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Module 1: Set Theory:

 Sets and Subsets,

 Set Operations and the Laws of Set Theory,

 Counting and Venn Diagrams,

 A First Word on Probability,

 Countable and

 Uncountable Sets

Fundamentals of Logic:

 Basic Connectives and Truth Tables,

 Logic Equivalence –The Laws of Logic,

 Logical Implication – Rules of Inference.
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Set Theory:

Sets and Subsets:
A set  is a 
collection

of objects,  called elements 
of

the  set. 
A

set  
can be

b
y listing

its
betwee
n

braces: A = {1, 2, 3, 4, 5}. The symbol 
e is (or

belongs 
to) a set.elements

For instance
3 e A.  Its negation  is represented 
by /e,

e.g. 
7 /e A. If the set Is

finite, 
its

number of elements is represented |A|, e.g. if A = {1, 2, 3, 
4, 5} then

| A| = 
5

1. N = {0, 1, 2, 3, ·· · } = the set of natural numbers.
2. Z = {··· , -3, -2, -1, 0, 1, 2, 3, ··· } = the set of integers.
3. Q = the set of rational  numbers.
4. R = the set of real numbers.
5. C = the set of complex numbers.

If S is one of 
those sets

then  we also use the following 
notations :

1. S 
+

= 
set of positive

element
s

in S, for
instance

Z 
+

= {1, 2, 3, 
··· } =

the set of positive
integers.

2. S-
= 
set

of negative 
elements in S, for instance

Z-
= {-1, -2, -3, 
··· } = the

set of negative
integers.

3. S ∗ = 

set
of

elements
in 
S

excluding zero, for 
instance R∗ = the set of non zero real

num 
bers.

Set-builder 
notation:

An 
alternative

way to define a 
set,

called set-
builder notation, is

by 
stating a

propert
y

(predicat
e) P (x)

verifie
d

by 
exactly

its
elements,for instance

A = {x e 
Z

| 1 ≤ x ≤ 5}
=

“set  of 
integers

x such that 1 ≤
x

≤ 5”—
i.e.: A = {1, 2, 3,

4, 
5}. In

general: A = {x e U | p(x)}, 
where

U 
is the

univers
e

of
discourse in which

the 
predicate P (x)

mus
t

be interpreted, or A = {x | P (x)} if the universe of 
discourse

for P (x) is understood In set the term universalis often used in



implicitly . theory set
place of “universe of discourse” for a given 
predicate.

Princip
le

of Extension: Two sets are equal
if and

only if 
they have the same

� ∀x (x e A ↔ x e B)

.elements, i.e.:
A = 
B

Subset: We say 
that

A is a 
subset

of set 
B,

or A is 
contained

in B,
and we represent

it “A ⊆ B”,
if all 
elements

of A 
are in B, e.g.,

if A = {a, b, c}
and

B = {a, b, c, d, e} then A ⊆ 

B.
Proper subset: 
A is a

prope
r

subse
t

of 
B,

represente
d “A ⊂ B”, if A ⊆ B

A = B,
i.e., there  is some element 
in B

which is
not in A.
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Empty Set: A set with no elements is called empty set 
(or null set, or void set ), and is represented by
∅ or {}.

Note that 
nothing

preven
ts

a set from possibly 
being an

element of 
another

se
t

(whic
h

is not the same as being a 
subset!). For i n stance

if A 
=

{1, a, {3, t}, { 1, 2, 3}}
and B=

{ 3, t}, t 
hen

obvious ly 
B

is an elem ent of  

A,

i.e., 
B

e 
A.

Pow
er

Set: 
The

collectio
n

of 
all

subse
ts of a set

A is 
called

the power set of 
A,

and
is 
represented

P(A). For instance, if A = {1, 2, 3}, 
then

P(A) = {∅,
{1},

{2}, {3}, {1, 2}, {1, 3}, {2, 3}, 
A} .

MultCSE
ts: Two

ordinar
y

set
s are

identical  if they  have 
the

same 
elements, so for

instance, {a, a, b}
and

{a, b} 
are

the  
same

set  because 
they have

exactl
y the same

elements
, and b.

Howeve
r,

in 
some

application
s

it  might  
be useful to

namel
y a

allow repeated
element

s in
a

set. In that case
w
e

us
e

multCSEt
s, which

ar
e

mathematical  entities similar  to  
sets,  but with

possibl
y

repeat
ed

elements
.

So
, as

multCSEts, {a, a, b} and {a, b} would be consi dered 
different,

since in the first one 
the

element a occurs twice
and

in the second one it occurs only 
once.

S et Oper atio ns:

1. Intersection : The common elements of two sets:

A ∩ B = {x | (x e A) ∧ (x e B)} .

If A ∩ B = ∅, the sets are said to be disjoint.

2. Union : The set of elements that belong to either  of two sets:

A ∪ B = {x | (x e A) ∨ (x e B)} .



3.Complement : The set of elements (in the universal set) that do not 
belong to a given set:

A = {x e U | x /e A} .

4. Difference or Relative Complement : The set of elements that belong to a 
set but not to another:

A - B = {x | (x e A) ∧ (x /e B)} = A ∩ B .
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5. Symmetric Difference : Given two sets, their symmetric differ- ence is the
set of elements that belong to either one or the other set but not both.

A ⊕ B = {x | (x e A) ⊕ (x e B)} .

It can be expressed also in the following way:

A ⊕ B = A ∪ B - A ∩ B = (A - B) ∪ (B - A) .

Counti
ng

wit
h

Ven
n Diagra ms:

A Venn 
diagram

with 
n sets

intersecting
in

the  most  general way divides the
plane

into 2n regions. If we have 

information about
the 
number

of 
elements

of some
portions

of 
the diagram,

the
n

we 
can

find the 
number

of
elements

in each of the regions 
and

use that 
information

for
obtaining

the  
number

of
elements in

othe
r

portions  of 
the

plane.

Example : Let  M , 
P and  C

be the sets  of 
students

takin
g Mathe-

matic
s courses,

Physics courses and 
Computer

Science courses respec- 
tively in  a university. Assume

|M| = 300, |P | = 350, |C| = 
450,
|M � P | = 100, |M � C| = 150, |P � C| = 75, |M � P � C| = 
10. How
man
y

student
s

are taking  exactly one of those 
courses?

We see that |(M �P )-(M �P �C )| = 100-10 = 90, |(M 
�C )-(M �
P � C )| = 150 - 10 = 140 and |(P � C) - (M � P � C)| = 75 - 
10 = 65.
Then  the  region  corresponding  to  
students

takin
g

Mathematics
courses

only  
has

cardinalit
y

300-
(90+10+140)

= 60. Analogously we 
compute the

numbe
r of students

takin
g Physics

courses
only (185)

an
d

takin
g

Computer
Science

course
s only  (235).

The  sum 60 + 185 + 235 = 480 is the 
number of students

taking 
exactly one

o f those
courses.
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Ven
n

Dia 
grams:

Ven
n

diagrams  are graphic  
representa- tions of sets as

enclosed areas in
the plane.

For  instance,  in figure 2.1, the  
rectangle

represents the universal  set  (the
set of all

elements con- sidered in a given 
problem) and

the
shaded

region represents
a

se
t A.

The  other  figures represent various set operations.

Counting  
with

Ven
n

Diagra 
ms:

A Venn 
diagram

with 
n

set
s

intersecting  
in

th
e

most  general way divides the  
plane

into 2n regions. If we have information  

about
th
e

number of 
elements of some portions

of the 
diagram,

the
n

we can find the number of
elements in each of the regions and

use that 
information

for 
obtaining

the  
number

of
elements in other portions  of the

plane.
Example : Let  M , 
P and  C

be 
the

sets  of students
taking Mathe- matics courses,



Physics courses and 
Computer Science courses respec- tively  in  a  university.
Assume
|M| = 300, |P | = 350, |C| = 450,
|M � P | = 100, |M � C| = 150, |P � C| = 75, |M � P � C| = 
10. How
many students  are taking  exactly one of those courses? (fig. 
2.7)
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We see that |(M �P )-(M �P �C )| = 100-10 = 90, |(M �C )-(M 

� P � C )| = 150 - 10 = 140 and |(P � C) - (M � P � C)| = 75 -

10 = 65.

Then the region corresponding to students taking Mathematics courses only 
has cardinality 300-(90+10+140) = 60. Analogously we compute the 
number of students taking Physics courses only (185) and taking Computer 
Science courses only (235).

Gene ral ized Un ion and  Inters ec ti on: Given  a

collec- tion of sets A1 , A2, . . . ,

AN , their union is defined as the set of elements that belong to at least one 

of the sets (here n represents an integer in the range from 1 to N ):
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Analogously,  their  intersection  is  the  set  of 
elements  that belong  to  all
the  sets
simultaneously:

These definitions can be applied to infinite collections of sets as 
well. For instance assume that Sm = {kn | k = 2, 3, 4, . . . } = set of 
multiples of n greater than n. Then

P artitions: A
partition of

a set X  is a collection S of non overlapping non 
empty

subsets  of X whose
union is

the whole X . For instance  a partition  of X = {1, 
2, 3, 4, 5,

6, 7, 8, 9, 10} could be S = {{1, 2, 4, 8}, {3, 6}, {5, 7, 9, 10}} .
Given a partition S of a set X , every element of X belongs to exactly one 
member of S.

Example : The division of the integers Z into even and odd numbers is a 
partition: S = {E, O}, where E = { 2n | n e Z}, O = { 2n + 1 | n e Z}.

Example : The divisions  of Z  in  negative integers,  
positive  integers  and  zero  is a

p art itio n: S = {Z+ , Z -, {0 }}.

Order ed P 
airs,

C ar tes 
ian

Prod 
uct:

An
ordinar
y

pai
r

{a, 
b} is  a

se
t with

tw
o

element
s. In  a set  theorder  of the

el ements is irrelevant,
so

{a, b}
=

{b, 
a}. If the order of the

elemen
ts is relevant,

the
n

we use a different 
object

called 
ordered pair,

represented  (a, b). Now (a, b) = 
(b,

a) (unless a = b). In general (a, b) = (a!, b!) iff a = a! 

and b = b!.



Given two sets A, B, 
their

Cartesian product  A × B 
is the

set of all 
ordered pairs (a, b)

such that a e A and b e B :
A × B = {(a, b) | (a e A) ∧ (b e
B)} .
Analogously we can define triples or 3-tuples (a, b, c), 4-tuples 
(a, b, c, d),

. . . , n-
tuples

(a1 , a2, . . . , am ),
and

the  
corresponding

3-fold, 4-fold,. . .
,
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n-fold Cartesian products:
A1 × A2 × ··· × Am =

{(a1 , a2, . . . , am ) | (a1 e A1) ∧ (a2 e A2) ∧ ··· ∧ (am e Am )} .

If all the sets in a Cartesian product are 
the same, then we can use an exponent: A2 =

A × A, A3 
(m ti 
mes) m

= A × A ×··· × A .

A First Word on Probability:

I ntro 
duction:

Assume 
that

we 
perform an

experiment such 
as

tossing 
a

coi
n or
rolling a die. 
The

se
t

of possible 
outcomes

is called 
the

sample 
space of the

experiment.
An event is a 
subset

of the sample space.
For

instanc
e,

if we 
toss a coin

three  
times,

the
sample space 
is

S — {H H H, H H T , H T H, H T T , T H H, T H T , 
T T H, T T T } .

Th
e

event 
“at

least two heads in a row” would be 
the subset

E — {H H H, H HT, T HH}
.

If all possible outcomes  
of an

experiment
have the  same likelihood of

occurrence, 
then
the 
probability of an event A ⊂ S is give n by Laplace’s rule:

For instance, the probability of getting at least two heads in a 
row in the above experiment is 3/8.

= A × A × A, etc. In 
general:
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Then:  Prop er ties of probab ili ty:Let P  be a probability func- tion on a sample

space S.

THE CONCEPT OF PROBALITY:
Pr(A)=|A| / |S| where |A| is an event and |S| is sample space 
Pr(A)=|A| / |S|=(|S|-|A|)/|S|= 1- (|A|/|S|)= 1-Pr(A).
Pr(A)=0 if and only if Pr(A)=1 and Pr(A)=1 if and only if 

Pr(A)=0

ADDITION THEROM:

Suppose A and B are 2 events is a sample space S then A UB is an event in S consisting of
outcomes that are in A or B or both and A ∩ B is an event is S consisting of outcomes thata
recommon to A and B. accordingly by the principle of addition we have |AUB|=|A|+|B|-|A ∩B|
and formula 1 gives
P r(AUB)=|AUB|/|S|=(|A|+|B|-|A ∩B|)/|S|

= |A|/|S| + |B|/|S| - |A ∩ B| / |S|
P r(AUB) =Pr(A)+Pr(B)-Pr(A ∩ B)
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MUTUALY EXCLUSIVE EVENTS:
Two events A and B in a sample space are said to be mutual exclusive if A ∩ B =Ø then Pr(A 
∩B)=0 and the addition theorem reduces to P r(AUB)= Pr(A)+Pr(B)

If A1, A2…….An  are  mutualy  exclusive  events,  then  Pr(A1UA2U…….UAn)=
Pr(A1)+Pr(A2)+….+Pr(An)

COND ITIONAL PROBABILITY:

If E is  an event in a finite sample S with Pr(E)>0 then the probability that an event A in S
occurs  when  E  has  already  occurred  is  called  the  probability  of  A relative  to  E  or  the
conditional p robability of A , given E
This p robability, denoted by Pr(A|E) is defined by Pr(A|

E)=|A∩ E|/ |E| from this |A∩ E|=|E| . Pr(A|E) Pr(A∩ E)= |

A∩ E|/ S=|=|E|/|S| . Pr(A|E)=Pr(E) . Pr(A|E)

Example : Find the probability of obtaining a sum of 10 after rolling two fair dice. Find the 

probability of that event if we know that at least one of the dice shows 5 points.

Answer : We call E — “obtaining  sum 10” and F — “at least one of the dice shows 5
points”. The number of possible outcomes is 6 × 6 — 36. The event “obtaining a sum 10” is E
— {(4, 6), (5, 5), (6, 4)}, so|E| — 3. Hence the probability is P (E) — |E|/|S|
— 3/36 — 1/12.Now, if we know that at least one of the dice shows 5 points then the sample 
space shrinks to
F — {(1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 6)} ,

so |F | — 11, and the ways to obtain a sum 10 are E n F — {(5, 5)}, |E n F |

— 1, so the probability is P (E | F ) — P (E n F )/P (F ) — 1/11.

MUTUALLY       INDEPENDENT       EVENTS:
The event A and E in a sample space S are said to be mutually independent if the probability of

the  occurrence  of  A is  independent  of  the  probability  of  the  occurrence  of  E,  So  that

Pr(A)=Pr(A|E). For such events Pr(A ∩ E)=Pr(A).Pr(E)

This  is  known as  the product  rule  or the multiplication  theorem for mutually  independent
events .



A gen eralization of expression is if A1,A2,A3………..An are mutually in dependent events in
a sample space S then
Pr(A1∩ A2∩ ……………∩ An)=Pr(A1).Pr(A2)………..Pr(An)
Example : Assume that the probability that a shooter hits a target is p — 0.7, and that hitting 

the target in different shots are independent events. Find:

1. The probability that the shooter does not hit the target in one shot.
2. The probability that the shooter does not hit the target three times in a row.
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3. The probability that the shooter hits the target at least once after shooting three times.

Answer :

1. P (not hitting the target in one shot) — 1 — 0.7 — 0.3.

2. P (not hitting  the target  three times in a row) — 0.33  — 0.027.
3. P (hitting the target at least once in three shots) — 1—0.027 — 

0.973.

COUNTABLE AND UNCOUNTABLE SETS

A set A is said to be the c ountable if A is a finite set. A set which is not countable is called an 
uncountable set.
THE ADDITION PRINCIPLE:
• |AUB|=|A|+|B|-|A∩ B| is the addition principle rule or the principle of inclusion – 
exclusion.
• |A-B|=|A|-|A∩ B|
• |A ∩  B|=|U|-|A|-|B|  +|A∩ B|
• |AUBUC|=|A|+|B|+|C|-|A ∩B|-|B ∩ C|-|A ∩ C|+|A ∩ B ∩ C| is extended addition 
principle
• NOTE: |A ∩ B ∩ C|=|AUBUC|

=|U|-| AUBUC|
= |U|-|A|-|B| -|C|+|B ∩C|+|A ∩B|+|A ∩C|- |A ∩B ∩C| |

A-B-C|=|A|-|A ∩ B|-|A ∩ C|+|A ∩ B ∩ C|

Fundamentals of Logic:

Intr oduction:
Propositi ons:

A proposition is a declarative  sentence that is either true or false (but not both). For
instance, the following are propositions: “Paris is in France” (true), “London is in
Denmark” (false), “2< 4” (true), “4 =  7 (false)”. However the following are not
propositions: “what is your name?” (this is a question), “do your homework” (this
is a command), “this sentence is false” (neither true nor false),  “x  is an even
number” (it depends on what  x represents), “So crates” (it is not even a sentence).
The truth or falsehood of a proposition  is called its truth value.

