
DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 4

MODULE 1

INTRODUCTION TO DATABASE

1.1 Introduction

Importance: Database systems have become an essential component of life in modern society, in
that many frequently occurring events trigger the accessing of at least one database: bibliographic

library searches, bank transactions, hotel/airline reservations, grocery store purchases, online
(Web) purchases, etc., etc.

Traditional vs. more recent applications of databases:

The applications mentioned above are all "traditional" ones for which the use of rigidly-structured

textual and numeric data suffices. Recent advances have led to the application of database
technology to a wider class of data. Examples include multimedia databases (involving pictures,

video clips, and sound messages) and geographic databases (involving maps, satellite images).

Also, database search techniques are applied by some WWW search engines.

Definitions

The term database is often used, rather loosely, to refer to just about any collection of related data.
E&N say that, in addition to being a collection of related data, a database must have the following
properties:

 It represents some aspect of the real (or an imagined) world, called the miniworld or universe of
discourse. Changes to the miniworld are reflected in the database. Imagine, for example, a

UNIVERSITY miniworld concerned with students, courses, course sections, grades, and course
prerequisites.

 It is a logically coherent collection of data, to which some meaning can be attached. (Logical
coherency requires, in part, that the database not be self-contradictory.)

 It has a purpose: there is an intended group of users and some preconceived applications that the
users are interested in employing.

To summarize: a database has some source (i.e., the miniworld) from which data are derived, some
degree of interaction with events in the represented miniworld (at least insofar as the data is

updated when the state of the miniworld changes), and an audience that is interested in using it.

An Aside: data vs. information vs. knowledge: Data is the representation of "facts" or

"observations" whereas information refers to the meaning thereof (according to some

interpretation). Knowledge, on the other hand, refers to the ability to use information to achieve
intended ends.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 5

Computerized vs. manual: Not surprisingly (this being a CS course), our concern will be with

computerized database systems, as opposed to manual ones, such as the card catalog-based systems
that were used in libraries in ancient times (i.e., before the year 2000). (Some authors wouldn't
even recognize a non-computerized collection of data as a database, but E&N do.)

Size/Complexity: Databases run the range from being small/simple (e.g., one person's recipe

database) to being huge/complex (e.g., Amazon's database that keeps track of all its products,
customers, and suppliers).

Definition: A database management system (DBMS) is a collection of programs enabling users
to create and maintain a database.

More specifically, a DBMS is a general purpose software system facilitating each of the following
(with respect to a database):

 definition: specifying data types (and other constraints to which the data must conform) and
data organization

 construction: the process of storing the data on some medium (e.g., magnetic disk) that is

controlled by the DBMS
 manipulation: querying, updating, report generation

 sharing: allowing multiple users and programs to access the database "simultaneously"
 system protection: preventing database from becoming corrupted when hardware or software

failures occur
 security protection: preventing unauthorized or malicious access to database.

Given all its responsibilities, it is not surprising that a typical DBMS is a complex piece of
software.

A database together with the DBMS software is referred to as a database system. (See Figure 1.1,
page 7.)

1.2 : An Example:

UNIVERSITY database in Figure 1.2. Notice that it is relational!

Among the main ideas illustrated in this example is that each file/relation/table has a set of named
fields/attributes/columns, each of which is specified to be of some data type. (In addition to a data
type, we might put further restrictions upon a field, e.g., GRADE_REPORT must have a value
from the set {'A', 'B', ..., 'F'}.)

The idea is that, of course, each table will be populated with data in the form of
records/tuples/rows, each of which represents some entity (in the miniworld) or some relationship
between entities.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 6

For example, each record in the STUDENT table represents a —surprise!— student. Similarly for
the COURSE and SECTION tables.

On the other hand, each record in GRADE_REPORT represents a relationship between a student
and a section of a course. And each record in PREREQUISITE represents a relationship between
two courses.

Database manipulation involves querying and updating.

Examples of (informal) queries:

 Retrieve the transcript(s) of student(s) named 'Smith'.
 List the names of students who were enrolled in a section of the 'Database' course in Spring

2006, as well as their grades in that course section.
 List all prerequisites of the 'Database' course.

Examples of (informal) updates:

 Change the CLASS value of 'Smith' to sophomore (i.e., 2).

 Insert a record for a section of 'File Processing' for this semester.
 Remove from the prerequisites of course 'CMPS 340' the course 'CMPS 144'.

Of course, a query/update must be conveyed to the DBMS in a precise way (via the query language
of the DBMS) in order to be processed.

As with software in general, developing a new database (or a new application for an existing

database) proceeds in phases, including requirements analysis and various levels of design
(conceptual (e.g., Entity-Relationship Modeling), logical (e.g., relational), and physical (file

structures)).

1.3 : Characteristics of the Database Approach:

Database approach vs. File Processing approach: Consider an organization/enterprise that is

organized as a collection of departments/offices. Each department has certain data processing

"needs", many of which are unique to it. In the file processing approach, each department would

control a collection of relevant data files and software applications to manipulate that data.

For example, a university's Registrar's Office would maintain data (and programs) relevant to

student grades and course enrollments. The Bursar's Office would maintain data (and programs)

pertaining to fees owed by students for tuition, room and board, etc. (Most likely, the people in

these offices would not be in direct possession of their data and programs, but rather the

university's Information Technology Department would be responsible for providing services such

as data storage, report generation, and programming.)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 7

One result of this approach is, typically, data redundancy, which not only wastes storage space

but also makes it more difficult to keep changing data items consistent with one another, as a

change to one copy of a data item must be made to all of them (called duplication-of-effort).

Inconsistency results when one (or more) copies of a datum are changed but not others. (E.g., If

you change your address, informing the Registrar's Office should suffice to ensure that your grades

are sent to the right place, but does not guarantee that your next bill will be, as the copy of your

address "owned" by the Bursar's Office might not have been changed.)

In the database approach, a single repository of data is maintained that is used by all the
departments in the organization. (Note that "single repository" is used in the logical sense. In
physical terms, the data may be distributed among various sites, and possibly mirrored.)

Main Characteristics of database approach:

1. Self-Description: A database system includes —in addition to the data stored that is of relevance

to the organization— a complete definition/description of the database's structure and constraints.
This meta-data (i.e., data about data) is stored in the so-called system catalog, which contains a
description of the structure of each file, the type and storage format of each field, and the various
constraints on the data (i.e., conditions that the data must satisfy).

See Figures 1.1 and 1.3.

The system catalog is used not only by users (e.g., who need to know the names of tables

and attributes, and sometimes data type information and other things), but also by the

DBMS software, which certainly needs to "know" how the data is structured/organized in

order to interpret it in a manner consistent with that structure. Recall that a DBMS is

general purpose, as opposed to being a specific database application. Hence, the structure

of the data cannot be "hard-coded" in its programs (such as is the case in typical file

processing approaches), but rather must be treated as a "parameter" in some sense.

2. Insulation between Programs and Data; Data Abstraction:

Program-Data Independence: In traditional file processing, the structure of the data

files accessed by an application is "hard-coded" in its source code. (E.g., Consider a file
descriptor in a COBOL program: it gives a detailed description of the layout of the

records in a file by describing, for each field, how many bytes it occupies.)

If, for some reason, we decide to change the structure of the data (e.g., by adding the first
two digits to the YEAR field, in order to make the program Y2K compliant!), every
application in which a description of that file's structure is hard-coded must be changed!

In contrast, DBMS access programs, in most cases, do not require such changes, because the

structure of the data is described (in the system catalog) separately from the programs that access

it and those programs consult the catalog in order to ascertain the structure of the data (i.e.,

providing a means by which to determine boundaries between records between fields within

records) so that they interpret that data properly See Figure 1.4.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 8

In other words, the DBMS provides a conceptual or logical view of the data to application
programs, so that the underlying implementation may be changed without the programs being
modified. (This is referred to as program-data independence.)
Also, which access paths (e.g., indexes) exist are listed in the catalog, helping the DBMS to
determine the most efficient way to search for items in response to a q uery.

Data Abstraction:

 A data model is used to hide storage details and present the users with a conceptual

view of the database.

 Programs refer to the data model constructs rather than data storage details

Note: In fairness to COBOL, it should be pointed out that it has a COPY feature that allows
different application programs to make use of the same file descriptor stored in a "library".

This provides some degree of program-data independence, but not nearly as much as a
good DBMS does. End of note.

Example by which to illustrate this concept: Suppose that you are given the task of
developing a program that displays the contents of a particular data file. Specifically, each
record should be displayed as follows:

Record #i:

value of first field
value of second field

...

...
value of last field

To keep things very simple, suppose that the file in question has fixed-length records of 57 bytes

with six fixed-length fields of lengths 12, 4, 17, 2, 15, and 7 bytes, respectively, all of which are

ASCII strings. Developing such a program would not be difficult. However, the obvious solution

would be tailored specifically for a file having the particular structure described here and would be

of no use for a file with a different structure.

Now suppose that the problem is generalized to say that the program you are to develop

must be able to display any file having fixed-length records with fixed-length fields that
are ASCII strings. Impossible, you say? Well, yes, unless the program has the ability to

access a description of the file's structure (i.e., lengths of its records and the fields

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 9

therein), in which case the problem is not hard at all. This illustrates the power of metadata, i.e.,
data describing other data.

3. Multiple Views of Data: Different users (e.g., in different departments of an organization) have

different "views" or perspectives on the database. For example, from the point of view of a Bursar's
Office employee, student data does not include anything about which courses were taken or which
grades were earned. (This is an example of a subset view.)

As another example, a Registrar's Office employee might think that GPA is a field of data
in each student's record. In reality, the underlying database might calculate that value each
time it is needed. This is called virtual (or derived) data.

A view designed for an academic advisor might give the appearance that the data is
structured to point out the prerequisites of each course.

(See Figure 1.5, page 14.)

A good DBMS has facilities for defining multiple views. This is not only convenient for
users, but also addresses security issues of data access. (E.g., The Registrar's Office view
should not provide any means to access financial data.)

4. Data Sharing and Multi-user Transaction Processing: As you learned about (or will) in the OS
course, the simultaneous access of computer resources by multiple users/processes is a major
source of complexity. The same is true for multi-user DBMS's.

Arising from this is the need for concurrency control, which is supposed to ensure that

several users trying to update the same data do so in a "controlled" manner so that the
results of the updates are as though they were done in some sequential order (rather than

interleaved, which could result in data being incorrect).

This gives rise to the concept of a transaction, which is a process that makes one or more

accesses to a database and which must have the appearance of executing in isolation from
all other transactions (even ones that access the same data at the "same time") and of being

atomic (in the sense that, if the system crashes in the middle of its execution, the database
contents must be as though it did not execute at all).

Applications such as airline reservation systems are known as online transaction
processing applications.

1.4 : Actors on the Scene

These apply to "large" databases, not "personal" databases that are defined, constructed, and
used by a single person via, say, Microsoft Access.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 10

 Users may be divided into

 Those who actually use and control the database content, and those who design, develop and
maintain database applications (called ―Actors on the Scene‖), and

 Those who design and develop the DBMS software and related tools, and the computer
systems operators (called ―Workers Behind the Scene‖).

1. Database Administrator (DBA): This is the chief administrator, who oversees and

manages the database system (including the data and software). Duties include authorizing

users to access the database, coordinating/monitoring its use, acquiring hardware/software
for upgrades, etc. In large organizations, the DBA might have a support staff.

2. Database Designers: They are responsible for identifying the data to be stored and for

choosing an appropriate way to organize it. They also define views for different categories
of users. The final design must be able to support the requirements of all the user sub-

groups.
3. End Users: These are persons who access the database for querying, updating, and

report generation. They are main reason for database's existence!
o Casual end users: use database occasionally, needing different information each

time; use query language to specify their requests; typically middle- or high-level
managers.

o Naive/Parametric end users: Typically the biggest group of users; frequently
query/update the database using standard canned transactions that have been
carefully programmed and tested in advance. Examples:

 bank tellers check account balances, post withdrawals/deposits

 reservation clerks for airlines, hotels, etc., check availability of
seats/rooms and make reservations.

 shipping clerks (e.g., at UPS) who use buttons, bar code scanners, etc., to
update status of in-transit packages.

o Sophisticated end users: engineers, scientists, business analysts who implement
their own applications to meet their complex needs.

o Stand-alone users: Use "personal" databases, possibly employing a special-
purpose (e.g., financial) software package. Mostly maintain personal databases
using ready-to-use packaged applications.

o An example is a tax program user that creates its own internal database.
o Another example is maintaining an address book

4. System Analysts, Application Programmers, Software Engineers:
o System Analysts: determine needs of end users, especially naive and parametric

users, and develop specifications for canned transactions that meet these needs.
o Application Programmers: Implement, test, document, and maintain programs

that satisfy the specifications mentioned above.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 11

1.5: Workers Behind the Scene

 DBMS system designers/implementors: provide the DBMS software that is at the
foundation of all this!

 tool developers: design and implement software tools facilitating database system

design, performance monitoring, creation of graphical user interfaces, prototyping, ets.
 operators and maintenance personnel: responsible for the day-to-day operation of the

system.

1.6: Capabilities/Advantages of DBMS's

1. Controlling Redundancy: Data redundancy (such as tends to occur in the "file processing"
approach) leads to wasted storage space, duplication of effort (when multiple copies of

a datum need to be updated), and a higher liklihood of the introduction of inconsistency.

On the other hand, redundancy can be used to improve performance of queries. Indexes,
for example, are entirely redundant, but help the DBMS in processing queries more
quickly.

Another example of using redundancy to improve performance is to store an "extra" field
in order to avoid the need to access other tables (as when doing a JOIN, for example). See
Figure 1.6 (page 18): the StudentName and CourseNumber fields need not be there.

A DBMS should provide the capability to automatically enforce the rule that no
inconsistencies are introduced when data is updated. (Figure 1.6 again, in which
Student_name does not match Student_number.)

2. Restricting Unauthorized Access: A DBMS should provide a security and

authorization subsystem, which is used for specifying restrictions on user accounts.

Common kinds of restrictions are to allow read-only access (no updating), or access only
to a subset of the data (e.g., recall the Bursar's and Registrar's office examples from above).

3. Providing Persistent Storage for Program Objects: Object-oriented database systems

make it easier for complex runtime objects (e.g., lists, trees) to be saved in secondary
storage so as to survive beyond program termination and to be retrievable at a later time.

4. Providing Storage Structures for Efficient Query Processing: The DBMS maintains
indexes (typically in the form of trees and/or hash tables) that are utilized to improve the

execution time of queries and updates. (The choice of which indexes to create and maintain
is part of physical database design and tuning (see Chapter 16) and is the responsibility of

the DBA.

The query processing and optimization module is responsible for choosing an efficient
query execution plan for each query submitted to the system. (See Chapter 15.)

5. Providing Backup and Recovery: The subsystem having this responsibility ensures that

recovery is possible in the case of a system crash during execution of one or more
transactions.

Providing Multiple User Interfaces: For example, query languages for casual users,
programming language interfaces for application programmers, forms and/or command
codes for parametric users, menu-driven interfaces for stand-alone users.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 12

6. Representing Complex Relationships Among Data: A DBMS should have the
capability to represent such relationships and to retrieve related data quickly.

7. Enforcing Integrity Constraints: Most database applications are such that the semantics

(i.e., meaning) of the data require that it satisfy certain restrictions in order to make sense.

Perhaps the most fundamental constraint on a data item is its data type, which specifies the

universe of values from which its value may be drawn. (E.g., a Grade field could be defined

to be of type Grade_Type, which, say, we have defined as including precisely the values in

the set { "A", "A-", "B+", ..., "F" }.

Another kind of constraint is referential integrity, which says that if the database includes

an entity that refers to another one, the latter entity must exist in the database. For example,
if (R56547, CIL102) is a tuple in the Enrolled_In relation, indicating that a student with ID

R56547 is taking a course with ID CIL102, there must be a tuple in the Student relation
corresponding to a student with that ID.

