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Functional Units

Figure 1.1.  Basic functional units of a computer.

I/O Processor

Output

Memory

Input and
Arithmetic

logic

Control



Basic operational concepts : A Typical 

Instruction

• Add LOCA, R0
• Add the operand at memory location LOCA to 

the operand in a register R0 in the processor.
• Place the sum into register R0.
• The original contents of LOCA are preserved.
• The original contents of R0 is overwritten.
• Instruction is fetched from the memory into 

the processor – the operand at LOCA is 
fetched and added to the contents of R0 – the 
resulting sum is stored in register R0.



Separate Memory Access and ALU 
Operation

• Load LOCA, R1

• Add R1, R0

• Whose contents will be overwritten?



Connection Between the Processor and the Memory
Figure 1.2.   Connections between the processor and the  memory.
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Registers
• The instruction register (IR):- Holds the instructions that is

currently being executed.

• Its output is available for the control circuits which generates the
timing signals that control the various processing elements in one
execution of instruction.

• The program counter PC:-
• This is another specialized register that keeps track of execution of a

program. It contains the memory address of the next instruction to
be fetched and executed

• Besides IR and PC, there are n-general purpose registers R0 through
Rn-1.



Registers
• The other two registers which facilitate 

communication with memory are: -

• 1. MAR – (Memory Address Register):- It 
holds the address of the location to be 
accessed. 

• 2. MDR – (Memory Data Register):- It 
contains the data to be written into or read  
out of the address location.



Typical Operating Steps

Programs reside in the memory through input
devices

PC is set to point to the first instruction
The contents of PC are transferred to MAR
A Read signal is sent to the memory
The first instruction is read out and loaded into

MDR
The contents of MDR are transferred to IR
Decode and execute the instruction
If the instruction involves an operation by the ALU,

it is necessary to obtain the required operands.



Typical Operating Steps (Cont’)
An operand in the memory is fetched by sending its address

to MAR & Initiating a read cycle.

When the operand has been read from the memory to the
MDR, it is transferred from MDR to the ALU

After one or two such repeated cycles, the ALU can
perform the desired operation.

If the result of this operation is to be stored in the
memory, the result is sent to MDR.

Address of location where the result is stored is sent to
MAR & a write cycle is initiated.

The contents of PC are incremented so that PC points to
the next instruction that is to be executed.



Interrupt

• Normal execution of programs may be 
preempted if some device requires urgent 
servicing.

• An interrupt is a request signal from an I/O 
device for service by the processor. 

• The processor provides the requested service 
by executing an appropriate interrupt service 
routine 



Bus Structures
• There are many ways to connect different parts inside a 

computer together.
• A group of lines that serves as a connecting path for several 

devices is called a bus.
• Address/data/control
• Since the bus can be used for only one transfer at a time, only 

two units can actively use the bus at any given time. 
• Bus control lines are used to arbitrate multiple requests for use 

of one bus. 
• Single bus structure is 
• Low cost 
• Very flexible for attaching peripheral devices 
• Multiple bus structure certainly increases, the performance but 

also increases the cost significantly. 



Bus Structure

• Single-bus

Figure 1.3.    Single-bus structure.
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Performance

• The most important measure of a computer is how quickly it can
execute programs.

• Three factors affect performance:
• Hardware design
• Instruction set
• Compiler

• The total time required to execute the program is elapsed time is a
measure of the performance of the entire computer system. It is
affected by the speed of the processor, the disk and the printer.

• The time needed to execute a instruction is called the processor
time.

• Processor time to execute a program depends on the hardware
involved in the execution of individual machine instructions



Performance

• The  figure  which includes the cache  memory as part of the processor 
unit 

Main
memory Processor

Bus

Cache
memory

Figure 1.5. The processor cache.



Performance

• The processor and a relatively small cache
memory can be fabricated on a single
integrated circuit chip.

• Speed

• Cost

• Memory management



Performance

• Let us examine the flow of program instructions
and data between the memory and the
processor.

• At the start of execution, all program
instructions and the required data are stored in
the main memory.

• As the execution proceeds, instructions are
fetched one by one over the bus into the
processor, and a copy is placed in the cache later
if the same instruction or data item is needed a
second time, it is read directly from the cache



Processor Clock

• Processor circuits are controlled by a timing signal called
clock

• The clock defines the regular time intervals called clock
cycles.

• To execute a machine instruction the processor divides the
action to be performed into a sequence of basic steps that
each step can be completed in one clock cycle.

• The length P of one clock cycle is an important parameter
that affects the processor performance.

• Processor used in today’s personal computer and work
station have a clock rates that range from a few hundred
million to over a billion cycles per second



Processor Clock

• The length P of one clock cycle is an important
parameter that affects processor performance.

• Its inverse is the clock rate R=1/P.

• The term “cycles per second” is called hertz

• The term “million” is denoted by the prefix
Mega(M)

• and “billion” is denoted by the prefix Giga(G)



Basic Performance Equation
• T – processor time required to execute a program that has been 

prepared in high-level language

• N – number of actual machine language instructions needed to 
complete the execution (note: loop)

• S – average number of basic steps needed to execute one machine 
instruction. Each step completes in one clock cycle

• R – clock rate

• Note: these are not independent to each other

R

SN
T




How to improve T?



Clock Rate

• These are two possibilities for increasing the clock rate
‘R’.

1. Improving the IC technology makes logical circuit
faster, which reduces the time of execution of basic
steps. This allows the clock period P, to be reduced and
the clock rate R to be increased.

2. Reducing the amount of processing done in one
basic step also makes it possible to reduce the clock
period P. however if the actions that have to be
performed by an instructions remain the same, the
number of basic steps needed may increase.



Performance Measurement
• The performance measure is the time taken by the computer to execute a

given bench mark. Initially some attempts were made to create artificial
programs that could be used as bench mark programs

• A non profit organization called SPEC- system performance evaluation
corporation selects and publishes bench marks

• The program selected range from game playing, compiler, and data base
applications to numerically intensive programs in astrophysics and quantum
chemistry. In each case, the program is compiled under test, and the
running time on a real computer is measured.

• The same program is also compiled and run on one computer selected as
reference.

• The ‘SPEC’ rating is computed as follows.



Performance Measurement
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If the SPEC rating = 50  Means that the computer under test is 50 

times as fast as the ultra sparc 10.

This is repeated for all the programs in the SPEC suit, and the 

geometric mean of the result is computed. 



Machine instructions and programs : Objectives

• Machine instructions and program execution, 
including branching and subroutine call and return 
operations.

• Number representation and addition/subtraction in 
the 2’s-complement system.

• Addressing methods for accessing register and 
memory operands.

• Assembly language for representing machine 
instructions, data, and programs.

• Program-controlled Input/Output operations.



Memory Location, Addresses, and 
Operation

• Memory consists of
many millions of
storage cells, each
of which can store 1
bit.

• Data is usually
accessed in n-bit
groups. n is called
word length.

second word

first word

Figure 2.5.   Memory words.

n bits

last word

i th word
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Memory Location, Addresses, and 
Operation

• 32-bit word length example

(b) Four characters

charactercharactercharacter character

(a) A signed integer

Sign bit: for positive numbers

for negative numbers

ASCIIASCIIASCIIASCII

32 bits

8 bits 8 bits 8 bits 8 bits

b31 b30 b1 b0

b31 0=

b31 1=

• • •



Memory Location, Addresses, and 
Operation

• To retrieve information from memory, either for one 
word or one byte (8-bit), addresses for each location 
are needed.

• A k-bit address memory has 2k memory locations, 
namely 0 – 2k-1, called memory space.

• 24-bit memory: 224 = 16,777,216 = 16M (1M=220)

• 32-bit memory: 232 = 4G (1G=230)

• 1K(kilo)=210

• 1T(tera)=240



Memory Location, Addresses, and 
Operation

• It is impractical to assign distinct addresses 
to individual bit locations in the memory.

• The most practical assignment is to have 
successive addresses refer to successive byte 
locations in the memory – byte-addressable 
memory.

• Byte locations have addresses 0, 1, 2, … If 
word length is 32 bits, they successive words 
are located at addresses 0, 4, 8,…



Big-Endian and Little-Endian 
Assignments

2
k

4- 2
k

3- 2
k

2- 2
k

1- 2
k

4-2
k

4-

0 1 2 3

4 5 6 7

00

4

2
k

1- 2
k

2- 2
k

3- 2
k

4-

3 2 1 0

7 6 5 4

Byte addressByte address

(a) Big-endian assignment (b) Little-endian assignment

4

Word

address

•
•
•

•
•
•

Figure 2.7. Byte and word addressing.

Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant bytes of the word



Memory Location, Addresses, and 
Operation

• Address ordering of bytes

• Word alignment
– Words are said to be aligned in memory if they 

begin at a byte addr. that is a multiple of the 
num of bytes in a word.
• 16-bit word: word addresses: 0, 2, 4,….

• 32-bit word: word addresses: 0, 4, 8,….

• 64-bit word: word addresses: 0, 8,16,….

• Access numbers, characters, and character 
strings



Memory Operation

• Load (or Read or Fetch)
➢ Copy the content. The memory content doesn’t change.

➢ Address – Load

➢ Registers can be used

• Store (or Write)
➢ Overwrite the content in memory

➢ Address and Data – Store

➢ Registers can be used



“Must-Perform” Operations

• Data transfers between the memory and the 
processor registers

• Arithmetic and logic operations on data

• Program sequencing and control

• I/O transfers



Register Transfer Notation

• Identify a location by a symbolic name 
standing for its hardware binary address 
(LOC, R0,…)

• Contents of a location are denoted by 
placing square brackets around the name 
of the location (R1←[LOC], R3 ←[R1]+[R2])

• Register Transfer Notation (RTN)



Atria Institute of Technology. All rights 
reserved

Assembly Language Notation

• Represent machine instructions and programs.

• Move LOC, R1 = R1←[LOC]

• Add R1, R2, R3 = R3 ←[R1]+[R2]



CPU Organization

• Single Accumulator
– Result usually goes to the Accumulator

– Accumulator has to be saved to memory quite 
often

• General Register
– Registers hold operands thus reduce memory 

traffic

– Register bookkeeping

• Stack
– Operands and result are always in the stack



Instruction Formats

• Three-Address Instructions
– ADD R1, R2, R3 R1 ← R2 + R3

• Two-Address Instructions
– ADD R1, R2 R1 ← R1 + R2

• One-Address Instructions
– ADD M AC ← AC + M[AR]

• Zero-Address Instructions
– ADD TOS ← TOS + (TOS – 1)

• RISC Instructions
– Lots of registers. Memory is restricted to Load & Store

Opcode Operand(s) or Address(es)



Instruction Formats

Example:   Evaluate (A+B)  (C+D)

• Three-Address

1. ADD R1, A, B ; R1 ← M[A] + M[B]

2. ADD R2, C, D ; R2 ← M[C] + M[D]

3. MUL X, R1, R2 ; M[X] ← R1  R2



Instruction Formats

Example:   Evaluate (A+B)  (C+D)

• Two-Address

1. MOV R1, A ; R1 ← M[A]

2. ADD R1, B ; R1 ← R1 + M[B]

3. MOV R2, C ; R2 ← M[C]

4. ADD R2, D ; R2 ← R2 + M[D]

5. MUL R1, R2 ; R1 ← R1  R2

6. MOV X, R1 ; M[X] ← R1



Instruction Formats

Example:   Evaluate (A+B)  (C+D)

• One-Address

1. LOAD A ; AC ← M[A]

2. ADD B ; AC ← AC + M[B]

3. STORE T ; M[T] ← AC 

4. LOAD C ; AC ← M[C]

5. ADD D ; AC ← AC + M[D]

6. MUL T ; AC ← AC  M[T]

7. STORE X ; M[X] ← AC



Instruction Formats

Example:   Evaluate (A+B)  (C+D)

• Zero-Address

1. PUSH A ; TOS ← A

2. PUSH B ; TOS ← B

3. ADD ; TOS ← (A + B)

4. PUSH C ; TOS ← C

5. PUSH D ; TOS ← D

6. ADD ; TOS ← (C + D)

7. MUL ; TOS ← (C+D)(A+B)

8. POP X ; M[X] ← TOS



Instruction Formats

Example:   Evaluate (A+B)  (C+D)

• RISC

1. LOAD R1, A ; R1 ← M[A]

2. LOAD R2, B ; R2 ← M[B]

3. LOAD R3, C ; R3 ← M[C]

4. LOAD R4, D ; R4 ← M[D]

5. ADD R1, R1, R2 ; R1 ← R1 + R2

6. ADD R3, R3, R4 ; R3 ← R3 + R4

7. MUL R1, R1, R3 ; R1 ← R1  R3

8. STORE X, R1 ; M[X] ← R1



Using Registers

• Registers are faster

• Shorter instructions

– The number of registers is smaller (e.g. 32 
registers need 5 bits)

• Potential speedup

• Minimize the frequency with which data is 
moved back and forth between the memory 
and processor registers.



Instruction Execution and Straight-Line Sequencing

R0,C

B,R0

A,R0

Movei + 8

Begin execution here Movei

ContentsAddress

C

B

A

the program
Data for

segment
program
3-instruction

Addi + 4

Figure 2.8.  A program for C  [A] + [B].

Assumptions:
- One memory operand

per instruction
- 32-bit word length
- Memory is byte

addressable
- Full memory address

can be directly specified
in a single-word instruction

Two-phase procedure
-Instruction fetch
-Instruction execute

Page 43



Branching

NUM n

NUM2

NUM1

R0,SUM

NUM n,R0

NUM3,R0

NUM2,R0

NUM1,R0

Figure 2.9.   A straight-line  program for adding n numbers.

Add

Add

Move

SUM

i

Move

Add

i 4n+

i 4n 4-+

i 8+

i 4+

•
•
•

•
•
•

•
•
•



Branching
N,R1Move

NUM n

NUM2

NUM1

R0,SUM

R1

"Next" number to R0

Figure 2.10.   Using a loop to add n numbers.

LOOP

Decrement

Move

LOOP

loop
Program

Determine address of
"Next" number and add

N

SUM

n

R0Clear

Branch>0

•
•
•

•
•
•

Branch target

Conditional branch



Condition Codes

• Condition code flags

• Condition code register / status register

• N (negative)

• Z (zero)

• V (overflow)

• C (carry)

• Different instructions affect different flags



Conditional Branch Instructions

• Example:

– A:  1 1 1 1 0 0 0 0

– B:  0 0 0 1 0 1 0 0

A:      1 1 1 1 0 0 0 0

+(−B): 1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 0

C = 1

S = 1

V = 0

Z = 0



Status Bits

ALU

V Z S C

Zero Check

Cn

Cn-1

Fn-1

A B

F



Addressing Modes

Addressing modes:-The different ways in which 
the location of an operand is specified in an 
instruction are referred to as addressing modes.

...

ModeOpcode
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CHAPTER 2: Machine instructions and programs

Courtesy: Text book: Carl Hamacher 5th Edition



Addressing Modes
• Register mode :-The operand is the content of a processor 

register; the name(address) is given in the processor.
Ex:- Move R1,R2

• Absolute mode:-The operand is in a memory location; the 
address of this location is given explicitly in the instruction.

Ex:- Move LOC,R2
Immediate mode:- The operand is given explicitly in the

instruction(clearly immediate mode is to specify the value of a
source operand)

Ex:- Move #200,R0  

For ex:- A=B+6;



Addressing Modes

• Indirect Address:
The effective address of the operand is the

content of a register or memory whose address
appears in the instruction

Ex:- 1) Add (R1) R0 2) Add (AR),R0



Addressing Modes

• Indirect mode
– The effective address of the operand is the 

contents of a register or memory location whose 
address appears  in the instructions

Ex:- Add R1, (R2);

Add       (AR),R0;

R1

R2 = 3

R3 = 5



Addressing Modes

• Indirect Address

– Indicate the memory location that holds the 
address of the memory location that holds the 
data

AR = 101

100

101

102

103

104

0  1  0  4

1  1  0  A



Addressing Modes

• Index mode:- The effective address of the operand is
generated by adding a constant value to the content of a
register

Ex:- 1) Add 20(R1),R2 2) Add 1000(R1),R2

Index register

X(Ri): EA = X + [Ri]

• The constant X may be given either as an explicit number or 
as a symbolic name representing a numerical value.

• If X is shorter than a word, sign-extension is needed.



Addressing Modes

• Indexed

– EA = Index Register + Relative Addr

100

101

102

103

104

AR = 100

1  1  0  A

XR = 2

+

Could be Positive or 
Negative

(2’s Complement)

Useful with 
“Autoincrement” or 
“Autodecrement”



Addressing Modes

• Relative mode :-The effective address is
determined by the Index mode using the
program counter in place of the general
purpose register Ri.

• Ex:- Add 20(PC),R0



100

101

102

103

104

0

1

2

Addressing Modes

• Relative Address

– EA = PC + Relative Addr

AR = 100

1  1  0  A

PC = 2

+

Could be Positive or 
Negative

(2’s Complement)



Additional Modes

• Auto increment mode :-The effective address of
the operand is the content of a register specified
in the instruction determined. After accessing
the operand, the contents of this registers are
automatically incremented to point to the next
item in a list.

• Ex:- (Ri)+

• Auto decrement mode :-The contents of a
register specified in the instruction are first
automatically decremented and are then used as
the effective address of the operand.

• Ex:- -(Ri)



Additional Modes
• Autoincrement mode – the effective address of the operand is the 

contents of a register specified in the instruction. After accessing the 
operand, the contents of this register are automatically incremented to 
point to the next item in a list.

• Autodecrement mode: -(Ri) – decrement first

R0Clear

R0,SUM

R1
(R2)+,R0

Figure 2.16.  The Autoincrement addressing mode used in the program of Figure 2.12.

Initialization

Move

LOOP Add
Decrement

LOOP

#NUM1,R2
N,R1Move

Move

Branch>0



Addressing Modes
Name Assem bler syn tax Addressing function

Immediate #V alue Op erand = Value

Register R i EA = R i

Absolute (Direct) LOC EA = LOC

Indirect (R i ) EA = [R i ]
(LOC) EA = [LOC]

Index X(R i) EA = [R i ] + X

Base with index (R i ,R j ) EA = [R i ] + [R j ]

Base with index X(R i ,R j ) EA = [R i ] + [R j ] + X
and offset

Relative X(PC) EA = [PC] + X

Autoincremen t (R i )+ EA = [R i ] ;
Incremen t R i

Autodecrement (R i ) Decremen t R i ;
EA = [R i]





Assembly Language 

• Machine instructions are represented by patterns of 0’s 
and 1’s –awkward to deal

• So we use symbolic names to represent the patterns. so
far we have used normal words, such as Move, Add,
and Branch, for the instruction operation to represent
the corresponding binary code patterns.

• When writing programs for a specific computer, such
words are normally replaced by acronyms called
mnemonics, such as MOV,ADD,BR .similarly we use the
notation R3 to refer to register 3 and LOC to refer to a
memory location.

• A complete set of names and rules for their use
constitutes a programming language, generally referred
to as an assembly language



Assembly Language 

• The set of rules for using the mnemonics in
the specification of complete instructions and
programs is called the syntax of the language.



Assembly Language : Types of Instructions

• Data Transfer Instructions

Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output OUT

Push PUSH

Pop POP

Data value is not 
modified



Assembler DIrectives
• In addition to provide a mechanism for representing

instructions in a program.
• The assembly language allows the programmer to specify

other information needed to translate the source program into
object program.

• Suppose that the name SUM is used to represent the value
200. This can be conveyed to the assembler through a
statement as

SUM EQU 200
This statement simply informs the assembler that the SUM

should be replaced by the value 200 where ever it appears in
the program.

Such statements are assembler directives



Assembler Directives
• Address Operation Addressing
• Label or Data operation
• Ex:- SUM EQU 200
• ORIGIN 204
• N DATAWORD 100
• NUM1 RESERVE 400

This ORIGIN directive tells the assembler where in the memory to
place the data block that follows. In this case the location specified
has the address 204.since this location is to be loaded with value 100.

• A DATAWORD directive is used to inform the assembler of this
requirement .It states that the data value is to be placed in the
memory word at address 204



Assembler Directives
• Any statement that results in instructions of data

being placed in a memory location may be given a
memory address label. This label is assigned a value
equal to the address of that location.

• Because the DATAWORD statement is given the label
N, the Name N is assigned the value 204.Whenever N
is encountered in the rest of the program it will be
replaced with this value.

• The RESERVE directive declares that a memory block
of 400 bytes to be reserved for data and that the
name NUM1 is to be associated with address 208



Assembler DIrectives
• START MOVE N,R1

• MOVE #NUM1,R2

• CLR R0

• LOOP ADD (R2),R0

• ADD #4,R2

• DEC R1

• BGTZ LOOP

• MOVE R0,SUM

• RETURN

• END START



Assembler DIrectives
• The Last Statement in the source program is the assembler

directive END, which tells that this is the end of source
program text. The END directive includes the label START,
which is the address of the location at which execution of
the program is to begin.

