Lecture notes on Automata Theory and
Computability(subject code: 15CS54) - Module -1:
By Prof B 1 Khodanpur, DSCE

Module —1: Syllabus:-

Why study the theory of computation(ch-1)
Languages and strings(ch-2)

A Language Hierarchy(ch-3)
Computation(ch-4)

Finite State Machines(ch-5 from 5.1 to 5.10)

Why study the theory of computation(ch-1)

Defn: Automata is an abstract machine for modelling computations.
Why Abstract machines?

Abstract machine allows us to model the essential parameters, and
ignore the non-essential parameters.

What is computability?

It is very difficult to define, but Our notion of computation: Examples are
Add 2 numbers

Find the roots of a quadratic equation

Multiply 2 matrices

Important to note that: all the above have algorithms
What is not computable: Example-

* Halting problem of a program:

simply write a program that examines other programs to determine if they
halt or loop forever. Obviously whether or not a program halts depends on the
data it is fed so in this case we mean program to be code plus the data it
operates on.

* Why it not computable:
simple answer — No algorithm exists

Some computations take lot of time to be meaning full: Example
Travelling salesman problem

* When computations are not finished within a reasonable time, such
computations are useless, also known as NP-problem(non-
deterministic polynomial problems)

Tractable/Intractable Problems:

Tractable Problem: a problem that is solvable by a polynomial-time algorithm.
The upper bound is polynomial. Examples: Quick sort(O(nlogn)

Intractable Problem: a problem that cannot be solved by a polynomial-time
algorithm. The lower bound is exponential. Examples: Travelling Salesman
problem

Some important applications of
automata theory

* In compilers:
Lexical analysis
Parser generators

* Modelling the circuits: Example On-Off
switch.

Some important applications of automata theory in general:

Word search and Translation of Natural Languages

Parity checkers, Vending machines, communication protocols
Video games

DNA

Security

Artificial Intelligence

To model organic structures of molecules

Fluid Flow

Snowflake and crystal formation
Chaos theory

Cosmology

Financial analysis

Why not use English to Program?

Firstly all Natural Languages like English, Kannada etc are Context
Sensitive Languages

That is to say — meaning depends on the context.

Example: Take a English word “ Charge “

There are many meanings for this word

Like - Cost, -Flight, - Charge the Battery

- Positive Charge, etc

Characteristics of Natural Languages:

In most of the situations — meaning depends on the context.

They are developed for communication among the Human beings.
Human beings are capable or trained to interpret a sentence depending
on the situations.

Where as, Machine are not in Context.

Machine will not be able to interpret depending on the situation.

Characteristics of Formal Languages:

Meaning of a word or sentence does not depend on the context.

Words and sentences have only one meaning irrespective of the context.
They are simple.

Easy to write Compilers and Interpreters

They are precise in their meaning.

With this Machine do what they are instructed to do

What is the gist of this subject?

A systematic way of depicting the problem so that it solution can be
understood and analysed.
What are the properties of various types of languages.

Regular Languages(RL)

Context Free languages(CFL)

Context Sensitive Languages(CSL)
Recursively Enumerable Languages(REL)

Various types of Automata will be studied:

There are different types of automata for recognizing different
languages

Deterministic Finite Automata - RL

Pushdown Automata — CFL

* Linear Bounded Automata — CSL
* Turing Machine — REL
How to study:

* Subject is mathematical and lot of logical thinking is required.

* There are number of Theorems and proofs.

* Understand the definition — mathematically i.e. Examples are not
substitute for definitions.

* Examples are only to make the definition clear.

* Work out number of problems from various other books.

* Key to understanding this subject — attempt to work harder problems
even if you are not able get answers.

* If you plan to take up - Gate examination for PG studies — you must
understand it thoroughly.

Languages and Strings(chapter-2)

Alphabet - X definition:

Defn: An alphabet is a non-empty, finite set of characters/symbols
Use X to denote an alphabet set

Examples

¥={a,b}

2={0,1,2}

¥={a, b,c,..2,AB,..2}

Z={#4%@ &}

String definition: A string is a finite sequence, possibly empty, of characters
drawn from some alphabet X.

€ is the empty string

2* is the set of all possible strings over an alphabet X.

Examples of strings:

2 ={a, b}

Strings derived from X are.....

..... €,a, b, aa, ab, ba, bb, aaa, aab, aba, ..
> ={0,1}

Strings derived from X are.....

..... e,0,1,00,01, 10, 11, 000, 001, 010, ..
2 ={a}

Strings derived from X are.....

...... €, 4, aa, aaa, aaaa, aaaaa, aaaaa,....

Functions on Strings
Length — to find the length of a string Operator used | |
Concatenation — to join two or more strings. Operator - s| |t, or nothing i.e. st
Replication — strings raised to some power. Operator - a3
Reversal — reverse a string
Operator - (w)?
Examples of Length of a string
* le|=0
* |101] =3
* |VTU_Edusat| =10
Examples of Concatenation of a string
* x=good, y=student
* Concatenation operation x| |y or xy
* Xy = goodstudent
Examples of Replication of a string
 a% =aaa
* (good)® =goodgoodgood
* a’b% =g bbb =bbb
Examples of Reversal of a string
* (abc)® =cba
* x=ab, y=cd, (xy)? =dcba
* xR y® =badc
Relation on Strings
* Substring:
* aaa is substring of aaa and also aaabbccc
* Proper substring:
Defn: A string s is a proper substring of a string t iff s is a substring of tand s
£t
Examples:
S =good then proper substrings are ..
..... €, 8, 80, goo only
Prefix and Suffix functions
* Astring s is a prefix of t iff Ix € X*(t = sx)
* g, a, ab,abb are prefixes of string abb
* Proper prefix:
* g, a,ab, are proper prefixes of string abb
* Astring s is a suffix of t iff Ix € X*(t = xs)
* g, b, bb, abb are suffixes of string abb
* Proper suffix:
* ¢, b,bb,are proper suffixes of string abb

Languages:
Defn: A language is (finite or infinite) set of strings over a finite alphabet X

Example if I ={a}followinglanguages can be derived
* Language L1= {a, aaa, aaaaa, aaaaaaa,....... }
* Language L2= {g, aa, aaaa, aaaaaa,....... }
* Language L3= {a, aaaaa, aaaaaaaaa,....... }
* Language L4={a, aaa, a’,a’,a"?,....}
Note: number of languages that can be derived even from singe alphabet set
is INFINITE
Techniques for defining Languages by enumeration/defining property
Examples: (by enumeration)
* LetL={we{a, b}*:all string begin with a}
* L={a, ab, aab, abbbb, ...}
* Strings notin L are:
* {b, ba, g, bbbbb, baaaaaa,}
* LetL={we{a}*:|w]|iseven}
* L={g, aa, aaaa, aaaaaa, aaaaaaaa, ..}
* Strings notin L are:
* {a, aaa, aaaaa, aaaaaaa,} //odd no of a’s
Examples: (defining property)
* LetL={we{a, b}*:allstring ending in a}
* L={a, aba, aaba, bbbba, ...}
* Strings notin L are:
* {b, bb, €, bbbbb, aaaaaab,}
e LetL={we{a}*:|w| mod3=1}
e L={a, a% a’,a% ...}
* Strings notin L are:
o {g, a%a3 a% a% ad a’% ...},}
Functions on Languages.
Languages are sets. Therefore, all set operations like Union, Intersection,
Difference, and Complement can be applied.
* ExampleifZ={a}
e L1={g, a%a% a% a8 a’ a'?} //even no of a’s
L2 ={a%,a3 a° a’, a%, a}, }//add no of a’s
Set Operations on Languages
s L1={g, a%a% a% a8 al’ a'?} //even no of a’s
« L2={al a3 a° a’, a’, a't,......... }//add no of a’s
* L1UL2=3*or {a}*// union operation
* L1nL2=dor{}// intersection operation
e L1-12 =11 // difference operation

e L2-11=12 // difference operation
* ~(L1-L2) =L2 //complement operation
* ~(L2-11) =L1 // complement operation
Concatenation of Languages
* L1={aa, ab}
* L2 ={xx, yy}
* L1L2={aaxx, aayy, abxx, abyy}
Some important results

e L1={}=0

© L2 ={xx, yy}

e LiL2={}

* Ingeneral forl
Lo=PL=0D
Some important results

e L1={g}

© L2={xx, yy}

e L1L2=L2

* Ingeneral foralll

e L{g}=L{e}=1L

e (L1L2)L3=L1(L2L3) // associative

e L1={a" | n>=0}

e L2={b" | n>=0}

* L1L2={a"b™ | n,m >=0}=a*b* // noten & m

* Kleene star operation

* L*={set of all strings that can be formed by concatenating zero or
more strings from L}

» a*={g a, aa, aaa, aaaa, aaaaa,infinite}

WhatisL" ?
* L"=LL* //assumingL does not have €
o L' =L*-{g}
Example
a* ={g, a, aa, aaa, aaaa, aaaaa,infinite}
at=a*-{g}

Assigning Meaning to the strings of a Language
Following codes of C/Java have the same meaning.
-- int x=4; x++;

-- int x=4; ++x;

-- int x=4; x=x+1;

-- int x=4; x=x-(-1)

chapter-5

Finite State Machines(FSM)
Defn: A FSM(DFSM) , M is a quintuple:

(K, 3,9,s,A)
K is a finite set of states,
Y is the input alphabet,
s € K is the start state
A subset of K is the set of accepting states and
6 is the transition function it maps from:

kx> tok

Finite State Machines(FSM)

 How to draw the Transition diagram of FSM
Notations used:

* Notation for state .

* Notation of transition:
* Notation for start state: o

* Notation for accepting state: .
(note 2 concentric circles)

Finite State Machines(FSM)
On any input if FSM reaches any of the states of A, i.e. accepting states, then
the input strings is accepted by FSM M.
Examples:
* Problem_1: Write a FSM to accept L, where
* L={we{ab}* | wcontains a}
* L={a, aa, aaa, baa, baaabbhb,......}
* ~L={g, b, bb, bbb, bbbb,............. }
* All strings in L should reach any - A state

All strings in ~L should not reach any —A state
How to write a Transition Diagram: steps are...
Find the minimum string accepted, this decides the no of states in the FSM, in
most of the cases
Then, take longer strings and make them accepted, while modifying the
transitions,
Check for minimum strings that are not to be accepted, are really not
accepted as per the transition diagram.
See that each state has transitions equal to the no of alphabets present.
Two transition on the same alphabet do not go to different states.
Solution to the problem-1

* L={a, aa, aaa, baa, baaabbhb,......}

* ~L={g, b, bb, bbb, bbbb,............. }

* Whenever a string from L is input, it should land in final state.

* Whenever a string from ~L is input, it should not land in final state, it

can be in any other state.

Problem - 2:
Write a DFSM to accept the language
L={we{a, b}* | |w| is even length}

Step 1: Write strings accepted by L i.e.
L= {¢, aa, bb, ab, ba, aaaa, bbbb, bbaa, baba,..}
(note : € is even, because its length is 0, which is even)
~L={a, b, aaa, bbb, aba, bab, bba, aab, aabbb,..}

Step 2: since min string are {g, aa}, 2 states are required.

Step 3: Write Transition Diagram.

Problem - 2

Transition Diagram:

a,b

@ o
a,b

L = { ¢, aa, bb, ab, ba, abab, aabb, bbaa,
baba,..}

~L={ a, b, aaa, bbb, aba, bab, bba, aab,
aabbb,..}

Problem - 2

Transition table: 0 is transition function
maps &: kx> tok

Problem -2

* To show some strings are accepted: How
Example : show string bb is accepted.

Draw the states reached by inputting one character
at a time, as shown

® © O

Since reading all the characters state 1 , is reached , which
is final state, Therefore string bb is accepted

Problem -2

Problem - 2

* To show some strings are not accepted: How
Example : show string bba is accepted.

Draw the states reached by inputting one character
at a time, as shown

b b a
Since reading all the characters state 2 , is reached ,

which is not a final state, Therefore string bba is not
accepted

Problem -3
Write a DFSM to accept the language
L={w e {a, b}* | abis a substring of w}

Step 1: Write strings accepted by Li.e.
L= { ab, abab, aaab, abaaa, abbbb, bbababab, babb, bbab, baba,..}
~L={a, b, aa, bb, bbb, bba, bba, aaa, bbbbb,..}

Step 2: since min string is { ab}, 3 states are required.

Step 3:Write Transition Diagram.

Problem - 3

- Transition diagram: a a, b
- b
e o &
Problem - 3

 To show some strings are accepted: How
Example : show string ab is accepted.

Draw the states reached by inputting one character
at a time, as shown

® O O

a

Since reading all the characters state 3 , is reached , which
is final state, Therefore string ab is accepted

Problem -3

* To show some strings are not accepted: How
Example : show string bba is not accepted.

Draw the states reached by inputting one character
at a time, as shown

® © o o

Since reading all the characters state 2, is reached , which
is not a final state, Therefore string bba is not accepted

Problem -4

Write a DFSM to accept the language
L={we{a, b}*| everywendsinb}
L= { b, ab, abab, aaab, abaab, abbbb, bbababab, babb, bbab, babb,..}
~L={ a, aa, ba, bba, baa, baba, aaa, bbbba,..}

Step 2: since min string are { b}, 2 states are required.

Step 3: Write Transition Diagram.

Problem - 4

Transition Diagram: b

o @&
L = { b, bbb, aaab, ababab, bbbbbbab,..}

~L={ a, ba, aaa, bbba, aba, baba, bba, aaba,
aabbba,..}

Problem - 4

Transition table: 0 is transition function
maps &: kx> tok

Problem - 4

« To show some strings are accepted: How
Example : show string bb is accepted.

Draw the states reached by inputting one character
at a time, as shown

® © O

b b

Since reading all the characters state 2 , is reached , which
is final state, Therefore string bb is accepted

Problem - 4

 To show some strings are not accepted: How
Example : show string bba is accepted.

Draw the states reached by inputting one character
at a time, as shown

OTOTQTO

Since reading all the characters state1, is reached , which
is not a final state, Therefore string bba is not accepted

Difficulties with FSMs

Write a DFSM to accept the language
L={we{a, b}* | everywendsinaborba}
L= { ab, ba, abab, aaba, abaab, abbba, bbababab, baba, bbab, baba,..}
~L={ a, aa, bb, abb, baa, babb, aaa, bbbbabb,..}

Step 2: since min string are {ab, ba}, we are not able to guess no of states.

Note : this is a difficult problem, we end up in spending lot of time to find the
solution

Write a DFSM to accept the language —another difficult problem
L={we{a, b}* | 3" character from right is a}

L= { abb,bbbbabb, ababb, aaba, aaaaa, ababa, bbabababb, baba, bbabb,
baba,..}

~L={a, aa, bb, abbb, baabbb, babba, bbb, bbbbbb,..}
Step 2: since min string are not there, we are not able to guess no of states.

Note : this is a difficult problem, we end up in spending lot of time to find the
solution

How to solve difficult problems — study Nondeteministic
finite state machines(NFSM)

Nondeterministic Finite State Machines(NFSM) —definition:

Defn: A NFSM , M is a quintuple:

(KI zl Al SI A)

* Kis a finite set of states,

* Y is the input alphabet,

* sekKis the start state

e A subset of Kis the set of accepting states and

* Ais the transition function it maps from:

(Kx (> U{E})to K

Example of NFSMs

Write a NFSM to accept the language

L={we{a b}*| |w] endsin b} //problem 3 NFSM see below

Problem - 3

* Transition Diagram:
b °

. a,b

« L= { b, bbb, aaab, ababab, bbbbbbab,..}

« ~L={a, ba, aaa, bbba, aba, baba, bba, aaba,
aabbba,..}

* Note: every state can have zero or one or more(equal
to the no of alphabets) transitions

_—

Write a DFSM to accept the language
L={we{a, b}* | every w ends in ab or ba } //problem 3
L= { ab, ba, abab, aaba, abaab, abbba, bbababab, baba, bbab, baba,..}
~L={ a, aa, bb, abb, baa, babb, aaa, bbbbabb,..}

Step 2: since min string are {ab, ba}, we are not able to guess no of states.

Note : this is a difficult problem, we end up in spending lot of time to find the
solution

Problem — 3 — NFSM

« Solution: regular expression= (a+b)*(ab+ba)

b
a s
a,b
a

How to go about, with difficult problems
Write a DFSM to accept the language
L={w €{a, b}* | 3" character from right is a}
L= { abb,bbbbabb, ababb, aaba, aaaaa, ababa, bbabababb, baba, bbabb,
baba,..}
~L={a, aa, bb, abbb, baabbb, babba, bbb, bbbbbb,..}

Step 2: since min string are not there, we are not able to guess no of states.

Note : this is a difficult problem, we end up in spending lot of time to find the
solution

Problem — 4 — NFSM

Solution: Regular Expression
(a+b)*a(a+b)(a+b)

a,b
6.0..0..0

Write a NFSM to accept the language
L={we{a, b}* | every wendsin b} //solution problem — 1 NFSM
L= { b, ab, abab, aaab, abaab, abbbb, bbababab, babb, bbab, babb,..}

~L={ a, aa, ba, bba, baa, baba, aaa, bbbba,..}

Problem — 1 - NFSM

* Transition Diagram: regular exp = (a+b) *b

a,b
- >6 b °

« L= { b, bbb, aaab, ababab, bbbbbbab,..}
« ~L={a, ba, aaa, bbba, aba, baba, bba, aaba,
aabbba,..}

* Note: every state can have zero or one or more(equal
to the no of alphabets) transitions

Write NFSM to recognize L= { w € {a, b}* | |w| contains ab}
* Solution: problem — 2 - NFSM

regular expression (a+b)*ab(a+b)*

Problem — 2 - NFSM

Transition Diagram:
a b

L= { ab, bab, aab, bbab, aaab,..}
~L={ a, ba, aaa, bbba, bbbb, baaa, aaaaa,

Write a NFSM to recognize the language

L ={w € {a, b}*| w is made up of an optional a followed by aa, zero or more
b’s}

* L={aa, aaa, aab, aaab, aabbb, aaabbb,....}
 ~L={a, ba, baa, bbbbb, bbbbbba,}

* Regular expression =re = (a+ €)aa(b}*

Solution:

Problem — 5§ — NFSM

Solution- regular expression:
re = (a+ €)aa(b}*

b
. € a,ea\,é
o . ©

Procedure to convert NFSM to DFSM

 Example of NFSMs
* Write a NFSM to accept the language
L={we{a, b}* | |w| ends in b}

We know all the parameter related to NFSM

* Kis a finite set of states

Y is the input alphabet

s € K is the start state
A subset of Kis the set of accepting states and

6 is the transition function. Consider the following problem

Problem — 1 - NFSM

Transition Diagram: regular exp = (a+b) *b

a,b

K is a finite set of states= {1,2}

> is the input alphabet = {a,b}

s € K is the start state = 1

A subset of K is the set of accepting states ={2}
O is the transition function as indicated in above fig

Procedure of conversion

We need to calculate the following parameter of DFSM,
note only three parameters, i.e. K’, A’, 8’ need to be
calculated

* K’is a finite set of states = ?

* Y is the input alphabet = no change

* seKisthe start state = no change

« A’ subset of Kis the set of accepting states = ?
e &' is the transition function =?

* s’=s={1} // note the set notation

« Compute &'

* Active states ={{1}}, consider {1}

6‘({1},a)= {1} .. This exists

6‘({1},b)={1,2} .. This does not exists, add

New Active states ={{1},{1,2}}, consider {1,2}
6‘({1,2},a)= 6({1},a)Ud({2},a)={1} U & ={1} exists
6({1,2},b)= 6({1},b)US({2},b)={1,2} U & ={1,2} exists,

No new states are added, therefore Procedure terminates

 Let us write the results in tabular form of &’,
i.e. transition function.

> {1} {1} {1,2}

* {1,2} {1} {1,2}

Solution is as follows:

Problem — 1 - DFSM

* Transition Diagram:

& o

* This is the same solution we got when we
constructed the DFSM, except the state are
in set notation, which we can rename them
as {1} = 3, and {1,2} =4. Now it is identical to
the original solution.

Consider the following problem for which we know the

NFSM. And apply the procedure to convert it to FSM

Procedure:

s’=s={1} // note the set notation

Compute &'

Active states ={{1}}, consider {1}
6‘({1},a)={1,2} .. add

6({1},b)={1,3}.. add

Active states ={{1},{1,2},{1,3}}, consider {1,2}

6‘({1,2},a)= {1,2},a)U & ={1,2} ..exists

6({1,2},b)={1,3}U{4})={1,3,4} add

Problem — 3 — NFSM

b
°> °
(

\“‘\,
\\‘-_.
=
a

b

Active states ={{1},{1,2},{1,3},{1,3,4}}, consider {1,3}

6‘(11,3},a)= {1,2} U {5} ={1,2,5}..add

6({1,3},b)={1,3}U {} ={1,3} exists

Active states ={{1},{1,2},{1,3},{1,3,4}, {1,2,5}}, consider
{1,3,4}

6‘({1,3,4},a)= {1,2}U {5} U {}={1,2,5} ..exists

6‘({1,3,4},b)= {1,3}U{}U{} ={1,3} exists

Active states ={{1},{1,2},{1,3},{1,3,4},{1,2,5}}, consider
{1,2,5}

6‘({1,2,5},a)= {1,2}U {} U{}={1,2,5} ..exists

6({1,2,5},b)={1,3}1U{4}U{}={1,3,4} exists

no new states are added, therefore Procedure terminates

write transition table:

{1} 11,2} {1,3}
{1,2} {1,2} {1,3,4}
{1,3} {1,2,5} {1,3}
{1,3,4} {1,2,5} {1,3}
{1,2,5} {1,2} {1,3,4}

Werite transition diagram.

 Transition diagram:

Rename the states and check for some representative

strings in the fig given below.

- Transition diagram: DFSM

3
. 'S

* Check for some strings for the correctness

Lecture — 5 : chapter 5

Procedure to convert NFSM to DFSM:

The problem which we are attempting to convert has €
transition.

We need to calculate eps for each state using the algorithm
as follows:

Eps(q: state) // algorithm
1. result = {q} and some
2. while there exists p € result r not € of result and
some transition(p, &, r) € transition function do:
insert r into result.
3. return result.
Note: It means connect all states that can be reached on €

Example-1 for calculation of eps:

Example-1 for calculation of eps
- Consider a diagram of NFSM

a eps(1) = {1,2,3}
€ , € eps(2) ={1,2,3}

Lﬁ_E B eps(3) = {1,2,3}
o eps(4) ={4}

Note: eps(any state) = {that state is always included}
a b

Example-2 for calculation of eps:

Example-2 for calculation of eps

- = | b C
eps(1) = {1, 2, 3}

eps((2) = {2, 3}
eps(3) = { 3}

Problem — 3 — NFSM to DFSM:

Write a NFSM to recognize the language

L={w € {a, b}*| w is made up of an optional a followed by

aa zero or more b’s}

L = { aa, aaa, aab, aaab, aabbb, aaabbb,....}

~L={a, ba, baa, bbbbb, bbbbbba,}
Regular expression = re = (a+ €)aa(b}*

Write the transition diagram of NFSM

Problemm — 3 — NFSM

Solution- regular expression:
re = (a+ €)aa(b}*

. o 0 ©® ©

- eps(1l)={1, 2}
* eps(2) ={2}
- eps(3) ={3} eps(4) = {4}

Procedure to convert NFSM to DFSM

We know all the parameter related to NFSM

* Kis a finite set of states

Y is the input alphabet

s € K is the start state

A subset of K is the set of accepting states and

6 is the transition function
Procedure of conversion:

We need to calculate the following parameter of DFSM,
note only three parameters, i.e. K’, A’, 8’ need to be
calculated

K’ is a finite set of states =?

> is the input alphabet = no change

s € K is the start state = no change
« A’ subset of K is the set of accepting states =?
&' is the transition function="?

We need to calculate the following parameter of DFSM,
note only three parameters, i.e. K’, A’, 8’ need to be
calculated

e K’ is afinite set of states = ?

> is the input alphabet = no change

s € K is the start state = no change

A’ subset of K is the set of accepting states =?

&' is the transition function =?