8. Permitting Inferencing and Actions Via Rules: In a deductive database system, one may

specify declarative rules that allow the database to infer new data! E.g., Figure out which

students are on academic probation. Such capabilities would take the place of application
programs that would be used to ascertain such information otherwise.

Active database systems go one step further by allowing "active rules" that can be used to

initiate actions automatically.

1.7 : A Brief History of Database Applications

 Early Database Applications:

 The Hierarchical and Network Models were introduced in mid 1960s and dominated during
the seventies.

 A bulk of the worldwide database processing still occurs using these models.

 Relational Model based Systems:

 Relational model was originally introduced in 1970, was heavily researched and
experimented with in IBM Research and several universities.

 Object-oriented and emerging applications:

Object-Oriented Database Management Systems (OODBMSs) were introduced in late 1980s and
early 1990s to cater to the need of complex data processing in CAD and other applications.

 Their use has not taken off much.

Many relational DBMSs have incorporated object database concepts, leading to a new category
called object-relational DBMSs (ORDBMSs)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 13

Extended relational systems add further capabilities (e.g. for multimedia data, XML, and other
data types)

 Relational DBMS Products emerged in the 1980s

 Data on the Web and E-commerce Applications:

 Web contains data in HTML (Hypertext markup language) with links among pages.

 This has given rise to a new set of applications and E-commerce is using new standards
like XML (eXtended Markup Language).

 Script programming languages such as PHP and JavaScript allow generation of dynamic
Web pages that are partially generated from a database

 New functionality is being added to DBMSs in the following areas:

 Scientific Applications

 XML (eXtensible Markup Language)

 Image Storage and Management

 Audio and Video data management

 Data Warehousing and Data Mining

 Spatial data management

 Time Series and Historical Data Management

 The above gives rise to new research and development in incorporating new
data types, complex data structures, new operations and storage and
indexing schemes in database systems.

 Also allow database updates through Web pages

1.8: When Not to Use a DBMS

Main inhibitors (costs) of using a DBMS:
 High initial investment and possible need for additional hardware.

 Overhead for providing generality, security, concurrency control, recovery, and

integrity functions.

 When a DBMS may be unnecessary:

 If the database and applications are simple, well defined, and not expected to

change.

 If there are stringent real-time requirements that may not be met because of

DBMS overhead.

 If access to data by multiple users is not required.

 When no DBMS may suffice:

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 14

 If the database system is not able to handle the complexity of data because of

modeling limitations

 If the database users need special operations not supported by the DBMS.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 15

ENTITY-RELATIONSHIP MODEL

2.1 Data Models, Schemas, and Instances

One fundamental characteristic of the database approach is that it provides some level of data
abstraction by hiding details of data storage that are irrelevant to database users.

A data model ---a collection of concepts that can be used to describe the conceptual/logical
structure of a database--- provides the necessary means to achieve this abstraction.

By structure is meant the data types, relationships, and constraints that should hold for the data.

Most data models also include a set of basic operations for specifying retrievals/updates.

Object-oriented data models include the idea of objects having behavior (i.e., applicable methods)
being stored in the database (as opposed to purely "passive" data).

According to C.J. Date (one of the leading database experts), a data model is an abstract, self-
contained, logical definition of the objects, operators, and so forth, that together constitute the

abstract machine with which users interact. The objects allow us to model the structure of data;
the operators allow us to model its behavior.

In the relational data model, data is viewed as being organized in two-dimensional tables
comprised of tuples of attribute values. This model has operations such as Project, Select, and Join.

A data model is not to be confused with its implementation, which is a physical realization on a
real machine of the components of the abstract machine that together constitute that model.

Logical vs. physical!!

There are other well-known data models that have been the basis for database systems. The best-
known models pre-dating the relational model are the hierarchical (in which the entity types form

a tree) and the network (in which the entity types and relationships between them form a graph).

Categories of Data Models (based on degree of abstractness):

 high-level/conceptual: (e.g., ER model of Chapter 3) provides a view close to the way

users would perceive data; uses concepts such as
o entity: real-world object or concept (e.g., student, employee, course, department,

event)
o attribute: some property of interest describing an entity (e.g., height, age, color)
o relationship: an interaction among entities e.g., works-on relationship between an

employee and a project

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 16

 representational/implementational: intermediate level of abstractness; example is

relational data model (or the network model alluded to earlier). Also called record-based
model.

 low-level/physical: gives details as to how data is stored in computer system, such as

record formats, orderings of records, access paths (indexes). (See Chapters 13-14.)

2.1.2: Schemas, Instances, and Database State

One must distinguish between the description of a database and the database itself. The former is
called the database schema, which is specified during design and is not expected to change often.
(See Figure 2.1, p. 33, for schema diagram for relational UNIVERSITY database.)

The actual data stored in the database probably changes often. The data in the database at a
particular time is called the state of the database, or a snapshot.

Application requirements change occasionally, which is one of the reasons why software
maintenance is important. On such occasions, a change to a database's schema may be called for.

An example would be to add a Date_of_Birth field/attribute to the STUDENT table. Making changes
to a database schema is known as schema evolution. Most modern DBMS's support schema

evolution operations that can be applied while a database is operational.

2.2 DBMS Architecture and Data Independence

2.2.1: Three-Schema Architecture: (See Figure 2.2, page 34.) This idea was first described by

the ANSI/SPARC committee in late 1970's. The goal is to separate (i.e., insert layers of

"insulation" between) user applications and the physical database. C.J. Date points out that it is an

ideal that few, if any, real-life DBMS's achieve fully.

 internal level: has an internal/physical schema that describes the physical storage

structure of the database using a low-level data model)

 conceptual level: has a conceptual schema describing the (logical) structure of the whole

database for a community of users. It hides physical storage details, concentrating upon

describing entities, data types, relationships, user operations, and constraints. Can be
described using either high-level or implementational data model.

 external/view level: includes a number of external schemas (or user views), each of which
describes part of the database that a particular category of users is interested in, hiding rest

of database. Can be described using either high-level or implementational data model. (In
practice, usually described using same model as is the conceptual schema)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 17

Users (including application programs) submit queries that are expressed with respect to the
external level. It is the responsibility of the DBMS to transform such a query into one that is
expressed with respect to the internal level (and to transform the result, which is at the internal
level, into its equivalent at the external level).

Example: Select students with GPA > 3.5.

A: By virtue of mappings between the levels:

 external/conceptual mapping (providing logical data independence)

 conceptual/internal mapping (providing physical data independence)

Data independence is the capacity to change the schema at one level of the architecture without

having to change the schema at the next higher level. We distinguish between logical and physical

data independence according to which two adjacent levels are involved. The former refers to the

ability to change the conceptual schema without changing the external schema. The latter refers to

the ability to change the internal schema without having to change the conceptual.

For an example of physical data independence, suppose that the internal schema is modified

(because we decide to add a new index, or change the encoding scheme used in representing some
field's value, or stipulate that some previously unordered file must be ordered by a particular field

). Then we can change the mapping between the conceptual and internal schemas in order to avoid
changing the conceptual schema itself.

Not surprisingly, the process of transforming data via mappings can be costly (performance-wise),

which is probably one reason that real-life DBMS's don't fully implement this 3-schema
architecture.

2.3 Database Languages and Interfaces

A DBMS supports a variety of users and must provide appropriate languages and interfaces for
each category of users.

DBMS Languages

 DDL (Data Definition Language): used (by the DBA and/or database designers) to
specify the conceptual schema.

 SDL (Storage Definition Language): used for specifying the internal schema
 VDL (View Definition Language): used for specifying the external schemas (i.e., user

views)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 18

 DML (Data Manipulation Language): used for performing operations such as retrieval
and update upon the populated database

The above description represents some kind of ideal. In real-life, at least so far, the de facto

standard DBMS language is SQL (Standard Query Language), which has constructs to support the
functions needed by DDL, VDL, and DML languages. (Early versions of SQL had features in

support of SDL functions, but no more.)

2.3.1 DBMS Languages

menu-based, forms-based, gui-based, natural language, special purpose for parametric users, for
DBA.

2.3.2 DBMS Interfaces

 Menu-based interfaces for web clients or browsing

 Forms-based interfaces

 GUI's

 Natural Language Interfaces
 Speech Input and Output

 Interfaces for parametric users
 Interfaces for the DBA

2.4 Database System Environment

See Figure 2.3, page 41.

2.5 Centralized and Client/Server Architectures for DBMS's

2.6 Classification of DBMS's

Based upon

 underlying data model (e.g., relational, object, object-relational, network)

 multi-user vs. single-user

 centralized vs. distributed

 cost

 general-purpose vs. special-purpose

 types of access path options

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 19

2.7 Data Modeling Using the Entity-Relationship Model

Outline of Database Design

The main phases of database design are depicted in Figure 3.1, page 59:

 Requirements Collection and Analysis: purpose is to produce a description of the users'
requirements.

 Conceptual Design: purpose is to produce a conceptual schema for the database, including
detailed descriptions of entity types, relationship types, and constraints. All these are

expressed in terms provided by the data model being used. (Remark: As the ER model is
focused on precisely these three concepts, it would seem that the authors are predisposed

to using that data model!)
 Implementation: purpose is to transform the conceptual schema (which is at a

high/abstract level) into a (lower-level) representational/implementational model
supported by whatever DBMS is to be used.

 Physical Design: purpose is to decide upon the internal storage structures, access paths

(indexes), etc., that will be used in realizing the representational model produced in
previous phase.

2.8 : Entity-Relationship (ER) Model

Our focus now is on the second phase, conceptual design, for which The Entity-Relationship
(ER) Model is a popular high-level conceptual data model.

In the ER model, the main concepts are entity, attribute, and relationship.

2.8.1 Entities and Attributes

Entity: An entity represents some "thing" (in the miniworld) that is of interest to us, i.e., about
which we want to maintain some data. An entity could represent a physical object (e.g., house,
person, automobile, widget) or a less tangible concept (e.g., company, job, academic course).

Attribute: An entity is described by its attributes, which are properties characterizing it. Each

attribute has a value drawn from some domain (set of meaningful values).

Example: A PERSON entity might be described by Name, BirthDate, Sex, etc., attributes, each
having a particular value.

What distinguishes an entity from an attribute is that the latter is strictly for the purpose of
describing the former and is not, in and of itself, of interest to us. It is sometimes said that an

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 20

entity has an independent existence, whereas an attribute does not. In performing data modeling,
however, it is not always clear whether a particular concept deserves to be classified as an entity
or "only" as an attribute.

We can classify attributes along these dimensions:

 simple/atomic vs. composite

 single-valued vs. multi-valued (or set-valued)
 stored vs. derived (Note from instructor: this seems like an implementational detail that

ought not be considered at this (high) level of abstraction.)

A composite attribute is one that is composed of smaller parts. An atomic attribute is indivisible
or indecomposable.

 Example 1: A BirthDate attribute can be viewed as being composed of (sub-)attributes

for month, day, and year.
 Example 2: An Address attribute (Figure 3.4, page 64) can be viewed as being composed

of (sub-)attributes for street address, city, state, and zip code. A street address can itself be

viewed as being composed of a number, street name, and apartment number. As this

suggests, composition can extend to a depth of two (as here) or more.

To describe the structure of a composite attribute, one can draw a tree (as in the aforementioned
Figure 3.4). In case we are limited to using text, it is customary to write its name followed by a
parenthesized list of its sub-attributes. For the examples mentioned above, we would write

BirthDate(Month, Day, Address(StreetAddr(StrNum, StrName,
AptNum), City, State, Zip)

Year)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 21

Single- vs. multi-valued attribute: Consider a PERSON entity. The person it represents has (one)

SSN, (one) date of birth, (one, although composite) name, etc. But that person may have zero or

more academic degrees, dependents, or (if the person is a male living in Utah) spouses! How can

we model this via attributes AcademicDegrees, Dependents, and Spouses? One way is to allow

such attributes to be multi-valued (perhaps set-valued is a better term), which is to say that we

assign to them a (possibly empty) set of values rather than a single value.

To distinguish a multi-valued attribute from a single-valued one, it is customary to enclose the
former within curly braces (which makes sense, as such an attribute has a value that is a set, and

curly braces are traditionally used to denote sets). Using the PERSON example from above, we

would depict its structure in text as

PERSON(SSN, Name, BirthDate(Month, Day, Year), { AcademicDegrees(School, Level, Year) },
{ Dependents }, ...)

Here we have taken the liberty to assume that each academic degree is described by a school, level
(e.g., B.S., Ph.D.), and year. Thus, AcademicDegrees is not only multi-valued but also composite.
We refer to an attribute that involves some combination of multi-valuedness and compositeness
as a complex attribute.

A more complicated example of a complex attribute is AddressPhone in Figure 3.5 (page 65). This

attribute is for recording data regarding addresses and phone numbers of a business. The structure
of this attribute allows for the business to have several offices, each described by an address and a

set of phone numbers that ring into that office. Its structure is given by

{ AddressPhone({ Phone(AreaCode, Number) }, Address(StrAddr(StrNum, StrName, AptNum),
City, State, Zip)) }

Stored vs. derived attribute: Perhaps independent and derivable would be better terms for these

(or non-redundant and redundant). In any case, a derived attribute is one whose value can be
calculated from the values of other attributes, and hence need not be stored. Example: Age can be
calculated from BirthDate, assuming that the current date is accessible.

The Null value: In some cases a particular entity might not have an applicable value for a

particular attribute. Or that value may be unknown. Or, in the case of a multi-valued attribute, the

appropriate value might be the empty set.

Example: The attribute DateOfDeath is not applicable to a living person and its correct value may
be unknown for some persons who have died.

In such cases, we use a special attribute value (non-value?), called null. There has been some
argument in the database literature about whether a different approach (such as having distinct
values for not applicable and unknown) would be superior.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 22

2.8.2 : Entity Types, Entity Sets, Keys, and Domains

Above we mentioned the concept of a PERSON entity, i.e., a representation of a particular person

via the use of attributes such as Name, Sex, etc. Chances are good that, in a database in which one

such entity exists, we will want many others of the same kind to exist also, each of them described

by the same collection of attributes. Of course, the values of those attributes will differ from one

entity to another (e.g., one person will have the name "Mary" and another will have the name

"Rumpelstiltskin"). Just as likely is that we will want our database to store information about other

kinds of entities, such as business transactions or academic courses, which will be described by

entirely different collections of attributes.

This illustrates the distinction between entity types and entity instances. An entity type serves as
a template for a collection of entity instances, all of which are described by the same collection
of attributes. That is, an entity type is analogous to a class in object-oriented programming and an
entity instance is analogous to a particular object (i.e., instance of a class).

In ER modeling, we deal only with entity types, not with instances. In an ER diagram, each entity
type is denoted by a rectangular box.

An entity set is the collection of all entities of a particular type that exist, in a database, at some
moment in time.

Key Attributes of an Entity Type: A minimal collection of attributes (often only one) that, by

design, distinguishes any two (simultaneously-existing) entities of that type. In other words, if
attributes A1 through Am together form a key of entity type E, and e and f are two entities of type
E existing at the same time, then, in at least one of the attributes Ai (0 < i <= m), e and f must have
distinct values.

An entity type could have more than one key. (An example of this appears in Figure 3.7, page 67,
in which the CAR entity type is postulated to have both { Registration(RegistrationNum, State) }
and { VehicleID } as keys.)

Domains (Value Sets) of Attributes: The domain of an attribute is the "universe of values" from

which its value can be drawn. In other words, an attribute's domain specifies its set of allowable
values. The concept is similar to data type.

Example Database Application: COMPANY

Suppose that Requirements Collection and Analysis results in the following (informal)

description of the COMPANY miniworld:

The company is organized as a collection of departments.