Basic Connectives and Truth Tables:
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Connectives  are  used for making compound propositions. The main ones are
the  following (p and q represent given propositions):

Name Represent Meaning
Negation ed “not p”
Conjunction ¬p “p and q”
Disjunction p ∧ q “p or q (or both)”
Exclusive Or “either p or q, but not both”
Implication p ∨q “if p then q”
Biconditional

p ⊕ q
“p if and only if q”

The truth value of a  compound proposition depends only on the value of its  components.

Writing F for “false” and T for “true”, we can summarize the meaning of the connectives in the
following way:

p
q ¬p

p ∧ q p ∨ q
p ⊕ 
q

p   →p ↔ q

T F T TT T T F
T F F F T T F F
F T T F T T T F
F F T F F F T T

Note that  ∨ represents a non-exclusive or, i.e., p ∨ q is true when any of p, q is true

and also when both are true. On the other hand ⊕ represents an exclusive or, i.e., p
⊕ q is true  only when exactly one of p and q is true.

T autol ogy, C ontradi cti on, C onti ngenc y:

1. A proposition  is said to be a tautology  if its truth value is T for any assignment of

truth values to its compon ents. Example : The proposition p ∨ ¬p is a tautology.

2. A proposition is said to be a contradiction if its truth value is F for any assignment of truth 

values to its components. Example : The proposition p ∧ ¬p is a c ontradiction.

3. A proposition that is neither a tautology nor a contradiction is called a contingency

Conditional Propo siti ons: A proposition of the form “if p then  q” or “p implies

q”, represented “p → q” is called a conditio nal proposition. For instance: “if John is
from Chicago then  John  is from Illinois”.  The proposition  p is called hypothesis or
antecedent,  and the proposition q is the conclusion  or consequent.
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Note that p → q is true always except when p is true and q is false. So, the following sentences
are true: “if 2 < 4 then Paris is in France” (true → true), “if London is in Denmark t hen 2 < 4”
(false → true),

“if 4 = 7 then London is in Denmark” (false → false).  However the following one

is false: “if 2 < 4 then London is in Denmark” (true → false).

In might seem strange  that “p → q” is considered  true  when p is false, regardless
of the truth value of q. This will become clearer when we study predicates  such as “if
x is a multiple of 4 then x is a multiple of 2”. That implication is obviously true,
although for the  particular
case x = 3 it becomes “if 3 is a multiple of 4 then 3 is a multiple of 2”.

The proposition p ↔ q, read “p if and only if q”, is called bicon- ditional. It is true precCSEly 

when p and q have the same truth value, i.e., they are both true or both false.

Logic al Equival ence: Note that the compound proposi- tions p → 

q a nd ¬p ∨ q have the same truth values:

p q ¬p ¬p ∨ q p →
T T F T T
T F F F F
F T T T T
F F T T T

When two compound propositions have the same truth values no matter what truth value their 

constituent propositions have, they are called logically equivalent. For

inst an ce p → q and ¬p ∨ q are logically equivalent,  and we write it:

p → q ≡ ¬p ∨q

Note that that two propositions A and B are logically equivalent precCSEly when A ↔
B is a tautology.

Example :  De  Morgan’s  Laws for  Logic. The  following propositions  are  logically
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equivalent:

¬(p ∨ q) ≡ ¬p ∧ ¬q

¬(p ∧ q) ≡ ¬p ∨ ¬q

p q ¬p ¬q p ∨ q ¬(p  ∨ q) ¬p ∧ ¬q p ∧ q ¬(p ∧ q) ¬p  ∨ ¬q

T T F F T F F T F F
T F F T T F F F T T
F T T F T F F F T T
F F T T F T T F T T

Example : The following propositions are logically e quivalent:

p ↔ q ≡ (p → q) ∧ (q →  p)

Again, this can be checked with the truth tables:

p q p →q → (p →q)∧(qp ↔ q

T T T T T T
T F F T F F
F T T F F F
F F T T T T

ExercCSE : Check the following logical equivalences:

¬(p → q) ≡ p ∧ ¬q
p → q ≡  ¬q → ¬p

¬(p ↔ q) ≡ p ⊕ q

Converse, C ontrapo sitive: The converse of a conditional proposition  p → q is

the  proposition q  → p. As we have  seen,  the bi- conditional proposition is
equivalent to the co njunction of a con ditional propo sition an its converse.

p ↔ q ≡ (p → q) ∧ (q → p)

So, for instance, saying that “John is married  if and only if he has a spouse” is the
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same as saying “if John is married then he has a spouse” and  “if he has a spouse then
he is married”.

Note  that  the  converse is not equivalent  to the given conditional proposition, for
instance “if John  is from Chicago then  John is from Illinois” is true, but  the converse
“if John  is from Illinois then  John is from Chicago” may be false.
The contrapositive of a conditional  proposition p → q is the  propo- sition ¬q →
¬p.  They  are  logically equivalent.  For instance the  con- trapositive of “if John is
from Chicago then John is from Illinois” is “if
John is not from Illinois then John is not from Chicago”.
LOGICAL CONNECTIVES: New propositions are obtained with the aid of word
or phrases like “not”,”and”,”if….then”,and “if and only if”. Such words or phrases are
called logical connectives. The new propositions obtained by the use of connectives are called
compound  propositions.  The  original  propositions  from which  a  compound  proposition  is
obtained  are  called  the  components  or  the  primitives  of  the  compound  proposition.
Propositions which do not contain any logical connective are called simple propositions

NE GATION: A Proposition obtained by inserting the word “not” at an appropriate place in a
given proposition is called the negation of the given proposition. The negation of a proposition
p is denoted by ~p(read “not p”)
Ex: p: 3 is a prime number
~p: 3 is not a prime number
Truth Table: p ~p

0 1
10

CONJUNCTION:
A compound proposition obtained by combining two given propositions by inserting the word
“and” in between them is called the conjunction of the given proposition.The conjunction of
two proposition p and q is denoted by p^q(read “p and q”).
• The conjunction p^q is true only when p is true and q is true; in all other cases it is
false.

• Ex: p:√2 is an irational number q: 9 is a prime number

p^q: √2 is an i rational number and 9 is a prime number
• Truth table:  p   q p^q

0 0 0
0 1 0

1 0 0
1 1 1
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DISJUNCTION:
A compound proposition obtained by combining two given propositions by inserting the word
“or” in between them is called the disjunction of the given proposition.The di sjunction of two
proposition p and q is denoted by p�q(read “p or q”).

• The di sjunction p�q is false only when p is false and q is false ; in all other cases it
is true.
•

•

Ex: p:√2 is an irational number q: 9 is a prime number
p�q : √2 is an irational number or 9 is a prime number Truth table:

p q p�q

0 0 0
0 1 1
1 0 1
1 1 1

EXCLUSIVE DISJUNCTION:

• The compound proposition “p or q” to be true only when either p is true or q is true but

not both. The exclusive or is denoted by symbol v.

• Ex: p:√2 is an ir rational number q: 2+3=5

Pvq: Either √2 is an i rrational number or 2+3=5 but not both.

• Truth Table:

p q pvq
0 0 0
0 1 1
1 0 1
1 1 0

COND ITIONAL(or IMP LICATION):

• A compound proposition obtained by combining two given propositions by using the 

words “if” and “then” at appropriate places is called a conditional or an implication..

Given two propositions p and q, we can form the conditionals “if p, then q” and “if

q, then p:. The conditional “if p, then q”is denoted by p→q and the conditional “if q, then p” is 
denoted by q →p.

• The conditional p→q is false only when p is true and q is false ;in all other cases it
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is true.

• Ex: p: 2 is a prime number q: 3 is a prime number

p→q: If 2 is a prime number then 3 is a prime number; it is true

• Truth Table:

p q p→q
0 0 1
0 1 1
1 0 0
1 1 1

BICONDITIONAL:

• Let p and q be two propositions,then the conjunction of the conditionals p→q and q→p

is called bi- conditional of p and q. It is denoted by p↔q.

• p↔q is same as (p→q)�( q→p ). As such p↔q is read as “ if p then q and if q then 
p”.

• Ex: p: 2 is a prime number q: 3 is a prime number  p↔q are true.

Truth Table:  p q p→q q→p p↔q
0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 1 1 1

COMBINED TRUTH TABLE

P q ~p p^q p�q pvq p→q p↔q
0 0 1 0 0 0 1 1
0 1 1 0 1 1 1 0
1 0 0 0 1 1 0 0
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1 1 0 1 1 0 1 1
TAUTOLOGIES; CONTRADICTIONS:

A compound proposition which is always true regardless of the truth values of its components 

is called a tautology.

A compound proposition which is always false regardless of the truth values of its components 

is called a cont radiction or an absurdity.

A compound proposition that  can be true or false  (depending upon the truth values  of its

components)  is  called  a  contingency  I.e  contingency  is  a  compound  proposition  which  is
neither a tautology nor a contradiction.

LOGICAL EQUIVALENCE

• Two propositions ‘u’ and ‘v’ are said to be logically equivalent whenever u and v have 

the same truth value, or equivalently .

• Then we write u�v. Here the symbol �stands for “logically equivalent to”.

• When the propositions u and v are not logically eq uivalent we write u�v.

LAWS OF LOGIC:

To denote a tautology and To denotes a contradiction.

• Law of Double negation: For any proposition p,(~~p)�p
• Idempotent laws: For any propositions p, 1) (p�p) �p 2) (p�p) �p

• Identity laws: For any proposition p, 1)(p�Fo) �p 2)(p�To) �p
• Inverse laws: For any proposition p, 1) (p � �p) �To 2)(p�~p)�Fo
• Commutative Laws: For any proposition p and q, 1)(p�q)�(q�p) 2)(p�q)�(q�p)
• Domination Laws: For any proposition p, 1) (p�To) �To 2) (p�Fo) �Fo
• Absorption Laws: For any proposition p and q,1) [p� (p�q)] �p 2)[p� (p�q)] �p
• De-Morgan Laws: For any proposition p and q, 1)~ (p�q)��p��q

Associative Laws : For any proposition p ,q and r, 1) p � (q � r) �(p �q) �r 2)

Distributive Laws: For any proposition p ,q and r, 1) p � (q � r) � (p �q) � (p �r )

2) p�(q�r)� (p�q) � (p�r)
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• Law for the negation of a conditional : Given a conditional p→q, its negation is 
obtained by using the following law: �(p→q)�[p�(�q)]

TRANSITIVE AND SUBSTITUTION RULES If u,v,w are propositions such that u�v 
and v �w, then u �w. (this is transitive rule)

• Suppose that a compound proposition u is a tautology and p is a component of u, we replace
each occurrence of p in u by a proposition q, then the resulting compound proposition v is also

a tautology(This is called a substitution rule).

• Suppose that u is a compound proposition which contains a proposition p. Let q be a
proposition such that q �p , suppose we replace one or more occurrences of p by q and obtain
a compound proposition v. Then u �v (This is also substitution rule)

APPLICATION TO SWITCHING NETWORKS

• If a switch p is open, we assign the symbol o to it and if p is closed we assign the 

symbol 1 to it.

• Ex: current flows from the terminal A to the terminal B if the switch is closed i.e if p is 

assigned the symbol 1. This network is represented by the s ymbol p

A P B

Ex: parallel network consists of 2 switches p and q in which the current flows from

the terminal A to the terminal B , if p or q or both are closed i.e if p or q (or both) are assigned
the symbol 1. This network is represent by p�q

Ex: Series network consists of 2 switches p and q in which the current flows from the
terminal A to the terminal B if both of p and q are closed; that is if both p and q are assigned
the symbol 1. This network is repr esented by p�q

DUALITY:

Suppose u is a compound proposition that contains the connectives � and �. Suppose we

replace each occurrence of � and � in u by � and � re spectively.
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Also if u contains To and Fo as components, suppose we replace each occurrence of To and Fo
by Fo and To respectively, then the resulting compound proposition is called the dual of u and

is denoted by ud.

Ex: u: p �(q � �r) � (s � To) ud: p � (q � � r) � (s � Fo)

NOTE:

• (ud)d �u. The dual of the dual of u is logically equ ivalent to u.

• For any two propositions u and v if u �v, then ud �vd . This is known as the pr 
inciple of duality.

The connectives NAND and NOR

(p ↑q)= �(p � q) �
�

p � � q

(p ↓q)= �(p � q) �
�

p � � q

CONVERSE,INVERSE AND CONTRAPOSITIVE

Consider a conditional (p→q) , Then :

1) q→p is called the converse of p→q

2) �p→�q is called the inverse of p→q

3) �q→�p is called the cont rapositive of p→q

RULES OF INFERENCE:

There exist rules of logic which can be employed for establishing the validity of a rguments
. These rules are called the Rules of Inference.

1) Rule of conjunctive simpli fication: This rule states that for any two propositions p
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and q if p�q is true, then p is true i.e (p�q )�p.

2) Rule of Disjunctive amplification: This rule states that for any two proposition p and q 
if p is true then p�q is true i.e p�(p �q)

3) 3) Rule of Syllogism: This rule states that for any three propositions p,q r if p→q is

true and q→r is true then p→r is true. i.e {(p→q)�(q→)} �(p →r) In tabular form:
p→q q→r � (p →r)

4) 4) Modus pones(Rule of Detachment): This rule states that if p is true and p→q

is true, then q is true, ie {p �(p→q )} �q. Tabular form

p p→q � q

5) Modus Tollens: This rule states that if p→q is true and q is false, then p is false.

{(p→q)��q}�q Tabular form: p→q

�q ��p

6) Rule of Disjunctive Syllogism: This rule states that if p�q is true and p is false,

then q is true i.e. {(p�q)��p}�q Tabular Form p�q

�p � q

QUANTIFIERS:

1. The words “ALL”,”EVERY”,”SOME”,”THERE EXISTS” are called quantifiers in the 

proposition

2. The symbol � is used to denote the phrases “FOR ALL”,”FOR EVE RY”,”FOR EACH” 
and “FOR ANY”.this is called as universal quantifier.

3. � is used to denote the phrases “FOR SOME”and “THERE EXISTS”and “FOR 
ATLEAST ONE”.this s ymbol is called existential quantifier.

A proposition involving the universal or the existential quantifier is called a quantified 

statement

LOGICAL EQUIVALENCE:
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1. � x,[p(x)�q(x)]�(�x p(x))�(�x,q(x))

2. � x, [p(x)�q(x)]�(�x p(x)) �(�x,q(x))

3. � x, [p(x)→q(x)] ��x ,[�p(x)�q(x)]

RULE FOR NEGATION OF A QUANTIFIED STATEMENT:

�{�x,p(x)}≡�x{�p(x)} �{�x,p(x)}≡�x{�p(x)}

RULES OF INTERFERENCE:

1. RULE OF UNIVERSAL SPECIFICATION

2. RULE OF UNIVERSAL GENERALIZATION

If an open statement p(x) is proved to be true for any (arbitrary)x chosen from a set S, 
then the quantified statement �x€S, p(x) is true.

ME THODS OF PROOF AND DIS PROOF:

1.DIRECT PROOF:

The direct method of proving a conditional p→q has the following lines of argument:

a) hypothesis : First assume that p is true

b) Analysis: starting with the hypothesis and employing the rules /laws of
logic and other known facts , infer that q is true

c) Conclusion:p→q is true.

2. INDIRECT PROOF:

Condition p→q and its contrapositive �q→�p are logically equivalent. On basis of this 
proof, we infer that the conditional p→q is true. This method of proving a conditional is
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called an indirect method of proof.

3 .PROOF BY CONTRADICTION

The indirect method of proof is equivalent to what is known as the proof by contradiction.
The lines of argument in this method of proof of the statement p→q are as follows:

1) Hypothesis: Assume that p→q is false i.e assume that p is true and q is
false.

2)Analysis: starting with the hypothesis that q is false and employing the rules of logic

and other known facts , infer that p is false. This contradicts the assumption that p is true

3)Conculsion: because of the contradiction arrived in the analysis , we infer that p→q 

is true

4 .PROOF BY E XHAUSTION:

“�x €S,p(x)” is true if p(x)is true for every (each) x in S.If S consists of only a limited number
of elements , we can prove that the statement “�x €S,p(x)” is true by considering p(a) for each
a in S and verifying that p(a) is true .such a method of prove is called method of exhaustion.

5 .PROOF OF EXISTENCE:

“�x €S,p(x)” is true if any one element a € S such that p(a) is true is exhibited. Hence , the
best way of proving a proposition of the form “�x €S,p(x)” is to exhibit the existence of one
a€S such that p(a) is true. This method of proof is called proof of existence.

