Algorithm 3- 2+ is an unambigious , sequence of steps

ie it generates the required of by accepting legitimate i/P in fruite amount of time.

characteristics of Algorithm 3-

1. Non-ambigious steps

2. Range of inputs [2+ should accept]

3. Legitimate [valid] input

4. Finiteness.

5. Definiteness [correctness, it definitely gives the Mp]

8 ame Algorithm can be represented in different ways

i) Natural language rep [English]

i) pseudo code rep

iii) Plow chart method

7. Same problem can be solved using many Edea ie Design techniques,

GOD :-

1) Euclids method

a) consecutive integer check method.

3) middle school method.

Effectivenes! - Every step should be effective [Importan to generate the required ofp 1. Euclids - GCD Ollycrithm = Euclids + GCD (min) I Input : non-negative integer min and both should not be ZETO Il output: Goof min. at brooks of harpin while (n \$0) 7 ← m % n ntr. end while 16tuin (m) method 2. Consewhire integer check language method dignithm: consecutive integer theck language_briD Positive (non zero) l'Input :- nen-negative intégers m, m milt not and both should be not 2 0 llouput: - output GCD of m,n. 0 Stepi: t = min(m,n) GCD Step a: Divide m by t. if remainder is non-zero then go to step 4 step 3: Divide n by to if remainde is zero, return t las GCD Step 4: Decrease t by 1 , 40to Step 2. Pseudo - code 1. setect minimum value of two inputs assign it notes4frée.ir

- 2. divide to in and n by t, it remainder ZETO, then t is GICP.
- 3. else decrement it by I and repeat step Q - until both demainder are zero.

3. Middle school method

Algorithm: middle school- GCD (min)

Il anput i non-Zero positive integer lloutput : Crco of min.

Step1: find the factors of m

step2: Find the factors of n

step3: Find the common factors from step1 and step2 step4: greturn largest common factor from step3 as GCD

#include < io stream . h>

sieve of Enatosthemes

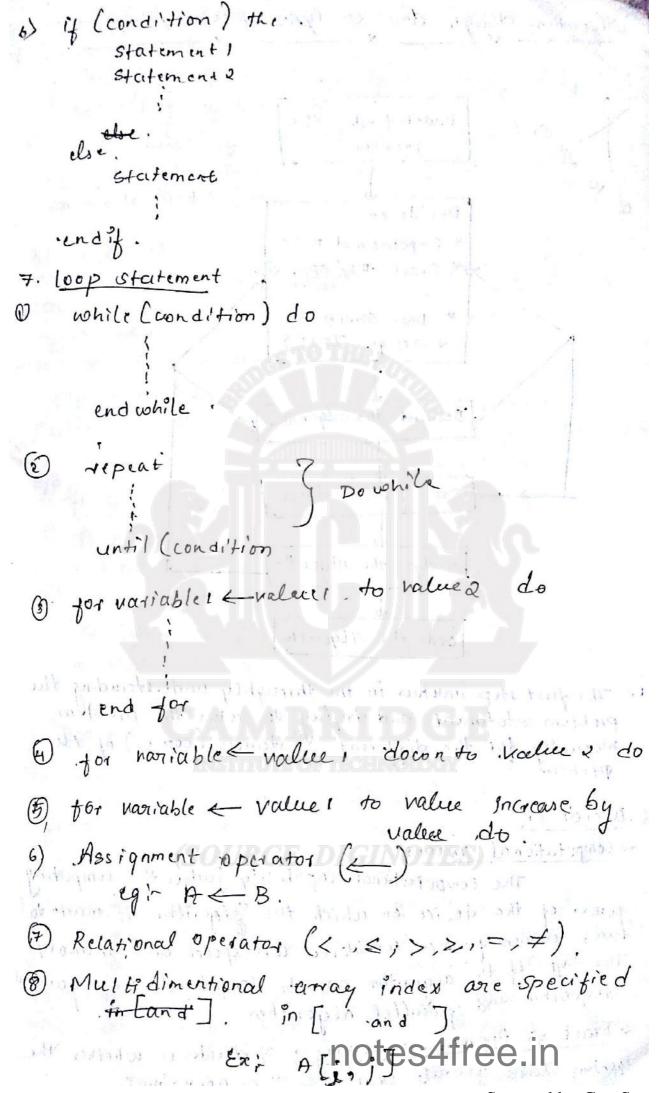
used to generate prime numbers for given

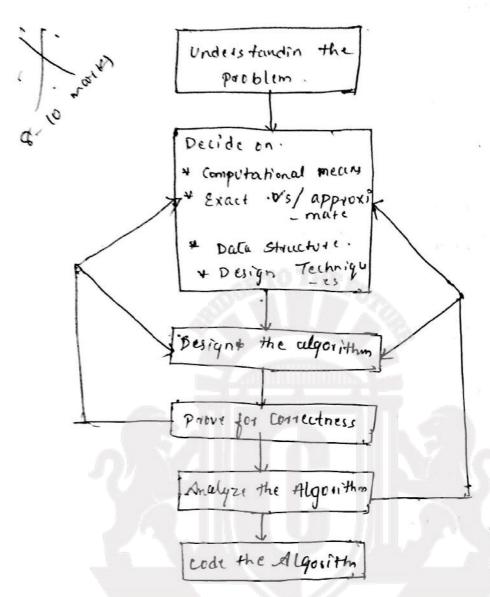
Initial -

2,3,4,5,6,7,8,9,10,11,12,13,14,15,46,17,18,19

"11, Situe 2,3, 15,7,9,

Algorithm sieve (n)


Minput: An integer n>2. number upto n. Moutput: list A contain prime


for P a to n do L[P] - P

end 401

for pe 2 to [sqit (n)] do JE P*P:

```
id(L[j] + 0)
            · while (j≤n) do
             L[j]← o
             je j+P
    end if
end for
        je 1
   for pe 2 to n do
        it (L[p] +0)
              ACI JEL[P]
               je j+1
          end it
       end for
   return (A)
  Algorithm specification:
> comment is specified through //
a) Algorithm header is specified as
      Algorithm Name (parameter dist)
3) Alg specify algorithms lightimak inputs and
     the required
m) compound Statements are specified with {}
         begin ..... end GI
5) Record data type one specified through {}
                               (live & fence)
         Exit record student
                               (Ccimpound date types)
                               each of them are
                 name detatype accessed their
                                Intances
                        notes4free.in
```


. The first step involves in the throughly understouding the problem statement and trying to sowe the problem manually for the different instances (copres) of the Problem.

d-Decide on

-> computational means

The computational capability judges the computing power of the device on which the adoptithm is made to tum, common factors considered levre speed and memory. The type of the algorithm can be considered as sequento algorithm and sparallel algorithm Problem Should generate exact Sol 61 approximate

sol. Generating a exact sol may be difficult for the following instances.

a) generating ofp for non-linear eg's, solving integrals, calculating square roots.

b) Due to complexity of solving problem exactly which requires high computation capability outcomes core compromised with approx values.

The choice of data Structure affects the performance of the algorithm. choose the data Structure that are Comprehed with approx values exprisionate for current problem approx values exproximate for current problem.

The exit choosing array instead of linted clist.

Algorithm Design techniques

Algorithm Design techniques

Benategy to solve the given problem and get the desired strategy to solve the given problem and get the desired strategy to solve the given problem and get the desired of the desired below.

If Brute force - linear search, bubble soft,...

In Divide & conquer iii) Decrease and conquer iii) Decrease and conquer iii) Decrease and conquer ivis Greedy technique.

Ye Dynamic programming.

Pranch and Bowed.

Design of organisms

Designing algorithm involves representing each and every

step with non-ambiguity features & simple and basis.

Algorithm can be represented using natural language,

flowchart or pseudocode.

4) Prove the correctness/Algorithm valuation

It is the process of cheeking a correctness of the algorithm for the range of degitimate input and their respective output.

Approximate sol may be verified by checking their error way, which should not exceed to a certain limit.

NOTES 4 free in

Analysis Framemork :-

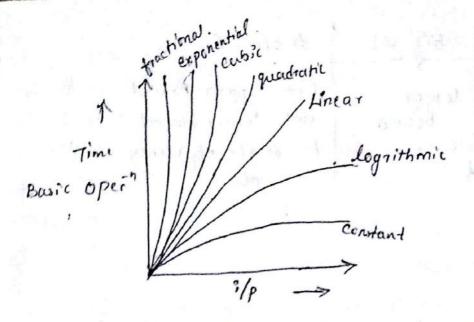
Based on the resource of computing machines.

- 1) CPU time . -> Time complensity Analysis.
- 2) RAM space . -> . space . complensity Analysis.

Is measuring input size

Edentify potential input for the algorithm which

effects The time efficiency.


En this size on is a prominant if p parameter which effects the efficiency of the algorithm.

- 2) Unit of measuring time
 i) clock tate-device time [we don't conside] &
 ii) primitive operation-counting [-11-] &
 iii) Basic operation
- The algorithm is analysed based on time and space constrained and an algorithm which suits the best for the application choosen.
- 6) Code the Algorithm; Algorithm is implemented on machine using one of the
 programming clarguages.
- 3. Order of growth

 It is the relationship blue 1/p size and the time consumed for running an algorithm as the input size increases, the time consumed proportiately increases in a particular order.

 The order in which time increases with input

The order in which time increases with input is called as order of the growth.

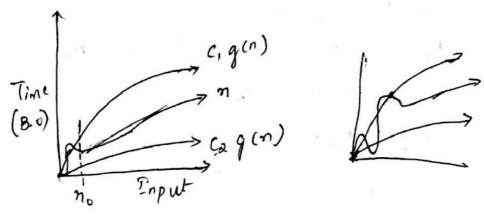
4. efficiency cla	Representation	Input n=10
constant logrithmic Chincory sears	loga	log 210 - 3.32
Linear . (addition)	n	Time n = 10
n-log-n	nlogn	ity 10/09:10 = 33.2
Bubble cost	n²	100
cubic [manix mal]	m ³	1000
exponential	NSTITUTE OF TECHNO	1024
Factorial.	n!	3 628800
. (0	ATIDAE DIATA	

5. Asymptotic notations

It is a symbolic representation to categorise the algerithmic effectioncy at different instances of input of the same size, comparing in the standard efficiency classes

A for t(n) is said to be in O(g(n)), denoted by t(n) & O(g(n)), if t(n) is bounded above by some constant multiple of g(n) + large 'n; some non negative integer no such that t(n) x cgln) サカシカの t(n) ≤ c. g(n) + n>no t(n) -> order of growth of algorithm. g(n) ->. Regrence order of growth. t(n) Input. Ex: 100n+5 6 0 (n) +(n) = 100n+5 If 100n+5 e. O(n), then 100n+5 ≤ c·n 100n+5 ≤ 100n+n 100n+5 ≤ 100n. [C=10] 100nts & 101n. 100+5 & 10\$ X n=1 100x2+5 € 101x2 11=1 n=5 100x5+5

4n3+3 € (n3) then. Prout 21 V = 151 $4n^{3}+3 \in 4m^{3}+n^{3}$ $4n^{5}+3 \in 5n^{3}$ C = 5no- 2 Big - 1 [omega] a function t(n) is said to be in $\Omega(g(n))$ denoted by $t(n) \in \Omega(g(n))$, it to be in $\Omega(g(n))$, it to be in $\Omega(g(n))$, it bounded below by some constant multiple of g(n) of large n. se if There exists some Fre' constant 'C' and some non-negative integer no such that t(n) > c, g(n) + n > no Time EXIC P.t . 3n2+n E -2 (n) $t(n) = 3n^2 + 0$ g(n) = n·3n2+n > C.n. +n>,no 3n2+n > 3n+n. notes4free.in


allalm

Theta - 0

A for the is said to be O(g(n)) denoted by t(n) e 0(g(n)), if t(n) is bounded both above and below by some constant multiples of g(n) & large n.

to ic if there exist . Some the constants c, and c, and Some non negative integer no such that

c, g(n) < t(n) < (,g(n) + n>,no

P.T.
$$\frac{1}{2} n(n-1) \in O(n^2)$$

 $t(n) = \frac{1}{2} \cdot n(n-1)$.
 $g(n) = n^2$.
 $C_0 \cdot n^2 \leq \frac{1}{2} n(n-1) \leq C_1 n^2$ $\forall ... > n_0$
 $\frac{eq^n(1)}{C_2 n^2} \leq \frac{1}{2} n(n-1)$
 $\frac{1}{2} n(n-1) > C_2 n^2$
 $\frac{1}{2} n^2 - \frac{1}{2} n > C_2 n^2$
 $\frac{1}{2} n^2 - \frac{1}{2} n > \frac{1}{2} n^2 - \frac{1}{2} n^2$
 $\frac{1}{2} n^2 - \frac{1}{2} n > \frac{1}{2} n^2$
 $\frac{1}{2} n^2 - \frac{1}{2} n > \frac{1}{2} n^2$
 $\frac{1}{2} n^2 - \frac{1}{2} n > \frac{1}{2} n^2$
 $\frac{1}{2} n^2 - \frac{1}{2} n^2$

notes4free

$$|| (nn) | de, eq^{n} | (nn) | + n > n_{0} |$$

$$|| (nn) | | (nn) | + n > n_{0} |$$

$$|| (nn) | | | (nn) | + n > n_{0} |$$

$$|| (nn) | | | (nn) | + n > n_{0} |$$

$$|| (nn) | | | | | | | | |$$

$$|| (nn) | | | | | | | | |$$

$$|| (nn) | | | | | | | | |$$

$$|| (nn) | | | | | | | | |$$

$$|| (nn) | | | | | | | | |$$

$$|| (nn) | | | | | | | | |$$

$$|| (nn) | | | | | | | | |$$

$$|| (nn) | | | | | | | | |$$

$$|| (nn) | | | | | | | | |$$

$$|| (nn) | | | | | | | |$$

$$|| (nn) | | | | | | | |$$

$$|| (nn) | | | | | | | |$$

$$|| (nn) | | | | | | |$$

$$|| (nn) | |$$

$$|| (n$$

.. loon +5 < c,n. Cin > 100n +5 100 100nts & cin. 100 n+5 < 1000 +0 m = 5, no = max { noi, noz } max 95,12 ... 100 n ≤ 100 n +5 € 101 n 100n+5 € 8n Properties of Assymptotic notations 1. If ti(n) & O(q,(n)) and ta(n) & O(g2(n)) then ti(n)+ tz(n) & O(max {g.(n), g.(n)}) 2/ ti(n) ∈ O(gi(n)) then ti(n) ≤ C,qi(n) lly = ta(n) + O(qa(n)) then, to(n) < (a.g.(n) + n>, no. = $t_1(n)+t_2(n) \leq .C_1.g(n)+C_2.g_2(n)$ To maximize . RHS 63 max { (, c, } Replace . C. and hotes 4 free in

= $t_1(n) + t_2(n) \leq C_3 \cdot q_1(n) + C_3 \cdot q_2(n)$ max { g, (n), g, (n) } to replace gi(n) and gi(n). = t.(n)+to(n) & c3. max {g.(n), 92(n)}+ 63: max{g,(n), g2(n)}. € ·2 c3 max {g, (n), g2 cn)} E=2(3 = ti(n)+tz(n) & c. max. {g,(n), g, cn)}. no= max {no, , no 2 }. = : ti(n) + ti(n) < max : {g,(n), g2(n)} + n > no (ti(n) + t2(n) & O (max (g,(n), g2(n))) 2. comparing 2 different order of growth (t(n), g(n)) using limits ie dim ton) for ton is smaller order of growth than gen) for where cro ton is same order of growth to gen)

ton has lighter order growth

(SOURCE DIGINOTES)

Ex! compare m! with d' wing limits dim ni using sterling formula for n:

กา 2 √2πn (n)n

$$\lim_{n\to\infty} \frac{n!}{a^n} = \lim_{n\to\infty} \frac{\sqrt{a\pi} n (n/e)^n}{a^n}$$

$$= \sqrt{a}\pi \lim_{n\to\infty} \sqrt{n} \left(\frac{n}{a^n}\right)^n$$

in nas higher order of growth compared to an (exponent)

Mathematical Analysis on non-Recursive Algorithm

1) Decide on input parameter

3) sdentity the basic operation

3) check' whether the algorithm depends only on input or if these are any variation, it so estimate But case, worst case and average case time efficiency separately.

4) Build Summation equation for no of Baix operation

5) solve the equation & asoutain it to one of the Standard efficiency das

1/2 input: An array of Entegers Allwith in elements and key lloutput: neturns true if found else false.

for it to n do. if (A[i] == key) then deturn True

end for tetrun false.

Analysis 1. Input parameter . 'n' size of acreay A . 3. Basic operation - Search / comparision - Ali] - key 3. Apart from Input size in the algorithm foreduces warrying order of growth, therefore estimate time analysis for but cour worst care and average cas seperately 4) Best cour : if the key is found at first position. comparision is one C Best (n) = 1 si] Best (n) e -a (1) => constant
order of growth Worst case: if the key is found in last position. $C_{\text{NOTS}}(n) = \sum_{i=1}^{n} \begin{cases} u^{i} \\ \sum_{i=1}^{n} constant \\ \sum_{i$ sii] [Eworst (n) € O(n)] =7 linear order of growth. Aveauge case ; CANG (n) = (1+2+3+4+...+n) + p+ (1-p)+n. $= \frac{1}{12} \left(\frac{(n+1) \cdot x \cdot n}{2} \right) \times P + (1-P) \cdot x \cdot n$ $= \left(\frac{n+1}{2}\right) * p + (1-p) * n$ If key is found , P=1. Carg-found (n) = (n+1) +1 + (1-1) + n. = 111 2 1/2 + 1/2. For last value of n. Carg-found (n) & 1/2 n.

Cang-found (n) enote\$4free.in

if key is not found , P=0. Crang-fals: (n) = (n+1) +0 + (1-0) +1. (Eavy-tease (n) - (0 (n)) => constant order of ex & Finding the largest timing in given list. Algorithm max-element (ALI... 17) Minput: An array AlJof or integers (positive) Howput: Greturn MAX. MAX - O. per it o to n do (ACI) > MAX) MAX = A[i] and it end for actuan MAX Analysis 1/2 Input parameter - " o' Bize of array "A' a) Basic operation - search (computation - A [] > MAX 3) the algorithm completely depends on n' Hence no variations 4) $C(n) = \sum_{i=1}^{n} i$ = n linear order of growth C(n) & O(n). *(SOURCE DIGINOTES)*

(SUURCE DIGINUIES)

$$4. \quad c(n) = \sum_{i=1}^{n} 1$$

$$= n \quad c(n) \in \theta(n)$$

Exp: To find the uniqueness of a given with Algorithm Uniqueness (A[1-1]).

