% Vivekananda Zatll

Mm@ College of Engineering & Technology ' %
Nehru nagar post, Puttur, D.K. 5742013 ‘

Lecture Notes on

15CS43
Design and Analysis of

Algorithms
(CBCS Scheme)

Prepared by
Mr. Harivinod N

Dept. of Computer Science and Engineering,
VCET Puttur

Jan 2017

Module-1 : Introduction to Algorithms

1.

3.

Contents

Introduction

1.1. What is an Algorithm?
1.2. Algorithm Specification
1.3. Analysis Framework
Performance Analysis

2.1. Space complexity

2.2. Time complexity
Asymptotic Notations

3.1. Big-Oh notation

3.2. Omega notation

3.3. Theta notation

3.4. Little-oh notation

3.5. Mathematical analysis

. Important Problem Types

4.1. Sorting

4.2. Searching

4.3. String processing

4.4. Graph Problems

4.5. Combinatorial Problems

. Fundamental Data Structures

5.1. Linear Data Structures
5.2. Graphs

5.3. Trees

5.4. Sets and Dictionaries.

Course website: www.techjourney.in

Y 2%
%é;: Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

1. Introduction
1.1. What is an Algorithm?

An algorithm is a finite set of instructions to solve a particular problem. In addition, all
algorithms must satisfy the following criteria:
a. Input. Zero or more quantities are externally supplied.
b. Qutput. At least one quantity is produced.
Definiteness. Each instruction is clear and unambiguous. It must be perfectly clear
what should be done.
d. Finiteness. If we trace out the instruction of an algorithm, then for all cases, the
algorithm terminates after a finite number of steps.
e. Effectiveness. Every instruction must be very basic so that it can be carried out, in
principle, by a person using only pencil and paper. It is not enough that each
operation be definite as in criterion c; it also must be feasible.

Algorithm design and analysis process - We now briefly discuss a sequence of steps one
typically goes through in designing and analyzing an algorithm

Understand the problem

v

Decide on: 1) computational means
2) Exact vs. approximate solving
3) Algorithm design technique

;

Design the algorithm

;

Prove the correctness

'

Analyze the algorithm

v

Code the algorithm

¢ Understanding the Problem - From a practical perspective, the first thing you need to
do before designing an algorithm is to understand completely the problem given. An
input to an algorithm specifies an instance of the problem the algorithm solves. It is very
important to specify exactly the set of instances the algorithm needs to handle.

e Ascertaining the Capabilities of the Computational Device - Once you completely
understand a problem, you need to ascertain the capabilities of the computational device
the algorithm is intended for. Select appropriate model from sequential or parallel
programming model.

Prerpared by Harivinod N www.techjourney.in Page|1.2

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

¢ Choosing between Exact and Approximate Problem Solving - The next principal
decision is to choose between solving the problem exactly and solving it approximately.
Because, there are important problems that simply cannot be solved exactly for most of
their instances and some of the available algorithms for solving a problem exactly can be
unacceptably slow because of the problem’s intrinsic complexity.

¢ Algorithm Design Techniques - An algorithm design technique (or “strategy” or
“paradigm”) is a general approach to solving problems algorithmically that is applicable
to a variety of problems from different areas of computing. They provide guidance for
designing algorithms for new problems, i.e., problems for which there is no known
satisfactory algorithm.

¢ Designing an Algorithm and Data Structures - One should pay close attention to
choosing data structures appropriate for the operations performed by the algorithm. For
example, the sieve of Eratosthenes would run longer if we used a linked list instead of an
array in its implementation. Algorithms + Data Structures = Programs

e Methods of Specifying an Algorithm- Once you have designed an algorithm; you need
to specify it in some fashion. These are the two options that are most widely used
nowadays for specifying algorithms. Using a natural language has an obvious appeal;
however, the inherent ambiguity of any natural language makes a concise and clear
description of algorithms surprisingly difficult. Pseudocode is a mixture of a natural
language and programming language like constructs. Pseudocode is usually more precise
than natural language, and its usage often yields more succinct algorithm descriptions.

¢ Proving an Algorithm’s Correctness - Once an algorithm has been specified, you have
to prove its correctness. That is, you have to prove that the algorithm yields a required
result for every legitimate input in a finite amount of time. For some algorithms, a proof
of correctness is quite easy; for others, it can be quite complex. A common technique for
proving correctness is to use mathematical induction because an algorithm’s iterations
provide a natural sequence of steps needed for such proofs.

® Analyzing an Algorithm - After correctness, by far the most important is efficiency. In
fact, there are two kinds of algorithm efficiency: time efficiency, indicating how fast the
algorithm runs, and space efficiency, indicating how much extra memory it uses. Another
desirable characteristic of an algorithm is simplicity. Unlike efficiency, which can be
precisely defined and investigated with mathematical rigor, simplicity, like beauty, is to a
considerable degree in the eye of the beholder.

¢ C(Coding an Algorithm - Most algorithms are destined to be ultimately implemented as
computer programs. Implementing an algorithm correctly is necessary but not sufficient:
you would not like to diminish your algorithm’s power by an inefficient implementation.
Modern compilers do provide a certain safety net in this regard, especially when they are
used in their code optimization mode.

Prerpared by Harivinod N www.techjourney.in Page|1.3

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

1.2. Algorithm Specification
An algorithm can be specified in

1) Simple English

2) Graphical representation like flow chart
3) Programming language like c++ / java
4) Combination of above methods.

Using the combination of simple English and C++, the algorithm for selection sort is
specified as follows.

for (i=1; i<=n; i++) {
examine a[i] to al[n] and suppose
the smallest element is at aljl;
interchange ali] and a[jl;

}

In C++ the same algorithm can be specified as follows

void SelectionSort(Type a[], int n)
// Sort the array a[l:n] into nondecreasing order.

{
for (int i=1; i<=n; i++) {
int j = 1;
for (int k=i+1; k<=n; k++)
if (alkl<aljl) j=k;
y Type t = al[il; a[il = a[j]; a[j] = t;
¥

Here Type is a basic or user defined data type.

Recursive algorithms

An algorithm is said to be recursive if the same algorithm is invoked in the body (direct
recursive). Algorithm A is said to be indirect recursive if it calls another algorithm which in
turn calls A.

Example 1: Factorial computation n! =n * (n-1)!

Example 2: Binomial coefficient computation

-

T n— 1

/N
f{ \
| | —
i
\1TL
AN 7

—
~ ey

\ /
\ f
|
U \
o] \
4 AN
Example 3: Tower of Hanoi problem
Example 4: Permutation Generator

Prerpared by Harivinod N www.techjourney.in Page|1.4

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

1.3. Analysis Framework

General framework for analyzing the efficiency of algorithms is discussed here. There are
two kinds of efficiency: time efficiency and space efficiency. Time efficiency indicates how
fast an algorithm in question runs; space efficiency deals with the extra space the algorithm
requires.

In the early days of electronic computing, both resources time and space were at a premium.
Now the amount of extra space required by an algorithm is typically not of as much concern,
In addition, the research experience has shown that for most problems, we can achieve much
more spectacular progress in speed than in space. Therefore, following a well-established
tradition of algorithm textbooks, we primarily concentrate on time efficiency.

Measuring an Input’s Size

It is observed that almost all algorithms run longer on larger inputs. For example, it takes
longer to sort larger arrays, multiply larger matrices, and so on. Therefore, it is logical to
investigate an algorithm's efficiency as a function of some parameter n indicating the
algorithm's input size.

There are situations, where the choice of a parameter indicating an input size does matter.
The choice of an appropriate size metric can be influenced by operations of the algorithm in
question. For example, how should we measure an input's size for a spell-checking
algorithm? If the algorithm examines individual characters of its input, then we should
measure the size by the number of characters; if it works by processing words, we should
count their number in the input.

We should make a special note about measuring the size of inputs for algorithms involving
properties of numbers (e.g., checking whether a given integer n is prime). For such
algorithms, computer scientists prefer measuring size by the number b of bits in the n's binary
representation: b = |log, n | + 1. This metric usually gives a better idea about the efficiency
of algorithms in question.

Units for Measuring Running lime

To measure an algorithm's efficiency, we would like to have a metric that does not depend
on these extraneous factors. One possible approach is to count the number of times each of
the algorithm's operations is executed. This approach is both excessively difficult and, as we
shall see, usually unnecessary. The thing to do is to identify the most important operation of
the algorithm, called the basic operation, the operation contributing the most to the total
running time, and compute the number of times the basic operation is executed.

For example, most sorting algorithms work by comparing elements (keys) of a list being
sorted with each other; for such algorithms, the basic operation is a key comparison.

As another example, algorithms for matrix multiplication and polynomial evaluation
require two arithmetic operations: multiplication and addition.

Prerpared by Harivinod N www.techjourney.in Page|1.5

< 2;\\
,%&53 Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

Let ¢, be the execution time of an algorithm's basic operation on a particular computer, and
let C(n) be the number of times this operation needs to be executed for this algorithm. Then
we can estimate the running time 7(n) of a program implementing this algorithm on that
computer by the formula:

T(n) = ¢,pC(N)
unless n is extremely large or very small, the formula can give a reasonable estimate of the
algorithm's running time.

It is for these reasons that the efficiency analysis framework ignores multiplicative constants
and concentrates on the count's order of growth to within a constant multiple for large-size
nputs.

Orders of Growth
Why this emphasis on the count's order of growth for large input sizes? Because for large

values of n, it is the function's order of growth that counts: just look at table which contains
values of a few functions particularly important for analysis of algorithms.

Table: Values n log, n n nlog, n n” n /i n!
(])f;;ec:le;:sl mﬂ 33 10! 3..1[[5; 107 m‘-: 1:1—‘-5 3_5.1:15_
_ 107 6.6 107 66107 104 1w 1310% 03909
important for 43 10 100 10104 106 10
analysis of 1t 13 it 1.310° 10f 10w
algorithms 10° 17 10 17106 (AL L
106 20 10¢ 2.0107 1012 o8

Algorithms that require an exponential number of operations are practical for solving only
problems of very small sizes.

Worst-Case, Best-Case, and Average-Case Efficiencies

Definition: The worst-case efficiency of an algorithm is its efficiency for the worst-case
input of size n, for which the algorithm runs the longest among all possible inputs of that size.

Consider the algorithm for sequential search.

ALGORITHM SequentialSearch(A|0..n — 1], K)

//Searches for a given value in a given array by sequential search
/[Mnput: An array A[0..n — 1] and a search key K
//Output: The index of the first element in A that matches K
I or —1 if there are no matching elements
i <0
while i <n and A[i]# K do
P <—i1+1
if i < n return
else return —1

Prerpared by Harivinod N www.techjourney.in Page|1.6

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

The running time of above algorithm can be quite different for the same list size n. In the
worst case, when there are no matching elements or the first matching element happens to
be the last one on the list, the algorithm makes the largest number of key comparisons
among all possible inputs of size n: Cyorse(2) = n.

In general, we analyze the algorithm to see what kind of inputs yield the largest value of the
basic operation's count C(n) among all possible inputs of size n and then compute this worst-
case value Cyr (n). The worst-case analysis provides algorithm's efficiency by bounding its
running time from above. Thus it guarantees that for any instance of size n, the running time
will not exceed Cyrst (1), its running time on the worst-case inputs.

Definition: The best-case efficiency of an algorithm is its efficiency for the best-case input
of size n, for which the algorithm runs the fastest among all possible inputs of that size.

We determine the kind of inputs for which the count C(n) will be the smallest among all
possible inputs of size n. For example, for sequential search, best-case inputs are lists of size
n with their first elements equal to a search key; Cpest(n) = 1.

The analysis of the best-case efficiency is not nearly as important as that of the worst-case
efficiency. Also, neither the worst-case analysis nor its best-case counterpart yields the
necessary information about an algorithm's behavior on a "typical" or "random" input. This
information is provided by average-case efficiency.

Definition: the average-case complexity of an algorithm is the amount of time used by the
algorithm, averaged over all possible inputs.

Let us consider again sequential search. The standard assumptions are that (a) the probability
of a successful search is equal top (0 < p < 1) and (b) the probability of the first match
occurring in the i position of the list is the same for every i. We can find the average number
of key comparisons C,,, (1) as follows.

In the case of a successful search, the probability of the first match occurring in the i
position of the list is p/n for every i, and the number of comparisons made by the algorithm
in such a situation is obviously i. In the case of an unsuccessful search, the number of
comparisons is n with the probability of such a search being (1- p). Therefore,

Cm'n‘”}=[1-—p+2-£—|—--'+f"£+"'+f-"E]_‘_”'“_p]
= n " n n
:2[14_2—1—---—f'+---+f.=j+n(I—pJ
I
—En(ﬂf_'—“—l-ntl—p}—M—HIH—F?-
n 2 2

Investigation of the average-case efficiency is considerably more difficult than investigation
of the worst-case and best-case efficiencies. But there are many important algorithms for
which the average case efficiency is much better than the overly pessimistic worst-case
efficiency would lead us to believe. Note that average-case efficiency cannot be obtained by
taking the average of the worst-case and the best-case efficiencies.

Prerpared by Harivinod N www.techjourney.in Page|1.7

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

Summary of analysis framework

¢ Both time and space efficiencies are measured as functions of the algorithm's input size.

e Time efficiency is measured by counting the number of times the algorithm's basic
operation is executed. Space efficiency is measured by counting the number of extra
memory units consumed by the algorithm.

e The efficiencies of some algorithms may differ significantly for inputs of the same size.
For such algorithms, we need to distinguish between the worst-case, average-case, and
best-case efficiencies.

e The framework's primary interest lies in the order of growth of the algorithm's running
time (or extra memory units consumed) as its input size goes to infinity.

2. Performance Analysis

2.1 Space complexity

Total amount of computer memory required by an algorithm to complete its execution is
called as space complexity of that algorithm. The Space required by an algorithm is the sum
of following components

e A fixed part that is independent of the input and output. This includes memory space
for codes, variables, constants and so on.

e A variable part that depends on the input, output and recursion stack. (We call these
parameters as instance characteristics)

Space requirement S(P) of an algorithm P, S(P)=c + Sp where c is a constant depends
on the fixed part, Sp is the instance characteristics

Example-1: Consider following algorithm abc()

float abc(float a, float b, float c)
{ return (a + b + bxc + (a+b-c)/(a+b) + 4.0);
}

Here fixed component depends on the size of a, b and c. Also instance characteristics Sp=0
Example-2: Let us consider the algorithm to find sum of array.

For the algorithm given here the problem instances are characterized by n, the number of
elements to be summed. The space needed by af | depends on n. So the space complexity can
be written as; Ssum(nt) = (n+3) n for a[], One each for n, i and s.

float Sum(float a[], int n)
{ float s = 0.0;
for (int i=1; i<=n; i++)
s += al[il;
return s;

Prerpared by Harivinod N www.techjourney.in Page|1.8

T
RS

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

2.2 Time complexity

Usually, the execution time or run-time of the program is refereed as its time complexity
denoted by ¢, (instance characteristics). This is the sum of the time taken to execute all

instructions in the program.

Exact estimation runtime is a complex task, as the number of instruction executed is
dependent on the input data. Also different instructions will take different time to execute. So
for the estimation of the time complexity we count only the number of program steps.

A program step is loosely defined as syntactically or semantically meaning segment of the
program that has and execution time that is independent of instance characteristics. For
example comment has zero steps; assignment statement has one step and so on.

We can determine the steps needed by a program to solve a particular problem instance in

two ways.

In the first method we introduce a new variable count to the program which is initialized to
zero. We also introduce statements to increment count by an appropriate amount into the
program. So when each time original program executes, the count also incremented by the
step count.

Example-1: Consider the algorithm sum(). After the introduction of the count the program

will be as follows.

float Sum(float a[], int n)
{ float s = 0.0;
count++; // count is global
for (int i=1; i<=n; i++) {
count++; // For ‘for’
, s += ali]; count++; // For assignment
count++; // For last time of ‘for’
count++; // For the return
return s;

}
From the above we can estimate that invocation of sum() executes total number of 2n+3
steps.

The second method to determine the step count of an algorithm is to build a table in which
we list the total number of steps contributed by each statement. An example is shown below.

Statement [s/e | frequency | total steps
float Sum(float a[], int n) [0 — 0
{ float s = 0.0; 1 1 1
for (int i=1; i<=n; i++) 1 n—+1 n+1
s += a[i]; 1 n n
return s; 1 1 1
} 0 — 0
Total i I [2n+3

Prerpared by Harivinod N www.techjourney.in Page|1.9

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

Example-2: matrix addition

void Add(Type al[] [SIZE], Type b[] [SIZE],
Type c[][SIZE], int m, int n)
{ for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)

clil (] = alil (3] + ©lil(j];

}
Statement [s/e | freq | total
void Add(Type all[SIZE], ...) |0 - 0
{ for (int i=1; i<=m; i++) 1 m+1 m+1

for (int j=1; j<=n; j++) 1 m(n+1) | mn+m

c[il [j]1 = alil [j]

+ blil [j]; 1 mn mn
} 0 - 0
Total l I [2mn +2m+1

The above thod is both excessively difficult and, usually unnecessary. The thing to do is to
identify the most important operation of the algorithm, called the basic operation, the
operation contributing the most to the total running time, and compute the number of times
the basic operation is executed.

Trade-off

There is often a time-space-tradeoff involved in a problem, that is, it cannot be solved with
few computing time and low memory consumption. One has to make a compromise and to
exchange computing time for memory consumption or vice versa, depending on which
algorithm one chooses and how one parameterizes it.

3. Asymptotic Notations

The efficiency analysis framework concentrates on the order of growth of an algorithm’s
basic operation count as the principal indicator of the algorithm’s efficiency. To compare and
rank such orders of growth, computer scientists use three notations: O(big oh), Q(big
omega), O (big theta) and o(little oh)

3.1. Big-Oh notation

Definition: A function #(n) is said to be in O(g(n)), denoted #(n) EO(g(n)), if t (n) is bounded
above by some constant multiple of g(n) for all large n, i.e., if there exist some positive
constant ¢ and some nonnegative integer ng such that

t(n) <c g(n) for all n > n,.

Prerpared by Harivinod N www.techjourney.in Page|1.10

@%iiyé? Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D “

cgln)

t(n)

Big-oh notation: t(n) € O(g(n)).

doesn't
matter

e]

o

1

Informally, O(g(n)) is the set of all functions with a lower or same order of growth as g(n)
. _ B} I

Examples: neomd, 1001 + 5 € 0(n?), Saln — 1) e O(n?).

n’ & O{_frzj. 0.000012° & 0(?!2}. n? +n+1¢€ O(nz].

As another example, let us formally prove 100n + 5 € O(n%)
100n + 5 < 100n + n (for all n>5) = 101n < 1014°. (=101, ny=5)

Note that the definition gives us a lot of freedom in choosing specific values for constants ¢
and ny.

Example: To prove n’+n=0(®m’

Here, we have f(n) = n? 4+ n, and g(n) = n>

Notice that if n > 1, n < n? is clear.
Also, notice that if n > 1, n? < n? is clear.

Therefore,

n®+n < nd +n’ =20

We have just shown that

n? 4+ n<2ndforalln > 1

Thus, we have shown that n? +n = O(n?)
(by definition of Big-O, with ng = 1, and ¢ = 2.)

Strategies for Big-O Sometimes the easiest way to prove that f(n) = O(g(n)) is to take ¢ to
be the sum of the positive coefficients of f(n). We can usually ignore the negative
coefficients.

Example: To prove 5n? + 3n + 20 = O(n?), we
pickc=5+3+20=28 Thenitn > ng =1,

5n2 +3n+20 < 5n% + 302 +20n2 = 28n2,

thus 572 + 3n + 20 = O(n?).

Prerpared by Harivinod N www.techjourney.in Page|1.11

3
3
S,
o

P AN

e

]
2%

T

W

i

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

2
o

°\/;/$ N
gl

—_ g

k)

y
/

3.2. Omega notation

Definition: A function t(n) is said to be in (g(n)), denoted #(n) €Q(g(n)), if t(n) is bounded
below by some positive constant multiple of g(n) for all large n, i.e., if there exist some
positive constant ¢ and some nonnegative integer ny such that

t(n) > ¢ g(n) for all n > n,.

Ve

. Big-omega notation: #(n) € Q(g(n)).
doesn't |
matter i—/
'rl?C » [

Here is an example of the formal proof that n’ EQ(n2):
n’ > n? forall n > 0,

i.e., we can selectc =1 and ng = 0.
Example: n- el

Example: To prove n’ + 4n’ = Q(n’)
Here, we have f(n) = n® + 4n?, and g(n) = n?

It is not too hard to see that if n > 0, | Thus whenn > 1,

9 9

‘ 2 b

n? < n? 4+ 4n? n-<n><n —4n~
N _ Theretore,

We have already seen that it n > 1,

s T P, T L -

o 3 In®<n”4+4dn~toralln = 1

n® <n

Thus, we have shown that n" 4+ 4n? = Q(nQ\)
(by definition of Big-€2, with ny = 1, and c = 1))

3.3. Theta notation

A function t(n) is said to be in @(g(n)), denoted t(n) € O(g(n)), if t (n) is bounded both
above and below by some positive constant multiples of g(n) for all large n, i.e., if there exist
some positive constants ¢; and ¢, and some nonnegative integer ny such that

c; g(n) < t(n) = cyg(n) for all n 2 ny.

Prerpared by Harivinod N www.techjourney.in Page|1.12

>
3
S
&

T
oV
e

G
i

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D “

cigln)
A . /
i tin)
i // Crgln)

z :

J
L@
‘\\?’é;’w‘w:’/,
1]

y
A

A
—

o Big-theta notation: 1(n) € ®(g(n))

doesn't
matter

|
|
|
|
|
|
|
|
I
|
I » N
Ny v

For example, let us prove that 2n(n — 1) € @(n?). First, we prove the right
inequality (the upper bound):
1 1, 1 1,

P I S
¥ Ly = i

2!! i 2 E

Second, we prove the left inequality (the lower bound):

1 1 1 1

5 1 1, 11 1,
—nn—1)=-n"——-n>—-n"——-n—-n (foralln =>2)=—n".
2 i 2 2 22 4
Hence, we can select ¢, = % ;= % and np;=2
Example: n’+5n+7= ®(n2)
Whenn > 1, Thus, whenn > 1
n? 4 5n 4+ 7 < n® 4+ 5n® 4 Tn? < 13n? in2<n?45n+7<13n2
Whenn > 0, Thus, we have shown that n? +5n + 7 = O('.'12}
_ (by definition of Big-O, withng = 1, ¢; = 1, and
n?<n?Lom+7T @y: 13) &

Strategies for Q and 0

¢ Proving that a f(n) = (g(n)) often requires more thought.
— Quite often, we have to pick ¢ < 1.
— A good strategy is to pick a value of ¢ which you think will work, and determine
which value of ng is needed.
— Being able to do a little algebra helps.
— We can sometimes simplify by ignoring terms of f(n) with the positive
coefficients.

e The following theorem shows us that proving f(n) = ®(g(n)) is nothing new:
Theorem: f(n) = O(g(n)) if and only if f(n) = O(g(n)) and f(n) = Q(g(n)).

Thus, we just apply the previous two strategies.

Prerpared by Harivinod N www.techjourney.in Page|1.13

\
o5

X
s

.
UGS
£ >

g R

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction

s

y
(&
\

Show that %ng + 3n = O(n?)
|
Notice thatif n > 1, So

1 2 o 2 .2 2
57 +3n < —-n® +-3n =g

Thus.
Loy _ 2
3" + 3n =0(n")

-

Also, whenn =

> 0,
Lz Lz 42
5??- _En- mn

Show that (nlogn — 2n 4 13) = Q(nlogn)

Proof: We need to show that there exist positive

constants ¢ and 7 such that

0<enlogn <nlogn —2n+ 13 forall n > ny.

Since nlogn —2n <nlogn —2n+ 13,

we will instead show that
cnlogn < nlogn —2n,
which 1s equivalent to

2

e Tx7
T

- 1
& L

logn

If n > 8, then 2/(logn) < 2/3, and picking ¢ = 1/3
suffices. Thus if ¢ = 1/3 and ng = 8, then for all

n > ngy, we have

0<enlogn <nlogn—2n <nlogn—2n+ 13.

Thus (nlogn —2n 4+ 13) = Q(nlogn).

1, _
Sn +3n= Q(n?)

1 o 2
En“ + 3n = BO(n~)

Since %-11.2 +3n = O(n?) and %n?' +3n = Q(n?).

Prerpared by Harivinod N www.techjourney.in

Page|1.14

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction

Show that 1n2 — 3n = O(n?)

We need to find positive constants ¢y, ¢o, and ng
such that

1
l ~
0<en? < =n?—3n < con? forall n > ng
.d
Dividine hy n2 we oet
Dviding by n=, we get
1 3
N < e & — _ & pny
S O R >~ 2
2 n
o<1 holds forn > 10 and ¢, = 1/5
- Fa
1 29 - P -
5— ;J—l < e holdsforn = 10and cp = 1
Thus, if ¢4 = 1/5, o = 1, and ng = 10, then for
: J = ¥4 s
all m = 1nn
all n > ng,
2 1 2 2
0 < pame < L L eam arall m > n.
_“'.lft - LS L N _“‘.-Zl[AVFL CRAL VL /_f(U-
2
Thiie wwe have chovre tlant 102 90 (352
LILLUES WO LldVvVe SLIWVWVYIL Llcdl 2{!‘ I — _}'\H:)

3.4. Little Oh The function f(n) = o(g(n)) [i.e f of n is a little oh of g of n] if and only if

f(m)
lim——==0
n-w g(n)
Example: The function 3n 4+ 2 = o(n?) since lim,_, o 2252 3”” =0. In+

2 = o(nlogn). 3n+2 = o(nloglogn). 6 x 2" + n? = o(3"). 6 % 27 +n? =

o(2" logn). 3n+2 # o(n). 6*2" +n? # o(2").

For comparing the order of growth limit is used

. t(n)
lim =
n—00 g(n)

If the case-1 holds good in the above limit, we represent it by little-oh.

EXAMPLE 1 Compare the orders of growth of 31(n — 1) and n’. (This is one of
the examples we used at the beginning of this section to illustrate the definitions.)

a

0 implies that 7(n) has a smaller order of growth than g(n).
¢ 1implies that ¢ (n) has the same order of growth as g(n),
oo 1mplies that 7(n) has a larger order of growth than g(n).-

1 ; 1

oozm-0 1 npt—m 1. . 1 1

nmmn ———— — — 1 5 =.— M0 (L —=—)}=—x

n—»o0 n2 2n—=00 p 2 A= n 2
[G RS St [y P T T o e N S L o Cuo L. R
SICE e 11 Ill Ib tf'..{udi ioa PUblll\"tf CUTISLALIL, LIIC TUNCLIULS HAdVE LT Sedllle UTUCT
of growth or, symbolically. 7:!{;! —1) e B@). |
Prerpared by Harivinod N www.techjourney.in Page|1.15

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction

EXAMPLE 2 Compare the orders of growth of log, n and /. (Unlike Exam-
ple 1, the answer here is not immediately obvious.)

n—od

logy n
== = lim
\-"” Hi—= 00

_ (log; n) _

log, e) L
lim (52]u

N n—00 1

=2logy e ﬁlim Ly ={.
2/n

—»ooﬁ

Since the limit is equal to zero, log, n has asmaller order of growth than /. (Since

Im]n—» 0c

logy n

7

=0, we can use the so-called little-oh notation: log, n € o(y/n).

Unlike the big-Oh. the little-oh notation is rarely used in analysis of algorithms.)

3.5. Basic asymptotic Efficiency Classes

Class

Name

Comments

[u—

i

nlogn

n

5]

.

constani

linear

linearithmic

quadratic

cubic

exponential

factorial

1

o
@]
(@]
5
-
i
=
-\.:_./ f
Z 13
2
=
(@]
—F
=
o]
—
]
=}
s
=]
o
=
=
ot

of 1t: any algorithm that does so will have at least linear
running time.,

Algorithms that scan a list of sizc n (c.g., scquential
search) belong to this class.

Many divide-and-conquer algorithms (see Chapter 5),
including mergesort and quicksort in the average case,
fall into this category.

Typically, characterizes efficiency of algorithms with
two cmbedded loops (sce the next scetion). Elemen-
tary sorting algorithms and certain operationsonn x n
matrices are standard examples.

‘lypically, characterizes etficiency of algorithms with
threc ecmbedded loops (sce the next scetion). Scveral
nontrivial algorithms from linear algebra fall into this
class.

Typical for algorithms that generate all subsets of an
n-element set. Often, the term “exponential™ 1s used
in a broader sensc to include this and larger orders of
growth as well.

Typical for algorithms that generate all permutations
of an n-element set.

Prerpared by Harivinod N

www.techjourney.in Page|1.16

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

3.6. Mathematical Analysis of Non-recursive & Recursive Algorithms

Analysis of Non-recursive Algorithms

General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.

2. Identify the algorithm’s basic operation. (As a rule, it is located in innermost loop.)

3. Check whether the number of times the basic operation is executed depends only on
the size of an input. If it also depends on some additional property, the worst-case,
average-case, and, if necessary, best-case efficiencies have to be investigated
separately.

4. Set up a sum expressing the number of times the algorithm’s basic operation is
executed.

5. Using standard formulas and rules of sum manipulation, either find a closedform
formula for the count or, at the very least, establish its order of growth.

Example-1: To find maximum element in the given array

T Y at AzezmnZan n o
R e SRR 80 Lwh)

e e Prrves

/input: An array A{0..n — 1] of rcai numbcrs

//Output: The value of the largest element in A

maxval < A[0Q]

fori < 1ton—1do
if Ali]> maxval

Ali

1
]

PP R TRy
TG UGLE S o

return maxval
Here comparison is the basic operation.

Note that number of comparisions will be same for all arrays of size n. Therefore, no need to
distinguish worst, best and average cases.

(R

-~

71—

Cin) =Z l=n—-1€O(n).

Total number of basic operations (comparison) are,
i=l1

Example-2: To check whether all the elements in the given array are distinct

Algorithm UniqueFElements(A[0..n — 1))
//Determines whether all the elements in a given array are distinct
//Input: An array A[0.n — 1]
//Oulput: Returns “true™ il all the elements in A are distinct
I and “false” otherwise
fori < 0ton —2do

for j <« i+ 1ton—1do

if Ali|= A[j]return false

return true

Prerpared by Harivinod N www.techjourney.in Page|1.17

'/‘ Sy 2
@,%éﬁ? Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D “

Here basic operation is comparison. The maximum no. of comparisons happen in the worst
case. (i.e. all the elements in the array are distinct and algorithms return true).

