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1. Introduction 

1.1. What is an Algorithm?

An algorithm is a finite set 

algorithms must satisfy the fol

a. Input. Zero or mor

b. Output. At least on

c. Definiteness. Each

what should be don

d. Finiteness. If we t

algorithm terminate

e. Effectiveness. Ever

principle, by a per

operation be defini

 

Algorithm design and analy

typically goes through in desig

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Understanding the Prob

do before designing an al

input to an algorithm spec

important to specify exactl

• Ascertaining the Capab

understand a problem, you

the algorithm is intended

programming model.  
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?   

et of instructions to solve a particular proble

following criteria: 

ore quantities are externally supplied. 

 one quantity is produced. 

ch instruction is clear and unambiguous. It mus

one.  

e trace out the instruction of an algorithm, the

ates after a finite number of steps. 

very instruction must be very basic so that it ca

person using only pencil and paper. It is not

inite as in criterion c; it also must be feasible. 

lysis process - We now briefly discuss a seq

signing and analyzing an algorithm 

oblem - From a practical perspective, the first

 algorithm is to understand completely the pr

ecifies an instance of the problem the algorithm

ctly the set of instances the algorithm needs to 

bilities of the Computational Device - Onc

ou need to ascertain the capabilities of the com

ded for. Select appropriate model from seq
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lem. In addition, all 

ust be perfectly clear 

hen for all cases, the 

 can be carried out, in 

ot enough that each 

equence of steps one 

rst thing you need to 

 problem given.  An 

thm solves. It is very 

to handle. 

nce you completely 

computational device 

equential or parallel 
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• Choosing between Exac

decision is to choose betw

Because, there are importa

their instances and some o

unacceptably slow because

• Algorithm Design Tech

“paradigm”) is a general a

to a variety of problems f

designing algorithms for 

satisfactory algorithm. 

• Designing an Algorithm

choosing data structures a

example, the sieve of Erat

array in its implementation

• Methods of Specifying an

to specify it in some fas

nowadays for specifying a

however, the inherent am

description of algorithms 

language and programmin

than natural language, and

• Proving an Algorithm’s 

to prove its correctness. T

result for every legitimate

of correctness is quite easy

proving correctness is to 

provide a natural sequence

• Analyzing an Algorithm 

fact, there are two kinds o

algorithm runs, and space 

desirable characteristic of

precisely defined and inve

considerable degree in the 

• Coding an Algorithm - 

computer programs. Imple

you would not like to dim

Modern compilers do prov

used in their code optimiza
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act and Approximate Problem Solving - T

tween solving the problem exactly and solving

rtant problems that simply cannot be solved e

e of the available algorithms for solving a prob

use of the problem’s intrinsic complexity. 

chniques - An algorithm design technique 

l approach to solving problems algorithmically

s from different areas of computing. They pro

or new problems, i.e., problems for which t

m and Data Structures - One should pay 

s appropriate for the operations performed by 

ratosthenes would run longer if we used a linke

ion.    Algorithms + Data Structures = Program

 an Algorithm- Once you have designed an al

fashion. These are the two options that are 

g algorithms. Using a natural language has a

ambiguity of any natural language makes a 

s surprisingly difficult. Pseudocode is a mi

ing language like constructs. Pseudocode is us

nd its usage often yields more succinct algorithm

’s Correctness - Once an algorithm has been s

. That is, you have to prove that the algorithm

te input in a finite amount of time. For some 

asy; for others, it can be quite complex. A com

to use mathematical induction because an alg

ce of steps needed for such proofs. 

m - After correctness, by far the most importa

s of algorithm efficiency: time efficiency, indic

ce efficiency, indicating how much extra memo

of an algorithm is simplicity. Unlike efficien

vestigated with mathematical rigor, simplicity, 

he eye of the beholder.  

Most algorithms are destined to be ultimate

plementing an algorithm correctly is necessary

iminish your algorithm’s power by an inefficie

rovide a certain safety net in this regard, especi

ization mode. 
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The next principal 

ing it approximately. 

d exactly for most of 

oblem exactly can be 

e (or “strategy” or 

lly that is applicable 

provide guidance for 

 there is no known 

ay close attention to 

y the algorithm. For 

ked list instead of an 

ams 

 algorithm; you need 

re most widely used 

s an obvious appeal; 

a concise and clear 

mixture of a natural 

 usually more precise 

thm descriptions. 

n specified, you have 

hm yields a required 

algorithms, a proof 

ommon technique for 

lgorithm’s iterations 

rtant is efficiency. In 

dicating how fast the 

mory it uses. Another 

iency, which can be 

ty, like beauty, is to a 

ately implemented as 

ry but not sufficient: 

ient implementation. 

ecially when they are 



Lecture Notes | 15CS43 

Prerpared by Harivinod N                                

 

1.2. Algorithm Specification

An algorithm can be specified

1) Simple English  

2) Graphical representatio

3) Programming language

4) Combination of above 

Using the combination of si

specified as follows.  

In C++ the same algorithm can

Here Type is a basic or user de

 

Recursive algorithms 

An algorithm is said to be re

recursive). Algorithm A is said

turn calls A.  

Example 1: Factorial computa

Example 2: Binomial coefficie

Example 3: Tower of Hanoi pr

Example 4: Permutation Gene
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tion  

ed in  

tion like flow chart  

age like c++ / java  

ve methods.  

 simple English and C++, the algorithm for

 

can be specified as follows 

 defined data type.  

recursive if the same algorithm is invoked i

aid to be indirect recursive if it calls another 

tation   n! = n * (n-1)!  

cient computation 

i problem  

nerator  
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for selection sort is 

 

 

d in the body (direct 

er algorithm which in 
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1.3. Analysis Framework 

General framework for analy

two kinds of efficiency: time 

fast an algorithm in question 

requires.  

In the early days of electronic

Now the amount of extra spac

In addition, the research exper

more spectacular progress in 

tradition of algorithm textbook

 

Measuring an Input’s Size 

It is observed that almost all a

longer to sort larger arrays, m

investigate an algorithm's ef

algorithm's input size. 

There are situations, where the

The choice of an appropriate 

question. For example, how

algorithm? If the algorithm 

measure the size by the numb

count their number in the inpu

We should make a special no

properties of numbers (e.g

algorithms, computer scientist

representation: � � �log�	n	
 �

of algorithms in question. 

 

Units for Measuring Runnin

To measure an algorithm's eff

on these extraneous factors.

the algorithm's operations is e

shall see, usually unnecessary

the algorithm, called the bas

running time, and compute the

For example, most sorting al

sorted with each other; for suc

As another example, algorith

require two arithmetic operatio
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lyzing the efficiency of algorithms is discuss

e efficiency and space efficiency. Time efficie

n runs; space efficiency deals with the extra s

ic computing, both resources time and space w

ace required by an algorithm is typically not o

perience has shown that for most problems, we

in speed than in space. Therefore, following 

oks, we primarily concentrate on time efficienc

ll algorithms run longer on larger inputs. Fo

, multiply larger matrices, and so on. Therefo

efficiency as a function of some parameter

the choice of a parameter indicating an input

te size metric can be influenced by operations 

ow should we measure an input's size for

 examines individual characters of its inpu

mber of characters; if it works by processing

put. 

note about measuring the size of inputs for alg

e.g., checking whether a given integer n is 

ists prefer measuring size by the number b of b


 � 1.  This metric usually gives a better idea a

ing lime 

efficiency, we would like to have a metric tha

. One possible approach is to count the numb

s executed. This approach is both excessively d

ry. The thing to do is to identify the most imp

asic operation, the operation contributing the

the number of times the basic operation is execu

algorithms work by comparing elements (ke

uch algorithms, the basic operation is a key com

rithms for matrix multiplication and polyn

tions: multiplication and addition. 

troduction  
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ssed here. There are 

iciency indicates how 

space the algorithm 

were at a premium. 

t of as much concern, 

we can achieve much 

g a well-established 

ency.  

For example, it takes 

efore, it is logical to 

ter n indicating the 

ut size does matter. 

s of the algorithm in 

for a spell-checking 

put, then we should 

ng words, we should 

algorithms involving 

is prime). For such 

f bits in the n's binary 

a about the efficiency 

hat does not depend 

ber of times each of 

y difficult and, as we 

portant operation of 

the most to the total 

ecuted. 

(keys) of a list being 

omparison. 

lynomial evaluation 
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Let cop be the execution time 

let C(n) be the number of tim

we can estimate the running 

computer by the formula: 

unless n is extremely large or

algorithm's running time. 

It is for these reasons that the

and concentrates on the count

inputs. 

 

Orders of Growth 

Why this emphasis on the co

values of n, it is the function's

values of a few functions parti

Table: Values 

of several 

functions 

important for 

analysis of 

algorithms 

 

Algorithms that require an ex

problems of very small sizes. 

 

Worst-Case, Best-Case, and 

Definition: The worst-case e

input of size n, for which the a

Consider the algorithm for seq
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e of an algorithm's basic operation on a partic

imes this operation needs to be executed for th

g time T(n) of a program implementing this

��� � ������� 

 or very small, the formula can give a reasona

he efficiency analysis framework ignores multi

nt's order of growth to within a constant mul

count's order of growth for large input sizes?

n's order of growth that counts: just look at ta

rticularly important for analysis of algorithms. 

 exponential number of operations are practica

 

d Average-Case Efficiencies 

e efficiency of an algorithm is its efficiency 

e algorithm runs the longest among all possible

equential search. 

troduction  
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ticular computer, and 

 this algorithm. Then 

is algorithm on that 

nable estimate of the 

ltiplicative constants 

ultiple for large-size 

s? Because for large 

 table which contains 

 

tical for solving only 

y for the worst-case 

le inputs of that size.  
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The running time of above al

worst case, when there are no

be the last one on the list, 

among all possible inputs of si

In general, we analyze the alg

basic operation's count C(n) a

case value Cworst (n). The wors

running time from above. Thu

will not exceed Cworst (n), its ru

Definition: The best-case eff

of size n, for which the algorit

We determine the kind of inp

possible inputs of size n. For 

n with their first elements equ

The analysis of the best-case 

efficiency. Also, neither the 

necessary information about a

information is provided by ave

Definition: the average-case 

algorithm, averaged over all p

Let us consider again sequenti

of a successful search is equ

occurring in the i
th

 position of 

of key comparisons Cavg (n) as

In the case of a successful s

position of the list is p/n for e

in such a situation is obviou

comparisons is n with the prob

Investigation of the average-c

of the worst-case and best-ca

which the average case effic

efficiency would lead us to be

taking the average of the wors
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algorithm can be quite different for the same

no matching elements or the first matching el

, the algorithm makes the largest number of

f size n: Cworst(n) = n. 

algorithm to see what kind of inputs yield the l

among all possible inputs of size n and then c

orst-case analysis provides algorithm's efficien

hus it guarantees that for any instance of size n

s running time on the worst-case inputs. 

efficiency of an algorithm is its efficiency for 

rithm runs the fastest among all possible inputs

inputs for which the count C(n) will be the s

r example, for sequential search, best-case inp

qual to a search key; Cbest(n) = 1.  

se efficiency is not nearly as important as tha

he worst-case analysis nor its best-case coun

an algorithm's behavior on a "typical" or "ra

verage-case efficiency.  

se complexity of an algorithm is the amount o

l possible inputs. 

ntial search. The standard assumptions are that

qual top (0 ≤ p ≤ 1) and (b) the probability 

of the list is the same for every i. We can find t

as follows. 

l search, the probability of the first match o

every i, and the number of comparisons mad

iously i. In the case of an unsuccessful searc

robability of such a search being (1- p). Therefo

case efficiency is considerably more difficult

case efficiencies. But there are many import

ficiency is much better than the overly pess

 believe. Note that average-case efficiency can

rst-case and the best-case efficiencies. 

troduction  
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me list size n. In the 

 element happens to 

 of key comparisons 

e largest value of the 

 compute this worst-

ency by bounding its 

n, the running time 

or the best-case input 

uts of that size.  

e smallest among all 

nputs are lists of size 

hat of the worst-case 

unterpart yields the 

"random" input. This 

t of time used by the 

at (a) the probability 

ty of the first match 

d the average number 

 occurring in the i
th

 

ade by the algorithm 

arch, the number of 

efore, 

 

ult than investigation 

ortant algorithms for 

essimistic worst-case 

annot be obtained by 
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Summary of analysis framew

• Both time and space efficie

• Time efficiency is measu

operation is executed. Sp

memory units consumed b

• The efficiencies of some a

For such algorithms, we n

best-case efficiencies. 

• The framework's primary 

time (or extra memory uni

 

2. Performance Analysis

 

2.1 Space complexity 

Total amount of computer m

called as space complexity of

of following components 

• A fixed part that is ind

for codes, variables, co

• A variable part that de

parameters as instance 

Space requirement S(P) of an 

on the fixed part, Sp is the inst

Example-1: Consider followin

Here fixed component depend

Example-2: Let us consider th

For the algorithm given here 

elements to be summed. The s

be written as;       Ssum(n) ≥ (n+

CS43 – Design & Analysis of Algorithms | Module 1: Introdu
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ework 

iciencies are measured as functions of the algor

asured by counting the number of times the

Space efficiency is measured by counting th

 by the algorithm. 

e algorithms may differ significantly for input

e need to distinguish between the worst-case,

ry interest lies in the order of growth of the a

nits consumed) as its input size goes to infinity

lysis  

 memory required by an algorithm to comple

of that algorithm. The Space required by an al

independent of the input and output. This inclu

 constants and so on. 

 depends on the input, output and recursion sta

ce characteristics) 

an algorithm P,     S(P) = c + Sp     where c is 

nstance characteristics 

wing algorithm abc() 

nds on the size of a, b and c. Also instance char

r the algorithm to find sum of array.  

re the problem instances are characterized by

e space needed by a[ ] depends on n. So the spa

(n+3)    n for a[ ], One each for n, i and s.  

 

troduction  

                                  Page|1.8 

orithm's input size. 

the algorithm's basic 

the number of extra 

uts of the same size. 

se, average-case, and 

e algorithm's running 

ity. 

plete its execution is 

 algorithm is the sum 

cludes memory space 

stack. ( We call these 

is a constant depends 

 

aracteristics Sp=0  

by n, the number of 

space complexity can 
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2.2 Time complexity 

Usually, the execution time o

denoted by tp (instance chara

instructions in the program.   

Exact estimation runtime is 

dependent on the input data. A

for the estimation of the time c

A program step is loosely de

program that has and execut

example comment has zero ste

We can determine the steps n

two ways.  

In the first method we introd

zero. We also introduce state

program. So when each time 

step count.  

Example-1: Consider the algo

will be as follows.  

From the above we can estim

steps.  

The second method to determ

we list the total number of step

CS43 – Design & Analysis of Algorithms | Module 1: Introdu
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or run-time of the program is refereed as it

aracteristics).  This is the sum of the time ta

 

s a complex task, as the number of instru

Also different instructions will take different t

e complexity we count only the number of pr

defined as syntactically or semantically meani

cution time that is independent of instance c

steps; assignment statement has one step and so

s needed by a program to solve a particular p

oduce a new variable count to the program wh

atements to increment count by an appropriat

e original program executes, the count also i

lgorithm sum( ).  After the introduction of the 

timate that invocation of sum( ) executes tota

rmine the step count of an algorithm is to bui

teps contributed by each statement. An example

troduction  
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 its time complexity 

 taken to execute all 

truction executed is 

t time to execute. So 

program steps.  

aning segment of the 

 characteristics. For 

 so on.  

r problem instance in 

hich is initialized to 

iate amount into the 

o incremented by the 

he count the program 

 

otal number of 2n+3 

uild a table in which 

ple is shown below. 
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Example-2: matrix addition 

 

 

 

 

 

 

 

The above thod is both exces

identify the most important 

operation contributing the mo

the basic operation is executed

Trade-off 

There is often a time-space-tr

few computing time and low 

exchange computing time fo

algorithm one chooses and how

 

3. Asymptotic Notations

The efficiency analysis frame

basic operation count as the pr

rank such orders of growth,

omega), Θ (big theta) and o(lit

 

3.1. Big-Oh notation 

Definition:  A function t(n) is

above by some constant mul

constant c and some nonnegati
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essively difficult and, usually unnecessary. Th

 operation of the algorithm, called the bas

ost to the total running time, and compute th

ted. 

tradeoff involved in a problem, that is, it can

w memory consumption. One has to make a c

for memory consumption or vice versa, dep

how one parameterizes it. 

ions  

mework concentrates on the order of growth

 principal indicator of the algorithm’s efficienc

th, computer scientists use three notations: O

(little oh) 

is said to be in O(g(n)), denoted t(n)∈ O(g(n)),

ultiple of g(n) for all large n, i.e., if there e

ative integer n0 such that  

t(n) ≤ c g(n) for all n ≥ n0. 

troduction  
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The thing to do is to 

asic operation, the 

 the number of times 

annot be solved with 

a compromise and to 

depending on which 

th of an algorithm’s 

ncy. To compare and 

O(big oh),  Ω(big 

)), if t (n) is bounded 

 exist some positive 
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Informally, O(g(n)) is the set o

Examples:  

As another example, let us for

100n + 5 ≤ 100n

Note that the definition gives 

and n0.  

 

Example: To prove n
2
 + n = 

Strategies for Big-O  Someti

be the sum of the positive

coefficients. 
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t of all functions with a lower or same order of

 

ormally prove 100n + 5 ∈ O(n
2
) 

n + n (for all n ≥ 5) = 101n ≤ 101n
2
. (c=101, n

es us a lot of freedom in choosing specific val

 = O(n
3
) 

 

 

etimes the easiest way to prove that f(n) = O(g

ve coefficients of f(n). We can usually ig

 

troduction  
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 of growth as g(n) 

 

 

, n0=5) 

alues for constants c 

(g(n)) is to take c to 

ignore the negative 
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3.2. Omega notation 

Definition: A function t(n) is 

below by some positive cons

positive constant c and some n

 

 

 

 

 

 

 

 

 

 

 

Here is an example of the form

n
3
 ≥ n

2
 for all n ≥ 0,    

i.e., we can select c = 1 and n0

 

Example:  

 

Example: To prove n
3
 + 4n

2
 

 

3.3. Theta notation 

A function t(n) is said to be 

above and below by some pos

some positive constants c1 and

c2 g

CS43 – Design & Analysis of Algorithms | Module 1: Introdu
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 is said to be in Ω(g(n)), denoted t(n)∈ Ω(g(n))

nstant multiple of g(n) for all large n, i.e., i

e nonnegative integer n0 such that  

t(n) ≥ c g(n) for all n ≥ n0. 

rmal proof that n
3
 ∈ Ω(n

2
):  

0 = 0. 

 = Ω(n
2
) 

 

 

e in Θ(g(n)), denoted t(n) ∈ Θ(g(n)), if t (n

ositive constant multiples of g(n) for all large n

nd c2 and some nonnegative integer n0 such tha

g(n)  ื  t(n)  ื  c1g(n)   for all n ุ n0. 

troduction  
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)), if t(n) is bounded 

, if there exist some 

 

 (n) is bounded both 

e n, i.e., if there exist 

that 
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Example: n
2
 + 5n + 7 = Θ(n

2
)

 

Strategies for Ω and Θ 

• Proving that a f(n) = Ω(g(n

– Quite often, we hav

– A good strategy is 

which value of n0 i

– Being able to do a 

– We can sometim

coefficients. 

• The following theorem sho

Theorem: f(n) = Θ

Thus, we just apply the pre

CS43 – Design & Analysis of Algorithms | Module 1: Introdu
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) 

 

g(n)) often requires more thought. 

have to pick c < 1. 

 is to pick a value of c which you think will w

is needed. 

 a little algebra helps. 

imes simplify by ignoring terms of f(n) 

shows us that proving f(n) = Θ(g(n)) is nothing 

= Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) =

previous two strategies. 

troduction  
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 work, and determine 

) with the positive 

g new:  

) = Ω(g(n)). 
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3.4. Little Oh   The function f

For comparing the order of gro

If the case-1 holds good in the

Example:  

CS43 – Design & Analysis of Algorithms | Module 1: Introdu
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f(n) = o(g(n)) [ i.e f of n is a little oh of g of n

lim
�→�

����

����
� 0 

growth limit is used 

he above limit, we represent it by little-oh. 
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f n ] if and only if 
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3.5. Basic asymptotic Efficien

Class  Name  
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ficiency Classes 

 Comments 
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3.6. Mathematical Analysis of

Analysis of Non-recursive Al

General Plan for Analyzing th

1. Decide on a parameter

2. Identify the algorithm’

3. Check whether the num

the size of an input. I

average-case, and, if

separately. 

4. Set up a sum express

executed. 

5. Using standard formu

formula for the count o

Example-1: To find maximu

Here comparison  is the basic 

Note that number of comparis

distinguish worst, best and ave

Total number of basic operatio

 

Example-2: To check whethe

Algorithm 

Algorithm 
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sis of Non-recursive & Recursive Algorithms

 Algorithms 

 the Time Efficiency of Nonrecursive Algorithm

ter (or parameters) indicating an input’s size. 

’s basic operation. (As a rule, it is located in i

number of times the basic operation is execute

. If it also depends on some additional proper

if necessary, best-case efficiencies have t

essing the number of times the algorithm’s 

ulas and rules of sum manipulation, either 

t or, at the very least, establish its order of grow

um element in the given array 

 

ic operation.  

risions will be same for all arrays of size n. Th

verage cases.  

tions (comparison) are,  

ther all the elements in the given array are d
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ithms 

hms 

n innermost loop.) 

ted depends only on 

erty, the worst-case, 

 to be investigated 

’s basic operation is 

er find a closedform 

owth. 

Therefore, no need to 

 distinct 
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Here basic operation is compa

case. (i.e. all the elements in th

Total number of basic operatio

Other than the worst case, the

two elements of the array are

=O(n
2
) 

Example-3: To perform mat

Number of basic opera

(multiplications) is 

 

Total running time: 

Suppose if we take into accoun

A(n) = n
3 

 

Total running time: 

 

 

 

 

Algorithm 
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parison.  The maximum no. of comparisons h

 the array are distinct and algorithms return tru

tions (comparison) in the worst case are,  

he total comparisons are less than 
�

 
� .  ( For 

re equal, only one comparison is computed). S

atrix multiplication  

erations 

ount of addition; Algoritham also have same nu
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 happen in the worst 

rue).  