[I Enput: An Amay A[7] of integer [1] output: Unique list/duplicate list.

Hor it I to n-I do.

If [A[i] = A[j]) then

Teturn (duplicate).

end if end for yeturn (unique).

Analysis: (check uniqueness).

1 Eput parmeter :- 'n' Size. of array

on n':- no variation.

(4)
$$c(n)$$
\$0 U $\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} GINOTES)$

(c)
$$c(n) = \sum_{i=1}^{n-1} (n - (i+1)+1) \Rightarrow \sum_{i=1}^{n-1} (n - i+1)+1$$

$$c(n) = \sum_{i=1}^{n-1} (n-i) \Rightarrow \sum_{i=1}^{n-1} n - \sum_{i=1}^{n-1} i$$

$$notes 4 free.in$$

$$c(n) = n \sum_{i=1}^{n-1} + - \sum_{i=1}^{n-1} i$$

$$c(n) = n (n-1-1+1) - (n-1)(n-1+1)$$

$$c(n) = n (n-1) - n (n-1)$$

$$c(n) = n (n-1)$$

$$c(n) = \frac{n^2}{2} - \frac{n}{2}$$

$$for large value of n.$$

$$c(n) \in \Theta(n^2)$$

Algorithm:

matrix - multiplication (A[n, n], B[n, n]).

llinput: matrix A[n, n], B[n, n] of integers.

lloutput: Resultant matrix c[n, n].

ll Assumed that matrix c is initialized to zero

for i = 1 to n do

for j = 1 to n do

c[i,j] = c[i,j] + A[i,k] * B[k,j].

end for

end for

end for

end for

Analysis ; A Engut Parameter - n' nxn order of matrix (Both A or B). N) Basic operation :- multiplication -A[i, K] *B[Kj]. 3) Depends only on order of matrix - n' no variating 4) $M(n) = \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} 1$. $m(n) \in (n^3)$ cubic order of growth. counting no of Exi, Bits required to represent Decimal no Algorithm : Bits(n) Input: Decimal no 'n' - non-negative output: count => no of bits to represent in count < 1 while (n>1) do

 $n \leftarrow n/2$

count < count ++

end while detuin (count)

Analysi's :-1) Input parameter : 'n'

a) Basic operation :- Addition Depends only on to - notes 4 free in

3. Depends only on 'n' - no variation factorial (n)= { | n+factorial (n-1) 4 . n < 1 Buse on basic operation. $M(0) = \begin{cases} 0 & n \leq 1 \\ 1 + M(n-1) & n > 1 \end{cases}$ M(n) = 1+ M(n-1) until M(1)=0 5) golve using Backward substitution method buckward substitution method? m(n) = 1+m(n-1). =1+1+m(n-2) = 2+m(n-2) = 2+(+m(n-3) = 3 + m(n-3)n-1+m(n-(n-1)). gm(i)=0= n-1 For nature of n, m(n) & n. m(n) & O(n). linear order of growth.

```
Finding no of bits to Represent Decimal numbers
 Algorithm :- Bit - count (n).
 Minput :- non-negative integer in'
 Il output : - count of no of bits required.
   if (n < 1) then.
         return (1)
        7 eturn (1+Bit-Count ([7/2])) ([7/2]))
    else
    end if
1) input parameter - 'n'
2) Basic operation - addition "I+ Bit-count ( 1/3)
3) Depends only on 'n' - no variations
4) Algorithms recurrence relation.
  Bit-count(n) = { 1 | f.t m = "1" | 1+8/1-count(n/2) n>1
   B. O recurrence relation.
        f(n) = \begin{cases} 6 & n \leq 1 \\ 1 + p(\gamma_2) & n > 1 \end{cases}
5) A(n) = 1 + A(n/2) Unh^0/A(1) = 0

1 + [1 + A(n/4)]
             1+[1+[1+ (1/8)]]
```

complicated.

(consider
$$n = 2^{k}$$
 $\rightarrow 0$

i. $A(n) = 1 + n(2^{k})$
 $= 1 + n(2^{k-2})$
 $= 2 + n(2^$

```
Tower (n-1, T, 5, 0)
     end if.
   +nalysis
 i) input parmeter - n' no of disks.
2) B.O -> moving discs.
3) Depends only on n'- no variation.
4) Algorithmis recorrence relation.
Tower (n, s, T, D) = move disc 1 from s to D n = 1.

Tower (n-1, . s, D, T).

move nth disc from s to D n > 1

Tower (n-1, T, s, D)
     B.o. recorrence relation
     M(n)
       \left(M(n-1)+1+M(n-1)\right) n>1
5) m(n) = 1 + 2M(n-1)
                                      until M(1) = 1
           = 1+2[1+d M(n-a)]
            = 1+2+22.m(n-2)
            = 1 + 2+2 [1+ 2 M (n-3)]
             = 2 +21+23M (n-3)
              = 20+21+23+ 24M(n-4)
            = 2° + 21 + 23 + 84 + ..... 2 n-1 (n-1))
= 2° + 2' + 23 + 2 4 + ...... 2 n-1

2 GP
= sum of Geometric Progession.
                    3n = a.(1"-1)
                     a=1, += 2
                 · M(n) = notes4free in
```

For large value of n. M(n) & 2". .: [M(n) & \(\theta\) Exponential order of growth. Eibonacci series Seed elements - 0, 1 Algorithm Fib - iterative (n) Minput: an integer n>2. Montput: nth term of Fib series Il Auxillary array F[0...n] Flo J = 0 F[1] ← 1 tor i ← 2 to n do P[i] ← F[i-1] + F[i-2] end For. detunn: Analysis is Enput parameter -n. a) Bio of Addition - F[i-i] + F[i-2] 3) Depends only on 'n' no variations $A(n) = \sum_{i=1}^{n} I$ A A(n) = n-2 + pigiNOTES) - n-1 For large value of n. A(n) & n. . | A(n) & O(n) | notes4free.in linear order

Recursive method

$$\frac{1}{1}(n) = \frac{1}{1}(n-1) + \frac{1}{1}(n-2)$$

$$\frac{1}{1}(n) = \frac{1}{1}(n-1) + \frac{1}{1}(n-2) = 0.$$
Similar to a $\alpha(n) + b\alpha \cdot (n-1) + (1 \cdot (n-2) = 0.$

homogenous linear sectord order, egypatim.

Pts characteristic egg

$$\alpha r^{2} + br + c = 0.$$

$$r = -b \pm \sqrt{b^{2} - 4ac}$$

$$\partial a.$$
Apply to eg $^{-n}$ (0.

$$c = 1, b = -1, c = -1$$
Characteristic eg $^{-n}$ of $\gamma(n)$

$$= 7^{2} - 7 - 7 = 0.$$

$$= -(-1) \pm \sqrt{(-1)^{2} - 4(1)(-1)}$$

$$= +1 \pm \sqrt{1 + 4}$$

$$\gamma = +1 \pm \sqrt{5}$$

$$\chi(n) = \alpha \gamma^{n} + \beta \gamma^{n}$$

$$\uparrow(n) = \alpha \left(\frac{1 + \sqrt{5}}{2}\right)^{n} + \beta \left[\frac{1 - \sqrt{5}}{2}\right] \longrightarrow \emptyset$$
We know that
$$f(0) = 0, \quad \gamma(1) = 1$$

$$f(0) = \alpha \left(\frac{1 + \sqrt{5}}{a}\right)^{0} + \beta \left[\frac{1 - \sqrt{5}}{2}\right] \longrightarrow 0.$$

2 + B AOTES4 BEEN

Consider
$$f(1) = 1$$
 in eq. $\frac{1}{2}$.

 $f(1) = \alpha \left[\frac{1+\sqrt{5}}{2} \right] + \beta \left[\frac{1-\sqrt{5}}{2} \right] = 1$.

Replace $\beta = -\alpha$.

 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} - \alpha \left[\frac{1-\sqrt{5}}{2} \right] = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} - \alpha \left[\frac{1-\sqrt{5}}{2} \right] = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5} \\ 2 \end{cases} = 1$
 $\begin{cases} 1 + \sqrt{5$

Andy

Algorithm: Fib-Frec (n)

// Input: An integer n >/2.

if (n < 1)

1 etvin (fib_ rec(n-1) 4 fib- tec (n-2)). else end it Analysis 1) · Input parameter -n' 2) B.o Addition plb-nec(n-1)+ Fib-rec(m-2). 3) Depending only on 'n' - no varicitions. 1) Algorith recurrence relation. Fib -1ec (n) = } 0, 1 (Fib-1ec (n-1)+ F16-1ec(n-2) n>1 13 ased on B.O. A(n) = 0 A(n-1) + A(n-2) + 1 A(n-1) + A(n-2) + 1s/n(n) = n(n-1) + n(n-2) + 1A(n) - A(n-1) - A(n-2) - 1 = 0. (A(n)+1) - (A(n-1)+1) - (A(n-2)+1)=0 B(n) = A(n)+1, B(n-1) = A(n-1)+1 B(n-2) = A(n-2+1). : B(n) - B(n-1) - B(n-2) = 0. same as -f(n) - f(n-1) - f(n-2) = 0. 301 701 7(n) - 1/15 (p^n-p^n) .. Applying the same golution $\mathcal{B}(n) = \sqrt{\sqrt{s}} \left(\phi^n - \hat{\phi}^n \right)$ B(n) = A(n) + 1 notes4free.in

= +(n) = = (p^n-p^n)-1 For large values of n, subtracting I become negligible and is inverse of of, so it can be negligible. A(n) 25 1/5 0 (n) = ∈ 0 (pm) Exponetial order of growth. 3/3/17 Problem types (Refer text book) ordering of elements based required manner. Exi- Bubble sort, merge sort, selection sort, Radix sout, Insertion sort. 2- properties of sorting algorithm. 1. Stable property. [maintains forst come first see 2. In-place property. 1. stable property: A scringan Algorithm is said to be stable if it maintains the relative order of the duplicate clements even after sorting. 2. In -place property :-

An ally sorting algorith is said to be in-place it the algorithm aces not consume extra memory Ex: Bubble sort, selector esort Comments

7-mange sort is sorting by distributed counting Searching Problem Find an element in the given list is known as searching problem. Numeric Searching Ly simple/set of number (pattern) Non - Numeric Ly characters / Sub-string Ex! linear, binary, interpolation search, Hashing Horspool, Boyer - more. Adding a string finding length of str. copying 2 - strings. Bearching sub-strings Graph Problems shortest path. Hamiltonian Circuit Traversals. Techniques. Travelling sales person (TSP) algorithm Distance Spanning tree graph. 5) geometric Problems problems regarding plotting all geometric shapes 6) Numerical problems -> equations which are continuous in mature -> sine series, -> Definite integral. Fabrumenne

Permutation, combination, sub set which grows expenentially

Shinear: - anay, stack, queue, structure, 607 (Non-linear: Tree, Graph.

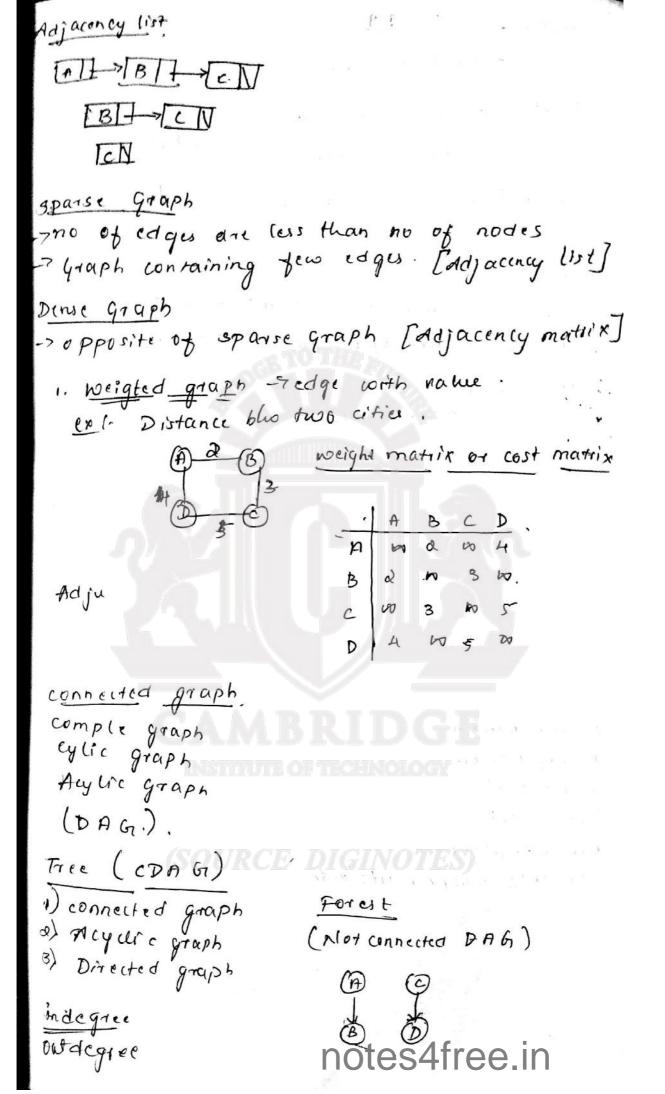
Based & sequential - Linted list, Stack, queens = here
on
access! Dynamic - emay, indeed-linked list.

Amay : - homogeness collection of Objects .

Structure !- biomogenous or heterogenow collars,

Stack: FILO , LIFO

Queue! - FIFO, LIFO


graph: - Grévies.

1. Adjucancy matrix - nxn Symmetrix matrix

Symmetric A B C.

A 0 1 0

B 1 0 1

vertex - indegree -D-1001.
- outdegree -0 - leag

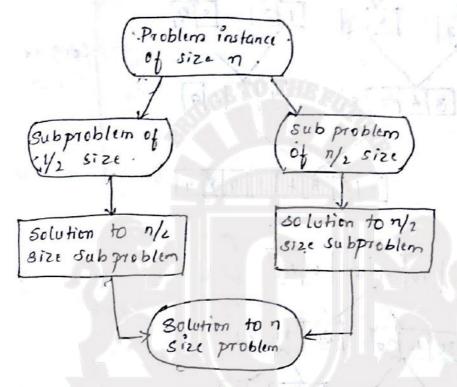
Vertex - non-zero integree? Branch.

-THeap tree - T Ascending order heap tree

BST.

Set: - collection of non-duplicate clements muitiset -> collection of elements with duplicate value. Dietonary pair of clements < name, name

General method
Binary method
Merge sort
Quick sort
Min-max algorithm
Strassen's matrix multiplication.


MODULE -2

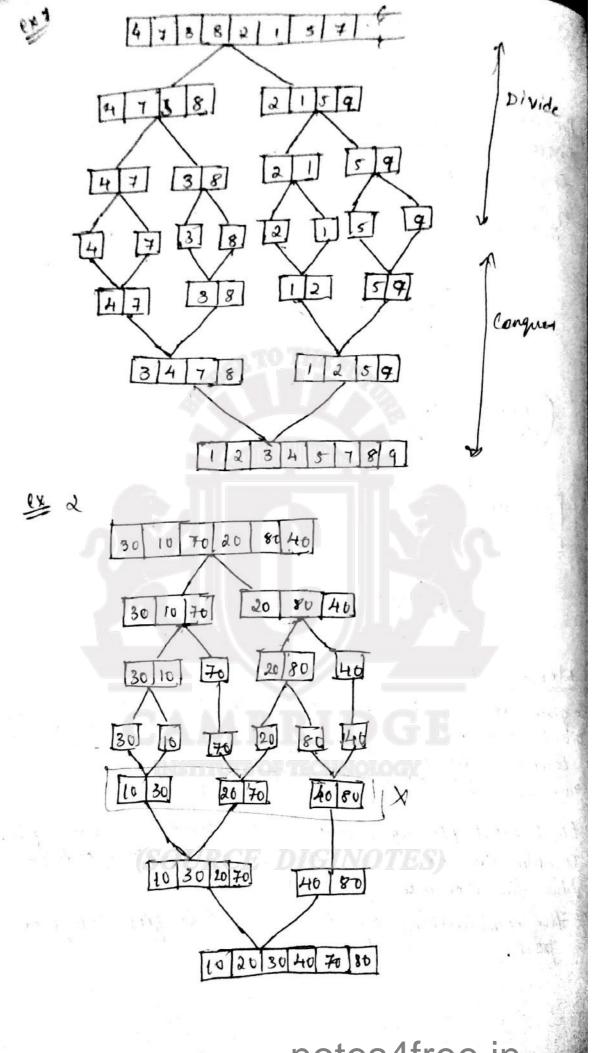
DIVIDE AND CONQUER

Problem is divided into Sub-problems [until no further division is required] -> Divide.

2. solve the sub-problem with known method [simple] ?
3. 34 required, combine the solution of the sub-problem?
3. instances to find the solution of Overall problem?

Conquer

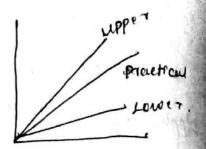
Merge Sort


The given list is considered to be as unsorted file.

Divide the file into 7000 parts [approximately equal of continue dividing until file reaches to a

non divisible steete. [one clement file]

The element file by clefault is considered as sorted file combine the sorted files through simple comparision blue the elements of files.


The combineding of two file satisfies conquer part.


```
Algorithm merge_Sort (A[o, -- n-1])
Isopul: An array A[o,...n-i] of n oderable elements
Houtput: Array Alu, .... n-1] of ordered elements
  if (n>1) Then
       copy A[0,...[1/2]] to B[0,....[7/2]]
       copy A [[1/2]+1 .... n-1] +0 C [0...[1/2]]
        mergesort (B[o....[n/2]])
        mergesort (c[o.... TN27])
         merge (B, C, A)
    end if
 Algorithm Merge (B[0....p-1], c[0...., 9-1], +[0.....P+2-1]
//input: Sorted array B[] and C[]
loutput: sorted array A[]
   ito, jto, K = 0
   while (ixp and j<q)
         if (B[i] < c[i]) then
                A[K] CB[i].
                  5 t it1
            tlse
             A[K] < C[i]
            end if
             KK K+1
     and while .
     7 (P(ZP)
           copy B[i..... p-1] to A[Fig .... P+2-1]
        copy c[j...q-1] to A[x .... P+q-1]
      end it
```

Analysis Input Jourameter - n' size of in but array. 2. Basic operation -> Comparison B[i] < C[j] 3. Minimal variation (within same order of growth) Recurren relation Based on B.O. $C(n) = \begin{cases} 0 \\ c(n/2) + c(n/2) + n-1 \end{cases}$ 5. c(n) = ac(n/3) + n - 1 until c(1) = 0upper bound - [Backward Substitution moving from n to i] consider n= 2 k c(n) = 2. ((2/2) + 2k-1 = 2. ((x + 1) + 3 x -1 = 2. [2. [(2K-2) + 2K-1] + 2K-1 1 = a[2.[2((2k-3)+2k-2-1]+2k-1]+2k-1] = 2 C(2K-2)+2K-2+2K-1 = 22 c(2k-2) + 2.2k-2'-20. = 23c(2K-3) + 3.2K - 22 - 21 - 20

=
$$a^{2} c(a^{k-2}) + 2^{k} - 2 + 2^{k} - 1$$

= $a^{2} c(a^{k-2}) + 2 \cdot 2^{k} - 2^{i} - 2^{0}$
= $a^{3} c(a^{k-3}) + 3 \cdot 2^{k} - 2^{i} - 2^{i}$
= $a^{k} c(a^{k+1}) + k \cdot 2^{k} - 2^{k-1} - 2^{k-2} - 2^{i} - 2^{0}$
= $a^{k} c(a^{k+1}) + k \cdot 2^{k} - 2^{k-1} - 2^{k-2} - 2^{i} - 2^{0}$
Sum of $a^{k+1} + e^{im}$ of Geometric series
 $S_{n} = a^{n} - 1$
= $a^{n} - 1$
= $a^{n} - 1$
= $a^{n} - 1$

Master's Theorem

If there is becausence relation 7(n) = a T (n/b) + f(n)

Where a -- no of subjetoblens to be solved b-> no. of fractions tof input size h'

f(n) = time consumed for Divide/ conquer d = degree of n in f(n).