• The RETURN assembler directive identifies the point at
which execution of the program should be terminated.

• Most assembly languages require statements in a source
program to be written in the form

Label Operation Operand(s) Comment;

These four fields are separated by an appropriate delimiter,
typically one or more blank characters.



Number Notations
• Numbers can be specified as an operand in an

instruction using different represent
representations.

• Ex:- ADD #93,R1 (Decimal).

•

• ADD #%01011101,R1 ( Binary)

• ADD #$5D,R1 (Hexadecimal)



Basic Input/Output Operations:Program-Controlled I/O 

• Read in character input from a keyboard and
produce character output on a display screen.

Rate of data transfer (keyboard, display, processor)

Difference in speed between processor and I/O device creates the
need for mechanisms to synchronize the transfer of data.

A solution: on output, the processor sends the first character and
then waits for a signal from the display that the character has been
received. It then sends the second character. Input is sent from the
keyboard in a similar way.



Program-Controlled I/O Example

DATAIN DATAOUT

SIN SOUT

Key board Display

Bus

Figure 2.19 Bus connection for processor, keyboard, and display.

Processor

- Registers
- Flags
- Device interface



Program-Controlled I/O Example
The keyboard and the display are separate device as shown in fig. the
action of striking a key on the keyboard does not automatically cause
the corresponding character to be displayed on the screen.

One block of instructions in the I/O program transfers the character
into the processor, and another associated block of instructions causes
the character to be displayed

Striking a key stores the corresponding character code in an 8-bit
buffer register associated with the keyboard. Let us call this register
DATAIN, as shown in fig



Program-Controlled I/O Example
To inform the processor that a valid character is in DATAIN, a status
control flag, SIN, is set to 1. A program monitors SIN, and when SIN is
set to 1, the processor reads the contents of DATAIN. When the
character is transferred to the processor, SIN is automatically cleared
to 0. If a second character is entered at the keyboard, SIN is again set
to 1, and the processor repeat

An analogous process takes place when characters are transferred
from the processor to the display. A buffer register, DATAOUT, and a
status control flag, SOUT, are used for this transfer. When SOUT
equals 1, the display is ready to receive a character.



Program-Controlled I/O Example

• Machine instructions that can check the state 
of the status flags and transfer data:

• READWAIT  Branch to READWAIT if SIN = 0
Input from DATAIN to R1

WRITEWAIT Branch to WRITEWAIT if SOUT = 0
Output from R1 to DATAOUT



Program-Controlled I/O Example

• Memory-Mapped I/O – some memory address values are 
used to refer to peripheral device buffer registers. No 
special instructions are needed. Also use device status 
registers.

READWAIT  Testbit #3, INSTATUS
Branch=0  READWAIT
MoveByte DATAIN, R1

• The write may be implemented as

WRITEWAIT    Testbit #3, OUTSTATUS
Branch=0  WRITEWAIT
MoveByte R1,DATAOUT



Stacks 
A stack is a small area in the memory of a computer used to store data
elements. The main feature of the stack is that, the elements can be
added or removed to one end only and the other is fixed.

The open end is called top of the stack(TOS),and the fixed end is
bottom. We use the term Push and POP to denote the operations on
the stack.

When elements are pushed into the stack they are placed in
successively lower address locations. Thus the stack grows in the
direction of decreasing memory address



Stack : Stack Organization

• LIFO

Last In First Out

SP

Stack Bottom

Current
Top of Stack

TOS 0

1

2

3

4

7

8

9

10

5

6

Stack

0  0  5  5

0  0  0  8

0  0  2  5

0  0  1  5

0  1  2  3

FULL EMPTY



Stack Organization

• PUSH

SP ← SP – 1

M[SP] ← DR

If (SP = 0) then (FULL ← 1)

EMPTY ← 0
SP

Stack Bottom

Current
Top of Stack

TOS 0

1

2

3

4

7

8

9

10

5

6

Stack

0  0  5  5

0  0  0  8

0  0  2  5

0  0  1  5

0  1  2  3

FULL EMPTY

1  6  9  0

1  6  9  0Current
Top of Stack

TOS



Stack Organization

• POP

DR ← M[SP]

SP ← SP + 1

If (SP = 11) then (EMPTY ← 1)

FULL ← 0
SP

Stack Bottom

Current
Top of Stack

TOS 0

1

2

3

4

7

8

9

10

5

6

Stack

0  0  5  5

0  0  0  8

0  0  2  5

0  0  1  5

0  1  2  3

FULL EMPTY

1  6  9  01  6  9  0

Current
Top of Stack

TOS



0

1

2

102

202

201

200

100

101

Stack Organization

• Memory Stack

– PUSH

SP ← SP – 1

M[SP] ← DR

– POP

DR ← M[SP]

SP ← SP + 1

PC

AR

SP



Stack organization

• Assume a byte addressable memory and a word length of a 
data to be 32-bits

• The push operation places a data item above the current
top of the stack. i.e. the SP is to be decremented before
data can be placed.

• So to transfer a data from a memory location NUM to the
have the following instructions.

• Subtract #4,SP
• Move NUM,(SP)

• To remove a data
• Move  (SP),NUM

• Add #4,SP



Reverse Polish Notation

• Infix Notation

A + B

• Prefix or Polish Notation

+ A B

• Postfix or Reverse Polish Notation (RPN)

A B +

A  B + C  D A B  C D  +
RPN

(2) (4)  (3) (3)  +

(8) (3) (3)  +

(8) (9) +

17



Reverse Polish Notation

• Example

(A + B)  [C  (D + E) + F]

(A B +) (D E +) C  F +



Reverse Polish Notation

• Stack Operation

(3) (4)  (5) (6)  +

PUSH      3

PUSH      4

MULT

PUSH      5

PUSH      6

MULT

ADD

3

4

12

5

6

30

42



STACK:-POP and PUSH
• Suppose that a stack runs from location 2000(BOTTOM) down no

further location 1500. The stack pointer is loaded initially with the
address value 2004.

• SP is decremented by 4 before new data are stored onto the stack,
hence a initial value of 2004 means that the first item pushed onto
the stack will be at location 2000.

• To prevent either pushing an item on full stack or popping an item
off an empty stack, the single-instruction push and pop operations
can be replaced by the instruction sequences

• The compare instruction

Compare src, dst performs [dst]-[src]

Doesn’t change the operand value



Stack: POP and PUSH
• SAFEPOP Compare #2000,SP

• Branch>0 EMPTYERROR

• Move (SP)+,ITEM.

• SAFEPUSH Compare #1500,SP

• Branch<=0 FULLERROR

• Move NEWITEM,-(SP).



Subroutines
• In a given program, it is often necessary to perform

a particular subtask many times on different data-
values. Such a subtask is usually called a
subroutine.

For example,
• a subroutine may evaluate the sine function or sort

a list of values into increasing or decreasing order.
• It is possible to include the block of instructions

that constitute a subroutine at every place where it
is needed in the program. However, to save space,
only one copy of the instructions that constitute
the subroutine is placed in the memory, and any
program that requires the use of the subroutine
simply branches to its starting location..



Subroutines
• When a program branches to a subroutine we say that it

is calling the subroutine. The instruction that performs
this branch operation is named a Call instruction

• After a subroutine has been executed, the calling 
program must resume execution, continuing immediately 
after the instruction that called the subroutine. The 
subroutine is said to return to the program that called it 
by executing a Return instruction

• The way in which a computer makes it possible to call 
and return from subroutines is referred to as its 
subroutine linkage method



Subroutines



Subroutines
• The simplest subroutine linkage method is to save the

return address in a specific location, which may be a
register dedicated to this function. Such a register is
called the link register.

• When the subroutine completes its task, the Return
instruction returns to the calling program by branching
indirectly through the link register.

• The Call instruction is just a special branch instruction
that performs the following operations

• • Store the contents of the PC in the link register
• Branch to the target address specified by the instruction 
• The Return instruction is a special branch instruction the 

performs the operation 
• • Branch to the address contained in the link register



Subroutines



Subroutine Nesting
• A common programming practice, called subroutine

nesting, is to have one subroutine call another. In this case,
the return address of the second call is also stored in the
link register, destroying its previous contents. Hence, it is
essential to save the contents of the link register in some
other location before calling another subroutine.

• Otherwise, the return address of the first subroutine will
be lost.

• This suggests that the return addresses associated with
subroutine calls should be pushed onto a stack. A particular
register is designated as the stack pointer, SP, to be used in
this operation. The stack pointer points to a stack called the
processor stack. The Call instruction pushes the contents of
the PC onto the processor stack and loads the subroutine
address into the PC. The Return instruction pops the return
address from the processor stack into the PC.



Parameter Passing
• The exchange of information between a calling program

and a subroutine is referred to as parameter passing.
Parameter passing may be accomplished in several ways.
The parameters may be placed in registers or in memory
locations, where they can be accessed by the subroutine.
Alternatively, the parameters may be placed on the
processor stack used for saving the return address.

• The purpose of the subroutines is to add a list of
numbers. Instead of passing the actual list entries, the
calling program passes the address of the first number in
the list.

• This technique is called passing by reference. The second
parameter is passed by value, that is, the actual number
of entries, n, is passed to the subroutine.



Parameter Passing
• The exchange of information between a calling program

and a subroutine is referred to as parameter passing.
Parameter passing may be accomplished in several ways.
The parameters may be placed in registers or in memory
locations, where they can be accessed by the subroutine.
Alternatively, the parameters may be placed on the
processor stack used for saving the return address.

• The purpose of the subroutines is to add a list of numbers.
Instead of passing the actual list entries, the calling
program passes the address of the first number in the list.

• This technique is called passing by reference. The second
parameter is passed by value, that is, the actual number of
entries, n, is passed to the subroutine.



Parameter Passing
• Move N,R1
• Move #NUM1,R2
• Clear R0
• Call ARRAYADD
• Move R0,SUM
• ….….
• END
• ARRAYADD Add (R2)+,R0
• Decrement R1
• Branch>0 ARRAYADD
• Return

Calling (main)
Program

Subroutine



Stack Frame

During execution of the subroutine, six
locations at the top of the stack contain entries
that are needed by the subroutine.

These locations constitute a private workspace
for the subroutine, created at the time the
subroutine is entered and freed up when the
subroutine returns control to the calling program.
Such space is called a stack frame .



Stack Frame
•

• Move #NUM1,-(SP)

• Move N,-(SP)

• Call ARRAYADD

• Move 4(SP),SUM

• Add #8,SP

• ….….

• END

Calling (main)
Program



Stack Frame
• ARRAYADD Move Multiple R0-R2,-(SP)
• Move 16(SP),R1
• Move 20(SP),R2
•

• Clear R0
• BACK Add (R2)+,R0
• Decrement R1
• Branch>0 LOOP
• Move R0,20(SP)
• Move Multiple (SP)+,R0-R2
• Return

Subroutine



Stack Frame
• In addition to the stack pointer SP, it is useful to have

another pointer register, called the Frame pointer (FP), for
convenient access to the parameters passed to the
subroutine and to the local memory variables used by the
subroutine

• These local variables are only used within the subroutine,
so it is appropriate to allocate space for them in the stack
frame associated with the subroutine. We assume that four
parameters are passed to the subroutine, three local
variables are used within the subroutine, and registers R0
and R1 need to be saved because they will also be used
within the subroutine.

• The pointers SP and FP are manipulated as the stack frame 
is built, used, and dismantled for a particular of the 
subroutine 



Stack Frame
• We begin by assuming that SP point to the old top-of-stack

(TOS) element in fig b. Before the subroutine is called, the
calling program pushes the four parameters onto the stack.

• The call instruction is then executed, resulting in the return
address being pushed onto the stack. Now, SP points to this
return address, and the first instruction of the subroutine is
about to be executed. This is the point at which the frame
pointer FP is set to contain the proper memory address.

• Since FP is usually a general-purpose register, it may contain
information of use to the Calling program. Therefore, its
contents are saved by pushing them onto the stack. Since
the SP now points to this position, its contents are copied
into FP



Stack Frame



Queues
• Data structure similar to stack

• First In First Out

• Queue has two ends :One entry and One exit.

• Both the ends of a queue move to higher addresses
as data are added at the back and removed from the
front, so two pointers are needed to keep track of
the queue operations.

• The queue would continuously move through the
memory in the direction of higher address: may
leads to a “queue overflow”

• Solution is to limit the queue to a fixed region in
memory by using a circular buffer.



Queues
• Consider the memory addresses from

BEGINNING to END are assigned to queue.

• The first element is entered into the location
BEGINNING and successive entries are
appended to the queue by entering them at
successively higher addresses.

• By the time the back of the queue reaches END
some items have been removed from the
queue creating empty spaces.

• Hence the back pointer is reset to the value
BEGINNING and the process continues.



Additional Instructions

LOGICAL INSTRUCTIONS:-

• The basic logic operations are: AND,OR,NOT, and XOR
logic gates

• All the programming languages provide instructions to
perform these operations on all bits of a byte or word
independently.

• For ex:- Not dst

• Complements all bits contained in the destination
operand that are changed to 1’s and 0’s and 0’s to 1’s

The dst may be a processor register or memory
location



Additional Instructions

SHIFT AND ROTATE INSTRUCTIONS:-

• There are many applications that require the bits
of an operand to be shifted right or left some
specified number of bit positions.

• The details of how the shifts are performed
depend on whether the operand is a signed
number or some more general binary-coded
information.

• For general operands, we use a logical shift. For a
signed number, we use an arithmetic shift, which
preserves the sign of the number



Additional Instructions
• Logical shifts:-

• Two logical shift instructions are needed, one for
shifting left (LShiftL) and another for shifting right
(LShiftR). These instructions shift an operand over
a number of bit positions specified in a count
operand contained in the instruction.

• The general form of a logical left shift instruction is 

•

• LShiftL Count,R0 

(a) Logical shift left                       LShiftL #2, R0 



Additional Instructions :  Logical Shifts

• Logical shift – shifting left (LShiftL) and shifting right 
(LShiftR)

CR00

before:

after:

0

1

0 0 01 1 1 . . . 11

0 0 1 1 1 000

(b) Logical shift r ight LShiftR   #2,R0

(a) Logical shift left LShiftL    #2,R0

C R0 0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101

. . .



Arithmetic Shifts

C

before:

after:

0

1

1 1 00 0 1 . . . 01

1 1 0 0 1 011

(c) Ar ithmetic shift right AShiftR   #2,R0

R0

. . .

Arithmetic Shift Right :-In this case sign bit is repeated into the bit towards its
right and it is also put back in the same position



Arithmetic Shifts
Arithmetic Shift Left :-In this case the bit next to the sign bit on the right side
is shifted out into the carry bit

Roc

1    0      1      0     1        1

1      1      0       1      1      0

1

0

before

after

AshiftL #1,R0



Rotate Instructions
• In the shift operations, the bits shifted out of the operand are lost,

except for the last bit shifted out which is retained in the Carry flag C.

• To preserve all bits, a set of rotate instructions can be used. They move
the bits that are shifted out of one end of the operand back into the
other end.

• Two versions of both the left and right rotate are usually provided. In
one version, the bits of the operand are simply rotated. In the other
version, the rotation includes the C flag instructions.

• When carry flag is not involved in the rotation it contains the last bit
shifted out of the register.

• All four possibilities of rotate instructions are as shown



Figure 2.32.  Rotate instructions.

CR0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 001

(c) Rotate right without carry RotateR   #2,R0

(a) Rotate left without carry RotateL    #2,R0

C R0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 10101

C

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 000

(d) Rotate right with carry RotateRC   #2,R0

R0

. . .

. . .

(b) Rotate left with carry RotateLC   #2,R0

C R0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101



Encoding of Machine Instructions
• To be executed in a processor, an instruction must be

encoded in a compact binary pattern. Such encoded
instructions are properly referred to as machine instructions.

• The instructions that use symbolic names and acronyms are
called assembly language instructions, which are converted
into the machine instructions using the assembler program.

• We have seen instructions that perform operations such as
add, subtract, move, shift, rotate, and branch.

• These instructions may use operands of different sizes, such
as 32-bit and 8-bit numbers or 8-bit ASCII-encoded
characters.

• The type of operation that is to be performed and the type
of operands used may be specified using an encoded binary
pattern referred to as the OP code for the given instruction.



Encoding of Machine Instructions
• Suppose that 8 bits are allocated for this purpose,

giving 256 possibilities for specifying different
instructions. This leaves 24 bits to specify the rest
of the required information.

• Let us examine some typical cases. The instruction
• Add R1, R2
• Has to specify the registers R1 and R2, in addition

to the OP code. If the processor has 16 registers,
then four bits are needed to identify each register.
Additional bits are needed to indicate that the
Register addressing mode is used for each
operand.



Encoding of Machine Instructions
• The instruction Move 24(R0), R5
• Requires 16 bits to denote the OP code and the two

registers, and some bits to express that the source
operand uses the Index addressing mode and that the
index value is 24.

• In all these examples, the instructions can be encoded in
a 32-bit word. Depicts a possible format.

• There is an 8-bit Op-code field and two 7-bit fields for
specifying the source and destination operands. The 7-
bit field identifies the addressing mode and the register
involved (if any). The “Other info” field allows us to
specify the additional information that may be needed,
such as an index value or an immediate operand.





Encoding of Machine Instructions
• But, what happens if we want to specify a memory

operand using the Absolute addressing mode? The
instruction

• Move R2, LOC 
• Requires 18 bits to denote the OP code, the addressing

modes, and the register.
• This leaves 14 bits to express the address that

corresponds to LOC, which is clearly insufficient.
• And #$FF000000. R2 

• In which case the second word gives a full 32-bit
immediate operand. If we want to allow an instruction in
which two operands can be specified using the Absolute
addressing mode, for example





Encoding of Machine Instructions
• If we want to allow an instruction in which two

operands can be specified using the Absolute
addressing mode, for example

• Move LOC1, LOC2 

• Then it becomes necessary to use two 
additional words for the 32-bit addresses of the 
operands.  



Subject

MODULE 2 :  Input / Output organization

Courtesy: Text book: Carl Hamacher 5th Edition



Accessing I/O devices

•Multiple I/O devices may be connected to the processor and
the memory via a bus.
•Bus consists of three sets of lines to carry address, data and
control signals.
•Each I/O device is assigned an unique address.
•To access an I/O device, the processor places the address on
the address lines.
•The device recognizes the address, and responds to the control
signals.
The processor requests either a read or a write operation, and
the requested data are transferred over the data lines, when I/O
devices and the memory share the same address space, the
arrangement is called memory-mapped I/O.



Accessing I/O devices

Bus

I/O device 1 I/O device n

Processor Memory



Accessing I/O devices (contd..)

I/O

interfacedecoder

Address Data and

status registers

Control

circuits

Input device

Bus

Address lines

Data lines

Control lines



Accessing I/O devices (contd..)

•I/O device is connected to the bus using an I/O interface
circuit which has:

- Address decoder, control circuit, and data and
status registers.
•Address decoder decodes the address placed on the address
lines thus enabling the device to recognize its address.
•Data register holds the data being transferred to or from the
processor.
•Status register holds information necessary for the operation
of the I/O device.
-Data and status registers are connected to the data lines, and
have unique addresses.
•I/O interface circuit coordinates I/O transfers.



Interrupts
• In Program-controlled I/O, where the processor repeatedly

checks a status flag to achieve the required synchronization
between the

• processor and an input or output device. We say that the
processor polls the device. There are two other commonly
used mechanisms for implementing I/O operations: Interrupts
and Direct Memory Access(DMA).

• In the case of interrupts, synchronization is achieved by
having the I/O device send a special signal over the bus
whenever it is ready for a data transfer operation. Direct
memory access is a technique used for high-speed I/O
devices.

• It involves having the device interface transfer data directly to
or from the memory, without continuous involvement by the
processor.



Interrupts
• The routine executed in response to an interrupt

request is called the interrupt- service routine, which
is the PRINT routine in our example. Interrupts bear
considerable resemblance to subroutine calls. Assume
that an interrupt request arrives during execution of
instruction i in figure

• In Interrupt :- approach would be for the I/O device to 
alert the processor when it becomes ready. 
– Do so by sending a hardware signal called an interrupt to the 

processor. 
– At least one of the bus control lines, called an interrupt-request 

line is dedicated for this purpose.

•



Interrupts (contd..)
Interrupt Service routineProgram 1

here

Interrupt

occurs

M

i

2

1

i 1+



Interrupts (contd..)

•Processor is executing the instruction located at address i when
an interrupt occurs. Routine executed in response to an interrupt
request is called the interrupt-service routine.

