

Acknowledgements to

Donald Hearn & Pauline Baker: Computer Graphics with OpenGL

Version,3rd / 4th Edition, Pearson Education,2011

Edward Angel: Interactive Computer Graphics- A Top Down approach

with OpenGL, 5th edition. Pearson Education, 2008

M M Raiker, Computer Graphics using OpenGL, Filip learning/Elsevier

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

If you create an act, you create a habit. If you create a habit, you create a character. If you create a

character, you create a destiny.

Reputation is what men and women think of us. Character is what God and the angels know of

us.

1.1 Basics of Computer Graphics

Computer graphics is an art of drawing pictures, lines, charts, etc. using computers with the help

of programming. Computer graphics image is made up of number of pixels. Pixel is the smallest

addressable graphical unit represented on the computer screen.

1. Overview: Computer Graphics and OpenGL

1.1 Basics of computer graphics
1.2 Application of Computer Graphics,
1.3 Video Display Devices

1.3.1 Random Scan and Raster Scan displays,
1.3.2 Color CRT monitors,

1.3.4 Flat panel displays.
1.4 Raster-scan systems:

1.4.1 Video controller,
1.4.2 Raster scan Display processor,
1.4.3 Graphics workstations and viewing systems,

1.5 Input devices,
1.6 Graphics networks,

1.7 Graphics on the internet,
1.8 Graphics software.

OpenGL:

1.9 Introduction to OpenGL ,
1.10 Coordinate reference frames,

1.11 Specifying two-dimensional world coordinate reference frames in OpenGL,
1.12 OpenGL point functions,
1.13 OpenGL line functions, point attributes,

1.14 Line attributes,
1.15 Curve attributes,

1.16 OpenGL point attribute functions,
1.17 OpenGL line attribute functions,

1.18 Line drawing algorithms(DDA, Bresenham’s),
1.19 Circle generation algorithms (Bresenham’s).

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

1.2 Applications of Computer Graphics

a. Graphs and Charts

✓ An early application for computer graphics is the display of simple data graphs usually

plotted on a character printer. Data plotting is still one of the most common graphics

application.

✓ Graphs & charts are commonly used to summarize functional, statistical, mathematical,

engineering and economic data for research reports, managerial summaries and other

types of publications.

✓ Typically examples of data plots are line graphs, bar charts, pie charts, surface graphs,

contour plots and other displays showing relationships between multiple parameters in

two dimensions, three dimensions, or higher-dimensional spaces

b. Computer-Aided Design

✓ A major use of computer graphics is in design processes-particularly for engineering and

architectural systems.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

✓ CAD, computer-aided design or CADD, computer-aided drafting and design methods are

now routinely used in the automobiles, aircraft, spacecraft, computers, home appliances.

✓ Circuits and networks for communications, water supply or other utilities are constructed

with repeated placement of a few geographical shapes.

✓ Animations are often used in CAD applications. Real-time, computer animations using

wire-frame shapes are useful for quickly testing the performance of a vehicle or system.

c. Virtual-Reality Environments

✓ Animations in virtual-reality environments are often used to train heavy-equipment

operators or to analyze the effectiveness of various cabin configurations and control

placements.

✓ With virtual-reality systems, designers and others can move about and interact with

objects in various ways. Architectural designs can be examined by taking simulated

“walk” through the rooms or around the outsides of buildings to better appreciate the

overall effect of a particular design.

✓ With a special glove, we can even “grasp” objects in a scene and turn them over or move

them from one place to another.

d. Data Visualizations

✓ Producing graphical representations for scientific, engineering and medical data sets and

processes is another fairly new application of computer graphics, which is generally

referred to as scientific visualization. And the term business visualization is used in

connection with data sets related to commerce, industry and other nonscientific areas.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

✓ There are many different kinds of data sets and effective visualization schemes depend on

the characteristics of the data. A collection of data can contain scalar values, vectors or

higher-order tensors.

e. Education and Training

✓ Computer generated models of physical,financial,political,social,economic & other

systems are often used as educational aids.

✓ Models of physical processes physiological functions,equipment, such as the color coded

diagram as shown in the figure, can help trainees to understand the operation of a system.

✓ For some training applications,special hardware systems are designed.Examples of such

specialized systems are the simulators for practice sessions ,aircraft pilots,air traffic-

control personnel.

✓ Some simulators have no video screens,for eg: flight simulator with only a control panel

for instrument flying

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

f. Computer Art

✓ The picture is usually painted electronically on a graphics tablet using a stylus, which can

simulate different brush strokes, brush widths and colors.

✓ Fine artists use a variety of other computer technologies to produce images. To create

pictures the artist uses a combination of 3D modeling packages, texture mapping,

drawing programs and CAD software etc.

✓ Commercial art also uses theses “painting” techniques for generating logos & other

designs, page layouts combining text & graphics, TV advertising spots & other

applications.

✓ A common graphics method employed in many television commercials is morphing,

where one object is transformed into another.

g. Entertainment

✓ Television production, motion pictures, and music videos routinely a computer graphics

methods.

✓ Sometimes graphics images are combined a live actors and scenes and sometimes the

films are completely generated a computer rendering and animation techniques.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

✓ Some television programs also use animation techniques to combine computer generated

figures of people, animals, or cartoon characters with the actor in a scene or to transform

an actor’s face into another shape.

h. Image Processing

✓ The modification or interpretation of existing pictures, such as photographs and TV scans

is called image processing.

✓ Methods used in computer graphics and image processing overlap, the two areas are

concerned with fundamentally different operations.

✓ Image processing methods are used to improve picture quality, analyze images, or

recognize visual patterns for robotics applications.

✓ Image processing methods are often used in computer graphics, and computer graphics

methods are frequently applied in image processing.

✓ Medical applications also make extensive use of image processing techniques for picture

enhancements in tomography and in simulations and surgical operations.

✓ It is also used in computed X-ray tomography(CT), position emission

tomography(PET),and computed axial tomography(CAT).

i. Graphical User Interfaces

✓ It is common now for applications software to provide graphical user interface (GUI).

✓ A major component of graphical interface is a window manager that allows a user to

display multiple, rectangular screen areas called display windows.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

✓ Each screen display area can contain a different process, showing graphical or non-

graphical information, and various methods can be used to activate a display window.

✓ Using an interactive pointing device, such as mouse, we can active a display window on

some systems by positioning the screen cursor within the window display area and

pressing the left mouse button.

1.3 Video Display Devices

✓ The primary output device in a graphics system is a video monitor.

✓ Historically, the operation of most video monitors was based on the standard cathoderay

tube (CRT) design, but several other technologies exist.

✓ In recent years, flat-panel displays have become significantly more popular due to their

reduced power consumption and thinner designs.

Refresh Cathode-Ray Tubes

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

✓ A beam of electrons, emitted by an electron gun, passes through focusing and deflection

systems that direct the beam toward specified positions on the phosphor-coated screen.

✓ The phosphor then emits a small spot of light at each position contacted by the electron

beam and the light emitted by the phosphor fades very rapidly.

✓ One way to maintain the screen picture is to store the picture information as a charge

distribution within the CRT in order to keep the phosphors activated.

✓ The most common method now employed for maintaining phosphor glow is to redraw

the picture repeatedly by quickly directing the electron beam back over the same screen

points. This type of display is called a refresh CRT.

✓ The frequency at which a picture is redrawn on the screen is referred to as the refresh

rate.

Operation of an electron gun with an accelarating anode

✓ The primary components of an electron gun in a CRT are the heated metal cathode and a

control grid.

✓ The heat is supplied to the cathode by directing a current through a coil of wire, called the

filament, inside the cylindrical cathode structure.

✓ This causes electrons to be “boiled off” the hot cathode surface.

✓ Inside the CRT envelope, the free, negatively charged electrons are then accelerated

toward the phosphor coating by a high positive voltage.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

✓ Intensity of the electron beam is controlled by the voltage at the control grid.

✓ Since the amount of light emitted by the phosphor coating depends on the number of

electrons striking the screen, the brightness of a display point is controlled by varying the

voltage on the control grid.

✓ The focusing system in a CRT forces the electron beam to converge to a small cross

section as it strikes the phosphor and it is accomplished with either electric or magnetic

fields.

✓ With electrostatic focusing, the electron beam is passed through a positively charged

metal cylinder so that electrons along the center line of the cylinder are in equilibrium

position.

✓ Deflection of the electron beam can be controlled with either electric or magnetic fields.

✓ Cathode-ray tubes are commonly constructed with two pairs of magnetic-deflection coils

✓ One pair is mounted on the top and bottom of the CRT neck, and the other pair is

mounted on opposite sides of the neck.

✓ The magnetic field produced by each pair of coils results in a traverse deflection force

that is perpendicular to both the direction of the magnetic field and the direction of travel

of the electron beam.

✓ Horizontal and vertical deflections are accomplished with these pair of coils

Electrostatic deflection of the electron beam in a CRT

✓ When electrostatic deflection is used, two pairs of parallel plates are mounted inside the

CRT envelope where, one pair of plates is mounted horizontally to control vertical

deflection, and the other pair is mounted vertically to control horizontal deflection.

✓ Spots of light are produced on the screen by the transfer of the CRT beam energy to the

phosphor.

✓ When the electrons in the beam collide with the phosphor coating, they are stopped and

their kinetic energy is absorbed by the phosphor.

✓ Part of the beam energy is converted by the friction in to the heat energy, and the

remainder causes electros in the phosphor atoms to move up to higher quantum-energy

levels.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 10

✓ After a short time, the “excited” phosphor electrons begin dropping back to their stable

ground state, giving up their extra energy as small quantum of light energy called

photons.

✓ What we see on the screen is the combined effect of all the electrons light emissions: a

glowing spot that quickly fades after all the excited phosphor electrons have returned to

their ground energy level.

✓ The frequency of the light emitted by the phosphor is proportional to the energy

difference between the excited quantum state and the ground state.

✓ Lower persistence phosphors required higher refresh rates to maintain a picture on the

screen without flicker.

✓ The maximum number of points that can be displayed without overlap on a CRT is

referred to as a resolution.

✓ Resolution of a CRT is dependent on the type of phosphor, the intensity to be displayed,

and the focusing and deflection systems.

✓ High-resolution systems are often referred to as high-definition systems.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 11

1.3.1 Raster-Scan Displays and Random Scan Displays

i)Raster-Scan Displays

❖ The electron beam is swept across the screen one row at a time from top to bottom.

❖ As it moves across each row, the beam intensity is turned on and off to create a pattern of

illuminated spots.

❖ This scanning process is called refreshing. Each complete scanning of a screen is

normally called a frame.

❖ The refreshing rate, called the frame rate, is normally 60 to 80 frames per second, or

described as 60 Hz to 80 Hz.

❖ Picture definition is stored in a memory area called the frame buffer.

❖ This frame buffer stores the intensity values for all the screen points. Each screen point is

called a pixel (picture element).

❖ Property of raster scan is Aspect ratio, which defined as number of pixel columns

divided by number of scan lines that can be displayed by the system.

Case 1: In case of black and white systems

✓ On black and white systems, the frame buffer storing the values of the pixels is called a

bitmap.

✓ Each entry in the bitmap is a 1-bit data which determine the on (1) and off (0) of the

intensity of the pixel.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 12

Case 2: In case of color systems

❖ On color systems, the frame buffer storing the values of the pixels is called a pixmap

(Though now a days many graphics libraries name it as bitmap too).

❖ Each entry in the pixmap occupies a number of bits to represent the color of the pixel. For

a true color display, the number of bits for each entry is 24 (8 bits per red/green/blue

channel, each channel 28=256 levels of intensity value, ie. 256 voltage settings for each

of the red/green/blue electron guns).

ii). Random-Scan Displays

✓ When operated as a random-scan display unit, a CRT has the electron beam directed only

to those parts of the screen where a picture is to be displayed.

✓ Pictures are generated as line drawings, with the electron beam tracing out the component

lines one after the other.

✓ For this reason, random-scan monitors are also referred to as vector displays (or

strokewriting displays or calligraphic displays).

✓ The component lines of a picture can be drawn and refreshed by a random-scan system in

any specified order

✓ A pen plotter operates in a similar way and is an example of a random-scan, hard-copy

device.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 13

✓ Refresh rate on a random-scan system depends on the number of lines to be displayed on

that system.

✓ Picture definition is now stored as a set of line-drawing commands in an area of memory

referred to as the display list, refresh display file, vector file, or display program

✓ To display a specified picture, the system cycles through the set of commands in the

display file, drawing each component line in turn.

✓ After all line-drawing commands have been processed, the system cycles back to the first

line command in the list.

✓ Random-scan displays are designed to draw all the component lines of a picture 30 to 60

times each second, with up to 100,000 “short” lines in the display list.

✓ When a small set of lines is to be displayed, each refresh cycle is delayed to avoid very

high refresh rates, which could burn out the phosphor.

Difference between Raster scan system and Random scan system

Base of

Difference
Raster Scan System Random Scan System

Electron Beam

The electron beam is swept

across the screen, one row at a

time, from top to bottom

The electron beam is directed only

to theparts of screen where a

picture is to be drawn

Resolution

Its resolution is poor because

raster system in contrast

produces zigzag lines that are

plotted as discrete point sets.

Its resolution is good because this

system produces smooth lines

drawings because CRT beam

directly follows the line path.

Picture

Definition

Picture definition is stored as

a set of intensity values for

all screen points,called pixels

in a refresh buffer area.

Picture definition is stored as a set

of line drawing instructions in a

display file.

Realistic

Display

The capability of this system

to store intensity values for

pixel makes it well suited for

the realistic display of scenes

These systems are designed for

line-drawing and can’t display

realistic shaded scenes.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 14

contain shadow and color

pattern.

Draw an Image
Screen points/pixels are used

to draw an image

Mathematical functions are used to

draw an image

1.3.2 Color CRT Monitors

❖ A CRT monitor displays color pictures by using a combination of phosphors that emit

different-colored light.

❖ It produces range of colors by combining the light emitted by different phosphors.

❖ There are two basic techniques for color display:

1. Beam-penetration technique

2. Shadow-mask technique

1) Beam-penetration technique:

✓ This technique is used with random scan monitors.

✓ In this technique inside of CRT coated with two phosphor layers usually red and green.

✓ The outer layer of red and inner layer of green phosphor.

✓ The color depends on how far the electron beam penetrates into the phosphor layer.

✓ A beam of fast electron penetrates more and excites inner green layer while slow eletron

excites outer red layer.

✓ At intermediate beam speed we can produce combination of red and green lights which

emit additional two colors orange and yellow.

✓ The beam acceleration voltage controls the speed of the electrons and hence color of

pixel.

Disadvantages:

➢ It is a low cost technique to produce color in random scan monitors.

➢ It can display only four colors.

➢ Quality of picture is not good compared to other techniques.

2)Shadow-mask technique

✓ It produces wide range of colors as compared to beam-penetration technique.

✓ This technique is generally used in raster scan displays. Including color TV.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 15

✓ In this technique CRT has three phosphor color dots at each pixel position.

✓ One dot for red, one for green and one for blue light. This is commonly known as Dot

triangle.

✓ Here in CRT there are three electron guns present, one for each color dot. And a shadow

mask grid just behind the phosphor coated screen.

✓ The shadow mask grid consists of series of holes aligned with the phosphor dot pattern.

✓ Three electron beams are deflected and focused as a group onto the shadow mask and

when they pass through a hole they excite a dot triangle.

✓ In dot triangle three phosphor dots are arranged so that each electron beam can activate

only its corresponding color dot when it passes through the shadow mask.

✓ A dot triangle when activated appears as a small dot on the screen which has color of

combination of three small dots in the dot triangle.

✓ By changing the intensity of the three electron beams we can obtain different colors in

the shadow mask CRT.

1.3.3Flat Panel Display

➔ The term flat panel display refers to a class of video device that have reduced volume,

weight & power requirement compared to a CRT.

➔ As flat panel display is thinner than CRTs, we can hang them on walls or wear on our

wrists.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 16

➔ Since we can even write on some flat panel displays they will soon be available as pocket

notepads.

➔ We can separate flat panel display in two categories:

1. Emissive displays: - the emissive display or emitters are devices that convert

electrical energy into light. For Ex. Plasma panel, thin film electroluminescent

displays and light emitting diodes.

2. Non emissive displays: - non emissive display or non emitters use optical

effects to convert sunlight or light from some other source into graphics patterns.

For Ex. LCD (Liquid Crystal Display).

a) Plasma Panels displays

 This is also called gas discharge displays.

 It is constructed by filling the region between two glass plates with a mixture of gases

that usually includes neon.

 A series of vertical conducting ribbons is placed on one glass panel and a set of

horizontal ribbon is built into the other glass panel.

 Firing voltage is applied to a pair of horizontal and vertical conductors cause the gas at

the intersection of the two conductors to break down into glowing plasma of electrons

and ions.

 Picture definition is stored in a refresh buffer and the firing voltages are applied to refresh

the pixel positions, 60 times per second.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 17

 Alternating current methods are used to provide faster application of firing voltages and

thus brighter displays.

 Separation between pixels is provided by the electric field of conductor.

 One disadvantage of plasma panels is they were strictly monochromatic device that

means shows only one color other than black like black and white.

b.Thin Film Electroluminescent Displays

 It is similar to plasma panel display but region between the glass plates is filled with

phosphors such as doped with magnesium instead of gas.

 When sufficient voltage is applied the phosphors becomes a conductor in area of

intersection of the two electrodes.

 Electrical energy is then absorbed by the manganese atoms which then release the energy

as a spot of light similar to the glowing plasma effect in plasma panel.

 It requires more power than plasma panel.

 In this good color and gray scale difficult to achieve.

c. Light Emitting Diode (LED)

 In this display a matrix of multi-color light emitting diode is arranged to form the pixel

position in the display and the picture definition is stored in refresh buffer.

 Similar to scan line refreshing of CRT information is read from the refresh buffer and

converted to voltage levels that are applied to the diodes to produce the light pattern on

the display.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 18

d)Liquid Crystal Display (LCD)

 This non emissive device produce picture by passing polarized light from the surrounding

or from an internal light source through liquid crystal material that can be aligned to

either block or transmit the light.

 The liquid crystal refreshes to fact that these compounds have crystalline arrangement of

molecules then also flows like liquid.

 It consists of two glass plates each with light polarizer at right angles to each other

sandwich the liquid crystal material between the plates.

 Rows of horizontal transparent conductors are built into one glass plate, and column of

vertical conductors are put into the other plates.

 The intersection of two conductors defines a pixel position.

 In the ON state polarized light passing through material is twisted so that it will pass

through the opposite polarizer.

 In the OFF state it will reflect back towards source.

Three- Dimensional Viewing Devices

 Graphics monitors for the display of three-dimensional scenes have been devised using a

technique that reflects a CRT image from a vibrating, flexible mirror As the varifocal

mirror vibrates, it changes focal length.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 19

 These vibrations are synchronized with the display of an object on a CRT so that each

point on the object is reflected from the mirror into a spatial position corresponding to the

distance of that point from a specified viewing location.

 This allows us to walk around an object or scene and view it from different sides.

1.4 Raster-Scan Systems

➔ Interactive raster-graphics systems typically employ several processing units.

➔ In addition to the central processing unit (CPU), a special-purpose processor, called the

video controller or display controller, is used to control the operation of the display

device.

➔ Organization of a simple raster system is shown in below Figure.

➔ Here, the frame buffer can be anywhere in the system memory, and the video controller

accesses the frame buffer to refresh the screen.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 20

➔ In addition to the video controller, raster systems employ other processors as

coprocessors and accelerators to implement various graphics operations.

1.4.1 Video controller:

✓ The figure below shows a commonly used organization for raster systems.

✓ A fixed area of the system memory is reserved for the frame buffer, and the video

controller is given direct access to the frame-buffer memory.

✓ Frame-buffer locations, and the corresponding screen positions, are referenced in the

Cartesian coordinates.

Cartesian reference frame:

✓ Frame-buffer locations and the corresponding screen positions, are referenced in

Cartesian coordinates.

✓ In an application (user) program, we use the commands within a graphics software

package to set coordinate positions for displayed objects relative to the origin of the

✓ The coordinate origin is referenced at the lower-left corner of a screen display area by the

software commands, although we can typically set the origin at any convenient location

for a particular application.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 21

Working:

✓ Figure shows a two-dimensional Cartesian reference frame with the origin at the

lowerleft screen corner.

✓ The screen surface is then represented as the first quadrant of a two-dimensional system

with positive x and y values increasing from left to right and bottom of the screen to the

top respectively.

✓ Pixel positions are then assigned integer x values that range from 0 to xmax across the

screen, left to right, and integer y values that vary from 0 to ymax, bottom to top.

Basic Video Controller Refresh Operations

✓ The basic refresh operations of the video controller are diagrammed

✓ Two registers are used to store the coordinate values for the screen pixels.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 22

✓ Initially, the x register is set to 0 and the y register is set to the value for the top scan line.

✓ The contents of the frame buffer at this pixel position are then retrieved and used to set

the intensity of the CRT beam.

✓ Then the x register is incremented by 1, and the process is repeated for the next pixel on

the top scan line.

✓ This procedure continues for each pixel along the top scan line.

✓ After the last pixel on the top scan line has been processed, the x register is reset to 0 and

the y register is set to the value for the next scan line down from the top of the screen.

✓ The procedure is repeated for each successive scan line.

✓ After cycling through all pixels along the bottom scan line, the video controller resets the

registers to the first pixel position on the top scan line and the refresh process starts over

a.Speed up pixel position processing of video controller:

✓ Since the screen must be refreshed at a rate of at least 60 frames per second,the simple

procedure illustrated in above figure may not be accommodated by RAM chips if the

cycle time is too slow.

✓ To speed up pixel processing, video controllers can retrieve multiple pixel values from

the refresh buffer on each pass.

✓ When group of pixels has been processed, the next block of pixel values is retrieved from

the frame buffer.

Advantages of video controller:

✓ A video controller can be designed to perform a number of other operations.

✓ For various applications, the video controller can retrieve pixel values from different

memory areas on different refresh cycles.

✓ This provides a fast mechanism for generating real-time animations.

✓ Another video-controller task is the transformation of blocks of pixels, so that screen

areas can be enlarged, reduced, or moved from one location to another during the refresh

cycles.

✓ In addition, the video controller often contains a lookup table, so that pixel values in the

frame buffer are used to access the lookup table. This provides a fast method for

changing screen intensity values.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 23

✓ Finally, some systems are designed to allow the video controller to mix the framebuffer

image with an input image from a television camera or other input device

b) Raster-Scan Display Processor

✓ Figure shows one way to organize the components of a raster system that contains a

separate display processor, sometimes referred to as a graphics controller or a display

coprocessor.

✓ The purpose of the display processor is to free the CPU from the graphics chores.

✓ In addition to the system memory, a separate display-processor memory area can be

provided.

Scan conversion:

✓ A major task of the display processor is digitizing a picture definition given in an

application program into a set of pixel values for storage in the frame buffer.

✓ This digitization process is called scan conversion.

Example 1: displaying a line

➔ Graphics commands specifying straight lines and other geometric objects are scan

converted into a set of discrete points, corresponding to screen pixel positions.

➔ Scan converting a straight-line segment.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 24

Example 2: displaying a character

➔ Characters can be defined with rectangular pixel grids

➔ The array size for character grids can vary from about 5 by 7 to 9 by 12 or more for

higher-quality displays.

➔ A character grid is displayed by superimposing the rectangular grid pattern into the frame

buffer at a specified coordinate position.

Using outline:

➔ For characters that are defined as outlines, the shapes are scan-converted into the frame

buffer by locating the pixel positions closest to the outline.

Additional operations of Display processors:

➔ Display processors are also designed to perform a number of additional operations.

➔ These functions include generating various line styles (dashed, dotted, or solid),

displaying color areas, and applying transformations to the objects in a scene.

➔ Display processors are typically designed to interface with interactive input devices, such

as a mouse.

Methods to reduce memory requirements in display processor:

➔ In an effort to reduce memory requirements in raster systems, methods have been devised

for organizing the frame buffer as a linked list and encoding the color information.

➔ One organization scheme is to store each scan line as a set of number pairs.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 25

➔ Encoding methods can be useful in the digital storage and transmission of picture

information

i)Run-length encoding:

 The first number in each pair can be a reference to a color value, and the second number

can specify the number of adjacent pixels on the scan line that are to be displayed in that

color.

 This technique, called run-length encoding, can result in a considerable saving in storage

space if a picture is to be constructed mostly with long runs of a single color each.

 A similar approach can be taken when pixel colors change linearly.

ii)Cell encoding:

 Another approach is to encode the raster as a set of rectangular areas (cell encoding).

Disadvantages of encoding:

❖ The disadvantages of encoding runs are that color changes are difficult to record and

storage requirements increase as the lengths of the runs decrease.

❖ In addition, it is difficult for the display controller to process the raster when many short

runs are involved.

❖ Moreover, the size of the frame buffer is no longer a major concern, because of sharp

declines in memory costs

1.4.3 Graphics workstations and viewing systems

✓ Most graphics monitors today operate as raster-scan displays, and both CRT and flat

panel systems are in common use.

✓ Graphics workstation range from small general-purpose computer systems to multi

monitor facilities, often with ultra –large viewing screens.

✓ High-definition graphics systems, with resolutions up to 2560 by 2048, are commonly

used in medical imaging, air-traffic control, simulation, and CAD.

✓ Many high-end graphics workstations also include large viewing screens, often with

specialized features.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 26

✓ Multi-panel display screens are used in a variety of applications that require “wall-sized”

viewing areas. These systems are designed for presenting graphics displays at meetings,

conferences, conventions, trade shows, retail stores etc.

✓ A multi-panel display can be used to show a large view of a single scene or several

individual images. Each panel in the system displays one section of the overall picture

✓ A large, curved-screen system can be useful for viewing by a group of people studying a

particular graphics application.

✓ A 360 degree paneled viewing system in the NASA control-tower simulator, which is

used for training and for testing ways to solve air-traffic and runway problems at airports.

1.5 Input Devices

➢ Graphics workstations make use of various devices for data input.Most systems have

keyboards and mouses,while some other systems have trackball,spaceball,joystick,button

boxes,touch panels,image scanners and voice systems.

Keyboard:

➢ Keyboard on graphics system is used for entering text strings,issuing certain commands

and selecting menu options.

➢ Keyboards can also be provided with features for entry of screen coordinates,menu

selections or graphics functions.

➢ General purpose keyboard uses function keys and cursor-control keys.

➢ Function keys allow user to select frequently accessed operations with a single

keystroke.Cursor-control keys are used for selecting a displayed object or a location by

positioning the screen cursor.

Button Boxes and Dials:

➢ Buttons are often used to input predefined functions .Dials are common devices for

entering scalar values.

➢ Numerical values within some defined range are selected for input with dial rotations.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 27

Mouse Devices:

➢ Mouse is a hand-held device,usually moved around on a flat surface to position the

screen cursor.wheeler or roolers on the bottom of the mouse used to record the amount

and direction of movement.

➢ Some of the mouses uses optical sensors,which detects movement across the horizontal

and vertical grid lines.

➢ Since a mouse can be picked up and put down,it is used for making relative changes in

the position of the screen.

➢ Most general purpose graphics systems now include a mouse and a keyboard as the

primary input devices.

Trackballs and Spaceballs:

➢ A trackball is a ball device that can be rotated with the fingers or palm of the hand to

produce screen cursor movement.

➢ Laptop keyboards are equipped with a trackball to eliminate the extra space required by a

mouse.

➢ Spaceball is an extension of two-dimensional trackball concept.

➢ Spaceballs are used for three-dimensional positioning and selection operations in virtual-

reality systems,modeling,animation,CAD and other applications.

Joysticks:

➢ Joystick is used as a positioning device,which uses a small vertical lever(stick) mounded

on a base.It is used to steer the screen cursor around and select screen position with the

stick movement.

➢ A push or pull on the stick is measured with strain gauges and converted to movement of

the screen cursor in the direction of the applied pressure.

Data Gloves:

➢ Data glove can be used to grasp a virtual object.The glove is constructed with a series of

sensors that detect hand and finger motions.

➢ Input from the glove is used to position or manipulate objects in a virtual scene.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 28

Digitizers:

➢ Digitizer is a common device for drawing,painting or selecting positions.

➢ Graphics tablet is one type of digitizer,which is used to input 2-dimensional coordinates

by activating a hand cursor or stylus at selected positions on a flat surface.

➢ A hand cursor contains cross hairs for sighting positions and stylus is a pencil-shaped

device that is pointed at positions on the tablet.

Image Scanners:

➢ Drawings,graphs,photographs or text can be stored for computer processing with an

image scanner by passing an optical scanning mechanism over the information to be

stored.

➢ Once we have the representation of the picture, then we can apply various image-

processing method to modify the representation of the picture and various editing

operations can be performed on the stored documents.

Touch Panels:

➢ Touch panels allow displayed objects or screen positions to be selected with the touch of

a finger.

➢ Touch panel is used for the selection of processing options that are represented as a menu

of graphical icons.

➢ Optical touch panel-uses LEDs along one vertical and horizontal edge of the frame.

➢ Acoustical touch panels generates high-frequency sound waves in horizontal and vertical

directions across a glass plate.

Light Pens:

➢ Light pens are pencil-shaped devices used to select positions by detecting the light

coming from points on the CRT screen.

➢ To select positions in any screen area with a light pen,we must have some nonzero light

intensity emitted from each pixel within that area.

➢ Light pens sometimes give false readings due to background lighting in a room.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 29

Voice Systems:

➢ Speech recognizers are used with some graphics workstations as input devices for voice

commands.The voice system input can be used to initiate operations or to enter data.

➢ A dictionary is set up by speaking command words several times,then the system

analyses each word and matches with the voice command to match the pattern

1.6 Graphics Networks

➔ So far, we have mainly considered graphics applications on an isolated system with a

single user.

➔ Multiuser environments & computer networks are now common elements in many

graphics applications.

➔ Various resources, such as processors, printers, plotters and data files can be distributed

on a network & shared by multiple users.

➔ A graphics monitor on a network is generally referred to as a graphics server.

➔ The computer on a network that is executing a graphics application is called the client.

➔ A workstation that includes processors, as well as a monitor and input devices can

function as both a server and a client.

1.7 Graphics on Internet

✓ A great deal of graphics development is now done on the Internet.

✓ Computers on the Internet communicate using TCP/IP.

✓ Resources such as graphics files are identified by URL (Uniform resource locator).

✓ The World Wide Web provides a hypertext system that allows users to loacate and view

documents, audio and graphics.

✓ Each URL sometimes also called as universal resource locator.

✓ The URL contains two parts Protocol- for transferring the document, and Server-

contains the document.

1.8 Graphics Software

✓ There are two broad classifications for computer-graphics software

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 30

1. Special-purpose packages: Special-purpose packages are designed for

nonprogrammers

 Example: generate pictures, graphs, charts, painting programs or CAD systems in

some application area without worrying about the graphics procedure

2. General programming packages: general programming package provides a library of

graphics functions that can be used in a programming language such as C, C++, Java,

or FORTRAN.

Example: GL (Graphics Library), OpenGL, VRML (Virtual-Reality Modeling

Language), Java 2D And Java 3D

NOTE: A set of graphics functions is often called a computer-graphics application

programming interface (CG API)

1.10 Coordinate Representations

✓ To generate a picture using a programming package we first need to give the geometric

descriptions of the objects that are to be displayed known as coordinates.

✓ If coordinate values for a picture are given in some other reference frame (spherical,

hyperbolic, etc.), they must be converted to Cartesian coordinates.

✓ Several different Cartesian reference frames are used in the process of constructing and

displaying

✓ First we define the shapes of individual objects, such as trees or furniture, These

reference frames are called modeling coordinates or local coordinates

✓ Then we place the objects into appropriate locations within a scene reference frame

called world coordinates.

✓ After all parts of a scene have been specified, it is processed through various output-

device reference frames for display. This process is called the viewing pipeline.

✓ The scene is then stored in normalized coordinates. Which range from −1 to 1 or from 0

to 1 Normalized coordinates are also referred to as normalized device coordinates.

✓ The coordinate systems for display devices are generally called device coordinates, or

screen coordinates.

NOTE: Geometric descriptions in modeling coordinates and world coordinates can be given in

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 31

floating-point or integer values.

✓ Example: Figure briefly illustrates the sequence of coordinate transformations from

modeling coordinates to device coordinates for a display

1.11 Graphics Functions

➔ It provides users with a variety of functions for creating and manipulating pictures

➔ The basic building blocks for pictures are referred to as graphics output primitives

➔ Attributes are properties of the output primitives

➔ We can change the size, position, or orientation of an object using geometric

transformations

➔ Modeling transformations, which are used to construct a scene.

➔ Viewing transformations are used to select a view of the scene, the type of projection to

be used and the location where the view is to be displayed.

➔ Input functions are used to control and process the data flow from these interactive

devices(mouse, tablet and joystick)

➔ Graphics package contains a number of tasks .We can lump the functions for carrying out

many tasks by under the heading control operations.

Software Standards

✓ The primary goal of standardized graphics software is portability.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 32

✓ In 1984, Graphical Kernel System (GKS) was adopted as the first graphics software

standard by the International Standards Organization (ISO)

✓ The second software standard to be developed and approved by the standards

organizations was Programmer’s Hierarchical Interactive Graphics System (PHIGS).

✓ Extension of PHIGS, called PHIGS+, was developed to provide 3-D surface rendering

capabilities not available in PHIGS.

✓ The graphics workstations from Silicon Graphics, Inc. (SGI), came with a set of routines

called GL (Graphics Library)

Other Graphics Packages

✓ Many other computer-graphics programming libraries have been developed for

1. general graphics routines

2. Some are aimed at specific applications (animation, virtual reality, etc.)

Example: Open Inventor Virtual-Reality Modeling Language (VRML).

We can create 2-D scenes with in Java applets (java2D, Java 3D)

1.12 Introduction To OpenGL

✓ OpenGL basic(core) library :-A basic library of functions is provided in OpenGL for

specifying graphics primitives, attributes, geometric transformations, viewing

transformations, and many other operations.

Basic OpenGL Syntax

➔ Function names in the OpenGL basic library (also called the OpenGL core library) are

prefixed with gl. The component word first letter is capitalized.

➔ For eg:- glBegin, glClear, glCopyPixels, glPolygonMode

➔ Symbolic constants that are used with certain functions as parameters are all in capital

letters, preceded by “GL”, and component are separated by underscore.

➔ For eg:- GL_2D, GL_RGB, GL_CCW, GL_POLYGON,

GL_AMBIENT_AND_DIFFUSE.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 33

➔ The OpenGL functions also expect specific data types. For example, an OpenGL function

parameter might expect a value that is specified as a 32-bit integer. But the size of an

integer specification can be different on different machines.

➔ To indicate a specific data type, OpenGL uses special built-in, data-type names, such as

GLbyte, GLshort, GLint, GLfloat, GLdouble, Glboolean

Related Libraries

➔ In addition to OpenGL basic(core) library(prefixed with gl), there are a number of

associated libraries for handling special operations:-

1) OpenGL Utility(GLU):- Prefixed with “glu”. It provides routines for setting up

viewing and projection matrices, describing complex objects with line and polygon

approximations, displaying quadrics and B-splines using linear approximations,

processing the surface-rendering operations, and other complex tasks.

-Every OpenGL implementation includes the GLU library

2) Open Inventor:- provides routines and predefined object shapes for interactive three-

dimensional applications which are written in C++.

