in physics.

 Bit (0 or 1) is the fundamental concept of classical computation and information. Classical

computer built from electronic circuits containing wires and gates.

 Quantum bit and quantum circuits which are analogous to bits and circuits. Two possible

states of a qubit (Dirac)are

 Quantum bit is qubit described mathematically (where (alpha) is complex number)

 Qubit can be in infinite number of state other than dirac |0> or |1>

 The operations are induced by the apparatus linearly, that is, if

0 1

10 10  

1
2

1
0

2
0 

i
1

2
0

2

1
1

i


Then

Any linear operation that takes states satisfying and maps them to be UNITARY

i.e.

Linear Algebra: Corresponds to

 Corresponds to

 Corresponds to

 And it is describes the state as

 Quantum computer is a system built from quantum circuits, containing wires and

elementary quantum gates, to carry out manipulation of quantum information.

Variants of Turing Machines

 Various types of TM are

1. With Multiple tapes

2. With one tape but multiple heads

3. With two dimensional tapes

4. Non deterministic TM

1. Multiple tapes: It consists of finite control with k tape heads and k tapes each

tape is infinite in both directions. On a single move depending on the state of the

finite control and symbol scanned by each of the tape head the machine can

change state Or print new symbol on each of cell scanned etc..


















 1

2
0

2

1
1

2

1
0

2
10 1010

ii
 1

22

1
0

2

1

2
1010 



















ii


1
2

1

2

0  

10 10  

0









0

1

1 








1

0

10 10  



























1

0

10
1

0

0

1






 10 10    10 10  

0000 
0110  1001  1111 

11100100 11011000  

2. With One tape but Multiple heads: a K head TM has fixed k number of heads

and move of TM depends on the state and the symbol scanned by each head. (

head can move left, right or stationary).

3. Multidimensional TM: It has finite control but the tape consists of a K-

dimensional array of cells infinite in all 2 k directions. Depending on the state

and symbol scanned , the device changes the state, prints a new symbol, and

moves its tape head in one of the 2 k directions, either positively of negatively

along one of the k axes.

4. Non deterministic TM: In the TM for a given state and tape symbol scanned by

the tape head, the machine has a finite number of choices for the next move.

Each choice consists of new state, a tape symbol to print and direction of head

motion.

Linear Bounded Automata

 LBA is a restricted form of a Non deterministic Turing machine. It is a multitrack

turing machine which has only one tape and this tape is exactly same length as that of

input. It accepts the string in the similar manner as that of TM. For LBA halting means

accepting. In LBA computation is restricted to an area bounded by length of the input. This

is very much similar to programming environment where size of the variable is bounded

by its data type. Lba is 7-tuple on Deterministic TM with

< a b a b a >
 Left EM Right EM

 M= (Q,∑,Ʈ, Delta,qaccept, qreject, q0)

 Two extra symbols < and > are used left end marker and right

end marker.

 Input lies between these markers