6.DI SPROOF BY CONTRADICTION :

Suppose we wish to disprove a conditional p→q. for this propose we start with the hypothesis

that p is true and q is true, and end up with a contradiction. In view of the contradiction , we

conclude  that  the  conditional  p→q  is  false.this  method  of  disproving  p→q  is  called

DISPROOF BY CONTRADICTION
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Module 2:

Fundamentals of Logic contd.:

 The Use of Quantifiers, Quantifiers,

 Definitions and the Proofs of Theorems,

Properties of the Integers:

 Mathematical Induction,

 The Well Ordering Principle

 Mathematical Induction,

 Recursive Definitions.
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Fundamentals of Logic contd.:
Qua ntifiers:

Given a predicate  P (x),  the statement “for some x,  P (x)”  (or  “there  is some  x

such that p(x)”), represented “∃x P (x)”, has a definite truth value, so it is a proposition in the
usual sense. For instance if P (x) is “x + 2 = 7” with the integers as

universe of discourse, then ∃x P (x) is true,  since there is indeed  an integer, namely
5, such that P (5) is a true statement. However, if

Q(x)  is “2x = 7” and the universe of discourse is still the integers, then ∃x Q(x) is
false. On the other hand, ∃x Q(x) would be true if we extend the universe of discourse to the 
rational numbers. The symbol
∃ is called the existential  quantifier.

Analogously, the sentence “for all x, P (x)”—also “for any x, P (x)”, “for every x, P (x)”,

“for each x, P (x)”—, represented “∀x P (x)”,  has a definite truth value. For instance,
if P (x) is “x + 2 = 7” and the

∀x P (x)universe of discourse is the integers, then is false. However if Q(x) represents

“(x + 1)2 = x2
+ 2x + 1” then ∀x Q(x) is true. The symbol ∀ is called the universal

quantifier.

In predicates with more than one variable it is possible to use several quantifiers at the

same time, for instance ∀x∀y∃z P (x, y, z), meaning “for all x and all y there is some z
such that P (x, y, z)”.

Note that in general the existential and universal quantifiers cannot be swapped, i.e.,

in general ∀x∃y P (x, y) means something different from ∃y∀x P (x, y). For instance if

x and y represent human beings and P (x, y) represents “x is a friend of y”, then ∀x∃y

P (x, y) means that everybody is a friend of someone, but ∃y∀x P (x, y)  means that
there is someone such that everybody is his or her friend.

A predicate can be partially quantified, e.g. ∀x∃y P (x, y, z, t). The variables quan tified
(x and y in the example) are called bound variables, and the  rest (z and t in the
example)  are called free variables. A
partially quantified predicate is still  a predicate, but depending  on
fewer variables.

Proofs

M ath ematic al Sy st ems, Proofs:

A Mathematical Sys- tem consists of:
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1. Axioms : propositions  that are assumed  true.
2. Definitions : used to create new concepts from old ones.

3. Undefined terms : corresponding to the primitive concepts of the system (for instance
in set theory  the term “set” is undefined).

A theorem  is a proposition that can be proved to be true. An
argument that establishes the truth of a proposition is called a proof.

Example : Prove that if x > 2 and y > 3 then x + y > 5.

Answer : Assuming x > 2 and  y > 3 and  adding the inequalities term by term we
get: x + y > 2 + 3 = 5.

That is an example of direct proof. In a direct proof we assume the hypothesis together with

axioms and other theorems previously proved and we derive the conclusion from them.

An indirect proof or proof by contrapositive consists of proving the contrapositive of the desi 

red impli cation, i.e., instead of proving p → q we prove ¬q → ¬p.

Example : Prove that if x + y > 5 then x > 2 or y > 3.

Answer : We must prove that x + y > 5 → (x  > 2) � (y > 3).  An indirect proof

consists of proving ¬((x > 2) � (y > 3)) → ¬(x + y > 5). In fact:  ¬((x > 2) � (y > 3))

is the same as (x ≤ 2) �(y ≤ 3), so adding both inequalities we get x + y ≤ 5, which is the

same as ¬(x + y > 5).

Proof by Contradiction. In a proof by contradiction or (Reductio  ad Absurdum ) we
assume  the  hypotheses  and  the negation  of the  conclu- sion, and  try  to  derive a

contradiction, i.e., a proposition of the form r � ¬r.

Example : Prove by co ntradiction that if x + y > 5 then either x > 2 or y > 3.

Answer : We assume the hypothesis x + y > 5. From here we must conclude that x > 2 or y > 3.
Assume to the contrary that “x > 2 or y > 3” is false, so x ≤ 2 and y ≤
3. Adding those inequalities  we get
x ≤ 2 + 3 = 5, which contradicts the hypothesis x + y > 5. From here we conclude that
the assumption “x ≤ 2 and y ≤ 3” cannot be right, so “x > 2 or y > 3” must be true.
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Remark : Sometimes it is difficult to distinguish between an indirect proof and a proof
by contradiction. In an indirect proof we prove an implication of the form p → q

by proving the contrapositive ¬q →¬p. In an proof by c  ontr adi ction we pro ve an
s (which may or may not  be an implication) by  assuming ¬s and
contradiction. In fact proofs by contradiction are more general than indirect
proofs.
Exerc CSE : Prove by contradiction that 2 is not a rational number, i.e., there are no
integers a, b such that 2 = a/b.
Answer : Assume that 2 is rational, i.e., 2 = a/b, where a and b are integers and the

fraction is written in least terms. Squaring both sides we have 2 = a2 /b2 , hence 2 b2

= a2. Since the left hand side is even, then a2  is even, but this implies that a itself is

even, so a = 2 a!. Hence: 2 b2 = 4 a!2, and simplifying: b2 = 2 a!2. This implies that
b2 is even, so b is even: b = 2b!. Consequently a/b = 2a!/2b!

= a!/b!, contradicting
the hypothesis that a/b was in least terms.

Arguments, Ru les of I nfe rence:

An argument is a se- quence of  propositions p1, p2, . . . , pn called hypotheses (or

premCSEs ) followed by  a  proposition q called conclusion. An argument is  usually
written:

p1

p2

.
pn

� q

or

p1 , p2, . . . , pn / � q

The argument is called valid if q is true whenever p1 , p2, . . . , pn   are true; otherwCSE it

is called invalid.
Rules of inference  are certain  simple arguments  known to be valid and  used to make
a proof step by step. For instance  the following argument is called modus ponens or
rule of detachment :

p → q p
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�q

In order to check whether it is valid we must examine the following truth table:

p q p → p q
T T T T T
T F F T F
F T T F T
F F T F F

If we look now at the rows in w hich both p → q and p are true (just the first row) we see that 

also q is true, so the argument is val id.

Other  rules of inference are the following:

Arguments are usually written using three columns. Each row con- tains a label, a statement
and  the  reason  that  justifies  the  introduction  of  that  statement  in  the  argument.  That

justification can be one of the following:

1. The statement is a prem CSE.
2. The statement can be derived from statements occurring earlier in the argument by using a 

rule of inference.
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Example : Consider the following statements:  “I take the bus or I walk. If I walk I
get tired. I do not get tired. Therefore  I take the bus.” We can formalize this by
calling B = “I take the bus”, W = “I walk” and T = “I get tired”. The premCSEs are B

�W , W → T  and

¬T , and the conclusion is B. The argument can be described in the 
following steps:

step statemenreason
t

1) W → T
P remC SE2) ¬T P    i

3) ¬W 1,2, Modus Tollens
4) Prem CSE
5) B � W 4,3, Disjunctive  Syllogism

� B

Qua ntifi ed Sta tements:
We state the rules for predicates with one variable, but they can be gener- alized to pre dicates 

with two or more variables.

1. Universal Instantiation. If �x p(x) is true, then p(a) is true for each specific element a in the

universe of discourse; i.e.:

�x p(x)

� p(a)

For instance, from �x (x + 1 = 1 + x) we can derive 7 + 1 = 1 + 7.

2. Existential Inst antia tion. If �x p(x) is true, then p(a) is true for some specific element a in 

the universe of discourse; i.e.:

�x p(x)

� p(a)

The  difference respect to the previous  rule  is the  restriction in the meaning of a,

which now represents some (not any) element of the universe of discourse. So, for instance, 
from �x (x2 = 2) (the universe of discourse is the real numbers) we derive
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the existence of some element, which we may represent ±  2, such that (±  2)2   = 2.
3. Universal Generalization. If p(x)  is proved to  be true
for a generic

element in the  universe of discourse, then �x p(x) is true; i.e.:

p(x)

� �x p(x)

By “generic” we mean an element for which we do not make any assumption other than

its b elonging to the universe of discourse. So, for instance,  we can prove �x [(x + 1)2
=

x2 + 2x + 1] (say, for real numbers) 

using algebra to prove (x + 1)2 = x2

by assuming that x is a generic real number and + 2x 

+ 1.

4. E xistential Generalization. If p(a) is true for some specific ele- ment a in the universe of 

discourse, then �x p(x) is true; i.e.:

p(a)

x p(x)

For instance: from 7 + 1 = 8 we can derive �x (x + 1 = 8).

Example : Show that a counterexample can be used to disprove a universal statement, i.e., if a 

is an element in the universe of discourse,

then from ¬p(a) we can derive ¬�x p(x). An swer : The argument is as follows:

step  statement reason

1) ¬p(a) Prem CSE

2) �x ¬p(x) Existential Generalization

3) ¬�x p(x) Negation Universal Statement
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Properties of the Integers

MATHEMA TICAL INDUCTION:

The method of mathematical induction is based on a principle called the induction 
principle .

I NDUCTION PRINCIPLE:
The induction principle states as follows : let S(n) denote an open statement that involves a 

positive integer n .suppose that the following conditions hold ;

1. S(1) is true

2. If whenever S(k) is true for some particular , but arbitrarily chosen k €Z+   , then
S(k+1) is true. Then S(n) is true for all n € Z+ . Z+ denotes the set of all positive 

integers .

Suppose we wish to prove that a certain statement S(n) is true for all integers n ≥1 , the

method of proving such a statement on the basis of the induction principle is calledd the 
method of mathematical induction. This method consist of the following two steps,
re spectively called the basis step and the induction step

1) Basis step: verify that the statement S(1) is true ; i.e. verify that S(n) is true for n=1.
2) Induction step: assuming that S(k) is true , where k is an integer≥1, show that S(k+1) is

true.

Many properties of positive integers can be proved by mathematical induction.

Principle of Mathematical Induction:
Let P be a prop- erty of positive integers such that:

1. Basis Step: P (1) is true,  and

2.Inductive Step: if P (n) is true, then P (n + 1) is true. Then 

P (n) is true for all positive integers.

Remark : The prem CSE P (n) in the inductive step is called Induction 

Hypothesis.

The validity of the Principle of Mathematical Induction is obvious. The basis step states
that P (1) is true. Then the inductive step implies that P (2) is also true. By the inductive step
again we see that P (3) is true, and so on. Consequently the property is true for all positive
integers.

Remark : In the basis step we may replace 1 with some other integer m. Then  the
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conclusion is that the property is true for every integer n greater than or equal to m.

Example : Prove that the sum of the n first odd positive integers is

n2, i.e., 1 + 3 + 5 + ••• + (2n — 1) ‘ n2.
Answer : Let S(n) ‘ 1 + 3 + 5 + ••• + (2n — 1). We w ant to prove by induction that

for every positive integer n, S(n) ‘ n2.

1. Basis Step: If n ‘ 1 we have S(1) ‘ 1 ‘ 12, so the property is true for 1.
2. Inductive  Step:  Assume (Induction Hypothesis ) that  the prop- erty is true for some

positive integer n, i.e.: S(n) ‘ n2. We must prove that it is also true for n + 1, i.e., S(n

+ 1) ‘ (n + 1)2 . In fact:

S(n + 1) ‘ 1 + 3 + 5 + ••• + (2n + 1) ‘ S(n) + 2n + 1 .

But by induction hypothesis, S (n) ‘ n2, hence:

S(n + 1) ‘ n2 + 2n + 1 ‘ (n + 1)2 .
This  completes the  induction, and shows that the  property  is true for all
positive integers.

Example : Prove that 2n + 1 ≤ 2m  for n ≥ 3.

Answer : This is an example in which the property is not true for all positive 

integers but only for integers greater than or equal to 3.

1. Basis Step: If n ‘ 3 we have 2n + 1 ‘ 2 • 3 + 1 ‘ 7 and

2m ‘ 23
‘ 8, so the property is true  in this case.

2. Inductive  Step: Assume (Induction  Hypothesis ) that the prop- erty  is

true for some positive integer n, i.e.:  2n + 1 ≤ 2m . We must prove that

it is also true for n + 1, i.e., 2(n + 1) + 1 ≤ 2m+1 . By the induction

hypothesis we know that 2n ≤ 2m , and we also have that 3 ≤ 2m  if n ≥
3, hence

2(n + 1) + 1 ‘ 2n + 3 ≤ 2m + 2m ‘ 2m+1 .

This completes the induction, and shows that the property  is true  for all n ≥
3.
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Exerc CSE : Prove the following identi ties by induction:

n (n + 1)
• 1 + 2 + 3 + •• • + n ‘ .

2n (n + 1) (2n + 1)

• 12  + 22  + 32  + • • • + n2   ‘ .6

• 13 + 23 + 33 + ••• + n3  ‘ (1 + 2 + 3 + •• • + n)2.
Strong Form of M athemati cal Induct ion:
Let P  be a property of positive integers such that:
1. Basis Step: P (1) is true,  and

2. Inductive Step: if P (k) is true for all 1 ≤ k ≤ n then P (n + 1)
is true.

Then P (n) is true  for all positive integers.

Example : Prove that every integer n ≥ 2 is prime or a product of primes. Answer
:

1. Basis Step:  2 is a prime number,  so the property  holdsfor
n ‘ 2.

2. Inductive Step: Assume that if 2 ≤ k ≤ n, then k is a prime number or a product of primes.
Now, either n + 1 is a prime number or it is not. If it is a prime number

then itverifies the property. If it is not a prime number, then it can be written as the
product of two positive integers, n + 1 ‘ k1 k2 , such that 1 2

1 < 
k

,
k < n + 1. By

induction  hypothesis each of k1 a nd k2 must be a prime or a product  of primes,
product of primes.

hence n + 1 is a

This completes the proof.

The W ell-Orde ring Pr inci ple
Every nonempty set of positive integers has a smallest element.

√ √
a quotient  of

Example : Prove that 2 is irrational (i.e., 2 cannot be written as
positive integers) using the well-ordering principle.

√ √
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Hence starting with a fractional representation of 2 ‘ a/b we end up with another

fractional representation 2 ‘ b/a!
with a smaller numerator b < a. Repeating the

same  argument with the fraction b/a!   we getanother fraction with an even smaller

numerator, and so on. So the set of possible numerators of a fraction representing 
√

cann
ot

hav
e a

smalle
st contra dicting the

well-
ordering

principle
.

Consequent
ly, our assumption

√

has to be false.that 2 is rational
Reccurence relations

Here we look at recursive definitions under a d ifferent point of view. Rather than
definitions they will be considered as equations that we must solve. The point is
that a recursive definition is actually a def- inition  when there is one and only one
object  satisfying  it,  i.e., when the equations involved in that  definition  have a
unique solution. Also, the solution to thoseequations may provide a closed-form
(explicit) formula for the object defined.

The recursive step in a recursive definition is also called a recurrence relation. We will

focus on kth-order linear recurrence relations, which are of the form

C0 xm  + C1 xm-1 + C2 xm-2 + ••• + Ck xm-k ‘ bm ,

where C0 ‘ O. If bm ‘ O the recurrence relation is called homogeneous. OtherwCSE it is called

non-homogeneous.

The basis of the recursive definition is also called initial conditions of the recurrence.

So, for instance, in the recursive definition of the Fibonacci sequence, the recurrence is

Fm  ‘ Fm-1 + Fm-2

or

Fm — Fm-1 — Fm-2 ‘ O ,

and the initial conditions are

F0  ‘ O, F1  ‘ 1 .
One way to solve some recurrence relations is by iteration, i.e., by using the recurrence

repeatedly  until  obtaining  a  explicit  close-form  formula.  For  instance  consider  the
following recurrence relation:

xm  ‘ r xm-1 (n > O) ; x0  ‘ A .

By using the recurrence repeatedly  we get:

xm   ‘ r xm-1   ‘ r
3

xm-3

‘ ••• ‘ 
rm

2

xm-2 x
0

‘ A 
r

m
,

‘ r



DEPT. OF CSE, ACE Page 37



DISCRETE MATHEMATICAL 
STRUCTURES

15CS3
6

hence the solution is xm ‘ A rm .
Example : Assume that a country  with  currently

population  growth rate (birth rate minus death rate) of 1% per year,  and it also
receives  1OO thousand i mmigrants per year (which are quickly assimilated and
reproduce at the same rate as the native population). Find its population in 1O
years from now. (Assume  that all the immigrants  arrive in a single batch at the
end of the year.)

Answer : If we call xn   ‘ population in year n from now, we have:

xn  ‘ 1.O1 xn—1 + 1OO, OOO (n > O); x0 ‘ 1OO, OOO, OOO .

This is the equation above with r ‘ 1.O1, c ‘ 1OO, OOO and A ‘
1OO, OOO, OO, hence:

1.O1n —
1

xn n
+ 1OO, OOO

1.O1 —
1

‘ 1OO, OOO, OOO • 1.O1
‘
   

1OO,
 + 1OOO (1.O1n  — 1) .