 Each department

o has a unique name
o has a unique number
o is associated with a set of locations

o has a particular employee who acts as its manager (and who assumed that
position on some date)

o has a set of employees assigned to it
o controls a set of projects

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 23

 Each project
o has a unique name
o has a unique number

o has a single location

 has a set of employees who work on it
o is controlled by a single department

 Each employee
o has a name
o has a SSN that uniquely identifies her/him

o has an address
o has a salary
o has a sex
o has a birthdate
o has a direct supervisor
o has a set of dependents
o is assigned to one department

o works some number of hours per week on each of a set of projects (which need
not all be controlled by the same department)

 Each dependent

o has first name
o has a sex
o has a birthdate
o is related to a particular employee in a particular way (e.g., child, spouse, pet)
o is uniquely identified by the combination of her/his first name and the employee

of which (s)he is a dependent

2.8.3 Initial Conceptual Design of COMPANY database

Using the above structured description as a guide, we get the following preliminary design for
entity types and their attributes in the COMPANY database:

 DEPARTMENT(Name, Number, { Locations }, Manager, ManagerStartDate, {
Employees }, { Projects })

 PROJECT(Name, Number, Location, { Workers }, ControllingDept)
 EMPLOYEE(Name(FName, MInit, LName), SSN, Sex, Address, Salary, BirthDate,

Dept, Supervisor, { Dependents }, { WorksOn(Project, Hours) })
 DEPENDENT(Employee, FirstName, Sex, BirthDate, Relationship)

Remarks: Note that the attribute WorksOn of EMPLOYEE (which records on which projects the

employee works) is not only multi-valued (because there may be several such projects) but also

composite, because we want to record, for each such project, the number of hours per week that
the employee works on it. Also, each candidate key has been indicated by underlining.

For similar reasons, the attributes Manager and ManagerStartDate of DEPARTMENT really
ought to be combined into a single composite attribute. Not doing so causes little or no harm,

however, because these are single-valued attributes. Multi-valued attributes would pose some

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 24

difficulties, on the other hand. Suppose, for example, that a department could have two or more

managers, and that some department had managers Mary and Harry, whose start dates were 10-4-

1999 and 1-13-2001, respectively. Then the values of the Manager and ManagerStartDate

attributes should be { Mary, Harry } and { 10-4-1999, 1-13-2001 }. But from these two attribute

values, there is no way to determine which manager started on which date. On the other hand, by

recording this data as a set of ordered pairs, in which each pair identifies a manager and her/his

starting date, this deficiency is eliminated. End of Remarks

2.9 Relationship Types, Sets, Roles, and Structural Constraints

Having presented a preliminary database schema for COMPANY, it is now convenient to clarify
the concept of a relationship (which is the last of the three main concepts involved in the ER
model).

Relationship: This is an association between two entities. As an example, one can imagine a

STUDENT entity being associated to an ACADEMIC_COURSE entity via, say, an ENROLLED_IN

relationship.

Whenever an attribute of one entity type refers to an entity (of the same or different entity type),
we say that a relationship exists between the two entity types.

From our preliminary COMPANY schema, we identify the following relationship types (using
descriptive names and ordering the participating entity types so that the resulting phrase will be in
active voice rather than passive):

 EMPLOYEEMANAGESDEPARTMENT (arising from Manager attribute in

DEPARTMENT)
 DEPARTMENT CONTROLS PROJECT (arising from ControllingDept attribute in

PROJECT and the Projects attribute in DEPARTMENT)
 EMPLOYEE WORKS_FOR DEPARTMENT (arising from Dept attribute in EMPLOYEE

and the Employees attribute in DEPARTMENT)
 EMPLOYEESUPERVISESEMPLOYEE (arising from Supervisor attribute in

EMPLOYEE)
 EMPLOYEE WORKS_ON PROJECT (arising from WorksOn attribute in EMPLOYEE

and the Workers attribute in PROJECT)
 DEPENDENT DEPENDS_ON EMPLOYEE (arising from Employee attribute in

DEPENDENT and the Dependents attribute in EMPLOYEE).

In ER diagrams, relationship types are drawn as diamond-shaped boxes connected by lines to the

entity types involved. See Figure 3.2, page 62. Note that attributes are depicted by ovals connected
by lines to the entity types they describe (with multi-valued attributes in double ovals and

composite attributes depicted by trees). The original attributes that gave rise to the relationship
types are absent, having been replaced by the relationship types.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 25

A relationship set is a set of instances of a relationship type. If, say, R is a relationship type that

relates entity types A and B, then, at any moment in time, the relationship set of R will be a set of

ordered pairs (x,y), where x is an instance of A and y is an instance of B. What this means is that,

for example, if our COMPANY miniworld is, at some moment, such that employees e1, e3, and e6

work for department d1, employees e2 and e4 work for department d2, and employees e5 and e7

work for department d3, then the relationship set will include as instances the

ordered pairs (e1, d1), (e2, d2), (e3, d1), (e4, d2), (e5, d3), (e6, d1), and (e7, d3). See Figure 3.9 on page
71 for a graphical depiction of this.

2.9.1 Ordering of entity types in relationship types: Note that the order in which we list the

entity types in describing a relationship is of little consequence, except that the relationship name

(for purposes of clarity) ought to be consistent with it. For example, if we swap the two entity
types in each of the first two relationships listed above, we should rename them

IS_MANAGED_BY and IS_CONTROLLED_BY, respectively.

2.9.2 Degree of a relationship type: Also note that, in our COMPANY example, all relationship

instances will be ordered pairs, as each relationship associates an instance from one entity type

with an instance of another (or the same, in the case of SUPERVISES) relationship type. Such

relationships are said to be binary, or to have degree two. Relationships with degree three (called

ternary) or more are also possible, although not as common. This is illustrated in Figure 3.10 (page

72), where a relationship SUPPLY (perhaps not the best choice for a name) has as instances ordered

triples of suppliers, parts, and projects, with the intent being that inclusion of the ordered triple (s2,

p4, j1), for example, indicates that supplier s2 supplied part p4 to project j1).

Roles in relationships: Each entity that participates in a relationship plays a particular role in that

relationship, and it is often convenient to refer to that role using an appropriate name. For example,

in each instance of a WORKS_FOR relationship set, the employee entity plays the role of worker or

(surprise!) employee and each department plays the role of employer or (surprise!) department.

Indeed, as this example suggests, often it is best to use the same name for the role as for the

corresponding entity type.

An exception to this rule occurs when the same entity type plays two (or more) roles in the same

relationship. (Such relationships are said to be reCURsive, which I find to be a misleading use of
that term. A better term might be self-referential.) For example, in each instance of a SUPERVISES

relationship set, one employee plays the role of supervisor and the other plays the role of
supervisee.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 26

2.9.3 Constraints on Relationship Types

Often, in order to make a relationship type be an accurate model of the miniworld concepts that it
is intended to represent, we impose certain constraints that limit the possible corresponding

relationship sets. (That is, a constraint may make "invalid" a particular set of instances for a
relationship type.)

There are two main kinds of relationship constraints (on binary relationships). For illustration, let
R be a relationship set consisting of ordered pairs of instances of entity types A and

B, respectively.

 cardinality ratio:
o 1:1 (one-to-one): Under this constraint, no instance of A may particpate in more

than one instance of R; similarly for instances of B. In other words, if (a1, b1) and
(a2, b2) are (distinct) instances of R, then neither a1 = a2 nor b1 = b2. Example: Our
informal description of COMPANY says that every department has one employee
who manages it. If we also stipulate that an employee may not (simultaneously)
play the role of manager for more than one department, it follows that MANAGES is
1:1.

o 1:N (one-to-many): Under this constraint, no instance of B may participate in more
than one instance of R, but instances of A are under no such restriction. In
other words, if (a1, b1) and (a2, b2) are (distinct) instances of R, then it cannot be
the case that b1 = b2. Example: CONTROLS is 1:N because no project may be

controlled by more than one department. On the other hand, a department may

control any number of projects, so there is no restriction on the number of

relationship instances in which a particular department instance may participate.

For similar reasons, SUPERVISES is also 1:N.

o N:1 (many-to-one): This is just the same as 1:N but with roles of the two entity
types reversed.

Example: WORKS_FOR and DEPENDS_ON are N:1.

o M:N (many-to-many): Under this constraint, there are no restrictions. (Hence,
the term applies to the absence of a constraint!) Example: WORKS_ON is M:N,
because an employee may work on any number of projects and a project may have
any number of employees who work on it.

 Notice the notation in Figure 3.2 for indicating each relationship type's cardinality

 ratio.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 27

Suppose that, in designing a database, we decide to include a binary relationship R as described
above (which relates entity types A and B, respectively). To determine how R should be

constrained, with respect to cardinality ratio, the questions you should ask are these:

 participation: specifies whether or not the existence of an entity depends upon its
 being related to another entity via the relationship

o total participation (or existence dependency): To say that entity type A is
constrained to participate totally in relationship R is to say that if (at some
moment in time) R's instance set is

{ (a1, b1), (a2, b2), ... (am, bm) },

then (at that same moment) A's instance set must be { a1, a2, ..., am }. In other words,
there can be no member of A's instance set that does not participate in at least one
instance of R.

According to our informal description of COMPANY, every employee must be
assigned to some department. That is, every employee instance must participate in

at least one instance of WORKS_FOR, which is to say that EMPLOYEE satisfies the
total participation constraint with respect to the WORKS_FOR relationship.

In an ER diagram, if entity type A must participate totally in relationship type R, the
two are connected by a double line. See Figure 3.2.

o partial participation: the absence of the total participation constraint! (E.g., not
every employee has to participate in MANAGES; hence we say that, with respect to
MANAGES, EMPLOYEE participates partially. This is not to say that for all
employees to be managers is not allowed; it only says that it need not be the case
that all employees are managers.

2.9.4 Attributes of Relationship Types (page 76)

Relationship types, like entity types, can have attributes. A good example is WORKS_ON, each

instance of which identifies an employee and a project on which (s)he works. In order to record

(as the specifications indicate) how many hours are worked by each employee on each project, we

include Hours as an attribute of WORKS_ON. (See Figure 3.2 again.) In the case of an M:N

relationship type (such as WORKS_ON), allowing attributes is vital. In the case of an N:1, 1:N, or

1:1 relationship type, any attributes can be assigned to the entity type opposite from the 1 side. For

example, the StartDate attribute of the MANAGES relationship type can be given to either the

EMPLOYEE or the DEPARTMENT entity type.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 28

2.10 Weak Entity Types: An entity type that has no set of attributes that qualify as a key is called
weak. (Ones that do are strong.)

An entity of a weak identity type is uniquely identified by the specific entity to which it is related
(by a so-called identifying relationship that relates the weak entity type with its so-called

identifying or owner entity type) in combination with some set of its own attributes (called a

partial key).

Example: A DEPENDENT entity is identified by its first name together with the EMPLOYEE

entity to which it is related via DEPENDS_ON. (Note that this wouldn't work for former heavyweight
boxing champion George Foreman's sons, as they all have the name "George"!)

Because an entity of a weak entity type cannot be identified otherwise, that type has a total
participation constraint (i.e., existence dependency) with respect to the identifying relationship.

This should not be taken to mean that any entity type on which a total participation constraint
exists is weak. For example, DEPARTMENT has a total participation constraint with respect to

MANAGES, but it is not weak.

In an ER diagram, a weak entity type is depicted with a double rectangle and an identifying
relationship type is depicted with a double diamond.

Design Choices for ER Conceptual Design: Sometimes it is not clear whether a particular
miniworld concept ought to be modeled as an entity type, an attribute, or a relationship type. Here

are some guidelines (given with the understanding that schema design is an iterative process in
which an initial design is refined repeatedly until a satisfactory result is achieved):

 As happened in our development of the ER model for COMPANY, if an attribute of entity
type A serves as a reference to an entity of type B, it may be wise to refine that attribute

into a binary relationship involving entity types A and B. It may well be that B has a
corresponding attribute referring back to A, in which case it, too, is refined into the

aforementioned relationship. In our COMPANY example, this was exemplified by the
Projects and ControllingDept attributes of DEPARTMENT and PROJECT, respectively.

 An attribute that exists in several entity types may be refined into its own entity type. For

example, suppose that in a UNIVERSITY database we have entity types STUDENT,

INSTRUCTOR, and COURSE, all of which have a Department attribute. Then it may be

wise to introduce a new entity type, DEPARTMENT, and then to follow the preceding

guideline by introducing a binary relationship between DEPARTMENT and each of the

three aforementioned entity types.
 An entity type that is involved in very few relationships (say, zero, one, or possibly two)

could be refined into an attribute (of each entity type to which it is related).

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 29

Questions

1. Design an ER Diagram for keeping track of Information about Bank Database,Taking
into account 4 entities?

2. Describe how to map the following Scenario‘s in ER Model to schema,with suitable
exam ple:

3. List the summary of the notations for ER diagrams. Include symbols used in ER diagram
and their meaning.

4. With respect to ER model explain with example.

5. What is meant by partial key? Explain.
6. Define an entity and an attribute,explain the different types of attributes that occur in an

ER diagram model,with an example
7. Define the following with an example

i. Weak entity types

ii. Cardinality ratio

iii. Ternary relationship

iv. Participation constraints

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 30

MODULE 2

The Relational Data Model and Relational Database Constraints

and Relational Algebra

2.1 Relational Model Concepts

 Domain: A (usually named) set/universe of atomic values, where by "atomic" we mean

simply that, from the point of view of the database, each value in the domain is indivisible
(i.e., cannot be broken down into component parts).

Examples of domains (some taken from page 147):

o USA_phone_number: string of digits of length
ten o SSN: string of digits of length nine
o Name: string of characters beginning with an upper case letter
o GPA: a real number between 0.0 and 4.0
o Sex: a member of the set { female, male }
o Dept_Code: a member of the set { CMPS, MATH, ENGL, PHYS, PSYC, ... }

These are all logical descriptions of domains. For implementation purposes, it is necessary

to provide descriptions of domains in terms of concrete data types (or formats) that are

provided by the DBMS (such as String, int, boolean), in a manner analogous to how
programming languages have intrinsic data types.

 Attribute: the name of the role played by some value (coming from some domain) in the

context of a relational schema. The domain of attribute A is denoted dom(A).
 Tuple: A tuple is a mapping from attributes to values drawn from the respective domains

of those attributes. A tuple is intended to describe some entity (or relationship between

entities) in the miniworld.

As an example, a tuple for a PERSON entity might be

{ Name --> "Rumpelstiltskin", Sex --> Male, IQ --> 143 }

 Relation: A (named) set of tuples all of the same form (i.e., having the same set of
attributes). The term table is a loose synonym. (Some database purists would argue that a
table is "only" a physical manifestation of a relation.)

 Relational Schema: used for describing (the structure of) a relation. E.g., R(A1, A2, ..., An)

says that R is a relation with attributes A1, ... An. The degree of a relation is the number of
attributes it has, here n.

Example: STUDENT(Name, SSN, Address)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 31

(See Figure 5.1, page 149, for an example of a STUDENT relation/table having several
tuples/rows.)

One would think that a "complete" relational schema would also specify the domain of
each attribute.

 Relational Database: A collection of relations, each one consistent with its specified

relational schema.

2.1.2 Characteristics of Relations

Ordering of Tuples: A relation is a set of tuples; hence, there is no order associated with them.

That is, it makes no sense to refer to, for example, the 5th tuple in a relation. When a relation is

depicted as a table, the tuples are necessarily listed in some order, of course, but you should attach

no significance to that order. Similarly, when tuples are represented on a storage device, they must

be organized in some fashion, and it may be advantageous, from a performance standpoint, to

organize them in a way that depends upon their content.

Ordering of Attributes: A tuple is best viewed as a mapping from its attributes (i.e., the names

we give to the roles played by the values comprising the tuple) to the corresponding values. Hence,

the order in which the attributes are listed in a table is irrelevant. (Note that, unfortunately, the set

theoretic operations in relational algebra (at least how E&N define them) make implicit use of the

order of the attributes. Hence, E&N view attributes as being arranged as a sequence rather than a

set.)

Values of Attributes: For a relation to be in First Normal Form, each of its attribute domains

must consist of atomic (neither composite nor multi-valued) values. Much of the theory underlying

the relational model was based upon this assumption. Chapter 10 addresses the issue of including

non-atomic values in domains. (Note that in the latest edition of C.J. Date's book, he explicitly
argues against this idea, admitting that he has been mistaken in the past.)

