18C€S36

Discrete Mathematical Structures

(For the 3rd Semester Computer Science and Engineering Students)

Module 1

Mathematical Loqic

Prepared by
Venkatesh P

Assistant Professor
Department of Science and Humanities
Sri Sairam College of Engineering

Anekal, Bengaluru-562106




Content

o

Topic

Syllabus

Basic Connectives and Truth table

Problems on Basic Connectives and Truth tables

Tautology and contradiction

Logic Equivalence-The Laws of Logic

Problems on The Laws of Logic

Logical implication

Rules of Inference

O | o | N |ga|lh|lw|[N|F =

The Quantifiers

[EEY
o

Problems on Quantifiers

[EEY
[EEY

Definition and Proofs of Theorems




b
SAI RAM Regulation-2018 (CBCS Scheme) Discrete mathematical structure-18CS36
COLLEGE OF ENGINEERING

Module-1

Mathematical Logic

® Syllabus:

Fundamentals of Logic: Basic Connectives and Truth Tables, Logic Equivalence — The Laws
of Logic, Logical Implication — Rules of Inference. The Use of Quantifiers, Quantifiers,
Definitions and the Proofs of Theorems.

® Basic Connectives and Truth table:

Proposition:
A proposition is a declarative sentence that is either true or false, but not both.

Example:

1. 2isaprime number. (true)

2. All sides are equal in scalene triangle. (false)

3. 2+3=4. (false)

4. What is the time now?

5. Read this carefully.
From the above examples we note that 1, 2, 3 are proposition, whereas 4 and 5 are not the
propositions.

Logical Connectives and Truth table:

New propositions are obtained by starting with given propositions with the aid of words or
phrases like ‘not’, ‘and’, ‘if ... then, and ‘if and only if’. Such words or phrases are called

Logical connectives.

1. Negation:

A proposition is obtained by inserting the word ‘not’ at an appropriate place in the given
proposition is called the negation of the given proposition.

The negation of a Proposition p is denoted by — p (read ‘not p’). For any Proposition p, if p
is true, then = p is false, and if p is false, then - p is true. i.e., If the truth value of a proposition
p is 1 then the truth value of = p is 0 and If the truth value of a proposition p is 0 then the truth

value of = p is 1.

Example:
p: 4 is an even number.

= p: 4 is not an even number.
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Truth table for Negation

p - p

0 1

1 0

2. Conjunction:

A compound proposition obtained by combining two given propositions by inserting the
word ‘and’ in between them is called the conjunction of the given proposition.

The conjunction of two propositions p and q is denoted by p A q (read ‘p and q’). The
conjunction p A q is true only when p is true and q is true, in all other cases it is false. i.e., the
truth value of the conjunction p A q is 1 only when the truth value of p is 1 and truth value of
g is 1, in all other cases the truth value of p A q is 0.

Example:
p: /2 is an irrational number.
g: 9 is a prime number.
p AQ: V2 isan irrational number and 9 is a prime number.

Truth table for conjunction

Y q pPAQ

3. Disjunction:

A compound proposition obtained by combining two given propositions by inserting the word
‘or’ in between them is called the disjunction of the given propositions.

The disjunction of two propositions p and q is denoted by p V q (read ‘p or q’). The disjunction
p Vv qis false only when p is false and q is false, in all other cases it is true. i.e., the truth value
of the disjunction p V q is 0 only when the truth value of p is 0 and truth value of g is O, in all
other cases the truth value of p vV qis 1.

Example:
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p: All triangles are equilateral.
q: 2+5=7.
p Vv g: All triangles are equilateral or 2+5=7.

Truth table for Disjunction

pPVva

4. Exclusive Disjunction:

We require that the compound proposition “p or q” to be true only when either p is true or q
is true but not both. The exclusive or is denoted by the V.

The compound proposition p V¥ q (read as either p or g but not both) is called as exclusive
disjunction of the propositionspand g.i.e, p¥gq=(pA-q) v (QA-p)

Example:
p:9 is a prime number
g: all triangles are isosceles.
p VY g: Either 9 is prime number or all triangles are isosceles, but not both

Truth table for Exclusive Disjunction

5. Conditional:

A compound proposition obtained by combining two given propositions by using the words
‘if” and ‘then’ at appropriate places is called a conditional.
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The Conditional “If p, then q” is denoted by p — q and the Conditional “If q, then p” is
denoted by ¢ — p. The Conditional p — q is false only when p is true and q is false, in all
other cases it is true. i.e., the truth value of the conditional p — q is 0 only when the truth
value of p is 1 and the truth value of q is 0, in all other cases the truth value of p — q is 1.

Example:
p: 3 is a prime number.
g: 9 is a multiple of 6
Truth table for Conditional

pP—q

6. Biconditional:

Let p and g be two sample propositions then the conjunction of the conditionals p — g and q

— p is called the biconditional of p and g. It is denoted by p <> q and it is same as (p — q) A
(q — p) is read as “If p then q and if q then p”.

Truth table for Biconditional

pP—q | g—p
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Problems:

1. Construct the truth tables for the following propositions.
().pA(-0) @ii). (=-p) v q (iii). p— (- q) (iv). (= p) ¥ (=0
Solution:

The desired truth tables are obtained by considering all possible combinations of the
truth values of p and g. the combined form of required truth table is given below

-p | -q pA(=Q) (=p)Vq p—(-0) =pY¥(-0)

2. Letp, gand r be propositions having truth values 0, 0 and 1 respectively. Find the truth
values if the following compound propositions:

@.(pvagvr (). (pAg) AT (iii). (pA Q) — T
@iv).p—(@Ar) .pr(@—r) (vi). p—(@—-1)
Solution:

(i) Since both p and q are false then (p V q) is also false. Since r true it follows that (p vV q) vV r
is true. Thus, the truth value of (p v.g) Vris 1.

(ii) Since both p and g are false, (p A q) is false. Since (p A ) is false and r is true (p A Q) AT iS
false. Thus, the truth value of (p A q) Aris 0.

(iii) Since (p A q) is false and r is true, (p A g) — ris true. Thus, the truth value of (p A Q) — r
is 1.

(iv) Since q is false and r is true, (q A r) is false. Also, p is false, therefore p — (q A r) is true.
Thus, the truth value of p — (q A1) is 1.

(v) Since r is true and q is false (q — r) is true. Also, p is false. Therefore, p A (q — 1) is false.
Thus, the truth value ofp A (g — 1) is 0

(vi) Since 1 is true, - 1 is false. Since q is false, g — (= r) is true. Also, p is false. Therefore,
p — (q —~r) is true. Thus, the truth value of p — (q—-r) is 1.