3) Window-system libraries:- To create graphics we need display window. We cannot

create the display window directly with the basic OpenGL functions since it contains

only device-independent graphics functions, and window-management operations are

device-dependent. However, there are several window-system libraries that supports

OpenGL functions for a variety of machines.

Eg:- Apple GL(AGL), Windows-to-OpenGL(WGL), Presentation Manager to

OpenGL(PGL), GLX.

4) OpenGL Utility Toolkit(GLUT):- provides a library of functions which acts as

interface for interacting with any device specific screen-windowing system, thus making

our program device-independent. The GLUT library functions are prefixed with “glut”.

Header Files

✓ In all graphics programs, we will need to include the header file for the OpenGL core

library.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 34

✓ In windows to include OpenGL core libraries and GLU we can use the following header

files:-

#include <windows.h> //precedes other header files for including Microsoft windows ver

of OpenGL libraries

#include<GL/gl.h>

#include <GL/glu.h>

✓ The above lines can be replaced by using GLUT header file which ensures gl.h and glu.h

are included correctly,

✓ #include <GL/glut.h> //GL in windows

✓ In Apple OS X systems, the header file inclusion statement will be,

✓ #include <GLUT/glut.h>

Display-Window Management Using GLUT

✓ We can consider a simplified example, minimal number of operations for displaying a

picture.

Step 1: initialization of GLUT

 We are using the OpenGL Utility Toolkit, our first step is to initialize GLUT.

 This initialization function could also process any command line arguments, but we will

not need to use these parameters for our first example programs.

 We perform the GLUT initialization with the statement

glutInit (&argc, argv);

Step 2: title

 We can state that a display window is to be created on the screen with a given caption for

the title bar. This is accomplished with the function

glutCreateWindow ("An Example OpenGL Program");

 where the single argument for this function can be any character string that we want to

use for the display-window title.

Step 3: Specification of the display window

 Then we need to specify what the display window is to contain.

 For this, we create a picture using OpenGL functions and pass the picture definition to

the GLUT routine glutDisplayFunc, which assigns our picture to the display window.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 35

 Example: suppose we have the OpenGL code for describing a line segment in a

procedure called lineSegment.

 Then the following function call passes the line-segment description to the display

window:

glutDisplayFunc (lineSegment);

Step 4: one more GLUT function

 But the display window is not yet on the screen.

 We need one more GLUT function to complete the window-processing operations.

 After execution of the following statement, all display windows that we have created,

including their graphic content, are now activated:

glutMainLoop ();

 This function must be the last one in our program. It displays the initial graphics and puts

the program into an infinite loop that checks for input from devices such as a mouse or

keyboard.

Step 5: these parameters using additional GLUT functions

 Although the display window that we created will be in some default location and size,

we can set these parameters using additional GLUT functions.

GLUT Function 1:

➔ We use the glutInitWindowPosition function to give an initial location for the upper left

corner of the display window.

➔ This position is specified in integer screen coordinates, whose origin is at the upper-left

corner of the screen.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 36

GLUT Function 2:

 After the display window is on the screen, we can reposition and resize it.

GLUT Function 3:

➔ We can also set a number of other options for the display window, such as buffering and

a choice of color modes, with the glutInitDisplayMode function.

➔ Arguments for this routine are assigned symbolic GLUT constants.

➔ Example: the following command specifies that a single refresh buffer is to be used for

the display window and that we want to use the color mode which uses red, green, and

blue (RGB) components to select color values:

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

➔ The values of the constants passed to this function are combined using a logical or

operation.

➔ Actually, single buffering and RGB color mode are the default options.

➔ But we will use the function now as a reminder that these are the options that are set for

our display.

➔ Later, we discuss color modes in more detail, as well as other display options, such as

double buffering for animation applications and selecting parameters for viewing

threedimensional scenes.

A Complete OpenGL Program

➔ There are still a few more tasks to perform before we have all the parts that we need for a

complete program.

Step 1: to set background color

➔ For the display window, we can choose a background color.

➔ Using RGB color values, we set the background color for the display window to be

white, with the OpenGL function:

glClearColor (1.0, 1.0, 1.0, 0.0);

➔ The first three arguments in this function set the red, green, and blue component colors to

the value 1.0, giving us a white background color for the display window.

➔ If, instead of 1.0, we set each of the component colors to 0.0, we would get a black

background.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 37

➔ The fourth parameter in the glClearColor function is called the alpha value for the

specified color. One use for the alpha value is as a “blending” parameter

➔ When we activate the OpenGL blending operations, alpha values can be used to

determine the resulting color for two overlapping objects.

➔ An alpha value of 0.0 indicates a totally transparent object, and an alpha value of 1.0

indicates an opaque object.

➔ For now, we will simply set alpha to 0.0.

➔ Although the glClearColor command assigns a color to the display window, it does not

put the display window on the screen.

Step 2: to set window color

➔ To get the assigned window color displayed, we need to invoke the following OpenGL

function:

glClear (GL_COLOR_BUFFER_BIT);

➔ The argument GL COLOR BUFFER BIT is an OpenGL symbolic constant specifying

that it is the bit values in the color buffer (refresh buffer) that are to be set to the values

indicated in the glClearColor function. (OpenGL has several different kinds of buffers

that can be manipulated.

Step 3: to set color to object

➔ In addition to setting the background color for the display window, we can choose a

variety of color schemes for the objects we want to display in a scene.

➔ For our initial programming example, we will simply set the object color to be a dark

green

glColor3f (0.0, 0.4, 0.2);

➔ The suffix 3f on the glColor function indicates that we are specifying the three RGB

color components using floating-point (f) values.

➔ This function requires that the values be in the range from 0.0 to 1.0, and we have set red

= 0.0, green = 0.4, and blue = 0.2.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 38

Example program

➔ For our first program, we simply display a two-dimensional line segment.

➔ To do this, we need to tell OpenGL how we want to “project” our picture onto the display

window because generating a two-dimensional picture is treated by OpenGL as a special

case of three-dimensional viewing.

➔ So, although we only want to produce a very simple two-dimensional line, OpenGL

processes our picture through the full three-dimensional viewing operations.

➔ We can set the projection type (mode) and other viewing parameters that we need with

the following two functions:

glMatrixMode (GL_PROJECTION);

gluOrtho2D (0.0, 200.0, 0.0, 150.0);

➔ This specifies that an orthogonal projection is to be used to map the contents of a

twodimensional rectangular area of world coordinates to the screen, and that the x-

coordinate values within this rectangle range from 0.0 to 200.0 with y-coordinate values

ranging from 0.0 to 150.0.

➔ Whatever objects we define within this world-coordinate rectangle will be shown within

the display window.

➔ Anything outside this coordinate range will not be displayed.

➔ Therefore, the GLU function gluOrtho2D defines the coordinate reference frame within

the display window to be (0.0, 0.0) at the lower-left corner of the display window and

(200.0, 150.0) at the upper-right window corner.

➔ For now, we will use a world-coordinate rectangle with the same aspect ratio as the

display window, so that there is no distortion of our picture.

➔ Finally, we need to call the appropriate OpenGL routines to create our line segment.

➔ The following code defines a two-dimensional, straight-line segment with integer,

➔ Cartesian endpoint coordinates (180, 15) and (10, 145).

glBegin (GL_LINES);

glVertex2i (180, 15);

glVertex2i (10, 145);

glEnd ();

➔ Now we are ready to put all the pieces together:

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 39

The following OpenGL program is organized into three functions.

➔ init: We place all initializations and related one-time parameter settings in function init.

➔ lineSegment: Our geometric description of the “picture” that we want to display is in

function lineSegment, which is the function that will be referenced by the GLUT function

glutDisplayFunc.

➔ main function main function contains the GLUT functions for setting up the display

window and getting our line segment onto the screen.

➔ glFlush: This is simply a routine to force execution of our OpenGL functions, which are

stored by computer systems in buffers in different locations,depending on how OpenGL

is implemented.

➔ The procedure lineSegment that we set up to describe our picture is referred to as a

display callback function.

➔ And this procedure is described as being “registered” by glutDisplayFunc as the routine

to invoke whenever the display window might need to be redisplayed.

Example: if the display window is moved.

Following program to display window and line segment generated by this program:

#include <GL/glut.h> // (or others, depending on the system in use)

void init (void)

{

glClearColor (1.0, 1.0, 1.0, 0.0); // Set display-window color to white.

glMatrixMode (GL_PROJECTION); // Set projection parameters.

gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

void lineSegment (void)

{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.4, 0.2); // Set line segment color to green.

glBegin (GL_LINES);

glVertex2i (180, 15); // Specify line-segment geometry.

glVertex2i (10, 145);

glEnd ();

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 40

glFlush (); // Process all OpenGL routines as quickly as possible.

}

void main (int argc, char** argv)

{

glutInit (&argc, argv); // Initialize GLUT.

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); // Set display mode.

glutInitWindowPosition (50, 100); // Set top-left display-window position.

glutInitWindowSize (400, 300); // Set display-window width and height.

glutCreateWindow ("An Example OpenGL Program"); // Create display window.

init (); // Execute initialization procedure.

glutDisplayFunc (lineSegment); // Send graphics to display window.

glutMainLoop (); // Display everything and wait.

}

1.13 Coordinate Reference Frames

To describe a picture, we first decide upon

 A convenient Cartesian coordinate system, called the world-coordinate reference frame,

which could be either 2D or 3D.

 We then describe the objects in our picture by giving their geometric specifications in

terms of positions in world coordinates.

 Example: We define a straight-line segment with two endpoint positions, and a polygon

is specified with a set of positions for its vertices.

 These coordinate positions are stored in the scene description along with other info about

the objects, such as their color and their coordinate extents

 Co-ordinate extents :Co-ordinate extents are the minimum and maximum x, y, and z

values for each object.

 A set of coordinate extents is also described as a bounding box for an object.

 Ex:For a 2D figure, the coordinate extents are sometimes called its bounding rectangle.

 Objects are then displayed by passing the scene description to the viewing routines which

identify visible surfaces and map the objects to the frame buffer positions and then on the

video monitor.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 41

 The scan-conversion algorithm stores info about the scene, such as color values, at the

appropriate locations in the frame buffer, and then the scene is displayed on the output

device.

Screen co-ordinates:

✓ Locations on a video monitor are referenced in integer screen coordinates, which

correspond to the integer pixel positions in the frame buffer.

✓ Scan-line algorithms for the graphics primitives use the coordinate descriptions to

determine the locations of pixels

✓ Example: given the endpoint coordinates for a line segment, a display algorithm must

calculate the positions for those pixels that lie along the line path between the endpoints.

✓ Since a pixel position occupies a finite area of the screen, the finite size of a pixel must

be taken into account by the implementation algorithms.

✓ For the present, we assume that each integer screen position references the centre of a

pixel area.

✓ Once pixel positions have been identified the color values must be stored in the frame

buffer

Assume we have available a low-level procedure of the form

i)setPixel (x, y);

• stores the current color setting into the frame buffer at integer position(x, y), relative to

the position of the screen-coordinate origin

ii)getPixel (x, y, color);

• Retrieves the current frame-buffer setting for a pixel location;

• Parameter color receives an integer value corresponding to the combined RGB bit codes

stored for the specified pixel at position (x,y).

• Additional screen-coordinate information is needed for 3D scenes.

• For a two-dimensional scene, all depth values are 0.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 42

Absolute and Relative Coordinate Specifications

Absolute coordinate:

➢ So far, the coordinate references that we have discussed are stated as absolute coordinate

values.

➢ This means that the values specified are the actual positions within the coordinate system

in use.

Relative coordinates:

➢ However, some graphics packages also allow positions to be specified using relative

coordinates.

➢ This method is useful for various graphics applications, such as producing drawings with

pen plotters, artist’s drawing and painting systems, and graphics packages for publishing

and printing applications.

➢ Taking this approach, we can specify a coordinate position as an offset from the last

position that was referenced (called the current position).

Specifying a Two-Dimensional World-Coordinate Reference Frame in OpenGL

➢ The gluOrtho2D command is a function we can use to set up any 2D Cartesian reference

frames.

➢ The arguments for this function are the four values defining the x and y coordinate limits

for the picture we want to display.

➢ Since the gluOrtho2D function specifies an orthogonal projection, we need also to be sure

that the coordinate values are placed in the OpenGL projection matrix.

➢ In addition, we could assign the identity matrix as the projection matrix before defining

the world-coordinate range.

➢ This would ensure that the coordinate values were not accumulated with any values we

may have previously set for the projection matrix.

➢ Thus, for our initial two-dimensional examples, we can define the coordinate frame for

the screen display window with the following statements

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

gluOrtho2D (xmin, xmax, ymin, ymax);

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 43

➢ The display window will then be referenced by coordinates (xmin, ymin) at the lower-left

corner and by coordinates (xmax, ymax) at the upper-right corner, as shown in Figure

below

➢ We can then designate one or more graphics primitives for display using the coordinate

reference specified in the gluOrtho2D statement.

➢ If the coordinate extents of a primitive are within the coordinate range of the display

window, all of the primitive will be displayed.

➢ Otherwise, only those parts of the primitive within the display-window coordinate limits

will be shown.

➢ Also, when we set up the geometry describing a picture, all positions for the OpenGL

primitives must be given in absolute coordinates, with respect to the reference frame

defined in the gluOrtho2D function.

1.14 OpenGL Functions

Geometric Primitives:

➢ It includes points, line segments, polygon etc.

➢ These primitives pass through geometric pipeline which decides whether the primitive is

visible or not and also how the primitive should be visible on the screen etc.

➢ The geometric transformations such rotation, scaling etc can be applied on the primitives

which are displayed on the screen.The programmer can create geometric primitives as

shown below:

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 44

where:

glBegin indicates the beginning of the object that has to be displayed

glEnd indicates the end of primitive

1.15 OpenGL Point Functions

➢ The type within glBegin() specifies the type of the object and its value can be as follows:

GL_POINTS

➢ Each vertex is displayed as a point.

➢ The size of the point would be of at least one pixel.

➢ Then this coordinate position, along with other geometric descriptions we may have in

our scene, is passed to the viewing routines.

➢ Unless we specify other attribute values, OpenGL primitives are displayed with a default

size and color.

➢ The default color for primitives is white, and the default point size is equal to the size of a

single screen pixel

Syntax:

Case 1:

glBegin (GL_POINTS);

glVertex2i (50, 100);

glVertex2i (75, 150);

glVertex2i (100, 200);

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 45

glEnd ();

Case 2:

➢ we could specify the coordinate values for the preceding points in arrays such as

int point1 [] = {50, 100};

int point2 [] = {75, 150};

int point3 [] = {100, 200};

and call the OpenGL functions for plotting the three points as

glBegin (GL_POINTS);

glVertex2iv (point1);

glVertex2iv (point2);

glVertex2iv (point3);

glEnd ();

Case 3:

➢ specifying two point positions in a three dimensional world reference frame. In this case,

we give the coordinates as explicit floating-point values:

glBegin (GL_POINTS);

glVertex3f (-78.05, 909.72, 14.60);

glVertex3f (261.91, -5200.67, 188.33);

glEnd ();

1.16 OpenGL LINE FUNCTIONS

➢ Primitive type is GL_LINES

➢ Successive pairs of vertices are considered as endpoints and they are connected to form

an individual line segments.

➢ Note that successive segments usually are disconnected because the vertices are

processed on a pair-wise basis.

➢ we obtain one line segment between the first and second coordinate positions and another

line segment between the third and fourth positions.

➢ if the number of specified endpoints is odd, so the last coordinate position is ignored.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 46

Case 1: Lines

glBegin (GL_LINES);

glVertex2iv (p1);

glVertex2iv (p2);

glVertex2iv (p3);

glVertex2iv (p4);

glVertex2iv (p5);

glEnd ();

Case 2: GL_LINE_STRIP:

Successive vertices are connected using line segments. However, the final vertex is not

connected to the initial vertex.

glBegin (GL_LINES_STRIP);

glVertex2iv (p1);

glVertex2iv (p2);

glVertex2iv (p3);

glVertex2iv (p4);

glVertex2iv (p5);

glEnd ();

Case 3: GL_LINE_LOOP:

Successive vertices are connected using line segments to form a closed path or loop i.e., final

vertex is connected to the initial vertex.

glBegin (GL_LINES_LOOP);

glVertex2iv (p1);

glVertex2iv (p2);

glVertex2iv (p3);

glVertex2iv (p4);

glVertex2iv (p5);

glEnd ();

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 47

1.16 Point Attributes

➔ Basically, we can set two attributes for points: color and size.

➔ In a state system: The displayed color and size of a point is determined by the current

values stored in the attribute list.

➔ Color components are set with RGB values or an index into a color table.

➔ For a raster system: Point size is an integer multiple of the pixel size, so that a large point

is displayed as a square block of pixels

Opengl Point-Attribute Functions

Color:

➔ The displayed color of a designated point position is controlled by the current color

values in the state list.

➔ Also, a color is specified with either the glColor function or the glIndex function.

Size:

➔ We set the size for an OpenGL point with

glPointSize (size);

and the point is then displayed as a square block of pixels.

➔ Parameter size is assigned a positive floating-point value, which is rounded to an integer

(unless the point is to be antialiased).

➔ The number of horizontal and vertical pixels in the display of the point is determined by

parameter size.

➔ Thus, a point size of 1.0 displays a single pixel, and a point size of 2.0 displays a 2×2

pixel array.

➔ If we activate the antialiasing features of OpenGL, the size of a displayed block of pixels

will be modified to smooth the edges.

➔ The default value for point size is 1.0.

Example program:

➔ Attribute functions may be listed inside or outside of a glBegin/glEnd pair.

➔ Example: the following code segment plots three points in varying colors and sizes.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 48

➔ The first is a standard-size red point, the second is a double-size green point, and the third

is a triple-size blue point:

Ex:

glColor3f (1.0, 0.0, 0.0);

glBegin (GL_POINTS);

glVertex2i (50, 100);

glPointSize (2.0);

glColor3f (0.0, 1.0, 0.0);

glVertex2i (75, 150);

glPointSize (3.0);

glColor3f (0.0, 0.0, 1.0);

glVertex2i (100, 200);

glEnd ();

1.17 Line-Attribute Functions OpenGL

➔ In OpenGL straight-line segment with three attribute settings: line color, line-width, and

line style.

➔ OpenGL provides a function for setting the width of a line and another function for

specifying a line style, such as a dashed or dotted line.

OpenGL Line-Width Function

➔ Line width is set in OpenGL with the function

Syntax: glLineWidth (width);

➔ We assign a floating-point value to parameter width, and this value is rounded to the

nearest nonnegative integer.

➔ If the input value rounds to 0.0, the line is displayed with a standard width of 1.0, which

is the default width.

➔ Some implementations of the line-width function might support only a limited number of

widths, and some might not support widths other than 1.0.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 49

➔ That is, the magnitude of the horizontal and vertical separations of the line endpoints,

deltax and deltay, are compared to determine whether to generate a thick line using

vertical pixel spans or horizontal pixel spans.

OpenGL Line-Style Function

➔ By default, a straight-line segment is displayed as a solid line.

➔ But we can also display dashed lines, dotted lines, or a line with a combination of dashes

and dots.

➔ We can vary the length of the dashes and the spacing between dashes or dots.

➔ We set a current display style for lines with the OpenGL function:

Syntax: glLineStipple (repeatFactor, pattern);

Pattern:

➔ Parameter pattern is used to reference a 16-bit integer that describes how the line should

be displayed.

➔ 1 bit in the pattern denotes an “on” pixel position, and a 0 bit indicates an “off” pixel

position.

➔ The pattern is applied to the pixels along the line path starting with the low-order bits in

the pattern.

➔ The default pattern is 0xFFFF (each bit position has a value of 1),which produces a solid

line.

repeatFactor

➔ Integer parameter repeatFactor specifies how many times each bit in the pattern is to be

repeated before the next bit in the pattern is applied.

➔ The default repeat value is 1.

Polyline:

➔ With a polyline, a specified line-style pattern is not restarted at the beginning of each

segment.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 50

➔ It is applied continuously across all the segments, starting at the first endpoint of the

polyline and ending at the final endpoint for the last segment in the series.

Example:

➔ For line style, suppose parameter pattern is assigned the hexadecimal representation

0x00FF and the repeat factor is 1.

➔ This would display a dashed line with eight pixels in each dash and eight pixel positions

that are “off” (an eight-pixel space) between two dashes.

➔ Also, since low order bits are applied first, a line begins with an eight-pixel dash starting

at the first endpoint.

➔ This dash is followed by an eight-pixel space, then another eight-pixel dash, and so forth,

until the second endpoint position is reached.

Activating line style:

➢ Before a line can be displayed in the current line-style pattern, we must activate the line-

style feature of OpenGL.

glEnable (GL_LINE_STIPPLE);

➢ If we forget to include this enable function, solid lines are displayed; that is, the default

pattern 0xFFFF is used to display line segments.

➢ At any time, we can turn off the line-pattern feature with

glDisable (GL_LINE_STIPPLE);

➢ This replaces the current line-style pattern with the default pattern (solid lines).

Example Code:

typedef struct { float x, y; } wcPt2D;

wcPt2D dataPts [5];

void linePlot (wcPt2D dataPts [5])

{

int k;

glBegin (GL_LINE_STRIP);

for (k = 0; k < 5; k++)

glVertex2f (dataPts [k].x, dataPts [k].y);

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 51

glFlush ();

glEnd ();

}

/* Invoke a procedure here to draw coordinate axes. */

glEnable (GL_LINE_STIPPLE); /* Input first set of (x, y) data values. */

glLineStipple (1, 0x1C47); // Plot a dash-dot, standard-width polyline.

linePlot (dataPts);

/* Input second set of (x, y) data values. */

glLineStipple (1, 0x00FF); / / Plot a dashed, double-width polyline.

glLineWidth (2.0);

linePlot (dataPts);

/* Input third set of (x, y) data values. */

glLineStipple (1, 0x0101); // Plot a dotted, triple-width polyline.

glLineWidth (3.0);

linePlot (dataPts);

glDisable (GL_LINE_STIPPLE);

1.18 Curve Attributes

➔ Parameters for curve attributes are the same as those for straight-line segments.

➔ We can display curves with varying colors, widths, dot-dash patterns, and available pen

or brush options.

➔ Methods for adapting curve-drawing algorithms to accommodate attribute selections are

similar to those for line drawing.

➔ Raster curves of various widths can be displayed using the method of horizontal or

vertical pixel spans.

Case 1: Where the magnitude of the curve slope |m| <= 1.0, we plot vertical spans;

Case 2: when the slope magnitude |m| > 1.0, we plot horizontal spans.

Different methods to draw a curve:

Method 1: Using circle symmetry property, we generate the circle path with vertical spans in the

octant from x = 0 to x = y, and then reflect pixel positions about the line y = x to y=0

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 52

Method 2: Another method for displaying thick curves is to fill in the area between two Parallel

curve paths, whose separation distance is equal to the desired width. We could do this using the

specified curve path as one boundary and setting up the second boundary either inside or outside

the original curve path. This approach, however, shifts the original curve path either inward or

outward, depending on which direction we choose for the second boundary.

Method 3:The pixel masks discussed for implementing line-style options could also be used in

raster curve algorithms to generate dashed or dotted patterns

Method 4: Pen (or brush) displays of curves are generated using the same techniques discussed

for straight-line segments.

Method 5: Painting and drawing programs allow pictures to be constructed interactively by

using a pointing device, such as a stylus and a graphics tablet, to sketch various curve shapes.

1.19 Line Drawing Algorithm

✓ A straight-line segment in a scene is defined by coordinate positions for the endpoints of

the segment.

✓ To display the line on a raster monitor, the graphics system must first project the

endpoints to integer screen coordinates and determine the nearest pixel positions along

the line path between the two endpoints then the line color is loaded into the frame buffer

at the corresponding pixel coordinates

✓ The Cartesian slope-intercept equation for a straight line is

y=m * x +b------------>(1)

with m as the slope of the line and b as the y intercept.

✓ Given that the two endpoints of a line segment are specified at positions (x0,y0) and

(xend, yend) ,as shown in fig.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 53

✓ We determine values for the slope m and y intercept b with the following equations:

m=(yend - y0)/(xend - x0)----------------->(2)

b=y0 - m.x0-------------->(3)

✓ Algorithms for displaying straight line are based on the line equation (1) and calculations

given in eq(2) and (3).

✓ For given x interval δx along a line, we can compute the corresponding y interval δy from

eq.(2) as

δy=m. δx----------------->(4)

✓ Similarly, we can obtain the x interval δx corresponding to a specified δy as

δx=δy/m------------------>(5)

✓ These equations form the basis for determining deflection voltages in analog displays,

such as vector-scan system, where arbitrarily small changes in deflection voltage are

possible.

✓ For lines with slope magnitudes

➔ |m|<1, δx can be set proportional to a small horizontal deflection voltage with the

corresponding vertical deflection voltage set proportional to δy from eq.(4)

➔ |m|>1, δy can be set proportional to a small vertical deflection voltage with the

corresponding horizontal deflection voltage set proportional to δx from eq.(5)

➔ |m|=1, δx=δy and the horizontal and vertical deflections voltages are equal

DDA Algorithm (DIGITAL DIFFERENTIAL ANALYZER)

➔ The DDA is a scan-conversion line algorithm based on calculating either δy or δx.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 54

➔ A line is sampled at unit intervals in one coordinate and the corresponding integer values

nearest the line path are determined for the other coordinate

➔ DDA Algorithm has three cases so from equation i.e.., m=(yk+1 - yk)/(xk+1 - xk)

Case1:

if m<1,x increment in unit intervals

i.e..,xk+1=xk+1

then, m=(yk+1 - yk)/(xk+1 - xk)

m= yk+1 - yk

yk+1 = yk + m------------>(1)

➔ where k takes integer values starting from 0,for the first point and increases by 1 until

final endpoint is reached. Since m can be any real number between 0.0 and 1.0,

Case2:

if m>1, y increment in unit intervals

i.e.., yk+1 = yk + 1

then, m= (yk + 1- yk)/(xk+1 - xk)

m(xk+1 - xk)=1

xk+1 =(1/m)+ xk-----------------(2)

Case3:

if m=1,both x and y increment in unit intervals

i.e..,xk+1=xk + 1 and yk+1 = yk + 1

Equations (1) and (2) are based on the assumption that lines are to be processed from the left

endpoint to the right endpoint. If this processing is reversed, so that the starting endpoint is at the

right, then either we have δx=-1 and

yk+1 = yk - m-----------------(3)

or(when the slope is greater than 1)we have δy=-1 with

xk+1 = xk - (1/m)----------------(4)

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 55

➔ Similar calculations are carried out using equations (1) through (4) to determine the pixel

positions along a line with negative slope. thus, if the absolute value of the slope is less

than 1 and the starting endpoint is at left ,we set δx==1 and calculate y values with eq(1).

➔ when starting endpoint is at the right(for the same slope),we set δx=-1 and obtain y

positions using eq(3).

➔ This algorithm is summarized in the following procedure, which accepts as input two

integer screen positions for the endpoints of a line segment.

➔ if m<1,where x is incrementing by 1

yk+1 = yk + m

➔ So initially x=0,Assuming (x0,y0)as initial point assigning x= x0,y=y0 which is the

starting point .

o Illuminate pixel(x, round(y))

o x1= x+ 1 , y1=y + 1

o Illuminate pixel(x1,round(y1))

o x2= x1+ 1 , y2=y1 + 1

o Illuminate pixel(x2,round(y2))

o Till it reaches final point.

➔ if m>1,where y is incrementing by 1

xk+1 =(1/m)+ xk

➔ So initially y=0,Assuming (x0,y0)as initial point assigning x= x0,y=y0 which is the

starting point .

o Illuminate pixel(round(x),y)

o x1= x+(1/m) ,y1=y

o Illuminate pixel(round(x1),y1)

o x2= x1+ (1/m) , y2=y1

o Illuminate pixel(round(x2),y2)

o Till it reaches final point.

➔ The DDA algorithm is faster method for calculating pixel position than one that directly

implements .

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 56

➔ It eliminates the multiplication by making use of raster characteristics, so that appropriate

increments are applied in the x or y directions to step from one pixel position to another

along the line path.

➔ The accumulation of round off error in successive additions of the floating point

increment, however can cause the calculated pixel positions to drift away from the true

line path for long line segments. Furthermore ,the rounding operations and floating point

arithmetic in this procedure are still time consuming.

➔ we improve the performance of DDA algorithm by separating the increments m and 1/m

into integer and fractional parts so that all calculations are reduced to integer operations.

#include <stdlib.h>

#include <math.h>

inline int round (const float a)

{

return int (a + 0.5);

}

void lineDDA (int x0, int y0, int xEnd, int yEnd)

{

int dx = xEnd - x0, dy = yEnd - y0, steps, k;

float xIncrement, yIncrement, x = x0, y = y0;

if (fabs (dx) > fabs (dy))

steps = fabs (dx);

else

steps = fabs (dy);

xIncrement = float (dx) / float (steps);

yIncrement = float (dy) / float (steps);

setPixel (round (x), round (y));

for (k = 0; k < steps; k++) {

x += xIncrement;

y += yIncrement;

setPixel (round (x), round (y));

}

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 57

}

Bresenham’s Algorithm:

➔ It is an efficient raster scan generating algorithm that uses incremental integral

calculations

➔ To illustrate Bresenham’s approach, we first consider the scan-conversion process for

lines with positive slope less than 1.0.

➔ Pixel positions along a line path are then determined by sampling at unit x intervals.

Starting from the left endpoint (x0, y0) of a given line, we step to each successive column

(x position) and plot the pixel whose scan-line y value is closest to the line path.

➔ Consider the equation of a straight line y=mx+c where m=dy/dx

Bresenham’s Line-Drawing Algorithm for |m| < 1.0

1. Input the two line endpoints and store the left endpoint in (x0, y0).

2. Set the color for frame-buffer position (x0, y0); i.e., plot the first point.

3. Calculate the constants ∆x, ∆y, 2∆y, and 2∆y − 2∆x, and obtain the starting value for

the decision parameter as

p0 = 2∆y −∆x

4. At each xk along the line, starting at k = 0, perform the following test:

If pk < 0, the next point to plot is (xk + 1, yk) and

pk+1 = pk + 2∆y

Otherwise, the next point to plot is (xk + 1, yk + 1) and

pk+1 = pk + 2∆y − 2∆x

5. Repeat step 4 ∆x − 1 more times.

Note:

If |m|>1.0

Then

p0 = 2∆x −∆y

and

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 58

If pk < 0, the next point to plot is (xk , yk +1) and

pk+1 = pk + 2∆x

Otherwise, the next point to plot is (xk + 1, yk + 1) and

pk+1 = pk + 2∆x − 2∆y

Code:

#include <stdlib.h>

#include <math.h>

/* Bresenham line-drawing procedure for |m| < 1.0. */

void lineBres (int x0, int y0, int xEnd, int yEnd)

{

int dx = fabs (xEnd - x0), dy = fabs(yEnd - y0);

int p = 2 * dy - dx;

int twoDy = 2 * dy, twoDyMinusDx = 2 * (dy - dx);

int x, y;

/* Determine which endpoint to use as start position. */

if (x0 > xEnd) {

x = xEnd;

y = yEnd;

xEnd = x0;

}

else {

x = x0;

y = y0;

}

setPixel (x, y);

while (x < xEnd) {

x++;

if (p < 0)

p += twoDy;

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 59

else {

y++;

p += twoDyMinusDx;

}

setPixel (x, y);

}

}

Properties of Circles

➔ A circle is defined as the set of points that are all at a given distance r from a center

position (xc , yc).

➔ For any circle point (x, y), this distance relationship is expressed by the Pythagorean

theorem in Cartesian coordinates as

➔ We could use this equation to calculate the position of points on a circle circumference

by stepping along the x axis in unit steps from xc −r to xc +r and calculating the

corresponding y values at each position as

➔ One problem with this approach is that it involves considerable computation at each step.

Moreover, the spacing between plotted pixel positions is not uniform.

➔ We could adjust the spacing by interchanging x and y (stepping through y values and

calculating x values) whenever the absolute value of the slope of the circle is greater than

1; but this simply increases the computation and processing required by the algorithm.

➔ Another way to eliminate the unequal spacing is to calculate points along the circular

boundary using polar coordinates r and θ

➔ Expressing the circle equation in parametric polar form yields the pair of equations

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 60

Midpoint Circle Algorithm

➔ Midpoint circle algorithm generates all points on a circle centered at the origin by

incrementing all the way around circle.

➔ The strategy is to select which of 2 pixels is closer to the circle by evaluating a function

at the midpoint between the 2 pixels

➔ To apply the midpoint method, we define a circle function as

➔ To summarize, the relative position of any point (x, y) can be determined by checking the

sign of the circle function as follows:

Eight way symmetry

➔ The shape of the circle is similar in each quadrant.

➔ Therefore ,if we determine the curve positions in the first quadrant ,we can generate the

circle positions in the second quadrant of xy plane.

➔ The circle sections in the third and fourth quadrant can be obtained from sections in the

first and second quadrant by considering the symmetry along X axis

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 61

➔ Conside the circle centered at the origin,if the point (x, y) is on the circle,then we can

compute 7 other points on the circle as shown in the above figure.

➔ Our decision parameter is the circle function evaluated at the midpoint between these

two pixels:

➔ Successive decision parameters are obtained using incremental calculations.

➔ We obtain a recursive expression for the next decision parameter by evaluating the circle

function at sampling position xk+1 + 1 = xk + 2:

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 62

➔ The initial decision parameter is obtained by evaluating the circle function at the start

position (x0, y0) = (0, r):

➔ If the radius r is specified as an integer, we can simply round p0 to

p0 = 1 − r (for r an integer)

because all increments are integers.

Midpoint Circle Algorithm

1. Input radius r and circle center (xc , yc), then set the coordinates for the first point on the

circumference of a circle centered on the origin as

(x0, y0) = (0, r)

2. Calculate the initial value of the decision parameter as

p0 = 1-r

3. At each xk position, starting at k = 0, perform the following test:

If pk <0, the next point along the circle centered on (0, 0) is (xk+1, yk) and

pk+1 = pk + 2xk+1 + 1

Otherwise, the next point along the circle is (xk + 1, yk − 1) and

pk+1 = pk + 2xk+1 + 1 – 2yk+1

where 2xk+1 = 2xk + 2 and 2yk+1= 2yk − 2.

4. Determine symmetry points in the other seven octants.

5. Move each calculated pixel position (x, y) onto the circular path centered at (xc , yc) and plot

the coordinate values as follows:

x = x + xc , y = y + yc

6. Repeat steps 3 through 5 until x ≥ y.

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 63

Code:

void draw_pixel(GLint cx, GLint cy)

{

 glColor3f(0.5,0.5,0.0);

 glBegin(GL_POINTS);

 glVertex2i(cx, cy);

 glEnd();

}

void plotpixels(GLint h, GLint k, GLint x, GLint y)

{

 draw_pixel(x+h, y+k);

 draw_pixel(-x+h, y+k);

 draw_pixel(x+h, -y+k);

 draw_pixel(-x+h, -y+k);

 draw_pixel(y+h, x+k);

 draw_pixel(-y+h, x+k);

 draw_pixel(y+h, -x+k);

 draw_pixel(-y+h, -x+k);

}

void circle_draw(GLint xc, GLint yc, GLint r)

{

 GLint d=1-r, x=0,y=r;

 while(y>x)

 {

 plotpixels(xc, yc, x, y);

 if(d<0) d+=2*x+3;

 else

 {

Module 1 ***SAI RAM*** Computer Graphics and OpenGL

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 64

 d+=2*(x-y)+5;

 --y;

 }

 ++x;

 }

 plotpixels(xc, yc, x, y);

}

Acknowledgements to

Donald Hearn & Pauline Baker: Computer Graphics with OpenGL

Version,3rd / 4th Edition, Pearson Education,2011

Edward Angel: Interactive Computer Graphics- A Top Down approach

with OpenGL, 5th edition. Pearson Education, 2008

M M Raiker, Computer Graphics using OpenGL, Filip learning/Elsevier

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

2.1.1 Introduction

 An useful construct for describing components of a picture is an area that is filled with

some solid color or pattern.