•When an interrupt occurs, control must be transferred to the
interrupt service routine. But before transferring control, the
current contents of the PC (i+1), must be saved in a known
location.

•This will enable the return-from-interrupt instruction to resume
execution at i+1. Return address, or the contents of the PC are

usually stored on the processor stack.



Interrupts (contd..)
Treatment of an interrupt-service routine is very 

similar to that of a subroutine. 

However there are significant differences:
 Interrupt-service routine may not have anything in common

with the program it interrupts. 

 Interrupt-service routine and the program that it interrupts 
may belong to different users. 

 As a result, before branching to the interrupt-service routine, 
not only the PC, but other information such as condition code 
flags, and processor registers used by both the interrupted
program and the interrupt service routine must be stored.

 This will enable the interrupted program to resume execution 
upon return from interrupt service routine. 



Interrupts (contd..)
 Saving and restoring information can be done

automatically by the processor or explicitly by program
instructions.

 Saving and restoring registers involves memory transfers:
 Increases the total execution time.
 Increases the delay between the time an interrupt request is received, and the

start of execution of the interrupt-service routine. This delay is called interrupt
latency.

 In order to reduce the interrupt latency, most processors
save only the minimal amount of information:
 This minimal amount of information includes Program Counter and processor

status registers.

 Any additional information that must be saved, must be
saved explicitly by the program instructions at the
beginning of the interrupt service routine.



Interrupts Hardware

• We pointed out that an I/O device requests an interrupt by
activating a bus line called interrupt-request.

• Most computers are likely to have several I/O devices that
can request an interrupt. A single interrupt-request line
may be used to serve n devices as depicted. All devices are
connected to the line via switches to ground. To request
an interrupt, a device closes its associated switch.

• Thus, if all interrupt-request signals INTR1 to INTRn are
inactive, that is, if all switches are open, the voltage on the
interrupt- request line will be equal to Vdd

• This is the inactive state of the line



Interrupts Hardware



Interrupts Hardware
• Since the closing of one or more switches will

cause the line voltage to drop to 0, the value of
INTR is the logical OR of the requests from
individual devices, that is,

INTR = INTR1 + ………+INTRn

• It is customary to use the complemented form to
name the interrupt-request signal on the
common line, because this signal is active when
in the low-voltage state



Interrupts (contd..)

Sometime , the processor may not want to be interrupted by the same
device while executing its interrupt-service routine.

Processors generally provide the ability to enable and
disable such interruptions as desired.
One simple way is to provide machine instructions

such as Interrupt-enable and Interrupt-
disable for this purpose.

 To avoid interruption by the same device during the 
execution of an interrupt service routine:
 First instruction of an interrupt service routine can be Interrupt-

disable.
 Last instruction of an interrupt service routine can be Interrupt-

enable.



Interrupts (contd..)
• When a processor receives an interrupt-request, it 

must branch to the interrupt service routine. 

• It must also inform the device that it has 
recognized the interrupt request. 

• This can be accomplished in two ways:
– Some processors have an explicit  interrupt-acknowledge

control signal for this purpose.

– In other cases, the data transfer that takes place between the 
device and the processor can be used to inform the device. 



Handling Multiple Devices
 Multiple I/O devices may be connected to the processor and the memory via a bus.

Some or all of these devices may be capable of generating interrupt requests.

 Each device operates independently, and hence no definite
order can be imposed on how the devices generate interrupt
requests?

 How does the processor know which device has generated
an interrupt?

 How does the processor know which interrupt service
routine needs to be executed?

 When the processor is executing an interrupt service
routine for one device, can other device interrupt the
processor?

 If two interrupt-requests are received simultaneously,
then how to break the tie?



Interrupts (contd..)
 Consider a simple arrangement where all devices send their

interrupt-requests over a single control line in the bus.
 When the processor receives an interrupt request over this

control line, how does it know which device is requesting an
interrupt?

 This information is available in the status register of the device
requesting an interrupt:
 The status register of each device has an IRQ bit which it sets to 1 when it requests an

interrupt.

 Interrupt service routine can poll the I/O devices connected to 
the bus. The first device with IRQ equal to 1 is the one that is 
serviced.

 Polling mechanism is easy, but time consuming to query the 
status bits of all the I/O devices connected to the bus. 

• For example, bits KIRQ and DIRQ are the interrupt request bits 
for the keyboard and the display, respectively 



Interrupts (contd..)

Vectored Interrupts  :- The device requesting an 
interrupt may identify itself directly to the 
processor. 
– Device can do so by sending a special code (4 to 8 bits) the

processor over the bus.

– Code supplied by the device may represent a part of the starting
address of the interrupt-service routine.

– The remainder of the starting address is obtained by the
processor based on other information such as the range of
memory addresses where interrupt service routines are located.

• Usually the location pointed to by the interrupting
device is used to store the starting address of the
interrupt-service routine.



Interrupts (contd..)

• I/O devices are organized in a priority structure:
– An interrupt request from a high-priority device is accepted

while the processor is executing the interrupt service routine of
a low priority device.

• A priority level is assigned to a processor that can 
be changed under program control.
– Priority level of a processor is the priority of the program that is

currently being executed.

– When the processor starts executing the interrupt service
routine of a device, its priority is raised to that of the device.

– If the device sending an interrupt request has a higher priority
than the processor, the processor accepts the interrupt request.



Controlling Multiple Devices:- Priority method

Priority arbitration

Device 1 Device 2 Device p
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Controlling Multiple Devices:- Priority method

•Each device has a separate interrupt-request and
interrupt-acknowledge line.

•Each interrupt-request line is assigned a different
priority level.

•Interrupt requests received over these lines are sent to a
priority arbitration circuit in the processor.

•If the interrupt request has a higher priority level than
the priority of the processor, then the request is
accepted.



Interrupts (contd..)

Polling scheme:
•If the processor uses a polling mechanism to poll the
status registers of I/O devices to determine which
device is requesting an interrupt.

•In this case the priority is determined by the order in
which the devices are polled.

•The first device with status bit set to 1 is the device
whose interrupt request is accepted.



Controlling Multiple Devices:- : Daisy chain scheme

P
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ce
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I N T R

INTA

Device nDevice 1

:

•Devices are connected to form a daisy chain. 
•Devices share the interrupt-request line, and interrupt 
acknowledge  line is connected to form a daisy chain. 
•When devices raise an interrupt request, the interrupt-request 
line is activated.
•The processor in response activates interrupt-acknowledge. 
•Received by device 1, if device 1 does not need service, it passes the 
signal to device 2.
•Device that is electrically closest to the processor has the highest 
priority.



Interrupts (contd..)

•When I/O devices were organized into a priority
structure, each device had its own interrupt-request
and interrupt-acknowledge line.

•When I/O devices were organized in a daisy chain
fashion, the devices shared an interrupt-request
line, and the interrupt-acknowledge propagated
through the devices.

•A combination of priority structure and daisy
chain scheme can also used.



Interrupts (contd..)

Device Device

circuit

Priority arbitration
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•Devices are organized into groups. 
•Each group is assigned a different priority level. 
•All the devices within a single group share an interrupt-
request line, and are connected to form a daisy chain.



Controlling Multiple Devices
 To control which devices are allowed to generate

interrupt requests, the interface circuit of each I/O
device has an interrupt-enable bit.

 If the interrupt-enable bit in the device interface is set to 1, then the
device is allowed to generate an interrupt-request.

 Interrupt-enable bit in the device’s interface circuit
determines whether the device is allowed to
generate an interrupt request.

 Interrupt-enable bit in the processor status register
or the priority structure of the interrupts determines
whether a given interrupt will be accepted.



Controlling Multiple Devices
• The control needed is usually provided in the form of an

interrupt-enable bit in the device’s interface circuit.
• The Keyboard interrupt-enable, KEN, and Display interrupt-

enable, DEN, flags in register CONTROL perform this
function.

• If either of these flags is set, the interface circuit generates
an interrupt request whenever the corresponding status flag
in register STATUS is set.

• At the same time, the interface circuit sets bit KIRQ or DIRQ
to indicate that the keyboard or display unit, respectively, is
requesting an interrupt. If an interrupt-enable bit is equal to
0, the interface circuit will not generate an interrupt request,
regardless of the state of the status flag .



Exceptions 

 Interrupts caused by interrupt-requests sent by I/O
devices.

 Interrupts could be used in many other situations
where the execution of one program needs to be
suspended and execution of another program needs to
be started.

 In general, the term Exception is used to refer to any
event that causes an interruption.
 Interrupt-requests from I/O devices is one type of an exception.

 Other types of exceptions are:
 Recovery from errors
 Debugging
 Privilege exception



Exceptions (contd..)

 Many sources of errors in a processor. For example:
 Error in the data stored.
 Error during the execution of an instruction. 

 When such errors are detected, exception 
processing is initiated. 
 Processor takes the same steps as in the case of I/O interrupt-

request.
 It suspends the execution of the current program, and starts 

executing an exception-service routine. 

 Difference between handling I/O interrupt-request 
and handling exceptions due to errors:
 In case of I/O interrupt-request, the processor usually completes the 

execution of an instruction in progress before branching to the 
interrupt-service routine. 

 In case of exception processing however, the execution of an 
instruction in progress usually cannot be completed.



Exceptions (contd..)

• Debugger uses exceptions to provide 
important features:
– Trace,

– Breakpoints.

• Trace mode:
– Exception occurs after the execution of every instruction. 

– Debugging program is used as the exception-service routine.

• Breakpoints:
– Exception occurs only at specific points selected by the user. 

– Debugging program is used as the exception-service routine. 



Exceptions (contd..)

• Certain instructions can be executed only when the processor is in the 
supervisor mode. These are called privileged instructions.  

• If an attempt is made to execute a privileged 
instruction in the user mode, a privilege 
exception occurs.

• Privilege exception causes:

– Processor to switch to the supervisor mode,

– Execution of an appropriate exception-servicing 
routine.



Direct Memory Access 

Direct Memory Access (DMA):
 A special control unit may be provided to transfer a block of data

directly between an I/O device and the main memory, without
continuous intervention by the processor.

 Control unit which performs these transfers is a
part of the I/O device’s interface circuit. This
control unit is called as a DMA controller.

DMA controller performs functions that would be
normally carried out by the processor:
 For each word, it provides the memory address and all the control

signals.
 To transfer a block of data, it increments the memory addresses and

keeps track of the number of transfers.



Registers of DMA controller



Registers of DMA controller
DMA controller registers that are accessed by the processor to initiate transfer
operations.

Two registers are used for storing the Starting address and the word count. The
third register contains status and control flags.

The R/W bit determines the direction of the transfer. When this bit is set to 1 by
a program instruction, the controller performs a read operation, that is, it
transfers data from the memory to the I/O device. Otherwise, it performs a write
operation.

When the controller has completed transferring a block of data and is ready to
receive another command, it sets the Done flag to 1. Bit 30 is the Interrupt-
enable flag, IE.

When this flag is set to 1, it causes the controller to raise an interrupt after it has
completed transferring a block of data. Finally, the controller sets the IRQ bit to 1

when it has requested an interrupt.



Direct Memory Access (contd..)

 DMA controller can transfer a block of data from an external device to the 
processor, without any intervention from the processor. 

However, the operation of the DMA controller
must be under the control of a program executed
by the processor. That is, the processor must
initiate the DMA transfer.

 To initiate the DMA transfer, the processor informs the DMA controller of:

Starting address,

Number of words in the block.

Direction of transfer (I/O device to the memory, 
or memory to the I/O device).

 Once the DMA controller completes the DMA transfer, it informs the 
processor by raising an interrupt signal.



Direct Memory Access

memory
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KeyboardDisk/DMA
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DiskDisk

•DMA controller connects a high-speed network to the computer bus. 
•Disk controller, which controls two disks also has DMA capability. It provides two
DMA channels. 
•It can perform two independent DMA operations, as if each disk has its own DMA 
controller. The registers to store the memory address, word count and status and 
control information are duplicated.

Network
Interface



Direct Memory Access (contd..)

 Memory accesses by the processor and the DMA controller
are interwoven. Requests by DMA devices for using the bus
are always given higher priority than processor requests.

 Among different DMA devices, top priority is given to high-
speed peripherals such as a disk, a high-speed network
interface, or a graphics display device.

 Since the processor originates most memory access cycles,
the DMA controller can be said to “steal” memory cycles
from the processor. Hence, the interweaving technique is
usually called cycle stealing.

 Alternatively, the DMA controller may be given exclusive
access to the main memory to transfer a block of data
without interruption. This is known as block or burst mode.



Bus arbitration

 Processor and DMA controllers both need to initiate data
transfers on the bus and access main memory.

 The device that is allowed to initiate transfers on the bus at 
any given time is called the bus master. 

 When the current bus master relinquishes its status as the 
bus master, another device can acquire this status. 
 The process by which the next device to become the bus 

master is selected and bus mastership is transferred to it is 
called  bus arbitration.

 Centralized arbitration:
 A single bus arbiter performs the arbitration.

 Distributed arbitration:
 All devices participate in the selection of the next bus master.



Centralized Bus Arbitration
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Centralized Bus Arbitration(cont.,)
• Bus arbiter may be the processor or a separate unit

connected to the bus.
• Normally, the processor is the bus master, unless it grants

bus membership to one of the DMA controllers.
• DMA controller requests the control of the bus by asserting

the Bus Request (BR) line.
• In response, the processor activates the Bus-Grant1 (BG1)

line, indicating that the controller may use the bus when it
is free.

• BG1 signal is connected to all DMA controllers in a daisy
chain fashion.

• BBSY signal is 0, it indicates that the bus is busy. When
BBSY becomes 1, the DMA controller which asserted BR
can acquire control of the bus.



Distributed arbitration

 All devices waiting to use the bus share the responsibility of carrying
out the arbitration process.
 Arbitration process does not depend on a central arbiter and hence

distributed arbitration has higher reliability.

 Each device is assigned a 4-bit ID number.
 All the devices are connected using 5 lines, 4 arbitration lines to

transmit the ID, and one line for the Start-Arbitration signal.
 To request the bus a device:

 Asserts the Start-Arbitration signal.
 Places its 4-bit ID number on the arbitration lines.

 The pattern that appears on the arbitration lines is the logical-OR of
all the 4-bit device IDs placed on the arbitration lines.



Distributed arbitration



Distributed arbitration(Contd.,)

• Arbitration process:
– Each device compares the pattern that appears on the

arbitration lines to its own ID, starting with MSB.

– If it detects a difference, it transmits 0s on the arbitration
lines for that and all lower bit positions.

– The pattern that appears on the arbitration lines is the
logical-OR of all the 4-bit device IDs placed on the
arbitration lines.



Distributed arbitration (contd..)
•Device A has the ID 5 and wants to request the bus:

- Transmits the pattern 0101 on the arbitration lines. 
•Device B has the ID 6 and wants to request the bus:

- Transmits the pattern 0110 on the arbitration lines.
•Pattern that appears on the arbitration lines is the logical OR of the patterns:

- Pattern 0111 appears on the arbitration lines.

Arbitration process:
•Each device compares the pattern that appears on the arbitration lines to its own 
ID, starting with MSB. 
•If it detects a difference, it transmits 0s on the arbitration lines for that and all lower 
bit positions. 
•Device A compares its ID 5 with a pattern 0101 to pattern 0111. 
•It detects a difference at bit position 0, as a result, it transmits a pattern 0100 on the 
arbitration lines. 
•The pattern that appears on the arbitration lines is the logical-OR of 0100 and 0110,
which is 0110. 
•This pattern is the same as the device ID of B, and hence B has won the arbitration.



Buses

• Processor, main memory, and I/O devices are
interconnected by means of a bus.

• Bus provides a communication path for the transfer of
data.
– Bus also includes lines to support interrupts and

arbitration.

• A bus protocol is the set of rules that govern the
behavior of various devices connected to the bus, as to
when to place information on the bus, when to assert
control signals, etc.



Buses (contd..)

 Bus lines may be grouped into three types:
 Data
 Address 
 Control

 Control signals specify:
 Whether it is a read or a write operation. 
 Required size of the data, when several operand sizes (byte, 

word, long word) are possible. 
 Timing information to indicate when the processor and I/O 

devices may place data or receive data from the bus.

 Schemes for timing of data transfers over a bus can be
classified into:
 Synchronous,
 Asynchronous.



Bus master and slaves
Active devices attached to the bus that can initiate bus
transfers are called masters

Passive devices that wait for requests are called slaves

Some devices may act as slaves at some times and
masters at others

Memory can never be a master device.



Examples of Bus master and slaves



Synchronous bus (contd..)
• In a synchronous bus, all devices derive timing information

from a common clock line.
• Equally spaced pulses on this line define equal time

intervals.
• In the simplest form of a synchronous bus, each of these

intervals constitutes a bus cycle during which one data
transfer can take place

• The address and data lines in this and subsequent figures
are shown as high and low at the same time. This is a
common convention indicating that some lines are high
and some low, depending on the particular address or data
pattern being transmitted.

• The crossing points indicate the times at which these 
patterns change.



Synchronous bus (contd..)

Bus cycle

Data

Bus clock

command
Address and

t0 t1 t2

T ime

Master places the 
device address and 

command on the bus,
and indicates that

it is a Read operation.

Addressed slave places
data on the data lines Master “strobes” the data

on the data lines into its
input buffer, for a Read

operation.

•In case of a Write operation, the master places the data on the bus along with the 
address and commands at time t0.
•The slave strobes the data into its input buffer at time t2.



Synchronous bus (contd..)
• Once the master places the device address and

command on the bus, it takes time for this
information to propagate to the devices:
– This time depends on the physical and electric characteristics of 

the bus.

• Also, all the devices have to be given enough time
to decode the address and control signals, so that
the addressed slave can place data on the bus.

• Width of the pulse t1 - t0 depends on:
– Maximum propagation delay between two devices 

connected to the bus. 
– Time taken by all the devices to decode the address 

and control signals, so that the addressed slave can 
respond at time t1.



Synchronous bus (contd..)
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•Signals do not appear on the bus as soon as they are placed on the bus, due to the 
propagation delay in the interface circuits.
•Signals reach the devices after a propagation delay which depends on the 
characteristics of the bus.
•Data must remain on the bus for some time after t2 equal to the hold time of the buffer.

Address &
command 

appear on the
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Address & 
command reach

the slave.
Data appears
on the bus.

Data reaches 
the master.



Asynchronous bus

 Data transfers on the bus is controlled by a handshake
protocol between the master and the slave.

 Common clock in the synchronous bus case is replaced by 
two timing control lines:
 Master-ready,
 Slave-ready.

 Master-ready signal is asserted by the master to indicate to
the slave that it is ready to participate in a data transfer.

 Slave-ready signal is asserted by the slave in response to the
master-ready from the master, and it indicates to the
master that the slave is ready to participate in a data
transfer.



Asynchronous bus (contd..)
• Data transfer using the handshake protocol:

– Master places the address and command information on the bus.

– Asserts the Master-ready signal to indicate to the slaves that the 
address and command information has been placed on the bus. 

– All devices on the bus decode the address. 

– Address slave performs the required operation, and informs the 
processor it has done so by asserting the Slave-ready signal. 

– Master removes all the signals from the bus, once Slave-ready is 
asserted.

– If the operation is a Read operation, Master also strobes the data 
into its input buffer.



Asynchronous bus (contd..)

Slave-ready

Data

Master-ready

and command
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Bus cycle
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T ime

t0 - Master places the address and command information on the bus.
t1 - Master asserts the Master-ready signal. Master-ready signal is asserted at t1 instead of t0

t2 - Addressed slave places the data on the bus and asserts the Slave-ready signal. 
t3 - Slave-ready signal arrives at the master.
t4 - Master removes the address and command information.
t5 - Slave receives the transition of the Master-ready signal from 1 to 0. It removes the data 
and the Slave-ready signal from the bus.



Interface circuits
 I/O interface consists of the circuitry required to 

connect an I/O device to a computer bus. 
 Side of the interface which connects to the 

computer has bus signals for:
 Address,
 Data 
 Control

 Side of the interface which connects to the I/O 
device has:
 Datapath and associated controls to transfer data between the interface and the I/O 

device.
 This side is called as a “port”.

 Ports can be classified into two:
 Parallel port,
 Serial port.



Interface circuits (contd..)

• Parallel port transfers data in the form of a 
number of bits, normally 8 or 16 to or from 
the device. 

• Serial port transfers and receives data one bit 
at a time. 

• Processor communicates with the bus in the 
same way, whether it is a parallel port or a 
serial port.
– Conversion from the parallel to serial and vice versa takes place inside the 

interface circuit.