Ex! for Merge sort eln) = 2. (1/2) +n-1 According to master's theorem. T(n) = a + (n/b) + f(n). a=2, b= a, f(n)= n-1, d=1

> Relationship blw SOUR: ((n) & O (n'logan).

It is applicable for divide and Tonquer algorithm

C(n) = 2. C(n/2) + n/2 FXD According to masteris theorem. $\tau(n) = \alpha$, $\tau(n/b) + \tau(n)$ $\alpha = \lambda$, $b = \lambda$, $\tau(n)Qt = 5.4 free.in$

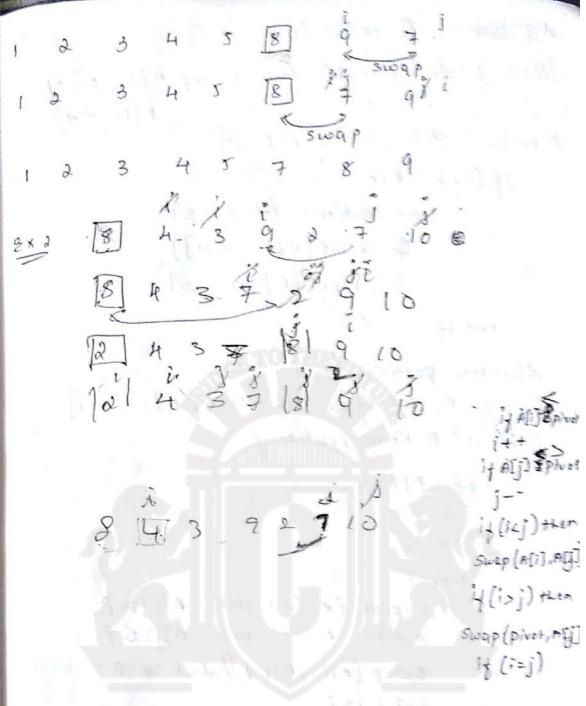
relationship blu
$$a = b^d$$
 $a = a^1$

$$C(n) \in \partial (n' \log_a n)$$

example 3. $T(n) = 3 \cdot T(n/a) + n^2$
 $a = 3$, $b = 4$, $f(n) = n^2$, $d = 2$

Prelationship $blw = a = b^d$
 $3 < 4^2$

$$C(n) \in \partial (n^2)$$


Example 4: $T(n) = T(n/2) + 1$
 $a = 1$, $b = 2$, $f(n) = 1$ $d = 0$

Prelationship $blw = a = b^d$

$$C(n) \in \partial (n^2 \log_a n)$$

Exs.: $T(n) = 4T(n/a) + n$
 $a = 4$, $b = 2$, $f(n) = n$, $d = 1$
 $a = 4$, $b = 2$, $f(n) = n$, $d = 1$
 $a = 4$, $b = 2$, $f(n) = n$, $d = 1$
 $a = 5$, $b = 3$, $f(n) = n$, $d = 1$
 $a = 5$, $b = 3$, $f(n) = n$, $d = 1$
 $a = 5$, $b = 3$, $f(n) = n$, $d = 1$
 $a = 5$, $b = 3$, $f(n) = n$, $d = 1$
 $a = 5$, $b = 3$, $f(n) = n$, $d = 1$
 $a = 5$, $b = 3$, $f(n) = n$, $d = 1$
 $a = 5$, $b = 3$, $f(n) = n$, $d = 1$
 $a = 5$, $b = 3$, $f(n) = n$, $d = 1$
 $a = 5$, $b = 3$, $a = 6$
 a

```
awick soll
 -> one of the divide and conquer algorithm
- partition result in un-ever sub groups.
-> partition occurs based on fivot/ Anchor element.
 -> left group < pivot element 4.
       Pivot & Right group
       Left grayp < pivot < Right group.
               e 5
                    2 4 151 76.
17/3/17
 Pivet 0
   3
         3
        spap
  2
```


CAMBRIDGE

INSTITUTE OF TECHNOLOGY

(SOURCE DIGINOTES)

notes4free.in

Scanned by CamScanner

Quicksont (A[d. __ 91]) algorithm // Epat: An orderable -array A[1 ... 37] of A[0. -n-1] 11 output: storted array A[2 -- 91] 16 (des) then Se partition (A[1...97) Quicksord (A[l. -- 5-1]) Quicksort (A[s+1 .-- 31]) end if . Algorithm partition (A[2. 27]) Minput: An sub-array A[1. -91] of A[0. -0-1]. loutput: partition position j P.L A[17 i = 2+1 j 4 91 repeat repeat it it until Ali]>1P repeat je jt until Afjj & P. swap (A[i], A[j]) // dast swap is Involid centil is; swap (A[i], A[j]) // to avoid Envalid swap swap (All, TAGI) redunn j

(SOURCE DIGINOTES)

notoc/froo

Time dualy815 1) Input parameter - n' size of array 4. a) Basic Operation + A[i]>P A[j] < P - comparation

3) There is variation of time for the same orzen. is find Butcase, worst case and averagease

Endividually

Partition results in approximately equal. Sub-groups

ex:

.; CB(n) = CB(n/2) + CB(n/2) + (n+)

(B(n)= 2(B(n/2)+(n+1) until (18(1) = 0.

min no of comparision.

$$C_{B}(n) = k \cdot 2^{k} - \left[1 \cdot 2^{k} - 1\right]$$

$$C_{B}(n) = k \cdot 2^{k} - \left[2^{k} - 1\right]$$

$$2^{k} \left[k + 1\right] + 1$$

$$C_{B}(n) \approx 2^{k} \left[k\right] \qquad \left[\text{for larger injutvatua}\right]$$

$$Apply \log_{2} \text{ on both sides of } n = 2^{k}$$

$$\log_{2} n = k \log_{2} 2$$

$$k = \log_{2} n$$

$$\log_{2} \left(2^{k} \right) = k$$

$$C_{B}(n) = n \cdot \log_{2} n$$

$$C_{B}(n) \in \Omega \left(n \log_{2} n\right) \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}(n) \in \Omega \left(n \log_{2} n\right)\right] \quad \text{lower bound}$$

$$\left[C_{B}($$

$$= \frac{(n+1)(n+1+1)}{2} - 3$$

$$= \frac{(n+1)(n+2)}{2} - 3$$

$$= \frac{(n+1)(n+2)}{2} - 3$$

$$= \frac{n^2 + 3n + 2 - 3}{2}$$

$$= \frac{n^2 + \frac{3n}{2} + 1 - 3}{2}$$

$$= \frac{n^2 + \frac{3n}{2} - 2}{2}$$
For larger value of Input (n)
$$C_{hi}(n) \approx \frac{n^2}{2}$$

$$C_{ui}(n) \in \Theta(n^2)$$
Quadrante Order of grown

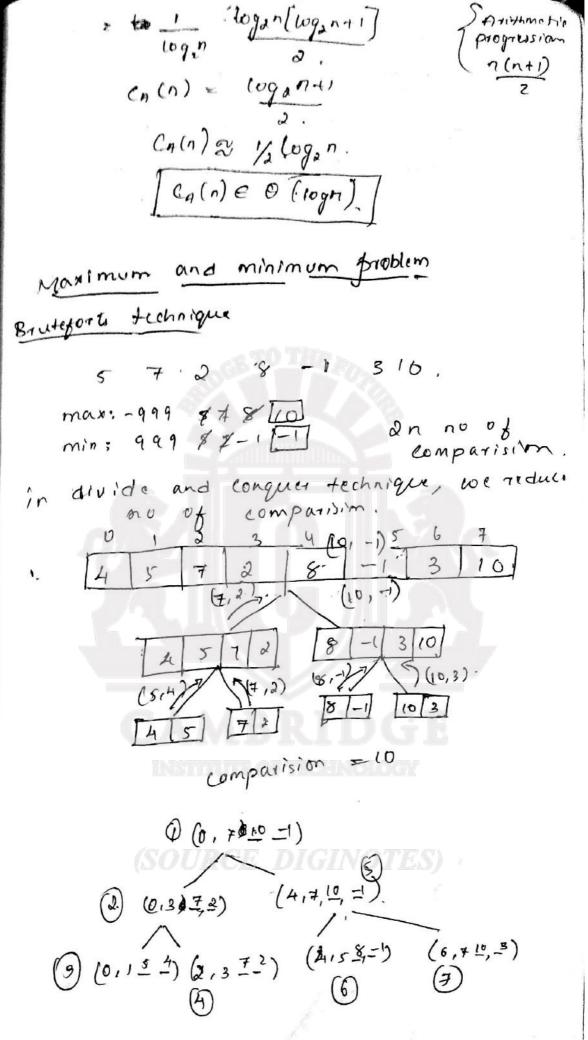
Average case
$$C_{hi}(n) \approx \frac{n^2}{2}$$

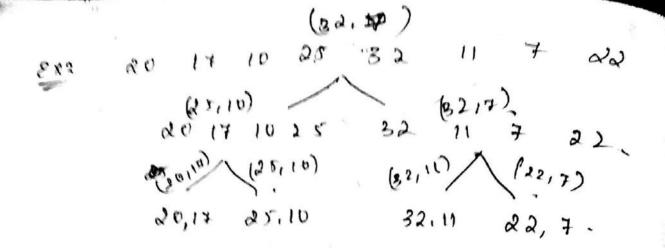
$$C_{hi}(n) \approx$$

. .

```
Algorithm Binary-search (A[10w...high], key).
Hanput: An ordered array A [low .... high] of "n' elements
         and search element - key
lloutput: return , if key is found else o.
        it (low shigh) then
          ·mH ( (low + high) / 2
             if (key = A[mid]) then
                   return (1)
              clse if ( key comid]) then .
                    return (Binary-Search (A[10w.mid-], key))
                  deton (Binary-search (A[mid+1.-high], rey))
               end it
           else
              Teturn (0)
            end if
 Time Analysis
1) Enjout parameter - n size of array A.
2) Basic objection - comparision = rey = A[mid]
3) No of comparison & vary based on the position of
            individually
   · Best cas :
          CB(n) = 1. found at mid.
            (CB(n) & IL (1) ] constant order of growth
    morst cone
                                      till Cos(1) =1.
      en(n) = (w(n/2) +1
      Cw(n) = Cn(2/2) + hotes4free.in
```

$$C_{N}(n) = Q_{N}(3^{N-1}) + 1$$


$$= C_{N}(3^{N-2}) + 1 + 1$$


$$= C_{N}(3^{N-2}) + 2$$

$$= C_{N}(3^{N-2}) + 2$$

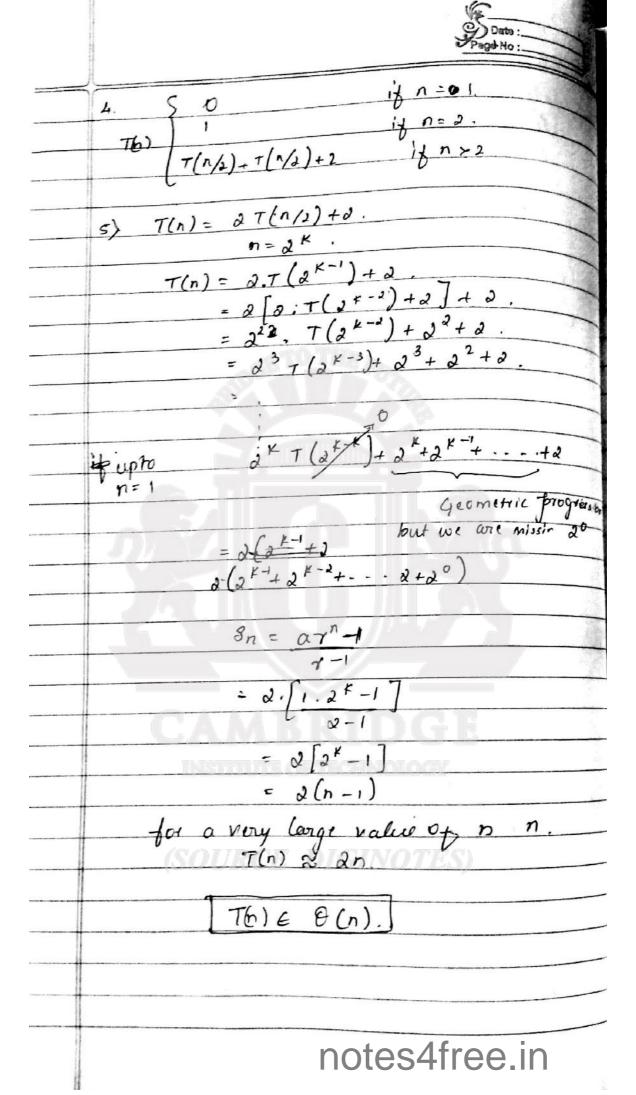
$$= C_{N}(3^{N-2}) + 1$$

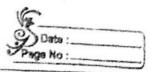
$$= C_{N}(n) \approx C_{N}(n$$

CAMBRIDGE

INSTITUTE OF TECHNOLOGY

(SOURCE DIGINÔTES)


```
Algorithm: (i.j. Max, min).
 Algorithm: (1.)
Il input: timits of array i Juakmin
lloutput: maximum Max and Minimum win
Values of array.
    34 (i=j) then, // one element


max = min = flis

che if (Cj-i)=1) then // two element

if (A[i] < A[j]) then
                 maxe A[j], minf = A[i].
               Max - [A[i] , min = A[j]
          end if
    else
        mide (i+1)/2.
         marmin (i, mid, max, min)
         Max Min (mid+1, j, maxi, mini)
          if (maxi > moux) then
                 max + max 1
            if (min < min) then
                 min < mini
 Time Stralycis !-
 I Japul parameter - no of element to i - j.
a) Basis operation - comparision

A [i] < o[j] . max 1 > max , min 1 < min
3) Depending only on orray size -n'
           wani ations
```

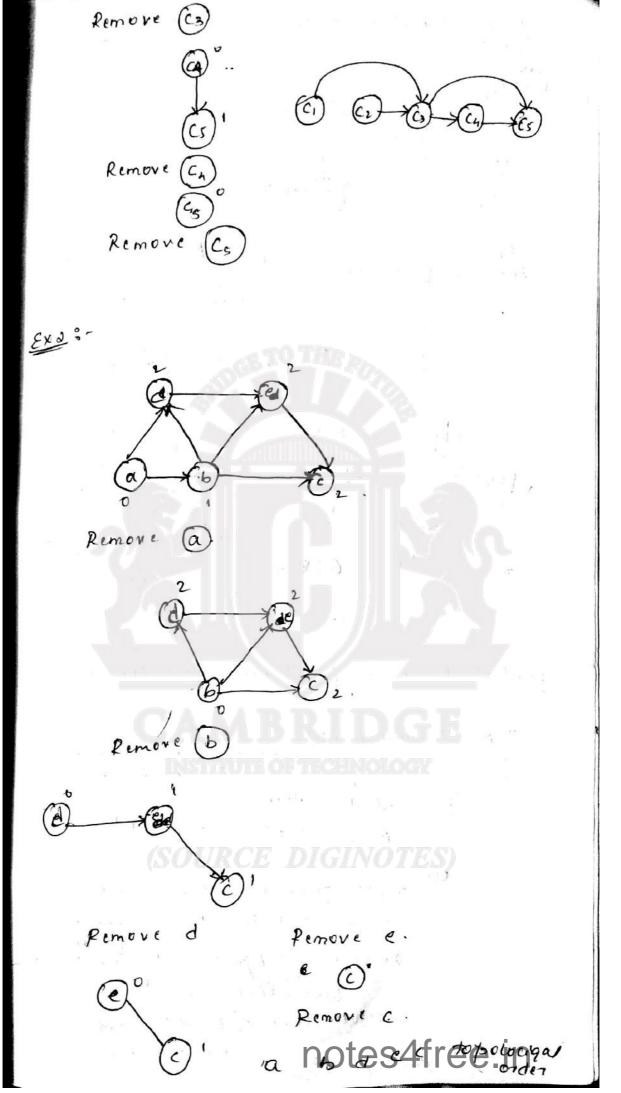

✓ Paga No :			
_	using masters theorem T(n) = a ·T(n/b)+ +(n)		
	Algorithm: recurrance relation		
	T(n) = 2 (T(n/2) + 2		
	a = 2, $f(n) = 0$, $b = 2$, $d = 0$.		
	a . bd .		
	√ > . √ °		
	7(n)60(nlogsa)		
	$7(n) \in \theta(n^{\log_b a}).$ $\in \theta(n^{\log_b a}).$		
	T(n) & O(n).		
	Matrix multiplication: 5678		
	9 0/1 2		
	$A = \begin{bmatrix} A_{11} & A_{12} \end{bmatrix} B = \begin{bmatrix} B_{11} & B_{12} \end{bmatrix} 3 4 5 6$		
	$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} 3 + 5 = 6$ $\begin{bmatrix} A_{21} & A_{22} \\ B_{21} & B_{22} \end{bmatrix} B_{22} B_{23} B_{24} B_{24} B_{25} B_{25$		
	C= A11 * B1, + A12 *B21 A11 * B12 + A12 * B2,		
	A21 + B11 + A72 + B21 A21 * B11 + A22 * B22		
	CAMBRIDGE		
	S1 n=1		
	$T(n) = \int_{\mathcal{S}(n/2)} x = \int_{$		
	T(n) = 8T(N(2)) + 0 until $T(i) = 1$		
T(n) = 8 T(N/2) + 0 until $T(i) = 1a = 8, b = 2, d = 0, f(n) = 0.$			
	a bod		
	8 > 20		
	T(n) & O (n logs a) & O (n logs 8)		
	$\epsilon \theta (n^{\omega} J^{\omega})$		
	τω) € hotes4free.in		
	Scanned by C		