 A picture component of this type is typically referred to as a fill area or a filled area.

 Any fill-area shape is possible, graphics libraries generally do not support specifications

for arbitrary fill shapes

 Figure below illustrates a few possible fill-area shapes.

 Graphics routines can more efficiently process polygons than other kinds of fill shapes

because polygon boundaries are described with linear equations.

 When lighting effects and surface-shading procedures are applied, an approximated

curved surface can be displayed quite realistically.

 Approximating a curved surface with polygon facets is sometimes referred to as surface

tessellation, or fitting the surface with a polygon mesh.

2.1 Fill area Primitives:

2.1.1 Introduction

2.1.2 Polygon fill-areas,

2.1.3 OpenGL polygon Fill Area Functions,

2.1.4 Fill area attributes,

2.1.5 General scan line polygon fill algorithm,

2.1.6 OpenGL fill-area Attribute functions.

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

 Below figure shows the side and top surfaces of a metal cylinder approximated in an

outline form as a polygon mesh.

 Displays of such figures can be generated quickly as wire-frame views, showing only the

polygon edges to give a general indication of the surface structure

 Objects described with a set of polygon surface patches are usually referred to as standard

graphics objects, or just graphics objects.

2.1.2 Polygon Fill Areas

 A polygon is a plane figure specified by a set of three or more coordinate positions,

called vertices, that are connected in sequence by straight-line segments, called the edges

or sides of the polygon.

 It is required that the polygon edges have no common point other than their endpoints.

 Thus, by definition, a polygon must have all its vertices within a single plane and there

can be no edge crossings

 Examples of polygons include triangles, rectangles, octagons, and decagons

 Any plane figure with a closed-polyline boundary is alluded to as a polygon, and one

with no crossing edges is referred to as a standard polygon or a simple polygon

Problem:

 For a computer-graphics application, it is possible that a designated set of polygon

vertices do not all lie exactly in one plane

 This is due to roundoff error in the calculation of numerical values, to errors in selecting

coordinate positions for the vertices, or, more typically, to approximating a curved

surface with a set of polygonal patches

Solution:

 To divide the specified surface mesh into triangles

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

Polygon Classifications

 Polygons are classified into two types

1. Convex Polygon and

2. Concave Polygon

Convex Polygon:

 The polygon is convex if all interior angles of a polygon are less than or equal to 180◦,

where an interior angle of a polygon is an angle inside the polygon boundary that is

formed by two adjacent edges

 An equivalent definition of a convex polygon is that its interior lies completely on one

side of the infinite extension line of any one of its edges.

 Also, if we select any two points in the interior of a convex polygon, the line segment

joining the two points is also in the interior.

Concave Polygon:

 A polygon that is not convex is called a concave polygon.

Te below figure shows convex and concave polygon

 The term degenerate polygon is often used to describe a set of vertices that are collinear

or that have repeated coordinate positions.

Problems in concave polygon:

 Implementations of fill algorithms and other graphics routines are more complicated

Solution:

 It is generally more efficient to split a concave polygon into a set of convex polygons

before processing

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

Identifying Concave Polygons

Characteristics:

 A concave polygon has at least one interior angle greater than 180◦.

 The extension of some edges of a concave polygon will intersect other edges, and

 Some pair of interior points will produce a line segment that intersects the polygon

boundary

Identification algorithm 1

 Identifying a concave polygon by calculating cross-products of successive pairs of edge

vectors.

 If we set up a vector for each polygon edge, then we can use the cross-product of adjacent

edges to test for concavity. All such vector products will be of the same sign (positive or

negative) for a convex polygon.

 Therefore, if some cross-products yield a positive value and some a negative value, we

have a concave polygon

Identification algorithm 2

 Look at the polygon vertex positions relative to the extension line of any edge.

 If some vertices are on one side of the extension line and some vertices are on the other

side, the polygon is concave.

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

Splitting Concave Polygons

 Split concave polygon it into a set of convex polygons using edge vectors and edge cross-

products; or, we can use vertex positions relative to an edge extension line to determine

which vertices are on one side of this line and which are on the other.

Vector method

 First need to form the edge vectors.

 Given two consecutive vertex positions, Vk and Vk+1, we define the edge vector between

them as

Ek = Vk+1 – Vk

 Calculate the cross-products of successive edge vectors in order around the polygon

perimeter.

 If the z component of some cross-products is positive while other cross-products have a

negative z component, the polygon is concave.

 We can apply the vector method by processing edge vectors in counterclockwise order If

any cross-product has a negative z component (as in below figure), the polygon is

concave and we can split it along the line of the first edge vector in the cross-product pair

E1 = (1, 0, 0) E2 = (1, 1, 0)

E3 = (1, −1, 0) E4 = (0, 2, 0)

E5 = (−3, 0, 0) E6 = (0, −2, 0)

 Where the z component is 0, since all edges are in the xy plane.

 The crossproduct Ej × Ek for two successive edge vectors is a vector perpendicular to the

xy plane with z component equal to E jxEky − EkxE jy:

 The values for the above figure is as follows

E1 × E2 = (0, 0, 1) E2 × E3 = (0, 0, −2)

E3 × E4 = (0, 0, 2) E4 × E5 = (0, 0, 6)

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

E5 × E6 = (0, 0, 6) E6 × E1 = (0, 0, 2)

 Since the cross-product E2 × E3 has a negative z component, we split the polygon along

the line of vector E2.

 The line equation for this edge has a slope of 1 and a y intercept of −1 . No other edge

cross-products are negative, so the two new polygons are both convex.

Rotational method

 Proceeding counterclockwise around the polygon edges,

we shift the position of the polygon so that each vertex Vk

in turn is at the coordinate origin.

 We rotate the polygon about the origin in a clockwise

direction so that the next vertex Vk+1 is on the x axis.

 If the following vertex, Vk+2, is below the x axis,

the polygon is concave.

 We then split the polygon along the x axis to form two

new polygons, and we repeat the concave test for

each of the two new polygons

Splitting a Convex Polygon into a Set of Triangles

 Once we have a vertex list for a convex polygon, we could transform it into a set of

triangles.

 First define any sequence of three consecutive vertices to be a new polygon (a triangle).

 The middle triangle vertex is then deleted from the original vertex list .

 The same procedure is applied to this modified vertex list to strip off another triangle.

 We continue forming triangles in this manner until the original polygon is reduced to just

three vertices, which define the last triangle in the set.

 Concave polygon can also be divided into a set of triangles using this approach, although

care must be taken that the new diagonal edge formed by joining the first and third

selected vertices does not cross the concave portion of the polygon, and that the three

selected vertices at each step form an interior angle that is less than 180◦

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

Identifying interior and exterior region of polygon

 We may want to specify a complex fill region with intersecting edges.

 For such shapes, it is not always clear which regions of the xy plane we should call

“interior” and which regions.

 We should designate as “exterior” to the object boundaries.

 Two commonly used algorithms

1. Odd-Even rule and

2. The nonzero winding-number rule.

Inside-Outside Tests

 Also called the odd-parity rule or the even-odd rule.

 Draw a line from any position P to a distant point outside the coordinate extents of the

closed polyline.

 Then we count the number of line-segment crossings along this line.

 If the number of segments crossed by this line is odd, then P is considered to be an

interior point Otherwise, P is an exterior point

 We can use this procedure, for example,to fill the interior region between two concentric

circles or two concentric polygons with a specified color.

Nonzero Winding-Number rule

 This counts the number of times that the boundary of an object “winds” around a

particular point in the counterclockwise direction termed as winding number,

 Initialize the winding number to 0 and again imagining a line drawn from any position P

to a distant point beyond the coordinate extents of the object.

 The line we choose must not pass through any endpoint coordinates.

 As we move along the line from position P to the distant point, we count the number of

object line segments that cross the reference line in each direction

 We add 1 to the winding number every time we intersect a segment that crosses the line

in the direction from right to left, and we subtract 1 very time we intersect a segment that

crosses from left to right

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

 If the winding number is nonzero, P is considered to be an interior point. Otherwise, P is

taken to be an exterior point

 The nonzero winding-number rule tends to classify as interior some areas that the odd-

even rule deems to be exterior.

 Variations of the nonzero winding-number rule can be used to define interior regions in

other ways define a point to be interior if its winding number is positive or if it is

negative; or we could use any other rule to generate a variety of fill shapes

 Boolean operations are used to specify a fill area as a combination of two regions

 One way to implement Boolean operations is by

using a variation of the basic winding-number rule

consider the direction for each boundary to be

counterclockwise, the union of two regions would

consist of those points whose winding number is positive

 The intersection of two regions with counterclockwise

boundaries would contain those points whose

winding number is greater than 1,

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

 To set up a fill area that is the difference of two

 regions (say, A − B), we can enclose region A

 with a counterclockwise border and

 B with a clockwise border

Polygon Tables

 The objects in a scene are described as sets of polygon surface facets

 The description for each object includes coordinate information specifying the geometry

for the polygon facets and other surface parameters such as color, transparency, and light-

reflection properties.

 The data of the polygons are placed into tables that are to be used in the subsequent

processing, display, and manipulation of the objects in the scene

 These polygon data tables can be organized into two groups:

1. Geometric tables and

2. Attribute tables

 Geometric data tables contain vertex coordinates and parameters to identify the spatial

orientation of the polygon surfaces.

 Attribute information for an object includes parameters specifying the degree of

transparency of the object and its surface reflectivity and texture characteristics

 Geometric data for the objects in a scene are arranged conveniently in three lists: a vertex

table, an edge table, and a surface-facet table.

 Coordinate values for each vertex in the object are stored in the vertex table.

 The edge table contains pointers back into the vertex table to identify the vertices for

each polygon edge.

 And the surface-facet table contains pointers back into the edge table to identify the edges

for each polygon

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 10

 The object can be displayed efficiently by using data from the edge table to identify

polygon boundaries.

 An alternative arrangement is to use just two tables: a vertex table and a surface-facet

table this scheme is less convenient, and some edges could get drawn twice in a wire-

frame display.

 Another possibility is to use only a surface-facet table, but this duplicates coordinate

information, since explicit coordinate values are listed for each vertex in each polygon

facet. Also the relationship between edges and facets would have to be reconstructed

from the vertex listings in the surface-facet table.

 We could expand the edge table to include forward pointers into the surface-facet table so

that a common edge between polygons could be identifiedmore rapidly the vertex table

could be expanded to reference corresponding edges, for faster information retrieval

 Because the geometric data tables may contain extensive listings of vertices and edges for

complex objects and scenes, it is important that the data be checked for consistency and

completeness.

 Some of the tests that could be performed by a graphics package are

(1) that every vertex is listed as an endpoint for at least two edges,

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 11

(2) that every edge is part of at least one polygon,

(3) that every polygon is closed,

(4) that each polygon has at least one shared edge, and

(5) that if the edge table contains pointers to polygons, every edge referenced by a

polygon pointer has a reciprocal pointer back to the polygon.

Plane Equations

 Each polygon in a scene is contained within a plane of infinite extent.

 The general equation of a plane is

 Ax + B y + C z + D = 0

 Where,

 (x, y, z) is any point on the plane, and

 The coefficients A, B, C, and D (called plane parameters) are

 constants describing the spatial properties of the plane.

 We can obtain the values of A, B, C, and D by solving a set of three plane equations

using the coordinate values for three noncollinear points in the plane for the three

successive convex-polygon vertices, (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3), in a

counterclockwise order and solve the following set of simultaneous linear plane

equations for the ratios A/D, B/D, and C/D:

(A/D)xk + (B/D)yk + (C/D)zk = −1, k = 1, 2, 3

 The solution to this set of equations can be obtained in determinant form, using Cramer’s

rule, as

 Expanding the determinants, we can write the calculations for the plane coefficients in

the form

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 12

 It is possible that the coordinates defining a polygon facet may not be contained within a

single plane.

 We can solve this problem by dividing the facet into a set of triangles; or we could find

an approximating plane for the vertex list.

 One method for obtaining an approximating plane is to divide the vertex list into subsets,

where each subset contains three vertices, and calculate plane parameters A, B, C, Dfor

each subset.

Front and Back Polygon Faces

 The side of a polygon that faces into the object interior is called the back face, and the

visible, or outward, side is the front face .

 Every polygon is contained within an infinite plane that partitions space into two regions.

 Any point that is not on the plane and that is visible to the front face of a polygon surface

section is said to be in front of (or outside) the plane, and, thus, outside the object.

 And any point that is visible to the back face of the polygon is behind (or inside) the

plane.

 Plane equations can be used to identify the position of spatial points relative to the

polygon facets of an object.

 For any point (x, y, z) not on a plane with parameters A, B, C, D, we have

 Ax + B y + C z + D != 0

 Thus, we can identify the point as either behind or in front of a polygon surface contained

within that plane according to the sign (negative or positive) of

Ax + By + Cz + D:

if Ax + B y + C z + D < 0, the point (x, y, z) is behind the plane

if Ax + B y + C z + D > 0, the point (x, y, z) is in front of the plane

 Orientation of a polygon surface in space can be described with the normal vector for the

plane containing that polygon

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 13

 The normal vector points in a direction from inside the plane to the outside; that is, from

the back face of the polygon to the front face.

 Thus, the normal vector for this plane is N = (1, 0, 0), which is in the direction of the

positive x axis.

 That is, the normal vector is pointing from inside the cube to the outside and is

perpendicular to the plane x = 1.

 The elements of a normal vector can also be obtained using a vector crossproduct

Calculation.

 We have a convex-polygon surface facet and a right-handed Cartesian system, we again

select any three vertex positions,V1,V2, and V3, taken in counterclockwise order when

viewing from outside the object toward the inside.

 Forming two vectors, one from V1 to V2 and the second from V1 to V3, we calculate N

as the vector cross-product:

 N = (V2 − V1) × (V3 − V1)

 This generates values for the plane parameters A, B, and C.We can then obtain the value

for parameter D by substituting these values and the coordinates in

Ax + B y + C z + D = 0

 The plane equation can be expressed in vector form using the normal N and the position

P of any point in the plane as

 N·P = −D

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 14

2.1.3 OpenGL Polygon Fill-Area Functions

 A glVertex function is used to input the coordinates for a single polygon vertex, and a

complete polygon is described with a list of vertices placed between a glBegin/glEnd

pair.

 By default, a polygon interior is displayed in a solid color, determined by the current

color settings we can fill a polygon with a pattern and we can display polygon edges as

line borders around the interior fill.

 There are six different symbolic constants that we can use as the argument in the glBegin

function to describe polygon fill areas

 In some implementations of OpenGL, the following routine can be more efficient than

generating a fill rectangle using glVertex specifications:

 glRect* (x1, y1, x2, y2);

 One corner of this rectangle is at coordinate position (x1, y1), and the opposite corner of

the rectangle is at position (x2, y2).

 Suffix codes for glRect specify the coordinate data type and whether coordinates are to be

expressed as array elements.

 These codes are i (for integer), s (for short), f (for float), d (for double), and v (for

vector).

 Example

 glRecti (200, 100, 50, 250);

If we put the coordinate values for this rectangle into arrays, we can generate the

same square with the following code:

int vertex1 [] = {200, 100};

int vertex2 [] = {50, 250};

glRectiv (vertex1, vertex2);

Polygon

 With the OpenGL primitive constant GL POLYGON, we can display a single polygon

fill area.

 Each of the points is represented as an array of (x, y) coordinate values:

glBegin (GL_POLYGON);

glVertex2iv (p1);

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 15

glVertex2iv (p2);

glVertex2iv (p3);

glVertex2iv (p4);

glVertex2iv (p5);

glVertex2iv (p6);

glEnd ();

 A polygon vertex list must contain at least three vertices. Otherwise, nothing is displayed.

(a) A single convex polygon fill area generated with the primitive constant GL POLYGON. (b)

Two unconnected triangles generated with GL TRIANGLES.

(c) Four connected triangles generated with GL TRIANGLE STRIP.

(d) Four connected triangles generated with GL TRIANGLE FAN.

Triangles

 Displays the trianlges.

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 16

 Three primitives in triangles, GL_TRIANGLES, GL_TRIANGLE_FAN,

GL_TRIANGLE_STRIP

glBegin (GL_TRIANGLES);

glVertex2iv (p1);

glVertex2iv (p2);

glVertex2iv (p6);

glVertex2iv (p3);

glVertex2iv (p4);

glVertex2iv (p5);

glEnd ();

 In this case, the first three coordinate points define the vertices for one triangle, the next

three points define the next triangle, and so forth.

 For each triangle fill area, we specify the vertex positions in a counterclockwise order

triangle strip

glBegin (GL_TRIANGLE_STRIP);

glVertex2iv (p1);

glVertex2iv (p2);

glVertex2iv (p6);

glVertex2iv (p3);

glVertex2iv (p5);

glVertex2iv (p4);

glEnd ();

 Assuming that no coordinate positions are repeated in a list of N vertices, we obtain N − 2

triangles in the strip. Clearly, we must have N ≥ 3 or nothing is displayed.

 Each successive triangle shares an edge with the previously defined triangle, so the

ordering of the vertex list must be set up to ensure a consistent display.

 Example, our first triangle (n = 1) would be listed as having vertices (p1, p2, p6). The

second triangle (n = 2) would have the vertex ordering (p6, p2, p3). Vertex ordering for

the third triangle (n = 3) would be (p6, p3, p5). And the fourth triangle (n = 4) would be

listed in the polygon tables with vertex ordering (p5, p3, p4).

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 17

Triangle Fan

 Another way to generate a set of connected triangles is to use the “fan” Approach

glBegin (GL_TRIANGLE_FAN);

glVertex2iv (p1);

glVertex2iv (p2);

glVertex2iv (p3);

glVertex2iv (p4);

glVertex2iv (p5);

glVertex2iv (p6);

glEnd ();

 For N vertices, we again obtain N−2 triangles, providing no vertex positions are repeated,

and we must list at least three vertices be specified in the proper order to define front and

back faces for each triangle correctly.

 Therefore, triangle 1 is defined with the vertex list (p1, p2, p3); triangle 2 has the vertex

ordering (p1, p3, p4); triangle 3 has its vertices specified in the order (p1, p4, p5); and

triangle 4 is listed with vertices (p1, p5, p6).

Quadrilaterals

 OpenGL provides for the specifications of two types of quadrilaterals.

 With the GL QUADS primitive constant and the following list of eight vertices, specified

as two-dimensional coordinate arrays, we can generate the display shown in Figure (a):

glBegin (GL_QUADS);

glVertex2iv (p1);

glVertex2iv (p2);

glVertex2iv (p3);

glVertex2iv (p4);

glVertex2iv (p5);

glVertex2iv (p6);

glVertex2iv (p7);

glVertex2iv (p8);

glEnd ();

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 18

 Rearranging the vertex list in the previous quadrilateral code example and changing the

primitive constant to GL QUAD STRIP, we can obtain the set of connected quadrilaterals

shown in Figure (b):

glBegin (GL_QUAD_STRIP);

glVertex2iv (p1);

glVertex2iv (p2);

glVertex2iv (p4);

glVertex2iv (p3);

glVertex2iv (p5);

glVertex2iv (p6);

glVertex2iv (p8);

glVertex2iv (p7);

glEnd ();

 For a list of N vertices, we obtain N/2− 1 quadrilaterals, providing that N ≥ 4. Thus, our

first quadrilateral (n = 1) is listed as having a vertex ordering of (p1, p2, p3, p4). The

second quadrilateral (n=2) has the vertex ordering (p4, p3, p6, p5), and the vertex

ordering for the third quadrilateral (n=3) is (p5, p6, p7, p8).

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 19

2.1.4 Fill-Area Attributes

 We can fill any specified regions, including circles, ellipses, and other objects with

curved boundaries

Fill Styles

 A basic fill-area attribute provided by a general graphics library is the display style of the

interior.

 We can display a region with a single color, a specified fill pattern, or in a “hollow” style

by showing only the boundary of the region

 We can also fill selected regions of a scene using various brush styles, color-blending

combinations, or textures.

 For polygons, we could show the edges in different colors, widths, and styles; and we can

select different display attributes for the front and back faces of a region.

 Fill patterns can be defined in rectangular color arrays that list different colors for

different positions in the array.

 An array specifying a fill pattern is a mask that is to be applied to the display area.

 The mask is replicated in the horizontal and vertical directions until the display area is

filled with nonoverlapping copies of the pattern.

 This process of filling an area with a rectangular pattern is called tiling, and a rectangular

fill pattern is sometimes referred to as a tiling pattern predefined fill patterns are available

in a system, such as the hatch fill patterns

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 20

 Hatch fill could be applied to regions by drawing sets of line segments to display either

single hatching or crosshtching

Color-Blended Fill Regions

 Color-blended regions can be implemented using either transparency factors to control

the blending of background and object colors, or using simple logical or replace

operations as shown in figure

 The linear soft-fill algorithm repaints an area that was originally painted by merging a

foreground color F with a single background color B, where F != B.

 The current color P of each pixel within the area to be refilled is some linear combination

of F and B:

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 21

 P = tF + (1 − t)B

 Where the transparency factor t has a value between 0 and 1 for each pixel.

 For values of t less than 0.5, the background color contributes more to the interior color

of the region than does the fill color.

 If our color values are represented using separate red, green, and blue (RGB)

components, each component of the colors, with

P = (PR, PG, PB), F = (FR, FG, FB), B = (BR, BG, BB) is used

 We can thus calculate the value of parameter t using one of the RGB color components as

follows:

 Where k = R, G, or B; and Fk != Bk .

 When two background colors B1 and B2 are mixed with foreground color F, the resulting

pixel color P is

 P = t0F + t1B1 + (1 − t0 − t1)B2

 Where the sum of the color-term coefficients t0, t1, and (1 − t0 − t1) must equal 1.

 With three background colors and one foreground color, or with two background and two

foreground colors, we need all three RGB equations to obtain the relative amounts of the

four colors.

2.1.5 General Scan-Line Polygon-Fill Algorithm

 A scan-line fill of a region is performed by first determining the intersection positions of

the boundaries of the fill region with the screen scan lines.

 Then the fill colors are applied to each section of a scan line that lies within the interior of

the fill region.

 The simplest area to fill is a polygon because each scanline intersection point with a

polygon boundary is obtained by solving a pair of simultaneous linear equations, where

the equation for the scan line is simply y = constant.

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 22

 Figure above illustrates the basic scan-line procedure for a solid-color fill of a polygon.

 For each scan line that crosses the polygon, the edge intersections are sorted from left to

right, and then the pixel positions between, and including, each intersection pair are set to

the specified fill color the fill color is applied to the five pixels from x = 10 to x = 14 and

to the seven pixels from x = 18 to x = 24.

 Whenever a scan line passes through a vertex, it intersects two polygon edges at that

point.

 In some cases, this can result in an odd number of boundary intersections for a scan line.

 Scan line y’ intersects an even number of edges, and the two pairs of intersection points

along this scan line correctly identify the interior pixel spans.

 But scan line y intersects five polygon edges.

 Thus, as we process scan lines, we need to distinguish between these cases.

 For scan line y, the two edges sharing an intersection vertex are on opposite sides of the

scan line.

 But for scan line y’, the two intersecting edges are both above the scan line.

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 23

 Thus, a vertex that has adjoining edges on opposite sides of an intersecting scan line

should be counted as just one boundary intersection point.

 If the three endpoint y values of two consecutive edges monotonically increase or

decrease, we need to count the shared (middle) vertex as a single intersection point for

the scan line passing through that vertex.

 Otherwise, the shared vertex represents a local extremum (minimum or maximum) on the

polygon boundary, and the two edge intersections with the scan line passing through that

vertex can be added to the intersection list.

 One method for implementing the adjustment to the vertex-intersection count is to

shorten some polygon edges to split those vertices that should be counted as one

intersection.

 We can process nonhorizontal edges around the polygon boundary in the order specified,

either clockwise or counterclockwise.

 Adjusting endpoint y values for a polygon, as we process edges in order around the

polygon perimeter. The edge currently being processed is indicated as a solid line

In (a), the y coordinate of the upper endpoint of the current edge is decreased by 1. In

(b), the y coordinate of the upper endpoint of the next edge is decreased by 1.

 Coherence properties can be used in computer-graphics algorithms to reduce processing.

 Coherence methods often involve incremental calculations applied along a single scan

line or between successive scan lines

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 24

 The slope of this edge can be expressed in terms of the scan-line intersection coordinates:

 Because the change in y coordinates between the two scan lines is simply

 y k+1 − yk = 1

 The x-intersection value xk+1 on the upper scan line can be determined from the x-

intersection value xk on the preceding scan line as

 Each successive x intercept can thus be calculated by adding the inverse of the slope and

rounding to the nearest integer.

 Along an edge with slope m, the intersection xk value for scan line k above the initial scan

line can be calculated as

 xk = x0 +k/m

 Where, m is the ratio of two integers

 Where Δx and Δy are the differences between the edge endpoint x and y coordinate

values.

 Thus, incremental calculations of x intercepts along an edge for successive scan lines can

be expressed as

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 25

 To perform a polygon fill efficiently, we can first store the polygon boundary in a sorted

edge table that contains all the information necessary to process the scan lines efficiently.

 Proceeding around the edges in either a clockwise or a counterclockwise order, we can

use a bucket sort to store the edges, sorted on the smallest y value of each edge, in the

correct scan-line positions.

 Only nonhorizontal edges are entered into the sorted edge table.

 Each entry in the table for a particular scan line contains the maximum y value for that

edge, the x-intercept value (at the lower vertex) for the edge, and the inverse slope of the

edge. For each scan line, the edges are in sorted order fromleft to right

 We process the scan lines from the bottom of the polygon to its top, producing an active

edge list for each scan line crossing the polygon boundaries.

 The active edge list for a scan line contains all edges crossed by that scan line, with

iterative coherence calculations used to obtain the edge intersections

 Implementation of edge-intersection calculations can be facilitated by storing Δx and Δy

values in the sorted edge list

2.1.6 OpenGL Fill-Area Attribute Functions

 We generate displays of filled convex polygons in four steps:

1. Define a fill pattern.

2. Invoke the polygon-fill routine.

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 26

3. Activate the polygon-fill feature of OpenGL.

4. Describe the polygons to be filled.

 A polygon fill pattern is displayed up to and including the polygon edges. Thus, there are

no boundary lines around the fill region unless we specifically add them to the display

OpenGL Fill-Pattern Function

 To fill the polygon with a pattern in OpenGL, we use a 32 × 32 bit mask.

 A value of 1 in the mask indicates that the corresponding pixel is to be set to the current

color, and a 0 leaves the value of that frame-buffer position unchanged.

 The fill pattern is specified in unsigned bytes using the OpenGL data type Glubyte

GLubyte fillPattern [] = { 0xff, 0x00, 0xff, 0x00, ... };

 The bits must be specified starting with the bottom row of the pattern, and continuing up

to the topmost row (32) of the pattern.

 This pattern is replicated across the entire area of the display window, starting at the

lower-left window corner, and specified polygons are filled where the pattern overlaps

those polygons

 Once we have set a mask, we can establish it as the current fill pattern with the function

glPolygonStipple (fillPattern);

 We need to enable the fill routines before we specify the vertices for the polygons that are

to be filled with the current pattern

glEnable (GL_POLYGON_STIPPLE);

 Similarly, we turn off pattern filling with

glDisable (GL_POLYGON_STIPPLE);

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 27

OpenGL Texture and Interpolation Patterns

 Another method for filling polygons is to use texture patterns.

 This can produce fill patterns that simulate the surface appearance of wood, brick,

brushed steel, or some other material.

 We assign different colors to polygon vertices.

 Interpolation fill of a polygon interior is used to produce realistic displays of shaded

surfaces under various lighting conditions.

 The polygon fill is then a linear interpolation of the colors at the vertices:

glShadeModel (GL_SMOOTH);

glBegin (GL_TRIANGLES);

glColor3f (0.0, 0.0, 1.0);

glVertex2i (50, 50);

glColor3f (1.0, 0.0, 0.0);

glVertex2i (150, 50);

glColor3f (0.0, 1.0, 0.0);

glVertex2i (75, 150);

glEnd ();

OpenGL Wire-Frame Methods

 We can also choose to show only polygon edges. This produces a wire-frame or hollow

display of the polygon; or we could display a polygon by plotting a set of points only at

the vertex positions.

 These options are selected with the function

glPolygonMode (face, displayMode);

 We use parameter face to designate which face of the polygon that we want to show as

edges only or vertices only.

 This parameter is then assigned either

GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK.

 If we want only the polygon edges displayed for our selection, we assign the constant

GL_LINE to parameter displayMode.

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 28

 To plot only the polygon vertex points, we assign the constant GL_POINT to parameter

displayMode.

 Another option is to display a polygon with both an interior fill and a different color or

pattern for its edges.

 The following code section fills a polygon interior with a green color, and then the edges

are assigned a red color:

glColor3f (0.0, 1.0, 0.0);

/* Invoke polygon-generating routine. */

glColor3f (1.0, 0.0, 0.0);

glPolygonMode (GL_FRONT, GL_LINE);

/* Invoke polygon-generating routine again. */

 For a three-dimensional polygon (one that does not have all vertices in the xy plane), this

method for displaying the edges of a filled polygon may produce gaps along the edges.

 This effect, sometimes referred to as stitching.

 One way to eliminate the gaps along displayed edges of a three-dimensional polygon is to

shift the depth values calculated by the fill routine so that they do not overlap with the

edge depth values for that polygon.

 We do this with the following two OpenGL functions:

glEnable (GL_POLYGON_OFFSET_FILL);

glPolygonOffset (factor1, factor2);

 The first function activates the offset routine for scan-line filling, and the second function

is used to set a couple of floating-point values factor1 and factor2 that are used to

calculate the amount of depth offset.

 The calculation for this depth offset is

depthOffset = factor1 · maxSlope + factor2 · const

 Where,

maxSlope is the maximum slope of the polygon and

const is an implementation constant

 As an example of assigning values to offset factors, we can modify the previous code

segment as follows:

glColor3f (0.0, 1.0, 0.0);

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 29

glEnable (GL_POLYGON_OFFSET_FILL);

glPolygonOffset (1.0, 1.0);

/* Invoke polygon-generating routine. */

glDisable (GL_POLYGON_OFFSET_FILL);

glColor3f (1.0, 0.0, 0.0);

glPolygonMode (GL_FRONT, GL_LINE);

/* Invoke polygon-generating routine again. */

 Another method for eliminating the stitching effect along polygon edges is to use the

OpenGL stencil buffer to limit the polygon interior filling so that it does not overlap the

edges.

 To display a concave polygon using OpenGL routines, we must first split it into a set of

convex polygons.

 We typically divide a concave polygon into a set of triangles. Then we could display the

triangles.

Dividing a concave polygon (a) into a set of triangles (b) produces triangle edges (dashed) that

are interior to the original polygon.

 Fortunately, OpenGL provides a mechanism that allows us to eliminate selected edges

from a wire-frame display.

 So all we need do is set that bit flag to “off” and the edge following that vertex will not

be displayed.

 We set this flag for an edge with the following function:

glEdgeFlag (flag)

 To indicate that a vertex does not precede a boundary edge, we assign the OpenGL

constant GL_FALSE to parameter flag.

Module 2 ***SAI RAM*** Fill Area Primitives

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 30

 This applies to all subsequently specified vertices until the next call to glEdgeFlag is

made.

 The OpenGL constant GL_TRUE turns the edge flag on again, which is the default.

 As an illustration of the use of an edge flag, the following code displays only two edges

of the defined triangle

glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);

glBegin (GL_POLYGON);

glVertex3fv (v1);

glEdgeFlag (GL_FALSE);

glVertex3fv (v2);

glEdgeFlag (GL_TRUE);

glVertex3fv (v3);

glEnd ();

 Polygon edge flags can also be specified in an array that could be combined or associated

with a vertex array.

 The statements for creating an array of edge flags are

glEnableClientState (GL_EDGE_FLAG_ARRAY);

glEdgeFlagPointer (offset, edgeFlagArray);

OpenGL Front-Face Function

 We can label selected surfaces in a scene independently as front or back with the function

glFrontFace (vertexOrder);

 If we set parameter vertexOrder to the OpenGL constant GL_CW, then a subsequently

defined polygon with a clockwise ordering.

 The constant GL_CCW labels a counterclockwise ordering of polygon vertices as front-

facing, which is the default ordering.r its vertices is considered to be front-facing

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

Two-Dimensional Geometric Transformations

Operations that are applied to the geometric description of an object to change its

position, orientation, or size are called geometric transformations.

2.2.1 Basic Two-Dimensional Geometric Transformations

The geometric-transformation functions that are available in all graphics packages are

those for translation, rotation, and scaling.

Two-Dimensional Translation

 We perform a translation on a single coordinate point by adding offsets to its

coordinates so as to generate a new coordinate position.

 We are moving the original point position along a straight-line path to its new location.

 To translate a two-dimensional position, we add translation distances tx and ty to the

original coordinates (x, y) to obtain the new coordinate position (x’, y’) as shown in

Figure

2.2 2DGeometric Transformations:

2.2.1 Basic 2D Geometric Transformations,

2.2.2 Matrix representations and homogeneous coordinates.

2.2.3 Inverse transformations,

2.2.4 2DComposite transformations,

2.2.5 Other 2D transformations,

2.2.6 Raster methods for geometric transformations,

2.2.7 OpenGL raster transformations

2.2.8 OpenGL geometric transformations function,

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

 The translation values of x’ and y’ is calculated as

 The translation distance pair (tx, ty) is called a translation vector or shift vector Column

vector representation is given as

 This allows us to write the two-dimensional translation equations in the matrix Form

 Translation is a rigid-body transformation that moves objects without deformation.

Code:

class wcPt2D {

public:

GLfloat x, y;

};

void translatePolygon (wcPt2D * verts, GLint nVerts, GLfloat tx, GLfloat ty)

{

GLint k;

for (k = 0; k < nVerts; k++) {

verts [k].x = verts [k].x + tx;

verts [k].y = verts [k].y + ty;

}

glBegin (GL_POLYGON);

for (k = 0; k < nVerts; k++)

glVertex2f (verts [k].x, verts [k].y);

glEnd ();

}

Two-Dimensional Rotation

 We generate a rotation transformation of an object by specifying a rotation axis and a

rotation angle.

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

 A two-dimensional rotation of an object is obtained by repositioning the object along a

circular path in the xy plane.

 In this case, we are rotating the object about a rotation axis that is perpendicular to the xy

plane (parallel to the coordinate z axis).

 Parameters for the two-dimensional rotation are the rotation angle θ and a position

(xr, yr), called the rotation point (or pivot point), about which the object is to be rotated

 A positive value for the angle θ defines a counterclockwise rotation about the pivot point,

as in above Figure , and a negative value rotates objects in the clockwise direction.