Prepared by: Venkatesh.P Sri Sairam college of engineering Page | 5



b
SAI RAM Regulation-2018 (CBCS Scheme) Discrete mathematical structure-18CS36
COLLEGE OF ENGINEERING

3. Indicate how many rows are needed in the truth table for the compound proposition
(pV (= Q) < ((-r)As)—t. Find the truth value of the proposition if p and r, are true
and q, s, t, are false.

Solution:

The given compound proposition contains five primitives p, q, r, s, t. Therefore, the number of
possible combinations of the truth values of these components which we have to consider is
25=32. Hence 32 rows are needed in the truth table for the given compound proposition.

Next, suppose that p and r, are true and q, s, t are false, then - q is true and - r is false. Since p
is true and - q is true, (p v (= q)) is true on the other hand, since - r is false and s is false, = r
A s is false. Also, t is false. Hence ((— 1) A 's) —t is true.

Since (p v (= q)) is true and ((—r) A 's) — tis true, it follows that the truth values of the given
propositions (p V (= q)) <> (= rAs) — tis 1.

4. Let p: Acircle is a conic, g: v/5 is a real number, r: Exponential series is convergent.
Express the following compound Proposition in words:

(A).pA(9 (i). =p A q (iif)g — (—p)
(iv).p¥(=q) (M).p—(q¥r) (Vi). = p<q

Solution:
Q) A circle is a conic and /5 is not a real number.
(i) Acircle is not a conic and /5 is a real number.

(iliy  1f+/5 is a real number, then a circle is not a conic.

(iv)  Either a circle is a conic or v/5 is not a real number (but not both).

(v) If a circle is a conic then either /5 is a real number or the exponential series is

convergent (but not both).

(vi)  Ifacircle is not a conic then v/5 is a real number and if /5 is a real number then a

circle is not a conic.

5. Construct the truth table for the following compound propositions:
- (prg—-r (ii). g A ((=1) > p)

Solution:

The required truth table are shown below in a combined form
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® Tautology and Contradiction:

A compound proposition which is true for all possible truth values of its components is called
a tautology.

A compound proposition which is false for all possible truth values of its components is called
Contradiction or an absurdity.

A compound proposition that can be true or false is called a contingency. In other words, a
contingency is a compound proposition which is neither a tautology nor a contradiction.

Problems:
1. Show that for any proposition p and g, the compound proposition p — (p Vv ) is a tautology
and the compound proposition p A (= p A ) is called contradiction.

Solution:

Let us first prepare the truth tables for p — (p vV g) and p A (= p A ). these truth tables are
shown below in the combined form.

pVvq p—(pVa) (-pAQ) PA(=pAQ)

From the above table we note that, for all possible values of p and g the compound proposition

p — (p V q) is true and the compound proposition p A (= p A q) is false.

Therefore p A (= p A q) is contradiction and p — (p V q) is tautology.

2. Prove that, for any proposition p, g, r the compound proposition
(p—q) A(g—r1)— (p— ) is a tautology

Solution:
The following truth table gives the required result.
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P—aAr@—r) P—=Ar(@—=r)—(p—T

3. Prove that for any proposition p, g, r the compound proposition

(PpVva)V(p—r)A(q—r)istautology.

Solution:

The following truth table gives the required result.

p—=r|g—-r| (po>nNA@—r) PpvaVvpE—-nAr(@—r)

4. Prove that for any proposition p, g, r the compound proposition
(p—0q)V(p—r1)<(p— (qVr))istautology.
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Solution:
The following truth table gives the required result.

p=r | (P—=9Vv{p—n (P—qV(p—r)
<(@P—=(@QVn)

1 0 1

1 1 1

. Prove that for any proposition p, g, r the compound proposition
[(p—a) A (p = N] — (p — 1)) is tautology.

Solution:
The following truth table gives the required result.

Pp—=qd|g—r [ (p—>9A(P—T) P—=g9A(p—r1r)—(p—T)

6. Prove that for any proposition p, g, r the compound proposition
[(PpVvag) A{(p—r)A(q— 1)} — ris tautology.
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Solution:
The following truth table proves the gives result.

p=ria—r| @—=nA | pvqg [PVYOA{P—=n | [PVvar{(p—T1
(@—n A(Q—n} ANg—=nDY o

1 0

1 0

. Verify the Compound Proposition (p V q) —»r <> (=1 — = (p Vv q)) is tautology or not.

pvq | (pVY—r [V | "r=>—(pVY |[pVY—ore(Cr—o
~(pV9)

Hence the compound Proposition (p vV q) = r <> (-1t — —(p V q)) is tautology
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8. Prove that for any proposition p, g, r the compound proposition
{p = (@—n}—{(p—q — (p— )]} istautology.

Solution:

The following truth table gives the required result.

p=r|a—=rip=>Q-n|{p-9— |[{P=@—=nN}—{p—
(p—71) 9 —((P—n}

1 1

1 1
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® Logic equivalence:

Two statement s, Sz are said to be logically equivalent, and we write s1<>sz, when the statement
sy is true (respectively false) if and only if the statement s; is true (respectively false). Or the
biconditional s1<s; is a tautology

Problems:

1. For any two propositions p, q Prove that (p — g)=(-p) vV q

Solution: The following truth table gives the required result.

-p “pVvqQ

From the column 4 and 5 of the above truth table, we find that - p v g and p — g has the same
truth values of p and g. Therefore (p — q)<(-p) Vv Q.

2. For any two propositions p, g Prove that (p —- @) (g — - p)

Solution: The following truth table gives the required result.

-p ~q

From the column 5 and 6 of the above truth table, we find that p — — q and q — — p has the
same truth values of p and g. Therefore (p —— q)< (@ — — p).

3. For any two propositions p, q Prove that (p Y g)(p Vv g) A = (p A Q).

Solution: The following truth table gives the required result.
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PvagAr=(pArq)

From the column 4 and 7 of the above truth table, we find that (p ¥ ) and (p vV q) A = (p A Q)
has the same truth values of p and g. Therefore (p ¥ q)<(p vV q) a- (p A Q).

4. For any propositions p, g, r. Prove that [(p — (@ — nN]e [(p A- 1) — = Q)]

Solution: The following truth table gives the required result.