 

r example if the first 

). So in general C(n) 

 

number of additions  
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Example-4: To count the bit

The basic operation is count=c

Analysis of Recursive Algori

General plan for analyzing the

1. Decide on a parameter

2. Identify the algorithm’

3. Check whether the nu

different inputs of the 

efficiencies must be i

appropriate initial cond

4. Solve the recurrence or

 

Since the function F(n) is com

The number of multiplications

Algorithm 

Example-1 

Algorithm
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its in the binary representation 

t=count + 1 repeats  no. of times

rithms 

the time efficiency of recursive algorithms 

ter (or parameters) indicating an input’s size. 

m’s basic operation. 

 number of times the basic operation is exec

e same size; if it can, the worst-case, average-

e investigated separately. Set up a recurrence

ndition, for the number of times the basic opera

 or, at least, ascertain the order of growth of its

mputed according to the formula 

 

ns M(n) needed to compute it must satisfy the e
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es   

xecuted can vary on 

-case, and best-case 

ce relation, with an 

eration is executed. 

its solution. 

 

e equality 
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Such equations are called recu

Condition that makes the alg

initial condition for the algorit

 
 

 

We can use backward substitu

               …. 

             
   

Example-2:  Tower of Hanoi

can slide onto any of three peg

largest on the bottom and the

peg, using the second one as a

and it is forbidden to place a la

The problem has an elegant re

• To move n>1 disks from p

o we first move recur

o then move the large

o finally, move recur

• If n = 1, we move the singl

 

 

 

 

 

 
Figure: Rec

The number of moves M(n) de

We have the following recurre
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currence Relations 

lgorithm stop if n = 0 return 1.  Thus recur

rithm’s number of multiplications M(n) can be 

itutions method to solve this   

 

oi puzzle. In this puzzle, There are  n disks of

egs. Initially, all the disks are on the first peg i

he smallest on top. The goal is to move all the

s an auxiliary, if necessary. We can move only

a larger disk on top of a smaller one. 

 recursive solution, which is illustrated in Figur

 peg 1 to peg 3 (with peg 2 as auxiliary),  

cursively n-1 disks from peg 1 to peg 2 (with pe

rgest disk directly from peg 1 to peg 3, and,  

ursively n-1 disks from peg 2 to peg 3 (using p

ngle disk directly from the source peg to the des

ecursive solution to the Tower of Hanoi puzzle

depends only on n.  The  recurrence equation i

 

rrence relation for the number of moves M(n): 
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urrence relation and 

be stated as  

 

of different sizes that 

g in order of size, the 

the disks to the third 

ly one disk at a time, 

ure.  

 peg 3 as auxiliary),  

 peg 1 as auxiliary).  

destination peg. 

zle 

n is  
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We solve this recurrence by th

The pattern of the first three su

2
4 

M(n − 4) + 2
3
 + 2

2
 + 2 + 1, 

 

Since the initial condition is s

following formula for the solu

 

Alternatively, by counting th

can get the total number of cal

Figure: Tree of recursive c

Example-3 

The recurrence relation can be

Also note that A(1) = 0. 
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 the same method of backward substitutions: 

 sums on the left suggests that the next one will

1, and generally, after i substitutions, we get 

s specified for n = 1, which is achieved for i =

lution to recurrence, 

 the number of nodes in the tree obtained by 

calls made by the Tower of Hanoi algorithm: 

e calls made by the recursive algorithm for the T

puzzle. 

 
 be written as  

. 
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ill be 

 

 i = n - 1, we get the 

 

y recursive calls, we 

 

 
e Tower of Hanoi 

 



Lecture Notes | 15CS43 

Prerpared by Harivinod N                                

 

The standard approach to solv

take advantage of the theore

broad assumptions the order o

order of growth for all values o
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olving such a recurrence is to solve it only fo

rem called the smoothness rule which claim

r of growth observed for n = 2
k
 gives a correc

s of n. 
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 for n = 2
k
 and then 

ims that under very 

rect answer about the 
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4. Important Problem Ty

In this section, we are goin

Searching, String processing, 

4.1. Sorting 

The sorting problem is to rear

practical matter, we usually n

character strings.  

Although some algorithms are

the best solution in all situatio

others are faster but more co

others do better on almost-so

memory, while others can be a

Two properties of sorting alg

stable if it preserves the relat

notable feature of a sorting alg

An algorithm is said to be in-p

few memory units. 

4.2. Searching  

The searching problem deals 

(or a multiset, which permits 

searching algorithms to choos

to a spectacularly efficient bu

the underlying set in a differe

of particular importance for re

and retrieving information from

4.3. String Processing 

In recent decades, the rapid pr

intensified the interest of 

algorithms. A string is a s

algorithms have been impo

languages and compiling issue

4.4. Graph Problems  

One of the oldest and most int

graph can be thought of as a co

by line segments called ed

applications, including transpo

scheduling, and games. Stud
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m Types 

oing to introduce the most important proble

, Graph problems, Combinatorial problems.  

earrange the items of a given list in non-decre

y need to sort lists of numbers, characters fro

are indeed better than others, there is no algori

tions. Some of the algorithms are simple but rel

complex; some work better on randomly ord

sorted lists; some are suitable only for lists r

e adapted for sorting large files stored on a disk

lgorithms deserve special mention. A sorting 

lative order of any two equal elements in its 

 algorithm is the amount of extra memory the 

place if it does not require extra memory, exc

ls with finding a given value, called a search k

its several elements to have the same value). T

ose from. They range from the straightforward

but limited binary search and algorithms bas

rent form more conducive to searching. The la

 real-world applications because they are indisp

rom large databases. 

 proliferation of applications dealing with non-

f researchers and computing practitioners 

 sequence of characters from an alphabet.

portant for computer science in conjunctio

ues. 

interesting areas in algorithmics is graph algorit

 collection of points called vertices, some of w

edges. Graphs can be used for modeling a

sportation, communication, social and economi

udying different technical and social aspects 
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blem types: Sorting, 

creasing order. As a 

from an alphabet or 

orithm that would be 

relatively slow, while 

rdered inputs, while 

s residing in the fast 

isk; and so on. 

g algorithm is called 

its input. The second 

e algorithm requires. 

xcept, possibly, for a 

h key, in a given set. 

There are plenty of 

rd sequential search 

sed on representing 

 latter algorithms are 

ispensable for storing 

-numerical data has 

s in string-handling 

et. String-processing 

tion with computer 

rithms. Informally, a 

 which are connected 

 a wide variety of 

mic networks, project 

ts of the Internet in 
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particular is one of the acti

economists, and social scientis

4.5. Combinatorial Problems

Generally speaking, combinat

from both a theoretical and p

facts. First, the number of c

problem’s size, reaching un

Second, there are no known

acceptable amount of time. 

 

5. Fundamental Data Stru

Since the vast majority of 

organizing data play a critical 

can be defined as a particular s

5.1. Linear Data Structures 

The two most important eleme

A (one-dimensional) array is

contiguously in computer mem

index.  

 

 

A linked list is a sequence of 

of information: some data and

list. In a singly linked list, eac

element. Another extension i

node, except the first and the l

 

 

 

 

 

 

A list is a finite sequence of d

linear order. The basic ope
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ctive areas of current research involving co

tists. 

lems 

natorial problems are the most difficult proble

 practical standpoint. Their difficulty stems f

f combinatorial objects typically grows extr

unimaginable magnitudes even for modera

wn algorithms for solving most such proble

a Structures 

f algorithms of interest operate on data, p

al role in the design and analysis of algorithms

r scheme of organizing related data items. 

res  

mentary data structures are the array and the lin

is a sequence of n items of the same data ty

emory and made accessible by specifying a v

of zero or more elements called nodes, each co

nd one or more links called pointers to other n

each node except the last one contains a single

 is the structure called the doubly linked li

e last, contains pointers to both its successor an

f data items, i.e., a collection of data items ar

perations performed on this data structure 
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computer scientists, 

blems in computing, 

s from the following 

tremely fast with a 

rate-sized instances. 

blems exactly in an 

 particular ways of 

s. A data structure 

linked list.  

 type that are stored 

value of the array’s 

containing two kinds 

r nodes of the linked 

le pointer to the next 

 list, in which every 

and its predecessor.  

 arranged in a certain 

e are searching for, 
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inserting, and deleting an e

particularly important.  

A stack is a list in which ins

called the top because a stack

stack of plates whose “operatio

A queue, on the other hand, 

structure, called the front (thi

the other end, called the rea

operates in a “first-in–first-ou

single teller in a bank. Queu

algorithms for graph problems

Many important applications 

dynamically changing set of 

such applications is called a 

from a totally ordered univ

operations on a priority queue

adding a new element. 

5.2. Graphs 

A graph is informally though

nodes,” some of them connec

called undirected if every ed

called directed. Directed grap

The graph depicted in Figure (

V = {a, b, c, d, e, f }

The digraph depicted in Figure

V = {a, b, c, d, e, f }, E

 

Graph Representations - Gr

two ways: the adjacency matr

The adjacency matrix of a g

and one column for each of th
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 element. Two special types of lists, stacks

insertions and deletions can be done only at th

ck is usually visualized not horizontally but ve

ations” it mimics very closely. 

d, is a list from which elements are deleted fr

this operation is called dequeue), and new elem

rear (this operation is called enqueue). Cons

out” (FIFO) fashion—akin to a queue of cust

eues also have many important applications,

ms. 

ns require selection of an item of the highest

f candidates. A data structure that seeks to sa

a priority queue. A priority queue is a collec

niverse (most often, integer or real numbe

ue are finding its largest element, deleting its la

ght of as a collection of points in the plane c

nected by line segments called “edges” or “ar

edge in it is undirected. A graph whose every 

aphs are also called digraphs. 

e (a) has six vertices and seven undirected edge

 f }, E = {(a, c), (a, d), (b, c), (b, f ), (c, e), (d, e)

ure 1.6b has six vertices and eight directed edge

, E = {(a, c), (b, c), (b, f ), (c, e), (d, a), (d, e), (e

Graphs for computer algorithms are usually rep

trix and adjacency lists.  

 graph with n vertices is an n x n boolean m

 the graph’s vertices, in which the element in th
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cks and queues, are 

 the end. This end is 

 vertically—akin to a 

 from one end of the 

lements are added to 

nsequently, a queue 

stomers served by a 

ns, including several 

est priority among a 

 satisfy the needs of 

lection of data items 

bers). The principal 

s largest element, and 

 called “vertices” or 

“arcs.” A graph G is 

ry edge is directed is 

ges: 

 e), (e, f )}. 

ges: 

 (e, c), (e, f )}. 

 

represented in one of 

matrix with one row 

 the i
th

 row and the j
th
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column is equal to 1 if there i

there is no such edge. 

The adjacency lists of a graph

that contain all the vertices ad

an edge). 

Weighted Graphs: A weigh

numbers assigned to its edges.

Among the many properties o

connectivity and acyclicity. B

vertex v of a graph G can b

vertices that starts with u and e

A graph is said to be connecte

to v. Graphs with several con

important to know for many 

cycles. A cycle is a path of a 

not traverse the same edge mo

 

5.3. Trees  

A tree (more accurately, a fre

but is not necessarily connecte

Trees have several important p

edges in a tree is always one le
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e is an edge from the i
th

 vertex to the j
th

 vertex

aph or a digraph is a collection of linked lists, o

adjacent to the list’s vertex (i.e., all the vertices

ghted graph (or weighted digraph) is a graph

es. These numbers are called weights or costs. 

s of graphs, two are important for a great numb

 Both are based on the notion of a path. A pat

 be defined as a sequence of adjacent (conn

d ends with v. 

cted if for every pair of its vertices u and v the

onnected components do happen in real-world

ny applications whether or not a graph under

 a positive length that starts and ends at the sam

ore than once. 

free tree) is a connected acyclic graph. A graph

cted is called a forest: each of its connected co

t properties other graphs do not have. In particu

e less than the number of its vertices: |E| = |V| - 
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tex, and equal to 0 if 

, one for each vertex, 

ces connected to it by 

 

ph (or digraph) with 

 

mber of applications: 

path from vertex u to 

nnected by an edge) 

 

there is a path from u 

rld applications. It is 

er consideration has 

same vertex and does 

ph that has no cycles 

components is a tree. 

ticular, the number of 

 1 
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Rooted Trees: Another very i

in a tree, there always exists e

This property makes it possib

the root of the so-called roote

the top (level 0 of the tree), t

two edges apart from the root 

The depth of a vertex v is the

tree is the length of the longes

Ordered Trees- An ordered t

ordered.  It is convenient to as

right. A binary tree can be de

two children and each child is

binary tree may also be empty

If a number assigned to each 

and smaller than all the num

trees. Binary trees and binary

trees have a wide varie

applications in computer scien
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y important property of trees is the fact that for

s exactly one simple path from one of these ve

sible to select an arbitrary vertex in a free tree

oted tree. A rooted tree is usually depicted by 

, the vertices adjacent to the root below it (le

 still below (level 2), and so on. 

the length of the simple path from the root to 

est simple path from the root to a leaf. 

d tree is a rooted tree in which all the children

 assume that in a tree’s diagram, all the children

 defined as an ordered tree in which every verte

 is designated as either a left child or a right ch

ty. 

h parental vertex is larger than all the number

mbers in its right subtree. Such trees are cal

ry search 

riety of 

ience. 
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or every two vertices 

vertices to the other. 

ee and consider it as 

y placing its root on 

(level 1), the vertices 

 

to v. The height of a 

en of each vertex are 

ren are ordered left to 

rtex has no more than 

t child of its parent; a 

ers in its left subtree 

alled binary search 
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5.4.  Sets and Dictionaries 

A set can be described as an 

elements of the set. A specific

S = {2, 3, 5, 7}) or by specif

satisfy (e.g., S = {n: n is a prim

The most important set opera

finding the union of two sets, 

finding the intersection of two

Sets can be implemented in c

that are subsets of some large 

subset S of U can be represen

element is 1 if and only if the i

The second and more common

structure to indicate the set’s 

for uniqueness is sometimes

unordered collection of items 

by a list, depending on the ap

sorted order. 

Dictionary: In computing, th

often are searching for a giv

collection. A data structure th

An efficient implementation

efficiency of searching and th

unsophisticated use of arrays 

hashing and balanced search tr

A number of applications in 

into a collection of disjoint su

subsets, the collection is subje

This problem is called the set 
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an unordered collection (possibly empty) of di

ific set is defined either by an explicit listing of

cifying a property that all the set’s elements a

rime number smaller than 10}).  

rations are: checking membership of a given i

s, which comprises all the elements in either or

o sets, which comprises all the common eleme

n computer applications in two ways. The first 

ge set U, called the universal set. If set U has n 

ented by a bit string of size n, called a bit vect

e i
th

 element of U is included in set S. 

on way to represent a set for computing purpos

’s elements. This is feasible only for finite sets

es circumvented by the introduction of a m

s that are not necessarily distinct. Note that if 

 application at hand, it might be worth maint

 the operations we need to perform for a set 

given item, adding a new item, and deleting 

 that implements these three operations is call

on of a dictionary has to strike a compro

the efficiencies of the other two operations. T

ys (sorted or not) to much more sophisticated 

trees. 

in computing require a dynamic partition of s

 subsets. After being initialized as a collection

bjected to a sequence of intermixed union and

et union problem. 

***** 
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 distinct items called 

 of its elements (e.g., 

s and only they must 

n item in a given set; 

 or both of them; and 

ments in the sets. 

 considers only sets 

 n elements, then any 

ctor, in which the i
th 

oses is to use the list 

ets.  The requirement 

multiset, or bag, an 

if a set is represented 

intaining the list in a 

et or a multiset most 

ng an item from the 

alled the dictionary. 

romise between the 

. They range from an 

d techniques such as 

f some n-element set 

ion of n one-element 

nd search operations. 
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1. General method: 

Divide and Conquer is one of

according to the following gen

• Given a function to co

splitting the inputs into

• These sub problems m

solutions into a solutio

• If the sub problems are

possibly be reapplied. 

• Often the sub problem

type as the original p

conquer principle is na

 

A typical case with k=2 is diag

 

 

 

 

 

 

 

 

 

 

Control Abstraction for divide

In the above specification,  

• Initially DAndC(P) is i

• Small (P) is a Boolean

enough that the answe

is invoked. Otherwise,

problems P1, P2 …Pk a

• Combine is a function

sub problems. 

Sub Problem

Solution to sub p

s   ||   10CS43 – DAA  ||  Module 2: Divide and Conque

www.techjourney.in 

 of the best-known general algorithm design t

eneral plan: 

 compute on ‘n’ inputs the divide-and-conque

nto ‘k’ distinct subsets, 1<k<=n, yielding ‘k’ su

 must be solved, and then a method must be fou

tion of the whole. 

are still relatively large, then the divide-and-co

 

ems resulting from a divide-and-conquer desig

l problem. For those cases the reapplication 

 naturally expressed by a recursive algorithm. 

iagrammatically shown below.  

de and conquer: 

is invoked, where ‘P’ is the problem to be solve

an-valued function that determines whether the

er can be computed without splitting. If this s

se, the problem P is divided into smaller sub pr

are solved by recursive application of DAndC

on that determines the solution to P using the s

Problem      of size n 

lem of size n/2 Sub Problem o

ub problem 1 Solution to su

Solution to the original problem 

nquer 

Page| 2.2 

n technique. It works 

uer strategy suggests 

 sub problems. 

found to combine sub 

conquer strategy can 

sign are of the same 

n of the divide-and-

 

lved. 

the input size is small 

s so, the function ‘S’ 

 problems. These sub 

C. 

e solutions to the ‘k’ 

m of size n/2 

to sub problem 2 
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2. Recurrence equation f

If the size of problem ‘p’ is

respectively, then the comput

relation 

 

Where, 

• T(n) is the time for div

• g(n) is the time to com

• The function f(n) is the

to sub problems. 

For divide and conquer based

original problem, it is very nat

More generally, an instance o

them needing to be solved. (H

size n is a power of b (i.e. n =

for the running time T(n): 

                             

 

where f(n) is a function that ac

ones and on combining their s

Substitution Method -  One 

substitution method. This me

function T in the right hand sid

Master Theorem - The efficie

simplified by the master theore

It states that, in recurrence equ

Analogous results hold for the

 

For example, the recurrence fo

conquer sum-computation algo

Thus, for this example, a = 2, b

s   ||   10CS43 – DAA  ||  Module 2: Divide and Conque

www.techjourney.in 

n for Divide and Conquer: 

 is n and the sizes of the ‘k’ sub problems

uting time of divide and conquer is described

ivide and conquer method on any input of size 

mpute answer directly for small inputs.  

the time for dividing the problem ‘p’ and comb

ed algorithms that produce sub problems of th

natural to first describe them by using recursion

 of size n can be divided into b instances of 

 (Here, a and b are constants; a>=1 and b > 

= b
k 

), to simplify our analysis, we get the fo

 accounts for the time spent on dividing the pro

r solutions. 

e of the methods for solving the recurrence re

ethod repeatedly makes substitution for each

 side until all such occurrences disappear.  

iciency analysis of many divide-and-conquer alg

orem.   

quation T(n) = aT(n/b) + f (n), If f (n)∈ Θ (n
d

 
he Ο and Ω notations, too. 

 for the number of additions A(n) made by the 

lgorithm (see above) on inputs of size n = 2
k
 is 

 

2, b = 2, and d = 0; hence, since a >b
d
, 

 

nquer 

Page| 2.3 

ms are n1, n2 ….nk, 

ed by the recurrence 

ze n and  

mbining the solutions 

 the same type as the 

on.  

f size n/b, with a of 

> 1.). Assuming that 

 following recurrence 

..... (1) 

roblem into smaller 

 relation is called the 

ch occurrence of the 

 algorithms is greatly 

d 
) where d ≥ 0 then 

 divide-and-
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Problems on Substitutio

recurrence relation 
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ion method  &  Master theorem to solv

nquer 

Page| 2.4 

olve the 
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3. Binary Search 

Problem definition: Let ai, 1

order. The problem is to find

present we have to determine

list, then j is set to zero. 

Solution: Let P = (n, ai…al , x

number of elements in the lis

searched for in the given list. B

Step 1: Pick an index q in th

Step 2: if x = aq  i.e key elem

Step 3:  if x < aq in this case 

Therefore problem re

Step 4:  if x > aq , x has to be

reduces to (l-i, aq+1…

For the above solution proced

recursive algorithm. 

 

 

 

Recursive binary search algo

Iterative binary search: 
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, 1 ≤ i ≤ n be a list of elements that are sorted

nd whether a given element x is present in the

ne a value j (element’s position) such that aj=x

, x) denote an arbitrary instance of search prob

list, ai…al  is the list of elements and x is the 

Binary search on the list is done as follows: 

 the middle range [i, l] i.e. q=��� � 1�/2	  and c

ement is equal to mid element, the problem is im

se x has to be searched for only in the sub-list a

 reduces to (q-i, ai…aq-1, x). 

 be searched for only in the sub-list aq+1, ...,., al . T

…al, x). 

cedure, the Algorithm can be implemented as

lgorithm 

nquer 
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ed in non-decreasing 

the list or not. If x is 

=x. If x is not in the 

oblem where n is the 

he key element to be 

 

d compare x with aq.  

 immediately solved. 

t ai, ai+1, ……, aq-1. 

Therefore problem 

 as recursive or non-
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Analysis  

 In binary search the basic ope

the best, worst, and average c

the recursive and iterative ver

relaxed slightly. For Recursive

as one comparison. For Iterati

one comparison. Let us find o

an array of n elements. 

Best case – Θ(1)   In the best

comparisons (actually just 1) a
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operation is key comparison. Binary Search ca

e case number of comparisons. The numbers o

ersions of Binary Search are the same, if comp

ive Binary Search, count each pass through the

rative Binary Search, count each pass through 

 out how many such key comparison does the 

est case, the key is the middle in the array. A c

) are required. 
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can be analyzed with 

s of comparisons for 

mparison counting is 

the if-then-else block 

h the while block as 

e algorithm make on 

 constant number of 
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Worst case - Θ(log2 n)   In th

each recursion or iteration of 

halving can be done ceiling (lo

Sometimes, in case of the suc

	�	log�	n	�.  So worst case com

Average case - Θ (log2 n)  To 

comparisons required to find 

To simplify the analysis, assu

that the probabilities of search

 

 

How to compute Average case

Space Complexity - The spac

search are different. Iterative 

Recursive Binary Search req

maintain the recursion stack. 