 The angular and coordinate relationships of the original and transformed point positions

are shown in Figure

 In this figure, r is the constant distance of the point from the origin, angle φ is the original

angular position of the point from the horizontal, and θ is the rotation angle.

 we can express the transformed coordinates in terms of angles θ and φ as

 The original coordinates of the point in polar coordinates are

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

 Substituting expressions of x and y in the eaquations of x’ and y’ we get

 We can write the rotation equations in the matrix form

P’ = R· P

Where the rotation matrix is,

 Rotation of a point about an arbitrary pivot position is illustrated in Figure

 The transformation equations for rotation of a point about any specified rotation position

(xr , yr):

Code:

class wcPt2D {

public:

GLfloat x, y;

};

void rotatePolygon (wcPt2D * verts, GLint nVerts, wcPt2D pivPt, GLdouble theta)

{

wcPt2D * vertsRot;

GLint k;

for (k = 0; k < nVerts; k++) {

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

vertsRot [k].x = pivPt.x + (verts [k].x - pivPt.x) * cos (theta) - (verts [k].y -

pivPt.y) * sin (theta);

vertsRot [k].y = pivPt.y + (verts [k].x - pivPt.x) * sin (theta) + (verts [k].y -

pivPt.y) * cos (theta);

}

glBegin (GL_POLYGON);

for (k = 0; k < nVerts; k++)

glVertex2f (vertsRot [k].x, vertsRot [k].y);

glEnd ();

}

Two-Dimensional Scaling

 To alter the size of an object, we apply a scaling transformation.

 A simple twodimensional scaling operation is performed by multiplying object positions

(x, y) by scaling factors sx and sy to produce the transformed coordinates (x’, y’):

 The basic two-dimensional scaling equations can also be written in the following matrix

form

 Where S is the 2 × 2 scaling matrix

 Any positive values can be assigned to the scaling factors sx and sy.

 Values less than 1 reduce the size of objects

 Values greater than 1 produce enlargements.

 Specifying a value of 1 for both sx and sy leaves the size of objects unchanged.

 When sx and sy are assigned the same value, a uniform scaling is produced, which

maintains relative object proportions.

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

 Unequal values for sx and sy result in a differential scaling that is often used in design

applications.

 In some systems, negative values can also be specified for the scaling parameters. This

not only resizes an object, it reflects it about one or more of the coordinate axes.

 Figure below illustrates scaling of a line by assigning the value 0.5 to both sx and sy

 We can control the location of a scaled object by choosing a position, called the fixed

point, that is to remain unchanged after the scaling transformation.

 Coordinates for the fixed point, (x f , yf), are often chosen at some object position, such

as its centroid but any other spatial position can be selected.

 For a coordinate position (x, y), the scaled coordinates (x’, y’) are then calculated from

the following relationships:

 We can rewrite Equations to separate the multiplicative and additive terms as

 Where the additive terms x f (1 − sx) and yf (1 − sy) are constants for all points in the

object.

Code:

class wcPt2D {

public:

GLfloat x, y;

};

void scalePolygon (wcPt2D * verts, GLint nVerts, wcPt2D fixedPt, GLfloat sx, GLfloat sy)

{

wcPt2D vertsNew;

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

GLint k;

for (k = 0; k < nVerts; k++) {

vertsNew [k].x = verts [k].x * sx + fixedPt.x * (1 - sx);

vertsNew [k].y = verts [k].y * sy + fixedPt.y * (1 - sy);

}

glBegin (GL_POLYGON);

for (k = 0; k < nVerts; k++)

glVertex2f (vertsNew [k].x, vertsNew [k].y);

glEnd ();

}

2.2.2 Matrix Representations and Homogeneous Coordinates

 Each of the three basic two-dimensional transformations (translation, rotation, and

scaling) can be expressed in the general matrix form

 With coordinate positions P and P’ represented as column vectors.

 Matrix M1 is a 2 × 2 array containing multiplicative factors, and M2 is a two-element

column matrix containing translational terms.

 For translation, M1 is the identity matrix.

 For rotation or scaling, M2 contains the translational terms associated with the pivot

point or scaling fixed point.

Homogeneous Coordinates

 Multiplicative and translational terms for a two-dimensional geometric transformation

can be combined into a single matrix if we expand the representations to 3 × 3 matrices

 We can use the third column of a transformation matrix for the translation terms, and all

transformation equations can be expressed as matrix multiplications.

 We also need to expand the matrix representation for a two-dimensional coordinate

position to a three-element column matrix

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

 A standard technique for accomplishing this is to expand each twodimensional

coordinate-position representation (x, y) to a three-element representation (xh, yh, h),

called homogeneous coordinates, where the homogeneous parameter h is a nonzero

value such that

 A general two-dimensional homogeneous coordinate representation could also be written

as (h·x, h·y, h).

 A convenient choice is simply to set h = 1. Each two-dimensional position is then

represented with homogeneous coordinates (x, y, 1).

 The term homogeneous coordinates is used in mathematics to refer to the effect of this

representation on Cartesian equations.

Two-Dimensional Translation Matrix

 The homogeneous-coordinate for translation is given by

 This translation operation can be written in the abbreviated form

 with T(tx, ty) as the 3 × 3 translation matrix

Two-Dimensional Rotation Matrix

 Two-dimensional rotation transformation equations about the coordinate origin can be

expressed in the matrix form

 The rotation transformation operator R(θ) is the 3 × 3 matrix with rotation parameter θ.

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

Two-Dimensional Scaling Matrix

 A scaling transformation relative to the coordinate origin can now be expressed as the

matrix multiplication

 The scaling operator S(sx, sy) is the 3 × 3 matrix with parameters sx and sy

2.2.3 Inverse Transformations

 For translation,we obtain the inverse matrix by negating the translation distances. Thus, if

we have two-dimensional translation distances tx and ty, the inverse translation matrix is

 An inverse rotation is accomplished by replacing the rotation angle by its negative.

 A two-dimensional rotation through an angle θ about the coordinate origin has the

inverse transformation matrix

 We form the inverse matrix for any scaling transformation by replacing the scaling

parameters with their reciprocals. the inverse transformation matrix is

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 10

2.2.4 Two-Dimensional Composite Transformations

 Forming products of transformation matrices is often referred to as a concatenation, or

composition, of matrices if we want to apply two transformations to point position P, the

transformed location would be calculated as

 The coordinate position is transformed using the composite matrixM, rather than

applying the individual transformations M1 and thenM2.

Composite Two-Dimensional Translations

 If two successive translation vectors (t1x, t1y) and (t2x, t2y) are applied to a

twodimensional coordinate position P, the final transformed location P’ is calculated as

where P and P’ are represented as three-element, homogeneous-coordinate

column vectors

 Also, the composite transformation matrix for this sequence of translations is

Composite Two-Dimensional Rotations

 Two successive rotations applied to a point P produce the transformed position

 By multiplying the two rotation matrices, we can verify that two successive rotations are

additive:

R(θ2) · R(θ1) = R(θ1 + θ2)

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 11

 So that the final rotated coordinates of a point can be calculated with the composite

rotation matrix as

P’ = R(θ1 + θ2) · P

Composite Two-Dimensional Scalings

 Concatenating transformation matrices for two successive scaling operations in two

dimensions produces the following composite scaling matrix

General Two-Dimensional Pivot-Point Rotation

 We can generate a two-dimensional rotation about any other pivot point (xr , yr) by

performing the following sequence of translate-rotate-translate operations:

1. Translate the object so that the pivot-point position is moved to the coordinate origin.

2. Rotate the object about the coordinate origin.

3. Translate the object so that the pivot point is returned to its original position.

 The composite transformation matrix for this sequence is obtained with the concatenation

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 12

which can be expressed in the form

where T(−xr , −yr) = T
−1

(xr , yr).

General Two-Dimensional Fixed-Point Scaling

 To produce a two-dimensional scaling with respect to a selected fixed position (x f , yf),

when we have a function that can scale relative to the coordinate origin only. This

sequence is

1. Translate the object so that the fixed point coincides with the coordinate origin.

2. Scale the object with respect to the coordinate origin.

3. Use the inverse of the translation in step (1) to return the object to its original position.

 Concatenating the matrices for these three operations produces the required scaling

matrix:

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 13

General Two-Dimensional Scaling Directions

 Parameters sx and sy scale objects along the x and y directions.

 We can scale an object in other directions by rotating the object to align the desired

scaling directions with the coordinate axes before applying the scaling transformation.

 Suppose we want to apply scaling factors with values specified by parameters s1 and s2

in the directions shown in Figure

 The composite matrix resulting from the product of these three transformations is

Matrix Concatenation Properties

Property 1:

 Multiplication of matrices is associative.

 For any three matrices,M1,M2, andM3, the matrix product M3 · M2 · M1 can be

performed by first multiplying M3 and M2 or by first multiplyingM2 and M1:

M3 ·M2 ·M1 = (M3 ·M2) ·M1 = M3 · (M2 ·M1)

 We can construct a composite matrix either by multiplying from left to right

(premultiplying) or by multiplying from right to left (postmultiplying)

Property 2:

 Transformation products, on the other hand, may not be commutative. The matrix

productM2 ·M1 is not equal toM1 ·M2, in general.

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 14

 This means that if we want to translate and rotate an object, we must be careful about the

order in which the composite matrix is evaluated

 Reversing the order in which a sequence of transformations is performed may affect the

transformed position of an object. In (a), an object is first translated in the x direction,

then rotated counterclockwise through an angle of 45◦. In (b), the object is first rotated

45◦ counterclockwise, then translated in the x direction.

General Two-Dimensional Composite Transformations and Computational Efficiency

 A two-dimensional transformation, representing any combination of translations,

rotations, and scalings, can be expressed as

 The four elements rsjk are the multiplicative rotation-scaling terms in the transformation,

which involve only rotation angles and scaling factors if an object is to be scaled and

rotated about its centroid coordinates (xc , yc) and then translated, the values for the

elements of the composite transformation matrix are

 Although the above matrix requires nine multiplications and six additions, the explicit

calculations for the transformed coordinates are

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 15

 We need actually perform only four multiplications and four additions to transform

coordinate positions.

 Because rotation calculations require trigonometric evaluations and several

multiplications for each transformed point, computational efficiency can become an

important consideration in rotation transformations

 If we are rotating in small angular steps about the origin, for instance, we can set cos θ to

1.0 and reduce transformation calculations at each step to two multiplications and two

additions for each set of coordinates to be rotated.

 These rotation calculations are

x’= x − y sin θ, y’ = x sin θ + y

Two-Dimensional Rigid-Body Transformation

 If a transformation matrix includes only translation and rotation parameters, it is a rigid-

body transformation matrix.

 The general form for a two-dimensional rigid-body transformation matrix is

where the four elements r jk are the multiplicative rotation terms, and the elements trx

 and try are the translational terms

 A rigid-body change in coordinate position is also sometimes referred to as a rigid-

motion transformation.

 In addition, the above matrix has the property that its upper-left 2 × 2 submatrix is an

orthogonal matrix.

 If we consider each row (or each column) of the submatrix as a vector, then the two row

vectors (rxx, rxy) and (ryx, ryy) (or the two column vectors) form an orthogonal set of

unit vectors.

 Such a set of vectors is also referred to as an orthonormal vector set. Each vector has unit

length as follows

and the vectors are perpendicular (their dot product is 0):

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 16

 Therefore, if these unit vectors are transformed by the rotation submatrix, then the vector

(rxx, rxy) is converted to a unit vector along the x axis and the vector (ryx, ryy) is

transformed into a unit vector along the y axis of the coordinate system

 For example, the following rigid-body transformation first rotates an object through an

angle θ about a pivot point (xr , yr) and then translates the object

 Here, orthogonal unit vectors in the upper-left 2×2 submatrix are (cos θ, −sin θ) and (sin

θ, cos θ).

Constructing Two-Dimensional Rotation Matrices

 The orthogonal property of rotation matrices is useful for constructing the matrix when

we know the final orientation of an object, rather than the amount of angular rotation

necessary to put the object into that position.

 We might want to rotate an object to align its axis of symmetry with the viewing

(camera) direction, or we might want to rotate one object so that it is above another

object.

 Figure shows an object that is to be aligned with the unit direction vectors u_ and v

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 17

The rotation matrix for revolving an object from position (a) to position (b) can be constructed

with the values of the unit orientation vectors u’ and v’ relative to the original orientation.

2.2.5 Other Two-Dimensional Transformations

Two such transformations

1. Reflection and

2. Shear.

Reflection

 A transformation that produces a mirror image of an object is called a reflection.

 For a two-dimensional reflection, this image is generated relative to an axis of reflection

by rotating the object 180◦ about the reflection axis.

 Reflection about the line y = 0 (the x axis) is accomplished with the transformation

Matrix

 This transformation retains x values, but “flips” the y values of coordinate positions.

 The resulting orientation of an object after it has been reflected about the x axis is shown

in Figure

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 18

 A reflection about the line x = 0 (the y axis) flips x coordinates while keeping y

coordinates the same. The matrix for this transformation is

 Figure below illustrates the change in position of an object that has been reflected about

the line x = 0.

 We flip both the x and y coordinates of a point by reflecting relative to an axis that is

perpendicular to the xy plane and that passes through the coordinate origin the matrix

representation for this reflection is

 An example of reflection about the origin is shown in Figure

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 19

 If we choose the reflection axis as the diagonal line y = x (Figure below), the reflection

matrix is

 To obtain a transformation matrix for reflection about the diagonal y = −x, we could

concatenate matrices for the transformation sequence:

(1) clockwise rotation by 45◦,

(2) reflection about the y axis, and

(3) counterclockwise rotation by 45◦.

The resulting transformation matrix is

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 20

Shear

 A transformation that distorts the shape of an object such that the transformed shape

appears as if the object were composed of internal layers that had been caused to slide

over each other is called a shear.

 Two common shearing transformations are those that shift coordinate x values and those

that shift y values. An x-direction shear relative to the x axis is produced with the

transformation Matrix

which transforms coordinate positions as

 Any real number can be assigned to the shear parameter shx Setting parameter shx to the

value 2, for example, changes the square into a parallelogram is shown below. Negative

values for shx shift coordinate positions to the left.

A unit square (a) is converted to a parallelogram (b) using the x -direction shear with shx = 2.

 We can generate x-direction shears relative to other reference lines with

Now, coordinate positions are transformed as

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 21

 A y-direction shear relative to the line x = xref is generated with the transformation

Matrix

which generates the transformed coordinate values

2.2.6 Raster Methods for Geometric Transformations

 Raster systems store picture information as color patterns in the frame buffer.

 Therefore, some simple object transformations can be carried out rapidly by manipulating

an array of pixel values

 Few arithmetic operations are needed, so the pixel transformations are particularly

efficient.

 Functions that manipulate rectangular pixel arrays are called raster operations and

moving a block of pixel values from one position to another is termed a block transfer, a

bitblt, or a pixblt.

 Figure below illustrates a two-dimensional translation implemented as a block transfer of

a refresh-buffer area

Translating an object from screen position (a) to the destination position shown in (b) by moving

a rectangular block of pixel values. Coordinate positions Pmin and Pmax specify the limits of the

rectangular block to be moved, and P0 is the destination reference position.

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 22

 Rotations in 90-degree increments are accomplished easily by rearranging the elements

of a pixel array.

 We can rotate a two-dimensional object or pattern 90◦ counterclockwise by reversing the

pixel values in each row of the array, then interchanging rows and columns.

 A 180◦ rotation is obtained by reversing the order of the elements in each row of the

array, then reversing the order of the rows.

 Figure below demonstrates the array manipulations that can be used to rotate a pixel

block by 90◦ and by 180◦.

 For array rotations that are not multiples of 90◦, we need to do some extra processing.

 The general procedure is illustrated in Figure below.

 Each destination pixel area is mapped onto the rotated array and the amount of overlap

with the rotated pixel areas is calculated.

 A color for a destination pixel can then be computed by averaging the colors of the

overlapped source pixels, weighted by their percentage of area overlap.

 Pixel areas in the original block are scaled, using specified values for sx and sy, and then

mapped onto a set of destination pixels.

 The color of each destination pixel is then assigned according to its area of overlap with

the scaled pixel areas

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 23

2.2.7 OpenGL Raster Transformations

 A translation of a rectangular array of pixel-color values from one buffer area to another

can be accomplished in OpenGL as the following copy operation:

glCopyPixels (xmin, ymin, width, height, GL_COLOR);

 The first four parameters in this function give the location and dimensions of the pixel

block; and the OpenGL symbolic constant GL_COLOR specifies that it is color values

are to be copied.

 A block of RGB color values in a buffer can be saved in an array with the function

glReadPixels (xmin, ymin, width, height, GL_RGB, GL_UNSIGNED_BYTE, colorArray);

 If color-table indices are stored at the pixel positions, we replace the constant GL RGB

with GL_COLOR_INDEX.

 To rotate the color values, we rearrange the rows and columns of the color array, as

described in the previous section. Then we put the rotated array back in the buffer with

glDrawPixels (width, height, GL_RGB, GL_UNSIGNED_BYTE, colorArray);

 A two-dimensional scaling transformation can be performed as a raster operation in

OpenGL by specifying scaling factors and then invoking either glCopyPixels or

glDrawPixels.

 For the raster operations, we set the scaling factors with

glPixelZoom (sx, sy);

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 24

 We can also combine raster transformations with logical operations to produce various

effects with the exclusive or operator

2.2.8 OpenGL Functions for Two-Dimensional Geometric Transformations

 To perform a translation, we invoke the translation routine and set the components for the

three-dimensional translation vector.

 In the rotation function, we specify the angle and the orientation for a rotation axis that

intersects the coordinate origin.

 In addition, a scaling function is used to set the three coordinate scaling factors relative to

the coordinate origin. In each case, the transformation routine sets up a 4 × 4 matrix that

is applied to the coordinates of objects that are referenced after the transformation call

Basic OpenGL Geometric Transformations

 A 4× 4 translation matrix is constructed with the following routine:

glTranslate* (tx, ty, tz);

 Translation parameters tx, ty, and tz can be assigned any real-number

values, and the single suffix code to be affixed to this function is either f

(float) or d (double).

 For two-dimensional applications, we set tz = 0.0; and a two-dimensional

position is represented as a four-element column matrix with the z

component equal to 0.0.

 example: glTranslatef (25.0, -10.0, 0.0);

 Similarly, a 4 × 4 rotation matrix is generated with

glRotate* (theta, vx, vy, vz);

 where the vector v = (vx, vy, vz) can have any floating-point values for its

components.

 This vector defines the orientation for a rotation axis that passes through

the coordinate origin.

 If v is not specified as a unit vector, then it is normalized automatically

before the elements of the rotation matrix are computed.

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 25

 The suffix code can be either f or d, and parameter theta is to be assigned

a rotation angle in degree.

 For example, the statement: glRotatef (90.0, 0.0, 0.0, 1.0);

 We obtain a 4 × 4 scaling matrix with respect to the coordinate origin with the following

routine:

glScale* (sx, sy, sz);

 The suffix code is again either f or d, and the scaling parameters can be assigned

any real-number values.

 Scaling in a two-dimensional system involves changes in the x and y dimensions,

so a typical two-dimensional scaling operation has a z scaling factor of 1.0

 Example: glScalef (2.0, -3.0, 1.0);

OpenGL Matrix Operations

 The glMatrixMode routine is used to set the projection mode which designates the matrix

that is to be used for the projection transformation.

 We specify the modelview mode with the statement

glMatrixMode (GL_MODELVIEW);

 which designates the 4×4 modelview matrix as the current matrix

 Two other modes that we can set with the glMatrixMode function are the texture

mode and the color mode.

 The texture matrix is used for mapping texture patterns to surfaces, and the color

matrix is used to convert from one color model to another.

 The default argument for the glMatrixMode function is GL_MODELVIEW.

 With the following function, we assign the identity matrix to the current matrix:

glLoadIdentity ();

 Alternatively, we can assign other values to the elements of the current matrix using

glLoadMatrix* (elements16);

 A single-subscripted, 16-element array of floating-point values is specified with

parameter elements16, and a suffix code of either f or d is used to designate the data type

 The elements in this array must be specified in column-major order

 To illustrate this ordering, we initialize the modelview matrix with the following code:

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 26

glMatrixMode (GL_MODELVIEW);

GLfloat elems [16];

GLint k;

for (k = 0; k < 16; k++)

elems [k] = float (k);

glLoadMatrixf (elems);

Which produces the matrix

 We can also concatenate a specified matrix with the current matrix as follows:

glMultMatrix* (otherElements16);

 Again, the suffix code is either f or d, and parameter otherElements16 is a 16-element,

single-subscripted array that lists the elements of some other matrix in column-major

order.

 Thus, assuming that the current matrix is the modelview matrix, which we designate as

M, then the updated modelview matrix is computed as

M = M·M’

 The glMultMatrix function can also be used to set up any transformation sequence with

individually defined matrices.

 For example,

glMatrixMode (GL_MODELVIEW);

glLoadIdentity (); // Set current matrix to the identity.

glMultMatrixf (elemsM2); // Postmultiply identity with matrix M2.

glMultMatrixf (elemsM1); // Postmultiply M2 with matrix M1.

produces the following current modelview matrix:

M = M2 ·M1

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

2.3.1 The Two-Dimensional Viewing Pipeline

 A section of a two-dimensional scene that is selected for display is called a clipping

Window.

 Sometimes the clipping window is alluded to as the world window or the viewing window

 Graphics packages allow us also to control the placement within the display window

using another “window” called the viewport.

 The clipping window selects what we want to see; the viewport indicates where it is to be

viewed on the output device.

 By changing the position of a viewport, we can view objects at different positions on the

display area of an output device

 Usually, clipping windows and viewports are rectangles in standard position, with the

rectangle edges parallel to the coordinate axes.

 We first consider only rectangular viewports and clipping windows, as illustrated in

Figure

2.3 Two Dimensional Viewing
2.3.1 2D viewing pipeline

2.3.1 OpenGL 2D viewing functions.

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

Viewing Pipeline

 The mapping of a two-dimensional, world-coordinate scene description to device

coordinates is called a two-dimensional viewing transformation.

 This transformation is simply referred to as the window-to-viewport transformation or the

windowing transformation

 We can describe the steps for two-dimensional viewing as indicated in Figure

 Once aworld-coordinate scene has been constructed,wecould set up a separate two-

dimensional, viewingcoordinate reference frame for specifying the clipping window.

 To make the viewing process independent of the requirements of any output device,

graphics systems convert object descriptions to normalized coordinates and apply the

clipping routines.

 Systems use normalized coordinates in the range from 0 to 1, and others use a normalized

range from −1 to 1.

 At the final step of the viewing transformation, the contents of the viewport are

transferred to positions within the display window.

 Clipping is usually performed in normalized coordinates.

 This allows us to reduce computations by first concatenating the various transformation

matrices

2.3.2 OpenGL Two-Dimensional Viewing Functions

 The GLU library provides a function for specifying a two-dimensional clipping window,

and we have GLUT library functions for handling display windows.

OpenGL Projection Mode

 Before we select a clipping window and a viewport in OpenGL, we need to establish the

appropriate mode for constructing the matrix to transform from world coordinates to

screen coordinates.

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

 We must set the parameters for the clipping window as part of the projection

transformation.

 Function:

glMatrixMode (GL_PROJECTION);

 We can also set the initialization as

glLoadIdentity ();

This ensures that each time we enter the projection mode, the matrix will be reset

to the identity matrix so that the new viewing parameters are not combined with the

previous ones

GLU Clipping-Window Function

 To define a two-dimensional clipping window, we can use the GLU function:

gluOrtho2D (xwmin, xwmax, ywmin, ywmax);

 This function specifies an orthogonal projection for mapping the scene to the screen the

orthogonal projection has no effect on our two-dimensional scene other than to convert

object positions to normalized coordinates.

 Normalized coordinates in the range from −1 to 1 are used in the OpenGL clipping

routines.

 Objects outside the normalized square (and outside the clipping window) are eliminated

from the scene to be displayed.

 If we do not specify a clipping window in an application program, the default coordinates

are (xwmin, ywmin) = (−1.0, −1.0) and (xwmax, ywmax) = (1.0, 1.0).

 Thus the default clipping window is the normalized square centered on the coordinate

origin with a side length of 2.0.

OpenGL Viewport Function

 We specify the viewport parameters with the OpenGL function

glViewport (xvmin, yvmin, vpWidth, vpHeight);

Where,

 xvmin and yvmin specify the position of the lowerleft corner of the viewport relative

to the lower-left corner of the display window,

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

 vpWidth and vpHeight are pixel width and height of the viewport

 Coordinates for the upper-right corner of the viewport are calculated for this

transformation matrix in terms of the viewport width and height:

 Multiple viewports can be created in OpenGL for a variety of applications.

 We can obtain the parameters for the currently active viewport using the query function

glGetIntegerv (GL_VIEWPORT, vpArray);

where,

 vpArray is a single-subscript, four-element array.

Creating a GLUT Display Window

 The GLUT library interfaces with any window-management system, we use the GLUT

routines for creating and manipulating display windows so that our example programs

will be independent of any specific machine.

 We first need to initialize GLUT with the following function:

glutInit (&argc, argv);

 We have three functions inGLUTfor defining a display window and choosing its

dimensions and position:

1. glutInitWindowPosition (xTopLeft, yTopLeft);

 gives the integer, screen-coordinate position for the top-left corner of the display

window, relative to the top-left corner of the screen

2. glutInitWindowSize (dwWidth, dwHeight);

 we choose a width and height for the display window in positive integer pixel

dimensions.

 If we do not use these two functions to specify a size and position, the default size is

300 by 300 and the default position is (−1, −1), which leaves the positioning of the

display window to the window-management system

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

3. glutCreateWindow ("Title of Display Window");

 creates the display window, with the specified size and position, and assigns a title,

although the use of the title also depends on the windowing system

Setting the GLUT Display-Window Mode and Color

 Various display-window parameters are selected with the GLUT function

1. glutInitDisplayMode (mode);

 We use this function to choose a color mode (RGB or index) and different buffer

combinations, and the selected parameters are combined with the logical or

operation.

2. glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

 The color mode specification GLUT_RGB is equivalent to GLUT_RGBA.

3. glClearColor (red, green, blue, alpha);

 A background color for the display window is chosen in RGB mode with the OpenGL

routine

4. glClearIndex (index);

 This function sets the display window color using color-index mode,

 Where parameter index is assigned an integer value corresponding to a position

within the color table.

GLUT Display-Window Identifier

 Multiple display windows can be created for an application, and each is assigned a

positive-integer display-window identifier, starting with the value 1 for the first window

that is created.

 Function:

windowID = glutCreateWindow ("A Display Window");

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

Deleting a GLUT Display Window

 If we know the display window’s identifier, we can eliminate it with the statement

glutDestroyWindow (windowID);

Current GLUT Display Window

 When we specify any display-window operation, it is applied to the current display

window, which is either the last display window that we created or the one.

 we select with the following command

glutSetWindow (windowID);

 We can query the system to determine which window is the current display window:

currentWindowID = glutGetWindow ();

 A value of 0 is returned by this function if there are no display windows or if the

current display window was destroyed

Relocating and Resizing a GLUT Display Window

 We can reset the screen location for the current display window with the function

glutPositionWindow (xNewTopLeft, yNewTopLeft);

 Similarly, the following function resets the size of the current display window:

glutReshapeWindow (dwNewWidth, dwNewHeight);

 With the following command, we can expand the current display window to fill the

screen:

glutFullScreen ();

 Whenever the size of a display window is changed, its aspect ratio may change and

objects may be distorted from their original shapes. We can adjust for a change in

display-window dimensions using the statement

glutReshapeFunc (winReshapeFcn);

Managing Multiple GLUT Display Windows

 The GLUT library also has a number of routines for manipulating a display window in

various ways.

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

 We use the following routine to convert the current display window to an icon in the form

of a small picture or symbol representing the window:

glutIconifyWindow ();

 The label on this icon will be the same name that we assigned to the window, but we can

change this with the following command:

glutSetIconTitle ("Icon Name");

 We also can change the name of the display window with a similar command:

glutSetWindowTitle ("New Window Name");

 We can choose any display window to be in front of all other windows by first

designating it as the current window, and then issuing the “pop-window” command:

glutSetWindow (windowID);

glutPopWindow ();

 In a similar way, we can “push” the current display window to the back so that it is

behind all other display windows. This sequence of operations is

glutSetWindow (windowID);

glutPushWindow ();

 We can also take the current window off the screen with

glutHideWindow ();

 In addition, we can return a “hidden” display window, or one that has been converted to

an icon, by designating it as the current display window and then invoking the function

glutShowWindow ();

GLUT Subwindows

 Within a selected display window, we can set up any number of second-level display

windows, which are called subwindows.

 We create a subwindow with the following function:

glutCreateSubWindow (windowID, xBottomLeft, yBottomLeft, width, height);

 Parameter windowID identifies the display window in which we want to set up the

subwindow.

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

 Subwindows are assigned a positive integer identifier in the same way that first-level

display windows are numbered, and we can place a subwindow inside another

subwindow.

 Each subwindow can be assigned an individual display mode and other parameters. We

can even reshape, reposition, push, pop, hide, and show subwindows

Selecting a Display-Window Screen-Cursor Shape

 We can use the following GLUT routine to request a shape for the screen cursor that is to

be used with the current window:

 glutSetCursor (shape);

where, shape can be

 GLUT_CURSOR_UP_DOWN : an up-down arrow.

 GLUT_CURSOR_CYCLE: A rotating arrow is chosen

 GLUT_CURSOR_WAIT: a wristwatch shape.

 GLUT_CURSOR_DESTROY: a skull and crossbones

Viewing Graphics Objects in a GLUT Display Window

 After we have created a display window and selected its position, size, color, and other

characteristics, we indicate what is to be shown in that window

 Then we invoke the following function to assign something to that window:

glutDisplayFunc (pictureDescrip);

 This routine, called pictureDescrip for this example, is referred to as a callback function

because it is the routine that is to be executed whenever GLUT determines that the

display-window contents should be renewed.

 We may need to call glutDisplayFunc after the glutPopWindow command if the display

window has been damaged during the process of redisplaying the windows.

 In this case, the following function is used to indicate that the contents of the current

display window should be renewed:

glutPostRedisplay ();

Module 2 ***SAI RAM*** 2D Viewing

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

Executing the Application Program

 When the program setup is complete and the display windows have been created and

initialized, we need to issue the final GLUT command that signals execution of the

program:

glutMainLoop ();

Other GLUT Functions

 Sometimes it is convenient to designate a function that is to be executed when there are

no other events for the system to process. We can do that with

glutIdleFunc (function);

 Finally, we can use the following function to query the system about some of the current

state parameters:

glutGet (stateParam);

 This function returns an integer value corresponding to the symbolic constant we select

for its argument.

 For example, for the stateParam we can have the values

 GLUT_WINDOW_X: obtains the x-coordinate position for the top-left corner of the

current display window

 GLUT_WINDOW_WIDTH or GLUT_SCREEN_WIDTH : retrieve the current

display-window width or the screen width with.

Acknowledgements to

Donald Hearn & Pauline Baker: Computer Graphics with OpenGL

Version,3rd / 4th Edition, Pearson Education,2011

Edward Angel: Interactive Computer Graphics- A Top Down approach

with OpenGL, 5th edition. Pearson Education, 2008

M M Raiker, Computer Graphics using OpenGL, Filip learning/Elsevier

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

3.1.1 The Clipping Window

 We can design our own clipping window with any shape, size, and orientation we choose.

 But clipping a scene using a concave polygon or a clipping window with nonlinear

boundaries requires more processing than clipping against a rectangle.

 Rectangular clipping windows in standard position are easily defined by giving the

coordinates of two opposite corners of each rectangle

Viewing-Coordinate Clipping Window

 A general approach to the two-dimensional viewing transformation is to set up a viewing-

coordinate system within the world-coordinate frame

 We choose an origin for a two-dimensional viewing-coordinate frame at some world

position P0 = (x0, y0), and we can establish the orientation using a world vector V that

defines the yview direction.

 Vector V is called the two-dimensional view up vector.

3.1 Clipping:

3.1.1Clipping window,

3.1.2 Normalization and Viewport transformations,

3.1.3 Clipping algorithms:

 2D point clipping,

 2D line clipping algorithms: cohen-sutherland

 line clipping.

 Polygon fill area clipping: Sutherland

 Hodgeman polygon clipping algorithm.

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

 An alternative method for specifying the orientation of the viewing frame is to give a

rotation angle relative to either the x or y axis in the world frame.

 The first step in the transformation sequence is to translate the viewing origin to the

world origin.

 Next, we rotate the viewing system to align it with the world frame.

 Given the orientation vector V, we can calculate the components of unit vectors v = (vx,

vy) and u = (ux, uy) for the yview and xview axes, respectively.

Where,

 T is the translation matrix,

 R is the rotation matrix

 A viewing-coordinate frame is moved into coincidence with the world frame is shown in

below figure

(a) applying a translation matrix T to move the viewing origin to the world origin, then

(b) applying a rotation matrix R to align the axes of the two systems.

World-Coordinate Clipping Window

 A routine for defining a standard, rectangular clipping window in world coordinates is

typically provided in a graphics-programming library.

 We simply specify two world-coordinate positions, which are then assigned to the two

opposite corners of a standard rectangle.

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

 Once the clipping window has been established, the scene description is processed

through the viewing routines to the output device.

 Thus, we simply rotate (and possibly translate) objects to a desired position and set up the

clipping window all in world coordinates.

A triangle

(a), with a selected reference point and orientation vector, is translated and rotated to position

(b) within a clipping window.

3.1.2 Normalization and Viewport Transformations

 The viewport coordinates are often given in the range from 0 to 1 so that the viewport is

positioned within a unit square.

 After clipping, the unit square containing the viewport is mapped to the output display

device

Mapping the Clipping Window into a Normalized Viewport

 We first consider a viewport defined with normalized coordinate values between 0 and 1.

 Object descriptions are transferred to this normalized space using a transformation that

maintains the same relative placement of a point in the viewport as it had in the clipping

window Position (xw, yw) in the clipping window is mapped to position (xv, yv) in the

associated viewport.

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

 To transform the world-coordinate point into the same relative position within the

viewport, we require that

 Solving these expressions for the viewport position (xv, yv), we have

xv = sxxw + tx

yv = syyw + ty

Where the scaling factors are

and the translation factors are

 We could obtain the transformation from world coordinates to viewport coordinates with

the following sequence:

1. Scale the clipping window to the size of the viewport using a fixed-point position of

 (xwmin, ywmin).

2. Translate (xwmin, ywmin) to (xvmin, yvmin).

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

 The scaling transformation in step (1) can be represented with the two dimensional

Matrix

 The two-dimensional matrix representation for the translation of the lower-left corner of

the clipping window to the lower-left viewport corner is

 And the composite matrix representation for the transformation to the normalized

viewport is

Mapping the Clipping Window into a Normalized Square

 Another approach to two-dimensional viewing is to transform the clipping window into a

normalized square, clip in normalized coordinates, and then transfer the scene description

to a viewport specified in screen coordinates.

 This transformation is illustrated in Figure below with normalized coordinates in the

range from −1 to 1

 The matrix for the normalization transformation is obtained by substituting −1 for xvmin

and yvmin and substituting +1 for xvmax and yvmax.

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

 Similarly, after the clipping algorithms have been applied, the normalized square with

edge length equal to 2 is transformed into a specified viewport.