Total number of basic operations (comparison) in the worst case are,

n—2 n—l1 n—2 n—2

C.u.:orsr(”) — Z Z Y= ZI(” == 1) == (l' + 1) + 1]= Z(H —1- !)
i=0 j=i+1 i=0 i=0

n—2

= n—2
:Z(”_I)—Zi:(n _1)21_ (II—2;(,*;_ 1)

i=0 i=0 i=0

p—

(n — 2?(1? —1) _ (n —Dn ~nle G)(nz).

=(n—1)7%—
(=1 2 >

[Re]

) 1) !
Other than the worst case, the total comparisons are less than Enz. (For example if the first

two elements of the array are equal, only one comparison is computed). So in general C(n)
=0(n’)

Example-3: To perform matrix multiplication

Algorithm MatrixMultiplication(A[0..n — 1, 0..n — 1], B[0..n — 1, 0..n — 1])
/[/Multiplies two square matrices of order n by the definition-based algorithm
[Mnput: Two n x n matrices A and B
[{Output: Matrix C = AB
fori < Oton —1do

for j < Oton—1do
Cli, j] < 0.0
fork <~ Oton — ldo
Cli, jl < Cli, j]1+ Ali, k] % Blk, j]

return C
Number of basic operations n—1na—1n-1 n—1n-1 n—1
- 3
(multiplications) is Min)= Z Z Z l = E Z n= Z n’=n".
i—0 j—0 k-0 i—0 j-0 i—0
3

T(”) a CmM(n) = (N

Total running time:

Suppose if we take into account of addition; Algoritham also have same number of additions
An)=n’

Total running time: T'(n) ~ ¢,, M (n) + c,A(n) = cmnS + Cﬂn3 = (¢ + c)n’,

Prerpared by Harivinod N www.techjourney.in Page|1.18

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

Example-4: To count the bits in the binary representation
Algorithm Binary(n)
//input: A positive decimal integer n
[fOutput: The number of binary digits in x#'s binary representation
count < 1
while n = 1 do
counl <—couni + l
i< [i/2]

return count

The basic operation is count=count + 1 repeats [log n] + 1o, of times

Analysis of Recursive Algorithms

General plan for analyzing the time efficiency of recursive algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.

2. Identify the algorithm’s basic operation.

3. Check whether the number of times the basic operation is executed can vary on
different inputs of the same size; if it can, the worst-case, average-case, and best-case
efficiencies must be investigated separately. Set up a recurrence relation, with an
appropriate initial condition, for the number of times the basic operation is executed.

4. Solve the recurrence or, at least, ascertain the order of growth of its solution.

\
ative integer n. Since

|
—
—_
=
i
—
—
~
-
|
—
-~
i
[y
—
~
-
P
@]
=1
i
=
v
ik

and 0!'=1 by definition, we can compute F(n) = F(n — 1) - n with the following
) L 1-

Since the function F(n) is computed according to the formula
Fmy=Fn-1)-n forn=0,

The number of multiplications M(n) needed to compute it must satisfy the equality

Mn)=Mmn-1) + 1 forn > 0.
to compute to multiply
F(n—1) F(n—1) by n

Prerpared by Harivinod N www.techjourney.in Page|1.19

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

Such equations are called recurrence Relations

Condition that makes the algorithm stop if n = 0 return 1. Thus recurrence relation and
initial condition for the algorithm’s number of multiplications M(n) can be stated as

Mn)y=Mmn-—-1)+1 forn>0,
M) =0.
We can use backward substitutions method to solve this
Mn)y=Mmn -1 +1 substitute M(n — 1) =M(n —2) + 1
=[Mn—-2)+1]+1=Mmn—2)+2 substitute M(n —2)=Mn —3)+1
=[Mn-=3)+1]|4+2=M(n—3)+3.

=Mn-—-i)+i=---=Mmn—n)+n=n.

Example-2: Tower of Hanoi puzzle. In this puzzle, There are n disks of different sizes that
can slide onto any of three pegs. Initially, all the disks are on the first peg in order of size, the
largest on the bottom and the smallest on top. The goal is to move all the disks to the third
peg, using the second one as an auxiliary, if necessary. We can move only one disk at a time,
and it is forbidden to place a larger disk on top of a smaller one.

The problem has an elegant recursive solution, which is illustrated in Figure.

e To move n>1 disks from peg 1 to peg 3 (with peg 2 as auxiliary),
o we first move recursively n-1 disks from peg 1 to peg 2 (with peg 3 as auxiliary),
o then move the largest disk directly from peg 1 to peg 3, and,
o finally, move recursively n-1 disks from peg 2 to peg 3 (using peg 1 as auxiliary).
e Ifn=1, we move the single disk directly from the source peg to the destination peg.

Figure: Recursive solution to the Tower of Hanoi puzzle
The number of moves M(n) depends only on n. The recurrence equation is

Mny=Mn—-1)+1+Mn—-1) forn> 1

We have the following recurrence relation for the number of moves M(n):
Mn)=2Mn—-—1+1 forn>1

M(l) =1

Prerpared by Harivinod N www.techjourney.in Page|1.20

@%iéé? Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D “

We solve this recurrence by the same method of backward substitutions:
M(n)=2Mn —1)+1 sub. M(n — 1) =2Mn —2)+ 1
=22M(n —2) + 1]+ 1=22Mn -2)+2+1 sub. M(n —2)=2M»n —3) +1
=22M(n=3)+1]+2+1=2Mmn-3)+22+2+1.

The pattern of the first three sums on the left suggests that the next one will be

2*M(n-4)+2°+2>+2+1, and generally, after i substitutions, we get

M) =2Mmn—-i)+2F 142124 .42+ 1=2Mmn—-i)+2 -1

Since the initial condition is specified for n = 1, which is achieved for i = n - 1, we get the
following formula for the solution to recurrence,

M) =2""Mn—mn—-1)+2"1-1
. ZH_IKW[]_J +2H—1 - 2:;—1 +2n—l —1=2"_

Alternatively, by counting the number of nodes in the tree obtained by recursive calls, we
can get the total number of calls made by the Tower of Hanoi algorithm:

n—1
(1) — \ 9! (where Fix ke levelin
Cin) } = (where s the level

the tree 1in Fionire Y ="2" _ 1
in the tree 1n rigure) =2 1
=0
n-1 n-1
VRN PN
N ~ ™~
n-2 n-2 n-2 n-2

SN N NN

Figure: Tree of recursive calls made by the recursive algorithm for the Tower of Hanoi
puzzle.
Example-3
ALGORITHM BinRec(n)

/Mnput: A positive decimal integer n
//Output: The number of binary digits in n’s binary representation

The recurrence relation can be written as
An)=A(n/2])+1 forn>1,
Also note that A(1) =0.

Prerpared by Harivinod N www.techjourney.in Page|1.21

\

“7;:;
S

¥

i \%ﬁ}

—_ g

T

G

¥
g

Ty
uas

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D “

2

y
L S

y

The standard approach to solving such a recurrence is to solve it only for n = 2" and then
take advantage of the theorem called the smoothness rule which claims that under very
broad assumptions the order of growth observed for n = 2* gives a correct answer about the

order of growth for all values of n. i - _
A@H =42 +1 fork>0,

ACYH =D,

Now backward substitutions encounter no problems:
AQH =A@ +1 substitute A2F1) = A2F2) +1
= [AC* + 1]+ 1=A42"?) +2 substitute AQ*?) = A") +1
=[AQ¥H +1]+2=42*) +3

=AQ") +i

= AR) + k.
Thus. we end up with

YV — AT L — -
J = AlL) TR =i,
or, after returning to the original variabie n = 2* and hence k = log, n,

A(n) =log, n € ©(log n).

Prerpared by Harivinod N www.techjourney.in Page|1.22

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

4. Important Problem Types

In this section, we are going to introduce the most important problem types: Sorting,
Searching, String processing, Graph problems, Combinatorial problems.

4.1. Sorting

The sorting problem is to rearrange the items of a given list in non-decreasing order. As a
practical matter, we usually need to sort lists of numbers, characters from an alphabet or
character strings.

Although some algorithms are indeed better than others, there is no algorithm that would be
the best solution in all situations. Some of the algorithms are simple but relatively slow, while
others are faster but more complex; some work better on randomly ordered inputs, while
others do better on almost-sorted lists; some are suitable only for lists residing in the fast
memory, while others can be adapted for sorting large files stored on a disk; and so on.

Two properties of sorting algorithms deserve special mention. A sorting algorithm is called
stable if it preserves the relative order of any two equal elements in its input. The second
notable feature of a sorting algorithm is the amount of extra memory the algorithm requires.
An algorithm is said to be in-place if it does not require extra memory, except, possibly, for a
few memory units.

4.2. Searching

The searching problem deals with finding a given value, called a search key, in a given set.
(or a multiset, which permits several elements to have the same value). There are plenty of
searching algorithms to choose from. They range from the straightforward sequential search
to a spectacularly efficient but limited binary search and algorithms based on representing
the underlying set in a different form more conducive to searching. The latter algorithms are
of particular importance for real-world applications because they are indispensable for storing
and retrieving information from large databases.

4.3. String Processing

In recent decades, the rapid proliferation of applications dealing with non-numerical data has
intensified the interest of researchers and computing practitioners in string-handling
algorithms. A string is a sequence of characters from an alphabet. String-processing
algorithms have been important for computer science in conjunction with computer
languages and compiling issues.

4.4. Graph Problems

One of the oldest and most interesting areas in algorithmics is graph algorithms. Informally, a
graph can be thought of as a collection of points called vertices, some of which are connected
by line segments called edges. Graphs can be used for modeling a wide variety of
applications, including transportation, communication, social and economic networks, project
scheduling, and games. Studying different technical and social aspects of the Internet in

Prerpared by Harivinod N www.techjourney.in Page|1.23

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

particular is one of the active areas of current research involving computer scientists,
economists, and social scientists.

4.5. Combinatorial Problems

Generally speaking, combinatorial problems are the most difficult problems in computing,
from both a theoretical and practical standpoint. Their difficulty stems from the following
facts. First, the number of combinatorial objects typically grows extremely fast with a
problem’s size, reaching unimaginable magnitudes even for moderate-sized instances.
Second, there are no known algorithms for solving most such problems exactly in an
acceptable amount of time.

5. Fundamental Data Structures

Since the vast majority of algorithms of interest operate on data, particular ways of
organizing data play a critical role in the design and analysis of algorithms. A data structure
can be defined as a particular scheme of organizing related data items.

5.1. Linear Data Structures
The two most important elementary data structures are the array and the linked list.

A (one-dimensional) array is a sequence of n items of the same data type that are stored
contiguously in computer memory and made accessible by specifying a value of the array’s

index.
Item [0] Item [1] ce Item [n-1]

Array of n elements.

A linked list is a sequence of zero or more elements called nodes, each containing two kinds
of information: some data and one or more links called pointers to other nodes of the linked
list. In a singly linked list, each node except the last one contains a single pointer to the next
element. Another extension is the structure called the doubly linked list, in which every
node, except the first and the last, contains pointers to both its successor and its predecessor.

——» JtemO . » Jtem ~—t—3 . . . ——p item n-1 |null

FIGURE 1.4 Sirgly linked list of n elaments.

—>{null| ftam 0 ftem 1 < T 4 | o |tem n=1|null

F'y

FIGURE 1.5 Doubly linked list of n elements.

A list is a finite sequence of data items, i.e., a collection of data items arranged in a certain
linear order. The basic operations performed on this data structure are searching for,

Prerpared by Harivinod N www.techjourney.in Page|1.24

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

inserting, and deleting an element. Two special types of lists, stacks and queues, are
particularly important.

A stack is a list in which insertions and deletions can be done only at the end. This end is
called the top because a stack is usually visualized not horizontally but vertically—akin to a
stack of plates whose “operations” it mimics very closely.

A queue, on the other hand, is a list from which elements are deleted from one end of the
structure, called the front (this operation is called dequeue), and new elements are added to
the other end, called the rear (this operation is called enqueue). Consequently, a queue
operates in a “first-in—first-out” (FIFO) fashion—akin to a queue of customers served by a
single teller in a bank. Queues also have many important applications, including several
algorithms for graph problems.

Many important applications require selection of an item of the highest priority among a
dynamically changing set of candidates. A data structure that seeks to satisfy the needs of
such applications is called a priority queue. A priority queue is a collection of data items
from a totally ordered universe (most often, integer or real numbers). The principal
operations on a priority queue are finding its largest element, deleting its largest element, and
adding a new element.

5.2. Graphs

A graph is informally thought of as a collection of points in the plane called “vertices” or

2

nodes,” some of them connected by line segments called “edges” or “arcs.” A graph G is

called undirected if every edge in it is undirected. A graph whose every edge is directed is
called directed. Directed graphs are also called digraphs.

The graph depicted in Figure (a) has six vertices and seven undirected edges:
V={ab,c,d,e f},E={(a,c),(ad),Dd,c),b,f)(,e),(de),e,)}
The digraph depicted in Figure 1.6b has six vertices and eight directed edges:
V={ab,c,d e f},E={(,c),(b,c), D), (,e),(d,a),(d,e),(ec), ()}

F5 R R 5 S =
) KE)) @‘,f D \fli)-
(\
\ |
N N N s v/ N
@) & & G, \&))
(a) (b)

(a) Undirected graph. (b) Digraph.

Graph Representations - Graphs for computer algorithms are usually represented in one of
two ways: the adjacency matrix and adjacency lists.

The adjacency matrix of a graph with n vertices is an n x n boolean matrix with one row

and one column for each of the graph’s vertices, in which the element in the i row and the "

Prerpared by Harivinod N www.techjourney.in Page|1.25

>
3
S,

e

T
e

W

i

T - - - -
Lect Not 15CS43-D & Anal f Al th Module 1: Introduct
) ecture Notes | esign & Analysis of Algorithms | Module 1: Introduction D M

2

IOl
e

—_ g

k)

y
/

column is equal to 1 if there is an edge from the i"™ vertex to the jth vertex, and equal to O if

there is no such edge.

The adjacency lists of a graph or a digraph is a collection of linked lists, one for each vertex,

that contain all the vertices adjacent to the list’s vertex (i.e., all the vertices connected to it by

an edge).
a b c d e f
alo 01 1 0 07 al—= ¢ — d
b|0 01 0 0 1 b|l—= ¢ — f
c|l1 1001 0 c|l—- a - b — e
dal1l 0 0 0 1 0 d|l— a — e
e |0 0 1T 1 0 1 e|l—» ¢ — d — f
flLe 10 0 1 0 f1l—= b — e
(a) (b)

GURE 1.7 (a) Adjacency matrix and (b} adjacency lists of the graph in Figure

Weighted Graphs: A weighted graph (or weighted digraph) is a graph (or digraph) with
numbers assigned to its edges. These numbers are called weights or costs.

Among the many properties of graphs, two are important for a great number of applications:
connectivity and acyclicity. Both are based on the notion of a path. A path from vertex u to
vertex v of a graph G can be defined as a sequence of adjacent (connected by an edge)
vertices that starts with u and ends with v.

3 h c s

R = 5
@)—{5} 3|700 B 9 D¢—| a| =-bb=cl
T . gl ¥ IS [= . e ST =
1 s ol il b|—=33b=3¢7 304
i | s 1 7 e 2 & | =1 b7l <P
(o ./.f-".]] A 7 fs] - e R]
R 2 L bty o |_ A J - —F g L L

(a) (b) (©)

(a) Weighted grapk. (b) s weight matrix. (z) I1s ad azency lists.

A graph is said to be connected if for every pair of its vertices u and v there is a path from u
to v. Graphs with several connected components do happen in real-world applications. It is
important to know for many applications whether or not a graph under consideration has
cycles. A cycle is a path of a positive length that starts and ends at the same vertex and does
not traverse the same edge more than once.

5.3. Trees

A tree (more accurately, a free tree) is a connected acyclic graph. A graph that has no cycles
but is not necessarily connected is called a forest: each of its connected components is a tree.
Trees have several important properties other graphs do not have. In particular, the number of
edges in a tree is always one less than the number of its vertices: |[E| = |V] - 1

Prerpared by Harivinod N www.techjourney.in Page|1.26

T
VL
B ¥
A
i

- @R Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction
z@.j\% VoS l g y & I DM
N I o o PN
(f/ _) I\f:‘|,/1 \?JI %/J
(c—— e (u) (&) (i)
_.A'\ e L — R A
N | | |
AN | | |
FEN gt 'y o T
(—9) (9 (1)

(a) (b)
{2) Tree (M) Forest

Rooted Trees: Another very important property of trees is the fact that for every two vertices
in a tree, there always exists exactly one simple path from one of these vertices to the other.
This property makes it possible to select an arbitrary vertex in a free tree and consider it as
the root of the so-called rooted tree. A rooted tree is usually depicted by placing its root on
the top (level O of the tree), the vertices adjacent to the root below it (level 1), the vertices
two edges apart from the root still below (level 2), and so on.

Y ¢
W '\ED P
Il] /Af_,a'\’
I S o g o
OSRONNG
- . — — \L_
PP Py e = ‘s
»Hj_h A \ _g_/] l\ ! /‘I [_ _/I \ _Jl_,:l
(a) (b}

(al Free tree. (b} lts ransformation into a rcotad tree.

The depth of a vertex v is the length of the simple path from the root to v. The height of a
tree is the length of the longest simple path from the root to a leaf.

Ordered Trees- An ordered tree is a rooted tree in which all the children of each vertex are
ordered. It is convenient to assume that in a tree’s diagram, all the children are ordered left to
right. A binary tree can be defined as an ordered tree in which every vertex has no more than
two children and each child is designated as either a left child or a right child of its parent; a
binary tree may also be empty.

If a number assigned to each parental vertex is larger than all the numbers in its left subtree
and smaller than all the numbers in its right subtree. Such trees are called binary search
trees. Binary trees and binary search . .

trees have a wide variety of A //*\9‘\

- -
N r’ ~
)

i

5) T2

applications in computer science. (Jd 1@ 5 ?)
r’/ \“\ \/\ r\/ o f\/\
'\h-lx/ L ! /'l K-lx\ I'\/'I R

D .

L.
- =/

(a) (b)

™

2 (a) Binary tree. (b) Binary search tree.

Prerpared by Harivinod N www.techjourney.in Page|1.27

Lecture Notes | 15CS43 - Design & Analysis of Algorithms | Module 1: Introduction D M

5.4. Sets and Dictionaries

A set can be described as an unordered collection (possibly empty) of distinct items called
elements of the set. A specific set is defined either by an explicit listing of its elements (e.g.,
S ={2, 3,5, 7}) or by specifying a property that all the set’s elements and only they must
satisfy (e.g., S = {n: n is a prime number smaller than 10}).

The most important set operations are: checking membership of a given item in a given set;
finding the union of two sets, which comprises all the elements in either or both of them; and
finding the intersection of two sets, which comprises all the common elements in the sets.

Sets can be implemented in computer applications in two ways. The first considers only sets
that are subsets of some large set U, called the universal set. If set U has n elements, then any
subset S of U can be represented by a bit string of size n, called a bit vector, in which the i
element is 1 if and only if the i"™ element of U is included in set S.

The second and more common way to represent a set for computing purposes is to use the list
structure to indicate the set’s elements. This is feasible only for finite sets. The requirement
for uniqueness is sometimes circumvented by the introduction of a multiset, or bag, an
unordered collection of items that are not necessarily distinct. Note that if a set is represented
by a list, depending on the application at hand, it might be worth maintaining the list in a
sorted order.

Dictionary: In computing, the operations we need to perform for a set or a multiset most
often are searching for a given item, adding a new item, and deleting an item from the
collection. A data structure that implements these three operations is called the dictionary.
An efficient implementation of a dictionary has to strike a compromise between the
efficiency of searching and the efficiencies of the other two operations. They range from an
unsophisticated use of arrays (sorted or not) to much more sophisticated techniques such as
hashing and balanced search trees.

A number of applications in computing require a dynamic partition of some n-element set
into a collection of disjoint subsets. After being initialized as a collection of n one-element
subsets, the collection is subjected to a sequence of intermixed union and search operations.
This problem is called the set union problem.

Hookseosk sk

Prerpared by Harivinod N www.techjourney.in Page|1.28

8 Vivekananda .
%ﬁ@ff College of Engineering & Technology ' %

Lecture Notes
on

15CS43
Design and Analysis of

Algorithms
(CBCS Scheme)

Prepared by
Mr. Harivinod N

Assistant Professor,
Dept. of Computer Science and Engineering,
VCET Puttur

Feb 2017

Module-2 : Divide and Conquer

Contents
General method

Recurrence equation

Algorithm: Binary search

Algorithm: Finding the maximum and minimum
Algorithm: Merge sort

Algorithm: Quick sort

Algorithm: Strassen’s matrix multiplication
Advantages and Disadvantages

e A ol S e

Decrease and Conquer Approach
10 Algorithm: Topological Sort

Course website: www.techjourney.in

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

1. General method:

Divide and Conquer is one of the best-known general algorithm design technique. It works
according to the following general plan:
¢ Given a function to compute on ‘n’ inputs the divide-and-conquer strategy suggests
splitting the inputs into ‘k’ distinct subsets, 1<k<=n, yielding ‘k’ sub problems.
¢ These sub problems must be solved, and then a method must be found to combine sub
solutions into a solution of the whole.
e If the sub problems are still relatively large, then the divide-and-conquer strategy can
possibly be reapplied.
e Often the sub problems resulting from a divide-and-conquer design are of the same
type as the original problem. For those cases the reapplication of the divide-and-
conquer principle is naturally expressed by a recursive algorithm.

A typical case with k=2 is diagrammatically shown below.

Problem i of size n
Sub Problem of size n/2 Sub Problem of size n/2

Solution to sub problem 1 Solution to sub problem 2

v v
v

Solution to the original problem

Control Abstraction for divide and conquer:
Algorithm DAndC(P)

if Small(P) then return S(P);
else

divide P into smaller instances Py, Ps,..., P, k > 1;
Apply DAndC to each of these subproblems;
return Combine(DAndC{P;),DAndC(F,),....DAndC(Fy));

}
}

In the above specification,

e Initially DAndC(P) is invoked, where ‘P’ is the problem to be solved.

e Small (P) is a Boolean-valued function that determines whether the input size is small
enough that the answer can be computed without splitting. If this so, the function ‘S’
is invoked. Otherwise, the problem P is divided into smaller sub problems. These sub
problems Py, P, ... Py are solved by recursive application of DAnrdC.

e Combine is a function that determines the solution to P using the solutions to the ‘k’
sub problems.

Prepared by Harivinod N www.techjourney.in Page| 2.2

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

2. Recurrence equation for Divide and Conquer:

If the size of problem ‘p’ is n and the sizes of the ‘k’ sub problems are nj, n;n,
respectively, then the computing time of divide and conquer is described by the recurrence

_ (n) n small
T(n) = { g’(m) +T(ng) +---+T(ng) + f(n) otliera\;rise

relation

Where,

e T(n) is the time for divide and conquer method on any input of size n and

® g(n) is the time to compute answer directly for small inputs.

¢ The function f(n) is the time for dividing the problem ‘p’ and combining the solutions
to sub problems.

For divide and conquer based algorithms that produce sub problems of the same type as the
original problem, it is very natural to first describe them by using recursion.

More generally, an instance of size n can be divided into b instances of size n/b, with a of
them needing to be solved. (Here, a and b are constants; a>=1 and b > 1.). Assuming that
size n is a power of b (i.e. n = b*), to simplify our analysis, we get the following recurrence
for the running time T(n):

T(1) -1 .. (1)
Tin) = { az(r(’n/b) L) ns 1

where f(n) is a function that accounts for the time spent on dividing the problem into smaller
ones and on combining their solutions.

Substitution Method - One of the methods for solving the recurrence relation is called the
substitution method. This method repeatedly makes substitution for each occurrence of the
function T in the right hand side until all such occurrences disappear.

Master Theorem - The efficiency analysis of many divide-and-conquer algorithms is greatly
simplified by the master theorem.

It states that, in recurrence equation T(n) = aT(n/b) + f (n), If f (n) €O (nd) where d > 0 then

O (n4) ifa < b9,
T(n)e§ @nvlogn) ifa=>h?,
O (n'o2) if a > b9,

Analogous results hold for the O and €2 notations, too.

For example, the recurrence for the number of additions A(n) made by the divide-and-

conquer sum-computation algorithm (see above) on inputs of size n = 2%is
Any=2An/2)+ 1.

Thus, for this example, a =2, b =2, and d = 0; hence, since a >bd,

An) € O = (1'°® %) = Om).

Prepared by Harivinod N www.techjourney.in Page| 2.3

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

Problems on Substitution method & Master theorem to solve the

recurrence relation

S Selwe b»o_l(owt\\xa_ NG urnturl s (ahov .

o, .
5 eyl o)
1227 T(Y=2 T("/2)+N,) Q‘g:m&u;jf}ié’bm mafisd
Goln) TCd= a TV +n.
= n = ATE)+
~afa TP ep] +n = ATE)TAN

=

(2T BT v 22T 4y

.‘« K i s“ s ‘& h
al Tcg?-i,\“\" in r ’ 3;

v Yhan WQ‘"{ wie
' 0) s :2(.04 n (..: ° __{\ch/‘
"FL.L MM{MUM V'M Y- ! 42 — =

n
&\03’“- T (—Qﬁ;ﬂ 1. i = ‘93,_”
= vt Fre 4 nlegn
= "‘2“7\"“(637:];

= 9 (nlegn)

—_—
Soluhon uvu‘w—x, WMoy feq theorem: |
Wew =2, b=2, HW)=n-= o(n') = d= |
Ao w&sm;ﬁ«mf a=b"
. A pa cose-2 of— o bei fuaorem.
T(n) = aﬁndyfogzn)
TCn) = 9Cn log n)

o —

Prepared by Harivinod N www.techjourney.in Page| 2.4

/i* et)
@%&?) Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer

Zﬁwﬁuﬁ%«f&‘

sz; Solve by subsbifuhlon awtuod,
Q=1 , b:&, () =c
Lol 2 prlny e T LY £C
- @) «CJ+c = TR +ac
,-\‘—(—(_K.y:c]-(-C" -r(“)-(vSC

N LA I (-
=T {57

Qo(j}_ Uj\v\g_ Mg feq Fueo A

i K g(egln.

Hue b2, Y =c=80) < 8(n°).
= d=0,
A a=bd 1= a_f 002 e o fee Teammern W)
applieol
T{n)= © (n"h l@ﬂg)
'T_Cf\) gy (9‘3;‘”5 ;
Prepared by Harivinod N www.techjourney.in Page| 2.5

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer

2.3 Celwd Swourunes s lohlon

N3 |
W cL:lQ(b=&, &C")':CY\ %

| \ |
Colyr T(M= -T(P) ¢ = &(}~T(—q)+¢g+cn

‘ M e
= lp- T(%)+Q.cnoQ£1T(K)%C2_}+Qm
- g.T(%\—\-'}CH

[

Gt A \L ren U A& Ste)
= R '\&fj

!/

", log," n
= &\63 X -—r <.:L.Ts_%-n\ _\, ‘QJJ\\ ¢« N
Lo T ented)
Aowa gy TC() =k (Sown Cowo ot

W) = c.nlogn &N
= O Qh (Gg,_Vl)

——

Goln_Uivg mas by, Tueoxem
=3
W, a2 b= Hn) =
‘ $eo um
dew a=6t (a=2] Cane-2- % oy Fed

Ch = 9(“3 o 8(“‘) —‘:><{:‘

T(n) = g nd tog")
':_—8(.'(\ ,(@33’\‘)

—

Prepared by Harivinod N

www.techjourney.in

Page| 2.6

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer

99/3"/ Selve. T = 4 T ¢4nb . 133

h powecdt 3

Sy TEW= T () el c
2 LT () 4 (B)] 4
AN . nb
=gt T(R) 4 "‘_‘f’;-é-*‘f’

LLF L B

3" T((+3Lr)t‘°”

!

" - ’J*‘ ok
'V\ ; . ‘
= 3*‘ ‘ (g"z} #)<.h \

Y

= "

-—
e

6 . JLIg(egn
39“.T(,-;\’."‘)+\Ch # 3

— Q ‘013“ (194 Y)) +)<né

Q
- 2% g®R (0 N
s vwdie TCY 3 wustout €
G
¥ ClC N _l,. len

=g’ Cnf)

Prepared by Harivinod N www.techjourney.in

Page| 2.7

/i* STES
g& Lecture Notes 10CS43 - DAA || Module 2: Divide and Conquer
A2 I I a DAA

O Se(\&& TCV‘) 9T (‘_,.X—kl
oy Ty =2 {2 Tl = 4 (L) 4 (a¢ 1)

=y [aT®) + T+ @+)
8 T 4 Eleesl

1)
1Y

. n § \\.—l &"‘2 X \)
= Q‘TC .El..l\ . (9 of .
1Y ; (IS\G‘}Q
A" () +)

- N CT() * &‘”n" |

MUMV} TCO=|
= A=l
=an-!
?___ﬁ
~ o)

F =

L |

Soln \)sw-(qr Mo\om Juam v m

2 e
a=2,b=2, b wplryes BCn) = d=o,

§wue, CL>£!4 (&)&) / Cor-3 W d“”uwﬂ

+eny = §(')
= ¢ (n"¥)
=g (n)

Prepared by Harivinod N www.techjourney.in Page| 2.8

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

@ selve Ty =T(L)+n

Ty = TE AN
A
= L] ¥ 0
- "
- T(%B*%*'{*’n

__r.\._l @)
ow TLRT e B
e - (ratr 2t
ekt
e (10 v a'=2'=)
L T T

Prepared by Harivinod N www.techjourney.in Page| 2.9

T
RS

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

3. Binary Search

Problem definition: Let a;, 1 <1< n be a list of elements that are sorted in non-decreasing
order. The problem is to find whether a given element x is present in the list or not. If x is
present we have to determine a value j (element’s position) such that a;=x. If x is not in the
list, then j is set to zero.

Solution: Let P = (n, a;...a;, X) denote an arbitrary instance of search problem where n is the
number of elements in the list, a;...a; is the list of elements and x is the key element to be
searched for in the given list. Binary search on the list is done as follows:

Step 1: Pick an index ¢ in the middle range [i, /] i.e. g=|(n + 1) /2] and compare x with aq.
Step 2: if x = a4 1.e key element is equal to mid element, the problem is immediately solved.

Step 3: if x < aqin this case x has to be searched for only in the sub-list a; aj41, ..., ag.1.
Therefore problem reduces to (q-i, aj...a4.1, X).

Step 4: if X > aq, x has to be searched for only in the sub-list a1, .. a;. Therefore problem
reduces to (I-i, ag+1...as X).

For the above solution procedure, the Algorithm can be implemented as recursive or non-
recursive algorithm.

Recursive binary search algorithm

Iterative binary search:

Prepared by Harivinod N www.techjourney.in Page| 2.10

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

.