The Null value: used for don't know, not applicable.

Interpretation of a Relation: Each relation can be viewed as a predicate and each tuple in that
relation can be viewed as an assertion for which that predicate is satisfied (i.e., has value true) for

the combination of values in it. In other words, each tuple represents a fact. Example (see Figure

5.1): The first tuple listed means: There exists a student having name Benjamin Bayer, having SSN
305-61-2435, having age 19, etc.

Keep in mind that some relations represent facts about entities (e.g., students) whereas others
represent facts about relationships (between entities). (e.g., students and course sections).

The closed world assumption states that the only true facts about the miniworld are those
represented by whatever tuples currently populate the database.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 32

2.1.3 Relational Model Notation: page 152

 R(A1, A2, ..., An) is a relational schema of degree n denoting that there is a relation R
having as its attributes A1, A2, ..., An.

 By convention, Q, R, and S denote relation names.
 By convention, q, r, and s denote relation states. For example, r(R) denotes one possible

state of relation R. If R is understood from context, this could be written, more simply, as
r.

 By convention, t, u, and v denote tuples.
 The "dot notation" R.A (e.g., STUDENT.Name) is used to qualify an attribute name, usually

for the purpose of distinguishing it from a same-named attribute in a different relation
(e.g., DEPARTMENT.Name).

2.2 Relational Model Constraints and Relational Database Schemas

Constraints on databases can be categorized as follows:

 inherent model-based: Example: no two tuples in a relation can be duplicates (because a

relation is a set of tuples)
 schema-based: can be expressed using DDL; this kind is the focus of this section.
 application-based: are specific to the "business rules" of the miniworld and typically

difficult or impossible to express and enforce within the data model. Hence, it is left to

application programs to enforce.

Elaborating upon schema-based constraints:

2.2.1 Domain Constraints: Each attribute value must be either null (which is really a non-value)
or drawn from the domain of that attribute. Note that some DBMS's allow you to impose the not

null constraint upon an attribute, which is to say that that attribute may not have the (non-)value

null.

2.2.2 Key Constraints: A relation is a set of tuples, and each tuple's "identity" is given by the

values of its attributes. Hence, it makes no sense for two tuples in a relation to be identical (because

then the two tuples are actually one and the same tuple). That is, no two tuples may have the same

combination of values in their attributes.

Usually the miniworld dictates that there be (proper) subsets of attributes for which no two tuples

may have the same combination of values. Such a set of attributes is called a superkey of its
relation. From the fact that no two tuples can be identical, it follows that the set of all attributes of

a relation constitutes a superkey of that relation.

A key is a minimal superkey, i.e., a superkey such that, if we were to remove any of its attributes,
the resulting set of attributes fails to be a superkey.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 33

Example: Suppose that we stipulate that a faculty member is uniquely identified by Name and

Address and also by Name and Department, but by no single one of the three attributes mentioned.
Then { Name, Address, Department } is a (non-minimal) superkey and each of { Name, Address }
and { Name, Department } is a key (i.e., minimal superkey).

Candidate key: any key! (Hence, it is not clear what distinguishes a key from a candidate key.)

Primary key: a key chosen to act as the means by which to identify tuples in a relation.

Typically, one prefers a primary key to be one having as few attributes as possible.

2.2.3 Relational Databases and Relational Database Schemas

A relational database schema is a set of schemas for its relations (see Figure 5.5, page 157)
together with a set of integrity constraints.

A relational database state/instance/snapshot is a set of states of its relations such that no
integrity constraint is violated. (See Figure 5.6, page 159, for a snapshot of COMPANY.)

2.2.4 Entity Integrity, Referential Integrity, and Foreign Keys

Entity Integrity Constraint: In a tuple, none of the values of the attributes forming the relation's
primary key may have the (non-)value null. Or is it that at least one such attribute must have a
non-null value? In my opinion, E&N do not make it clear!

Referential Integrity Constraint: (See Figure 5.7) A foreign key of relation R is a set of its

attributes intended to be used (by each tuple in R) for identifying/referring to a tuple in some

relation S. (R is called the referencing relation and S the referenced relation.) For this to make

sense, the set of attributes of R forming the foreign key should "correspond to" some superkey of
S. Indeed, by definition we require this superkey to be the primary key of S.

This constraint says that, for every tuple in R, the tuple in S to which it refers must actually be in
S. Note that a foreign key may refer to a tuple in the same relation and that a foreign key may be

part of a primary key (indeed, for weak entity types, this will always occur). A foreign key may
have value null (necessarily in all its attributes??), in which case it does not refer to any tuple in

the referenced relation.

Semantic Integrity Constraints: application-specific restrictions that are unlikely to be

expressible in DDL. Examples:

 salary of a supervisee cannot be greater than that of her/his supervisor

 salary of an employee cannot be lowered

2.3 Update Operations and Dealing with Constraint Violations.

For each of the update operations (Insert, Delete, and Update), we consider what kinds of

constraint violations may result from applying it and how we might choose to react.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 34

2.3.1 Insert:

 domain constraint violation: some attribute value is not of correct domain

 entity integrity violation: key of new tuple is null

 key constraint violation: key of new tuple is same as existing one

 referential integrity violation: foreign key of new tuple refers to non-existent tuple

Ways of dealing with it: reject the attempt to insert! Or give user opportunity to try again with
different attribute values.

2.3.2 Delete:

 referential integrity violation: a tuple referring to the deleted one

exists. Three options for dealing with it:

 Reject the deletion
 Attempt to cascade (or propagate) by deleting any referencing tuples (plus those that

reference them, etc., etc.)
 modify the foreign key attribute values in referencing tuples to null or to some valid

value referencing a different tuple

2.3.3 Update:

 Key constraint violation: primary key is changed so as to become same as another tuple's

 referential integrity violation:

o foreign key is changed and new one refers to nonexistent tuple
o primary key is changed and now other tuples that had referred to this one violate

the constraint

2.3.4 Transactions: This concept is relevant in the context where multiple users and/or application

programs are accessing and updating the database concurrently. A transaction is a logical unit of

work that may involve several accesses and/or updates to the database (such as what might be

required to reserve several seats on an airplane flight). The point is that, even though several

transactions might be processed concurrently, the end result must be as though the transactions

were carried out sequentially. (Example of simultaneous withdrawals from same checking

account.)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 35

The Relational Algebra

Operations

to

manipulate relations.

Used

to specify

retrieval requests (queries).

 Query result is in

the form of a relation

2.4 Relational Operations:

SELECT

and PROJECT

operations.

Set operations: These include UNION U, INTERSECTION | |, DIFFERENCE -, CARTESIAN
PRODUCT X.

JOIN operations .

Other relational operations: DIVISION, OUTER JOIN, AGGREGATE FUNCTIONS.

2.4.1 SELECT and PROJECT

SELECT operation (denoted by):

Selects the tuples (rows) from a relation R that satisfy a certain

selection condition c

Form of the operation: c

The condition c is an arbitrary Boolean expression on the attributes

of R

Resulting relation has the same attributes as R

Resulting relation includes each tuple in r(R) whose attribute values

satisfy the condition c

Examples:

DNO=4(EMPLOYEE)

SALARY>30000
(EMPLOYEE)

(DNO=4 AND SALARY>25000) OR DNO=5
(EMPLOYEE)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 36

PROJECT operation (denoted by):

 Keeps only certain

attributes (columns) from a relation R specified in an attribute list L

 Form of

operation: L(R)

 Resulting relation

has only those attributes of R specified in L

 The PROJECT operation eliminates duplicate tuples in the resulting

relation so that it remains a mathematical set (no duplicate elements).

Example: SEX,SALARY(EMPLOYEE)

If several male employees have salary 30000, only a single tuple <M, 30000> is kept in the
resulting relation.

Duplicate tuples are eliminated by the operation.

Sequences of operations: Several operations can be combined to form a relational algebra

expression (query)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 37

Example: Retrieve the names and salaries of employees who work in department 4:

FNAME,LNAME,SALARY (DNO=4(EMPLOYEE))

Alternatively, we specify explicit intermediate relations for each

step:

DEPT4_EMPS DNO=4(EMPLOYEE)

 (DEPT4_EMPS)
FNAME,LNAME,SALARY

Attributes can optionally be renamed in the resulting left-hand-side relation (this may be
required for some operations that will be presented later):

DEPT4_EMPS DNO=4(EMPLOYEE)

 (FIRSTNAME,LASTNAME,SALARY) FNAME,LNAME,SALARY(DEPT4_EMPS)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 38

2.5 Relational algebra operation Set theory Operations

Binary operations from mathematical set theory:

UNION: R1 R2,

INTERSECTION: R1 R2,

SET DIFFERENCE: R1 - R2,

CARTESIAN PRODUCT: R1 X R2.

For , , -, the operand relations R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) must have the same

number of attributes, and the domains of corresponding attributes must be compatible; that is,

dom(Ai) = dom(Bi) for i=1, 2, ..., n. This condition is called union compatibility. The resulting

relation for , , or - has the same attribute names as the first operand relation R1 (by convention).

CARTESIAN PRODUCT

R(A1, A2, ..., Am, B1, B2, ..., Bn) R1(A1, A2, ..., Am) X R2 (B1, B2, ..., Bn)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 39

A tuple t exists in R for each combination of tuples t1 from R1 and

t2 from R2 such that:

t[A1, A2, ..., Am] = t1 and t[B1, B2, ..., Bn] = t2

If R1 has n1 tuples and R2 has n2 tuples, then R will have n1*n2 tuples.

CARTESIAN PRODUCT is a meaningless operation on its own. It can combine related tuples
from two relations if followed by the appropriate SELECT operation.

Example: Combine each DEPARTMENT tuple with the EMPLOYEE tuple of the manager.

DEP_EMP DEPARTMENT X EMPLOYEE

DEPT_MANAGER MGRSSN=SSN(DEP_EMP)

2.6 JOIN Operations

THETA JOIN: Similar to a CARTESIAN PRODUCT followed by a SELECT. The condition c

is called a join condition.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 40

R(A1, A2, ..., Am, B1, B2, ..., Bn) R1(A1, A2, ..., Am) c R2 (B1, B2, ..., Bn)

EQUIJOIN: The join condition c includes one or more equality comparisons involving

attributes from R1 and R2. That is, c is of the form:

(Ai=Bj) AND ... AND (Ah=Bk); 1<i,h<m, 1<j,k<n

In the above EQUIJOIN operation:

Ai, ..., Ah are called the join attributes of R1

Bj, ..., Bk are called the join attributes of R2

Example of using EQUIJOIN:

Retrieve each DEPARTMENT's name and its manager's name:

T DEPARTMENT MGRSSN = SSN EMPLOYEE

RESULT
 DNAME,FNAME,LNAME

(T)

NATURAL JOIN (*):

In an EQUIJOIN R R1 c R2, the join attribute of R2 appear redundantly in the result

relation R. In a NATURAL JOIN, the redundant join attributes of R2 are eliminated from R. The
equality condition is implied and need not be specified.

R R1 *(join attributes of R1),(join attributes of R2) R2

Example: Retrieve each EMPLOYEE's name and the name of the DEPARTMENT he/she works
for:

T EMPLOYEE *(DNO),(DNUMBER) DEPARTMENT

RESULT
FNAME,LNAME,DNAME

(T)

If the join attributes have the same names in both relations, they need not be specified and we can

write R R1 * R2.

Example: Retrieve each EMPLOYEE's name and the name of his/her SUPERVISOR:

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 41

SUPERVISOR(SUPERSSN,SFN,SLN)

 (EMPLOYEE)
SSN,FNAME,LNAM

T EMPLOYEE * SUPERVISOR

RESULT
FNAME,LNAME,SFN,SLN

(T)

Note: In the original definition of NATURAL JOIN, the join attributes were required to have
the same names in both relations.

There can be a more than one set of join attributes with a different meaning between the same

two relations. For example:

 JOIN ATTRIBUTES

 RELATIONSHIP

EMPLOYEE.SSN= EMPLOYEE manages

 DEPARTMENT.MGRSSN

 the DEPARTMENT

EMPLOYEE.DNO= EMPLOYEE works for

 DEPARTMENT.DNUMBER the DEPARTMENT

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 42

Example: Retrieve each EMPLOYEE's name and the name of the DEPARTMENT he/she works
for:

T EMPLOYEE DNO=DNUMBER DEPARTMENT

RESULT
 FNAME,LNAME,DNAME

(T)

A relation can have a set of join attributes to join it with itself :

 JOIN ATTRIBUTES RELATIONSHIP

EMPLOYEE(1).SUPERSSN= EMPLOYEE(2) supervises

 EMPLOYEE(2).SSN EMPLOYEE(1)

One can think of this as joining two distinct copies of the relation, although only one relation

actually exists In this case, renaming can be useful.

Example: Retrieve each EMPLOYEE's name and the name of his/her SUPERVISOR:

SUPERVISOR(SSSN,SFN,SLN) SSN,FNAME,LNAME(EMPLOYEE)

T EMPLOYEE SUPERSSN=SSSNSUPERVISOR

RESULT
 FNAME,LNAME,SFN,SLN

(T)

Complete Set of Relational Algebra Operations:

All the operations discussed so far can be described as a sequence of only the operations SELECT,

PROJECT, UNION, SET DIFFERENCE, and CARTESIAN PRODUCT.

Hence, the set { , , , - , X } is called a complete set of relational algebra operations. Any query

language equivalent to these operations is called relationally complete.

For database applications, additional operations are needed that were not part of the original

relational algebra. These include:

1. Aggregate functions and grouping.

2. OUTER JOIN and OUTER UNION.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 43

AGGREGATE FUNCTIONS ()

Functions such as SUM, COUNT, AVERAGE, MIN, MAX are often applied to sets of values or
sets of tuples in database applications

<grouping attributes> <function list>(R)

The grouping attributes are optional

Example 1: Retrieve the average salary of all employees (no grouping needed):

(AVGSAL) AVERAGE SALARY (EMPLOYEE)

Example 2: For each department, retrieve the department number, the number of employees, and
the average salary (in the department):

(DNO,NUMEMPS,AVGSAL) DNO
COUNT SSN, AVERAGE SALARY (EMPLOYEE)

DNO is called the grouping attribute in the above example

OUTER JOIN

In a regular EQUIJOIN or NATURAL JOIN operation, tuples in R1 or R2 that do not have

matching tuples in the other relation do not appear in the result

 Some queries require all tuples in R1 (or R2 or both) to appear in

the result

 When no matching tuples are found, nulls are placed for the

missing attributes

LEFT OUTER JOIN: R1 X R2 lets every tuple in R1 appear in the result

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 44

RIGHT OUTER JOIN: R1 X R2 lets every tuple in R2 appear in the result

FULL OUTER JOIN: R1 X R2 lets every tuple in R1 or R2 appear in the result

2.8 Examples of Queries in Relational Algebra

 Q1: Retrieve the name and address of all employees who work for the ‘Research’ department.

RESEARCH_DEPT DNAME=‘Research‘ (DEPARTMENT)

RESEARCH_EMPS(RESEARCH_DEPT DNUMBER=

DNOEMPLOYEEEMPLOYEE)

RESULT FNAME, LNAME, ADDRESS (RESEARCH_EMPS)

 Q6: Retrieve the names of employees who have no dependents.

ALL_EMPS SSN(EMPLOYEE)

EMPS_WITH_DEPS(SSN) ESSN(DEPENDENT)

EMPS_WITHOUT_DEPS (ALL_EMPS - EMPS_WITH_DEPS)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 45

RESULT LNAME, FNAME (EMPS_WITHOUT_DEPS * EMPLOYEE)

3.9 Relational Database Design Using ER-to-Relational Mapping

Step 1: For each regular (strong) entity type E in the ER schema, create a relation R that
includes all the simple attributes of E.

EMPLOYEE
SSN Lname Fname

DEPARTMENT

NUMBER NAME

Step 2: For each weak entity type W in the ER schema with owner entity type E, create a relation
R, and include all simple attributes (or simple components of composite attributes) of W as
attributes. In addition, include as foreign key attributes of R the primary key attribute(s) of the
relation(s) that correspond to the owner entity type(s).