Procedure:

s’=s=eps{1} = {1,2}// this is start state DFSM
Compute &'
Active states ={{1,2}}, consider {1,2}
6/({1,2},a)= eps{d(1,a) U 6(2,a)} = eps(2) U eps(2)
= {2,3} This state does not exist, therefore add

6‘({1,2},b)= eps{6(1,b) U 8(2,b)} = eps(®) U eps(P)

= @, This state does not exist, therefore add
Now Active states ={{1,2},{2,3},®}, consider {2,3}

6‘({2,3},a)= eps{6(2,a) U &(3,a)} = eps(3) U eps(4) = {3,4} this
state does not exists, add

6‘({2,3},b)= eps{6(2,b) U 6(3,b)} = eps(®) U eps(P) = P
already exists, do not add

Now Active states ={{1,2},{2,3},9,{3,4}}, consider {3,4}

6/({3,4},a)= eps{d6(3,a) U 6(4,a)} = eps(4) U eps(P) = {4} this
state does not exists, add

6/({3,4},b)= eps{6(3,b) U 6(4,b)} = eps(®) U eps(4) = {4} does
not exists, add

Now Active states ={{1,2},{2,3},9,{3,4}{4}}, consider {4}

6/({4},a)= eps{6(4,a)} = eps(P) = ® this state exists, no need
to add

6/({4},b)= eps{6(4,b)} = eps(4) = {4} this state exists, no
need to add

Note: No new states are added, therefore algorithm
terminates. Now we have all the states of DFSM and its
transition functions

 Let us write the results in tabular form of &’,
i.e. transition function

o+ | s | b

->{1,2} {2,3} o)
ey, {3.,4} b
P [a>) D

*{3,4} {4} {4}

*{4} P {4}

DFSM is constructed as follows:
First find out the accepting states of NFSM In this case it is
{4}
Look at all final active states of DFSM. In this case it is:
Active states ={{1,2},{2,3},9,{3,4}{4}}
Find all the states containing state {4}

There are two state namely {3,4} and {4}

They will accepting states of DFSM

Transitin diagram- DFSM:

Transitin diagram- DFSM

» Write transition diagram using K’, A’ and &

. b
OO O
,

WJa,b Check the correctness using
- L ={aa, aaa, aab, aaab, aabbb, aaabbb,....}
- ~L ={a, ba, baa, bbbbb, bbbbbba,}

FSM to operational systems:

Now that we know how to design a DFSM if it is simple and
if it is complex, we write NFSM and convert the same to
DFSM, using the procedure discussed.

FSM can be simulated using Software or Hardware
depending on the requirement.

In the next section we will discuss simulating using a pseudo
code.

Simulation the deterministic FSM:

Simulation the deterministic FSM

- Transition diagram:

e o &

- Above transition diagram for DFSM to accept
the language :

L={we{a, b}*| ab is a substring of w}

Hardcoding a Deterministic FSM:

Until accept or reject do:
1: s=get-next-symbol.
If s=b go to 1.
else if s=a then go to 2
2: s=get-next-symbol
If s=a go to 2.
else if s=b then goto 3
3:If s=aorb goto 3.
else if s= end-of-file then accept.
else reject.

Simple interpreter for deterministicFSM:

dfsmsimulate(M:DFSM, w: string)

1st=s
2 Repeat
2.1 c=get-next-symbol(w)
2.2 if ¢ # end-of-file then:
2.2.1 st = §(st,c)
until ¢ = end-of-file

3 If st € A then accept

else reject.

Trace dfsmsimulate:

Trace dfsmsimulate

« Transition diagram: a

e & &

a b

+

Note: Each state has 2 transitions.

Final st = 3, therefore string bbaabb is
accepted (see trace in next slide)

Trace table for string bbaabb

What is minimization of FSMs:

What is minimization of FSMs

 Write a DFSM to accept the language
L={we{a, b}*| |w|is even length} Example

>

° . _
—

. a = |

L = {¢€, aa, bb, ab, ba, abab, aabb,
bbaa, baba,..}
- ~L={a, b, aaa, bbb, aba, bab, bba, aab,
aabbb,..}

What is minimization of FSMs

* Transition Diagram:

a,b
o . ©
- L= {¢g, aa, bb, ab, ba, abab, aabb, bbaa,
baba,..}

- ~L={a, b, aaa, bbb, aba, bab, bba, aab,
aabbb,..}

Note : The behaviour of state 1 and 3 are identical as shown
below:

e 6(1,3)=2
« 6(3,a)=2

Therefore there is no need to have two separate states 1
and 3 and they can be combined as shown in the above
diagram. Also note that two states are a must and it can not
be further minimized.

Lecture — 6:

Equivalence class: Definition

An equivalence relation has following properties.
* ltis reflexive

* It is symmetric

* Itis transitive.
Example:
-- relation- has the same birth date
-- relation- defined by =
Not an example: relation <=

Equivalence relations can also be represented by a digraph
since they are a binary relation on a set. For example the
digraph of the equivalence relation congruent mod 3 on {0,
1,2, 3,4,5, 6}is as shown below. It consists of three
connected components

Equivalence class —Example:

* Omod3=0 The results are {0,1,2}
* 1mod3=1
e 2mod3=2
* 3mod3=0
* 4mod3=1
* 5mod3=2
* 6mod3=0

{0, 3, 6} --- have 0 as their remainder
{1,4} --- have 1 as their remainder

{2,5} --- have 2 as their remainder

Defn:Indistinguishable:

We say that x and y are indistinguishable with respect to L,
which we will write as

x = y iff:
all z € 2* (either xz and yz € L or neither is)
consider x=aa and y = bb and z=ba
since aaba and bbba are in L, therefore
X=Ly

Defn: Distinguishable:

We say that x and y are distinguishable with respect to L, iff
they are not indistinguishable. If x and y are distinguishable
then there exists at least one string z, such that one but not
both of xzand yzisinlL

consider x=aa and y = a and z=ba
since aaba and aba both are in not L,
aabaisinLand abaisnotinL

* Note : indistinguishable is a equivalence class

Equivalence class-two partitions:

Eqguivalence class-two partitions.

= Transition Diagram for L = { w € {a, b}* | |[w] is
even length} a,b

- a,b °

- L= {&, aa, bb, ab, ba, abab, aabb, bbaa,
baba,..}

- ~L={ a, b, aaa, bbb, aba, bab, bba, aab,
aabbb,..}

= Any string from L is distinguishable from any
string from ~L

L= { ¢, aa, bb, ab, ba, aaaa, bbbb, bbaa, baba,..}

All the elements are indistinguishable

~L={ a, b, aaa, bbb, aba, bab, bba, aab, aabbb,..}

All the elements are indistinguishable.

For example aa and a are distinguishable, because

Take an element bb from the language L, aabb is in L, abb
is notin L, therefore they are not in the same eq.class

For example aa and bb are indistinguishable, because
Take an element bb from the language L, aabb is in L, bbbb
is also in L, therefore they are in the same eq.class

Equivalence class-three partitions.

Equivalence class-three partitions.

« Transition diagram: a a,b

a b
L = set of all string containing string — ab
where X = {a, b}

L = { ab, abab, aaab, abaaa, abbbb, bbababab,
babb, bbab, baba,..}

~L={a, b, aa, bb, bbb, bba, bba, aaa, bbbbb,..}

All the strings of L belong to state 3.
How to separate ~L into two separate states.
What is the basis?

* [1] ={€, b, bb, bbb, bbbb, }

* [2] = {a,aa, aaa, aaaa, }

For example consider b from block-1 and a from block-2,
take b from z*

bb is not in L whereas ab is in L, therefore they
are not indistinguishable, i.e. Distinguishable

e Equivalence class partitions:

In general equivalence partitions of L and ~L,
Can further partitions.

In the last example we saw partition of ~L

in to 2 eq classes.

We will see now how L can be partitioned into more than
one block or eq. Classes.

Equivalence class-more partitions
Find the equivalence partition of L, where

L={w € {a, b} | w has no adjacent characters are the same}
// problem 5.26(p-89)

L= {g, a, aba, ababa, b, ab, bab, abab,....}
~L = { aa, abaa, ababb, bbbbbb, aaas,}
Check any of L or ~L can be further separated,

Consider L= {g, a, aba, ababa, b, ab, bab, abab,....} and select
aandb

Also select a from *

Test: aaisin ~l and bais L . Therefore L is not an eq class, it
should be further refined.

* [1] ={a, aba, ababa,...etc will get separated}

* [2] ={b, ab, bab, abab, }

* Consider L= {g, a, aba, ababa, b, ab, bab, abab,....} and
select € and a

* Also select a from z*
e a=ais inl, but

e aais notinl, therefore € and a are not in the same eq.
class, finally,

* [1]={g}

* [2] ={a, aba, ababa, ...}

* [3] ={b, ab, bab, abab, ...}

* [4] = {aa, abaa, ababb,.....}
The transition diagram for above partitions is
Equivalence class-solution.
Solution to the problem : (workout on the board.)

Finally how to know that DFSM is not possible. i.e. When
the partitions are infinite, no DFSM is possible.

 Example:L={a" b" | n> 0}

This will have infinite partitions, no DFSM is possible, and L
is not regular language.

Theorem 5.6(Myhill-Nerode):

Theorem: A language is regular iff the number of eq. Classes
of L is finite.

Minimization of FSMs-problem -1:

Minimization of FSMs-problem -1

» Write a DFSM to accept the language
L={we{a, b}*| |w|is even length} Example

_7a;b7—79

a,b

_—

ab

L = {¢, aa, bb, ab, ba, abab, aabb,
bbaa, baba,..}

- ~L={a, b, aaa, bbb, aba, bab, bba, aab,
aabbb,..}

Procedure for Minimization of DFSM:

Partition the states in to non-accepting and accepting states.
{2} and {1,3}

Check whether they are distinguishable?

Workout(on the board)

Minimizied FSM-problem-1

Minimizied FSM-problem-1

« Transition Diagram:

- L= {eg, aa, bb, ab, ba, abab, aabb, bbaa,
baba,..}

e ~L={a, b, aaa, bbb, aba, bab, bba, aab,
aabbb,..}

Minimization of FSMs -Problem-2:

Minimization of FSMs -Problem-2

Minimize the DFSM

Start with what is clearly distinguishable i.e.
Non-Accepting states and accepting states
* {1, 2,6} and {3, 4, 5} check further if they are
e Distinguishable input

Continue subdividing state, until all distinguishable states
are separated.

Lecture:7

Moore Machine(transducer)

Tra

nsducer: A device that converts variations in a physical

quantity, such as pressure or brightness, into an electrical

signal, or vice versa.

Defn: A Moore machine, M is a seven tuple:

(K,

¥,0,6,D,s, A), where
K is a finite set of states,
Y is the input alphabet,
O is the output alphabet,
s € K is the start state
A subset of K is the set of accepting states(not imp)
6 is the transition function it maps from K x 3 to K

D is the display or output function from K to (O)*

Example of Moore Machine:

L]

Example of Moore Machine

In Moore machine each state is associated
with a output. Suppose we want Moore
machine to output ‘0’ when the length of
input string is even, otherwise output ‘1’

¥ = {a, b}

Transition table for the Moore Machine(see fig a

bove):

Transition table

Transition

function

Mealy machine(transducer):

Defn: A Mealy machine, M is a six tuple:
(K, 3,0,9,s, A), where

* Kis a finite set of states,

Y is the input alphabet,

O is the output alphabet,

s € K is the start state

A subset of K is the set of accepting states and

6 is the transition function it maps from
(Kx3)to(KxO%)

Note: output is associated with each input.

Example of Mealy machine:

Example of Mealy machine

» L={we{a, b}| wends in aa or bb}

» Requirements are when input ends aa it
should have output ‘y’ and when input ends
bb it should have output ‘n’

. @
' al/n// -

' 0 . bin aln
. b L
' " bly

Transition table:

Transition table

. Trans
fun
1 2 n 3 n

Computation(chapter 4):

In this chapter, effort is made to:

Define problems as languages to be decided

Define programs as state machines whose input is a string
and whose output is accept or reject

* Keyideas:

1. Decision procedures

2. Non determinism

3. Function on languages.

Decision Procedures

Defn: A decision problem is one for which we must make a
yes/no decision.

A decision procedure is an algorithm to solve a decision
problem.

It a program whose result is a Boolean value.

In order to return a Boolean value, a decision procedure
must be guarantee to halt on all inputs

Decision procedures are to answer question such as:

-- Is string s in Language L?

-- Given a machine, does it accept any string?

-- Given two machines, do they accept the same strings?

-- Given a machine, is it the smallest m/c that does its job?

Three imp things about Procedures:

1.Does there exist a decision procedure(algorithm)

2.If any decision procedures exist, find one

3. If exists, find the most efficient one, and how efficient it
is?

Decision procedures are programs, and they must have two

correctness properties:

1. Program must be guaranteed to halit.
2. The answer must be correct.

Example — 1:

Checking for even numbers:
even(x: integer)=
If (x/2)*2=x then return True
else return False.
If x=3 then x/2=1 and 1*2 != 3 therefore “false”
If x=8 then x/2=4 and 4*2 = 8 therefore “true”

Example — 2:

Checking for Prime numbers:
prime(x: positive integer) =
For i = 2 to ceiling(sqrt(x)) do:
If (x/i)*i = x then return False

return True

Assume x = 7 then ceiling(sqrt(x))= ceiling(2.65) = 3
i=2;7/2*%2 1= 7 next iteration

i =3;7/3*2 1= 7 next iteration(no more iterations)
Returns True

Example-3:

Checking for Programs that halt on a particular input.
haltOnw(p: program, w: string)=
1. Simulate the execution of p on w
2. If the simulation halts return True
else return False.

note: 1. this is not a procedure, because it never returns
False.

2. No decision procedure exists for this.

Determinism and non determinism:

Consider a program:
Choose(action 1;;

action 2;;

action n;;)

Observation on choose:

Returns some successful value, if there is one
If there is no successful value, the choose will:
- Halt and return False if all the actions halt and return
False
- Fail to halt if any of the actions fails to halt.

(note that this has a potential to return successful value,
it may be taking more time)

Deterministic and non Deterministic:

If a program does not use choose then it is deterministic.
If a program includes choose then it is non deterministic.

Functions on Languages and Programs:

The function chop:

chop(L): is all the odd length strings in L with their middle
character chopped out.

The function firstchars:

firstchars(L): determines the first characters by looking at all
strings in L

Examples of chop(L):

Examples of chop(L)

in in chop
Al'l Bn Cn AI'I Bn cl'l

0 &

1 abc ac

2 aabbcc

3 aaabbbccc aaabbccc

4 aaaabbbbcccc

5 aaaaabbbbbcccce aaaaabbbbccece

Examples of firstchars(L)

Examples of firstchars(L)

())
{€} 0]
{a}* {a}*
Angn {ap*
{a, b}* {a}* U {b}*

Closure of Languages:

Closure of Languages

-

union yes(1) yes(5)

intersection yes(2) no(6)
chop() yes(3) no(7)

firstchars() no(4) yes(8)

Langauage Hierarchy:

Hierarchy of Languages and corresponding automata

Regular languages: FSMs
Context-free languages: PDAs
D(decidable) Languages: Turing machine

SD(semi decidable) languages: Turing machine

Importance of classification:

The factors are:

1.Computational efficiency: As function of input length

FSMs - Linear with respect to input string
PDAs - cube of the length of input string
TM - exponentially with respect to input

String

2.Decidability: Answer to the questions

FSM - accepts some string?

FSM - is it minimal?

FSMs- are two FSMs identical?

PDAs- only some of the above can be
answered

TM - none of the above can be answered

3.Clarity: tools that enable analysis- exist?

FSM - yes

PDA - yes

TM - none

O N OhrWNE

ATC-Module-2- Dr.Girijamma H A
Chapter-6

Regular Expressions

Regular Expression (RE)
A RE is a string that can be formed according to the following rules:

gisaRE.

elisaRE.

Every element in)’ is a RE.

Given two REs o and B,ap is a RE.
Giventwo REs aand B, a U B is a RE.
Given aRE a, a* isa RE.

Given aRE a, a+ is a RE.

Given a RE q, (o) is a RE.

if Y’ = {a,b}, the following strings are regular expressions:
g, ¢, ab, (@Ub)* abba U e.
Semantic interpretation function L for the language of regular expressions:

1. L (@) = g, the language that contains no strings.

2. L (g) = {&}, the language that contains empty string.

3. For any ce), L(c) = {c}, the language that contains single character string c.
4. For any regular expressions a.and 8, L (ap) = L (a) L (B).

5. For any regular expressions a and 3, L (o« U B) =L (o) U L (B).

6. For any regular expression a, L (o*) = (L (a))*.

7. For any regular expression a, L (a+) = L (aa*) = L (a) (L (a))*

8. For any regular expression a, L ((a)) = L (o).

Analysing Simple Regular Expressions
1.L((a U b)*b) = L((a U b)*)L(b)
= (L((a U b)))*L(b)

ATC-Module-2- Dr.Girijamma H A

=(L(2) U L(b))*L(b)
=({a} U {b})*{b}
= {a,b}*{b}
(a U b)*b is the set of all strings over the alphabet {a, b} that end in b.

2.L(((aUb)(aUb)a(aUb)*)

= L(((aU b)(a U b)))L(a) L((a U b)*)
=L((aUb)@u b)) {a} (L((a U b)})*
=L((aUb))L((aU b)) {a} {a,b}*
={a, b} {a b} {a} {a b}*

* ((@Ub)(@aUb)a@UDb)*is

{xay : x and y are strings of a's and b's and Ixl = 2}.

Finding RE for a given Language
lletL={we{a b}*: |w|iseven}.
L = {aa,ab,abba,aabb,ba,baabaa,------- }
RE= ((@UDb)(@Ub))*or (aaUabUbaUbb)*

2. Let L ={we{a, b }*: wstarting with string abb}.
L = {abb,abba,abbb,abbab------- }
RE = abb(a U b)*

3. Let L={w € {a, b }*: w ending with string abb}.
L = {abb,aabb,babb,ababb------- }
RE = (a U b)*abb

4. L ={we{0, 1}* :w have 001 as a substring}.
L = {001,1001,000101,------- }
RE = (0 U 1)*001(0 U 1)*

5.L={we{0, 1}* : w does not have 001 as a substring}.
L = {0,1,010,110,101,----}
RE = (1 U 01)*0*

ATC-Module-2- Dr.Girijamma H A

6. L={w € {a, b}* : w contains an odd number of a's}.

L = {a,aaa,ababa,bbaaaaba------ }
RE = b*(ab*ab*)*ab* or b*ab*(ab*ab*)*

7. L ={we{a, b}* :#a(w) mod 3 = 0}.
L = {aaa,abbaba,baaaaaa,---}
RE = (b*ab*ab*a)*b*

8. LetL ={we{a, b }*:#a(w) <=3}.
L = {a,aa,ba,aaab,bbbabb,------- }
RE =Db*(a U g)b*(a U g)b*(a U g)b*

9.L={we {0, 1}* : w contains no consecutive 0’s}
L={0, ¢1,01,10,1010,110,101,-----}
RE=(0U¢)(1U10)

10. L={we {0, 1}* : w contains at least two 0’s}
L.={00,1010,1100,0001,1010,100,000,-----}
RE = (0 U 1)*0(0 U 1)*0(0 U 1)*

11.L ={a"b™/ n>=4 and m<= 3}
RE= (aaaa)a*(e U b U bb U bbb)

12.L ={a"b™/ n<=4 and m>= 2}
RE= (¢ U a U aa U aaa U aaaa)bb(b)*

13. L ={a*b?"/n>=0 and m>= 0}
RE= (aa)*(bb)*

14. L = {a"b™:(m+n) is even}
(m+n) 1s even when both a’s and b’s are even or both odd.
RE = (aa)*(bb)* U a(aa)*b(bb)*

ATC-Module-2- Dr.Girijamma H A

Three operators of RE in precedence order(highest to lowest)

1. Kleene star
2. Concatenation
3. Union

Eg: (a U bb*a) is evaluated as (a U (b(b*)a))
Kleene's Theorem

Theorem 1:

Any language that can be defined by a regular expression can be accepted by some
finite state machine.

Theorem 2:

Any language that can be accepted by a finite state machine can be defined by
some regular expressions.

Note: These two theorems are proved further.

Buiding an FSM from a RE

Theorem 1:For Every RE, there is an Equivalent FSM.
Proof: The proof is by construction.
We can show that given a RE a,
we can construct an FSM M such that L (o) = L (M).
Steps:
1. If ais any ce). ,we construct simple FSM shown in Figure(1)

C

Figure (1)

ATC-Module-2- Dr.Girijamma H A

2. If ais any g, we construct simple FSM shown in Figure(2).

@

Figure (2)
If o is €,we construct simple FSM shown in Figure(3).

@

Figure (3)
4. Let B and y be regular expressions.
If L(B) is regular,then FSM M1 = (K1,), 81, s1, Al).
If L(y) is regular,then FSM M2 = (K2, ", 82, s2, A2).
If o isthe REB Uy, FSM M3=(K3, >, 83, s3, A3) and
L(M3)=L(e)=L(B) U L(y)
M3 =({S3} UK1UK?2,Y 83,53, Al U A2), where
03 =61 U 82U {((S3,), S1),((S3, €),S2)}.

%66

5. If o is the RE Py, FSM M3=(K3, Y, 83, s3, A3) and

L(M3)=L(a)=L(B)L(v)
M3 =(K1UK2,3 ,83,sl, A2), where

a=pUy

w

ATC-Module-2- Dr.Girijamma H A

03 =381 Ud2U {((q, €), S2):gcAl}.
B £ Y .
JGRORO}©
a=py

. If ais the regular expression p*, FSM M2 = (K2, 3, 62 s2, A2) such that
L(M2)=L (o)) =L(B)*

M2 = ({S2} UK1, Y, 82,52,{S2} U Al), where

02 =31 U{((S2,¢),S1)} U {((q, £),S1):g e A1}

Algorithm to construct FSM, given a regular expression o

regextofsm(a : regular expression) =
Beginning with the primitive subexpressions of a and working
outwards until an FSM for an of a has been built do:
Construct an FSM as described in previous theorem.

Building an FSM from a Regular Expression

1. Consider the regular expression (b U ab)*.

An FSM for b

ATC-Module-2- Dr.Girijamma H A

An FSM for a

An FSM for ab

An FSM for (b U ab)

ATC-Module-2- Dr.Girijamma H A

An FSM for (b U ab)*

2. Construct FSM for the RE (b(a U b)b)*

ATC-Module-2- Dr.Girijamma H A

3. Construct FSM for the RE bab U a*

O OO0

FSM for RE = (a* U b*c*)*

ATC-Module-2- Dr.Girijamma H A

Building a Regular Expression from an FSM

Building an Equivalent Machine M
a
D

a
-
ab*a
©

Algorithm for FSM to RE(heuristic)

fsmtoregexheuristic(M: FSM) =

|

. Remove from M-any unreachable states.
2. No accepting states then return the RE g.

3. If the start state of M is has incoming transitions into it, create a new start
state s.

4. If there is more than one accepting state of M or one accepting state with
outgoing transitions from it, create a new accepting state.

5. M has only one state, So L (M} ={ ¢ } and return RE «.
6. Until only the start state and the accepting state remain do:
6.1. Select some state rip of M.
6.2. Remove rip from M.
6.3. Modify the transitions. The labels on the rewritten
transitions may be any regular expression.
7. Return the regular expression that labels from the

start state to the accepting state.

10

ATC-Module-2- Dr.Girijamma H A

Example 1 for building a RE from FSM
Let M be:

Step 1:Create a new start state and a new accepting state and link them to M

After adding new start state 4 and accepting state 5

11

ATC-Module-2- Dr.Girijamma H A

After removing rip state 3
1-2-1:ab U aaa*b

1-2-5:a

Step 3: Let rip be state 2

After removing rip state 2

ab U aaa*b

4-1-5: (ab U aaa*b)*(a U ¢)
Step 4: Let rip be state 1

After removing rip state 1

@;b U aaa*h)*(a U E@

RE = (ab U aaa*b)*(a U g)

12

ATC-Module-2- Dr.Girijamma H A

Theorem 2 :For Every FSM ,there is an equivalent regular expression
Statement : Every regular language can be defined with a regular expression.
Proof : By Construction
Let FSM M = (K,>.,0,5,A),construct a regular expression o such that
L(M) =L(a)

Collapsing Multiple Transitions

d

) @
b

, aub 5

{C1,C2,C3.......Cn} - Multiple Transition
Delete and replace by {C1 U C2 U C3.......U Cn}

If any of the transitions are missing, add them without changing L(M) by labeling
all of the new transitions with the RE g.

ATC-Module-2- Dr.Girijamma H A

Select a state rip and remove it and modify the transitions as shown below.
Consider any states p and g.once we remove rip,how can M get from p to q?