Parallel port
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•Keyboard is connected to a processor using a parallel port. 
•Processor is 32-bits and uses memory-mapped I/O and the asynchronous bus 
protocol. 
•On the processor side of the interface we have:

- Data lines.
- Address lines 
- Control or R/W line.
- Master-ready signal and 
- Slave-ready signal.



Parallel port (contd..)

•On the keyboard side of the interface:
- Encoder circuit which generates a code for the key pressed. 
- Debouncing circuit which eliminates the effect of a key bounce (a single key

stroke may appear as multiple events to a processor).
- Data lines contain the code for the key. 
- Valid line changes from 0 to 1 when the key is pressed. This causes the code to

be loaded into DATAIN and SIN to be set to 1. 
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•Output lines of  DATAIN are
are connected to the data lines of 
the bus by means of 3 state drivers
•Drivers are turned on when the 
processor issues a read signal and
the address selects this register.

•SIN signal is generated using a status flag circuit.
•It is connected to line D0 of the processor bus 
using a three-state driver. 
•Address decoder selects the input interface based
on bits A1 through A31. 
•Bit A0 determines whether the status or data 
register is to be read, when Master-ready is 
active. 
•In response, the processor activates the Slave-ready
signal, when either the Read-status or Read-data
is equal to 1, which depends on line A0.

Input Interface Circuit



Parallel port (contd..)

CPU SOUT

Output

interface

Data

Address

R /

Master-ready

Sla ve-ready

Valid
W

DataDATAOUT

PrinterProcessor

Idle

•Printer is connected to a processor using a parallel port.
•Processor is 32 bits, uses memory-mapped I/O and asynchronous bus protocol.
•On the processor side:

- Data lines.
- Address lines 
- Control or R/W line.
- Master-ready signal and 
- Slave-ready signal.



Parallel port (contd..)
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•On the printer side:
- Idle signal line which the printer asserts when it is ready to accept a character.
This causes the SOUT flag to be set to 1.

- Processor places a new character into a DATAOUT register.
- Valid signal, asserted by the interface circuit when it places a new character 

on the data lines.



•Data lines of the processor bus 
are connected to the DATAOUT 
register of the interface. 
•The status flag SOUT is connected 
to the data line D1 using a three-state
driver. 
•The three-state driver is turned on,
when the control Read-status line is
1. 
•Address decoder selects the output
interface using address lines A1 
through A31.
•Address line A0 determines whether
the data is to be loaded into the 
DATAOUT register or status flag is
to be read. 
•If the Load-data line is 1, then the 
Valid line is set to 1.
•If the Idle line is 1, then the status
flag SOUT is set to 1.

Output Interface Circuit
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•Combined I/O interface circuit. 
•Address bits A2 through A31, that is 
30 bits are used to select the overall 
interface. 
•Address bits A1 through A0, that is, 2 
bits select one of the three registers, 
namely, DATAIN, DATAOUT, and 
the status register. 
•Status register contains the flags SIN and
SOUT in bits 0 and 1.
•Data lines PA0 through PA7 connect the
input device to the DATAIN register.
•DATAOUT register connects the data 
lines on the processor bus to lines PB0
through PB7 which connect to the output
device.
•Separate input and output data lines for 
connection to an I/O device.



DATAIN
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•Data lines to I/O device are bidirectional. 
•Data lines P7 through P0 can be used for
both input, and output. 
•In fact, some lines can be used for input &
some for output depending on the pattern
in the Data Direction Register (DDR). 
•Processor places an 8-bit pattern into a DDR.
•If a given bit position in the DDR is 1, the 
corresponding data line acts as an output 
line, otherwise it acts as an input line. 
•C1 and C2 control the interaction between 
the interface circuit and the I/O devices. 
•Ready and Accept lines are the handshake 
control lines on the processor bus side, and 
are connected to Master-ready & Slave-ready.
•Input signal My-address is connected to the 
output of an address decoder. 
•Three register select lines that allow up to 8
registers to be selected.



Serial port

• Serial port is used to connect the processor to 
I/O devices that require transmission of data 
one bit at a time. 

• Serial port communicates in a bit-serial 
fashion on the device side and bit parallel 
fashion on the bus side. 
– Transformation between the parallel and serial formats is achieved with shift 

registers that have parallel access capability.
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•Input shift register accepts input one bit 
at a time from the I/O device. 
•Once all the 8 bits are received, the 
contents of the input shift register are 
loaded in parallel into DATAIN register.
•Output data in the DATAOUT register 
are loaded into the output shift register. 
•Bits are shifted out of the output shift 
register and sent out to the I/O device one
bit at a time. 
•As soon as data from the input shift reg.
are loaded into DATAIN, it can start 
accepting another 8 bits of data. 
•Input shift register and DATAIN registers
are both used at input so that the input 
shift register can start receiving another
set of 8 bits from the input device after 
loading the contents to DATAIN, before 
the processor reads the contents of 
DATAIN. This is called as double-
buffering.



Serial port (contd..)

 Serial interfaces require fewer wires, and hence serial 
transmission is convenient for connecting devices that 
are physically distant from the computer. 

 Speed of transmission of the data over a serial interface 
is known as the “bit rate”.
 Bit rate depends on the nature of the devices connected.

 In order to accommodate devices with a range of 
speeds, a serial interface must be able to use a range of 
clock speeds. 

 Several standard serial interfaces have been developed:
 Universal Asynchronous Receiver Transmitter (UART) for low-speed 

serial devices. 
 RS-232-C for connection to communication links. 



Standard I/O interfaces

 I/O device is connected to a computer using an 
interface circuit. 

 Do we have to design a different interface for every 
combination of an I/O device and a computer?

 A practical approach is to develop standard interfaces 
and protocols. 

 A personal computer has:
 A motherboard which houses the processor chip, main memory and 

some I/O interfaces. 
 A few connectors into which additional interfaces can be plugged.

 Processor bus is defined by the signals on the processor 
chip.
 Devices which require high-speed connection to the processor 

are connected directly to this bus.



Standard I/O interfaces (contd..)

 Because of electrical reasons only a few devices can be 
connected directly to the processor bus. 

 Motherboard usually provides another bus that can 
support more devices. 
 Processor bus and the other bus (called as expansion bus) are 

interconnected by a circuit called “bridge”. 
 Devices connected to the expansion bus experience a small delay in data 

transfers.

 Design of a processor bus is closely tied to the 
architecture of the processor.
 No uniform standard can be defined.

 Expansion bus however can have uniform standard 
defined.



Standard I/O interfaces (contd..)

• A number of standards have been developed 
for the expansion bus.
– Some have evolved by default.

– For example, IBM’s Industry Standard Architecture.

• Three widely used bus standards:
– PCI (Peripheral Component Interconnect)

– SCSI (Small Computer System Interface)

– USB (Universal Serial Bus)



Standard I/O interfaces (contd..)
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PCI  Bus
 Peripheral Component Interconnect
 Introduced in 1992
 Low-cost bus
 Processor independent
 Plug-and-play capability
 In today’s computers, most memory transfers involve a burst of data rather 

than just one word. The PCI is designed primarily to support this mode of 
operation.

 The bus supports three independent address spaces: memory, I/O, and 
configuration.

 we assumed that the master maintains the address information on the bus 
until data transfer is completed. But, the address is needed only long 
enough for the slave to be selected. Thus, the address is needed on the bus 
for one clock cycle only, freeing the address lines to be used for sending 
data in subsequent clock cycles. The result is a significant cost reduction.

 A master is called an initiator in PCI terminology. The addressed device that 
responds to read and write commands is called a target.



Data transfer signals on the PCI bus.

Name F unction

CLK A 33-MHz or 66-MHz clock.

FRAME# Sent by the initiator to indicate the duration of a

transaction.

AD 32 address/data lines, which may be optionally

increased to 64.

C/BE# 4 command/byte-enable lines (8 for a 64-bit bus).

IRD Y#, TRD Y# Initiator-ready and Target-ready signals.

DEVSEL# A response from the device indicating that it has

recognized its address and is ready for a data

transfer transaction.

IDSEL# Initialization Device Select.
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Device Configuration
 When an I/O device is connected to a computer, several actions are 

needed to configure both the device and the software that communicates 
with it.

 PCI incorporates in each I/O device interface a small configuration ROM 
memory that stores information about that device. 

 The configuration ROMs of all devices are accessible in the configuration 
address space. The PCI initialization software reads these ROMs and 
determines whether the device is a printer, a keyboard, an Ethernet 
interface, or a disk controller. It can further learn bout various device 
options and characteristics.

 Devices are assigned addresses during the initialization process. 

 This means that during the bus configuration operation, devices cannot be 
accessed based on their address, as they have not yet been assigned one. 

 Hence, the configuration address space uses a different mechanism. Each 
device has an input signal called Initialization Device Select, IDSEL#

 Electrical characteristics:

 PCI bus has been defined for operation with either a 5 or 3.3 V power 
supply



SCSI Bus

 The acronym SCSI stands for Small Computer System Interface. 
 It refers to a standard bus defined by the American National 

Standards Institute (ANSI) under the designation X3.131 . 
 In the original specifications of the standard, devices such as disks 

are connected to a computer  via  a 50-wire cable, which can be up 
to 25 meters in length and can transfer data at rates up to 5 
megabytes/s.

 The SCSI bus standard has undergone many revisions, and its data 
transfer capability has increased very rapidly, almost doubling every 
two years. 

 SCSI-2 and SCSI-3 have been defined, and each has several options.
 Because of various options SCSI connector may have 50, 68 or 80 

pins.



SCSI Bus (Contd.,)
 Devices connected to the SCSI bus are not part of the address space of the processor
 The SCSI bus is connected to the processor bus through a SCSI controller. This controller 

uses DMA to transfer data packets from the main memory to the device, or vice versa. 
 A packet may contain a block of data, commands from the processor to the device, or 

status information about the device.
 A controller connected to a SCSI bus is one of two types – an initiator or a target. 
 An initiator has the ability to select a particular target and to send commands specifying 

the operations to be performed. The disk controller operates as a target. It carries out 
the commands it receives from the initiator. 

 The initiator establishes a logical connection with the intended target. 
 Once this connection has been established, it can be suspended and restored as needed 

to transfer commands and bursts of data. 
 While a particular connection is suspended, other device can use the bus to transfer 

information. 
 This ability to overlap data transfer requests is one of the key features of the SCSI bus 

that leads to its high performance.



SCSI Bus (Contd.,)

• Data transfers on the SCSI bus are always 
controlled by the target controller.

• To send a command to a target, an initiator 
requests control of the bus and, after winning 
arbitration, selects the controller it wants to 
communicate with and hands control of the bus 
over to it. 

• Then the controller starts a data transfer 
operation to receive a command from the 
initiator.



SCSI Bus (Contd.,)
 Assume that processor needs to read block of data from a disk drive and 

that data are stored in disk sectors that are not contiguous.
 The processor sends a command to the SCSI controller, which causes the 

following sequence of events to take place:
1. The SCSI controller, acting as an initiator, contends for control of the bus.
2. When the initiator wins the arbitration process, it selects the target 

controller and hands over control of the bus to it.
3. The target starts an output operation (from initiator to target); in response 

to this, the initiator sends a command specifying the required read 
operation.

4. The target, realizing that it first needs to perform a disk seek operation, 
sends a message to the initiator indicating that it will temporarily suspend 
the connection between them. Then it releases the bus.

5. The target controller sends a command to the disk drive to move the read 
head to the first sector involved in the requested read operation. Then, it 
reads the data stored in that sector and stores them in a data buffer. 
When it is ready to begin transferring data to the initiator, the target 
requests control of the bus. After it wins arbitration, it reselects the 
initiator controller, thus restoring the suspended connection.



SCSI Bus (Contd.,)

6. The target transfers the contents of the data buffer to the 
initiator and then suspends the connection again

7. The target controller sends a command to the disk drive 
to perform another seek operation. Then, it transfers the 
contents of the second disk sector to the initiator as 
before. At the end of this transfers, the logical connection 
between the two controllers is terminated.

8. As the initiator controller receives the data, it stores them 
into the main memory using the DMA approach.

9. The SCSI controller sends as interrupt to the processor to 
inform it that the requested operation has been 
completed



Table 4.  The SCSI  bus signals.

Category Name Function

Data DB(0) to

DB(7)

Data lines: Carry one byte of information

during the information transfer phase and

iden tify device during arbitration,selection and

reselection phases

DB(P) Parity bit for the data bus

Phase BSY Busy: Asserted when the bus is notfree

SEL Selection: Asserted during selection and

reselection

Information

type

C/D Control/Data: Asserted during transfer of

con trol information (command, status or

message)

–

–

–

–

–

–

MSG Message: indicates thatthe information being
transferred is a message

–

Operation of SCSI bus from H/W point of view



Handshake REQ Request: Asserted by a target to requesta data

transfer cycle

ACK Acknowledge: Asserted by the initiator when it

has completed a data transfer op eration

Direction of

transfer

I/O Input/Output: Asserted to indicate an input

operation (relative to the initiator)

Other ATN Attention: Asserted by an initiator when it

wishes to send a message to a target

RST Reset: Causes all device controls to disconnect

from the bus and assume their start-upstate

–

–

–

–

–

Category Name Function

Table 4.  The SCSI  bus signals.(cont.)



Main Phases involved
 Arbitration

 A controller requests the bus by asserting BSY and by asserting it’s 
associated data line

 When BSY becomes active, all controllers that are requesting bus 
examine data lines

 Selection
 Controller that won arbitration selects target by asserting SEL and data 

line of target. After that initiator releases BSY line.
 Target responds by asserting BSY  line
 Target controller will have control on the bus from then

 Information Transfer
 Handshaking signals are used between initiator and target
 At the end target releases BSY line

 Reselection



Free Arbitration Selection

Targets examine ID

D B 2

D B 5

D B 6

B S Y

S E L

Figure 42. Arbitration and selection on the SCSI bus.
Device 6 wins arbitration and selects device 2.



USB
Universal Serial Bus (USB) is an industry standard 

developed through a collaborative effort of 
several computer and communication companies, 
including Compaq, Hewlett-Packard, Intel, Lucent, 
Microsoft, Nortel Networks, and Philips.

 Speed
 Low-speed(1.5 Mb/s)
 Full-speed(12 Mb/s)
 High-speed(480 Mb/s)

 Port Limitation
Device Characteristics
 Plug-and-play
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Universal Serial Bus tree structure



Universal Serial Bus tree structure

 To accommodate a large number of devices that can be added or 
removed at any time, the USB has the tree structure as shown in the 
figure.

 Each node of the tree has a device called a hub, which acts as an 
intermediate control point between the host and the I/O devices. At 
the root of the tree, a root hub connects the entire tree to the host 
computer. The leaves of the tree are the I/O devices being served 
(for example, keyboard, Internet connection, speaker, or digital TV) 

 In normal operation, a hub copies a message that it receives from its 
upstream connection to all its downstream ports. As a result, a 
message sent by the host computer is broadcast to all I/O devices, 
but only the addressed device will respond to that message. 
However, a message from an I/O device is sent only upstream 
towards the root of the tree and is not seen by other devices. 
Hence, the USB enables the host to communicate with the I/O 
devices, but it does not enable these devices to communicate with 
each other.



Addressing
 When a USB is connected to a host computer, its root hub is attached to the 

processor bus, where it appears as a single device. The host software 
communicates with individual devices attached to the USB by sending packets 
of information, which the root hub forwards to the appropriate device in the 
USB tree.

 Each device on the USB, whether it is a hub or an I/O device, is assigned a 7-bit 
address. This address is local to the USB tree and is not related in any way to 
the addresses used on the processor bus. 

 A hub may have any number of devices or other hubs connected to it, and 
addresses are assigned arbitrarily. When a device is first connected to a hub, or 
when it is powered on, it has the address 0. The hardware of the hub to which 
this device is connected is capable of detecting that the device has been 
connected, and it records this fact as part of its own status information. 
Periodically, the host polls each hub to collect status information and learn 
about new devices that may have been added or disconnected.

 When the host is informed that a new device has been connected, it uses a 
sequence of commands to send a reset signal on the corresponding hub port, 
read information from the device about its capabilities, send configuration 
information to the device, and assign the device a unique USB address. Once 
this sequence is completed the device begins normal operation and responds 
only to the new address.



USB Protocols
 All information transferred over the USB is organized in packets, 

where a packet consists of one or more bytes of information. There 
are many types of packets that perform a variety of control 
functions. 

 The information transferred on the USB can be divided into two 
broad categories: control and data.
 Control packets perform such tasks as addressing a device to initiate 

data transfer, acknowledging that data have been received correctly, or 
indicating an error. 

 Data packets carry information that is delivered to a device.

 A packet consists of one or more fields containing different kinds of 
information. The first field of any packet is called the packet 
identifier, PID, which identifies the type of that packet.

 They are transmitted twice. The first time they are sent with their 
true values, and the second time with each bit complemented

 The four PID bits identify one of 16 different packet types. Some 
control packets, such as ACK (Acknowledge), consist only of the PID 
byte.



PID 0 PID 1 PID 2 PID 3 PID 0PID 0 PID 1 PID 2 PID 3

(a) Packet identifier field 

PID ADDR ENDP CRC16

8 7 4 5Bits

(b)  Token packet, IN or OUT

PID DATA CRC16

8 0 to 8192 16Bits

(c) Data packet

Figure 45.  USB packet format.

Control packets used for 
controlling data transfer 
operations are called token 
packets.
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Isochronous Traffic on USB
 One of the key objectives of the USB is to support the transfer of 

isochronous data. 
 Devices that generates or receives isochronous data require a time 

reference to control the sampling process. 
 To provide this reference. Transmission over the USB is divided into 

frames of equal length. 
 A frame is 1ms long for low-and full-speed data. 
 The root hub generates a Start of Frame control packet (SOF) precisely 

once every 1 ms to mark the beginning of a new frame.
 The arrival of an SOF packet at any device constitutes a regular clock 

signal that the device can use for its own purposes. 
 To assist devices that may need longer periods of time, the SOF packet 

carries an 11-bit frame number. 
 Following each SOF packet, the host carries out input and output 

transfers for isochronous devices. This means that each device will have 
an opportunity for an input or output transfer once every 1 ms.



Electrical Characteristics

 The cables used for USB connections consist of four 
wires. 

 Two are used to carry power, +5V and Ground. 
 Thus, a hub or an I/O device may be powered directly from 

the bus, or it may have its own external power connection. 

 The other two wires are used to carry data. 

 Different signaling schemes are used for different 
speeds of transmission. 
 At low speed, 1s and 0s are transmitted by sending a high 

voltage state (5V) on one or the other o the two signal 
wires. For high-speed links, differential transmission is used.
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Some basic concepts

• Maximum size of the Main Memory

• byte-addressable

• CPU-Main Memory Connection

Up to 2 kaddressable
MDR

MAR

k-bit
address bus

n-bit
data bus

Control lines
(          , MFC, etc.)

Processor Memory

locations

Word length = n bits

WR /



Some basic concepts(Contd.,)

 Measures for the speed of a memory:
memory access time.
memory cycle time.

 An important design issue is to provide a 
computer system with as large and fast a 
memory as possible, within a given cost target.

 Several techniques to increase the effective size 
and speed of the memory:
▪ Cache memory (to increase the effective speed).
▪ Virtual memory (to increase the effective size).



Internal organization of memory chips
• Each memory cell can hold one bit of information.

• Memory cells are organized in the form of an array. 

• One row is one memory word. 

• All cells of a row are connected to a common line, known as 
the “word line”. 

• Word line is connected to the address decoder.

• Sense/write circuits are connected to the data input/output 
lines of the memory chip.



Internal organization of memory chips 
(Contd.,)

FF

circuit
Sense / Write

Address
decoder
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Memory
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SRAM Cell
• Two transistor inverters are cross connected to implement a basic flip-

flop.

• The cell is connected to one word line and two bits lines by transistors T1
and T2

• When word line is at ground level, the transistors are turned off and the
latch retains its state

• Read operation: In order to read state of SRAM cell, the word line is
activated to close switches T1 and T2. Sense/Write circuits at the bottom
monitor the state of b and b’

YX

Word line

Bit lines

b

T 2T 1

b 



DRAM Cell
• A single DRAM cell is shown in figure having a capacitor C and a Transistor T.

• To store information in this cell ,transistor T is turned on and an appropriate
voltage is applied to the bit line and the capacitor gets charged. after the
transistor is turned off, the capacitor begins to discharge.

• Hence the information can be retrieved correctly only if it is read before the
charge on the capacitor drops below some threshold value.



Asynchronous DRAMs
• Static RAMs (SRAMs):

– Consist of circuits that are capable of retaining their state
as long as the power is applied.

– Volatile memories, because their contents are lost when
power is interrupted.

– Access times of static RAMs are in the range of few
nanoseconds.

– However, the cost is usually high.

• Dynamic RAMs (DRAMs):
– Do not retain their state indefinitely.