Advantages: Efficient on very

 Limitations:  

• Interacts poorly with th

• Requires sorted list as 

• Due to random access 
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 the worst case, the key does not exist in the ar

of Binary Search, the size of the admissible ran

(log2 n ) times. Thus, �	log�	n	� comparisons ar

uccessful search, it may take maximum numb

mplexity of successful binary search is Θ (log2

o find the average case, take the sum of the pro

d each element and the probability of searchin

sume that no item which is not in array will be

ching for each element are uniform. 

ase complexity? 

ace requirements for the recursive and iterative

e Binary Search requires only a constant amou

requires space proportional to the number o

 

ery big list, Can be implemented iteratively/rec

 the memory hierarchy 

as an input  

ss of list element, needs arrays instead of linked
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 array at all. Through 

range is halved. This 

 are required. 

ber of comparisons. 

2 n).  

product of number of 

ing for that element. 

 be searched for, and 

ive versions of binary 

ount of space, while 

r of comparisons to 

ecursively.  

ed list. 
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4. Finding the maximum 

Problem statement: Given a

minimum items.  

StraightMaxMin: A simple a

Explanation: 

� StraightMaxMin requi

� By realizing the comp

done. Hence we can re

If(a[i]>Max) 

� On the average a[i] is >

 

Algorithm based on Divide a

Let P = (n, a [i],……,a [j]) den

elements in the list (a[i],….,a[

of the list. If the list has more 

For example, we might divide

P1=( [n/2],a[1],……..a

P2= ( n-[n/2], a[[n/2]+

After having divided ‘P’ into 2

invoking the same divide-and-

Algorithm:  
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um and minimum 

 a list of n elements, the problem is to find 

e and straight forward algorithm to achieve this

quires 2(n-1) comparisons in the best, average &

parison of a[i]>max is false, improvement in 

 replace the contents of the for loop by,  

 then Max = a[i]; Else if (a[i]< min)

is > max half the time. So, the avg. no. of comp

e and Conquer strategy   

denote an arbitrary instance of the problem.   H

,a[j]) and we are interested in finding the maxim

re than 2 elements, P has to be divided into sma

de ‘P’ into the 2 instances,  

..a[n/2])  

]+1],….., a[n])  

o 2 smaller sub problems, we can solve them by

-conquer algorithm. 

nquer 
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d the maximum and 

is is given below.  

 

e & worst cases. 

in a algorithm can be 

) min=a[i] 

parison is 3n/2-1. 

Here ‘n’ is the no. of 

ximum and minimum 

aller instances. 

 by recursively 
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Example:  

 

Analysis - Time Complexity 

 

of recursive calls of MaxMin i
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in is as follows 
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Compared with the straight for

 

Space Complexity 

Compared to the straight forw

i, j, max, min, max1 and mi

recursion and we need to save

 

5. Merge Sort 

Merge sort is a perfect exa

technique. It sorts a given arra

and A [ ��/2	 .. n-1], sorting

sorted arrays into a single sort

The merging of two sorted arr

� Two pointers (array in

being merged.  

� The elements pointed 

array being constructed

s   ||   10CS43 – DAA  ||  Module 2: Divide and Conque

www.techjourney.in 

forward method (2n-2) this method saves 25% 

rward method, the MaxMin method requires ex

min1.  Given n elements there will be ����

ve seven values for each recursive call. (6 + 1 f

xample of a successful application of the d

rray A [O  ... n - 1] by dividing it into two halv

ing each of them recursively, and then mergin

rted one. 

rrays can be done as follows.  

 indices) are initialized to point to the first elem

ed to are compared, and the smaller of them 

ted  
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% in comparisons.  

 extra stack space for 

�����	 � 1  levels of 

for return address).  

 divide-and conquer 

alves A [0 .. ��/2	-1] 

ging the two smaller 

 

lements of the arrays 

m is added to a new 
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� After that, the index o

successor in the array 

two given arrays is exh

copied to the end of the

 

 

Example:  

The operation of the algorithm

list 8, 3, 2, 9, 7, 1, 5, 4 is illust

the figure 

 
 

 

 

 

 

 

 

 

Analysis  

Here the basic operation is key

order of the data, best case and

Worst case: During key com

other one contains just one e
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 of the smaller element is incremented to poin

y it was copied from. This operation is repeat

exhausted, and then the remaining elements of 

 the new array. 

hm on the 

ustrated in 

ey comparison. As merge sort execution does n

nd average case runtime are the same as worst 

omparison, neither of the two arrays becomes

e element leads to the worst case of merge s

nquer 
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oint to its immediate 

ated until one of the 

of the other array are 

 

s not depend on the 

st case runtime. 

es empty before the 

e sort. Assuming for 
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simplicity that total number o

number of key comparisons C

where, Cmerge(n) is the n

Let us analyze Cmerge(n), the n

At each step, exactly one com

two arrays still needing to be 

arrays becomes empty before 

may come from the alternating

Now,  

Solving the recurrence equatio

Here a = 2,  b = 2,  f (n) = n,  d

Cworst (n) = Θ (n
d
 log n) = Θ (n

 

Advantages:  

• Number of comparison

• For large n, the numb

turns out to be about 0

• Mergesort will never d

• Another advantage o

sorting algorithm is sa

order in sorted output 

 Limitations: 

• The principal shortcom

the algorithm requires

is quite complicated an

 

Variations of merge sort 

1. The algorithm can b

elements, then mergin

slight bookkeeping co

using a stack to handle

2. We can divide a list t

then merge them toge

residing on secondary 
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r of elements n is a power of 2, the recurren

C(n) is 

 number of key comparison made during the m

 number of key comparisons performed during

mparison is made, after which the total number

e processed is reduced by 1. In the worst case,

re the other one contains just one element (e.g

ing arrays). Therefore, for the worst case, Cmerg

tion using master theorem: 

d = 1.  Therefore 2 = 2
1
, case 2 holds in the m

Θ (n
1
 log n) = Θ (n log n)   Therefore Cworst(n) = 

sons performed is nearly optimal.  

ber of comparisons made by this algorithm i

t 0.25n less and hence is also in Θ(n log n). 

r degrade to O (n
2
)  

 of mergesort over quicksort and heapsort i

 said to be stable if two objects with equal keys 

ut as they appear in the input array to be sorted.

oming of mergesort is the linear amount [ O(n

es. Though merging can be done in-place, the 

 and of theoretical interest only. 

 be implemented bottom up by merging pa

ging the sorted pairs, and so on. (If n is not a

complications arise.) This avoids the time and

dle recursive calls.  

t to be sorted in more than two parts, sort eac

gether. This scheme, which is particularly usef

ry memory devices, is called multiway mergeso
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ence relation for the 

 

 merging stage. 

ng the merging stage. 

ber of elements in the 

se, neither of the two 

.g., smaller elements 

ge(n) = n – 1. 

 

 master theorem 

= Θ (n log n) 

 in the average case 

t is its stability. (A 

ys appear in the same 

d. ) 

(n) ] of extra storage 

e resulting algorithm 

pairs of the array’s 

t a power of 2, only 

nd space overhead of 

each recursively, and 

seful for sorting files 

esort. 



Lecture Notes   ||  

Prepared by Harivinod N 

 

6. Quick sort 

Quicksort is the other import

approach. Unlike mergesort, w

the array, quicksort divides ( o

A partition is an arrangement

some element A[s] are less tha

greater than or equal to it: 

Obviously, after a partition is

and we can continue sortin

independently (e.g., by the sam

In quick sort, the entire work h

the solutions to the sub proble

Partitioning 

We start by selecting a pivot—

the subarray. There are sev

sophisticated method suggeste

who invented quicksort. 

Select the subarray’s first e

comparing the subarray’s elem

� The left-to-right scan

element. Since we wa

subarray, this scan skip

encountering the first e

� The right-to-left scan, 

the subarray. Since we
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ortant sorting algorithm that is based on the d

t, which divides its input elements according 

( or partitions) them according to their value. 

ent of the array’s elements so that all the elem

than or equal to A[s], and all the elements to th

 is achieved, A[s] will be in its final position i

ting the two subarrays to the left and to 

ame method). 

happens in the division stage, with no work re

lems. 

—an element with respect to whose value we 

everal different strategies for selecting a p

sted by C.A.R. Hoare, the prominent British 

element: p = A[l]. Now scan the subarray

ements to the pivot.  

an, denoted below by index pointer i, starts

ant elements smaller than the pivot to be in 

kips over elements that are smaller than the pi

t element greater than or equal to the pivot.  

n, denoted below by index pointer j, starts with

e want elements larger than the pivot to be in t

nquer 
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e divide-and-conquer 

g to their position in 

lements to the left of 

 the right of A[s] are 

 

n in the sorted array, 

o the right of A[s] 

 required to combine 

 

e are going to divide 

 pivot. We use the 

sh computer scientist 

ray from both ends, 

rts with the second 

in the left part of the 

 pivot and stops upon 

ith the last element of 

n the right part of the 
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subarray, this scan sk

encountering the first e

After both scans stop, three s

indices have crossed.  

1. If scanning indices i a

A[j ] and resume the s

2. If the scanning indice

subarray after exchang

3. If the scanning indice

they are pointing to m

the split position s = i 

We can combine this w

 

ALGORITHM HoarePartitio

//Partitions a subarray by Hoar

//Input: Subarray of array A[0.

//Output: Partition of A[l..r], w

               

Note that index i can go out of
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skips over elements that are larger than the p

t element smaller than or equal to the pivot. 

 situations may arise, depending on whether o

i and j have not crossed, i.e., i < j, we simply 

e scans by incrementing I and decrementing j, re

ices have crossed over, i.e., i > j, we will ha

nging the pivot with A[j]: 

ces stop while pointing to the same element, i

 must be equal to p. Thus, we have the subarra

 i = j : 

with the case-2 by exchanging the pivot with 

tion(A[l..r]) 

oare’s algorithm, using the first element as a piv

..n − 1], defined by its left and right indices l 

, with the split position returned as this function

 

 of the subarray’s bounds in this pseudocode. 
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e pivot and stops on 

r or not the scanning 

ly exchange A[i] and 

, respectively: 

 

 have partitioned the 

 

t, i.e., i = j, the value 

rray partitioned, with 

 

th A[j] whenever iӋj  

pivot 

l and r (l<r) 

ion’s value 
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Example: Example of quicks

bold. (b) Tree of recursive call

split position s of a partition ob

Analysis 

Best Case - Here the basic op

before a partition is achieved i

If all the splits happen in the 

The number of key compariso

According to the Master Theo

Cbest(n) = n log2 n. 

Worst Case – In the worst ca

subarrays will be empty, and

subarray being partitioned. 

increasing arrays.  
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ksort operation. (a) Array’s transformations wi

alls to Quicksort with input values l and r of su

 obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 operation is key comparison. Number of key 

d is n + 1 if the scanning indices cross over and

 middle of corresponding subarrays, we will 

sons in the best case satisfies the recurrence, 

eorem, Cbest(n) ∈ Θ(n log2 n); solving it exact

 case, all the splits will be skewed to the extrem

nd the size of the other will be just 1 less th

. This unfortunate situation will happen, 

nquer 
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with pivots shown in 

 subarray bounds and 

y comparisons made 

nd n if they coincide. 

ll have the best case. 

 

ctly for n = 2
k
 yields 

reme: one of the two 

 than the size of the 

, in particular, for 
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Indeed, if A[0..n − 1] is a stri

right scan will stop on A[1] 

indicating the split at position

and exchanging the pivot A

increasing array A[1..n − 1] t

sizes will continue until the la

key comparisons made will be

Average Case - Let Cavg(n) be

a randomly ordered array of s

after n+1comparisons are mad

subarrays will have s and n −

can happen in each position s 

relation: 

Its solution, which is much tric

Thus, on the average, quicks

Moreover, its innermost loop

randomly ordered arrays of n

algorithm by its inventor. 

Variations 

Because of quicksort’s import

the basic algorithm. Among se

� Better pivot selection

element or the medi

rightmost, and the mid

� Switching to insertion

most computer system

algorithm with insertio

� Modifications of the 

segments smaller than
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trictly increasing array and we use A[0] as the

] while the right-to-left scan will go all the w

ion 0: So, after making n + 1 comparisons to g

 A[0] with itself, the algorithm will be left

] to sort. This sorting of strictly increasing arr

 last one A[n−2 .. n−1] has been processed. T

 be equal to 

 be the average number of key comparisons ma

f size n. A partition can happen in any positi

ade to achieve the partition. After the partition

− 1− s elements, respectively. Assuming tha

 s with the same probability 1/n, we get the fo

trickier than the worst- and best-case analyses, 

 

ksort makes only 39% more comparisons tha

op is so efficient that it usually runs faster 

f nontrivial sizes. This certainly justifies the 

ortance, there have been persistent efforts over

 several improvements discovered by researche

on methods such as randomized quicksort th

edian-of-three method that uses the median

iddle element of the array 

ion sort on very small subarrays (between 5 an

tems) or not sorting small subarrays at all 

rtion sort applied to the entire nearly sorted arra

he partitioning algorithm such as the three-

an, equal to, and larger than the pivot 
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the pivot, the left-to-

e way to reach A[0], 

o get to this partition 

left with the strictly 

arrays of diminishing 

 The total number of 

 

made by quicksort on 

ition s (0 ӊ s ӊ n−1) 

ion, the left and right 

hat the partition split 

 following recurrence 

 

s, turns out to be 

han in the best case. 

r than mergesort on 

e name given to the 

er the years to refine 

hers are: 

 that uses a random 

ian of the leftmost, 

 and 15 elements for 

ll and finishing the 

rray 

-way partition into 
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Limitations 

� It is not stable.  

� It requires a stack to st

� While Performance on

implementation details

data type. 

 

7. Stassen’s Matrix multip

Direct Method: Suppose we 

C=AB, will be an n by n m

multiplications involved in pro

Divide and Conquer method

Multiplication of  2 × 2 ma

the number of multiplications.

principal insight of the algorith

× 2 matrices A and B with j

the brute-force algorithm. This

where 

Thus, to multiply two 2×2 m

18 additions/subtractions, wh

and four additions. 
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 store parameters of subarrays that are yet to be

on randomly ordered arrays is known to be se

ils of the algorithm but also to both compute

ultiplication 

e want to multiply two n x n matrices, A and

 matrix and will therefore have n
2
 elements

producing the product in this way is Θ(n
3
) 

 

od 

matrices: By using divide-and-conquer appro

ns. Such an algorithm was published by V. Str

rithm lies in the discovery that we can find the 

just seven multiplications as opposed to the

his is accomplished by using the following form

 

 

 matrices, Strassen’s algorithm makes seven m

hereas the brute-force algorithm requires eig

nquer 
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be sorted.  

 sensitive not only to 

uter architecture and 

nd B. Their product, 

nts.  The number of 

roach we can reduce 

trassen in 1969. The 

e product C of two 2 

the eight required by 

rmulas: 

n multiplications and 

eight multiplications 
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Multiplication of  n × n mat

of 2. (If n is not a power of 2,

can divide A, B, and their prod

It is not difficult to verify tha

product. For example, C00 ca

M5 + M7 where M1, M4, M5

replaced by the corresponding

computed recursively by th

multiplication. 

Analysis  

Here the basic operation is mu

Strassen’s algorithm in multip

following recurrence relation f

This implies M(n) = Θ(n
2.807

) 

 

8. Advantages and Disadv

Advantages 

� Parallelism: Divide an

Once the division pha

can therefore be solve

concurrency to keep t

processor machines.  

� Cache Performance:

performance. Once a 

reuses the cached data 
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atrices – Let A and B be two n × n matrices 

 2, matrices can be padded with rows and colu

roduct C into four n/2 × n/2 submatrices each a

 

hat one can treat these submatrices as number

can be computed either as A00 * B00 + A01 * B

5, and M7 are found by Strassen’s formulas,

ing submatrices. If the seven products of n/2 

the same method, we have Strassen’s algo

ultiplication. If M(n) is the number of multipl

tiplying two n × n matrices (where n is a power

n for it: 

 

 

 which is smaller than n
3
 required by the brute

isadvantages of Divide & Conquer  

 and conquer algorithms tend to have a lot of in

hase is complete, the sub-problems are usuall

lved in parallel. This approach typically gene

 the machine busy and can be adapted for e

e: divide and conquer algorithms also tend to

a sub-problem fits in the cache, the standard 

ta until the sub-problem has been completely so
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 where n is a power 

lumns of zeros.) We 

h as follows: 

ers to get the correct 

B10 or as M1 + M4 – 

as, with the numbers 

/2 × n/2 matrices are 

lgorithm for matrix 

iplications made by 

er of 2), we get the 

 

ute-force algorithm. 

 inherent parallelism. 

ally independent and 

nerates more enough 

r execution in multi-

 to have good cache 

rd recursive solution 

 solved.  
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� It allows solving diffi

Hanoi. It reduces the

problems that are easil

� Another advantage to 

efficient algorithms, a

merge sort algorithms.

Disadvantages 

� One of the most com

recursion is slow, wh

conquer process.  

� Another concern with 

than a basic iterative 

someone wanted to ad

simple loop to add the

than it would be to 

recursively, and then a

� Another downfall is 

problems, the same su

like these, it can often

problem, which is com

 

 

9. Decrease and Conquer

Decrease-and-conquer is a g

relationship between a solutio

instance of the same problem

either top down (usually recur

There are three major variation

� decrease-by-a-constant

� decrease-by-a-constant

� variable-size-decrease 

In the decrease-by-a-constan

constant on each iteration of t

other constant size reductions 
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fficult and often impossible looking problems

he degree of difficulty since it divides the 

sily solvable, and usually runs faster than other 

to this paradigm is that it often plays a part

, and in fact it was the central role in finding 

s. 

ommon issues with this sort of algorithm is

hich in some cases outweighs any advantages

th it is the fact that sometimes it can become 

ve approach, especially in cases with a large n

 add a large amount of numbers together, if 

them together, it would turn out to be a much

o divide the numbers up into two groups, 

 add the sums of the two groups together.  

s that sometimes once the problem is broke

 sub problem can occur many times. It is solv

en be easier to identify and save the solution t

mmonly referred to as memorization.  

quer Approach  

 general algorithm design technique, based

tion to a given instance of a problem and a so

em. Once such a relationship is established, i

ursively) or bottom up. 

ions of decrease-and-conquer: 

ant, most often by one (e.g., insertion sort) 

ant-factor, most often by the factor of two (e.g.,

se (e.g., Euclid’s algorithm) 

tant variation, the size of an instance is red

f the algorithm. Typically, this constant is equ

ns do happen occasionally. 

nquer 

Page| 2.24 

s like the Tower of 

e problem into sub 

er algorithms would.  

art in finding other 

ng the quick sort and 

 is the fact that the 

es of this divide and 

e more complicated 

e n. In other words, if 

if they just create a 

ch simpler approach 

s, add these groups 

oken down into sub 

lved again.  In cases 

n to the repeated sub 

sed on exploiting a 

 solution to a smaller 

, it can be exploited 

g., binary search) 

educed by the same 

qual to one although 
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Figure: Decrease-(by one)-and

Example: a
n
 = a

n-1
 × a 

 

 

 

 

 

 

 

 

 

 

 

The decrease-by-a-constant-

same constant factor on each

factor is equal to two. 

Figure: Decrease-(by half)-and

 

 

 

 

 

 

 

Example:  

Finally, in the variable-size-

pattern varies from one iteratio

Example: Euclid’s algorithm 

formula.                             gcd

Though the value of the secon

left-hand side, it decreases nei

s   ||   10CS43 – DAA  ||  Module 2: Divide and Conque

www.techjourney.in 

nd-conquer technique 

-factor technique suggests reducing a proble

ch iteration of the algorithm. In most applicat

and-conquer technique. 

 

-decrease variety of decrease-and-conquer, 

tion of an algorithm to another. 

m for computing the greatest common divisor.

cd(m, n) = gcd(n, m mod n). 

ond argument is always smaller on the right-han

either by a constant nor by a constant factor. 

Sub Problem 

of size n-1 

Solution to sub 

problem 

Solution to the original pro

Problem of size n

Sub Problem 

of size n/2 

Solution to sub 

problem 

Solution to the original p

Problem of    

nquer 
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blem instance by the 

cations, this constant 

r, the size-reduction 

or. It is based on the 

hand side than on the 

l problem 

ize n 

nal problem 

    size n 
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10. Topological Sort 

Background 

A directed graph, or digraph 

The adjacency matrix and ad

digraph. 

There are only two notabl

representing them: (1) the a

symmetric; (2) an edge in a di

digraph’s adjacency lists. 

Depth-first search and breadt

digraphs as well, but the stru

undirected graphs. Thus, even

(Figure b) exhibits all four typ

• tree edges (ab, bc, de),

• back edges (ba) from v

• forward edges (ac) fr

children, and  

• cross edges (dc), which

 

 

Note that a back edge in a DF

Whether or not it is the case,

directed cycle. A directed cycl

starts and ends with the same 

predecessor by an edge directe

a directed cycle in the digra

digraph has no back edges, the
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h for short, is a graph with directions specifie

 adjacency lists are the two principal means

ble differences between undirected and d

 adjacency matrix of a directed graph doe

 directed graph has just one (not two) correspo

dth-first search are principal traversal algorit

tructure of corresponding forests can be more

en for the simple example of Figure, the depth

ypes of edges possible in a DFS forest of a dire

,  

 vertices to their ancestors, 

from vertices to their descendants in the tre

ich are none of the aforementioned types. 

DFS forest of a directed graph can connect a v

se, the presence of a back edge indicates that

ycle in a digraph is a sequence of three or more

e vertex and in which every vertex is connecte

cted from the predecessor to the successor. For

raph in Figure given above. Conversely, if 

the digraph is a dag, an acronym for directed ac

nquer 
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fied for all its edges. 

ns of representing a 

directed graphs in 

oes not have to be 

ponding nodes in the 

rithms for traversing 

re complex than for 

pth-first search forest 

irected graph:  

tree other than their 

 

a vertex to its parent. 

at the digraph has a 

ore of its vertices that 

cted to its immediate 

or example, a, b, a is 

if a DFS forest of a 

 acyclic graph. 
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Motivation for topological so

Consider a set of five required

in some degree program. The

course prerequisites are met: 

requires C3, and C5 requires 

which order should the studen

The situation can be modeled 

courses and directed edges ind

In terms of this digraph, the qu

in such an order that for every

edge starts is listed before the

an ordering of this digraph’s v

Topological Sort 

For topological sorting to be p

has no directed cycles, the top

There are two efficient algori

produce an ordering of vertic

based on depth-first search; th

technique.  

 

Topological Sorting based on

Method 

1. Perform a DFS travers

2. Reversing this order y

course, no back edge 

been encountered, the

impossible. 