Let R(p,q) be RE that labels the transition in M from P to Q.Then the new machine
M' will be removing rip,so R'(p,q)

R*(p,a) = R(p.q) U R(p,rip)R(rip,rip)*R(rip,q)

Ripping States out one at a time
R'(1,3) = R(1,3) U R(1,rip)R(rip,rip)*R(rip,3)

=R(1,3) UR(1,2)R(2,2)*R(2,3)

=g U ab*a

= ab*a
Algorithm to build RE that describes L (M) from any FSM M = (K,Y.,8,5,A)
Two Sub Routines:

1. standardize : To convert M to the required form

2. buildregex : Construct the required RE from

modified machine M

1.Standardize (M:FSM)

I. Remove unreachable states from M
Ii. Modify start state
ii. Modify accepting states

iv. If there is more than one transition between states p and q ,collapse them to
single transition

v. If there is no transition between p and q and p €A, q €S,then create a
transiton between p and q labled ®

14

ATC-Module-2- Dr.Girijamma H A

2.buildregex(M:FSM)

I. If M has no accepting states then return RE @
Ii. If M has only one accepting state ,return RE &
ii. until only the start state and the accepting state remain do:
a. Select some state rip of M
b. Find R'(p,q) = R(p,q) U R(p,rip).R(rip,rip)*.R (rip,q)
c. Remove rip on d all transitions into ad out of it
Iv. Return the RE that labels from start state to the accepting state

Example 2: Build RE from FSM

N

Step 1: let RIP be state 4
1-4-2 : bb
After removing rip state 4

bb

Step 2: Collapse multiple transitions from state 1 to state 2
1-2:aUbb

After collapsing multiple transitions from state 1 to state 2

15

ATC-Module-2- Dr.Girijamma H A

?b
_@ \
aUbb a

Step 3: let rip be state 2
1-3: (a U bb)b*a

After removing rip state 2

@ (a U bb)b*a @

RE = (a U bb)b*a

Example 3: Build RE From FSM

Step 1: Remove state s as it is dead state

After removing state s

Step 2: Add new start state t and new accepting state u

16

ATC-Module-2- Dr.Girijamma H A

After adding tand u

Step 3: Let rip be state g
p-g-p: 01

After removing rip state q

Step 4: Let rip be state r

p-r-p: 10

After removing rip state r

£ —= 01U 10
1050=
8 @

RE = (01 U 10)*

17

ATC-Module-2- Dr.Girijamma H A

Example 4:A simple FSM with no simple RE

L= {we {a,b}* : w contains an even no of a's and an odd number of b's}

JoR

i
: J,

| b

[3] even a's odd b's

Step 1: Add new start state S and new accepting state A.

a
a @ 2-4-2: bb

I 3-4-3: aa

b b 2-4-3:ba
a v |
SRR
a

3-4-2: ab
Step 2: let rip be state 4

Result after removing rip state 4

1-2-1: a(bb)*a
1-2-3: a(bb)*ba
3-2-1: ab(bb)*a
3-2-3: ab(bb)*ba

"~ RE1=bU a(bb)*ba
RE2 =b U ab(bb)*a
RE3 = a(bb)*a
RE4 = aa U ab(bb)*b

o

Step 3: let rip be state 2

18

ATC-Module-2- Dr.Girijamma H A

Result after removing rip state 4
1: a(bb)*a

1-2-
1-2-3: a(bb)*ba
3-2-1: ab(bb)*a

3-2-3: ab(bb)*ba

@“’

- RE1 =b U a(bb)*ba
RE2 = b U ab(bb)*a
RE3 = a(bb)*a
RE4 = aa U ab(bb)*ba

Step 3: let rip be state 2

RE1 =b U a(bb)*ba
RE2 = b U ab(bb)*a
RE3 = a(bb)*a
RE4 = aa U ab(bb)*ba
ff RE1 ft
RE2
) . RE5 = (RE1)(RE4)*
Step 4: letrip be state 3 o _ (RE3) U (RE1)(RE4)*(RE2)

N REGB
OO =@
RE

Last Step: let rip be state 1

ORn©

(RE6)*(RE5)
((RE3) U (RE1)(RE4)*(RE2))*((RE1)(RE4)*)

= ((a(bb)*a) U (b U a(bb)*ba)(aa U ab(bb)*ba)*(b U ab(bb)*a))*((b U a(bb)*ba)((aa U ab(bb)*ba)*)

Redrawn

= (RE6)* (RE5)

RE

19

ATC-Module-2- Dr.Girijamma H A

Example 5:Using fsmtoregexheuristic construct a RE
for the following FSM(Example 5.3 from textbook)

0/01, 1/10

0700, 1/11

RE = (0000 U 0001 U 1100 U 1101 U 0010 U 1110 U
1100 U 0100 U 0011 U 1111 U 1101 U 0101)

Writing Regular Expressions

 LetL = {w € {a,b}*: there is no more than one b}
L = {¢,b,a,aa,ab,ba,aba,baa,abaa,aabaa,----- }
RE = a*(b U g)a*

Writing Regular Expressions

 LetL ={w € {a,b}*: No two consecutive letters are same}
RE = (b U g)(ab)*(a U €) or (a U g)(ba)*(b U g)
L = {€,a,b,ab,ba,aba,bab,ababa,baba,----- 1

20

ATC-Module-2- Dr.Girijamma H A

Writing Regular Expressions

* Floating point Numbers
Dstandsfor(OU1TU2U3U4U5U6U7U8UDY9)
RE=(e¢U+ U -)D*(e U .D*)(e U (E(¢ U + U -)D*)
L ={24.06, +24.97E-05,------ }

Building DFSM

» Itis possible to construct a DFSM directly from a set of patterns
» Suppose we are given a set K of n keywords and a text string s.
 Find the occurences of s in keywords K
» K can be defined by RE

(Z*(K1 U K, U.......U Kn)=*)*
» Accept any string in which at least one keyword occurs

Algorithm- buildkeywordFSM

» To build dfsm that accepts any string with atleast one of the specified
keywords

Buildkeyword(K:Set of keywords)
» Create a start state o
» For each element k of K do

Create a branch corresponding to k

21

ATC-Module-2- Dr.Girijamma H A

» Create a set of transitions that describe what to do when a branch dies

» Make the states at the end of each branch accepting

Ex:Keywords Set = {cat,bat,cab}

t,b,c}
“\ 1{b,C} c
o &) = E)*
) O
c,b,a} —7 c
b

Z

b Vieba) | |,] b @
,)=
P @G

|t,b,a) \ b

Applications Of Regular Expressions

* Many Programming languages and scripting systems provide support for
regular expression matching

» Re's are used in emails to find spam messages

« Meaningful words in protein sequences are called motifs
« Used in lexical analysis

» To Find Patterns in Web

» To Create Legal passwords

» Regular expressions are useful in a wide variety of text processing tasks,

22

ATC-Module-2- Dr.Girijamma H A

» More generally string processing, where the data need not be textual.

« Common applications include data validation, data scraping (especially web
scraping), data wrangling, simple parsing, the production of syntax
highlighting systems, and many other tasks.

RE for Decimal Numbers
RE = -? ([0-9]*(\.[0-9]*)? | \.[0-9]*)

* (a)? means the RE a can occur 0 or 1 time.

* (a)* means the RE o can repeat O or more times.
* (a)" means the RE a can repeat 1 or more times.
24.23,-24.23, .12, 12. ----- are some examples

Requirements for legal password

» A password must begin with a letter

» A password may contain only letters numbers and a underscore character
+ A password must contain atleast 4 characters and no more than 8 characters
((a-z) U (A-2))

((a-z2) U (A-2) U (0-9) U)

(@-z) U (A-2) U (0-9) U)

(@-z) U (A-2) U (0-9) U)

(a-z) U (A-Z) U (0-9) U _Uc)

(a-z) U (A-Z) U (0-9)U _U)

((a-z) U (A-Z) U (0-9)U _Ug)

((a-z) U (A-Z) U (0-9)U _U)

Very lengthy regular expression

23

ATC-Module-2- Dr.Girijamma H A

Different notation for writing RE

* o means that the pattern o must occur exactly once.

* o™ means that the pattern may occur any number of times(including zero).
* o' means that the pattern oo must occur atleast once.

* a{n,m} means that the pattern must occur atleast n times but not more than
m times

* o{n} means that the pattern must occur n times exactly
* So RE of a legal password is :

RE = ((a-z) U (A-2))((a-z) U (A-Z) U (0-9) U){3,7}
Examples: RNSIT_17,Bangalor, VTU_2017 etc
* RE foranip address is :

RE = ((0-9){1,3}(\.(0-9){1,3}){3})
Examples: 121.123.123.123

118.102.248.226
10.1.23.45

Manipulating and Simplifying Reqular Expressions

Let a, B, y represent regular expressions and we have the following identities.
1. Identities involving union

2. ldentities involving concatenation

3. ldentities involving Kleene Star

Identities involving Union

e Union is Commutative

aUB=PBUa

24

ATC-Module-2- Dr.Girijamma H A

* Union is Associative
(aUP)Uy=aU(PUy)
* @ is the identity for union
aoUd=dUa=a
* union is idempotent
aUa=aqa
« Forany2setsAandB,ifBCS A, thenAUB=A
a* U aa =a*, since L(aa) € L(a*).

Identities involving concatenation

+ Concatenation is associative
(aP)y = a(Py)

» ¢ 1s the identity for concatenation
oaE=¢&ea=a

* @ is a zero for concatenation.
oD = Qo=

+ Concatenation distributes over union
(a U B)y = (ay) U (By)
y(a U B) = (yo) U (YB)

Identities involving Kleene Star

e OP*=¢
e g¥=¢
° (a*)* — a*

[]

=]
*

=)
*

I

=)
*

25

ATC-Module-2- Dr.Girijamma H A

o Ifo* C B* then a*p* = B*
o Similarly If B* € o* then a*p* = o*
a*(aUb)* =(aUb)*, since L(a*) € L((a U b)*).
© @UP)* = (p)*
* IfL(B) € L(a) then (o U B)* = o*
(a U £)* = a* since {&} € L(a*).

Simplification of Reqular Expressions

1. ((a* U ®)* Uaa) =(a*)* U aa /(D) € L(a*)
= a* U aa /(a*)* = o*
=a* /l L(aa) < L(a*)
2. (b U bb)*b* = b*b* [IL(bb) < L(b*)
= b* [l a*a* = a*

3. ((a U b)* b* U ab)*
=(@Ub)y*Uab)* //L(b*) S L(aU b)*
= (aU b)* /IL(a*) € L(a U b)*)
4.(@Ub)* (aUe)b* =(aUb)* //L((a U £ b*) € L(au b)*

5. (@* U b)b* =(cUbb* //d*=¢
= b* //L(s U b) € L(b*)
6.(aUb)y*a*Ub =@Ub)*Ub //L(a*) € L((a U b)*)
=(aUb)* //L(b) S L((aUb)*
7.((a U b)")* = (a U by*

26

ATC-Module-2- Dr.Girijamma H A

Chapter-7

Regular Grammars

Regular grammars sometimes called as right linear grammars.
A regular grammar G is a quadruple (V, >, R, S)
» Vs the rule alphabet which contains nonterminals
and terminals.

* Y (the set of terminals) is a subset of V
* R (the set of rules) is a finite set of rules of the form

X=2>Y
* S (the start symbol) is a nonterminal.
All rules in R must:
» Left-hand side should be a single nonterminal.

* Right-hand side is € or a single terminal or a single terminal followed by a
single nonterminal.

Legal Rules
S—>a

S—>¢

T->aS

Not legal rules
S—>aSa

S>TT

aSa—>T

S>T

27

ATC-Module-2- Dr.Girijamma H A

* The language generated by a grammar G = (V,), R, S) denoted by L(G) is
the set of all strings w in > * such that it is possible to start with S.

» Apply some finite set of rules in R, and derive w.

« Start symbol of any grammar G will be the symbol on the left-hand side of
the first rule in Rg

Example of Regular Grammar

Example 1:Even Length strings

Let L = {we {a, b }*: lwl is even}.

The following regular expression defines L.:

((aa) U (ab) U (ba) U (bb))* or ((a U b)(a U b))*
DFSM accepting L

a,b

®)

a,b

Regular Grammar G defining L
S—>¢

S—>aT

S>bT

T->aS

T->bS

Derivation of string using Rules

Derivation of string “abab”

28

ATC-Module-2- Dr.Girijamma H A

S=>aT
=>abT
=> abaS
=> ababS
=> abab

Regular Grammars and Reqular Languages

THEOREM
Regular Grammars Define Exactly the Regular Languages
Statement:

The class of languages that can be defined with regular grammars is exactly the
regular languages.

Proof: Regular grammar - FSM
FSM - Regular grammar

The following algorithm constructs an FSM M from a regular grammar G = (V,
>, R, S) and assures that

L (M) =L (G):

Algorithm-Grammar to FSM

grammartofsm (G: regular grammar) =

1. Create in M a separate state for each nonterminal in V.

2. Make the state corresponding to S the start state.

3. If there are any rules in R of the form X->w, for some
W €), then create an additional state labeled #.

4. For each rule of the form X=> wyY,

29

ATC-Module-2- Dr.Girijamma H A

add a transition from X to Y labeled w.

5. For each rule of the form X->w, add a transition from X
to # labeled w.

6. For each rule of the form X—>¢, mark state X as
accepting.

7. Mark state # as accepting.

8. If M is incomplete then M requires a dead state.
Add a new state D. For every (q, i) pair for which no
transition has already been defined, create a transition
from g to D labeled i. For every i in £, create a transition
from D to D labeled i.

Example 2:Grammar->FSM

Strings that end with aaaa
Let L = {we {a, b }*: w end with the pattern aaaa}.
RE = (a U b)*aaaa
Regular Grammar G
S—>aS
S->bS
S—>aB
B->aC
C->aD
D->a

30

ATC-Module-2- Dr.Girijamma H A

Example 3: The Missing Letter Lanquage

Let> ={a, b, c}.

Lwmissing = { W : there is a symbol a € > not appearing in w}.

Grammar G generating Lwissing

FSM for Missing Letter Language

31

S—>¢

S—>aB
S—>aC
S->bA
S->bC
S—->cA
S->CB

A- ¢
A—>bA
A—>CcA
B> ¢
B—>aB
B->cB

C->¢
C—>aC
C->bC

ATC-Module-2- Dr.Girijamma H A

Example 4 :Strings that start with abb.
Let L={w € {a, b }*: w starting with string abb}.
RE = abb(a U b)*

Regular Grammar G

S—>aB
C->bT @@
T—>aT
T->bT
T->¢

Example 5 :Strings that end with abb.

Let L={w € {a, b }*: w ending with string abb}.
RE = (a U b)*abb

Regular Grammar G

S>aS n*
S—>aT

T->bB
B->b

32

ATC-Module-2- Dr.Girijamma H A

Example 6:Strings that contain substring 001.
Let L={w € {0, 1 }*: w containing the substring 001}.
RE = (0 U 1)*001(0 U 1)*

Regular Grammar G

S->0S
S—->1S
S-=>0T
T->0P
P=>1X
X=>0X
X=>1X
X >¢

Algorithm FSM to Grammar

1. Make M deterministic (to get rid of e-transitions).
Create a nonterminal for each state in the new M.
The start state becomes the starting nonterminal.

For each transition 6(T, a) = U, make a rule of the form T — aU.

o ~ w N

For each accepting state T, make a rule of the form T — &.

Example 7:Build grammar from FSM

ATC-Module-2- Dr.Girijamma H A

RE = (a U bb)b*a
Grammar
A->aB
A->bD
B->bB
B->aC
D->bB
C¢
Derivation of string “aba”
A=>aB
=> abB
=> abaC
=> aba
Derivation of string “bba”
A=>DhB
=>bbB
=> bhaC
=> bba

Example 8:A simple FSM with no simple RE

L= {we {a,b}* : w contains an even no of a's and an odd

number of b's}

34

ATC-Module-2- Dr.Girijamma H A

Grammar

A->aB
A->bC
B-2>aA
B->bD
C->bA
C->aD
D->bB
D->aC
C-e
Derivation of string “ababb”
A=>aB
=>abD
=> abaC
=> ababA
=> ababbC
=> ababb

35

ATC-Module-2- Dr.Girijamma H A

RE.RG and FSM for given Language

Let L ={we {a, b}*: every ain wis immediately followed
by atleast one b.}

L ={ b,ab,abab,abb,------- } b
RE = (ab U b)* l\»

_a
Regular Grammar 7 @
S—>aT . —

S->bS b
S—>¢
T->bS

Satisfying Multiple Criteria

Let L = { we {a, b }*: wcontain an odd number of a’s and

w ends in a}.

36

ATC-Module-2- Dr.Girijamma H A

Conclusion on Regular Grammars

» Regular grammars define exactly the regular languages.

« But regular grammars are often used in practice as FSMs and REs are easier
to work.

« But as we move further there will no longer exist a technique like regular
expressions.

» So we discuss about context-free languages and context-free-grammars are
very important to define the languages of push-down automata.

Chapter-8

Regular and Nonreqular Languages

» The language a*b* is regular.
» The language A"B" = {a"b":n>=0} is not regular.

» The language {w € {a,b}*:every a is immediately followed by b} is regular.
« The language {w € {a, b}*:every a has a matching b somewhere and no b

matches more than one a} is not regular.
Given a new language L, how can we know whether or not it is regular?
Theorem 1: The Regular languages are countably infinite
Statement:
There are countably infinite number of regular languages.
Proof:
* We can enumerate all the legal DFSMs with input alphabet).
» Every regular language is accepted by at least one of them.

So there cannot be more regular languages than there are DFSMs.

37

ATC-Module-2- Dr.Girijamma H A

» But the number of regular languages is infinite
because it includes the following infinite set of
languages:

{a}, { aa}, { aaa}, { aaaa}. { aaaaa}, { aaaaaa } ----
* Thus there are at most a countably infinite number of

regular languages.

Theorem 2 : The finite Languages

Statement: Every finite language is regular.

Proof:

« If L is the empty set, then it is defined by the R.E @ and so
is regular.

« Ifitis any finite language composed of the strings
S1,S2,....Sn fOr some positive integer n, then it is defined by
the R.E: s;Us; U ...Usy

» Soittoo is regular

¢ Regular expressions are most useful when the elements of L match one or
more patterns.

« FSMs are most useful when the elements of L share some simple structural
properties.

38

ATC-Module-2- Dr.Girijamma H A

Examples:

L. = {w € {0-9}*: w is the social security number of the
current US president}.

L, is clearly finite and thus regular. There exists a simple
FSM to accept it.

L. = {1 if Santa Claus exists and 0 otherwise}.

Ls = {1 if God exists and 0 otherwise}.

L , and L3 are perhaps a little less clear.
So either the simple FSM that accepts { 0} or the simple
FSM that accepts { 1} and nothing else accepts L, and Ls.

L4: {1 if there were people in north America more than

10000 years age and 0 otherwise}.
L5 = {1 if there were people in north America more than

15000 years age and 0 otherwise}.

L4 is clear. It is the set { 1}.

L5 is also finite and thus regular.

L6 ={w € {0-9}*: w is the decimal representation, without

leading 0’s, of a prime Fermat number}

Fermat numbers are defined by
Fn=2"+1, n>=0.
The first five elements of F are {3, 5, 17, 257,65537}.

All of them are prime. It appears likely that no other Fermat numbers are
prime. If that is true,then L

is finite and thus regular.

39

ATC-Module-2- Dr.Girijamma H A

« |f it turns out that the set of Fermat numbers is infinite,then it is almost
surely not regular.

Four techniques for showing that a language L(finite or infinite) is regular:
1. Exhibita R.E for L.

2. Exhibit an FSM for L.

3. Show that the number of equivalence of ~_is finite.

4. Exhibit a regular grammar for L.

Closure Properties of Reqular Languages

The Regular languages are closed under
* Union

« Concatenation

» Kileene star

« Complement

+ Intersection

» Difference

* Reverse

* Letter substitution

Closure under Union, Concatenation and Kleene star

Theorem: The regular languages are closed under union,
concatenation and Kleene star.
Proof:. By the same constructions that were used in the
proof of Kleene’s theorem.

Closure under Complement

40

ATC-Module-2- Dr.Girijamma H A

Theorem:

The regular languages are closed under complement.

Proof:

« If Ly is regular, then there exists a DFSM M;=(K.,>,5,5,A)
that accepts it.

+ The DFSM M,=(K, }.,5,5,K-A), namely M; with accepting
and nonaccepting states swapped, accepts =(L(My)
because it rejects all strings that M accepts and rejects
all strings that M; accepts.

Steps:

1. Given an arbitrary NDFSM Mj,construct an equivalent

DFSM M' using the algorithm ndfsmtodfsm.

2. If My is already deterministic, M' = M;.

3. M' must be stated completely, so if needed add dead
state and all transitions to it.

4. Begin building M, by setting it equal to M'.

5. Swap accepting and nonaccepting states. So

M=(K, ¥.8,5,K-A)

Example:

« LetL ={w€ {0,1}* : wis the string ending with 01}
RE = (0 U 1)*01

* The complement of L(M) is the DFSM that will accept

strings that do not end with 01.

41

ATC-Module-2- Dr.Girijamma H A

Closure under Intersection

Theorem:
The regular languages are closed under intersection.
Proof:
* Note that
L(M1) N L(M3) == (=L(M1) U =L(My)).

* We have already shown that the regular languages are closed under both
complement and union.

« Thus they are closed under intersection.

« Example:
1
Start_>@\o> 0,1
z
(@

» Fig (a) is DFSM L1 which accepts strings that have 0.
» Fig(b) is DFSM L2 which accepts strings that have 1.

42

ATC-Module-2- Dr.Girijamma H A

» Fig(c) is Intersection or product construction which accepts that have both 0
and 1.

The Divide and Conquer Approach

* LetL={w€ {ab}*: w contains an even number of a’s and an odd number
of b’s and all a’s come in runs of three }.

» L isregular because it is the intersection of two regular languages,
L =L;N Ly, where
* Ll={wE€ {a)b}*:w contains an even number of a’s
and an odd number of b’s},and
L2 = {w € {a,b}*: all a’s come in runs of three}.

» L1 isregular as we have an FSM accepting L1

a
odda's
evenb's
a
\
b
b
a 1
odda's
oddb's
a

« L2={w€ {ab}*: all a’s come in runs of three}.

« L2 isregular as we have an FSM accepting L2

43

ATC-Module-2- Dr.Girijamma H A

L ={w € {a,b}* : w contains an even number of a’s and an odd number of b’s and
all a’s come in runs of three }.

L is regular because it is the intersection of two regular languages,L = L; N L,

Closure under Set difference

Theorem:
The regular languages are closed under set difference.
Proof:
L(My) - L(M2) = L(M1) N —"L(M2)
* Regular languages are closed under both complement
and intersection is shown.
» Thus regular languages are closed under set difference.

Closure under Reverse

Theorem:
The regular languages are closed under reverse.
Proof:
« LR={we€>*:w=xRforsomex € L}.
Example:
1. LetL ={001,10,111} then LR ={100,01,111}
2. Let L be defined by RE (0 U 1)0* then LR is 0*(0 U 1)
reverse(L) = {x € * : x = wR for some w € L}.
By construction.
« LetM=(K, %, 0,s, A) be any FSM that accepts L.

* Initially, let M’ be M.

44

ATC-Module-2- Dr.Girijamma H A

* Reverse the direction of every transition in M'.
* Construct a new state q. Make it the start state of M'.
» Create an e-transition from g to every state that was an accepting state in M.

* M’ has a single accepting state, the start state of M.

Closure under letter substitution or Homomorphism

» The regular languages are closed under letter substitution.
» Consider any two alphabets, Y1 and > 2.
» Let sub be any function from >; to >,*.

» Then letsub is a letter substitution function from L; to L, iff letsub(L;) = {
w € Y,*:dy € Li(w =y except that every character ¢ of y has been replaced

by sub(c))}.
« Example 1
Consider 3 ={a,b}and >, ={0,1}
Let sub be any function from }’; to > ,*.
sub(a) =0, sub(b) =11
letsub(a"o" : n >=0}) = { 0"1?": n >= 0}
« Example 2
Consider Y1 ={0,1,2} and >, = {a,b}
Let h be any function from 1 to > »*.
h(0) =a, h(1) = ab, h(2) = ba
h(0120) = h(0)h(1)h(2)h(0)

= aabbaa

45

ATC-Module-2- Dr.Girijamma H A

h(01*2) = h(0)(h(L))*h(2)

= a(ab)*ba

Long Strings Force Repeated States

Theorem: Let M=(K,>,5,5,A) be any DFSM. If M accepts any string of length |K |
or greater, then that string will force M to visit some state more than once.

Proof:

M must start in one of its states.

Each time it reads an input character, it visits some state. So ,in processing a
string of length n, M creates a total of n+1 state visits.

If n+1 > | K|, then, by the pigeonhole principle, some state must get more
than one visit.

So, if n>=| K |,then M must visit at least one state more than once.

The Pumping Theorem for Reqular Languages

Theorem: If L is regular language, then:
dk >=1 (Vstrings w € L, where |w| >=k (3x,y, z (W = xyz,

xyl <=k,

y # g,and

vqg >= 0(xy%z € L)))).

Proof:
If L is regular then it is accepted by some DFSM M=(K,Y ,5,s,A).
Let k be |K|
Let w be any string in L of length k or greater.

By previous theorem to accept w, M must traverse some loop at least once.