– Contents must be periodically refreshed. 

– Contents may be refreshed while accessing them for 
reading.



Asynchronous DRAMs

• Each row can store 512
bytes. 12 bits to select a
row, and 9 bits to select a
group in a row. Total of 21
bits.

• First apply the row address,
RAS signal latches the row
address. Then apply the
column address, CAS signal
latches the address.

• Timing of the memory unit
is controlled by a
specialized unit which
generates RAS and CAS.

• This is asynchronous DRAM

Column

CSSense / Write
circuits

cell arraylatch
address
Row

Column

latch

decoder
Row

decoderaddress

4096 512 8( )

R /W

A20 9- A 8 0-

D0D7

R A S

C A S



Synchronous DRAMs

R / W

R A S

C A S

C S

Clock

Cell array
latch

address
Row

decoder
Ro w

decoder
Co lumn Read/Write

circuits & latches
counter
address
Column

Row/Column

address

Data input
register

Data output
register

Data

Refresh
counter

Mode register
and

timing control



Synchronous DRAMs
•Operation is directly synchronized with processor clock signal.
•The outputs of the sense circuits are connected to a latch.
•During a Read operation, the contents of the cells in a row are
loaded onto the latches.
•During a refresh operation, the contents of the cells are
refreshed
without changing the contents of the latches.
•Data held in the latches correspond to the selected columns are
transferred to the output.
•For a burst mode of operation, successive columns are selected
using column address counter and clock.CAS signal need not be
generated externally. A new data is placed during raising edge of
the clock



Fast Page Mode
 Suppose if we want to access the consecutive bytes in 

the selected row.
 This can be done without having to reselect the row. 

▪ Add a latch at the output of the sense circuits in each row.

▪ All the latches are loaded when the row is selected.

▪ Different column addresses can be applied to select and
place different bytes on the data lines.

 Consecutive sequence of column addresses can be
applied under the control signal CAS, without
reselecting the row.
▪ Allows a block of data to be transferred at a much faster rate than random accesses.

▪ A small collection/group of bytes is usually referred to as a block. 

 This transfer capability is referred to as the fast page 
mode feature.  



Latency, Bandwidth, and DDRSDRAMs

• Memory latency is the time it takes to transfer 
a word of data to or from memory

• Memory bandwidth is the number of bits or 
bytes that can be transferred in one second.



Static memories

19-bit internal chip address

decoder
2-bit

addresses
21-bit

A
0

A 1

A
19

memory chip

A20

D
31-24

D
7-0

D
23-16

D
15-8

512K 8

Chip select

memory chip

19-bit
address

512K 8

8-bit data
input/output

Implement a memory unit of 2M
words of 32 bits each.
Use 512x8 static memory chips.
Each column consists of 4 chips.
Each chip implements one byte
position.
A chip is selected by setting its
chip select control line to 1.
Selected chip places its data on the
data output line, outputs of other
chips are in high impedance state.
21 bits to address a 32-bit word.
High order 2 bits are needed to
select the row, by activating the
four Chip Select signals.
19 bits are used to access specific
byte locations inside the selected
chip.



Dynamic memories
 Large dynamic memory systems can be implemented

using DRAM chips in a similar way to static memory
systems.

 Placing large memory systems directly on the
motherboard will occupy a large amount of space.
▪ Also, this arrangement is inflexible since the memory system cannot be expanded easily.

 Packaging considerations have led to the development
of larger memory units known as SIMMs (Single In-
line Memory Modules) and DIMMs (Dual In-line
Memory Modules).

 Memory modules are an assembly of memory chips
on a small board that plugs vertically onto a single
socket on the motherboard.
▪ Occupy less space on the motherboard.
▪ Allows for easy expansion by replacement.



Memory controller

 Recall that in a dynamic memory chip, to reduce the
number of pins, multiplexed addresses are used.

 Address is divided into two parts:
▪ High-order address bits select a row in the array.

▪ They are provided first, and latched using RAS signal.

▪ Low-order address bits select a column in the row.

▪ They are provided later, and latched using CAS signal.

 However, a processor issues all address bits at the same
time.

 In order to achieve the multiplexing, memory
controller circuit is inserted between the processor
and memory.



Memory controller (contd..)
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Read-Only Memories (ROMs)
 SRAM and SDRAM chips are volatile:

▪ Lose the contents when the power is turned off. 
 Many applications need memory devices to retain 

contents after the power is turned off. 
▪ For example, computer is turned on, the operating system must 

be loaded from the disk into the memory.
▪ Store instructions which would load the OS from the disk. 
▪ Need to store these instructions so that they will not be lost 

after the power is turned off. 
▪ We need to store the instructions into a non-volatile memory.

 Non-volatile memory is read in the same manner as 
volatile memory.
▪ Separate writing process is needed to place information in this 

memory. 
▪ Normal operation involves only reading of data, this type

of memory is called Read-Only memory (ROM).



Read-Only Memories (Contd.,)

 Read-Only Memory:
▪ Data are written into a ROM when it is manufactured.

 Programmable Read-Only Memory (PROM):
▪ Allow the data to be loaded by a user.

▪ Process of inserting the data is irreversible.

▪ Storing information specific to a user in a ROM is expensive. 

▪ Providing programming capability to a user may be better.

 Erasable Programmable Read-Only Memory 
(EPROM):
▪ Stored data to be erased and new data to be loaded.

▪ Flexibility, useful during the development phase of digital systems.

▪ Erasable, reprogrammable ROM.

▪ Erasure requires exposing the ROM to UV light.



Read-Only Memories (Contd.,)
 Electrically Erasable Programmable Read-Only 

Memory (EEPROM):
▪ To erase the contents of EPROMs, they have to be exposed to ultraviolet light.
▪ Physically removed from the circuit.
▪ EEPROMs the contents can be stored and erased electrically.

 Flash memory:
▪ Has similar approach to EEPROM.
▪ Read the contents of a single cell, but write the contents of 

an entire block of cells. 
▪ Flash devices have greater density.

▪ Higher capacity and low storage cost per bit. 

▪ Power consumption of flash memory is very low, making it 
attractive for use in equipment that is battery-driven. 

▪ Single flash chips are not sufficiently large, so 
larger memory modules are implemented using 
flash cards and flash drives.



Speed, Size, and Cost
 A big challenge in the design of a computer system 

is to provide a sufficiently large memory, with a 
reasonable speed at an affordable cost.

 Static RAM:
▪ Very fast, but expensive, because a basic SRAM cell has a complex circuit making it 

impossible to pack a large number of cells onto a single chip.

 Dynamic RAM:
▪ Simpler basic cell circuit, hence are much less expensive, but significantly slower than 

SRAMs.

 Magnetic disks:
▪ Storage provided by DRAMs is higher than SRAMs, but is still less than what is necessary. 

▪ Secondary storage such as magnetic disks provide a large amount 

of storage, but is much slower than DRAMs.



Memory Hierarchy
Processor

Primary
cache

Main
memory

Increasing
size

Increasing
speed

Magnetic disk
secondary
memory

Increasing
cost per bit

Registers

L1

Secondary
cache

L2

•Fastest access is to the data held in  
processor registers. Registers are at
the top of the memory hierarchy.
•Relatively small amount of memory that
can be implemented on the processor 
chip. This is processor cache. 
•Two levels of cache. Level 1 (L1) cache 
is on the processor chip. Level 2 (L2) 
cache is in between main memory and 
processor. 
•Next level is main memory, implemented
as SIMMs. Much larger, but much slower
than cache memory.
•Next level is magnetic disks. Huge amount
of inexepensive storage. 
•Speed of memory access is critical, the 
idea is to bring instructions and data 
that will be used in the near future as 
close to the processor as possible.



Cache Memories

 Processor is much faster than the main memory.
▪ As a result, the processor has to spend much of its time waiting while instructions 

and data are being fetched from the main memory. 

▪ Major obstacle towards achieving good performance.

 Speed of the main memory cannot be increased 
beyond a certain point. 

 Cache memory is an architectural arrangement 
which makes the main memory appear faster to 
the processor than it really is. 

 Cache memory is based on the property of 
computer programs known as “locality of 
reference”.



Locality of Reference

 Analysis of programs indicates that many 
instructions in localized areas of a program are 
executed repeatedly during some period of time, 
while the others are accessed relatively less 
frequently. 
▪ These instructions may be the ones in a loop, nested loop or few procedures calling 

each other repeatedly. 
▪ This is called “locality of reference”.

 Temporal locality of reference:
▪ Recently executed instruction is likely to be executed again very soon.

 Spatial locality of reference:
▪ Instructions with addresses close to a recently instruction are likely 

to be executed soon.



Cache memories

• Processor issues a Read request, a block of words is transferred from the 
main memory  to the cache, one word at a time.

• Subsequent references to the data in this block of words are found in the 
cache.

• At any given time, only some blocks in the main memory are held in the 
cache. Which  blocks in the main memory are in the cache is determined 
by a “mapping function”.

• When the cache is full, and a block of words needs to be transferred 
from the main  memory, some block of words in the cache must be 
replaced. This is determined by a “replacement algorithm”.

Cache
Main

memoryProcessor



Cache hit

• Existence of a cache is transparent to the processor. The processor 
issues Read and 
Write requests in the same manner. 

• If the data is in the cache it is called a Read or Write hit.

• Read hit:
▪ The data is obtained from the cache.

• Write hit:
▪ Cache has a replica of the contents of the main memory.
▪ Contents of the cache and the main memory may be updated 

simultaneously.       This is the write-through protocol. 
▪ Update the contents of the cache, and mark it as updated by setting a 

bit known        as the dirty bit or modified bit. The contents of the main 
memory are updated        when this block is replaced. This is write-
back or copy-back protocol. 



Cache miss
• If the data is not present in the cache, then a Read miss or Write 

miss occurs.

• Read miss:
▪ Block of words containing this requested word is transferred from the 

memory.
▪ After the block is transferred, the desired word is forwarded to the 

processor.
▪ The desired word may also be forwarded to the processor as soon as it is  

transferred without waiting for the entire block to be transferred. This is 
called  load-through or early-restart.

• Write-miss:
▪ Write-through protocol is used, then the contents of the main memory 

are      updated directly.
▪ If write-back protocol is used, the block containing the 

addressed word is first brought into the cache. The desired word 
is overwritten with new information.



Cache Coherence Problem
• A bit called as “valid bit” is provided for each block.
• If the block contains valid data, then the bit is set to 1, else it is 0. 
• Valid bits are set to 0, when the power is just turned on.
• When a block is loaded into the cache for the first time, the valid bit is set to 1. 

• Data transfers between main memory and disk occur directly bypassing the 
cache.

• When the data on a disk changes, the main memory block is also updated. 
• However, if the data is also resident in the cache, then the valid bit is set to 0.

• What happens if the data in the disk and main memory changes and the write-
back protocol is being used?

• In this case, the data in the cache may also have changed and is indicated by the 
dirty bit. 

• The copies of the data in the cache, and the main memory are different. This is 
called the cache coherence problem. 

• One option is to force a write-back before the main memory is updated from the 
disk.



Mapping functions

 Mapping functions determine how memory 
blocks are placed in the cache.

 A simple processor example:
▪ Cache consisting of 128 blocks of 16 words each.

▪ Total size of cache is 2048 (2K) words.

▪ Main memory is addressable by a 16-bit address.

▪ Main memory has 64K words. 

▪ Main memory has 4K blocks of 16 words each. 

 Three mapping functions:
▪ Direct mapping

▪ Associative mapping

▪ Set-associative mapping.



Direct mapping

Main
memory Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

7 4

Main memory address

Tag Block Word

5

tag

tag

tag

Cache

Block 0

Block 1

Block 127

•Block j of the main memory maps to j modulo 128 of 
the cache. 0 maps to 0, 129 maps to 1.
•More than one memory block is mapped onto  the same 
position in the cache.
•May lead to contention for cache blocks even if the 
cache is not full. 
•Resolve the contention by allowing new block to 
replace the old block, leading to a trivial replacement 
algorithm. 
•Memory address is divided into three fields:

- Low order 4 bits determine one of the 16
words in a block. 

- When a new block is brought into the cache,
the the next 7 bits determine which cache 

block this new block is placed in.
- High order 5 bits determine which of the possible

32 blocks is currently present in the cache. These
are tag bits.

•Simple to implement but not very flexible.



Associative mapping

•Main memory block can be placed into any cache 
position.
•Memory address is divided into two fields:

- Low order 4 bits identify the word within a 
block.

- High order 12 bits or tag bits identify a memory 
block when it is resident in the cache. 

•Flexible, and uses cache space efficiently. 
•Replacement algorithms can be used to replace 
an
existing block in the cache when the cache is full. 
•Cost is higher than direct-mapped cache because 
of 
the need to search all 128 patterns to determine 
whether a given block is in the cache.

Main
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Block 1

Block 127

Block 128
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Block 255
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tag

Cache

Block 0

Block 1

Block 127



Set-Associative mapping

Blocks of cache are grouped into sets. 
Mapping function allows a block of the main 
memory to reside in any block of a specific set.
Divide the cache into 64 sets, with two blocks per set. 
Memory block 0, 64, 128 etc. map to block 0, and they 
can occupy either of the two positions.
Memory address is divided into three fields:

- 6 bit field determines the set number.
- High order 6 bit fields are compared to the tag

fields of the two blocks in a set.
Set-associative mapping combination of direct and 
associative mapping. 
Number of blocks per set is a design parameter. 

- One extreme is to have all the blocks in one set,
requiring no set bits (fully associative mapping).

- Other extreme is to have one block per set, is 
the same as direct mapping. 

Main
memory Block 0

Block 1

Block 63

Block 64
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Block 128
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Performance considerations

• A key design objective of a computer system is to achieve the 
best possible performance at the lowest possible cost.
– Price/performance ratio is a common measure of success.

• Performance of a processor depends on:
– How fast machine instructions can be brought into the processor for 

execution.

– How fast the instructions can be executed.



Interleaving

 Divides the memory system into a number of 
memory modules. Each module has its own address buffer register 
(ABR) and data buffer register (DBR).

 Arranges addressing so that successive words in 
the address space are placed in different 
modules. 

 When requests for memory access involve 
consecutive addresses, the access will be to 
different modules.

 Since parallel access to these modules is 
possible, the average rate of fetching words from 
the Main Memory can be increased.



Methods of address layouts

 Consecutive words are placed in a
module.

 High-order k bits of a memory address
determine the module.

 Low-order m bits of a memory address
determine the word within a module.

 When a block of words is transferred
from main memory to cache, only one
module is busy at a time.

mbits

Address in module MM address

i

k bits

Module Module Module

Module

DBRABR DBRABR ABR DBR

0 n 1- i

k bits

0
ModuleModuleModule

Module MM address

DBRABRABR DBRABR DBR

Address in module

2
k

1-

mbits

•Consecutive words are located in
consecutive modules.
•Consecutive addresses can be located in
consecutive modules.
•While transferring a block of data,
several memory modules can be kept busy
at the same time.



Hit Rate and Miss Penalty

• Hit rate

• Miss penalty

• Hit rate can be improved by increasing block size, while 
keeping cache size constant

• Block sizes that are neither very small nor very large give best 
results.

• Miss penalty can be reduced if load-through approach is used 
when loading new blocks into cache.



Caches on the processor chip

• In high performance processors 2 levels of 
caches are normally used.

• Avg access time in a system with 2 levels of 
caches is

T ave = h1c1+(1-h1)h2c2+(1-h1)(1-h2)M



Other Performance Enhancements

Write buffer
 Write-through:
• Each write operation involves writing to the main memory.
• If the processor has to wait for the write operation to be complete, it 

slows down the   processor.
• Processor does not depend on the results of the write operation.
• Write buffer can be included for temporary storage of write requests.
• Processor places each write request into the buffer and continues 

execution.
• If a subsequent Read request references data which is still in the write 

buffer, then  this data is referenced in the write buffer.

 Write-back:
• Block is written back to the main memory when it is replaced. 
• If the processor waits for this write to complete, before reading the new 

block, it is  slowed down.
• Fast write buffer can hold the block to be written, and the new 

block can be read first.



Other Performance Enhancements 
(Contd.,)
Prefetching

• New data are brought into the processor when they are 
first needed. 

• Processor has to wait before the data transfer is complete. 
• Prefetch the data into the cache before they are actually 

needed, or a before a Read  miss occurs. 
• Prefetching can be accomplished through software by 

including a special instruction in the machine language of 
the processor. 
▪ Inclusion of prefetch instructions increases the length of the 

programs.
• Prefetching can also be accomplished using hardware:

▪ Circuitry that attempts to discover patterns in 
memory references and then prefetches according
to this pattern.



Other Performance Enhancements 
(Contd.,)

Lockup-Free Cache
• Prefetching scheme does not work if it stops other 

accesses to the cache until the prefetch is completed.
• A cache of this type is said to be “locked” while it 

services a miss.
• Cache structure which supports multiple outstanding 

misses is called a lockup free cache.
• Since only one miss can be serviced at a time, a lockup 

free cache must include  circuits that keep track of all the 
outstanding misses.

• Special registers may hold the necessary 
information about these misses.



Virtual memories

 Recall that an important challenge in the design 
of a computer system is to provide a large, fast 
memory system at an affordable cost. 

 Architectural solutions to increase the effective 
speed and size of the memory system.

 Cache memories were developed to increase the 
effective speed of the memory system.

 Virtual memory is an architectural solution to 
increase the effective size of the memory system.



Virtual memories (contd..)

 Recall that the addressable memory space depends on 
the number of address bits in a computer.
▪ For example, if a computer issues 32-bit addresses, the addressable memory space is 4G 

bytes.

 Physical main memory in a computer is generally not 
as large as the entire possible addressable space.
▪ Physical memory typically ranges from a few hundred megabytes to 1G bytes.

 Large programs that cannot fit completely into the 
main memory have their parts stored on secondary 
storage devices such as magnetic disks.
▪ Pieces of programs must be transferred to the main memory from secondary storage before 

they can be executed.
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Virtual memories (contd..)

 When a new piece of a program is to be 
transferred to the main memory, and the 
main memory is full, then some other piece in 
the main memory must be replaced. 
▪ Recall this is very similar to what we studied in case of cache memories.

 Operating system automatically transfers data 
between the main memory and secondary 
storage.
▪ Application programmer need not be concerned with this transfer.

▪ Also, application programmer does not need to be aware of the limitations 
imposed by the available physical memory.



Virtual memories (contd..)

 Techniques that automatically move program and data 
between main memory and secondary storage when they 
are required for execution are called virtual-memory
techniques. 

 Programs and processors reference an instruction or data 
independent of the size of the main memory.

 Processor issues binary addresses for instructions and 
data.
▪ These binary addresses are called logical or virtual addresses.

 Virtual addresses are translated into physical addresses by 
a combination of hardware and software subsystems. 
▪ If virtual address refers to a part of the program that is currently in the main memory, it is accessed 

immediately.
▪ If the address refers to a part of the program that is not currently in the main memory, it is first 

transferred to the main memory before it can be used.



Virtual memory organization

Data

Data

DMA transfer

Physical address

Physical address

Virtual address

Disk storage

Main memory

Cache

MMU

Processor
•Memory management unit (MMU) 
translates
virtual addresses into physical 
addresses. 
•If the desired data or instructions are 
in the
main memory they are fetched as 

described 
previously.
•If the desired data or instructions are 
not in 
the main memory, they must be 

transferred 
from secondary storage to the main 

memory.
•MMU causes the operating system to 
bring 
the data from the secondary storage 
into the 
main memory.



Address translation
 Assume that program and data are composed of fixed-length 

units called pages. 
 A page consists of a block of words that occupy contiguous 

locations in the main memory.
 Page is a basic unit of information that is transferred between 

secondary storage and main memory. 
 Size of a page commonly ranges from 2K to 16K bytes. 

▪ Pages should not be too small, because the access time of a 
secondary storage device is much larger than the main 
memory. 

▪ Pages should not be too large, else a large portion of the page 
may not be used, and it will occupy valuable space in the main 
memory.



Address translation (contd..)

• Concepts of virtual memory are similar to the 
concepts of cache memory. 

• Cache memory:

– Introduced to bridge the speed gap between the 
processor and the main memory.

– Implemented in hardware.

• Virtual memory:

– Introduced to bridge the speed gap between the 
main memory and secondary storage. 

– Implemented in part by software.



Address translation (contd..)

 Each virtual or logical address generated by a 
processor is interpreted as a virtual page number 
(high-order bits) plus an offset (low-order bits) that 
specifies the location of a particular byte within that 
page.

 Information about the main memory location of each 
page is kept in the page table.
▪ Main memory address where the page is stored. 

▪ Current status of the page.

 Area of the main memory that can hold a page is 
called as page frame.