OOO,    So:
OOO   •

 462, 317 .

1.O1n

The second particular case is for r ‘ 1 and  cm  ‘ c + d n, where c

and d are constant (so cm   is an arithmetic sequence):

xm  ‘ xm—1  + c + d n (n > O) ; x0  ‘ A .

The solution is now

m d  n (n +
1)X

xm   ‘ A + (c + d k) ‘ A + c n + .

k=1 2

Second Order Recurrence Relations.
relation

C0 xm + C1 xm—1 + C2 xm—2 ‘ O .

First  we will look for solutions  of the  form xm   ‘ c rm . By plugging in the
equation we get:

C0 c rm + C1 c rm—1 + C2 c rm—2 ‘ O ,



DEPT. OF CSE, ACE
Page 
38



DISCRETE MATHEMATICAL STRUCTURES
15CS3
6

hence  r  must be  a  solution of the following equation, called the  char-
acteristic equation of the recurrence:

C0 r2 + C1 r + C2  ‘ O .

Let r1 , r2 be the two (in general complex) roots of the above equation. They

are called characteristic roots. We distinguish  three cases:

1. Distinct Real Roots. In this case the general solution of the recurrence 

relation is

xm  ‘ c1 rm + c2 rm ,
1 2

w here c1 , c2  are ar bitrary constants.

2. Double Real  Root.  If  r1    ‘  r2    ‘ r,  the  general  solution  of the

recurrence relation is

xm  ‘ c1 rm + c2 n rm ,

w here c1 , c2  are ar bitrary constants.

3. Complex Roots. In this case the solution could be expressed in the same way 

as in the case of distinct real roots, but in

order to avoid the use of complex numbers we write ri — r eαi ,

r2   — r e—αi , ki — ci  + c2, k2   — (ci   — c2) i, which yields:i

xm — ki rm cos nα + k2 rm
sin nα .

—
RE CURSIVE DEFINITIONS:

RECURRENCE RELAT IONS:- The important methods to express the recurrance 
formula in explict form are

1) BACKTRACKING METHOD
2) CHARACTERISTIC EQUATION METHOD

BACKTRACKING METHOD:
This is suitable method for linear non-homogenous recurrence relation of the type 

xn= r x n-1 +s
The general method to find explicit formula

xn = r n-1 x1 + s(r n-1-1)/ (r-1) where r≠1 is the general explicit
CHARACTERISTIC EQUATION METHOD:
This is suitable method to find an explicit formula for a linear homogenous 

recurrance relation
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LINEAR HOMOGENOUS RELATION :

A recurrence relation of the type a n = r1 a n-1 +r2 a n-2+…….+ r k a n-k where r i
‘s’ are constants is a linear ho mogenous recurrence relation (LHRR) of degree k

1) A relation cn  = -2 c n-1 is a LHRR of degree 1 .
nd2) A relation xn = 4 x   + 5 is a linear non HRR because 2 term in RHS is a

n-1

constant . It doesn’t contain x n-2 factor .
3) A relation xn = xn-1 +2x n-2 is a LHRR of degree 2

2 st
n-1 is a non linear , non HRR because the 1  term in RHS4) A relation x n = x   + x n-2

is a second degree term.

CHARACTERISTIC EQUATION:

a n = r1 a n-1 + r 2 a n-2+…..+ r k a n-k..(1) is a LHRR of degree K . x k =
r1 x k-1 + r2 x k-2+….+r k is called characteristic equation.

• Let a n = r1 a n-1 + r2 a n-2 be LHRR of degree 2. its characteristic equation is x2 = r1 x

+ r2 or x 2 –r1 x- r2=0. if the characteristic equation has 2 distinct roots e1 , e2

then the explicit formula of the recurrence relation in a n= u e n 1 + v e n 2where u and 
v depends on the initial values.

• Let an = r1 a n -1 + r2 an-2 be a LHRR of degree 2 . Its characteristic equation is x 2 –r1

x – r2 =0 if the characteristic equation has repeated roots e, then the explicit formula

is an =u e n + v n e n where u and v depends on the initial values.
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Module 3:

Relations and Functions:

 Cartesian Products and Relations,

 Functions – Plain and One-to-One, Onto Functions

 Stirling Numbers of the Second Kind, Special Functions,

 The Pigeon-hole Principle,

 Function Composition and Inverse Functions.
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Relations
Introduction
Product set: If A and B are any 2 non-empty sets then the product set of 
A and B are the Cartesian product or product of A and B.

A X B = {(a, b) / (a ЄA, b Є B)}

A X B ≠ B X A

Example: (a) Let, A = {1, 2, 3}B = {a, b}

Then, A X B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

BX A = {(a, 1), (a, 2), (a, 3), (b, 1), (b,

2), (b, 3)} A X B ≠ B x A

(b) Let, A = {1, 2} B = {a, b} C={x, y}

B X C = {(a, x), (a, y), (b, x), (b, y)}

A X (B X C) = {(1, (a, x)), (1, (a, y)), (1, (b, x)), (1, (b, y)),

(2, (a, x)) (2, (a, y)), (2, (b, x)), (2, (b, y))}

A X B = {(1, a), (1, b), (2, a), (2, b)}

(A X B) X C = {((1, a), x), ((1, a), y), ((1, b), x), ((1, b), y),

((2, a), x), ((2, a), y), ((2, b),x),((2,b),y),}

*Remarks:

a. A X (B X C) = (A X B) X C

b. A X A = A2

DEPT. OF CSE, ACE Page 
42



DISCRETE MATHEMATICAL STRUCTURES
15CS3
6

c. If R is the set of all real numbers then R x R = R2, set of all points in plane.

d. (a, b) = (c, d) if a = c and b = d

Partition set: Let 'A' be a non-empty set. A partition of 'A' or quotient set
of 'A' is a collection P of subsets of

'A' such that.

(a)Every element of A belongs to some set in P

(b)If A1 and A2 are any two distinct members of P, then A1 n A2 = ф.

(c)The members of P are called 'blocks' or 'cells'.

Example:

Let,

A = {1, 2, 3, 4, 5} then,

P1 = {{1, 2, 3}, {4}, {5}}

P2 = {{1, 5}, {4, 3}, {2}}

P3 = {{1}, {2}, {3}, {4}, {5}}

Relations: Let A and B be any two non-empty sets. A relation R from a 
set A to the set B is a subset of A x B.

If (a, b) Є R then we write a R b, otherwCSE we write a R b (ie. a not related to 
b).

Example:

Let,
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A = {1, 2, 3, 4, 5}, Let R be a relation on A defined as a R b if a<b. R =
{(1, 2), (1, 3), (1, 4), (1, 5) (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}

=> R � A X A.

Domain of R: Dom (R) = {1, 2, 3, 4} � A

Range of R: Ran (R) = {2, 3, 4, 5} � B

Dom (R) = {x ЄA / x R y for some x Є A}

Ran (R) = {y Є B / x R y for some y Є B}

R - Relative set: If R is a relation from A to B and if x ЄA then the R 
relative set of x is defined as

R(x) = {y ЄB/ x R y}

If A1 � A then the R relative set of A1 is defined as,

R (A1) = {y Є B/x R y for some x Є A1}

= U R(x) for x Є A1

Example:

Let,

A = {a, b, c, d}

R= {(a, a), (a, b), (b, c), (c, a) (c, b) (d, a)}

R(a) = {a, b}

R(b) = {c}
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R (c) = {a, b}

R (d) = {a}

Let,

A1 = {a, c} be a subset of A,

Then, R (A1) = R (a) U R (c)

= {a, b} U {a, b}

= {a, b}

Matrix of a relation / Relation Matrix: Let A = {a1, a2, a3 ………. am} and B 

= {b1, b2,

b3...bn} be any two finite sets.

Let R be relation from A to B then the matrix of the relation R is defined as
the m x n matrix,

MR= [Mij]

Where Mij = 1, if (ai, bj) Є R

= 0, if (ai, bj) � R

Example:

(a)Let,

A = {1, 2, 3} and B = {x, 4}

R = {(1, x) (1, 4), (2, 4) (3, x)}

�
� 10

Thus, Mr =
� �
�
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�10�     �

� 1001�

� 0110�
(b) Given MR = � . Find Relation R.

�
Define set,

A= {a1, a2, a3}

and B = {b1, 

b2, b3, b4}

R = {(a1, b2) (a1, b4) (a2, b2) (a2, b3) (a3, b1) (a3, b3)}

Digraph of a relation: Let A be a finite set and R be a relation on A. 
Then R can be represented pictorially as follows,

(a)Draw a small circle for each element of A and label the circles with the 
corresponding e lement of A. These circles are called "Vertices".

(b)Draw an arrow from ai to aj if ai R aj. These arrows are called "edges".

(c)The resulting picture representing the relation R is called the "directed 
graph of R" or "digraph of R".

Example:

(a)Let, A be equal to the set

A = {1, 2, 3, 4}

R = {(1, 1), (1, 3), (2, 1), (2, 3), (3, 2), (4, 3)}
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Diagram:

4

1

2

3

The "indegree" of a ЄA is the number of elements b Є A such

that b R a. The "outdegree" of a Є A is the number of 

elements b Є A such that a R b

Elements Indegree Outdegree

1 2 2

2 1 2

3 3 1

4 0 1

(b) If A = {1, 2, 3, 4} and B = {1, 4, 6, 8, 9} and R: A →B defined by

a R b if b = a2.Find the domain, Range, and MR

A = {1, 2, 3, 4} B = {1, 4, 6, 8, 9}

R= {(x, y)/x A, y B and y = X2}

R = {(1, 1), (2, 4), (3, 9)}

Domain: Dom (R) = {1, 2, 3}
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Range: Ran (R) = {1, 4, 9}

� 10�000

�

=
�

0�100

�
Mr

00�001 �

� 00�

Properties of a relation:

1. Reflexive: Let R be a relatio n on a set A.

The "R is reflexive" if (a, a) Є R V a ЄA or a R a, V a Є A.

Example: A = {I, 2, 3}

R = {(1, 1), (2, 2) (1, 2), (3, 2) (3, 3)}

Therefore, R is reflexive.

A relation R on a set A is "non-reflexive" if ‘a’ is not relation to ‘a’ for some a ЄA 
or (a,

a) �R for some a Є A

A = {1, 2, 

3}

R= {(1, 1), (2, 1), (3, 2), (3, 3)} 

=> (2, 2) �R Therefore, R is not-reflexive.

2.Irreflexive: A relation R on a set A is irreflexive if a 

R a, V a Є A. Example: R = {(1, 2) (2, 1) (3, 2) (3, 1)}

(1, 1), (2, 2) (3, 3) �R hence R is irreflexive.
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A relation R on a set A is “not irreflexive” if ‘a’ is not Relation to ‘a’ for some a Є 
A.

Example: R= {(1, 1) (1, 2) (2, 1) (3, 2) (3, 1)}

(1, 1) Є R hence R is “not irreflexive”.
3. Symmetric Relation: Let R be a relation on a set A, then R is 
“symmetric” if whenever a R b, then b R a; V a Є A, b Є A.

Example: Let A = {1, 2, 3} and R = {(1, 1) (1, 2) (2, 1) (3, 2) (2, 3)}

Therefore, R is symmetric.

A relation R on a set A is said to be "not symmetric" if a R b and b R a for some 
a, b Є A.

Example: A = {1, 2, 3} and R = {(1, 2) (3, 2) (1, 3) (2, 1) (2, 3)}

Therefore, R is not symmetric.

4.A symmetric: Let R be a relation on a set A then R is “Asymmetric”, if
whenever a R b then b R a, V a, b Є A.

R= {(1, 2), (1, 3) (3, 2)}

Therefore, R is asymmetric.

A relation R on a set A is said to be "not Asymmetric" if a R b and b R a 
for some a, b ЄA R = {(1, 1) (1, 2) (1, 3) (3, 2)}

R is not symmetric.

5.Anti – symmetric: Let R be a relation on a set A, then R is anti 
symmetric if whenever a R b and b R a then a = b (for some a, b Є A)

Example: Let, A = {1, 2, 3} and R = {(1, 1), (1, 2), (3, 2)}

R is anti-symmetric Є 1R1 and 1 = 1.
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Exampl
e: R = {(1, 2) (2, 1)}

1R2, 2R1 but 2 = 1 hence R is not anti symmetric.

6. T ransitive Property: Let R be a relation on a set A, then R is 
transitive if whenever a R b and b R c, then a R c V a, b, c Є ¸ A.

Example: Let, A = {1, 2, 3} and R = {(1, 1), (1, 3), (2, 3), (3, 1) (2, 1), 
(3, 3)} (all should satisfy)

Equivalence relation: A Relation R is said to be an 
equivalence relation if it is, Reflexive (b) Symmetric and

(c)  Transitive.

Therefore, R is an equivalence Relation.

Symmetric: Let a R b

=> Є 1R2

2 is not Related to 1 and also b is not 

Related to a Hence, R is not symmetric

T ransitive: Let a R b and b R c

=> 1 R 2 and 2 R 3 but, 1 is not 
Related to 3 and also a is not Related to c

Hence, R is not transitive.

Therefore, R is not an equivalence Relation.
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b. R = {(1, 2), (2, 1) (1, 3) (3, 1) (2, 3) (3, 2)}

Reflexive: a R a V a Є A

=> 1 R1, 2 R 2, 3 R 3 not true,

Hence, R is not reflexive

Symmetric: Let a R b

=> 1 R 3

=> 3 R 1

=> b R a

Hence, R is symmetric.

T ransitive: Let a R b and b R c

=> 1 R 2 and 2 R 3
=> 1 R 3

=> a R c

Hence, R is transitive

Therefore, R is not an equivalence Relation.
c. A = {1, 2, 3}

R = A x A = {(1, 1)(1, 2)(1, 3)(2, 1)(2, 2)(2, 3)(3, 1)(3, 2)(3, 3)}

It is reflexive, symmetric and transitive and hence R is an 
equivalence

Relation.

Theorem: "Let R be an equivalence relation on a set A, and P be the 
collection of all distinct R - relative set of A. Then P is a partition of A, and 
R is the equivalence relation



DEPT. OF CSE, ACE Page 
51



DISCRETE MATHEMATICAL STRUCTURES
15CS3
6

determined by P"

OR

"Show that an e quivalence relation R in a set S which is non-empty, 
determine a partition of S"

Proof: Given, P = {R (a) / V a Є A}

We know that V a Є A, we have, a R a

=> (a, a) Є R

=> a Є R (a)

Therefore, for every e lement of A belongs to one of the sets of P.

If R (a) and R (b) are 2 distinct relative sets R(a) n R(b) = Ф

If possible, let x Є R (a) n R (b)

=>x Є R (a) and x Є R (b)

=>a R x and b R x

This partition determines the relation R in the sense that a R b if a and b 
belong to the same block of the partition.

Hence proved…..

*NOTE: The partition of a set A determined by an equivalence relation R 
is called the partition induced by R and is denoted by A/R.

Manipulation of relations:

1. Complement: Let R be a relation from A to B. The complement of R is a 
relation
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defined as a R b if a R~ b, where R~ is the complement of R.

=> (a, b) R~ if (a, b) R~

2.Union: Let R and S be 2 relations from A to B. The union R U S is a 
relation from A to B defined as,

a (R U S) b if either a R b or a S b

That is (a, b) Є R U S if either (a, b) Є R or (a, b) Є S.

3. Intersection: Let Rand S be relations from A to B. The intersection R 
n S is a relation from A to B defined as,

a (R n S) b if a R b and a S b

That is (a, b) Є R n S if (a, b) Є R and (a, b) Є S.

4. Inverse: Let R be a relation from A to B. The inverse R-1 is a relation 
from B to A defined as, a R b if b R-1 a

i.e., (a, b) Є R if (b, a) Є R-l

Composition of relations: Let Rand S be relations from A to Band B 
to C respectively. The composition of Rand S is the

relation S o R from A to C defined as,

a(S o R) c if there-exist b E B/a R b and b S c.

R2 =R o R = {(a, a) , (a, c) (a, b) (b, a) (b, c) (b, b) 
(c, a) (c, b) (c, c)} S2 = S o S = {(a, a) (b, b) (b, c) 
(b, a) (c, a) (c, c)}

Reflexive closure: Let R be a relation on a set' A'. Suppose R lacks a 
particular property, the smallest relation that contain R and which, 
processes the desired property is called the closure of R with respective a 
property in question.

Given a relation R on a set' A' the relation R1 = (A U R) is the "reflexive closure 
of R”.
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Example:
A = {1, 2, 3}

R= {(1, 1)(1,2)(2, 1)(1,3)(3, 2)} find the reflexive closure of R.

Solution: We know that, R is not reflexive because (2, 2) Є Rand (3, 3) Є R.

Now, A= {(1, 1) (2, 2) (3, 3)}

Therefore, R1 = R U A= {(1, 1) (1, 2) (2, 1) (2, 2) (1, 3) (3, 2) (3, 3)}

R1 is the reflexive closure of R.

Symmetric closure : If R is not symmetric then there exists (x, y) A 
such that (x, y) Є R, but (y, x) Є R. To make R symmetric we need to add

the ordere d pairs of R-1.