Y

) PR, I T ot i cmlant tha 14 aeiclinc
LxalllpNe el U »Clecy LNne 14 Ciiries
iR &8 0OV 7 O 9% B4 {9 101 119 195 1727 1492 151
13, =70, Uy, {4 0, &0, 07, 04y 1UL, 114, 149, 1oL, 144,
| S | IR 141 . | I DR IR T MR o DAY d
nDlace them 1m gl ;o 141, ana sunulate the steps that Sindearcg '0CS :
place them in gl @ 14, and simulate the steps that BinSearch goes through
. 5 o 1o | o ~ 3 s . a3 .
- Th f ey t val f Oiniv th wiahi
45 1t sEarcnes 1o Qilereilt vaiues oI F. VY e Varianies lO'U), h%gh, and
” n 7 1 . 1 4 g 1 oo N 1' 1 /i | . 1 I | TET 1 h f ll :
g 1eed to be fraced as we simulate the algorignm. we {ry the following
wraliiac fan g TR 1A and O fan turn grieracofiil caavoahag ond
VALles 101 r! 1J1, — 14, 4l J 10T tW0 SUCCEessIiil searcnes ana one unsuccessful
1 rm_ 11 1 I | : Uil e R [} 11 L1 :
searclhr. lable shows the traces of Bin>earch on these three inputs. a
=101 low high wmid z=-14 low high mid
1 14 rd 1 14 =
| [3 i 1 1T i
8 14 11 1 6 3
11 oA 10 1 Y a
12 14 i3 i P i
14 14 14 2 2 2
tound 2 1 not found
r=9 low high mid
1 14 7
1 6 3
4 6 5
found

Analysis

In binary search the basic operation is key comparison. Binary Search can be analyzed with
the best, worst, and average case number of comparisons. The numbers of comparisons for
the recursive and iterative versions of Binary Search are the same, if comparison counting is
relaxed slightly. For Recursive Binary Search, count each pass through the if-then-else block
as one comparison. For Iterative Binary Search, count each pass through the while block as

one comparison. Let us find out how many such key comparison does the algorithm make on
an array of n elements.

Best case — @(1) In the best case, the key is the middle in the array. A constant number of
comparisons (actually just 1) are required.

Prepared by Harivinod N www.techjourney.in Page| 2.11

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

Worst case - O(log, n) In the worst case, the key does not exist in the array at all. Through
each recursion or iteration of Binary Search, the size of the admissible range is halved. This
halving can be done ceiling (log, n) times. Thus, [log, n | comparisons are required.

Sometimes, in case of the successful search, it may take maximum number of comparisons.
[log, n]. So worst case complexity of successful binary search is ® (log; n).

Average case - O (log, n) To find the average case, take the sum of the product of number of
comparisons required to find each element and the probability of searching for that element.
To simplify the analysis, assume that no item which is not in array will be searched for, and
that the probabilities of searching for each element are uniform.

How to compute Average case complexity?

Space Complexity - The space requirements for the recursive and iterative versions of binary
search are different. Iterative Binary Search requires only a constant amount of space, while
Recursive Binary Search requires space proportional to the number of comparisons to
maintain the recursion stack.

Advantages: Efficient on very big list, Can be implemented iteratively/recursively.

Limitations:
e Interacts poorly with the memory hierarchy
e Requires sorted list as an input

¢ Due to random access of list element, needs arrays instead of linked list.

Prepared by Harivinod N www.techjourney.in Page| 2.12

P AN
ng Z%
E%&%ﬁ) Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer n“

4. Finding the maximum and minimum

Problem statement: Given a list of n elements, the problem is to find the maximum and
minimum items.

StraightMaxMin: A simple and straight forward algorithm to achieve this is given below.

void StraightMaxMin(Type al[], int n, Type& max, Type& min)
// Set max to the maximum and min to the minimum of a[1:n]

{
max = min = a[l];
for (int i=2; i<=n; i++) {
if (alil] > max) max = a[i];
if (ali] < min) min = a[i];

Il

),

Explanation:
» StraightMaxMin requires 2(n-1) comparisons in the best, average & worst cases.
= By realizing the comparison of a[i]>max is false, improvement in a algorithm can be

done. Hence we can replace the contents of the for loop by,
If (a[i]>Max) then Max = a[i]; Else if (a[i]l< min) min=a[i]

* On the average a[i] is > max half the time. So, the avg. no. of comparison is 3n/2-1.

Algorithm based on Divide and Conquer strategy

Let P =(n, a [i],...... ,a [j]) denote an arbitrary instance of the problem. Here ‘n’ is the no. of
elements in the list (a[i],....,a[j]) and we are interested in finding the maximum and minimum
of the list. If the list has more than 2 elements, P has to be divided into smaller instances.

For example, we might divide ‘P’ into the 2 instances,
P1=([n/2],a[1],........ a[n/2])
P2= (n-[n/2], a[[n/2]+1]......, a[n])

After having divided ‘P’ into 2 smaller sub problems, we can solve them by recursively
invoking the same divide-and-conquer algorithm.

Algorithm:

void MaxMin(int i, int j, Type& max, Type& min)
// al1:n] is a global array. Parameters i and j are
// integers, 1 <= i <= j <= n. The effect is to set
// max and min to the largest and smallest values in
é/ afbi:jl, respectively.
if (1 == j) max = min = a[il]; // Small(P)
else if (i == j-1) { // Another case of Small(P)
if (ali] < aljl) { max = a[j]; min = ali]s }
else { max = alil; min = a[j]; } ,

nu

J

Prepared by Harivinod N www.techjourney.in Page| 2.13

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

else { // If P is not small
// divide P into subproblems.
// Find where to split the set.
int mid=(i+j)/2; Type max1l, min{:
// Solve the subproblems. ’
MaxMin(i, mid, max, min);
MaxMin(mid+1, j, maxl, minil);
// Combine the solutionms.
if (max < maxl) max = maxi;
if (min > minl) min = mini;

Example:
Suppose we simulate MaxMin on the following nine elements:

a: 1] 2] 3] [4 [5] [6] [7] (8] [9]
22 13 -5 -8 15 60 17 31 47

A good way of keeping track of recursive calls is to build a tree by adding a
node each time a new call is made. For this algorithm each node has four
items of information: ¢, j, maz, and min. On the array a[] above, the tree

of recursive calls of MaxMin is as follows

QAN W
W7 sV, O
/ \
78 e T 78N
\~/ P T \Q)
Ny ~— S
15727 _% 606017
L’J’AA’, A U’/,U ’1 i
- ~ P ~
o~ -~ ~ T ey ~ ~~ oy
{4 ~ ~ @4 €3))] ~ ~~ N
Ao/ e e L/ \>/ gl . NS/
e 2z R e — £ BN e
1.3.22 -5 4.5.15-% 6.7.60.17 804731
14Dy Lly—2 Tedy L ST (UL UV PS § G, 7,5 /01
~ ™~
AN, — ™~ a
(1) ~ ~~ A
N2/ = ~y T/
1~ A~ 11 AN m -
1. 2. 2213 A3.3.-5.-5
lyfy,fL,20 [O.PY0 Panib e

Analysis - Time Complexity
Now what is the number of element comparisons needed for MaxMin? If
T(n) represents this number, then the resulting recurrence relation is

T([n/2]) + T([n/2]) +2 n>2

T(n) = 1 n =2
0 n=1

Prepared by Harivinod N www.techjourney.in Page| 2.14

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

. ~ . .
Whaon » 1 a nawor nf fwn » — 9% far cnmo nacitive 1nfoocor k tllen
¥y 11 11 v LYy o ‘_[JUVV\JL \U S U'VU’ T = e AV SRS VA F N AW tI\JULUL ¥ 111 U\/ A\ § b]
I ali AY Y ali [F N Y
oy - iU 7Y T
A \ID/] b et A \‘fU‘,’ et} 1 d
YD Tyl y AU AN |
e ZlzZiinial + 21+ 24
\ AR / ! 7 !
e el ioaN . o
—_ A F i fA4YV 1L A 1 %)
- = & \\IB’I “.I:’.f x =
ak—imsroy + T Y]
- A I 1/1 4 3 PR A
~ L NS=) T <<k —1 =
ak_1 Y s o T o Ia Fay
- VAR A Y e) o A —)
_— s] td d U e
{
Nato ihat e /9 I 1a the heoat DIOT D LFO nriAd warctosnaon b f
LYV LlldLu U’(/’IH 7 2N NS I R N A) UUDUE, (.IJV\/J.(,LE.’)U_: Qulill WULOUT L duow num er O Com"
‘ 1 s n o,
NariQaane whan M 19 nawayr Nt rurn
FAOLL LIV T LAY YV 11V 11 J & L) U RAVUIYY LD LS LYY

Compared with the straight forward method (2n-2) this method saves 25% in comparisons.

Space Complexity

Compared to the straight forward method, the MaxMin method requires extra stack space for
i, j, max, min, maxl and minl. Given n elements there will be |log,n] + 1 levels of
recursion and we need to save seven values for each recursive call. (6 + 1 for return address).

5. Merge Sort

Merge sort is a perfect example of a successful application of the divide-and conquer
technique. It sorts a given array A [O ... n - 1] by dividing it into two halves A [0 .. [n/2]-1]
and A [[n/2] .. n-1], sorting each of them recursively, and then merging the two smaller
sorted arrays into a smgle sorted one.

Al Mm/AaDITLIRA / almy 17

ALauniilrivi !VI("IgCéU AlU.n—1])
//Sorts array A[0..n — 1] by recursive mergesort
/[Input: An array A[0..n — 1] orderable elements

/[[Output: Array A[0..n — 1] sorted in nondecreasing order
itn>1
copy A[0..[n/2| —1]to B[0O..[n/2] — 1]
copy Al|n/2|..n — 1| to C|0..[n/2] = 1]
Mergesort(B|0..[n/2] —1])
Mergesort(C[0..[n/2] — 1))

LU SV (L Ly

Merge(B, C, A) //see below

r—| —

The merging of two sorted arrays can be done as follows.

= Two pointers (array indices) are initialized to point to the first elements of the arrays
being merged.

= The elements pointed to are compared, and the smaller of them is added to a new
array being constructed

Prepared by Harivinod N www.techjourney.in Page| 2.15

\
fg‘

T
‘2}{1\”/;,7
U /
LIRS
e

)
[
\(:S% s
]

N

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

Z

(

After that, the index of the smaller element is incremented to point to its immediate
successor in the array it was copied from. This operation is repeated until one of the
two given arrays is exhausted, and then the remaining elements of the other array are
copied to the end of the new array.

ALGORITHM Merge(B[0..p — 1], C[0..q — 1], A[O0..p + g — 1])

//Merges two sorted arrays into one sorted array
//Input: Arrays B[0..p — 1] and C[0..¢g — 1] both sorted
//Output: Sorted array A[0..p + ¢ — 1] of the elements of B and C
i <0, j«<0;: k<0
while i < pand ; < ¢ do

if B[i] = C/]

Alk] < B[i]: i «<i+1

else Alk]| < C[j]. j«<j+1

k<—k+1
ifi=p

copy Clj..q — 1|to Alk..p +q — 1]
else copy Bli..p — 1]to Alk..p +q — 1]

Example:
The operation of the algorithm on the (55257 c4]
. . . . O 9 £ L]
list8,3,2,9,7,1, 5, 4 1s illustrated in — —
the figure // N
x S
€329 7154
s \\ ” \\
7 S & ,
¥ p e N
| &3 | EXN | 71 | | 5« |
—_— o Y
RN P Y A
."'f A ! A\ ! Ay S/ A
¥ Y ¥ b ¥ Y ¥ ar
2T (1. - M VA 1) R N Bl B il
\ 7 / \ / \ /
v Yol \ \ /
x5 I nea B R e
N / \ yd
, e , Y
o w x
7 389 T4 0 f
\\ //
\\ -//
Y »
Analysis [12315780 |

Here the basic operation is key comparison. As merge sort execution does not depend on the
order of the data, best case and average case runtime are the same as worst case runtime.

Worst case: During key comparison, neither of the two arrays becomes empty before the
other one contains just one element leads to the worst case of merge sort. Assuming for

Prepared by Harivinod N www.techjourney.in Page| 2.16

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

simplicity that total number of elements n is a power of 2, the recurrence relation for the
number of key comparisons C(n) is

Cn) =2C(n/2) + Cpperge(n) form=>1, C(1)=0.
where, Cerge(n) 1s the number of key comparison made during the merging stage.

Let us analyze Cerg0(n), the number of key comparisons performed during the merging stage.
At each step, exactly one comparison is made, after which the total number of elements in the
two arrays still needing to be processed is reduced by 1. In the worst case, neither of the two
arrays becomes empty before the other one contains just one element (e.g., smaller elements
may come from the alternating arrays). Therefore, for the worst case, Cperge(n) =n — 1.
Now,

Crorst() =2C0re@/2) +n—=1 forn=>1, C,ree(1) =0.

Solving the recurrence equation using master theorem:
Herea=2, b=2, f(n)=n, d=1. Therefore 2 = 21, case 2 holds in the master theorem

Crorse (1) = O (n® log n) = O (n' logn) = O (nlogn) Therefore Cyore(n) = O (n log n)

Advantages:

e Number of comparisons performed is nearly optimal.

e For large n, the number of comparisons made by this algorithm in the average case
turns out to be about 0.25n less and hence is also in @(n log n).

e Mergesort will never degrade to O (n%)

e Another advantage of mergesort over quicksort and heapsort is its stability. (A
sorting algorithm is said to be stable if two objects with equal keys appear in the same
order in sorted output as they appear in the input array to be sorted.)

Limitations:

e The principal shortcoming of mergesort is the linear amount [O(n)] of extra storage
the algorithm requires. Though merging can be done in-place, the resulting algorithm
is quite complicated and of theoretical interest only.

Variations of merge sort

1. The algorithm can be implemented bottom up by merging pairs of the array’s
elements, then merging the sorted pairs, and so on. (If n is not a power of 2, only
slight bookkeeping complications arise.) This avoids the time and space overhead of
using a stack to handle recursive calls.

2. We can divide a list to be sorted in more than two parts, sort each recursively, and
then merge them together. This scheme, which is particularly useful for sorting files
residing on secondary memory devices, is called multiway mergesort.

Prepared by Harivinod N www.techjourney.in Page| 2.17

3
o
o™

AN
i
sép‘a@/ |
\
Gl 4:\;[; i\’\‘\\

Y.
1\<\ uatse 2

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

A3

/32
i{a

y
A

6. Quick sort

Quicksort is the other important sorting algorithm that is based on the divide-and-conquer
approach. Unlike mergesort, which divides its input elements according to their position in
the array, quicksort divides (or partitions) them according to their value.

A partition is an arrangement of the array’s elements so that all the elements to the left of
some element A[s] are less than or equal to A[s], and all the elements to the right of A[s] are
greater than or equal to it:

A[0]... Als —1] Als] A[s+1]...A[» —1]

all arelgA[s] all are(zA[s]

Obviously, after a partition is achieved, A[s] will be in its final position in the sorted array,
and we can continue sorting the two subarrays to the left and to the right of A[s]
independently (e.g., by the same method).

In quick sort, the entire work happens in the division stage, with no work required to combine
the solutions to the sub problems.

ALGORITHM Quicksort(A[l..r])

//Sorts a subarray by quicksort
//Input: Subarray of array A[0..n — 1], defined by its left and right

/! indices / and
//Output: Subarray A[l..r| sorted in nondecreasing order
ifl <r

s < Partition(A[l..r]) /ls is a split position
Quicksort(All..s —1])
Quicksort(Als + 1..r])

Partitioning

We start by selecting a pivot—an element with respect to whose value we are going to divide
the subarray. There are several different strategies for selecting a pivot. We use the
sophisticated method suggested by C.A.R. Hoare, the prominent British computer scientist
who invented quicksort.

Select the subarray’s first element: p = A[l]. Now scan the subarray from both ends,
comparing the subarray’s elements to the pivot.

= The left-to-right scan, denoted below by index pointer i, starts with the second
element. Since we want elements smaller than the pivot to be in the left part of the
subarray, this scan skips over elements that are smaller than the pivot and stops upon
encountering the first element greater than or equal to the pivot.

= The right-to-left scan, denoted below by index pointer j, starts with the last element of
the subarray. Since we want elements larger than the pivot to be in the right part of the

Prepared by Harivinod N www.techjourney.in Page| 2.18

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

subarray, this scan skips over elements that are larger than the pivot and stops on
encountering the first element smaller than or equal to the pivot.

After both scans stop, three situations may arise, depending on whether or not the scanning
indices have crossed.

1. If scanning indices 1 and j have not crossed, i.e., 1 < j, we simply exchange A[i] and
A[j] and resume the scans by incrementing I and decrementing j, respectively:

I — —J

P allare < p =p cee <p allare=zp

2. If the scanning indices have crossed over, i.e., i > j, we will have partitioned the

subarray after exchanging the pivot with A[j]:

—J i —

p allare <p <p | zp allare = p

3. If the scanning indices stop while pointing to the same element, i.e., i = j, the value

they are pointing to must be equal to p. Thus, we have the subarray partitioned, with
the split positions =i1=]j:

— ==

p allare<p =p allare=p

We can combine this with the case-2 by exchanging the pivot with A[j] whenever i2j

ALGORITHM HoarePartition(A[l.r])

//Partitions a subarray by Hoare’s algorithm, using the first element as a pivot

//Input: Subarray of array A[0..n — 1], defined by its left and right indices / and r (I<r)
//Output: Partition of A[L.r], with the split position returned as this function’s value

p < A[l]
[<L j<r+1
repeat
repeat i < i + luntil A[/]|> p
repeat j < j — luntil A[j] < p
swap(A[i], A[j])
until i > j
swap(A[i], A[j]) //undo last swap when: > j
swap(A[/]. A[j])
return j

Note that index i can go out of the subarray’s bounds in this pseudocode.

Prepared by Harivinod N www.techjourney.in Page| 2.19

)
)

2
2§
5

>

T
i

)
g

G

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

//
(§
A

oy
\(:S%
]

Example: Example of quicksort operation. (a) Array’s transformations with pivots shown in
bold. (b) Tree of recursive calls to Quicksort with input values 1 and r of subarray bounds and
split position s of a partition obtained.

0] 1 2 3 4 5] 57 7
: ;
5 3 1 9 8 2 4 1
i]
5 3 | 2] 8 z a 7
] J
5 3 1 4 8 2 9 7
5 3 4 g8 5» a9 7
i j
5 3 1 4 ? e? 9 7 0. 7=7
5 3 1 / 2 g o 7 s=4
2 3 1 a 5 8 9 7 / \
i i
2 3 1 4 =0, r=3 =5 r=7
> 4 . s=1 s=6
= W I ~+
i j
2 1 3 4 _
i ; =0, r=0 =2 =3 =h r=h =7, r=7
2 1 3 4 5=2
1 2 3 4
|
Iy !:21 Ir:1 JI[::Br r=3
3 4
. J_
3 4
il
i |
8 9 7
I J
8 7 9
i i
2 7 o
7 8 9
7
9
Analysis

Best Case - Here the basic operation is key comparison. Number of key comparisons made
before a partition is achieved is n + 1 if the scanning indices cross over and n if they coincide.
If all the splits happen in the middle of corresponding subarrays, we will have the best case.
The number of key comparisons in the best case satisfies the recurrence,

Cipn)=2C5.(nf2) +n dorn= 1, € (1)=0.

According to the Master Theorem, Cpes(n) € ®@(n log, n); solving it exactly for n = ok yields
Ches(n) = n logy n.

Worst Case — In the worst case, all the splits will be skewed to the extreme: one of the two
subarrays will be empty, and the size of the other will be just 1 less than the size of the
subarray being partitioned. This unfortunate situation will happen, in particular, for
increasing arrays.

Prepared by Harivinod N www.techjourney.in Page| 2.20

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

Indeed, if A[0..n — 1] is a strictly increasing array and we use A[0] as the pivot, the left-to-
right scan will stop on A[1] while the right-to-left scan will go all the way to reach A[0],
indicating the split at position 0: So, after making n + 1 comparisons to get to this partition
and exchanging the pivot A[O] with itself, the algorithm will be left with the strictly
increasing array A[l..n — 1] to sort. This sorting of strictly increasing arrays of diminishing
sizes will continue until the last one A[n—2 .. n—1] has been processed. The total number of
key comparisons made will be equal to

_(+DHn+2)

o)

—

F i l'rl\:(n.l_‘l\.Ln_L_.::
Caorse Ut (V2 2 e) B il I

(%]

= i
S 2

Average Case - Let C,,4(n) be the average number of key comparisons made by quicksort on
a randomly ordered array of size n. A partition can happen in any position s (0 <'s < n—1)
after n+1comparisons are made to achieve the partition. After the partition, the left and right
subarrays will have s and n — 1— s elements, respectively. Assuming that the partition split
can happen in each position s with the same probability 1/n, we get the following recurrence
relation:

C

ang (

0) =0, ,,(1)=0.
Its solution, which is much trickier than the worst- and best-case analyses, turns out to be
Cave(n) & 2nInn 2 1.39n log, n.

Thus, on the average, quicksort makes only 39% more comparisons than in the best case.
Moreover, its innermost loop is so efficient that it usually runs faster than mergesort on
randomly ordered arrays of nontrivial sizes. This certainly justifies the name given to the
algorithm by its inventor.

Variations

Because of quicksort’s importance, there have been persistent efforts over the years to refine
the basic algorithm. Among several improvements discovered by researchers are:

= Better pivot selection methods such as randomized quicksort that uses a random
element or the median-of-three method that uses the median of the leftmost,
rightmost, and the middle element of the array

= Switching to insertion sort on very small subarrays (between 5 and 15 elements for
most computer systems) or not sorting small subarrays at all and finishing the
algorithm with insertion sort applied to the entire nearly sorted array

= Modifications of the partitioning algorithm such as the three-way partition into
segments smaller than, equal to, and larger than the pivot

Prepared by Harivinod N www.techjourney.in Page| 2.21

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

Limitations

= [t is not stable.

= [t requires a stack to store parameters of subarrays that are yet to be sorted.

= While Performance on randomly ordered arrays is known to be sensitive not only to
implementation details of the algorithm but also to both computer architecture and
data type.

7. Stassen’s Matrix multiplication

Direct Method: Suppose we want to multiply two n X n matrices, A and B. Their product,
C=AB, will be an n by n matrix and will therefore have n® elements. The number of
multiplications involved in producing the product in this way is O(n)

;N AN
1) — 2.

ol
“i

Divide and Conquer method

Multiplication of 2 X 2 matrices: By using divide-and-conquer approach we can reduce
the number of multiplications. Such an algorithm was published by V. Strassen in 1969. The
principal insight of the algorithm lies in the discovery that we can find the product C of two 2
X 2 matrices A and B with just seven multiplications as opposed to the eight required by
the brute-force algorithm. This is accomplished by using the following formulas:

|_("< 0 €1 -| . |_f'fnn 2 -| * Fbm by, -l

i 1 |_f-'flu aj by by
. [m| +iy — g -Finy ms + ms —|
L nis + ny my—+ nay — mo + mg J
where

my = (ago + ay1) * (boo + b11),
my = (ayg + ayy) * by,
m3 = dagq * (bgy — byy).
my = ayy * (byg — byp),
ms = (apo + ao1) * by,
me = (ayy — agy) * (boy + by,
my = (ag; — ayy) * (byg+ byy)-
Thus, to multiply two 2 X2 matrices, Strassen’s algorithm makes seven multiplications and

18 additions/subtractions, whereas the brute-force algorithm requires eight multiplications
and four additions.

Prepared by Harivinod N www.techjourney.in Page| 2.22

e

AN
(\aééf/‘ Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

i

Multiplication of n X n matrices — Let A and B be two n X n matrices where n is a power
of 2. (If n is not a power of 2, matrices can be padded with rows and columns of zeros.) We

can divide A, B, and their product C into four n/2 X n/2 submatrices each as follows:

[Coo ! Col [Aw ! Aol [Boo ! Byl
e *
_Cm ‘ CllJ |_A1() ‘ AHJ I_Bm ‘ B”J

It is not difficult to verify that one can treat these submatrices as numbers to get the correct

product. For example, COO can be computed either as Ago * Boo + Ao * Bip or as M; + My —
Ms + M7 where M;, My, Ms, and M7 are found by Strassen’s formulas, with the numbers
replaced by the corresponding submatrices. If the seven products of n/2 X n/2 matrices are
computed recursively by the same method, we have Strassen’s algorithm for matrix
multiplication.

Analysis

Here the basic operation is multiplication. If M(n) is the number of multiplications made by
Strassen’s algorithm in multiplying two n X n matrices (where n is a power of 2), we get the
following recurrence relation for it:

M(n)y=7TM@n/2) lorn>1, M)=1.

MRy =TMQR Y =T[IM 2] =M @22 = ..
— 7:'M(2k—i) T 7kM(2k—k) — Tk.
Since k =1og, n,

M(n) — 710512 n__ ”Iog2 7 v ”2.8{)7‘

This implies M(n) = @(n*%%7) which is smaller than n’ required by the brute-force algorithm.

8. Advantages and Disadvantages of Divide & Conquer

Advantages

= Parallelism: Divide and conquer algorithms tend to have a lot of inherent parallelism.
Once the division phase is complete, the sub-problems are usually independent and
can therefore be solved in parallel. This approach typically generates more enough
concurrency to keep the machine busy and can be adapted for execution in multi-
processor machines.

= Cache Performance: divide and conquer algorithms also tend to have good cache
performance. Once a sub-problem fits in the cache, the standard recursive solution
reuses the cached data until the sub-problem has been completely solved.

Prepared by Harivinod N www.techjourney.in Page| 2.23

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

= [t allows solving difficult and often impossible looking problems like the Tower of
Hanoi. It reduces the degree of difficulty since it divides the problem into sub
problems that are easily solvable, and usually runs faster than other algorithms would.

= Another advantage to this paradigm is that it often plays a part in finding other
efficient algorithms, and in fact it was the central role in finding the quick sort and
merge sort algorithms.

Disadvantages

* One of the most common issues with this sort of algorithm is the fact that the
recursion is slow, which in some cases outweighs any advantages of this divide and
conquer process.

= Another concern with it is the fact that sometimes it can become more complicated
than a basic iterative approach, especially in cases with a large n. In other words, if
someone wanted to add a large amount of numbers together, if they just create a
simple loop to add them together, it would turn out to be a much simpler approach
than it would be to divide the numbers up into two groups, add these groups
recursively, and then add the sums of the two groups together.

* Another downfall is that sometimes once the problem is broken down into sub
problems, the same sub problem can occur many times. It is solved again. In cases
like these, it can often be easier to identify and save the solution to the repeated sub
problem, which is commonly referred to as memorization.

9. Decrease and Conquer Approach

Decrease-and-conquer is a general algorithm design technique, based on exploiting a
relationship between a solution to a given instance of a problem and a solution to a smaller
instance of the same problem. Once such a relationship is established, it can be exploited
either top down (usually recursively) or bottom up.

There are three major variations of decrease-and-conquer:
= decrease-by-a-constant, most often by one (e.g., insertion sort)
= decrease-by-a-constant-factor, most often by the factor of two (e.g., binary search)
= variable-size-decrease (e.g., Euclid’s algorithm)

In the decrease-by-a-constant variation, the size of an instance is reduced by the same
constant on each iteration of the algorithm. Typically, this constant is equal to one although
other constant size reductions do happen occasionally.

Prepared by Harivinod N www.techjourney.in Page| 2.24

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

Figure: Decrease-(by one)-and-conquer technique

Problem of size n

Example: 2" =a""' X a

Sub Problem
of size n-1

A\ 4
Solution to sub

problem

v v
v

Solution to the original problem

The decrease-by-a-constant-factor technique suggests reducing a problem instance by the
same constant factor on each iteration of the algorithm. In most applications, this constant

1
Problem of | sizen
1

Sub Problem

nf cizan/?

factor is equal to two.

Figure: Decrease-(by half)-and-conquer technique.

A\ 4
Solution to sub

problem

v

y

Solution to the original problem

Example:
I (a"'?)? if n is even and positive,
1V -3 L o : Tl
l (@~ ""=)".a if nisodd,
ifn=0.

Finally, in the variable-size-decrease variety of decrease-and-conquer, the size-reduction
pattern varies from one iteration of an algorithm to another.

Example: Euclid’s algorithm for computing the greatest common divisor. It is based on the
formula. ged(m, n) = ged(n, m mod n).

Though the value of the second argument is always smaller on the right-hand side than on the
left-hand side, it decreases neither by a constant nor by a constant factor.

Prepared by Harivinod N www.techjourney.in Page| 2.25

e

(\aééf/‘ Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

i

10. Topological Sort
Background

A directed graph, or digraph for short, is a graph with directions specified for all its edges.
The adjacency matrix and adjacency lists are the two principal means of representing a
digraph.

There are only two notable differences between undirected and directed graphs in
representing them: (1) the adjacency matrix of a directed graph does not have to be
symmetric; (2) an edge in a directed graph has just one (not two) corresponding nodes in the
digraph’s adjacency lists.

Depth-first search and breadth-first search are principal traversal algorithms for traversing
digraphs as well, but the structure of corresponding forests can be more complex than for
undirected graphs. Thus, even for the simple example of Figure, the depth-first search forest
(Figure b) exhibits all four types of edges possible in a DFS forest of a directed graph:

® free edges (ab, bc, de),

® back edges (ba) from vertices to their ancestors,

e forward edges (ac) from vertices to their descendants in the tree other than their

children, and
® cross edges (dc), which are none of the aforementioned types.

)
(a) (b)

(a) Digraph. (b) DFS forest of the digraph for the DFS traversal started at a.

Note that a back edge in a DFS forest of a directed graph can connect a vertex to its parent.
Whether or not it is the case, the presence of a back edge indicates that the digraph has a
directed cycle. A directed cycle in a digraph is a sequence of three or more of its vertices that
starts and ends with the same vertex and in which every vertex is connected to its immediate
predecessor by an edge directed from the predecessor to the successor. For example, a, b, a is
a directed cycle in the digraph in Figure given above. Conversely, if a DFS forest of a
digraph has no back edges, the digraph is a dag, an acronym for directed acyclic graph.

Prepared by Harivinod N www.techjourney.in Page| 2.26

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M

Motivation for topological sorting

Consider a set of five required courses {C1, C2, C3, C4, C5} a part-time student has to take
in some degree program. The courses can be taken in any order as long as the following
course prerequisites are met: C1 and C2 have no prerequisites, C3 requires C1 and C2, C4
requires C3, and C5 requires C3 and C4. The student can take only one course per term. In

which order should the student take the courses? @ @
The situation can be modeled by a digraph in which vertices represent .\y—A
courses and directed edges indicate prerequisite requirements. —

In terms of this digraph, the question is whether we can list its vertices @ @
in such an order that for every edge in the graph, the vertex where the

edge starts is listed before the vertex where the edge ends. In other words, can you find such

an ordering of this digraph’s vertices? This problem is called topological sorting.
Topological Sort

For topological sorting to be possible, a digraph in question must be a dag. i.e., if a digraph
has no directed cycles, the topological sorting problem for it has a solution.