46

ATC-Module-2- Dr.Girijamma H A

* We can carve w up and assign the name y to the first substring to drive M
through a loop.

» Then x is the part of w that precedes y and z is the part of w that follows y.
» We show that each of the last three conditions must then hold:
. xyl<=k
M must not traverse thru a loop.
It can read k - 1 characters without revisiting any states.
But kth character will take M to a state visited before.
* Y#¢
Since M is deterministic, there are no loops traversed by e.
* Vg>=0(xy%zel)
y can be pumped out once and the resulting string must
be in L.
Steps to prove Language is not regular by contradiction method.
1. Assume L is regular.
Apply pumping theorem for the given language.
Choose a string w, where w € L and Iwl >= k.

2

3

4. Split w into xyz such that |xy| <=k and y # &.
5. Choose a value for g such that xy% is not in L.
6

. Our assumption is wrong and hence the given language is not regular.

47

ATC-Module-2- Dr.Girijamma H A

Problems on Pumping theorem (Showing that the language is not regular)
1. Show that A"B" is not Regular
Let L be A"B"={a"b": n>=0}.
Proof by contradiction.
Assume the given language is regular.
Apply pumping theorem and split the string w into xyz

Choose w to be a*b® (We get to choose any w).

11 2
aaaaa..adaaabbbb...bbbbbb

Xy z

We show that there is no X, y, z with the required properties:
k<|xyl ,

y£€g

VvV q>=0(xy%isinLymustbe in region 1.

So y = aP<Since [xy| 1.>forsomep Letq =2, producing: ak+pbk L, since it has
more agwhich ’sthan b’ s.

2. {alb':i,j>0andi-j=>5}
* Not regular.

* L consists of all strings of the form a*b* where the number of a’s is five
more than the number of b’s.

» We can show that L is not regular by pumping.
« Letw =ak*bk,

* Since [xy| <Kk, y must equal aP for some p > 0.

48

ATC-Module-2- Dr.Girijamma H A

« We can pump y out once, which will generate the string a**>b¥, which is not
in L because the number of a’s is is less than 5 more than the number of b’s.

49

ATC-Module-2- Dr.Girijamma H A

50

Subject: Automata Theory and Computability
Sub Code: 15CS54
Module-111
Context-Free Grammar s and Pusndown Automata (PDA)

Course Outcomes-(CO)
At the end of the course student will be able to:
i. Explain core concepts in Automata and Theory of Computation.
ii. ldentify different Formal language Classes and their Relationships.
iii. Design Grammars and Recognizers for different formal languages.
iv. Prove or disprove theorems in automata theory using their properties.
v. Determine the decidability and intractability of Computational problems.

Syllabus of Module 3
i. Context-Free Grammars(CFG): Introduction to Rewrite Systems and Grammars
ii. CFGsand languages, designing CFGs,
iii. Simplifying CFGs,
iv. Proving that a Grammar is correct,
v. Derivation and Parse trees, Ambiguity,
vi. Norma Forms.
vii. Pushdown Automata (PDA): Definition of non-deterministic PDA,
viii. Deterministic and Non-deterministic PDAS,
iIX. Non-determinism and Halting, Alternative equivalent definitions of a PDA,
X. Alternatives those are not equivaent to PDA.

Text Books:
1. Elaine Rich, Automata, Computability and Complexity, 1st Edition, Pearson
Education, 2012/2013. Text Book 1: Ch 11, 12: 11.1to 11.8, 12.1 to 12.6 excluding
12.3.
2. K L P Mishra, N Chandrasekaran , 3rd Edition, Theory of Computer Science, PHI,
2012
Reference Books:
1. John E Hopcroft, Raeev Motwani, Jeffery D Ullman, Introduction to Automata
Theory, Languages, and Computation, 3rd Edition, Pearson Education, 2013
2. Michad Sipser : Introduction to the Theory of Computation, 3rd edition, Cengage
learning,2013
3. John C Martin, Introduction to Languages and The Theory of Computation, 3rd
Edition, Tata McGraw —Hill Publishing Company Limited, 2013
4. Peter Linz, “An Introduction to Formal Languages and Automata”, 3rd Edition,
Narosa Publishers, 1998
5. Basavargy S. Anami, Karibasappa K G, Formal Languages and Automata theory,
Wileylndia, 2012

1.

L earning Outcomes:
At the end of the module student should be able to:

SI.No TLO’s

Define context free grammars and languages

Design the grammar for the given context free languages.

Apply the simplification algorithm to simplify the given grammar

Prove the correctness of the grammar

Define leftmost derivation and rightmost derivation

Draw the parse tree to a string for the given grammar.

Define ambiguous and inherently ambiguous grammars.

Prove whether the given grammar is ambiguous grammar or not.

© N OAMWDNE

Define Chomsky normal form. Apply the normalization algorithm to
convert the grammar to Chomsky normal form.

=
o

Define Push down automata (NPDA). Design a NPDA for the given
CFG.

11. Design a DPDA for the given language.

12. Define alternative equivalent definitions of a PDA.

Introduction to Rewrite Systems and Grammars

What is Rewrite System?

A rewrite system (or production system or rule based system) is a list of rules, and

algorithm for applying them. Each rule has a left-hand side and aright hand side.

X oY
(LHS) (RHS)

Examples of rewrite-system rules. S — aSh, aS— e, aSbh — bSabSa

When arewrite system R isinvoked on some initial string w, it operates as follows:
simple-rewrite(R: rewrite system, w: initial string) =

If

1. Set working-string to w.
2. Until told by R to halt do:
1.1 Match the LHS of some rule against some part of working-string.
1.2 Replace the matched part of working-string with the RHS of the rule that
was matched.
3. Return working-string.
it returns some string s then R can derive s from w or there exists a derivation in R of s

from w.
Examples:

1. A ruleis simply a pair of strings where, if the string on the LHS matches, it is
replaced by the string on the RHS.

2. Therule axa— aasqueeze out whatever comes between a pair of a’s.

3. Theruleab*ab*a— aaa squeeze out b’s between a’s.

Rewrite systems can be used to define functions. We write rules that operate on an input
string to produce the required output string. Rewrite systems can be used to define languages.
The rewrite system that is used to define alanguage is called a grammar.

Grammar s Define Languages
A grammar isaset of rules that are stated in terms of two a phabets:

» aterminal alphabet, %, that contains the symbols that make up the stringsin L(G),

* anonterminal aphabet, the elements of which will function as working symbols that
will be used while the grammar is operating. These symbols will disappear by the
time the grammar finishesits job and generates a string.

* A grammar has a unique start symbol, often called S.

A rewrite system formalism specifies:
» Theform of therulesthat are alowed.
» Thealgorithm by which they will be applied.
* How itsruleswill be applied?

Using a Grammar to Derive a String
Simple-rewrite (G, S) will generate the strings in L(G). The symbol = to indicate stepsin a
derivation.

Given: S—»aS -—--rulel
S—>¢ ——--rule2
A derivation could begin with: S= aSb = aaShb = aabb

Generating Many Strings
LHS of Multiple rules may match with the working string.

GivennS—»>aSh - rule 1
S»>bhSa ---- rule 2
S»>¢ - rule3

Derivation so far: S= aSh = aaShbb =
Three are three choices at the next step:

S = aSh = aaShb = aaaSbbb (using rule 1),
S = aSbh = aaShb = aabSabb (using rule 2),
S= aSbh = aaSbb = aabb (using rule 3).

One rule may match in more than one way.

Given: S—»alth - ruel
T—>bTa W - rule 2
T—>e - rule 3
Derivationsofar: S= alTh =
Two choices at the next step:

S=> dlTh= abTaTb=
S= alTb= aTbTab=

When to Stop

Case 1. The working string no longer contains any nonterminal symbols (including, when it
is€). In this case, we say that the working string is generated by the grammar.

Example: S= aSh = aaSbb = aabb

Case 2: There are nonterminal symbols in the working string but none of them appears on the
left-hand side of any rule in the grammar. In this case, we have a blocked or non-terminated
derivation but no generated string.

Given: S»>ash - rulel
S>bla W --—--- rule 2
S - rule 3

Derivation sofar: S= aSbh= abTab =
Case 3: It is possible that neither case 1 nor case 2 is achieved.
Given: S—»>Ba - rule 1
B->bB W - rule 2
Then all derivations proceed as. S= Ba= bBa= bbBa= bbbBa= bbbbBa= ...
The grammar generates the language @.

2. Context —Free Grammar and L anguages

Recall Regular Grammar which has a left-hand side that is a single nonterminal and have a
right-hand side that is ¢ or a single terminal or a single termina followed by a single
nonterminal .
X -Y
(NT) (eor Tor T NT)

Example: L ={w1{a b}* : jw|iseven} RE = ((aa) (ab) (ba) (bb))*

G: So¢ M:
S—aTl a,b
S—obT -
T—aS %
T—>bS a,b

Context Free Grammars

X -Y
(NT) (No restriction)
No restrictions on the form of the right hand sides. But require single non-termina on left
hand side.
Example S—>¢,S—>a S—> T,S— aSh, S— aSbbT are alowed.
ST— aSh, a—~ aSh, ¢ » aarenot alowed.
The name for these grammars “Context Free” makes sense because using these rules the
decision to replace a nonterminal by some other sequence is made without looking at the
context in which the nonterminals occurs.

Definition Context-Free Grammar

A context-free grammar G isaquadruple, (V, Z, R, S), where:

V isthe rule alphabet, which contains nonterminals and terminals.

¥ (the set of terminals) is a subset of V,

R (the set of rules) isafinite subset of (V - 3) xV*,

S (the start symbol) isan element of V - x.

Given a grammar G, define X =¢ y to be the binary relation derives-in-one-step, defined so

that vV X,y e V* (x =gy iff Xx=aAB,y=ayp and thereexistsarule A —» yisinRg)
Any sequence of the form wy =¢ W1 = W, =g . . . = Wy iscalled aderivation in G. Let
=¢c* bethereflexive, transitive closure of =¢. We’ll call =¢* the derive relation.

A derivation will halt whenever no rules on the left hand side matches against working-string.
At every step, any rule that matches may be chosen.

Language generated by G, denoted L(G), is: L(G) ={w € £* : S=¢* w}. A language L is
context-free iff it is generated by some context-free grammar G. The context-free languages
(or CFLs) are a proper superset of the regular languages.

Example: L = A"B"={d"0": n> 0} ={e, ab, aabb, aaabbb, ...}
G={{S,ab},{ab},R, S, where R={ S—>aSh, S— ¢}
Example derivation in G: S = aSb = aaSbb = aaaSbbb = aaabbb or S =* aaabbb

Recursive Grammar Rules

A grammar is recursive iff it contains at least one recursive rule. A ruleis recursive iff it is
X — wiYWw,, where: Y =* wsXw, for some wi, W, ws, and w, in V*. Expanding a non-
terminal according to these rules can eventually lead to a string that includes the same non-
terminal again.

Examplel: L=A"B"={ah":n=>0} LeeG=({S, a b}, {a b}, {S—>aSb,S—¢}, S

Example 2: Regular grammar whose rulesare{S —»aT, T —>aW,W —»aS W — a}

Example 3: The Balanced Parenthesis language

Bal ={w € {),(} *: the parenthesis are balanced} ={c, (), (), 00, (00) «-eeveereeririirnl}
G={{S).(},{).} . RS} whereR={ S— ¢ S— SSS— (9}

Some example derivationsin G:

S=(=0

S=(9=(89=(99=(0)9)=(0(©)=(0)

So, S=* () and S="* ((()

Recursive rules make it possible for afinite grammar to generate an infinite set of strings.

Self-Embedding Grammar Rules
A grammar is self-embedding iff it contains at least one self-embedding rule. A rule in a
grammar G is self-embedding iff it is of the form X — w;Yw,, where Y =* wsXw, and both
w;ws and waw, arein =¥, No regular grammar can impose such a requirement on its strings.
Example: S— aSa is self-embedding

S—>aS is recursive but not self- embedding

S—al

T—> Sa is self-embedding
Example : PalEven = {ww" : w e {a, b} *}= The L of even length palindrome of a’s and b’s.

L ={¢, aa, bb, aaaa, abba, baab, bbbb, }
G={{S ab},{a b}, R, S}, where:
R={S—>aSa ---- rule 1
S—>bSh - rule 2
S—»>eg - rule3}.
Example derivation in G:
S= aSa= abSba= abba

Wher e Context-Free Grammars Get Their Power
If a grammar G is not self-embedding then L(G) is regular. If alanguage L has the property
that every grammar that definesit is self-embedding, then L is not regular.

Mor e flexible grammar-writing notations

a. Notation for writing practical context-free grammars. The symbol | should be read as
“or”. It dlows two or more rules to be collapsed into one.

Example:

S—aShb

S—>bSa can be written as S® aSb |bSale

S—o¢

b. Allow a nonterminal symbol to be any sequence of characters surrounded by angle
brackets.

Examplel: BNF for a Java Fragment
<block> ::= {<stmt-list>} |{}
<stmt-list> ::= <stmt> | <stmt-list> <stmt>
<stmt> ::= <block> | while (<cond>) <stmt> |
if (<cond>) <stmt> |
do <stmt> while (<cond>); |
<assignment-stmt>; |
return | return <expression> |
<method-invocation>;

Example2: A CFG for C++ compound statements:
<compound stmt> — { <stmt list>}

<stmt list> — <stmt> <stmt list> | epsilon
<stmt> — <compound stmt>

<stmt> — if (<expr>) <stmt>

<stmt> — if (<expr>) <stmt> else <stmt>
<stmt> — while (<expr>) <stmt>

<stmt> — do <stmt> while (<expr>) ;

<stmt> — for (<stmt> <expr> ; <expr>) <stmt>
<stmt> — case <expr>: <stmt>

<stmt> — switch (<expr>) <stmt>

<stmt> — break ; | continue ;

<stmt> — return <expr> ; | goto <id> ;

Example3: A Fragment of English Grammar
Notational conventions used are

* Nonterminal = whose first symbol is an uppercase |etter

* NP =derive noun phrase
* VP =deriveverb phrase

S—> NPVP

NP — the Nominal | aNominal | Nominal | ProperNoun | NP PP

Nominal — N |AdjsN

N — cat | dogs | bear | girl | chocolate | rifle
ProperNoun — Chris | Fluffy

Adjs— Adj Adjs| Adj

Adj — young | older | smart

VP— V|V NP|VPPP

V — like| likes | thinks | shots | smells
PP — Prep NP

Prep — with

3. Designing Context-Free Grammars

If L has a property that every string in it has two regions & those regions must bear some
relationship to each other, then the two regions must be generated in tandem. Otherwise,

thereis no way to enforce the necessary constraint.

Example 1: L ={ab"c" : n,m> 0} =L ={¢, ab, ¢, abc, abcc, aabbe, }
The ¢™ portion of any string in L is completely independent of the a'b" portion, so we should
generate the two portions separately and concatenate them together.
G=({S A, C,ab,c}, {abc, R, S} where
R={S—>AC [* generate the two independent portions

A > aAble /* generatethed'b” portion, from the outside in

C— cCle} [/* generatethec™ portion
Example derivation in G for string abcc:
S= AC = aAbC = abC = abcC = abccC = abce

Example 2: L={ db'c® : j=i+k, i ,k = 0} on substituting j=i+k = L = {ab'b*c*: i, k = 0}
L ={¢, abbc, aabbbbcc, abbbcc }
The db' portion of any string in L is completely independent of the b*c* portion, so we should
generate the two portions separately and concatenate them together.
G=({S A,B,ab,c}, {abc, R, S} where
R={S—> AB [* generate the two independent portions

A —>aAb|e /* generatethe db' portion, from the outsidein

B—>bBc|e} /* generate the bctportion
Example derivation in G for string abbc:
S= AB = aAbB = abB = abbBc = abbc

Example 3: L={ db/c* : i5j+k, j ,k =0} on substituting i=j+k = L = {a‘db/c*: j, k =0}
L ={¢, ac, ab, aabc, aaabce, }
Thedb' istheinner portion and ac*is the outer portion of any stringin L.
G=({S A, ab,c}, {ab,c}, R, S} where:

R={S—>aSc|A /* generatethe ac" outer portion

A —>aAb|e /* generatethedb' inner portion}

Example derivation in G for string aabc:
S= aSc = aAc = aaAbc = aabc

Example4: L = {a'ww" b™ w e {a b}*} ={, ab, aaab, abbb, aabbab, aabbbbab, }
The d'b” istheinner portion and wwR is the outer portion of any stringin L.
G={{S A, a b}, {a b}, R, S}, where:

R={S—»>aSh ---- rule 1
S»>A - rule 2
A—>aha - rule 3
A—bAb - rule 4
A—>e - rule5}.

Example derivation in G for string aabbab:
S= aSbh = aAb = aaAab = aabAbab = aabbab

Example 5: Equal Numbers of a’s and b’s. = {w e {a, b} *: #4(w) = #,(w)}.
L ={¢, ab, ba, abba, aabb, baba, bbaa, }
G={{S ab},{a b}, R, S}, where:

R={S—>aSh --- rule 1
S—»>bSa - rule 2
S»>SS - rule 3
S—»>eg - ruled}.
Example derivation in G for string abba:
S= aSa= abSba= abba
Example 6

L={db:2i=3j+1} ={ah',ab®, " }

G={{S ab},{a b}, R, S}, where:
db 2i=3+1
bt 2*2=3*1+1=4
ab® 2*5=3*3+1=10
&b’ 2*8=3*5+1=16

R={ S— aaaSbb |aab}

Example derivation in G for string aaaaabbb:

S = aaaSbb = aaaaabbb

4, Simplifying Context-Free Grammars

Two algorithms used to simplify CFG
a. Tofind and remove unproductive variables using removeunproductive(G:CFG)
b. To find and remove unreachable variables using removeunreachable(G:CFG)

a. Removing Unproductive Nonterminals:

Removeunproductive (G: CFG) =
1. G=0G.
2. Mark every nonterminal symbol in G' as unproductive.
3. Mark every terminal symbol in G’ as productive.
4. Until one entire pass has been made without any new symbol being marked do:
For each rule X — ain R do:

If every symbol in a has been marked as productive and X has not

yet been marked as productive then:

Mark X as productive.
5. Remove from G’ every unproductive symbol.
Remove from G’ every rule that contains an unproductive symbol.
7. Return G'.

o

Example: G=({S,A, B, C,D, a b}, {a b}, R, S), where
R={ S—> AB|AC
A —>aAb|e
B — bA
C — bCa
D AB}
1) aand b terminal symbols are productive
2) A isproductive(because A — aAb)
3) B is productive(because B — bA)
4) S& D are productive(because S— AB & D - AB)
5) C isunproductive
On éiminating C from both LHS and RHS the rule set R’ obtained is
R={S—>AB A—->aAble B—>DbA D->AB}

b. Removing Unreachable Nonterminals
Removeunreachable (G: CFG) =

1. G=0G.

2. Mark Sasreachable.

3. Mark every other nonterminal symbol as unreachable.

4. Until one entire pass has been made without any new symbol being marked do:

For each rule X — o AP (Where A € V - %) inR do:
If X has been marked as reachable and A has not then:
Mark A asreachable.

5. Remove from G’ every unreachable symbol.
Remove from G’ every rule with an unreachable symbol on the left-hand side.
7. RetunG'.

o

Example
G=({S A,B,C,D,a b}, {a b}, R,S), where
R ={S— AB

A —>aAb|e

B — bA

D—->AB}
S, A, B arereachable but D is not reachable, on eliminating D from both LHS and RHS the
ruleset R" is

R'={S—> AB
A —>aAb|e
B —> bA}

10

5. Proving the Correctness of a Grammar

Given some language L and agrammar G, can we provethat G is correct (ie it generates
exactly the stringsin L)
To do so, we need to prove two things:

1. Provethat G generatesonly stringsin L.

2. Provethat G generates all the stringsin L.

6. Derivationsand Parse Trees

Algorithms used for generation and recognition must be systematic. The expansion order is
important for algorithms that work with CFG. To make it easier to describe such agorithms,
we define two useful families of derivations.
a. A leftmost derivation is one in which, at each step, the leftmost nonterminal in the
working string is chosen for expansion.
b. A rightmost derivation is one in which, at each step, the rightmost nonterminal in the
working string is chosen for expansion.

Examplel:S -~ AB|aaB A - alAa B-b
Left-most derivation for string aab is S=AB=AaB > aB = a
Right-most derivation for stringaabis S= AB = Ab= Aab= aab

Example 2: S2>ICtS|iCtSeS|x C->y

Left-most Derivation for string iytiytxex is S = iCtS = iytS = iytiCtSeS = iytiytSeS =
iytiytxe = iytiytxex

Right-most Derivation for string iytiytxex is S = iCtSeS = iCtSex = iCtiCtSex = iCtiCtxex
= iCtiytxex = iytiytxex

Example 3: A Fragment of English Grammar are
S—> NPVP

NP — the Nominal | aNominal | Nominal | ProperNoun | NP PP
Nominal — N |AdjsN

N — cat | dogs | bear | girl | chocolate | rifle
ProperNoun — Chris | Fluffy

Adjs— Adj Adjs|Adj

Adj — young | older | smart

VP— V|V NP|VPPP

V — like| likes | thinks | shots | smells

PP — Prep NP

Prep — with

11

Left-most Derivation for the string “the smart cat smells chocolate”
S= NPVP

= the Nomina VP

= the AdjsN VP

= the Adj N VP

= thesmart N VP

= the smart cat VP

= thesmart cat V NP

= the smart cat smells NP

= the smart cat smells Nominal

= the smart cat smellsN

= the smart cat smells chocolate

Right-most Derivation for the string “the smart cat smells chocolate”
S= NPVP
= NPV NP
= NPV Nominal
= NPV N
= NPV chocolate
= NP smells chocolate
= the Nominal smells chocolate
= the Adjs N smells chocolate
= the Adjs cat smells chocolate
= the Adj cat smells chocolate
= the smart cat smells chocolate

Parse Trees

Regular grammar: in most applications, we just want to describe the set of strings in a
language. Context-free grammar: we also want to assign meanings to the strings in a
language, for which we care about internal structure of the strings. Parse trees capture the
essential grammatical structure of a string. A program that produces such trees is called a
parser. A parse tree is an (ordered, rooted) tree that represents the syntactic structure of a
string according to some forma grammar. In a parse tree, the interior nodes are labeled by
non terminals of the grammar, while the leaf nodes are labeled by terminals of the grammar
or €.

A parsetree, derived by agrammar G = (V, S, R, S), isarooted, ordered tree in which:

1. Every leaf node islabeled with an element of Y U{ ¢},

2. Theroot nodeislabeled S,

3. Every other node is labeled with some element of: V -3, and

4 If misanonleaf node labeled X and the children of m are labeled x4, X5, ...,

Xn, then R containstherule X — Xq, Xo, ..., Xn.

12

Examplel:S—>AB|aaB A —»>alAa B-—ob
Left-most derivation for the string aab isS= AB = AaB = aaB = aab
Parsetree obtained is

Example 2: S—ICtS|iCtSeS|x C—y
Left-most Derivation for string iytiytxex isS= iCtS = iytS = iytiCtSeS = iytiytSeS
= iytiytxeS = iytiytxex

Example 3: Parse Tree -Structure in English for the string “the smart ca smells
chocolate”. It is clear from the tree that the sentence is not about cat smells or smart cat
smells.

=
NP
A y

Adjs N Nominal
| |

the smart cat smells chocolate

A parse tree may correspond to multiple derivations. From the parse tree, we cannot tell
which of the following is used in derivation:

S= NP VP = the Nomina VP =

S=NPVP= NPV NP>
Parse trees capture the important structural facts about a derivation but throw away the details
of the nonterminal expansion order. The order has no bearing on the structure we wish to
assign to a string.

Generative Capacity
Because parse trees matter, it makes sense, given agrammar G, to distinguish between:
1. G’s weak generative capacity, defined to be the set of strings, L(G), that G generates,
and
2. G’s strong generative capacity, defined to be the set of parse treesthat G generates.
When we design grammar, it will be important that we consider both their weak and their
strong generative capacities.

1. Ambiguity

Sometimes a grammar may produce more than one parse tree for some (or al) of the strings
it generates. When this happens we say that the grammar is ambiguous. A grammar is
ambiguous iff thereis at least one string in L(G) for which G produces more than one parse
tree.

13

Example 1: Ba={w < {),(} *: the parenthesis are balanced} .

G={{S),(}.{).¢ . RS} whereR={ S—»>¢& S—> SSS— (9}

Left-most Derivationl for the string (())() isS= S=(5S = ((9)S= ())S= (0)(S = (0))
Left-most Derivation2 for the string (())() isS = SS =SSS =SS = (S)S = ((9))S = (()S
= (0)S = (00

5 A

_ o /_x"‘_“*—h_ ~—¢ 3 e _ e — g
//T\ /l\\\ /\ //}H\\\
: 3 L) S (")
(A) { :l) | 3 N !
AN p T .
i N) |
: (5)
|
g

Since both the parse trees obtained for the same string (())() are different, the grammar is ambiguous.