Illustration 

a) Digraph for which the 

b) DFS traversal stack wi

c) Solution to the problem

point from left to right

check visually the cor

problem. 
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 sorting 

red courses {C1, C2, C3, C4, C5} a part-time 

he courses can be taken in any order as lon

t: C1 and C2 have no prerequisites, C3 requir

 C3 and C4. The student can take only one c

ent take the courses? 

ed by a digraph in which vertices represent 

indicate prerequisite requirements. 

 question is whether we can list its vertices 

ery edge in the graph, the vertex where the 

he vertex where the edge ends. In other words,

s vertices? This problem is called topological so

e possible, a digraph in question must be a da

opological sorting problem for it has a solution.

orithms that both verify whether a digraph is 

tices that solves the topological sorting proble

 the second is based on a direct application of th

 on DFS 

ersal and note the order in which vertices becom

r yields a solution to the topological sorting pro

ge has been encountered during the traversal. 

he digraph is not a dag, and topological sortin

e topological sorting problem needs to be solve

with the subscript numbers indicating the poppi

lem. Here we have drawn the edges of the dig

ght as the problem’s statement requires. It is a 

orrectness of a solution to an instance of the 

nquer 
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e student has to take 

ong as the following 

uires C1 and C2, C4 

e course per term. In 

ds, can you find such 

l sorting. 

dag. i.e., if a digraph 

n.  

 a dag and, if it is, 

lem. The first one is 

f the decrease-by-one 

ome dead-ends 

roblem, provided, of 

l. If a back edge has 

ting of its vertices is 

lved. 

ping off order.  

digraph, and they all 

 a convenient way to 

 topological sorting 
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Topological Sorting using  d

Method: The algorithm is ba

conquer technique:  

1. Repeatedly, identify i

incoming edges, and d

several sources, break

cannot be solved.)  

2. The order in which the

problem. 

Illustration - Illustration of th

is given here. On each iteration

Note: The solution obtained

obtained by the DFS-based a

sorting problem may have sev

Applications of Topological S

• Instruction scheduling 

• Cell evaluation orderin

• Resolving symbol depe

s   ||   10CS43 – DAA  ||  Module 2: Divide and Conque
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  decrease-and-conquer technique: 

based on a direct implementation of the decr

y in a remaining digraph a source, which is

d delete it along with all the edges outgoing fr

ak the tie arbitrarily. If there are none, stop be

the vertices are deleted yields a solution to the 

 the source-removal algorithm for the topologic

tion, a vertex with no incoming edges is deleted

ed by the source-removal algorithm is diffe

 algorithm. Both of them are correct, of cour

everal alternative solutions. 

l Sorting 

g in program compilation 

ring in spreadsheet formulas,  

ependencies in linkers. 

*** 

nquer 
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crease-(by one)-and-

 is a vertex with no 

 from it. (If there are 

 because the problem 

e topological sorting 

gical sorting problem 

ed from the digraph. 

 

ferent from the one 

urse; the topological 
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1. Introduction to Greedy

1.1 General method 

The greedy method is the 

applications.  

The greedy approach sugges

expanding a partially constru

problem is reached. On each s

• feasible, i.e., it has to s

• locally optimal, i.e., i

available on that step 

• irrevocable, i.e., once

algorithm 

As a rule, greedy algorithms a

problem, it is usually easy to

considering a few small instan

that a greedy algorithm yields 

 

1.2. Coin Change Problem 

Problem Statement: Given coi

an amount with fewest numbe

Example: if denominations a

solutions are, 

 Amount :  30 

 Solutions :  3 x 10  

              1 x 25 +

The last solution is the optima

S43 – Design & Analysis of Algorithms | Module 3: Greedy M

                                  www.techjourney.in                                                          

reedy method 

e straight forward design technique applica

ests constructing a solution through a sequen

tructed solution obtained so far, until a compl

 step the choice made must be: 

o satisfy the problem’s constraints 

., it has to be the best local choice among a

nce made, it cannot be changed on subseq

s are both intuitively appealing and simple. Giv

to figure out how to proceed in a greedy man

tances of the problem. What is usually more d

ds an optimal solution (when it does). 

 

coins of several denominations find out a way 

ber of coins.  

 are 1, 5, 10, 25 and 100 and the change r

0  ( 3 coins ),  6 x 5   ( 6 coins )  

5 + 5 x 1 ( 6 coins ) 1 x 25 + 1 x 5 ( 2 coin

mal one as it gives us change only with 2 coins

eedy Method 
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icable to variety of 

uence of steps, each 

plete solution to the 

 all feasible choices 

equent steps of the 

iven an optimization 

anner, possibly after 

e difficult is to prove 

 

 

y to give a customer 

 required is 30, the 

ins ) 

ns.  
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Solution for coin change pro

cashier’s algorithm. Basic pri

largest coin which can fit in

the end you will have optimal 

1.3. Knapsack Problem 

 

There are several greedy meth

a) At each step fill the knaps

consideration does not fit, then

does not result optimal solutio

follows; 

 Select Item-1 with prof

 Select Item-2 with prof

 Total profit earned = 2

S43 – Design & Analysis of Algorithms | Module 3: Greedy M
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roblem using greedy algorithm is very intui

principle is: At every iteration for search o

into remain amount to be changed at that p

al solution. 

 

thods to obtain the feasible solutions.  

apsack with the object with largest profit - I

hen the fraction of it is included to fill the knap

tion. As per this method the solution to the ab

rofit p1=25, here w1=18, x1=1.   Remaining cap

rofit p1=24, here w2=15, x1=2/15.     Remaining

 28.2.   This results 2
nd

 solution in the examp

eedy Method 
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tuitive and called as 

 of a coin, take the 

t particular time. At 

 

 

 

If the object under 

apsack.  This method 

 above problem is as 

apacity = 20-18 = 2 

ing capacity = 0 

ple 4.1  
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b) At each step fill the object w

 This results 3
rd

 solution

c) At each step include the obj

 This results 4
th

 solution

 This greedy approach a

Algorithm: The algori

increasing order of pro

 

 

Analysis:  

Disregarding the time to initia

 

0/1 Knapsack problem 

 

Note: The greedy approach 

solution 
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t with smallest weight  

ion in the example 4.1  

bject with maximum profit/weight ratio  

ion in the example 4.1 

h always results optimal solution.  

orithm given below assumes that the objects are

rofit/weight ratio 

tially sort the object, each of the above strategie

h to solve this problem does not necessarily

 

eedy Method 
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are sorted in non-

 

gies use O(n) time,  

 

 

 

ily yield an optimal 
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1.4. Job sequencing with dead

The greedy strategy to solve jo

satisfies the constraints and 

decreasing order of the pi’s” 

By following this procedure, w

this greedy strategy always res

 

High lev
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 deadlines 

 

e job sequencing problem is, “At each time sele

nd gives maximum profit. i.e consider the

, we get the 3
rd

 solution in the example 4.3. It c

results optimal solution  

evel description of job sequencing algorithm 

eedy Method 
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elect the job that that 

the jobs in the non 

t can be proved that, 
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Algorithm/Program 4.6: Greed

profits 

Analysis:  
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eedy algorithm for sequencing unit time jobs wi

 

eedy Method 
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 with deadlines and 
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Fast Job Scheduling Algorith
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ithm 

eedy Method 
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Algorithm: Fast Job Sheduli

 

Analysis
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uling 
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2. Minimum cost spannin

Definition:  A spanning tree

tree) that contains all the ver

connected graph is its spanni

defined as the sum of the weig

the problem of finding a minim

 

 

2.1. Prim’s Algorithm 

Prim's algorithm constructs a 

trees. The initial subtree in s

from the set V of the graph's

greedy manner by simply atta

vertex, we mean a vertex not 

smallest weight. Ties can be

vertices have been included in

by exactly one vertex on each

where n is the number of v

obtained as the set of edges. 
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anning trees 

ee of a connected graph is its connected acycl

ertices of the graph. A minimum spanning t

ning tree of the smallest weight, where the w

eights on all its edges. The minimum spannin

nimum spanning tree for a given weighted conn

 a minimum spanning tree through a sequence

 such a sequence consists of a single vertex 

h's vertices. On each iteration it expands the 

ttaching to it the nearest vertex not in that tre

ot in the tree connected to a vertex in the tree

be broken arbitrarily.) The algorithm stops af

 in the tree being constructed. Since the algori

ach of its iterations, the total number of such 

 vertices in the graph. The tree generated b

eedy Method 
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clic subgraph (i.e., a 

g tree of a weighted 

e weight of a tree is 

ning tree problem is 

nnected graph. 

 

ce of expanding sub-

x selected arbitrarily 

e current tree in the 

 tree. (By the nearest 

ee by an edge of the 

 after all the graph's 

rithm expands a tree 

ch iterations is n - 1, 

 by the algorithm is 
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Correctness 

Prim’s algorithm always yield

 

Example: An example of pri

The parenthesized labels of a

indicate the nearest tree vert

vertices and edges are shown i

 

   Tree vertices     
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lds a minimum spanning tree.  

rim’s algorithm is shown below. 

f a vertex in the middle column 

ertex and edge weight; selected 

n in bold.  

 

Remaining vertices          Illustratio

eedy Method 
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tion 
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Analysis of Efficiency 

The efficiency of Prim’s algor

and for the priority queue of

nearest tree vertices. 

1. If a graph is represente

as an unordered arra

each of the |V| − 1itera

find and delete the m

remaining vertices. 

We can implement the priorit

in which every element is less

from and insertion of a new el

2. If a graph is represente

as a min-heap, the run

This is because the algorithm

|E| verifications and, possibly

exceeding |V|. Each of these o

running time of this implemen

(|V| − 1+ |E|) O (log |V |) =

 

2.2. Kruskal’s Algorithm 

Background 

Kruskal's algorithm is another

also always yields an optimal 

Kruskal's algorithm looks at a

(V, E) as an acyclic sub graph

the smallest. Consequently, 

expanding sequence of sub 

connected on the intermediate

 

Working 

The algorithm begins by sorti

Then, starting with the empty

list to the current sub graph if 

the edge otherwise. 
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orithm depends on the data structures chosen f

of the set V − VT whose vertex priorities are t

nted by its weight matrix and the priority que

ray, the algorithm’s running time will be in Θ

erations, the array implementing the priority qu

minimum and then to update, if necessary, th

rity queue as a min-heap. (A min-heap is a co

ess than or equal to its children.) Deletion of th

 element into a min-heap of size n are O(log n)

nted by its adjacency lists and the priority que

unning time of the algorithm is in O(|E| log |V 

m performs |V| − 1 deletions of the smallest e

bly, changes of an element’s priority in a mi

e operations, as noted earlier, is a O(log |V|) op

entation of Prim’s algorithm is in  

 |) = O(|E| log |V |) because, in a connected grap

er greedy algorithm for the minimum spanning

al solution. It is named Kruskal's algorithm, afte

t a minimum spanning tree for a weighted con

aph with |V | - 1 edges for which the sum of th

y, the algorithm constructs a minimum spa

b graphs, which are always acyclic but a

te stages of the algorithm. 

rting the graph's edges in non decreasing orde

ty sub graph, it scans this sorted list adding th

 if such an inclusion does not create a cycle an

eedy Method 
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n for the graph itself 

e the distances to the 

ueue is implemented 

Θ(|V|
2
). Indeed, on 

 queue is traversed to 

, the priorities of the 

 complete binary tree 

 the smallest element 

n) operations. 

ueue is implemented 

V |).  

t element and makes 

min-heap of size not 

operation. Hence, the 

aph, |V| − 1≤ |E|. 

ing tree problem that 

fter Joseph Kruskal. 

connected graph G = 

 the edge weights is 

spanning tree as an 

 are not necessarily 

rder of their weights. 

 the next edge on the 

and simply skipping 
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The fact that ET ,the set of edg

tree in Prim's algorithm but ge

Kruskal’s algorithm is not sim

edge to the edges already selec

We can consider the algorith

containing all the vertices of a

|V| trivial trees, each comprisi

single tree, which is a min

algorithm takes the next edge

containing the vertices u and 

tree by adding the edge (u, v).

Analysis of Efficiency 

The crucial check whether two

find algorithms.  

Efficiency of Kruskal’s algori

of a given graph.  Hence, with

algorithm will be in O (|E| log
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edges composing a minimum spanning tree of 

 generally just an acyclic sub graph in Kruskal's

simpler because it has to check whether the a

lected would create a cycle. 

rithm's operations as a progression through a

f a given graph and some of its edges. The initia

ising a single vertex of the graph. The final f

inimum spanning tree of the graph. On e

ge (u, v) from the sorted list of the graph's ed

d v, and, if these trees are not the same, unite

). 

wo vertices belong to the same tree can be foun

orithm is based on the time needed for sorting

ith an efficient sorting algorithm, the time effic

og |E|). 

eedy Method 
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of graph G actually a 

l's algorithm. 

 addition of the next 

a series of forests 

itial forest consists of 

l forest consists of a 

 each iteration, the 

edges, finds the trees 

ites them in a larger 

und out using union-

ng the edge weights 

fficiency of Kruskal's 
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Illustration  

An example of Kruskal’s alg

selected edges are shown in bo
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lgorithm is shown below. The 

 bold.  

eedy Method 

                                    Page| 3.13 

 



Lecture Notes | 10CS43 

Prerpared by Harivinod N                                 

 

3. Single source shortest

Single-source shortest-paths 

source in a weighted connect

vertices. The single-source sh

from the source to a different

edges in common. 

3.1. Dijkstra's Algorithm 

Dijkstra's Algorithm is the

problem. This algorithm is ap

weights only.  

Working - Dijkstra's algorithm

distance from a given source. 

� First, it finds the shor

second nearest, and so 

� In general, before i

algorithm has already 

other vertices nearest 

source, and the edges o

from the source form

shown in the figure.  

� Since all the edge wei

be found among the ve

to the vertices in Ti c

from which Dijkstra's a

� To identify the i
th

 nea

the sum of the distance

u)) and the length d., o

by the algorithm) and t

it suffices to compare

Dijkstra's algorithm. 

� To facilitate the algorit

o The numeric labe

this vertex found 

indicates the lengt

o The other label in

the parent of the v

for the source s an
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rtest paths 

s problem is defined as follows. For a given

ected graph, the problem is to find shortest pa

 shortest-paths problem asks for a family of p

ent vertex in the graph, though some paths ma

he best-known algorithm for the single-sou

 applicable to undirected and directed graphs

ithm finds the shortest paths to a graph's vertic

e.  

ortest path from the source to a vertex neare

so on.  

 its i
th

 iteration commences, the 

y identified the shortest paths to i-1 

st to the source. These vertices, the 

s of the shortest paths leading to them 

rm a subtree Ti of the given graph 

eights are nonnegative, the next vertex neares

 vertices adjacent to the vertices of Ti. The set o

can be referred to as "fringe vertices"; they 

's algorithm selects the next vertex nearest to th

earest vertex, the algorithm computes, for eve

ce to the nearest tree vertex v (given by the we

of the shortest path from the source to v (prev

d then selects the vertex with the smallest such

are the lengths of such special paths is the 

rithm's operations, we label each vertex with tw

bel d indicates the length of the shortest path 

d by the algorithm so far; when a vertex is a

gth of the shortest path from the source to that 

 indicates the name of the next-to-last vertex o

e vertex in the tree being constructed. (It can 

and vertices that are adjacent to none of the cur

eedy Method 
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en vertex called the 

 paths to all its other 

f paths, each leading 

may, of course, have 

ource shortest-paths 

hs with nonnegative 

tices in order of their 

arest to it, then to a 

rest to the source can 

t of vertices adjacent 

y are the candidates 

 the source. 

very fringe vertex u, 

weight of the edge (v, 

reviously determined 

ch sum. The fact that 

he central insight of 

 two labels.  

th from the source to 

 added to the tree, d 

at vertex.  

 on such a path, i.e., 

n be left unspecified 

current tree vertices.)  
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With such labeling, f

finding a fringe vertex 

� After we have identifie

operations: 

o Move u* from 

o For each rema

weight w (u*, u

and du* + w(u*

o  

Illustration: An example of

below. The next closest vertex

 

 

 

The shortest paths (identified

vertex in the left column to th

vertices) are as follows:  
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, finding the next nearest vertex u* becomes

ex with the smallest d value. Ties can be broken

ified a vertex u* to be added to the tree, we ne

m the fringe to the set of tree vertices. 

aining fringe vertex u that is connected to 

, u) such that d u*+ w(u*, u) <d u, update the

u*, u), respectively. 

of Dijkstra's algorithm is shown 

tex is shown in bold.  

ed by following nonnumeric labels backward 

 the source) and their lengths (given by numeri

 

eedy Method 
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es a simple task of 

en arbitrarily. 

 need to perform two 

to u* by an edge of 

the labels of u by u* 

 
rd from a destination 

eric labels of the tree 
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The pseudocode of Dijkstra

pseudocode, VT  contains a giv

it after iteration 0 is completed

Analysis: 

The time efficiency of Dijk

implementing the priority qu

represented by their adjacency

O ( |E| log |V| ) 

Applications 

� Transportation plannin

Internet 

� Finding shortest paths

robotics, compilers, an
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tra’s algorithm is given below. Note that 

iven source vertex and the fringe contains the v

ted. 

ijkstra’s algorithm depends on the data st

queue and for representing an input graph 

cy lists and the priority queue implemented as 

ing and packet routing in communication netw

hs in social networks, speech recognition, doc

and airline crew scheduling. 
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at in the following 

e vertices adjacent to 

 

structures used for 

h itself. For graphs 

as a min-heap, it is in 

tworks, including the 

ocument formatting, 
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4. Optimal Tree problem 

Background 

Suppose we have to encode a t

by assigning to each of the tex

are two types of encoding: Fix

Fixed-length encoding: This 

m (m >= log2 n). This is exac

coding scheme that yields a 

assigning shorter code-words

frequent characters.  

Variable-length encoding: Th

characters, introduces a proble

we tell how many bits of an

character? To avoid this comp

codes. In a prefix code, no co

with such an encoding, we can

is a codeword for some cha

operation until the bit string's e

If we want to create a binary

alphabet's characters with leav

and all the right edges are labe

be obtained by recording the 

Since there is no simple path

prefix of another codeword; he

Among the many trees that c

known frequencies of the ch

assign shorter bit strings to 

characters can be done by the 

4.1 Huffman Trees and Codes

Huffman's Algorithm 

Step 1: Initialize n one-node t

the frequency of each characte

the weight of a tree will be equ

Step 2: Repeat the following o

smallest weight. Make them t

their weights in the root of the

A tree constructed by the abov

described-a Huffman code. 
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blem  

 a text that comprises characters from some n-c

text's characters some sequence of bits called th

ixed-length encoding, Variable-length encodin

is method assigns to each character a bit string 

actly what the standard ASCII code does. On

a shorter bit string on the average is based 

rds to more frequent characters and longer c

This method assigns code-words of different l

blem that fixed-length encoding does not have

an encoded text represent the first (or, more

plication, we can limit ourselves to prefix-free

codeword is a prefix of a codeword of anothe

can simply scan a bit string until we get the firs

character, replace these bits by this characte

's end is reached. 

ary prefix code for some alphabet, it is natur

eaves of a binary tree in which all the left edge

abelled by 1 (or vice versa). The codeword of a

e labels on the simple path from the root to t

th to a leaf that continues to another leaf, no c

 hence, any such tree yields a prefix code. 

t can be constructed in this manner for a giv

 character occurrences, construction of such

o high-frequency characters and longer ones

e following greedy algorithm, invented by Dav

Codes 

e trees and label them with the characters of th

cter in its tree's root to indicate the tree's weigh

equal to the sum of the frequencies in the tree's 

g operation until a single tree is obtained. Find

 the left and right subtree of a new tree and 

he new tree as its weight.  

ove algorithm is called a Huffman tree. It def

eedy Method 
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character alphabet 

the codeword.There 

ing 

ng of the same length 

ne way of getting a 

d on the old idea of 

r code-words to less 

t lengths to different 

ve. Namely, how can 

re generally, the i
th

) 

ee (or simply prefix) 

her character. Hence, 

irst group of bits that 

cter, and repeat this 

tural to associate the 

ges are labelled by 0 

f a character can then 

o the character's leaf. 

o codeword can be a 

given alphabet with 

ch a tree that would 

es to low-frequency 

avid Huffman. 

 the alphabet. Record 

ght. (More generally, 

's leaves.) 

nd two trees with the 

nd record the sum of 

efines-in the manner 
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Example: Consider the five-s

frequencies in a text made up o

The Huffman tree construction

The resulting codewords are a

Hence, DAD is encoded as 01

With the occurrence frequen

number of bits per symbol in

2 * 0.35 + 
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symbol alphabet {A, B, C, D, _} with the fol

p of these symbols: 

ion for the above problem is shown below: 

 as follows: 

011101, and 10011011011101 is decoded as BA

encies given and the codeword lengths obta

l in this code is 

+ 3 * 0.1+ 2 * 0.2 + 2 * 0.2 + 3 * 0.15 = 2.25. 

eedy Method 
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following occurrence 

 

 

 
BAD_AD. 

btained, the average 
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Had we used a fixed-length en

bits per each symbol. Thus, fo

(a standard measure of a comp

In other words, Huffman’s en

fixed-length encoding. 

 

5. Transform and Conque

5.1. Heaps 

Heap is a partially ordered da

queues. Priority queue is a m

priority, with the following op

• finding an item

• deleting an item

• adding a new it

Notion of the Heap 

Definition: 

A heap can be defined as a b

provided the following two co

1. The shape property—

i.e., all its levels are f

leaves may be missing

2. The parental dominan

equal to the keys in its 

Illustration: 

 The illustration of the definiti

second one is not a heap, bec

subtree cannot be empty. And

fails for the node with key 5. 

Properties of Heap 

1. There exists exactly o

equal to ������� 

2. The root of a heap alw

S43 – Design & Analysis of Algorithms | Module 3: Greedy M

                                  www.techjourney.in                                                          

 encoding for the same alphabet, we would ha

 for this example, Huffman’s code achieves the

mpression algorithm’s effectiveness)  of (3−2.2

 encoding of the above text will use 25% les

nquer Approach 

data structure that is especially suitable for imp

 multiset of items with an orderable characteris

 operations: 

m with the highest (i.e., largest) priority 

tem with the highest priority 

 item to the multiset 

a binary tree with keys assigned to its nodes, 

conditions are met: 

—the binary tree is essentially complete (or 

e full except possibly the last level, where on

ng. 

ance or heap property—the key in each nod

its children.  

ition of heap is shown bellow: only the left mo

ecause the tree’s shape property is violated. Th

nd the third one is not a heap, because the p

 

 one essentially complete binary tree with n n

lways contains its largest element. 

eedy Method 
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have to use at least 3 

he compression ratio 

25)/3*100%= 25%. 

less memory than its 

mplementing priority 

ristic called an item’s 

s, one key per node, 

or simply complete), 

only some rightmost 

ode is greater than or 

ost tree is heap. The 

The left child of last 

 parental dominance 

 

nodes. Its height is 
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3. A node of a heap consi

4. A heap can be implem

left-to-right fashion. I

through n of such an 

whose value is greater 

a. the parental no

the leaf keys w

b. the children of 

positions 2i and

(2 ≤ i ≤ n) will 

 

Thus, we could also define a h

the first half of the array is gr

i.e., 

         H[i] ≥ max {H [2i], H [2

 

Constructions of Heap - Ther

1) Bottom-up heap constructio

 

Bottom-up heap construction

The bottom-up heap construct

complete binary tree with n no

tree as follows. 