There are two efficient algorithms that both verify whether a digraph is a dag and, if it is,
produce an ordering of vertices that solves the topological sorting problem. The first one is
based on depth-first search; the second is based on a direct application of the decrease-by-one
technique.

Topological Sorting based on DFS

Method

1. Perform a DFS traversal and note the order in which vertices become dead-ends

2. Reversing this order yields a solution to the topological sorting problem, provided, of
course, no back edge has been encountered during the traversal. If a back edge has
been encountered, the digraph is not a dag, and topological sorting of its vertices is
impossible.

Illustration

a) Digraph for which the topological sorting problem needs to be solved.

b) DFS traversal stack with the subscript numbers indicating the popping off order.

¢) Solution to the problem. Here we have drawn the edges of the digraph, and they all
point from left to right as the problem’s statement requires. It is a convenient way to
check visually the correctness of a solution to an instance of the topological sorting
problem.

Prepared by Harivinod N www.techjourney.in Page| 2.27

T

PO

< 2
g@m;;
Qs

i

oS

)
£
\(:S% s
]

Lecture Notes || 10CS43 - DAA || Module 2: Divide and Conquer D M
@ @ Cbh, The popping-off order:
@ C4, Ch,C4,C3,C1,C2
C33 The topologically sorted list:
c2) co C1, C2¢ C2 C1—»C3—»C4—C5
N A A

(a) (b) (c)

Topological Sorting using decrease-and-conquer technique:

Method: The algorithm is based on a direct implementation of the decrease-(by one)-and-
conquer technique:

1. Repeatedly, identify in a remaining digraph a source, which is a vertex with no
incoming edges, and delete it along with all the edges outgoing from it. (If there are
several sources, break the tie arbitrarily. If there are none, stop because the problem
cannot be solved.)

2. The order in which the vertices are deleted yields a solution to the topological sorting
problem.

Ilustration - Illustration of the source-removal algorithm for the topological sorting problem
is given here. On each iteration, a vertex with no incoming edges is deleted from the digraph.

ey (9 ﬁ & 3
w T delete '1 ey T delste {":) @h/ T
A

(_\1/ { Chl C

N N2 T N Y

e

)

[=]]

N

A%

P

. (ca
delete C3 celete C4 delete CE

@ Ch

The solution obtained s C1,C2, C3, C4, C5

Note: The solution obtained by the source-removal algorithm is different from the one
obtained by the DFS-based algorithm. Both of them are correct, of course; the topological
sorting problem may have several alternative solutions.

Applications of Topological Sorting

¢ Instruction scheduling in program compilation
e Cell evaluation ordering in spreadsheet formulas,

e Resolving symbol dependencies in linkers.
skskok

Prepared by Harivinod N www.techjourney.in Page| 2.28

\ Vivekananda i)

;=™ College of Engineering & Technology ' '
Nehru Nagar Post, Puttur, D.K. 574203

Lecture Notes on

15CS43
Design and Analysis of

Algorithms
(CBCS Scheme)

Prepared by
Mr. Harivinod N

Dept. of Computer Science and Engineering,
VCET Puttur

Mar 2017

Module-3 : Greedy Method

Contents

1. Introduction to Greedy method 3. Single source shortest paths

1.1. General method, 3.1. Dijkstra's Algorithm

1.2. Coin Change Problem 4. Optimal Tree problem:

1.3. Knapsack Problem 4.1. Huffman Trees and Codes

1.4. Job sequencing with deadlines 5. Transform and Conquer Approach:
2. Minimum cost spanning trees: 5.1. Heaps

2.1. Prim’s Algorithm, 5.2. Heap Sort

2.2. Kruskal’s Algorithm

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D M

1. Introduction to Greedy method

1.1 General method

The greedy method is the straight forward design technique applicable to variety of
applications.

The greedy approach suggests constructing a solution through a sequence of steps, each
expanding a partially constructed solution obtained so far, until a complete solution to the
problem is reached. On each step the choice made must be:

e feasible, i.e., it has to satisfy the problem’s constraints

e locally optimal, i.e., it has to be the best local choice among all feasible choices
available on that step

® irrevocable, i.e., once made, it cannot be changed on subsequent steps of the
algorithm

As arule, greedy algorithms are both intuitively appealing and simple. Given an optimization
problem, it is usually easy to figure out how to proceed in a greedy manner, possibly after
considering a few small instances of the problem. What is usually more difficult is to prove
that a greedy algorithm yields an optimal solution (when it does).

il 3\
\

ATV L2 (T e
ALZOTItAImn Wi yia,mn)
ry T 1 R . .
// all i nj contains the n 1nputs.
r
1
7 Lt s\ ft T v 1 i1 1 L.
solution = U / / Initiahze the solution.
for 1 :=1to n do
i
l — . N
pro— Qalact{n)e
T = oelecCt a3
if Fe‘jc“‘\ln{on’nl*anm rr-\ ""’\on
aJIUI\—\UUUl‘IDDUlD7 .L;/ VaAAN LA
ardaidnne v Llmianl anloidsnn mlae
UL WLLUNy . — UIIIUII\OUI/(J;[,LU b"b’,
b
I
o d o T
LTCLULIL SOLULTUTLS
b
I
(lanndzr trmathc A amonduwn] ahatuantion for fha giilhant e A3 grn
ureeay meitnod COntrol AnsStraciion 10T tie SiiNset paraaigim

1.2. Coin Change Problem

Problem Statement: Given coins of several denominations find out a way to give a customer

an amount with fewest number of coins.

Example: if denominations are 1, 5, 10, 25 and 100 and the change required is 30, the
solutions are,
Amount : 30
Solutions : 3x 10 (3 coins), 6x5 (6coins)
1x25+5x1(6coins) 1x25+1x5(2coins)

The last solution is the optimal one as it gives us change only with 2 coins.

Prerpared by Harivinod N www.techjourney.in Page| 3.2

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D M

Solution for coin change problem using greedy algorithm is very intuitive and called as
cashier’s algorithm. Basic principle is: At every iteration for search of a coin, take the
largest coin which can fit into remain amount to be changed at that particular time. At
the end you will have optimal solution.

1.3. Knapsack Problem

Let us try to apply the greedy method to solve the knapsack problem. We
are given n objects and a knapsack or bag. Object ¢ has a weight w; and the
knapsack has a capacity m. If a fraction z;, 0 < z; < 1, of object ¢ is placed
into the knapsack, then a profit of p;x; is earned. The objective is to obtain
a filling of the knapsack that maximizes the total profit earned. Since the
knapsack capacity is m, we require the total weight of all chosen objects to
be at most m. Formally, the problem can be stated as

maximize Z Di L (4.1)
1<i<n
subject to Z w;T; < m (4.2)
1<i<n
and 0 < z; <1, 1<i<n (4.3)

The profits and weights are positive numbers.

A feasible solution (or filling) is any set (x1,...,x,) satisfying (4.2) and
(4.3) above. An optimal solution is a feasible solution for which (4.1) is
maxinized.

Tarmanmandan A T T Tns 2l Lol sl oo S cd o Vo M [N .
mxampie 4.1 CONSIider ine 1onowing imstance ot tne __11::1_.1_)58,(‘,}{ problel[l.
)y 0 { Y far o4 100N 1 7 AY
n = 3m = 20.(p1.po.02) = (25.24.15). and {(w+.1wo. w2} = (18 15 10)
Ty 7 MINL LI 2y) [edh) ’ Jy SIS Wy War Yay ? 3
1|—?‘ mnr Fl\ﬁkl‘f]‘lﬂ Qf\1|1 i’]ﬁﬂQ areg
rour iecasibl € S0lUutlong arc
. \ — —
fr. ma 1ol N Carn.mr, N Ty
\ ATy Ly) L Wiy L oMby
1 f1/9 172 1740 164 & 94 IR
1, \Lj&y, 1/9, L/2) 10,0 Lk i)
D) (1 971 Ny N aQ 9
4. l\17 é/ Lo, U/l FAL 40Q. 4
(5] fiNn o i 11 Fa¥al oA
%) (U, Z/a, 1] ZJ hY
Q. Wy &/9, 1) L) J1
A '&aY - ERVEs 2 Fa¥a¥ e e
A 1. 172 I 41 N
I Wy 4, i/ 4 AN [3.3 N9
Yo 1 . 'y -~ *1 1 1 1 I 4 . 11 s 1 - ﬁ A‘
U1 Lnese tour feasible solutions, solution 74 ylelGS the maximum PToO t. S
AXTN Gi’\'lii DAOANYY QNN f‘l’\l(“ Qﬁi11fl(\n 1< (\T\f;m‘)‘l ?f\v‘ f‘hn n':irnn hr(\‘l’\‘lnv?] instance D
YW O1lldill OUULL DUU . ULl JuluuvivsiL 1o U!JUJ.ILJ(J)]. 1L Vil 5].V\JJ.1 yluulblll -

There are several greedy methods to obtain the feasible solutions.

a) At each step fill the knapsack with the object with largest profit - If the object under
consideration does not fit, then the fraction of it is included to fill the knapsack. This method
does not result optimal solution. As per this method the solution to the above problem is as
follows;

Select Item-1 with profit p;=25, here w;=18, x;=1. Remaining capacity = 20-18 =2

Select Item-2 with profit p;=24, here w,=15, x;=2/15. Remaining capacity =0

Total profit earned = 28.2. This results 2" solution in the example 4.1

Prerpared by Harivinod N www.techjourney.in Page| 3.3

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D M

b) At each step fill the object with smallest weight
This results 3" solution in the example 4.1

¢) At each step include the object with maximum profit/weight ratio
This results 4™ solution in the example 4.1

This greedy approach always results optimal solution.

Algorithm: The algorithm given below assumes that the objects are sorted in non-
increasing order of profit/weight ratio

void GreedyKnapsack(float m, int n)
// pll:n] and w[l:n] contain the profits and weights
// respectively of the n objects ordered such that
// plil/wlil >= pli+1]/w[i+1]. m is the knapsack
é/ size and x[1:n] is the solution vector.
for (int i=1; i<=n; i++) x[i] = 0.0; // Initialize x.
float U = m;
for (i=1; i<=n; i++) {
if (w[i]l > U) break;
x[i] = 1.0;
U -= w[i];
) ;
: if (i <= n) x[i] = U/w[i];
Analysis:

Disregarding the time to initially sort the object, each of the above strategies use O(n) time,

0/1 Knapsack problem

[0/1 Knapsack] Consider the knapsack problem discussed in this sec-
tion. We add the requirement that z; =1 or z; = 0, 1 <1¢ < n; that
is, an object is either included or not included into the knapsack. We
wish to solve the problem

7 1
max Zp@-:n,; subject to E wir; <tmand z; =0o0r1, 1 <i<n
| 1

One greedy strategy is to consider the objects in order of nonincreasing
density p; /w; and add the object into the knapsack if it fits.

Note: The greedy approach to solve this problem does not necessarily yield an optimal
solution

Prerpared by Harivinod N www.techjourney.in Page| 3.4

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D M

1.4. Job sequencing with deadlines

We are given a set of n jobs. Associated with job 7 is an integer deadline
d; > 0 and a profit p; > 0. For any job 7 the profit p; is earned iff the job is
completed by its deadline. To complete a job, one has to process the job on
a machine for one unit of time. Only one machine is available for processing
jobs. A feasible solution for this problem is a subset J of jobs such that each
job in this subset can be completed by its deadline. The value of a feasible
solution J is the sum of the profits of the jobs in J, or 37, ; p;. An optimal
solution is a feasible solution with maximum value. Here again, since the
problem involves the identification of a subset, it fits the subset paradigm.

Example 4.2 Letn = 47 (pl 7p27p37p4) = (1007 107 157 27) and (dlu d?: d37 d4) =
(2,1,2,1). The feasible solutions and their values are:

feasible

vvvvvvvv processing
solution sequence value

1. (1, 2) 2,1 110

2 (1. 3) 1.2 0r 3. 1 115

2. (1,3) 1,30r3, 1 115

(3] {1 AN A Bl 10

3. (1, 4) 4,1 127

4. (2,3 2.3 25

5 (3. 4) 4.3 42

PN an

6. (1) i 100

7. (2) 2 10

Q (23 9 15

O \U} J Lo

9. (4) 4 27
Solution 3 is optimal. In this solution only jobs 1 and 4 are processed and
'R 1] P2 Yerd mi 1 ;1 L 1 1 M
the value is 127. These jobs must be processed in the order job 4 followed
T -1 1 Mlicee b o cTan e L 2 L A L el o Ao s o x
Ly JOL 1. 11lus LIIC PIOCCSsILE O JOD 4 DERLIs al LLUTIC 2610 d.-nd that OfJOb]_
je coomnlotad at f1moe 9 O
12 \JULLLFL\JU\/U CAUU VLLLIN, &is

The greedy strategy to solve job sequencing problem is, “At each time select the job that that
satisfies the constraints and gives maximum profit. i.e consider the jobs in the non
decreasing order of the p;’s”

By following this procedure, we get the 3™ solution in the example 4.3. It can be proved that,
this greedy strategy always results optimal solution

\angnt

-

High level description of job sequencing algorithm

Prerpared by Harivinod N www.techjourney.in Page| 3.5

ke
: 55358
-
- - O =
g SE2E
- -
= , ~
S = R W
..m S = o o oo B
g 3 a5 | = EVIe @
S ko) = = o P L = -
= % ~ ok @ o L
> = ‘- Mo = .-
= o= < Il VvV ~ Lo] n.nnu.. [abe Qm V2]
% B O V A ~ = = 1D
[@ oA M 1] o = O A2
< M) R 1 v R
= . — o -
@ =3 0.V '~ g Lo
= L o A ~ =) ~ + = KM
.M g I ~ o — o~ o' TN e
S B A - dm - — M = wn = mu
= - g - 0 $ ¥ e L = -
= = - oA+ HH A O X S
= g - P oA O O) ~ _Ua =
= n il g B0 44 0 — — | et T g
E N QA 45 < g oA I oS C
.;_H_. .m n —m O — . o~ “u o s q = -, mu._U S
g S ‘AN n o [0} 0w o o B O =
S e — N @A &8 .- QW <
—) T A+ VvV g O 4 O &3 ~ L T8
< s ~dl &= - - o &8 - = =
b w g OA Hrm | “ O mn > ~ARB M+ st = @ &
@ A T r— A A o g 0 + - — g e
@ o P HP p A o~ RAH HA P Sp=ie i
2 S go—=pan Ho +g ‘A =~ " FEE
= S A8 00— dm 4+ o0om"”d TdOA .-] £
= = P < A - & 8.9 o ot pre RO
& T)) AH AT+ YA
3 < —os8ddg NT = B n © o |
o = 9P o N3 g g = M - SRRPS
g —md P A — it SR I e VAR BRTRRRPN 2
S g+ Q vV u (Y ~ o w 4
— - [— " = M
2) PpPEgHd OF -H.Qm L PR =8 Vi
a ~ g o = — oLl M M g P R2 B e R
\ > -V 3 .9 .4 1] a0 el A LW
o ko] ‘- 0 O g ~ N O M T 0 A +2 2 ‘] ~
< 3 -l —m e NN I He g9 ~rm ge - . © L =t
9 o —~Vdg 0 O H Q00 Il ~—=H o+ ~ e B
S G I~ = T = A o T MM ' R
= S ET RN b YL pee R < rg T
- . Q) 5) P N s =
@ e L — - « o __.1ndmti <! nuﬂw_
3 < g1l 9 o M 0o K g 4 o e R
Z = —H A O o M/ O oHA 3-A - =} T+ g =
~ $ O O = P N L -—]
® S nH o N g O N N~ = 3
S % S~ ¢ o
5 &0 o SR VI P R SR AN Pl - zE2 |
S =) U S RS B ® o * .
Q & el i~
- = o W W . W2
HNN NN Y .o - AW, a3
g - 0 <= 8
1 -
= 8 2 = m_w &
~ [iy
SE TANMTLONDIOHANMFLONODO =AM = © T R
&b 5 A A A A A A A A A ANANNN = s 5]
A o A +2 4= B U

Page| 3.6

it to know that

www.techjourney.in

Prerpared by Harivinod N

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D M

Fast Job Scheduling Algorithm

The computing time of JS can be reduced from O(n?) to nearly O(n)
by using the disjoint set union and find algorithms ~and a
different method to determine the feasibility of a partial solution. If J is a
feasible subset of jobs, then we can determine the processing times for each
of the jobs using the rule: if job 7 hasn’t been assigned a processing time,
then assign it to the slot [« — 1,], where « is the largest integer r such
that 1 < r < d; and the slot [« — 1,] is free. This rule simply delays the
processing of job ¢ as much as possible. Consequently, when J is being built
up job by job, jobs already in J do not have to be moved from their assigned
slots to accommodate the new job. If for the new job being considered there
i1s no « as defined above, then it cannot be included in J.

Tyvammla 4 2 Tat - — § (n m)Y — (90 15 105 1Y 4 1 d d
BXalllpic 4.9 OV 11 = J,i\P1,...,P5] = \&aU, 1,1V, J,1] &l LyeoeyQn
Oy O 1 9 9Y TT ot 41 | r©_ D I I I I S,
= (2 2, 1 9, a). Using the above TeasiDinty rule, we nave
(4, 4, 1,0,9). USINg the above Ieasiblity rile, we lave
T [T B | 1 B DU | e d ! ﬁt
g assigned slots Job consiagered acrlorn pPro
M “e i T +
Y none 1 assign to [1, 2] 0
M1 M1] [3) L
{1} 1, 2 2 assign to [0, 1] 20
P AN e 1 7 o P .
1 91 m 11 M1 9 J NS 5
11, 2y [V, 1], |1, 2) Cannon ht; re_]ect 30
M4 _(\'] Fey 11] al A . . i
{1, 2} 0, 1], [1, 2] 4 assign to [2, 3] 35
1 9 A1 Mmo11 (1 97 9 o =4 rai
LI ¢ Wh 00, 10, 4l (2, O]) rejec
L ’ J L 47 L 474 L LJ ‘ "P(‘t 40
m , 1 1 . - 4 o~ AN 1 Pa Vs
I'ho antimal anlnuntinon 1g J — 31 9 AL grith a nroht of Ail O
A LEU WR/UVLLLAIOUL DWVLUWULAVILL L) o T) L Lis X ¥Y¥ 1ull v lJJ-UI.J.IV L L\

Example 4.4 The trees defined by the p(i)’s for the first three iterations
in Example 4.3 are shown in Figure 4.4. O
job
considered
J f 0 1 2 3 “+ 5 1,d,=2 select

@ @ a9 DD ADA

p(0) p(1) p@2) p@3) p4) p65)

trees action

{1} f 0 1 3 4 A5 2.d, =2 select
O Qv @ O O
p(0) D p(3) p@) p(S)
p(2)
{1.2} f(1)=0 f(3)=3 f(4)=4 f(5)=5 3,d;=1 reject

O @ @

p3) p@4) p(5)

Prerpared by Harivinod N www.techjourney.in Page| 3.7

of Ackermann’s function defined in Section 2.5). It needs an additional 2n

words of space for f and p.

g 2
g &
= g
005
3 ~ =
2 = = S
a o
z 532 =
e = —niu C —_
e g Md N &
&) Lo el . 720NN
= . o : 0
& | jos) ,.mu _ £
= L L S
z 25 & 2, 2 5
—— | -
= L g - ; o =
= = mm... [oH] .Mu e =3 A... -
= z8 T . ST g =
P = c — T . g <
£ gl = = ur | 2 =+
unl [[oH] ,_“ML ~TT L = —
: <D S SE & x
= g = g w30 3 S &
M — wo,. fmu\ S g e = Mu.)
e s o . -
WJ - —_— = .__. .m. w..lu ol —
@ = +o ! i & . -
2 o =2 . s el ey wn g
=) [p— T o Mo £~ - .
= T s ==, - N e L g
< ~y. 5 & AT o T =y n O3
] Do D < “ b= R R T oD S <=
= L e ™ . QR 2w =3 =
o SR A Cmy =30 L= 4O w o=
7 & —_ T_ .Qm [T (o)) 4 .=
2 5 ® CoDegwa® e~ E | S
[=] T = ot D O~y Il 6o <F]
! S &B .= o gcegs N g 2o
3 2 RSN BPTFEF BT 2T &2
* S B HOoOTSe— T R EDZ
S T o8 E Ty B2z £ g
= nw } m 2 .r.h_ - me/ ce Sl e =
g SEN S s T - =3
= 2 - Il Ny = ¢
=] [=) .ﬁ.. P ~~— o) - o =
M ..Jl On T & -) =0 ¥
1
m % ﬂs ﬁHl_ iy faed b
S = .M_. T~ + 0
Q S ptem, &
- o >
= i
-
wn L
= 3SR
R > T bod
= = -
=1 =
— w
A A =

Page| 3.8

www.techjourney.in

Prerpared by Harivinod N

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D M

2. Minimum cost spanning trees

Definition: A spanning tree of a connected graph is its connected acyclic subgraph (i.e., a
tree) that contains all the vertices of the graph. A minimum spanning tree of a weighted
connected graph is its spanning tree of the smallest weight, where the weight of a tree is
defined as the sum of the weights on all its edges. The minimum spanning tree problem is
the problem of finding a minimum spanning tree for a given weighted connected graph.

(a) —(b) (a)}—b) (a)——b) (a)——(b)
AL N A N O/ N AL N
NN N2 | NG
21 X AN 2| 2l X
(C\)*(dj (C‘)f(dw (C‘)f(d} (C) (Cﬂ
S 3 p— N 3 — N 3 p— A

graph 'V‘V(Tﬁ =6 W{TQ) =9 vv{Tg} =8

2.1. Prim’s Algorithm

Prim's algorithm constructs a minimum spanning tree through a sequence of expanding sub-
trees. The initial subtree in such a sequence consists of a single vertex selected arbitrarily
from the set V of the graph's vertices. On each iteration it expands the current tree in the
greedy manner by simply attaching to it the nearest vertex not in that tree. (By the nearest
vertex, we mean a vertex not in the tree connected to a vertex in the tree by an edge of the
smallest weight. Ties can be broken arbitrarily.) The algorithm stops after all the graph's
vertices have been included in the tree being constructed. Since the algorithm expands a tree
by exactly one vertex on each of its iterations, the total number of such iterations is n - 1,
where n is the number of vertices in the graph. The tree generated by the algorithm is
obtained as the set of edges.

ALGORITHM Prim(G)
/Prim’s algorithm for constructing a minimuim spanning tree
/Mnput: A welghte.l_ connected graph G = (V| E)
//Output: E, the set of edges composing a minimum spanning tree of G
V< {vp} f/the set of tree vertices can be initialized with any vertex
Er <@
fori < 1to|V|—1do
find a minimum-weight edge ¢* = (v*, u*) among ali the edges (v, u)
suchthatvisin Vyandwisin V — Vi
Vi < ViU {u*}
Er < E7 U{e™}
return L,

Prerpared by Harivinod N www.techjourney.in Page| 3.9

I dn i Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method
%%@z ecture Notes | esign & Analysis of Algorithms | Module 3: Greedy Metho D“
Correctness

Prim’s algorithm always yields a minimum spanning tree.

Example: An example of prim’s algorithm is shown below.
The parenthesized labels of a vertex in the middle column
indicate the nearest tree vertex and edge weight; selected
vertices and edges are shown in bold.

Tree vertices

a(_s _)

b(a, 3)

c(b, 1)

f(b, 4)

e(f, 2)

d(f, 5)

Remaining vertices

b(a, 3) c(—, c0) d(—, c0)
e(a, 6) f(a, 5

c(b,1) d(—, o0) e(a, 6)
f(b, 4)

d(c, 6) e(a, 6) f(b, 4)

d(f,5) e, 2)

d, 5)

Prerpared by Harivinod N

www.techjourney.in Page| 3.10

V.

5 v

Eé&fé‘ Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D M

k2
G

z@,@gw

o0
=P

T

Analysis of Efficiency

The efficiency of Prim’s algorithm depends on the data structures chosen for the graph itself
and for the priority queue of the set V — V1 whose vertex priorities are the distances to the
nearest tree vertices.

1. If a graph is represented by its weight matrix and the priority queue is implemented
as an unordered array, the algorithm’s running time will be in @(IVIz). Indeed, on
each of the |V| — literations, the array implementing the priority queue is traversed to
find and delete the minimum and then to update, if necessary, the priorities of the
remaining vertices.

We can implement the priority queue as a min-heap. (A min-heap is a complete binary tree
in which every element is less than or equal to its children.) Deletion of the smallest element
from and insertion of a new element into a min-heap of size n are O(log n) operations.

2. 1If a graph is represented by its adjacency lists and the priority queue is implemented
as a min-heap, the running time of the algorithm is in O(|E|log [V |).

This is because the algorithm performs |[V| — 1 deletions of the smallest element and makes
|[E| verifications and, possibly, changes of an element’s priority in a min-heap of size not
exceeding |V|. Each of these operations, as noted earlier, is a O(log |V|) operation. Hence, the
running time of this implementation of Prim’s algorithm is in

(IVI= 1+ |E|) O (log |V |) = O(|E| log |V |) because, in a connected graph, |V| — 1< |E|.

2.2. Kruskal’s Algorithm
Background

Kruskal's algorithm is another greedy algorithm for the minimum spanning tree problem that
also always yields an optimal solution. It is named Kruskal's algorithm, after Joseph Kruskal.

Kruskal's algorithm looks at a minimum spanning tree for a weighted connected graph G =
(V, E) as an acyclic sub graph with |V | - 1 edges for which the sum of the edge weights is
the smallest. Consequently, the algorithm constructs a minimum spanning tree as an
expanding sequence of sub graphs, which are always acyclic but are not necessarily
connected on the intermediate stages of the algorithm.

Working

The algorithm begins by sorting the graph's edges in non decreasing order of their weights.
Then, starting with the empty sub graph, it scans this sorted list adding the next edge on the
list to the current sub graph if such an inclusion does not create a cycle and simply skipping
the edge otherwise.

Prerpared by Harivinod N www.techjourney.in Page| 3.11

Ml!lm'z’
N

t: A _
Syttt 7 tha ent Af adoae AAMIAACIG A MITRTMITM ananning frao ~F
i ‘-Jul.l)u-l. .L;T LllW OL L UL lE’,lvD \.f\.Jl.lLlJ'\JDJ.Ll.b L ILLILNILEIUILL] S/l Ll.l.lb LIV Ll wJ
sort E in nondecreasing order of the edge weights w(e;) <--- < w(e,)
Er <« @; ecounter <0 /finitialize the set of tree edges and its size
k<0 /Ainitialize the number of processed edges

while ecounrer < |V| —1do

ET é— ET U {c’,-lr}: ecounter < ecounter + 1

The fact that Et ,the set of edges composing a minimum spanning tree of graph G actually a
tree in Prim's algorithm but generally just an acyclic sub graph in Kruskal's algorithm.

Kruskal’s algorithm is not simpler because it has to check whether the addition of the next
edge to the edges already selected would create a cycle.

We can consider the algorithm's operations as a progression through a series of forests
containing all the vertices of a given graph and some of its edges. The initial forest consists of
[V] trivial trees, each comprising a single vertex of the graph. The final forest consists of a
single tree, which is a minimum spanning tree of the graph. On each iteration, the
algorithm takes the next edge (u, v) from the sorted list of the graph's edges, finds the trees
containing the vertices u and v, and, if these trees are not the same, unites them in a larger
tree by adding the edge (u, v).

Analysis of Efficiency

The crucial check whether two vertices belong to the same tree can be found out using union-
find algorithms.

Efficiency of Kruskal’s algorithm is based on the time needed for sorting the edge weights
of a given graph. Hence, with an efficient sorting algorithm, the time efficiency of Kruskal's
algorithm will be in O (|E| log |[E]).

Prerpared by Harivinod N www.techjourney.in Page| 3.12

V7 AP0

Y ZE

ﬁ%@géﬁj{ Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D “
Ry

BT

Illustration (b)y——(¢c)

An example of Kruskal’s algorithm is shown below. The /\y 5\/ K\

1 C
4 a"
. 5
selected edges are shown in bold. @\ \T; //
[a] =]
%)/

Tree edges Sorted list of edges Ilustration

be ef ab bf cf af df ae cd de
1 2 3 4 4 5 5 6 6 8

bc bc ef ab bf cf af df ae cd de
55 6 6 8

ef bc ef ab bf cf af df ae cd de
4 5 5 6 6 8§

ab bc ef ab bf cf af df ae cd de
55 6 6 8

bf bc ef ab bf cf z};f (%f ae cd de

Prerpared by Harivinod N www.techjourney.in Page| 3.13

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D M

3. Single source shortest paths

Single-source shortest-paths problem is defined as follows. For a given vertex called the
source in a weighted connected graph, the problem is to find shortest paths to all its other
vertices. The single-source shortest-paths problem asks for a family of paths, each leading
from the source to a different vertex in the graph, though some paths may, of course, have
edges in common.

3.1. Dijkstra’'s Algorithm

Dijkstra's Algorithm is the best-known algorithm for the single-source shortest-paths
problem. This algorithm is applicable to undirected and directed graphs with nonnegative
weights only.

Working - Dijkstra's algorithm finds the shortest paths to a graph's vertices in order of their
distance from a given source.

= First, it finds the shortest path from the source to a vertex nearest to it, then to a
second nearest, and so on.

= In general, before its i" iteration commences, the Yo
algorithm has already identified the shortest paths to i-1
other vertices nearest to the source. These vertices, the
source, and the edges of the shortest paths leading to them
from the source form a subtree 7; of the given graph
shown in the figure.

= Since all the edge weights are nonnegative, the next vertex nearest to the source can
be found among the vertices adjacent to the vertices of 7;. The set of vertices adjacent
to the vertices in 7i can be referred to as "fringe vertices"; they are the candidates
from which Dijkstra's algorithm selects the next vertex nearest to the source.

= To identify the i"™ nearest vertex, the algorithm computes, for every fringe vertex u,
the sum of the distance to the nearest tree vertex v (given by the weight of the edge (v,
u)) and the length d., of the shortest path from the source to v (previously determined
by the algorithm) and then selects the vertex with the smallest such sum. The fact that
it suffices to compare the lengths of such special paths is the central insight of
Dijkstra's algorithm.