Example2: S—» iCtS|iCtSeS|x C-vy

Left-most Derivation for the string iytiytxex isS = iCtS = iytS = iytiCtSeS = iytiytSeS =
iytiytxeS = iytiytxex

Right-most Derivation for the string iytiytxex is S = iCtSeS = iCtSex = iCtiCtSex
=iCtiCtxex = iCtiytxex = iytiytxex

S S
| €& £ 5 & & | £ % 3
L& 35 N xiﬁ‘TeT
| | ¢ i @

y X
Since both the parse trees obtained for the same string iytiytxex are different, the grammar is
ambiguous.

Example3:S—»> AB|aaB A —» al|Aa Bob
Left-most derivation for string aab is S=>AB=>AaB = aB = aa
Right-most derivation for stringaabis S= aaB = aab

S S5
/\ . J_!_/,—?’f\\\
A B a a B
s Y |
A a b b

Since both the parse wrees optainea ror the same string aab are different, the grammar is
ambiguous.

14

Why Is Ambiguity a Problem?

With regular languages, for most applications, we do not care about assigning internal
structure to strings.

With context-free languages, we usually do care about internal structure because, given a
string w, we want to assign meaning to w. It is generally difficult, if not impossible, to assign
a unigue meaning without a unique parse tree. So an ambiguous G, which fails to produce a
unigue parse tree is a problem.

Example : Arithmetic Expressions

G=(V, % R, E), where
V={+7*(),id E},
Z={+"* () id},
R={E—>E+E,E>E*E E—(E),E—id}

Consider string 2+3*5 written asid +id*id, left-most derivation for string id +id*id is
E= E*E=> E+E*E = id+E*E = id+Hid*E = id+id*id.

Similarly the right-most derivation for string id +id*id is

E = E+E = E+E*E = E+E*id = E+id*id = id+id*id.

The parse trees obtained for both the derivations are:-

,/fHHH

-

—

Il

i Sl xh"‘“‘m _,’—"’-/f HH“‘“&.
E E E E
E E E E
id + id id id

2 3

id

3

Should the evaluation of this expression return 17 or 25? Designers of practical languages
must be careful that they create |anguages for which they can write unambiguous grammars.
Techniquesfor Reducing Ambiguity
No general purpose algorithm exists to test for ambiguity in a grammar or to remove it when
it isfound. But we can reduce ambiguity by eliminating
a cruleslikeS - ¢
b. Ruleswith symmetric right-hand sides
e A grammar isambiguousif it is both left and right recursive.
* Fix: remove right recursion
« S SS or E-E+E
c. Rulesetsthat lead to ambiguous attachment of optional postfixes.

15

a. Eliminating eRules
Let G =(V, Z, R, S) be a CFG. The following agorithm constructs a G’ such that L(G') =
L(G)-{e} and G’ containsno ¢ rules:
removeEps(G: CFG) =
1l LG =G.
2. Find the set N of nullable variablesin G'.
3. Repeat until G’ contains no modifiable rules that haven’t been processed:
Given the rule P—aQp, where Q € N, add the rule P—af if it is not aready present
andif aff # e andif P= af.
4. Delete from G’ al rules of theform X — «.
5. Return G'.

Nullable Variables & Modifiable Rules
A variable X is nullable iff either:
(1) thereisarule X — ¢, or
(2) thereisarule X —» PQR... and P, Q, R, ... are all nullable.
So compute N, the set of nullable variables, as follows:
2.1. Set N to the set of variables that satisfy (1).
2.2. Until an entire pass is made without adding anything to N do
Evaluate al other variables with respect to (2).
If any variable satisfies (2) and isnot in N, insert it.
A ruleis modifiableiff it is of the form: P — aQ, for some nullable Q.
Example G={{S, T,A,B,C,a b, c},{abc,R,9),
R= {S—aTa T>ABC A—->aA|C B—->Bb|C C-ocle}
Applying removeEps
Step2: N={ C}
Step2.2passl: N={ A,B,C}
Step2.2pass2: N={ A,B,C, T}
Step2.2 pass3: no new element found.
Step2: halts.
Step3: adds the following new rulesto G'.
{S—aa
T—> AB|BC|AC|A|B]|C
A—a
B->b}

The rules obtained after eliminating e-rules:
{ S— ala|aa
T—>ABC|AB|BC|AC|A|B|C
A—->aA|Cla

B—>Bb|C|b

C—oc}

16

What If el L?
Sometimes L(G) contains ¢ and it is important to retain it. To handle this case the algorithm
usedis
atmostoneEps(G: CFG) =
1. G = removeEps(G).
2. If Sgisnullable then [*i.e,eeL(G)
2.1 Createin G” anew start symbol S*.
2.2 Addto Rg' thetwo rules:S* —- ¢ and S* — Se.
3. Return G".

Example: Ba={w € {),(} *: the parenthesis are balanced} .

R={S >SS R={ S— SS R={ S > ¢
S— (9 — S—=> (9 —_ S —>S
S— ¢} S— ()} S—> SS

S—> (9
S— ()}

The new grammar built is better than the original one. The string (())() has only one parse
tree.

S
t* 5 Wi)
(= b1
.

But it is still ambiguous as the string ()()() has two parse trees?

5 3
s S
S & s s
- /\\. fﬁ\ fﬁ‘ / & \\‘
S s 1% I\ 5 S
N g [\ / 4N VAN
() () () () ¢) ()
Replace S— SSwith one of:

S—»SS [* force branching to the | eft
S— §S /* force branching to the right

So we get: S —>¢ |S
S—> S5 [* force branching only to the left
S>> S [* add rule

SS—> (910

17

Unambiguous Grammar for Bal={w < {),(} *: the parenthesis are balanced} .
G={{S).(},{).¢ RS} where

S > &n|S
S—> S5 [S
Si—> (9 [0
The parse tree obtained for the string ()()() is
S
BN
S S:
R g
? /5\1()
& // “\\
PR]

Unambiguous Arithmetic Expressions
Grammar is ambiguous in two ways:
a. It falsto specify associatively.
Ex: there are two parses for the string id + id + id, corresponding to the bracketing (id +
id) +idand id + (id + id)
b. It fallsto define a precedence hierarchy for the operations + and *.
Ex: there are two parses for the string id + id * id, corresponding to the bracketing (id +
id* idandid + (id * id)
The unambiguous grammar for the arithmetic expression is:
E>E+T
E->T
To>T*F
T—> F
F— (E)
F—id
For identical operators. forced branching to go in a single direction (to the left). For
precedence Hierarchy: added the levels T (for term) and F (for factor)
The single parse tree obtained from the unambiguous grammar for the arithmetic expression
is:

“\ o)
JJI e

18

Proving that the grammar is Unambiguous
A grammar is unambiguous iff for all strings w, at every point in a leftmost derivation or
rightmost derivation of w, only onerulein G can be applied.

S>e (1)
>SS (2
S— S8 ---(3)
S-S 4
S — () ---(5)
SS—> (0 --(6)
§* =S85, 2855 =2558=>(055=>00S=>000
s
5
//\\\
2 23
P B, R
s s)
A

I nherent Ambiguity

In many cases, for an ambiguous grammar G, it is possible to construct a new grammar G’
that generate L(G) with less or no ambiguity. However, not always. Some languages have the
property that every grammar for them is ambiguous.We call such languages inherently
ambiguous.

Example: L = {ablc®:i,j,k > 0,i=j orj=k}.

Every string in L has either (or both) the same number of a’s and b’s or the same number of
b’sand ¢’s. L ={ab"c™ n,m>0} u{ad"c™ n, m=>0}.

One grammar for L hasthe rules:

S—>S|S
S, — Sic|A I* Generate al stringsin {a'b"c™}.
A —>aAb|e
S, —»aS;|B /* Generate al stringsin {a'b™c™}.
B > DbBc|e

Consider the string a?b’c? .

It has two distinct derivations, one through S; and the other through S,

S=S; = S;c= S;cc = Acc = aAbcc = aaAbbcc = aabbcec

S= S, = aS, > aaS, = aaB = aabBc = aabbBcc= aabbcc

Given any grammar G that generates L, thereis at least one string with two derivationsin G.

| =

=. i
=i s s

= e i R A

T = .

P

= P i o i =

= e P> T =

Both of the following problems are undecidable:
» Given acontext-free grammar G, is G ambiguous?
» Given acontext-free language L, is L inherently ambiguous

19

8. Normal Forms
We have seen in some grammar where RHS is ¢ , it makes grammar harder to use. Lets see
what happens if we carry the idea of getting rid of ¢ -productions a few steps farther. To
make our tasks easier we define normal forms.
Normal Forms - When the grammar rulesin G satisfy certain restrictions, then G is said to be
in Normal Form.
* Normal Formsfor queries & data can simplify database processing.
* Norma Forms for logical formulas can simplify automated reasoning in Al systems
and in program verification system.
* It might be easier to build a parser if we could make some assumptions about the form
of the grammar rules that the parser will use.
Normal Forms for Grammar
Among several normal forms, two of them are:-
* Chomsky Norma Form(CNF)
* Grelbach Normal Form(GNF)

Chomsky Normal Form (CNF)
In CNF we have restrictions on the length of RHS and the nature of symbols on the RHS of
the grammar rules.
A context-free grammar G = (V, Z, R, S) is said to be in Chomsky Norma Form (CNF), iff
every rulein R is of one of the following forms:

X —>a whereaeX,or

X —BC wheeBandC € V-X
Example: S— AB, A—>aB—-b
Every parse tree that is generated by a grammar in CNF has a branching factor of exactly 2
except at the branches that leads to the terminal nodes, where the branching factor is 1.
Using this property parser can exploit efficient data structure for storing and manipulating
binary trees. Define straight forward decision procedure to determine whether w can be
generated by a CNF grammar G. Easier to define other algorithms that manipulates
grammars.

Greibach Normal Form (GNF)

GNF is a context free grammar G = (V, Z, R, S), where all rules have one of the following
forms: X —>a3 whereaeXandp e (V-X)*

Example: S—aA |aAB,A—>aB—->b

In every derivation precisely one terminal is generated for each rule application. This
property is useful to define a straight forward decision procedure to determine whether w can
be generated by GNF grammar G. GNF grammars can be easily converted to PDA with no ¢
transitions.

20

Converting to Chomsky Normal Form
Apply some transformation to G such that the language generated by G is unchanged.

1. Rule Substitution.
Example X— a¥yc Y>> bY — ZZ equivaent grammar constructed is X— abc | aZZc

There exists 4-steps algorithm to convert a CFG G into a new grammar G, such that: L(G) =
L(Gc) —{&}
convertChomsky(G:CFG) =
1. G =removeEps(G:CFG) Soe
2. G" =removeUnits(G"CFG) A->B
3. G"=removeMixed(G".CFG) A — aB
4. G"Y=removeLong(G":CFG) S— ABCD
return G

Remove Epsilon using removeEps(G:CFG)
Find the set N of nullable variablesin G.
Xisnullableiff either X > eor (X > A,A —>¢g): X >¢
Examplel: G: S— aACa
A—>Bla
B->C]|c
C—>cCle
Now, since C— ¢, Cisnullable
sinceB —» C, Bisnullable
sinceA —» B, Aisnullable
ThereforeN ={ A,B,C}
removeEps returns G".
S— aACa|aAalaCalaa
A—>Bla
B->C]|c
C—>cCjc

Remove Unit Productions using removeUnits(G:CFG)
Unit production is arule whose right hand side consists of a single nonterminal symbol.
Ex: A — B. Remove al unit production from G'.
Consider the remaining rules of G'.
G: S—>aACal|aAalaCalaa

A—>Bla

B->C]|c

C—>cClc
RemoveA - B ButB —> C|c,soAddA > C|c
RemoveB — C Add B — cC (B — c, dready there)
Remove A —- C Add A — cC (A — c, aready there)

21

removeUnits returns G" :
S— aACa|aAalaCalaa
A —>cClalc
B—->cClc
C—>cClc

Remove Mixed using removeMixed(G":CFG)

Mixed is a rule whose right hand side consists of combination of terminals or terminals with
nontermina symbol. Create a new nonterminal T, for each terminal a € X. For each T,, add

theruleT,— a
Consider theremaining rulesof G":
S— aACa|aAalaCalaa
A —>cClalc
B—->cClc
C—>cClc

removeMixed returns G™ :
S—> TACT,| TAT,| TLCTa| Tala
A—->TClalc
B->TLC]|c
C>TLC|c
Ta— a
Tc—>cC

Remove Long using removelL ong(G™ :CFG)

Long isarule whose right hand side consists of more than two nonterminal symbol.

R: A - BCDE isreplaced as. A — BM;
|V|2—) CM3
Ms;— DE

Consider the remaining rules of G™:

S— TACT,| TATa| TLTa

Now, by applying removelL.ong we get :

SH> TS

S —>AS

S, > CT,

So TS

S AT,

So TS

22

Now, by apply removelong returns G" :

So TS | TSz | TaS2 | Tala
S —>AS

S, > CT,

S — AT,

A—>TLClalc
B->TLC]|c

C>TLC|c

Ta—a

Tc—>cC

Example 2: Apply the normalization algorithm to convert the grammar to CNF

G:S—>asa|B
B — bbC | bb
C—>cCle
removeEps(G:CFG) returns
G:S—»asa|B
B — bbC | bb
C—>cClc
removeUnits(G":CFG) returns
G":S— aSa|bbC|bb
B — bbC | bb
C—>cClc
removeMixed(G":CFG) returns
G": S—> TaSTa| ToTuC | TuTh
B— TbTbC | TbTb
Co>TLC|c
T.— a
Tb—) b
Tc—C
removeLong(G" :CFG) returns
G'VZ S— TaSg_ | TbSZ | ToTo
S —> ST,
Sz —> Tb C
B— Tb SQ | TbTb
C—> TL]|c
To— a
Tb—) b
Tc—C

23

Example 3: Apply the normalization agorithm to convert the grammar to CNF
G: S - ABC

A - aC|D

B-bBle|lA

C - Acle|Cc

D - aa

removeEps(G:CFG) returns
G: S ABC|AC|AB|A
A - aC|D]a
B bB|A|Db
C - Ac|Cc|c
D - aa

removeUnits(G":CFG) returns
G’: S- ABC|AC|AB|aC|aala
A - aClaala
B - bB|aC|aa|al|b
C - Ac|Cc|c
D - aa

removeMixed(G":CFG) returns
G": S ABC|AC|AB|T.C|TaTala
A - T,C|TaTa|a
B TpB|T.C|TaTalalb
C-AT:|CT|cC
Do TaTy
Te—a
Tb—) b
Te—>cC

removeLong(G" :CFG) returns
G": S AS|AC|AB|T.C|TaTala
S - BC
A - T,C|TaTa|a
B TpB|TaC|TaTa|alb
C-AT|CT¢|cC
D - TaTa
Ta—a
Tb—) b
Tc—C

24

0. Pushdown Automata

An acceptor for every context-free language. A pushdown automata , or PDA, is afinite state
machine that has been augmented by a single stack.
Definition of a(NPDA) Pushdown Automaton
M=(K,S G,A,s, A), where
K isafinite set of states,
S isthe input alphabet,
G isthe stack alphabet,
s € K istheinitia state,
A € K isthe set of accepting states, and
A is the transition relation.

A is the transition relation. It is a finite subset of

(K =< (Zw {e}) = ™) >< (K >< ™)
L | | |
state iNnput or = string of state string of
symbols symbols
to pop to push
from top on top
of stack of stack

Configuration
A configuration of PDA M is an element of K X S* X G*. Current state, Input that is still left

to read and, Contents of its stack.
Theinitial configuration of a PDA M, oninput w, is (s, w, €).

E will be written as cba

o
c
b

If s15,...5,is pushed onto the stack: the value after the push is s;s,...s,cba
Yields-in-one-step
Yields-in-one-step written |-\ relates configuration; to configuration, iff M can move from
configuration; to configuration, in one step. Let ¢ be any element of Y U {¢ }, let y1,
y2 and y be any elements of G*, and let w be any element of S*. Then:

(01, oW, ¥1y) |-m (02, W, ¥2y) iff (G, €, ¥1), (o, ¥2)) € A.
The relation yields, written |-u* is the reflexive, transitive closure of |y C; yields
configuration C,iff Cy |-u* Cz

25

Computation
A computation by M is a finite sequence of configurations Cy C;, Cs
such that:
* Cpisaninitia configuration,
* C,isof theform(q, &, y). for someq € K and somestring y in G*, and
* GColm Cilm Colm I-n Ca,

yyyyyyyyyyyy

C,for somen =0

LEETELIRRERLN]

Nondeter minism
If M isin some configuration (g, S, y) it is possible that:
e A contains exactly one transition that matches. In that case, M makes the specified
move.
e A contains more than one transition that matches. In that case, M chooses one of
them.
e A contains no transition that matches. In that case, the computation that led to that
configuration halts.

Accepting
Let C be acomputation of M on input w then C is an accepting configuration
iif C=(s,w, &) |-v* (q, &, €), for someq € A.

A computation accepts only if it runs out of input when it is in an accepting state and the
stack is empty.
C isargecting configuration if C=(s,w, &) |-u* (g, W', o),
where C is not an accepting computation and where M has no moves that it can makes from
(g, W', o). A computation can reject only if the criteria for accepting have not been met and
there are no further moves that can be taken.
Let w beastring that is an element of S* . Then:

* M acceptsw iif atleast one of its computations accepts.

* M rgectswiif al of its computations reject.
The language accepted by M, denoted L (M), isthe set of al strings accepted by M. M rejects
astring w iff al pathsreect it.
It is possible that, on input w, M neither accepts nor rejects. In that case, no path accepts and
some path does not reject.

Transition
Transition ((qu, €, y1), (02, ¥2)) saysthat “If ¢ matches the input and g; matches the current
top of the stack, the transition from ¢ to g, can be taken. Then, ¢ will be removed from the
input, y1 will be popped from the stack, and y2 will be pushed onto it. M cannot peek at the
top of the stack without popping

* If ¢ = ¢, the transition can be taken without consuming any input.

* If y1= ¢, thetransition can be taken without checking the stack or popping anything.

Note: it’s not saying “the stack is empty”.
* If y2 =g, nothing is pushed onto the stack when the transition is taken.

26

Examplel: A PDA for Balanced Parentheses. Ba={w < {),(}*: the parenthesis are

balanced}

M=(K,S G,A, s A),

where:
K={s} the states
S={(,)} the input al phabet
r ={@¢ the stack a phabet
A={s} the accepting state

A= { ((S! (’E)n (S;! ()) """ (1)
() () (s 8) - 2}

Y (/e

An Example of Accepting -- Input string = (())()

S (0.8 FS 00, OFENO.O0FES)0.0FES0,81-6S),0FES €€
The computation accepts the string ((())() as it runs out of input being in the accepting state S
and stack empty.

Transition | State | Unread | Stack
Input
S | MO | =7
1 S | 00 (
1 S |)0 ((
2 S)0 (
2 S 0 —
1 S) (
2 S s —
Examplel of Reecting -- Input string = (()))
(S 0e) 1-(S, L0 - (S0 1-(S, N0 1-(S,), €)
Transition | State Qnread Stack
input
S | (0) —
1 S 0) (
1 S) ((
2 S) (
2 S) =

The computation has reached the fina state S and stack is empty, but still the string is
rejected because the input is not empty.

27

Example2 of Rejecting -- Input string = ((())

Transition | State | Unread input | Stack

S ((0) g
1 S (V) (
1 S 0) ((
1 S) («
2 S) ((
2 S € (

(S, ((0):8) 1- (S, (0N - (SO0 1- (S MU0 1- (5,00 1- (S, €,0

The computation has reached the final state S and runs out of input, but still the string is
rejected because the stack is not empty.

Example 2: A PDA for A"B"={ab" n > 0}
M=(K,S, G,A s A),

where:
K={s, f} the states
S={a b} the input al phabet
r={a the stack alphabet

A ={s, f} the accepting state

A={(sasg),(sa) - (1)
((sba)(fe) - 2
((f,ba),(fe)} ----- ©)

a/e/a b/a/e
b/a/s

An Example of Accepting -- Input string = aabb
(f, aabb,¢) |- (f, abb, a) |- (f, bb, @) |- (f, b, @) |- (f, &, &)

The computation has reached the fina state f, the input string is consumed and the stack is
empty. Hence the string aabb is accepted.

Example3: A PDA for {wew™: w € {a, b} *}
M=(K,S G, A sA),

where:
K={s f} the states
S={ab,c} the input al phabet
I'={a b} the stack alphabet
A ={f} the accepting state

28

A={((saze).(s & - (1)
(s be)(sh) - 2)
((sce),(fe) -)
((f.aa),(fe) - (4)
((f, b, b), (f,e))} - ()

a/s/a

b/e/b

An Example of Accepting -- Input string = abcba

(s, abcbae) |- (s, bebha, a) |- (s, chaba) |- (f, ba, ba) |- (f, a &) |- (f, &, &)

The computation has reached the fina state f, the input string is consumed and the stack is
empty. Hence the string abcba is accepted.

Example 4: A PDA for A"B*" = {d'h*": n > 0}
M=(K,SG,A s A),
where:

K={s, f} the states

S={a b} the input al phabet

I ={a the stack alphabet

A ={s f} the accepting state

A={((sazs)(sa)) (1)

(s b,a) (f,e) -)
((f,b,a),(f,)} -3

a/e/aa

&

An Example of Accepting -- Input string = aabbbb
(s, aabbbb,) |- (s, abbbb, aa) |- (s, bbbb,aaaa) |- (f, bbb, aaa) |- (f, bb, aa) |-(f, b, @) |- (f, &, &)

29

10. Deterministic and Nondeter ministic PDAS

A PDA M isdeterministic iff:
» Ay contains no pairs of transitions that compete with each other, and
* whenever M isin an accepting configuration it has no available moves.
» |If gisan accepting state of M, then there is no transition ((q, e, €) ,(p, &) for
anypora
Unfortunately, unlike FSMs, there exist NDPDA s for which no equivalent DPDA exists.

Exploiting Nondeter ministic

Previous examples are DPDA, where each machine followed only a single computational
path. But many useful PDAS are not deterministic, where from a single configuration there
exist multiple competing moves. As in FSMs, easiest way to envision the operation of a
NDPDA M isasatree.

- abab, =
_#___________————________'_d_—_ EHHEHE_
- abab, # q,. bab, a#
,,—o—"_'___-___‘-\-\\\-;_
e Te—
_Fff H‘\‘\HR
q1. ab, ab# qs. ab, a#

Each node in the tree corresponds to a configuration of M and each path from the root to a
leaf node may correspond to one computation that M might perform. The state, the stack and
the remaining input can be different along different paths. As a result, it will not be possible
to ssimulate all pathsin paralel, the way we did for NDFSMs.

Example 1: PDA for PalEven ={ww™: w € {a, b} *}.

The L of even length palindrome of a’s and b’s. ={&, aa, bb, aaaa, abba, baab, bbbb, }
M=(K,SG,A s A),
where:

K={s, f} the states

S={a b} the input al phabet

I'={a b} the stack al phabet

A ={f} the accepting state

A={((s az2)(s &) - D)
((S! b! 8)! (S, b)) """ (2)
((S! €, 8)! (f! 8)) """ (3)
((f.aa),(fe) - (4)
((f, b, b), (f,e)} -—-- (5)

aje/a

30

Example 2: PDA for {w € {a, b}* : #4(w) = #,(w)}= Equal Numbers of a’s and b’s.
L ={e, ab, ba, abba, aabb, baba, bbaa, }
M=(K,SG,A s A),

where:
K={s} the states
S={a b} the input al phabet
I ={a b} the stack alphabet
A={s} the accepting state
A={((s az¢) (s @) - (1)

(s be) (s b) - 2
((sab)(se) - ©)
((S! b! a), (S! 8))} """ (4)

a/e/a
' a/b/e
2O)
b/a/e ‘

b/e/b

Example 3: The a Region and the b Region are Different. L = {a"™0": m#n; m, n> 0}
It is hard to build a machine that looks for something negative, like #. But we can break L
into two sublanguages: {ad™":0<n<m} and {d"":0<m<n}

o |If stack and input are empty, halt and reject

* If input isempty but stack isnot (m > n) (accept)

» |f stack isempty but input is not (m < n) (accept)

Start with the case where n=m
a/e/a b/a/e

b/a/e
| &)

A={(L1as¢, (La) -)
(1. ba)(25e) -)
(2. b,a),(2¢)} - ©)

If input is empty but stack is not (m > n) (accept):

a/e/a b/a/s g/fa/e
b/a/e }__Q g/a/e _ .
' ©

©

31

A={(Lae), (1 a) - D)
((1! b! a)! (2! 8)) """ (2)
((2! b! a)! (2! 8)) """ (3)
((2! €, a), (3! 8)) """ (4)
(B.z,a),(3,¢)} —-(5

If stack is empty but input is not (m < n) (accept):

a/=/a Q hza/i:"a/jQ
A @D, D

o PR S
M,

b/e/& —
(ﬂ;:)k::) b/e/s

A={(Lae), (1 a) - D)
((1, b, a), (21 8)) """ (2)
(2.b,a),(2¢) - ©)
((2.b,¢), (4¢) - 4)
((4.b,¢), (4,2)) } -—(5)

Putting all together the PDA obtained is
M=(K,S G,A s A),
where:
K={1,234} thedtates
S={a b} the input al phabet
I ={a the stack alphabet
A ={3/4} the accepting state

a/e/a b/a/e g/a/e
b/a/e e/afe

A={(Lae), (1 a) - 1)
((1, b, a), (21 8)) """ (2)
(2.b,a),(2¢) - ©)
(2.ea),(3¢) - 4)
(B.za) (3¢)} - ©)
(2.b,¢),(4¢) - (6)
((4.0,¢), (4€)} - (7)

32

o

a/s/a b/a/=s R s/a/=
= b/a/=s L‘Z e/a/e _
s

b/=/&

Q b/e/e

Two problems with thisM:
1. We have no way to specify that a move can be taken only if the stack is empty.
2. We have no way to specify that the input stream is empty.
3. Asaresult, in most of its movesin state 2, M will have a choice of three pathsto take.