 Starting address of the page table is kept in a page 
table base register.



Address translation (contd..)

• Virtual page number generated by the 
processor is added to the contents of the page 
table base register.

– This provides the address of the corresponding entry in the page table.

• The contents of this location in the page table 
give the starting address of the page if the 
page is currently in the main memory.



Address translation (contd..)

Page frame

Virtual address from processor

in memory

Offset

Offset

Virtual page numberPage table address

Page table base register

Control
bits

Physical address in main memory

PAGE TABLE

Page frame

+

Virtual address is
interpreted as page
number and offset.

Page table holds information
about each page. This includes
the starting address of the page 
in the main memory.

PTBR holds
the address of 
the page table.

PTBR + virtual
page number provide
the entry of the page 
in the page table.

This entry has the starting location
of the page.



Address translation (contd..)

 Page table entry for a page also includes some 
control bits which describe the status of the page 
while it is in the main memory.

 One bit indicates the validity of the page. 
▪ Indicates whether the page is actually loaded into the main memory. 

▪ Allows the operating system to invalidate the page without actually removing it. 

 One bit indicates whether the page has been 
modified during its residency in the main 
memory.

▪ This bit determines whether the page should be written back to the disk when it is 
removed from the main memory. 

▪ Similar to the dirty or modified bit in case of cache memory.



Address translation (contd..)

• Other control bits for various other types of 
restrictions that may be imposed. 
– For example, a program may only have read permission for a page, but not 

write or modify permissions.



Address translation (contd..)

 Where should the page table be located?
 Recall that the page table is used by the MMU for 

every read and write access to the memory. 
▪ Ideal location for the page table is within the MMU. 

 Page table is quite large.
 MMU is implemented as part of the processor chip.
 Impossible to include a complete page table on the 

chip. 
 Page table is kept in the main memory.
 A copy of a small portion of the page table can be 

accommodated within the MMU. 
▪ Portion consists of page table entries that correspond to the most recently accessed pages.



Address translation (contd..)

 A small cache called as Translation Lookaside
Buffer (TLB) is included in the MMU.
▪ TLB holds page table entries of the most recently accessed pages. 

 Recall that cache memory holds most recently 
accessed blocks from the main memory. 
▪ Operation of the TLB and page table in the main memory is similar to the operation 

of the cache and main memory.

 Page table entry for a page includes:
▪ Address of the page frame where the page resides in the main memory.

▪ Some control bits.

 In addition to the above for each page, TLB must 
hold the virtual page number for each page.



Address translation (contd..)

No

Yes

Hit

Miss

Virtual address from processor

TLB

OffsetVirtual page number

number
Virtual page Page frame

in memory
Control

bits

OffsetPage frame

=?

Physical address in main memory

Associative-mapped TLB

High-order bits of the virtual address 
generated by the processor select the 
virtual page.
These bits are compared to the virtual 
page numbers in the TLB.
If there is a match, a hit occurs and 
the corresponding address of the page
frame is read. 
If there is no match, a miss occurs 
and the page table within the main 
memory must be consulted.
Set-associative mapped TLBs are 
found in commercial processors.



Address translation (contd..)

 How to keep the entries of the TLB coherent with 
the contents of the page table in the main 
memory?

 Operating system may change the contents of 
the page table in the main memory. 
▪ Simultaneously it must also invalidate the corresponding entries in the TLB.

 A control bit is provided in the TLB to invalidate 
an entry. 

 If an entry is invalidated, then the TLB gets the 
information for that entry from the page table.
▪ Follows the same process that it would follow if the entry is not found in the TLB or 

if a “miss” occurs.



Address translation (contd..)
 What happens if a program generates an 

access to a page that is not in the main 
memory?

 In this case, a page fault is said to occur. 
▪ Whole page must be brought into the main memory from the disk, before 

the execution can proceed.

 Upon detecting a page fault by the MMU, 
following actions occur:
▪ MMU asks the operating system to intervene by raising an exception. 
▪ Processing of the active task which caused the page fault is interrupted. 
▪ Control is transferred to the operating system. 
▪ Operating system copies the requested page from secondary storage to 

the main memory. 
▪ Once the page is copied, control is returned to the task which was 

interrupted.



Address translation (contd..)

• Servicing of a page fault requires transferring 
the requested page from secondary storage to 
the main memory.

• This transfer may incur a long delay. 

• While the page is being transferred the 
operating system may:
– Suspend the execution of the task that caused the page fault. 

– Begin execution of another task whose pages are in the main memory.

• Enables efficient use of the processor.



Address translation (contd..)

• How to ensure that the interrupted task can 
continue correctly when it resumes 
execution?

• There are two possibilities:
– Execution of the interrupted task must continue from the point where it was 

interrupted. 

– The instruction must be restarted.

• Which specific option is followed depends on 
the design of the processor. 



Address translation (contd..)

 When a new page is to be brought into the main 
memory from secondary storage, the main memory 
may be full.
▪ Some page from the main memory must be replaced with this new page. 

 How to choose which page to replace?
▪ This is similar to the replacement that occurs when the cache is full.

▪ The principle of locality of reference (?) can also be applied here.

▪ A replacement strategy similar to LRU can be applied. 

 Since the size of the main memory is relatively larger 
compared to cache, a relatively large amount of 
programs and data can be held in the main memory.
▪ Minimizes the frequency of transfers between secondary storage and main memory.



Address translation (contd..)

 A page may be modified during its residency in 
the main memory. 

 When should the page be written back to the 
secondary storage?

 Recall that we encountered a similar problem in 
the context of cache and main memory:
▪ Write-through protocol(?)

▪ Write-back protocol(?)

 Write-through protocol cannot be used, since it 
will incur a long delay each time a small amount 
of data is written to the disk.  



Memory management

• Operating system is concerned with transferring programs and 
data between secondary storage and main memory. 

• Operating system needs memory routines in addition to the 
other routines. 

• Operating system routines are assembled into a virtual 
address space called system space. 

• System space is separate from the space in which user 
application programs reside. 
– This is user space. 

• Virtual address space is divided into one 

system space + several user spaces.



Memory management (contd..)

 Recall that the Memory Management Unit (MMU) translates 
logical or virtual addresses into physical addresses. 

 MMU uses the contents of the page table base register to 
determine the address of the page table to be used in the 
translation.
▪ Changing the contents of the page table base register can enable us to 

use a different page table, and switch from one space to another.
 At any given time, the page table base register can point to 

one page table. 
▪ Thus, only one page table can be used in the translation process at a 

given time.

▪ Pages belonging to only one space are accessible at any 

given time.



Memory management (contd..)

 When multiple, independent user programs coexist in the 
main memory, how to ensure that one program does not 
modify/destroy the contents of the other?

 Processor usually has two states of operation:
▪ Supervisor state.
▪ User state.

 Supervisor state:
▪ Operating system routines are executed.

 User state:
▪ User programs are executed.
▪ Certain privileged instructions cannot be executed in user state.
▪ These privileged instructions include the ones which change page 

table base register.
▪ Prevents one user from accessing the space of other users.



Magnetic Hard Disks

Disk

Disk drive

Disk controller



Organization of Data on a Disk

Sector 0, track 0

Sector 3, track n

Figure 5.30.  Organization of one surface of a disk.

Sector 0, track 1



Access Data on a Disk

• Sector header
• Following the data, there is an error-

correction code (ECC).
• Formatting process
• Difference between inner tracks and outer 

tracks
• Access time – seek time / rotational delay 

(latency time)
• Data buffer/cache



Disk Controller

Processor Main memory

System bus

Figure 5.31.  Disks connected to the system bus.

Disk controller

Disk drive Disk drive



Disk Controller

• Seek

• Read

• Write

• Error checking



RAID Disk Arrays

• Redundant Array of Inexpensive Disks

• Using multiple disks makes it cheaper for huge 
storage, and also possible to improve the 
reliability of the overall system.

• RAID0 – data striping

• RAID1 – identical copies of data on two disks

• RAID2, 3, 4 – increased reliability

• RAID5 – parity-based error-recovery



Optical Disks
(a) Cross-section

Source Detector Source Detector Source Detector

No reflection

Reflection Reflection

Pit Land

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0

(c) Stored binary pattern

Figure 5.32.  Optical disk.

1

(b) Transition from pit to land



Optical Disks

• CD-ROM

• CD-Recordable (CD-R)

• CD-ReWritable (CD-RW)

• DVD

• DVD-RAM



Magnetic Tape Systems

Figure 5.33. Organization of data on magnetic tape.
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Arithmetic 

A basic operation in all digital computers is the addition and subtraction of two numbers 

They are implemented, along with the basic logic functions such as AND,OR, NOT,EX-

OR in the ALU subsystem of the processor. In this chapter we will study how to 

implement these operations by using different techniques. 

 

Addition and Subtraction of Signed Numbers  

 

Half Adder 

Figure 1(a),(b),(c),(d):  Implementation of Half Adder 

 
 

Full Adder 

 

The following figure 2 shows the logic truth table for the sum and carry-out functions for 

adding equally weighted bits xi and yi in two numbers X and Y. The figure also shows 

logic expressions for these functions, along with an example of addition of the 4-bit 

unsigned numbers 7 and 6. 
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Implementation 

 

The logic expression for Si in figure 2 can be implemented with a 3-input XOR gate,used 

in figure 3(a)as a part of the logic required for a single stage of binary addition. The 

carry-out function, Ci+1, is implemented with a two level AND-OR logic circuit. 

 

Using AND –OR gate 

 
 

 

 

Full adder
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A cascaded connection of n full adder blocks, as shown in figure 4(a), can be use to add 

two n-bit numbers. Since the carries must propagate, or ripple through this cascade, the 

configuration is called n-bit ripple carry adder. 

 

 
 
Overflow – Overflow occurs in signed numbers having same signs, and sign of the result 

is different, and also it is shown that carry bits Cn and C n-1 are different. A circuit is 

added to detect overflow, eg. C n-1⊕ Cn    

In order to perform the subtract operation X-Y on 2’s complement numbers X and Y, we 

form the 2s-complement of Y and add it to X. The logic circuit network shown in figure 

(5) can be used to perform either addition or subtraction based on the value applied to the 

Add/Sub input control line. This line is set to 0 for addition, applying the Y vector un 

changed to one of the adder inputs along with a carry-in signal,C0 of 0 . When Add/Sub 

control line is set to 1, the Y vector is 1’s complemented by the XOR gates and C0 is set 

to 1 to complete the 2’s complementation of Y. Remember that 2’s complementing a 

negative number is done exactly same manner as for positive number. An XOR gate can 

be added to Figure(5) to detect the overflow condition C n-1⊕ Cn    

 
 

 

Add/Sub
control

n -bit adder

x n 1- x1 x 0

c n

sn 1- s1 s0

c
0

y n 1- y 1 y0

Figure 6.3. Binary addition-subtraction logic netw ork.
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Figure 4(a) An  n-bit ripple carry adder 
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Design of Fast Adders 
If an n-bit ripple carry adder is used in the addition /subtraction unit of Figure (3), it may 

have too much delay in developing its outputs, s0 through sn-1 and c n. The delay through 

any combinational logic network constructed from gates in a particular technology is 

determined by adding up the number of logic gate delays along the longest signal 

propagation path through the network. In the case of n-bit ripple-carry adder, the longest 

path is from inputs x0,y0, and c0 at the LSB position to outputs cn and sn-1 at the most-

significant-bit(MSB) position. 

Design of Carry Lookahead Adders  
To reduce the computation time, there are faster ways to add two binary numbers by 

using carry lookahead adders. They work by creating two signals P and G known to be 

Carry Propagator and Carry Generator. The carry propagator is propagated to the next 

level whereas the carry generator is used to generate the output carry, regardless of 

input carry. The block diagram of a 4-bit Carry Lookahead Adder is shown here below - 

  

 

 

 

 

 

 

 

Let us consider the design of a 4 bit adder is shown in figure (6). The carries can be 
implemented as C1=G0+P0C0 

C2=G1+P1G0+P1P0C0 

C3=G2+P2G1+P2P1G0+P2P1P0C0 
C4=G3+P3G2+P3P1G1+P3P2P1G0+P3P2P1P0C0 

Each of the carry equations can be implemented in a two-level logic  network.Variables 

are the adder inputs and carry in to next stage 



 

 

The number of gate levels for the carry propagation can be found from the circuit of full 

adder. The signal from input carry Cin to output carry Cout requires an AND gate and an 

OR gate, which constitutes two gate levels. So if there are four full adders in the parallel 

adder, the output carry C5  would have 2 X 4 = 8 gate levels from C1 to C5. For an n-bit 

parallel adder, there are 2n gate levels to propagate through.. 

Multiplication of Positive numbers 

The usual algorithm for multiplying integers by hand is illustrated in figure7(a) for the 

binary system.This algorithm applies to unsigned numbers and to positive signed 

numbers. The product of two n-digit numbers can be accommodated in 2n digits, so the 

product of the 4 bit numbers in this example fits into 8 bits. 
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Figure 7(a) Manual multiplication algorithm 
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Binary multiplication of positive operands can be implemented in a combinational two 

dimensional logic array as shown in figure7(b). The main component in each cell is a full 

adder FA. The AND gate in each cell determines whether a multiplicand bit mj , is added 

to the incoming partial product bit, based on the value of the multiplierbit qj. Each row 

I,where 0 ≤  I ≤ 3, adds the multiplicand to the incoming partial product, PPi to generate 

the outgoing partial product, PP(i+1), if qi=1. If qi=0, PPi is passed vertically downward 

unchanged. PP0 is all 0s, and PP4 is the desired product. The multiplicand is shifted left 

one position per row by the diagonal signal path. 

 

Worst case signal propagation delay path is from the upper right corner of the array to the 

higher order product bit output at the bottom left corner of the array. 

 

Sequential Circuit Binary multiplier 

 
Registers A and Q combined hold PPi multiplier bit qi generates the signal Add/Noadd. 

This signal controls the addition of the multiplicand, M to PPi to genertae  PP(i+1). The 

product is computed in n cycles. The partial product grows  in length by one bit per cycle 

from the initial vector,PP0 of n 0s in register A. The carry-out from the adder is stored in 

flip-flop C, shown  at the left end of register A. At the start, the multiplier is loaded into 

register Q, the multiplicand into register M, and C and A are cleared to 0. At the end of 

each cycle, C,A and Q are shifted right one bit position to allow for growth of the partial 

product as the multiplier is shifted  out of register Q. Because of this shifting, multiplier 

bit qi appears at the LSB position Q to generate the Add/Noadd signal at the correct time, 

starting with q0 during the first cycle, q1 during the second cycle, and so on. 

After they are used , the multiplier bits are discarded by the right shift operation. Note 

that the carry-out from the adder is the leftmost bit of PP(i+1), and must be held in the C 

flip-flop to be shifted right with the contents of A and Q. After n cycles, the high-order 

half of the product is held in register A and the low order half is in register Q.  
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Signed Multiplication 
 

Booth Algorithm 
A powerful algorithm for signed –number multiplication is a Booth’s algorithm which 

generates a 2n bit product and treats both positive and negative numbers uniformly. This 

algorithm suggest that we can reduce the number of operations required for multiplication 

by representing multiplier as  a difference between two numbers. 



For example, multiplier 0 0 1 1 1 0(14) can be represented as follows. 

  0 1 0 0 0 0 (16) 

        - 0 0 0 0 1 0 (2) 

      ----------------------- 

             0 0 1 1 1 0 (14) 

Therefore, the product can be computed by adding 24 times the multiplicand to the 2s 

complement of 21 times the multiplicand. In simple notations, we can describe the 

sequence of required operations be recoding the preceding multiplier as  

   0 + 1 0 0 -1 0 

In general , For Booth’s algorithm recoding scheme can be given as  

-1 times the shifted multiplicand is selected when moving from 0 to 1,+1 times the 

shifted multiplicand is selected when moving from 1 to 0, and 0 timesw the shifted 

muluiplicand  is selected for none of the above case,as multiplier is scanned from right to 

left.   

Fast Multiplication -- Booth's Algorithm  

The Booth's algorithm serves two purposes:  

1. Fast multiplication (when there are consecutive 0's or 1's in the multiplier).  

2. Signed multiplication.  

 

First consider two decimal multiplications: and . It is obvious that If straight forward 

multiplication is used, the first one is easier than the second as only two single-digit 

multiplications are needed for the first while four are needed for the second. However, as 

we also realize that:  

 

 

 

the two multiplications should be equally easy.  

Example 1  

If there is a sequence of 0's in the multiplier, the multiplication is easy as all 0's can be 

skipped.  

 

 

 

 

 



Example 2  

However, it does not help if there is a sequence of 1's in the multiplier. We have to go 

through each one of them:  

 
 

 

How can we enjoy a sequence of 1's as well as a sequence of 0's? We first Realize that 

, or in general a string of 1's in the multiplier A can be 

written as:  

 
 

 

where d is ``don't care'' (either 0 or 1). If we define the first part of the above as 

and the second part as , then 

the multiplication becomes  

 
 

 

In other words, only the two ends of a string of 1's in the multiplier need to be taken care 

of. At the left end the multiplicand is added to the partial product, while at the right end 

the multiplicand is subtracted from the partial product. The above multiplication can 

therefore be written as:  

 
 

 

On the right side above the subtraction is carried out by adding 2's complement. We 

observe that there is a sequence of 1's in the multiplier, only the two ends need to be 

taken care of, while all 1's in between do not require any operation. The Booth's 

algorithm for multiplication is based on this observation. To do a multiplication, 



where  

• is the multiplicand  

• is the multiplier  

we check every two consecutive bits in at a time:  

 

 

 

where , and when , .  

Why does it work? What we did can be summarized as the following  

 

   
 

 

 

 

 

 
 

 

 

 

* Recall that the value of a signed-2's complement number (either positive or negative) 

can be found by:  

 



 

 

Another Example:  

Assume bits available. Multiply by 

. First represent both operands and their negation in 

signed 2's complement:  

 
 

 

Then carry out the multiplication in the hardware:  

 
 

 

The upper half of the final result is in register [A] while the lower 

half is in register [Q]. The product is given in signed 2's complement and its actual value 

is negative of the 2's complement:  

 
 



Another Example 

 

 

 

Also note that:  

• As the operands are in signed 2's complement form, the arithmetic shift is used for 

the right shifts above, i.e., the MSB bit (sign bit) is always repeated while all 

other bits are shifted to the right. This guarantees the proper sign extension for 

both positive and negative values represented in signed 2's complement.  

• When the multiplicand is negative represented by signed 2's complement, it needs 

to be complemented again for subtraction (when the LSB of multiplier is 1 and 

the extra bit is 0, i.e., the beginning of a string of 1's).  

• Best case – a long string of 1’s (skipping over 1s)  

• Worst case – 0’s and 1’s are alternating 

Bit-Pair Recoding of Multipliers 

• Group the booth recoded multiplier bits in pairs, and can be observed, that, the 

pair (+1, -1) is same to the pair (0, +1), i.e., Instead of adding -1 x M  at shift 

position i with +1 x M at i+1, it can be added with +1 x M at position i. 

• Bit-pair recoding halves the maximum number of summands (versions of the 

multiplicand). 
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(b) Table of multiplicand selection decisions 

selected at position i
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Carry-Save Addition (CSA) of Summands 

Carry save addition speeds up the addition process. In CSA, instead of letting the carries 

ripple along the rows, they can be saved and introduced into next row, at correct  

weighted positions. The full adder is input with three partial bit products in the first row.    

• Multiplication requires the addition of several summands. 

• CSA speeds up the addition process. 

• Consider the array for 4x4 multiplication shown in fig(1). 

• First row consisting of just the AND gates that implement the bit products 

m3q0,m2q0,m1q0 and m0q0 . 
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• The delay through the carry-save array is somewhat less than delay through the 

ripple-carry array. This is because the S and C vector outputs from each row are 

produced in parallel in one full-adder delay. 

• Consider the addition of many summands, we can: 

• Group the summands in threes and perform carry-save addition on each of these 

groups in parallel to generate a set of S and C vectors in one full-adder delay 

• Group all of the S and C vectors into threes, and perform carry-save addition on 

them, generating a further set of S and C vectors in one more full-adder delay 

• Continue with this process until there are only two vectors remaining 

FA FA FAFA

FA FA FAFA

FA FA FAFA

p7 p6 p5 p4 p3 p1 p0p2

0 m3q0

m3q1

(b) Carry-save array

m2q1

m2q0 m1q0

m1q1 m0q1

m2q3 m1q3 m0q3 0

0

0

m2q2 m1q2 m0q2m3q2

m3q3

m0q0

Figure 6.16.  Ripple-carry and carry-save arrays for the

multiplication operation M x Q = P for 4-bit operands.



• They can be added in a RCA or CLA to produce the desired product. 