DEPENDENT
EMPL-SSN NAME Relationship

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 46

Step 3: For each binary 1:1 relationship type R in the ER schema, identify the relations S and T
that correspond to the entity types participating in R. Choose one of the relations, say S, and include

the primary key of T as a foreign key in S. Include all the simple attributes of R as attributes of S.

DEPARTMENT

MANAGER-SSN StartDate

Step 4: For each regular binary 1:N relationship type R identify the relation (N) relation S.

Include the primary key of T as a foreign key of S. Simple attributes of R map to attributes of S.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 47

EMPLOYEE
SupervisorSSN

Step 5: For each binary M:N relationship type R, create a relation S. Include the primary keys
of participant relations as foreign keys in S. Their combination will be the primary key for S.
Simple attributes of R become attributes of S.

WORKS-FOR

EmployeeSSN DeptNumber

Step 6: For each multi-valued attribute A, create a new relation R. This relation will include an
attribute corresponding to A, plus the primary key K of the parent relation (entity type or
relationship type) as a foreign key in R. The primary key of R is the combination of A and K.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 48

DEP-LOCATION

Location DEP-NUMBER

Step 7: For each n-ary relationship type R, where n>2, create a new relation S to represent R.
Include the primary keys of the relations participating in R as foreign keys in S. Simple attributes
of R map to attributes of S. The primary key of S is a combination of all the foreign keys that
reference the participants that have cardinality constraint > 1.

For a recursive relationship, we will need a new relation.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 49

Questions

1. Define the following terms with an example for each.

2. Explain:

3. i) Domain constraint ii) Semantic integrity constraint iii) Functional

dependency constraint

4. List the characteristics of relation? Discuss any one?

5. Discuss various types of Inner Join Operations?

6. Discuss the characteristics of a relation, with an example
7. Briefly discuss the different types of update operations on relational database. show an

example of
8. What is valid state and an invalid state,with respect to a database
9. Define referential integrity constraint. Explain the importance of referential integrity

constraint. How is this constraint implemented in SQL
10. Define referential integrity in each of the update operation

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 50

MODULE 3

SQL :ADVANCE QUERIES

3.1 Data Definition, Constraints, and Schema Changes in SQL2

 Structured Query Language (SQL) was designed and implemented at IBM Research.

 Created in late 70‘s, under the name of SEQUEL

 A standard version of SQL (ANSI 1986), is called SQL86 or SQL1.

 A revised version of standard SQL, called SQL2 (or SQL92).

 SQL are going to be extended with objectoriented and other recent database concepts.

 Consists of

 A Data Definition Language (DDL) for declaring database schemas
 Data Manipulation Language (DML) for modifying and querying database

instances
 In SQL, relation, tuple, and attribute are called table, row, and columns respectively.

 The SQL commands for data definition are CREATE, ALTER, and DROP.
 The CREATE TABLE Command is used to specify a new table by giving it a name and

specifying its attributes (columns) and constraints.
 Data types available for attributes are:

o Numeric integer, real (formated, such as DECIMAL(10,2))
o CharacterString fixedlength and varyinglength

o BitString fixedlength, varyinglength
o Date in the form YYYYMMDD

o Time in the form HH:MM:SS
o Timestamp includes both the DATE and TIME fields
o Interval to increase/decrease the value of date, time, or timestamp

3.2 Basic Queries in SQL

 SQL allows a table (relation) to have two or more tuples that are identical in all their
attributes values. Hence, an SQL table is not a set of tuple, because a set does not allow
two identical members; rather it is a multiset of tuples.

 A basic query statement in SQL is the SELECT statement.
 The SELECT statement used in SQL has no relationship to the SELECT operation of

relational algebra.

The SELECT Statement

The syntax of this command is:

SELECT <attribute list>

FROM <table list>

WHERE <Condition>;

Some example:

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 51

Query 0: Retrieve the birthday and address of the employee(s) whose name is ‗John B. Smith‘

Q0: SELECT BDATE, ADDRESS

FROM EMPLOYEE

WHERE FNAME = ‗John‘ AND MINIT =‗B‘ AND LNAME = ‗SMITH‘

Query 1: Retrieve the name and address of all employee who work for the ‗Research‘ Dept.

Q1: SELECT FNAME, LNAME, ADDRESS

FROM EMPLOYEE, DEPARTMENT

WHERE DNAME = ‗Research‘ AND DNUMBER = DNO

Query 2: For every project located in ‗Stafford‘, list the project number, the controlling
department number, and the department manager‘s last name, address, and birthdate.

Q2:

SELECT PNUMBER, DNUM, LNAME, ADDRESS, BDATE

FROM

PROJECT, DEPARTMENT, EMPLOYEE

WHERE DNUM=DNUMBER AND MGRSSN=SSN AND

PLOCATION =

‗Stafford‘

Dealing with Ambiguous Attribute Names and Renaming (Aliening)

Ambiguity in the case where attributes are same name need to qualify the attribute using DOT
separator

e.g., WHERE DEPARTMENT.DNUMBER=EMPLOYEE.DNUMBER

More

Ambiguity in the case of queries that refer to the same relation twice

Query 8: For each employee, retrieve the employee‘s first and last name and the first and last
name of his or her immediate superviso

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 52

Unspecified WHEREClause and Use of Asterisk (*)

A missing WHEREclause indicates no conditions, which means all tuples are selected In

case of two or more table, then all possible tuple combinations are selected

Example: Q10: Select all EMPLOYEE SSNs , and all combinations of EMPLOYEE SSN and
DEPARTMENT DNAME

SELECT SSN, DNAME

FROM EMPLOYEE, DEPARTMENT

More

To retrieve all the attributes, use * in SELECT clause

Retrieve all employees working for Dept. 5

SELECT *

FROM EMPLOYEE

WHERE DNO=5

Substring Comparisons, Arithmetic Operations, and Ordering

 like, binary operator for comparing strings

 %, wild card for strings

 _, wild card for characters

 ||, concatenate operation for strings

(name like ‘%a_‘) is true for all names having ‗a‘ as second letter from the end.

 Partial strings are specified by using '
 SELECT FNAME, LNAME
 FROMEMPLOYEE

WHERE FNAME LIKE '%Mc%';

 In order to list all employee who were born during 1960s we have the followings:
 SELECT FNAME, LN

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 53

 SQL also supports addition, subtraction, multiplication and division (denoted by +, , *,
and /, respectively) on numeric values or attributes with numeric domains.

Examples: Show the resulting salaries if every employee working on the 'ProductX' project is

given a 10 percent raise.

SELECT FNAME, LNAME, 1.1*SALARY

FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE SSN=ESSN AND PNO=PNUMBER AND PNAME='ProductX';

Retrieve all employees in department number 5 whose salary between $30000 and $40000.

SELECT *

FROM EMPLOYEE
WHERE (SALARY BETWEEN 30000 AND 40000) AND DNO=5;

It is possible to order the tuples in the result of a query.

SELECT DNAME, LNAME, FNAME, PNAME
FROM DEPARTMENT, EMPLOYEE, WORKS_ON, PROJECT
WHERE DNUMBER=DNO AND SSN=ESSN AND PNO=PNUMBER

ORDER BY DNAME, LNAME, FNAME;

The default order is in ascending order, but user can specify

ORDER BY DNAME DESC, LNAME ASC, FNAME, ASC;

Tables as Sets in SQL

SQL treats table as a multiset, which means duplicate tuples are OK

SQL does not delete duplicate because Duplicate elimination is an expensive operation (sort and
delete) user may be interested in the result of a query in case of aggregate function, we do not want
to eliminate duplicates

To eliminate duplicate, use DISTINCT

examples

Q11: Retrieve the salary of every employee , and (Q!2) all distinct salary values

Q11: SELECT ALL SALARY

FROM EMPLOYEE

Q12: SELECT DISTINCT SALARY

 FROM EMPLOYEE

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 54

3.3 More Complex SQL Queries

Complex SQL queries can be formulated by composing nested SELECT/FROM/WHERE
clauses within the WHEREclause of another query

Example: Q4: Make a list of Project numbers for projects that involve an employee whose last
name is ‗Smith‘, either as a worker or as a manger of the department that controls the project

Q4 SELECT DISTINCT PNUMBER

FROM PROJECT

WHERE PNUMBER IN (SELECT PNUMBER

FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE DNUM=DNUMBER AND MGRSSN=SSN AND

LNAME=‗Smith‘

OR PNUMBER IN (SELECT PNO

FROM WORKS_ON, EMPLOYEE

WHERE ESSN=SSN AND LNAME=‗Smith‘)

IN operator and set of unioncompatible tuples

Example:

SELECT DISTINCT ESSN

FROM WORKS_ON

WHERE (PNO, HOURS) IN (SELECT PNO, HOURS

FROM WORKS_ON

WHERE SSN=‗123456789‘

ANY, SOME and >, <=,<>,etc.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 55

The keyword ALL

In addition to the IN operator, a number of other comparison operators can be used to compare a
single value v to a set of multiset V.

ALL V returns TRUE if v is greater than all the value in the set

Select the name of employees whose salary is greater than the salary of all the
employees in department 5

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > ALL (SELECT SALARY

FROM EMPLOYEE

WHERE DNO=5);

Ambiguity in nested query

SELECT E.FNAME, E.LNAME

FROM EMPLOYEE AS E

WHERE E.SSN IN (SELECT ESSN

FROM DEPENDENT

WHERE ESSN=E.SSN AND E.FNAM=DEPENDENT_NAME AND

SEX=E.SEX

Correlated Nested Query

Whenever a condition in the WHEREclause of a nested query references some attributes of a relation

declared in the outer query, the two queries are said to be correlated. The result of a correlated nested

query is different for each tuple (or combination of tuples) of the relation(s) the outer query.

In general, any nested query involving the = or comparison operator IN can always be rewritten as
a single block query

SELECT E.FNAME, E.LNAME

FROM EMPLOYEE E, DEPENDENT D

WHERE E.SSN=D.ESSN AND E.SEX=D.SEX AND E.FNAME =D.DEPENDENT=NAME

Query 12: Retrieve the name of each employee who has a dependent with the same first name as the employee.

Q12: SELECT E.FNAME, E.LNAME

 FROM EMPLOYEE AS E

 WHERE E.SSN IN (SELECT ESSN

 FROM DEPENDENT

 WHERE ESSN=E.SSN AND

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 56

E.FNAME=DEPENDENT_NAME)

In Q12, the nested query has a different result for each tuple in the outer query.

The original SQL as specified for SYSTEM R also had a CONTAINS comparison operator, which

is used in conjunction with nested correlated queries This operator was dropped from the language,

possibly because of the difficulty in implementing it efficiently Most implementations of SQL do

not have this operator The CONTAINS operator compares two sets of values , and returns TRUE

if one set contains all values in the other set (reminiscent of the division operation of algebra).

Query 3: Retrieve the name of each employee who works on all the projects controlled by
department number 5.

Q3: SELECT FNAME, LNAME

FROM EMPLOYEE WHERE ((SELECT PNO FROM WORKS_ON WHERE SSN=ESSN)

CONTAINS (SELECT PNUMBER FROM PROJECT WHERE DNUM=5))

In Q3, the second nested query, which is not correlated with the outer query, retrieves the project
numbers of all projects controlled by department 5.

The first nested query, which is correlated, retrieves the project numbers on which the employee
works, which is different for each employee tuple because of the correlation.

 THE EXISTS AND UNIQUE FUNCTIONS IN SQL

EXISTS is used to check whether the result of a correlated nested query is empty (contains no
tuples) or not We can formulate Query 12 in an alternative form that uses EXISTS as Q12B below.

Query 12: Retrieve the name of each employee who has a dependent with the same first name as
the employee.

SELECT E.FNAME, E.LNAME

FROM EMPLOYEE E

WHERE EXISTS (SELECT *

FROM DEPENDENT

WHERE E.SSN=ESSN AND SEX=E.SEX AND E.FNAME=DEPENDENT_NAME

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 57

Query 6: Retrieve the names of employees who have no dependents.
Q6:

SELECT FNAME, LNAME
FROM EMPLOYEE

WHERE NOT EXISTS (SELECT *
FROM DEPENDENT

WHERE SSN=ESSN)

In Q6, the correlated nested query retrieves all DEPENDENT tuples related to an EMPLOYEE
tuple. If none exist , the EMPLOYEE tuple is selected EXISTS is necessary for the expressive
power of SQL

EXPLICIT SETS AND NULLS IN SQL

It is also possible to use an explicit (enumerated) set of values in the WHEREclause rather than a
nested query Query 13: Retrieve the social security numbers of all employees who work on project
number 1, 2, or 3.

Retrieve SSNs of all employees who work on project number 1,2,3

SELECT DISTINCT ESSN
FROM WORKS_ON
WHERE PNO IN (1,2,3)

Null example

SQL allows queries that check if a value is NULL (missing or undefined or not applicable) SQL
uses IS or IS NOT to compare NULLs because it considers each NULL value distinct from other
NULL values, so equality comparison is not appropriate .

Retrieve the names of all employees who do not have supervisors

SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE SUPERSSN IS NULL

Note: If a join condition is specified, tuples with NULL values for the join attributes are not
included in the result

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 58

Retrieve the name and address of every employee who works for ‗Search‘ department

SELECT FNAME, LNAME, ADDRESS

FROM (EMPLOYEE JOIN DEPARTMENT ON DNO=DNUMBER)

WHERE DNAME=‗Search‘

Aggregate Functions

Include COUNT, SUM, MAX, MIN, and AVG

Query 15: Find the sum of the salaries of all employees the ‗Research‘ dept, and the max salary,
the min salary, and average:

SELECT SUM(SALARY), MAX(SALARY), MIN(SALARY) AVG(SALARY)

FROM EMPLOYEE

WHERE DNO=FNUMBER AND DNAME=‗RSEARCH‘

Query 16: Find the maximum salary, the minimum salary, and the average salary among
employees who work for the 'Research' department.

Q16: SELECT MAX(SALARY), MIN(SALARY), AVG(SALARY)

 FROM EMPLOYEE, DEPARTMENT

 WHERE DNO=DNUMBER AND DNAME='Research'

Queries 17 and 18: Retrieve the total number of employees in the company (Q17), and the
number of employees in the 'Research' department (Q18).

Q17: SELECT COUNT (*)

 FROM EMPLOYEE

Q18: SELECT COUNT (*)

 FROM EMPLOYEE, DEPARTMENT

 WHERE DNO=DNUMBER AND DNAME='Research'

Example of grouping

In many cases, we want to apply the aggregate functions to subgroups of tuples in a relation Each

subgroup of tuples consists of the set of tuples that have the same value for the grouping attribute(s)

The function is applied to each subgroup independently

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 59

SQL has a GROUP BYclause for specifying the grouping attributes, which must also appear in the
SELECTclause

For each project, select the project number, the project name, and the number of employees
who work on that projet

SELECT PNUMBER, PNAME, COUNT(*)

FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO

GROUP BY PNUMBER, PNAME

In Q20, the EMPLOYEE tuples are divided into groupseach group having the same value for the
grouping attribute DNO The COUNT and AVG functions are applied to each such group of tuples

separately.The SELECTclause includes only the grouping attribute and the functions to be applied

on each group of tuples. A join condition can be used in conjunction with grouping

Query 21: For each project, retrieve the project number, project name, and the number of employees who work on
that project.
Q21: SELECT PNUMBER, PNAME, COUNT (*)

 FROM PROJECT, WORKS_ON

 WHERE PNUMBER=PNO

 GROUP BY PNUMBER, PNAME

In this case, the grouping and functions are applied after the joining of the two relations

THE HAVINGCLAUSE:

Sometimes we want to retrieve the values of these functions for only those groups that satisfy
certain conditions. The HAVINGclause is used for specifying a selection condition on groups
(rather than on individual tuples)

Query 22: For each project on which more than two employees work , retrieve the project number,
project name, and the number of employees who work on that project.