= To facilitate the algorithm's operations, we label each vertex with two labels.

o The numeric label d indicates the length of the shortest path from the source to
this vertex found by the algorithm so far; when a vertex is added to the tree, d
indicates the length of the shortest path from the source to that vertex.

o The other label indicates the name of the next-to-last vertex on such a path, i.e.,
the parent of the vertex in the tree being constructed. (It can be left unspecified
for the source s and vertices that are adjacent to none of the current tree vertices.)

Prerpared by Harivinod N www.techjourney.in Page| 3.14

/&5 %
Y 2%
@&éﬂ Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D “

With such labeling, finding the next nearest vertex u* becomes a simple task of
finding a fringe vertex with the smallest d value. Ties can be broken arbitrarily.

= After we have identified a vertex u* to be added to the tree, we need to perform two
operations:
o Move u* from the fringe to the set of tree vertices.
o For each remaining fringe vertex u that is connected to u* by an edge of
weight w (u*, u) such that d u*+ w(u*, u) <d u, update the labels of u by u*
and du* + w(u*, u), respectively.
o
Ilustration: An example of Dijkstra's algorithm is shown
below. The next closest vertex is shown in bold.

Tree vertices Remaining vertices Tiiustration
a(—. 0) b(a.3) c(—.00) d(a.7) e(—. 00) o 4 o~
(bpF——c)
3 /\’\2 g"'\ 6
/:/ \?’A\/ =)
NS 7 W 4 o
b(a. 3 c(h.3+4) dibh.3+2) e(—. Q) = -
adie o AR =~ R ATy - e it :/ 5 - \,l
i e /\/\ [
7ONE
e y ; '-. 5
2 7 _E_I_/' 4 W /l
Ak 5y oflh Ty oard 51 Ay i -
RIL U,) L, g O, g \
G 0 o~
c(b,) e(d, 9) 4 /\

e(d.9)

The shortest paths (identified by following nonnumeric labels backward from a destination
vertex in the left column to the source) and their lengths (given by numeric labels of the tree
vertices) are as follows:

fromatob: a—»b of length 3
fromatod: a—b—d of length 5
fromatoc: a—b—c of length 7

fromatoe: a—b—d—e oflength9

Prerpared by Harivinod N www.techjourney.in Page| 3.15

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D “

The pseudocode of Dijkstra’s algorithm is given below. Note that in the following
pseudocode, Vr contains a given source vertex and the fringe contains the vertices adjacent to
it after iteration 0 is completed.

ALGORITHM Dijkstra(G, s)
/fDijkstra’s aigorithm for singie-source shortest paths
/Mnput: A weighted connected graph G = (V, E) with nonnegative weights

" and its vertex s
//Output: The length d, of a shortest path from s to v
I and 1ts penultimate vertex p,, for every vertexvin V

Initialize(Q) //initialize priority queue to empty
for every vertex vin V
d, < oo: p, < null
Insert(Q. v, d,) [Anitialize vertex priority in the priority queue
d, < 0; Decrease(Q, 5s,d;) /lupdate priority of s with d|
fori < Oto |V|— ldeo
(* < DeleteMin(Q) //delete the minimum priority element
VT < VT U {M*]
for every veriex u in V — Vy that is adjacent to u™ do
itd,+ w(u* u) <d,
d, «<—dp+wu*, u): p,<u’
Decrease(Q, u, d,)

Analysis:

The time efficiency of Dijkstra’s algorithm depends on the data structures used for
implementing the priority queue and for representing an input graph itself. For graphs
represented by their adjacency lists and the priority queue implemented as a min-heap, it is in
O ([E[log [V])

Applications

= Transportation planning and packet routing in communication networks, including the
Internet

» Finding shortest paths in social networks, speech recognition, document formatting,
robotics, compilers, and airline crew scheduling.

Prerpared by Harivinod N www.techjourney.in Page| 3.16

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D M

4. Optimal Tree problem
Background

Suppose we have to encode a text that comprises characters from some n-character alphabet
by assigning to each of the text's characters some sequence of bits called the codeword.There
are two types of encoding: Fixed-length encoding, Variable-length encoding

Fixed-length encoding: This method assigns to each character a bit string of the same length
m (m >= logy n). This is exactly what the standard ASCII code does. One way of getting a
coding scheme that yields a shorter bit string on the average is based on the old idea of
assigning shorter code-words to more frequent characters and longer code-words to less
frequent characters.

Variable-length encoding: This method assigns code-words of different lengths to different
characters, introduces a problem that fixed-length encoding does not have. Namely, how can
we tell how many bits of an encoded text represent the first (or, more generally, the i)
character? To avoid this complication, we can limit ourselves to prefix-free (or simply prefix)
codes. In a prefix code, no codeword is a prefix of a codeword of another character. Hence,
with such an encoding, we can simply scan a bit string until we get the first group of bits that
is a codeword for some character, replace these bits by this character, and repeat this

operation until the bit string's end is reached.

If we want to create a binary prefix code for some alphabet, it is natural to associate the
alphabet's characters with leaves of a binary tree in which all the left edges are labelled by 0
and all the right edges are labelled by 1 (or vice versa). The codeword of a character can then
be obtained by recording the labels on the simple path from the root to the character's leaf.
Since there is no simple path to a leaf that continues to another leaf, no codeword can be a
prefix of another codeword; hence, any such tree yields a prefix code.

Among the many trees that can be constructed in this manner for a given alphabet with
known frequencies of the character occurrences, construction of such a tree that would
assign shorter bit strings to high-frequency characters and longer ones to low-frequency
characters can be done by the following greedy algorithm, invented by David Huffman.

4.1 Huffman Trees and Codes
Huffman's Algorithm

Step 1: Initialize n one-node trees and label them with the characters of the alphabet. Record
the frequency of each character in its tree's root to indicate the tree's weight. (More generally,
the weight of a tree will be equal to the sum of the frequencies in the tree's leaves.)

Step 2: Repeat the following operation until a single tree is obtained. Find two trees with the
smallest weight. Make them the left and right subtree of a new tree and record the sum of
their weights in the root of the new tree as its weight.

A tree constructed by the above algorithm is called a Huffman tree. It defines-in the manner
described-a Huffman code.

Prerpared by Harivinod N www.techjourney.in Page| 3.17

Sy ZE
%éﬁﬂ Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method

Example: Consider the five-symbol alphabet {A, B, C, D, _} with the following occurrence

frequencies in a text made up of these symbols:

symbol ‘ A B C

D

frequency ‘ 0.35 0.1 0.2

The Huffman tree construction for the above problem is shown below:

T
0.1 0.18| [02 02] [0.35
B _ C D A
T
0.2 0.2 e 0.35
C D A
\
0.1 0.15

0.

]
“

/
01| [0.1E 072 0.2
B - C D
s Al
P hY ~oo
(0.4 0.6
A r/J\
02 0.2 0.25 0.35
o] AR
0.1 [cis
B N

0.15

WA 7 N
0.2 0.2 /0.25 035
S b O/K—/l’l A
\
01 015
B _
The resulting codewords are as follows:
symbol | A B C D _
frequency 0.35 0.1 0.2 0.2 0.15

11 100 00

codeword

Hence, DAD is encoded as 011101, and 10011011011101 is decoded as BAD_AD.

01

101

With the occurrence frequencies given and the codeword lengths obtained, the average

number of bits per symbol in this code is

2*%035+3*%0.1+2 *0.2+2 *0.2+3 *0.15 = 2.25.

Prerpared by Harivinod N www.techjourney.in

Page| 3.18

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D M

Had we used a fixed-length encoding for the same alphabet, we would have to use at least 3
bits per each symbol. Thus, for this example, Huffman’s code achieves the compression ratio
(a standard measure of a compression algorithm’s effectiveness) of (3—2.25)/3*100%= 25%.
In other words, Huffman’s encoding of the above text will use 25% less memory than its
fixed-length encoding.

5. Transform and Conquer Approach

5.1. Heaps

Heap is a partially ordered data structure that is especially suitable for implementing priority
queues. Priority queue is a multiset of items with an orderable characteristic called an item’s
priority, with the following operations:

¢ finding an item with the highest (i.e., largest) priority

e deleting an item with the highest priority

e adding a new item to the multiset

Notion of the Heap
Definition:

A heap can be defined as a binary tree with keys assigned to its nodes, one key per node,
provided the following two conditions are met:

1. The shape property—the binary tree is essentially complete (or simply complete),
i.e., all its levels are full except possibly the last level, where only some rightmost
leaves may be missing.

2. The parental dominance or heap property—the key in each node is greater than or
equal to the keys in its children.

Illustration:

The illustration of the definition of heap is shown bellow: only the left most tree is heap. The
second one is not a heap, because the tree’s shape property is violated. The left child of last
subtree cannot be empty. And the third one is not a heap, because the parental dominance
fails for the node with key 5.

Properties of Heap
1. There exists exactly one essentially complete binary tree with n nodes. Its height is

equal to |log,n|
2. The root of a heap always contains its largest element.

Prerpared by Harivinod N www.techjourney.in Page| 3.19

ég‘ Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D M

3. A node of a heap considered with all its descendants is also a heap.

4. A heap can be implemented as an array by recording its elements in the top down,
left-to-right fashion. It is convenient to store the heap’s elements in positions 1
through n of such an array, leaving H[0] either unused or putting there a sentinel
whose value is greater than every element in the heap. In such a representation,

a. the parental node keys will be in the first |[n/2]|. positions of the array, while
the leaf keys will occupy the last [n/2] positions;

b. the children of a key in the array’s parental position i (1<1i <|n/2]) will be in
positions 2i and 2i + 1, and, correspondingly, the parent of a key in position i
(2 <i<n) will be in position |n/2].

—

(10)
AAL)
o —_ the array representation
(8) (7)
A A o e o e e ool
/ \ / \ ‘ndex U 1 £ I o a le] r o 9 LV
— \VT\ P >’?\ Va!ue‘ linla Il 114 s e lalelq]
(o) (2) K_/J ’\E/‘ Ml I IO T Ml A Ml M I
7\ /~ parents leaves
VAN / H
/3\ /5\ /’1‘\
NG AN

Heap and its array representation

Thus, we could also define a heap as an array H[1..n] in which every element in position i in
the first half of the array is greater than or equal to the elements in positions 2i and 2i + 1,
i.e.,

H[i] > max {H [2{], H[2i+ 1]} fori=1...|n/2]

Constructions of Heap - There are two principal alternatives for constructing Heap.
1) Bottom-up heap construction 2) Top-down heap construction

Bottom-up heap construction:

The bottom-up heap construction algorithm is illustrated bellow. It initializes the essentially
complete binary tree with n nodes by placing keys in the order given and then “heapifies” the
tree as follows.

e Starting with the last parental node, the algorithm checks whether the parental
dominance holds for the key in this node. If it does not, the algorithm exchanges the
node’s key K with the larger key of its children and checks whether the parental
dominance holds for K in its new position. This process continues until the parental
dominance for K is satisfied. (Eventually, it has to because it holds automatically for
any key in a leaf.)

e After completing the “heapification” of the subtree rooted at the current parental
node, the algorithm proceeds to do the same for the node’s immediate predecessor.

e The algorithm stops after this is done for the root of the tree.

Prerpared by Harivinod N www.techjourney.in Page| 3.20

%

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D M

75"
%

ALGORITHM HeapBomtomUp(H|1..n])
//Constructs a heap from elements of a given array
// by the bottom-up algorithm
//Input: An array H|[1..n] of orderable items
//Output: A heap H[1..n|
for i < |n/2| downto 1 do

k«i; v+« H|k|
heap <« false
while not /icap and 2 x k < n do
J—2x%xk
if ; <n //there are two children
it H[j]< Hj+1] j < j+1
ifv>H|j|
heap < true
else H|k] < H|[j]: k<
H|k] < v

Illustration

Bottom-up construction of a heap for the list 2, 9, 7, 6, 5, 8. The double headed arrows show
key comparisons verifying the parental dominance.

POV JON
o P hologNG
god & od &

e o) o
=g p=g p
® ® @ ® ® O @ & @

Analysis of efficiency - bottom up heap construction algorithm:

Assume, for simplicity, that n = 2F — 1 so that a heap’s tree is full, i.e., the largest possible
number of nodes occurs on each level. Let £ be the height of the tree.

According to the first property of heaps in the list at the beginning of the section, h=|log,n|
or just [log,(n + 1)] = k— 1 for the specific values of n we are considering.

Each key on level i of the tree will travel to the leaf level 4 in the worst case of the heap
construction algorithm. Since moving to the next level down requires two comparisons—one
to find the larger child and the other to determine whether the exchange is required—the total
number of key comparisons involving a key on level i will be 2(h — i).

Therefore, the total number of key comparisons in the worst case will be

Prerpared by Harivinod N www.techjourney.in Page| 3.21

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D M

hi—1 h—1

Cuprst =D Y 2h—i)= 2h—i)2" =2(n—log,(n + 1)),

=0 level i keys =0

where the validity of the last equality can be proved either by using the closed-form formula
h s
Yi 52

Thus, with this bottom-up algorithm, a heap of size n can be constructed with fewer than 2n

for the sum or by mathematical induction on .

comparisons.

Top-down heap construction algorithm:

It constructs a heap by successive insertions of a new key into a previously constructed heap.

1. First, attach a new node with key K in it after the last leaf of the existing heap.
2. Then shift K up to its appropriate place in the new heap as follows.

a. Compare K with its parent’s key: if the latter is greater than or equal to K, stop (the
structure is a heap); otherwise, swap these two keys and compare K with its new
parent.

b. This swapping continues until K is not greater than its last parent or it reaches root.

Obviously, this insertion operation cannot require more key comparisons than the heap’s
height. Since the height of a heap with n nodes is about log; n, the time efficiency of insertion

isin O (log n). o

. . A
Illustration of inserting a new key: Inserting a new key (10) into the " rE—}-_/ \;’é\
heap is constructed bellow. The new key is shifted up via a swap with /\“--<\ r{*-)
its parents until it is not larger than its parents (or is in the root). .;: _\ (7)

5 P

Delete an item from a heap: Deleting the root’s key from a heap can be done with the
following algorithm:

Maximum Key Deletion from a heap

1. Exchange the root’s key with the last key K of the heap.

2. Decrease the heap’s size by 1.

3. “Heapify” the smaller tree by sifting K down the tree exactly in the same way we did
it in the bottom-up heap construction algorithm. That is, verify the parental
dominance for K: if it holds, we are done; if not, swap K with the larger of its children
and repeat this operation until the parental dominance condition holds for K in its new
position.

Prerpared by Harivinod N www.techjourney.in Page| 3.22

>
3
S,
&

-‘/g‘/g\“ V’z\é\
E%é@?s\ Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D M
. a
Ilustration \//\9 J
‘a /\f_
/'_8 ’ /'._@
N
'\E./J @/’ l\l/

0 o ®)

Step 1 /‘)\/ Step 2 \/_,_\ Step 3 _\/\‘/\f_,\
6 6)

ﬁ\ / e x RN

The efficiency of deletion is determined by the number of key comparisons needed to
“heapify” the tree after the swap has been made and the size of the tree is decreased by 1.
Since this cannot require more key comparisons than twice the heap’s height, the time
efficiency of deletion is in O (log n) as well.

5.2. Heap Sort

Heapsort - an interesting sorting algorithm is discovered by J. W. J. Williams. This is a two-
stage algorithm that works as follows.
Stage 1 (heap construction): Construct a heap for a given array.
Stage 2 (maximum deletions): Apply the root-deletion operation n—1 times to the
remaining heap.

As a result, the array elements are eliminated in decreasing order. But since under the array
implementation of heaps an element being deleted is placed last, the resulting array will be
exactly the original array sorted in increasing order.

Heap sort is traced on a specific input is shown below: e
Stage 1 (heap construction) Stage 2 (maximum deletions) e o
2 9 7 6 5 8 9 6 8 2 b5 7
2 9 8 6 b 7 7 6 8 2 519 e e e
2 9 8 6 b 7 8 6 7 2 b
9 2 8 6 b 7 5 6 7 218
9 6 8 2 b 7 7 6 5 2
2 6 bH17
6 2 b
5 216
5 2
215
2

Prerpared by Harivinod N www.techjourney.in Page| 3.23

T
RS

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 3: Greedy Method D M

Analysis of efficiency:

Since we already know that the heap construction stage of the algorithm is in O(n), we have
to investigate just the time efficiency of the second stage. For the number of key
comparisons, C(n), needed for eliminating the root keys from the heaps of diminishing sizes
from n to 2, we get the following inequality:
n—1
C(n) <2llog,(n — 1)] 4+ 2[log,(n —2)| + - -+ 2|log, 1] <2 Z log, i
n—1 i=l
£ 2 Z log,(n — 1) =2(n — 1) logy(n — 1) < 2n log, n.

i=1
This means that C(n) € O(n log n) for the second stage of heapsort.

For both stages, we get O(n) + O(n log n) = O(n log n).

A more detailed analysis shows that the time efficiency of heapsort is, in fact, in @(n log n)
in both the worst and average cases. Thus, heapsort’s time efficiency falls in the same class
as that of mergesort.

Unlike the latter, heapsort is in-place, i.e., it does not require any extra storage. Timing
experiments on random files show that heapsort runs more slowly than quicksort but can be
competitive with mergesort.

skl sk

Prerpared by Harivinod N www.techjourney.in Page| 3.24

1.

Nehru Nagar Post, Puttur, D.K. 574203

Lecture Notes on
15CS43

D “ Design and Analysis of
Algorithms

(CBCS Scheme)

Prepared by
Harivinod N

Dept. of Computer Science and Engineering,
VCET Puttur

April 2017

{3y Vivekananda e
2@.&?5)& College of Engineering & Technology

Module-4 : Dynamic Programming

Contents

Introduction to Dynamic Programming Optimal Binary Search Trees
1.1. General method with Examples
1.2. Multistage Graphs

Transitive Closure:

2.1. Warshall’s Algorithm,

All Pairs Shortest Paths:

3.1. Floyd's Algorithm,

Knapsack problem
Bellman-Ford Algorithm
Travelling Sales Person problem

® N s

Reliability design

Course Website
www.TechJourney.in

&ﬁLecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

1. Introduction to Dynamic Programming

Dynamic programming is a technique for solving problems with overlapping subproblems.
Typically, these subproblems arise from a recurrence relating a given problem’s solution to
solutions of its smaller subproblems. Rather than solving overlapping subproblems again and
again, dynamic programming suggests solving each of the smaller subproblems only once
and recording the results in a table from which a solution to the original problem can then be
obtained. [From T1]

The Dynamic programming can also be used when the solution to a problem can be viewed
as the result of sequence of decisions. [From T2]. Here are some examples.

Example 1 [Knapsack] The solution to the knapsack problem

can be viewed as the result of a sequence of decisions. We have to
decide the values of x;,1 <2 < n. First we make a decision on x,, then on
9, then on x3, and so on. An optimal sequence of decisions maximizes the
objective function 3 p,z;. (It also satisfies the constraints > w;x; < m and
0<z; <1 O

Example 2 The files 1, z9, and x5 are three sorted files of length 30, 20,
and 10 records each. Merging =, and z» requires 50 record moves. Merging
the result with x3 requires another 60 moves. The total number of record
moves required to merge the three files this way is 110. If, instead, we first
merge x9 and z3 (taking 30 moves) and then z; (taking 60 moves), the total

record moves made is only 90. Hence, the second merge pattern is faster
than the first.

An optimal merge pattern tells us which pair of files should be
merged at each step. As a decision sequence, the problem calls for us to de-
cide which pair of files should be merged first, which pair second, which pair
third, and so on. An optimal sequence of decisions is a least-cost sequence.

Example 3 [Shortest path] One way to find a shortest path from vertex
1 to vertex 7 mn a directed graph G is to decide which vertex should be the
second vertex, which the third, which the fourth, and so on, until vertex j
is reached. An optimal sequence of decisions is one that results in a path of
least length. a

Example 4 [Shortest path] Suppose we wish to find a shortest path from
vertex ¢ to vertex j. Let A; be the vertices adjacent from vertex . Which of
the vertices in A; should be the second vertex on the path? There is no way
to make a decision at this time and guarantee that future decisions leading
to an optimal sequence can be made. If on the other hand we wish to find
a shortest path from vertex i to all other vertices in G, then at each step, a
correct decision can be made 0

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 2

ecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

One way to solve problems for which it is not possible to make a sequence
of stepwise decisions leading to an optimal decision sequence is to try all pos-
sible decision sequences. We could enumerate all decision sequences and then
pick out the best. But the time and space requirements may be prohibitive.
Dynamic programming often drastically reduces the amount of enumeration
by avoiding the enumeration of some decision sequences that cannot possibly
be optimal. In dynamic programming an optimal sequence of decisions is
obtained by making explicit appeal to the principle of optimality.

Definition 5.1 [Principle of optimality] The principle of optimality states
that an optimal sequence of decisions has the property that whatever the
initial state and decision are, the remaining decisions must constitute an
optimal decision sequence with regard to the state resulting from the first
decision. O

Thus, the essential difference between the greedy method and dynamic
programming is that in the greedy method only one decision sequence is
ever generated. In dynamic programming, many decision sequences may be
generated. However, sequences containing suboptimal subsequences cannot
be optimal (if the principle of optimality holds) and so will not (as far as
possible) be generated.

Example 5.5 [Shortest path] Consider the shortest-path problem of Exam-
ple 5.3. Assume that 7,4, 2,...,1, 7 is a shortest path from 7 to 7. Starting
with the initial vertex 7, a decision has been made to go to vertex i;. Fol-
lowing this decision, the problem state is defined by vertex i; and we need
to find a path from #; to j. It is clear that the sequence i1,19,..., 1k, 7 must
constitute a shortest iy to j path. If not, let 41,r1,72,...,74,7 be a shortest
i1 to j path. Then ¢,41,7;, -+ .7, 7 18 an ¢ to j path that is shorter than the
path i,2y,%9,...,1k,j. Therefore the principle of optimality applies for this
problem. O

Example 5.6 [0/1 knapsack] The 0/1 knapsack problem is similar to the
knapsack problem of Section 4.2 except that the x;'s are restricted to have
a value of either 0 or 1. Using KNAP(I, 7, 4) to represent the problem

maximize 32 << pity
subject to leéﬁuimi <y (5.1)
ri=0o0r 1, I <i<y

the knapsack problem i1s KNAP(1,n,m). Let yi,¥2,...,y, be an optimal

sequence of 0/1 values for z,z9,...,%,, respectively. If 4y = 0, then
Y2. Y3, - . . , Yn, must constitute an optimal sequence for the problem KNAP(2,
n, m). If it does not, then ¥,%s....,%, 18 not an optimal sequence for

KNAP(L,n,m). If y1 = 1, then g2,...,y, must be an optimal sequence
for the problem KNAP(2,n,m — w;). If it isn’t, then there is another 0/1
sequence zy, z3, - - -, zp such that > 5,0, wizi <m —wy and Y90, pizi >
S 9cien Pivi- Hence, the sequence yi,zs,z3,...,2, is a sequence for (5.1)
with greater value. Again the principle of optimality applies. O

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 3

ecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

Example 5.7 [Shortest path] Let A; be the set of vertices adjacent to vertex
1. For each vertex k € A;, let ['; be a shortest path from &k to j. Then, a
shortest i to j path is the shortest of the paths {i, x|k € A;}. [}

Example 5.8 [0/1 knapsack] Let g;(y) be the value of an optimal solution
to KNAP(j + 1,n,y). Clearly, go(m) is the value of an optimal solution to
KNAP(1,n,m). The possible decisions for z are 0 and 1 (D; = {0,1}).
From the principle of optimality it follows that

go{m) = max {g1(m), g1(m —w1) +p1} (5.2)
0

While the principle of optimality has been stated only with respect to
the initial state and decision, it can be applied equally well to intermediate
states and decisions. The next two examples show how this can be done.

Example 5.9 [Shortest path]| Let & be an intermediate vertex on a shortest
i to .? pa‘th iuilaiQ‘) s :kvplapQ': .- Jj' The pa'ths iaila R k and k:';p].) T Jj
must, respectively, be shortest 7 to k and k to ;3 paths, O

Example 5.10 [0/1 knapsack] Let y1,ys....,y, be an optimal solution to
KNAP(1,n,m). Then, for each j, 1 <j < n, y1,...,y;, and yjt1,...,Yn
must be optimal solutions to the problems KNAP(1, j, >i<i<; wiYi) and
KNAP(j +1,n,m— 37 <;<; wiyi) respectively. This observation allows us to

generalize (5.2) to

9i(y) = max {gi+1(¥), giv1(y —wig1) + pit1} (5.3)

The recursive application of the optimality principle results in a recur-
rence equation of type (5.3). -Dynamic programming algorithms solve this
recurrence to obtain a solution to the given problem instance. The recur-
rence (5.3) can be solved using the knowledge g,(y) = 0 for all y > 0 and
gn(y) = —o0 for y < 0. From g, (y), one can obtain g,_1(y) using (5.3) with
i =n — 1. Then, using g, 1(y), one can obtain In— 2(y). Repeating in this
way, one can determme g1(y) and finally go(m) using (5.3) with : = 0.

1.2 Multistage Graphs

A multistage graph G = (V, E) is a directed graph in which the vertices are
partitioned into k& > 2 disjoint sets V;, 1 <1 < k. In addition, if (u,v) is an
edge in E, then w € V; and v € Vi for some 4,1 < ¢ < k, The sets V] and
Vi are such that |V|| = |Vi| = 1. Let s and t. respectively, be the vertices in
Vi and Vi. The vertex s 1s the source, and ¢ the sink. Let (¢, 7) be the cost
of edge (i,j). The cost of a path from s to t is the sum of the costs of the
edges on the path. The multistage graph problem is to find a minimum-cost

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 4

= i Lect Not 10CS43 - Design & Analysis of Algorith Module 4: D icP i
%ﬁ”&}; ecture Notes | esign & Analysis of Algorithms | Module 4: Dynamic Programming D M

path from s to . Each set V; defines a stage in the graph. Because of the
constraints on I, every path from s to ¢ starts in stage 1, goes to stage 2,
then to stage 3, then to stage 4, and so on, and eventually terminates in
stage k. Figure 5.2 shows a five-stage graph. A minimum-cost s to ¢ path is
indicated by the broken edges.

v, v, Vs v, Vs

Figure: Five stage graph

A dynamic programming formulation for a k-stage graph problem is ob-
tained by first noticing that every s to ¢ path is the result of a sequence
of £ — 2 decisions. The ith decision involves determining which vertex in
Vit1. 1 <1 < k—2,1s to be on the path. It is easy to see that the principle
of optimality holds. Let p(i, j) be a minimum-cost path from vertex j in V;
to vertex t. Let cost(s, j) be the cost of this path. Then, using the forward
approach, we obtain

cost(i,j) = rg}jn {e(4.0) + cost(i +1,1)} (5.5)
i+1
Gk
Since, cost(k — 1,5) = ¢(4,t) if (4,t) € E and cost(k — 1,5) = oo if
{(7,t)¢E. (5.5) may be solved for cost(1,s) by first computing cost(k — 2, 7)
for all j € Vj_o, then cost(k— 3,4) for all j € Vi_3, and so on, and finally
cost(1, s). Trying this out on the graph of I'igure 5.2, we obtain

cost(3,6) = min {6+ cost(4,9).5 + cost(4,10)}
= 7

cost(3,7) = min {4+ cost(4,9),3 + cost(4,10)}
=)

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 5

\ Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

cost(3.8) = 7

cost(2,2) = min {4+ cost(3,6),2 + cost(3,7),1 + cost(3,8)}
= 7

cost(2,3) = 9

cost(2,4) = 18

cost(2,5) = 15

cost(1,1) = min {9+ cost(2,2), 7 + cost(2,3),3 + cost(2,4),

2 + cost(2,5)}
= 16

Note that in the calculation of cost(2,2), we have reused the values of’
cost(3,6), cost(3,7), and cost(3,8) and so avoided their recomputation. A
minimum cost s to ¢ path has a cost of 16. This path can be determined
easily if we record the decision made at each state (vertex) Let d(2,7) be
the value of [(where ! is a node) that minimizes c(j,1) + cost(i + 1 l) (see
Equation 5.5). For Figure 5.2 we obtain

d(3.6) = 10; d(3.7) = 10; d(3,8) = 10
d2.2) = 7 d23) = 6 d?24) = 8 d25 — 8
a1,1) = 2
Let the minimum-cost path be s = 1,v9,v3,...,vg_1,t. It is easy to see

that vy = d(1,1) = 2,v3 = d(2,d(1,1)) = 7, and vy = d(3,d(2, d(1,1))) =
d(3,7) = 10.

Algorithm 5.1 Multistage graph pseudocode corresponding to the forward
approach

Algorithm FGraph(G,k.n,p)

// The input is a k-stage graph G = (V, E) with n vertices
// indexed in order of stages. E is a set of edges and c[z, j]
// is the cost of (¢, 7). p[l : k] is a minimum-cost path.

cost[n] := 0.0;

for j:=n—1to 1 step -1do

{ // Compute cost[j].
Let r be a vertex such that (j.r) is an edge
of G and c[j,7] + cost[r] is minimum;
cost([j] = c[4, 7] + cost[r];
dlj] :=r3

/ Find a minimum-cost path.

pf1] = 1; plk] == n;
for j:=2 to k — 1 do p[j] :=d[p[7 — 1]];

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 6

Zi
= i Lect Not 10CS43 - Design & Analysis of Algorith Module 4: D icP i
%ﬂ% ecture Notes | esign & Analysis of Algorithms | Module 4: Dynamic Programming D “

The complexity analysis of the function FGraph is fairly straightforward.
If G 1s represented by its adjacency lists, then r in line 9 of Algorithm 5.1
can be found in time proportional to the degree of vertex j. Hence, if G' has
|E| edges, then the time for the for loop of line 7 is O(|V| + |E|). The time
for the for loop of line 16 is ©(k). Hence, the total time is ©(|V|+ |E|). In
addition to the space needed for the input, space is needed for cost| |, df |,
and p[.