Techniquesfor Reducing Nondeter minism
We saw nondeterminism arising from two very specific circumstances:
» A transition that should be taken only if the stack is empty competes against one or
more moves that require a match of some string on the stack.

* A transition that should be taken only if the input stream is empty competes against
one or more moves that require a match against a specific input character.

Casel: A transition that should be taken only if the stack is empty competes against one or
more moves that require a match of some string on the stack.

Problem: Nondeterminism could be eliminated if it were possible to check for an empty
stack.

Solution: Using a special bottom-of-stack marker (#)

Before doing anything, push a special character onto the stack. The stack is then logically
empty iff that special character (#) is at the top of the stack. Before M accepts a string, its
stack must be completely empty, so the special character must be popped whenever M
reaches an accepting state.

a/e/a b/a/e g/a/e
\Q efe/# ._/Cl b/a/e _Q e/a/e "
u ’ ©

el#le

Now the transition back to state 2 no longer competes with the transition to state 4, which can
only be taken when the # is the only symbol on the stack. The machine is still
nondeterministic because the transition back to state 2 competes with the transition to state 3.

33

Case2: A transition that should be taken only if the input stream is empty competes against
one or more moves that require a match against a specific input character.

Problem: Nondeterminism could be eliminated if it were possible to check for an empty input
stream.

Solution: using a special end-of-string marker ($)

Adding an end-of-string marker to the language to be accepted is a powerful tool for reducing
nondeterminism. Instead of building a machine to accept a language L, build one to accept
L$, where $isaspecia end-of-string marker.

a/e/a b/a/e e/a/e
e/e/# _Jg:;\ b/a/e h/[:;\ $/a/e "
\\K:Ezj> ’ijg/) ’-<::;) el#tle

b/s/e
$/e/e

A

b/#/e

Now the transition back to state 2 no longer competes with the transition to state 3, since the
can be taken when the $ is read. The $ must be read on al the paths, not just the one where
we need it.

11. Nondeterminism and Halting

Recall Computation C of a PDA M = (K, S, G, A, s, A) on a string w is an accepting
computation iif C= (s, w, €) |-u* (q, &, €), for someq € A.
A computation C of M haltsiff at least one of the following condition holds:

e Cisan accepting computation, or

e Cendsinaconfiguration from which thereisno transition in A that can be taken.
M halts on w iff every computation of M on w halts. If M halts on w and does not accept,
then we say that M rejectsw.
For every CFL L, we’ve proven that there exists a PDA M such that L(M) = L.
Suppose that we would like to be able to:

1. Examine astring and decide whether or not it isL.

2. Examineastring that isin L and create a parse tree for it.

3. Examineastring that isin L and create aparsetreefor it intimethat islinear in the

length of the string.

4. Examine astring and decide whether or not it isin the complement of L.
For every regular language L, there exists a minimal deterministic FSM that accepts it. That
minimal DFSM halts on all inputs, accepts all strings that arein L, and rejects all strings that
arenotinlL.

34

But the facts about CFGs and PDAs are different from the facts about RLs and FSMs.
1. There are context-free languages for which no deterministic PDA exists.
2. ltispossiblethat a PDA may
e not halt,
e not ever finish reading its input.
However, for an arbitrary PDA M, thereexists M’ that haltsand L(M’) = L(M).
There exists no algorithm to minimize a PDA.. It is undecidable whether a PDA is minimal.
Problem 2 : Let M be a PDA that accepts some language L. Then, on input w, if w € L then
M will halt and accept. But if w L then, while M will not accept w, it is possible that it will
not reject it either.
Examplel: Let S={a} and consider M =

:—:/&:/a - a/a/a .
L))
e—?/.t:/a

For L(M) ={a}. The computation (1, a, €) |- (2, & @) |- (3, e, €) causes M to accept a.
Example2: Consider M =

:—:/.L:/a _ El/a/:—: -
| Q=) an ©
:—:/.L:/a

For L(M) = {aa} or on any other input except a:
1,8)| (2,aa a |-(1, aa ad) |- (2, aa, aaad) |- (1, aa, aaaa) |- (2, aa, aaaaa) |-
M will never halt because of one path never ends and none of the paths accepts.
The same problem with NDFSM's had a choice of two solutions.
e Converting NDFSM to and equivalent DFSM using ndfsmtodfsm algorithm.
e Simulating NDFSM using ndfsmsimul ate.
Neither of these approaches work on PDAs. There may not even be an equivaent
deterministic PDA.
Solution fall into two classes:
e Formal ones that do not restrict the class of the language that are being considered-
converting grammar into normal forms like Chomsky or Greibach normal form.
e Practical ones that work only on a subclass of the CFLs- use grammars in natural
forms.

12. Alternative Equivalent Definitions of a PDA

PDA M=(K,S,G,A,s A):

1. Allow M to pop and to push any string in G*.

2. M may pop only asingle symbol but it may push any number of them.

3. M may pop and push only asingle symbol.
M accepts its input w only if , when it finishes reading w, it is in an accepting state and its
stack is empty.

35

There are two aternativesto this:
1. PDA by Final state: Accept if, when the input has been consumed, M lands in an
accepting state, regardless of the contents of the stack.
2. PDA by Empty stack: Accept if, when the input has been consumed, the stack is
empty, regardless of the state M isin.
All of these definitions are equivalent in the sense that, if some language L is accepted by a
PDA using one definition, it can be accepted by some PDA using each of the other definition.
For example:- If some language L is accepted by a PDA by Final state then it can be accepted
by PDA by Findl state and empty stack. If some language L is accepted by a PDA by Final
state and empty stack then can be accepted by PDA by Final state.
We can prove by showing algorithms that transform a PDA of one sort into and equivalent
PDA of the other sort.
Equivalence
1. Given a PDA M that accepts by accepting state and empty stack, construct a new
PDA M’ that accepts by accepting state alone, where L(M') = L(M).
2. Given a PDA M that accepts by accepting state alone, construct a new PDA M’ that
accepts by accepting state and empty stack, where L(M’) = L(M).
Hence we can prove that M’ and M accept the same strings.
1 Accepting by Final state Alone

DefineaPDA M = (K, S, G, A, s, A). Accepts when the input has been consumed, M lands
in an accepting state, regardless of the contents of the stack. M accepts if C= (s, w, €) |-v* (q,
€, g), forsomeq e A.
M’ will have a single accepting state g,. The only way for M’ to get to g, will beto land in an
accepting state of M when the stack is logically empty. Since there is no way to check that
the stack is empty, M’ will begin by pushing a bottom-of-stack marker #, onto the stack.
Whenever # is the top symbol of the stack, then stack islogically empty.
The construction proceeds as follows:
1. Initidly, let M’' =M.
2. Create anew start state s'.
Add thetransition ((S, ¢, €),(S, #)),
3. For each accepting stateain M do:
Add the transition ((a, & ,#),(0a €)).
4. Make g, the only accepting state in M’
Example:

cle\c Llel(.
)

) -
G, o

>[c|e \efe

36

It is easy to see that M’ lands in its accepting state(q,) iff M lands in some accepting state
with an empty stack. ThusM’ and M accept the same strings.
2. Accepting by Final state and Empty stack
The construction proceeds as follows:
1. Initidly, let M’ =M.
2. Create anew accepting state F
3. From each accepting state ain M do:
Add thetransition ((a €, €),(F, €)),
4. Make F the only accepting state in M’
5. Forevery element g of I',
Add the transitionto M’ ((F, €, g), (F, €)).
In other words, iff M accepts, go to the only accepting state of M’ and clear the stack. Thus
M" will accept by accepting state and empty stack iff M accepts by accepting state.
Example:-
' A

Lellad . 713
v .

ThusM’ and M accept the same strings.

13. Alternativesthat are not equivalent to the PDA

We defined a PDA to be afinite state machine to which we add a single stack.

Two variants of that definition, each of which turns out to define a more powerful class of a

machine.

1. First variant: add a first-in, first-out (FIFO) queue in place of a stack. Such machines
are called tag systems or Post machines.

2. Second variant: add two stacks instead of one. The resulting machines are equivaent in
computational power to Turing Machines.

37

SI.No

Sample Questions

1. | Define context free grammars and languages.
2. | Show acontext-free grammar for each of the following languages L:
a) Ba_\IDeIim ={w: wherew isastring of delimeters. (,), [,], {, }, that are properly balanced}.
b) {ab:2i=3j+1}.
¢ {ab:2i#3j+1}.
d) {abc“:i,j,k=0and (i #]jorj#k)}.
3. | Define CFG. Design CFG for the language L={ d'b™: n# m}
4. | Apply the simplification algorithm to simplify the given grammar
S ABJAC A - aAble B - bA C-bCaD - AB
5. | Provethe correctness of the grammar for the language:
L={w € {a, b}* : #a(W) = #p(W)}.
6. | Define leftmost derivation and rightmost derivation. Given the following CFG.
E>E+T[T T> T*FF F->(E)|alblc
Draw parse tree for the following sentences and also derive the leftmost and rightmost derivations
i) (atb)*c ii) (a8 +b*c
7. | Consider the following grammar G: S - 0S1 |SS| 10
Show a parse tree produced by G for each of the following strings:
a) 010110
b) 00101101
8. | Define ambiguous and explain inherently ambiguous grammars.
9. | Prove whether the given grammar is ambiguous grammar or not.
E>E+E E-> E*Elablc
10, Prove that the following CFG is ambiguous S=iCtS|iCtSeS)x C->y for the sting iytiytxex
11, Define Chomsky normal form. Apply the normaization algorithm to convert the grammar to
Chomsky normal form.
a S-aSa S-B B - bbC
b S-ABC A-aC|D B -bB|e|A
C- Acle|Cc D - aa
12| Define Push down automata (NPDA). Design a NPDA for the CFG given in Question (2).
13, Design aPDA for the given language.L$, where L = {w € {&, b}* : #a(w) = #p(w)}.
14| Design aPDA for the language: L={ db'c*: i+j=k ,i>=0,j>=0}
15| Design aPDA for the language L={ ab®: n>=1}
16] Design aPDA for the language: L={ db'c: i+k=j ,i>=0,k>=0}
17| Design aPDA for the language: L={ ab/c*: k+j=i ,k>=0,j>=0}

38

Module-4

Context-Free and Non-Context-Free Languages

Where Do the Context-Free Languages Fit in the Big Picture?
Showing that a Language is Context-Free

Pumping theorem for CFL

Important closure properties of CFLs

Deterministic CFLs

Algorithms and Decision Procedures for CFLs: Decidable questions
Undecidable questions

Turing Machine: Turing machine model

Representation

Language acceptability by TM

Designof TM

- F & F & F F F F F F # ¥

Techniques for TM construction.

Context-Free and Non-Context-Free Languages

e The language A"B" ={a"b"| n>0} is context-free.
e The language A'B"C" ={ a"b"c" n>0} is not context free because a PDA's stack cannot count

all three of the letter regions and compare them.

Where Do the Context-Free Languages Fit in the Big Picture?
THEOREM: The Context-Free Languages Properly Contain the Regular
Languages.

Theorem: The regular languages are a proper subset of the context-free languages.
Proof: We first show that every regular language is context-free. We then show that there
exists at least one context-free language that is not regular.

Every regular language is context-free : We show this by construction.

» If Lis regular then it is accepted by some DFSM M = (K, X, 3, s, A).
» From M we construct a PDA
M= (K2, I'",A%s’,A”) to accept L. where A'is constructed as follows:
For ewvery transition (qic,0;)in o, add to A" the transition ((qic.¢)(gi¢)), SO
L(M)=L(M").

So, the set of regular languages is a subset of the CFL.

There exists at least one context-free language that is not reqular_: The regular languages
are a proper subset the context-free languages because there exists at least one language a"b"
that is context —free but not regular.

Theorem: There is a countably infinite number of context-free
languages.

Proof:

Every context-free language is generated by some context-free grammar G = (V,X,R,S).

There cannot be more CFLs than CFGs. So there are at most a countably infinite number of
context-free languages. There is not a one-to-one relationship between CFLs and CFGs, since
there are an infinite number of grammars that generate any given language. But we know that,
every regular language is context free and there is a countably infinite number of regular
languages.

So there is at least and at most a countably infinite number of CFLs.

Showing That a Language is Context-Free

Two techniques that can be used to show that language L is context-free:
*Exhibit a context-free grammar for it.
*Exhibit a (possibly nondeterministic) PDA for fit.

Theorem: The length of the vield of any tree T with height h and

branching factor b is <= b".

Proof:

If his 1, then asingle rule applies. So the longest yield is of length less than or equal to b.
Assume the claim is true for h=n. We show that it is true for h=n+1.
Consider any tree with h=n+1. It consists of a root, and some number of subtrees, each of height
<=n. By the induction hypothesis, the length of the yield of each of those subtrees is <= b". So the
length of the yield must be <=b.(b")=b"*!=b".

The Pumping Theorem for Context-Free languages
Statement: If L is CFL, then: 3k>1 (Vstrings weL, where |w>k (3uU,vV.X.V.Z

(W=uvxvz, vvz€, [vxy| <k and Vq > 0 (uv'™y%z is in L))))

Proof: If L is context-free, then there exists a CFG G=(V,X,R,S) with n nonterminal symbols and
branching factor b.

Let k be b™™.

Any string that can be generated by G and whose parse tree contains no paths with repeated
nonterminals must have length less than or equal to b". Assuming that b>2, it must be the case that
b™*! > b". So let w be any string in L(G) where |w>k.

Let T be any smallest parse tree for w. T must have height at least n+1. Choose some path in T of
length at least n + 1. Let X be the bottom-most repeated non terminal along that path. Then w can be

rewritten as uvxyz as shown in below tree,

§=0% u X7 =% ypX yz=* yuxye,

The tree rooted at [1] has height at most n+1.Thus its yield, vxy, has length less than or equal
to bn+1,which is k. Further, vy#E .Since if vy were € then there would be a smaller parse tree for w
and we choose T so that h at wasn't so.
Finally, v and y can be pumped: uxz must be in L because rule2 could have been used immediately
at[1]. And, for any g>1, uv*y% must be in L because rulel could have been used q times before
finally using rule2.

Application of pumping lemma (Proving Language is Not Context Free)

Ex1: Prove that the Language L = {a"b"c"| n>=0} is Not Context-Free.

Solution: If L is CFL then there would exist some k such that any string w, where |w[>=k must
satisfy the conditions of the theorem.

Let w = a¥b¥cX, where ‘k’ is the constant from the Pumping lemma theorem. For w to satisfy
the conditions of the Pumping Theorem there must be some u,v,x,y and z, such that w=uvxyz, vy#£€,
lvxyl<k and Vq >0, uv¥y%z is in L.

w=aaa...aaabbb...bbbccc...ccc, select v and y as follows:

w=aaa.. .a%al\)/bb . .bbb%% ..ccc

VZ 2

y
w=aaa...a}aabbaabb }3 . bb({cccc.

Let g=2, then

.CCC

The resulting string will have letters out of order and thus not in L.

So L is not context-free.

Ex 2: Prove that the Language L= {WcW: we{a,b}*lis Not Context-Free.

For w to satisfy the conditions of the Pumping Theorem there must be some u,v,x,y,and z, such that
w =uvxyz , vy£E, [vxy| <k and Vg>0, uv'xy“z is in L. We show that no such u,v,x,y and z exist.

Imagine w divided into five regions as follows:

aaa..aaabbb..bbbc

aaa..aaabbb..bb
1 2 3

4 5

Call the part before the c the leftside and the part after the c the right side. We consider all the
cases for where v and y could fall and show that in none of them are all the condition so f the theorem met:
« If either v or y overlaps region 3, set q to 0. The resulting string will no longer contain a ¢ and so is
not in WcW.
« If both v and y occur before region 3 or they both occur after region 3, then set g to 2. One side will
be longer than the other and so the resulting string is not in WcW.
« If either v or y overlaps regionl ,then set q to 2. In order to make the right side match. Something
would have to be pumped into region 4. But any v,y pair that did that would violate the requirement
that lvxyl <Kk.
« If either v or y overlaps region2, then set g to 2. In order to make the right side match, something
would have to be pumped into region 5. But any v,y pair that did that would violate the requirement
that vxyl <Kk.

* There is no way to divide w into uvxyz such that all the conditions of the Pumping Theorem
are met . So WcW is not context-free.

Some Important Closure Properties of Context-Free Languages

Theorem: The context- free languages are closed under Union,

Concatenation, Kleene star, Reverse, and Letter substitution.
(1) The context-free languages are closed under union:

« If L1 and L2 are context free languages then there exists a context-free grammar Gi= (V1,X1, R1,S1)
and G,=(V2,X2,R2,S>) such that L1=L(G;) and Ly=L(Gy).

« We will build a new grammar G such that L(G)=L(G1)UL(G2). G will contain all the rules of both
G;and G,.
* We add to G a new start symbol S and two new rules. S—S1 and S—S;. The two new rules allow G
to generate a string iff at least one of Gior G, generates it.

S0,G=(V1UV,U{S}, 21 UX, RiUR2 U {S— S1,S—8,}, S)

(2)The context-free languages are closed under concatenation

* If Ly and L, are context free languages then there exist context-free grammar Gi= (V1,X1,R1,S1) and
G2=(V2,X2,R2,S7) such that Li= L(G1) and Ly= L(Gy).
* We will build a new grammar G such that L (G) = L(G1)L(Gy).
» Gwill contain all the rules of both Gjand G..
* We add to G a new start symbol S and one new rule. S—S;S;
So G= (V1UVLU{S}, X1 U X, R1IUR,U{S—S1S,),S)

(3) The context-free Langquages are closed under Kleene star:

 If Ly is a context free language then there exists a context-free grammar G;=(V1,X1,R1,S1) such that
L= L(Gy).
* We will build a new grammar G such that L(G)=L(G1)* G will contain all the rules of G;.
* We add to G a new start symbol S and two new rules. S— €& and S—SS;
So G = (V1 U {S}, %1, RiU {S—¢€, S—SS1),S)

(4) The context-free languages are closed under reverse

« If L is a context free language then it is generated by some Chomsky Normal Form from grammar
G= (V.2 R, S).

* Every rule in G is of the form X—BC or X—a, where X, B, and C are elements of (V-X) and a € X
« So construct, from G, a new grammar G', Such that L(G*)= LR .

« Gl= (Vg g, R, Se) , Where R' is constructed as follows:

» Forevery rule in G of the form X—BC, add to R' the rule X—CB
» Forevery rule in G of the form X— a then add to R' the rule X— a

(5)The context-free languages are closed under letter Substitution

* Consider two alphabets X; and X, .
*Let sub be any function from X; to .

«Then letsub is a letter substitution function from Ly to L, iff letsub(L;) ={ we 3,": Jy € L1 (w=y
except that every character c of y has replaced by sub(c))}.
Example : Let y= VTU € L; And sub(c) is given as : sub(V) = Visvesvaraya
sub(T) = Technological
sub(U)= University
Then , sub(VTU) = Visvesvaraya Technological University

Closure Under Intersection, Complement, and Difference

Theorem:The Context-free language are not closed under intersection,

complement or difference.

1) The context-free lanquages are not closed under intersection

The proof is by counter example. Let: Ly={a"b"c"|n,m>0} L,={a"b"c"n,m>0} Both Ljand L,
are context-free since there exist straight forward CFGs for them.
But now consider: L =L;NL,= { a"b"c" | n,m>0}. If the context-free languages were closure under
intersection. L would have to be context-free. But we have proved that L is not CFG by using

pumping lemma for CFLs.
(2) The context-free languages are not closure under

Given any sets Lyand L, , L1N L, = —(—LU—Ly)
* The context-free languages are closed under union.
* But we just showed that they are not, thus they are not closed under complement either.
« So, if they were also closed under complement, they would necessarily be closed under

intersection.

(3) The context-free lanquages are not closed under difference

(subtraction) :

Given any language L and —L=%"- L.
¥" is context-free So, if the context-free languages were closed under difference, the complement of

any CFL would necessarily be context-free But we just showed that is not so.

Closure Under Intersection With the Reqular Languages

Theorem: The context-free lanquages are closed under intersection with the

reqular lanquages.

Proof: The proof is by construction.

* If L is context-free, then there exists some PDA M= (K1,%,I"1,A1,S1,A1) that accepts it.
 If Lyis regular then there exists a DFSM M= (K7,X,8,S,,A,) that accepts it.

» We construct a new PDA, Mg that accepts L; N L,. M3 will work by simulating the parallel
execution of Mj and M.

e M3= (le Ky, X N Iy, Ag,(sl,SZ),Alx Ag), Where As is built as follows:

*For each transition ((q1, &, B) ,(p1, Y)) in Az and each transition ((g2, a) ,p2)in &, add Asthe

transition: (((91,92),a,B) ,((P1,P2), ¥))-
*For each transition ((q1,E,B) ,(p1, y)) in Azand each state gz in k», add to Asthe transition:

(((91,02),€,8) ,((p1,P2), V))-

Closure Under Difference with the Regular Language.

Theorem: The difference (L,-L,) between a context-free lanquage L, and a

reqular lanquage L,is context-free.

Proof: L;-L,= LiN—L,

o If L, is regular, then, since the regular languages are closed under complement,—L, is also

regular.

* Since L, is context-free, by Theorem we already proved that Ly —L; is context-free.

Using the Pumping Theorem in Conjunction with the Closure

Properties

Languages that impose no specific order constraints on the symbols contained in their strings
are not always context-free. But it may be hard to prove that one isn't just by using the Pumping
Theorem. In such a case it is proved by considering the fact that the context-free languages are

closed under intersection with the regular languages.

Deterministic Context-Free Languages

The technique used to show that the regular languages are closed under complement starts with a

given (possibly nondeterministic) FSM M3, we used the following procedure to construct a new

FSM M3 such that L(M2)=—"L(M1):

The regular languages are closed under complement, intersection and difference. Why are the
context-free languages different? Because the machines that accept them may necessarily be
nondeterministic.
1. From My, construct an equivalent DFSM M, using the algorithm ndfsmtodfsm, presented in the

proof of Theorem5.3. (If Myis already deterministic. M'=M;.)
2. M' must be stated completely. so if it is described with an implied dead state, add the dead state
and all required transitions to fit.
3. Begin building M, by setting it equal to M'. Then swap the accepting and the non-accepting states.
So My M'= (K, X, 8w, 5w, Kve-Awr).-
We have no PDA equivalent of ndfstodfsm because there provably isn't one. We defined a PDA M
to be deterministic iff:

*Anm contains opairs of transitions that compete with each other, and

« if g is an accepting state of M, then there is no transition ((q.&,e),(p,a)) for any p or a.

What is a Deterministic Context-Free language?

e Let $ be an end-of-string marker. A language L is deterministic context-free iff L$ can be

accepted by some deterministic PDA.

EXAMPLE: Why an End-of-String Marker is Useful
Let L= a* U {a"b"| n>0}

Consider any PDA M that accepts L. When it begins reading a’s, M must push them onto the
stack in case there are going to be b's. But if it runs out of input without seeing b's, it needs a way to
pop those a's from the stack before it can accept. Without an end-of-string marker, there is no way to

allow that popping to happen only when all the input has been read.

as/=/a b/a/s
b/ase @

@p w/asn

For example, the PDA accepts L, but it is nondeterministic because the transition to state3 (where the

a's will be popped) can compete with both of the other transitions from statel.