Q22: SELECT PNUMBER, PNAME, COUNT (*)

 FROM PROJECT, WORKS_ON
 WHERE PNUMBER=PNO
 GROUP BY PNUMBER, PNAME

 HAVING COUNT (*) > 2

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 60

SQL The Relational Database Standard

3.1 Update Statements in SQL

The Insert Command

INSERT INTO EMPLOYEE

VALUES (‗Richard‘,‘K‘,‘Marini‘,653298653‘,‘30dec52‘,98 Oak Forest, Katy,
TX‘,‘M‘,37000,‘987654321‘,4)

More on Insert

Use explicit attribute names:

INSERT INTO EMPLOYEE (FNAME, LNAME,SSN)

VALUES (‗Richard‘,‘Marini‘, ‗653298653‘

The DELECT Command

DELETE FROM EMPLOYEE

WHERE LNAME=‗Brown‘

The UPDATE Command

Used to modify values of one or more selected tuples

Change the location and controlling department number of project number 10 to ‗Bellaire‘ and
5 respectively

UPDATE PROJECT

SET PLOCATION = ‗Bellaire‘, DNUM=5

Where PNUMBER=10;

3.2 Views in SQL

A view refers to a single table that is derived from other tables

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 61

CREATE VIEW WORKS_ON1

AS SELECT FNAME, LNAME, PNAME, HOURS

FROM EMPLOYEE, PROJECT, WORKS_ON WHERE SSN=ESSN AND

PNO=PNUMBER More on View

CREATE VIEW DEPT_INFO(DEPT_NAME, NO_OF_EMPLS, TOTAL_SAL)

AS SELECT DNAME, COUNT(*), SUM(SALARY)

FROM DEPARTMENT, EMPLOYEE

WHERE DNUMBER=DNO

GROUP BY DNAME

More on view

Treat WORKS_ON1 like a base table as follows

SELECT FNAME, LNAME

FROM WORKS_ON1

WHERE PNMAE=‗PROJECTX‘

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 62

 Main advantage of view:

Simplify the specification of commonly used queries

More on View

A View is always up to date;

A view is realized at the time we specify(or execute) a query on the view

DROP VIEW WORKS_ON1

Updating of Views

Updating the views can be complicated and ambiguous

In general, an update on a view on defined on a single table w/o any aggregate functions can be
mapped to an update on the base table

More on Views

We can make the following observations:

A view with a single defining table is updatable if we view contain PK or CK of the base table

View on multiple tables using joins are not updatable

View defined using grouping/aggregate are not updatable

Specifying General Constraints

Users can specify certain constraints such as semantics constraints

CREATE ASSERTION SALARY_CONSTRAINT

CHECK (NOT EXISTS (SELECT * FROM EMPLOYEE E, EMPLOYEE M, DEPARTMENT
D

WHERE E.SALARY > M. SALARY AND E.DNO=D.NUMBER AND D.MGRSSN=M.SSN))

3.3 Additional features

Granting and revoking privileges

Embedding SQL statements in a general purpose languages (C, C++, COBOL, PASCAL)

SQL can also be used in conjunction with a general purpose programming language, such as

PASCAL, COBOL, or PL/I. The programming language is called the host language. The

embedded SQL statement is distinguished from programming language statements by prefixing it

with a special character or command so that a preprocessor can extract the SQL statements. In PL/I

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 63

the keywords EXEC SQL precede any SQL statement. In some implementations, SQL statements

are passed as parameters in procedure calls. We will use PASCAL as the host programming

language, and a "$" sign to identify SQL statements in the program. Within an embedded SQL

command, we may refer to program variables, which are prefixed by a "%" sign. The programmer

should declare program variables to match the data types of the database attributes that the program

will process.These program variables may or may not have names that are identical to their

corresponding attributes.

Example: Write a program segment (loop) that reads a social security number and prints out
some information from the corresponding EMPLOYEE tuple.

readln(SOC_SEC_NUM);
$SELECT FNAME, MINIT, LNAME, SSN,

BDATE, ADDRESS, SALARY
INTO %E.FNAME, %E.MINIT, %E.LNAME, %E.SSN,

%E.BDATE, %E.ADDRESS, %E.SALARY

FROM EMPLOYEE
WHERE SSN=%SOC_SEC_NUM ;

writeln(E.FNAME, E.MINIT, E.LNAME,
E.SSN, E.BDATE, E.ADDRESS, E.SALARY);

writeln('more social security numbers (Y or N)? ');

readln(LOOP)

end;

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 64

In E1, a single tuple is selected by the embedded SQL query; that is why we are able to assign its

attribute values directly to program variables. In general, an SQL query can retrieve many tuples.

The concept of a cursor is used to allow tupleatatime processing by the PASCAL

programCURSORS: We can think of a cursor as a pointer that points to a single tuple (row) from

the result of a query.The cursor is declared when the SQL query command is specified. A

subsequent OPEN cursor command fetches the query result and sets the cursor to a position before

the first row in the result of the query; this becomes the current row for the cursor. Subsequent

FETCH commands in the program advance the cursor to the next row and copy its attribute values

into PASCAL program variables specified in the FETCH command. An implicit variable

SQLCODE communicates to the program the status of SQL embedded commands. An SQLCODE

of 0 (zero) indicates successful execution. Different codes are returned to indicate exceptions and

errors. A special END_OF_CURSOR code is used to terminate a loop over the tuples in a query

result. A CLOSE cursor command is issued to indicate that we are done with
the result of the query When a cursor is defined for rows that are to be updated the clause FOR

UPDATE OF must be in the cursor declaration, and a list of the names of any attributes that will

be updated follows.The condition WHERE CURRENT OF cursor specifies that the current tuple

is the one to be updated (or deleted)

Example: Write a program segment that reads (inputs) a department name, then lists the names of
employees who work in that department, one at a time. The program reads a raise amount for each
employee and updates the employee's salary by that amount.

E2:

writeln('enter the department name:'); readln(DNAME);
$SELECT DNUMBER INTO %DNUMBER

FROM DEPARTMENT
WHERE DNAME=%DNAME;

$DECLARE EMP CURSOR FOR
SELECT SSN, FNAME, MINIT, LNAME, SALARY
FROM EMPLOYEE

WHERE DNO=%DNUMBER
FOR UPDATE OF SALARY;

$OPEN EMP;

$FETCH EMP INTO %E.SSN, %E.FNAME, %E.MINIT,
%E.LNAME, %E.SAL;

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 65

while SQLCODE = 0 do

begin
writeln('employee name: ', E.FNAME, E.MINIT, E.LNAME);

writeln('enter raise amount: '); readln(RAISE);
$UPDATE EMPLOYEE SET SALARY = SALARY +

%RAISE WHERE CURRENT OF EMP;

$FETCH EMP INTO %E.SSN, %E.FNAME, %E.MINIT,

%E.LNAME, %E.SAL;

end;

$CLOSE CURSOR EMP;

3.4 Database Programming

 Objective:

 To access a database from an application program (as opposed to interactive interfaces)

 Why?

 An interactive interface is convenient but not sufficient

 A majority of database operations are made thru application programs (increasingly
thru web applications)

 Embedded commands:

 Database commands are embedded in a general-purpose programming language

 Library of database functions:

 Available to the host language for database calls; known as an API

 API standards for Application Program Interface

 A brand new, full-fledged language

 Minimizes impedance mismatch

Impedance Mismatch

 Incompatibilities between a host programming language and the database model, e.g.,

 type mismatch and incompatibilities; requires a new binding for each language

 set vs. record-at-a-time processing

 need special iterators to loop over query results and manipulate individual values

 Client program opens a connection to the database server

 Client program submits queries to and/or updates the database

 When database access is no longer needed, client program closes (terminates) the connection

3.5 Embedded SQL

 Most SQL statements can be embedded in a general-purpose host programming language such as

COBOL, C, Java

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 66

Data Base Management System(10CS54)

 An embedded SQL statement is distinguished from the host language statements by
enclosing it between EXEC SQL or EXEC SQL BEGIN and a matching END-EXEC or
EXEC SQL END (or semicolon)

 Syntax may vary with language

 Shared variables (used in both languages) usually prefixed with a colon (:) in

SQL

 Variables inside DECLARE are shared and can appear (while prefixed by a colon) in SQL
statements

 SQLCODE is used to communicate errors/exceptions between the database and the program

int loop;

EXEC SQL BEGIN DECLARE SECTION;

varchar dname[16], fname[16], …;

char ssn[10], bdate[11], …;

int dno, dnumber, SQLCODE, …;

EXEC SQL END DECLARE SECTION;

 Connection (multiple connections are possible but only one is

active) CONNECT TO server-name AS connection-name

AUTHORIZATION user-account-info;

 Change from an active connection to another

one SET CONNECTION connection-name;

 Disconnection

DISCONNECT connection-name;

loop = 1;

while (loop) {

prompt (―Enter SSN: ―, ssn);

EXEC SQL

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 67

 select FNAME, LNAME, ADDRESS, SALARY

into :fname, :lname, :address, :salary

from EMPLOYEE where SSN == :ssn;

if (SQLCODE == 0) printf(fname, …);

else printf(―SSN does not exist: ―, ssn);

prompt(―More SSN? (1=yes, 0=no): ―, loop);

END-EXEC

 }A cursor (iterator) is needed to process multiple tuples

 FETCH commands move the cursor to the next tuple

 CLOSE CURSOR indicates that the processing of query results has been completed

 Objective:

3.6 Dynamic SQL

Composing and executing new (not previously compiled) SQL statements at run-time

 a program accepts SQL statements from the keyboard at run-time

 a point-and-click operation translates to certain SQL query

 Dynamic update is relatively simple; dynamic query can be complex

 because the type and number of retrieved attributes are unknown at compile time

EXEC SQL BEGIN DECLARE SECTION;

varchar sqlupdatestring[256];

EXEC SQL END DECLARE SECTION;

…prompt (―Enter update command:―, sqlupdatestring);

EXEC SQL PREPARE sqlcommand FROM :sqlupdatestring;

 EXEC SQLSQLJ: a standard for embedding SQL in Java

 An SQLJ translator converts SQL statements into Java

 These are executed thru the JDBC interface

 Certain classes have to be imported

 E.g., java.sql

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 68

EXECUTE sqlcommand;

 Environment record:

 Keeps track of database connections

 Connection record:

 Keep tracks of info needed for a particular connection

 Statement record:

 Keeps track of info needed for one SQL statement

 Description record:

 Keeps track of tuples

 Load SQL/CLI libraries

 Declare record handle variables for the above components (called: SQLHSTMT, SQLHDBC,
SQLHENV, SQLHDEC)

 Set up an environment record using SQLAllocHandle

 Set up a connection record using SQLAllocHandle

 Set up a statement record using SQLAllocHandle

 Prepare a statement using SQL/CLI function SQLPrepare

 Bound parameters to program variables

 Execute SQL statement via SQLExecute

 Bound query columns to a C variable via SQLBindCol

 Use SQLFetch to retrieve column values into C variables

3.7 Database stored procedures and SQL/PSM

 Persistent procedures/functions (modules) are stored locally and executed by the database

server
 As opposed to execution by clients

 Advantages:

 If the procedure is needed by many applications, it can be invoked by any of them (thus
reduce duplications)

 Execution by the server reduces communication costs

 Enhance the modeling power of views

 Disadvantages:

 Every DBMS has its own syntax and this can make the system less portable

 A stored procedure

CREATE PROCEDURE procedure-name

(params) local-declarations

procedure-body;

 A stored function

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 69

CREATE FUNCTION fun-name (params) RETRUNS return-type

local-declarations

function-body;

 Calling a procedure or function

CALL procedure-name/fun-name (arguments);

 SQL/PSM:

 Part of the SQL standard for writing persistent stored modules

 SQL + stored procedures/functions + additional programming constructs

 E.g., branching and looping statements

 Enhance the power of SQL

CREATE FUNCTION DEPT_SIZE (IN deptno INTEGER)

RETURNS VARCHAR[7]

DECLARE TOT_EMPS INTEGER;

SELECT COUNT (*) INTO TOT_EMPS

FROM SELECT EMPLOYEE WHERE DNO = deptno;

IF TOT_EMPS > 100 THEN RETURN ―HUGE‖

ELSEIF TOT_EMPS > 50 THEN RETURN ―LARGE‖

ELSEIF TOT_EMPS > 30 THEN RETURN ―MEDIUM‖

ELSE RETURN ―SMALL‖

ENDIF;

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 70

Questions

1. List the approaches to DB Programming. Main issues involved in DB Programming?
2. What is Impedance Mismatch problem? Which of the three programming approaches

minimizes this problem
3. How are Triggers and assertions defined in SQL?Explain
4. A explain the syntax of a SELECT statement in SQL.write the SQL query for the following

relation algebra expression.
5. Explain the drop command with an example

6. How is a view created and dropped? What problems are associated with updating of views?
7. What is embedded SQL? With an example explain how would you Connect to a database, fetch

records and display. Also explain the concept of stored procedure in brief.
8. Explain insert, delete and update statements in SQL with example.

9. Write a note on aggregate functions in SQL with examples.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 71

 module

MODULE-4

NORMALIZATION DATABASE DESGIN THEORY

4.1 Informal design guidelines for relation schemas

The four informal measures of quality for relation schema

 Semantics of the attributes
 Reducing the redundant values in tuples
 Reducing the null values in tuples
 Disallowing the possibility of generating spurious tuples

4.1.1 Semantics of relations attributes

Specifies how to interpret the attributes values stored in a tuple of the relation. In other words,
how the attribute value in a tuple relate to one another.

Guideline 1: Design a relation schema so that it is easy to explain its meaning. Do not combine

attributes from multiple entity types and relationship types into a single relation.
Save storage space and avoid update anomalies.
Insertion anomalies.

Deletion anomalies.
Modification anomalies

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 72

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 73

Insertion Anomalies
To insert a new employee tuple into EMP_DEPT, we must include either the attribute values for that

department that the employee works for, or nulls.

It's difficult to insert a new department that has no employee as yet in the EMP_DEPT relation.
The only way to do this is to place null values in the attributes for employee. This causes a problem
because SSN is the primary key of EMP_DEPT, and each tuple is supposed to represent an
employee entity - not a department entity.

Deletion Anomalies
If we delete from EMP_DEPT an employee tuple that happens to represent the last employee working for

a particular department, the information concerning that department is lost from the database.

Modification Anomalies
In EMP_DEPT, if we change the value of one of the attributes of a particular department- say the manager

of department 5- we must update the tuples of all employees who work in that department.

Guideline 2: Design the base relation schemas so that no insertion, deletion, or modification

anomalies occur. Reducing the null values in tuples. e.g., if 10% of employees have offices, it Is
better to have a separate relation, EMP_OFFICE, rather than an attribute OFFICE_NUMBER in
EMPLOYEE.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 74

Guideline 3: Avoid placing attributes in a base relation whose values are mostly null.

Disallowing spurious tuples.

Spurious tuples - tuples that are not in the original relation but generated by natural join of
decomposed subrelations.

Example: decompose EMP_PROJ into EMP_LOCS and EMP_PROJ1.

Fig. 14.5a

Guideline 4: Design relation schemas so that they can be naturally JOINed on primary keys or
foreign keys in a way that guarantees no spurious tuples are generated.

6.2 A functional dependency (FD) is a constraint between two sets of attributes from the

database. It is denoted by

X Y

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 75

We say that "Y is functionally dependent on X". Also, X is called the left-hand side of the FD.

Y is called the right-hand side of the FD.

A functional dependency is a property of the semantics or meaning of the attributes, i.e., a property
of the relation schema. They must hold on all relation states (extensions) of R. Relation extensions

r(R). A FD X Y is a full functional dependency if removal of any attribute from X means that

the dependency does not hold any more; otherwise, it is a partial functional dependency.