~q o q—r pAar | p—(q—T)

From the column 8 and 9 of the above truth table, we find that [p — (g — r)] and [(p A= 1) —
= )] has the same truth values of p and g. Therefore [(p — (@ — )] [(p A- 1) — = Q)]

5. Show that the compound propositions p A ((=g) vV r)and p vV (q A (= 1)) are not logically
equivalent.

Solution: The following truth table gives the required result
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pA((=qvr) | pv(@A(=1)

From the last two rows we note that p A (= q) vr)and p vV (q A (- 1)) do not have the same
values in all possible situations. Therefore, they are not logically equivalent.

The Laws of Logic:

For any primitive statements p, g, r any tautology T, and any contradiction Fo

Sl. No Name of laws Laws of logic

Laws of double negation - = pep

s(pva)e(=pA—a)
S(pAg)e(=pV—a)
(pVva)=(QVp)
(PAg)=(QAp)
pv(vne (pvavr
PA(AN S (PAQ) AT
pvAaneEvaAr(pVvrn)
pA(@VvnNeEAq V(A
pVpep

pApep

pVF.ep

pATesp

pv-peTo

pA—peFo

pVvTe=T,

p A FoeFo

pVv(pAg)ep
PA(pVa)ep

De Morgan’s laws

Commutative laws

Associative laws

Distributive laws

Idempotent laws

Identity laws

Inverse laws

Domination laws

Absorption laws
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Problems:

1. Prove distributive lawp vV (gA NSV aQ A (V)

Solution:

pv(QAn) (pvaA(pvn

0 0

0 0

From columns 5 and 8 of the above table, we find that {p vV (g Ar}and {(p Vv a) A (p vV )}

has same truth values in all possible situations. Therefore, p vV (qA &PV ) A(p V).

Similarly, we can prove p A (qVr)e(p A Q) vV (pAT).

2. Prove De Morgan’s law = (pV Q)& -pA-(Q

Solution:

- (pVvaQ)

1

0

0

0 0 1 0

From columns 5 and 8 of the above table, we find that = (p vV g) and - p vV = g has same truth
values in all possible situations. Therefore, - (pVvg) & -pA-qQ.

Similarly, we canprove = (pAQ) & -pV-qQ
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Law for the negation of a conditional:

Given a conditional p — q, its negation is obtained by using the following law.
2 (p—gepA(-a)
Proof:

The following table gives the truth values of = (p — q) and p A (- q) for all possible truth
values of p and g.

q P—q “(p—0) pA(=0)

We note that - (p — q) and p A (- g) have same truth values in all possible situations. Hence,
“(p—gep A=l

Problems:

1. Simplify the following compounds propositions using the laws of logic.
@pvar[-{(=p)Aa}] (i)pvagAr[-{(=p)Va}]
(i)~ [~ {(pVa)Arr}Vv(=a)]
Solution:
@Hpvar[-{(=p)Aa}]
=pVvgA{(=-p)V(-0q)} By De Morgan’s law

=pvagr{pVv(-0q)} By Law of double negation
=pv{aAr(-a)} By Distributive law
=pVFo By Inverse law

=p By ldentity law

i pVvar[-{(=p)Vva}l
=(pvaA{pAr(=a)}
={(pvaArp)}Ar(-0) Using Associative law
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={pA(PVa}Ar(=9)
=pA(=0)

(i) = [~ {(pVva) Ar}V(=0)]
==[-{((pva)rr)ra}]
=((pva)An g
=(pva)r(@nr)
={(pva)rarrr

:q/\r
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Using Commutative law

Using Absorption law

Using De Morgan’s law

Law of Double negation

Using Associative and Commutative law
Using Associative law

Using Associative law

2. Prove the following logically without using truth table.

(). [pvgVv(=pA=gAn]epvgvr

(iii). p— (q — r) = (p A q) —T
Solution:
O[pvqVv(=pA=-gAn]epvgVyr

We have, - pA-qAre - (pVva)Ar

(i). [Gpv-9—=(@ArgAN]=pAag

By De Morgan’s law

Therefore, [pvg v (-pA=qgAN] @ (Pvagv(=(pva)Ar)

S[pvag va(pvala vagvr

SToA(pVgVT)

s(pPvqgvro

(i) [Gpv=qg—(ArgAnN]SpAq

By Distributive law
By Inverse and Associative law

By Commutative law

We have, [(-pv-q = (pArgqAN]e-(=pv-q) vV (PAQAT)

S PAg Vv [(pArg) ATl

SpAg

(i) we have,p > (>N e -p Vv (-q V)

S>EpvVvag v
s (pAg Vvr

S (PAq) —r
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By De Morgan’s law and Associative law

By Absorption law

Because (U — V) © (=u VvV V)
Associative law
De-Morgan’s law

Because (u > V) © (-u Vv V)
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Let s be a statement. If s contains no logical connectives other than A and v, the dual of s
denoted by s, is the statement obtained from s by replacing each occurrence of Aand v by v
and A respectively, and each occurrence of T, and Fo by Fo and T, respectively.

Example: Given the primitive statements p, g, r and the compound statements
Ss(pA(=Qq) v (rATo)
s v (EQ)ArV F)

Principle of Duality:

Let s and t be two statements that contains no logical connections than A and v . If s&t, then
d d
s oth.

Problems:

1. Write duals of the following propositions.
().p—aq (i).(p—q—r (i) p—>(@—T)

Solution: we recall that (u > Vv) © (- u Vv V)

Therefore, by the principle of duality we find that

Hp—a! eCEpvaleapag

(i [pP—-—r'e[-~(-pVvag VI
S[(pr-q) v
S((pVv-og)Ar

(iii) [p— (@ = N]*e [~p Vv (q -]

e[-pV(-qv
S pA(=gAT)

2. Write duals of the following propositions.
().q—p (ii). (p v g AT (iii). (p A a) v To
(V). p—(qAn) (V).peq (vi).p¥q

Solution: we recall that (u > v) & (- u v v)
Therefore, by the principle of duality we find that
H@—p? e Eagvpie-gap
(i) [(pvayrrlie (prg) vr
(iii) [(p A Q) VTo]"e (p v 0) A Fo
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(V)[p—@Arnl‘e[-pv @rN]'e-pr@ V)

MpeqdielP-anr@—-pliel-pva)r-qvp)
e (-pArg) Vv (=qAp)

vi)[pyal'e[(pr-a) v (@r-plie[(pv-aA@V-p)]

NAND and NOR:

The compound proposition = (p A q) is read as “Not p and q” and also denoted by (p 1 q). The
symbol 1 is called NAND connective.