 This time, we get the transformation matrix by substituting −1 for xwmin and ywmin and

substituting +1 for xwmax and ywmax

 Typically, the lower-left corner of the viewport is placed at a coordinate position

specified relative to the lower-left corner of the display window. Figure below

demonstrates the positioning of a viewport within a display window.

Display of Character Strings

 Character strings can be handled in one of two ways when they are mapped through the

viewing pipeline to a viewport.

 The simplest mapping maintains a constant character size.

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

 This method could be employed with bitmap character patterns.

 But outline fonts could be transformed the same as other primitives; we just need to

transform the defining positions for the line segments in the outline character shape

Split-Screen Effects and Multiple Output Devices

 By selecting different clipping windows and associated viewports for a scene, we can

provide simultaneous display of two or more objects, multiple picture parts, or different

views of a single scene.

 It is also possible that two or more output devices could be operating concurrently on a

particular system, and we can set up a clipping-window/viewport pair for each output

device.

 A mapping to a selected output device is sometimes referred to as a workstation

transformation

3.1.3 Clipping Algorithms

 Any procedure that eliminates those portions of a picture that are either inside or outside

a specified region of space is referred to as a clipping algorithm or simply clipping.

 The most common application of clipping is in the viewing pipeline, where clipping is

applied to extract a designated portion of a scene (either two-dimensional or three-

dimensional) for display on an output device.

 Different objects clipping are

1. Point clipping

2. Line clipping (straight-line segments)

3. Fill-area clipping (polygons)

4. Curve clipping

5. Text clipping

Two-Dimensional Point Clipping

 For a clipping rectangle in standard position, we save a two-dimensional point P = (x, y)

for display if the following inequalities are satisfied:

xwmin ≤ x ≤ xwmax and ywmin ≤ y ≤ ywmax

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

 If any of these four inequalities is not satisfied, the point is clipped

Two-Dimensional Line Clipping

 Clipping straight-line segments using a standard rectangular clipping window.

 A line-clipping algorithm processes each line in a scene through a series of tests and

intersection calculations to determine whether the entire line or any part of it is to be

saved.

 The expensive part of a line-clipping procedure is in calculating the intersection positions

of a line with the window edges.

 Therefore, a major goal for any line-clipping algorithm is to minimize the intersection

calculations.

 To do this, we can first perform tests to determine whether a line segment is completely

inside the clipping window or completely outside.

 It is easy to determine whether a line is completely inside a clipping window, but it is

more difficult to identify all lines that are entirely outside the window.

 One way to formulate the equation for a straight-line segment is to use the following

parametric representation, where the coordinate positions (x0, y0) and (xend, yend) designate

the two line endpoints:

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

Cohen-Sutherland Line Clipping

 Processing time is reduced in the Cohen-Sutherland method by performing more tests

before proceeding to the intersection calculations.

 Initially, every line endpoint in a picture is assigned a four-digit binary value, called a

region code, and each bit position is used to indicate whether the point is inside or

outside one of the clipping-window boundaries.

 A possible ordering for the clipping window boundaries corresponding to the bit

positions in the Cohen-Sutherland endpoint region code.

 Thus, for this ordering, the rightmost position (bit 1) references the left clipping-window

boundary, and the leftmost position (bit 4) references the top window boundary.

 A value of 1 (or true) in any bit position indicates that the endpoint is outside that

window border. Similarly, a value of 0 (or false) in any bit position indicates that the

endpoint is not outside (it is inside or on) the corresponding window edge.

 Sometimes, a region code is referred to as an “out” code because a value of 1 in any bit

position indicates that the spatial point is outside the corresponding clipping boundary.

 The nine binary region codes for identifying the position of a line endpoint, relative to the

clipping-window boundaries.

 Bit values in a region code are determined by comparing the coordinate values (x, y) of

an endpoint to the clipping boundaries.

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 10

 Bit 1 is set to 1 if x < xwmin, and the other three bit values are determined similarly.

 To determine a boundary intersection for a line segment, we can use the slopeintercept

form of the line equation.

 For a line with endpoint coordinates (x0, y0) and (xend, yend), the y coordinate of the

intersection point with a vertical clipping border line can be obtained with the calculation

y = y0 + m(x − x0)

Where the x value is set to either xwmin or xwmax, and the slope of

the line is calculated as

m = (yend − y0)/(xend − x0).

 Similarly, if we are looking for the intersection with a horizontal border, the x coordinate

can be calculated as

x = x0 + y − y0/m , with y set either to ywmin or to ywmax.

Polygon Fill-Area Clipping

 To clip a polygon fill area, we cannot apply a line-clipping method to the individual

polygon edges directly because this approach would not, in general, produce a closed

polyline.

 We can process a polygon fill area against the borders of a clipping window using the

same general approach as in line clipping.

 We need to maintain a fill area as an entity as it is processed through the clipping stages.

 Thus, we can clip a polygon fill area by determining the new shape for the polygon as

each clipping-window edge is processed, as demonstrated

 When we cannot identify a fill area as being completely inside or completely outside the

clipping window, we then need to locate the polygon intersection positions with the

clipping boundaries.

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 11

 One way to implement convex-polygon clipping is to create a new vertex list at each

clipping boundary, and then pass this new vertex list to the next boundary clipper.

 The output of the final clipping stage is the vertex list for the clipped polygon

Sutherland--Hodgman Polygon Clipping

 An efficient method for clipping a convex-polygon fill area, developed by Sutherland and

Hodgman, is to send the polygon vertices through each clipping stage so that a single

clipped vertex can be immediately passed to the next stage.

 The final output is a list of vertices that describe the edges of the clipped polygon fill area

the basic Sutherland-Hodgman algorithm is able to process concave polygons when the

clipped fill area can be described with a single vertex list.

 The general strategy in this algorithm is to send the pair of endpoints for each successive

polygon line segment through the series of clippers (left, right, bottom, and top)

 There are four possible cases that need to be considered when processing a polygon edge

against one of the clipping boundaries.

1. One possibility is that the first edge endpoint is outside the clipping boundary and the

second endpoint is inside.

2. Or, both endpoints could be inside this clipping boundary.

3. Another possibility is that the first endpoint is inside the clipping boundary and the

second endpoint is outside.

4. And, finally, both endpoints could be outside the clipping boundary

 To facilitate the passing of vertices from one clipping stage to the next, the output from

each clipper can be formulated as shown in Figure below

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 12

The selection of vertex edge of intersection for each clipper is given as follows

1. If the first input vertex is outside this clipping-window border and the second vertex is inside,

both the intersection point of the polygon edge with the window border and the second vertex are

sent to the next clipper.

2. If both input vertices are inside this clipping-window border, only the second vertex is sent to

the next clipper.

3. If the first vertex is inside this clipping-window border and the second vertex is outside, only

the polygon edge-intersection position with the clipping-window border is sent to the next

clipper.

4. If both input vertices are outside this clipping-window border, no vertices are sent to the next

clipper.

Example

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 13

 When a concave polygon is clipped with the Sutherland-Hodgman algorithm, extraneous

lines may be displayed.

 This occurs when the clipped polygon should have two or more separate sections. But

since there is only one output vertex list, the last vertex in the list is always joined to the

first vertex.

 There are several things we can do to display clipped concave polygons correctly.

 For one, we could split a concave polygon into two or more convexpolygons and process

each convex polygon separately using the Sutherland- Hodgman algorithm

 Another possibility is to modify the Sutherland- Hodgman method so that the final vertex

list is checked for multiple intersection points along any clipping-window boundary.

 If we find more than two vertex positions along any clipping boundary, we can separate

the list of vertices into two or more lists that correctly identify the separate sections of the

clipped fill area.

 A third possibility is to use a more general polygon clipper that has been designed to

process concave polygons correctly

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

3.2.1 Three-Dimensional Geometric Transformations

 Methods for geometric transformations in three dimensions are extended from two

dimensional methods by including considerations for the z coordinate.

 A three-dimensional position, expressed in homogeneous coordinates, is represented as a

four-element column vector

3.2.2 Three-Dimensional Translation

 A position P = (x, y, z) in three-dimensional space is translated to a location P’= (x’, y’,

z’) by adding translation distances tx, ty, and tz to the Cartesian coordinates of P:

 We can express these three-dimensional translation operations in matrix form

or

 Moving a coordinate position with translation vector T = (tx , ty , tz) .

3.2 3DGeometric Transformations:

3.2.1 3D Geometric Transformations

3.2.2 3D Translation,

3.2.3 Rotation,

3.2.4 Scaling,

3.2.5 Composite 3D Transformations,

3.2.6 Other 3D Transformations,

3.2.7 Affine Transformations,

3.2.8 Opengl Geometric Transformations

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

 Shifting the position of a three-dimensional object using translation vector T.

CODE:

typedef GLfloat Matrix4x4 [4][4];

/* Construct the 4 x 4 identity matrix. */

void matrix4x4SetIdentity (Matrix4x4 matIdent4x4)

{

GLint row, col;

for (row = 0; row < 4; row++)

for (col = 0; col < 4 ; col++)

matIdent4x4 [row][col] = (row == col);

}

void translate3D (GLfloat tx, GLfloat ty, GLfloat tz)

{

Matrix4x4 matTransl3D;

/* Initialize translation matrix to identity. */

matrix4x4SetIdentity (matTransl3D);

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

matTransl3D [0][3] = tx;

matTransl3D [1][3] = ty;

matTransl3D [2][3] = tz;

}

 An inverse of a three-dimensional translation matrix is obtained by negating the

translation distances tx, ty, and tz

3.2.3 Three-Dimensional Rotation

 By convention, positive rotation angles produce counterclockwise rotations about a

coordinate axis.

 Positive rotations about a coordinate axis are counterclockwise, when looking along the

positive half of the axis toward the origin.

Three-Dimensional Coordinate-Axis Rotations

Along z axis:

 In homogeneous-coordinate form, the three-dimensional z-axis rotation equations are

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

 Transformation equations for rotations about the other two coordinate axes can be

obtained with a cyclic permutation of the coordinate parameters x, y, and z

x → y→ z→ x

Along x axis

Along y axis

 An inverse three-dimensional rotation matrix is obtained in the same by replacing θ with

−θ.

General Three-Dimensional Rotations

 A rotation matrix for any axis that does not coincide with a coordinate axis can be set up

as a composite transformation involving combinations of translations and the coordinate-

axis rotations the following transformation sequence is used:

1. Translate the object so that the rotation axis coincides with the parallel coordinate axis.

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

2. Perform the specified rotation about that axis.

3. Translate the object so that the rotation axis is moved back to its original position.

 A coordinate position P is transformed with the sequence shown in this figure as

Where the composite rotation matrix for the transformation is

 When an object is to be rotated about an axis that is not parallel to one of the coordinate

axes, we must perform some additional transformations we can accomplish the required

rotation in five steps:

1. Translate the object so that the rotation axis passes through the coordinate origin.

2. Rotate the object so that the axis of rotation coincides with one of the coordinate axes.

3. Perform the specified rotation about the selected coordinate axis.

4. Apply inverse rotations to bring the rotation axis back to its original orientation.

5. Apply the inverse translation to bring the rotation axis back to its original spatial position.

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

 Components of the rotation-axis vector are then computed as

V = P2 − P1

= (x2 − x1, y2 − y1, z2 − z1)

 The unit rotation-axis vector u is

Where the components a, b, and c are the direction cosines for the rotation axis

 The first step in the rotation sequence is to set up the translation matrix that repositions

the rotation axis so that it passes through the coordinate origin.

 Translation matrix is given by

 Because rotation calculations involve sine and cosine functions, we can use standard

vector operations to obtain elements of the two rotation matrices.

 A vector dot product can be used to determine the cosine term, and a vector cross product

can be used to calculate the sine term.

 Rotation of u around the x axis into the x z plane is accomplished by rotating u’ (the

projection of u in the y z plane) through angle α onto the z axis.

 If we represent the projection of u in the yz plane as the vector u’= (0, b, c), then the

cosine of the rotation angle α can be determined from the dot product of u’ and the unit

vector uz along the z axis:

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

where d is the magnitude of u’

 The coordinate-independent form of this cross-product is

 and the Cartesian form for the cross-product gives us

 Equating the above two equations

or

 We have determined the values for cos α and sin α in terms of the components of vector

u, the matrix elements for rotation of this vector about the x axis and into the xz plane

 Rotation of unit vector u” (vector u after rotation into the x z plane) about the y axis.

Positive rotation angle β aligns u” with vector uz .

 We can determine the cosine of rotation angle β from the dot product of unit vectors u’’

and uz. Thus,

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

 Comparing the coordinate-independent form of the cross-product

with the Cartesian form

 we find that

 The transformation matrix for rotation of u” about the y axis is

 The specified rotation angle θ can now be applied as a rotation about the z axis as

follows:

 The transformation matrix for rotation about an arbitrary axis can then be expressed as

the composition of these seven individual transformations:

 The composite matrix for any sequence of three-dimensional rotations is of the form

 The upper-left 3 × 3 submatrix of this matrix is orthogonal

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

 Assuming that the rotation axis is not parallel to any coordinate axis, we could form the

following set of local unit vectors

 If we express the elements of the unit local vectors for the rotation axis as

 Then the required composite matrix, which is equal to the product Ry(β) · Rx(α), is

Quaternion Methods for Three-Dimensional Rotations

 A more efficient method for generating a rotation about an arbitrarily selected axis is to

use a quaternion representation for the rotation transformation.

 Quaternions, which are extensions of two-dimensional complex numbers, are useful in a

number of computer-graphics procedures, including the generation of fractal objects.

 One way to characterize a quaternion is as an ordered pair, consisting of a scalar part and

a vector part:

q = (s, v)

 A rotation about any axis passing through the coordinate origin is accomplished by first

setting up a unit quaternion with the scalar and vector parts as follows:

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 10

 Any point position P that is to be rotated by this quaternion can be represented in

quaternion notation as

 Rotation of the point is then carried out with the quaternion operation

where q−1 = (s, −v) is the inverse of the unit quaternion q

 This transformation produces the following new quaternion:

 The second term in this ordered pair is the rotated point position p’, which is evaluated

with vector dot and cross-products as

 Designating the components of the vector part of q as v = (a, b, c) , we obtain the

elements for the composite rotation matrix

 Using the following trigonometric identities to simplify the terms

we can rewrite Matrix as

3.2.4 Three-Dimensional Scaling

 The matrix expression for the three-dimensional scaling transformation of a position P =

(x, y, z) is given by

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 11

 The three-dimensional scaling transformation for a point position can be represented as

where scaling parameters sx, sy, and sz are assigned any positive values.

 Explicit expressions for the scaling transformation relative to the origin are

 Because some graphics packages provide only a routine that scales relative to the

coordinate origin, we can always construct a scaling transformation with respect to any

selected fixed position (xf , yf , zf) using the following transformation sequence:

1. Translate the fixed point to the origin.

2. Apply the scaling transformation relative to the coordinate origin

3. Translate the fixed point back to its original position.

 This sequence of transformations is demonstrated

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 12

CODE:

class wcPt3D

{

private:

GLfloat x, y, z;

public:

/* Default Constructor:

* Initialize position as (0.0, 0.0, 0.0).

*/

wcPt3D () {

x = y = z = 0.0;

}

setCoords (GLfloat xCoord, GLfloat yCoord, GLfloat zCoord) {

x = xCoord;

y = yCoord;

z = zCoord;

}

GLfloat getx () const {

return x;

}

GLfloat gety () const {

return y;

}

GLfloat getz () const {

return z;

}

};

typedef float Matrix4x4 [4][4];

void scale3D (GLfloat sx, GLfloat sy, GLfloat sz, wcPt3D fixedPt)

{

Matrix4x4 matScale3D;

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 13

/* Initialize scaling matrix to identity. */

matrix4x4SetIdentity (matScale3D);

matScale3D [0][0] = sx;

matScale3D [0][3] = (1 - sx) * fixedPt.getx ();

matScale3D [1][1] = sy;

matScale3D [1][3] = (1 - sy) * fixedPt.gety ();

matScale3D [2][2] = sz;

matScale3D [2][3] = (1 - sz) * fixedPt.getz ();

}

3.2.5 Composite Three-Dimensional Transformations

 We form a composite threedimensional transformation by multiplying the matrix

representations for the individual operations in the transformation sequence.

 We can implement a transformation sequence by concatenating the individual matrices

from right to left or from left to right, depending on the order in which the matrix

representations are specified

3.2.6 Other Three-Dimensional Transformations

Three-Dimensional Reflections

 A reflection in a three-dimensional space can be performed relative to a selected

reflection axis or with respect to a reflection plane.

 Reflections with respect to a plane are similar; when the reflection plane is a coordinate

plane (xy, xz, or yz), we can think of the transformation as a 180◦ rotation in four-

dimensional space with a conversion between a left-handed frame and a right-handed

frame

 An example of a reflection that converts coordinate specifications froma right handed

system to a left-handed system is shown below

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 14

 The matrix representation for this reflection relative to the xy plane is

Three-Dimensional Shears

 These transformations can be used to modify object shapes.

 For three-dimensional we can also generate shears relative to the z axis.

 A general z-axis shearing transformation relative to a selected reference position is

produced with the following matrix:

 The Below figure shows the shear transformation of a cube

A unit cube (a) is sheared relative to the origin (b) by Matrix 46, with shzx = shzy = 1.

3.2.7 Affine Transformations

 A coordinate transformation of the form

is called an affine transformation

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 15

 Affine transformations (in two dimensions, three dimensions, or higher dimensions) have

the general properties that parallel lines are transformed into parallel lines, and finite

points map to finite points.

 Translation, rotation, scaling, reflection,andshear are examples of affine transformations.

 Another example of an affine transformation is the conversion of coordinate descriptions

for a scene from one reference system to another because this transformation can be

described as a combination of translation and rotation

3.2.8 OpenGL Geometric-Transformation Functions

OpenGL Matrix Stacks

glMatrixMode:

 used to select the modelview composite transformation matrix as the target of

subsequent OpenGL transformation calls

 four modes: modelview, projection, texture, and color

 the top matrix on each stack is called the “current matrix”.

 for that mode. the modelview matrix stack is the 4 × 4 composite matrix that

combines the viewing transformations and the various geometric transformations

that we want to apply to a scene.

 OpenGL supports a modelview stack depth of at least 32,

glGetIntegerv (GL_MAX_MODELVIEW_STACK_DEPTH, stackSize);

 determine the number of positions available in the modelview stack for a particular

implementation of OpenGL.

 It returns a single integer value to array stackSize

 other OpenGL symbolic constants: GL_MAX_PROJECTION_STACK_DEPTH,

GL_MAX_TEXTURE_STACK_DEPTH, or GL_MAX_COLOR_STACK_DEPTH.

 We can also find out how many matrices are currently in the stack with

 glGetIntegerv (GL_MODELVIEW_STACK_DEPTH, numMats);

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 16

We have two functions available in OpenGL for processing the matrices in a stack

glPushMatrix ();

Copy the current matrix at the top of the active stack and store that copy in the second

stack position

glPopMatrix ();

which destroys the matrix at the top of the stack, and the second matrix in the stack

becomes the current matrix

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

3.3.1 Illumination Models

 An illumination model, also called a lighting model (and sometimes referred to as a

shading model), is used to calculate the color of an illuminated position on the surface of

an object

3.3.2 Light Sources

 Any object that is emitting radiant energy is a light source that contributes to the lighting

effects for other objects in a scene.

 We can model light sources with a variety of shapes and characteristics, and most

emitters serve only as a source of illumination for a scene.

 A light source can be defined with a number of properties. We can specify its position,

the color of the emitted light, the emission direction, and its shape.

 We could set up a light source that emits different colors in different directions.

 We assign light emitting properties using a single value for each of the red, green, and

blue (RGB) color components, which we can describe as the amount, or the “intensity,”

of that color component.

Point Light Sources

 The simplest model for an object that is emitting radiant energy is a point light source

with a single color, specified with three RGB components

3.3 Illumination and Color
3.3.1 Illumination models

3.3.2 Light sources,

3.3.3 Basic illumination models-Ambient light, diffuse reflection, specular and

 phong model,

3.3.4 Corresponding openGL functions.

3.3.5 Properties of light,

3.3.6 Color models, RGB and CMY color models.

.

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

 A point source for a scene by giving its position and the color of the emitted light. light

rays are generated along radially diverging paths from the single-color source position.

 This light-source model is a reasonable approximation for sources whose dimensions are

small compared to the size of objects in the scene

Infinitely Distant Light Sources

 A large light source, such as the sun, that is very far from a scene can also be

approximated as a point emitter, but there is little variation in its directional effects.

 The light path from a distant light source to any position in the scene is nearly constant

 We can simulate an infinitely distant light source by assigning it a color value and a fixed

direction for the light rays emanating from the source.

 The vector for the emission direction and the light-source color are needed in the

illumination calculations, but not the position of the source.

Radial Intensity Attenuation

 As radiant energy from a light source travels outwards through space, its amplitude at any

distance dl from the source is attenuated by the factor 1/d2 a surface close to the light

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

source receives a higher incident light intensity from that source than a more distant

surface.

 However, using an attenuation factor of 1/dl
2

 with a point source does not always produce

realistic pictures.

 The factor 1/dl
2 tends to produce too much intensity variation for objects that are close to

the light source, and very little variation when dl is large

 We can attenuate light intensities with an inverse quadratic function of dl that includes a

linear term:

 The numerical values for the coefficients, a0, a1, and a2, can then be adjusted to produce

optimal attenuation effects.

 We cannot apply intensity-attenuation calculation 1 to a point source at “infinity,”

because the distance to the light source is indeterminate.

 We can express the intensity-attenuation function as

Directional Light Sources and Spotlight Effects

 A local light source can be modified easily to produce a directional, or spotlight, beam of

light.

 If an object is outside the directional limits of the light source, we exclude it from

illumination by that source

 One way to set up a directional light source is to assign it a vector direction and an

angular limit θl measured from that vector direction, in addition to its position and color

 We can denoteVlight as the unit vector in the light-source direction andVobj as the unit

vector in the direction from the light position to an object position.

 Then Vobj ·Vlight = cos α

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

 where angle α is the angular distance of the object from the light direction vector.

 If we restrict the angular extent of any light cone so that 0◦ < θl ≤ 90◦, then the object is

within the spotlight if cos α ≥ cos θl , as shown

 . If Vobj ·Vlight < cos θl , however, the object is outside the light cone.

Angular Intensity Attenuation

 For a directional light source, we can attenuate the light intensity angularly about the

source as well as radially out from the point-source position

 This allows intensity decreasing as we move farther from the cone axis.

 A commonly used angular intensity-attenuation function for a directional light source is

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

 Where the attenuation exponent al is assigned some positive value and angle φ is

measured from the cone axis.

 The greater the value for the attenuation exponent al , the smaller the value of the angular

intensity-attenuation function for a given value of angleφ > 0◦.

 There are several special cases to consider in the implementation of the angular-

attenuation function.

 There is no angular attenuation if the light source is not directional (not a spotlight).

 We can express the general equation for angular attenuation as

Extended Light Sources and the Warn Model

 When we want to include a large light source at a position close to the objects in a scene,

such as the long neon lamp, we can approximate it as a lightemitting surface

 One way to do this is to model the light surface as a grid of directional point emitters.

 We can set the direction for the point sources so that objects behind the light-emitting

surface are not illuminated.

 We could also include other controls to restrict the direction of the emitted light near the

edges of the source

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

 The Warn model provides a method for producing studio lighting effects using sets of

point emitters with various parameters to simulate the barn doors, flaps, and spotlighting

controls employed by photographers.

 Spotlighting is achieved with the cone of light discussed earlier, and the flaps and barn

doors provide additional directional control

3.3.3 Basic Illumination Models

 Light-emitting objects in a basic illumination model are generally limited to point sources

many graphics packages provide additional functions for dealing with directional lighting

(spotlights) and extended light sources.

Ambient Light

 This produces a uniform ambient lighting that is the same for all objects, and it

approximates the global diffuse reflections from the various illuminated surfaces.

 Reflections produced by ambient-light illumination are simply a form of diffuse

reflection, and they are independent of the viewing direction and the spatial orientation of

a surface.

 However, the amount of the incident ambient light that is reflected depends on surface

optical properties, which determine how much of the incident energy is reflected and how

much is absorbed

Diffuse Reflection

 The incident light on the surface is scattered with equal intensity in all directions,

independent of the viewing position.

 Such surfaces are called ideal diffuse reflectors They are also referred to as Lambertian

reflectors, because the reflected radiant light energy fromany point on the surface is

calculated with Lambert’s cosine law.
 This law states that the amount of radiant energy coming from any small surface area

dAin a direction φN relative to the surface normal is proportional to cos φN

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

 The intensity of light in this direction can be computed as the ratio of the magnitude of

the radiant energy per unit time divided by the projection of the surface area in the

radiation direction:

 Assuming that every surface is to be treated as an ideal diffuse reflector (Lambertian), we

can set a parameter kd for each surface that determines the fraction of the incident light

that is to be scattered as diffuse reflections.

 This parameter is called the diffuse-reflection coefficient or the diffuse reflectivity. The

ambient contribution to the diffuse reflection at any point on a surface is simply

 The below figure illustrates this effect, showing a beam of light rays incident on two

equal-area plane surface elements with different spatial orientations relative to the

illumination direction from a distant source

A surface that is perpendicular to the direction of the incident light (a) is more illuminated than

an equal-sized surface at an oblique angle (b) to the incoming light direction.

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

 We can model the amount of incident light on a surface from a source with intensity Il as

 We can model the diffuse reflections from a light source with intensity Il using the

calculation

 At any surface position, we can denote the unit normal vector as N and the unit direction

vector to a point source as L,

 The diffuse reflection equation for single point-source illumination at a surface position

can be expressed in the form

 The unit direction vector L to a nearby point light source is calculated using the surface

position and the light-source position:

 We can combine the ambient and point-source intensity calculations to obtain an

expression for the total diffuse reflection at a surface position

 Using parameter ka , we can write the total diffuse-reflection equation for a single point

source as

 Where both ka and kd depend on surface material properties and are assigned values in the

range from 0 to 1.0 for monochromatic lighting effects

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

Specular Reflection and the Phong Model

 The bright spot, or specular reflection, that we can see on a shiny surface is the result of

total, or near total, reflection of the incident light in a concentrated region around the

specular-reflection angle.

 The below figure shows the specular reflection direction for a position on an illuminated

surface

1. N represents: unit normal surface vector The specular reflection angle equals the angle of

the incident light, with the two angles measured on opposite sides of the unit normal

surface vector N

2. Rrepresents the unit vector in the direction of ideal specular reflection,

3. L is the unit vector directed toward the point light source, and

4. Vis the unit vector pointing to the viewer fromthe selected surface position.

 Angle φ is the viewing angle relative to the specular-reflection direction R

 An empirical model for calculating the specular reflection range, developed by Phong

Bui Tuong and called the Phong specular-reflection model or simply the Phon G

model, sets the intensity of specular reflection proportional to cosns φ

 Angle φ can be assigned values in the range 0◦ to 90◦, so that cos φ varies from 0 to 1.0.

 The value assigned to the specular-reflection exponent ns is determined by the type of

surface that we want to display.

 A very shiny surface is modeled with a large value for ns (say, 100 or more), and smaller

values (down to 1) are used for duller surfaces.

 For a perfect reflector, ns is infinite. For a rough surface, such as chalk or cinderblock, ns

is assigned a value near 1.

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 10

 Plots of cosns φ using five different values for the specular exponent ns .

 We can approximately model monochromatic specular intensity variations using a

specular-reflection coefficient,W(θ), for each surface.

 In general, W(θ) tends to increase as the angle of incidence increases. At θ = 90◦, all the

incident light is reflected (W(θ) = 1).

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 11

 Using the spectral-reflection function W(θ), we can write the Phong specular-reflection

model as

where Il is the intensity of the light source, and φ is the viewing angle relative to the specular-

reflection direction R.

 BecauseVand R are unit vectors in the viewing and specular-reflection directions, we can

calculate the value of cos φ with the dot product V·R.

 In addition, no specular effects are generated for the display of a surface if V and L are

on the same side of the normal vector N or if the light source is behind the surface

 We can determine the intensity of the specular reflection due to a point light source at a

surface position with the calculation

 The direction for R, the reflection vector, can be computed from the directions for vectors

L and N.

 The projection of L onto the direction of the normal vector has a magnitude equal to the

dot productN·L, which is also equal to the magnitude of the projection of unit vector R

onto the direction of N.

 Therefore, from this diagram, we see that

 R + L = (2N·L)N

 and the specular-reflection vector is obtained as

 R = (2N·L)N – L

 A somewhat simplified Phong model is obtained using the halfway vector H between L

and V to calculate the range of specular reflections.

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 12

 If we replace V·R in the Phong model with the dot productN·H, this simply replaces the

empirical cos φ calculation with the empirical cos α calculation

 The halfway vector is obtained as

 For nonplanar surfaces, N·H requires less computation than V·R because the calculation

of R at each surface point involves the variable vector N.

3.3.4 OpenGL Illumination Functions

OpenGL Point Light-Source Function

glLight* (lightName, lightProperty, propertyValue);

 A suffix code of i or f is appended to the function name, depending on the data type of

the property value

 lightName: GL_LIGHT0, GL_LIGHT1, GL_LIGHT2, . . . , GL_LIGHT7

 lightProperty: must be assigned one of the OpenGL symbolic property constants

glEnable (lightName); turn on that light with the command

glEnable (GL_LIGHTING); activate the OpenGL lighting routines

Specifying an OpenGL Light-Source Position and Type

GL_POSITION:

 specifies light-source position

 this symbolic constant is used to set two light-source properties at the same time: the

light-source position and the light-source type

Example:

GLfloat light1PosType [] = {2.0, 0.0, 3.0, 1.0};

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 13

GLfloat light2PosType [] = {0.0, 1.0, 0.0, 0.0};

glLightfv (GL_LIGHT1, GL_POSITION, light1PosType);

glEnable (GL_LIGHT1);

glLightfv (GL_LIGHT2, GL_POSITION, light2PosType);

glEnable (GL_LIGHT2);

Specifying OpenGL Light-Source Colors

 Unlike an actual light source, an OpenGL light has three different color properties the

symbolic color-property constants GL_AMBIENT, GL_DIFFUSE, and

GL_SPECULAR

Example:

GLfloat blackColor [] = {0.0, 0.0, 0.0, 1.0};

GLfloat whiteColor [] = {1.0, 1.0, 1.0, 1.0};

glLightfv (GL_LIGHT3, GL_AMBIENT, blackColor);

glLightfv (GL_LIGHT3, GL_DIFFUSE, whiteColor);

glLightfv (GL_LIGHT3, GL_SPECULAR, whiteColor);

Specifying Radial-Intensity Attenuation Coefficients

 For an OpenGL Light Source we could assign the radial-attenuation coefficient values as

glLightf (GL_LIGHT6, GL_CONSTANT_ATTENUATION, 1.5);

glLightf (GL_LIGHT6, GL_LINEAR_ATTENUATION, 0.75);

glLightf (GL_LIGHT6, GL_QUADRATIC_ATTENUATION, 0.4);

OpenGL Directional Light Sources (Spotlights)

 There are three OpenGL property constants for directional effects:

GL_SPOT_DIRECTION, GL_SPOT_CUTOFF, and GL_SPOT_EXPONENT

GLfloat dirVector [] = {1.0, 0.0, 0.0};

glLightfv (GL_LIGHT3, GL_SPOT_DIRECTION, dirVector);

glLightf (GL_LIGHT3, GL_SPOT_CUTOFF, 30.0);

glLightf (GL_LIGHT3, GL_SPOT_EXPONENT, 2.5);

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 14

OpenGL Global Lighting Parameters

glLightModel* (paramName, paramValue);

 We append a suffix code of i or f, depending on the data type of the parameter value.

 In addition, for vector data, we append the suffix code v.

 Parameter paramName is assigned an OpenGL symbolic constant that identifies the

global property to be set, and parameter paramValue is assigned a single value or set of

values.

globalAmbient [] = {0.0, 0.0, 0.3, 1.0);

glLightModelfv (GL_LIGHT_MODEL_AMBIENT, globalAmbient);

glLightModeli (GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE);

 turn off this default and use the actual viewing position (which is the viewing-coordinate

origin) to calculate V

Texture

 patterns are combined only with the nonspecular color, and then the two colors are

combined.

 We select this two-color option with

glLightModeli (GL_LIGHT_MODEL_COLOR_CONTROL,

GL_SEPARATE_SPECULAR_COLOR);

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 15

Color Models

3.3.5 Properties of Light

 We can characterize light as radiant energy, but we also need other concepts to describe

our perception of light.

The Electromagnetic Spectrum

 Color is electromagnetic radiation within a narrow frequency band.

 Some of the other frequency groups in the electromagnetic spectrum are referred to as

radio waves, microwaves, infrared waves, and X-rays. The frequency is shown below

 Each frequency value within the visible region of the electromagnetic spectrum

corresponds to a distinct spectral color.

 At the low-frequency end (approximately 3.8×1014 hertz) are the red colors, and at the

high-frequency end (approximately 7.9 × 1014 hertz) are the violet colors.

 In the wave model of electromagnetic radiation, light can be described as oscillating

transverse electric and magnetic fields propagating through space.

 The electric and magnetic fields are oscillating in directions that are perpendicular to

each other and to the direction of propagation.

 For one spectral color (a monochromatic wave), the wavelength and frequency are

inversely proportional to each other, with the proportionality constant as the speed of

light (c):

 c = λf
 A light source such as the sun or a standard household light bulb emits all frequencies

within the visible range to produce white light.

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 16

 When white light is incident upon an opaque object, some frequencies are reflected and

some are absorbed.

 If low frequencies are predominant in the reflected light, the object is described as red. In

this case, we say that the perceived light has a dominant frequency (or dominant

wavelength) at the red end of the spectrum.

 The dominant frequency is also called the hue, or simply the color, of the light.

Psychological Characteristics of Color

 Other properties besides frequency are needed to characterize our perception of Light

 Brightness: which corresponds to the total light energy and can be quantified as the

luminance of the light.

 Purity, or the saturation of the light: Purity describes how close a light appears to be to

a pure spectral color, such as red.

 chromaticity, is used to refer collectively to the two properties describing color

characteristics: purity and dominant frequency (hue).

 We can calculate the brightness of the source as the area under the curve, which gives the

total energy density emitted.

 Purity (saturation) depends on the difference between ED and EW

 Below figure shows Energy distribution for a white light source

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 17

 Below figure shows, Energy distribution for a light source with a dominant frequency

near the red end of the frequency range.

3.3.7 Color Models

 Any method for explaining the properties or behavior of color within some particular

context is called a color model.

Primary Colors

 The hues that we choose for the sources are called the primary colors, and the color

gamut for the model is the set of all colors that we can produce from the primary colors.

 Two primaries that produce white are referred to as complementary colors.

 Examples of complementary color pairs are red and cyan, green and magenta, and blue

and yellow

Intuitive Color Concepts

 An artist creates a color painting by mixing color pigments with white and black

pigments to form the various shades, tints, and tones in the scene.

 Starting with the pigment for a “pure color” (“pure hue”), the artist adds a black pigment

to produce different shades of that color.

 Tones of the color are produced by adding both black and white pigments.

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 18

The RGB Color Model

 According to the tristimulus theory of vision, our eyes perceive color through the

stimulation of three visual pigments in the cones of the retina.