Examples:

1. SSN ENAME
2. PNUMBER {PNAME, PLOCATION}

3. {SSN, PNUMBER} HOURS

FD is property of the relation schema R, not of a particular relation state/instance

Let R be a relation schema, where X R and Y R

t1, t2 r, t1[X] = t2[X] t1[Y] = t2[Y]

The FD X Y holds on R if and only if for all possible relations r(R), whenever two tuples of r
agree on the attributes of X, they also agree on the attributes of Y.

 the single arrow denotes "functional dependency"

 X Y can also be read as "X determines Y"
 the double arrow denotes "logical implication"

4.2.1 Inference Rules

IR1. Reflexivity e.g. X X

 a formal statement of trivial dependencies; useful for derivations

 if a dependency holds, then we can freely expand its left hand side

 the "most powerful" inference rule; useful in multi-step derivations
Armstrong inference rules

are sound

meaning that given a set of functional dependencies F specified on a relation schema R,

any dependency that we can infer from F by using IR1 through IR3 holds every relation
state r of R that specifies the dependencies in F. In other words, rules can be used to derive

precisely the closure or no additional FD can be derived.
complete

Dept of CSE,GCEM Page 86

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 76

Data Base Management System(10CS54)

meaning that using IR1 through IR3 repeatedly to infer dependencies until no more

dependencies can be inferred results in the complete set of all possible dependencies that
can be inferred from F. In other words, given a set of FDs, all implied FDs can be derived

using these 3 rules.
Closure of a Set of Functional Dependencies
Given a set X of FDs in relation R, the set of all FDs that are implied by X is called the

closure of X, and is denoted X
+
.

Algorithms for determining X+

X+ := X;

repeat

oldX+ := X+

for each FD Y Z in F do

if Y X+ then X+ := X+ Z;

until oldX+ = X+;

Example:

A BC

E CF

B E
CD EF

Compute {A, B}+ of the set of attributes under this set of FDs.

Solution:

Step1: {A, B}+ := {A, B}.

Go round the inner loop 4 time, once for each of the given FDs.
On the first iteration, for A BC

 A {A, B}
+

 {A, B}
+
 := {A, B, C}.

Step2: On the second iteration, for E

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 77

CF, {A, B, C}

Step3

:On

the

third iteration,

for

B

E

B

{A, B,C}+

{A, B}+ := {A, B, C, E}.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 78

Step4: On the fourth iteration, for CD EF remains unchanged.

Go round the inner loop 4 times again. On the first iteration result does not change; on the
second it expands to {A,B,C,E,F}; On the third and forth it does not change.

Now go round the inner loop 4 times. Closure does not change and so the whole process
terminates, with
{A,B}+ = {A,B,C,E,F}

Example.

F = { SSN ENAME, PNUMBER {PNAME, PLOCATION}, {SSN,PNUMBER}

HOURS }

{SSN}+ = {SSN, ENAME}

{PNUMBER}+ = ?

{SSN,PNUMBER}+ = ?

4.3 Normalization

The purpose of normalization.

 The problems associated with redundant data.
 The identification of various types of update anomalies such as insertion, deletion, and

modification anomalies.
 How to recognize the appropriateness or quality of the design of relations.
 The concept of functional dependency, the main tool for measuring the appropriateness of

attribute groupings in relations.
 How functional dependencies can be used to group attributes into relations that are in a known

normal form.
 How to define normal forms for relations.

 How to undertake the process of normalization.
 How to identify the most commonly used normal forms, namely first (1NF), second (2NF), and

third (3NF) normal forms, and Boyce-Codd normal form (BCNF).
 How to identify fourth (4NF), and fifth (5NF) normal forms

Main objective in developing a logical data model for relational database systems is to create an

accurate representation of the data, its relationships, and constraints. To achieve this objective, we
must identify a suitable set of relations. A technique for producing a set of relations with desirable

properties, given the data requirements of an enterprise

NORMAL FORMS

A relation is defined as a set of tuples. By definition, all elements of a set are distinct; hence, all
tuples in a relation must also be distinct. This means that no two tuples can have the same
combination of values for all their attributes.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 79

Any set of attributes of a relation schema is called a superkey. Every relation has at least one
superkey—the set of all its attributes. A key is a minimal superkey, i.e., a superkey from which we
cannot remove any attribute and still have the uniqueness constraint hold.

In general, a relation schema may have more than one key. In this case, each of the keys is called
a candidate key. It is common to designate one of the candidate keys as the primary key of the

relation. A foreign key is a key in a relation R but it's not a key (just an attribute) in other relation
R' of the same schema.

Integrity Constraints

The entity integrity constraint states that no primary key value can be null. This is because the primary

key value is used to identify individual tuples in a relation; having null values for the primary key implies

that we cannot identify some tuples.

The referential integrity constraint is specified between two relations and is used to maintain the
consistency among tuples of the two relations. Informally, the referential integrity constraint states
that a tuple in one relation that refers to another relation must refer to an existing tuple in that
relation.

An attribute of a relation schema R is called a prime attribute of the relation R if it is a member
of any key of the relation R. An attribute is called nonprime if it is not a prime attribute—that is,
if it is not a member of any candidate key.

The goal of normalization is to create a set of relational tables that are free of redundant data and
that can be consistently and correctly modified. This means that all tables in a relational database
should be in the in the third normal form (3 NF).

Normalization of data can be looked on as a process during which unsatisfactory relation schemas

are decomposed by breaking up their attributes into smaller relation schemas that possess desirable
properties. One objective of the original normalization process is to ensure that the update

anomalies such as insertion, deletion, and modification anomalies do not occur

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 80

The most commonly used normal forms

 First Normal Form (1NF)

 Second Normal Form (2NF)

 Third Normal Form (3NF)
 Boyce-Codd Normal

Form Other Normal Forms
 Fourth Normal Form

 Fifth Normal Form

 Domain Key Normal Form

4.3.1 First Normal Form (1NF)

First normal form is now considered to be part of the formal definition of a relation; historically,
it was defined to disallow multivalued attributes, composite attributes, and their combinations. It

states that the domains of attributes must include only atomic (simple, indivisible) values and that

the value of any attribute in a tuple must be a single value from the domain of that attribute.

Practical Rule: "Eliminate Repeating Groups," i.e., make a separate table for each set of related
attributes, and give each table a primary key.

Formal Definition: A relation is in first normal form (1NF) if and only if all underlying simple
domains contain atomic values only.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 81

4.3.2 Second Normal Form (2NF)

Second normal form is based on the concept of fully functional dependency. A functional X Y

is a fully functional dependency is removal of any attribute A from X means that the dependency

does not hold any more. A relation schema is in 2NF if every nonprime attribute in relation is fully

functionally dependent on the primary key of the relation. It also can be restated as: a relation

schema is in 2NF if every nonprime attribute in relation is not partially dependent on any key of

the relation.

Practical Rule: "Eliminate Redundant Data," i.e., if an attribute depends on only part of a
multivalued key, remove it to a separate table.

Formal Definition: A relation is in second normal form (2NF) if and only if it is in 1NF and every
nonkey attribute is fully dependent on the primary key.

4.3.3 Third Normal Form (3NF)

Third normal form is based on the concept of transitive dependency. A functional dependency X
 Y in a relation is a transitive dependency if there is a set of attributes Z that is not a subset of

any key of the relation, and both X Z and Z Y hold. In other words, a relation is in 3NF if,
whenever a functional dependency

X A holds in the relation, either (a) X is a superkey of the relation, or (b) A is a prime attribute
of the relation.

Practical Rule: "Eliminate Columns not Dependent on Key," i.e., if attributes do not contribute to
a description of a key, remove them to a separate table

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 82

Formal Definition: A relation is in third normal form (3NF) if and only if it is in 2NF and every
nonkey attribute is nontransitively dependent on the primary key.

1NF: R is in 1NF iff all domain values are atomic.

2NF: R is in 2 NF iff R is in 1NF and every nonkey attribute is fully dependent on the key.

3NF: R is in 3NF iff R is 2NF and every nonkey attribute is non-transitively dependent on the
key.

4.4 Boyce-Codd Normal Form (BCNF)

A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever a FD X -> A holds in
R, then X is a superkey of R

 Each normal form is strictly stronger than the previous one:

 Every 2NF relation is in 1NF Every 3NF relation is in 2NF

 Every BCNF relation is in 3NF

 There exist relations that are in 3NF but not in BCNF

A relation is in BCNF, if and only if every determinant is a candidate key.

Additional criteria may be needed to ensure the the set of relations in a relational database are
satisfactory.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 83

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 84

If X Y is non-trivial then X is a super key

STREET CITY ZIP

{CITY,STREET } ZIP

ZIP CITY

 Insertion anomaly: the city of a zip code can‘t be stored, if the street is not given

Normalization

STREET ZIP ZIP CITY

Relationship Between Normal Forms

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 85

Questions

1. What is the need for normalization? Explain the first,second and third normal forms with
examples.

2. Explain informal design guidelines for relation schemas.
3. A What is functional dependency?write an algorithm to find a minimal cover for a set of

functional dependencies.
4. What is the need for normalization ?explain second normal form
5. Which normal form is based on the concept of transitive dependency? Explain with an

example the decomposition into 3NF
6. Explain multivalued dependency. Explain 4NF with an example.

7. Explain any Two informal quality measures employed for a relation schema Design?
8. Consider the following relations: Car_sale(car_no,date-

sold,salemanno,commission%,discount).assume a car can be sold by multiple salesman and

hence primary key is {car-no,salesman} additional dependencies are: Date-sold

discount

and salesmanno

commision Yes this relation is in 1NF
9. Discuss the minimal sets of FD‘S?

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 86

 4.1 Properties of relational decomposition

Normalization Algorithms based on FDs to synthesize 3NF and BCNF describe two desirable
properties (known as properties of decomposition).

 Dependency Preservation Property

 Lossless join property

Dependency Preservation Property enables us to enforce a constraint on the original relation

from corresponding instances in the smaller relations.

Lossless join property enables us to find any instance of the original relation from corresponding
instances in the smaller relations (Both used by the design algorithms to achieve desirable
decompositions).
A property of decomposition, which ensures that no spurious rows are generated when relations
are reunited through a natural join operation.

4.2 Algorithms for Relational Database Schema Design

Individual relations being in higher normal do not guarantee a good deign Database schema must
posses additional properties to guarantee a good design.

Relation Decomposition and Insufficiency of Normal Forms

Suppose R = { A1, A2, …, An} that includes all the attributes of the database. R is a universal

relation schema, which states that every attribute name is unique. Using FDs, the algorithms

decomposes the universal relation schema R into a set of relation schemas

D = {R1, R2, …, Rn} that will become the relational database schema; D is called a decomposition

of R. Each attribute in R will appear in at least one relation schema Ri in the decomposition so that

no attributes are lost; we have

This is called attribute preservation condition of a decomposition.

 4.2.1 Decomposition and Dependency Preservation

We want to preserve dependencies because each dependencies in F represents a constraint on the

Database.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 87

We would like to check easily that updates to the database do not result in illegal relations being created.

It would be nice if our design allowed us to check updates without having to compute natural joins. To know

whether joins must be computed, we need to determine what functional dependencies may be tested by checking

each relation individually.

Let F be a set of functional dependencies on schema R. Let D = {R1, R2, …, Rn} be a decomposition of R.

Given a set of dependencies F on R, the projection of F on Ri, Ri(F), where Ri is a subset of R, is the set of all

functional dependencies XY such that attributes in XY are all contained in Ri. Hence the projection of F

on each relation schema Ri in the decomposition D is the set of FDs in F+, such that all their LHS and RHS

attributes are in Ri. Hence, the projection of F on each relation schema Ri in the decomposition D is the set of

functional dependencies in F+.

((R1(F))(R2(F))… (Rm(F)))+ = F+

i.e., the union of the dependencies that hold on each Ri belongs to D be equivalent to closure of F (all possible FDs)

/*Decompose relation, R, with functional dependencies, into relations, R1,..., Rn, with associated
functional dependencies,

F1,..., Fk.

The decomposition is dependency preserving iff:

F+=(F1 ... Fk)+ */

If each functional dependency specified in F either appeared directly in one of the relation schema R
in the decomposition D or could be inferred from the dependencies that appear in some R.

7.2.2 Lossless-join Dependency

A property of decomposition, which ensures that no spurious rows are generated when relations are reunited

through a natural join operation.

Lossless-join property refers to when we decompose a relation into two relations - we can rejoin the
resulting relations to produce the original relation.

Decompose relation, R, with functional dependencies, F, into relations, R1 and R2, with attributes, A1 and A2,

and associated functional dependencies, F1 and F

 Decompositions are projections of relational schemas

 R A B C A,B A B B,C B C

 a1 b1 c1 a1 b1 b1 c1

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 88

 a2 b2 c2 a2 b2 b2 c2

 a3 b1 c3 a3 b1 b1 c3

 Old tables should be derivable from the newer ones through the natural join operation

A,B(R) B,C(R) A B C

a1 b1 c1

a2 b2 c2

a3 b1 c3

a1 b1 c3

a3 b1 c1

 Wrong!
 R1, R2 is a lossless join decomposition of R iff the attributes common to R1 and R2 contain a key for

at least one of the involved relations

R A B C A,B A B B,C B C

 a1 b1 c1 a1 b1 b1 c1

 a2 b2 c2 a2 b2 b2 c2

 a3 b1 c1 a3 b1

 A,B(R) B,C(R) = B

The decomposition is lossless iff:

A1 A2 A1\A2 is in F+, or
A1 A2 A2 \A1 is in F+

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 89

However, sometimes there is the requirement to decompose a relation into more than two relations.
Although rare, these cases are managed by join dependency and 5NF.

4.3 Multivalued Dependencies and Fourth Normal Form (4NF)

4NF associated with a dependency called multi-valued dependency (MVD). MVDs in a relation are

due to first normal form (1NF), which disallows an attribute in a row from having a set of values.

MVD represents a dependency between attributes (for example, A, B, and C) in a relation, such
that for each value of A there is a set of values for B, and a set of values for C. However, the
set of values for B and C are independent of each other.
MVD between attributes A, B, and C in a relation using the following notation

A B (A multidetermines B)

A C

Formal Definition of Multivalued Dependency

A multivalued dependency (MVD) X Y specified on R, where X, and Y are both
subsets of R and Z = (R – (X Y)) specifies the following restrictions on r(R)

t3[X]=t4[X]=t1[X]=t2[X]

t3[Y] = t1[Y] and t4[Y] = t2[Y]

t3[Z] = t2[Z] and t4[Z] = t1 [Z]

4.3.1 Fourth Normal Form (4NF)

A relation that is in Boyce-Codd Normal Form and contains no MVDs. BCNF to 4NF involves
the removal of the MVD from the relation by placing the attribute(s) in a new relation along with
a copy of the determinant(s).

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 90

A Relation is in 4NF if it is in 3NF and there is no multivalued dependencies.

4.4 Join Dependencies and 5 NF

A join dependency (JD), denoted by JD{R1, R2, …, Rn}, specified on relation schema R, specifies

a constraint on the states r of R. The constraint states that every legal state r of R should have a
lossless join decomposition into R1, R2, …, Rn; that is, for every such r we have
* (R1(r), (R2(r) … (Rn(r)) = r

Lossless-join property refers to when we decompose a relation into two relations - we can rejoin
the resulting relations to produce the original relation. However, sometimes there is the

requirement to decompose a relation into more than two relations. Although rare, these cases are

managed by join dependency and 5NF.

5NF (or project-join normal form (PJNF))
A relation that has no join dependency.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 91

4.5 Other dependencies:

4.5.1 Template Dependencies

The idea behind template dependencies is to specify a template—or example—that defines each

constraint or dependency. There are two types of templates: tuple-generating templates and

constraint-generating templates. A template consists of a number of hypothesis tuples that are

meant to show an example of the tuples that may appear in one or more relations. The other part

of the template is the template conclusion. For tuple-generating templates, the conclusion is a set

of tuples that must also exist in the relations if the hypothesis tuples are there. For constraint-

generating templates, the template conclusion is a condition that must hold on the hypothesis

tuples.

4.5.2 Domain Key Normal Form

The idea behind domain-key normal form (DKNF) is to specify (theoretically, at least) the
"ultimate normal form" that takes into account all possible types of dependencies and constraints.