R1 = R U R-1 is the "symmetric closure of R".

A = {1, 2, 3}

R = {(1, 1) (1, 2) (2, 1) (1, 3) (3, 2)} find the symmetric closure of R.

Solution: We know that, R is not symmetric because (1, 3) Є R but (3, 1) Є R and 
(3, 2)
ЄR but (2, 3) Є R.

Example: R-1 = {(1, 1) (2, 1) (1, 2) (3, 1) (2, 3)}

Therefore, R1 = R U R-l = {(1, 1) (1, 2) (2, 1) (1, 3) (3, 1) (3, 2) (2, 3)}

R1 is called the symmetric closure of R.

Transitive closure: Let R be a relation on a set A the smallest transition 
relation co ntaining R is called the "Transitive closure of R".

Functions
Introduction
A person counting students present in a class assigns a number to each
student under consideration.  In this  case a correspondence between two
sets  is  established:  between  students  understand  whole  numbers.  Such
correspondence is called functions. Functions
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are central to the study of physics and enumeration, but they occur in many 
other situations as well. For instance, the correspondence between the data 
stored in computer memory and the standard symbols a, b, c... z, 0, 
1,...9,?,!, +... into strings of O's and I's for digital processing and the 
subsequent decoding of the strings obtained: these are functions. Thus, to 
understand the general use of functions, we must study their properties in 
the general terms of set theory, which is will be we do in this chapter.

Definition:  Let A and B be two sets. A function f from A to B is a rule that 
assigned to
each element x in A exactly one element y in B. It is 
denoted by f: A →B

Note:

1. The set A is called domain of f.
2. The set B is called domain of f.

Value of f: If x is an element of A and y is an element of B assigned to x,
written y = f(x) and call function value of f at x. The e lement y is called 
the image of x under f.

Example: A = {1, 2, 3, 4} and B= {a, b, c, d}

R= {(1, a), (2, b), (3, c),

{4, d)} S = {(I, b), (I, d),

(2, d)}

Therefore, R is a function and S is not a function. Since the element 1has two 
images

band d, S is not a function.

Example: Let A = {1, 2, 3, 4} determine whether or not the following relations 
on A are
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functions.

1. f= {(2, 3), (1, 4), (2, 1), (312), (4, 4)}

(Since e lement 2 has 2 images 3 and 1, f is not a function.)

2.g={(3,1),(4,2),

(1,1)} g is a 

function

3.h={(2,1),(3,4),(1,4),(2,1),

(4,4)} h is a function

4.Let A= {0, ±1, ±2, 3}. Consider the function F: A→ R, where R is the 

set of all real numbers, defined by f(x) =x3 -2x2 +3x+1 for x�A. Find 

the range of f.

f (0) =1

f (1) =1-2+3+1=3

f (-1) =-1-2-3+1=-5

f (2) =8-8-6+1=7

f (-2) =-8-8-6+1= -21

f (3) =27-18+9+1=19

� Range = {1, 3,-5, 7,-21, 19}
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5.If A= {0, ±1, ±2} and f: A→ R is defined by f(x) =x2-x+1, 

x�A find the range. f (0) =1

f (1) =1-

1+1=1 f (-1) 

=1+1+1=3 f 

(2) =4-

2+1=3 f (-2) 

=4+2+1=7

� Range = {1, 3, 7}

Types of functions:

1. Everywhere defined -2
A function f: A ~ B is everywhere defined if domain of f equal to A (dom  
f

= A)

A function f: A →B is onto or surjection if Range of f = B. In other words, a 
function f is surjection or onto if for any value l in B, there is at least one 
element x in A for which f(x) = y.

3. Many to one function



A function F is said to be a many-to-one function if a :f= b, f(a) = f(b), where (a, 
b) E A.
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Example:

Here, 1: f=2 but f (1) = f (2), where 1,2 E A

4. One-to-one function or injection
A function f: A →B is one-to-one or injection if (a) =f (b) then a = b, 

where a, b E A. In other words if a: f=b then f (a): f= f (b).

5. Bijection function
A function f: A →B is Bijection if it is both onto and one-to-one.

6. Invertible function

A function f: A ---+ B is said to be an invertible function if its inverse 
relation, f-I is a function from B →A.

If f: A →B is Bijection, then [-I: B ---+A exists, f is said to be invertible.

Example: Y =f(x) =x+1
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Here , dom f=A

2. Onto or surjection function

Example: f f-1

f(a)

A B  B A
f(b)

a
f(c)

b

c f--1(f(a)) a b
f--1(f(b))

f -1 B  A

B = {b1, b2, b3} C = { c1, c2} D = {d1, d2, d3, d4}

Let f1: A  B, f2: A  D, f3: B  C, f4: D  B be functions defined as follows,

1. f1 = {(a1, b2) (a2, b3) (a3 ,b1)}

2. f2 = {(a1, d2) (a2, d1) (a3 , d4)}

3. f3  = {(b1, c2 )(b2, c2 ) (b3, c1)}

4. f4  = { (d1, b1 ) (d2, b2 ) (d3,b1)}
Identity function
A function f: A~ A such that f (a) = a, 'if a Є A is called the identity 
function or identity mapping on A. Dom (t) = Ran (t) = A
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Constant function
A function f: A  B such that f (a) =c, �a� dom (f) where c is a fixed 
element of B, is called a constant function.

Into function

A function f: AB is said to be an into function if there exist some b in 
B which is notthe image of any a in A under f.

3 is not the image of any element.

One-to-one correspondence
If f: AB is everywhere defined and is Bijective, then corresponding to 
every a�Athere is an unique b�B such that b=f(a) and corresponding to 
every b�B there is an unique a�A such that f(a)=b. for this reason a 
everywhere defined bijection function from AB is called as one-one 
correspondence from AB

Composition of function

Let f: A (B and g: B (C is any 2 functions, and then the composition of f and g is a
function g o f: A (C defined as, g of (a) =g [f (a)] (C, (a (dom f).
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Inverse function
Consider a function f: A (B. Then f is a relation from A to B with Dom (f) (A
and Ran (f) (B. Its inverse, f -1, is a relation from B to A which is such that
if whenever (a, b) (f then (b, a) (f -1)

Also, Dom (f -1) = Ran (f)
Ran (f -1) =Dom (f) and

(f -1) -1  = f

Definition
A function f: A (B is invertible if it is inverse relation f -1 is a function from B to A.
Then, f -1 is called the inverse function of f.

Ex: let A = {a, b, c, d} and B = {e, f, g, h} and f: A (B be a function defined by

f (a) = =e, f (b) = e, f (c) = h, f (d) = g

Then, as a relation from A to B, f reads

f = {(a, e), (b, e), (c, h), (d, g)}

And f -1 is a relation from B to A, given by

f -1 = {(e, a), (e, b), (h, c), (g, d)}

Now, Dom (f -1) = [e, h, g} = Ran(f) and

Ran (f -1) = {a, b, c, d} = A = Dom (f)

Also, (f -1) -1 = f

Although f -1 is a relation from B to A, it is not function from B to A, 
because e is related to two elements ‘a’ and ‘b’ under f -1.

Let A = {1,2,3,4} and B = {5,6,7,8} and the function f: A ( B defined by
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f (1) = 6, f(2) = =8, f(3) = 5, f(4) = 7

Then, f = {(1, 6), (2, 8), (3, 5), (4, 7)}

� f -1 = {(6 , 1), (8 , 2), (3 , 5), (7 , 4)}
In this case, f -1 is not only a relation from B to A but a function as well.

Characteristic function
Introduction

Characteristic function is a special type of function. It is very useful in the 
field of computer science. Through this function one can tell whether an 
element present in the set or not. If the function has the value 1 then the 
particular element belongs to the set and if it has value 0 then the element 
is not present in the set.

Definition
Associated with the subset a of � we can define a characteristic function 
of A over � as f: �→{0, 1} where

fA (x) = 1 if x � A

0 if x� A

Properties of the characteristics function

1.

fA n B(x) =

f

(x). 

Af (x)  B
Proof:

i. if x � AnB  then x � A and x � B

� f

(x) =A 

1 and f B (x) =1

� f (x)AnB= 1 = f  (x). Af  (x)  B

ii. if
x� AnB then 
f

(x)AnB= 0. but if x� AnB then  x� A and 

x� B

� f

(x) =A 

0 and f B (x) =0
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� f   (x)AnB= 0 = f  (x). Af  (x)  B

� From case 1 and 2

f

(Axn)B  = f  

(x).A f (x) B

f AUB(x) 

= f

(x) 

+A

f  (x) - Bf  (x). fA 

(x)  B

Proof:

i. Let x� AUB then f AUB (x) = 1. But if x � AUB then there are three cases

case1: let x � A  but not in B then fA  (x) = 1 and fB  (x)=0 � f (x) =AU1B = f A 

(x)

+ f A (x) - f A (x) . f 

B (x) [Because 

1+0+0]

case2:   
let x � B but not in A

Then fB (x) = 1 

and

fA (x) =

0

� f

(xAUB)= 1 = f A (x) + f B (x) - f

A (x)

. f B 

(x)
[Because 0+1-
0]

case3: let  x � A and x � B

Then fA (x) = 1 

and

fB (x) =

1

� f

(xAUB)= 1 = f A (x) + f B (x) - f

A (x)

. f B 

(x)
[Because 1+1-
1]

f
(x
) = f A (x) + f B (x) - f A (x) . f B (x)



AUB

Let x � A U B then fAUB (x) =0
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x � A U B 
then x � A  and x � B then

fA (x) = 0 and  fB (x) = 0

� f AUB (x) = 0 = fA (x) + fB (x) - fA (x) . fB (x)
[because 0+0-1]
� From case i and ii.

� f AUB (x) = fA (x) + fB (x) - fA (x) . fB (x)

A symmetric difference is associative on sets

To prove (A � B) � C = A � (B � C) we have to prove

f (A � B) � C (x) = f A � (B � C) (x) � x

LHS = f (A � B) � C

= f (D � C)  where D = A � B

= f D + f c – 2 f D f c

= f c + f D (1-2 f c )

= f D + f A � B (1-2 f c)

= f c + (f A + f B - 2 f A f B) (1 – 2 f c)

= f c + f A + f B - 2 f A f B - 2 f A f C - 2 f B f C + 4 f A f B f C

= f A + (f B + f c – 2 f B f C) – 2 f A (f B + f C – 2 f B f C)

= f A + f B + f C - 2 f B f C (1- 2 f A)

= f A + f B�C (1 - 2 f A)
= f A + f B�C  - 2 f A f B�C

= f A �(B�C)

= RHS
(A � B) � C = A � (B � C)
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Permutation function

A permutation on ‘A’ is a bijection of ‘A’ onto itself. Let ‘A’ = {a1, a2, a3, 
----------- an}.Where A is a finite set, if P is a pe rmutation on A then P can 
be represented as ,

P = a1 a
2

a3-----------an

P(a1
)

P(a2
)

P(a3)-------P(an)

This is called as two line notation of a pe rmutation of A.

NOTE: (a) if |A| =n, then there n! Permutation on A

(b) The composition of two permutations is again a permutation called 
Product of permutation.
Cycle

Consider a permutation P of a set A = {a1, a2, a3, --------an}

In this permutation suppose r e lements of A say {b1, b2, b3, -------- br}
are such that P (b1) =b2, P (b2) =b3, .....P(br-1 ) =br , P(br ) =b1 , and the
re maining el ements of A are images of themselves, Then P is called a
cycle of length ‘r’ , and is denoted by (b1, b2, b3 ……. br).

Example 1:

A = {1, 2, 3, 4} and P(A) = 1  2  3  4

3 2 4 1

P(1) = 3 ; P(3) = 4; P(4) = 1

�(1, 3, 4) forms a cycle of length 3.

�In P the elements (1, 3, 4) forms a cycle and ‘2’ remains unchanged.
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� P is a cycle of 

length 3. Example 2:

A = {1, 2, 3, 4, 5, 6} 
and P = 1 2 3 4 5 6

3 2 4 6 5 1

P(1) = 3;  P(3) = 4;  P(4) 
= 6; P(6) = 1

�(1, 3, 4, 6) forms a cycle (2 and 5 remain unchanged)

�P is a cycle of length 4.

T ransposition

A cycle of length 2 is called a “transposition” if A = {a1, a2, a3, ---- an} 
then P = (ai, aj), i ≠ j is a transposition of A.

Example:

A = {1, 2, 3, 4, 5, 6} compute

1.(4, 1, 3, 5) o (5, 6, 3) and

2.(5, 6, 3) o (4, 1, 3, 5)

P1 = 1  2  3  4  5  6

3 2 5  1 4 6

P2 = (5, 6, 3) = 1 2 3 4 5 6

1 2 5 4 6 3
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P10P2 =

1 2 3 4 5 6 1 2 3 4 5 6

3 2 5 1 4 6 1 2 5 4 6 3

2. P2 0 P1 = (5, 6, 3) o (4, 1, 3, 5) = 1  2  3  4  5  6

5 2 6 1 4 3

Even and odd permutations

Example:

A = {1, 2, 3, 4, 5, 6, 7, 8} find whether the following pe rmutation 
are even or odd 1. P =

P = (1, 3) o (1, 8) o (1, 6) o (1, 4)

� P is an even permutation.

a. P = (4, 8) o (3, 5, 2, 1) o (2, 4, 7, 1)
P = (4, 8) o (3, 1) o (3, 5) o (2, 1) o (2, 7) o (2, 4)
� P is an odd permutation because gn per is expressed as a composition of 
odd number of transportation.

Note: Product of even-even permutation is even

Product of even-odd permutation is odd

DEPT. OF CSE, ACE Page 
67



DISCRETE MATHEMATICAL STRUCTURES
15CS3
6

Product of odd-odd permutation is odd

Even pe rmutation cannot be expressed in terms of odd

Odd permutation cannot be expressed in terms of even.

Hashing function
Introduction

Suppose we want to store the mail address of all voters of a large city in n
number  of  files,  numbered  from 0  to  n-1 ,  in  such  a  way that  the  file
containing the address any chosen voter can be located almost instantly.
The following is one way of doing this task First, to each voter let us assign
a  unique  positive  integer  as  an  identification  number.  Next,  to  each
identification number, let us assign a unique positive integer called a key.
The keys can be such that two identification numbers can have the same
key  but  two  different  keys  are  not  assigned  to  the  same identification
number.

Therefore the number of identification number will be equal to the number 
of voters , but the number, of keys can be less than the no. of identification 
number.

Definition
Let A denote the set of all keys and B = {0, 1, 2, ------- (n-1)} , the set of all files.

Consider an everywhere defined function ‘ hn ; hn : A → B specified by hn 

(a) = r, where r is the remainder, r= a/n and a � A . This function 

determines a unique r. for any specified a � A , this r will be one and only 

one of the numbers from 0 to n-1 , (both inclusive).

The function hn is called hashing function. For this function a set of all keys is 

domain.

NOTE: The key need not be different from the identification number. If the 
keys are identical with the identification number, then the domain of the 
hashing function is the set of all identification number.
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Module 4:

Relations contd.:

 Properties of Relations,

 Computer Recognition – Zero-One Matrices and Directed Graphs,

 Partial Orders – Hasse Diagrams,

 Equivalence Relations and Partitions.

Definition and Properties

A binary relation R from set x to y (written as xRy or R(x,y)) is a subset of the Cartesian product

x × y. If the ordered pair of G is reversed, the relation also changes.

Generally an n-ary relation R between sets A1, ... , and An is a subset of the n-ary product A1 × ...

× An. The minimum cardinality of a relation R is Zero and maximum is n2 in this case.

A binary relation R on a single set A is a subset of A × A.

For two distinct sets, A and B, having cardinalities m and n respectively, the maximum 

cardinality of a relation R from A to B is mn.

Domain and Range

If there are two sets A and B, and relation R have order pair (x, y), then −

x The domain of R is the set { x | (x, y) � R for some y in B }

x The range of R is the set { y | (x, y) � R for some x in A }

Examples

Let, A = {1, 2, 9} and B = {1, 3, 7}

x Case 1 − If relation R is ‘equal to’ then R = {(1, 1), (3, 3)}

x Case 2 − If relation R is ‘less than’ then R = {(1, 3), (1, 7), (2, 3), (2, 7)}

x Case 3 − If relation R is ‘greater than’ then R = {(2, 1), (9, 1), (9, 3), (9, 7)}
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A relation can be represented using a directed graph.

The number of vertices in the graph is equal to the number of elements in the set from which the

relation has been defined. For each ordered pair (x, y) in the relation R, there will be a directed

edge from the vertex ‘x’ to vertex ‘y’. If there is an ordered pair (x, x), there will be self- loop

on vertex ‘x’.