Backward Approach

The multistage graph problem can also be solved using the backward
approach. Let bp(i, j) be a minimum-cost path from vertex s to a vertex j

in V;. Let bcost(i,7) be the cost of bp(i,j). From the backward approach we
obtain

beost(i,7) = iénin {bcost(z — 1, 1) + ¢(l,5)} (5.6)
i1

{LieE

Since beost(2,7) = ¢(1,5) if {1,5) € E and beost(2,j) = oo if {1,5)€E,
beost(i, j) can be computed using (5.6) by first computing bcost for 1 = 3,
then for » = 4, and so on. For the graph of Figure 5.2, we obtain

beost(3,6) = min {beost(2,2) + c(2,6),bcost(2,3) + ¢(3,6)}
min {9+4,7 + 2}

=9
beost(3,7) = 11 bcost(4,10) = 14
beost(3,8) = 10 beost(4.11) = 16
beost(4,9) = 15 bcost(b,12) = 16

Algorithm 5.2 Multistage graph pseudocode corresponding to backward
approach

Algorithm BGraph(G, k,n,p)
// Same function as FGraph

beost[1] := 0.0;

for j:=2to ndo

{ // Compute beostj].
Let » be such that {r,j) is an edge of
G and bcost[r] + c[r, j] is minimum;
beost([j] == beost[r] + ¢[r, 73

jli=rs

// Find a minimum-cost path.
pll] = 1; plk] := n;
for j:=k —1 to 2 do p{j] := d[p[j + 1]];

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 7

ecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

2. Transitive Closure using Warshall’s Algorithm,

Definition: The transitive closure of a directed graph with n vertices can be defined as the n
X n boolean matrix T = {t; }, in which the element in the i row and the jth column is 1 if
there exists a nontrivial path (i.e., directed path of a positive length) from the i" vertex to the
™ vertex; otherwise, tV is 0.

Example: An example of a digraph, its adjacency matrix, and its transitive closure is given

below.
e e a b ¢ d a b ¢ d
al0 1 0 0 all 1 1 1
A b|{0 0 0 1 o b1 1 1 1
~ c|0 0O 0O O ¢ |0 O O O
° o dl1 0 1 0 dal1t 1 1 1
(a) Digraph. (b) Its adjacency matrix. (c) lts transitive closure.

We can generate the transitive closure of a digraph with the help of depthfirst search or
breadth-first search. Performing either traversal starting at the i vertex gives the information
about the vertices reachable from it and hence the columns that contain 1’s in the i™ row of
the transitive closure. Thus, doing such a traversal for every vertex as a starting point yields
the transitive closure in its entirety.

Since this method traverses the same digraph several times, we can use a better algorithm
called Warshall’s algorithm. Warshall’s algorithm constructs the transitive closure through
a series of n X n boolean matrices:

RO .., RE=D R®__ R®™.

Each of these matrices provides certain information about directed paths in the digraph.
(k)
J

=0,1,...,n)is equal to 1 if and only if there exists a directed path of a positive length from

Specifically, the element 7, in the i"™ row and j™ column of matrix R® (1,j=1,2,...,n,k

the i vertex to the j™ vertex with each intermediate vertex, if any, numbered not higher than
k.

Thus, the series starts with R, which does not allow any intermediate vertices in its paths;
hence, R© is nothing other than the adjacency matrix of the digraph. R contains the
information about paths that can use the first vertex as intermediate. The last matrix in the
series, R™ , reflects paths that can use all n vertices of the digraph as intermediate and hence
is nothing other than the digraph’s transitive closure.

This means that there exists a path from the ith vertex vi to the jth vertex vj with each
intermediate vertex numbered not higher than k:

vi, a list of intermediate vertices each numbered not higher than k, v; . --- (*)

Two situations regarding this path are possible.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 8

| Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

1. In the first, the list of its intermediate vertices does not contain the k™ vertex. Then this

path from v; to v; has intermediate vertices numbered not higher than k—1. i.e. ri(jk_l) =1

2. The second possibility is that path (*) does contain the k™ vertex v, among the
intermediate vertices. Then path (*) can be rewritten as;

vi, vertices numbered <k — 1, vy, vertices numbered <k — 1, v; ..

ie riY =1andr{™ =1
Thus, we have the following formula for generating the elements of matrix R™ from the
elements of matrix R*™"

(ky k=1 (k—1) (k—1)
T T or Tk and Fij

The Warshall’s algorithm works based on the above formula.

As an example, the application of Warshall’s algorithm to the digraph is shown below. New
I’s are in bold.

1's reflect the existence of paths

with no intermediate vertices

(R0 is just the adacency matrix);

boxed row and column are used for getting A1)

H ic) =

- QO O golo

Qoo D

1's reflect the existence of paths

with intermediate vertices numbered

not higher than 1, i.e., just vertex a

(note a new path from d to b);

boxed row and column are used for getting R(2).

[

R =

- DoOoD 9

oo

1's reflect the existence of paths

with intermediate vertices numbered

not higher than 2, i.e.,, aand b

(note two new paths);

boxed row and column are used for getting R3).

R2) =

C|l— = Q2 o ol=loQa oa-—=|cla

Q0T
(o]

1's reflect the existence of paths

with intermediate vertices numbered

not higher than 3, i.e., a, b, and ¢

(no new paths);

boxed row and column are used for getting R4).

Y el el e s ‘—‘ODCJ‘C')

00 T o

1's reflect the existence of paths
with intermediate vertices numbered
not higher than 4, i.e, a, b, ¢, and d
(note five new paths).

[an]
SO m T |m|loo oo =alao-o -lCJC‘:—x‘tr oo al=lo

_ 0 = - Q AO__\‘Q—‘

00 oo
S O m a0

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 9

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

ALGORITHM Warshall(A[1..n, 1..n])
/Mmplements Warshall’s algorithm for computing the transitive closure
/MInput: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
RO «— A
fork < 1tondo
fori < 1ton do
for j <— 1tondo
R®[i, j1« R D[, jlor (R*V[i, k]and R D[k, j]
return R

Analysis

Its time efficiency is @(n”). We can make the algorithm to run faster by treating matrix rows
as bit strings and employ the bitwise or operation available in most modern computer
languages.

Space efficiency: Although separate matrices for recording intermediate results of the
algorithm are used, that can be avoided.

3. All Pairs Shortest Paths using Floyd's Algorithm,

Problem definition: Given a weighted connected graph (undirected or directed), the all-pairs
shortest paths problem asks to find the distances—i.e., the lengths of the shortest paths - from
each vertex to all other vertices.

Applications: Solution to this problem finds applications in communications, transportation
networks, and operations research. Among recent applications of the all-pairs shortest-path
problem is pre-computing distances for motion planning in computer games.

We store the lengths of shortest paths in an n x n matrix D called the distance matrix: the
element d;; in the i row and the j™ column of this matrix indicates the length of the shortest
path from the i vertex to the j" vertex.

a b ¢ d a b ¢ d
a |0 e 3 e al0o 10 3 4
b2 0 e e bl2 0 b 6
W=clw 7 0 1 P=cl7 7 o 1
d|B6 e o 0 d|6 16 9 0
(a) Digraph. (b) Its weight matrix. (c) Its distance matrix

We can generate the distance matrix with an algorithm that is very similar to Warshall’s
algorithm. It is called Floyd’s algorithm.

Floyd’s algorithm computes the distance matrix of a weighted graph with n vertices through a
series of n X n matrices:

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 10

| Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

The element dl.(]’.() in the i™ row and the j" column of matrix D¥ (1,j=1,2,...,n, k=0,]1,

..., n)is equal to the length of the shortest path among all paths from the i"™ vertex to the jth
vertex with each intermediate vertex, if any, numbered not higher than k.

As in Warshall’s algorithm, we can compute all the elements of each matrix D® from its
immediate predecessor D&

If dg.() = 1, then it means that there is a path;

vi, a list of intermediate vertices each numbered not higher than k, vj .

We can partition all such paths into two disjoint subsets: those that do not use the k™ vertex vi
as intermediate and those that do.

i. Since the paths of the first subset have their intermediate vertices numbered not higher
than k — 1, the shortest of them is, by definition of our matrices, of length dl.(]’.(_l)

ii. In the second subset the paths are of the form
vi, vertices numbered <k — 1, vy, vertices numbered <k — 1, v; .

&k 1
d-:;\
PN A Ve VN W o W NI v

The situation is depicted symbolically in Figure, which shows Ux{

J

the underlying idea of Floyd’s algorithm.

k1)

(k=1}
o :

r dy

Taking into account the lengths of the shortest paths in both subsets leads to the following
recurrence:

(k) . o ik=1) k=1) (k—1) , 1(0)
dr'j :mm{du. g dy +dkj } fork=>1, dfj = wy;.

ALGORITHM Floyd(W[l..n, 1.n])

/Tmplements Floyd’s algorithm for the all-pairs shortest-paths problem
/[Input: The weight matrix W of a graph with no negative-length cycle
//Output: The distance matrix of the shortest paths’ lengths
D « W //is not necessary if W can be overwritten
for k < 1ton do
fori < 1tondo
for j < 1ton do
Dl|i, j| < min{D|i, j|. D|i, k| + D[k, j]}
return D

Analysis: Its time efficiency is O(n), similar to the warshall’s algorithm.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 11

Application of Floyd’s algorithm to the digraph is shown below. Updated elements are shown
in bold.

~a b ¢ d_
al|0] o 3 e | Lengths of the shortest paths
bl 12| 0 o o with no intermediate vertices
clle=f 7 0 1 (DO is simply the weight matrix).
adl|6| w w 0
a b ¢ d
al 0 [w] 3 « | Lengthsof the shortest paths
b | > 1ol 5 °°| with intermediate vertices numbered
DM = ol = T9T 0 not higher than 1, i.e., just a
R (note two new shortest paths from
d_e = 9 O_ btc ¢ and from d to ¢).
~a b ¢ d_
gl B e [3] = Lengths of the shaortest paths
bl 2 0 |5l with intermediate vertices numbered
DY = c|[@ 7 o] 1] not higher than 2, i.e., aand b
dl 8 = 19l 0 (note a new shortest path from cto a).
~a b ¢ d_
al 0 10 3 [4] Lengths of the shortest paths
bl 2 0 5 |s with intermediate vertices numbered
D = 9 7 o |1 not higher than 3, i.e,, a, b, and ¢
;. ‘ 5 16 9 10 (note four new shortest paths from ato b,
B | from atod, from bto d, and from d 1c b).
a b ¢ d
al 0 10 3 4 | Lengthsofthe shortest paths
bl 2 0 5 B with intermediate vertices numbered
DWW = ol 7 7 o0 1 not higher than 4, i.e., a, b, ¢, and d
Jl 6 18 9 o (note a new shortest path from ¢ to a).

4. Optimal Binary Search Trees

A binary search tree is one of the most important data structures in computer science. One of
its principal applications is to implement a dictionary, a set of elements with the operations of
searching, insertion, and deletion.

If probabilities of searching for elements of a set are known e.g., from accumulated data
about past searches it is natural to pose a question about an optimal binary search tree for
which the average number of comparisons in a search is the smallest possible.

As an example, consider four keys A, B, C, and D o B

to be searched for with probabilities 0.1, 0.2, 0.4, O/\ /\,

and 0.3, respectively. The figure depicts two out of & 2 @\
14 possible binary search trees containing these Q D)
keys. \@\

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 12

ecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

The average number of comparisons in a successful search in the first of these trees is 0.1 *
1+02* 2404 * 3+40.3* 4=29, and for the second one itis 0.1 *2+0.2* 1+04 * 2 +
0.3 * 3=2.1. Neither of these two trees is, in fact, optimal.

For our tiny example, we could find the optimal tree by generating all 14 binary search trees
with these keys. As a general algorithm, this exhaustive-search approach is unrealistic: the
total number of binary search trees with n keys is equal to the nth Catalan number,

c(n) = (»J) forn =0, c(0)=1,

n+1\n which grows to infinity as fast as 4"/ n'~
Soletay, ..., a,be distinct keys ordered from the smallest to the largest and let py, . . . , p, be
the probabilities of searching for them. Let C(i, j) be the smallest average number of
comparisons made in a successful search in a binary search tree T; made up of keys aj, . ., aj,
where i, j are some integer indices, 1<i1<j <n.

Following the classic dynamic programming approach, we will find values of C(i, j) for all
smaller instances of the problem, although we are interested just in C(1, n). To derive a
recurrence underlying a dynamic programming algorithm, we will consider all possible ways

to choose a root ax among the keys a;, . . ., a; . For such a binary search tree (Figure 8.8), the
root contains key ak, the left subtree T contains keys a;, . . ., ax-; optimally arranged, and
the right subtree T'y+jcontains keys agq, . . . , aj also optimally arranged. (Note how we are

taking advantage of the principle of optimality here.)

ok
/_/\
/x \ / '\.\
\ / \
/ \ [\
/
/o /
! \'\ -"IJ \
A /
Optimal \\ / Opt]ma'\
/f BSTfor \ BST for '\
A - T N [Bpepyiees a \

FIGURE 8.8 Binary search tree (BST) with root a; and two optimal binary search subtrees
T L and Ty

I

If we count tree levels starting with 1 to make the comparison numbers equal the keys’ levels,
the following recurrence relation is obtained:

k—1
C@, j)= fgigj{ﬁk i A Z ps - (level of ay in T*~' 4 1)

s=i

j
4 Z p, * (level of a, in Tij + 1)}
s=k+1

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 13

k—1 j J
A s k—1 _ = ; 3
= 5151}(1;1}{ E . ps-levelofa, in T, + EHI ps-levelofa, in T | + E . Ps)
S=i S=K §=1

J
— min {CG. k—1) +Clk+1, j .
,2}3%{ (i,)+ C(k + ./)}+;m

Thus, we have the recurrence
j
Ci, j)=min{Ci.k—D)+Clk+1,j)}+> p, forl<i<j<n (88)

i<k<j :
§=i

We assume in formula (8.8) that C(i,i — 1) =0 for 1 <i <n + 1, which can be
interpreted as the number of comparisons in the empty tree. Note that this formula
implies that

Cl;)=p; Torl=i=n,
as it should be for a one-node binary search tree containing «;.

0 1 J n

1 0 Pq goal

0 Py

S | B,

n+1 0

FIGURE 8.9 lable of the dynamic programming algorithm for constructing an optimal
binary search tree.

The two-dimensional table in Figure 8.9 shows the values needed for computing C(i, j) by
formula (8.8): they are in row 1 and the columns to the left of column j and in column j and
the rows below row i. The arrows point to the pairs of entries whose sums are computed in
order to find the smallest one to be recorded as the value of C(i, j). This suggests filling the
table along its diagonals, starting with all zeros on the main diagonal and given probabilities
pi, 1<1 <n, right above it and moving toward the upper right corner.

The algorithm we just sketched computes C(1, n)—the average number of comparisons for
successful searches in the optimal binary tree. If we also want to get the optimal tree itself,
we need to maintain another two-dimensional table to record the value of k for which the
minimum in (8.8) is achieved. The table has the same shape as the table in Figure 8.9 and is
filled in the same manner, starting with entries R(i, 1) = i for 1<1 <n. When the table is filled,
its entries indicate indices of the roots of the optimal subtrees, which makes it possible to
reconstruct an optimal tree for the entire set given.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 14

i _Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D “

Y . - - - .
@3 Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programmin
L8 i gn & Analyss of Algoriths, ynamic programming) A1/

Example: Let us illustrate the algorithm by applying it to the four-key set we used at the
beginning of this section:

kev A i (8)]
probability 0.1 0.2 0.4 0.3

The initial tables look like this:

main table root table
0 1 2 3 4 01 2 3 4
1710 0.1 1 1
2 0 02 2 2
3 0 04 3 3
4 0 03 4 4
5 0 5

Let us compute C(1, 2):

k=1 C(,00+CQ2,2)+Y> ,p,=0402+03=05

C(1, 2) = min ,
=2 CLD+CB.D+D, ;ps=014+04+03=04
= 0.4.

Thus, out of two possible binary trees containing the first two keys, A and B, the root of the
optimal tree has index 2 (i.e., it contains B), and the average number of comparisons in a
successful search in this tree is 0.4. On finishing the computations we get the following final
tables:

main table root table
0 1 2 3 4 0o 1 2 3 4
110 01 04 11 1.7 1 1 2 3 3
2 0O 02 08 14 2 2 3 3
3 0 04 1.0 3 3 3
4 0 03 4 4
5 0 5

Thus, the average number of key comparisons in the optimal tree is equal to 1.7. Since R(1,
4) = 3, the root of the optimal tree contains the third key, i.e., C. Its left subtree is made up of
keys A and B, and its right subtree contains just key D. To find the specific structure of these
subtrees, we find first their roots by consulting the root table again as follows. Since R(1, 2) =
2, the root of the optimal tree containing A and B is B, with A being its left child (and the
root of the one-node tree: R(1, 1) = 1). Since R(4, 4) = 4, the root of this one-node optimal
tree is its only key D. Figure given below presents the optimal tree in its entirety.

Here is Pseudocode of the dynamic programming algorithm.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 15

/{ %’;’@é\
(a%&f Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

ALGORITHM OptimalBST(P[1..n])
//Finds an optimal binary search tree by dynamic programming
//Input: An array P[1..n] of search probabilities for a sorted list of n keys
//Output: Average number of comparisons in successful searches in the

/! optimal BST and table R of subtrees’ roots in the optimal BST
fori < 1tondo

Cli i —1)+0

Cli,i] < P[i]

R[i,i]<i

Cln+1,n]<0
ford < 1ton —1do //diagonal count
fori < 1ton —ddo
j<—i+d
minval < 0o
for k < i to j do
ifCli,k— 1]+ Clk+ 1, j| < minval
minval < C[i, k — 1]+ C[k + 1, j]; kmin <k
R[i, j] < kmin
sum < Pli]; fors < i+ 1to j do sum < sum + P[s]
Cli, j] < minval + sum
return C[1, n], R

5. Knapsack problem

We start this section with designing a dynamic programming algorithm for the knapsack
problem: given n items of known weights wy, . . ., w, and values vy, . . ., v, and a knapsack
of capacity W, find the most valuable subset of the items that fit into the knapsack.

To design a dynamic programming algorithm, we need to derive a recurrence relation that
expresses a solution to an instance of the knapsack problem in terms of solutions to its
smaller subinstances.

Let us consider an instance defined by the first i items, 1< 1 < n, with weights wy, . . ., wj,
values vy, . . ., vi, and knapsack capacity j, 1 <j < W. Let F(i, j) be the value of an optimal
solution to this instance. We can divide all the subsets of the first 1 items that fit the knapsack
of capacity j into two categories: those that do not include the i™ item and those that do. Note
the following:

i. Among the subsets that do not include the i item, the value of an optimal subset is,
by definition, F(i — 1, j).

ii. Among the subsets that do include the i item (hence, j — wi> 0), an optimal subset is
made up of this item and an optimal subset of the first i—1 items that fits into the
knapsack of capacity j — w; . The value of such an optimal subset is v; + FG — 1, j —
Wi).

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 16

I _Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

Thus, the value of an optimal solution among all feasible subsets of the first I items is the
maximum of these two values.

Fii. j)= max{F@(— 1, j), v, + F(i — 1. j —w;)} ifj—w; =0,
B I=T pi—1, j) it j— w <0.
It is convenient to define the initial conditions as follows:
F(0,j) =0 for j > 0 and F(, 0) = 0 for i > 0.

Our goal is to find F(n, W), the maximal value of a subset of the n given items that fit into
the knapsack of capacity W, and an optimal subset itself.

0 Jr-_w.l: Jr W
0 0 0 0 0
i-1]0 Fli=1,j-w) Fli=1.)
w,v;i [|0 FU. j)
n |0 goal

Table for solving the knapsack problem by dynamic programming.

Example-1: Let us consider the instance given by the following data:

item weight value
1 2 $12
2 1 $10 capacity W =35.
3 3 $20
4 2 $15

The dynamic programming table, filled by applying formulas is given below

capacity j

i 0 1 2 3 4 5
0 o o0 0 0 0 0
wy=2, =12 1 o o0 12 12 12 12
wy=1,v,=10 2 0 10 12 2 2 22
wy=3,v;=20 3 0 10 12 2 30 32
wy=2,1,=15 4 0 10 15 25 30 37

Thus, the maximal value is F(4, 5) = $37.

We can find the composition of an optimal subset by backtracing the computations of this
entry in the table. Since F(4, 5) > F(3, 5), item 4 has to be included in an optimal solution
along with an optimal subset for filling 5 — 2 = 3 remaining units of the knapsack capacity.
The value of the latter is F(3, 3). Since F(3, 3) = F(2, 3), item 3 need not be in an optimal
subset. Since F(2, 3) > F(1, 3), item 2 is a part of an optimal selection, which leaves element
F(1, 3 — 1) to specify its remaining composition. Similarly, since F(1, 2) > F(0, 2), item 1 is
the final part of the optimal solution {item 1, item 2, item 4}.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 17

SOy
VAN
T
F
(aé

o L e

o)
33
DS F

| Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

Analysis
The time efficiency and space efficiency of this algorithm are both in ®(nW). The time
needed to find the composition of an optimal solution is in O(n).

Memory Functions

The direct top-down approach to finding a solution to such a recurrence leads to an algorithm
that solves common subproblems more than once and hence is very inefficient.

The classic dynamic programming approach, on the other hand, works bottom up: it fills a
table with solutions to all smaller subproblems, but each of them is solved only once. An
unsatisfying aspect of this approach is that solutions to some of these smaller subproblems
are often not necessary for getting a solution to the problem given. Since this drawback is not
present in the top-down approach, it is natural to try to combine the strengths of the top-down
and bottom-up approaches. The goal is to get a method that solves only subproblems that are
necessary and does so only once. Such a method exists; it is based on using memory
functions.

This method solves a given problem in the top-down manner but, in addition, maintains a
table of the kind that would have been used by a bottom-up dynamic programming algorithm.
Initially, all the table’s entries are initialized with a special “null” symbol to indicate that they
have not yet been calculated. Thereafter, whenever a new value needs to be calculated, the
method checks the corresponding entry in the table first: if this entry is not “null,” it is simply
retrieved from the table; otherwise, it is computed by the recursive call whose result is then
recorded in the table.

The following algorithm implements this idea for the knapsack problem. After initializing the
table, the recursive function needs to be called with i = n (the number of items) and j = W
(the knapsack capacity).

Algorithm MFKnapsack(, j)
//Tmplements the memory function method for the knapsack problem
//Input: A nonnegative integer 1 indicating the number of the first items being
considered and a nonnegative integer j indicating the knapsack capacity
//Output: The value of an optimal feasible subset of the first i items
//Note: Uses as global variables input arrays Weights[1..n], V alues[1..n], and
table F[0..n, 0..W] whose entries are initialized with —1’s except for
row 0 and column O initialized with 0’s
if Fli, j]<O
if j < Weights|i|
value < MFKnapsack(i — 1, j)
else
value < max(MFKnapsack(i — 1, j),
Values[i]| + MFKnapsack (i — 1, j — Weights[i]))
Fli, j] < value
return F|i, j|

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 18

ecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

Example-2 Let us apply the memory function method to the instance considered in Example
1. The table in Figure given below gives the results. Only 11 out of 20 nontrivial values (i.e.,
not those in row 0 or in column 0) have been computed. Just one nontrivial entry, V (1, 2), is
retrieved rather than being recomputed. For larger instances, the proportion of such entries
can be significantly larger.

capacity j
i 0 1 2 3 4 5
0 0 0 0 0 0 0
wi=2,v=12 1 0 0 12 12 12 12
wy=1,1,=10 2 0 — 2 22 — 22
wy =3, v3=20 3 o - - 22 — 3
wy=2,v4=15 4 0 — — — — 37

Figure: Example of solving an instance of the knapsack problem by the memory function algorithm

In general, we cannot expect more than a constant-factor gain in using the memory function
method for the knapsack problem, because its time efficiency class is the same as that of the
bottom-up algorithm

6. Bellman-Ford Algorithm (Single source shortest path with —ve weights)
Problem definition

Single source shortest path - Given a graph and a source vertex s in graph, find shortest paths
from s to all vertices in the given graph. The graph may contain negative weight edges.

Note that we have discussed Dijkstra’s algorithm for single source shortest path problem.
Dijksra’s algorithm is a Greedy algorithm and time complexity is O(VlogV). But Dijkstra
doesn’t work for graphs with negative weight edges.

Bellman-Ford works for such graphs. Bellman-Ford is also simpler than Dijkstra and suites
well for distributed systems. But time complexity of Bellman-Ford is O(VE), which is more
than Dijkstra.

How it works?

Like other Dynamic Programming Problems, the algorithm calculates shortest paths in
bottom-up manner. It first calculates the shortest distances for the shortest paths which have
at-most one edge in the path. Then, it calculates shortest paths with at-most 2 edges, and so
on. After the i iteration of outer loop, the shortest paths with at most i edges are calculated.
There can be maximum |V| — 1 edges in any simple path, that is why the outer loop runs |v| —
1 times. The idea is, assuming that there is no negative weight cycle, if we have calculated
shortest paths with at most i edges, then an iteration over all edges guarantees to give shortest
path with at-most (i+1) edges

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 19

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

Let dist’[u] be the length of a shortest path from the source vertex v
to vertex u under the constraint that the shortest path contains at most £
edges. Then, dist!'[u] = cost[v,u], 1 < u < n. As noted earlier, when there
are no cycles of negative length, we can limit our search for shortest paths
to paths with at most n — 1 edges. Hence, dist™"![u] is the length of an
unrestricted shortest path from v to u.

Our goal then is to compute dist” [u] for all u. This can be done us-
ing the dynamic programming methodology. First, we make the following
observations:

1. If the shortest path from » to v with at most k&, £ > 1, edges has no
more than k& — 1 edges, then distf[u] = dist*~![u].

2. If the shortest path from v to « with at most k&, £ > 1, edges has
exactly £ edges, then it is made up of a shortest path from v to some
vertex j followed by the edge (j,u). The path from v to j has £ — 1

edges, and its length is dist*~1[j]. All vertices i such that the edge
(1,u) is in the graph are candidates for j. Since we are interested in a

shortest path, the 7 that minimizes dist*~[i] + cost[i,u] is the correct
value for j.

These observations result in the following recurrence for dist:

dist*lu] = min {dist* " '[u], min {dist*"'[]] + cost[i,u]}}
)

This recurrence can be used to compute dist* from dist*—!, for k = 2,3, ...,
n — 1.

Bellman-Ford algorithm to compute shortest path

Algorithm BellmanFord(v, cost, dist, n)
// Single-source/all-destinations shortest,
// paths with negative edge costs
t for i := 1 to n do // Initialize dist.
dist[i] := cost]v,1];
for k:=2ton—1do
for each u such that u # v and u has
at least one incoming edge do
for each (i,u) in the graph do
if dist[u] > dist[i] + cost[i, 1| then
dist|u] := dist[{] + cost[i, u];

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 20

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

VWLr=?
T

Example 5.16 Figure 5.10 gives a seven-vertex graph, together with the
arrays dist®, k =1,...,6. These arrays were computed using the equation
just given. For instance, dist®[1] = 0 for all k£ since 1 is the source node.
Also, dist![2] = 6,dist![3] = 5, and dist*[4] = 5, since there are edges from

1 to these nodes. The distance dist'[] is oo for the nodes 5,6, and 7 since
there are no edges to these from 1.

dist?[2] = min {dist'[2], min; dist'[i] + cost[i, 2]}
= min {6,0+6,5—2,5+ 00,00 + 00,00 + 00,00 + 00} =3

Here the terms 0+ 6,5 — 2,5 + 00, 00 + 00, o0 + o0, and oo + 0o correspond
to a choice of i = 1,3,4,5,6, and 7, respectively. The rest of the entries are

computed in an analogous manner. a
dist*[1.7]
ki1 2 3 4 5 67
1|0 6 5 5 0 o o
210 3 3 5 5 4 =
301 35 2 47
4101 3 50 45
5001 35 0 4 3
601 35043
(a) A directed graph (b) dist*

Figure 5.10 Shortest paths with negative edge lengths

7. Travelling Sales Person problem (T2:5.9),

We have seen how to apply dynamic programming to a subset selection prob-
lem (0/1 knapsack). Now we turn our attention to a permutation problem.
Note that permutation problems usually are much harder to solve than sub-
set problems as there are n! different permutations of n objects whereas
there are only 2" different subsets of n objects (n! > 27). Let G = (V, E)
be a directed graph with edge costs ¢;;. The variable ¢;; is defined such that
cij > 0 for all ¢ and j and ¢;; = co if (¢,7) & E. Let |V| = n and assume
n > 1. A tour of G is a directed simple cycle that includes every vertex in
V. The cost of a tour is the sum of the cost of the edges on the tour. The
traveling salesperson problem is to find a tour of minimum cost.

The traveling salesperson problem finds application in a variety of situ-
ations. Suppose we have to route a postal van to pick up mail from mail

boxes located at n different sites. An n + 1 vertex graph can be used to
represent the situation. One vertex represents the post office from which the
postal van starts and to which it must return. Edge (i, j) is assigned a cost
equal to the distance from site ¢ to site 3. The route taken by the postal van
is a tour, and we are interested in finding a tour of minimum length.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 21

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

:
ST

As a second example, suppose we wish to use a robot arm to tighten
the nuts on some piece of machinery on an assembly line. The arm will
start from its initial position (which is over the first nut to be tightened),
successively move to each of the remaining nuts, and return to the initial
position. The path of the arm is clearly a tour on a graph in which vertices
represent the nuts. A minimum-cost tour will minimize the time needed for
the arm to complete its task (note that only the total arm movement time
is variable; the nut tightening time is independent of the tour).

In the following discussion we shall, without loss of generality, regard
a tour to be a simple path that starts and ends at vertex 1. Every tour
consists of an edge (1, k) for some k € V — {1} and a path from vertex & to
vertex 1. The path from vertex k to vertex 1 goes through each vertex in
V — {1, k} exactly once. It is easy to see that if the tour is optimal, then the
path from k£ to 1 must be a shortest k to 1 path going through all vertices
in V — {1,k}. Hence, the principle of optimality holds. Let g(i,.5) be the
length of a shortest path starting at vertex i, going through all vertices in
S, and terminating at vertex 1. The function g(1,V — {1}) is the length of
an optimal salesperson tour. From the principal of optimality it follows that

g1,V —{1}) = min {eix +g(k,V — {Lk})} (5.20)
Generalizing (5.20), we obtain (for i & S)
g(i, §) = min{ei; +9(5, 5 —{j})} (5.21)
jJES

Equation 5.20 can be solved for g(1,V — {1}) if we know g(k,V — {1,k})
for all choices of k. The g values can be obtained by using (5.21). Clearly,

g(i,) = ¢i1, 1 < i < n. Hence, we can use (5.21) to obtain g(i,S) for all §
of size 1. Then we can obtain g(%,5) for S with |S| = 2, and so on. When
|S| < n— 1, the values of ¢ and S for which g(7, S) is needed are such that
i#1,1¢ S, andi¢g8S.

Example 5.26 Consider the directed graph of Figure 5.21(a). The edge
lengths are given by matrix ¢ of Figure 5.21(b).