A relation is said to be in DKNF if all constraints and dependencies that should hold on the relation
can be enforced simply by enforcing the domain constraints and key constraints on the relation.

However, because of the difficulty of including complex constraints in a DKNF relation, its practical
utility is limited, since it may be quite difficult to specify general integrity constraints.
For example, consider a relation (where VIN# is the vehicle identification

number) and another relation MANUFACTURE(VIN#, COUNTRY) (where COUNTRY is the country of
manufacture). A general constraint may be of the following form: "If the MAKE is either Toyota or
Lexus, then the first character of the VIN# is a "J" if the country of manufacture is Japan; if the
MAKE is Honda or Acura, the second character of the VIN# is a "J" if the country of manufacture is
Japan." There is no simplified way to represent such constraints short of writing a procedure (or
general assertions) to test them.

Questions

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 92

1. Explain

i. Inclusion dependency

ii. ii) Domain Key Normal Form

2. Explain multivolume dependency and fourth normal form, with an example

3. Explain lossless join property

4. what are the ACID Properties? Explain any One?

5. What is Serializibility?How can seriaizability?Justify your answer?

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 93

MODULE 5

Transaction Processing Concepts

5.1 Introduction to Transaction Processing

Single-User Versus Multiuser Systems

 A DBMS is single-user id at most one user at a time can use the system, and it is multiuser if
many users can use the system—and hence access the database—concurrently.

 Most DBMS are multiuser (e.g., airline reservation system).
 Multiprogramming operating systems allow the computer to execute multiple programs (or

processes) at the same time (having one CPU, concurrent execution of processes is actually
interleaved).

 If the computer has multiple hardware processors (CPUs), parallel processing of multiple
processes is possible.

5.2 Transactions, Read and Write Operations

 A transaction is a logical unit of database processing that includes one or more database access

operations (e.g., insertion, deletion, modification, or retrieval operations). The database operations

that form a transaction can either be embedded within an application program or they can be

specified interactively via a high-level query language such as SQL. One way of specifying the

transaction boundaries is by specifying explicit begin transaction and end transaction statements

in an application program; in this case, all database access operations between the two are

considered as forming one transaction. A single application program may contain more than one

transaction if it contains several transaction boundaries. If the database operations in a transaction

do not update the database but only retrieve data, the transaction is called a read-only transaction.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 94

 Read-only transaction - do not changes the state of a database, only retrieves data.
 The basic database access operations that a transaction can include are as follows:

read_item(X): reads a database item X into a program variable X.
o write_item(X): writes the value of program variable X into the database item named X.

Executing a read_item(X) command includes the following steps:

3. Find the address of the disk block that contains item X.
4. Copy that disk block into a buffer in main memory (if that disk block is not already in

some main memory buffer).
5. Copy item X from the buffer to the program variable named X.

Executing a write_item(X) command includes the following steps:
Find the address of the disk block that contains item X.

6. Copy that disk block into a buffer in main memory (if that disk block is not already in
some main memory buffer).

7. Copy item X from the buffer to the program variable named X.

Executing a write_item(X) command includes the following steps:

6. Find the address of the disk block that contains item X.
7. Copy that disk block into a buffer in main memory (if that disk block is not already in

some main memory buffer).
8. Copy item X from the program variable named X into its correct location in the buffer.
9. Store the updated block from the buffer back to disk (either immediately or at some later

point in time).

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 95

5.3 Why Concurrency Control Is Needed

 The Lost Update Problem.

 This problem occurs when two transactions that access the same database items have

their operations interleaved in a way that makes the value of some database item incorrect.

Suppose that transactions T1 and T2 are submitted at approximately the same time, and suppose

that their operations are interleaved then the final value of item X is incorrect, because T2 reads

the value of X before T1 changes it in the database, and hence the updated value resulting from

T1 is lost. For example, if X = 80 at the start (originally there were 80 reservations on the flight),

N = 5 (T1 transfers 5 seat reservations from the flight corresponding to X to the flight

corresponding to Y), and M = 4 (T2 reserves 4 seats on X), the final result should be X = 79; but

in the interleaving of operations, it is X = 84 because the update in T1 that removed the five seats

from X was lost

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 96

The Temporary Update (or Dirty Read) Problem.

This problem occurs when one transaction updates a database item and then the transaction fails
for some reason. The updated item is accessed by another transaction before it is changed back to
its original value. Figure 19.03(b) shows an example where T1 updates item X and then fails
before completion, so the system must change X back to its original value. Before it can do so,
however, transaction T2 reads the "temporary" value of X, which will not be recorded
permanently in the database because of the failure of T1. The value of item X that is read by T2
is called dirty data, because it has been created by a transaction that has not completed and
committed yet; hence, this problem is also known as the dirty read problem.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 97

 The Incorrect Summary Problem.

If one transaction is calculating an aggregate summary function on a number of records while other

transactions are updating some of these records, the aggregate function may calculate some values

before they are updated and others after they are updated. For example, suppose that a transaction

T3 is calculating the total number of reservations on all the flights; meanwhile, transaction T1 is

executing. If the interleaving of operations shown in Figure 19.03(c) occurs, the result of T3 will

be off by an amount N because T3 reads the value of X after N seats have been subtracted from it

but reads the value of Y before those N seats have been added to it.

Another problem that may occur is called unrepeatable read, where a transaction T reads an item

twice and the item is changed by another transaction T' between the two reads. Hence, T receives

different values for its two reads of the same item. This may occur, for example, if during an airline

reservation transaction, a customer is inquiring about seat availability on several flights. When the

customer decides on a particular flight, the transaction then reads the number of seats on that flight

a second time before completing the reservation.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 98

5.4 Why Recovery Is Needed

Whenever a transaction is submitted to a DBMS for execution, the system is responsible for making
sure that either (1) all the operations in the transaction are completed successfully and their effect

is recorded permanently in the database, or (2) the transaction has no effect whatsoever on the
database or on any other transactions. The DBMS must not permit some operations of a transaction

T to be applied to the database while other operations of T are not. This may happen if a transaction
fails after executing some of its operations but before executing all of them.

Types of Failures

Failures are generally classified as transaction, system, and media failures. There are several
possible reasons for a transaction to fail in the middle of execution:

1. A computer failure (system crash): A hardware, software, or network error occurs in the
computer system during transaction execution. Hardware crashes are usually media
failures—for example, main memory failure.

2. A transaction or system error: Some operation in the transaction may cause it to fail, such
as integer overflow or division by zero. Transaction failure may also occur because of
erroneous parameter values or because of a logical programming error . In addition, the
user may interrupt the transaction during its execution.

3. Local errors or exception conditions detected by the transaction: During transaction
execution, certain conditions may occur that necessitate cancellation of the transaction. For

example, data for the transaction may not be found. Notice that an exception condition ,
such as insufficient account balance in a banking database, may cause a transaction, such

as a fund withdrawal, to be canceled. This exception should be programmed in the
transaction itself, and hence would not be considered a failure.

4. Concurrency control enforcement: The concurrency control method (see Chapter 20) may
decide to abort the transaction, to be restarted later, because it violates serializability (see

Section 19.5) or because several transactions are in a state of deadlock.
5. Disk failure: Some disk blocks may lose their data because of a read or write malfunction

or because of a disk read/write head crash. This may happen during a read or a write
operation of the transaction.

6. Physical problems and catastrophes: This refers to an endless list of problems that includes
power or air-conditioning failure, fire, theft, sabotage, overwriting disks or tapes by
mistake, and mounting of a wrong tape by the operator.

Failures of types 1, 2, 3, and 4 are more common than those of types 5 or 6. Whenever a failure of

type 1 through 4 occurs, the system must keep sufficient information to recover from the failure.

Disk failure or other catastrophic failures of type 5 or 6 do not happen frequently; if they do occur,
recovery is a major task.

The concept of transaction is fundamental to many techniques for concurrency control and
recovery from failures.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 99

5.5 Transaction and System Concepts

Transaction States and Additional Operations

A transaction is an atomic unit of work that is either completed in its entirety or not done at all.
For recovery purposes, the system needs to keep track of when the transaction starts, terminates,

and commits or aborts (see below). Hence, the recovery manager keeps track of the following

operations:

o BEGIN_TRANSACTION: This marks the beginning of transaction execution.
o READ or WRITE: These specify read or write operations on the database items that are

executed as part of a transaction.
o END_TRANSACTION: This specifies that READ and WRITE transaction operations have ended and

marks the end of transaction execution. However, at this point it may be necessary to check
whether the changes introduced by the transaction can be permanently applied to the
database (committed) or whether the transaction has to be aborted because it violates
serializability (see Section 19.5) or for some other reason.

o COMMIT_TRANSACTION: This signals a successful end of the transaction so that any changes

(updates) executed by the transaction can be safely committed to the database and will
not be undone.

o ROLLBACK (or ABORT): This signals that the transaction has ended unsuccessfully, so that any

changes or effects that the transaction may have applied to the database must be undone.

Figure 19.04 shows a state transition diagram that describes how a transaction moves through its

execution states. A transaction goes into an active state immediately after it starts execution, where

it can issue READ and WRITE operations. When the transaction ends, it moves to the partially

committed state. At this point, some recovery protocols need to ensure that a system failure will

not result in an inability to record the changes of the transaction permanently (usually by recording

changes in the system log). Once this check is successful, the transaction is said to have reached

its commit point and enters the committed state. Once a transaction is committed, it has concluded

its execution successfully and all its changes must be recorded permanently in the database.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 100

5.6 The System Log

 To be able to recover from failures that affect transactions, the system maintains a log to keep
track of all transactions that affect the values of database items.

 Log records consists of the following information (T refers to a unique transaction_id):

1. [start_transaction, T]: Indicates that transaction T has started execution.
2. [write_item, T,X,old_value,new_value]: Indicates that transaction T has changed the value

of database item X from old_value to new_value.
3. [read_item, T,X]: Indicates that transaction T has read the value of database item X.
4. [commit,T]: Indicates that transaction T has completed successfully, and affirms that its

effect can be committed (recorded permanently) to the database.
5. [abort,T]: Indicates that transaction T has been aborted.

5.7 Desirable Properties of Transactions

Transactions should posses the following (ACID) properties:

Transactions should possess several properties. These are often called the ACID properties, and
they should be enforced by the concurrency control and recovery methods of the DBMS. The
following are the ACID properties:

1. Atomicity: A transaction is an atomic unit of processing; it is either performed in its entirety or
not performed at all.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 101

2. Consistency preservation: A transaction is consistency preserving if its complete execution

take(s) the database from one consistent state to another.
3. Isolation: A transaction should appear as though it is being executed in isolation from other

transactions. That is, the execution of a transaction should not be interfered with by any other
transactions executing concurrently.

4. Durability or permanency: The changes applied to the database by a committed transaction

must persist in the database. These changes must not be lost because of any failure.

The atomicity property requires that we execute a transaction to completion. It is the responsibility
of the transaction recovery subsystem of a DBMS to ensure atomicity. If a transaction fails to

complete for some reason, such as a system crash in the midst of transaction execution, the

recovery technique must undo any effects of the transaction on the database.

5.8 Schedules and Recoverability

A schedule (or history) S of n transactions T1, T2, ..., Tn is an ordering of the operations of the

transactions subject to the constraint that, for each transaction Ti that participates in S, the

operations of Ti in S must appear in the same order in which they occur in Ti. Note, however, that

operations from other transactions Tj can be interleaved with the operations of Ti in S. For now,

consider the order of operations in S to be a total ordering, although it is possible theoretically to

deal with schedules whose operations form partial orders.

Similarly, the schedule for Figure 19.03(b), which we call Sb, can be written as follows, if we
assume that transaction T1 aborted after its read_item(Y) operation:

Two operations in a schedule are said to conflict if they satisfy all three of the following
conditions:

1. they belong to different transactions;

2. they access the same item X; and

3. at least one of the operations is a write_item(X).

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 102

For example, in schedule , the operations conflict, as do the operations

), and the operations w1(X) and w2(X). However, the operations r1(X) and r2(X)

do not conflict, since they are both read operations; the operations w2(X) and w1(Y) do not conflict,

because they operate on distinct data items X and Y; and the operations r1(X) and w1(X) do not

conflict, because they belong to the same transaction.

A schedule S of n transactions T1, T2, ..., Tn, is said to be a complete schedule if the following
conditions hold:

1. The operations in S are exactly those operations in T1, T2, ..., Tn, including a commit or abort
operation as the last operation for each transaction in the schedule.

2. For any pair of operations from the same transaction Ti, their order of appearance in S is the
same as their order of appearance in Ti.

3. For any two conflicting operations, one of the two must occur before the other in the schedule.

5.10 Characterizing Schedules Based on Recoverability

once a transaction T is committed, it should never be necessary to roll back T. The schedules that
theoretically meet this criterion are called recoverable schedules and those that do not are called
nonrecoverable, and hence should not be permitted.

A schedule S is recoverable if no transaction T in S commits until all transactions T' that have
written an item that T reads have committed. A transaction T reads from transaction T in a

schedule S if some item X is first written by and later read by T. In addition, should not

have been aborted before T reads item X, and there should be no transactions that write X after

 writes it and before T reads it (unless those transactions, if any, have aborted before T

reads
X).

Consider the schedule given below, which is the same as schedule except that two

commit operations have been added to :

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 103

)

is not recoverable, because T2 reads item X from T1, and then T2 commits before T1 commits.

If T1 aborts after the c2 operation in , then the value of X that T2 read is no longer valid and T2

must be aborted after it had been committed, leading to a schedule that is not recoverable. For the

schedule to be recoverable, the c2 operation in must be postponed until
after T1 commits. If T1 aborts instead of committing, then T2 should also abort as shown in Se,
because the value of X it read is no longer valid.

In a recoverable schedule, no committed transaction ever needs to be rolled back. However, it is

possible for a phenomenon known as cascading rollback (or cascading abort) to occur, where
an uncommitted transaction has to be rolled back because it read an item from a transaction that

failed.

Serializability of Schedules

 If no interleaving of operations is permitted, there are only two possible arrangement for
transactions T1 and T2.

1. Execute all the operations of T1 (in sequence) followed by all the operations of T2 (in
sequence).

2. Execute all the operations of T2 (in sequence) followed by all the operations of T1
 A schedule S is serial if, for every transaction T all the operations of T are executed

consecutively in the schedule.
 A schedule S of n transactions is serializable if it is equivalent to some serial schedule of the
same n transactions.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 104

5.11 Transaction Support in SQL

 An SQL transaction is a logical unit of work (i.e., a single SQL statement).
 The access mode can be specified as READ ONLY or READ WRITE. The default is READ

WRITE, which allows update, insert, delete, and create commands to be executed.
 The diagnostic area size option specifies an integer value n, indicating the number of conditions

that can be held simultaneously in the diagnostic area.
 The isolation level option is specified using the statement ISOLATION LEVEL.

 the default isolation level is SERIALIZABLE.

A sample SQL transaction might look like the following:

EXEC SQL WHENEVER SQLERROR GOTO UNDO;

EXEC SQL SET TRANSACTION

READ WRITE
DIAGNOSTICS SIZE 5

ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT INTO EMPLOYEE (FNAME, LNAME, SSN, DNO, SALARY)

VALUES ('Jabbar', 'Ahmad', '998877665', 2, 44000);
EXEC SQL UPDATE EMPLOYEE

SET SALARY = SALARY * 1.1 WHERE DNO = 2;
EXEC SQL COMMIT;

 GOTO THE_END;

UNDO: EXEC SQL ROLLBACK;
THE_END: . . . ;

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 105

Questions

1. Write a short Notes on

i. 2PL Lock

ii. Two-P Deadlock

2. Three phase Locking Techniques: Essential components
3. Explain properties of a transaction with state transition diagram.
4. What is a schedule? Explain with example serial, non serial and conflict serializable

schedules.
5. Write short notes on

1. Write ahead log protocol

2. Time stamp Ordering

3. Two phase locking protocol
6. Explain the problems that can occur whaen concurrent transaction are executed give

examples

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 106