Suppose, there is a relation R = {(1, 1), (1,2), (3, 2)} on set S = {1, 2, 3}, it can be represented

by the following graph −

Types of Relations

x The Empty Relation between sets X and Y, or on E, is the empty set �

x The Full Relation between sets X and Y is the set X × Y

x The Identity Relation on set X is the set {(x, x) | x � X}

x The Inverse Relation R' of a relation R is defined as − R’ = {(b, a) | (a, b) � 

R} Example − If R = {(1, 2), (2, 3)} then R’ will be {(2, 1), (3, 2)}

x A relation R on set A is called Reflexive if �a�A is related to a (aRa holds). 

Example − The relation R = {(a, a), (b, b)} on set X = {a, b} is reflexive

x A relation R on set A is called Irreflexive if no a � A is related to a (aRa does not 

hold). Example − The relation R = {(a, b), (b, a)} on set X = {a, b} is irreflexive
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x A relation R on set A is called Symmetric if xRy implies yRx, �x�A and �y�A.

Example − The relation R = {(1, 2), (2, 1), (3, 2), (2, 3)} on set A = {1, 2, 3} is 

symmetric.

x A relation R on set A is called Anti-Symmetric if xRy and yRx implies x = y �x � A 

and �y � A.

Example − The relation R = {(1, 2), (3, 2)} on set A = {1, 2, 3} is antisymmetric.

x A relation R on set A is called Transitive if xRy and yRz implies xRz, �x,y,z � A.

Example − The relation R = {(1, 2), (2, 3), (1, 3)} on set A = {1, 2, 3} is transitive

x A relation is an Equivalence Relation if it is reflexive, symmetric, and transitive.

Example − The relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2,1), (2,3), (3,2), (1,3), (3,1)}

on set  A = {1,  2,  3} is  an equivalence  relation since it  is  reflexive,  symmetric,  and

transitive.
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Module 5:

Groups:

 Definitions, properties,

 Homomrphisms,

 Isomorphisms,

 Cyclic Groups,

 Cosets, and Lagrange’s Theorem.

Coding Theory and Rings:

 Elements of CodingTheory,

 The Hamming Metric,

 The Parity Check, and Generator Matrices.

Group Codes:

 Decoding with Coset Leaders,

 Hamming Matrices.

Rings and Modular Arithmetic:

 The Ring Structure – Definition and Examples,

 Ring Properties and Substructures, The Integer modulo – n
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GROUPS

Introduction:

Definitions, Examples, and Elementary Properties:

In  m athematics, a  discrete group is a  group G equipped with the  discrete topology. With
this topology G becomes a topological group. A discrete subgroup of a topological group G
is a  subgroup H whose  relative topology is the discrete one. For example, the  integers,  Z,
form a discrete subgroup of the reals, R, but the rational numbers, Q, do not.

Any group can be given the discrete topology. Since every map from a discrete space is
continuous, the topological homomorphisms between discrete groups are exactly the  group
homomorphisms between the underlying groups. Hence, there is an  isomorphism between
the category of groups and the category of discrete groups. Discrete groups can therefore be
identified  with  their  underlying  (non-topological)  groups.  With  this  in  mind,  the  term
discrete group theory is used to refer to the study of groups without topological structure, in
contradistinction  to  topological  or  Lie  group  theory.  It  is  divided,  logically  but  also
technically, into finite group theory, and infinite group theory.

There are some occasions when a topological group or Lie group is usefully endowed with
the discrete topology, 'against nature'. This happens for example in the theory of the  Bohr
com pactification, and in group cohomology theory of Lie groups.

Properties:

Since topological groups are homogeneous, one need only look at a single point to determine

if  the  group  is  discrete.  In  particular,  a  topological  group is  discrete  if  and  only  if  the
singleton containing the identity is an open set.

A discrete group is the same thing as a zero-dimensional  Lie group (uncountable discrete
groups are not second-co untable so authors who require Lie groups to satisfy this axiom do
not regard these groups as Lie groups). The identity component of a discrete group is just the
trivial subgroup while the group of components is isomorphic to the group itself.

Since the only  Hausdorff  topology on a  finite  set  is  the discrete  one,  a  finite  Hausdorff
topological group must necessarily be discrete.  It follows that every finite subgroup of a

Hausdorff group is discrete.

A discrete subgroup H of G is co compact if there is a compact subset K of G such that HK =

G.
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Discrete  normal  subgroups play  an  important  role  in  the  theory  of  covering  groups and
locally isomorphic groups. A discrete normal subgroup of a  connected group G necessarily
lies in the center of G and is therefore abelian.

Other p roperties:

• every discrete group is totally di sconnected
• every subgroup of a discrete group is discrete.
• every quotient of a discrete group is discrete.
• the product of a finite number of discrete groups is discrete.
• a discrete group is compact if and only if it is finite.
• every discrete group is locally compact.
• every discrete subgroup of a Hausdorff group is closed.
• every discrete subgroup of a compact Hausdorff group is finite.

Examples:

• Frieze groups and wallpaper groups are discrete subgroups of the i sometry group of

the Euclidean plane. Wallpaper groups are cocompact, but Frieze groups are not.

• A space group is a discrete subgroup of the i sometry group of Euclidean space of 
some dimension.

• A  crystallographic  group usually  means  a  cocompact,  discrete  subgroup  of  the
isometries of some Euclidean space. Sometimes, however, a crystallographic

group can be a cocompact discrete subgroup of a n ilpotent or solvable Lie group.
• Every  triangle group T is a discrete subgroup of the isometry group of the sphere

(when T is finite), the Euclidean plane (when T has a Z + Z subgroup of finite index),
or the hyperbolic plane.

• Fuchsian groups are, by definition, discrete subgroups of the isometry group of the 
hyperbolic plane.

o  A Fuchsian group that preserves orientation and acts on the upper half-plane

model of the hyperbolic plane is a discrete subgroup of the Lie

group PSL(2,R), the group of orientation preserving isometries of the upper 
half-plane model of the hyperbolic plane.

o A Fuchsian group is sometimes considered as a s pecial case of a Kleinian
group,  by  embedding  the  hyperbolic  plane  isometrically  into  three
dimensional hyperbolic space and ex tending the group action on the plane
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to the whole space.
o The  modular  group is  PSL(2,Z),  thought  of  as  a  discrete  subgroup  of

PSL(2,R).  The  modular  group  is  a  lattice  in  PSL(2,R),  but  it  is  not
cocompact.

• Kleinian groups are, by definition, discrete subgroups of the isometry group of 
hyperbolic 3-space. These include quasi- Fuchsian groups.

o A Kleinian group that preserves orientation and acts on the upper half space
model  of  h  yperbolic  3-space  is  a  discrete  s  ubgroup  of  the  Lie  group
PSL(2,C), the group of o rientation preserving isometries of the upper half-
space model of h yperbolic 3-space.

• A lattice in a Lie group is a discrete subgroup such that the Haar measure of the 

quotient space is finite.

Group homomorphism:

Image of a Group homomorphism(h) from G(left) to H(right). The smaller oval inside H is 

the image of h. N is the kernel of h and aN is a coset of h.

In mathematics, given two groups (G, *) and (H, ·), a group homomorphism from (G, *) to 

(H, ·) is a function h : G → H such that for all u and v in G it holds that

where the group operation on the left hand side of the equation is that of G and on the right 

hand side that of H.

From this property, one can deduce that h maps the identity element eG of G to the identity 

element eH of H, and it also maps inverses to inverses in the sense that
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h(u - 1) = h(u) - 1.

Hence one can say that h "is compatible with the group s tructure".

Older notations for the homomorphism h(x) may be xh, though this may be confused as an
index or a general subscript. A more recent trend is to write group homomorphisms on the
right of their arguments, omitting brackets, so that h( x) becomes simply x h. This approach is
especially prevalent in areas of group theory where  automata play a role, since it accords
better with the convention that automata read words from left to right.

In areas of mathematics where one considers groups endowed with additional structure, a
homomorphism  sometimes  means a  map which  respects  not  only the group structure (as
above) but also the extra structure. For example, a homomorphism of topological groups is
often required to be continuous.

The category of groups

If h : G → H and k : H → K are group homomorphisms, then so is k o h : G → K. This shows

that  the  class of all  groups,  together  with group homomorphisms as morphisms, forms a

category.

Types of homomorphic maps

If the homomorphism  h is a  bijection, then one can show that its inverse is also a group
homomorphism, and h is called a group isomorphism; in this case, the groups G and H are
called is omorphic: they differ only in the notation of their elements and are identical for all p
ractical purposes.

If h: G → G is a group h omomorphism, we call it an endomorphism of G. If furthermore
it is bijective and hence an isomorphism, it is called an automorphism. The set of all

automorphisms of a group G, with functional composition as operation, forms itself a
group, the automorphism  group of G. It is denoted by Aut(G). As an example, the
automorphism group of (Z, +) contains only two elements, the identity transformation
and mu ltiplication with -1; it is isomorphic to Z/2Z.
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An epimorphism is a surjective homomorphism, that is, a homomorphism which is onto as a

function. A monomorphism is an injective homomorphism, that is, a homomorphism which

is one-to-one as a function.

Homomorphisms of abelian groups

If  G and  H are  abelian (i.e.  commutative)  groups,  then the set  Hom(G,  H)  of all  group

homomorphisms  from  G to  H is  itself  an  abelian  group:  the  sum  h +  k of  two

homomorphisms is defined by

(h + k)(u) = h(u) + k(u) for all u in G.

The commutativity of H is needed to prove that h + k is again a group homomorphism. The
addition of homomorphisms is compatible with the composition of homomorphisms in the
following sense: if f is in Hom(K, G), h, k are elements of Hom(G, H), and g is in Hom(H,L),
then

(h + k) o f = (h o f) + (k o f)  and g o (h + k) = (g o h) + (g o k).

This shows that the set End(G) of all endomorphisms of an abelian group forms a ring, the
endomorphism  ring of  G.  For  example,  the  endomorphism  ring  of  the  abelian  group
consisting  of  the  direct  sum of  m copies  of  Z/nZ is  isomorphic  to  the  ring  of  m-by-m
matrices with entries in  Z/nZ. The above compatibility also shows that the category of all
abelian groups with group ho momorphisms forms a preadditive category; the existence of
direct sums and well-behaved kernels makes this category the prototypical example of an
abelian category.

Cyclic group

In group theory, a cyclic group is a group that can be generated by a single element, in the
sense that the group has an element  g (called a "generator" of the group) such that, when
written multiplicatively, every element of the group is a power of g (a multiple of g when the
notation is additive).
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Definition

The six 6th complex roots of unity form a cyclic group under multiplication. z is a primitive 

element, but z2 is not, because the odd powers of z are not a power of z2.

A group G is called cyclic if there exists an element g in G such that G = <g> = { gn | n is an
integer }. Since any group generated by an element in a group is a subgroup of that group,
showing that the only subgroup of a group G that contains g is G itself suffices to show that
G is cyclic.

For example, if G = { g0, g1, g2, g3, g4, g5 } is a group, then g6 = g0, and G is cyclic. In fact,
G is essentially the same as (that is, isomorphic to) the set { 0, 1, 2, 3, 4, 5 } with addition

modulo 6. For example, 1 + 2 = 3 (mod 6) cor responds to g1·g2 = g3, and 2 + 5 = 1 (mod 6)

corresponds to g2·g5 = g7 = g1, and so on. One can use the isomorphism φ defined by φ(gi) =
i.

For every positive integer  n there is exactly one cyclic group (up to isomorphism) whose
order is n, and there is exactly one infinite cyclic group (the integers under addition). Hence,
the cyclic groups are the simplest groups and they are completely classified.

The name "cyclic" may be m isleading: it is possible to generate infinitely many elements

and not form any literal cycles; that is, every  gn is distinct. (It can be said that it has one
infinitely long cycle.) A group generated in this way is called an infinite cyclic group, and is
isomorphic to the additive group of integers Z.

Furthermore,  the circle group (whose elements are uncountable) is  not a cyclic group—a

cyclic group always has countable elements.
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Since  the  cyclic  groups  are  abelian,  they  are  often  written  additively  and  denoted  Zn.
However, this notation can be problematic for number theorists because it conflicts with the
usual notation for p  -adic number rings or localization at a prime ideal. The quotient notations
Z/nZ, Z/n, and Z/(n) are standard alternatives. We adopt the first of these here to avoid the
collision of notation. See also the section Subgroups and notation below.

One may write the group multiplicatively, and denote it by Cn, where n is the order (which 

can be ∞). For example, g3g4 = g2 in C5, whereas 3 + 4 = 2 in Z/5Z.

Properties

The fundamental theorem of cyclic groups states that if  G is a cyclic group of order n then
every subgroup of G is cyclic. Moreover, the order of any subgroup of G is a divisor of n and
for  each positive  divisor  k of  n the  group  G has  exactly  one subgroup of  order  k.  This
property characterizes finite cyclic groups: a group of order n is cyclic if and only if for every
divisor  d of  n the group has at most one subgroup of order  d. Sometimes the e quivalent s
tatement is used: a group of order n is cyclic if and only if for every divisor d of n the group
has exactly one subgroup of order d.

Every finite cyclic group is i somorphic to the group { [0], [1], [2], ..., [n - 1] } of integers
modulo  n under addition,  and any infinite cyclic group is isomorphic to  Z (the set of all
integers)  under addition.  Thus,  one only needs  to look at  such groups to  understand the
properties of cyclic groups in general. Hence, cyclic groups are one of the simplest groups to
study and a number of nice p roperties are known.

Given a cyclic group G of order n (n may be infinity) and for every g in G,

• G is abelian; that is, their group operation is com mutative: gh = hg (for all h in G). 
This is so since g + h mod n = h + g mod n.

• If n is finite, then gn = g0 is the identity element of the group, since kn mod n = 0 for 
any integer k.

• If n = ∞, then there are exactly two elements that generate the group on their own: 
namely 1 and -1 for Z

• If n is finite, then there are exactly φ(n) elements that generate the group on their 
own, where φ is the Euler totient function

• Every subgroup of G is cyclic. Indeed, each finite subgroup of G is a group of { 0,
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1, 2, 3, ... m - 1} with addition m odulo m. And each infinite subgroup of G is mZ for 
some m, which is bijective to (so is omorphic to) Z.

• Gn is isomorphic to Z/nZ (factor group of Z over nZ) since Z/nZ = {0 + nZ, 1 +
nZ, 2 + nZ, 3 + nZ, 4 + nZ, ..., n - 1 + nZ} { 0, 1, 2, 3, 4, ..., n - 1} under 

addition modulo n.

More generally, if d is a divisor of n, then the number of elements in Z/n which have order d

is φ(d). The order of the residue class of m is n / gcd(n,m).

If p is a prime number, then the only group (up to isomorphism) with p elements is the cyclic

group Cp or Z/pZ.

The direct product of two cyclic groups Z /nZ and Z/mZ is cyclic if and only if n and m are

coprime. Thus e.g. Z/12Z is the direct product of Z/3Z and Z/4Z, but not the direct product
of Z/6Z and Z/2Z.

The definition immediately implies that cyclic groups have very simple group presentation 

C∞ = < x | > and Cn = < x | xn > for finite n.

A primary cyclic group is a group of the form  Z/pk where  p is a  prime number. The  fun
damental theorem of abelian groups states that every finitely generated abelian group is the
direct p roduct of finitely many finite primary cyclic and infinite cyclic groups.

Z/nZ  and Z  are also commutative rings. If p is a prime, then Z/pZ  is a finite field, also

denoted by Fp or GF(p). Every field with p elements is isomorphic to this one.

The  units of  the  ring  Z/nZ are  the  numbers  coprime to  n.  They  form  a  group  under

multiplication  modulo n with  φ(n)  elements  (see  above).  It  is  written  as  (Z/nZ)×.  For

example, when n = 6, we get (Z/nZ)× = {1,5}. When n = 8, we get (Z/nZ)× = {1,3,5,7}.

In fact, it is known that (Z/nZ)× is cyclic if and only if n is 1 or 2 or 4 or pk or 2 pk for an odd

prime number p and  k ≥ 1, in which case every generator of (Z/nZ)× is called a  primitive

root modulo n. Thus, (Z/nZ)× is cyclic for  n = 6, but not for  n = 8, where it is instead i
somorphic to the Klein four-group.

The group (Z/pZ)× is  cyclic  with  p -  1 elements  for every prime  p,  and is  also written

(Z/pZ)* because it consists of the non-zero elements. More generally, every finite
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s ubgroup of the mu ltiplicative group of any field is cyclic.

Examples

In 2D and 3D the symmetry group for n-fold rotational symmetry is Cn, of abstract group
type Zn. In 3D there are also other symmetry groups which are algebraically the same, see 
Symmetry groups in 3D that are cyclic as abstract group.

Note that the group S1 of all rotations of a circle (the circle group) is not cyclic, since it is not
even countable.

The nth roots of unity form a cyclic group of order n under multiplication. e.g., 0 = z3 - 1

= (z - s0)(z - s1)(z - s2) where si = e2πi / 3 and a group of {s0,s1,s2} under mul tiplication is 
cyclic.

The  Galois  group of  every  finite  field  extension of  a  finite  field is  finite  and  cyclic;
conversely, given a finite field F and a finite cyclic group G, there is a finite field extension
of F whose Galois group is G.