The compound proposition = (p v q) is read as “Not p or q” and also denoted by (p | q). The
symbol | is called the NOR connective.

Truth table

PTq

Whereptgq=-(pAg)e-pVv ~gqandplg=-(p Vg epAaq

Problems:

1. For any propositions p, q Prove the following
().-(pla)e ~pT-q (i).=(ptg) & =pl-q
Solution: Using definition, we find that
Lo aplae-[-(pva)]
S a[apA-q]
Sapt-q
i. =~(pta)e-[-~(pArq)]
e-a[=pvVv-q
© -pl-q

2. For any propositions p, q, r Prove the following
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(). pt@tne ~pv(qAn ().t tre(PArg) var
(i) pL@ine ~pAr(Q Vv (V). (pla)irePvar-r

Solution: Using definition, we find that
().pt@te~[pA@@T0)]
e~ [pAm(qAD)]

<-pV ﬂ[ﬂ(q/\r)]

S -pVv(QAT)
(i). Pt rre-[(prag)Arl
& [~ (pAg) AT

S-[PArg]var

S (pPAQ) Vo
(ii).pl@lne-[pv@ln)]
e-[pv-(@vr)]

©-pA-[-(@vn]

S -=pA(gVvr)

(iv).(pla)lre=[(plag) vl

e-[-(pPvagvr

Sa-(pPVvaolaar

S{pPpvVvgAa-r
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Converse, Inverse and Contrapositive:

Consider a conditional p — q then:

1. q— piscalled the converse of p — q.
2. = p—-qiscalled the inverse of p — q.
3. =g —-pis called the contrapositive of p — q.

Truth table for converse, inverse and contrapositive

- p ~q P—q qa—p ~p—=q

1 1 1 1 1

0

Note: 1. A conditional and its contrapositive are logically equivalenti.e.,p - q& -q—-p
2. A converse and the inverse of a conditional are logically equivalent
g—pPpePpP—>7(

Logical implication:

Logical implication is a type of relationship between two statements or sentences. The relation
translates verbally into "logically implies” or "if/then™ and is symbolized by a double-lined
arrow pointing toward the right (=). If p and q represent statements, then p = g means "p
implies g" or "If p, then g." The word "implies™ is used in the strongest possible sense.

Example:
Suppose the sentences p and q are assigned as follows:

p = The sky is overcast.
g = The sun is not visible.

In this instance, p = q is a true statement (assuming we are at the surface of the earth, below
the cloud layer.) However, the statement p = q is not necessarily true; it might be a clear night.
Logical implication does not work both ways. However, the sense of logical implication is
reversed if both statements are negated. i.e., (p = q) = (- g = - p)

Using the above sentences as examples, we can say that if the sun is visible, then the sky is not
overcast. This is always true. In fact, the two statements p = q and - q= - p are logically
equivalent.
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Necessary and Sufficient Conditions:

Consider two propositions p and g whose truth values are interrelated. Suppose that p = g.
Then in order that g may be true it is sufficient that p is true. Also, if p is true then it is necessary
that q is true. In view of this interpretation, all of the following statements are taken to carry
the same meaning:

M.p=9q (ii). p is sufficient for g (iii). g is necessary for p

Problems:

1. State the converse inverse and contrapositive of
i) If the triangle is not isosceles, then it is not equilateral
i) If the real number x? is greater than zero, then x is not equal to zero.
iii) If a quadrilateral is a parallelogram, then its diagonals bisect each other.

Solution:
(1) p: Triangle is not isosceles and q: Triangle is not equilateral.

Implication: p — q. if triangle is not isosceles then it is not equilateral.
Converse: q — p. if a triangle is not equilateral then it is not isosceles.
Inverse: = p —= . if a triangle is isosceles then it is equilateral.

Contrapositive: = g—- p: if a triangle is equilateral then it is isosceles.

(i) p: A real number x? is greater than zero and g: x is not equal to zero.
Implication: p — q. if a real number x? is greater than zero then, X is not equal to zero.
Converse: g — p. if a real number x is not equal to zero then, x? is greater zero.
Inverse: - p—- . if a real number x? is not greater than zero then, x is equal to zero.
Contrapositive: If a real number x is equal to zero then, x? is not greater than zero

(iii) p: If Quadrilateral is a parallelogram and qg: its Diagonals Bisects each other.

Implication: p — g. If Quadrilateral is a parallelogram, then its diagonals bisects each
other.

Converse: q — p. If the diagonals of the Quadrilateral bisect each other, then it is a

parallelogram.

Inverse: = p —= g. If Quadrilateral is not a parallelogram, then its diagonals do not bisect
each other.

Contrapositive: = g—- p: If the diagonals of the Quadrilateral do not bisect each other,

then it is a not a parallelogram.

2. Write down the following statements in the ‘Necessary and Sufficient Condition’
Language.
1) If the triangle is not isosceles, then it is not equilateral
ii) If the real number x? is greater than zero, then X is not equal to zero.
iii) If a quadrilateral is a parallelogram, then its diagonals bisect each other.

Solution:
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Necessary Condition Language:

(). For atriangle to be non-isosceles it is necessary that is not equilateral.

(ii). A necessary condition for a real number x? to be greater than zero is that X is not equal to
zero.

(iii). A necessary condition for a quadrilateral to be a parallelogram is that its diagonals bisect
each other.

Necessary Condition Language:

(). A sufficient condition for a triangle to be not equilateral is that it is not isosceles.

(ii). For a real number x, the condition x?to be greater than zero is sufficient for x to be not
equal to zero.

(iii). A sufficient condition for the diagonals of a quadrilateral to bisect each other is that the

quadrilateral is a parallelogram.
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® Rules of inference:

Let us consider the implication (p1 A p2A ... Apn) =

Here n is a positive integer, the statements p1,pz, .... pnare called the premises of the argument
and q is called the conclusion of the argument.

We write the above argument in the following tabular form:

P1
P2
P3

Pn
The preceding argument is said to be valid if whenever each of the premises p1,p2, .... pn is
true, then the conclusion q is likewise true.
i.e., (p1ApP2A ... Apn) = qis valid when (p1A p2A .... Apn) =0
It is to be emphasized that in an argument, the premises are always taken to be true whereas
the conclusion may be true or false. The conclusion is true only in the case of valid argument.
There exist rules of logic which can be employed for establishing the validity of arguments.
These rules are called Rules of Inference.