 One of the pigments is most sensitive to light with a wavelength of about 630 nm (red),

another has its peak sensitivity at about 530 nm (green), and the third pigment is most

receptive to light with a wavelength of about 450 nm (blue).

 The three primaries red, green, and blue, which is referred to as the RGB color model.

 We can represent this model using the unit cube defined on R, G, and B axes, as shown in

Figure

 The origin represents black and the diagonally opposite vertex, with coordinates (1, 1, 1),

is white the RGB color scheme is an additive model.

 Each color point within the unit cube can be represented as a weighted vector sum of the

primary colors, using unit vectors R, G, and B:

 C(λ) = (R, G, B) = RR + G G + B B

 where parameters R, G, and B are assigned values in the range from 0 to 1.0

 Chromaticity coordinates for the National Television System Committee (NTSC)

standard RGB phosphors are listed in Table

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 19

 Below figure shows the approximate color gamut for the NTSC standard RGB primaries

The CMY and CMYK Color Models

The CMY Parameters

 A subtractive color model can be formed with the three primary colors cyan, magenta,

and yellow

 A unit cube representation for the CMY model is illustrated in Figure

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 20

 In the CMY model, the spatial position (1, 1, 1) represents black, because all components

of the incident light are subtracted.

 The origin represents white light.

 Equal amounts of each of the primary colors produce shades of gray along the main

diagonal of the cube.

 A combination of cyan and magenta ink produces blue light, because the red and green

components of the incident light are absorbed.

 Similarly, a combination of cyan and yellow ink produces green light, and a combination

of magenta and yellow ink yields red light.

 The CMY printing process often uses a collection of four ink dots, which are arranged in

a close pattern somewhat as an RGB monitor uses three phosphor dots.

 Thus, in practice, the CMY color model is referred to as the CMYK model, where K is

the black color parameter.

 One ink dot is used for each of the primary colors (cyan, magenta, and yellow), and one

ink dot is black

Transformations Between CMY and RGB Color Spaces

 We can express the conversion from an RGB representation to a CMY representation

using the following matrix transformation:

 Where the white point in RGB space is represented as the unit column vector.

 And we convert from a CMY color representation to an RGB representation using the

matrix transformation

Acknowledgements to

Donald Hearn & Pauline Baker: Computer Graphics with OpenGL

Version,3rd / 4th Edition, Pearson Education,2011

Edward Angel: Interactive Computer Graphics- A Top Down approach

with OpenGL, 5th edition. Pearson Education, 2008

M M Raiker, Computer Graphics using OpenGL, Filip learning/Elsevier

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

Three-Dimensional Viewing

4.1 Overview of Three-Dimensional Viewing Concepts

 When we model a three-dimensional scene, each object in the scene is typically defined

with a set of surfaces that form a closed boundary around the object interior.

 In addition to procedures that generate views of the surface features of an object, graphics

packages sometimes provide routines for displaying internal components or cross-

sectional views of a solid object.

 Many processes in three-dimensional viewing, such as the clipping routines, are similar

to those in the two-dimensional viewing pipeline.

 But three-dimensional viewing involves some tasks that are not present in

twodimensional Viewing

Viewing a Three-Dimensional Scene

 To obtain a display of a three-dimensional world-coordinate scene, we first set up a

coordinate reference for the viewing, or “camera,” parameters.

4 3D Viewing and Visible Surface Detection

4.1 3D viewing concepts,

4.2 3D viewing pipeline,

4.3 3D viewing coordinate parameters ,

4.4 Transformation from world to viewing coordinates,

4.5 Projection transformation,

4.6 Orthogonal projections,

4.7 Perspective projections,

4.8 The viewport transformation and 3D screen coordinates.

4.9 OpenGL 3D viewing functions.

Visible Surface Detection Methods:

4.10 Classification of visible surface Detection algorithms,

4.11Back face detection,

4.12 Depth buffer method and

4.13 OpenGL visibility detection functions.

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

 This coordinate reference defines the position and orientation for a view plane (or

projection plane) that corresponds to a camera film plane as shown in below figure.

Coordinate reference for obtaining a selected view of a three-dimensional scene.

 We can generate a view of an object on the output device in wireframe (outline) form, or

we can apply lighting and surface-rendering techniques to obtain a realistic shading of the

visible surfaces Projections

Two methods:

1. One method for getting the description of a solid object onto a view plane is to project

points on the object surface along parallel lines. This technique, called parallel projection

Three parallel-projection views of an object, showing relative proportions from different viewing

positions

2. Another method for generating a view of a three-dimensional scene is to project points to

the view plane along converging paths. This process, called a perspective projection,

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

causes objects farther from the viewing position to be displayed smaller than objects of

the same size that are nearer to the viewing position

Depth Cueing

 Depth information is important in a three-dimensional scene so that we can easily

identify, for a particular viewing direction, which is the front and which is the back of

each displayed object.

 There are several ways in which we can include depth information in the two-

dimensional representation of solid objects.

 A simple method for indicating depth with wire-frame displays is to vary the brightness

of line segments according to their distances from the viewing position which is termed

as depth cueing.

A wire-frame object displayed with depth

cueing, so that the brightness of lines decreases

from the front of the object to the back

 The lines closest to the viewing position are displayed with the highest intensity, and

lines farther away are displayed with decreasing intensities.

 Depth cueing is applied by choosing a maximum and a minimum intensity value and a

range of distances over which the intensity is to vary.

 Another application of depth cuing is modeling the effect of the atmosphere on the

perceived intensity of objects

Identifying Visible Lines and Surfaces

 One approach is simply to highlight the visible lines or to display them in a different

color. Another technique, commonly used for engineering drawings, is to display the

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

nonvisible lines as dashed lines. Or we could remove the nonvisible lines from the

display

Surface Rendering

 We set the lighting conditions by specifying the color and location of the light sources,

and we can also set background illumination effects.

 Surface properties of objects include whether a surface is transparent or opaque and

whether the surface is smooth or rough.

 We set values for parameters to model surfaces such as glass, plastic, wood-grain

patterns, and the bumpy appearance of an orange.

Exploded and Cutaway Views

 Exploded and cutaway views of such objects can then be used to show the internal

structure and relationship of the object parts.

 An alternative to exploding an object into its component parts is a cutaway view, which

removes part of the visible surfaces to show internal structure

Three-Dimensional and Stereoscopic Viewing

 Three-dimensional views can be obtained by reflecting a raster image from a vibrating,

flexible mirror.

 The vibrations of the mirror are synchronized with the display of the scene on the cathode

ray tube (CRT).

 As the mirror vibrates, the focal length varies so that each point in the scene is reflected

to a spatial position corresponding to its depth.

 Stereoscopic devices present two views of a scene: one for the left eye and the other for

the right eye.

 The viewing positions correspond to the eye positions of the viewer. These two views are

typically displayed on alternate refresh cycles of a raster monitor

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

4.2 The Three-Dimensional Viewing Pipeline

 First of all, we need to choose a viewing position corresponding to where we would place

a camera.

 We choose the viewing position according to whether we want to display a front, back,

side, top, or bottom view of the scene.

 We could also pick a position in the middle of a group of objects or even inside a single

object, such as a building or a molecule.

 Then we must decide on the camera orientation.

 Finally, when we snap the shutter, the scene is cropped to the size of a selected clipping

window, which corresponds to the aperture or lens type of a camera, and light from the

visible surfaces is projected onto the camera film.

 Some of the viewing operations for a three-dimensional scene are the same as, or similar

to, those used in the two-dimensional viewing pipeline.

 A two-dimensional viewport is used to position a projected view of the three dimensional

scene on the output device, and a two-dimensional clipping window is used to select a

view that is to be mapped to the viewport.

 Clipping windows, viewports, and display windows are usually specified as rectangles

with their edges parallel to the coordinate axes.

 The viewing position, view plane, clipping window, and clipping planes are all specified

within the viewing-coordinate reference frame.

 Figure above shows the general processing steps for creating and transforming a three-

dimensional scene to device coordinates.

 Once the scene has been modeled in world coordinates, a viewing-coordinate system is

selected and the description of the scene is converted to viewing coordinates

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

 A two-dimensional clipping window, corresponding to a selected camera lens, is defined

on the projection plane, and a three-dimensional clipping region is established.

 This clipping region is called the view volume.

 Projection operations are performed to convert the viewing-coordinate description of the

scene to coordinate positions on the projection plane.

 Objects are mapped to normalized coordinates, and all parts of the scene outside the view

volume are clipped off.

 The clipping operations can be applied after all device-independent coordinate

transformations.

 We will assume that the viewport is to be specified in device coordinates and that

normalized coordinates are transferred to viewport coordinates, following the clipping

operations.

 The final step is to map viewport coordinates to device coordinates within a selected

display window

4.3 Three-Dimensional Viewing-Coordinate Parameters

 Select a world-coordinate position P0 =(x0, y0, z0) for the viewing origin, which is called

the view point or viewing position and we specify a view-up vector V, which defines the

yview direction.

 Figure below illustrates the positioning of a three-dimensional viewing-coordinate frame

within a world system.

A right-handed viewing-coordinate system, with axes x view, y view, and z view, relative to a right-handed world-

coordinate frame.

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

The View-Plane Normal Vector

 Because the viewing direction is usually along the zview axis, the view plane, also called

the projection plane, is normally assumed to be perpendicular to this axis.

 Thus, the orientation of the view plane, as well as the direction for the positive zview

axis, can be definedwith a view-plane normal vector N,

 An additional scalar parameter is used to set the position of the view plane at some

coordinate value zvp along the zview axis,

 This parameter value is usually specified as a distance from the viewing origin along the

direction of viewing, which is often taken to be in the negative zview direction.

 Vector N can be specified in various ways. In some graphics systems, the direction for N

is defined to be along the line from the world-coordinate origin to a selected point

position.

 Other systems take N to be in the direction from a reference point Pref to the viewing

origin P0,

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

Specifying the view-plane normal vector N as the direction from a selected reference point Pref to the viewing-

coordinate origin P0.

The View-Up Vector

 Once we have chosen a view-plane normal vector N, we can set the direction for the

view-up vector V.

 This vector is used to establish the positive direction for the yview axis.

 Usually, V is defined by selecting a position relative to the world-coordinate origin, so

that the direction for the view-up vector is from the world origin to this selected position

 Because the view-plane normal vector N defines the direction for the zview axis, vector V

should be perpendicular to N.

 But, in general, it can be difficult to determine a direction for V that is precisely

perpendicular to N.

 Therefore, viewing routines typically adjust the user-defined orientation of vector V,

The uvn Viewing-Coordinate Reference Frame

 Left-handed viewing coordinates are sometimes used in graphics packages, with the

viewing direction in the positive zview direction.

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

 With a left-handed system, increasing zview values are interpreted as being farther from

the viewing position along the line of sight.

 But right-handed viewing systems are more common, because they have the same

orientation as the world-reference frame.

 Because the view-plane normal N defines the direction for the zview axis and the view-up

vector V is used to obtain the direction for the yview axis, we need only determine the

direction for the xview axis.

 Using the input values for N and V,we can compute a third vector, U, that is

perpendicular to both N and V.

 Vector U then defines the direction for the positive xview axis.

 We determine the correct direction for U by taking the vector cross product of V and N

so as to form a right-handed viewing frame.

 The vector cross product of N and U also produces the adjusted value for V,

perpendicular to both N and U, along the positive yview axis.

 Following these procedures, we obtain the following set of unit axis vectors for a right-

handed viewing coordinate system.

 The coordinate system formed with these unit vectors is often described as a uvn

viewing-coordinate reference frame

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 10

Generating Three-Dimensional Viewing Effects

 By varying the viewing parameters, we can obtain different views of objects in a scene.

 we could change the direction of N to display objects at positions around the viewing-

coordinate origin.

 We could also vary N to create a composite display consisting of multiple views from a

fixed camera position.

 In interactive applications, the normal vectorNis the viewing parameter that is most often

changed. Of course,when we change the direction for N,we also have to change the other

axis vectors to maintain a right-handed viewing-coordinate system.

 If we want to simulate an animation panning effect, as when a camera moves through a

scene or follows an object that is moving through a scene, we can keep the direction for

N fixed as we move the view point,

 Alternatively, different views of an object or group of objects can be generated using

geometric transformations without changing the viewing parameters

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 11

4.4 Transformation from World to Viewing Coordinates

 In the three-dimensional viewing pipeline, the first step after a scene has been constructed

is to transfer object descriptions to the viewing-coordinate reference frame.

 This conversion of object descriptions is equivalent to a sequence of transformations that

superimposes the viewing reference frame onto the world frame

1. Translate the viewing-coordinate origin to the origin of the worldcoordinate

system.

2. Apply rotations to align the xview, yview, and zview axes with the world xw, yw,

and zw axes, respectively.

 The viewing-coordinate origin is at world position P0 = (x0, y0, z0). Therefore, the matrix

for translating the viewing origin to the world origin is

 For the rotation transformation, we can use the unit vectors u, v, and n to form the

composite rotation matrix that superimposes the viewing axes onto the world frame. This

transformation matrix is

where the elements of matrix R are the components of the uvn axis vectors.

 The coordinate transformation matrix is then obtained as the product of the preceding

translation and rotation matrices:

 Translation factors in this matrix are calculated as the vector dot product of each of the u,

v, and n unit vectors with P0, which represents a vector from the world origin to the

viewing origin.

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 12

 These matrix elements are evaluated as

4.5 Projection Transformations

 Graphics packages generally support both parallel and perspective projections.

 In a parallel projection, coordinate positions are transferred to the view plane along

parallel lines.

 A parallel projection preserves relative proportions of objects, and this is the method used

in computeraided drafting and design to produce scale drawings of three-dimensional

objects.

 All parallel lines in a scene are displayed as parallel when viewed with a parallel

projection.

 There are two general methods for obtaining a parallel-projection view of an object: We

can project along lines that are perpendicular to the view plane, or we can project at an

oblique angle to the view plane

 For a perspective projection, object positions are transformed to projection coordinates

along lines that converge to a point behind the view plane.

 Unlike a parallel projection, a perspective projection does not preserve relative

proportions of objects.

 But perspective views of a scene are more realistic because distant objects in the

projected display are reduced in size.

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 13

4.6 Orthogonal Projections

 A transformation of object descriptions to a view plane along lines that are all parallel to

the view-plane normal vector N is called an orthogonal projection also termed as

orthographic projection.

 This produces a parallel-projection transformation in which the projection lines are

perpendicular to the view plane.

 Orthogonal projections are most often used to produce the front, side, and top views of an

object

 Front, side, and rear orthogonal projections of an object are called elevations; and a top

orthogonal projection is called a plan view

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 14

Axonometric and Isometric Orthogonal Projections

 We can also form orthogonal projections that display more than one face of an object.

Such views are called axonometric orthogonal projections.

 The most commonly used axonometric projection is the isometric projection, which is

generated by aligning the projection plane (or the object) so that the plane intersects each

coordinate axis in which the object is defined, called the principal axes, at the same

distance from the origin

Orthogonal Projection Coordinates

 With the projection direction parallel to the zview axis, the transformation equations for an

orthogonal projection are trivial. For any position (x, y, z) in viewing coordinates, as in

Figure below, the projection coordinates are xp = x, yp = y

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 15

Clipping Window and Orthogonal-Projection View Volume

 In OpenGL, we set up a clipping window for three-dimensional viewing just as we did

for two-dimensional viewing, by choosing two-dimensional coordinate positions for its

lower-left and upper-right corners.

 For three-dimensional viewing, the clipping window is positioned on the view plane with

its edges parallel to the xview and yview axes, as shown in Figure below . If we want to use

some other shape or orientation for the clipping window, we must develop our own

viewing procedures

 The edges of the clipping window specify the x and y limits for the part of the scene that

we want to display.

 These limits are used to form the top, bottom, and two sides of a clipping region called

the orthogonal-projection view volume.

 Because projection lines are perpendicular to the view plane, these four boundaries are

planes that are also perpendicular to the view plane and that pass through the edges of the

clipping window to form an infinite clipping region, as in Figure below.

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 16

 These two planes are called the near-far clipping planes, or the front-back clipping

planes.

 The near and far planes allow us to exclude objects that are in front of or behind the part

of the scene that we want to display.

 When the near and far planes are specified, we obtain a finite orthogonal view volume

that is a rectangular parallelepiped, as shown in Figure below along with one possible

placement for the view plane

Normalization Transformation for an Orthogonal Projection

 Once we have established the limits for the view volume, coordinate descriptions inside

this rectangular parallelepiped are the projection coordinates, and they can be mapped

into a normalized view volume without any further projection processing.

 Some graphics packages use a unit cube for this normalized view volume, with each of

the x, y, and z coordinates normalized in the range from 0 to 1.

 Another normalization-transformation approach is to use a symmetric cube, with

coordinates in the range from −1 to 1

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 17

 We can convert projection coordinates into positions within a left-handed normalized-

coordinate reference frame, and these coordinate positions will then be transferred to

lefthanded screen coordinates by the viewport transformation.

 To illustrate the normalization transformation, we assume that the orthogonal-projection

view volume is to be mapped into the symmetric normalization cube within a left-handed

reference frame.

 Also, z-coordinate positions for the near and far planes are denoted as znear and zfar,

respectively. Figure below illustrates this normalization transformation

 The normalization transformation for the orthogonal view volume is

4.7 Perspective Projections

 We can approximate this geometric-optics effect by projecting objects to the view plane

along converging paths to a position called the projection reference point (or center of

projection).

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 18

 Objects are then displayed with foreshortening effects, and projections of distant objects

are smaller than the projections of objects of the same size that are closer to the view

plane

Perspective-Projection Transformation Coordinates

 Figure below shows the projection path of a spatial position (x, y, z) to a general

projection reference point at (xprp, yprp, zprp).

 The projection line intersects the view plane at the coordinate position (xp, yp, zvp), where

zvp is some selected position for the view plane on the zview axis.

 We can write equations describing coordinate positions along this perspective-projection

line in parametric form as

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 19

 On the view plane, z’ = zvp and we can solve the z’ equation for parameter u at this

position along the projection line:

 Substituting this value of u into the equations for x’ and y’, we obtain the general

perspective-transformation equations

Perspective-Projection Equations: Special Cases

Case 1:

 To simplify the perspective calculations, the projection reference point could be limited

to positions along the zview axis, then

 xprp = yprp = 0:

Case 2:

 Sometimes the projection reference point is fixed at the coordinate origin, and

(xprp, yprp, zprp) = (0, 0, 0) :

Case 3:

 If the view plane is the uv plane and there are no restrictions on the placement of the

projection reference point, then we have

zvp = 0:

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 20

Case 4:

 With the uv plane as the view plane and the projection reference point on the zview axis,

the perspective equations are

xprp = yprp = zvp = 0:

 The view plane is usually placed between the projection reference point and the scene,

but, in general, the view plane could be placed anywhere except at the projection point.

 If the projection reference point is between the view plane and the scene, objects are

inverted on the view plane (refer below figure)

 Perspective effects also depend on the distance between the projection reference point

and the view plane, as illustrated in Figure below.

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 21

 If the projection reference point is close to the view plane, perspective effects are

emphasized; that is, closer objects will appearmuchlarger thanmore distant objects of the

same size.

 Similarly, as the projection reference point moves farther from the view plane, the

difference in the size of near and far objects decreases

Vanishing Points for Perspective Projections

 The point at which a set of projected parallel lines appears to converge is called a

vanishing point.

 Each set of projected parallel lines has a separate vanishing point.

 For a set of lines that are parallel to one of the principal axes of an object, the vanishing

point is referred to as a principal vanishing point.

 We control the number of principal vanishing points (one, two, or three) with the

orientation of the projection plane, and perspective projections are accordingly classified

as one-point, two-point, or three-point projections

Principal vanishing points for

perspective-projection views of a cube.

When the cube in (a) is projected to a

view plane that intersects only the

z axis, a single vanishing point in the z

direction (b) is generated. When the

cube is projected to a view plane that

intersects both the z and x axes, two

vanishing points (c) are produced.

Perspective-Projection View Volume

 A perspective-projection view volume is often referred to as a pyramid of vision because

it approximates the cone of vision of our eyes or a camera.

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 22

 The displayed view of a scene includes only those objects within the pyramid, just as we

cannot see objects beyond our peripheral vision, which are outside the cone of vision.

 By adding near and far clipping planes that are perpendicular to the zview axis (and

parallel to the view plane), we chop off parts of the infinite, perspectiveprojection view

volume to form a truncated pyramid, or frustum, view volume

 But with a perspective projection, we could also use the near clipping plane to take out

large objects close to the view plane that could project into unrecognizable shapes within

the clipping window.

 Similarly, the far clipping plane could be used to cut out objects far from the projection

reference point that might project to small blots on the view plane.

Perspective-Projection Transformation Matrix

 We can use a three-dimensional, homogeneous-coordinate representation to express the

perspective-projection equations in the form

where the homogeneous parameter has the value

h = zprp – z

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 23

 The perspective-projection transformation of a viewing-coordinate position is then

accomplished in two steps.

 First, we calculate the homogeneous coordinates using the perspective-transformation

matrix:

Where,

Ph is the column-matrix representation of the homogeneous point (xh, yh, zh, h) and

P is the column-matrix representation of the coordinate position (x, y, z, 1).

 Second, after other processes have been applied, such as the normalization transformation

and clipping routines, homogeneous coordinates are divided by parameter h to obtain the

true transformation-coordinate positions.

 The following matrix gives one possible way to formulate a perspective-projection

matrix.

 Parameters sz and tz are the scaling and translation factors for normalizing the projected

values of z-coordinates.

 Specific values for sz and tz depend on the normalization range we select.

Symmetric Perspective-Projection Frustum

 The line from the projection reference point through the center of the clipping window

and on through the view volume is the centerline for a perspectiveprojection frustum.

 If this centerline is perpendicular to the view plane, we have a symmetric frustum (with

respect to its centerline)

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 24

 Because the frustum centerline intersects the view plane at the coordinate location (xprp,

yprp, zvp), we can express the corner positions for the clipping window in terms of the

window dimensions:

 Another way to specify a symmetric perspective projection is to use parameters that

approximate the properties of a camera lens.

 A photograph is produced with a symmetric perspective projection of a scene onto the

film plane.

 Reflected light rays from the objects in a scene are collected on the film plane from

within the “cone of vision” of the camera.

 This cone of vision can be referenced with a field-of-view angle, which is a measure of

the size of the camera lens.

 A large field-of-view angle, for example, corresponds to a wide-angle lens.

 In computer graphics, the cone of vision is approximated with a symmetric frustum, and

we can use a field-of-view angle to specify an angular size for the frustum.

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 25

 For a given projection reference point and view-plane position, the field-of view angle

determines the height of the clipping window from the right triangles in the diagram of

Figure below, we see that

 so that the clipping-window height can be calculated as

 Therefore, the diagonal elements with the value zprp −zvp could be replaced by either of

the following two expressions

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 26

Oblique Perspective-Projection Frustum

 If the centerline of a perspective-projection view volume is not perpendicular to the view

plane, we have an oblique frustum

 In this case, we can first transform the view volume to a symmetric frustum and then to a

normalized view volume.

 An oblique perspective-projection view volume can be converted to a sym metric frustum

by applying a z-axis shearing-transformation matrix.

 This transformation shifts all positions on any plane that is perpendicular to the z axis by

an amount that is proportional to the distance of the plane from a specified z- axis

reference position.

 The computations for the shearing transformation, as well as for the perspective and

normalization transformations, are greatly reduced if we take the projection reference

point to be the viewing-coordinate origin.

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 27

 Taking the projection reference point as (xprp, yprp, zprp) = (0, 0, 0), we obtain the elements

of the required shearing matrix as

 We need to choose values for the shearing parameters such that

 Therefore, the parameters for this shearing transformation are

 Similarly, with the projection reference point at the viewing-coordinate origin and with

the near clipping plane as the view plane, the perspective-projection matrix is simplified

to

 Concatenating the simplified perspective-projection matrix with the shear matrix we have

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 28

Normalized Perspective-Projection Transformation Coordinates

 When we divide the homogeneous coordinates by the homogeneous parameter h, we

obtain the actual projection coordinates, which are orthogonal-projection coordinates

 The final step in the perspective transformation process is to map this parallelepiped to a

normalized view volume.

 The transformed frustum view volume, which is a rectangular parallelepiped, is mapped

to a symmetric normalized cube within a left-handed reference frame

 Because the centerline of the rectangular parallelepiped view volume is now the zview

axis, no translation is needed in the x and y normalization transformations: We require

only the x and y scaling parameters relative to the coordinate origin.

 The scaling matrix for accomplishing the xy normalization is

 Concatenating the xy-scalingmatrix produces the following normalization matrix for a

perspective-projection transformation.

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 29

 From this transformation, we obtain the homogeneous coordinates:

And the projection coordinates are

 To normalize this perspective transformation, we want the projection coordinates to be

(xp, yp, zp) = (−1, −1, −1) when the input coordinates are (x, y, z) = (xwmin, ywmin, znear), and

we want the projection coordinates to be (xp, yp, zp) = (1, 1, 1) when the input coordinates

are (x, y, z) = (xwmax, ywmax, zfar).

 And the elements of the normalized transformation matrix for a general perspective-

projection are

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 30

4.8 The Viewport Transformation and Three-Dimensional Screen

Coordinates

 Once we have completed the transformation to normalized projection coordinates,

clipping can be applied efficiently to the symmetric cube then the contents of the

normalized view volume can be transferred to screen coordinates.

 Positions throughout the three-dimensional view volume also have a depth (z coordinate),

and we need to retain this depth information for the visibility testing and surface-

rendering algorithms

 If we include this z renormalization, the transformation from the normalized view volume

to three dimensional screen coordinates is

 In normalized coordinates, the znorm = −1 face of the symmetric cube corresponds to the

clipping-window area. And this face of the normalized cube is mapped to the rectangular

viewport, which is now referenced at zscreen = 0.

 Thus, the lower-left corner of the viewport screen area is at position (xvmin, yvmin, 0) and

the upper-right corner is at position (xvmax, yvmax, 0).

4.9 OpenGL Three-Dimensional Viewing Functions

OpenGL Viewing-Transformation Function

glMatrixMode (GL_MODELVIEW);

 a matrix is formed and concatenated with the current modelview matrix, We set the

modelview mode with the statement above

gluLookAt (x0, y0, z0, xref, yref, zref, Vx, Vy, Vz);

 Viewing parameters are specified with the above GLU function.

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 31

 This function designates the origin of the viewing reference frame as the world-

coordinate position P0 = (x0, y0, z0), the reference position as Pref =(xref, yref, zref), and the

view-up vector as V = (Vx, Vy, Vz).

 If we do not invoke the gluLookAt function, the default OpenGL viewing parameters are

P0 = (0, 0, 0)

Pref = (0, 0, −1)

V = (0, 1, 0)

OpenGL Orthogonal-Projection Function

glMatrixMode (GL_PROJECTION);

 set up a projection-transformation matrix.

 Then, when we issue any transformation command, the resulting matrix will be

concatenated with the current projection matrix.

glOrtho (xwmin, xwmax, ywmin, ywmax, dnear, dfar);

 Orthogonal-projection parameters are chosen with the function

 All parameter values in this function are to be assigned double-precision, floating point

Numbers

 Function glOrtho generates a parallel projection that is perpendicular to the view plane

 Parameters dnear and dfar denote distances in the negative zview direction from the viewing-

coordinate origin

 We can assign any values (positive, negative, or zero) to these parameters, so long as

dnear<dfar.

 Exa: glOrtho (-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 32

OpenGL General Perspective-Projection Function

glFrustum (xwmin, xwmax, ywmin, ywmax, dnear, dfar);

 specify a perspective projection that has either a symmetric frustum view volume or an

oblique frustum view volume

 All parameters in this function are assigned double-precision, floating-point numbers.

 The first four parameters set the coordinates for the clipping window on the near plane,

and the last two parameters specify the distances from the coordinate origin to the near

and far clipping planes along the negative zview axis.

OpenGL Viewports and Display Windows

glViewport (xvmin, yvmin, vpWidth, vpHeight);

 A rectangular viewport is defined.

 The first two parameters in this function specify the integer screen position of the lower-

left corner of the viewport relative to the lower-left corner of the display window.

 And the last two parameters give the integer width and height of the viewport.

 To maintain the proportions of objects in a scene, we set the aspect ratio of the viewport

equal to the aspect ratio of the clipping window.

 Display windows are created and managed with GLUT routines. The default viewport in

OpenGL is the size and position of the current display window

OpenGL Three-Dimensional Viewing Program Example

#include <GL/glut.h>

GLint winWidth = 600, winHeight = 600; // Initial display-window size.

GLfloat x0 = 100.0, y0 = 50.0, z0 = 50.0; // Viewing-coordinate origin.

GLfloat xref = 50.0, yref = 50.0, zref = 0.0; // Look-at point.

GLfloat Vx = 0.0, Vy = 1.0, Vz = 0.0; // View-up vector.

/* Set coordinate limits for the clipping window: */

GLfloat xwMin = -40.0, ywMin = -60.0, xwMax = 40.0, ywMax = 60.0;

/* Set positions for near and far clipping planes: */

GLfloat dnear = 25.0, dfar = 125.0;

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 33

void init (void)

{

glClearColor (1.0, 1.0, 1.0, 0.0);

glMatrixMode (GL_MODELVIEW);

gluLookAt (x0, y0, z0, xref, yref, zref, Vx, Vy, Vz);

glMatrixMode (GL_PROJECTION);

glFrustum (xwMin, xwMax, ywMin, ywMax, dnear, dfar);

}

void displayFcn (void)

{

glClear (GL_COLOR_BUFFER_BIT);

glColor3f (0.0, 1.0, 0.0); // Set fill color to green.

glPolygonMode (GL_FRONT, GL_FILL);

glPolygonMode (GL_BACK, GL_LINE); // Wire-frame back face.

glBegin (GL_QUADS);

glVertex3f (0.0, 0.0, 0.0);

glVertex3f (100.0, 0.0, 0.0);

glVertex3f (100.0, 100.0, 0.0);

glVertex3f (0.0, 100.0, 0.0);

glEnd ();

glFlush ();

}

void reshapeFcn (GLint newWidth, GLint newHeight)

{

glViewport (0, 0, newWidth, newHeight);

winWidth = newWidth;

winHeight = newHeight;

}

void main (int argc, char** argv)

{

glutInit (&argc, argv);

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 34

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

glutInitWindowPosition (50, 50);

glutInitWindowSize (winWidth, winHeight);

glutCreateWindow ("Perspective View of A Square");

init ();

glutDisplayFunc (displayFcn);

glutReshapeFunc (reshapeFcn);

glutMainLoop ();

}

Visible-Surface Detection Methods

4.10 Classification of Visible-Surface Detection Algorithms

 We can broadly classify visible-surface detection algorithms according to whether they

deal with the object definitions or with their projected images.

 Object-space methods: compares objects and parts of objects to each other within the

scene definition to determine which surfaces, as a whole, we should label as visible.

 Image-space methods: visibility is decided point by point at each pixel position on the

projection plane.

 Although there are major differences in the basic approaches taken by the various visible-

surface detection algorithms, most use sorting and coherence methods to improve

performance.

 Sorting is used to facilitate depth comparisons by ordering the individual surfaces in a

scene according to their distance from the view plane.

 Coherence methods are used to take advantage of regularities in a scene.

4.11 Back-Face Detection

 A fast and simple object-space method for locating the back faces of a polyhedron is

based on front-back tests. A point (x, y, z) is behind a polygon surface if

Ax + By + Cz + D < 0

where A, B,C, and Dare the plane parameters for the polygon

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 35

 We can simplify the back-face test by considering the direction of the normal vector N

for a polygon surface. If Vview is a vector in the viewing direction from our camera

position, as shown in Figure below, then a polygon is a back face if

Vview . N > 0

 In a right-handed viewing system with the viewing direction along the negative zv axis

(Figure below), a polygon is a back face if the z component, C, of its normal vector N

satisfies C < 0.

 Also, we cannot see any face whose normal has z component C = 0, because our viewing

direction is grazing that polygon. Thus, in general, we can label any polygon as a back

face if its normal vector has a z component value that satisfies the inequality

C <=0

 Similar methods can be used in packages that employ a left-handed viewing system. In

these packages, plane parameters A, B, C, and D can be calculated from polygon vertex

coordinates specified in a clockwise direction.

 Inequality 1 then remains a valid test for points behind the polygon.

 By examining parameter C for the different plane surfaces describing an object, we can

immediately identify all the back faces.

 For other objects, such as the concave polyhedron in Figure below, more tests must be

carried out to determine whether there are additional faces that are totally or partially

obscured by other faces

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 36

 In general, back-face removal can be expected to eliminate about half of the polygon

surfaces in a scene from further visibility tests.

4.12 Depth-Buffer Method

 A commonly used image-space approach for detecting visible surfaces is the depth-buffer

method, which compares surface depth values throughout a scene for each pixel position

on the projection plane.

 The algorithm is usually applied to scenes containing only polygon surfaces, because

depth values can be computed very quickly and the method is easy to implement.

 This visibility-detectionapproach is also frequently alluded to as the z-buffer method,

because object depth is usually measured along the z axis of a viewing system

Figure above shows three surfaces at varying distances along the orthographic projection line

from position (x, y) on a view plane.

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 37

 These surfaces can be processed in any order.

 If a surface is closer than any previously processed surfaces, its surface color is

calculated and saved, along with its depth.

 The visible surfaces in a scene are represented by the set of surface colors that have been

saved after all surface processing is completed

 As implied by the name of this method, two buffer areas are required. A depth buffer is

used to store depth values for each (x, y) position as surfaces are processed, and the frame

buffer stores the surface-color values for each pixel position.

Depth-Buffer Algorithm

1. Initialize the depth buffer and frame buffer so that for all buffer positions (x, y),

depthBuff (x, y) = 1.0, frameBuff (x, y) = backgndColor

2. Process each polygon in a scene, one at a time, as follows:

• For each projected (x, y) pixel position of a polygon, calculate the depth z (if not already

known).

• If z < depthBuff (x, y), compute the surface color at that position and set

depthBuff (x, y) = z, frameBuff (x, y) = surfColor (x, y)

After all surfaces have been processed, the depth buffer contains depth values for the visible

surfaces and the frame buffer contains the corresponding color values for those surfaces.

 Given the depth values for the vertex positions of any polygon in a scene, we can

calculate the depth at any other point on the plane containing the polygon.

 At surface position (x, y), the depth is calculated from the plane equation as

 If the depth of position (x, y) has been determined to be z, then the depth z’ of the next

position (x + 1, y) along the scan line is obtained as

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 38

 The ratio −A/C is constant for each surface, so succeeding depth values across a scan line

are obtained from preceding values with a single addition.

 We can implement the depth-buffer algorithm by starting at a top vertex of the polygon.

 Then, we could recursively calculate the x-coordinate values down a left edge of the

polygon.

 The x value for the beginning position on each scan line can be calculated from the

beginning (edge) x value of the previous scan line as

where m is the slope of the edge (Figure below).

 Depth values down this edge are obtained recursively as

 If we are processing down a vertical edge, the slope is infinite and the recursive

calculations reduce to

 One slight complication with this approach is that while pixel positions are at integer (x,

y) coordinates, the actual point of intersection of a scan line with the edge of a polygon

may not be.

 As a result, it may be necessary to adjust the intersection point by rounding its fractional

part up or down, as is done in scan-line polygon fill algorithms.

 An alternative approach is to use a midpoint method or Bresenham-type algorithm for

determining the starting x values along edges for each scan line.