Representation

The  cycle graphs of finite cyclic groups are all  n-sided polygons with the elements at the
vertices. The dark vertex in the cycle graphs below stand for the identity element, and the
other vertices are the other elements of the group. A cycle consists of successive powers of
either of the elements connected to the identity element.

C1   C2   C3   C4   C5   C6   C7    C8 

The  rep resentation theory of the cyclic group is a critical base case for the representation

theory of more general finite groups. In the complex case, a representation of a cyclic group

d ecomposes into a direct sum of linear c haracters, making the connection between
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character theory and repre sentation theory transparent. In the  positive ch aracteristic case,
the indecomposable repre sentations of the cyclic group form a model and inductive basis for
the rep resentation theory of groups with cyclic  Sylow subgroups and more generally the
representation theory of blocks of cyclic defect.

Subgroups and notation

All subgroups and quotient groups of cyclic groups are cyclic. Specifically, all subgroups of Z 
are of the form mZ, with m an integer ≥0. All of these subgroups are different, and apart from 
the trivial group (for m=0) all are isomorphic to Z. The lattice of subgroups of Z is isomorphic 
to the dual of the lattice of natural numbers ordered by divisibility. All factor groups of Z are 
finite, except for the trivial exception Z/{0} = Z/0Z. For every positive divisor d of n, the 
quotient group Z/nZ has precCSEly one subgroup of order d, the one generated by the residue 
class of n/d. There are no other subgroups. The lattice of subgroups is thus isomorphic to the 
set of divisors of n, ordered by divisibility. In particular, a cyclic group is simple if and only if 
its order (the number of its elements) is prime.

Using the quotient group formalism, Z/nZ is a standard notation for the additive cyclic group
with n elements. In ring terminology, the s ubgroup nZ is also the ideal (n), so the quotient
can also be written Z/(n) or Z/n without abuse of notation. These alternatives do not conflict
with  the  notation  for  the  p-adic  integers.  The  last  form  is  very  common  in  informal
calculations; it has the additional advantage that it reads the same way that the group or ring
is often described verbally, "Zee mod en".

As a p ractical problem, one may be given a finite subgroup C of order n, generated by an

element g, and asked to find the size m of the subgroup generated by gk for some integer k.
Here m  will be the smallest integer > 0 such that mk  is divisible by n. It is therefore n/m
where m = (k, n) is the greatest common divisor of k and n. Put another way, the index of the

subgroup generated by gk is m. This reasoning is known as the index calculus algorithm, in
number theory.

Endomorphisms

The endomorphism ring of the abelian group  Z/nZ is  isomorphic to  Z/nZ itself as a  ring.

Under this isomorphism, the number r corresponds to the endomorphism of Z/nZ that maps

each element to the sum of r copies of it. This is a bijection if and only if r is
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coprime with n, so the automorphism group of Z/nZ is isomorphic to the unit group (Z/nZ)× 

(see above).

Similarly, the endomorphism ring of the additive group  Z is isomorphic to the ring  Z. Its

automorphism group is iso morphic to the group of units of the ring Z, i.e. to {-1, +1}  C2.

Virtually cyclic groups

A group is called virtually cyclic if it contains a cyclic subgroup of finite index (the number
of cosets that the subgroup has). In other words, any element in a virtually cyclic group can
be arrived at by applying a member of the cyclic subgroup to a member in a certain finite set.
Every cyclic group is virtually cyclic, as is every finite group. It is known that a finitely
generated discrete group with exactly two ends is virtually cyclic

(for instance the  product of  Z/n and  Z). Every abelian subgroup of a  Gromov hyperbolic

group is virtually cyclic.

Group isomorphism

In  abstract algebra, a  group isomorphism is a function between two groups that sets up a
one-to-one corre spondence between the elements of the groups in a way that respects the
given group operations. If there exists an isomorphism between two groups, then the groups
are called  isomorphic.  From the standpoint of group theory,  isomorphic groups have the
same p roperties and need not be distinguished.

Definition and notation

Given two groups (G, *) and (H, ), a group isomorphism from (G, *) to (H, ) is a
bijective group homomorphism from G to H. Spelled out, this means that a group

such that for all u and v in G it holdsi somorphism is a bijective function
that

.

The two groups (G, *) and (H, ) are isomorphic if an isomorphism exists. This is

DEPT. OF CSE, ACE Page 
88



DISCRETE MATHEMATICAL STRUCTURES
15CS3
6

written:

Often shorter and more simple notations can be used. Often there is no ambiguity about the

group operation, and it can be omitted:

Sometimes one can even simply write  G = H. Whether such a notation is possible without

confusion or ambiguity depends on context. For example, the equals sign is not very suitable

when the groups are both subgroups of the same group. See also the examples.

Conversely, given a group (G, *), a set H, and a bijection , we can make H

a group (H, ) by defining

.

If H = G and = * then the bijection is an automorphism (q.v.)

In tuitively, group theorists view two iso morphic groups as follows: For every element g of a
group G, there exists an element h of H such that h 'behaves in the same way' as g (operates
with other elements of the group in the same way as g). For instance, if g generates G, then
so does  h. This implies in particular that  G and  H are in bijective cor respondence. So the
definition of an isomorphism is quite natural.

An i somorphism of groups may equivalently be defined as an i nvertible morphism in the

category of groups.

Examples

•  The group of all real numbers with addition, (
,+), is isomorphic to the

group of
+

,×):all positive real numbers with multiplication (
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via the isomorphism

f(x) = ex

(see ex ponential function).

• The group of integers (with addition) is a subgroup of  ,  and the factor group

/  is is omorphic to the group S1 of complex numbers of absolute value 1 (with 
mul tiplication):

An isomorphism is given by

for every x in   .

The Klein four-group is isomorphic to the direct product of two copies of

(see modular arithmetic), and can therefore be written .
Another notation is Dih2, because it is a dihedral group .

• Generalizing this, for all odd n, Dih2n is isomorphic with the direct product of Dihn 

and Z2.

• If (G, *) is an infinite cyclic group, then (G, *) is isomorphic to the integers (with the
addition operation). From an algebraic point of view, this means that the set of all
integers (with the addition operation) is the 'only' infinite cyclic group.

Some groups can be proven to be isomorphic, relying on the axiom of choice, while it is 

even theoretically impossible to construct concrete isomorphisms. Examples:
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• The group ( , + ) is isomorphic to the group ( , +) of all complex numbers with 
addition.

• The group ( , ·)* of non-zero complex numbers with multiplication as operation is 

isomorphic to the group S1 mentioned above.

Properties

• The kernel of an isomorphism from (G, *) to (H, ) ,  is always {eG} where eG is the 

identity of the group (G, *)

• If (G, *) is isomorphic to (H,  ) , and if G is abelian then so is H.

• If (G, *) is a group that is isomorphic to (H,   ) [where f is the isomorphism],
then if a belongs to G and has order n, then so does f(a).

• If (G, *) is a locally finite group that is isomorphic to (H, ), then (H,   ) is also

locally finite.

• The previous examples illustrate that 'group properties' are always preserved by
i somorphisms.

Cyclic groups

All cyclic groups of a given order are i somorphic to .
Let G be a cyclic group and n be the order of G. G is then the group generated by < x > =

{e,x,...,xn - 1}. We will show that

Define

,  so  that .  Clearly, is
bijective.
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Then

which proves that

.

Consequences

From the definition, it follows that any isomorphism will map the identity
element of G to the identity element of H,

f(eG) = eH

that it will map inverses to inverses,

and more generally, nth powers to nth powers,

for all u in G, and that the inverse map is also a group isomorphism.

The relation "being isomorphic" satisfies all the axioms of an equivalence relation. If f is an
isomorphism between two groups G and H, then everything that is true about G that is only
related to the group s tructure can be translated via f into a true ditto s tatement about H, and
vice versa.
Automorphisms
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An isomorphism from a group (G,*) to itself is called an automorphism of this group.

Thus it is a bijection such that

f(u) * f(v) = f(u * v).

An au tomorphism always maps the identity to itself. The image under an au tomorphism of a
conjugacy class is always a conjugacy class (the same or another). The image of an element
has the same order as that element.

The composition of two automorphisms is again an automorphism, and with this operation
the set of all automorphisms of a group G, denoted by Aut(G), forms itself a group, the au
tomorphism group of G.

For all Abelian groups there is at least the automorphism that replaces the group elements by
their inverses. However, in groups where all elements are equal to their inverse this is the
trivial  automorphism, e.g. in the  Klein four-group. For that group all permutations of the
three non-identity elements are automorphisms, so the automorphism group is i somorphic to
S3 and Dih3.

In Zp for a prime number p, one non-identity element can be replaced by any other, with cor
responding changes in the other elements. The automorphism group is isomorphic to Zp - 1.
For example, for n = 7, multiplying all elements of Z7 by 3, modulo 7, is an automorphism of

order 6 in the automorphism group, because 36 = 1 ( modulo 7 ), while lower powers do not
give 1. Thus this automorphism generates Z6.  There is one more automorphism with this
property: multiplying all elements of Z7 by 5, modulo 7. Therefore, these two correspond to
the elements 1 and 5 of Z6, in that order or conversely.

The automorphism group of Z6 is isomorphic to Z2, because only each of the two elements 1 

and 5 generate Z6, so apart from the identity we can only interchange these.

The automorphism group of Z2 × Z2 × Z2 = Dih2 × Z2 has order 168, as can be found as
follows. All 7 non-identity elements play the same role, so we can choose which plays the
role  of  (1,0,0).  Any of  the  remaining  6  can  be  chosen to  play  the  role  of  (0,1,0).  This
determines  which  corresponds  to  (1,1,0).  For  (0,0,1)  we  can  choose  from  4,  which
determines the rest. Thus we have 7 × 6 × 4 = 168 automorphisms. They correspond to those
of the Fano plane, of which the 7 points correspond to the 7 non-identity elements
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The lines connecting three points correspond to the group operation: a, b, and c on one line

means a+b=c, a+c=b, and b+c=a. See also general linear group over finite fields.

For Abelian groups all automorphisms except the trivial one are called outer automorphisms.

Non-Abelian groups have a non-trivial  inner automorphism group, and possibly also outer

automorphisms.

Coding Theory and Rings

Elements of Coding Theory

Coding theory is studied by various scientific di sciplines — such as info rmation theory,
electrical engineering,  mathematics, and computer science — for the purpose of designing
efficient  and reliable  data transmission methods. This typically involves the removal of r
edundancy and the correction (or detection) of errors in the transmitted data. It also includes
the study of the properties of codes and their fitness for a specific application.

Thus, there are es sentially two aspects to Coding theory:

1. Data compression (or, source coding)
2. Error correction (or, channel coding')

These two aspects may be studied in combination.

The first, source encoding, attempts to compress the data from a source in order to transmit it
more efficiently. This practice is found every day on the Internet where the common "Zip"
data compression is used to reduce the network load and make files smaller. The second,
channel encoding, adds extra data bits to make the transmission of

data more robust to dis turbances present on the transmission channel. The ordinary user may
not be aware of many applications using channel coding. A typical music CD uses the Reed-
Solomon code to correct for scratches and dust. In this application the transmission channel
is the CD itself. Cell phones also use coding techniques to correct
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for the fading and noCSE of high frequency radio transmission. Data modems, t elephone 
transmissions, and NASA all employ channel coding techniques to get the bits through, for 
example the turbo code and LDPC codes.

The hamming metric:

3-bit  binary  cube  for finding Two example distances: 100->011 has distance 3 (red

Hamming distance path); 010->111 has distance 2 (blue path)
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4-bit binary h ypercube for finding Hamming distance

Two example dis tances: 0100->1001 has distance 3 (red path); 0110->1110 has distance 1

(blue path)

In  information theory, the  Hamming distance between two  strings of equal length is the

number of positions at which the corresponding symbols are different. Put another way, it

Parity-check matrix

In coding theory, a parity-check matrix of a linear block code C is a generator matrix of

the dual code. As such, a codeword c is in C if and only if the matrix-vector product HTc=0.

The rows of a parity check matrix are parity checks on the codewords of a code. That is, they
show how linear combinations of certain digits of each codeword equal zero. For example,
the parity check matrix
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specifies that for each codeword, digits 1 and 2 should sum to zero and digits 3 and 4 should

sum to zero.

Creating a parity check matrix

The parity check matrix for a given code can be derived from its generator matrix (and vice-
versa). If the generator matrix for an [n,k]-code is in standard form

,

then the parity check matrix is given by

,

because
GHT = P - P = 0.

Negation  is  performed  in  the  finite  field  mod  q.  Note  that  if  the  characteristic of  the

underlying field is 2 (i.e., 1 + 1 = 0 in that field), as in binary codes, then -  P = P, so the

negation is unnecessary.

For example, if a binary code has the generator matrix

The parity check matrix becomes
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For any valid codeword x, Hx = 0. For any invalid codeword  , the syndrome S satisfies
.

Parity check

If no error occurs during transmission, then the received codeword r is identical to the t 

ransmitted codeword x:

The  receiver  multiplies  H and  r to  obtain  the

whether an error has occurred, and if so, for mul

tiplication (again, entries modulo 2):

syndrome vector , which indicates 

which codeword bit. Performing this

Since the syndrome z is the null vector, the receiver can conclude that no error has occurred.
This conclusion is based on the observation that when the data vector is multiplied by , a
change of basis occurs into a vector subspace that is the kernel of  . As long as nothing
happens during transmission, will remain in the kernel of and the mul tiplication will yield
the null vector.

Coset

In mathematics, if G is a group, H is a subgroup of G, and g is an element of G, then

gH = {gh : h an element of H� is} a left coset of H in G, and
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Hg = {hg : h an element of H� is} a right coset of H in G.

Only when H is normal will the right and left cosets of H coincide, which is one definition of

normality of a subgroup.

A coset is a left or right coset of some subgroup in G. Since Hg = g�
(
g
�-1Hg�), the right

cosets Hg (of H� and the left cosets g �(�-1Hg� (of the conjugate subgroup g-1Hg� are the

) g ) )
same. Hence it is not meaningful to speak of a coset as being left or right unless one first 

specifies the underlying s ubgroup.

For abelian groups or groups written additively, the notation used changes to g+H and H+g 

respectively.

Examples

The additive cyclic group Z4 = {0, 1, 2, 3} = G has a subgroup H = {0, 2} (isomorphic to Z2).

The left cosets of H in G are

0 + H = {0, 2} = H

1 + H = {1, 3}

2 + H = {2, 0} = H

3 + H = {3, 1}.

There are therefore two distinct cosets, H itself, and 1 + H = 3 + H. Note that every

element of G is either in H or in 1 + H, that is, H � (1 + H� )= G, so the distinct cosets of

H in G partition G. Since Z4 is an abelian group, the right cosets will be the same as the left.

Another example of a coset comes from the theory of vector spaces. The  elements
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(vectors) of a vector space form an  Abelian group under vector addition. It is not hard to
show that subspaces of a vector space are subgroups of this group. For a vector space V, a s
ubspace W, and a fixed vector a in V, the sets

are called affine subspaces, and are cosets (both left and right, since the group is Abelian). In

terms of geometric vectors, these affine subspaces are all the "lines" or "planes" parallel to
the subspace, which is a line or plane going through the origin.

General properties

We have gH = H if and only if  g is an element of  H, since as  H is a subgroup, it must be

closed and must contain the identity.

Any two left cosets of H in G are either identical or disjoint — i.e., the left cosets form a 

partition of G such that every element of G belongs to one and only one left coset.[1] In 
particular the identity is in precCSEly one coset, and that coset is H itself; this is also the only 
coset that is a subgroup. We can see this clearly in the above examples.

The left cosets of H in G are the equivalence classes under the equivalence relation on G 

given by x ~ y if and only if x -1y � H. Similar statements are also true for right cosets.

A  coset  representative is  a  representative  in  the  equivalence  class  sense.  A  set  of
representatives of all the cosets is called a transversal. There are other types of equivalence
relations in a group, such as conjugacy, that form different classes which do not have the
properties discussed here. Some books on very applied group theory erroneously identify the
conjugacy class as 'the' equivalence class as opposed to a particular type of equivalence class.

Index of a subgroup

All left cosets and all right cosets have the same order (number of elements, or cardinality in

the case of an infinite H), equal to the order of H (because H is itself a coset). Furthermore,

the number of left cosets is equal to the number of right cosets and is
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known as the index of H in G, written as [G : H�. ]Lagrange's theorem allows us to 

compute the index in the case where G and H are finite, as per the formula:

|G�= [|G : H� · |H] �

This equation also holds in the case where the groups are infinite, although the meaning may

be less clear.

Cosets and normality

If H is not normal in G, then its left cosets are different from its right cosets. That is, there is
an a in G such that no element b satisfies aH = Hb. This means that the partition of G into the
left cosets of  H is a different partition than the partition of  G into right cosets of  H. (It is
important to note that some cosets may coincide. For example, if a is in the center of G, then
aH = Ha.)

On the other hand, the subgroup N is normal if and only if gN = Ng for all g in G. In this 

Lagrange's theorem (group theory)

Lagrange's theorem, in the mat hematics of group theory, states that for any finite group G,

the order (number  of  elements)  of  every subgroup H  of G  divides  the  order  of G.  The

theorem is named after Joseph Lagrange.