0 10 15 20
5 0 9 10
6 13 0 12
8§ 8 9 0
(a) - B
(b)

Figure 5.21 Directed graph and edge length matrix ¢

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 22

}ﬁLecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

Thus g(2,¢) = co1 = 5,9(3,¢) = c31 = 6, and g(4,¢) = ca1 = 8. Using
(5.21), we obtain

9(27 {3}) = (23 +g(37¢) = 15 (27 {4}) = 18
9(39 {2}) = 18 (39 {4}) = 20
9(4,{2}) = 13 g(4,{3}) = 15
Next, we compute g(i,S) with |[S|=2,i# 1, 1¢ S and i & S.
9(27 {314}) - m§n {023 +g(3ﬂ {4})7624 +g(4a {3})} = 29
(3, {274}) = min {032 +9(2, {4})= €34 + 9(47 {2})} = 25
o(412,3)) = min {en +g(2,(3)) 0 + 903 121} = 23
Finally, from (5.20) we obtain
9(1,{2,3,4}) = min{cio + ¢(2,{3,4}),c13 + 9(3,{2,4}).c14 + g(4,{2,3})}
= min{35,40,43}
= 35

An optimal tour of the graph of Figure 5.21(a) has length 35. A tour
of this length can be constructed if we retain with each ¢(7, S) the value of
7 that minimizes the right-hand side of (5.21). Let J(7,S) be this value.
Then, J(1,{2,3,4}) = 2. Thus the tour starts from 1 and goes to 2. The
remaining tour can be obtained from ¢(2, {3, 4}). So J(2, {3, 4}) = 4. Thus
the next edge is (2,4). The remaining tour is for ¢g(4, {3}) So J(4, {3}) =
3. The optimal tour is 1, 2, 4, 3, 1. O

Let N be the number of g(4, S)’s that have to be computed before (5.20)
can be used to compute g(1,V — {1}). For each value of | S| there are n — 1
choices for <. The number of distinct sets S of size k& not including 1 and ¢

n—2
is (k) Hence

n—2 - -
N:lg)(n—l)(kz):(n—lﬂ 2

An algorithm that proceeds to find an optimal tour by using (5.20) and (5.21)
will require ©(n?2") time as the computation of g(i, S) with |S| = k requires
k — 1 comparisons when solving (5.21). This is better than enumerating all
n! different tours to find the best one. The most serious drawback of this
dynamic programming solution is the space needed, O(n2"). This is too
large even for modest values of n.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 23

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

8. Reliability design

In this section we look at an example of how to use dynamic programming
to solve a problem with a multiplicative optimization function. The prob-
lem is to design a system that is composed of several devices connected in
series (Figure 5.19). Let r; be the reliability of device D; (that is, r; is the
probability that device ¢ will function properly). Then, the reliability of the
entire system is llr;. Even if the individual devices are very reliable (the
r;’s are very close to one), the reliability of the system may not be very
good. For example, if n = 10 and r; = .99, 1 < ¢ < 10, then IIr; = .904.
Hence, it is desirable to duplicate devices. Multiple copies of the same de-
vice type are connected in parallel (Figure 5.20) through the use of switching
circuits. The switching circuits determine which devices in any given group
are functioning properly. They then make use of one such device at each
stage.

N SRS

Figure 5.19 n devices D;, 1 <1 < n, connected in series

stage 1 stage 2 stage 3 stage n
D, Ds D,
D, D,
D, — — D, ——
D, D,
D, D,
D

Figure 5.20 Multiple devices connected in parallel in each stage

If stage ¢ contains m; coples of device D;, then the probability that all
m,; have a malfunction is (1 —r;)™. Hence the reliability of stage ¢ becomes
1 — (1 —r;)™. Thus, if r; = .99 and m; = 2, the stage reliability becomes
9999, In any practical situation, the stage reliability is a little less than
1 —(1—r;)™ because the switching circuits themselves are not fully reliable.
Also, failures of copies of the same device may not be fully independent (e.g.,
if faiture is due to design defect). Let us assume that the reliability of stage
i is given by a function ¢;(m;), 1 < n. (It is quite conceivable that ¢;(m;)
may decrease after a certain value of m;.) The reliability of the system of
stages is [T1<j<ngi(m;).

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 24

) Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

QOur problem is to use device duplication to maximize reliability. This
maximization is to be carried out under a cost constraint. Let ¢; be the
cost of each unit of device i and let ¢ be the maximum allowable cost of
the system being designed. We wish to solve the following maximization
problem:

maximize Il <;<n ¢di(my)

subject to Z cm; < c
1<i<n

m; > 1 and integer, 1 <7 <n

A dynamic programming solution can be obtained in a manner similar to
that used for the knapsack problem. Since, we can assume each ¢; > 0, each
m; must be in the range 1 < m; < u;, where

T
w; = [(c + ¢ — ch)/ci
1

The upper bound u; follows from the observation that m; > 1. An optimal
solution my,ms,...,m, is the result of a sequence of decisions, one decision
for each m;. Let f;(z) represent the maximum value of I1; < ;<; ¢(m;) subject
to the constraints EKK,; c;mj <z and 1l <my; <wuy, 1 <7 <4 Then, the
value of an optimal solution is f,(c). The last decision made requires one to
choose m,, from {1,2,3,...,u,}. Once a value for m,, has been chosen, the
remaining decisions must be such as to use the remaining funds ¢ — ¢, m,, in
an optimal way. The principal of optimality holds and

fule) = max {¢n(mn)fn1(c —cnmn)} (5.18)

1<m, <

n ~Un

For any f;(x), ¢« > 1, this equation generalizes to

filz) = max {¢gi(m;)fi—1(x —my)} (5.19)
1<m; <uy

Clearly, fo(z) =1 for all z, 0 < z < c¢. Hence, (5.19) can be solved using
an approach similar to that used for the knapsack problem. Let S? consist
of tuples of the form (f,z), where f = f;(x). There is at most one tuple for
each different x that results from a sequence of decisions on my,ms,...,m,.
The dominance rule (f1,z1) dominates (fo, z2) iff f1 > fo and z; < x5 holds

for this problem too. Hence, dominated tuples can be discarded from S°.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 25

] Lect Not 10CS43 - Design & Analysis of Algorith Module 4: D icP i
S, ecture Notes | esign & Analysis of Algorithms | Module 4: Dynamic Programming DM

Example 5.25 We are to design a three stage system with device types
D1,D,, and D3. The costs are $30, $15, and $20 respectively. The cost of
the system is to be no more than $105. The reliability of each device type is
.9, .8 and .5 respectively. We assume that if stage ¢ has m; devices of type i
in parallel, then ¢;(m;) = 1—(1—7;)™. In terms of the notation used earlier,
c1 =30,c0 =15,¢3 =20,¢=105,r; = .9, ro = .8, r3 = .b,u; =2,us = 3,
and u3z = 3.

We use S' to represent the set of all undominated tuples (f,z) that
may result from the various decision sequences for mq,ma,...,m;. Hence,
f(z) = fi(z). Beginning with S° = {(1,0)}, we can obtain each S* from §* !
by trying out all possible values for m; and combining the resulting tuples
together. Using .57 to represent all tuples obtainable from S*~1 by choosing

m; = j, we obtain §] = {(.9, 30)} and S5 = {(.9, 30),(.99,60)}. The set
5% = {(.72,45),(.792,75)}; 5%={(.864, 60)}. Note that the tuple (.9504, 90)
which comes from (.99, 60) has been eliminated from S3 as this leaves only
$10. This is not enough to allow m3 = 1. The set S7 = {(.8928,75)}. Com-
bining, we get 5% = {(.72, 45), (.864, 60), (.8928,75)} as the tuple (.792, 75) is
dominated by (.864, 60). The set S = {(.36,65), (.432,80), (.4464,95)}, S3
= {(.54, 85), (.648,100)}, and S§ = {(.63,105)}. Combining, we get S =
{(.36,65), (.432, 80), (.54, 85), (.648,100)}.

The best design has a reliability of .648 and a cost of 100. Tracing back
through the 5%s, we determine that m; = 1,ms = 2, and my = 2. O

As in the case of the knapsack problem, a complete dynamic programming
algorithm for the reliability problem will use heuristics to reduce the size of
the S"’s. There is no need to retain any tuple (f,z) in S* with z value
greater that ¢ — 3, .., ¢; as such a tuple will not leave adequate funds
to complete the system. In addition, we can devise a simple heuristic to
determine the best reliability obtainable by completing a tuple (f,z) in S°.
If this is less than a heuristically determined lower bound on the optimal
system reliability, then (f, z) can be eliminated from S°.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 26

GG = =h
&8 }\ Vivekananda 7
B - . . b
a5 College of Engineering & Technology '
o Nehru Nagar Post, Puttur, D.K. 574203 ‘

Lecture Notes on
15CS43

D “ Design and Analysis of
Algorithms

(CBCS Scheme)

Prepared by
Harivinod N
Dept. of Computer Science and Engineering,

VCET Puttur

May 2017

Module-5 : Backtracking

Contents

1. Backtracking: 3. 0/1 Knapsack problem
1.1. General method 3.1. LC Branch and Bound solution
1.2. N-Queens problem 3.2. FIFO Branch and Bound solution
1.3. Sum of subsets problem 4. NP-Complete and NP-Hard problems
1.4. Graph coloring 4.1. Basic concepts
1.5. Hamiltonian cycles 4.2. Non-deterministic algorithms

2. Branch and Bound: 4.3. P, NP, NP-Complete, and NP-Hard
2.1. Assignment Problem, classes

2.2. Travelling Sales Person problem

Course Website
www.TechJourney.in

i Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

1. Backtracking

Some problems can be solved, by exhaustive search. The exhaustive-search technique
suggests generating all candidate solutions and then identifying the one (or the ones) with a
desired property.

Backtracking is a more intelligent variation of this approach. The principal idea is to
construct solutions one component at a time and evaluate such partially constructed
candidates as follows. If a partially constructed solution can be developed further without
violating the problem’s constraints, it is done by taking the first remaining legitimate option
for the next component. If there is no legitimate option for the next component, no
alternatives for any remaining component need to be considered. In this case, the algorithm
backtracks to replace the last component of the partially constructed solution with its next
option.

It is convenient to implement this kind of processing by constructing a tree of choices being
made, called the state-space tree. Its root represents an initial state before the search for a
solution begins. The nodes of the first level in the tree represent the choices made for the first
component of a solution; the nodes of the second level represent the choices for the second
component, and so on. A node in a state-space tree is said to be promising if it corresponds to
a partially constructed solution that may still lead to a complete solution; otherwise, it is
called non-promising. Leaves represent either non-promising dead ends or complete
solutions found by the algorithm.

In the majority of cases, a statespace tree for a backtracking algorithm is constructed in the
manner of depth-first search. If the current node is promising, its child is generated by adding
the first remaining legitimate option for the next component of a solution, and the processing
moves to this child. If the current node turns out to be non-promising, the algorithm
backtracks to the node’s parent to consider the next possible option for its last component; if
there is no such option, it backtracks one more level up the tree, and so on. Finally, if the
algorithm reaches a complete solution to the problem, it either stops (if just one solution is
required) or continues searching for other possible solutions.

1.1 General method (Textbook T2:7.1)

In many applications of the backtrack method, the desired solution is
expressible as an n-tuple (z,,...,z,), where the z; are chosen from some
finite set .S;. :

Suppose m; is the size of set S;. Then there are m = mymg---m, n-
tuples that are possible candidates for satisfying the function P. The brute
foree approach would be to form all these n-tuples, evaluate each one with
P, and save those which yield the optimum. The backtrack algorithm has
as its virtue the ability to yield the same answer with far fewer than m
trials. Its basic idea is to build up the solution vector one component at a
time and to use modified criterion functions P;(z1,...,z;) (sometimes called

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 2

3 Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

g
G
R~
™

bounding functions) to test whether the vector being formed has any chance
of success. The major advantage of this method is this: if it is realized that
the partial vector (z1,22,...,2;) can in no way lead to an optimal solution,
then m;,1---m, possible test vectors can be ignored entirely.

Many of the problems we solve using backtracking require that all the
solutions satisfy a complex set of constraints. For any problem these con-
straints can be divided into two categories: ezplicit and implicit.

Definition 7.1 Explicit constraints are rules that restrict each z; to take
on values only from a given set. O

Common examples of explicit constraints are

{all nonnegative real numbers}

{0,1}

{a:l; <a<wu}

z; >0 or S;
z; =0 or 1 or S;
i<z <wu; or 5

ot

The explicit constraints depend on the particular instance I of the problem
being solved. All tuples that satisfy the explicit constraints define a possible
solution space for I.

Definition 7.2 The implicit constraints are rules that determine which of
the tuples in the solution space of I satisfy the criterion function. Thus
implicit constraints describe the way in which the z; must relate to each
other. 0O

General Algorithm (Recursive)
Algorithm Backtrack(k)

// This schema describes the backtracking process using
// recursion. On entering, the first &k — 1 values

// z[1],z[2],...,z[k — 1] of the solution vector

// z[l : n] have been assigned. z[| and n are global.

for (each z[k] € T(z[1],...,z[k —1]) do

{
if (Bg(z[1],2[2],...,z[k]) #0) then

if (z[1],z[2],...,z[k] is a path to an answer node)
then write (z[1: k]);
if (k < n) then Backtrack(k + 1);
}
}

General Algorithm (Iterative)

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 3

s i, i Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

Algorithm [Backtrack(n)

// This schema describes the backtracking process.
// All solutions are generated in z[1 : n] and printed
// as soon as they are determined.

k.= 1;
while (k # 0) do

if (there remains an untried z[k] € T(z (1], z[2],.. .,
z[k —1]) and Bi(z[l],...,z[k]) is true) then

(z[1],...,z[k] is a path to an answer node)
then write (z[l : k]);
k:=k +1; // Consider the next set.

else k := k — 1; // Backtrack to the previous set.

}
}

General Algorithm for backtracking (From textbook T1)
ALGORITHM Backtrack(X[1..i])

//Gives a template of a generic backtracking algorithm

/Mnput: X[1..i] specifies first i promising components of a solution
//Output: All the tuples representing the problem’s solutions

if X[1..i]is a solution write X[1..i]

else /lsee Problem 9 in this section’s exercises
for cach element x € §; | consistent with X[1..i] and the constraints do
X[i+1]«x

Backtrack(X[1..i + 1])

1.2 N-Queens problem (Textbook T1:12.1),

The problem is to place n queens on an n X n chessboard so that no two queens attack each
other by being in the same row or in the same column or on the same diagonal.

So let us consider the four-queens problem and solve it by the backtracking technique.
Since each of the four queens has to be placed in its own row, all we need to do is to assign a
column for each queen on the board presented in figure.

1 2 3 4

<+—— queen 1

<+—— queen 2

<+—— queen 3

AW N -

<+—— queenid

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 4

i Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

We start with the empty board and then place queen 1 in the first possible position of its row,
which is in column 1 of row 1. Then we place queen 2, after trying unsuccessfully columns 1
and 2, in the first acceptable position for it, which is square (2, 3), the square in row 2 and
column 3. This proves to be a dead end because there is no acceptable position for queen 3.
So, the algorithm backtracks and puts queen 2 in the next possible position at (2, 4). Then
queen 3 is placed at (3, 2), which proves to be another dead end. The algorithm then
backtracks all the way to queen 1 and moves it to (1, 2). Queen 2 then goes to (2, 4), queen 3
to (3, 1), and queen 4 to (4, 3), which is a solution to the problem. The state-space tree of this
search is shown in figure.

Q Q
— . / 4 —
_ — - 3\\\ ,"f I"., — 5
l >2< Q Q 1 2 3 Q
a 3 b X X 3
/ / -
/ | ‘ "‘ / .-"f /
\ / 4 7 -
1 2 3 4 1 3 4
x x =x x x|Q ® X Q
Q Q
Q Q
/ [/
/ ,l') / | 8
1 2 3 4 1 2
® X X X b X Q
Q
Q
Q
solution

Figure: State-space tree of solving the four-queens problem by backtracking.
x denotes an unsuccessful attempt to place a queen in the indicated column. The
numbers above the nodes indicate the order in which the nodes are generated.

If other solutions need to be found, the algorithm can simply resume its operations at the leaf
at which it stopped. Alternatively, we can use the board’s symmetry for this purpose.

Finally, it should be pointed out that a single solution to the n-queens problem for any n > 4
can be found in linear time.

Note: The algorithm NQueens() is not in the syllabus. It is given here for interested learners.
The algorithm is referred from textbook T2.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 5

ﬁLecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

Algorithm NQueens(k,n)

// Using backtracking, this procedure prints all
// possible placements of n queens on an n x n
// chessboard so that they are nonattacking.

for 1 :=1to n do
if Place(k,) then

z[k] = i;
if (k = n) then write (z[l: n));
else NQueens(k + 1,n);

}

}
}
Algorithm Place(k,)
// Returns true if a queen can be placed in kth row and
// ith column. Otherwise it returns false. z[] is a
// global array whose first (k — 1) values have been set.
// Abs(r) returns the absolute value of r.

for y:=1to k—1do
if ((z[j] =) // Two in the same column
or (Abs(z[j] — i) = Abs(j — k)))
// or in the same diagonal
then return false;
return true;

}

1.3 Sum of subsets problem

Problem definition: Find a subset of a given set A = {a;, ..., a, } of n positive integers
whose sum is equal to a given positive integer d.

For example, for A = {1, 2, 5, 6, 8} and d = 9, there are two solutions: {1, 2, 6} and {1, 8}.
Of course, some instances of this problem may have no solutions.

It is convenient to sort the set’s elements in increasing order. So, we will assume that
<a<...<a,.

The state-space tree can be constructed as a binary tree like that in Figure shown below for
the instance A = {3,5,6, 7} and d = 15.

The number inside a node is the sum of the elements already included in the subsets
represented by the node. The inequality below a leaf indicates the reason for its termination.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 6

=
A
with3 _— T~ w/o3
jos)
withs "~ ™ _w/o& with 5,/ \w/o &
N ™ ~ N
8) }3""‘. g (0)
with 8,7~ w/o 6 with 8, \ w/o 6 with 6, "\ w0 6 X
p . o N i . 0+13<15
OHRO, ONERO, OO,
with ?/ \\WfD 7 ® ® ® %
1447>15 --{' }’ 947>16 3+7<156 1147=>15 5+7<15
B
ﬁ5} (&)
iy o
solution b

8<15

The root of the tree represents the starting point, with no decisions about the given elements
made as yet. Its left and right children represent, respectively, inclusion and exclusion of a; in
a set being sought.

Similarly, going to the left from a node of the first level corresponds to inclusion of a, while
going to the right corresponds to its exclusion, and so on. Thus, a path from the root to a node
on the i™ level of the tree indicates which of the first i numbers have been included in the
subsets represented by that node.

We record the value of s, the sum of these numbers, in the node. If s is equal to d, we have a
solution to the problem. We can either report this result and stop or, if all the solutions need
to be found, continue by backtracking to the node’s parent. If s is not equal to d, we can
terminate the node as non-promising if either of the following two inequalities holds:

s+a; 1 >d (the sum s is too large),
n
s+ Z a; <d (the sum s is too small).
Jj=i+1

Example: Apply backtracking to solve the following instance of the subset sum problem: A
={1,3,4,5} andd=11.

1.4 Graph coloring

Let GG be a graph and m be a given positive integer. We want to discover
whether the nodes of G can be colored in such a way that no two adjacent
nodes have the same color yet only m colors are used. This is termed the
m-colorability decision problem Note
that if d 1s the degree of the given graph, then it can be colored with d + 1

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 7

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

&
s

colors. The m-colorability optimization problem asks for the smallest integer
m for which the graph G can be colored. This integer is referred to as the
chromatic number of the graph. For example, the graph of Figure 7.11 can
be colored with three colors 1,2, and 3. The color of each node is indicated
next to it. It can also be seen that three colors are needed to color this graph
and hence this graph’s chromatic number is 3.

Figure 7.11 An example graph and its coloring

A graph is said to be planar iff it can be drawn in a plane in such a
way that no two edges cross each other. A famous special case of the m-
colorability decision problem is the 4-color problem for planar graphs. This
problem asks the following question: given any map, can the regions be
colored in such a way that no two adjacent regions have the same color
yet only four colors are needed? This turns out to be a problem for which
graphs are very useful, because a map can easily be transformed into a graph.
Each region of the map becomes a node, and if two regions are adjacent,
then the corresponding nodes are joined by an edge. Figure 7.12 shows a
map with five regions and its corresponding graph. This map requires four
colors. For many years it was known that five colors were sufficient to color
any map, but no map that required more than four colors had ever been
found. After several hundred years, this problem was solved by a group of
mathematicians with the help of a computer. They showed that in fact four
colors are sufficient. In this section we consider not only graphs that are
produced from maps but all graphs. We are interested in determining all
the different ways in which a given graph can be colored using at most m

colors.

Figure 7.12 A map and its planar graph representation

Suppose we represent a graph by its adjacency matrix G[1 : n,1 : n],
where G[i, j] = 1if (z, j) is an edge of G, and G|z, j] = 0 otherwise. The colors
are represented by the integers 1,2,...,m and the solutions are given by the
n-tuple (z1,...,z,), where z; is the color of node i. Using the recursive
backtracking formulation as given in Algorithm 7.1, the resulting algorithm
is mColoring (Algorithm 7.7). The underlying state space tree used is a
level n 4+ 1 are leaf nodes. Figure 7.13 shows the state space tree when n =
3 and m = 3.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 8

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

Algorithm 7.7 Finding all m-colorings of a graph

Algorithm mColoring(k)
// This algorithm was formed using the recursive backtracking
// schema. The graph is represented by its boolean adjacency
// matrix G[1 :n,1:n]. All assignments of 1,2,...,m to the
// vertices of the graph such that adjacent vertices are
// assigned distinct integers are printed. k is the index
// of the next vertex to color.
{
repeat
/ Generate all legal assignments for z[k].
NextValue(k); // Assign to z[k] a legal color.
if (z[k] = 0) then return; // No new color possible
if (k =n) then // At most m colors have been
// used to color the n vertices.
write ([l : n]);
else mColoring(k + 1);
} until (false);

}

Algorithm NextValue(k)

// z[1], ..., z[k — 1] have been assigned integer values in

// the range [1,m] such that adjacent vertices have distinct

// integers. A value for z[k] is determined in the range

// [0,m]. z[k] is assigned the next highest numbered color
/ while maintaining distinctness from the adjacent vertices

// of vertex k. If no such color exists, then z[k] is 0.

{

repeat
z[k] == (z[k] + 1) mod (m + 1); // Next highest color.
if (x [] 0) then return; // All colors have been used.
for j:=1to ndo
{ Check if this color is

Glk,j] # 0) and (z[k] = =[j]))
f (k,7) is and edge and if ad].
vertices have the same color.
then break;

b—qz—\

Jt

/]

/ / distinct from adjacent colors.
/ /

//

if (j =n+1) then return; // New color found
} until (false); // Otherwise try to find another color.

}

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 9

@\ AAA

Figure 7.13 State space tree for mColoring when n =3 and m = 3

Function mColoring 1s begun by first assigning the graph to its adja-
cency matrix, setting the array x[] to zero, and then invoking the statement
mColoring(1);.

Function NextValue (Algo-
rithm 7.8) produces the possible colors for z; after z; through zy_, have
been defined. The main loop of mColoring repeatedly picks an element from
the set of possibilities, assigns it to x, and then calls mColoring recursively.
For instance, Figure 7.14 shows a simple graph containing four nodes. Below
that is the tree that is generated by mColoring. Each path to a leaf repre-
sents a coloring using at most three colors. Note that only 12 solutions exist
with ezactly three colors. In this tree, after choosing 1 = 2 and =9 = 1,
the possible choices for z3 are 2 and 3. After choosing z; = 2, zo = 1, and
x3 = 2, possible values for z4 are 1 and 3. And so on.

X|1= /1/ 2

Xo=

X3= 1/% K
=2/\32| 2 33 31 El
4 o b b

Figure 7.14 A 4-node graph and all possible 3-colorings

Analysis
An upper bound on the computing time of mColoring can be arrived at by
noticing that the number of internal nodes in the state space tree is > 01 m?.

At each internal node, O(mn) time is spent by NextValue to determine the
children corresponding to legal colorings. Hence the total time is bounded

by 32750 mtin = YL min = n(m™! ~2)/(m ~ 1) = O(nm").

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 10

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

%\
R

1.5 Hamiltonian cycles

Let G = (V, E) be a connected graph with n vertices. A Hamiltonian cycle
(suggested by Sir William Hamilton) is a round-trip path along n edges of
GG that visits every vertex once and returns to its starting position. In other
words if a Hamiltonian cycle begins at some vertex v; € G and the vertices
of G are visited in the order vy, vy, ..., vn 1, then the edges (v;, v;41) are in
E, 1 <1 < n, and the v; are distinct except for v; and v, 1, which are equal.

The graph G1 of Figure 7.15 contains the Hamiltonian cycle 1, 2, 8, 7,
6, 5, 4, 3, 1. The graph G2 of Figure 7.15 contains no Hamiltonian cycle.
There is no known easy way to determine whether a given graph contains a
Hamiltonian cycle.

O—2 O 203
> T N
G (BE—YTr (6)—(5) o ©

Figure 7.15 Two graphs, one containing a Hamiltonian cycle

, We now look at a backtracking algorithm that finds all
the Hamiltonian cycles in a graph. The graph may be directed or undirected.
Only distinct cycles are output.

The backtracking solution vector (zy,...,x,) is defined so that x; rep-
resents the ith visited vertex of the proposed cycle. Now all we need do is
determine how to compute the set of possible vertices for xy if x1,...,Tr_1
have already been chosen. If £ = 1, then z; can be any of the n vertices. To
avoid printing the same cycle n times, we require that z; = 1. If 1 < &k < n,
then x; can be any vertex v that is distinet from z1,29,...,zr_1 and v is
connected by an edge to zx ;. The vertex z,, can only be the one remaining
vertex and it must be connected to both z,,_; and z;. We begin by present-
ing function NextValue(k) which determines a possible next

vertex for the proposed cycle.

Using NextValue we can particularize the recursive backtracking schema
to find all Hamiltonian cycles) . This algorithm is started
by first initializing the adjacency matrix G[1 : n,1: n], then setting z[2 : n]
to zero and z[1] to 1, and then executing Hamiltonian(2).

Recall from the traveling salesperson problem which asked for
a tour that has minimum cost. This tour is a Hamiltonian cycle. For the
simple case of a graph all of whose edge costs are identical, Hamiltonian will
find a minimum-cost tour if a tour exists. If the common edge cost is ¢, the
cost of a tour is en since there are n edges in a Hamiltonian cycle.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 11

i _Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

%&@

Algorithm Hamiltonian(k)

// This algorithm uses the recursive formulation of
// backtracking to find all the Hamiltonian cycles
// of a graph. The graph is stored as an adjacency
// matrix G[1:n,1:n]. All cycles begin at node 1.

repeat
{ // Generate values for z|k].
NextValue(k); // Assign a legal next value to z[k].
if (z[k] = 0) then return;
if (kK = n) then write (z[1 : n]);
else Hamiltonian(k + 1);
} until (false);

}

Algorithm NextValue(k)

J/ x[1:k—1]is a path of k — 1 distinct vertices. If z[k] = 0, then
// no vertex has as yet been assigned to z[k]. After execution,

// x[k] is assigned to the next highest numbered vertex which

// does not already appear in z[1 : k — 1] and is connected by

// an edge to z[k — 1]. Otherwise z[k] =0. If k = n, then

// in addition z[k] is connected to z[1].

Eepeat

[k] := (z[k] + 1) mod (n +1); // Next vertex.
(r[k] = 0) then return;

if (G[x[k —1]. z[k] # 0) then

//

Is there an edge?

for 7:=1to k£ —1 do if (x[j] = z[k]) then break;
// Check for distinctness.

if (j = k) then // If true, then the vertex is distinct.

if ((k < n) or ((k=n) and Glz[n],z[1]] # 0))

then return,

)

idic

}
} until (false);
}

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 12

| 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

2. Branch and Bound

Recall that the central idea of backtracking, discussed in the previous section, is to cut off a
branch of the problem’s state-space tree as soon as we can deduce that it cannot lead to a
solution. This idea can be strengthened further if we deal with an optimization problem.

An optimization problem seeks to minimize or maximize some objective function (a tour
length, the value of items selected, the cost of an assignment, and the like), usually subject to
some constraints. An optimal solution is a feasible solution with the best value of the
objective function (e.g., the shortest Hamiltonian circuit or the most valuable subset of items
that fit the knapsack).

Compared to backtracking, branch-and-bound requires two additional items:

1. a way to provide, for every node of a state-space tree, a bound on the best value of
the objective function on any solution that can be obtained by adding further
components to the partially constructed solution represented by the node

2. the value of the best solution seen so far

In general, we terminate a search path at the current node in a state-space tree of a branch-
and-bound algorithm for any one of the following three reasons:

1. The value of the node’s bound is not better than the value of the best solution seen so
far.

2. The node represents no feasible solutions because the constraints of the problem are
already violated.

3. The subset of feasible solutions represented by the node consists of a single point (and
hence no further choices can be made)—in this case, we compare the value of the
objective function for this feasible solution with that of the best solution seen so far
and update the latter with the former if the new solution is better.

2.1 Assignment Problem

Let us illustrate the branch-and-bound approach by applying it to the problem of assigning n
people to n jobs so that the total cost of the assignment is as small as possible.

An instance of the assignment problem is specified by an n X n cost matrix C so that we can
state the problem as follows: select one element in each row of the matrix so that no two
selected elements are in the same column and their sum is the smallest possible. We will
demonstrate how this problem can be solved using the branch-and-bound technique by
considering the small instance of the problem. Consider the data given below.

jobl job2 job3 job4
9 2 7 8 person a
C— 6 4) 7 person b
Il - 8 1 8 person ¢
7 6 9 4 | persond

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 13

T

i Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

How can we find a lower bound on the cost of an optimal selection without actually solving
the problem?

We can do this by several methods. For example, it is clear that the cost of any solution,
including an optimal one, cannot be smaller than the sum of the smallest elements in each
of the matrix’s rows. For the instance here, this sum is 2 + 3+ 1+ 4 = 10. We can and will
apply the same thinking to partially constructed solutions. For example, for any legitimate
selection that selects 9 from the first row, the lower bound will be 9 + 3 + 1+ 4 =17.

Rather than generating a single child of the last promising node as we did in backtracking, we
will generate all the children of the most promising node among non-terminated leaves in the
current tree. (Nonterminated, i.e., still promising, leaves are also called live.) How can we tell
which of the nodes is most promising? We can do this by comparing the lower bounds of the
live nodes. It is sensible to consider a node with the best bound as most promising, although
this does not, of course, preclude the possibility that an optimal solution will ultimately
belong to a different branch of the state-space tree. This variation of the strategy is called the
best-first branch-and-bound.