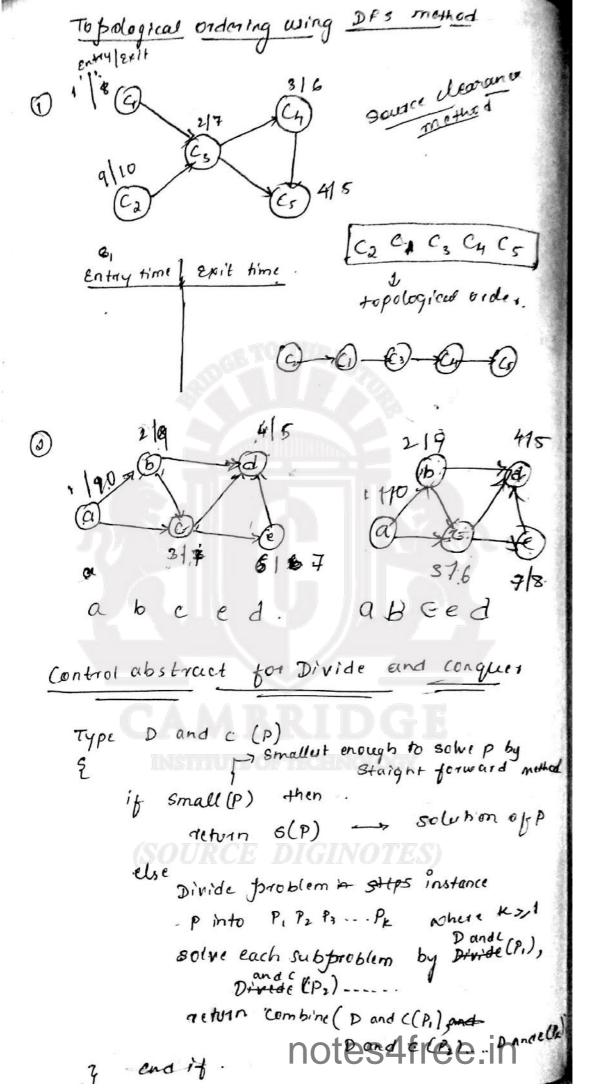
Struccens matrix multiplication

$$T = (A_{11} + A_{12}) * B_{22}$$
.

$$U = (A_{21} - A_{11}) \times (B_{21} + B_{12})$$

$$V = (A_{12} - A_{12}) \times (B_{21} + B_{22})$$


$$C = \begin{bmatrix} c_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$


multiplication = 7. Addition / subtraction = 18

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Topomotes 41 ree.in

Topological ordering :- /sorting Ets a graph traversal technique exclusively DAG - Directed Asyclic technique. ·C1, (2, (3, 64, 65. -> To attempt to (3, either C1 or (3 should) complete -> To attempt Cycz should be complete. -> To attempt cr, either C4 or c3 shows be complete To some Topological ordering 1) DFS method 2) source gumeral method. 1. Source Removal method source - vertex with indegree - Zero. Remove (C, Remove

Chreedy Technique

d problem is solved through sequence of subproblem, each sub-foroblem is solved by greedy technique.

- -> fearibility -> limit, budget
- -> locally optimal.
- -> Ingrevocable . -> no replacement

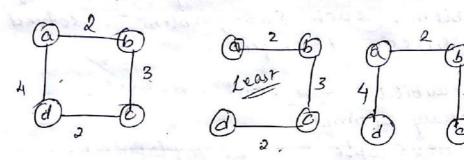
optimising problem - Greedy technique.

Defination !-

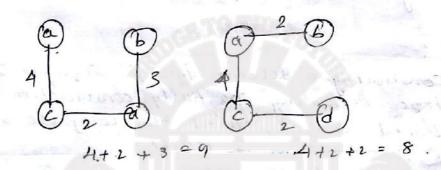
Steps, expanting partially construction sold obtained so far, until the complete sold for the problem is reached.

Each step should have 3 properties.

- imposed constraints.
- I. Locally optimal :- Among the Feasible solution for the subproblem, it should choose the best soit called as ophimal soit.

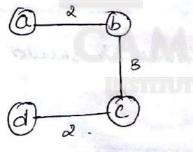

Increvocable Subproblem is solved, it should Rimain unchanged

problems

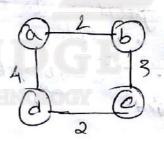

- 1) minimum spanning tree
- x) knapsack problem
- 3) coin change problem.
- 4) single source shortest path

1. spanning tree [minimum]

Acyclic graph which has span at all now

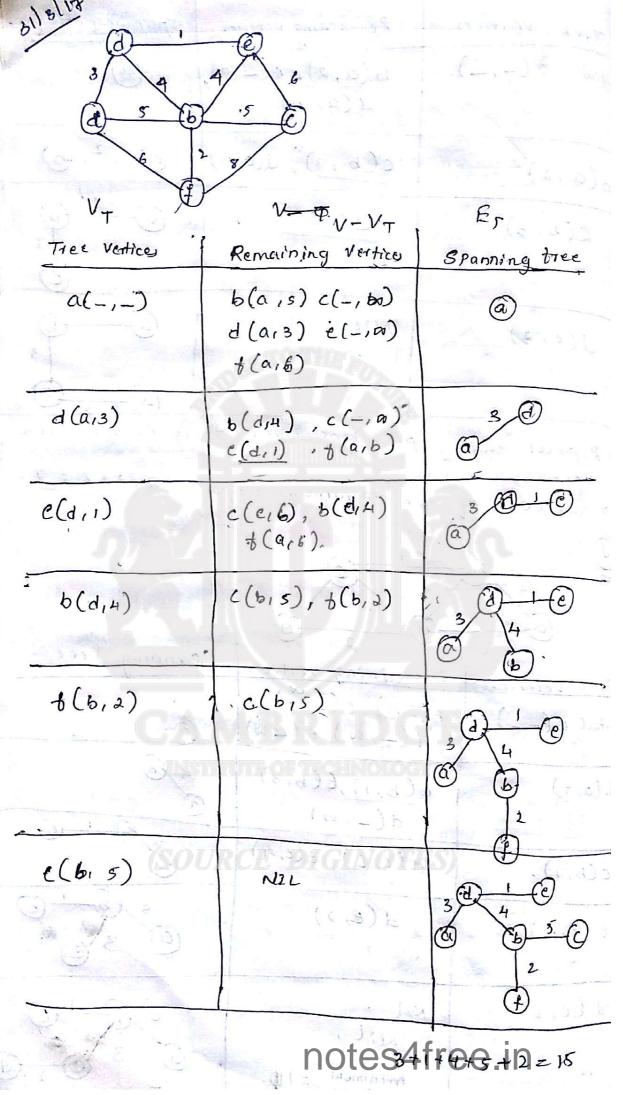


Cost = 2+3+2=+ 4+2+3 = 9

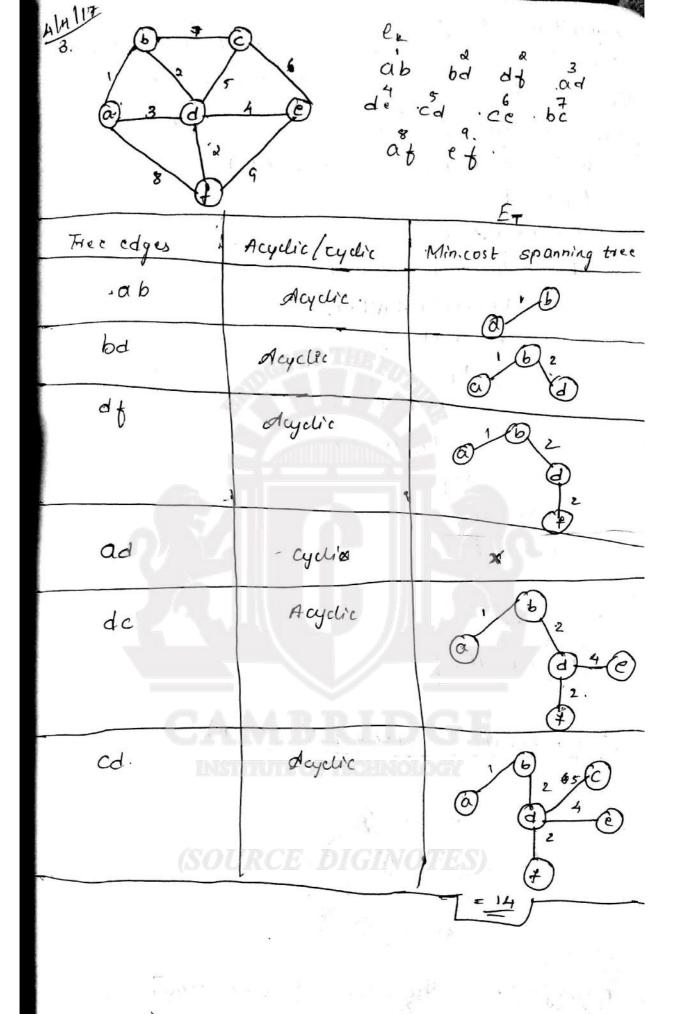


To solve minimum spanning tree weive two algorithms.

Harts with defrence node (Arbitrarily selected)



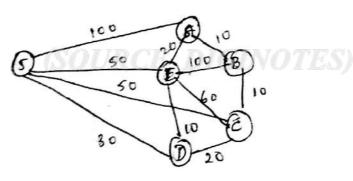
minimum Spanning tree


normal tree

Thee vertices	Remaining vertices	spanning tree			
Initial a(-,-)	b(α,2), ((-,0), d(α, μ)	(a)			
b(a, a)	с(ь,з), д(а,н)	a 2 6			
С(ь, з)	d(c, a).	a d (b)			
	10,-1-1000	6			
d(c, 2)	N.EL	Q 2 B			
	A LESS	Q_20			
Thee Vertices Remaining Vertices Spanning tree. Initial a(-,-) b(a,s); c(2,0) a.					
b(a,s)	(b,1),e(b,3). d(:,10).	5 (b)			
с(ь;і).	a(c, 6), e(c,4)	6 C			
E(c,4)	d (&, 2)	5 6 C			
	minimum nates4	Seenned by ComSee			

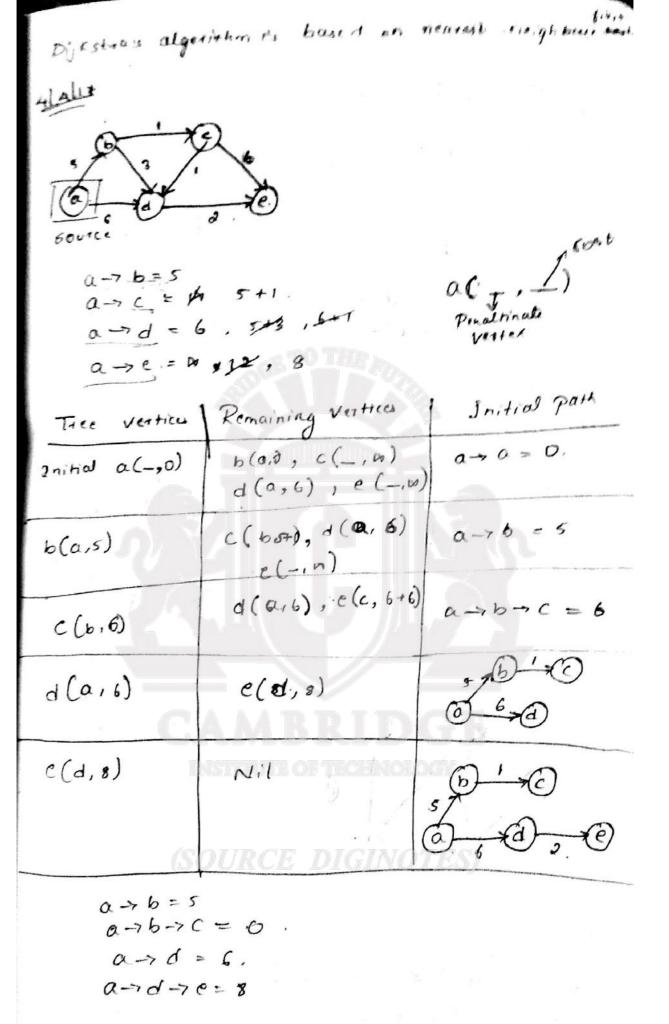
Algorithm Prim (b) 11suport : A weighted connected Graph by EVER 3 Houtput : Ex set of Edges constructing minimum Spanning tree VT en EVOS $E_{\tau} \leftarrow \phi$ do1 i € 1 to 1V = 1 Find the minimum weighted edge & (u", v") among all the edges (u, v) such that u is VT = VTUFLAD E+ + E+Ufex3 end tot octon ET. Efficiency of Prims algorithm [Lout of syllabus] E-7 is the Edger. ·O(IEI Log IVI) V= Ps the pertices. KRUSKALLS Algorithm de, deb ac, ad P. T. onotes4free.in

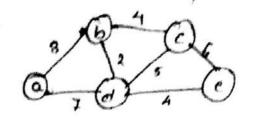
Tree edge	Acyetic Coyoli	e spanning tree
de	Acycli'e:	Ø ©
ac.	Acyclie	(a) ?
ad.	eyelic	X
bd	Acycli'c	Q 2 4 B
3. S S S S S S S S S S S S S S S S S S S		de bd ac ab
Tree edge	Acyclic Coyclic	spanning tree
bc	Acyclic	D-10
de	Acyclic	6-4-C
Ь	Acyclic	B 2 Ce
de (S	cyclic DIG	NOTES
0.6	Acyclic	5/3
		Ø 2 (e)
ag	cyclic	× ×
Ce	oydi'c NO	tes4kręę, įņ. II


P. T. O. notes4free.in

Algorithm : thus Kalis Minput: A weighted - connected graph 67={V, E} 11 output: E, set of edges constructing M87 Sort all edges of E in non-decreasing, order ie w(e,) ≤ w(e,) ≤ ≤ w(en) E- - 0 ecounter L 0 .. KEO 11 Ender for Choosing edges vohile (ecountei < WI-1) do it (ET U { e] is acyclic) then E+ = E U Eles Con court + ecount +1 end if end white Retuin Et

Time efficiency


O(Ellog LEI)


Single source shortest path (555P)

1. Dijkstrais Algorithm [Dia-k-strau]

i. wed in Link-stats motions affection

Tree vertices 4	Pemainging Vertices	shortest part
Initial a (-,0)	b(0,3) c(-,m) d(0,7) e(-,m)	6
6(0,3)	C(b,3+4) d(b,3+3, e(-,4)	(b) 25 (b)
c(b,*) d(b,5)	e(c(b,7) e(d,11)	0 0
С(Б,7)	e(d,11)	3 B 4 C
e(d, 11)	Nil.	3 D 4 C 2 4 C

Shortut path = 3+4+d+4= 13

3.

```
Algorithm :- Dijks tras (qis).
1/ Input: A weighted converted graph G= {v, E}
        and source vertex
llowput: dv = shortest path from source vertex
          to € V. € V-s.
          Pr - Penultinate vertex of 0.
  Initialize (a) 11 priority quew.
    for every vertex & in V
          d18 6 00
           Po anul
           Insert (a, v, du)
    end for (SOURCE DIGINOTES)
    ds ← 0
    Decrease (Q, S, ds)
     V_{T} \leftarrow \phi.
     for it 0 to NI-1 do
        u' = Delete_min (Q).
          V+ ← V+ U { motes4free.in
```

for every vertex u adjacent to u" and belongs to V= Vy do it (du if ((du++w(u*,u)) < du) du ← du + w(u, u) Puc u* Decrease (Q, u, du) end if . end for end for-Time analysis complexity of Dijkstra's & O (Log IEI log M) Knapsack. Droblem n - items weight & Ewi, wz, wz . - . wn 3 ·Parce/protitil value . { P, P2 -- Pn3 W = capacity ·feasibility . condition: WI + x12 + < w. optimal sol"; - maximum value in knapsack Profit = { as, 15,243 weight = {18, 10, 14} notes4free.in

Examustives search method time convering condition profit but good? {0} = 0 < 25 = 0 {13} = 18× 25 = 25 {23} = 10×25 = 15 {33} = 14×25 = 24 {1,23} = 28×25 = not feasible {1,23} = 28×25 = not feasible {1,23} = 24×25 = 39 {1,2,33} = 42>25 = Not feasible **Examustives Search method time convering but good? **Examustives Search method time convering but good? **Examustives Search method time convering but good? **Examustives Search method time to convering the search good? **Examustives Search method time convering but good? **Examustives Search method time to convering but good? **Examustives Search method to but good? **Examustives Search method to but good? **Examustives Search method but good?

	comp (comp	letely or don't tal
-7 .01, knap	sucr , c	greedy technique
La Fractional	*napsack	
. ,e.e , orde		V =

Fractional knapsack -> greedy technique

1) Find the ratio of Profit/weight.