• Starting with the last

dominance holds for th

node’s key K with th

dominance holds for K

dominance for K is sat

any key in a leaf.)  

• After completing the 

node, the algorithm pro

• The algorithm stops af
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nsidered with all its descendants is also a heap. 

emented as an array by recording its element

. It is convenient to store the heap’s eleme

an array, leaving H[0] either unused or puttin

er than every element in the heap.  In such a rep

node keys will be in the first �n/2�. positions 

 will occupy the last �n/2� positions;  

of a key in the array’s parental position i (1≤ i ≤

and 2i + 1, and, correspondingly, the parent of

ill be in position ��/2�.  

Heap and its array representation 

a heap as an array H[1..n] in which every elem

 greater than or equal to the elements in posit

2i + 1]} for i = 1. . . ��/2� 

here are two principal alternatives for construct

tion  2) Top-down heap construction 

ion: 

uction algorithm is illustrated bellow. It initial

nodes by placing keys in the order given and th

ast parental node, the algorithm checks wh

r the key in this node. If it does not, the algori

the larger key of its children and checks wh

r K in its new position. This process continues

satisfied. (Eventually, it has to because it hold

e “heapification” of the subtree rooted at th

proceeds to do the same for the node’s immedia

 after this is done for the root of the tree. 

eedy Method 
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nts in the top down, 

ents in positions 1 

tting there a sentinel 

representation, 

s of the array, while 

≤ i ≤	��/2�) will be in 

of a key in position i 

 

ement in position i in 

sitions 2i and 2i + 1, 

cting Heap.  

ializes the essentially 

 then “heapifies” the 

hether the parental 

orithm exchanges the 

whether the parental 

ues until the parental 

lds automatically for 

 the current parental 

diate predecessor.  
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Illustration 

Bottom-up construction of a h

key comparisons verifying the

Analysis of efficiency - botto

Assume, for simplicity, that n

number of nodes occurs on eac

According to the first property

or just �������  1�� = k − 1 f

Each key on level i of the tre

construction algorithm. Since 

to find the larger child and the

number of key comparisons in

Therefore, the total number of
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a heap for the list 2, 9, 7, 6, 5, 8. The double he

he parental dominance. 

tom up heap construction algorithm: 

n = 2
k
 − 1 so that a heap’s tree is full, i.e., t

each level. Let h be the height of the tree.  

rty of heaps in the list at the beginning of the s

1 for the specific values of n we are considering

 tree will travel to the leaf level h in the wors

ce moving to the next level down requires two 

the other to determine whether the exchange is 

 involving a key on level i will be 2(h − i).  

 of key comparisons in the worst case will be 

eedy Method 
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headed arrows show 

 

., the largest possible 

e section, h=������� 

ing.  

orst case of the heap 

o comparisons—one 

is required—the total 
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where the validity of the last e

for the sum  or by

Thus, with this bottom-up alg

comparisons. 

 

Top-down heap construction

It constructs a heap by success

1. First, attach a new nod

2. Then shift K up to its a

a. Compare K with its p

structure is a heap); 

parent.  

b. This swapping contin

Obviously, this insertion ope

height. Since the height of a h

is in O (log n). 

Illustration of inserting a ne

heap is constructed bellow. T

its parents until it is not larger 

Delete an item from a heap

following algorithm: 

Maximum Key Deletion from

1. Exchange the root’s ke

2. Decrease the heap’s siz

3. “Heapify” the smaller 

it in the bottom-up 

dominance for K: if it h

and repeat this operatio

position. 
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st equality can be proved either by using the cl

by mathematical induction on h.  

lgorithm, a heap of size n can be constructed w

on algorithm: 

essive insertions of a new key into a previously

ode with key K in it after the last leaf of the exi

s appropriate place in the new heap as follows. 

ts parent’s key: if the latter is greater than or eq

); otherwise, swap these two keys and compa

tinues until K is not greater than its last parent 

peration cannot require more key comparison

 heap with n nodes is about log2 n, the time effi

 new key: Inserting a new key (10) into the 

 The new key is shifted up via a swap with 

er than its parents (or is in the root). 

ap: Deleting the root’s key from a heap can

om a heap 

 key with the last key K of the heap. 

 size by 1. 

er tree by sifting K down the tree exactly in the

p heap construction algorithm. That is, v

it holds, we are done; if not, swap K with the la

tion until the parental dominance condition hol

eedy Method 
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 closed-form formula 

d with fewer than 2n 

ly constructed heap.  

xisting heap.  

s.  

 equal to K, stop (the 

pare K with its new 

nt or it reaches root. 

sons than the heap’s 

fficiency of insertion 

an be done with the 

the same way we did 

verify the parental 

 larger of its children 

holds for K in its new 
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The efficiency of deletion i

“heapify” the tree after the sw

Since this cannot require mo

efficiency of deletion is in O (

5.2. Heap Sort 

Heapsort - an interesting sort

stage algorithm that works as f

Stage 1 (heap constructio

Stage 2 (maximum deleti

remaining heap. 

As a result, the array element

implementation of heaps an e

exactly the original array sorte

 

Heap sort is traced on a specif

Illustration 
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is determined by the number of key comp

 swap has been made and the size of the tree 

more key comparisons than twice the heap’

 (log n) as well. 

rting algorithm is discovered by J. W. J. Willi

s follows. 

tion): Construct a heap for a given array. 

etions): Apply the root-deletion operation n−1 t

nts are eliminated in decreasing order. But sin

 element being deleted is placed last, the resu

rted in increasing order. 

cific input is shown below: 
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mparisons needed to 

ee is decreased by 1. 

p’s height, the time 

lliams. This is a two-

1 times to the 

since under the array 

esulting array will be 
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Analysis of efficiency: 

Since we already know that th

to investigate just the time

comparisons, C(n), needed for

from n to 2, we get the followi

This means that C(n) ∈ O(n lo

For both stages, we get O(n) +

A more detailed analysis show

in both the worst and average

as that of mergesort.  

Unlike the latter, heapsort is

experiments on random files s

competitive with mergesort. 
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t the heap construction stage of the algorithm i

e efficiency of the second stage. For the

for eliminating the root keys from the heaps o

wing inequality: 

log n) for the second stage of heapsort.  

) + O(n log n) = O(n log n).  

ows that the time efficiency of heapsort is, in 

age cases. Thus, heapsort’s time efficiency fall

 is in-place, i.e., it does not require any extr

s show that heapsort runs more slowly than qu

***** 

 

eedy Method 

                                    Page| 3.24 

 is in O(n), we have 

the number of key 

 of diminishing sizes 

 

in fact, in Θ(n log n) 

alls in the same class 

xtra storage. Timing 

 quicksort but can be 
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1. Introduction to Dynamic Programming

Dynamic programming is a technique for solving problems with 

Typically, these subproblems arise from a recurrence relating a given

solutions of its smaller subproblems. Rather than solving

again, dynamic programming suggests solving

and recording the results in a table from

obtained. [From T1] 

The Dynamic programming can also be used when the solution to a problem can be viewed 

as the result of sequence of decisions

Example 1 

Example 2 

   

Example 3 

Example 4 
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Introduction to Dynamic Programming 

Dynamic programming is a technique for solving problems with overlapping subproblems

Typically, these subproblems arise from a recurrence relating a given problem’s solution to 

of its smaller subproblems. Rather than solving overlapping subproblems again and 

again, dynamic programming suggests solving each of the smaller subproblems only once 

and recording the results in a table from which a solution to the original problem can t

can also be used when the solution to a problem can be viewed 

sequence of decisions.  [ From T2]. Here are some examples.
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overlapping subproblems. 

problem’s solution to 

overlapping subproblems again and 

each of the smaller subproblems only once 

al problem can then be 

can also be used when the solution to a problem can be viewed 

Here are some examples.  
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1.2 Multistage Graphs  
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Figure: Five stage graph 
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Backward Approach 
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2. Transitive Closure using

Definition: The transitive closure

× n boolean matrix T = {tij }, in which the element in the i

there exists a nontrivial path (i.e., directed path of a

jth vertex; otherwise, tij is 0. 

Example:  An example of a digraph, its adjacency matrix, and its transitive closure is

below.  

                           (a) Digraph.                              (b) Its adjacency matrix.                   (c) Its

 

We can generate the transitive closure of a digraph with the help of depthfirst

breadth-first search. Performing either traversal starting at the i

about the vertices reachable from it and 

the transitive closure. Thus, doing such

the transitive closure in its entirety.

Since this method traverses the same digraph several times, we can

called Warshall’s algorithm. 

a series of n × n boolean matrices:

Each of these matrices provides certain information about directed paths in the

Specifically, the element ���
���

 

= 0, 1, . . . , n) is equal to 1 if and only if there exists a

the ith vertex to the jth vertex with each

k. 

Thus, the series starts with R(0)

hence, R(0) is nothing other than the adjacency matrix of the digraph

information about paths that can use the first vertex as intermediate.

series, R(n) , reflects paths that can use all n vertices of the digraph as intermediate and hence

is nothing other than the digraph’s transitive closure.

This means that there exists a 

intermediate vertex numbered not higher than k:

vi, a list of intermediate vertices each numbered not higher than k, v

Two situations regarding this path are possible.
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Transitive Closure using Warshall’s Algorithm,  

transitive closure of a directed graph with n vertices can be

}, in which the element in the ith row and the j

there exists a nontrivial path (i.e., directed path of a positive length) from the i

An example of a digraph, its adjacency matrix, and its transitive closure is

(a) Digraph.                              (b) Its adjacency matrix.                   (c) Its transitive closure.

We can generate the transitive closure of a digraph with the help of depthfirst

first search. Performing either traversal starting at the ith vertex gives the information 

about the vertices reachable from it and hence the columns that contain 1’s in the i

the transitive closure. Thus, doing such a traversal for every vertex as a starting point yields 

entirety. 

Since this method traverses the same digraph several times, we can use a better algorithm 

. Warshall’s algorithm constructs the transitive closure through 

a series of n × n boolean matrices: 

 

Each of these matrices provides certain information about directed paths in the

 in the ith row and jth column of matrix R(k) (i, j = 1, 2, . . . , n, k 

= 0, 1, . . . , n) is equal to 1 if and only if there exists a directed path of a positive length from 

vertex with each intermediate vertex, if any, numbered not higher than 

(0) , which does not allow any intermediate vertices in its paths; 

is nothing other than the adjacency matrix of the digraph

at can use the first vertex as intermediate. The last matrix in the 

reflects paths that can use all n vertices of the digraph as intermediate and hence

is nothing other than the digraph’s transitive closure. 

means that there exists a path from the ith vertex vi to the jth vertex vj with each

intermediate vertex numbered not higher than k: 

, a list of intermediate vertices each numbered not higher than k, v

Two situations regarding this path are possible. 

Dynamic Programming  
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of a directed graph with n vertices can be defined as the n 

and the jth column is 1 if 

positive length) from the ith vertex to the 

An example of a digraph, its adjacency matrix, and its transitive closure is given 

 
transitive closure. 

We can generate the transitive closure of a digraph with the help of depthfirst search or 

vertex gives the information 

columns that contain 1’s in the ith row of 

a traversal for every vertex as a starting point yields 

use a better algorithm 

the transitive closure through 

Each of these matrices provides certain information about directed paths in the digraph. 

(i, j = 1, 2, . . . , n, k 

directed path of a positive length from 

vertex, if any, numbered not higher than 

, which does not allow any intermediate vertices in its paths; 

is nothing other than the adjacency matrix of the digraph. R(1) contains the 

The last matrix in the 

reflects paths that can use all n vertices of the digraph as intermediate and hence 

path from the ith vertex vi to the jth vertex vj with each 

, a list of intermediate vertices each numbered not higher than k, vj . --- (*) 
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1. In the first, the list of its intermediate vertices 

path from vi to vj has intermediate vertices numbered not higher than 

2. The second possibility is that path (*

intermediate vertices. Then path (*) can be 

vi, vertices numbered 

Thus, we have the following formula for generating the elements of matrix R

elements of matrix R(k−1) 

The Warshall’s algorithm works 

 

As an example, the application of Warshall’s algorithm to the digraph is shown below. New 

1’s are in bold. 
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list of its intermediate vertices does not contain the k

has intermediate vertices numbered not higher than k−
d possibility is that path (*) does contain the kth vertex v

Then path (*) can be rewritten as; 

, vertices numbered ≤ k − 1, vk, vertices numbered ≤ k − 1, v

i.e  r�	
�	
��

� 1 and r	�
�	
��

� 1 

Thus, we have the following formula for generating the elements of matrix R

 
s algorithm works based on the above formula.  

As an example, the application of Warshall’s algorithm to the digraph is shown below. New 

Dynamic Programming  
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contain the kth vertex. Then this 

−1. i.e. r��
�	
��

� 1 

vertex vk
 among the 

− 1, vj .   

Thus, we have the following formula for generating the elements of matrix R(k) from the 

As an example, the application of Warshall’s algorithm to the digraph is shown below. New 
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Analysis 

Its time efficiency is Θ(n3). We can make the algorithm to run faster by treating

as bit strings and employ the bitwise or operation

languages. 

Space efficiency: Although separate matrices for recording intermediate results

algorithm are used, that can be avoided. 

 

3. All Pairs Shortest Paths using

Problem definition: Given a weighted connected graph (undirected or directed), the all

shortest paths problem asks to find the distances

each vertex to all other vertices.

Applications: Solution to this problem finds applications in 

networks, and operations research. 

problem is pre-computing distances for motion planning in computer

We store the lengths of shortest paths in an n 

element dij in the ith row and the j

path from the ith vertex to the j

                (a) Digraph.  

We can generate the distance matrix with an algorithm that is very similar to

algorithm. It is called Floyd’s algorithm.

Floyd’s algorithm computes the distance matrix of a weighted graph with n vertices through a 

series of n × n matrices: 
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We can make the algorithm to run faster by treating

as bit strings and employ the bitwise or operation available in most modern computer 

Although separate matrices for recording intermediate results

that can be avoided.  

All Pairs Shortest Paths using Floyd's Algorithm,  

Given a weighted connected graph (undirected or directed), the all

paths problem asks to find the distances—i.e., the lengths of the shortest paths 

each vertex to all other vertices. 

Solution to this problem finds applications in communications, transportation 

tworks, and operations research.  Among recent applications of the all-

computing distances for motion planning in computer games.

the lengths of shortest paths in an n x n matrix D called the distance matrix: the 

row and the jth column of this matrix indicates the length of the shortest 

vertex to the jth vertex. 

 (b) Its weight matrix.   (c) Its distance matrix

We can generate the distance matrix with an algorithm that is very similar to

Floyd’s algorithm.  

Floyd’s algorithm computes the distance matrix of a weighted graph with n vertices through a 
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We can make the algorithm to run faster by treating matrix rows 

available in most modern computer 

Although separate matrices for recording intermediate results of the 

Given a weighted connected graph (undirected or directed), the all-pairs 

shortest paths - from 

communications, transportation 

-pairs shortest-path 

games. 

called the distance matrix: the 

this matrix indicates the length of the shortest 

 
(c) Its distance matrix 

We can generate the distance matrix with an algorithm that is very similar to Warshall’s 

Floyd’s algorithm computes the distance matrix of a weighted graph with n vertices through a 
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The element  ���
���

 in the ith row and the j

. . . , n) is equal to the length of the shortest path among all paths from

vertex with each intermediate vertex, if any, numbered

As in Warshall’s algorithm, we can compute all the elements of each matrix D

immediate predecessor D(k−1) 

If ���
���

� 1, then it means that there is a path; 

vi, a list of intermediate vertices each numbered not higher than k, vj .

We can partition all such paths into two disjoint subsets: those that do not use the

as intermediate and those that do.

i. Since the paths of the first subset have their intermediate vertices numbered not higher 

than k − 1, the shortest of them is, by definition of our matrices, of length 

ii. In the second subset the paths 

vi, vertices numbered ≤

 

The situation is depicted symbolically in Figure

the underlying idea of Floyd’s algorithm.

 

 

 

Taking into account the lengths of the shortest paths in both 

recurrence: 

 

Analysis: Its time efficiency is 
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row and the jth column of matrix D(k) (i, j = 1, 2, . . . , n, 

he length of the shortest path among all paths from the i

vertex with each intermediate vertex, if any, numbered not higher than k. 

As in Warshall’s algorithm, we can compute all the elements of each matrix D

 

, then it means that there is a path;  

vi, a list of intermediate vertices each numbered not higher than k, vj .

We can partition all such paths into two disjoint subsets: those that do not use the

as intermediate and those that do. 

Since the paths of the first subset have their intermediate vertices numbered not higher 

− 1, the shortest of them is, by definition of our matrices, of length 

In the second subset the paths are of the form 

≤ k − 1, vk, vertices numbered ≤ k − 1, vj . 

depicted symbolically in Figure, which shows 

nderlying idea of Floyd’s algorithm.  

account the lengths of the shortest paths in both subsets leads to the following

Its time efficiency is Θ(n3), similar to the warshall’s algorithm.  
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(i, j = 1, 2, . . . , n,    k = 0, 1, 

the ith vertex to the jth 

As in Warshall’s algorithm, we can compute all the elements of each matrix D(k) from its 

vi, a list of intermediate vertices each numbered not higher than k, vj . 

We can partition all such paths into two disjoint subsets: those that do not use the kth vertex vk 

Since the paths of the first subset have their intermediate vertices numbered not higher 

− 1, the shortest of them is, by definition of our matrices, of length ���
��
��

 

subsets leads to the following 
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Application of Floyd’s algorithm to the digraph 

in bold. 

4. Optimal Binary Search 

A binary search tree is one of the most important data structures in computer

its principal applications is to implement a dictionary, a set of

searching, insertion, and deletion.

If probabilities of searching for elements of a set are known

about past searches it is natural to pose a question about an optimal binary search

which the average number of comparisons in a search is the smallest

As an example, consider four keys A, B, C, and D 

to be searched for with probabilities 0.1, 0.2, 0.4, 

and 0.3, respectively. The figure

14 possible binary search trees containing these 

keys.  
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Application of Floyd’s algorithm to the digraph is shown below. Updated elements are shown 

Optimal Binary Search Trees 

A binary search tree is one of the most important data structures in computer

its principal applications is to implement a dictionary, a set of elements with the operations of 

searching, insertion, and deletion. 

searching for elements of a set are known e.g., from accumulated data 

it is natural to pose a question about an optimal binary search

which the average number of comparisons in a search is the smallest possible.

consider four keys A, B, C, and D 

probabilities 0.1, 0.2, 0.4, 

The figure depicts two out of 

14 possible binary search trees containing these 
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. Updated elements are shown 

 

A binary search tree is one of the most important data structures in computer science. One of 

elements with the operations of 

e.g., from accumulated data 

it is natural to pose a question about an optimal binary search tree for 

possible. 
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The average number of comparisons in a successful search in

1+ 0.2 *  2 + 0.4 *  3+ 0.3 *  4 = 2.9, an

0.3 *  3= 2.1.  Neither of these two trees is, in fact, optimal. 

For our tiny example, we could find the optimal tree b

with these keys. As a general algorithm, this exhaustive

total number of binary search trees with n keys is equal

So let a1, . . . , an be distinct keys ordered from the smallest to the largest and

the probabilities of searching for them. Let C(i, j) be the smallest

comparisons made in a successful search in a binary se

where i, j are some integer indices, 1

Following the classic dynamic programming approach, we will find values of

smaller instances of the problem, although we are interested just in

recurrence underlying a dynamic programming algorithm, we

to choose a root ak among the keys a

root contains key ak, the left subtree

the right subtree Tj
k+1contains keys a

taking advantage of the principle of optimality here.)

If we count tree levels starting with 1 to make 

the following recurrence relation is obtained:
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comparisons in a successful search in the first of these trees is 0.1 

4 = 2.9, and for the second one it is 0.1 * 2 + 0.2 *

Neither of these two trees is, in fact, optimal.  

For our tiny example, we could find the optimal tree by generating all 14 

with these keys. As a general algorithm, this exhaustive-search approach is unrealistic: the 

total number of binary search trees with n keys is equal to the nth Catalan 

  which grows to infinity as fast as

be distinct keys ordered from the smallest to the largest and

the probabilities of searching for them. Let C(i, j) be the smallest average number of 

comparisons made in a successful search in a binary search tree Ti
j made up of keys a

where i, j are some integer indices, 1≤ i ≤ j ≤ n.  

Following the classic dynamic programming approach, we will find values of

smaller instances of the problem, although we are interested just in C(1, n). To derive a 

recurrence underlying a dynamic programming algorithm, we will consider all possible ways 

among the keys ai, . . . , aj . For such a binary search tree (Figure 8.8), the 

root contains key ak, the left subtree Ti
k−1 contains keys ai, . . . , ak−1 optimally arranged, and 

contains keys ak+1, . . . , aj also optimally arranged. (Note how we are 

advantage of the principle of optimality here.) 

If we count tree levels starting with 1 to make the comparison numbers equal

the following recurrence relation is obtained: 
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the first of these trees is 0.1 *  

d for the second one it is 0.1 * 2 + 0.2 *  1+ 0.4 *  2 + 

 binary search trees 

approach is unrealistic: the 

 number, 

which grows to infinity as fast as 4n / n1.5 

be distinct keys ordered from the smallest to the largest and let p1, . . . , pn be 

average number of 

made up of keys ai, . . , aj, 

Following the classic dynamic programming approach, we will find values of C(i, j) for all 

C(1, n). To derive a 

will consider all possible ways 

such a binary search tree (Figure 8.8), the 

optimally arranged, and 

also optimally arranged. (Note how we are 

 

the comparison numbers equal the keys’ levels, 
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The two-dimensional table in Figure 8.9 shows the values needed for computing C(i, j) by 

formula (8.8): they are in row i and the columns to the left of 

the rows below row i. The arrows point to the pairs of entries whose sums are computed in 

order to find the smallest one to be recorded as the value of C(i, j). This suggests filling the 

table along its diagonals, starting with

pi, 1≤ i ≤ n, right above it and moving toward the upper right corner.