We start with the root that corresponds to no elements selected from the cost matrix. The
lower-bound value for the root, denoted 1b, is 10. The nodes on the first level of the tree
correspond to selections of an element in the first row of the matrix, i.e., a job for person a.
See the figure given below.
0
start
Ib=2+3+1+4=10

1 2 3 4
a—- 1 a—-s 2 a—- 3 a—-4

b=9+3+1+4 =17 b=2+3+1+4=10 Ib=7+4+5+4 =20 Ib=8+3+1+6=18

Figure: Levels 0 and 1 of the state-space tree for the instance of the assignment
problem being solved with the best-first branch-and-bound algorithm. The number
above a node shows the order in which the node was generated. A node’s fields
indicate the job number assigned to person a and the lower bound value, 1b, for this
node.

So we have four live leaves—nodes 1 through 4—that may contain an optimal solution. The
most promising of them is node 2 because it has the smallest lowerbound value. Following
our best-first search strategy, we branch out from that node first by considering the three
different ways of selecting an element from the second row and not in the second column -
the three different jobs that can be assigned to person b. See the figure given below (Fig
12.7).

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 14

I _Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

Of the six live leaves—nodes 1, 3, 4, 5, 6, and 7—that may contain an optimal solution, we
again choose the one with the smallest lower bound, node 5. First, we consider selecting the
third column’s element from c’s row (i.e., assigning person c to job 3); this leaves us with no
choice but to select the element from the fourth column of d’s row (assigning person d to job
4). This yields leaf 8 (Figure 12.7), which corresponds to the feasible solution {a—2, b—1,
c—3, d —4} with the total cost of 13. Its sibling, node 9, corresponds to the feasible solution
{a—>2, b—1, c—4, d —3} with the total cost of 25. Since its cost is larger than the cost of the
solution represented by leat 8, node 9 is simply terminated. (Of course, if its cost were
smaller than 13, we would have to replace the information about the best solution seen so far
with the data provided by this node.)

0
start
Ib=10 |
11— Y, ~—_ 3 T4
a— 1 a— 2 a— 3 a— 4
Ib=1/ b=10 b= 20 k=18
X J_,,f” T) X X
h __— 3) —~__ 7
b — 1 b —= 3 b —= 4
Ib=13 Ib=14 lb=17
. _ X X
8 9
c— 3 c— 4
d — 4 d— 3
cost =13 cost =25
solution inferior solution

FIGURE 12.7 Completz state-space tree for the instance of the assignment problem
solved with the best-first branch-and-bound algorithm.

Now, as we inspect each of the live leaves of the last state-space tree—nodes 1, 3, 4, 6, and 7
in Figure 12.7—we discover that their lower-bound values are not smaller than 13, the value
of the best selection seen so far (leaf 8). Hence, we terminate all of them and recognize the
solution represented by leaf 8 as the optimal solution to the problem.

2.2 Travelling Sales Person problem

We will be able to apply the branch-and-bound technique to instances of the traveling
salesman problem if we come up with a reasonable lower bound on tour lengths. One very
simple lower bound can be obtained by finding the smallest element in the intercity distance
matrix D and multiplying it by the number of cities n.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 15

ecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

But there is a less obvious and more informative lower bound for instances with symmetric
matrix D, which does not require a lot of work to compute. We can compute a lower bound
on the length I of any tour as follows. For each city i, 1< 1 < n, find the sum s; of the distances
from city i to the two nearest cities; compute the sum s of these n numbers, divide the result
by 2, and, if all the distances are integers, round up the result to the nearest integer:

b =[s/2] - (D)

For example, for the instance in Figure 2.2a, formula (1) yields
b=T[(1+3)+CG+6)+(1+2)+C+4) +(2+3)]/21 =14.

Moreover, for any subset of tours that must include particular edges of a given graph, we can
modify lower bound (formula 1) accordingly. For example, for all the Hamiltonian circuits of
the graph in Figure 2.2a that must include edge (a, d), we get the following lower bound by
summing up the lengths of the two shortest edges incident with each of the vertices, with the
required inclusion of edges (a, d) and (d, a):

[[A+3)+C+6)+(1+2)+(3+5)+ 2+ 3))/2]=16.

We now apply the branch-and-bound algorithm, with the bounding function given by
formula-1, to find the shortest Hamiltonian circuit for the graph in Figure 2.2a.

To reduce the amount of potential work, we take advantage of two observations.

1. First, without loss of generality, we can consider only tours that start at a.
2. Second, because our graph is undirected, we can generate only tours in which b is
visited before c. (Refer Note at the end of section 2.2 for more details)

In addition, after visiting n—1= 4 cities, a tour has no choice but to visit the remaining
unvisited city and return to the starting one. The state-space tree tracing the algorithm’s
application is given in Figure 2.2b.

Note: An inspection of graph with 4 nodes (figure given below) reveals three pairs of tours
that differ only by their direction. Hence, we could cut the number of vertex permutations by
half. We could, for example, choose any two intermediate vertices, say, b and c, and then
consider only permutations in which b precedes c. (This trick implicitly defines a tour’s
direction.)

Jour Length
a-—>b-—>c—>d-—>a I =2+8+1+7=18
a—>b-—>d-—->c-—->a [=2+3+1+5=11 optimal
8-> ¢c—>hb—-—>d-—-—>2 | =6+8+3+7=23
d-—-—>¢—>d-—>b—-—>a3a l=6+1+3+2=11 optimal
a

d-—->b—>¢c-—> 23

d—>c—>b—> a3

[=7+3+8+5=23
/| =7+1+8+2=18

Figure: Solution to a small instance of the traveling salesman problem by exhaustive search.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur

Techjourney.in

Page| 16

0
a
b=14
(a) ! 2/ \3 4
a, b a, c a, d a, e
ib=14 Ib=16 b=19
X X X
bis not Ib>=1 Ib>1
before ¢ of node 11 of node 11
5 6 7
a, b c a b, d a b, e
b= b=

X
b=/
of node 11
11
a b c

abcd L e, abdc a b, d e,
(e, a (d, a) (e, a (c al
/=24 =19 =24 =16

first tour better tour inferior tour optimal tour

(b)
Figure 2.2 (a) Weighted graph. (b) State-space tree of the branch-and-bound algorithm to
find a shortest Hamiltonian circuit in this graph. The list of vertices in a node specifies a
beginning part of the Hamiltonian circuits represented by the node.

Discussion

The strengths and weaknesses of backtracking are applicable to branch-and-bound as well.
The state-space tree technique enables us to solve many large instances of difficult
combinatorial problems. As a rule, however, it is virtually impossible to predict which
instances will be solvable in a realistic amount of time and which will not.

In contrast to backtracking, solving a problem by branch-and-bound has both the challenge
and opportunity of choosing the order of node generation and finding a good bounding
function. Though the best-first rule we used above is a sensible approach, it may or may not
lead to a solution faster than other strategies. (Artificial intelligence researchers are
particularly interested in different strategies for developing state-space trees.)

Finding a good bounding function is usually not a simple task. On the one hand, we want this
function to be easy to compute. On the other hand, it cannot be too simplistic - otherwise, it
would fail in its principal task to prune as many branches of a state-space tree as soon as
possible. Striking a proper balance between these two competing requirements may require
intensive experimentation with a wide variety of instances of the problem in question.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 17

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

3. 0/1 Knapsack problem

Note: For this topic as per the syllabus both textbooks T1 & T2 are suggested.
Here we discuss the concepts from T1 first and then that of from T2.

Topic form T1 (Levitin)

Let us now discuss how we can apply the branch-and-bound technique to solving the
knapsack problem. Given n items of known weights w; and values vi ,i=1,2,...,n, and a
knapsack of capacity W, find the most valuable subset of the items that fit in the knapsack.

z wix; < W and Z pix; is maximized, wherex; =0or 1
1<isn ls<isn
It is convenient to order the items of a given instance in descending order by their value-to-

weight ratios.
Ul/wl = UZ/wZ Z U”/w”

Each node on the i level of state space tree, 0 < i < n, represents all the subsets of n items
that include a particular selection made from the first i ordered items. This particular
selection is uniquely determined by the path from the root to the node: a branch going to the
left indicates the inclusion of the next item, and a branch going to the right indicates its
exclusion.

We record the total weight w and the total value v of this selection in the node, along with
some upper bound ub on the value of any subset that can be obtained by adding zero or more
items to this selection. A simple way to compute the upper bound ub is to add to v, the total
value of the items already selected, the product of the remaining capacity of the knapsack
W — w and the best per unit payoff among the remaining items, which is vi+1/Wis1:

ub=v+ (W-=w)vir/win).

Example: Consider the following problem. The items are already ordered in descending
order of their value-to-weight ratios.

. . value
item weight value .
weight
| 4 $40 10
2 7 $42 6 The knapsack’s capacity W is 10.
3 5 $25 5
4 3 $12 4

Let us apply the branch-and-bound algorithm. At the root of the state-space tree (see Figure
12.8), no items have been selected as yet. Hence, both the total weight of the items already
selected w and their total value v are equal to 0. The value of the upper bound is 100.

Node 1, the left child of the root, represents the subsets that include item 1. The total weight
and value of the items already included are 4 and 40, respectively; the value of the upper
bound is 40 + (10 — 4) * 6 =76.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 18

i Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

Node 2 represents the subsets that do not include item 1. Accordingly, w = 0, v =0, and ub =
0+ (10 — 0) * 6 = 60. Since node 1 has a larger upper bound than the upper bound of node 2,
it is more promising for this maximization problem, and we branch from node 1 first. Its
children—nodes 3 and 4—represent subsets with item 1 and with and without item 2,
respectively. Since the total weight w of every subset represented by node 3 exceeds the
knapsack’s capacity, node 3 can be terminated immediately.

Node 4 has the same values of w and v as its parent; the upper bound ub is equal to 40 + (10
—4) * 5 ="70. Selecting node 4 over node 2 for the next branching (Due to better ub), we get
nodes 5 and 6 by respectively including and excluding item 3. The total weights and values as
well as the upper bounds for these nodes are computed in the same way as for the preceding
nodes.

Branching from node 5 yields node 7, which represents no feasible solutions, and node 8,
which represents just a single subset {1, 3} of value 65. The remaining live nodes 2 and 6
have smaller upper-bound values than the value of the solution represented by node 8. Hence,
both can be terminated making the subset {1, 3} of node 8 the optimal solution to the

problem.
0
w=0v=0
ub =100
with1 __— TT—_wjo'l
11— TT——_ 2
w=4, v=4 w=0v=0
ub =76 ub =60
with 2 w/o 2 X
inferior 1o
3 4 node 8
w=11 w=4, v=40
ub =70
not f;asible with 3 Wo3
b 6
w=29, v=65b w=4 v=40
ub =69 ub =64
] \ X
with 4 / \wio 4 inferior to node 8
7/ \8
w=12 w=29, v=6b
value = 65
not feasible optimal solution

FIGURE 12.8 State-space tree of the best-first branch-and-bound algorithm for the

instance of the knapsack problem.
Solving the knapsack problem by a branch-and-bound algorithm has a rather unusual
characteristic. Typically, internal nodes of a state-space tree do not define a point of the
problem’s search space, because some of the solution’s components remain undefined. (See,
for example, the branch-and-bound tree for the assignment problem discussed in the

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 19

ey
2 Lect Not 10CS43-D & Anal f Algorith Module 4: D P
“{; = g/fj: ecture Notes | esign & Analysis of Algorithms | Module ynamic Programming D “

preceding subsection.) For the knapsack problem, however, every node of the tree represents
a subset of the items given. We can use this fact to update the information about the best
subset seen so far after generating each new node in the tree. If we had done this for the
instance investigated above, we could have terminated nodes 2 and 6 before node 8 was
generated because they both are inferior to the subset of value 65 of node 5.

Concepts form textbook T2 (Horowitz)

Let us understand some of the terminologies used in backtracking & branch and bound.

— Live node - a node which has been generated and all of whose children are not yet been
generated.

— E-node - is a live node whose children are currently being explored. In other words, an E-
node is a node currently being expanded.

— Dead node - a node that is either not to be expanded further, or for which all of its
children have been generated

— Bounding Function - will be used to kill live nodes without generating all their children.
— Backtracking - is depth first node generation with bounding functions.
— Branch-And-Bound is a method in which E-node remains E-node until it is dead.

— Breadth-First-Search: Branch-and Bound with each new node placed in a queue. The
front of the queen becomes the new E-node.

— Depth-Search (D-Search): New nodes are placed in to a stack. The last node added is the
first to be explored.

The search for an answer node can often be speeded by using an “in-
telligent” ranking function ¢(-) for live nodes. The next E-node is selected
on the basis of this ranking function. L

The ideal way to assign ranks would be on the basis of the additional
computational effort (or cost) needed to reach an answer node from the live
node. :

Let g(x) be an estimate of the additional effort needed to reach an answer
node from z. Node z is assigned a rank using a function ¢(-) such that
élx) = f(h()) + g(z), where h(x) is the cost of reaching z from the root
and f(-) is any nondecreasing function.

By using f(-) £ 0, we can force the search algorithm to favor
a node z close to the root over a node w which is many levels below z. This
would reduce the possibility of deep and fruitless searches into the tree.

A search strategy that uses a cost function é(z) = f(h(z))+ g(z) to select
the next E-node would always choose for its next E-nOde a live node with
least é(+). Hence, such a search strategy is called an LC-search (Least Cost
search). It is interesting to note that BFS and D-search are special cases
of LC-search. If we use g(z) = 0 and f(h(z)) = level of node z, then a
LC-search generates nodes by levels. This is essentially the same as a BFS.
If f(h(z)) =0 and g(x) > §(y) whenever y is a child of z, then the search
is essentially a D-search. An LC-search coupled with bounding functions is
called an LC branch-and-bound search.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 20

Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D “

0/1 Knapsack problem - Branch and Bound based solution

As the technique discussed here is applicable for minimization problems, let us convert the
knapsack problem (maximizing the profit) into minimization problem by negating the
objective function
n n
minimize — Y pi@; subject to 3wz <m
i=1 =1 z; =0orl, 1<i1<n

i Every leaf node in the state space tree representing an assign-
ment for which ., ., w;z; < m is an answer (or solution) node. All other
leaf nodes are infeasible. For a minimum-cost answer node to correspond
to any optimal solution, we need to define ¢(z) = — Y|, pizi for every
answer node z. The cost ¢(z) = oo for infeasible leaf nodes. For nonleaf
nodes, c¢{x) is recursively defined to be min {¢(lchild(z)), c(rchild(z))}.

We now need two functions é(z) and u(x) such that é(z) < ¢(z) < u(z)
for every node z. The cost é(-) and u(-) satisfying this requirement may be
obtained as follows. Let z be a node at level j, 1 < 7 < n+ 1. At node =
assignments have already been made to z;, 1 <72 < j. The cost of these as-
signments is — >° | <« ; PiTi- S0, ¢(T) < — 30 1<ic; Piwi and we may use u(z) =
— Yi<ic Pi%i. g = — 321 <icj piti, then an improved upper bound function
u(x) is u(r) = UBound(q, 3= «;j wizs, j — 1,m), where UBound is defined in
Algorithm 8.2.)

Algorithm 8.2 Function u(-) for knapsack problem

Algorithm UBound(ep, cw, k,m)

// ¢p is the current profit total, cw is the current
// weight total; k is the index of the last removed
// item; and mn is the knapsack size.

w[t] and p[i] are respectively

/!
// the weight and profit of the ith object.

b:=cp; ¢ := cw;
fori:=k+1tondo

if (¢ +w[i] <m) then

c:=c~+wlil; b:=b— p[i);

}

return b;

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 21

-/ _Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

3.1 LC (Least Cost) Branch and Bound solution

To use LCBB to solve the knapsack problem, we need to specify (1) the
structure of nodes in the state space tree being searched, (2) how to generate
the children of a given node, (3) how to recognize a solution node, and (4)
a representation of the list of live nodes and a mechanism for adding a node
into the list as well as identifying the least-cost node. The node structure
needed depends on which of the two formulations for the state space tree is
being used. Let us continue with a fixed size tuple formulation. Each node
o that 1s generated and put onto the list of live nodes must have a parent
field. In addition, as noted in Example 8.2, each node should have a one bit
tag field. This field is needed to output the z; values corresponding to an
optimal solution. To generate x's children, we need to know the level of node
x in the state space tree. For this we shall use a field level. The left child of
T is chosen by setting Tycpep(2) = 1 and the right child by setting zjppep2) = 0.

To determine the feasibility of the left child, we need to know the amount
of knapsack space available at node . This can be determined either by
following the path from node z to the root or by explicitly retaining this
value in the node. Say we choose to retain this value in a field cu (capacity
unused). The evaluation of é¢(z) and w(z) requires knowledge of the profit
> 1<i<level(x) Pi%i earned by the filling corresponding to node z. This can be
computed by following the path from x to the root. Alternatively, this value

can be explicitly retained in a field pe. Finally, in order to determine the live
node with least ¢ value or to insert nodes properly into the list of live nodes,
we need to know ¢(z). Again, we have a choice. The value ¢(x) may be
stored explicitly in a field ub or may be computed when needed. Assuming
all information is kept explicitly, we need nodes with six fields each: parent,
level, tag, cu, pe, and ub.

Using this six-field node structure, the children of any live node x can be
easily determined. The left child y is feasible iff cu(z) > wiopei(r)- In this

case, parent(y) = z, level(y) = level(z) + 1, cu(y) = cu{z) — Wiepei(r), Pe(y)
= pe(r) + Prevel(a)s tag(y) = 1, and ub(y) = ub(z). The right child can be
generated similarly. Solution nodes are easily recognized too. Node r is a
solution node iff level(x) = n + 1.

We are now left with the task of specifying the representation of the list
of live nodes. The functions we wish to perform on this list are (1) test if
the list is empty, (2) add nodes, and (3) delete a node with least ub. We
have seen a data structure that allows us to perform these three functions
efficiently: a min-heap. If there are m live nodes, then function (1) can be
carried out in ©(1) time, whereas functions (2) and (3) require only O{log m)
time.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 22

ecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

Example 8.2 [LCBB] Consider the knapsack instance r = 4, (p1,p2, p3, ps)
= (10, 10, 12, 18), (w,ws, w3, wq) = (2, 4, 6, 9), and m = 15. Let us trace
the working of an LC branch-and-bound search using é(-) and u(-) as defined
previously. We continue to use the fixed tuple size formulation. The search
begins with the root as the E-node. For this node, node 1 of Figure 8.8, we
have ¢(1) = —38 and u(1) = —32.

-38

=32

=27

-38

—38 -20

Upper number = ¢
Lower number = «

Figure 8.8 LC branch-and-bound tree for Example 8.2

The computation of w(1) and (1) is done as follows. The bound %(1) has a
value UBound(0, 0,0, 15). UBound scans through the objects from left to right
starting from j; it adds these objects into the knapsack until the first object
that doesn’t fit is encountered. At this time, the negation of the total profit
of all the objects in the knapsack plus cw is returned. In Function UBound,
¢ and b start with a value of zero. For ¢« = 1,2, and 3, ¢ gets incremented
by 2,4, and 6, respectively. The variable b also gets decremented by 10, 10,
and 12, respectively. When i = 4, the test (¢ + w[i] < m) fails and hence
the value returned is —32. Function Bound is similar to UBound, except that
it also considers a fraction of the first object that doesn’t fit the knapsack.
For example, in computing é(1), the first object that doesn’t fit is 4 whose
weight is 9. The total weight of the objects 1, 2, and 3 is 12. So, Bound
considers a fraction % of the object 4 and hence returns —32 — % *18 = —38.

Since node 1 is not a solution node, LCBB sets ans = 0 and upper = —32
(ans being a variable to store intermediate answer nodes). The F-node is
expanded and its two children, nodes 2 and 3, generated. The cost ¢(2) =
—38, &(3) = —32, w(2) = —32, and u(3) = —27. Both nodes are put onto
the list of live nodes. Node 2 is the next E-node. Tt is expanded and nodes
4 and 5 generated. Both nodes get added to the list of live nodes. Node

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 23

ecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D “

4 is the live node with least ¢ value and becomes the next E-node. Nodes
6 and 7 are generated. Assuming node 6 is generated first, it is added to
the list of live nodes. Next, node 7 joins this list and upper is updated to
—38. The next F-node will be one of nodes 6 and 7. Let us assume it is
node 7. Its two children are nodes 8 and 9. Node 8 is a solution node.
Then upper is updated to —38 and node 8 is put onto the live nodes list.
Node 9 has ¢(9) > wupper and is killed immediately. Nodes 6 and § are
two live nodes with least ¢. Regardless of which becomes the next E-node,
& F) > upper and the search terminates with node 8 the answer node. At
this time, the value —38 together with the path 8, 7, 4, 2, 1 is printed out
and the algorithm terminates. From the path one cannot figure out the
assignment of values to the z;’s such that }_ p;z; = upper. Hence, a proper
implementation of LCBB has to keep additional information from which the
values of the x;’s can be extracted. One way is to associate with each node a
one bit field, fag. The sequence of tag bits from the answer node to the root
give the x; values. Thus, we have tag(2) = tag(4) = tag(6) = tag(8) =1
and tag(3) = tag(d) = tag(7) = tag(9) = 0. The tag sequence for the path
87,42, 1lis101landso x4 =1,23 =0,z =1, and ;) = 1. g

3.2 FIFO Branch and Bound solution

In branch-and-
bound terminology, a BFS-like state space search will be called FIFO (First
In First Out) search as the list of live nodes is a first-in-first-out list (or
queue).

Example 8.3 Now, let us trace through the FIFOBB algorithm using the
same knapsack instance as in Example 8.2, Initially the root node, node 1
of Figure 8.9, is the E-node and the queue of live nodes is empty. Since this
is not a solution node, upper is initialized to u(1) = —32.

We assume the children of a node are generated left to right. Nodes 2
and 3 are generated and added to the queue (in that order). The value of
upper remains unchanged. Node 2 becomes the next F-node. Its children,
nodes 4 and 5, are generated and added to the queue. Node 3, the next

E-node, is expanded. Its children nodes are generated. Node 6 gets added
to the queue. Node 7 is immediately killed as ¢(7) > upper. Node 4 is
expanded next. Nodes 8 and 9 are generated and added to the queue. Then
upper is updated to u(9) = —38. Nodes 5 and 6 are the next two nodes
to become E-nodes. Neither is expanded as for each, é() > upper. Node 8

is the next F-node. Nodes 10 and 11 are generated. Node 10 is infeasible
and so killed. Node 11 has ¢(11) > upper and so 1s also killed. Node 9 1s

expanded next. When node 12 is generated, upper and ans are updated to
—38 and 12 respectively. Node 12 joins the queue of live nodes. Node 13
is killed before it can get onto the queue of live nodes as ¢(13) > upper.
The only remaining live node is node 12. It has no children and the search
terminates. The value of upper and the path from node 12 to the root is
output. As in the case of Example 8.2, additional information is needed to
determine the z; values on this path. O

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 24

—38
) 3
P
// l \\\\\.\
_38 < >~ —32
'S
32 /27
2N / \
-38 _,rf\, N 36 28
-2 O 22 K Y —27 C)-zs
/’/ 4 ‘\\ S 6
o .
-38 < 38
—32% L =38
, 8 \\\ / N
o - -38 “\ =20
X (U ()..33 20
10 11 13

upper number = ¢
lower number =«

Figure 8.9 FIFO branch-and-bound tree for Example 8.3

Conclusion

At first we may be tempted to discard FIFOBB in favor of LCBB in
solving knapsack. Our intuition leads us to believe that LCBB will examine
fewer nodes in its quest for an optimal solution. However, we should keep in
mind that insertions into and deletions form a heap are far more expensive
{proportional to the logarithm of the heap size) than the corresponding
operations on a queue (6(1)). Consequently, the work done for each E-
node is more in LCBB than in FIFOBB. Unless LCBB uses far fewer E-nodes
than FIFOBB, FIFOBB will outperform (in terms of real computation time)
LCBB.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 25

| 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

4. NP-Complete and NP-Hard problems

4.1 Basic concepts

For many of the problems we know and study, the best algorithms for their solution have
computing times can be clustered into two groups;

1. Solutions are bounded by the polynomial- Examples include Binary search O(log n),
Linear search O(n), sorting algorithms like merge sort O(n log n), Bubble sort O(nz)
& matrix multiplication O(n3) or in general O(nk) where k is a constant.

2. Solutions are bounded by a non-polynomial - Examples include travelling salesman
problem O(n*2") & knapsack problem O(2"%). As the time increases exponentially,
even moderate size problems cannot be solved.

So far, no one has been able to device an algorithm which is bounded by the polynomial for
the problems belonging to the non-polynomial. However impossibility of such an algorithm
is not proved.

4.2 Non deterministic algorithms

We also need the idea of two models of computer (Turing machine): deterministic and non-
deterministic. A deterministic computer is the regular computer we always thinking of; a non-
deterministic computer is one that is just like we’re used to except that is has unlimited
parallelism, so that any time you come to a branch, you spawn a new “process” and examine
both sides.

When the result of every operation is uniquely defined then it is called deterministic
algorithm.

When the outcome is not uniquely defined but is limited to a specific set of possibilities, we
call it non deterministic algorithm.

We use new statements to specify such non deterministic h algorithms.

* choice(S) - arbitrarily choose one of the elements of set S
* failure - signals an unsuccessful completion

* success - signals a successful completion

The assignment X = choice(1:n) could result in X being assigned any value from the integer

range[1..n]. There is no rule specifying how this value is chosen.

“The nondeterministic algorithms terminates unsuccessfully iff there is no set of choices

which leads to the successful signal”.

Example-1: Searching an element x in a given set of elements A(1:n). We are required to
determine an index j such that A(j) = x or j = 0 if x is not present.
j := choice(1:n)

if A(j) = x then print(j); success endif

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 26

ecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

print(‘0’); failure
Example-2: Checking whether n integers are sorted or not

procedure NSORT(A,n);

//sort n positive integers//
var integer A(n), B(n), n, 1, j;
begin
B :=0; //B is initialized to zero//
fori:=1tondo
begin
j := choice(1:n);
if B(j) <> 0 then failure;
B()) := A();

end;

fori:=1 to n-1 do //verify order//
if B(i) > B(i+1) then failure;
print(B);
success;
end.

“A nondeterministic machine does not make any copies of an algorithm every time a choice

is to be made. Instead it has the ability to correctly choose an element from the given set”.

A deterministic interpretation of the nondeterministic algorithm can be done by making
unbounded parallelism in the computation. Each time a choice is to be made, the algorithm

makes several copies of itself, one copy is made for each of the possible choices.

Decision vs Optimization algorithms
An optimization problem tries to find an optimal solution.
A decision problem tries to answer a yes/no question. Most of the problems can be specified
in decision and optimization versions.
For example, Traveling salesman problem can be stated as two ways
e Optimization - find hamiltonian cycle of minimum weight,
* Decision - is there a hamiltonian cycle of weight < k?
For graph coloring problem,
* Optimization — find the minimum number of colors needed to color the vertices of a
graph so that no two adjacent vertices are colored the same color
* Decision - whether there exists such a coloring of the graph’s vertices with no more

than m colors?

Many optimization problems can be recast in to decision problems with the property that the
decision algorithm can be solved in polynomial time if and only if the corresponding
optimization problem.

4.3 P, NP, NP-Complete and NP-Hard classes

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 27

-/ _Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programming D M

NP stands for Non-deterministic Polynomial time.

Definition: P is a set of all decision problems solvable by a deterministic algorithm in

polynomial time.

Definition: NP is the set of all decision problems solvable by a nondeterministic algorithm in

polynomial time. This also implies P € NP

Problems known to be in P are trivially in NP — the nondeterministic machine just never
troubles itself to fork another process, and acts just like a deterministic one. One example of a

problem not in P but in NP is Integer Factorization.

But there are some problems which are known to be in NP but don’t know if they’re in P. The
traditional example is the decision-problem version of the Travelling Salesman Problem
(decision-TSP). 1t’s not known whether decision-TSP is in P: there’s no known poly-time

solution, but there’s no proof such a solution doesn’t exist.

There are problems that are known to be neither in P nor NP; a simple example is to

enumerate all the bit vectors of length n. No matter what, that takes 2" steps.

Now, one more concept: given decision problems P and Q, if an algorithm can transform a
solution for P into a solution for Q in polynomial time, it’s said that Q is poly-time

reducible (or just reducible) to P.

The most famous unsolved problem in computer science is “whether P=NP or PANP? ”

- NP
. \p-complete

: | AfP-hard
S 4
Figure: Commonly believed Figure: Commonly believed relationship between P, NP, NP-
relationship between P and NP Complete and NP-hard problems

Definition: A decision problem D is said to be NP-complete if:
1. it belongs to class NP
2. every problem in NP is polynomially reducible to D

The fact that closely related decision problems are polynomially reducible to each other is not
very surprising. For example, Hamiltonian circuit problem is polynomially reducible to the
decision version of the traveling salesman problem.

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 28

/ Lecture Notes | 10CS43 - Design & Analysis of Algorithms | Module 4: Dynamic Programmin;
N I g y g I y g : DAA

NP-Complete problems have the property that it can be solved in polynomial time if all other
NP-Complete problems can be solved in polynomial time. i.e if anyone ever finds a poly-time
solution to one NP-complete problem, they’ve automatically got one for all the NP-complete
problems; that will also mean that P=NP.

Example for NP-complete is CNF-satisfiability problem. The CNF-satisfiability problem
deals with boolean expressions. This is given by Cook in 1971. The CNF-satisfiability
problem asks whether or not one can assign values true and false to variables of a given
boolean expression in its CNF form to make the entire expression true.

Over the years many problems in NP have been proved to be in P (like Primality Testing).
Still, there are many problems in NP not proved to be in P. i.e. the question still remains
whether P=NP? NP Complete Problems helps in solving this question. They are a subset
of NP problems with the property that all other NP problems can be reduced to any of them in
polynomial time. So, they are the hardest problems in NP, in terms of running time. If it can
be showed that any NP-Complete problem is in P, then all problems in NP will be in P
(because of NP-Complete definition), and hence P=NP=NPC.

NP Hard Problems - These problems need not have any bound on their running time. If
any NP-Complete Problem is polynomial time reducible to a problem X, that problem X
belongs to NP-Hard class. Hence, all NP-Complete problems are also NP-Hard. In other
words if a NP-Hard problem is non-deterministic polynomial time solvable, it is a NP-
Complete problem. Example of a NP problem that is not NPC is Halting Problem.

If a NP-Hard problem can be solved in polynomial time then all NP-Complete can be solved
in polynomial time.

“All NP-Complete problems are NP-Hard but not all NP-Hard problems are not NP-
Complete.” NP-Complete problems are subclass of NP-Hard

The more conventional optimization version of Traveling Salesman Problem for finding the
shortest route is NP-hard, not strictly NP-complete.

skokkkk

Prerpared by Harivinod N, Dept of CSE, VCET Puttur Techjourney.in Page| 29