 

 

• When the number of summands is large, the time saved is proportionally much 

greater. 



• Delay: AND gate + 2 gate / CSA level + CLA gate delay, Eg., 6 bit number 

require 15 gate delay, array 6x6 require 6(n-1)-1 = 29 gate D.  

• In general CSA takes 1.7 log2 k -1.7 levels of CSA to reduce k summands 

Integer Division 

Manual Division 

   

 

Longhand Division Steps 

• Position the divisor appropriately with respect to the dividend and performs a 

subtraction. 

• If the remainder is zero or positive, a quotient bit of 1 is determined, the 

remainder is extended by another bit of the dividend, the divisor is 

repositioned, and another subtraction is performed. 

• If the remainder is negative, a quotient bit of 0 is determined, the dividend is 

restored by adding back the divisor, and the divisor is repositioned for another 

subtraction.  

Restoring Division 

• Similar to multiplication circuit 

• N-bit positive divisor is loaded into register M and an n-bit positive dividend is 

loaded into register Q at the start of the operation. 

• Register A is set to 0 

• After the division operation is complete, the n-bit quotient is in register Q and the 

remainder is in register A. 

• The required subtractions are facilitated by using 2’s complement arithmetic. 

• The extra bit position at the left end of both A and M accomodates the sign bit 

during subtraction. 

• Shift A and Q left one binary position 

• Subtract M from A, and place the answer back in A 

• If the sign of A is 1, set q0 to 0 and add M back to A (restore A); otherwise, set q0 

to 1 
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274
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• Repeat these steps n times 

 

 

 

Example 

 

 



Non-restoring Division 

• Restoring division algorithm can be improved by avoiding the need for restoring 

A after an unsuccessful subtraction 

• Subtraction is said to be unsuccessful if the result is negative 

• If A is positive, we shift left and subtract M that is we perform 2A-M. 

• If A is negative, we restore it by performing A+M, and then we shift it left and 

subtract M. 

• This is equivalent to performing 2A+M. 

• Q0 is set to 0 or 1 after the correct operation has been performed. 

Algorithm for Non Restoring Division 

Step 1:(Repeat n times) 

• If the sign of A is 0, shift A and Q left one bit position and subtract M from A;   

Otherwise , shift A and Q left and add M to A. 

• Now if the sign of A id 0 set q0 to 1; otherwise , set q0 to 0  

Step 2: If the sign of A is 1, add M to A 

Example 

 

 

Comparision 

• Needs restoring of reg A if the 

result of subtraction is –ve. 

• In each cycle content of reg A is 

first shifted left and then divisor 

is subtracted from it 



• Does not need restoring of 

remainder 

• Slower algorithm 

 

• Does not need restoring 

• Needs restoring of remainder if 

remainder is –ve  

• In each cycle the content of reg 

A is first shifted left and then the 

divisor is added or subtracted 

 with the content of reg A         

depending on the sign of A 

• Faster algorithm 

 

Floating-Point Numbers and Operations 

• So far we have dealt with fixed-point numbers and have considered them as 

integers. 

• Floating-point numbers: the binary point is just to the right of the sign bit. 

• In the 2’s complement system, the signed value F,represented n-bit binary fraction  

 B=b0b-1b-2…….b-(n-1) 

 F(B)= -b0 x2
0
+b-1x2

-1
+b-2x2

-2
……….b-(n-1)x2

-(n-1)
 

• Where the range of F is:2 
-(n-1) 

≤ F ≤ 1-2
-(n-1)

  

• The position of the binary point is variable and is automatically adjusted as 

computation proceeds. 

• If n=32, then the value range is approximately 

           2
(-31)
≤ F ≤ 1-2 

-(31)  
(1-2.3283X10 

-10
) 

• But this range is not sufficient to represent fractional numbers, 

• To accommodate very large integers and very small fractions, a computer must be 

able to represent numbers and operate on them in such a way that the position of 

the binary point is variable and is automatically adjusted as computation proceeds. 

• In this case the binary point is said to float, and the numbers are called floating 

point numbers. 

• What are needed to represent a floating-point decimal number? 

• It needs three fields 

• Sign 

• Mantissa (the significant digits)   

• Exponent to an implied base (scale factor)   

 

“Normalized” – the decimal point is placed to the right of the first (nonzero) significant 

digit 



• Let us consider the number      111101.1000110 to be represented in floating point 

format. 

• To represent the number in floating point format, first binary point is shifted to 

right of the first bit and the number is multiplied by the scaling factor to get the 

same value. 

• The number is said to be Normalized form and is given as  

111101.1000110           1.11101100110 x 2
5  

 

 

IEEE Standard for Floating-Point Numbers 

Think about this number (all digits are decimal): ±X1.X2X3X4X5X6X7×10
±Y1Y2

.It is 

possible to approximate this mantissa precision and scale factor range in a binary 

representation that occupies 32 bits: 24-bit mantissa (1 sign bit for signed number), 8-bit 

exponent.  

Instead of the signed exponent, E, the value actually stored in the exponent field is an 

unsigned integer E’=E+127, so called excess-127 format. 

Single Precision 

 

 

101000)2=4010   ; 40-127=-87  

 

 

Double Precision 

Scale factor 

Normalized form  

Exponent 



 

Problem 

1)Represent 1259.12510  in   single precision and double precision formats 
• Step 1 :Convert decimal number to binary format 

   1259(10)=10011101011(2) 

 Fractional Part 

   0.125 (10)=0.001 

• Binary number = 10011101011+0.001 

       =10011101011.001 

Step 2:Normalize the number 

10011101011.001=1.0011101011001 x 2
10

 

Step3:Single precision format: 

For a given number S=0,E=10 and  M=0011101011001 

Bias for single precision format is = 127 

E’=E+127=10+127=137 (10) 

=10001001 (2)  

• Number in single precision format  

    0     10001001     0011101011001….0 

Exponent         Mantissa(23 bit) 

Step 4:Double precision format: 

For a given number S=0,E=10 and M=0011101011001 

Bias for double precision format is = 1023 

E’=E+1023=10+1023=1033 (10) 

=10000001001 (2)  

• Number in double precision format is given as 

    0     10001001     0011101011001….0 
Exponent    Mantissa(23 bit) 
 

 

IEEE Standard 

Sign 

Sign 



• For excess-127 format, 0 ≤ E’ ≤ 255. However, 0 and 255 are used to represent 

special value. So actually 1 ≤ E’ ≤ 254. That means -126 ≤ E ≤ 127. 

• Single precision uses 32-bit. The value range is from 2
-126

 to 2
+127

.  

• Double precision used 64-bit. The value range is from 2
-1022

 to 2
+1023

. 

Normalization 

• If a number is not normalized, it can always be put in normalized form by shifting 

the fraction and adjusting the exponent. As computations proceed, a number that 

does not fall in the representable range of normal numbers might be generated. 

• In single precision, it requires an exponent less than -126 (underflow) or greater 

than +127 (overflow). Both are exceptions that need to be considered. 

 

 

  

Special Values 

• The end value 0 and 255 are used to represent special values. 

• When E’=0 and M=0, the value exact 0 is represented. (±0)   

• When E’=255 and M=0, the value ∞ is represented. (± ∞)   
• When E’=0 and M≠0, de normal numbers are represented. The value is ±0.M´2

-

126
. (allow for Gradual underflow)   

• When E’=255 and M≠0, Not a Number (NaN). 

• NaN is the result of performing an invalid operation, such as 0/0 or square root of 

-1.  

 

Exceptions 



• A processor must set exception flags if any of the following occur in performing 

operations: underflow, overflow, divide by zero, inexact, invalid. 

• When exception occurs, the results are set to special values. 

 

Arithmetic Operations on Floating-Point Numbers 

Add/Subtract rule 

1. Choose the number with the smaller exponent and shift its mantissa right a 

number of steps equal to the difference in exponents. 

2. Set the exponent of the result equal to the larger exponent. 

3. Perform addition/subtraction on the mantissas and determine the sign of the result. 

4. Normalize the resulting value, if necessary. 

Subtraction of floating point numbers 

• Similar process is used for subtraction 

• Two mantissas are subtracted instead of addition 

• Sign of greater mantissa is assigned to the result  

 

 

Step 1:  Compare the exponent for sign bit using 8bit subtractor  

Sign is sent to SWAP unit to decide on which number to be sent to 

SHIFTER unit.  

Step2: The exponent of the result is determined in two way  

multiplexer depending on the sign bit from step1 



Step3: Control logic determines whether mantissas are to be  

added or subtracted. Depending on sign of the operand.   

There are many combinations are possible here, that depends 

on sign bits, exponent values of the operand. 

Step4: Normalization of the result depending on the leading zeros, 

and some special case like 1.xxxxx operands. Where result is 1x.xxx 

and X = -1, therefore will increase the exponent value.                                                                                             

Example 

Add single precision floating point numbers A 

and B, where A=44900000 H and B = 42A00000H. 

Solution 

Step 1 :Represent numbers in single precision format 

A = 0  1000 1001 0010000….0 

B = 0  1000 0101 0100000….0 

Exponent for A  = 1000 1001 =137 

Therefore actual exponent = 137-127(Bias) =10 

Exponent for B = 1000 0101 = 133 

Therefore actual exponent = 133-127(Bias) = 6 

 

With difference 4. Hence its mantissa is shifted right by 4 bits as shown below 

Step 2:Shift mantissa  

Shifted mantissa of B = 0 0 0 0 0 1 0 0…0 

Step 3: Add mantissa 

Mantissa of A = 00100000…0 

Mantissa of B = 00000100…0 

Mantissa of result = 00100100…0 

As both numbers are positive, sign of the result is positive 

Result =0100 0100  1001 0010 0…0 

   =44920000H 

Multiply rule 

• Add the exponents and subtract 127. 

• Multiply the mantissas and determine the sign of the result. 

• Normalize the resulting value, if necessary. 

Divide rule 

• Subtract the exponents and add 127. 

• Divide the mantissas and determine the sign of the result. 

Normalize the resulting value, if necessary 

Guard Bits 



• During the intermediate steps, it is important to retain extra bits, often called 

guard bits, to yield the maximum accuracy in the final results. 

• Removing the guard bits in generating a final result requires truncation of 

the extended mantissa. 

Truncation 

• Chopping – Remove the guard bits  

0.b-1b-2b-3000 -- 0.b-1b-2b-3111à0.b-1b-2b-3  

                Error ranges from 0 to 0.000111.  

   Chopping is biased because is not symmetrical 

   about 0, 0 to 1 at LSB. 

• Von Neumann Rounding - All 6-bit fractions with b-4b-5b6 not equal to 000 

are truncated to to 0.b-1b-21 

• This truncation is unbiased, error ranges: -1 to +1 at LSB. 

• unbiased rounding is better because positive error tend to offset negative 

errors as the computation proceeds.  

• Rounding (A 1 is added to the LSB position of the bits to be retained if there 

is a 1 in the MSB position of the bits being removed) – unbiased, -½ to +½ at 

LSB. 

0.b-1b-2b-31 .... is rounded to  0.b-1b-2b-3+ 0.001 

� Round to the nearest number or nearest even number in case of a tie      

(0.b-1b-20100 -> 0.b-1b-20;    0.b-1b-21100 -> 0.b1b21+0.001)  

� Best accuracy 

� Most difficult to implement  

 

Addition and Subtraction 

 

 

Floating point addition is analogous to addition using scientific notation. For example, to 

add 2.25x to 1.340625x :  



1. Shift the decimal point of the smaller number to the left until the exponents are 

equal. Thus, the first number becomes .0225x .  

2. Add the numbers with decimal points aligned:  

 

3. Normalize the result.  

Once the decimal points are aligned, the addition can be performed by ignoring the 

decimal point and using integer addition.  

The addition of two IEEE FPS numbers is performed in a similar manner. The number 

2.25 in IEEE FPS is:  

 

The number 134.0625 in IEEE FPS is:  

 

 

 

 

1. To align the binary points, the smaller exponent is incremented and the mantissa 

is shifted right until the exponents are equal. Thus, 2.25 becomes:  

 

2. The mantissas are added using integer addition:  

 

 

3. The result is already in normal form. If the sum overflows the position of the 

hidden bit, then the mantissa must be shifted one bit to the right and the exponent 

incremented. The mantissa is always less than 2, so the hidden bits can sum to no 

more than 3 (11).  

The exponents can be positive or negative with no change in the algorithm. A smaller 

exponent means more negative. In the bias-127 representation, the smaller exponent has 

the smaller value for E, the unsigned interpretation.  



An important case occurs when the numbers differ widely in magnitude. If the exponents 

differ by more than 24, the smaller number will be shifted right entirely out of the 

mantissa field, producing a zero mantissa. The sum will then equal the larger number. 

Such truncation errors occur when the numbers differ by a factor of more than , 

which is approximately . The precision of IEEE single precision floating point 

arithmetic is approximately 7 decimal digits.  

Negative mantissas are handled by first converting to 2's complement and then 

performing the addition. After the addition is performed, the result is converted back to 

sign-magnitude form.  

When adding numbers of opposite sign, cancellation may occur, resulting in a sum which 

is arbitrarily small, or even zero if the numbers are equal in magnitude. Normalization in 

this case may require shifting by the total number of bits in the mantissa, resulting in a 

large loss of accuracy.  

When the mantissa of the sum is zero, no amount of shifting will produce a 1 in the 

hidden bit. This case must be detected in the normalization step and the result set to the 

representation for 0, E = M = 0. This result does not mean the numbers are equal; only 

that their difference is smaller than the precision of the floating point representation.  

Floating point subtraction is achieved simply by inverting the sign bit and performing 

addition of signed mantissas as outlined above.  

Multiplication 

The multiplication of two floating point numbers is analogous to multiplication in 

scientific notation. For example, to multiply 1.8x times 9.5x :  

1. Perform unsigned integer multiplication of the mantissas. The decimal point in the 

sum is positioned so that the number of decimal places equals the sum of the 

number of decimal places in the numbers.  

2.   1.8 

3. x 9.5 

4. ----- 

17.10 

5. Add the exponents:  

6.   1 

7. + 0 

8. --- 

  1 

9. Normalize the result:  



 

10. Set the sign of the result.  

The multiplication of two IEEE FPS numbers is performed similarly. The number 18.0 in 

IEEE FPS format is:  

 

The number 9.5 in IEEE FPS format is:  

 

1. The product of the 24 bit mantissas produces a 48 bit result with 46 bits to the 

right of the binary point:  

 

Truncated to 24 bits with the hidden bit in (), the mantissa is:  

 

2. The biased-127 exponents are added. Addition in biased-127 representation can 

be performed by 2's complement with an additional bias of -127 since:  

 

The sum of the exponents is:  

      E 

  1000 0011 (4) 

+ 1000 0010 (3) 

-----------  

  0000 0101 

+ 1000 0001 (-127) 

----------- 

  1000 0110 (+7) 

3. The mantissa is already in normal form. If the position of the hidden bit 

overflows, the mantissa must be shifted right and the exponent incremented.  

4. The sign of the result is the xor of the sign bits of the two numbers.  

When the fields are assembled in IEEE FPS format, the result is:  

 



Rounding occurs in floating point multiplication when the mantissa of the product is 

reduced from 48 bits to 24 bits. The least significant 24 bits are discarded.  

Overflow occurs when the sum of the exponents exceeds 127, the largest value which is 

defined in bias-127 exponent representation. When this occurs, the exponent is set to 128 

(E = 255) and the mantissa is set to zero indicating + or - infinity.  

Underflow occurs when the sum of the exponents is more negative than -126, the most 

negative value which is defined in bias-127 exponent representation. When this occurs, 

the exponent is set to -127 (E = 0). If M = 0, the number is exactly zero.  

If M is not zero, then a denormalized number is indicated which has an exponent of -127 

and a hidden bit of 0. The smallest such number which is not zero is . This number 

retains only a single bit of precision in the rightmost bit of the mantissa.  

 



 

Chapter Objectives 

• How a processor executes instructions 

• Internal functional units and how they are connected 

• Hardware for generating internal control signals 

• The micro programming approach 

• Micro program organization 

 

Fundamental Concepts 

• Processor fetches one instruction at a time, and perform the operation specified. 

• Instructions are fetched from successive memory locations until a branch or a jump 

instruction is encountered. 

• Processor keeps track of the address of the memory location containing the next 

instruction to be fetched using Program Counter (PC). 

• Instruction Register (IR) 

 

Executing an Instruction 

• Fetch the contents of the memory location pointed to by the PC. The contents of this 

location are loaded into the IR (fetch phase). 

IR ← [[PC]] 

• Assuming that the memory is byte addressable, increment the contents of the PC by 4 

(fetch phase). 

PC ← [PC] + 4  

• Carry out the actions specified by the instruction in the IR (execution phase). 

 

Processor Organization 
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Figure 7.1.  Single-bus organization of the datapath inside a processor.
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Basic processing Unit 



 

• ALU and all the registers are interconnected via a single common bus. 

• The data and address lines of the external memory bus connected to the internal 

processor bus via the memory data register, MDR, and the memory address register, 

MAR respectively. 

• Register MDR has two inputs and two outputs. 

• Data may be loaded into MDR either from the memory bus or from the internal 

processor bus. 

• The data stored in MDR may be placed on either bus.  

• The input of MAR is connected to the internal bus, and its output is connected to the 

external bus. 

• The control lines of the memory bus are connected to the instruction decoder and 

control logic. 

• This unit is responsible for issuing the signals that control the operation of all the 

units inside the processor and for increasing with the memory bus. 

• The MUX selects either the output of register Y or a constant value 4 to be provided 

as input A of the ALU. 

• The constant 4 is used to increment the contents of the program counter. 

 

Register Transfers 

 



• Instruction execution involves a sequence of steps in which data are transferred from one 

register to another. 

• For each register two control signals are used to place the contents of that register on the 

bus or to load the data on the bus into register.(in figure) 

• The input and output of register Riin and Riout is set to 1, the data on the bus are loaded 

into Ri. 

• Similarly, when Ri out is set to 1, the contents of register Ri are placed on the bus. 

• While Riout is equal to 0, the bus can be used for transferring data from other registers.  

 

Example 

• Suppose we wish to transfer the contents of register R1 to register R4. This can be 

accomplished as follows. 

• Enable the output of registers R1 by setting R1out to 1. This places the contents of R1 on 

the processor bus. 

• Enable the input of register R4 by setting R4out to 1. This loads data from the processor 

bus into register R4. 

• All operations and data transfers with in the processor take place with in time periods 

defined by the processor clock. 

• The control signals that govern a particular transfer are asserted at the start of the clock 

cycle. 

Figure 7.3. Input and output g ating for one register bit.
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Performing an Arithmetic or Logic Operation 

 

• The ALU is a combinational circuit that has no internal storage. 

• ALU gets the two operands from MUX and bus. The result is temporarily stored in 

register Z. 

• What is the sequence of operations to add the contents of register R1 to those of R2 and 

store the result in R3? 

o R1out, Yin 



o R2out, SelectY, Add, Zin  

o Zout, R3in 

• All other signals are inactive. 

•  In step 1, the output of register R1 and the input of register Y are enabled, causing the 

contents of R1 to be transferred over the bus to Y. 

• Step 2, the multiplexer’s select signal is set to Select Y, causing the multiplexer to gate 

the contents of register Y to input A of the ALU. 

• At the same time, the contents of register R2 are gated onto the bus and, hence, to input 

B. 

• The function performed by the ALU depends on the signals applied to its control lines. 

• In this case, the ADD line is set to 1, causing the output of the ALU to be the sum of the 

two numbers at inputs A and B. 

• This sum is loaded into register Z because its input control signal is activated. 

• In step 3, the contents of register Z are transferred to the destination register R3. This last 

transfer cannot be carried out during step 2, because only one register output can be 

connected to the bus during any clock cycle. 

 

Fetching a Word from Memory 

• The processor has to specify the address of the memory location where this information is 

stored and request a Read operation. 

• This applies whether the information to be fetched represents an instruction in a program 

or an operand  specified by an instruction. 

• The processor transfers the required address to the MAR, whose output is connected to 

the address lines of the memory bus. 
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• At the same time , the processor uses the control lines of the memory bus to indicate 

that a Read operation is needed.  

• When the requested data are received from the memory they are stored in register 

MDR, from where they can be transferred to other registers in the processor. 



• The response time of each memory access varies (cache miss, memory-mapped 

I/O,…). 

• To accommodate this, the processor waits until it receives an indication that the 

requested operation has been completed (Memory-Function-Completed, MFC). 

• Move (R1), R2 
MAR ← [R1] 

Start a Read operation on the memory bus 

Wait for the MFC response from the memory 

Load MDR from the memory bus 

R2 ← [MDR] 

• The output of MAR is enabled all the time. 

• Thus the contents of MAR are always available on the address lines of the  

memory bus. 