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 39

 The method can be applied to curved surfaces by determining depth and color values at

each surface projection point.

 In addition, the basic depth-buffer algorithm often performs needless calculations.

 Objects are processed in an arbitrary order, so that a color can be computed for a surface

point that is later replaced by a closer surface.

4.13 OpenGL Visibility-Detection Functions

OpenGL Polygon-Culling Functions

 Back-face removal is accomplished with the functions

glEnable (GL_CULL_FACE);

glCullFace (mode);

 where parameter mode is assigned the value GL_BACK, GL_FRONT,

GL_FRONT_AND_BACK

 By default, parameter mode in the glCullFace function has the value GL_BACK

 The culling routine is turned off with

glDisable (GL_CULL_FACE);

OpenGL Depth-Buffer Functions

 To use the OpenGL depth-buffer visibility-detection routines, we first need to modify the

GL Utility Toolkit (GLUT) initialization function for the display mode to include a

request for the depth buffer, as well as for the refresh buffer

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);

 Depth buffer values can then be initialized with

 glClear (GL_DEPTH_BUFFER_BIT);

 the preceding initialization sets all depth-buffer values to the maximum

value 1.0 by default

 The OpenGL depth-buffer visibility-detection routines are activated with the following

function:

glEnable (GL_DEPTH_TEST);

And we deactivate the depth-buffer routines with

glDisable (GL_DEPTH_TEST);

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 40

 We can also apply depth-buffer visibility testing using some other initial value for

themaximumdepth, and this initial value is chosen with theOpenGLfunction:

glClearDepth (maxDepth);

 Parameter maxDepth can be set to any value between 0.0 and 1.0.

 Projection coordinates in OpenGL are normalized to the range from −1.0

to 1.0, and the depth values between the near and far clipping planes are

further normalized to the range from 0.0 to 1.0.

 As an option, we can adjust these normalization values with

glDepthRange (nearNormDepth, farNormDepth);

 By default, nearNormDepth = 0.0 and farNormDepth = 1.0.

 But with the glDepthRange function, we can set these two parameters to

any values within the range from 0.0 to 1.0, including nearNormDepth >

farNormDepth

 Another option available in OpenGL is the test condition that is to be used for the depth-

buffer routines.We specify a test condition with the following function:

glDepthFunc (testCondition);

o Parameter testCondition can be assigned any one of the following eight symbolic

constants: GL_LESS, GL_GREATER, GL_EQUAL, GL_NOTEQUAL,

GL_LEQUAL, GL_GEQUAL, GL_NEVER (no points are processed), and

GL_ALWAYS.

o The default value for parameter testCondition is GL_LESS.

 We can also set the status of the depth buffer so that it is in a read-only state or in a read-

write state. This is accomplished with

glDepthMask (writeStatus);

o When writeStatus = GL_TRUE (the default value), we can both read from and

write to the depth buffer.

o With writeStatus = GL_FALSE, the write mode for the depth buffer is disabled

and we can retrieve values only for comparison in depth testing.

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 41

OpenGL Wire-Frame Surface-Visibility Methods

 A wire-frame display of a standard graphics object can be obtained in OpenGL by

requesting that only its edges are to be generated.

 We do this by setting the polygon-mode function as, for example:

glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);

But this displays both visible and hidden edges

glEnable (GL_DEPTH_TEST);

glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);

glColor3f (1.0, 1.0, 1.0);

/* Invoke the object-description routine. */

glPolygonMode (GL_FRONT_AND_BACK, GL_FILL);

glEnable (GL_POLYGON_OFFSET_FILL);

glPolygonOffset (1.0, 1.0);

glColor3f (0.0, 0.0, 0.0);

/* Invoke the object-description routine again. */

glDisable (GL_POLYGON_OFFSET_FILL);

OpenGL Depth-Cueing Function

 We can vary the brightness of an object as a function of its distance from the viewing

position with

glEnable (GL_FOG);

glFogi (GL_FOG_MODE, GL_ LINEAR);

This applies the linear depth function to object colors using dmin = 0.0 and dmax = 1.0. But we can

set different values for dmin and dmax with the following function calls:

glFogf (GL_FOG_START, minDepth);

glFogf (GL_FOG_END, maxDepth);

 In these two functions, parameters minDepth and maxDepth are assigned floating-point

values, although integer values can be used if we change the function suffix to i.

 We can use the glFog function to set an atmosphere color that is to be combined with the

color of an object after applying the linear depthcueing function

Module 4 ***SAI RAM*** 3D Viewing and Visible surface detection

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 42

Difference Between perspective projection and parallel projection

Perspective projection Parallel projection

The center of projection is at a finite distance

from the viewing plane

Center of projection at infinity results with a

parallel projection

Explicitly specify: center of projection Direction of projection is specified

Size of the object is inversely proportional to

the distance of the object from the center of

projection

No change in the size of object

Produces realistic views but does not preserve

relative proportion of objects

A parallel projection oreserves relative

proportion of objects, but does not give us a

reaistic representation of the appearance of

object.

Not useful for recording exact shape and

measurements of the object

Used for exact measurement

Parallel lines do not in general project as

parallel

Parallel lines do remain parallel

Acknowledgements to

Donald Hearn & Pauline Baker: Computer Graphics with OpenGL

Version,3rd / 4th Edition, Pearson Education,2011

Edward Angel: Interactive Computer Graphics- A Top Down approach

with OpenGL, 5th edition. Pearson Education, 2008

M M Raiker, Computer Graphics using OpenGL, Filip learning/Elsevier

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

5.1.1INTERACTION

 In the field of computer graphics, interaction refers to the manner in

which the application program communicates with input and output

devices of the system.

 For e.g. Image varying in response to the input from the user.

 OpenGL doesn’t directly support interaction in order to maintain

portability. However, OpenGL provides the GLUT library. This library

supports interaction with the keyboard, mouse etc and hence enables

interaction. The GLUT library is compatible with many operating systems

such as X windows, Current Windows, Mac OS etc and hence indirectly

ensures the portability of OpenGL.

5.1.2 INPUT DEVICES

 Input devices are the devices which provide input to the computer

graphics application program. Input devices can be categorized in two

ways:

5.1 INPUT AND INTERACTION

Interaction; Input devices;

Clients and servers; Display lists;

Display lists and modeling; Programming

event-driven input; Menus; Picking;

 A simple CAD program;

Building interactive models;

Animating interactive programs;

Design of interactive programs;

Logic operations.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

1. Physical input devices

2. Logical input devices

PHYSICAL INPUT DEVICES

 Physical input devices are the input devices which has the particular

hardware architecture.

 The two major categories in physical input devices are:

 Key board devices like standard keyboard, flexible keyboard, handheld

keyboard etc. These are used to provide character input like letters,

numbers, symbols etc.

 Pointing devices like mouse, track ball, light pen etc. These are used

to specify the position on the computer screen.

1. KEYBOARD: It is a general keyboard which has set of characters. We

make use of ASCII value to represent the character i.e. it interacts with the

programmer by passing the ASCII value of key pressed by programmer. Input

can be given either single character of array of characters to the program.

2. MOUSE AND TRACKBALL: These are pointing devices used to specify the

position. Mouse and trackball interacts with the application program by

passing the position of the clicked button. Both these devices are similar in use

and construction. In these devices, the motion of the ball is converted to signal

sent back to the computer by pair of encoders inside the device. These

encoders measure motion in 2-orthogonal directions.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

The values passed by the pointing devices can be considered as positions and

converted to a 2-D location in either screen or world co-ordinates. Thus, as a

mouse moves across a surface, the integrals of the velocities yield x,y values

that can be converted to indicate the position for a cursor on the screen as

shown below:

These devices are relative positioning devices because changes in the

position of the ball yield a position in the user program.

3. DATA TABLETS: It provides absolute positioning. It has rows and

columns of wires embedded under its surface. The position of the stylus is

determined through electromagnetic interactions between signals travelling

through the wires and sensors in the stylus.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

4. LIGHT PEN: It consists of light-sensing device such as “photocell”. The

light pen is held at the front of the CRT. When the electron beam strikes the

phosphor, the light is emitted from the CRT. If it exceeds the threshold then

light sensing device of the light pen sends a signal to the computer specifying

the position.

The major disadvantage is that it has the difficulty in obtaining a position that

corresponds to a dark area of the screen

5. JOYSTICK: The motion of the stick in two orthogonal directions is

encoded, interpreted as two velocities and integrated to indentify a screen

location. The integration implies that if the stick is left in its resting position,

there is no change in cursor position. The faster the stick is moved from the

resting position; the faster the screen location changes. Thus, joystick is

variable sensitivity device.

The advantage is that it is designed using mechanical elements such as springs

and dampers which offer resistance to the user while pushing it. Such

mechanical feel is suitable for application such as the flight simulators, game

controllers etc.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

6. SPACE BALL: It is a 3-Dimensional input device which looks like a

joystick with a ball on the end of the stick.

Stick doesn’t move rather pressure sensors in the ball measure the forces

applied by the user. The space ball can measure not only three direct forces

(up-down, front-back, left-right) but also three independent twists. So totally

device measures six independent values and thus has six degree of freedom.

Other 3-Dimensional devices such as laser scanners, measure 3-D positions

directly. Numerous tracking systems used in virtual reality applications sense

the position of the user and so on.

LOGICAL INPUT DEVICES

 These are characterized by its high-level interface with the application

program rather than by its physical characteristics.

 Consider the following fragment of C code:

int x;

scanf(“%d”,&x);

printf(“%d”,x);

 The above code reads and then writes an integer. Although we run this

program on workstation providing input from keyboard and seeing

output on the display screen, the use of scanf() and printf() requires no

knowledge of the properties of physical devices such as keyboard codes

or resolution of the display.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

 These are logical functions that are defined by how they handle input or

output character strings from the perspective of C program.

 From logical devices perspective inputs are from inside the application

program. The two major characteristics describe the logical behavior of

input devices are as follows:

 The measurements that the device returns to the user program

 The time when the device returns those measurements

API defines six classes of logical input devices which are given below:

1. STRING: A string device is a logical device that provides the ASCII values

of input characters to the user program. This logical device is usually

implemented by means of physical keyboard.

2. LOCATOR: A locator device provides a position in world coordinates to

the user program. It is usually implemented by means of pointing devices such

as mouse or track ball.

3. PICK: A pick device returns the identifier of an object on the display to

the user program. It is usually implemented with the same physical device as

the locator but has a separate software interface to the user program. In

OpenGL, we can use a process of selection to accomplish picking.

4. CHOICE: A choice device allows the user to select one of a discrete

number of options. In OpenGL, we can use various widgets provided by the

window system. A widget is a graphical interactive component provided by the

window system or a toolkit. The Widgets include menus, scrollbars and

graphical buttons. For example, a menu with n selections acts as a choice

device, allowing user to select one of ‘n’ alternatives.
5. VALUATORS: They provide analog input to the user program on some

graphical systems; there are boxes or dials to provide value.

6. STROKE: A stroke device returns array of locations. Example, pushing

down a mouse button starts the transfer of data into specified array and

releasing of button ends this transfer.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

INPUT MODES

Input devices can provide input to an application program in terms of two

entities:

1. Measure of a device is what the device returns to the application

program.

2. Trigger of a device is a physical input on the device with which the user

can send signal to the computer

Example 1: The measure of a keyboard is a single character or array of

characters where as the trigger is the enter key.

Example 2: The measure of a mouse is the position of the cursor whereas the

trigger is when the mouse button is pressed.

The application program can obtain the measure and trigger in three distinct

modes:

1. REQUEST MODE: In this mode, measure of the device is not returned to

the program until the device is triggered.

 For example, consider a typical C program which reads a character input

using scanf(). When the program needs the input, it halts when it

encounters the scanf() statement and waits while user type characters at

the terminal. The data is placed in a keyboard buffer (measure) whose

contents are returned to the program only after enter key (trigger) is

pressed.

 Another example, consider a logical device such as locator, we can move

out pointing device to the desired location and then trigger the device

with its button, the trigger will cause the location to be returned to the

application program.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

2. SAMPLE MODE: In this mode, input is immediate. As soon as the

function call in the user program is executed, the measure is returned. Hence

no trigger is needed.

Both request and sample modes are useful for the situation if and only if there

is a single input device from which the input is to be taken. However, in case of

flight simulators or computer games variety of input devices are used and these

mode cannot be used. Thus, event mode is used.

3. EVENT MODE: This mode can handle the multiple interactions.

 Suppose that we are in an environment with multiple input devices, each

with its own trigger and each running a measure process.

 Whenever a device is triggered, an event is generated.The device measure

including the identifier for the device is placed in an event queue.

 If the queue is empty, then the application program will wait until an

event occurs. If there is an event in a queue, the program can look at the

first event type and then decide what to do.

Another approach is to associate a function when an event occurs, which is

called as “call back.”

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

5.1.3 CLIENT AND SERVER

 The computer graphics architecture is based on the client-server model.

I.e., if computer graphics is to be useful for variety of real applications, it must

function well in a world of distributed computing and network.

 In this architecture the building blocks are entities called as “servers”

perform the tasks requested by the “client”

 Servers and clients can be distributed over a network or can be present

within a single system. Today most of the computing is done in the form

of distributed based and network based as shown below:

 Most popular examples of servers are print servers – which allow using

high speed printer devices among multiple users. File servers – allow

users to share files and programs.

 Users or clients will make use of these services with the help of user

programs or client programs. The OpenGL application programs are the client

programs that use the services provided by the graphics server.

 Even if we have single user isolated system, the interaction would be

configured as client-server model.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 10

5.1.4 DISPLAY LISTS

The original architecture of a graphical system was based on a general-purpose

computer connected to a display. The architecture is shown in the next page.

At that time, the disadvantage is that system was slow and expensive.

Therefore, a special purpose computer is build which is known as “display

processor”.

The user program is processed by the host computer which results a compiled

list of instruction that was then sent to the display processor, where the

instruction are stored in a display memory called as “display file” or “display

list”. Display processor executes its display list contents repeatedly at a

sufficient high rate to produce flicker-free image.

There are two modes in which objects can be drawn on the screen:

1. IMMEDIATE MODE: This mode sends the complete description of the

object which needs to be drawn to the graphics server and no data can be

retained. i.e., to redisplay the same object, the program must re-send the

information. The information includes vertices, attributes, primitive types,

viewing details.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 11

2. RETAINED MODE: This mode is offered by the display lists. The object is

defined once and its description is stored in a display list which is at the server

side and redisplay of the object can be done by a simple function call issued by

the client to the server.

NOTE: The main disadvantage of using display list is it requires memory at the

server architecture and server efficiency decreases if the data is changing

regularly.

DEFINITION AND EXECUTION OF DISPLAY LISTS

 Display lists are defined similarly to the geometric primitives. i.e.,

glNewList() at the beginning and glEndList() at the end is used to define a

display list.

 Each display list must have a unique identifier – an integer that is

usually a macro defined in the C program by means of #define directive

to an appropriate name for the object in the list. For example, the

following code defines red box:

 The flag GL_COMPILE indicates the system to send the list to the server

but not to display its contents. If we want an immediate display of the

contents while the list is being constructed then

GL_COMPILE_AND_EXECUTE flag is set.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 12

 Each time if the client wishes to redraw the box on the display, it need

not resend the entire description. Rather, it can call the following

function:

glCallList(Box)

 The Box can be made to appear at different places on the monitor by

changing the projection matrix as shown below:

 OpenGL provides an API to retain the information by using stack – It is a

data structure in which the item placed most recently is removed first

[LIFO].

 We can save the present values of the attributes and the matrices by

pushing them into the stack, usually the below function calls are placed at

the beginning of the display list,

glPushAttrib(GL_ALL_ATTRIB_BITS);

glPushMatrix();

 We can retrieve these values by popping them from the stack, usually the

below function calls are placed at the end of the display list,

glPopAttrib();

glPopMatrix();

 We can create multiple lists with consecutive identifiers more easily

using:

glGenLists (number)

 We can display multiple display lists by using single funciton call:

glCallLists()

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 13

TEXT AND DISPLAY LISTS

 There are two types of text i.e., raster text and stroke text which can be

generated.

 For example, let us consider a raster text character is to be drawn of size

8x13 pattern of bits. It takes 13 bytes to store each character.

 If we define a stroke font using only line segments, each character

requires a different number of lines.

 From the above figure we can observe to draw letter ‘I’ is fairly simple,

whereas drawing ‘O’ requires many line segments to get sufficiently

smooth.

 So, on the average we need more than 13 bytes per character to

represent stroke font. The performance of the graphics system will be

degraded for the applications that require large quantity of text.

 A more efficient strategy is to define the font once, using a display list for

each char and then store in the server. We define a function OurFont()

which will draw any ASCII character stored in variable ‘c’.

 The function may have the form

 For the character ‘O’ the code sequence is of the form as shown below:

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 14

 The above code approximates the circle with 12 quadrilaterals.

 When we want to generate a 256-character set, the required code using

OurFont() is as follows

base = glGenLists(256);

for(i=0;i<256;i++) {

glNewList(base+i, GL_COMPILE);

OurFont(i);

glEndList();

}

 To display char from the list, offset is set by using glListBase(base)

function. The drawing of a string is accomplished in the server by the

following function, char *text_string;

glCallLists((GLint) strlen (text_string), GL_BYTE, text_string);

 The glCallLists has three arguments: (1) indicates number of lists to be

executed (2) indicates the type (3) is a pointer to an array of a type given

by second argument.

FONTS IN GLUT

 GLUT provides raster and stroke fonts; they do not make use of display

lists.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 15

 glutStrokeCharacter(GLUT_STROKE_MONO_ROMAN, int character);

provides proportionally space characters. Position of a character is done

by using a translation before the character function is called.

 glutBitmapCharacter(GLUT_BITMAP_8_BY_13, int character);

produces the bitmap characters of size 8x13.

5.1.5 DISPLAY LIST AND MODELING

 Display list can call other display list. Therefore, they are powerful tools

for building hierarchical models that can incorporate relationships

among parts of a model.

 Consider a simple face modeling system that can produce images as

follows:

 Each face has two identical eyes, two identical ears, one nose, one mouth

& an outline. We can specify these parts through display lists which is

given below:

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 16

5.1.6 PROGRAMMING EVENT DRIVEN INPUT

 The various events can be recognized by the window system and call

back function can be called for each of these events.

USING POINTING DEVICES

 Pointing devices like mouse, trackball, data tablet allow programmer to

indicate a position on the display.

 There are two types of event associated with pointing device, which is

conventionally assumed to be mouse but could be trackball or data

tablet also.

1. MOVE EVENT – is generated when the mouse is move with one of the

button being pressed. If the mouse is moved without a button being

pressed, this event is called as “passive move event”.

2. MOUSE EVENT – is generated when one of the mouse buttons is either

pressed or released.

 The information returned to the application program includes button

that generated the event, state of the button after event (up or down),

position (x,y) of the cursor. Programming a mouse event involves two

steps:

1. The mouse callback function must be defined in the form: void

myMouse(int button, int state, int x, int y) is written by the

programmer.

For example,

void myMouse(int button, int state, int x, int y)

{

if(button==GLUT_LEFT_BUTTON && state == GLUT_DOWN)

exit(0);

}

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 17

The above code ensures whenever the left mouse button is pressed down,

execution of the program gets terminated.

2. Register the defined mouse callback function in the main function, by

means of GLUT function:

glutMouseFunc(myMouse);

Write an OpenGL program to display square when a left button is

pressed and to exit the program if right button is pressed.

#include<stdio.h>

#include<stdlib.h>

#include<GL/glut.h>

int wh=500, ww=500;

float siz=3;

void myinit()

{

glClearColor(1.0,1.0,1.0,1.0);

glViewPort(0,0,w,h)

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0,(GLdouble) ww, 0, (GLdouble) wh);

glMatrixMode(GL_MODELVIEW);

glColor3f(1,0,0);

}

void drawsq (int x, int y)

{

y=wh-y;

glBegin(GL_POLYGON);

glVertex2f(x+siz, y+siz);

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 18

glVertex2f(x-siz, y+siz);

glVertex2f(x-siz, y-siz);

glVertex2f(x+siz, y-siz);

glEnd();

glFlush();

}

void display()

 {

glClear(GL_COLOR_BUFFER_BIT);

}

void myMouse(int button, int state, int x, int y)

{

if(button==GLUT_LEFT_BUTTON && state == GLUT_DOWN)

drawsq(x,y);

if(button==GLUT_RIGHT_BUTTON && state == GLUT_DOWN)

exit(0);

}

void main(int argc, char **argv)

 {

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE);

glutInitWindowSize(wh,ww);

glutCreateWindow(“square”);

glutDisplayFunc(display);

glutMouseFunc(myMouse);

myinit();

glutMainLoop();

}

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 19

KEYBOARD EVENTS

 Keyboard devices are input devices which return the ASCII value to the

user program. Keyboard events are generated when the mouse is in the

window and one of the keys is pressed or released.

 GLUT supports following two functions:

 glutKeyboardFunc() is the callback for events generated by pressing a key

 glutKeyboardUpFunc() is the callback for events generated by releasing a

key.

 The information returned to the program includes ASCII value of the key

pressed and the position (x,y) of the cursor when the key was pressed.

Programming keyboard event involves two steps:

1. The keyboard callback function must be defined in the form:

void mykey (unsigned char key, int x, int y)

is written by the application programmer.

For example,

void mykey(unsigned char key, int x, int y)

{

if(key== ‘q’ || key== ‘Q’)

exit(0);

}

The above code ensures when ‘Q’ or ‘q’ key is pressed, the execution of the

program gets terminated.

2. The keyboard callback function must be registered in the main

functionby means of GLUT function:

 glutKeyboardFunc(mykey);

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 20

WINDOW EVENTS

 A window event is occurred when the corner of the window is dragged to

new position or size of window is minimized or maximized by using

mouse.

 The information returned to the program includes the height and width

of newly resized window. Programming the window event involves two

steps:

1. Window call back function must be defined in the form:

 void myReshape(GLsizei w, GLsizei h) is written by the application

programmer.

 Let us consider drawing square as an example, the square of same size

must be drawn regardless of window size.

void myReshape(GLsizei w, GLsizei h)

{

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0,(GLdouble) w, 0, (GLdouble) h);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glViewPort(0,0,w,h)

 /*save new window size in global variables*/

 ww=w;

wh=h;

}

2. The window callback function must be registered in the main function,

glutReshapeFunc(myReshape);

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 21

THE DISPLAY AND IDLE CALLBACKS

 Display callback is specified by GLUT using

glutDisplayFunc(myDisplay). It is invoked when GLUT determines that

window should be redisplayed. Re-execution of the display function can

be achieved by using glutPostRedisplay().

 The idle callback is invoked when there are no other events. It is

specified by GLUT using glutIdleFunc(myIdle).

WINDOW MANAGEMENT

 GLUT also supports multiple windows of a given window. We can create a

second top-level window as follows:

id = glutCreateWindow(“second window”);

 The returned integer value allows us to select this window as the current

window.

i.e., glutSetWindow(id);

NOTE: The second window can have different properties from other window by

invoking the glutInitDisplayMode before glutCreateWindow.

5.1.7 MENUS

 Menus are an important feature of any application program. OpenGL

provides a feature called “Pop-up-menus” using which sophisticated

interactive applications can be created.

 Menu creation involves the following steps:

1. Define the actions corresponding to each entry in the menu.

2. Link the menu to a corresponding mouse button.

3. Register a callback function for each entry in the menu.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 22

 The glutCreateMenu() registers the callback function demo_menu. The

function glutAddMenuEntry() adds the entry in the menu whose name is

pased in first argument and the second argument is the identifier passed

to the callback when the entry is selected.

 GLUT also supports the creation of hierarchical menus which is given

below:

5.1.8 PICKING

 Picking is the logical input operation that allows the user to identify an

object on the display.

 The action of picking uses pointing device but the information returned

to the application program is the identifier of an object not a position.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 23

 It is difficult to implement picking in modern system because of graphics

pipeline architecture. Therefore, converting from location on the display

to the corresponding primitive is not direct calculation.

 There are at least three ways to deal with this difficulty:

O Selection:

 It involves adjusting the clipping region and viewport such

that we can keep track of which primitives lies in a small

clipping region and are rendered into region near the cursor.

 These primitives are sent into a hit list that can be

examined later by the user program.

O Bounding boxes or extents:

O Usage of back buffer and extra rendering:

 When we use double buffering it has two color buffers: front

and back buffers. The contents present in the front buffer is

displayed, whereas contents in back buffer is not displayed

so we can use back buffer for other than rendering the scene

 Picking can be performed in four steps that are initiated by user defined

pick function in the application:

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 24

O We draw the objects into back buffer with the pick colors.

O We get the position of the mouse using the mouse callback.

O Use glReadPixels() to find the color at the position in the frame

buffer corresponding to the mouse position.

O We search table of colors to find the object corresponds to the color

read.

PICKING AND SELECTION MODE

 The difficulty in implementing the picking is we cannot go backward

directly from the position of the mouse to the primitives.

 OpenGL provides “selection mode” to do picking. The glRenderMode() is

used to choose select mode by passing GL_SELECT value.

 When we enter selection mode and render a scene, each primitive within

the clipping volume generates a message called “hit” that is stored in a

buffer called “name stack”.

 The following functions are used in selection mode:

O void glSelectBuffer(GLsizei n, GLuint *buff) : specifies array

buffer of size ‘n’ in which to place selection data.
O void glInitNames() : initializes the name stack.

O void glPushName(GLuint name) : pushes name on the name

stack.

O void glPopName() : pops the top name from the name stack.

O void glLoadName(GLuint name) : replaces the top of the name

stack with name.

 OpenGL allow us to set clipping volume for picking using gluPickMatrix()

which is applied before gluOrtho2D.

 gluPickMatrix(x,y,w,h,*vp) : creates a projection matrix for picking that

restricts drawing to a w x h area and centered at (x,y) in window

coordinates within the viewport vp.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 25

(a) There is a normal window and image on the display. We also see the

cursor with small box around it indicating the area in which primitive is

rendered.

(b) It shows window and display after the window has been changed by

gluPickMatrix.

The following code provides the implementation of picking process:

#include<glut.h>

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 26

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 27

void myReshape()

{

glViewPort(0,0,w,h)

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0,(GLdouble) w, 0, (GLdouble) h);

glMatrixMode(GL_MODELVIEW);

}

void main(int argc, char** argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE |GLUT_RGB);

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 28

glutInitWindowSize(500,500);

glutInitWindowPosition(100,100);

glutCreateWindow(“picking”);

glutReshapeFunc(myReshape);

glutDisplayFunc(display);

glutMouseFunc(Mouse);

glClearColor(0.0,0.0,0.0,0.0);

glutMainLoop();

}

5.1.9 A SIMPLE CAD PROGRAM

Applications like interactive painting, design of mechanical parts and creating

characters for a game are all examples of computer-aided design (CAD). CAD

programs allow –

 The use of multiple windows and viewports to display a variety of

information.

 The ability to create, delete and save user-defined objects.

 Multiple modes of operations employing menus, keyboard and mouse.

For example, consider the polygon-modeling CAD program which supports

following operations:

1. Creation of polygons

2. Deletion of polygons

3. Selection and movement of polygons

Refer appendix A.5 polygon modeling program for the entire code from the

prescribed text (Interactive Computer Graphics by Edward Angel 5th edition)

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 29

5.1.10 BUILDING INTERACTIVE MODELS

 Using OpenGL, we can develop a program where we can do insertion,

manipulation, deletion etc and we can also build a program which is

quite interactive by using the concept of instancing and display lists.

 Consider an interior design application which has items like

chairs, tables and other house hold items. These items are called the

basicbuilding blocks of the application. Each occurrence of these basic

items is referred to as “instance”.

 Whenever the instances of building blocks are created by the user using

the application program, the object (instance) is stored into an array

called as “instance table”. We reserve the type 0 to specify that the

object no longer exists (i.e., for deletion purpose)

 Now suppose that the user has indicated through a menu that he wishes

to eliminate an object and use the mouse to locate the object.

O The program can now search the instance table till it finds the

object as specified in the bounding box and then set its type to 0.

O Hence, next time when the display process goes through the

instance table, the object would not be displayed and thereby it

appears that object has been deleted.

 Although the above strategy works fine, a better data structure to

implement the instance table is using linked lists instead of arrays.

5.1.11 ANIMATING INTERACTIVE PROGRAMS

 Using OpenGl, the programmer can design interactive programs.

Programs in which objects are not static rather they appear to be moving

or changing is considered as “Interactive programs”.

 Consider the following diagram:

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 30

 Consider a 2D point p(x,y) such that x = cos, y= sin. This point would

lie on a unit circle regardless of the value of . Thus, if we connect the

above given four points we get a square which has its center as the

origin. The above square can be displayed as shown below:

 Suppose that we change the value of as the program is running, the

square appears to rotating about its origin. If the value of is to be

changed by a fixed amount whenever nothing else is happening then an

idle callback function must be designed as shown below:

 The above idle callback function must be registered in the main function:

glutIdleFunc(idle);

 Suppose that we want to turn off and turn on the rotation feature then

we can write a mouse callback function as shown below:

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 31

 The above mouse callback function starts the rotation of the cube when

the left mouse button and when the middle button is pressed it will halt

the rotation.

 The above mouse callback function must be registered in the main

function as follow:

glutMouseFunc(mouse);

 However, when the above program is executed using single buffering

scheme then flickering effect would be noticed on the display. This

problem can be overcome using the concept of double buffering.

DOUBLE BUFFERING:

 Double buffering is a must in such animations where the primitives,

attributes and viewing conditions are changing continuously.

 Double buffer consists of two buffers: front buffers and back buffers.

Double buffering mode can be initialized:

 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);

 Further in the display function, we have to include: glutSwapBuffers()

to exchange the contents of front and the back buffer.

 Using this approach, the problems associated with flicker can be

eliminated.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 32

USING TIMER:

 To understand the usage of timer, consider cube rotation program and

its execution is done by using fast GPU (modern GPUs can render tens of

millions of primitives per second) then cube will be rendered thousands

of time per second and we will see the blur on the display.

 Therefore, GLUT provides the following timer function:

glutTimerFunc(int delay, void(*timer_func (int), int value)

 Execution of this function starts timer in the event loop that delays for

delay milliseconds. When timer has counted down, timer_func is executed

the value parameter allow user to pass variable into the timer call back.

5.1.12 DESIGN OF INTERACTIVE PROGRAMS

The following are the features of most interactive program:

 A smooth display, showing neither flicker nor any artifacts of the refresh

process.

 A variety of interactive devices on the display

 A variety of methods for entering and displaying information

 An easy to use interface that does not require substantial effort to learn

 Feedback to the user

 Tolerance for user errors

 A design that incorporates consideration of both the visual and motor

properties of the human.

TOOLKITS, WIDGETS AND FRAME BUFFER:

The following two examples illustrate the limitations of geometric rendering.

1. Pop-up menus: When menu callback is invoked, the menu appears over

whatever was on the display. After we make our selection, the menu

disappears and screen is restored to its previous state.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 33

2. Rubberbanding: It is a technique used to define the elastic nature of

pointing device to draw primitives.

 Consider paint application, if we want to draw a line, we indicate only

two end points of our desired line segment. i.e., after locating first point,

as we move the mouse, a line segment is drawn automatically [is updated

on each refresh] from first location to present position of mouse.

 Rubberbanding begin when mouse button is pressed and continue until

button is released at that time final line segment is drawn.

 We cannot implement this sequence of operations using only what we

have presented so for. We will explore it in next chapters.

5.1.13 LOGIC OPERATIONS

Two types of functions that define writing modes are:

1. Replacement mode 2. Exclusive OR (XOR)

 When program specifies about visible primitive then OpenGL renders it

into set of color pixels and stores it in the present drawing buffer.

 In case of default mode, consider we start with a color buffer then

has been cleared to black. Later we draw a blue color rectangle of size 10

x10 pixels then 100 blue pixels are copied into the color buffer, replacing

100 black pixels. Therefore, this mode is called as “copy or replacement

mode”.

 Consider the below model, where we are writing single pixel into color

buffer.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 34

 The pixel that we want to write is called as “source pixel”.

 The pixel in the drawing buffer which gets replaced by source pixel is

called as “destination pixel”.

 In Exclusive-OR or (XOR) mode, corresponding bits in each pixel are

combing using XOR logical operation.

 If s and d are corresponding bits in the source and destination pixels, we

can denote the new destination bit as d’. d’ = d s

 One special property of XOR operation is if we apply it twice, it returns to

the original state, it returns to the original state. So, if we draw some thing in

XOR mode, we can erase it by drawing it again.

d = (d s) s

 OpenGL supports all 16 logic modes, copy mode (GL_COPY) is the

default. To change mode, we must enable logic operation,

glEnable(GL_COLOR_LOGIC_OP) and then it can change to XOR mode

glLogicOp(GL_XOR)

DRAWING ERASABLE LINES

One way to draw erasable lines is given below:

 Mouse is used to get first end point and store this in object coordinates.

 Again mouse is used to get second point and draw a line segment in XOR

mode.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 35

 Here in the above code, copy mode is used to switch back in order to

draw other objects in normal mode.

 If we enter another point with mouse, we first draw line in XOR mode

from 1st point to 2nd point and draw second line using 1st point to

current point is as follows:

Final form of code can be written as shown below:

In this example, we draw rectangle using same concept and the code for

callback function are given below:

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 36

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 37

 For the first time, we draw a single rectangle in XOR mode.

 After that each time that we get vertex, we first erase the existing

rectangle by redrawing new rectangle using new vertex.

 Finally, when mouse button is released the mouse callback is executed

again which performs final erase and draw and go to replacement mode.

XOR AND COLOR

 Consider we would like to draw blue color line where 24 bit RGB values

(00000000, 00000000, 11111111).

 Suppose the screen is clear to write (11111111, 11111111, 11111111)

then when we draw blue line using XOR mode, then the resultant line

would appear in yellow color (11111111, 11111111, 00000000) because

XOR operation is applied bit-wise.

 This leads to form annoying visual effects.

 Therefore, we should use copy mode while drawing final output to get it

in required color.

CURSORS AND OVERLAY PLANES

 Rubberbanding and cursors can place a significant burden on graphics

system as they require the display to be updated constantly.

 Although XOR mode simplifies the process, it requires the system to read

present destination pixels before computing new destination pixels.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 38

 Alternative is to provide hardware support by providing extra bits in the

color buffer by adding “overlay planes”.

Therefore, typical color buffer may have 8 bits for each Red, green and blue and

one red, one green and one blue overlay plane. i.e., each color will be having its

own overlay plane then those values will be updated to color buffer.

Module 5 ***SAI RAM*** Input and Interaction

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 39

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

5.2.1 Curved surfaces

 Sometimes it is required to generate curved objects instead of polygons, for the curved

objects the equation can be expressed either in parametric form or non parametric form.

Curves and surfaces can be described by parameters

 Parametric form:

 When the object description is given in terms of its dimensionality parameter, the

description is termed as parametric representation.

 A curve in the plane has the form C(t) = (x(t), y(t)), and a curve in space has the

form C(t) = (x(t), y(t), z(t)).

 The functions x(t), y(t) and z(t) are called the coordinates functions.

 The image of C(t) is called the trace of C, and C(t) is called a parametrization of C

 A parametric curve defined by polynomial coordinate function is called a

polynomial curve.

 The degree of a polynomial curve is the highest power of the variable occurring in

any coordinate function.