Q) 1	eorder Si	the uch t	items hat	base Pi	2/w, 7 /k	Profit of the
Hems		weight		Remaining by	Fraction & Ztem	Knap sack
3	24	14	1,71	25-14= 11	1	0+1×24= 24
		10	UUK(11-10 = 1	NOTES)	14+1x15 = 39
9	15		156 335	1-1=0	1/18	39+(1/18×25)
1	25	18	1.38	,		= 40.38
		,			*	
			7		1	
				no	tes4free	in
		1				

Scanned by CamScanner

$$\frac{E\dot{k}l}{profit} = \{25, 15, 14\}$$

$$weight \{18, 10, 14\}$$

$$w = 25$$

items			D:/	
Hem	P	W_	Pi/wi	
1	2:5	1 \$	1.38	
2	15	10	1.38 II 1.5 D 1.71 I higher	unluc +13t
3	a4	14	1.71 thing her	VIII-

2.
$$n=4$$

weight = $\{7,3,4,5\}$

profit = $\{42,12,40,25\}$
 $W=12$

		,	Pi/wi
stem	P	M	120
1	42	7	6
Ż	12	3	4
3	40	4	10
4	25	5	5

i in the second		ÀA	1 TO 1	W.	x (intition)	(i) x
items	Protit	weight	1 Pi/wi	Remaining Capacity	traction of	Pretit of Bapsace
3	40	4	10	12-4=8	1	40
1	42	OUR.	6	8-7=1	TES)	42+47=32
4	25	5	5	1-1=0	1/5	87
જે -	12	3	4	0	o	87+0 = 87
					J	
	1					

```
beight = {2,3,5,7,1,4,13
  Profit = $ 10,5,15,7,6,18,33
  w = 15
            Greedy- Knapsack (Win)
Manput: P[1...n] Price W[1...n] weight of items
         sorted in non-decreasing order of Pilwi
        ratio .. W- capacity of Knapsack.
l'output: x[1...n] Golution vectors
  for i € 1 to n do
                                         accomodated
   end for
                                           Capacity
    UE W
                                          of Engpoork
    tory ie i to n do
           iz (w(i) > u) then
              break
              x[i] + 1.0
               UE U-W[i]
    and for
    if (isn)
         acij = /wij.
     end if
     teturn (x)
```

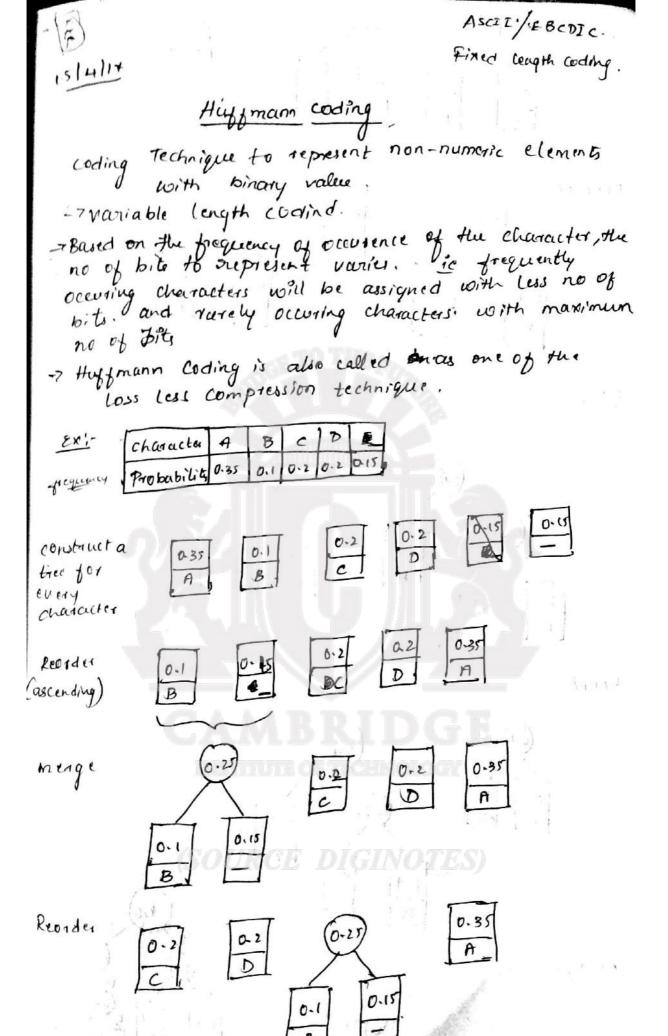
	α.							
2 tem 1 2 3		152 ,103	Pi/w; 1.36 1.7 1.5	ifens	25	10 10	10=20 20=15 = 5 5-5=0	paining wowish of the party of
3/4/17		R						7 chris = 80 - 24 = 7.5 = 0 31.5

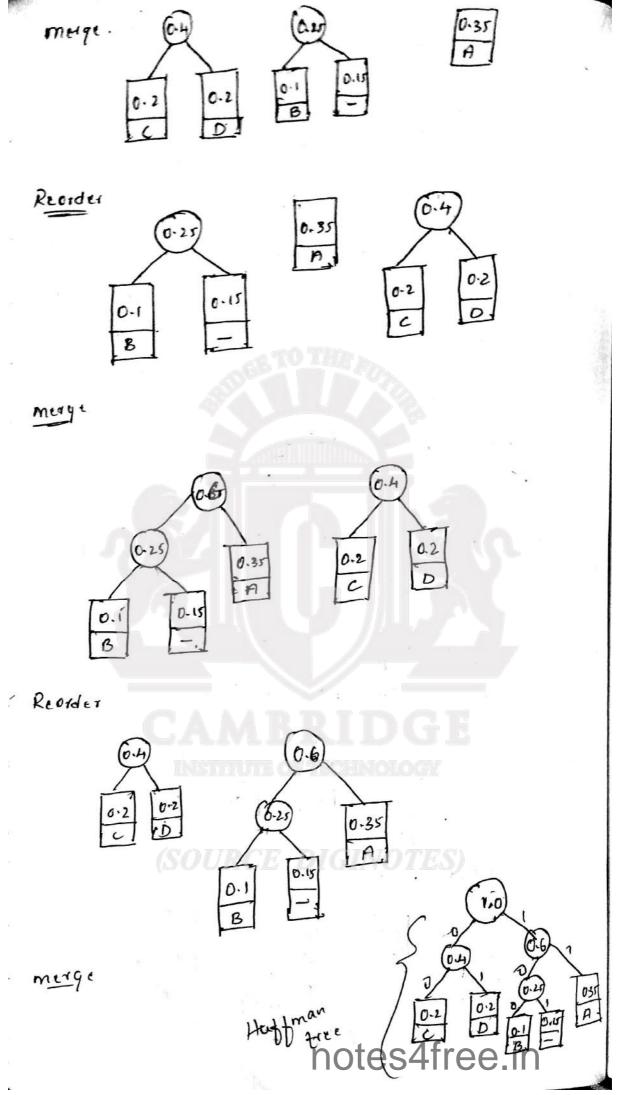
Job-sequencing Isheduling with deadline.

set of Jobs-n
each job associated with deadline
(time to complete).

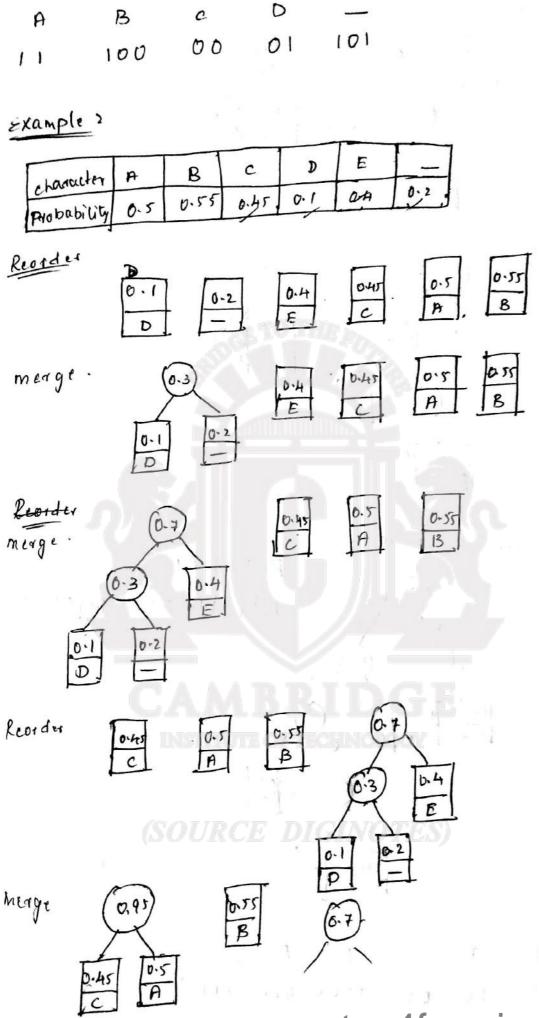
each job , is associated with price

Feasibility condition: sequenced jobs have to be completed with that deadline.


Optimal . solution: sequence with maximum Profit/pi


Ex: n=5	John	2	S	D	GI
deadline	3	3.	a	1	2.
Price	5	1	20	to	15

Bestending order


Jeh com	Kred	Pric	•	deadle	'n	Action Takin	Tetal prefit
		à	8	Q	May	(3.2)	
5		45		z Y		(5/3) (5/1)	20+15=35
4		10		1		not schodule	d 35
1		5		3	,	[5]3]i	40
ی		1		3	K	Not sequina	40
				P101	3/1 =	40	
Jobno: deadline Price 3	3	3 4 20	3 18	5 6 2 1 1 6 4	30		
Job 1	Paic	e	dec	adline	Act	on en	Total Protit
3 · 7	3	D			-	27] (1) (1)	30
3	20	0		4		7 37	.30+20=50
21	18	OU	RCE	B DIG	/CE	F (4) 3)	150-118 = 68
. 16	. 6		1			7 4 3	68+6=74
8	5			3	100	schedules	74
*	3		1	ากต		schedule Schedul	. , ,
97.00 No. 10.00	7.1	1	2		Mer	-)Cheudha	

digorithm: - Job-sequencing (d, P, n). 11 Input 3- Jobs ordered based on price in non-intreasing order d-deadline, P-Price, n-no of jobs lloutput: - sequenced Job - J. J = { 1 } for for li€ 2 to n do if (all the jobs in I U { i } can be completed with deadline) then j - j usi3. end if end for getorn j General method of Greedy Technique My default need to be included in greedy technique explaination Algorithm Greedy (ain) Il Input: An array a [... n] of subproblems Moutput : Peasible and optimal solution. -solution < p ac = select(a) // subproblem (to x. for it to n do if (feasible (solution, x)) then solution (union (solution x) fend it end for deturn (solution)

Scanned by CamScanner

Algorithm: Hufmantiee.

Menout: A vector of characters and their frequency.

Menout: Huffman tree.

Step1: Initialize in node trees and bebel them a with the character of the alphabet. Record the frequency of the cach character in its tree toot to indicate the tree's weight

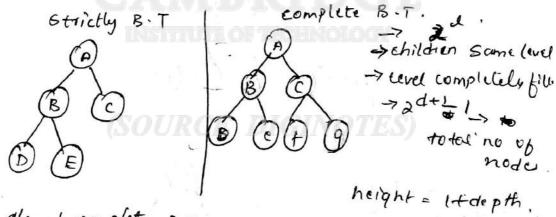
Step2: Repeat the following operation until a single tree is obtained.

a) Find the two trees with smallest weight.

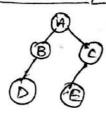
b) make them as left and Right subtree of a new tree.

c) Record the sum of their weight in the root of the new tree as it, weight.

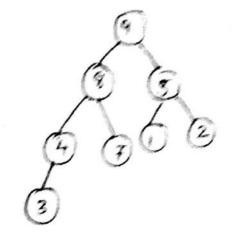
18/4/17-

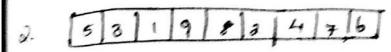

Heap sort

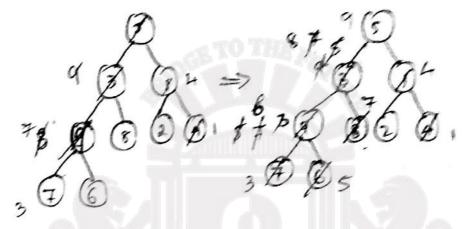
uses : Transform and conquer design technique.

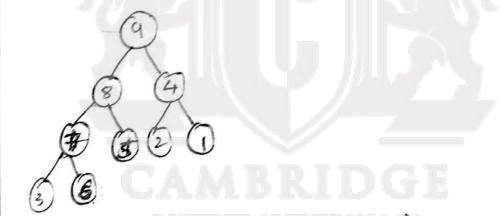

Heap blee

* Binary tree .


* Essentially complete Binday tree.




Almost complete B.T



+ Essentially complete Binary tree. is an almost complete B.T. missing nodes are from Right to left. * Parental Dominance. Parent node value should be larger than Children (Descending heap tree 18/4/14 Heap tree (Heapitication) Construction of Represent Array into essentially C.B.T From recent Parent try to satisfy parental dominance.

algorithm: Heap_Bottom up (+[1...n])

11 input: An array +[1...n] of Orderable elements.

11 output; A map treap tree . H[1-n]

for i ~ [1/2] downto 1 do.

Ke i

V - H[K]

Heap + talse. while (not heap and 2*K < n) do.

J← notes4free.in

if (j'<n) then // there core & children
if (H[j] < H[j+1]) then. j ← j +1 end it end if if (N > H[j])

heap true Clse H[z] = H[j]. K-j end while.

H[x] = V end for

CAMBRIDGE

INSTITUTE OF TECHNOLOGY

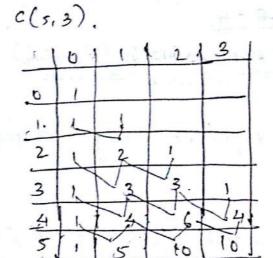
(SOURCE DIGINOTES)

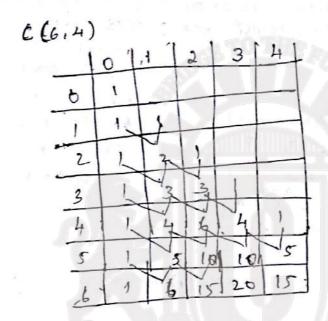
DYNAMIL PROGRAMMENG (Planning)

Pichard Bellman
2+ is a general method for optimizing multistage decision process.

Dynamic Programming

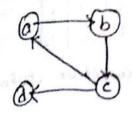
At is a technique for solving Problem through overlapping subproblems. Each subproblem is generated through accordence relation solving them only once and recording the result for future use.


$$\frac{8x!}{fib(s)} = \frac{6}{5}$$


$$\frac{1}{5} + \frac{1}{5} = \frac{1}{5}$$

$$\frac{1}{5}$$

 $\begin{array}{lll}
 & (1,1) \\
 & (1,1) \\
 & (1,2,1) \\
 & (1,2,1) \\
 & (1,2,1) \\
 & (1,2,1) \\
 & (1,2,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1,3,3) \\
 & (1$


$$C(n,k) = \begin{cases} 1 & k=0 \text{ of } n=k \\ c(n-1,k) + c(n-1,k) \end{cases}$$
 otherse

tend for detrin (c(n, k))

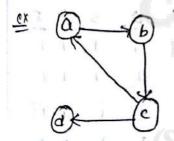
Munsitive closure of adjucary matrix

<u>.</u>	0,	6	4.1	d	
a	0	1	0	0	_
b	0	O	1	0	
c	1	0	0	1	1
d	0	0	0	0	

1	a 1	b	c 1	4"	1
a	1	ન	1	1	
5	1	1	1	1	
c	1	. 1	1	1	
d	0	0	0	0	

Transitive closure

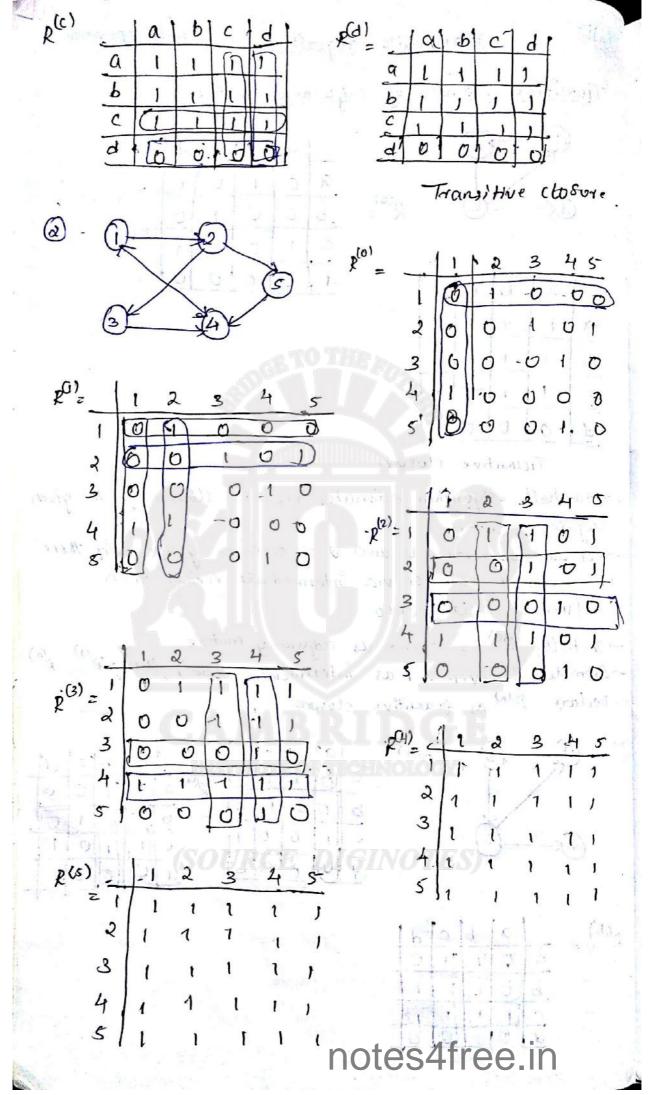
Twaishall digorithm estimates transitive closure for the given adjucency mutaix


4 for any two vertices & and & of a given graph, if there is a direct path or via intermedials vertices then R(u,v)=1 cle zero

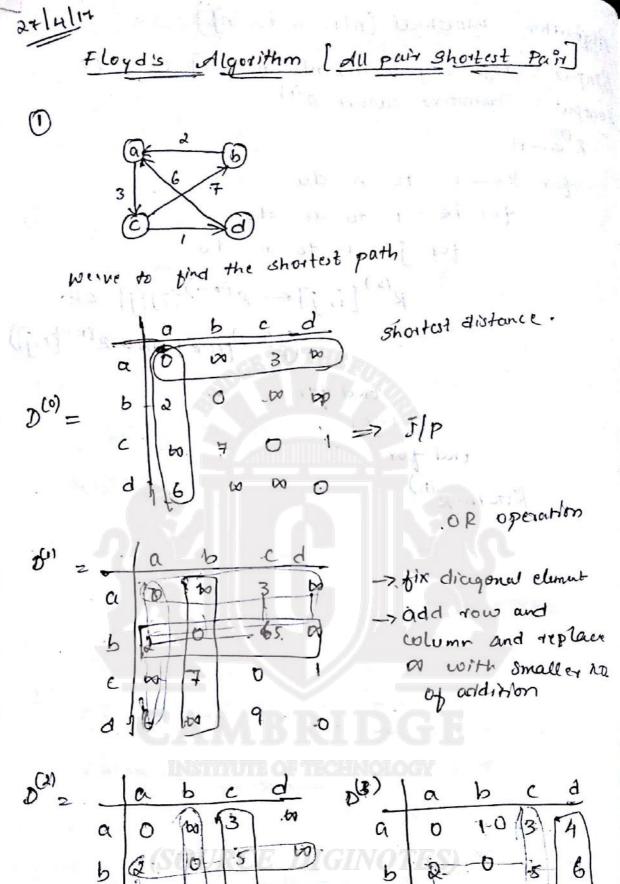
- Initially 20) is some as adjacency matrix