Name of the rule and rule of inference

Rules of inference Name of rule

Rule of Detachment

_)
=~ (modus pones)

Law of Syllogism

Modus Tollens

Rule of Conjunction

Rule of Disjunctive Syllogism

Rule of Contradiction

Rule of Conjunctive Simplification

Rule of Disjunctive Amplification
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Problems:
1. Test whether the following is valid argument.
If Sachin hits a century, then he gets a free car.

Sachin hits a century.

=~ Sachin gets a free car.
Solution: Let p: Sachin hits a century.
g: Sachin gets a free car.

The given statement reads

p

In view of Modus Pones Rule, this is a valid argument.

2. Test the validity of the following arguments.
If Ravi goes out with friends, he will not study.
If Ravi does not study, his father will become angry.
His father is not angry.
=~ Ravi has not gone out with friends.

Solution: Let p: Ravi goes out with friends.
g: Ravi does not study.
r: His father gets angry.

Then the given argument reads.

p—q
q-—-r
_~ar

o —|p

This argument is logically equivalent to (Using the rule of syllogism)

p—or
_ar

S p
In view of Modus Tollens Rule, this is a valid argument.
3. Test whether the following is valid argument.
If Sachin hits a century, then he gets a free car.

Sachin does not get a free car.

=~ Sachin has not hit a century
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Solution: Let p: Sachin hits a century.
g: Sachin gets a free car.
The given statement reads
p—=q
-9
S p
In view of Modus Tollens Rule, this is a valid argument.

4. Test the validity of the following argument
If | study, then I’ll not fail in the examination.
If I do not watch tv in the evenings, | will study.
| failed in the examination.
~ 1 must have watched tv in the evenings.

Solution: Let p: I study
g: | fail in the examination
r: 1 watch tv in the evenings.

Then the given argument reads

This argument is logically equivalent to

N T

(because (p —»-q) © (-~ q— = p))

(because (~r—p)e (-p—1T))

This is equivalent to (Using rule of syllogism)
q—or
q
or
In view of Modus Pones Rule, this is a valid argument.

5. Test the validity of the following argument
I will become famous or | will not become a musician.
| will become a musician.
~ | will become famous.
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Solution: Let p: I will become famous
g: I will become a musician

Then the given argument reads

This argument is logically equivalent to

Becausepv—-q © —-qVvp ©q—-p
In view of Modus Pones Rule, this is a valid argument.

6. Test the validity of the following argument
I will get grade A in this course or | will not graduate.
If I do not graduate, I will join army.

| got grade A.
~ 1 will not join army.

Solution: Let p: I will get grad A in this course
g: | do not graduate.
r: 1 will join army.

Then the given argument reads

This argument is logically equivalent to

q=p
r—>"q
p

ST

Because pv-q © qVvp < —q — pand using Contrapositive.

This is equivalent to (Using rule of syllogism)

ar-op
p

ST
This is not a valid argument.

7. Test whether the following is valid argument.
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If Sachin hits a century, then he gets a free car.

Sachin gets a free car.

=~ Sachin has hit a century.
Solution: Let p: Sachin hits a century.
g: Sachin gets a free car.

The given statement reads

q

oo p

We note that if p — q and q are true, there is no rule which asserts that p must be true.
Indeed, p can be false when p — q and q are true. See the table below.

p q p—q (p~qag
0 1 1 1

Thus, [(p = q) A q] = p is not a tautology. Hence, this is not a valid argument.
8. Test the Validity of the following argument:
(). pArg (ii). p (iii). p—or
—(qor p——4q qQor
r ~q—or ~(pvag—or
-
Solution:

(). Since p A q is true, both p and q are true. Since p is true and p — (q — r) istrue, q —> r
Should be true. Since q is true and q — r is true, r should be true. Hence the given argument is
valid.

(ii). The premises p — — q and — q — — r together yields the premise p — —r. since p is true,
this premise p — —r establishes that - r is true. Hence the given argument is valid.

(iif) We note that

(P—nA(@—-ne(EpVvnA(gVD)
S vap)A(rvaQ) By Commutative law
Srv(pA-Q) By Distributive law
©-a(pvag vr By Commutative & De Morgan’s Law

SpPvag—r
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This Logical equivalence shows that the given argument is valid.
9. Test whether the following arguments are valid:

(). p—q (i). p—q

r—s r—s

s qVs
Solution:
(1) We note that
P=rF—=9)A(pVvNePo>PA(F—)A(np—T)
SPoAGEP—=NA(r—S) By Commutative law
SpP—ogA(=p—S9) Using Rule of Syllogism
S (nq—o-p)A(=p—59) Using Contrapositive
S (-gqg—9) Using Rule of Syllogism
eqVs
This Logical equivalence shows that the given argument is valid.
(ii) We note that
P=>PAF=)A(q V) (P->PAr—9)A(Q— )
S (P—>qA(Q—-s)A(r—s) By Commutative law
S ((pPp—-s)A(r—s) Using Rule of Syllogism
S(pP—o-s)A(=s— ) Using Contrapositive
S ((p—-rn) Using Rule of Syllogism
S-apvar)

S (pAr)

This Logical equivalence shows that the given argument is valid.

10. Show that the following argument is not valid:
p
pvqa
q—(—s)

t—r

NS — At
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Solution:

Here p is true (premise) and (p v Q) is true (premise). Therefore, g may be true or false.

Suppose q is false. Then, since ¢ — (r — s) is true (premise), r — s must be false. This
means that r must be true, and s must be false. Since r is true and t — r is true (premise), t may
be true or false. Suppose t is true, then - t is false. Since s must be false, = s must be true.
Consequently, = s — — t is false.

Thus, when q is false and t is true, the given conclusion does not follow from the given
premise. As such, the given argument is not valid argument.
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® Open statement:

A declaration statement is an open statement

If it contains one or more variables.

If it is not statement.

But it becomes statement when the variables in it are replaced by certain allowable
choices.

Example: “The number x+2 is an even integer” is denoted by P(x) then = P(X) may be read as
“The number x+2 is not an even integer”.

Quantifiers:

The words “all”, “every”, “some”, “there exist” are associated with the idea of a quantity such
words are called quantifiers.

1. Universal quantifiers:
The symbol V has been used to denote the phrases “for all” and “for every” in logic “for
each” and “for any” are also taken up to equivalent to these. These equivalent phrases are
called universal quantifiers.
Existential quantifiers:
The symbol 3 has been used to denote the phrases “there exist”, “for some” and “for at
least one” each of these equivalent phrases is called the existential quantifiers.

Example: 1. For every integer x, x? is a non-negative integer 3 x € s, P(X).