 Non parametric form:

 When the object descriptions are directly in terms of coordinates of reference

frame, then the representation is termed as non parametric.

 Example: a surface can be described in non parametric form as:

f1(x,y,z)=0 or z=f2(x,y)

5.2 Curves:

5.2.1 Curved surfaces

5.2.2 Quadric surfaces

5.2.3 OpenGL quadric surfaces and cubic surface functions

5.2.4 Bezier spline curves

5.2.5 Bezier surfaces

5.2.6 Opengl curve functions

5.2.7 Corresponding opengl functions

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

 The coordinates (x, y) of points of a no parametric explicit planner curve satisfy y

= f(x) or x = g(y).

 Such curve have the parametric form C(t) = (t, f(t)) or C(t) = (g(t), t).

5.2.2 Quadric surfaces

 A frequently used class of objects is the quadric surfaces, which are described with

second - degree equations (quadratics).

 They include spheres, ellipsoids, tori, paraboloids, and hyperboloids.

1. Sphere

 A spherical surface with radius r centered on the coordinate origin is defined as the set of

points (x, y, z) that satisfy the equation

x2 + y2 + z2 = r 2

 We can also describe the spherical surface in parametric form, using latitude and

longitude angles as shown in figure

x = r cos φ cos θ, − π/2 ≤ φ ≤ π/2

y = r cos φ sin θ, − π ≤ θ ≤ π

z = r sin φ

 Alternatively, we could write the parametric

 equations using standard spherical coordinates,

 where angle φ is specified as the colatitudes

 as shown in figure

2. Ellipsoid

 An ellipsoidal surface can be described as an extension of a spherical surface where the

radii in three mutually perpendicular directions can have different values

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

 The Cartesian representation for points over the surface of an ellipsoid centered on the

origin is

 And a parametric representation for the ellipsoid in terms of the latitude angle φ and the

longitude angle θ

x = rx cos φ cos θ, − π/2 ≤ φ ≤ π/2

y = ry cos φ sin θ, − π ≤ θ ≤ π

z = rz sin φ

3. Torus

 A torus is a doughnut-shaped object, as shown in fig. below.

 It can be generated by rotating a circle or other conic about a specified axis.

 The equation for the cross-sectional circle shown in the side view is given by

(y − raxial)2 + z2 = r 2

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

 Rotating this circle about the z axis produces the torus whose surface positions

are described with the Cartesian equation

 The corresponding parametric equations for the torus with a circular cross-section are

x = (raxial + r cos φ) cos θ, − π ≤ φ ≤ π

y = (raxial + r cos φ) sin θ, − π ≤ θ ≤ π

z = r sin φ

 We could also generate a torus by rotating an ellipse, instead of a circle, about the z axis.

we can write the ellipse equation as

 where raxial is the distance along the y axis from the rotation z axis to the ellipse

center. This generates a torus that can be described with the Cartesian equation

 The corresponding parametric representation for the torus with an elliptical crosssection

is

x = (raxial + ry cos φ) cos θ, − π ≤ φ ≤ π

y = (raxial + ry cos φ) sin θ, − π ≤ θ ≤ π

z = rz sin φ

5.2.3 OpenGL Quadric-Surface and Cubic-Surface Functions

 A number of other three-dimensional quadric-surface objects can be displayed using functions

that are included in the OpenGL Utility Toolkit (GLUT) and in the OpenGL Utility (GLU).

 With the GLUT functions, we can display a sphere, cone, torus, or the teapot

 With the GLU functions, we can display a sphere, cylinder, tapered cylinder, cone, flat

circular ring (or hollow disk), and a section of a circular ring (or disk).

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

GLUT Quadric-Surface Functions

Sphere

Function:

glutWireSphere (r, nLongitudes, nLatitudes);

 or

glutSolidSphere (r, nLongitudes, nLatitudes);

where,

 r is sphere radius which is double precision point.

 nLongitudes and nLatitudes is number of longitude and latitude lines used to

approximate the sphere.

Cone

Function:

glutWireCone (rBase, height, nLongitudes, nLatitudes);

or

glutSolidCone (rBase, height, nLongitudes, nLatitudes);

where,

 rBase is the radius of cone base which is double precision point.

 height is the height of cone which is double precision point.

 nLongitudes and nLatitudes are assigned integer values that specify the number of

orthogonal surface lines for the quadrilateral mesh approximation.

Torus

Function:

glutWireTorus (rCrossSection, rAxial, nConcentrics, nRadialSlices);

or

glutSolidTorus (rCrossSection, rAxial, nConcentrics, nRadialSlices);

where,

 rCrossSection radius about the coplanar z axis

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

 rAxial is the distance of the circle center from the z axis

 nConcentrics specifies the number of concentric circles (with center on the z axis) to be

used on the torus surface,

 nRadialSlices specifies the number of radial slices through the torus surface

GLUT Cubic-Surface Teapot Function

Function:

glutWireTeapot (size);

or

glutSolidTeapot (size);

 The teapot surface is generated using OpenGL B´ezier curve functions.

 Parameter size sets the double-precision floating-point value for the maximum radius of

the teapot bowl.

 The teapot is centered on the world-coordinate origin coordinate origin with its vertical

axis along the y axis.

GLU Quadric-Surface Functions

 To generate a quadric surface using GLU functions

1. assign a name to the quadric,

2.activate the GLU quadric renderer, and

3.designate values for the surface parameters

 The following statements illustrate the basic sequence of calls for displaying a wire-

frame sphere centered on the world-coordinate origin:

GLUquadricObj *sphere1;

sphere1 = gluNewQuadric ();

gluQuadricDrawStyle (sphere1, GLU_LINE);

gluSphere (sphere1, r, nLongitudes, nLatitudes);

where,

 sphere1 is the name of the object

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

 the quadric renderer is activated with the gluNewQuadric function, and then the display

mode GLU_LINE is selected for sphere1 with the gluQuadricDrawStyle command

 Parameter r is assigned a double-precision value for the sphere radius

 nLongitudes and nLatitudes. number of longitude lines and latitude lines

Three other display modes are available for GLU quadric surfaces

GLU_POINT: quadric surface is displayed as point plot

GLU_SILHOUETTE: quadric surface displayed will not contain shared edges between two

coplanar polygon facets

GLU_FILL: quadric surface is displayed as patches of filled area.

 To produce a view of a cone, cylinder, or tapered cylinder, we replace the gluSphere

function with

 gluCylinder (quadricName, rBase, rTop, height, nLongitudes, nLatitudes);

 The base of this object is in the xy plane (z=0), and the axis is the z axis.

 rBase is the radius at base and rTop is radius at top

 If rTop=0.0,weget a cone; if rTop=rBase,weobtain a cylinder

 Height is the height of the object and latitudes and longitude values will be given

 as nLatitude and nLongitude.

 A flat, circular ring or solid disk is displayed in the xy plane (z=0) and centered on the

world-coordinate origin with

 gluDisk (ringName, rInner, rOuter, nRadii, nRings);

 We set double-precision values for an inner radius and an outer radius with

 parameters rInner and rOuter. If rInner = 0, the disk is solid.

 Otherwise, it is displayed with a concentric hole in the center of the disk.

 The disk surface is divided into a set of facets with integer parameters nRadii and

 nRings

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

 We can specify a section of a circular ring with the following GLU function:

 gluPartialDisk (ringName, rInner, rOuter, nRadii, nRings, startAngle,

 sweepAngle);

 startAngle designates an angular position in degrees in the xy plane measured

 clockwise from the positive y axis.

 parameter sweepAngle denotes an angular distance in degrees from the

 startAngle position.

 A section of a flat, circular disk is displayed from angular position startAngle to

 startAngle + sweepAngle

 For example, if startAngle = 0.0 and sweepAngle = 90.0, then the section of the

 disk lying in the first quadrant of the xy plane is displayed.

 Allocated memory for any GLU quadric surface can be reclaimed and the surface

eliminated with

gluDeleteQuadric (quadricName);

 Also, we can define the front and back directions for any quadric surface with the

following orientation function:

 gluQuadricOrientation (quadricName, normalVectorDirection);

Where,

 Parameter normalVectorDirection is assigned either GLU_OUTSIDE or

 GLU_ INSIDE

 Another option is the generation of surface-normal vectors, as follows:

gluQuadricNormals (quadricName, generationMode);

Where,

 A symbolic constant is assigned to parameter generationMode to indicate how

 surface-normal vectors should be generated. The default is GLU_NONE.

 For flat surface shading (a constant color value for each surface), we use the

 symbolic constant GLU_FLAT

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

 When other lighting and shading conditions are to be applied, we use the constant

 GLU_SMOOTH, which generates a normal vector for each surface vertex

 position.

 We can designate a function that is to be invoked if an error occurs during the

generation of a quadric surface:

 gluQuadricCallback (quadricName, GLU_ERROR, function);

Example Program Using GLUT and GLU Quadric-Surface Functions

#include <GL/glut.h>

GLsizei winWidth = 500, winHeight = 500; // Initial display-window size.

void init (void)

{

 glClearColor (1.0, 1.0, 1.0, 0.0); // Set display-window color.

}

void wireQuadSurfs (void)

{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.0, 1.0); // Set line-color to blue.

/* Set viewing parameters with world z axis as view-up direction. */

gluLookAt (2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0);

/* Position and display GLUT wire-frame sphere. */

glPushMatrix ();

glTranslatef (1.0, 1.0, 0.0);

glutWireSphere (0.75, 8, 6);

glPopMatrix ();

/* Position and display GLUT wire-frame cone. */

glPushMatrix ();

glTranslatef (1.0, -0.5, 0.5);

glutWireCone (0.7, 2.0, 7, 6);

glPopMatrix ();

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 10

/* Position and display GLU wire-frame cylinder. */

GLUquadricObj *cylinder; // Set name for GLU quadric object.

glPushMatrix ();

glTranslatef (0.0, 1.2, 0.8);

cylinder = gluNewQuadric ();

gluQuadricDrawStyle (cylinder, GLU_LINE);

gluCylinder (cylinder, 0.6, 0.6, 1.5, 6, 4);

glPopMatrix ();

glFlush ();

}

void winReshapeFcn (GLint newWidth, GLint newHeight)

{

glViewport (0, 0, newWidth, newHeight);

glMatrixMode (GL_PROJECTION);

glOrtho (-2.0, 2.0, -2.0, 2.0, 0.0, 5.0);

glMatrixMode (GL_MODELVIEW);

glClear (GL_COLOR_BUFFER_BIT);

}

void main (int argc, char** argv)

{

glutInit (&argc, argv);

glutInitWindowPosition (100, 100);

glutInitWindowSize (winWidth, winHeight);

glutCreateWindow ("Wire-Frame Quadric Surfaces");

init ();

glutDisplayFunc (wireQuadSurfs);

glutReshapeFunc (winReshapeFcn);

glutMainLoop ();

}

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 11

5.2.4 Bézier Spline Curves

 It was developed by the French engineer Pierre Bézier for use in the design of Renault

automobile bodies.

 Bézier splines have a number of properties that make them highly useful and convenient

for curve and surface design. They are also easy to implement.

 In general, a Bézier curve section can be fitted to any number of control points, although

some graphic packages limit the number of control points to four.

Bézier Curve Equations

 We first consider the general case of n + 1 control-point positions, denoted as

pk = (xk , yk , zk), with k varying from 0 to n.

 These coordinate points are blended to produce the following position vector P(u),

which describes the path of an approximating Bézier polynomial function between p0 and

pn:

 The Bézier blending functions BEZk,n(u) are the Bernstein polynomials

 where parameters C(n, k) are the binomial coefficients

 A set of three parametric equations for the individual curve coordinates can be

represented as

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 12

 Below Figure demonstrates the appearance of some Bézier curves for various selections

of control points in the xy plane (z = 0).

 Recursive calculations can be used to obtain successive binomial-coefficient values as

 for n ≥ k. Also, the Bézier blending functions satisfy the recursive relationship

BEZk,n(u) = (1 − u)BEZk,n−1(u) + u BEZk−1,n−1(u), n > k ≥ 1 (27)

with BEZk,k = uk and BEZ0,k = (1 − u)k .

Program

#include <GL/glut.h>

#include <stdlib.h>

#include <math.h>

/* Set initial size of the display window. */

GLsizei winWidth = 600, winHeight = 600;

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 13

/* Set size of world-coordinate clipping window. */

GLfloat xwcMin = -50.0, xwcMax = 50.0;

GLfloat ywcMin = -50.0, ywcMax = 50.0;

class wcPt3D {

public:

GLfloat x, y, z;

};

void init (void)

{

/* Set color of display window to white. */

glClearColor (1.0, 1.0, 1.0, 0.0);

}

void plotPoint (wcPt3D bezCurvePt)

{

glBegin (GL_POINTS);

glVertex2f (bezCurvePt.x, bezCurvePt.y);

glEnd ();

}

/* Compute binomial coefficients C for given value of n. */

void binomialCoeffs (GLint n, GLint * C)

{

GLint k, j;

for (k = 0; k <= n; k++) {

/* Compute n!/(k!(n - k)!). */

C [k] = 1;

for (j = n; j >= k + 1; j--)

C [k] *= j;

for (j = n - k; j >= 2; j--)

C [k] /= j;

}

}

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 14

void computeBezPt (GLfloat u, wcPt3D * bezPt, GLint nCtrlPts, wcPt3D * ctrlPts, GLint * C)

{

GLint k, n = nCtrlPts - 1;

GLfloat bezBlendFcn;

bezPt->x = bezPt->y = bezPt->z = 0.0;

/* Compute blending functions and blend control points. */

for (k = 0; k < nCtrlPts; k++) {

bezBlendFcn = C [k] * pow (u, k) * pow (1 - u, n - k);

bezPt->x += ctrlPts [k].x * bezBlendFcn;

bezPt->y += ctrlPts [k].y * bezBlendFcn;

bezPt->z += ctrlPts [k].z * bezBlendFcn;

}

}

void bezier (wcPt3D * ctrlPts, GLint nCtrlPts, GLint nBezCurvePts)

{

wcPt3D bezCurvePt;

GLfloat u;

GLint *C, k;

/* Allocate space for binomial coefficients */

C = new GLint [nCtrlPts];

binomialCoeffs (nCtrlPts - 1, C);

for (k = 0; k <= nBezCurvePts; k++) {

u = GLfloat (k) / GLfloat (nBezCurvePts);

computeBezPt (u, &bezCurvePt, nCtrlPts, ctrlPts, C);

plotPoint (bezCurvePt);

}

delete [] C;

}

void displayFcn (void)

{

/* Set example number of control points and number of

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 15

* curve positions to be plotted along the Bezier curve. */

GLint nCtrlPts = 4, nBezCurvePts = 1000;

wcPt3D ctrlPts [4] = { {-40.0, -40.0, 0.0}, {-10.0, 200.0, 0.0},

{10.0, -200.0, 0.0}, {40.0, 40.0, 0.0} };

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glPointSize (4);

glColor3f (1.0, 0.0, 0.0); // Set point color to red.

bezier (ctrlPts, nCtrlPts, nBezCurvePts);

glFlush ();

}

void winReshapeFcn (GLint newWidth, GLint newHeight)

{

/* Maintain an aspect ratio of 1.0. */

glViewport (0, 0, newHeight, newHeight);

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

gluOrtho2D (xwcMin, xwcMax, ywcMin, ywcMax);

glClear (GL_COLOR_BUFFER_BIT);

}

void main (int argc, char** argv)

{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (50, 50);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Bezier Curve");
init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);
glutMainLoop ();

}

Properties of Bézier Curves

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 16

Property1:

 A very useful property of a Bézier curve is that the curve connects the first and last

control points.

 Thus, a basic characteristic of any Bézier curve is that

P(0) = p0

P(1) = pn

 Values for the parametric first derivatives of a Bézier curve at the endpoints can be

calculated from control-point coordinates as

 The parametric second derivatives of a Bézier curve at the endpoints are calculated as

Property 2:

 Another important property of any Bézier curve is that it lies within the convex hull

(convex polygon boundary) of the control points.

 This follows from the fact that the Bézier blending functions are all positive and their

sum is always 1:

Other Properties:

 The basic functions are real.

 The degree of the polynomial defining the curve segment is one less than the number of

defining points.

 The curve generally follows the shape of the defining polygon,

 The tangent vectors at the ends of the curve have the same direction as the first and last

polygon spans respectively.

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 17

Design Techniques Using Bézier Curves

 A closed Bézier curve is generated when we set the last control-point position to the

coordinate position of the first control point.

 Specifying multiple control points at a single coordinate position gives more weight to

that position a single coordinate position is input as two control points, and the resulting

curve is pulled nearer to this position.

 When complicated curves are to be generated, they can be formed by piecing together

several Bézier sections of lower degree.

 Generating smaller Bézier-curve sections also gives us better local control over the shape

of the curve.

 Because Bézier curves connect the first and last control points, it is easy to match curve

sections.

 Also,Bézier curves have the important property that the tangent to the curve at an

endpoint is along the line joining that endpoint to the adjacent control point to obtain

first-order continuity between curve sections, we can pick control points p0’ and p1’for

the next curve section to be along the same straight line as control points pn−1 and pn of

the preceding section

 If the first curve section has n control points and the next curve section has n’ control

points, then we match curve tangents by placing control point p1’ at the position

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 18

Cubic Bézier Curves

 Cubic Bézier curves are generated with four control points. The four blending functions

for cubic Bézier curves, obtained by substituting n = 3 in the equations below, they are

 Plots of the four cubic Bézier blending functions are given in Figure

 At the end positions of the cubic Bézier curve, the parametric first derivatives (slopes) are

 and the parametric second derivatives are

 A matrix formulation for the cubic-Bézier curve function is obtained by expanding the

polynomial expressions for the blending functions and restructuring the equations as

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 19

 where the Bézier matrix is

5.2.5 Bézier Surfaces

 The parametric vector function for the Bézier surface is formed as the tensor product of

Bézier blending functions:

 with pj,k specifying the location of the (m + 1) by (n + 1) control points

 Figure below illustrates two Bézier surface plots. The control points are connected by

dashed lines, and the solid lines show curves of constant u and constant v.

 Each curve of constant u is plotted by varying v over the interval from 0 to 1, with u fixed

at one of the values in this unit interval. Curves of constant v are plotted similarly.

 Bézier surfaces have the same properties as Bézier curves, and they provide a convenient

method for interactive design applications.

 To specify the threedimensional coordinate positions for the control points, we could first

construct a rectangular grid in the xy “ground” plane.

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 20

 We then choose elevations above the ground plane at the grid intersections as the z-

coordinate values for the control points.

5.2.6 OpenGL Curve Functions

 There are routines in the OpenGL Utility Toolkit (GLUT) that we can use to display

some three-dimensional quadrics, such as spheres and cones, and some other shapes.

 Another method we can use to generate a display of a simple curve is to approximate it

using a polyline. We just need to locate a set of points along the curve path and connect

the points with straight-line segments.

 Figure above illustrates various polyline displays that could be used for a circle segment.

 A third alternative is to write our own curve-generation functions based on the algorithms

with respect to line drawing and circle drawing.

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 21

5.2.7 OpenGL Approximation-Spline Functions

OpenGL Bézier-Spline Curve Functions

 We specify parameters and activate the routines for Bézier-curve display with the

OpenGL functions

glMap1* (GL_MAP1_VERTEX_3, uMin, uMax, stride, nPts, *ctrlPts);

glEnable (GL_MAP1_VERTEX_3);

 We deactivate the routines with

 glDisable (GL_MAP1_VERTEX_3);

where,

 A suffix code of f or d is used with glMap1 to indicate either floating-point or double

precision for the data values. M

 inimum and maximum values for the curve parameter u are specified in uMin and uMax,

although these values for a Bézier curve are typically set to 0 and 1.0, respectively.

 Bézier control points are listed in array ctrlPts number of elements in this array is given

as a positive integer using parameter nPts.

 stride is assigned an integer offset that indicates the number of data values between the

beginning of one coordinate position in array ctrlPts and the beginning of the next

coordinate position

 A coordinate position along the curve path is calculated with

 glEvalCoord1* (uValue);

 Where,

 parameter uValue is assigned some value in the interval from uMin to uMax.

 Function glEvalCoord1 calculates a coordinate position using equation with the

parameter value

 which maps the uValue to the interval from 0 to 1.0.

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 22

 A spline curve is generated with evenly spaced parameter values, and OpenGL provides

the following functions, which we can use to produce a set of uniformly spaced

parameter values:

glMapGrid1* (n, u1, u2);

glEvalMesh1 (mode, n1, n2);

Where,

 The suffix code for glMapGrid1 can be either f or d.

 Parameter n specifies the integer number of equal subdivisions over the range from u1 to

u2.

 Parameters n1 and n2 specify an integer range corresponding to u1 and u2.

 Parameter mode is assigned either GL POINT or GL LINE, depending on whether we

want to display the curve using discrete points (a dotted curve) or using straight-line

segments

 In other words, with mode = GL LINE, the preceding OpenGL commands are

equivalent to

glBegin (GL_LINE_STRIP);

for (k = n1; k <= n2; k++)

 glEvalCoord1f (u1 + k * (u2 - u1) / n);

glEnd ();

OpenGL Bézier-Spline Surface Functions

 Activation and parameter specification for the OpenGL Bézier-surface routines are

accomplished with

glMap2* (GL_MAP2_VERTEX_3, uMin, uMax, uStride, nuPts, vMin,

 vMax, vStride, nvPts, *ctrlPts);

glEnable (GL_MAP2_VERTEX_3);

Where,

 A suffix code of f or d is used with glMap2 to indicate either floating-point or double

precision for the data values.

 For a surface, we specify minimum and maximum values for both parameter u and

parameter v.

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 23

 If control points are to be specified using four-dimensional homogeneous coordinates, we

use the symbolic constant GL_MAP2_VERTEX_4 instead of GL_MAP2_VERTEX_3

 We deactivate the Bézier-surface routines with

 glDisable {GL_MAP2_VERTEX_3}

 Coordinate positions on the Bézier surface can be calculated with

glEvalCoord2* (uValue, vValue);

or

glEvalCoord2*v (uvArray);

Where,

 Parameter uValue is assigned some value in the interval from uMin to uMax,

 Parameter vValue is assigned some value in the interval from vMin to vMax.

 which maps each of uValue and vValue to the interval from 0 to 1.0

GLU B-Spline Curve Functions

 Although the GLU B-spline routines are referred to as NURBs functions, they can be used

to generate B-splines that are neither nonuniform nor rational.

 The following statements illustrate the basic sequence of calls for displaying a B-spline

curve:

GLUnurbsObj *curveName;

curveName = gluNewNurbsRenderer ();

gluBeginCurve (curveName);

gluNurbsCurve (curveName, nknots, *knotVector, stride, *ctrlPts,

 degParam, GL_MAP1_VERTEX_3);

gluEndCurve (curveName);

 We eliminate a defined B-spline with

 gluDeleteNurbsRenderer (curveName);

 A B-spline curve is divided automatically into a number of sections and displayed as a

polyline by theGLUroutines.

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 24

 However, a variety of B-spline rendering options can also be selected with repeated calls

to the following GLU function:

gluNurbsProperty (splineName, property, value);

GLU B-Spline Surface Functions

GLUnurbsObj *surfName

surfName = gluNewNurbsRenderer ();

gluNurbsProperty (surfName, property1, value1);

gluNurbsProperty (surfName, property2, value2);

gluNurbsProperty (surfName, property3, value3);

...

gluBeginSurface (surfName);

gluNurbsSurface (surfName, nuKnots, uKnotVector, nvKnots, vKnotVector,

uStride, vStride, &ctrlPts [0][0][0], uDegParam, vDegParam,

GL_MAP2_VERTEX_3);

gluEndSurface (surfName);

 As an example of property setting, the following statements specify a wire-frame,

triangularly tessellated display for a surface:

gluNurbsProperty (surfName, GLU_NURBS_MODE, GLU_NURBS_TESSELLATOR);

gluNurbsProperty (surfName, GLU_DISPLAY_MODE, GLU_OUTLINE_POLYGON);

 To determine the current value of a B-spline property, we use the following query

function:

gluGetNurbsProperty (splineName, property, value);

 When the property GLU_AUTO_LOAD_MATRIX is set to the value GL_FALSE, we

invoke

 gluLoadSamplingMatrices (splineName, modelviewMat, projMat, viewport);

 Various events associated with spline objects are processed using

 gluNurbsCallback (splineName, event, fcn);

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 25

 Data values for the gluNurbsCallback function are supplied by

 gluNurbsCallbackData (splineName, dataValues);

GLU Surface-Trimming Functions

 A set of one or more two-dimensional trimming curves is specified for a B-spline surface

with the following statements:

gluBeginTrim (surfName);

gluPwlCurve (surfName, nPts, *curvePts, stride, GLU_MAP1_TRIM_2);

...

gluEndTrim (surfName);

Where,

 Parameter surfName is the name of the B-spline surface to be trimmed.

 A set of floating-point coordinates for the trimming curve is specified in array parameter

curvePts, which contains nPts coordinate positions.

 An integer offset between successive coordinate positions is given in parameter stride

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 26

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 27

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

Introduction:

 To 'animate' is literally 'to give life to'.

 'Animating' is moving something which can't move itself.

 Animation adds to graphics the dimension of time which vastly increases the amount of

information which can be transmitted.

 Computer animation generally refers to any time sequence of visual changes in a

picture.

 In addition to changing object positions using translations or rotations, a computer-

generated animation could display time variations in object size, color, transparency, or

surface texture.

 Two basic methods for constructing a motion sequence are

1. real-time animation and

 In a real-time computer-animation, each stage of the sequence is viewed as it

is created.

 Thus the animation must be generated at a rate that is compatible with the

constraints of the refresh rate.

2. frame-by-frame animation

 For a frame-by-frame animation, each frame of the motion is separately

generated and stored.

 Later, the frames can be recorded on film, or they can be displayed

consecutively on a video monitor in “real-time playback” mode.

5.3 Animation

5.3.1 Raster methods of computer animation

5.3.2 Design of animation sequences

5.3.3 Traditional animation techniques

5.3.4 General computer animation function

5.3.5 OpenGL animation procedures

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

5.3.1 Raster Methods for Computer Animation

 We can create simple animation sequences in our programs using real-time methods.

 We can produce an animation sequence on a raster-scan system one frame at a time, so

that each completed frame could be saved in a file for later viewing.

 The animation can then be viewed by cycling through the completed frame sequence, or

the frames could be transferred to film.

 If we want to generate an animation in real time, however, we need to produce the motion

frames quickly enough so that a continuous motion sequence is displayed.

 Because the screen display is generated from successively modified pixel values in the

refresh buffer, we can take advantage of some of the characteristics of the raster screen-

refresh process to produce motion sequences quickly.

Double Buffering

 One method for producing a real-time animation with a raster system is to employ two

refresh buffers.

 We create a frame for the animation in one of the buffers.

 Then, while the screen is being refreshed from that buffer, we construct the next frame in

the other buffer.

 When that frame is complete, we switch the roles of the two buffers so that the refresh

routines use the second buffer during the process of creating the next frame in the first

buffer.

 When a call is made to switch two refresh buffers, the interchange could be performed at

various times.

 The most straight forward implementation is to switch the two buffers at the end of the

current refresh cycle, during the vertical retrace of the electron beam.

 If a program can complete the construction of a frame within the time of a refresh cycle,

say 1/60 of a second, each motion sequence is displayed in synchronization with the

screen refresh rate.

 If the time to construct a frame is longer than the refresh time, the current frame is

displayed for two or more refresh cycles while the next animation frame is being

generated.

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

 Similarly, if the frame construction time is 1/25 of a second, the animation frame rate is

reduced to 20 frames per second because each frame is displayed three times.

 Irregular animation frame rates can occur with double buffering when the frame

construction time is very nearly equal to an integer multiple of the screen refresh time the

animation frame rate can change abruptly and erratically.

 One way to compensate for this effect is to add a small time delay to the program.

 Another possibility is to alter the motion or scene description to shorten the frame

construction time.

Generating Animations Using Raster Operations

 We can also generate real-time raster animations for limited applications using block

transfers of a rectangular array of pixel values.

 A simple method for translating an object from one location to another in the xy plane is

to transfer the group of pixel values that define the shape of the object to the new location

 Sequences of raster operations can be executed to produce realtime animation for either

two-dimensional or three-dimensional objects, so long as we restrict the animation to

motions in the projection plane.

 Then no viewing or visible-surface algorithms need be invoked.

 We can also animate objects along two-dimensional motion paths using color table

transformations.

 Here we predefine the object at successive positions along the motion path and set the

successive blocks of pixel values to color-table entries.

 The pixels at the first position of the object are set to a foreground color, and the pixels at

the other object positions are set to the background color .

 Then the animation is then accomplished by changing the color-table values so that the

object color at successive positions along the animation path becomes the foreground

color as the preceding position is set to the background color

5.3.2 Design of Animation Sequences

 Animation sequence in general is designed in the following steps.

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

1. Storyboard layout

2. Object definitions.

3. Key-frame specifications

4. Generation of in-between frames.

 This approach of carrying out animations is applied to any other applications as well,

although some applications are exceptional cases and do not follow this sequence.

 For frame-by-frame animation, every frame of the display or scene is generated

separately and stored. Later, the frame recording can be done and they might be displayed

consecutively in terms of movie.

 The outline of the action is storyboard. This explains the motion sequence. The

storyboard consists of a set of rough structures or it could be a list of the basic ideas for

the motion.

 For each participant in the action, an object definition is given. Objects are described in

terms of basic shapes the examples of which are splines or polygons. The related

movement associated with the objects are specified along with the shapes.

 A key frame in animation can be defined as a detailed drawing of the scene at a certain

time in the animation sequence. Each object is positioned according to the time for that

frame, within each key frame.

 Some key frames are selected at extreme positions and the others are placed so that the

time interval between two consecutive key frames is not large. Greater number of key

frames are specified for smooth motions than for slow and varying motion.

 And the intermediate frames between the key frames are In-betweens. And the Media that

we use determines the number of In-betweens which are required to display the

animation. A Film needs 24 frames per second, and graphics terminals are refreshed at

the rate of 30 to 60 frames per second.

 Depending on the speed specified for the motion, some key frames are duplicated. For a

one minutes film sequence with no duplication, we would require 288 key frames. We

place the key frames a bit distant if the motion is not too complicated.

 A number of other tasks may be carried out depending upon the application requirement

for example synchronization of a sound track.

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

5.3.3 Traditional Animation Techniques

 Film animators use a variety of methods for depicting and emphasizing motion

sequences.

 These include object deformations, spacing between animation frames, motion

anticipation and follow-through, and action focusing

 One of the most important techniques for

 simulating acceleration effects, particularly

for non rigid objects, is squash and stretch.

 Figure shows how this technique is used to

emphasize the acceleration and deceleration of a

 bouncing ball. As the ball accelerates,

it begins to stretch. When the ball hits the

floor and stops, it is first compressed

(squashed) and then stretched again as it accelerates and bounces upwards.

 Another technique used by film animators

is timing, which refers to the spacing

 between motion frames. A slower moving object

 is represented with more closely spaced frames,

 and a faster moving object is displayed with fewer

 frames over the path of the motion.

 Object movements can also be emphasized by creating preliminary actions that indicate

an anticipation of a coming motion

5.3.4 General Computer-Animation Functions

 Typical animation functions include managing object motions, generating views of

objects, producing camera motions, and the generation of in-between frames

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

 Some animation packages, such as Wavefront for example, provide special functions for

both the overall animation design and the processing of individual objects.

 Others are special-purpose packages for particular features of an animation, such as a

system for generating in-between frames or a system for figure animation.

 A set of routines is often provided in a general animation package for storing and

managing the object database. Object shapes and associated parameters are stored and

updated in the database. Other object functions include those for generating the object

motion and those for rendering the object surfaces

 Another typical function set simulates camera movements. Standard camera motions are

zooming, panning, and tilting. Finally, given the specification for the key frames, the in-

betweens can be generated automatically.

5.3.5 OpenGL Animation Procedures

 Double-buffering operations, if available, are activated using the following GLUT

command:

glutInitDisplayMode (GLUT_DOUBLE);

 This provides two buffers, called the front buffer and the back buffer, that we can use

alternately to refresh the screen display

 We specify when the roles of the two buffers are to be interchanged using

glutSwapBuffers ();

 To determine whether double-buffer operations are available on a system, we can issue

the following query:

glGetBooleanv (GL_DOUBLEBUFFER, status);

 A value of GL_TRUE is returned to array parameter status if both front and back

buffers are available on a system. Otherwise, the returned value is GL _FALSE.

 For a continuous animation, we can also use

glutIdleFunc (animationFcn);

 This procedure is continuously executed whenever there are no display-window events

that must be processed.

 To disable the glutIdleFunc, we set its argument to the value NULL or the value 0.

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

Example Program

#include <GL/glut.h>

#include <math.h>

#include <stdlib.h>

const double TWO_PI = 6.2831853;

GLsizei winWidth = 500, winHeight = 500; // Initial display window size.

GLuint regHex; // Define name for display list.

static GLfloat rotTheta = 0.0;

class scrPt {

public:

GLint x, y;

};

static void init (void)

{

scrPt hexVertex;

GLdouble hexTheta;

GLint k;

glClearColor (1.0, 1.0, 1.0, 0.0);

/* Set up a display list for a red regular hexagon.

* Vertices for the hexagon are six equally spaced

* points around the circumference of a circle.

*/

regHex = glGenLists (1);

glNewList (regHex, GL_COMPILE);

glColor3f (1.0, 0.0, 0.0);

glBegin (GL_POLYGON);

for (k = 0; k < 6; k++) {

hexTheta = TWO_PI * k / 6;

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

hexVertex.x = 150 + 100 * cos (hexTheta);

hexVertex.y = 150 + 100 * sin (hexTheta);

glVertex2i (hexVertex.x, hexVertex.y);

}

glEnd ();

glEndList ();

}

void displayHex (void)

{

glClear (GL_COLOR_BUFFER_BIT);

glPushMatrix ();

glRotatef (rotTheta, 0.0, 0.0, 1.0);

glCallList (regHex);

glPopMatrix ();

glutSwapBuffers ();

glFlush ();

}

void rotateHex (void)

{

rotTheta += 3.0;

if (rotTheta > 360.0)

rotTheta -= 360.0;

glutPostRedisplay ();

}

void winReshapeFcn (GLint newWidth, GLint newHeight)

{

glViewport (0, 0, (GLsizei) newWidth, (GLsizei) newHeight);

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

gluOrtho2D (-320.0, 320.0, -320.0, 320.0);

glMatrixMode (GL_MODELVIEW);

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

glLoadIdentity ();

glClear (GL_COLOR_BUFFER_BIT);

}

void mouseFcn (GLint button, GLint action, GLint x, GLint y)

{

switch (button) {

case GLUT_MIDDLE_BUTTON: // Start the rotation.

if (action == GLUT_DOWN)

glutIdleFunc (rotateHex);

break;

case GLUT_RIGHT_BUTTON: // Stop the rotation.

if (action == GLUT_DOWN)

glutIdleFunc (NULL);

break;

default:

break;

}

}

void main(int argc, char ** argv)

{

glutInit (&argc, argv);

glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);

glutInitWindowPosition (150, 150);

glutInitWindowSize (winWidth, winHeight);

glutCreateWindow ("Animation Example");

init ();

glutDisplayFunc (displayHex);

glutReshapeFunc (winReshapeFcn);

glutMouseFunc (mouseFcn);

glutMainLoop ();

}