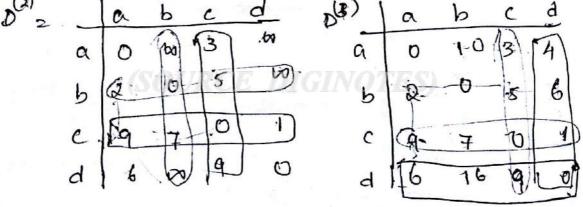
+> Estimate: \$() [vertex 1 as intermediate node), then ?()

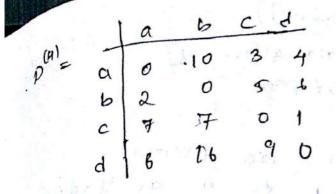
0

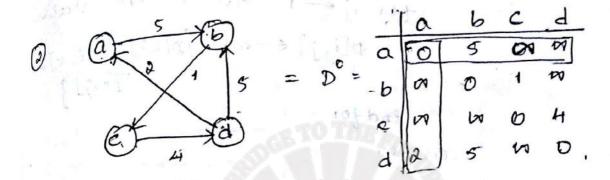

-> Declare RIN as transitive closore

K(0)= 10161 cld


	1	a'	6	10	d	1_
4 pc	a	0	1	0	P	
+=	9	0	0	1	0	L
	c	1	1	0	1	
) 5	d		0	0	0	

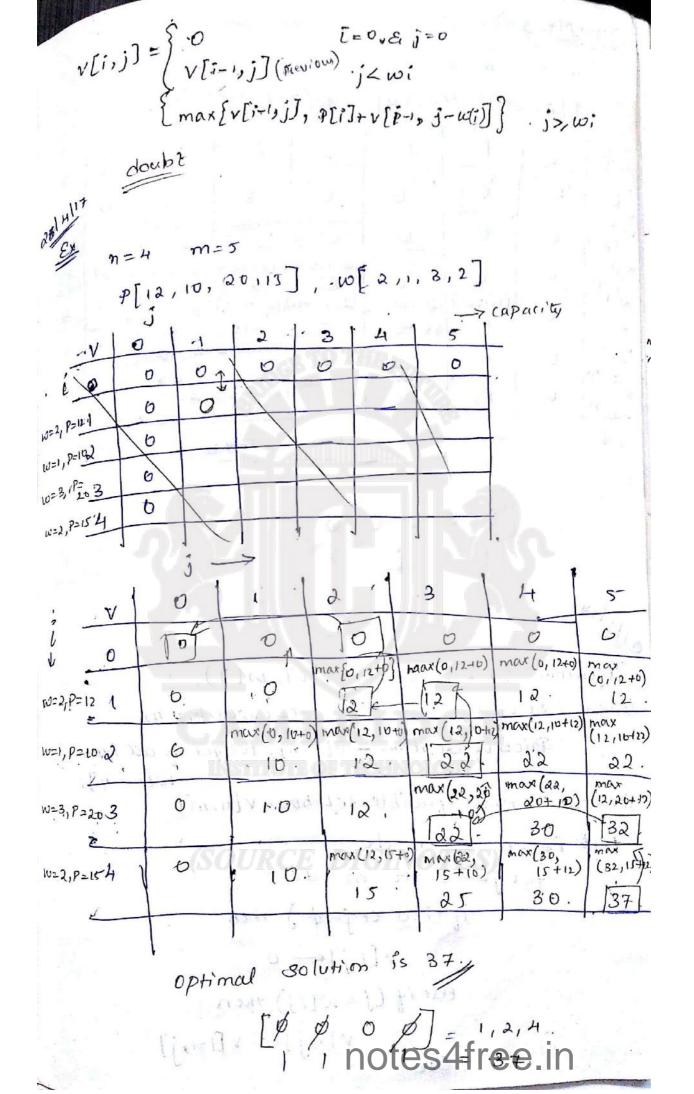

R(b) -		a	Ь	c	11
3	9	Q	1	T	0
	b	0	0		I
	c	1)	1.	
	d	0	0	0	0




Marshall (Alinn, 1....) My Adjacency matrix A[1...n. 1...n] of graph poutput: Transitive closure R(n) to for i← 1 to to je 1 to n do P(k)[i,j]← R(k-1)[i][j] OR (P(K-1)[i, K] AND R[K-1/+,j]) end for end for Return : RIn) notes4free.in

Scanned by CamScanner

_(1)	a	b	C	1	IIII
D = -	10	5	W	DO)
•	100	· D.	!	ы	
ь	Lan .	-124-	Ó	4	
C	1/20	Rt.	DO	0	1
d	1)	42			- 1


(1)		a	6	C	<u>d</u>
カルミ	a	0	(3)	6	100
	b	(D)	0	1	100)
	c	100	100	0	4
-	d	2	15	6	0.

$$D = \frac{1}{2} \frac{1}{2}$$

4

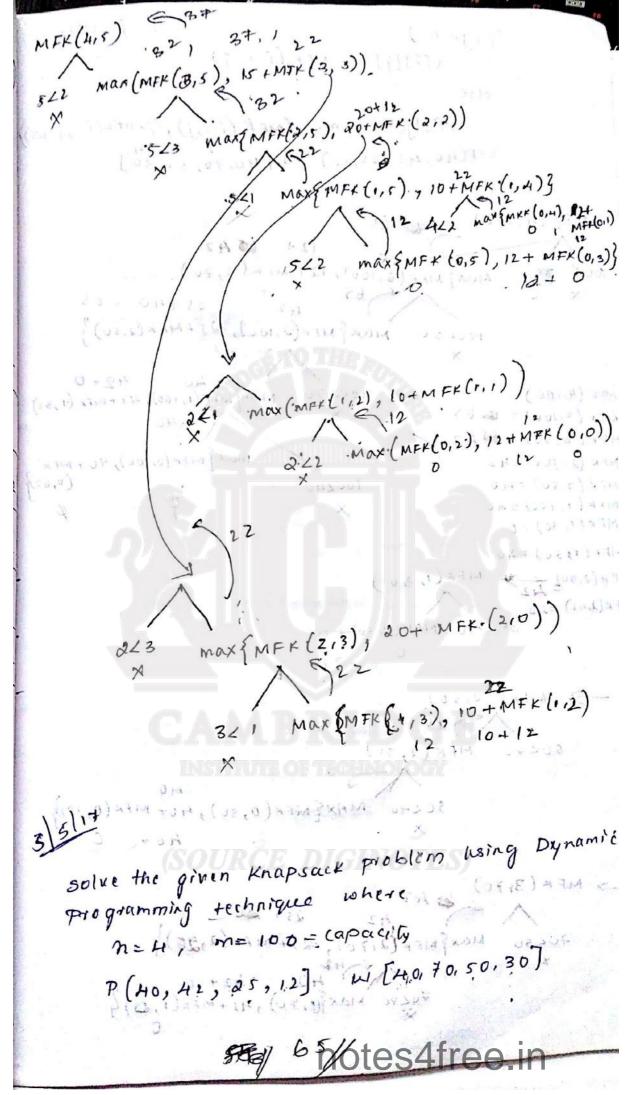
digorithm . Floyd (w[1 -- . n]). 11 Input: weight montain w[1 -- n] Moutput: D'- shortest path. Den. port Ke 1 to n do Mvertex for it to in do 11 10 w for jet to n do Meolim à $D[i,j] \leftarrow main [D[i,j], D[i,k]$ end for end for endfor return D Time officiency $T(n) = \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n}$ T(n) E.O (n3) 0/1 Knapsack they using Dynamic Programming n = no of items, m = capacity of Knapsack. P[P, Pz, Pz, Pn] W[w, we man] value table. 3 000--6

Scanned by CamScanner

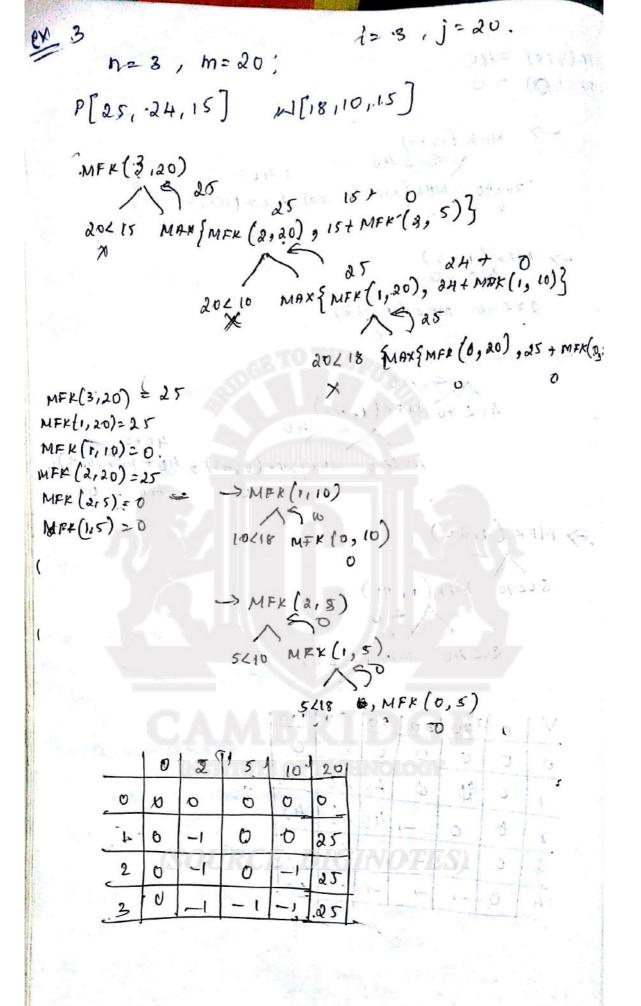
if (i=0 or j= d.) Then

v[i,i] = 0

else if (j < w[i]) then


Clse

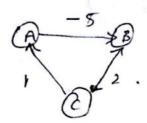
V[i,j] = max (v[i-1,j], PDJ+v[i-1,j] end if V(i-1, j-W[i]) end for end for. geturn i[n,m] Time efficiency T(n) & O(nim) 121,15,101,1,9-9 Memory Function Knapsack n=4 , m= 5 P= {12,10,20,15} w= {2,1,3,23. of is an optimised DP- Knapsack problem. It solves only those set of sub-problems which yields optimal solvention V[n]. And rest of the other subjoroblems ou not been sowed. algorithm MF_Knapsack (i,j) l'input : . 2 non-negative integer i, j where i divided denotes item no and j denotes capacity of knapsack l'output : optimal jeasible solution ie V[n,m] Mnote: initialize VEJEJ with -1 for its calls except otherwo and oth column


B	0	0	0	0
0	-	-1	-1	-1
0	-1	-1	-1	-1
0	-1	-1	-1	-1

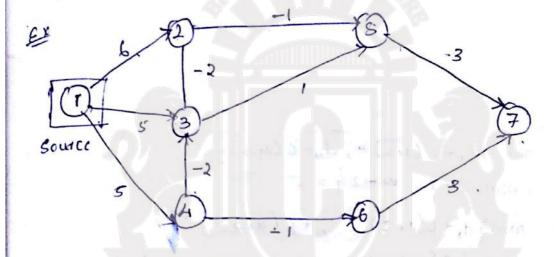
4 (V[i,j] <0) then ig (j<wi) menotes4tre

Scanned by CamScanner


```
1=4, j=100
          行(了という)
                v[i][j] \leftarrow Mfx(i-i,j)
            else
               v [i] [j] = max (MFK (i-1,j), Pi+HFF (i-1,j-wi)
             P(40,42,25,12) W[40,70,50,30]
 MFK (4,100)
            Max {MFK (3,100), 12+ MFK (3,70).
   X
              106250. MAX {MEK(2,100), 25+MEK(2,50) }
                         1002 70 Man MFK (1,100), 42+MFK (1,30)
MFK (4,100)
MFK (31/00) = 65
MFK (3,70) = 6542
                                      Max & MFK (0, 100), 40 + MFK'
MFK (2, 100) = 42
                          100/40
MFK (2,50) = 40
MFK(1,100)=40
 MFK(1,30) =0.
MFK(1,50) = 40
MF4(2,70) 42 MFK(1,30)
MFK(245) =40
     > MFK (2,50)
       50470 MPK(1,50).
                   50246 MAX {MFK (0, 50), 40+ MFK (0, 10)}
       70650 MOX [MFK (2,70), 25+ MFK (2,20) 4
                     70270 MAX (1, 70), 42+MFK(1,0) 9
                             notes4free?in
```



Tsingle source shortest path.


wed in routing Probletocol - Distance vector

- works on the negative weights.

[cannot work on pycle].

estimate shrottest path based on neighbour shortest path from source.

	. ,	۱.,		1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Henotions	,d1	d2	dz	dy	ds	do	d 7	(3)
Initial.	0	DI	. 0	po	120	DO	w	7,1
	-0	6.	5	5-1	oo .	M	DO	7.1
2	0	-03	-3	5	5.	4.	M .	
3	0	4	J ³ CI	57	0.07	EA).	7.	
4	0	*	3	.5	Ø	4	5	u bis
8	10	l	3	5	9	4	9 3	
6	Ò.	t	3	5	0	4	\$3	2000
hegative cycle theck	0	1	3	_s no	otęs4	Ifree	ilg.	2 San

$$\begin{array}{lll}
0 & = \min \left\{ d_1 + C(1/2), & d_3 + C(3/2) \right\} \\
& = \min \left\{ 0 + C, & m - 2 \right\} = 6. \\
0 & d_2 = \min \left\{ d_1 + C(1/2), & d_3 + C(3/2) \right\}. \\
\text{min } \left\{ 0 + C, & 5 + C - 2 \right\}^2 = 3.
\end{array}$$

$$dh = \frac{d1}{d4} + C(1,4)$$

$$dh = \frac{d1}{d4} +$$

$$d_{5} = \min \{ d_{2} + e(a; s), d_{3} + c(3; s) \}$$

$$d_{7} = \min \{ d_{4} + e(a; s), d_{3} + c(3; s) \}$$

$$d_{7} = \min \{ d_{4} + e(a; s), d_{3} + c(3; s) \}$$

$$d_{7} = \min \{ d_{4} + e(a; s), d_{3} + c(3; s) \}$$

$$d_{7} = \min \{ d_{4} + e(a; s), d_{3} + c(3; s) \}$$

$$d_{7} = \min \{ d_{4} + e(a; s), d_{3} + c(3; s) \}$$

$$d_{7} = \min \{ d_{4} + e(a; s), d_{3} + c(3; s) \}$$

$$d_{7} = \min \{ d_{4} + e(a; s), d_{3} + c(3; s) \}$$

$$d_{7} = \min \{ d_{4} + e(a; s), d_{3} + c(3; s) \}$$

$$d_{7} = \min \{ d_{4} + e(a; s), d_{3} + c(3; s) \}$$

$$d_{7} = \min \{ d_{4} + e(a; s), d_{3} + c(3; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{3} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

$$d_{7} = \min \{ d_{7} + e(a; s), d_{7} + e(a; s) \}$$

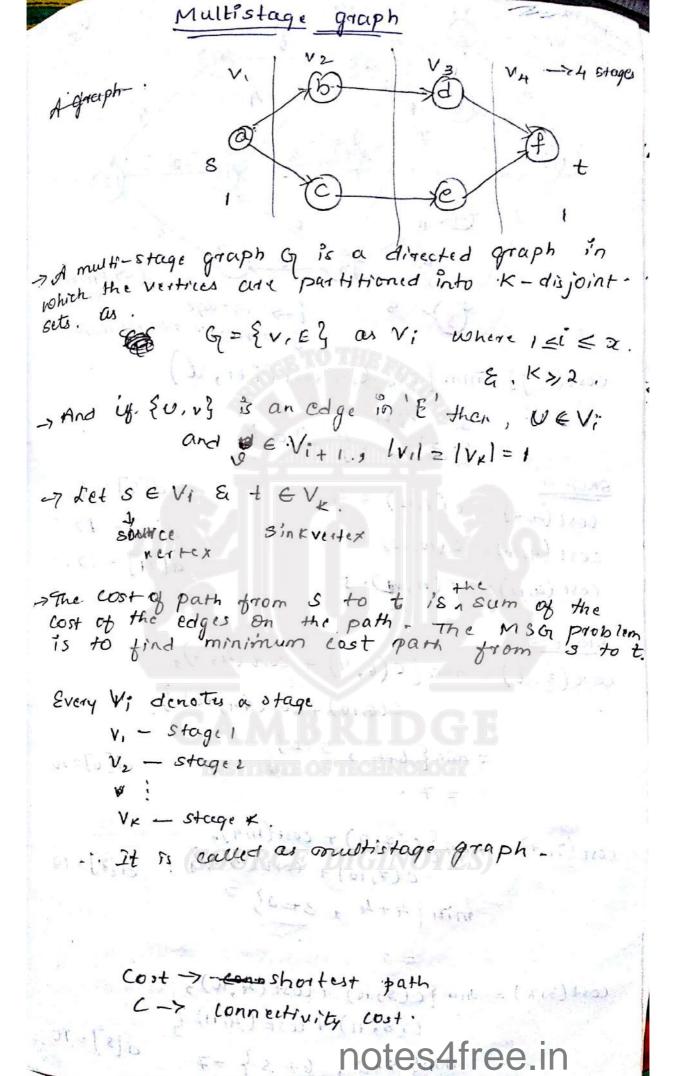
do = dn+ e(406) = 01 + Est = to do = dn+e (406) 25 = 1 = 4 do 5 = 1 = 4