2. For the universe of all integers, let
p(x): x>0.
q(x): x is even.
r(x): x is a perfect square.
s(x): x is divisible by 3.
t(x): x is divisible by 7.

Problems:

Write down the following quantified statements in symbolic form:
1) At least one integer is even.
ii) There exists a positive integer that is even.
iii) Some integers are divisible by 3.
iv) every integer is either odd or even.
v) if x is even and a perfect square, then is not divisible by 3.
vi) if X is odd or is not divisible by 7, then x is divisible by 3.

Solution:
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Using the definition of quantifiers, we find that the given statement read as follows in
symbolic form

i) 3%, q(x)

i) 3%, [ p(X) A q(x)]

iii) 3x, [ q(X) A s(X)]

vi) Vx, [ q(x) ¥ = q(X)]

V) Vx [ {q(x) A r(x)} — s(X)]

vi) VX, [{=7q(X) V = t(x)} —s(x)]

Rules employed for determining truth value:

Rulel: The statement “V x € s, p(X)” is true only when p(x) is true for each x € s.
Rule2: The statement “3 X € s, p(X)” is false only when p(x) is false for every x € s.

*Rules of inference:

Rule3: If an open statement p(x) is known to be true for all x in a universe s and if a € s then
p(a) is true. (this is known as the rule of universal specification).

Rule4: if an open statement p(x) is proved to be true for any (arbitrary) x chosen from a set s
then the quantified statement V X € s, p(X) is true. (this is known as the rule of universal
generalization)

*Logical equivalence:

Two quantified statements are said to be logically equivalent whenever they have the same
truth values in all possible situations.

The following results are easy to prove.

i) Vx [p(x) A q(X)] & (V X, p(x)) A (V X, g(x))
i) Ix[p(X¥) v ()] = 3 x, p(x)) v @x a(x))
i) 3 x, [p(x) = q(x)] = 3 X, (7 p(X) v (X))

*Rule for negation of a quantified statement:

Rule5: To construct the negation of a quantified statement, change the quantifier from
universal

to existential and vice versa.
e, 7 [V, pXx)]=3 X [~pX)]
2 [@x pX)]=V x[=p(Xx)]
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Problems:
1. Consider the open statements with the set of real numbers as the universe.
p(): IX>3, q(x): x>3

Find the truth value of the statement V x, [p(x) — q(x)]. Also, write down the converse, inverse
and the contrapositive of this statement and find their truth values

Solution:
We readily note that
p(-4) = |-4]>3 is true and q(-4) = -4>3 is false
Thus, p(x) —q(x) is false for x=-4.
Accordingly, the given statement V x, [p(x) — q(x)]
The converse of the statement (i) is V X, [q(X) — p(X)]
In words, this reads “For every real number x, x>3 then [x[>3”

Or Equivalently, “Every real number greater than 3 has its absolute value (magnitude) greater
than 3”

This is a true statement.
Next, the inverse of the statement (i) is V X, [= p(X) — = q(X)] (iii)
In words this reads “For every real number x, if |x| <3 then x<3”

Or equivalently, “If the magnitude of a real number is less than or equal to 3, then the number
is less than or equal to 3”

Since the converse and inverse of a conditional are logically equivalent the statements (ii) and
(iii) have the same truth values. Thus iii) is a true statement.

Then the contrapositive of statement (i) is V X, [- q(X) — = p(X)]
“Every real number which is less than or equal to 3 has its magnitude less than or equal to 3”.

2. Let p(X): x2-7x+10, q(X): x?-2x-3, r(x): x<O0.
Determine the truth or falsity of the following statements. When the universe U contains
only the integers 2 and 5. If a statement is false. Provide a counter example or explanation.

(. V x, [p(x) == r(X)] (). V x, [q(x) — r(x)]
(>iii). 3 X, [q(X) — r(X)] (iv). 3 x, [p(X) — r(X)]
Solution:

Here, the universe is U= {2, 5}.

We note that x>-7x+10 = (x-5) (x-2). Therefore, p(x) is true for x=5 and 2. That is p(X) is true
forall x € U.
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Further, x2-2x-3 = (x-3) (x+1). Therefore, q(x) is only true for x=3 and x=-1. Since x=3 and
x=-1 are not in the universe, q(x) is false for all x € U

Obviously, r(x) is false for all x € U.
Accordingly:
(1) Since p(x) is true for all x € U and - r(x) is true for all x € U, the statement V X,
[p(X) — = r(x)] is true.
(i1) Since q(x) is false for all x € U and r(x) is false for all x € U, the statement V x,
[a(x) — r(x)] is true.
(iii) Since q(x) and r(x) are false for x=2, the statement 3 x, [q(X) — r(x)] is true.

(iv) Since p(x) is true for all x € U but r(x) is false for all x € U. the statement p(x) — r(x) is
false for all x € U. consequently, 3 x, [p(x) — r(x)] is false.

3. Negate and simplify each of the following.
.3 [0 v 4] (). V %, [p(9 A= 4(9)]
(iii). V' x, [p(x) — q(x)] (iv). 3x, [p(¥) v 9(x)] — r(x)
Solution:
By using the rule of negation for quantified statements and the laws of logic, we find that
H-[3x P v a1 =V [~{p() v q(x)]
=V X [p(X) A-=a(x)]
(i) ~ [V, {p(x) A = q(x)}]1 =3 X [~ {p(X) A 7 q(x)}]
=3x [~p(X) v g
(i) ~ [V x, {p(x) = q(x)}1=3 % [~ {=p(x) v q(X)}]
=3 X [p(X) A =7 q(x)}]
(i) 2 [@Ax {p(X) v 9x)} =>rx)]=Vx, [~ {=(p(X) v q(x)) Vv r(x)}]
=V x [{p(x) v a()} A =r(x)]

4. Write down the following proposition in symbolic form, and find its negation:
“If all triangles are right angled, then no triangle is equiangular”.