With an end-of-string marker, we can build the deterministic PDA, which can only take the transition

to state3, the a-popping state. When it sees the $:

v/a/e

NOTE: Adding the end-of-string marker cannot convert a language that was not

context-free into one that is.

CFLs and Deterministic CFLs

Theorem: Every deterministic context-free lanquage is context-free,

Proof:
If L is deterministic context-free, then L$ is accepted by some deterministic PDA M=(K,%,I',A,3,A) .
From M, we construct M' such that L (M") = L. We can define the following procedure to construct
M'":
without$(M:PDA)=
1.Initially. set M' to M.
[*Make the copy that does not read any input.
2.For every state g in M, add to M' a new state .
3.For every transition ((q, € ,¥1),(p,y2)) in 4 M do:
3.1. Add to 4y the transition ((q',&,y1),(p",¥2))-
[*Link up the two copies.
4.For every transition ((9,%,y1),(p,y2)) in 4 M do:
4.1. Add to Ay the transition ((q,&,71),(p',¥2))-
4.2. Remove ((9,%,y1),(p,y2)) from Ay
[*Set the accepting state s of M'.

5Am ={q'gEA}.

Closure Properties of the Deterministic Context-Free

Languages

1) Closure Under Complement

Theorem: The deterministic context-free languages are closed under

complement.

Proof: The proof is by construction. If L is a deterministic context-free language over the alphabet X,
then L$ is accepted by some deterministic PDAM = (K, X U{$}, I, 4, s, A).

We need to describe an algorithm that constructs a new deterministic PDA that accepts (—L)$.

We defined a construction that proceeded in two steps:

* Given an arbitrary FSM, convert it to an equivalent DFSM, and then

 Swap accepting and non accepting states.
A deterministic PDA may fail to accept an input string w for any one of several reasons:

1. Its computation ends before it finishes reading w.

2. Its computation ends in an accepting state but the stack is not empty.

3. Its computation loops forever, following e-transitions, without ever halting in either an

accepting or a non accepting state.

4. Its computation ends in a non accepting state.
If we simply swap accepting and non accepting states we will correctly fail to accept every string
that M would have accepted (i.e., every string in L$). But we will not necessarily accept every string
in (—L)$. To do that, we must also address issues 1through 3 above.

An additional problem is that we don't want to accept —L(M). That includes strings that do not end

in $. We must accept only strings that do end in $ and that are in (—L)3$.

2) Non closure Under Union

Theorem: The deterministic context-free languages are not closed under union.

Proof: We show a counter example:
Let, Ly={ a'b'c"|ij,k >0 and & j } and Ly={ a'b'c® | ij,k>0 and j # k}
Let, L' = L1U Lo={ a'blc® | ij,k>0 and ((# j) and (j #k)) }.
Let, L" = —L".

={ a'b'c* |ij,k>0 and (i=j=k)} U {we{a,b,c}*: the letters are out of order}.
Let, L"=L"Na*b*c* ={a"b"c"|n> 0}

But L™ is A"B"C"={a"b"c" n>0},which we have shown is not context-free.

3) Non Closure Under Intersection

Theorem: The deterministic context-free languages are not closed under inter
section.
Proof: We show a counter example:

Let, Li= { a'b'c" | ij.k>0 and = j }and L,={ a'b'cX |ij,k>0 and j=k}

Let, L'=L;N L, ={a"b"c"|n>0}

Ly and L, are deterministic context-free. The

deterministic PDA shown accepts Li$, A similar one
accepts L,. But we have shown that their intersection L'

is not context-free much less deterministic context-free.

A hierarchy within the class of context-free languages

Some CFLs are not Deterministic

Theorem: The class of deterministic context-free languages is a proper subset of
the class of context-free languages. Thus there exist nondeterministic PDAs for
which no equivalent deterministic PDA exists.

Proof: We show that there exists at least one context-free language that is not deterministic

context-free.
Consider L = {a'b'c* |ij,k >0 and ((& j)or (j#k))}. L is context-free.
If L were deterministic context-free, then, its complement
L'={ a'blc¥|ij,k >0 and (i=j=k) } U {we{a,b,c} the letters are out of order}
Would also be deterministic context-free and thus context-free. If L' were context-free, then
L=L'N a*b*c* would also be context-free (since the context-free languages are closed under inter
section with the regular languages).
But L= A"B"C"={a"b"c"n>0} ,which is not context free.

So L is context-free but not deterministic context-free.

Since L is context-free, it is accepted by some (non deterministicy PDA M. M is an example
of an on deterministic PDA for which no equivalent deterministic PDA L exists. If such a
deterministic PDA did exist and accept L, it could be converted into a deterministic PDA that
accepted L$. But, if that machine existed. L would be deterministic context-free and we just showed
that it is not.

Inherent Ambiquity versus Non determinism

There are context-free languages for which unambiguous grammars exist and there are others
that are inherently ambiguous, by which we mean that every corresponding grammar is ambiguous.
Example:

The language Li= {a'b'c"|i, j, k>0 and ((i j) or (j=k))} can also be described as
{a"b"c™|n,m >0}U{ a"b™c™ |n,m >0}. L; is inherently ambiguous because every string that is also in
A"B"C" ={a"b"c"[n>0} is an element of both sub languages and so has at least two derivations in any
grammar for L;.
« Now consider the language L,={a"b"c™d|n,m>0}U{a"b™c™e| n,m>0} is not inherently ambiguous.
* Any string in is an element of only one of them (since each such string must end in d or e but not
both).
There exists no PDA that can decide which of the two sublanguages a particular string is in until it

has consumed the entire string.

What is the relationship between the deterministic context-free lanquages and the

languages that are not inherently ambiguous?

The answer is shown in below Figure.

Context-free
Languages

There exist deterministic context-free languages that are not
regular. One example is A"B"={a"b"[n,m>0}.

Not inherently
Ambiguous CFLs

*There exist context-free languages and not inherently
ambiguous. Examples:

Deterministic
CFLs

Regular
Languages

(a) PalEven={fww":we {a,b}*}.
(b) {a"b"c™djn,m=0} Ufa"b™c™eln,m>0}

*There exist languages that are in the outer donut because they are inherently ambiguous. Two

examples are:

o {ablcXijk >0and ((i#jor(j=k))}
e {ablcNlijk >0and ((i=j) or (j=k))}

Reqgular Language is Deterministic Context-Free

Theorem: Every regular language is deterministic context-free.

Proof: The proof is by construction. {$} is regular. So, if L is regular then so is L$ (since the
regular languages are closed under concatenation).So there is a DFSM M that accepts it. Using the
construction to show that every regular language is context-free Construct, from M a PDA P that

accepts L$. P will be deterministic.

Every Deterministic CFL has an Unambiguous Grammar

Theorem: For every deterministic context-free language there exists an

unambiguous grammar.

Proof: If a language L is deterministic context-free, then there exists a deterministic PDA M that
accepts L$. We prove the theorem by construction of an unambiguous grammar G such that L(M)=
L(G). We construct G as follows:

The algorithm PDAtoCFG proceeded in two steps:

1.Invoke convenPDAtorestricted(M) to build M, an equivalent PDA in restricted normal form.

2. Invoke buildgrammar(M"), to build an equivalent grammar G

So the construction that proves the theorem is:

buildunambiggrammar(M:deterministicP DA)=
1. Let G=buildgrammar(convertPDAtodetnormalform(M)).
2. Let G' be the result of substituting ¢ for $in each rule in which $ occurs.
3. Return G'.

NOTE: The algorithm convertPDAtodetnormalform, is described in the theorem that proves the

deterministic context-free languages are closed under complement.

The Decidable Questions

Membership

"Given a language L and a string w, is w in L?'

This question can be answered for every context-free language and for every context-free
language L there exists a PDA M such that M accepts L. But existence of a PDA that accepts L does

not guarantee the existence of a procedure that decides fit.

It turns out that there are two alternative approaches to solving this problem, both of which

work:

e Use a grammar: Using facts about every derivation that is produced by a grammar in
Chomsky normal form, we can construct an algorithm that explores a finite number of
derivation paths and finds one that derives a particular string w iff such a path exists.

e UseaPDA : While not all PDAs halt, it is possible, for any context-free language L, to
craft a PDA M that is guaranteed to halt on all inputs and that accepts all strings in L and

rejects all strings that are not in L.

Using a Grammar to Decide

Algorithm for deciding whether a string w is in a language L.:

decideCFLusingGrammar(L: CFL,w: string) =

1. If Lis specified as a PDA, use PDA to CFG, to construct a grammar G such that L(G) =L (M).

2. If L is specified asa grammar G, simply use G.

3. If w=¢ then if Sg is nullable then accept, otherwise reject.

4. If w # ¢ then:
4.1. From G, construct G' such that L (G') = L(G)-{e} and G' is in Chomsky normal form.
4.2. If G derives to, it does so in (2 * |w| - 1) steps. Try all derivations in G of that number

of steps. If one of them derives w, accept. Otherwise reject.

Using a PDA to Decide

A two-step approach.

» We first show that, for every context-free language L, it is possible to build a PDA that
accepts L-{e} and that has no e-transitions.

» Then we show that every PDA with no e-transitions is guaranteed to halt

Elimination of ¢-Transitions

Theorem: Given any context-free grammar G=(V,%L,R,S), there exists a PDA M
such that L(M)=L(G)-{e&¥ and M contains no transitions of the form

((ql,&,0),(gq2,8)). In other words, every transition reads exactly one input

character.
Proof: The proof is by a construction that begins by converting G to Greibach normal form. Now
consider again the algorithm cfgtoPDAtopdown, which builds, from any context-free grammar G, a
PDA M that, on input w, simulates G deriving w, starting from S.
M= ({p,q},Z,V,A, p,{q}), where A contains:
1. The start-up transition ((p,&.€),(q,S)), which pushes the start symbol on to the stack and
goes to state q.
2. For each rule X—$;5,...5n, In R, the transition ((q,&,X),(q,s152...Sn)), Which replaces X by
$152...5n. Ifn=0 (i.e., the right-hand side of the rule is ¢€), then the transition ((q, €, X), (q, €)).
3. For each character ¢ € X. the transition ((q, ¢, ¢), (q,&)), which compares an expected
character from the stack against the next input character.
If G contains the rule X—cs;...Sy, (Where ¢ €X and sp through s, are elements of V-X), it is not
necessary to push c onto the stack, only to pop it with a rule from step 3.
Instead, we collapse the push and the pop into a single transition. So we create a transition that can
be taken only if the next input character is c. In that case, the string s, through s, is pushed onto the
stack.
Since terminal symbols are no longer pushed onto the stack. We no longer need the transitions
created in step3 of the original algorithm.
So, M=({p,q}.Z,V,A,p,{q}), where A contains:
1. The start-up transitions: For each rule S—cs...sy the transition ((p,c,¢),(q,s2.-.Sn))-
2. For each rule X—-cs;...S, (Where cEX and s, through sy, are elements of V-X), the
transition ((g,¢,X),(q,S2.-.Sn))-
cfgtoPDAnNoeps(G:context-freegrammar)=
1. Convert G to Greibach normal form, producing G'.
2. From G' build the PDA M described above.

Halting Behavior of PDAs Without g-Transitions

Theorem: Let M be a PDA that contains no transitions of the form ((qi,e,s1),(q2,S2)). i.e., no -

transitions. Consider the operation of M on input we ¥*. M must halt and either accept or reject w.
Let n=|w|.
We make three additional claims:

a) Each individual computation of M must halt within n steps.

b) The total number of computations pursued by M must be less than or equal to b", where b
is the maximum number of competing transitions from any state in M.
c) The total number of steps that will be executed by all computations of M is bounded by nb"
Proof:
a) Since each computation of M must consume one character of w at each step and M will halt when
it runs out of input, each computation must halt within n steps.
b) M may split into at most b branches at each step in a computation. The number of steps in a
computation is less than or equal to n. So the total number of computations must be less than or equal
tob".
c) Since the maximum number of computations is b" and the maximum length of each is n, the
maximum number of steps that can be executed before all computations of M halt is nb".

So a second way to answer the question, ""Given a context-free lanquage L and a string w, is w

in L?"" is to execute the following algorithm:
decide CFLusingPDA(L:CFL,w:string)=
1. If Lis specified asaPDA, use PDAtoCFG, to construct a grammar G such that L(G)=L(M).

2. If Lis specified asagrammar G, simply use G.
3. If w=¢ then if Sgis nullable then accept, otherwise reject.
4.1f w#¢g then:
4.1. From G, construct G' such that L(G")=L(G)-{e} and G' is in Greibach normal form.
4.2. From G' construct, using cfgtoPDAnoeps, a PDA M' such that L(M")=L(G") and M' has
no e-transitions.
4.3. We have proved previously that, all paths of M' are guaranteed to halt within a finite

number of steps. So run M’ on w, Accept if M’ accepts and reject otherwise.

Emptiness and Finiteness

Decidability of Emptiness and Finiteness

Theorem: Given a context-free language L. There exists a decision procedure that answers each of
the following questions:

1. Given a context-free language L, is L=QN?

2. Given a context-free language L, is L infinite?
Since we have proven that there exists a grammar that generates L iff there exists a PDA that accepts

it. These questions will have the same answers whether we ask them about grammars or about PDAS.

Proof :
decideCFLempty(G: context-free grammar) =

1. Let G' =removeunproductive(G).

2. If S'is not present in G' then return True else return False.
decideCFLinfinite(G:context-freegrammar)=

1. Lexicographically enumerate all strings in =* of length greater than b" and less than or

equal to b"+b".
2. If, for any such string w, decideCFL(L,w) returns True then return True. L is infinite.

3. If, for all such strings w, decideCFL(L,w) returns False then return False. L is not infinite.

The Undecidable Questions

« Given a context-free language L, is [=X*?

* Given a CFL L, is the complement of L context-free?

* Given a context-free language L, is L regular?

« Given two context-free languages Lj;and Ly is Ly=L,?

* Given two context-free languages L and Ly, is L1 Ly?

* Given two context-free languages Liand Ly, is LiNL="?
* Given a context-free language L, is L inherently ambiguous?

* Given a context-free grammar G, is G ambiguous?

TURING MACHINE

The Turing machine provides an ideal theoretical model of a computer. Turing machines are useful

in several ways:

* Turing machines are also used for determining the undecidability of certain languages and

« As an automaton, the Turing machine is the most general model, It accepts type-0
languages.

« It can also be used for computing functions. It turns out to be a mathematical model of
partial recursive functions.

* Measuring the space and time complexity of problems.
Turing assumed that while computing, a person writes symbols on a one-dimensional paper (instead

of a two dimensional paper as is usually done) which can be viewed as a tape divided into cells. In

Turing machine one scans the cells one at a time and usually performs one of the three simple
operations, namely:

(1) Writing a new symbol in the cell being currently scanned,

(i) Moving to the cell left of the present cell, and

(i) Moving to the cell right of the present cell.

Turing machine model

é as|aslag| .. bib g

R/W head Tape divided into cells
and of infinite length

Finite control

*Each cell can store only one symbol.
*The input to and the output from the finite state automaton are affected by the R/W head which can
examine one cell at a time.

In_one_move, the machine examines the present symbol under the R/W head on the tape and the

present state of an automaton to determine:
(1 A new symbol to be written on the tape in the cell under the R/W head,
(i) A motion of the R/W head along the tape: either the head moves one cell left (L),or one
cell right (R).
(i) The next state of the automaton, and
(iv) Whether to halt or not.
Definition:
Turing machine M is a 7-tuple, namely (Q, X, T, 8, Qo, b, F), where
1. Q is a finite nonempty set of states.
2. T is a finite nonempty set of tape symbols,
3. beT is the blank.
4. % is anonempty set of input symbols and is a subset o f I and bgZX.

5. 8 is the transition function mapping (q,xX) onto (q',y,D) where D denotes the direction of
movement of R/W head; D=L orR according as the movement is to the left or right.
6. o€ Q is the initial state, and
7. FSQ is the set of final states.
Notes:
(1)The acceptability of a string is decided by the reachability from the initial state to some final state.
(2) & may not be defined for some elements of QXT.

REPRESENTATION OF TURINGMACHINES

We can describe a Turing machine employing

() Instantaneous descriptions using move-relations.
(i) Transition table, and
(i) Transition diagram (Transition graph).

REPRESENTATIONBY INSTANTANEOUSDESCRIPTIONS

Definition: An ID of a Turing machine M is a string afy, where S is the present state of M, the

entire input string is split as ay, the first symbol of y is the current symbol a under the R/W head and
y has all the subsequent symbols of the input string, and the string « is the substring of the input
string formed by all the symbols to the left of a.

EXAMPLE: A snapshot of Turing machine is shown in below Fig. Obtain the instantaneous

description.
? b 34 31 32 31 32 52 5‘1 ad_ 5‘2 blh ?
RW head
State
% The present symbol under the R/W

head is a;. The present state is gs. So a; is written to the right of g3 The nonblank symbols to the left
of al form the string aja;araiara,, which is written to the left of gs. The sequence of nonblank

symbols to the right of a; is asa,. Thus the ID is as given in below Fig.

643132813252 g

| 3 i aza
I I >
Left sequence / \Rght sequence

Present Symbol under
state R/W head

Notes: (1) For constructing the ID, we simply insert the current state in the input string to the left of
the symbol under the R/W head.
(2) We observe that the blank symbol may occur as part of the left or right substring.

REPRESENTATION BY TRANSITION TABLE

We give the definition of & in the form of a table called the transition table If (g, a)=(y,a,5). We
write @By under the a-column and in the g-row. So if we get afy in the table, it means that a is
written in the current cell, 5 gives the movement of the head (L or R) and y denotes the new state
into which the Turing machine enters.

EXAMPLE:

Consider, for example, a Turing machine with five states qs,...,0s where Qs is the initial state and gs is

the (only) final state. The tape symbols are 0,1and b. The transition table given below describes &:

Prazant siate Tape srmf?l?j-'
i} 0 1
- 1L QORg
9 bRy, BRGs
04 0Rgy ORg, 1R,
(s} OLgs

REPRESENTATIONBY TRANSITION DIAGRAM (TD)

The states are represented by vertices. Directed edges are used to represent transition of

states. The labels are triples of the form (a,B,y)where «,f €Tandy €{L,R}.When there is a directed

edge from q; to g; with label (a,B3,y),it means that 8(qi,a)=(q;,8.y).
EXAMPLE:

—_—

vy R (¥, v L} vy R}
0.5, RY {1,y L} (x.x. R) bR
\ % ¥ ";9'3\') _—/."’ﬁ's Y | @

\ /\ S

LANGUAGE ACCEPTABILITY BY TURING MACHINES
Let us consider the Turing machine M=(Q,X,I’,8,q0,b,F). A string w in X* is said to be
acceptedby M, if gow |- aipa, for some PeF and ay,a,€l™.

EXAMPLE: Consider the Turing machine M described by the table below

Prasent state . Tape symbol
o 1] ¥ iy
—+ iy '.HI]'; t'rﬁl__":
qs ORq; ¥Lgs ¥Rg;
Ty ':h'.:l'q _'IEQS :l-"|',.-q;_.
s DLy, g,
s yrHgs bRgs
® S

IDs for the strings (a) 011 (b)0011 (c)001
@ q,011-x0,11 + g,xy1F Xqzy1 - XYds1

As (gs,1) is not defined, M halts; so the input string 011 is not accepted

® 94,0011 - xg,011 x0qg,11+ Xq;0y 1 q,x0y1+ xq,0y1

= XXOoYTH XXYQs,1 H XXQsYY - XQaXYY H XXQsYY
= XXyQsY = XXyydsb = xXXyybqe
M halts. As g is an accepting state, the input string 0011is accepted byM.

© ¢,001F X901 X0q,1 - xq;0y + q,x0y + xq,0y

= XX,y F XXYyd,

M halts. As g, is not an accepting state,001 is not accepted by M.

DESIGN OF TURING MACHINES

Basic guidelines for designing a Turing machine:

1. The fundamental objective in scanning a symbol by the R/W head is to know what to do in
the future. The machine must remember the past symbols scanned. The Turing machine can
remember this by going to the next unique state.

2. The number of states must be minimized. This can be achieved by changing the states only
when there is a change in the written symbol or when there is a change in the movement of the R/W
head.

EXAMPLE 1

Design aTuring machine to recognize all strings consisting of an even number of 1's.

Solution:

The construction is made by defining moves in the following manner:
(@) qiis the initial state. M enters the state g, onscanning 1 and writes b.
(b) If M is in state g, and scans 1, it enters gyand writes b.
(c) qiis the only accepting state.

Symbolically M= ({q,02},{1,b},{1,b},8,9,b,{ai}), Where & is defined by,

Present state 1
2O
a; ba,R

Let us obtain the computation sequence of 11:

q,11+ bg,1 — bbq,

As g, is an accepting state 11 is accepted.

Let us obtain the computation sequence of 111:

g,111 + bg,11+ bbg,1+ bbbag,

As g, is an not accepting state 111 is not accepted

EXAMPLE 2: Designa TM that accepts {0"1"| n> 0}
Solution: We require the following moves:
(@) If the leftmost symbol in the given input string w is 0, replace it by x and move right till we

encounter a leftmost 1in w. Change it to y and move backwards.
(b) Repeat (a) with the leftmost 0. If we move back and forth and no 0 or 1 remains. Move to a final
state.
(c) For strings not in the form 0"1", the resulting state has to be non-final.
we construct a TM M as follows:M = (Q, £,T, 8, Qo,b, F)
Q = {do,d1,92,93,07}

F={ar}
¥=1{0,1}
r={0,1,xy,b}

The transition diagram is given pﬁelovgom

o O
PRRNEA) e M W)
s " P N

T

_ | |,
a {7 (X,X!R) ‘
| /¥R

Computation sequence of 0011:

go00711 — xq,0717+ x0q,11+ xXq0y1H gx0y71 —=xq,0y7

= XXq.yT = XXYG ;T = XXQoYY = XQXYY = XXQoYy = XXV sy
= XXyyqs = xxyyqsb = xxyybq,b

g4 is final state, hence 0011 is accepted by M.
TECHNIQUES FOR TM CONSTRUCTION

1. TURING MACHINE WITH STATIONARY HEAD

Suppose, we want to include the option that the head can continue to be in the same cell for

some input symbol. Then we define (g,a) as (q',y,S).This means that the TM, on reading the input
symbol a, changes the state to g' and writes y in the current cell in place of a and continues to remain

in the same cell. In this model (g, a) =(q', y, D) where D=L, RorS.

2. STORAGE IN THE STATE

We can use a state to store a symbol as well. So the state becomes a pair(q,a) where q is the

state and a is the tape symbol stored in (g, a). So the new set of states becomes QxT.
EXAMPLE: Construct a TM that accepts the language 0 1* + 1 0*.
We have to construct a TM that remembers the first symbol and checks that it does not
appear afterwards in the input string.
So we require two states, (o, qi1. The tape symbols are 0,1 and b. So the TM, having the 'storage
facility in state‘, is M=({00,91}X{0,1,b},{0,1},{0,1,b},8,[00,b].[q1,b]})
We describe 8 by its implementation description.
1. In the initial state, M is in go and has b in its data portion. On seeing the first symbol of the input
sting w, M moves right, enters the state i and the first symbol, say a, it has seen.
2. M is now in [qy,a].
() If its next symbol is b, M enters [qg1,b], an accepting state.
(i) If the next symbol is a, M halts without reaching the final state (i.e.8 is not defined).
(i) If the next symbol is a, (a=0 if a=1 and a=1 if a=0), M moves right without changing
state.
3. Step2 is repeated until M reaches [q1,b] or halts (8 is not defined for an input symbol in w).
3. MULTIPLE TRACK TURING MACHINE

In a multiple track TM, a single tape is assumed to be divided into several tracks. Now the

tape alphabet is required to consist of k-tuples of tape symbols, k being the number of tracks. In the
case of the standard Turing machine, tape symbols are elements of r; in the case of TM with multiple
tracks, it is T,

4. SUBROUTINES

First a TM program for the subroutine is written. This will have an initial state and a 'return’

state. After reaching the return state, there is a temporary halt for using a subroutine, new states are
introduced. When there is a need for calling the subroutine, moves are effected to enter the initial
state for the subroutine. When the return state of the subroutine is reached, return to the main
program of TM.

EXAMPLE: Designa TM which can multiply two positive integers.

Solution: The input (m,n), m,n being given ,the positive integers represented by 0M10". M starts
with 0M10" in its tape. At the end of the computation, 0™ (mn in unary representation) surrounded by

b's is obtained as the output.

The major steps in the construction are as follows:

1.0M10"1 is placed on the tape (the output will be written after the rightmost 1).