The algorithm we just sketched computes C(1, n)

successful searches in the optimal binary t

we need to maintain another two

minimum in (8.8) is achieved. The table has the same shape as the table in Figure 8.9 and is 

filled in the same manner, starting with entries R(i, i) = i for 1

its entries indicate indices of the roots of the optimal subtrees, which makes it possible to 

reconstruct an optimal tree for the entire set given.
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dimensional table in Figure 8.9 shows the values needed for computing C(i, j) by 

formula (8.8): they are in row i and the columns to the left of column j and in column j and 

the rows below row i. The arrows point to the pairs of entries whose sums are computed in 

order to find the smallest one to be recorded as the value of C(i, j). This suggests filling the 

table along its diagonals, starting with all zeros on the main diagonal and given probabilities 

 n, right above it and moving toward the upper right corner. 

The algorithm we just sketched computes C(1, n)—the average number of comparisons for 

successful searches in the optimal binary tree. If we also want to get the optimal tree itself, 

we need to maintain another two-dimensional table to record the value of k for which the 

minimum in (8.8) is achieved. The table has the same shape as the table in Figure 8.9 and is 

nner, starting with entries R(i, i) = i for 1≤ i ≤ n. When the table is filled, 

its entries indicate indices of the roots of the optimal subtrees, which makes it possible to 

reconstruct an optimal tree for the entire set given. 
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dimensional table in Figure 8.9 shows the values needed for computing C(i, j) by 

column j and in column j and 

the rows below row i. The arrows point to the pairs of entries whose sums are computed in 

order to find the smallest one to be recorded as the value of C(i, j). This suggests filling the 

all zeros on the main diagonal and given probabilities 

the average number of comparisons for 

ree. If we also want to get the optimal tree itself, 

dimensional table to record the value of k for which the 

minimum in (8.8) is achieved. The table has the same shape as the table in Figure 8.9 and is 

 n. When the table is filled, 

its entries indicate indices of the roots of the optimal subtrees, which makes it possible to 
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Example:  Let us illustrate the algorithm by applying it to the four

beginning of this section: 

The initial tables look like this:

Let us compute C(1, 2): 

Thus, out of two possible binary trees containing the first two keys, A and B, 

optimal tree has index 2 (i.e., it contains B), and the average number

successful search in this tree is 0.4.

tables: 

Thus, the average number of key comparison

4) = 3, the root of the optimal tree contains the third key, i.e., C. Its

keys A and B, and its right subtree contains just key D. To find the specific structure of these 

subtrees, we find first their roots by

2, the root of the optimal tree containing A and B is B, with A being its left child (and the 

root of the one-node tree: R(1, 1) = 1). Since R(4, 4) = 4, the root of

tree is its only key D. Figure given below

Here is Pseudocode of the dynamic programming algorithm.
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Let us illustrate the algorithm by applying it to the four-key set we

 

The initial tables look like this: 

Thus, out of two possible binary trees containing the first two keys, A and B, 

optimal tree has index 2 (i.e., it contains B), and the average number of comparisons in a 

successful search in this tree is 0.4. On finishing the computations we get the 

 

Thus, the average number of key comparisons in the optimal tree is equal to

4) = 3, the root of the optimal tree contains the third key, i.e., C. Its left subtree is made up of 

keys A and B, and its right subtree contains just key D. To find the specific structure of these 

, we find first their roots by consulting the root table again as follows. Since R(1, 2) = 

tree containing A and B is B, with A being its left child (and the 

tree: R(1, 1) = 1). Since R(4, 4) = 4, the root of this one

given below presents the optimal tree in its entirety.

 

of the dynamic programming algorithm. 
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key set we used at the 

 

 
Thus, out of two possible binary trees containing the first two keys, A and B, the root of the 

of comparisons in a 

we get the following final 

 

s in the optimal tree is equal to 1.7. Since R(1, 

left subtree is made up of 

keys A and B, and its right subtree contains just key D. To find the specific structure of these 

consulting the root table again as follows. Since R(1, 2) = 

tree containing A and B is B, with A being its left child (and the 

this one-node optimal 

presents the optimal tree in its entirety. 
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5. Knapsack problem  

We start this section with designing a dynamic programming 

problem: given n items of known weights w

of capacity W, find the most valuable subset of the

To design a dynamic programming algorithm, we 

expresses a solution to an instance of the knapsack problem in terms

smaller subinstances. 

Let us consider an instance defined by the first i items, 1

values v1, . . . , vi , and knapsack capacity j, 1 

solution to this instance. We can divide all the subsets of the first i items that fit

of capacity j into two categories: those that do not include th

the following: 

i. Among the subsets that do not include the i

by definition, F(i − 1, j).

ii. Among the subsets that do include the i

made up of this item and an optimal subset of the first i

knapsack of capacity j 

wi). 
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We start this section with designing a dynamic programming algorithm for the

problem: given n items of known weights w1, . . . , wn and values v1, . . . , v

of capacity W, find the most valuable subset of the items that fit into the knapsack.

To design a dynamic programming algorithm, we need to derive a recurrence

expresses a solution to an instance of the knapsack problem in terms 

Let us consider an instance defined by the first i items, 1≤ i ≤ n, with weights w

, and knapsack capacity j, 1 ≤ j ≤ W. Let F(i, j) be the value of an optimal 

We can divide all the subsets of the first i items that fit

of capacity j into two categories: those that do not include the ith item and those that do. Note 

Among the subsets that do not include the ith item, the value of an optimal subset is, 

− 1, j). 

Among the subsets that do include the ith item (hence, j − wi ≥ 0), an optimal subset is 

de up of this item and an optimal subset of the first i−1 items that fits into the 

knapsack of capacity j − wi . The value of such an optimal subset is v
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algorithm for the knapsack 

, . . . , vn and a knapsack 

items that fit into the knapsack. 

need to derive a recurrence relation that 

 of solutions to its 

 n, with weights w1, . . . , wi, 

 W. Let F(i, j) be the value of an optimal 

We can divide all the subsets of the first i items that fit the knapsack 

item and those that do. Note 

item, the value of an optimal subset is, 

 0), an optimal subset is 

−1 items that fits into the 

. The value of such an optimal subset is vi + F(i − 1, j − 
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Thus, the value of an optimal solution among all feasible subsets of the first 

maximum of these two values.

It is convenient to define the initial conditions as follows:

F(0, j) = 0 for j 

Our goal is to find F(n, W), the maximal value of a subset of the n given items

the knapsack of capacity W, and an optimal subset itself.

Example-1: Let us consider the instance given by the following data:

The dynamic programming table, filled by applying formulas is given below

Thus, the maximal value is F(4, 5) = $37.
 
We can find the composition of an optimal subset by backtracing the computations of this 

entry in the table. Since F(4, 5) > F(3, 5), item 4 has to be included in an optimal solution 

along with an optimal subset for filling 5 

The value of the latter is F(3, 3). Since F(3, 3) = F(2, 3), item 3 need not be in an optimal 

subset. Since F(2, 3) > F(1, 3), item 2 is a part of an optimal selection, which leaves element 

F(1, 3 − 1) to specify its remaining composition. Similarl

the final part of the optimal solution {item 1, item 2, item 4}.
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Thus, the value of an optimal solution among all feasible subsets of the first 

maximum of these two values. 

It is convenient to define the initial conditions as follows: 

F(0, j) = 0 for j ≥ 0 and F(i, 0) = 0 for i ≥ 0. 

the maximal value of a subset of the n given items

psack of capacity W, and an optimal subset itself. 

Let us consider the instance given by the following data: 

 
The dynamic programming table, filled by applying formulas is given below

Thus, the maximal value is F(4, 5) = $37.  

the composition of an optimal subset by backtracing the computations of this 

Since F(4, 5) > F(3, 5), item 4 has to be included in an optimal solution 

along with an optimal subset for filling 5 − 2 = 3 remaining units of the knapsack ca

The value of the latter is F(3, 3). Since F(3, 3) = F(2, 3), item 3 need not be in an optimal 

subset. Since F(2, 3) > F(1, 3), item 2 is a part of an optimal selection, which leaves element 

− 1) to specify its remaining composition. Similarly, since F(1, 2) > F(0, 2), item 1 is 

the final part of the optimal solution {item 1, item 2, item 4}. 
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Thus, the value of an optimal solution among all feasible subsets of the first I items is the 

 

the maximal value of a subset of the n given items that fit into 

 

The dynamic programming table, filled by applying formulas is given below 

 

the composition of an optimal subset by backtracing the computations of this 

Since F(4, 5) > F(3, 5), item 4 has to be included in an optimal solution 

− 2 = 3 remaining units of the knapsack capacity. 

The value of the latter is F(3, 3). Since F(3, 3) = F(2, 3), item 3 need not be in an optimal 

subset. Since F(2, 3) > F(1, 3), item 2 is a part of an optimal selection, which leaves element 

y, since F(1, 2) > F(0, 2), item 1 is 
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Analysis 

The time efficiency and space efficiency of this algorithm are both in 

needed to find the composition of an optimal solution i

 

Memory Functions 

The direct top-down approach

that solves common subproblems more than once and hence is very inefficient

The classic dynamic programming approach, on the other 

table with solutions to all smaller subproblems, but each of

unsatisfying aspect of this approach is that solutions

are often not necessary for getting a so

present in the top-down approach,

and bottom-up approaches.  The goal is to get a method that solves only subproblems that are

necessary and does so only once. Such a method exists; it is based on using 

functions. 

This method solves a given problem in the top

table of the kind that would have been used by a bottom

Initially, all the table’s entries are initialized with a special “null” symbol to indicate that they 

have not yet been calculated. Thereafter, whenever a new value needs to be calculated, the 

method checks the corresponding entry in the table first: 

retrieved from the table; otherwise, it is computed by the recursive call whose result is then 

recorded in the table. 

The following algorithm implements this idea for the knapsack problem. After

table, the recursive function needs to be called with i = n (the

(the knapsack capacity). 

Algorithm MFKnapsack(i, j )

//Implements the memory function method for the knapsack problem
//Input: A nonnegative integer i indicating the number of the first

considered and a nonnegative integer j indicating
//Output: The value of an optimal feasible subset of the first i items
//Note: Uses as global variables input ar

table F[0..n, 0..W ] whose entries are initialized with 
row 0 and column 0 initialized with 0’s
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The time efficiency and space efficiency of this algorithm are both in 

needed to find the composition of an optimal solution is in O(n). 

down approach to finding a solution to such a recurrence leads to an algorithm 

subproblems more than once and hence is very inefficient

The classic dynamic programming approach, on the other hand, works bottom up: it fills a 

table with solutions to all smaller subproblems, but each of them is solved only once. An 

unsatisfying aspect of this approach is that solutions to some of these smaller subproblems 

are often not necessary for getting a solution to the problem given. Since this drawback is not 

down approach, it is natural to try to combine the strengths of the top

The goal is to get a method that solves only subproblems that are

nd does so only once. Such a method exists; it is based on using 

This method solves a given problem in the top-down manner but, in addition, maintains a 

table of the kind that would have been used by a bottom-up dynamic programming algori

Initially, all the table’s entries are initialized with a special “null” symbol to indicate that they 

have not yet been calculated. Thereafter, whenever a new value needs to be calculated, the 

method checks the corresponding entry in the table first: if this entry is not “null,” it is simply 

retrieved from the table; otherwise, it is computed by the recursive call whose result is then 

The following algorithm implements this idea for the knapsack problem. After

ble, the recursive function needs to be called with i = n (the number of items) and j = W 

MFKnapsack(i, j ) 

//Implements the memory function method for the knapsack problem
A nonnegative integer i indicating the number of the first
considered and a nonnegative integer j indicating the knapsack capacity

The value of an optimal feasible subset of the first i items
Uses as global variables input arrays Weights[1..n], V alues[1..n],
table F[0..n, 0..W ] whose entries are initialized with −1’s except for
row 0 and column 0 initialized with 0’s 
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The time efficiency and space efficiency of this algorithm are both in Θ(nW). The time 

to finding a solution to such a recurrence leads to an algorithm 

subproblems more than once and hence is very inefficient.  

bottom up: it fills a 

them is solved only once. An 

to some of these smaller subproblems 

to the problem given. Since this drawback is not 

it is natural to try to combine the strengths of the top-down 

The goal is to get a method that solves only subproblems that are 

nd does so only once. Such a method exists; it is based on using memory 

down manner but, in addition, maintains a 

up dynamic programming algorithm. 

Initially, all the table’s entries are initialized with a special “null” symbol to indicate that they 

have not yet been calculated. Thereafter, whenever a new value needs to be calculated, the 

if this entry is not “null,” it is simply 

retrieved from the table; otherwise, it is computed by the recursive call whose result is then 

The following algorithm implements this idea for the knapsack problem. After initializing the 

number of items) and j = W 

//Implements the memory function method for the knapsack problem 
A nonnegative integer i indicating the number of the first items being 

the knapsack capacity 
The value of an optimal feasible subset of the first i items 

rays Weights[1..n], V alues[1..n], and 
−1’s except for 
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Example-2 Let us apply the memory function method to the instance considered

1. The table in Figure given below

not those in row 0 or in column 0) have been computed.

retrieved rather than being recomputed. For

can be significantly larger. 

Figure: Example of solving an instance of the knapsack problem by the memory function algorithm

 

In general, we cannot expect more than a constant

method for the knapsack problem, because its time efficiency

bottom-up algorithm 

6. Bellman-Ford Algorithm 

Problem definition 

Single source shortest path - Given a gra

from s to all vertices in the given graph. The graph may contain negative weight edges.

Note that we have discussed

Dijksra’s algorithm is a Greedy algorithm and ti

doesn’t work for graphs with negative weight edges

Bellman-Ford works for such graphs. Bellman

well for distributed systems. But time complexity of Bellman

than Dijkstra. 

How it works?  

Like other Dynamic Programming Problems, the 

bottom-up manner. It first calculates the shortest distances for the shortest paths which have 

at-most one edge in the path. Then, it cal

on. After the ith   iteration of outer loop, the

There can be maximum |V| – 

1 times. The idea is, assuming that there is no negative weight cycle, if we have calculated 

shortest paths with at most i edges, then an iteration over all edges guarantees to give shortest 

path with at-most (i+1) edges 
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Let us apply the memory function method to the instance considered

given below gives the results. Only 11 out of 20 nontrivial values (i.e., 

not those in row 0 or in column 0) have been computed. Just one nontrivial entry, V (1, 2), is 

retrieved rather than being recomputed. For larger instances, the proportion of such entries 

Figure: Example of solving an instance of the knapsack problem by the memory function algorithm

In general, we cannot expect more than a constant-factor gain in using the

method for the knapsack problem, because its time efficiency class is the same as that of the 

Ford Algorithm (Single source shortest path with –ve weights)

Given a graph and a source vertex s in graph, find shortest paths 

to all vertices in the given graph. The graph may contain negative weight edges.

e have discussed Dijkstra’s algorithm for single source shortest path 

Dijksra’s algorithm is a Greedy algorithm and time complexity is O(VlogV)

raphs with negative weight edges.  

Ford works for such graphs. Bellman-Ford is also simpler than Dijkstra

well for distributed systems. But time complexity of Bellman-Ford is O(VE), which is more 

Like other Dynamic Programming Problems, the algorithm calculates

up manner. It first calculates the shortest distances for the shortest paths which have 

most one edge in the path. Then, it calculates shortest paths with at-most 2

iteration of outer loop, the shortest paths with at most i edges are calculated. 

 1 edges in any simple path, that is why the outer loop runs |v| 

1 times. The idea is, assuming that there is no negative weight cycle, if we have calculated 

th at most i edges, then an iteration over all edges guarantees to give shortest 
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Let us apply the memory function method to the instance considered in Example 

nontrivial values (i.e., 

Just one nontrivial entry, V (1, 2), is 

stances, the proportion of such entries 

 

Figure: Example of solving an instance of the knapsack problem by the memory function algorithm 

factor gain in using the memory function 

class is the same as that of the 

ve weights) 

in graph, find shortest paths 

to all vertices in the given graph. The graph may contain negative weight edges.  

single source shortest path problem. 

ogV). But Dijkstra 

Ford is also simpler than Dijkstra and suites 

Ford is O(VE), which is more 

algorithm calculates shortest paths in 

up manner. It first calculates the shortest distances for the shortest paths which have 

ost 2 edges, and so 

shortest paths with at most i edges are calculated. 

1 edges in any simple path, that is why the outer loop runs |v| – 

1 times. The idea is, assuming that there is no negative weight cycle, if we have calculated 

th at most i edges, then an iteration over all edges guarantees to give shortest 
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Bellman-Ford algorithm to compute shortest path
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Travelling Sales Person problem (T2:5.9),  
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8. Reliability design 
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1. Backtracking 

Some problems can be solved

suggests generating all candidate solutions and then

desired property. 

Backtracking is a more intelligent variation of this approach. The principal

construct solutions one component at a time and evaluate such partially

candidates as follows. If a partially constructed solution can be developed

violating the problem’s constraints, it is done by taking

for the next component. If there is no legitimate

alternatives for any remaining component

backtracks to replace the last

option. 

It is convenient to implement this kind of 

made, called the state-space tree

solution begins. The nodes of the first level in the

component of a solution; the nodes

component, and so on. A node in a state

a partially constructed solution that may still lead to a complete solution; o

called non-promising. Leaves represent either non

solutions found by the algorithm. 

In the majority of cases, a statespace tree for a backtracking algorithm is constructed in the 

manner of depth-first search. If the current node is promising, its child is generated by adding 

the first remaining legitimate option for the next component of a solution, and the processing 

moves to this child. If the current node turns out to be non

backtracks to the node’s parent to consider the next possible option  for its last component; if 

there is no such option, it backtracks one more level up

algorithm reaches a complete solution to the

required) or continues searching

 

1.1 General method (Textbook T2:7.1)
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Some problems can be solved, by exhaustive search. The exhaustive

candidate solutions and then identifying the one (or the ones) with a 

Backtracking is a more intelligent variation of this approach. The principal

construct solutions one component at a time and evaluate such partially

candidates as follows. If a partially constructed solution can be developed

violating the problem’s constraints, it is done by taking the first remaining legitimate option 

for the next component. If there is no legitimate option for the next component, no 

alternatives for any remaining component need to be considered. In this case, the algorithm 

to replace the last component of the partially constructed solution with its next 

It is convenient to implement this kind of processing by constructing a tree

space tree. Its root represents an initial state before the search for a 

solution begins. The nodes of the first level in the tree represent the choices made for the first 

the nodes of the second level represent the choices for the second 

on. A node in a state-space tree is said to be promising if it corresponds to 

partially constructed solution that may still lead to a complete solution; o

. Leaves represent either non-promising dead ends or

solutions found by the algorithm.  

In the majority of cases, a statespace tree for a backtracking algorithm is constructed in the 

. If the current node is promising, its child is generated by adding 

the first remaining legitimate option for the next component of a solution, and the processing 

moves to this child. If the current node turns out to be non-promising, the algorithm  

racks to the node’s parent to consider the next possible option  for its last component; if 

there is no such option, it backtracks one more level up the tree, and so on. Finally, if the 

algorithm reaches a complete solution to the problem, it either stops (if just one solution is 

required) or continues searching for other possible solutions. 

Textbook T2:7.1) 
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exhaustive-search technique 

identifying the one (or the ones) with a 

Backtracking is a more intelligent variation of this approach. The principal idea is to 

construct solutions one component at a time and evaluate such partially constructed 

candidates as follows. If a partially constructed solution can be developed further without 

the first remaining legitimate option 

next component, no 

need to be considered. In this case, the algorithm 

component of the partially constructed solution with its next 

processing by constructing a tree of choices being 

state before the search for a 

tree represent the choices made for the first 

of the second level represent the choices for the second 

space tree is said to be promising if it corresponds to 

partially constructed solution that may still lead to a complete solution; otherwise, it is 

promising dead ends or complete 

In the majority of cases, a statespace tree for a backtracking algorithm is constructed in the 

. If the current node is promising, its child is generated by adding 

the first remaining legitimate option for the next component of a solution, and the processing 

promising, the algorithm  

racks to the node’s parent to consider the next possible option  for its last component; if 

the tree, and so on. Finally, if the 

(if just one solution is 

 

 



Lecture Notes | 10CS43 – Design & A

Prerpared by Harivinod N, Dept of CSE, VCET Puttur                               

 

 

 

General Algorithm (Recursive) 

 

 

General Algorithm (Iterative) 

Design & Analysis of Algorithms | Module 4: Dynamic Programming 

Dept of CSE, VCET Puttur                                                      Techjourney.in                 

General Algorithm (Recursive)  

General Algorithm (Iterative)  
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General Algorithm for backtracking (From 

 

 

1.2 N-Queens problem (Textbook 

The problem is to place n queens on an n × n chessboard so that no two

other by being in the same row or in the same column or on

So let us consider the four-queens problem

Since each of the four queens 

column for each queen on the board presented in f

Design & Analysis of Algorithms | Module 4: Dynamic Programming 
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General Algorithm for backtracking (From textbook T1) 

Textbook T1:12.1),  

The problem is to place n queens on an n × n chessboard so that no two 

other by being in the same row or in the same column or on the same diagonal.

queens problem and solve it by the backtracking technique. 

 has to be placed in its own row, all we need to do is to assign a 

ueen on the board presented in figure.  
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 queens attack each 

the same diagonal. 

and solve it by the backtracking technique. 

has to be placed in its own row, all we need to do is to assign a 
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We start with the empty board and 

which is in column 1 of row 1. Then we place queen 2, after

and 2, in the first acceptable position for it, which

column 3. This proves to be a dead end

So, the algorithm backtracks 

queen 3 is placed at (3, 2), which proves to be another dead end. The algorith

backtracks all the way to queen 1 and moves it to (1, 2). Queen 2 then goes to (2, 4), queen 3 

to (3, 1), and queen 4 to (4, 3), which is a solution to the problem. The state

search is shown in figure.  

Figure: State-space tree 

× denotes an unsuccessful attempt to place a queen in the indicated

numbers above the nodes indicate the order in which the

 

If other solutions need to be found, the algorithm can simply resume its operations at the leaf 

at which it stopped. Alternatively, we can use the board’s symmetry for this purpose. 

Finally, it should be pointed out that a single solution to the n

can be found in linear time.  

 

Note:  The algorithm NQueens() is not in the syllabus. It is given here for interested learners. 