Proof of Lagrange's Theorem

This can be shown using the concept of left cosets of H in G. The left cosets are the 
equivalence classes of a certain equivalence relation on G and therefore form a partition of G. 
Specifically, x and y in G are related if and only if there exists h in H such that x = yh. If we 
can show that all cosets of H have the same number of elements, then each coset of H has 
precCSEly |H| elements. We are then done since the order of H times the number of cosets is 
equal to the number of elements in G, thereby proving that the order H divides the order of G. 
Now, if aH and bH are two left cosets of H, we can define a map f : aH → bH by setting f(x) = 

ba-1x. This map is b ijective because its inverse is given by

f -1(y) = ab-1y.

This proof also shows that the quotient of the orders |G| / |H| is equal to the index [G : H]
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(the number of left cosets of H in G). If we write this statement as

|G| = [G : H] · |H|,

then, seen as a statement about cardinal numbers, it is equivalent to the Axiom of choice.

Using the theorem
A consequence of the theorem is that the  order of any element a of a finite group (i.e. the

smallest positive integer number k with ak = e, where e is the identity element of the group)
divides  the  order  of  that  group,  since  the  order  of  a is  equal  to  the  order  of  the  cyclic
subgroup generated by a. If the group has n elements, it follows

an = e.

This can be used to prove Fermat's little theorem and its generalization, Euler's theorem.
These special cases were known long before the general theorem was proved.

The theorem also shows that any group of prime order is cyclic and simple.

E xistence of subgroups of given order

Lagrange's theorem raCSEs the converse question as to whether every divisor of the order of a 
group is the order of some subgroup. This does not hold in general: given a finite group G and 
a divisor d of |G|, there does not necessarily exist a subgroup of G with order d. The smallest 
example is the alternating group G = A4 which has 12 elements but no subgroup of order 6. A 
CLT group is a finite group with the property that for every divisor of the order of the group, 
there is a subgroup of that order. It is known that a CLT group must be solvable and that every 
supersolvable group is a CLT group: however there exists solvable groups which are not CLT 
and CLT groups which are not super solvable.

There are partial  converses to Lagrange's theorem. For general groups, Cauchy's theorem
guarantees the existence of an element, and hence of a cyclic subgroup, of order any prime
dividing the group order;  Sylow's theorem extends this to the existence of a s ubgroup of
order equal to the maximal power of any prime dividing the group order. For
s olvable groups, Hall's theorems assert the existence of a subgroup of order equal to any
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unitary divisor of the group order (that is, a divisor coprime to its cofactor).

Group Co des: Deco ding wthi Coset L ead ers, Hamming Matrices

R ings a nd Mod ular Arithmetic: The Ring Structure – Definition and E xampl es, Ring P 

ro pe rt ies and Sub str uctures, The I ntegers Mod ulo n

In computer science, group codes are a type of code. Group codes consist of n linear block 

codes which are subgroups of Gn, where G is a finite Abelian group.

A systematic group code  C is a code over  Gn of order defined by  n -  k homomorphisms

which  determine  the  parity  check  bits.  The  remaining  k bits  are  the  in  formation  bits

themselves.

Construction

Group codes  can be constructed by special  generator  matrices  which resemble generator
matrices of linear block codes except that the elements of those matrices are endomorphisms
of  the  group  instead  of  symbols  from  the  code's  alphabet.  For  example,  consider  the
generator matrix

The elements of this matrix are 2x2 matrices which are endomorphisms. In this scenario,

each codeword can be represented as where g1,...gr are the generators of

G.

Decoding with Coset leader

In the field of coding theory, a coset leader is defined as a word of minimum weight in any

particular coset - that is, a word with the lowest amount of non-zero entries. Sometimes there

are several words of equal minimum weight in a coset, and in that case,
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any one of those words may be chosen to be the coset leader.
Coset leaders are used in the construction of a standard array for a linear code, which can
then be used to decode received vectors. For a received vector y, the decoded message is y -
e, where e is the coset leader of y. Coset leaders can also be used to construct a fast decoding
strategy. For each coset leader  u we calculate the syndrome  uH′.  When we receive  v we
evaluate  vH′ and find the matching  syndrome. The corresponding coset leader is the most
likely error pattern and we assume that v+u was the codeword sent.

Example

A standard array for an [n,k]-code is a qn - k by qk array where:

1. The first row lists all codewords (with the 0 codeword on the extreme left)
2. Each row is a coset with the coset leader in the first column
3. The entry in the i-th row and j-th column is the sum of the i-th coset leader and the j-

th codeword.

For example, the [n,k]-code C3 = {0, 01101, 10110, 11011} has a standard array as follows:

0 01101 10110 11011

10000 11101 00110 01011

01000 00101 11110 10011

00100 01001 10010 11111

00010 01111 10100 11001

00001 01100 10111 11010

11000 10101 01110 00011

10001 11100 00111 01010
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Note that the above is only one possibility for the standard array; had 00011 been chosen as
the first coset leader of weight two, another standard array rep resenting the code would have
been con structed.
Note  that  the  first  row contains  the 0 vector  and the codewords  of  C3 (0  itself  being a
codeword). Also, the leftmost column contains the vectors of minimum weight enumerating
vectors of weight 1 first and then using vectors of weight 2. Note also that each possible
vector in the vector space appears exactly once.

Because each possible vector can appear only once in a standard array some care must be 

taken during cons truction. A s tandard array can be created as follows:

1. List the codewords of C, starting with 0, as the first row
2. Choose any vector of minimum weight not already in the array. Write this as the first 

entry of the next row. This vector is denoted the 'coset leader'.
3. Fill out the row by adding the coset leader to the codeword at the top of each column.

The sum of the i-th coset leader and the j-th codeword becomes the entry in row i,
column j.

4. Repeat steps 2 and 3 until all rows/cosets are listed and each vector appears exactly 

once.

Hamming matrices

Hamming codes can be computed in linear algebra terms through matrices because Hamming
codes are linear codes. For the purposes of Hamming codes, two Hamming matrices can be
defined: the code generator matrix and the parity-check matrix 

:
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and

Bit position of the data and parity bits

As mentioned above, rows 1, 2, & 4 of should look familiar as they map the data bits
to their parity bits:

• p1 covers d1, d2, d4

• p2 covers d1, d3, d4

• p3 covers d2, d3, d4

The remaining rows (3, 5, 6, 7) map the data to their position in encoded form and there is
only 1 in that row so it is an identical copy. In fact, these four rows are linearly independent
and form the identity matrix (by design, not coincidence).

Also as mentioned above, the three rows of  should be familiar.  These rows are used to

compute the syndrome vector at the receiving end and if the s yndrome vector is the null
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vector (all zeros) then the received word is error-free; if non-zero then the value indicates

which bit has been flipped.

The 4 data bits — assembled as a vector — is pre-multiplied by (i.e., ) and taken modulo 2 to
yield the encoded value that is transmitted. The original 4 data bits are converted to 7 bits
(hence the name "Hamming(7,4)") with 3 parity bits added to ensure even parity using the
above data bit coverages. The first table above shows the mapping between each data and
parity bit into its final bit position (1 through 7) but this can also be presented in a  Venn
diagram. The first diagram in this article shows three circles (one for each parity bit) and
encloses data bits that each parity bit covers. The second diagram (shown to the right) is
identical but, instead, the bit positions are marked.

For the remainder of this section, the following 4 bits (shown as a column vector) will be

used as a running example:

Rings and Modular Arithmetic

Ring theory

In mathematics,  ring theory is the study of rings— algebraic s tructures in which addition
and multiplication are defined and have similar properties to those familiar from the integers.
Ring theory studies the structure of rings, their  representations, or,  in different  language,
modules, special classes of rings (group rings, division rings, universal enveloping algebras),
as well as an array of properties that proved to be of interest both within the theory itself and
for its applications, such as homological properties and pol ynomial identities.

Commutative  rings are  much  better  understood  than  noncommutative  ones.  Due  to  its

intimate connections with algebraic geometry and algebraic number theory, which provide
many natural examples of co mmutative rings, their theory, which is considered to
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be part of commutative algebra and field theory rather than of general ring theory, is quite
different in flavour from the theory of their nonco mmutative counterparts. A fairly recent
trend, started in the 1980s with the development of noncommutative geometry and with the
discovery of  quantum groups, attempts to turn the situation around and build the theory of
certain classes of noncom mutative rings in a geometric  fashion as if  they were rings of
functions on (non-existent) 'noncommutative spaces'.

Elementary introduction
Definition

Formally, a ring is an Abelian group (R, +), together with a second binary operation * such 

that for all a, b and c in R,

a * (b * c) = (a * b) * c

a * (b + c) = (a * b) + (a * c)

(a + b) * c = (a * c) + (b * c)

also, if there exists a mult iplicative identity in the ring, that is, an element e such that for all 

a in R,

a * e = e * a = a

then it is said to be a ring with unity. The number 1 is a common example of a unity.

The ring in which e is equal to the additive identity must have only one element. This ring is 

called the trivial ring.

Rings that sit inside other rings are called subrings. Maps between rings which respect the ring 
operations are called ring homomorphisms. Rings, together with ring homomorphisms, form a 
category (the category of rings). Closely related is the notion of ideals, certain subsets of rings 
which arCSE as kernels of homomorphisms and can serve to define factor rings. Basic facts 
about ideals, homomorphisms and factor rings are recorded in the i somorphism theorems and 
in the Chinese remainder theorem.

A ring is called commutative if its multiplication is commutative. Commutative rings
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resemble  familiar  number  systems,  and  various  definitions  for  commutative  rings  are
designed  to  recover  properties  known  from  the  integers.  Commutative  rings  are  also
important in algebraic geometry. In co mmutative ring theory, numbers are often replaced by
ideals,  and  the  definition  of  prime  ideal tries  to  capture  the  essence  of  prime  numbers.
Integral domains, non-trivial commutative rings where no two non-zero elements multiply to
give zero, generalize another property of the integers and serve as the proper realm to study
divisibility.  Principal  ideal  domains are  integral  domains  in  which  every  ideal  can  be
generated by a single element, another property shared by the integers.  E uclidean domains
are integral  domains in which the  E uclidean algorithm can be carried out. Important  ex
amples of co mmutative rings can be constructed as rings of  pol ynomials and their factor
rings.  Summary:  Euclidean  domain =>  p  rincipal  ideal  domain =>  unique factorization
domain => integral domain => Com mutative ring.

Non-commutative rings resemble rings of matrices in many respects. Following the model of
algebraic  geometry,  attempts  have  been  made  recently  at  defining  non-commutative
geometry based on non-commutative rings. Non-commutative rings and associative algebras
(rings that are also vector spaces) are often studied via their categories of modules. A module
over a ring is an Abelian group that the ring acts on as a ring of endomorphisms, very much
akin to the way fields (integral domains in which every non-zero element is invertible) act on
vector spaces. Examples of non- commutative

rings are given by rings of square matrices or more generally by rings of endomorphisms of

Abelian groups or modules, and by monoid rings.

The congruence relation

Modular ar ithmetic can be handled mathematically by introducing a con gruence relation on
the  integers that  is  compatible  with  the  operations  of  the  ring of  integers:  addition,  s
ubtraction, and mult iplication. For a positive integer n, two integers a and b are said to be
congruent modulo n, written:

if their dif ference a - b is an integer multiple of n. The number n is called the modulus of the

co ngruence. An equivalent definition is that both numbers have the same remainder when

divided by n.
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For example,

because 38 - 14 = 24, which is a multiple of 12. For positive  n and non-negative  a and  b,

congruence of a and b can also be thought of as asserting that these two numbers have the
same remainder after dividing by the modulus n. So,

because both numbers, when divided by 12, have the same remainder (2). E quivalently, the
fractional parts of doing a full division of each of the numbers by 12 are the same: 0.1666...
(38/12  =  3.1666...,  2/12  =  0.1666...).  From  the  prior  definition  we  also  see  that  their
difference, a - b = 36, is a whole number (integer) multiple of 12 (n = 12, 36/12 = 3).

The same rule holds for negative values of a:

A remark on the notation: Because it is common to consider several congruence relations for
different moduli at the same time, the modulus is incorporated in the notation. In spite
of the ternary notation, the congruence relation for a given modulus is  binary. This would
have been clearer if the notation a ≡n b had been used, instead of the common traditional
notation.

The properties that make this relation a congruence relation (respecting addition, s 

ubtraction, and mult iplication) are the following.

If

and

then:

•

•

•
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Multiplicative group of integers modulo n

In modular arithmetic the set of congruence classes relatively prime to the modulus n form a
group under multiplication called the multiplicative group of integers modulo n. It is also
called the group of primitive residue classes modulo n. In the theory of rings, a branch of
abstract algebra, it is described as the group of units of the ring of integers modulo n. (Units
refers to elements with a multiplicative inverse.)

This  group is  fundamental  in  number  theory.  It  has  found applications  in  cryptography,
integer factorization, and primality testing. For example, by finding the order (ie. the size) of
the group, one can determine if n is prime: n is prime if and only if the order is n - 1.

Group axioms

It is a straightforward exercCSE to show that under multiplication the congruence classes (mod
n) which are relatively prime to n satisfy the axioms for an abelian group.
Because a ≡ b (mod n) implies that gcd(a, n) = gcd(b, n), the notion of congruence classes 

(mod n) which are relatively prime to n is well- defined.

Since gcd(a,  n) = 1 and gcd(b,  n) = 1 implies gcd(ab,  n) = 1 the set of classes relatively

prime to n is closed under multiplication.

The natural  mapping from the  integers  to  the  congruence  classes  (mod  n)  that  takes  an
integer to its congruence class (mod n) is a ring homomorphism. This implies that the class
containing 1 is the unique multiplicative identity, and also the associative and commutative
laws.

Given a, gcd(a, n) = 1, finding x satisfying ax ≡ 1 (mod n) is the same as solving ax + ny = 1,

which can be done by Bézout's lemma.

Notation

The ring of integers (mod n) is denoted or (i.e., the ring of integers modulo the ideal 

nZ = (n) consisting of the multiples of n) or by .  Depending on the

author  its  group  of  units  may be  written    (for

German  Einheit  =  unit)  or  similar  notations. This  article  uses
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Structure
Powers of 2

Modulo 2 there is only one relatively prime congruence class, 1, so is

trivial.

Modulo  4  there  are  two  relatively  prime  congruence  classes, 1  and  3,  so

the cyclic group with two elements.

Modulo 8 there are four relatively prime classes, 1, 3, 5 and 7. The square of each of

these is 1, so the Klein four-group.

Modulo 16 there are eight relatively prime classes 1, 3, 5, 7, 9, 11, 13 and 15.

is the 2-torsion subgroup (ie. the square of each element is 1),
so is not cyclic. The powers of 3, {1,3,9,11} are a subgroup of order 4, as are

the powers of 5, {1,5,9,13}.  Thus

The  pattern shown by  8 and  16 holds[1]   for higher powers 2k, k > 2:
is the 2-torsion subgroup (so is not cyclic)

and the powers of 3 are a subgroup of order 2k - 2, so

Powers of odd primes

For powers of odd primes pk the group is cyclic:[2]

General composite numbers

The Chinese  remainder  theorem  [3]  says  that  if then  the  ring

is the    direct product of the rings cor responding to each of its prime power factors:
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Similarly, the group of units
to each of the prime power factors:

is the direct p roduct of the groups corresponding

Order

The order of the group is given by Euler's totient function: This

is the product of the orders of the cyclic groups in the direct product.

Exponent

The exponent is given by the Carmichael function λ(n), the least common multiple of the 

orders of the cyclic groups. This means that if a and n are relatively prime,

Generators

is cyclic if and only if This is the case precCSEly when n is 2, 4, a power of an

odd prime, or twice a power of an odd prime. In this case a generator is called a primitive

root modulo n.

Since all the n = 1, 2, ..., 7 are cyclic, another way to state this is: If n < 8

then has a primitive root. If n ≥ 8 has a primitive root unless n is
divisible by 4 or by two distinct odd primes.

In the general case there is one generator for each cyclic direct factor.

Table
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This table shows the structure and generators of for small values of n. The
generators are not unique (mod  n); e.g. (mod 16) both {-1, 3} and {-1, 5} will work. The

generators are listed in the same order as the direct factors.

For example take n = 20. means that the order of is 8 (i.e. there are 8 numbers less than 20 
and coprime to it); λ(20) = 4 that the fourth power of any number relatively prime to 20 is ≡ 1

(mod 20); and as for the generators, 19 has order 2, 3

has order 4, and every member of 

and b is 0, 1, 2, or 3.

is of the form 19a × 3b, where a is 0 or 1

The powers of 19 are {±1} and the powers of 3 are {3, 9, 7, 1}. The latter and their negatives
(mod 20), {17, 11, 13, 19} are all the numbers less than 20 and prime to it. The fact that the

order of 19 is 2 and the order of 3 is 4 implies that the fourth power of every

member of is ≡ 1 (mod 20).
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