Solution:
Let T denote set of all triangles. Also, p(x): x is right angled, q(x): x is equiangular.
Then in symbolic form, the given proposition reads

{(VXeT,px)} > {Vx€eT,-q(X)}
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The negation of this is
(VXeT, pX)}IA{3xeT,qXx)}
In words, this reads “All triangles are right angled and some triangles are equiangular”.
Logical implication involving quantifiers
5. Prove that 3 %, [p(X) A q(X)] = 3 X, p(X) A 3 X, q(X)
Is the converse true
Solution:
Let S denote the universe, we find that
3 X, [p(X) A q(X)] = p(a) A q(a) forsomea € S
= p(a), fora€ S and q(a) for somea € S
=3 X, p(x) A 3 X, q(X)
This proves the required implication.
Next, we observe that 3 x, p(x) = p(a) for some a € S and 3 x, q(x) = q(b) for some b « S.
Therefore, 3 X, p(x) A 3 X, q(x) = p(a) A q(b)
< pa) A q(a) because b need not be a
Thus, 3 X, [p(X) A q(x)] need not be true when 3 x, p(x) A 3 X, q(X) is true.
That is 3 x, p(x) A 3 X, q(X) € [p(X) A q(X)]

Accordingly, the converse of the given implication is not necessarily true.

6. Find whether the following arguments is valid:
No engineering student of first or second semester studies logic

Anil is a student who studies logic.

=~ Anil is not in second semester
Solution:
Let us take the universe to be the set of all engineering students
p(x): X is in first semester.
g(x): x is in second semester.
r(x): x studies logic.
Then the given argument reads

Vx[{p(x) va®)} - - r(x)]
r(a)
~=q(a)
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We note that
VX [{p() v qx)} == r(¥)] = {p(a) v q(a)} -~ r(a)
By rule of universal specification.
Therefore,
[V {p(x) vV qx)} == r(X)] A r(a)
= [{p(a) v q(a)} —~r(@)] A r(a)
=r() A [r(a) —» - [p(a) v q(a)]], Using Commutative law and Contrapositive
=-[p(a) v q(a)], By the Modus Pones law
= - p(a) A = q(a), By De Morgan’s law
= = q(a), by the rule of conjunctive specification,
This proves that the given argument is valid.

7. Find whether the following argument is valid.
If a triangle has 2 equal sides then, it is isosceles.
If the triangle is isosceles, then it has 2 equal angles.
A certain triangle ABC does not have 2 equal angles.
=~ the triangle ABC does not have 2 equal sides.

Solution:
Let the universe be set of all triangles
And let p(x):x has equal sides.
g(x): x is isosceles.

r(x): x has 2 equal angles.

Also let C denote the triangle ABC.

Then, in symbols, the given argument reads as follows:
V x, [p(x) — a(X)]
V x, [q(x) — r(X)]

-r(c)
~p(c)

We note that
V x, [p(x) = q(X)] A {V x, [q(x) — r(X)]} A = 1(c)

= {V x, [p(x) = r(¥)] A = r(c)}, By Rule of Syllogism
= {[p(c) — r(c)] A = r(c)}, By Rule of Universal Specification

= - p(c) By Modus Tollens Rule
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This proves that the given argument is valid.

8. Prove that the following argument is valid.
VX [p(x) v q(x)]
3 X, = p(x)
VX [7q(x) v r(x)]
V x, [s(x) = = 1(x)]
~ 3 X, 7 8(X)

Solution:

We note that

{V %, [p(x) v a1} A [3 %, = p(x)]
= [p(a) v q(a)] A - p(a) For some as in the universe
= ((a) By Disjunctive Syllogism
Therefore, {V x, [p(x) V gX)]} A [T X 2 p(X)] A {Vx [7q(X) vV r(X)]}
=q(a) A [-a@) v r(@)]
= r(a) By Rule of Disjunctive Syllogism

Consequently,

{Vx, [px) vaeI} A {3 x = p()} AV X, [=a(X) v rOI} A {V x, [s(x) = = r(X)]}
= r(a) A {s(a) —> ~r(a)}
= =5(a) By Modus Tollens rule
= 3 X, = 5(X).

This proves the given argument is valid.
Quantified statements with more than one variable

9. Determine the truth value of each of the following quantified statements. The universe
being the set of all non-zero integer.
)3 x, 3y [xy=1]
i) 3 X Vy[xy=1]
i) V x 3y [xy=1]
iv) 3 X, 3y, [(2x+y=5) A (X-3y=-8)]
v) 3 X, 3Y, [(3X-y=17) A (2x+4y=3)]

Solution: (i) true (take x=1, y=1)

(ii) False (for specified x, xy=1 for every y is not true)

(ii1) false (for x=2, there is no integer y such that xy=1)
(iv) true (take x=1, y=3)

(v) false (equation 3x-y=17 and 2x+4y=3 do not have a common integer solution)
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® Methods of proof and methods of disproof:

Direct proof:

. Hypothesis: first assume that p is true.

. Analysis: starting with the hypothesis and employ the rules/ Laws of logic and other known
facts infer that q is true.

. Conclusion: p — q is true.

Indirect proof:

A conditional p — g and its contrapositive - q —- p is logically equivalent. In  some
situations, given a condition p — q, a direct proof of the contrapositive = q—- p is easier. On
the basis of this proof, we infer that the conditional p — q is true. This method of proving a
conditional is called an indirect method of proof.

Proof by contradiction:

1. Hypothesis: assume that p — q is false, that is assume that p is true and q is false.
2. Analysis: starting with the hypothesis that q is false and employing the rules of logics and
other known facts, this infer that p is false. This contradicts the assumption that p is true.
. Conclusion: because of the contradiction arrived in the analysis, we infer that p — q is
true.

Proof by exhaustion:

Recall that a proposition of the form “V x € S, p(x)” is true if p(x) is true for every x in
S. if S consists of only a limited number of elements, we can prove that the statement “V x €
S, p(x)” is true by considering p(a) for each a in S and verifying that p(a) is true (in each case).
Such a method of proof is called the method of exhaustion.

Disproof by counter example:

The way of disproving a proposition involving the universal quantifiers is to exhibit
just one case where the proposition is false. This method of disproof is called disproof by
counter example.

Problems:
1. Prove that, for all integers k and |, if k and | are both odd the k+1 is even and kl is odd.

Solution:

Take any two integers k and |, and assume that both of these are odd (hypothesis)

Then k=2m+1, 1=2n+! for some integers m and n. therefore,
k+1= (2m+1) +(2n+1) = 2(m+n+1)
Kl= (2m+1)(2n+1) = 4mn+2(m+n)+1

We observe that k+l is divisible by 2 and Kkl is not divisible by 2. Therefore k+l is an even
integer and kl is an odd integer.
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Since k and I are arbitrary integers, the proof of the given statement is complete.

2. For each of the following statements, provide an indirect proof by stating and proving the
contrapositive of the given statement.
(1) for all integers k and |, if kI is odd then both k and | are odd.
(i1) for all integers k and 1 if k+1 is even, then k and | are both even or both odd.