2. The leftmost 0O is erased.

3. A block of n 0's is copied onto the right end.

4. Steps 2 and 3 are repeated m times and 10™10™" is obtained on the tape.

5. The prefix 10™1of 10™10™" is erased, leaving the product 0™ as the output.
For every 0 in 0™, 0" is added onto the right end. This requires repetition of step3. We define a
subroutine called COPY for step3. For the subroutine COPY the initial state is 41 and the final state

IS s is given by the transition table as below:

The transition table for the suerouTINE COPY

Slate Tape symbo!

0 1 2 b
¥ G:2R g1l — -
b a:0R %1k - 0L
I3 G0L gs1L §:2R -
% - g:1R 0,01 -

3 = - - -

The Turing machine M has the initial state o The initial ID for M is o0™10". O" seeing 0,the

following moves take place
qOOml(}nl 17 bqégm—l 10”1 }_ bO}Ji-——]qélOHl i_ Z)Omw] 1(110?11
gy is the initial state of COPY. The following moves take place for My:

0" =207 = 207 s - 2011510 = 24,0710
After exhausting 0s, g1 encounters 1. M; moves to state q4. All 2's are converted back to 0's
and Mj halts in gs. The TM M picks up the computation by starting from gs The go and gs are the
states of M. Additional states are created to check whether reach 0 in 0™ gives rise to 0™ at the end of
the rightmost 1 in the input string. Once this is over, M erases 10"1 and finds 0™" in the input tape.

M can be defined by M=({qo,q1,....012}{0,1}.{0,,2,b},8,00,b,{q12}) where & is defined by table given
below:

o GebR - - -
Qs GeOR g'R - -
s ¢:0L - - -
Gz - gL - -
G 0L - - G1obR
s ;0L - - QR
G - g:bR - -
a1 G11bR g:2bR - -

ADDITIONAL PROBLEMS

1. Design a Turing machine to obtain complement of a binary number.
IDEA OF CONSTRUCTION:

1) If symbol is O change it to 1, move read write head to RIGHT
2) If symbol is 1 change it to 0, move read write head to RIGHT
3) Symbol is b (blank) don’t change, move read write head to RIGHT, and HALT.
The construction is made by defining moves in the following manner:
(@) gy is the initial state. Onscanning 1, no change in state and write 0 and move head to RIGHT.
(c) If M is in state giand scans blank, it enters g, and writes b move to right.
(d) gz is the only accepting state.
Symbolically, M=({q,0-},{1,0,b},{1,0,b},8,q1,b,{q2}) Where & is defined by:

(1,0,R)
(0,1,R)

The computation sequence of 1010:

q,1010 + 09,010 + 019,10 +» O10q,0 + 0O101q,b

+ 0101bC5b

2. Design a TM that converts binary number into its 2°s complement representation.

IDEA OF CONSTRUCTION:

e Read input from left to right until right end blank is scanned.

e Begin scan from right to left keep symbols as it is until 1 found on input file.

e If1found oninput file, move head to left one cell without changing input.
e Now until left end blank is scanned, change all 1’s to 0 and 0’s to 1.
We require the following moves:
(@) Let g1 be initial state, until blank is scanned, move head to RIGHT without changing
anything. On scanning blank, move head to RIGHT change state to g, without changing the
content of input.
(b) If g2 is the state, until 1 is scanned, move head to LEFT without changing anything. On
reading 1, change state to g3, move head to LEFT without changing input.
(c) If g3 is the state, until blank is scanned, move head to LEFT, if symbol is O change to 1,
otherwise if symbol is 1 change to 0.0n finding blank change state to g4, move head to LEFT
without Changing input.
(d) g4 is the only accepting state.
We construct a TM M as follows:
M=(Q, %, 8, go,b, F)
Q = {01,02,03,04}

F={a}
> =101}
r={0,1,0}

3.Designa TM that add two_integers
IDEA OF CONSTRUCTION:
e Read input from LEFT to RIGHT until blank (separator of two numbers) is found.
e Continue LEFT to RIGHT until blank (end of second number) is found.

e Change separator b to 1 move head to RIGHT.
e move header to Left (to point rightmost 1)
e Change 1toband move right, Halt.

We require the following moves:
(@) In g1 TM skips1’s until it reads b (separator),changes toland goes to g;

(b) In g2 TM skips1’s until it reads b (end of input), turns left and goes to g3
(c) In gz, TM reads 1 and changes to b go to qa.

(d) ga is the final state, TM halts.
we construct a TM M as follows: M= (Q, %, T, 8, qo,b, F)
Q ={01,02,93,04}
F={g}
Y={b,1}
r={1,b}

(1.1.R) (1,1,R)

4. Design a TM that accepts the set of all palindromes_over {0,1}*
IDEA OF CONSTRUCTION:
e Ifitis O and changes to X, similarly if it is 1, it is changed to Y, and moves right until it finds
blank.
e Starting atthe left end it checks the first symbol of the input,

¢ Nowmovesonestepleftandcheckwhetherthesymbolread matchesthemostrecentlychanged. Ifsoiti
salsochangedcorrespondingly.

e Now machine moves back left until it finds O or 1.

e This process is continued by moving left and right alternately until all 0’s and 1’s have been
matched.

We require the following moves:

1.1f state is g0and it scans 0.

e Then go to state q1 and change the 0 to an X,

e move RIGHT over all 0’s and 1’s, until it finds either X or Y or B

e Now move one step left and change state to g3

e It verifies that the symbol read is 0, and changes the 0 to X and goes to state Qs.

2. If state is g0 and it scans 1

e Then go to state g, and change the 1toan Y,
e Move RIGHT over all 0’s and 1’s, until it finds either X or Y or B
o Now move one step left and change state to g4
o It verifies that the symbol read is 1, and changes the 1to Y and goes to state Qs.
3. If state is gs
e Move LEFT over all 0’s and 1’s, until it finds either X or Y.

e Now move one step RIGHT and change state to qo.

e Now at qo there are two cases:
1.1f 0’sand 1’s are found on input , it repeats the matching cycle just described.
2.1f X’s and Y’s are found on input, then it changes all the 0’s to X and all the 1’sto Y’s.
The input was a palindrome of even length, Thus, state changed to gs.

4.1f state is gz Or Q4

If X’s and Y’s are found on input, it concludes that: The input was a palindrome of odd
length, thus, state changed to Qs.
We construct a TM M as follows:
M=(Q,%T, 8, qo,b,F)
Q =1{00.,91,02,03,04,95,06}

F ={0e}

> ={b,1,0}

r ={X)Y,b}

state 0 1 X Y B

B | (@XR) | (@YR) |(@XR) | (qY,R) | (9sB.R)
op (9;0,R) | (9, 1,R) | (@ X,L) |(asY,L) | (95B,L)
92 (9,0,R) | (9 1,R) | (9, X,L) | (94Y,L) | (94B.L)
A3 (q5rX,L) - (9 X,R) (qe,YaR) -
4 - (a5 Y:L) | (@sX.R) |(qY.R) -
9s (@s0,L) | (as1.L) | (@ X,R) | (9pY,R) -

PRACTICE PROBLEMS

=

Design a Turing

Design a Turing

Design a Turing machine

machine

machine

to replace all a’s with X and all b’s with Y.

to accept a"b™ n>m,

to accept a"b" n<m,

Design a Turing machine to accept (0+1)*00(0+1)* .

Design a Turing machine to increment a given input.

Design a Turing machine to decrement a given input.

Design a Turing machine to subtract two unary numbers.

Design a Turing machine to multiply two unary numbers.

© © N o g > DN

Design a Turing machine to accept a string 0’s followed by a 1.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Design
Design
Design
Design
Design
Design
Design
Design
Design
Design
Design

a Turing
a Turing
a Turing
a Turing
a Turing
a Turing
a Turing
a Turing
a Turing
a Turing

a Turing

machine
machine
machine
machine
machine
machine
machine
machine
machine
machine

machine

to verify if the given binary number is an even number or not.
to shift the given input by one cell to left.

to shift the given input to the right by one cell .

to rotate a given input by one cell.

to erase the tape.

to accept a"b"c"

to accept any string of a’s & b’s with equal number of a’s & b’s.
to accept a"b*™

to accept a"b*c™: where n=m-+k.
to accept a"b*c™: where m=n-+k.

to accept a"b*c™: where k=mn.

From: Dr shreedharaKs, Professorin CSE, UBDT college of engineering, Davanagere

Automata Theory and Computability

Module 5

The model of Linear Bounded automata: Decidability: Definition of an algorithm, decidability,
decidable languages, Undecidable languages, halting problem of TM, Post correspondence
problem. Complexity: Growth rate of functions, the classes of P and NP, Quantum Computation:
quantum computers, Church-Turing thesis.

A word automata is a plural of word “automation”, which means to automate or mechanize.
Mechanization of a process means performingitonamachine without humanintervention.
The basic aim of Computer Science is to design Computing Machine (CM).

To design Computing Machine fora problemitis necessaryto ensure thatthe problemis
solvable and computable.

Ifitis notsolvableinareasonable amountoftime,itissolvablein principleonly

As a student of ComputerScience , we should know whatiscomputable, andifitis
computable, how it can be implemented on amachine.

Aim of automata theoryisto draw a boundary between whatis computableand whatis not,
if computationis performed onamachine,
Machine may be of twotypes
1. problem specificdedicated machine
2. Genericmachine.

Church-Turing thesis-1936

Any algorithmic procedure that can be carried out by a human or a computer, can also be
carried out by a Turing machine.

Now it isuniversally accepted by computerscientists that TM is a Mathematical model of an
algorithm.

TM has an algorithmand an algorithm hasa TM. If there isan algorithm problemis
decidable, TMsolves that problem

The statementofthe thesis—

“ Every function which would naturally be regarded as computable can be

computed by a Turing machine”
Implies

Any mechanical computation can be performed by aTM

For every computable problemthereisaTM

Ifthereis no TM that decides P there is no algorithm that can solve problem P.

In our general life, we have several problems and some of these have solutions, but some
have not, we simply say a problemisdecidable if thereisa solution otherwise undecidable.

example:

DoesSunrisesinthe East? YES
Will tomorrow be arainyday ? (YES/NO ?)

Decidable and Undecidable Languages

* Aproblemissaidtobe decidableifitslanguageisrecursive OR ithas solution.

Example:
Decidable :
-Does FSM accept regularlanguage?
- isthe power of NFAand DFA same
Undecidable:
- ForagivenCFGis L(G) ambiguous?
Lis Turing decidable (or just decidable) if there exists a Turing machine Mthat accepts all stringsinL
and rejectsall strings notin L. Note that by rejection meansthatthe machine halts afterafinite
number of steps and announces thatthe input stringis not acceptable.

* Thereare twotypes of TMs (based on halting):

1. (Recursive)
TMs that always halt, no matter acceptingor

non-accepting =DECIDABLE PROBLEMS

2. (Recursively enumerable)
TMs that are guaranteed to halt only on acceptance.

If non-accepting, it may or may not halt(i.e., could loop forever).
* Undecidable problems are those that are not recursive

Recursive languages

A Language L overthe alphabetyiscalledrecursiveif thereisaTM M that accepts every wordinL
and rejectseverywordinl’
Accept (M)=L
Reject(M)=L
loop(M)=g¢
Example: b(a+b)*
M is a Turing Machine and L is a recursive
language that M accepts,

ifa stringw € Lthen M #Aalts ina final state and
ifw & Lthen M Aaltsin a non-final state

Recursively Enumerable Language:

A Language L over the alphabet} is called recursively enumerable if there isa TM M that accepts
everyword in L and eitherrejects or loops every word in L’ the complement of L

Accept (M)=L

Reject(M) +Loop(M)=L"

Example: (a+b)*bb(a+b)*

M is a FTuring Machine and L is a recursively
enumerable langiurace that M accepts,

if a string w € L. then M #Aa/ts in a final starte and

ifw & L then M Aalts irnr o non-final state orloops

forever

Theorem: If L is recursive language, so is L

PROOF: Let L = L(M) for some TM M that always halts. We construct a TM
M such that L = L(M) by the construction suggested in Fig. 10 That is, M

behaves just like M. However, M is modified as follows to create M:

1. The accepting states of M are made nonaccepting states of M with no

transitions; i.e., in these states M will halt without accepting.

2. M has a new accepting state r; there are no transitions from .

3. For each combination of a nonaccepting state of M and a tape symbol of
M such that M has no transition (i.e., M halts without accepting), add

a transition to the accepting state 7.

Since M is guaranteed to halt, we know that 3 is also guaranteed to halt,
Moreover, M aceepts exactly thosu strings that M does not accept. Thus M

aceepts L. [0

— Accept

— Reject

e

—

Recursively Enumerable Languages closed under complementation? (NO)

Accept
Reject

1. Prove that Recursive Languagess are closed under Union

- Let MW, = TN for L, U L,
- M, conNnstruction:
a. Make 2-tapes and copy
iNmnput w onNn both tapes
2. Simulate wWl; on tape 1
= Simulate Wi, onNn tTape 2
4. IT either v, or Vi,
accepts, thhen W, accepts
= Otherwvwise, W1, rejects.

2. Prove that Recursive Languages are closed under Intersection

- Let W1, = T for L, «—— Lo
- M, cOoONstruction:
a. MNMake Z-tapes and copy
iNnput w onNn both tapes
2. Simulate W, on tape 1
3. Sirmulate Wi, OonNn tape 2
£ I 1, AND Wi, accepts,
then MW, accepts
5. Otherwise, W, rejects.

3. Recursive languages are also closed under:
a. Concatenation

b. Kleene closure(staroperator)

c¢. Homomorphism, andinverse homomorphism
4. RElanguagesare closed under:

a. Union, intersection, concatenation, Kleene closure
5. RElanguagesare not closed under:

a. Complementation

1. Decidable Languages about DFA : Prove that

Apra 1s a decidable language.
Apra = {(B,w)| B is a DFA that accepts input string w}.

M = “On input (B, w), where B is a DFA and w is a string:
1. Simulate B on input w.
2. If the simulation ends in an accept state, accept. If it ends in a
nonaccepting state, reject.”

Proof. To prove we constructa TM that halts and also accept Aor-
Define TM as

1. let B be a DFAand w input string (B,w) as input for TM M

2. Simulate B and inputw in TM M

3. if the simulation ends in an accepting state of B then M
accepts w. if it ends in non accepting state of B then M rejects w.

AnFa is a decidable language.

2. Prove that
Anra = {(B,w)| B is an NFA that accepts input string w}.

N = “On input (B, w) where B is an NFA, and w is a string:
1. Convert NFA B to an equivalent DFA C, using the
last procedure .
2. Run TM M on input (C, w).
3. If M accepts, accept; otherwise, reject.”

Arex is a decidable language.

3. Prove that
Arex = {(R,w)| R is a regular expression that generates string w}.
P = “On input (R, w) where R is a regular expression and w is a string:

1. Convert regular expression R to an equivalent DFA A
2. RunTM N on input (A, w).
3. If N accepts, accept; if N rejects, reject.”

Halting and Acceptance Problems:

Arm = {(M,w)| M isaTM and M accepts w}.

Acceptance Problem:
Does a Turing machine accept an input string?

1. A, is recursively enumerable.

Simulate M on w. if M enters an accepting state, We prove by
contradiction. We assume Aq, is decidable by a TM H that
eventually halts on all input, then

H((M, w)) = accept 1f M accepts w
’ reject it M does not accept w.

D = “On input (M), where M is a TM:
1. Run H on input (M, (M)).
2. Output the opposite of what H outputs; that is,
if H accepts, reject and if H rejects, accept.”

D(U\'I))) accept if A does not accept (M)
B reject if M accepts (M).

D((DY) accept if D does not accept (D)
reject if D accepts (D).

We construct new TM D with H as a subroutine. D calls H to

determine what M does when it receive the input <M=. Based on the

received information on (M,<M>), D rejects M if M accepts <M=> and

accepts M if M rejects <M=>.

D described as follows:

1. <M=>is an input to D

2. Dcalls H torun on (M,<M>)

3. D rejects <M= if H accepts (M, <M=>) and accepts <M=if H rejects
(M, =M=>)

This means D accepts <D> if D does not accept <D>, which is a
contradiction. Hence Aq, Is Undecidable.

The Post Correspondence Problem

PCPis a combinatorial problem formulated by Emil Postin 1946. This problem has many applications
inthe field theory of formal languages. A correspondence system P is a finite set of ordered pairs of
non empty strings oversome alphabet. Let A=W, W,,...,W, B=v,Vv,,...,V,

n

There is a Post Correspondence Solution

if there is a sequence v J.--.,k such that:
Win ...Wk :Vivj ...Vk
Index W; V;
1 100 001
2 11 111
3 111 11

Let W = w,w;w;=v,viv; = 11100111 we have got a solution. But we may not get solution always
for various other combinations and strings of different length. Hence PCP is undecidable.

The Modified Post Correspondence Problem

A=W, W,,...,W,

i, j,....k

W, W W == W =V ViV - - -V

B=v,v,,...,Vv,

If the index start with 1 and then any other sequence thenit is called MPCP

Algorithm: An algorithm is “a finite set of precise instructions for performing a
computation or for solving a problem”
* A program is one type of algorithm
* All programs are algorithms
* Not all algorithms are programs!
* The steps to compute roots of quadratic equation is an algorithm
* The steps to compute the cosine of 90° is an algorithm
Algorithms generally share a set of properties:
* Input: what the algorithm takes in as input
e Qutput: what the algorithm produces as output
* Definiteness: the steps are defined precisely
* Correctness: should produce the correct output
* Finiteness: the steps required should be finite
* Effectiveness: each step must be able to be performed in a finite amount of
time

* Generality: the algorithm should be applicable to all problems of a similar
form
Comparing Algorithms (While comparing two algorithm we use time and space complexities)

® Time complexity

o The amount of time that an algorithm needs to run to completion
® Space complexity

o The amount of memory an algorithmneedstorun
® Toanalyzerunningtime of the algorithm we use following cases

o Bestcase
o Worst case
Average case

Asymptotic analysis
® The big-Ohnotationis used widely to characterize running times and space bounds

® The big-Ohnotation allows ustoignore constant factorsand lowerordertermsand focus on

the main components of a function which affectits growth

® Givenfunctions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants
c and ng such that

f(n)<cg(n) forn=n,
® Example:2n+ 10is O(n)
o 2n+10<Zc¢cn
o (¢=2)n=>10
o n>10/(c-2)
Itistrue for ¢ =3 and ny=10

e 7n-2is O(n)
needc>0 and ny > 1 suchthat 7n-2 <cen forn > n,
thisistrueforc=7andny=1

f(n)=0(g(n)) iff there exist positive constants cand n0 such that f(n) < cg(n) foralln 2 n0
O-notationto give an upperboundon a function

cg(n)

J ()

77
1o

F() = O(g(mn))
Big oh provides an asymptoticupperbound on a function.

Omega provides an asymptoticlower bound on afunction.

Q(g(n)) ={f(n): there exist positive constants ¢ and 7, such that
0<cgn) < f(n)foralln > ny} .

SHACrE)

cg(r)

7z
770

S () = 2(g(@(2))
® The big-Oh notationgivesan upperbound onthe growth rate of a function
® Thestatement “f(n)is O(g(n))” meansthatthe growthrate of f(n) isno more than the
growthrate of g(n)
® \We can use the big-Oh notation to rank functions according to their growth rate

f(n)=a,+an+a,n’+...+a,n"

e Ifisf(n)a polynomial of degree d, then f(n) is O(n%), i.e

1. Drop lower-orderterms

2. Drop constant factors
® Use the smallestpossible class of functions

1. Say “2nis O(n)” instead of “2n is O(n*)”
® Use the simplestexpression of the class

Say “3n+5is O(n)” instead of “3n+ 5is O(3n)”

® Followingare the termsusually used inalgorithm analysis:
Constant~ 1
Logarithmic~logn
Linear=n
N-Log-N=~nlogn
Quadraticx n’
Cubic~ n’

N o u s wnNe

Exponential =

Class P Problems:

P stands for deterministic polynomial time. A deterministicmachine at each time executesan
instruction. Depending on instruction, it then goes to next state whichis unique. Hence time
complexity of DTM is the maximum number of moves made by M is proce ssing any input string of
length n, taken over all input of length n.

® Theclass P consists of those problems that are solvable in polynomial time.

e More specifically, they are problems that can be solved intime O(n*) for some constantk,

where nis the size of the inputto the problem

® Thekeyisthat nisthe size of input
Def: A language L is said to be in class P if there existsa DTM M such that M is of time complexity
P(n) for some polynomial P and M accepts L.

Class NP Problems

Def: A language Lisin class NP if there isa nondeterministic TM such that M is of time complexity
P(n) forsome polynomial P and M accepts L.

NP is not the same as non-polynomial complexity/running time. NP does not stand for not
polynomial.
NP = Non-Deterministic polynomial time
NP means verifiablein polynomialtime
Verifiable?
o Ifwe are somehow given a‘certificate’ of asolution we can verify the legitimacyin
polynomial time

Problemisin NP iffitis decidable by some non deterministic Turing machine in polynomial
time.
Itis provable thata Non Deterministic Turing Machine is equivalent to a Deterministic Turing
Machine
Remember NFA to DFA conversion?

o Givenan NFA with nstates how many states does the equivalent DFA have?

o Worstcase.... 2"

o The deterministicversion of apolynomial time
non deterministic Turing machine will run in exponential time (worst case)
Since ittakes polynomial time to runthe program, just run the program and geta sol ution
Butis NP asubsetofP? Itisnotyetclear whether P=NP or not

Quantum Computers

Computers are physical objects, and computations are physical processes. What
computers can or cannot compute is determined by the law of physics alone, and not by
pure mathematics. Computation with coherentatomic-scale dynamics.

The behavior of a quantum computeris governed by the laws of quantum mechanics.

In 1982 Richard Feynmann, aNobel laurite in physics suggested to build computerbased on
guantum mechanics.
Quantum mechanics arose in the early 1920s, when classical physics could notexplain
everything.
QM will provide tools tofill up the gulf between the small and the relatively complex
systemsin physics.
Bit (0 or 1) is the fundamental concept of classical computation and information. Classical
computerbuiltfrom electroniccircuits containing wires and gates.
Quantum bitand quantum circuits which are analogous to bits and circuits. Two possible
states of a qubit(Dirac)are |0> |1>
Quantum bit is qubit described mathematically (where (alpha)iscomplexnumber)

. | 0) +ax|1) ,
Qubitcan bein infinitenumber of state otherthan dirac |0>or |1>

The operations are induced by the apparatus linearly, that is, if
i

, |
0->Fr Gl o)

Then

elojat) el 0+ 0ol 10 8] (v LYoy Lt

Any linear operation that takes states ao|0>+0‘1|1> satisfying and mapsthemto be UNITARY

|0‘0|2 +|0‘1|2 =1

LinearAlgebra: |0> Corresponds to [1j a |O>+a|1>
O 0 1
Correspondsto
0
|1> Corresponds to (1] 1 N 0 a,
Q o =
°lo "1 o

If we concatenate two qubits

(0]0) + /1)) (£:l0) + A1)

we have a 2-qubit system with 4 basis states
B G S
And itis describes the state as aoﬂo| 00> + aoﬁ1| 01> + a1ﬂ0|10> + a'1ﬂ1|11>

® Quantumcomputerisa system builtfrom quantum circuits, containing wires and
elementary quantum gates, to carry out manipulation of quantuminformation.

Variants of Turing Machines

Various types of TM are

With Multiple tapes

With one tape but multiple heads
With two dimensional tapes

Non deterministic TM

PR

1. Multiple tapes: It consists of finite control with k tape heads and k tapes each
tape is infinite in both directions. On a single move depending on the state of the
finite control and symbol scanned by each of the tape head the machine can
change state Or print new symbol on each of cell scanned etc..

2. With One tape but Multiple heads: a K head TM has fixed k number of heads
and move of TM depends on the state and the symbol scanned by each head. (
head can move left, right or stationary).

3. Multidimensional TM: It has finite control but the tape consists of a K-
dimensional array of cells infinite in all 2 k directions. Depending on the state
and symbol scanned , the device changes the state, prints a new symbol, and
moves its tape head in one of the 2 k directions, either positively of negatively
along one of the k axes.

4. Non deterministic TM: In the TM for a given state and tape symbol scanned by
the tape head, the machine has a finite number of choices for the next move.
Each choice consists of new state, a tape symbol to print and direction of head
motion.

Linear Bounded Automata

LBA is a restricted form of a Non deterministic Turing machine. It is a multitrack
turing machine which has only one tape and this tape is exactly same length as that of
input. It accepts the string in the similar manner as that of TM. For LBA halting means
accepting. In LBA computation is restricted to an area bounded by length of the input. This
is very much similar to programming environment where size of the variable is bounded
by its data type. Lba is 7-tuple on Deterministic TM with

< a b a b a >
Left EM Right EM

M=(Q,3,T, Delta,qaccept, Qreject, q0)

e Two extra symbols < and > are used left end marker and right
end marker.

e Input lies between these markers