Shortest path

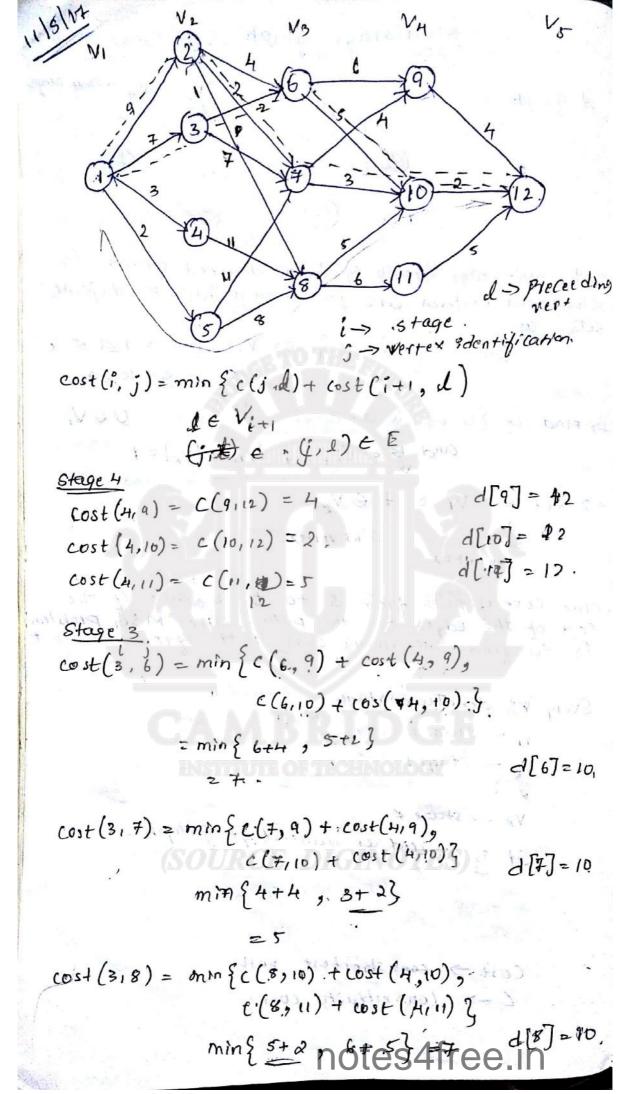
d. 6

shorter path SOURCE-DIGINOTES

El Mations	da	de	C.E	-d		O.L.	CONTRACTOR OF THE PROPERTY.
TaiHal	· O	100	(so	150	100	129	The second section of the second
The same of the sa	٥	2.	4.	- 50	D0 .	M	en la contraction
The state of the s	U	2		0	2	100	
The same of the sa	0	2	اند	*** 5	-3	8	
- Company of the Comp	0	2	-1	-5	- 9	3	
*	O	2.	- 1	-5	1-3	3	
Neg cycle	0	12	1,-1	1-5] -3	.3	A Later of the later
Ney chicic		date	e (a,	6)	2 :	2+	is set.


$$d_d = \min\{d_B + c(b_1d), d_{c+}c(c_1d), d_{e+}c(e_1d)\}$$
 $\{w, w, a\} = +w$
 $d_d = \min\{d+1, A_1-4, a\} = 0$
 $d_{d-} = \min\{d+1, a+1\} = -s$
 $\{set\}$

CAMBRIDGE


(and the state of the Institute of the Hology

$$de = dnin \{d_b + c(b,e), d_c + c(c,e)\}$$
 $\{m, m\} = m$
 $de = min \{d_b + c(b,e), d_c + c(c,e)\}$
 $\{a + b, 4 + -a\} = a$
 $de = min \{a + s, -1 - 2\} = -3$
 $notes 4 free$

de= min{datc(d, +), detc(e, t)} df = min { or , or } = to df = min{0+8, 2+63 = 8 dj = min {-5+8; -3+63 = 3. get algorith: Bellman Ford (v, cost[i,j], dist[],n) l'input : Source Vector -V, Graph in cost matrix - 60st[1-10, 1-1n] -Cost[...n, 1...n] , shortest distance dist[], no of vertices -in' Moutput: Shortest distance from source Vertices -v ie dist[] for i = 1 to n do // figra iteration distli] ← · Cost[v, i]. end for for Kel to n-2 do for each vertex u such that U + v. and u has atteaux one incoming edge & do H " for each for each {i, u} in graph do it dist[u] > dist[i] + cost[i,u] & dist[u] = dist[i]+ cost[i,u] end it SOURGEEN JOY NOTES 6 1006 end for Still is an end for edge coming to an edge coming to an vertex. - return dist[]

Scanned by CamScanner

cost (2,2) = { c (2,6)+cost (3,6), ((2,7)+cost (3,7), Stage 2 c(2,8) + cos(3,8) } 4+7, 2+5, 1++3 = 7 d[2] = 7 cost(2,3) = min { c(3,6) + (ost(3,6)), c(3,7) + cost(3,7) }. min {2+7, 7+53 d[3] = \$.6. Ed 1000 [*]] = 9. (1110) cost (2,4) = · c (4,8) + · cost (3,8). d[4] = 48. cost (2,5) = minge (5,7) + cost (3,7), c.(5,8)+ cost (3,8) min { 11 +5, 8+73 d[s]=158 stage 1 cost(111) = min{e(1,2)+ (ost(2,2), c(1,3)+ cost(2,3), C(1,4) + cost(2,4) , c(1,5)+ cost(2,5) d[1] = 2/3 2-16 zmin{9+7,7+9,3+18,2+15} (6 (6 = 16. 4 5 6 7 8 9 10 11 8: 8 10 10 10 12 12 12 12 12 Path 0 - 1 -> 2 -> 10 -> 12 Path (2) 1-3-76-710-712.

Algorithm Fyraph (G, K, n, P[1...K]).

Il Input: Graph 'G= {v, E}, K = no of stages,

n-no of vertices, minimum

min-cur Path - P[1...K]

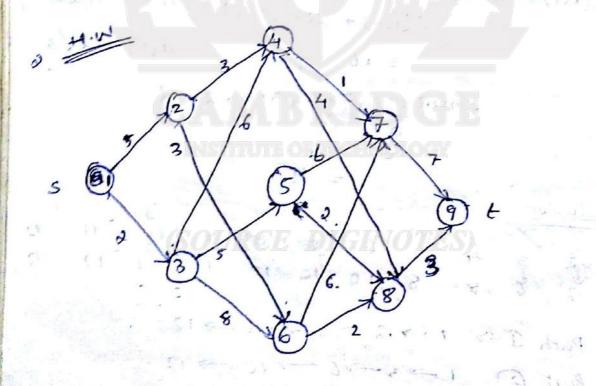
output: minimum-cost path P[1...K].

cost[n] = 0.0;

tot j = n-1 downto 1 do.

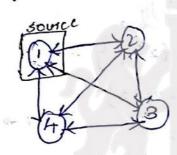
minimum

let 1 be a vertex such that Zj, 17 % edge


of G and c[j, 1] + cost[1] is minimum, then.

cost[j] = c[j, K] + (ost[1])

d[j] = 1


end for $P[i] \leftarrow 1$, $P[k] \leftarrow n$.

The proof of the proof

Travelling Salespesson problem.

i -> source

	Cost	1766	- 1, 2 H _h
To	10	15	20
5	0	9	10
	43	0	12
+ 0	2	9	0
8	0		

Jeso & - intermediate Vertices to Source

$$C(2, \phi) = C_{2,1} = 5$$

 $C(3, \phi) = C_{3,1} = 6.$

1 Entermediate Vertex to source

$$9(a, \{33\}) = C_{23} + 9(.3, \phi)$$

= 9+6 = 15

$$g(3,\{4\}) = C_{34} + g(4,\phi)$$

$$= 11 + 8 = 20$$

$$g(4,\{2\}) = C_{42} + g(2,\phi)$$

$$= 8 + 5 = 13$$

$$g(4,\{3\}) = C_{43} + g(3,\phi)$$

$$q + 6 = 15$$

$$\frac{2 - 10 \text{ teamediate vertex}}{q(2,\{3,43\}) = \min\{(2,\frac{1}{3}, + g(3,\frac{14}{3})\}\}}$$

$$= \min\{(4+20), 10^{+15}\}$$

$$= 25$$

$$g(5,\{2,4\}) = \min\{(5,2+g(3,\frac{14}{3})\}\}$$

$$= 25$$

$$g(4,\{2,3\}) = \min\{(5,2+g(3,\frac{14}{3})\}\}$$

$$= 25$$

$$g(4,\{2,3\}) = \min\{(2,2+g(3,\frac{14}{3}),(2+\frac{13}{3})\}\}$$

$$= \min\{(4+15), (4+13)\}$$

$$= \min\{(4+23), (5+13)\}$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

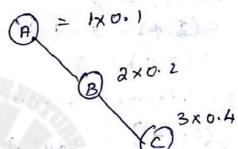
$$= 25$$

$$= 25$$

$$=$$

a symmetric matrix

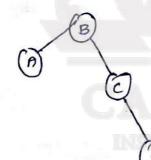
0 - intermedrate vetex.


J - intermedicate vertex

15/5/14

Optimal Binary Search Tree

To build BST - minimum no of Average comparision.


$$P_{i}^{2} = \begin{vmatrix} A & B & C & D \\ 0.1 & 0.2 & 0.4 & 0.3 \end{vmatrix}$$

$$C = 3 \times 0.4 = 1.2$$

minimumum 2.9

(2)

026

200

Average value table

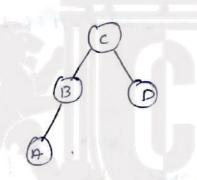
Root table
6 10 1 2 3 4 1 10 11 21 3 1 41
0 0.1 0.4 1.1 1.7
0 0.2 0.8 1.4 2 2.3 3
2 3
4
5
Eni Hally · Cli, i-ije 0. R[i, ij = i
50/2) ((x41.1)) \ \frac{1}{2} \frac{1}{2} P
$C[i,j] = \min_{i \leq K \leq j} \left\{ \frac{C(i,K-1) + C(K+1,j)}{Right sub} \right\} \neq \sum_{s=1}^{i} P_{i}$
left sub Right sub
tree 10 10 1
$c[1,1] = mm \{ c[1,0] + e[2,2], c[1,1] + c[3,2] \} + P_1 + P_2$
(c(1,1) - min) { c(1,0) + e(2,40)
= $min \{ 0 + 0.2, 0.1 + 0 \} + 0.1 + 0.2$
G = 0.4.
N=2 K=3.
$C[2,3] = min \{c[2,1]+c[3,3], c[2,2]+c[4,3]\}+P_2+P_3$
= min {0+0.4 , 0.2+03+0.2+0.4.
= 0.8 K= 3 7 1 C = 17
$= 0.8 \times 3 \times 4 \times 4 \times 4 \times 6 \times 4 \times 6 \times 6 \times 6 \times 6 \times 6$
INSTITUTE OF THE SERVE OF THE PS+PA
min 0 + 0.3, 0.4+ 03+ 0.4+0.3
MANY -
(SOURCE DIGINOTES)
next Diagonal.

 $\frac{\text{next Diago Rat.}}{\text{eli,3}} = \min_{R \in \{1,0\} + C[2,5]} \text{,} C[1,1] + C[3,3],$ $C[1,2] + C[4,3]^{2} + P_{1} + P_{2} + P_{3}$ $= \min_{R \in \mathcal{A}} \{0 + 0.8, 0.1 + 0.4, 0.4 + 0.4 + 0.1 + 0.2 + 0.4,$ $= 1.1 \qquad \text{notes Afree. In}$

$$c[214] = \min\{e[a,1] + c[3,4]; c[2,2] + c[4,4],$$

$$c[213] + c[5,4] + c[5,4] + c[4,4],$$

$$k = 4$$


$$= \min\{0+1.0, 0.2+0.3, 0.8+0\} + 0.2+0.4+0.3$$

$$= 1.4$$

k=1 k=1 k=2 k=3 $([1,4] = m^2n\{([1,0]+c[2,4]; c[4,1]+c[3,4], c[1,2]+c[4,4], c[1,3]+c[5,4]\} + P_1+P_2+P_3+P_4$ k=4

= min{0+1.4, 0.1+1.0, 0.4+03, 4.1+0}+,·1.0

167

26/5/17

2-	1 A	В	C	·D	E
P	0.1	0.3	0.2	0.1	0.3

len!	4 0	7 1	2	3	1 4	5
1	O	0.1	0-5	0.9	1.2	2-0
2		0	0.3	0-7	1.0	l.t.
3		1	U	0-2	0-4	1-0
4		_ [8 1 7	0	0.1	0.5
5			5 J. A.	. 1	0	0.3
6			E.		A.F	0

10 1 1 2 1 3 1 41 51
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 3 5
4 5
8
$C[1,2] = \min\{c[1,0] + c[2,1], c[1,1] + c[3,2]\} + P_1 + P_2.$
$c[1,2] = \min\{c[1,0], c[1,0], c[1,0] + 0.1 + 0.3 = 0.5$ $-\min\{0 + 0.3, 0.1 + 0.1 + 0.3 = 0.5$ $k = 3$ $k = 2$ $c[2,3] = \min\{c[2,1] + c[3,3], c[2,2] + c[4,3]\} + P_2 + P_3.$
$C[2,3] = min\{\frac{C[2,1] + C[3,3]}{2}$
$mm = \frac{60 + 0 - 2}{9 + 3} + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + $
K= 3 (64.4) = ((3,3) -+ ([5,4] G+15(14)
$C[3,4] = \min\{C[3,2] + C[1,0]\}$ $= \min\{b + 0.1, 0.2 + 0.2 + 0.2 + 0.1\}$
$= \min \{b + 0.1, 0.1 \}$ $= 0.4 . k = 5$ $= 0.1 + 0.3 . k = 5$
C[4,5] = min{c[4,3] + c[5,5], = + P4+P5
$C[4,5] = \min\{c[4,3] + C[4,3] +$
0.5 H=1 Cli, j+cl3,3 J, cli,2 f+ (l4,3)
$C[1,3] = min \{ c[1,0] + c[2,3], c[1,0] + p_1 + p_2 + p_3 \}$
c/2,4/=min {cl2,
=min{a+b-+, 0.1
cd llyc[2,4] = 1.0.
c[3,5] = 4.0 notes 4 free in
ΠΛΙΔΟΛΙΙΔΑΤΟ

C[1,H] = min{ c[1,0] + c[2,4] -, c[1,1] + c[3,4], Kel .c[1,2]+ c[4,4], c[1,3]+ c[5,4] 3+ P,+P2+P3+P4 = min {0+1.0, b.1+0.4, 0.5+0.1, 0.9+03+0.7 c[2,5]= minse[2,1]+c[3,5], ([2,2]+c[4,5], c[2,3]+c[6,5],
c[2,4]+c[3,5]] = min{0+1.0, 0.3+0.5, 0.7+0.3, 7.0+0}+0.9 c[1,5]=min {c[1,0]+c[2,5], c[1,1]+d3,5], c[1,2]+d4,5], C[1,5]+ C[5,5], C[1,4]+ C[6,5] }. + P,+P,+Bs+P++P5-= {0+1.7,0.1+1.0,0.5+0.5,0.9+0.3,1.2+09+1 degorithm : Optimal - BST (P[1...n]) Manput : An array P[1. . n] of Search Probability for Sorted wing of list of n keys. Housput: An acrey average no of comparision in successful Search in the optimal BSF and Table Roof. Subtree Root in optimal BST. for i'e to n do c[i, i-1]=0 Il diagonal c[i,i]← Pi R[i, i] < i end for cln+1,n] = D notes4free.in

je- i+d 11 starting with minvale w for Ke- i to j do. if ((cli, K-1]+ C[K+1,j] < minval)
Hen minvale c[i, K-1]+c[K+1,j] Kmin + K . end if end for R[i,j] Kmin sume P[i] bor se iti to is do. Sum ← · Sum+ P[i] end for. c[1,j] = minval + Sum. and for end for 1 etuan (R, C[1, n])

MODULE :- 5

BACK TRACKENG

The principal idea is to construct solutions through on, component at a time and evaluate such partial, constructed candidate sol.

The partially constructed soin can be developed further without violating the problem constrains, It then done through demaining legitimate option for the next component.

It there is no legitimate option for the next composing or alternative for any relative for any replace component, then degorithm back-tracks to reach the last component solution with the next available option.

It is generally represent by space-State - space - tree.

n- Queens problem

mxn - chess board/cross - board

0,

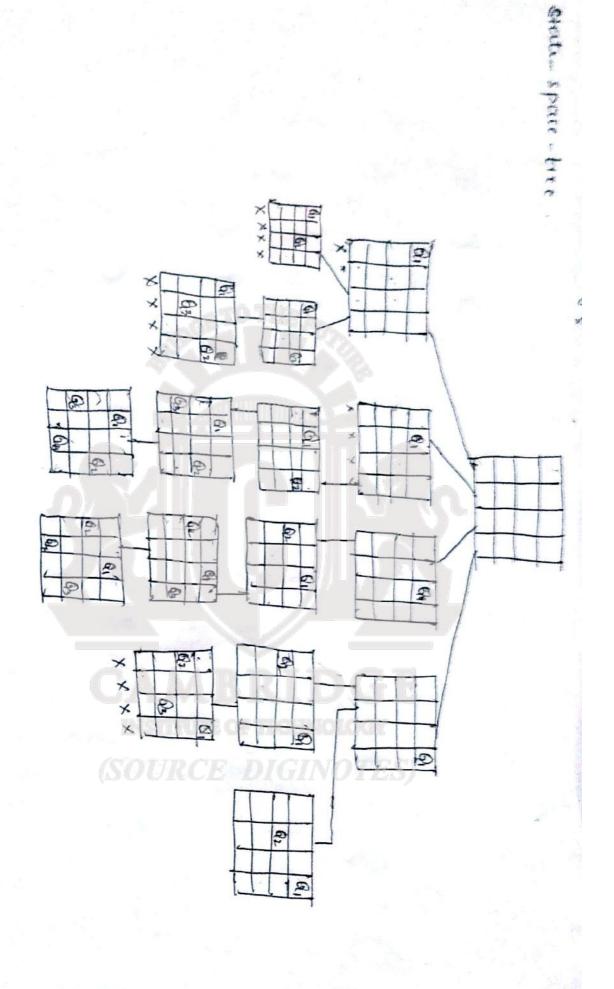
n- queen.

Objective: - place all queens in non-attacking position.