The algorithm is referred from textbook T2
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We start with the empty board and then place queen 1 in the first possible 

which is in column 1 of row 1. Then we place queen 2, after trying unsuccessfully columns 1 

and 2, in the first acceptable position for it, which is square (2, 3), the square in row 2 and 

3. This proves to be a dead end because there is no acceptable position for queen 3. 

 and puts queen 2 in the next possible position at (2, 4). Then 

at (3, 2), which proves to be another dead end. The algorith

the way to queen 1 and moves it to (1, 2). Queen 2 then goes to (2, 4), queen 3 

(3, 1), and queen 4 to (4, 3), which is a solution to the problem. The state

space tree of solving the four-queens problem by backtracking. 

unsuccessful attempt to place a queen in the indicated column. The 

numbers above the nodes indicate the order in which the nodes are generated.

If other solutions need to be found, the algorithm can simply resume its operations at the leaf 

at which it stopped. Alternatively, we can use the board’s symmetry for this purpose. 

Finally, it should be pointed out that a single solution to the n-queens problem for any n 

 

Note:  The algorithm NQueens() is not in the syllabus. It is given here for interested learners. 

is referred from textbook T2.  
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 position of its row, 

trying unsuccessfully columns 1 

is square (2, 3), the square in row 2 and 

because there is no acceptable position for queen 3. 

and puts queen 2 in the next possible position at (2, 4). Then 

at (3, 2), which proves to be another dead end. The algorithm then 

the way to queen 1 and moves it to (1, 2). Queen 2 then goes to (2, 4), queen 3 

(3, 1), and queen 4 to (4, 3), which is a solution to the problem. The state-space tree of this 

 
queens problem by backtracking.              

column. The 

nodes are generated. 

If other solutions need to be found, the algorithm can simply resume its operations at the leaf 

at which it stopped. Alternatively, we can use the board’s symmetry for this purpose.  

problem for any n ≥ 4 

Note:  The algorithm NQueens() is not in the syllabus. It is given here for interested learners. 
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1.3 Sum of subsets problem 

Problem definition:  Find a subset of a given

whose sum is equal to a given positive

For example, for A = {1, 2, 5, 6, 8} and d = 9, there are two solutions:

Of course, some instances of this problem

It is convenient to sort the set’s elements in increasing order. So, we will

The state-space tree can be constructed as a binary tree like that in Figure 

the instance A = {3, 5, 6, 7} and d = 15.

The number inside a node is the sum of the elements already included in the

represented by the node. The inequality below a leaf indicates
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um of subsets problem  

a subset of a given set A = {a1, . . . , an } of n positive integers 

whose sum is equal to a given positive integer d.  

For example, for A = {1, 2, 5, 6, 8} and d = 9, there are two solutions: {1, 2, 6} and {1, 8}. 

Of course, some instances of this problem may have no solutions. 

It is convenient to sort the set’s elements in increasing order. So, we will assume that

a1< a2 < . . . < an. 

space tree can be constructed as a binary tree like that in Figure 

the instance A = {3, 5, 6, 7} and d = 15.  

number inside a node is the sum of the elements already included in the

The inequality below a leaf indicates the reason for its termination.

Dynamic Programming  
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} of n positive integers 

{1, 2, 6} and {1, 8}. 

assume that  

space tree can be constructed as a binary tree like that in Figure shown below for 

number inside a node is the sum of the elements already included in the subsets 

the reason for its termination. 
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The root of the tree represents the starting

made as yet. Its left and right 

a set being sought. 

Similarly, going to the left from a node of the first level 

going to the right corresponds to its exclusion, and so on. Thus, a path

on the i
th

 level of the tree indicates which of the first 

subsets represented by that node.

We record the value of s, the sum of these numbers, in the node. If s is equal to 

solution to the problem. We can either report this result and stop or, if all the solutions need 

to be found, continue by backtracking to the node’s parent

terminate the node as non-promising if either

Example: Apply backtracking to solve the following instance of the subset sum problem: A 

= {1, 3, 4, 5} and d = 11. 

 

1.4 Graph coloring  
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ents the starting point, with no decisions about the given elements 

 children represent, respectively, inclusion and exclusion of a

Similarly, going to the left from a node of the first level corresponds to inclusion

going to the right corresponds to its exclusion, and so on. Thus, a path from the root to a node 

level of the tree indicates which of the first i numbers have been included in the 

node. 

We record the value of s, the sum of these numbers, in the node. If s is equal to 

solution to the problem. We can either report this result and stop or, if all the solutions need 

to be found, continue by backtracking to the node’s parent. If s is not equal to 

promising if either of the following two inequalities holds:

 

Apply backtracking to solve the following instance of the subset sum problem: A 

Dynamic Programming  
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point, with no decisions about the given elements 

children represent, respectively, inclusion and exclusion of a1 in 

corresponds to inclusion of a2 while 

from the root to a node 

numbers have been included in the 

We record the value of s, the sum of these numbers, in the node. If s is equal to d, we have a 

solution to the problem. We can either report this result and stop or, if all the solutions need 

. If s is not equal to d, we can 

of the following two inequalities holds: 

Apply backtracking to solve the following instance of the subset sum problem: A 
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Analysis 
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1.5 Hamiltonian cycles  
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2. Branch and Bound 

Recall that the central idea of backtracking, discussed in the previous section, is to

branch of the problem’s state

solution. This idea can be strengthened further if we deal with an

An optimization problem seeks to minimize or maximize some objective f

length, the value of items selected, the cost of an assignment, and the like), usually subject to 

some constraints. An optimal solution is a feasible solution with the best value of the 

objective function (e.g., the shortest Hamiltonian cir

that fit the knapsack). 

Compared to backtracking, branch

1. a way to provide, for every node of a state

the objective function

components to the partially constructed solution represented by the node

2. the value of the best solution

In general, we terminate a search path at the current node in a state

and-bound algorithm for any one of the following three reasons:

1. The value of the node’s bound is not better than the value of the best solution seen so 

far. 

2. The node represents no feasible solutions because the constraints of the problem are 

already violated. 

3. The subset of feasible solutions represented by the node consists of a single point (and 

hence no further choices can be made)

objective function for this feasible solution with that of the best solution 

and update the latter with the former if the new solution is better.

 

2.1 Assignment Problem 

Let us illustrate the branch-and

people to n jobs so that the total cost of the assignment 

An instance of the assignment problem is specified by an n × n cost matrix C so that we can 

state the problem as follows: select one element in each row of the matrix so that no two

selected elements are in the same column and thei

demonstrate how this problem can be solved using the branch

considering the small instance of the problem
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Recall that the central idea of backtracking, discussed in the previous section, is to

branch of the problem’s state-space tree as soon as we can deduce that it

solution. This idea can be strengthened further if we deal with an optimization problem.

An optimization problem seeks to minimize or maximize some objective f

length, the value of items selected, the cost of an assignment, and the like), usually subject to 

n optimal solution is a feasible solution with the best value of the 

objective function (e.g., the shortest Hamiltonian circuit or the most valuable subset of items 

Compared to backtracking, branch-and-bound requires two additional items:

a way to provide, for every node of a state-space tree, a bound on the best 

the objective function on any solution that can be obtained by adding further 

omponents to the partially constructed solution represented by the node

value of the best solution seen so far 

In general, we terminate a search path at the current node in a state-space

bound algorithm for any one of the following three reasons: 

The value of the node’s bound is not better than the value of the best solution seen so 

The node represents no feasible solutions because the constraints of the problem are 

The subset of feasible solutions represented by the node consists of a single point (and 

hence no further choices can be made)—in this case, we compare the value of the 

objective function for this feasible solution with that of the best solution 

and update the latter with the former if the new solution is better. 

and-bound approach by applying it to the problem of

people to n jobs so that the total cost of the assignment is as small as possible.

n instance of the assignment problem is specified by an n × n cost matrix C so that we can 

state the problem as follows: select one element in each row of the matrix so that no two

selected elements are in the same column and their sum is the smallest possible.

problem can be solved using the branch-and-bound technique

small instance of the problem. Consider the data given below. 
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Recall that the central idea of backtracking, discussed in the previous section, is to cut off a 

space tree as soon as we can deduce that it cannot lead to a 

optimization problem. 

An optimization problem seeks to minimize or maximize some objective function (a tour 

length, the value of items selected, the cost of an assignment, and the like), usually subject to 

n optimal solution is a feasible solution with the best value of the 

cuit or the most valuable subset of items 

bound requires two additional items: 

a bound on the best value of 

olution that can be obtained by adding further 

omponents to the partially constructed solution represented by the node 

space tree of a branch-

The value of the node’s bound is not better than the value of the best solution seen so 

The node represents no feasible solutions because the constraints of the problem are 

The subset of feasible solutions represented by the node consists of a single point (and 

in this case, we compare the value of the 

objective function for this feasible solution with that of the best solution seen so far 

bound approach by applying it to the problem of assigning n 

is as small as possible. 

n instance of the assignment problem is specified by an n × n cost matrix C so that we can 

state the problem as follows: select one element in each row of the matrix so that no two 

r sum is the smallest possible.  We will 

bound technique by 

Consider the data given below.  
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How can we find a lower bound on the cost of an 

the problem? 

We can do this by several methods. For example, it

including an optimal one, cannot be smaller than the sum of the smallest elements in each 

of the matrix’s rows. For the instance

apply the same thinking to partially constructed solutions. For example, for any

selection that selects 9 from the first row, the lower bound will be

Rather than generating a single child of the last promising node as

will generate all the children of the most promising

current tree. (Nonterminated, i.e., still

which of the nodes is most promising? We can do this by comparing the lower bounds of the 

live nodes. It is sensible to consider a node with the best bound as most promising, although

this does not, of course, preclude the pos

belong to a different branch of the state

best-first branch-and-bound

We start with the root that corresponds to no elements selected from the cost 

lower-bound value for the root, denoted lb, is 10. The

correspond to selections of an element in the

See the figure given below. 

Figure:  Levels 0 and 1 of the state

problem being solved with the best

above a node shows the order in which the node was generated.

indicate the job number 

node. 

 

So we have four live leaves—

most promising of them is node 2 because it has the smallest lowerbound value. Following 

our best-first search strategy, we branch out from that node first by considering the three 

different ways of selecting an element from the second r

the three different jobs that can be assigned to person b

12.7).  
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How can we find a lower bound on the cost of an optimal selection without actually solving 

We can do this by several methods. For example, it is clear that the cost of any solution

cannot be smaller than the sum of the smallest elements in each 

. For the instance here, this sum is 2 + 3+ 1+ 4 = 10.

apply the same thinking to partially constructed solutions. For example, for any

selection that selects 9 from the first row, the lower bound will be 9 + 3 + 1+ 4 = 17.

ather than generating a single child of the last promising node as we did in backtracking, we 

will generate all the children of the most promising node among non-terminated leaves in the 

current tree. (Nonterminated, i.e., still promising, leaves are also called live.) How can we tell 

promising? We can do this by comparing the lower bounds of the 

is sensible to consider a node with the best bound as most promising, although

this does not, of course, preclude the possibility that an optimal solution will ultimately

belong to a different branch of the state-space tree. This variation of the strategy is called the 

bound. 

with the root that corresponds to no elements selected from the cost 

bound value for the root, denoted lb, is 10. The nodes on the first level of the tree 

correspond to selections of an element in the first row of the matrix, i.e., a job for person a

Levels 0 and 1 of the state-space tree for the instance of the assignment

problem being solved with the best-first branch-and-bound algorithm. The

above a node shows the order in which the node was generated. A node’s fields 

 assigned to person a and the lower bound value, lb, for this 

—nodes 1 through 4—that may contain an optimal solution. The 

most promising of them is node 2 because it has the smallest lowerbound value. Following 

irst search strategy, we branch out from that node first by considering the three 

different ways of selecting an element from the second row and not in the second column 

the three different jobs that can be assigned to person b. See the figure given belo
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optimal selection without actually solving 

cost of any solution, 

cannot be smaller than the sum of the smallest elements in each 

here, this sum is 2 + 3+ 1+ 4 = 10. We can and will 

apply the same thinking to partially constructed solutions. For example, for any legitimate 

9 + 3 + 1+ 4 = 17. 

we did in backtracking, we 

terminated leaves in the 

called live.) How can we tell 

promising? We can do this by comparing the lower bounds of the 

is sensible to consider a node with the best bound as most promising, although 

sibility that an optimal solution will ultimately 

strategy is called the 

with the root that corresponds to no elements selected from the cost matrix. The 

nodes on the first level of the tree 

first row of the matrix, i.e., a job for person a. 

 

space tree for the instance of the assignment 

bound algorithm. The number 

A node’s fields 

lower bound value, lb, for this 

that may contain an optimal solution. The 

most promising of them is node 2 because it has the smallest lowerbound value. Following 

irst search strategy, we branch out from that node first by considering the three 

ow and not in the second column - 

See the figure given below (Fig 
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Of the six live leaves—nodes 1, 3, 4, 5, 6, and 7

again choose the one with the smallest lower bound, node 5. First, we

third column’s element from c’s row (i.e., assigning pers

choice but to select the element from the fourth

4). This yields leaf 8 (Figure 12.7),

c→3, d →4} with the total cost 

{a→2, b→1, c→4, d →3} with the total cost of 25. Since its cost is larger than the cost

solution represented by leaf 8, node 9 is simply terminated. (Of course, if

smaller than 13, we would have to replace the information about the

with the data provided by this node.)

 

Now, as we inspect each of the live leaves of the last state

in Figure 12.7—we discover that their lower

of the best selection seen so far (leaf 8). Hence,

solution represented by leaf 8 as the

 

2.2 Travelling Sales Person problem 

We will be able to apply the branch

salesman problem if we come up with a reasonable lower bound on tour

simple lower bound can be obtained by 

matrix D and multiplying it by the number of cities n.

Design & Analysis of Algorithms | Module 4: Dynamic Programming 

Dept of CSE, VCET Puttur                                                      Techjourney.in                 

nodes 1, 3, 4, 5, 6, and 7—that may contain an optimal

again choose the one with the smallest lower bound, node 5. First, we consider selecting the 

third column’s element from c’s row (i.e., assigning person c to job 3); this leaves us with no 

choice but to select the element from the fourth column of d’s row (assigning person d to job 

4). This yields leaf 8 (Figure 12.7), which corresponds to the feasible solution {a

total cost of 13. Its sibling, node 9, corresponds to the feasible solution 

3} with the total cost of 25. Since its cost is larger than the cost

solution represented by leaf 8, node 9 is simply terminated. (Of course, if

r than 13, we would have to replace the information about the best solution seen so far 

with the data provided by this node.)  

Now, as we inspect each of the live leaves of the last state-space tree—nodes

that their lower-bound values are not smaller than 13, the value 

of the best selection seen so far (leaf 8). Hence, we terminate all of them and recognize the 

solution represented by leaf 8 as the optimal solution to the problem. 

2.2 Travelling Sales Person problem  

We will be able to apply the branch-and-bound technique to instances of the

salesman problem if we come up with a reasonable lower bound on tour

simple lower bound can be obtained by finding the smallest element in the intercity distance 

matrix D and multiplying it by the number of cities n.  
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that may contain an optimal solution, we 

consider selecting the 

to job 3); this leaves us with no 

column of d’s row (assigning person d to job 

which corresponds to the feasible solution {a→2, b→1, 

of 13. Its sibling, node 9, corresponds to the feasible solution 

3} with the total cost of 25. Since its cost is larger than the cost of the 

solution represented by leaf 8, node 9 is simply terminated. (Of course, if its cost were 

best solution seen so far 

 

nodes 1, 3, 4, 6, and 7 

not smaller than 13, the value 

we terminate all of them and recognize the 

bound technique to instances of the traveling 

salesman problem if we come up with a reasonable lower bound on tour lengths. One very 

the smallest element in the intercity distance 
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But there is a less obvious and more informative lower bound for instances

matrix D, which does not require a lot of work to compute. 

on the length l of any tour as follows. For each city i, 1

from city i to the two nearest cities; compute the sum

by 2, and, if all the distances are 

For example, for the instance in Figure 2.2

Moreover, for any subset of tours that must include particular edges 

modify lower bound (formula 

the graph in Figure 2.2a that must include edge (a, d),

summing up the lengths of the two shortest

required inclusion of edges (a, d)

We now apply the branch-and

formula-1, to find the shortest Hamiltonian c

To reduce the amount of potential work, we tak

1. First, without loss of generality, we can consider only tours that start at a. 

2. Second, because our graph is undirected, we can generate only tours in which b is 

visited before c. (Refer 

In addition, after visiting n−

unvisited city and return to the starting one. The state

application is given in Figure 2.2

 

Note:  An inspection of graph with 4 nodes (figure given below) r

that differ only by their direction. Hence, we could cut the number of vertex permutations by 

half. We could, for example, choose any two intermediate vertices, say, b and c, and then 

consider only permutations in which b preced

direction.) 

Figure: Solution to a small instance of the traveling salesman problem by exhaustive search.

 

Design & Analysis of Algorithms | Module 4: Dynamic Programming 

Dept of CSE, VCET Puttur                                                      Techjourney.in                 

But there is a less obvious and more informative lower bound for instances

matrix D, which does not require a lot of work to compute. We can compute a

on the length l of any tour as follows. For each city i, 1≤ i ≤ n, find the sum s

from city i to the two nearest cities; compute the sum s of these n numbers, divide the result 

by 2, and, if all the distances are integers, round up the result to the nearest integer:

lb � �s/2�                                                    
for the instance in Figure 2.2a, formula (1) yields 

Moreover, for any subset of tours that must include particular edges of a given

formula 1) accordingly. For example, for all the Hamiltonian circuits of 

a that must include edge (a, d), we get the following lower bound by 

summing up the lengths of the two shortest edges incident with each of the vertices, with the 

required inclusion of edges (a, d) and (d, a): 

and-bound algorithm, with the bounding function given by 

, to find the shortest Hamiltonian circuit for the graph in Figure 2.

To reduce the amount of potential work, we take advantage of two observations. 

First, without loss of generality, we can consider only tours that start at a. 

Second, because our graph is undirected, we can generate only tours in which b is 

(Refer Note at the end of section 2.2 for more details) 

−1= 4 cities, a tour has no choice but to visit the remaining 

unvisited city and return to the starting one. The state-space tree tracing the algorithm’s 

application is given in Figure 2.2b. 

An inspection of graph with 4 nodes (figure given below) reveals three pairs of tours 

that differ only by their direction. Hence, we could cut the number of vertex permutations by 

half. We could, for example, choose any two intermediate vertices, say, b and c, and then 

consider only permutations in which b precedes c. (This trick implicitly defines a tour’s 

Figure: Solution to a small instance of the traveling salesman problem by exhaustive search.
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But there is a less obvious and more informative lower bound for instances with symmetric 

an compute a lower bound 

the sum si of the distances 

s of these n numbers, divide the result 

round up the result to the nearest integer: 

                                                   ... (1) 

 

of a given graph, we can 

Hamiltonian circuits of 

we get the following lower bound by 

es incident with each of the vertices, with the 

 

ing function given by 

ircuit for the graph in Figure 2.2a.  

e advantage of two observations.  

First, without loss of generality, we can consider only tours that start at a.  

Second, because our graph is undirected, we can generate only tours in which b is 

at the end of section 2.2 for more details)  

1= 4 cities, a tour has no choice but to visit the remaining 

space tree tracing the algorithm’s 

eveals three pairs of tours 

that differ only by their direction. Hence, we could cut the number of vertex permutations by 

half. We could, for example, choose any two intermediate vertices, say, b and c, and then 

es c. (This trick implicitly defines a tour’s 

 
Figure: Solution to a small instance of the traveling salesman problem by exhaustive search. 
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Figure 2.2 (a) Weighted graph. (b) State

find a shortest Hamiltonian circuit in this graph. The list of vertices in a node specifies a 

beginning part of the Hamiltonian circuits represented by the node.

Discussion 

The strengths and weaknesses of backtracking are applicable to branch

The state-space tree technique

combinatorial problems. As a rule, however, it is virtually impossible to predict which 

instances will be solvable in a realistic amount of time and which will not.

In contrast to backtracking, solving a problem by branch

and opportunity of choosing the order of node generation and finding

function. Though the best-first rule

lead to a solution faster than other strategies. (Artificial

particularly interested in different strategies for

Finding a good bounding function is usually not a simple task. On the one

function to be easy to compute. On the other hand, it cannot

would fail in its principal task to prune as many

possible. Striking a proper balance between

intensive experimentation with a wide variety of instances of the problem in question.
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Weighted graph. (b) State-space tree of the branch-and-bound algorithm to 

shortest Hamiltonian circuit in this graph. The list of vertices in a node specifies a 

beginning part of the Hamiltonian circuits represented by the node. 
 

and weaknesses of backtracking are applicable to branch-and

technique enables us to solve many large instances of difficult 

combinatorial problems. As a rule, however, it is virtually impossible to predict which 

instances will be solvable in a realistic amount of time and which will not. 

trast to backtracking, solving a problem by branch-and-bound has both

and opportunity of choosing the order of node generation and finding

first rule we used above is a sensible approach, it may or ma

lead to a solution faster than other strategies. (Artificial intelligence researchers are 

particularly interested in different strategies for developing state-space trees.)

Finding a good bounding function is usually not a simple task. On the one 

function to be easy to compute. On the other hand, it cannot be too simplistic

would fail in its principal task to prune as many branches of a state-space tree as soon as 

possible. Striking a proper balance between these two competing requirements may require 

with a wide variety of instances of the problem in question.
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bound algorithm to 

shortest Hamiltonian circuit in this graph. The list of vertices in a node specifies a 

and-bound as well. 

us to solve many large instances of difficult 

combinatorial problems. As a rule, however, it is virtually impossible to predict which 

 

bound has both the challenge 

and opportunity of choosing the order of node generation and finding a good bounding 

approach, it may or may not 

intelligence researchers are 

space trees.) 

 hand, we want this 

be too simplistic - otherwise, it 

space tree as soon as 

competing requirements may require 

with a wide variety of instances of the problem in question. 
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3. 0/1 Knapsack problem 

Note: For this topic as per the syllabus both textbooks T1 & T2 are suggested. 

Here we discuss the conce

Topic form T1 (Levitin) 

Let us now discuss how we can apply the branch

knapsack problem. Given n items

knapsack of capacity W, find the most valuable subset of the items that fit in the knapsack

	 
���  �	���
�����

It is convenient to order the items of a given instance in descending order by

weight ratios. 

Each node on the i
th  

level of 

that include a particular selection made from the first i ordered items. This particular 

selection is uniquely determined by 

left indicates the inclusion of the next item, and a branch going to the right

exclusion.  