• When a new address is loaded into MAR, it will appear on the memory bus at the 

beginning of the next clock cycle.(in fig) 

• A read control signal is activated at the same time MAR is loaded. 

• This means memory read operations requires three steps, which can be described 

by the signals being activated as follows 

R1out,MARin,Read 

MDRinE,WMFC  

MDRout,R2in 

Figure 7.5. Timing of a memory Read operation.
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Storing a word in Memory 
� Writing a word into a memory location follows a similar procedure. 

� The desired address is loaded into MAR. 

� Then , the data to be written are loaded into MDR, and a write command is issued. 

Example 

� Executing the instruction  

� Move R2,(R1) requires the following steps 

� 1 R1out,MARin 

� 2.R2out,MDRin,Write 

� 3.MDRoutE,WMFC 

Execution of a Complete Instruction 

� Add (R3), R1 

� Fetch the instruction 

� Fetch the first operand (the contents of the memory location pointed to by R3) 

� Perform the addition 

� Load the result into R1 

 

 

Step Action 

1 PC out , MAR in , Read,Select4, Add, Zin

2 Zout , PC in , Yin , WMFC

3 MDRout , IRin

4 R3 out , MAR in , Read

5 R1 out , Yin , WMF C

6 MDRout , SelectY,Add, Zin

7 Zout , R1 in , End

Figure7.6. Control sequencefor execution of the instruction Add (R3),R1.
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Execution of Branch Instructions  

• A branch instruction replaces the contents of PC with the branch target address, which is 

usually obtained by adding an offset X given in the branch instruction. 

• The offset X is usually the difference between the branch target address and the address 

immediately following the branch instruction. 

• Conditional branch 



 
 

Figure 7.7.  Control sequence for an unconditional branch instruction.  

 

Multiple-Bus Organization 
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Example   : Add R4, R5, R6 

 
 

Hardwired Control 

 

• To execute instructions, the processor must have some means of generating the control 

signals needed in the proper sequence. 

• Two categories: hardwired control and micro programmed control 

• Hardwired system can operate at high speed; but with little flexibility. 

 

Control Unit Organization 

 

n 



Detailed Control design 
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Figure 7.11. Separation of the decoding and encoding functions.
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Generating Zin 

 

• Zin = T1 + T6 • ADD + T4 • BR + … 

 



Generating End 

 

• End = T7 • ADD + T5 • BR + (T5 • N + T4 • N) • BRN +… 

Figure 7.13. Generation of the End control signal.
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A Complete Processor 
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Figure 7.14. Block diagram of a complete processor .
 

 

 

 



Microprogrammed Control 

 

• Control signals are generated by a program similar to machine language programs. 

• Control Word (CW); microroutine; microinstruction 

 

P
C

in

P
C

o
u

t

M
A

R
in

R
e
a
d

M
D

R
o

u
t

IR
in

Y
in

S
e
le

c
t

A
d
d

Z
in

Z
o

u
t

R
1 o

u
t

R
1

in

R
3 o

u
t

W
M

F
C

E
n
d

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

1

0

0

Micro -
instruction

1

2

3

4

5

6

7

Figure 7.15An example of microinstructions for Figure 7.6.
 

Step Action

1 PC out , MAR in , Read, Select4, Add, Z in

2 Z out , PC in , Y in , WMF C

3 MDR out , IR in

4 R3 out , MAR in , Read

5 R1 out , Y in , WMF C

6 MDR out , SelectY, Add, Z in

7 Z out , R1 in , End

Figure 7.6. Con trol sequence for execution of the instruction Add (R3),R1.
 



Figure 7.16. Basic organization of a microprogrammed control unit.
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• The previous organization cannot handle the situation when the control unit is required to 

check the status of the condition codes or external inputs to choose between alternative 

courses of action. 

• Use conditional branch microinstruction. 

  

 



 
 

Microinstructions 

• A straightforward way to structure microinstructions is to assign one bit position to each 

control signal. 

• However, this is very inefficient. 

• The length can be reduced: most signals are not needed simultaneously, and many signals 

are mutually exclusive. 

• All mutually exclusive signals are placed in the same group in binary coding. 

F2 (3 bits)

000: No transfer

001: PC
in

010: IR in

011: Z in

100: R0 in

101: R1
in

110: R2 in

111: R3 in

F1 F2 F3 F4 F5

F1 (4 bits) F3 (3 bits) F4 (4 bits) F5 (2 bits)

0000: No transfer

0001: PC
out

0010: MDR out

0011: Z out

0100: R0 out

0101: R1
out

0110: R2 out

0111: R3 out

1010: TEMP out

1011: Offset out

000: No transfer

001: MAR
in

010: MDR in

011: TEMP in

100: Y in

0000: Add

0001: Sub

1111: XOR

16 ALU
functions

00: No action

01: Read

10: Write

F6 F7 F8

F6 (1 bit) F7 (1 bit) F8 (1 bit)

0: SelectY

1: Select4

0: No action

1: WMFC

0: Continue

1: End

Figure 7.19. An example of a partial format for field-encoded microinstructions.

Microinstruction

 
 



Further Improvement 
  

• Enumerate the patterns of required signals in all possible microinstructions. Each 

meaningful combination of active control signals can then be assigned a distinct code. 

• Vertical organization 

• Horizontal organization 

 

Micro program Sequencing 

 

• If all micro programs require only straightforward sequential execution of 

microinstructions except for branches, letting a µPC governs the sequencing would be 

efficient. 

• However, two disadvantages: 

o Having a separate micro routine for each machine instruction results in a large 

total number of microinstructions and a large control store. 

o Longer execution time because it takes more time to carry out the required 

branches. 

• Example: Add src, Rdst  

• Four addressing modes: register, autoincrement, autodecrement, and indexed (with 

indirect forms). 

 

 

 

 



 



 
 

Microinstructions with Next-Address Field 

 

Figure 7.22.   Microinstruction-sequencing organization.
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• The microprogram we discussed requires several branch microinstructions, which 

perform no useful operation in the datapath. 

• A powerful alternative approach is to include an address field as a part of every 

microinstruction to indicate the location of the next microinstruction to be fetched. 

• Pros: separate branch microinstructions are virtually eliminated; few limitations in 

assigning addresses to microinstructions. 

• Cons: additional bits for the address field (around 1/6) 

F1 (3 bits)

000: No transfer

001: PCout

010: MDRout

011: Z
out

100: Rsrcout

101: Rdstout

110: TEMPout

F0 F1 F2 F3

F0 (8 bits) F2 (3 bits) F3 (3 bits)

000: No transfer

001: PCin

010: IR
in

011: Z
in

100: Rsrcin

000: No transfer

001: MARin

F4 F5 F6 F7

F5 (2 bits)F4 (4 bits) F6 (1 bit)

0000: Add

0001: Sub

0: SelectY

1: Select4

00: No action

01: Read

Microinstruction

Address of next

microinstruction

101: Rdstin

010: MDR
in

011: TEMP
in

100: Yin

1111: XOR

10: Write

F8 F9 F10

F8 (1 bit)

F7 (1 bit)

F9 (1 bit) F10 (1 bit)

0: No action

1: WMFC

0: No action

1: ORindsrc

0: No action

1: ORmode

0: NextAdrs

1: InstDec

Figure 7.23. Format for microinstructions in the example of Section 7.5.3.
 

 

 

 



Implementation of the Microroutine 

 

(See Figure 7.23 for encoded signals.)

Figure 7.24.  Implementation of the microroutine  of Figure 7.21 using a
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Figure 7.25. Some details of the control-signal-generating circuitry.
 



 
 

 

Further Discussions 

 

• Prefetching  

• Emulation 

 



 

MODULE 5(CONT.): EMBEDDED SYSTEMS & 

LARGE COMPUTER SYSTEMS 
 

 
MICROWAVE OVEN 

• Microwave-oven is one of the examples of embedded-system. 

• This appliance is based on magnetron power-unit that generates the microwaves used to heat 

food. 

• When turned-on, the magnetron generates its maximum power-output. 

Lower power-levels can be obtained by turning the magnetron on & off for controlled time-
intervals. 

• Cooking Options include: 

→ Manual selection of the power-level and cooking-time. 

→ Manual selection of the sequence of different cooking-steps. 

→ Automatic melting of food by specifying the weight. 

• Display (or Monitor) can show following information: 

→ Time-of-day clock. 

→ Decrementing clock-timer while cooking. 

→ Information-messages to the user. 

• I/O Capabilities include: 

→ Input-keys that comprise a 0 to 9 number pad. 

→ Function-keys such as Start, Stop, Reset, Power-level etc. 

→ Visual output in the form of a LCD. 

→ Small speaker that produces the beep-tone. 

• Computational Tasks executed are: 

→ Maintaining the time-of-day clock. 

→ Determining the actions needed for the various cooking-options. 

→ Generating the control-signals needed to turn on/off devices. 

→ Generating display information. 

 

 
 
• Non-volatile ROM is used to store the program required to implement the desired actions. 

So, the program will not be lost when the power is turned off (Figure 10.1). 

• Most important requirement: The microcontroller must have sufficient I/O capability. 

Parallel I/O Ports are used for dealing with the external I/O signals. 

Basic I/O Interfaces are used to connect to the rest of the system. 
 

 

DIGITAL CAMERA 

• Digital Camera is one of the examples of embedded system. 

• An array of Optical Sensors is used to capture images (Figure 10.2). 

• The optical-sensors convert light into electrical charge. 
 



 

 
 
• Each sensing-element generates a charge that corresponds to one pixel. 

One pixel is one point of a pictorial image. 

The number of pixels determines the quality of pictures that can be recorded & 
displayed. 

• ADC is used to convert the charge which is an analog quantity into a digital representation. 

• Processor 

→ manages the operation of the camera. 

→ processes the raw image-data obtained from the ADCs to generate images. 

• The images are represented in standard-formats, so that they are suitable for use in 

computers. 

• Two standard-formats are: 

1) TIFF is used for uncompressed images & 

2) JPEG is used for compressed images. 

• The processed-images are stored in a larger storage-device. For ex: Flash memory cards. 

• A captured & processed image can be displayed on a LCD screen of camera. 

• The number of saved-images depends on the size of the storage-unit. 

• Typically, USB Cable is used for transferring the images from camera to the computer. 
• System Controller generates the signals needed to control the 

operation of i) Focusing mechanism and 
ii) Flash unit. 

(ADC  Analog-to-digital converter, LCD  liquid-crystal display) 

(TIFF Tagged Image File Format, JPEG Joint Photographic Experts Group) 
 
HOME TELEMETRY (DISPLAY TELEPHONE) 

• Home Telemetry is one of the examples of embedded system. 

• The display-telephone has an embedded processor which enables a remote access to other 

devices in the home. 
• Display telephone can perform following functions: 

1) Communicate with a computer-controlled home security-system. 

2) Set a desired temperature to be maintained by an air conditioner. 

3) Set start-time, cooking-time & temperature for food in the microwave-oven. 

4) Read the electricity, gas, and water meters. 

• All of this is easily implementable if each of these devices is controlled by a microcontroller. 

• A link (wired or wireless) has to be provided between 

1) Device microcontroller & 2) Microprocessor in the telephone. 
 • Using signaling from a remote location to observe/control state of device is referred to as 
telemetry. 



 

MICROCONTROLLER CHIPS FOR EMBEDDED APPLICATIONS 
 

 
 
• Processor Core may be a basic version of a commercially available microprocessor (Figure 

10.3). 
• Well-known popular microprocessor architecture must be chosen. This is because, 
design of new products is facilitated by 

→ numerous CAD tools 

→ good examples & 

→ large amount of knowledge/experience. 

• Memory-Unit must be included on the microcontroller-chip. 

• The memory-size must be sufficient to satisfy the memory-requirements found in small 
applications. 

• Some memory should be of RAM type to hold the data that change during computations. 

Some memory should be of Read-Only type to hold the software. 

This is because an embedded system usually does not include a magnetic-disk. 

• A field-programmable type of ROM storage must be provided to allow cost-effective use. 

For example: EEPROM and Flash memory. 

• I/O ports are provided for both parallel and serial interfaces. 

• Parallel and Serial Interfaces allow easy implementation of standard I/O connections. 

• Timer Circuit can be used 

→ to generate control-signals at programmable time intervals & 

→ for event-counting purposes. 

• An embedded system may include some analog devices. 

• ADC & DAC are used to convert analog signals into digital representations, and vice versa. 
 

PARALLEL I/O INTERFACE 
 

 
 



 

• Each parallel port has an associated 8-bit DDR (Data Direction Register) (Figure 10.4). 

• DDR can be used to configure individual data lines as either input or output. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• If the data direction flip-flop contains a 0, then Port pin PAi is treated as an input (Figure 10.5). 

If the data direction flip-flop contains a 1, then Port pin PAi is treated as an output. 
• Activation of control-signal Read_Port, places the logic value on the port-pin onto the data line 
Di. 

Activation of control-signal Write_Port, places value loaded into output data flip-flop onto 
port-pin. 

• Addressable Registers are (Figure 10.6): 

1) Input registers (PAIN for port A, PBIN for port B) 

2) Output registers (PAOUT for port A, PBOUT for port B) 

3) Direction registers (PADIR for port A, PBDIR for port B) 

4) Status-register (PSTAT) & 

5) Control register (PCONT)



 

 
 

 
 

 
 

• Status Register provides information about the current status of 

1) Input registers & 

2) Output registers. 

• PASIN =1  When there are new data on port A (Figure 10.6). 

PASIN =0  When the processor accepts the data by reading the PAIN register. 

• The interface uses a separate control line to indicate availability of new data to the connected-

device. 

• PASOUT = 1  When the data in register PAOUT are accepted by the connected-device. 

PASOUT = 0  When the processor writes data into PAOUT. 

• Like PASIN & PAOUT, the flags PBSIN and PBSOUT perform the same function on port B. 

• The status register also contains four interrupt flags. They are IAIN, IAOUT, IBIN & IBOUT. 

• IAIN = 1  When interrupt is enabled and the corresponding I/O action occurs. 

• The interrupt-enable bits are held in control register PCONT. 

• ENAIN= 1  when the corresponding interrupt is enabled. 

• For ex: If ENAIN=1 & PASIN=1, then interrupt flag IAIN is set to 1 and an interrupt request is 

raised. 

Thus, 

IAIN = ENAIN * PASIN 

• Control Registers is used for controlling data transfers to/from the devices connected to ports 
A/B. 

• Port A has two control lines: CAIN and CAOUT. 

• CAIN and CAOUT are be used to provide an automatic signaling 

mechanism b/w i) Interface and 
ii) Attached device. 

• PAREG and PBREG are used to select the mode of operation of inputs to ports A and B 
respectively. 

• If PAREG =1; 
Then, a register is used to store the 

input data. Otherwise, a direct path 
from the pins is used.
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SERIAL I/O INTERFACE 
• The serial interface provides the UART capability to transfer data 

(Figure 10.7). (UART  Universal Asynchronous 
Receiver/Transmitter). 

• Double buffering is 

→ used in both the transmit- and receive-paths. 

→ needed to handle bursts in I/O transfers correctly. 
 

 
 
• Addressable Registers are (Figure 10.8): 

1) Receive-buffer 

2) Transmit-buffer 

3) Status-register (SSTAT) 

4) Control register (SCONT) & 

5) Clock-divisor register (DIV).
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• Input data are read from the Receive-buffer. 

Output data are loaded into the Transmit-buffer. 

• Status Register (SSTAT) provides information about the current 
status of i) Receive-units and 
ii) Transmit-units. 

• Bit SSTAT0 = 1   When there are new data in the receive-buffer. 

Bit SSTAT0 = 0  When the processor accepts the data by reading the receive-buffer. 

• SSTAT1 = 1  When the data in transmit-buffer are accepted by the connected-device. 
SSTAT1 = 0  When the processor writes data into 

transmit-buffer. (SSTAT0 & SSTAT1 similar to SIN & 
SOUT) 

• SSTAT2 = 1  if an error occurs during the receive process. 

• The status-register also contains the interrupt flags. 

• SSTAT4 =1  When the receive-buffer becomes full and the receiver-interrupt is enabled. 

SSTAT5 = 1  When the transmit-buffer becomes empty & the transmitter-interrupt is 
enabled. 

• Control Register (SCONT) is used to hold the interrupt-enable bits. 

• If SCONT6−4 = 1. 
Then the corresponding interrupts are 

enabled. Otherwise, the corresponding 
interrupts are disabled. 

• Control register also indicates how the transmit clock is generated 

• If SCONT0 = 0. 

Then, the transmit clock is the same as the system (processor) clock. 

Otherwise, a lower frequency transmit clock is obtained using a clock-dividing circuit. 

• Clock-divisor register (DIV) divides system-clock signal to generate the serial transmission 

clock. 

• The counter generates a clock signal whose frequency is equal to 

= Frequency of system clock  

Contents of DIV  register
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COUNTER/TIMER 

• A 32-bit down-counter-circuit is provided for use as either a counter or a timer. 

• Basic operation of the circuit involves 

→ loading a starting value into the counter and 

→ then decrementing the counter-contents using either 

i) Internal 

system clock or 
ii) External clock 
signal. 

• The circuit can be programmed to raise an interrupt when the counter-contents reach 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Counter/Timer Register (CNTM) can be loaded with an initial value (Figure 10.9). 

• The initial value is then transferred into the counter-circuit. 

• The current contents of the counter can be read by accessing memory-address FFFFFFD4. 

• Control Register (CTCON) is used to specify the operating mode of the counter/timer circuit. 

• The control register provides a mechanism for 

→ starting & stopping the counting-process & 

→ enabling interrupts when the counter-contents are decremented to 0. 

• Status Register (CTSTAT) reflects the state of the circuit. 

• There are 2 modes: 1) Counter mode 2) Timer mode. 

Counter Mode 

• CTCON7 = 0   When the counter mode is selected. 

• The starting value is loaded into the counter by writing it into register CNTM. 

• The counting-process begins when bit CTCON0 is set to 1 by a program. 

• Once counting starts, bit CTCON0 is automatically cleared to 0. 

• The counter is decremented by pulses on the Counter. 

• Upon reaching 0, the counter-circuit 

→ sets the status flag 
CTSTAT0 to 1 & 

→ raises an interrupt if the corresponding interrupt-enable bit has been set 

to 1. 

• The next clock pulse causes the counter to reload the starting value. 

• The starting value is held in register CNTM, and counting continues. 

• The counting-process is stopped by setting bit CTCON1 to 1. 

Timer Mode 

• CTCON7 = 1  When the timer mode is selected. 

• This mode can be used to generate periodic interrupts. 

• It is also suitable for generating a square-wave signal. 

• The process starts as explained above for the counter mode. 

• As the counter counts down, the value on the output line is held constant. 

• Upon reaching 0, the counter is reloaded automatically with the starting value, 
and the output signal on the line is inverted. 
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• Thus, the period of the output signal is twice the starting counter value 
multiplied by the period of the controlling clock pulse. 
• In the timer mode, the counter is decremented by the system clock. 
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MODULE 5(CONT.): THE STRUCTURE OF GENERAL- 

PURPOSE MULTIPROCESSORS 
 

 
THE STRUCTURE OF GENERAL-PURPOSE MULTIPROCESSORS 

1. UMA (Uniform Memory Access) Multiprocessor 

• An interconnection-network permits n processors to access k memories (Figure 12.2). 

Thus, any of the processors can access any of the memories. 

• The interconnection-network may introduce network-delay between 

1) Processor & 

2) Memory. 

• A system which has the same network-latency for all accesses from the 

processors to the memory-modules is called a UMA Multiprocessor. 
• Although the latency is uniform, it may be large for a network that connects 

→ many processors & 

→ many memory-modules. 

• For better performance, it is desirable to place a memory-module close to each 

processor. 

• Disadvantage: 

 Interconnection-networks with very short delays are costly and complex to 
implement. 

 
 

2. NUMA (Non-Uniform Memory Access) Multiprocessors 

• Memory-modules are attached directly to the processors (Figure 12.3). 

• The network-latency is avoided when a processor makes a request to access its local 
memory. 

• However, a request to access a remote-memory-module must pass through the 
network. 

• Because of the difference in latencies for accessing local and remote portions of 
the shared memory, systems of this type are called NUMA multiprocessors. 
• Advantage: 

 A high computation rate is achieved in all processors 

• Disadvantage: 

 The remote accesses take considerably longer than accesses to the local 
memory.
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3. Distributed Memory Systems 
• All memory-modules serve as private memories for processors that are directly 
connected to them. 
•  A  processor  cannot  access  a  remote-memory without  the  cooperation  of  the  
remote- 

processor. 

• This cooperation takes place in the form of messages exchanged by the processors. 

• Such systems are often called Distributed-Memory Systems (Figure 12.4). 
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