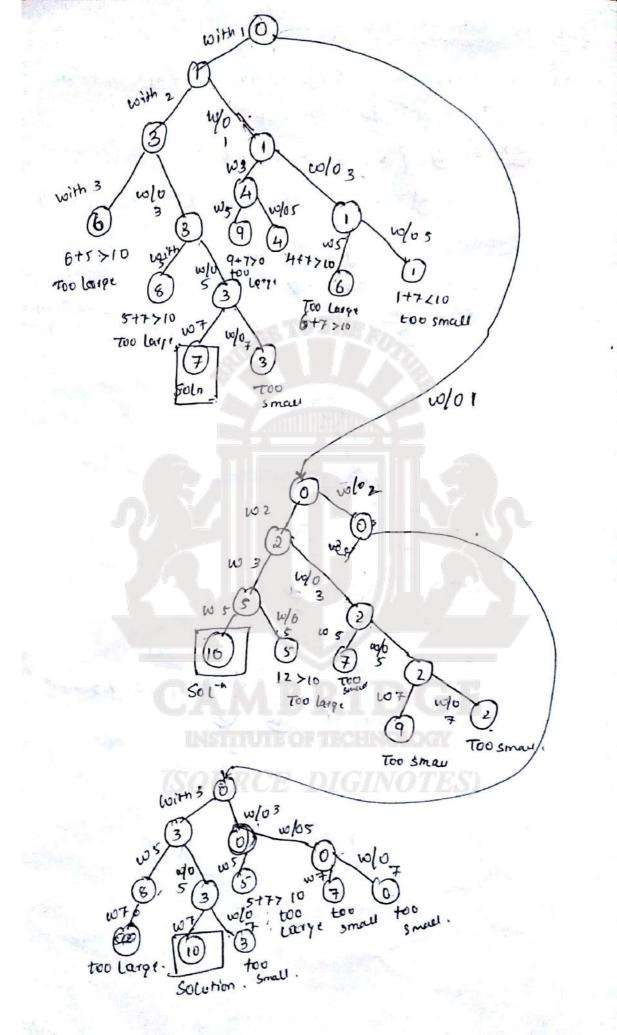
(X)

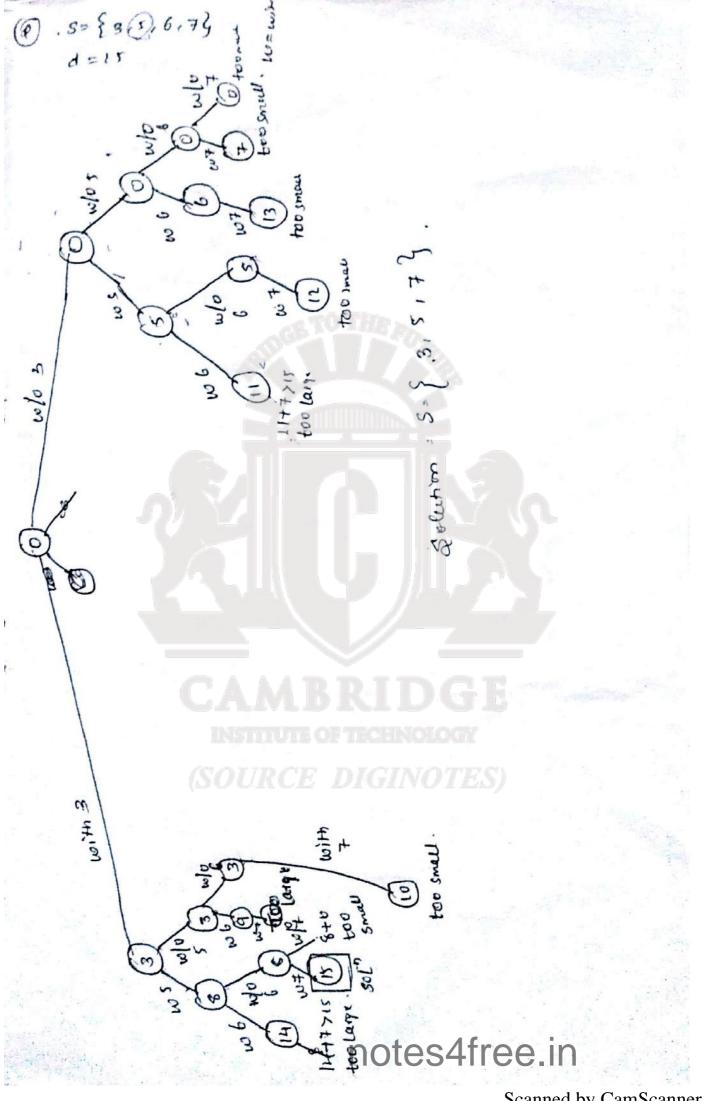
Q,	0
70-,	solution

2X2

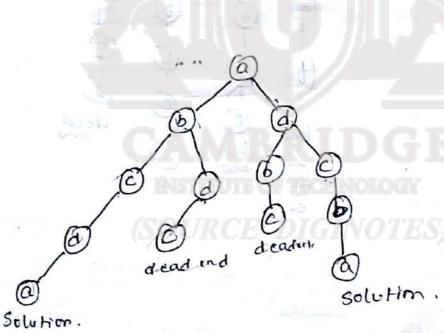

X X X No-seluhim

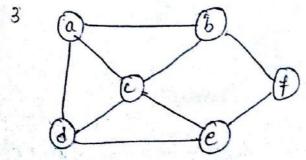
601 3×3

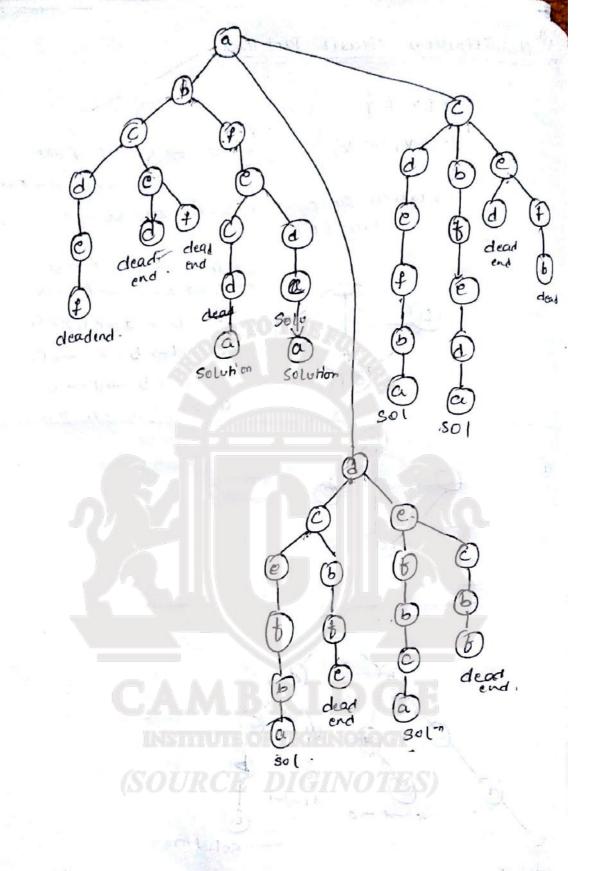

uga Ca	ତ୍ର,		10
ارد		_	19
03	0		
	le l	Q4	1.
V	×	*	×


444

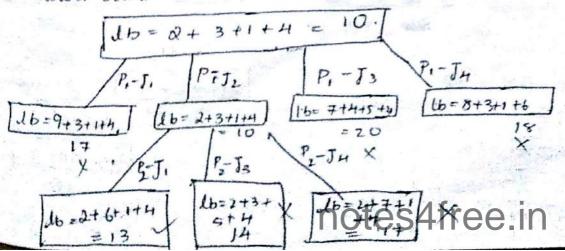
	1	0,	
0,			Q ₃
13000	94	4	93

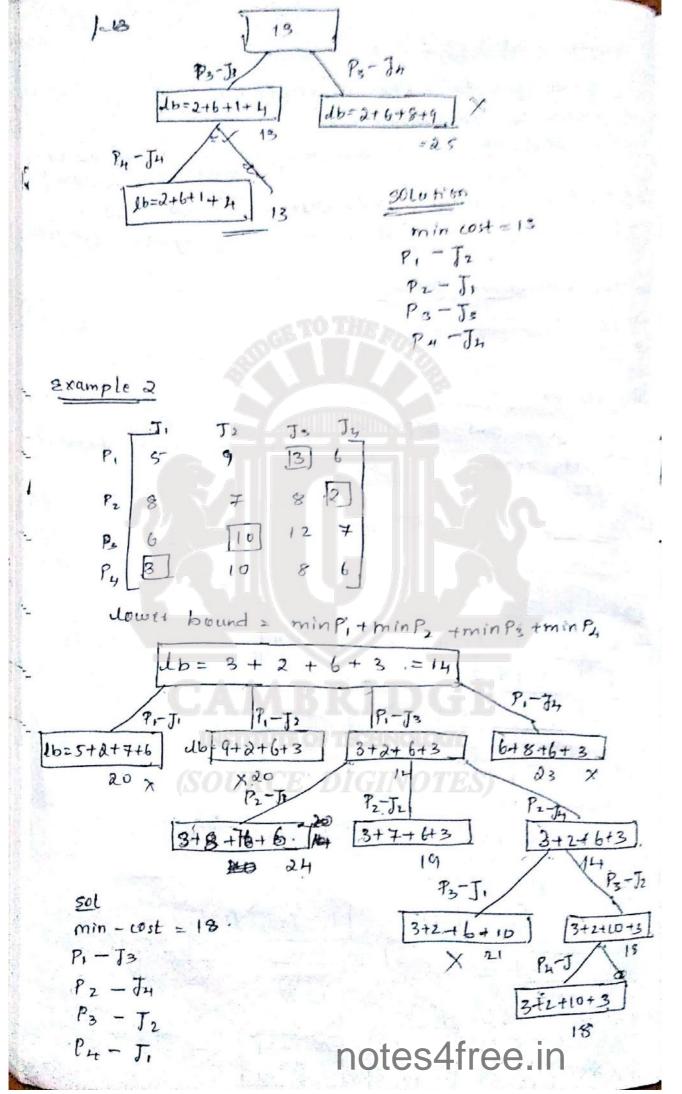



P. T. O



ale Hamiltanien circuit Problem. GEV, E3 U V, > V, · -> u -> cyclic path. Greaching all the weather once and back to source Hertix (u). and condora. a-7d-7c-7b-7a a-> b-> d-> c->a. ベナイナカン こここへ. a >c -> b ->d -> a , a->c->d->b->a. 6

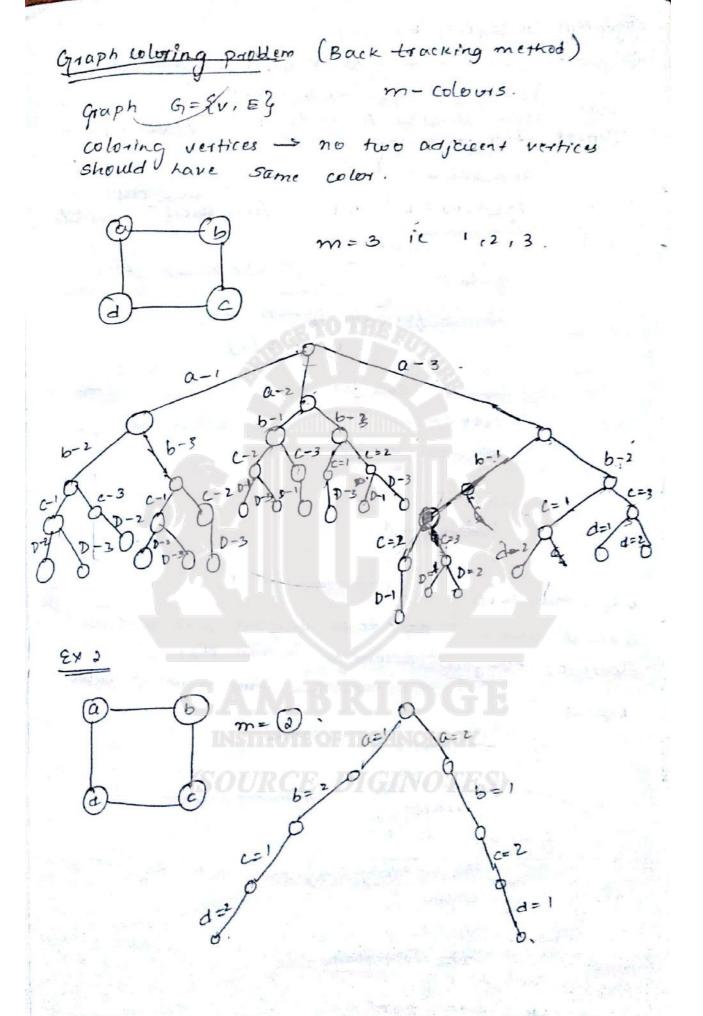



Branch and Bound

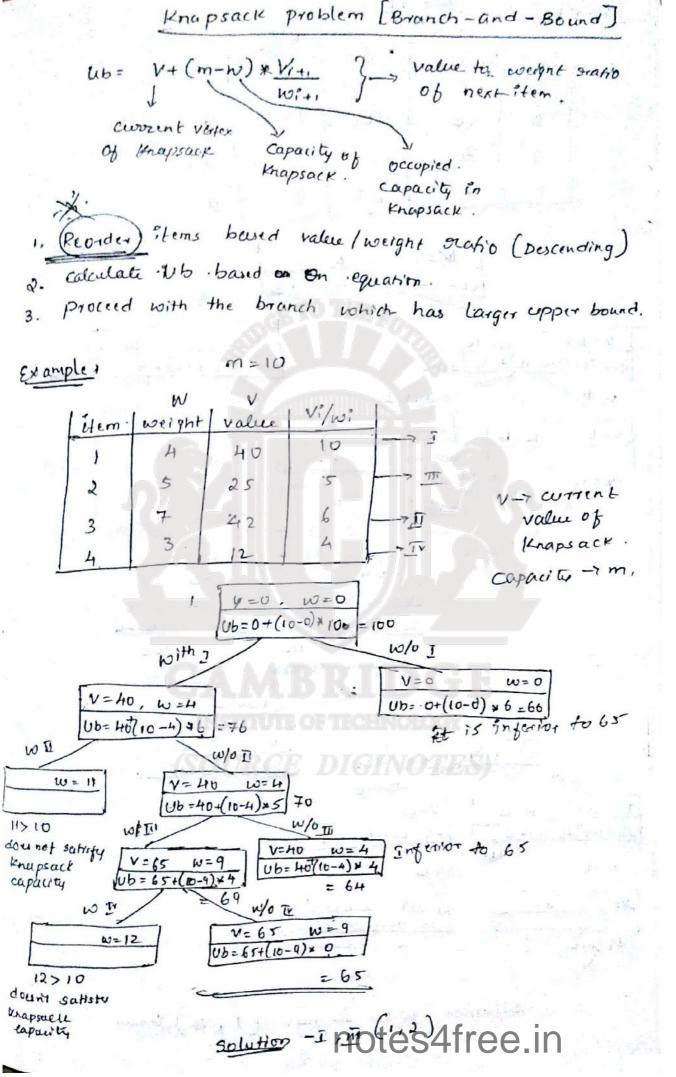
- as solution for Unitations of odly of ithm
- Applied to optimization problems.
- or by actualating upper bound (maximization)/Lower bound (minimization)
- = Branch and = Bound provides best sol found so par
- IT It bounds on the best value of the objective function.
- Job Assignment problem
- -> Knapsack Problem
- 7 TSP
- 1) Job Assignment Froblem:
 - >n- Jobs and n-people.
 - Every person can perform all the jobs with different cost
- Constraint :- design one job to one person
 - optimal solution; Least cost job assignment.

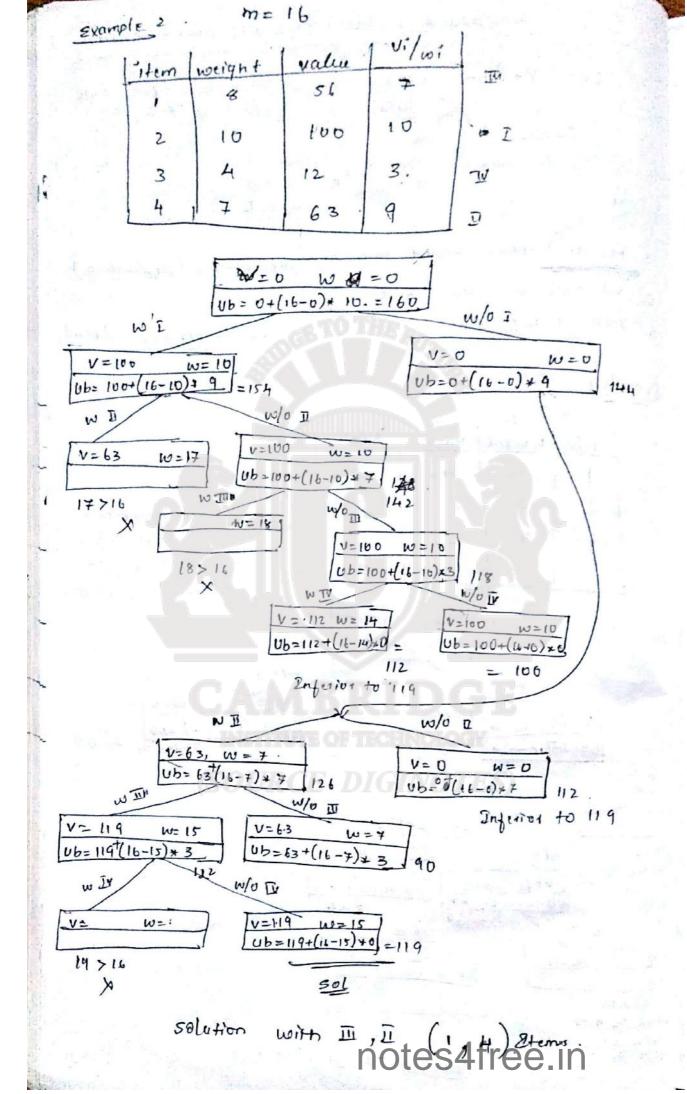
1	J. 1	J,	J's	J4
P,	9	121	7	8
Pz	16]	4	3	-7
B	5	8	TULO	8
P	7	601	9-21	4

down bound = minp, +minP2+minP3 + minP4



03/05/17 Travelling sallsperson problem [wing branch & bound] 16= \(\frac{n}{incoming idge of Vi + outgoing edge}\) because 2 vertices share the same edge divide by 2 1b = (2+5)+(2+3)+(1+3)+(1+5) = 11 a-d a-6 a-c lb=(++2)(2+3)+(5+1) + (7+1) 16=(5+2) 2+3)+(5+1)+(1+3) u = 14 16=(2+5)+(2+3) 16=(2+5)(8+4) + (5+1)(3+1)/2 + (5+8)+(1+1) 16=(2+3)+(2+8)+(1+8)+(3+0) db=(5+1)+(2+3)+(5+1) +(1+3) =11 d-c Ecc-a 2b=(2+5)+(s+2)+(5+1)
+(1+3) 16= (2+5-)(2+3)+(1+5)


Soln


notes4free.in

SOL.


```
digorithm meoloring (k).
Minput: vertex E - need to be coloured which
        varies from coloused[1...n]
 Moutput: colour assigned to vertex & in x[1 - in]
  Repeat porever
         next value (k)
                                      new color is
          if [x[x] = 0) then Ilno selection possible
                  break .
           if (K=n) then . Il All the nodes are
                                          coloured
                  forie to n do
                         Print x[i]
                   end for
            else
            mcoloring (x+i)
            end it
            endorepea f
Algorithm nextralue (K)
1/ Input: vertex . & need to be assigned with a color
Moutput: Assigned colour for K in I[k]
                                 m = number of colours.
 Repeat
       x[x] (x[x]+1) ". (n+1)
           if(x[x]=0) then
              Vetern DIGINOTE
       for jet 10 n
              if (G[F][j] = i) and x[x]=x[j]) then
                     break.
               end it
        end for
        if j=n+1 then
           return
                        notes4free.in
         end it
```