We record the total weight w

some upper bound ub on the value of any subset

items to this selection. A simple way to compute the upper bound 

value of the items already selected, the product of the remaining 

W − w and the best per unit payoff among the remaining items, which is 

Example:  Consider the following problem

order of their value-to-weight ratios

 

Let us apply the branch-and-bound algorithm

12.8), no items have been selected as yet. Hence, both the total weight of the items already 

selected w and their total value v are equal to 0. The value of the upper bound 

Node 1, the left child of the root, represents the subsets that include item 1. The total weight 

and value of the items already included are 4 and 

bound is 40 + (10 − 4) * 6 = 76. 
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sack problem  

Note: For this topic as per the syllabus both textbooks T1 & T2 are suggested. 

we discuss the concepts from T1 first and then that of from T2

Let us now discuss how we can apply the branch-and-bound technique to solving

iven n items of known weights wi and values vi , i = 1, 2, . . . , n, and a 

find the most valuable subset of the items that fit in the knapsack

���		 	 ���� 			��	���������,			
����	�� �
�����

to order the items of a given instance in descending order by

 

level of state space tree, 0 ≤ i ≤ n, represents all the subsets of n items 

that include a particular selection made from the first i ordered items. This particular 

is uniquely determined by the path from the root to the node: a branch going to the 

left indicates the inclusion of the next item, and a branch going to the right

weight w and the total value v of this selection in the node, along with 

on the value of any subset that can be obtained by adding zero or more 

A simple way to compute the upper bound ub is to add to 

the items already selected, the product of the remaining capacity of the knapsack

and the best per unit payoff among the remaining items, which is vi+1

ub = v + (W − w)(vi+1/wi+1). 

following problem. The items are already ordered in descending 

weight ratios.  

bound algorithm.  At the root of the state-space tree (see Figure 

12.8), no items have been selected as yet. Hence, both the total weight of the items already 

selected w and their total value v are equal to 0. The value of the upper bound 

the root, represents the subsets that include item 1. The total weight 

ems already included are 4 and 40, respectively; the value of the uppe

76.  
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Note: For this topic as per the syllabus both textbooks T1 & T2 are suggested.  

T2.   

bound technique to solving the 

, i = 1, 2, . . . , n, and a 

find the most valuable subset of the items that fit in the knapsack.  

� 0	 �	1 

to order the items of a given instance in descending order by their value-to-

 n, represents all the subsets of n items 

that include a particular selection made from the first i ordered items. This particular 

the path from the root to the node: a branch going to the 

left indicates the inclusion of the next item, and a branch going to the right indicates its 

selection in the node, along with 

that can be obtained by adding zero or more 

is to add to v, the total 

capacity of the knapsack     

i+1/wi+1:  

. The items are already ordered in descending 

 

space tree (see Figure 

12.8), no items have been selected as yet. Hence, both the total weight of the items already 

selected w and their total value v are equal to 0. The value of the upper bound is 100.  

the root, represents the subsets that include item 1. The total weight 

40, respectively; the value of the upper 
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Node 2 represents the subsets that do not include i

0 + (10 − 0) * 6 = 60. Since node 1 has a larger upper bound than the upper bound of node 2, 

it is more promising for this maximization problem, and we branch from node 1 first. Its 

children—nodes 3 and 4—represen

respectively. Since the total weight w of every subset represented by node 3 exceeds the 

knapsack’s capacity, node 3 can be terminated immediately. 

Node 4 has the same values of w and v as its parent; the

− 4) * 5 = 70. Selecting node 4 over node 2 for the next branching (

nodes 5 and 6 by respectively including

well as the upper bounds for th

nodes.  

Branching from node 5 yields node 7, which represents no feasible solutions, and node 8, 

which represents just a single subset {1, 3} of value 

have smaller upper-bound values than the value of the solution represented by node 8. Hence, 

both can be terminated making the subset {1, 3} of node 8 the optimal solution to the 

problem. 

Solving the knapsack problem by a branch

characteristic. Typically, internal nodes of a state

problem’s search space, because some of the solution’s components

for example, the branch-and
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Node 2 represents the subsets that do not include item 1. Accordingly, w = 0, v = 

60. Since node 1 has a larger upper bound than the upper bound of node 2, 

it is more promising for this maximization problem, and we branch from node 1 first. Its 

represent subsets with item 1 and with and without item 2, 

respectively. Since the total weight w of every subset represented by node 3 exceeds the 

knapsack’s capacity, node 3 can be terminated immediately.  

Node 4 has the same values of w and v as its parent; the upper bound ub is equal to 40 + (10 

− 4) * 5 = 70. Selecting node 4 over node 2 for the next branching (Due to better ub

nodes 5 and 6 by respectively including and excluding item 3. The total weights and values as 

well as the upper bounds for these nodes are computed in the same way as for the preceding 

Branching from node 5 yields node 7, which represents no feasible solutions, and node 8, 

single subset {1, 3} of value 65. The remaining live nodes 2 and 6 

bound values than the value of the solution represented by node 8. Hence, 

both can be terminated making the subset {1, 3} of node 8 the optimal solution to the 

Solving the knapsack problem by a branch-and-bound algorithm has a rather

characteristic. Typically, internal nodes of a state-space tree do not define

problem’s search space, because some of the solution’s components remain undefined. (See, 

and-bound tree for the assignment problem
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tem 1. Accordingly, w = 0, v = 0, and ub = 

60. Since node 1 has a larger upper bound than the upper bound of node 2, 

it is more promising for this maximization problem, and we branch from node 1 first. Its 

t subsets with item 1 and with and without item 2, 

respectively. Since the total weight w of every subset represented by node 3 exceeds the 

is equal to 40 + (10 

Due to better ub), we get 

and excluding item 3. The total weights and values as 

ese nodes are computed in the same way as for the preceding 

Branching from node 5 yields node 7, which represents no feasible solutions, and node 8, 

65. The remaining live nodes 2 and 6 

bound values than the value of the solution represented by node 8. Hence, 

both can be terminated making the subset {1, 3} of node 8 the optimal solution to the 

 

bound algorithm has a rather unusual 

space tree do not define a point of the 

remain undefined. (See, 

problem discussed in the 
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preceding subsection.) For the knapsack problem,

a subset of the items given. We can

subset seen so far after generating each new node in 

instance investigated above, we could have terminated nodes 2 and 6 before node 8 was 

generated because they both are i

 

Concepts form textbook T2 (Horowitz

Let us understand some of the 

→ Live node - a node which has been generated and all of whose chil

generated. 

→ E-node - is a live node whose children are currently being explored. In other words, an E

node is a node currently being expanded.

→ Dead node - a node that is either not to be expanded further, or for which all of its 

children have been generated

→ Bounding Function - will be used to kill live nodes without generating all their children.

→ Backtracking - is depth first node generation with bounding functions.

→ Branch-And-Bound is a method in which E

→ Breadth-First-Search: Branch

front of the queen becomes the new E

→ Depth-Search (D-Search):

first to be explored. 
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preceding subsection.) For the knapsack problem, however, every node of the tree represents 

a subset of the items given. We can use this fact to update the information about the best 

generating each new node in the tree. If we had done this for the 

above, we could have terminated nodes 2 and 6 before node 8 was 

because they both are inferior to the subset of value 65 of node 5.

T2 (Horowitz) 

d some of the terminologies used in backtracking & branch and bound

a node which has been generated and all of whose children are not yet been 

is a live node whose children are currently being explored. In other words, an E

node is a node currently being expanded. 

a node that is either not to be expanded further, or for which all of its 

children have been generated 

will be used to kill live nodes without generating all their children.

first node generation with bounding functions. 

is a method in which E-node remains E-node until it is dead.

Branch-and Bound with each new node placed in a queue

front of the queen becomes the new E-node. 

Search): New nodes are placed in to a stack. The last node added is the 
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however, every node of the tree represents 

use this fact to update the information about the best 

the tree. If we had done this for the 

above, we could have terminated nodes 2 and 6 before node 8 was 

65 of node 5. 

branch and bound.  

dren are not yet been 

is a live node whose children are currently being explored. In other words, an E-

a node that is either not to be expanded further, or for which all of its 

will be used to kill live nodes without generating all their children. 

 

node until it is dead. 

each new node placed in a queue. The 

last node added is the 
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0/1 Knapsack problem - Branch and 

As the technique discussed here is applicable for minimization problems, let us convert the 

knapsack problem (maximizing the profit) into minimization problem by negating the 

objective function  
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Branch and Bound based solution 

As the technique discussed here is applicable for minimization problems, let us convert the 

knapsack problem (maximizing the profit) into minimization problem by negating the 
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As the technique discussed here is applicable for minimization problems, let us convert the 

knapsack problem (maximizing the profit) into minimization problem by negating the 
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3.1  LC (Least Cost) Branch and Bound solution 

 

Design & Analysis of Algorithms | Module 4: Dynamic Programming 

Dept of CSE, VCET Puttur                                                      Techjourney.in                 

3.1  LC (Least Cost) Branch and Bound solution  
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3.2 FIFO Branch and Bound solution 
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3.2 FIFO Branch and Bound solution  
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Conclusion 
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4. NP-Complete and NP

4.1 Basic concepts 

For many of the problems we know and study, the best 

computing times can be clustered into two groups;

1. Solutions are bounded by the 

Linear search O(n), sorting algorithms like merge sort 

& matrix multiplication 

2. Solutions are bounded by a non

problem O(n
2
2

n
) & knapsack problem O(2

even moderate size problems cannot be solved. 

So far, no one has been able to device an algorithm which is bounded by the polynomial for 

the problems belonging to the 

is not proved. 

 

4.2 Non deterministic algorithms 

We also need the idea of two models of computer (Turing machine): deterministic and non

deterministic. A deterministic computer is the regular computer we always thinking of; a non

deterministic computer is one that is just like we’re used to except that is has unlimited 

parallelism, so that any time you come to a branch, you spawn a new “process” an

both sides. 

When the result of every operation is uniquely defined then it is called 

algorithm.  

When the outcome is not uniquely defined but is limited to a specific set of possibilities, we 

call it non deterministic algorithm.

We use new statements to specify suc

• choice(S) - arbitrarily choose one of the elements of set S 

• failure - signals an unsuccessful completion 

• success - signals a successful completion 

The assignment X = choice(1:n)

range[1..n]. There is no rule specifying how this value is chosen.

“The nondeterministic algorithms terminates unsuccessfully iff there is no set of choices 

which leads to the successful signal

Example-1: Searching an element 

determine an index j such that A(j) = x or j = 0 if x is not present. 

j := choice(1:n)  

if A(j) = x then print(j); success endif 
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Complete and NP-Hard problems 

For many of the problems we know and study, the best algorithms for their solution have 

n be clustered into two groups; 

Solutions are bounded by the polynomial- Examples include Binary search 

sorting algorithms like merge sort O(n log n), Bubble sort

trix multiplication O(n
3
) or in general  O(n

k
) where k is a constant.

Solutions are bounded by a non-polynomial - Examples include travelling salesman 

) & knapsack problem O(2
n/2

). As the time increases exponentially, 

even moderate size problems cannot be solved.  

o one has been able to device an algorithm which is bounded by the polynomial for 

the problems belonging to the non-polynomial. However impossibility of such an

Non deterministic algorithms  

We also need the idea of two models of computer (Turing machine): deterministic and non

deterministic. A deterministic computer is the regular computer we always thinking of; a non

computer is one that is just like we’re used to except that is has unlimited 

parallelism, so that any time you come to a branch, you spawn a new “process” an

When the result of every operation is uniquely defined then it is called 

When the outcome is not uniquely defined but is limited to a specific set of possibilities, we 

algorithm.  

We use new statements to specify such non deterministic h algorithms.  

arbitrarily choose one of the elements of set S  

signals an unsuccessful completion  

signals a successful completion  

X = choice(1:n) could result in X being assigned any value from the integer 

rule specifying how this value is chosen. 

The nondeterministic algorithms terminates unsuccessfully iff there is no set of choices 

which leads to the successful signal”. 

Searching an element x in a given set of elements A(1:n). We are required to 

such that A(j) = x or j = 0 if x is not present.  

if A(j) = x then print(j); success endif  
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algorithms for their solution have 

Binary search O(log n), 

, Bubble sort O(n
2
) 

is a constant. 

Examples include travelling salesman 

). As the time increases exponentially, 

o one has been able to device an algorithm which is bounded by the polynomial for 

impossibility of such an algorithm 

We also need the idea of two models of computer (Turing machine): deterministic and non-

deterministic. A deterministic computer is the regular computer we always thinking of; a non-

computer is one that is just like we’re used to except that is has unlimited 

parallelism, so that any time you come to a branch, you spawn a new “process” and examine 

When the result of every operation is uniquely defined then it is called deterministic 

When the outcome is not uniquely defined but is limited to a specific set of possibilities, we 

could result in X being assigned any value from the integer 

The nondeterministic algorithms terminates unsuccessfully iff there is no set of choices 

in a given set of elements A(1:n). We are required to 
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print(‘0’); failure 

Example-2: Checking whether 

procedure NSORT(A,n); 

//sort n positive integers// 

var integer A(n), B(n), n, i, j; 

begin  

B := 0; //B is initialized to zero// 

for i := 1 to n do 

begin  

j := choice(1:n); 

if B(j) <> 0 then failure; 

B(j) := A(j); 

 end; 

 

for i := 1 to n-1 do //verify order// 

if B(i) > B(i+1) then failure; 

print(B);  

success;  

end. 

 “A nondeterministic machine does

is to be made. Instead it has the ability to correctly choose an element from the given set

A deterministic interpretation of the nondeterministic algorithm can be done by making 

unbounded parallelism in the computation. Each time a choice is to be made, the algorithm 

makes several copies of itself, one copy is made for each of the possible choices.

Decision vs Optimization algorithms

An optimization problem tries to find an optimal solution. 

A decision problem tries to answer a yes/no question. 

in decision and optimization versions. 

For example, Traveling salesman problem

• Optimization - find hamiltonian cycle of minimum weight, 

• Decision - is there a hamiltonian cycle of weight 

For graph coloring problem,  

• Optimization – find the minimum number of colors needed to color the vertices of a 

graph so that no two adjacent vertices are colored 

• Decision - whether there exists such a coloring of the graph

than m colors? 

Many optimization problems can be recast in to decision problems with the property that the 

decision algorithm can be solved in polynomial time if

optimization problem.  

4.3 P, NP, NP-Complete and NP
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Checking whether n integers are sorted or not 

procedure NSORT(A,n);  

//sort n positive integers//  

var integer A(n), B(n), n, i, j;  

B := 0; //B is initialized to zero//  

for i := 1 to n do  

j := choice(1:n);  

if B(j) <> 0 then failure;  

B(j) := A(j);  

1 do //verify order//  

if B(i) > B(i+1) then failure;  

A nondeterministic machine does not make any copies of an algorithm every time a choice 

is to be made. Instead it has the ability to correctly choose an element from the given set

A deterministic interpretation of the nondeterministic algorithm can be done by making 

lism in the computation. Each time a choice is to be made, the algorithm 

makes several copies of itself, one copy is made for each of the possible choices.

sion vs Optimization algorithms   

An optimization problem tries to find an optimal solution.  

A decision problem tries to answer a yes/no question. Most of the problems 

decision and optimization versions.  

raveling salesman problem can be stated as two ways  

find hamiltonian cycle of minimum weight,  

there a hamiltonian cycle of weight ≤ k? 

 

find the minimum number of colors needed to color the vertices of a 

graph so that no two adjacent vertices are colored the same color 

there exists such a coloring of the graph’s vertices with no more 

Many optimization problems can be recast in to decision problems with the property that the 

decision algorithm can be solved in polynomial time if and only if the correspondin

Complete and NP-Hard classes  
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not make any copies of an algorithm every time a choice 

is to be made. Instead it has the ability to correctly choose an element from the given set”.  

A deterministic interpretation of the nondeterministic algorithm can be done by making 

lism in the computation. Each time a choice is to be made, the algorithm 

makes several copies of itself, one copy is made for each of the possible choices. 

problems can be specified 

find the minimum number of colors needed to color the vertices of a 

s vertices with no more 

Many optimization problems can be recast in to decision problems with the property that the 

f the corresponding 
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NP stands for Non-deterministic Polynomial time.

Definition: P is a set of all decision problems solvable by a deterministic algorithm in 

polynomial time.  

Definition: NP is the set of all decision problems solvable by a nondeterministic algorithm in 

polynomial time. This also implies P

Problems known to be in P are trivially in NP 

troubles itself to fork another process, and 

problem not in P but in NP is Integer Factorization

But there are some problems which are known to be in NP but don’t know if t

traditional example is the decision

(decision-TSP).  It’s not known whether decision

solution, but there’s no proof such a solution doesn’t exist.

There are problems that are known to be neither in P nor NP; a simple example is to 

enumerate all the bit vectors of length n. No matter what, that takes 2

Now, one more concept: given decision problems P and Q, if an algorithm can transform a 

solution for P into a solution for Q in polynomial time, it’s said that Q is

reducible (or just reducible) to P.

The most famous unsolved problem in computer s

 

Figure: Commonly believed 

relationship between P and NP

Definition: A decision problem D is said to be 

1. it belongs to class NP

2. every problem in NP is polynomially reducible to D

The fact that closely related decision problems are polynomially reducible to each other is not 

very surprising. For example, Hamiltonian circuit problem is polynomially reducible to the 

decision version of the traveling salesman problem
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deterministic Polynomial time. 

is a set of all decision problems solvable by a deterministic algorithm in 

is the set of all decision problems solvable by a nondeterministic algorithm in 

This also implies P ⊆ NP 

Problems known to be in P are trivially in NP — the nondeterministic machine just never 

troubles itself to fork another process, and acts just like a deterministic one. One example of a 

 Integer Factorization.  

But there are some problems which are known to be in NP but don’t know if t

traditional example is the decision-problem version of the Travelling Salesman Problem 

).  It’s not known whether decision-TSP is in P: there’s no known poly

solution, but there’s no proof such a solution doesn’t exist. 

There are problems that are known to be neither in P nor NP; a simple example is to 

enumerate all the bit vectors of length n. No matter what, that takes 2
n
 steps.

Now, one more concept: given decision problems P and Q, if an algorithm can transform a 

tion for P into a solution for Q in polynomial time, it’s said that Q is

(or just reducible) to P. 

s unsolved problem in computer science is “whether P=NP or

and NP 

Figure: Commonly believed relationship between P, NP, NP

Complete and NP-hard problems

A decision problem D is said to be NP-complete if: 

1. it belongs to class NP 

2. every problem in NP is polynomially reducible to D 

closely related decision problems are polynomially reducible to each other is not 

very surprising. For example, Hamiltonian circuit problem is polynomially reducible to the 

decision version of the traveling salesman problem. 
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is a set of all decision problems solvable by a deterministic algorithm in 

is the set of all decision problems solvable by a nondeterministic algorithm in 

the nondeterministic machine just never 

acts just like a deterministic one. One example of a 

But there are some problems which are known to be in NP but don’t know if they’re in P. The 

ing Salesman Problem 

TSP is in P: there’s no known poly-time 

There are problems that are known to be neither in P nor NP; a simple example is to 

steps. 

Now, one more concept: given decision problems P and Q, if an algorithm can transform a 

tion for P into a solution for Q in polynomial time, it’s said that Q is poly-time 

P=NP or P≠NP? ” 

 

Figure: Commonly believed relationship between P, NP, NP-

hard problems 

closely related decision problems are polynomially reducible to each other is not 

very surprising. For example, Hamiltonian circuit problem is polynomially reducible to the 
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NP-Complete problems have the property that it can be solved in polynomial time if all other 

NP-Complete problems can be solved in polynomial time. 

solution to one NP-complete problem, they’ve automatically got one for

problems; that will also mean that P=NP.

Example for NP-complete is 

deals with boolean expressions.

problem asks whether or not one can assign v

boolean expression in its CNF form to make the entire

Over the years many problems in

Still, there are many problems in

whether P=NP? NP Complete Problems helps in solving 

of NP problems with the property that all other

polynomial time. So, they are the hardest problems in

be showed that any NP-Complete

(because of NP-Complete definition), and hence

NP Hard Problems - These problems need not have any bound on their running time. If 

any NP-Complete Problem is polynomial time reducible to 

belongs to NP-Hard class. Hence, all

words if a NP-Hard problem is non

Complete problem. Example of a

If a NP-Hard problem can be solv

in polynomial time. 

“All NP-Complete problems are NP

Complete.” NP-Complete problems are subclass of NP

The more conventional optimization version of

shortest route is NP-hard, not strictly NP
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have the property that it can be solved in polynomial time if all other 

Complete problems can be solved in polynomial time. i.e if anyone ever finds a poly

complete problem, they’ve automatically got one for all

roblems; that will also mean that P=NP. 

complete is CNF-satisfiability problem. The CNF-satisfiability problem 

deals with boolean expressions. This is given by Cook in 1971. The CNF

problem asks whether or not one can assign values true and false to variables of a given 

boolean expression in its CNF form to make the entire expression true. 

Over the years many problems in NP have been proved to be in P (like 

Still, there are many problems in NP not proved to be in P. i.e. the question still remains 

Complete Problems helps in solving this question. They are a subset 

problems with the property that all other NP problems can be reduced to any of them in 

polynomial time. So, they are the hardest problems in NP, in terms of running time. If it can 

omplete problem is in P, then all problems in NP will be in P 

definition), and hence P=NP=NPC. 

These problems need not have any bound on their running time. If 

is polynomial time reducible to a problem X, that problem 

Hard class. Hence, all NP-Complete problems are also N

problem is non-deterministic polynomial time solvable, it is a

problem. Example of a NP problem that is not NPC is Halting Problem

can be solved in polynomial time then all NP-Complete can be solved 

Complete problems are NP-Hard but not all NP-Hard problems are not NP

Complete problems are subclass of NP-Hard 

optimization version of Traveling Salesman Problem 

hard, not strictly NP-complete. 

***** 
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have the property that it can be solved in polynomial time if all other 

if anyone ever finds a poly-time 

all the NP-complete 

satisfiability problem 

The CNF-satisfiability 

false to variables of a given 

 Primality Testing). 

the question still remains 

question. They are a subset 

duced to any of them in 

NP, in terms of running time. If it can 

all problems in NP will be in P 

These problems need not have any bound on their running time. If 

X, that problem X 

NP-Hard. In other 

deterministic polynomial time solvable, it is a NP-

Halting Problem. 

Complete can be solved 

Hard problems are not NP-

Traveling Salesman Problem for finding the 