Solution:

The contrapositive of the given statement is

“For all integers k and |, if k is even or | is even then Kkl is even.
We now prove this contrapositive.
For any integers k and |, assume that k is even.

Then k=2m for some integer m, and kl=(2m)I=2(ml) which is evidently even. Similarly if I is
even, then kl=k(2n)=2kn for some integer n so that kl is even. This proves the contrapositive.

This proof of contrapositive serves as an indirect proof of the given statement.
(i1). Here, the contrapositive of the given statement is
“for all integers k and 1, if one of k and 1 and is odd and the other is even, then k+1 is odd”
We now prove this contrapositive
For any odd integers k and I, assume that, one of k and | is odd and the other is even.

Suppose k is odd and I is even. Then k=2m+1 and |=2n for some integers m and n. consequently
k+I=(2m+1)+2n which is evidently odd.

Similarly, if k is even and | is odd, we find that k+I is odd. This proves the contrapositive.

This proof of contrapositive serves as an indirect proof of the given statement.

3. Give (i) direct proof (ii) indirect proof (iii) proof by contradiction for the
following statement: “if n is an odd integer, then n+9 is an even integer”.

Solution:

(i) Direct proof: assume that n is an odd integer. Then n=2k+1 for some integer k. This gives
n+9 = (2k+1)+9 = 2(k+5) from which it is evident that n+9 is even. This establishes the truth
of the given statement by a direct proof.

(ii) Indirect proof: assume that n+9 is not an even integer. Then n+9 = 2k+1 for some integer
k. This gives n = (2k+1)-9=2(k-4), which shows that n is even. Thus, if n+9 is not even, then n
is not odd. This proves the contrapositive of the given statement. This proof of the
contrapositive serves as an indirect proof of the given statement.

(iii) proof by contradiction: assume that the given statement is false. That is, assume that n is
odd and n+9 is odd, n+9=2k+1 for some integer k so that n=(2k+1)-9= 2(k-4) which shows that
n is even. This contradicts the assumption that n is odd. Hence the given statement must be
true.
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4. Prove that every even integer n with 2<n<26 can be written as a sum of most three perfect
squares.

Solution:

Let S={2,4,6, ....,24, 26}. We have to prove that the statement: “V X € S, p(x)” is true,
where p(x): x is a sum of at most three perfect squares.

We observe that

2=1%+1? 16=42

4=2? 18=4%+12+12

6=22+12+12 20=32+3%+12+12

8=22+22 22=3%2+32+22

10=3%+12 24=4%+22+22

12=22+22+22 26=5%+12

14=32+22+12
The above facts verify that each x in S is a sum of at most three-perfect square.
5. Prove or disprove that the sum of square of any four non-zero integers is an even integer.
Solution:

Here the proposition is

“For any four non-zero integers a, b, ¢, d and a?+b?+c?+d? is an even integer”.

We check that for a=1, b=1, c=1, d=2 the proposition is false. Thus, the given proposition is
not a true proposition. This proposition is disproved through the counter example a=b=c=1 and
d=2.

6. Consider the following statement for the universe of integers if n is an integer then n?=n or
vn {n?=n}.

Solution:

For n=0 it is true that n®>=0%=0=n and if n=1 is also true that n?=1?=1=n. however we cannot
conclude that n?=n for every integer n.

The rule of universal generalisation does not apply here, for we cannot consider the choices of
0 (or 1) as an arbitrarily chosen integer. If n=2, n>=4#n=2, and this one counter example is
enough to tell us that the given statement is false.

However, either replacement namely n=0 or n=1 is not enough to establish the truth of the
statement. For some integer n, n>=n or 3 n {n?=n}.

7. For all positive integers x and y if the product xy exceeds 25, then x>5 or y>5.

Solution:
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Consider the negation of the conclusion that is suppose that 0 <x<5 and 0 <y< 5. Under these
circumstances we find that 0O< x -y <5-5 = 25.

So, the product of xy does not exceed 25.
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MODULE 2

PROPERTIES OF INTEGERS & PRINCIPLES OF COUNTING

® Syllabus:
Properties of the Integers: The Well Ordering Principle — Mathematical Induction.

Fundamental Principles of Counting: The Rules of Sum and Product, Permutations, Combinations — The
Binomial Theorem, Combinations with Repetition.

® Mathematical Induction:

Mathematical induction is a mathematical proof technique. It is essentially used to prove that a
statement P(n) holds for every natural number n = 0,1, 2, 3, ... .... i.e., the overall statement is a sequence of
infinitely many cases P(0),P(1),P(3), ... ev eo. .

Well ordering principle:

Every non empty subset of Z*contains a smallest element. (we often express this by saying that Z* is well
ordered).

Finite induction principle (principle of Mathematical induction):

Let S(n) denote an open mathematical statement that involves one or more occurrences of the variable n.
Which represents a positive integer

(@) If S(1) is true; and

(b) If whenever S(k)is true (for some particular but arbitrarily chosen k € Z*), then S (k + 1)is true,
then S(n) istrue foralln € Z*.

Proof:

Let S(n) be such an open statement satisfying conditions (a) and (b) and let F = {t € Z*/ S(t) is false}. We
wish to prove that F = @ so to obtain a contradiction we assume that F # @. Then by the well-ordering
Principle, F has a least element. Since S(1) is true. It follows that S # 1. so s > 10, and consequently s —

1€ Z*. Withs — 1 & F, S(s — 1) we have true. So, by condition (b) it follows that S((s — 1) + 1) = S(s)
is true, contradicting s € F. This contradiction arose from the assumption that F # @. Consequently F = @.

Problems:

1. Prove by mathematical induction that, for all positive integers n > 1.

Solution:

Here, we have to prove the statement

Sm)y=1+2+3+
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Basic step: We note that S(1) is the statement

1=--1-(1+1)
Which is clearly true. thus, the statement S(n)is verified forn = 1.

Induction step: We assume that the statement S(n) is true for n = k where k is an integer > 1; that is, we

assume that the following statement is true:
Stk)=1+2+3+
Using this we find that (by adding (k + 1) to both side)

Sk)=1+2+3+ +h+k+1) =2 k(k+ 1)+ (k+1)

=(k+1){%k+1}

=2(k+ Dk +2)

2

This is precisely the statement S(k + 1). Thus, on the basis of the assumption that S(n) is true for n = k >
1, the truth ness of S(n) for n = k + 1 is established.

2. Prove that, foreachn € Z* Y1, i? = w

OR

_ n(n+1)(2n+1)
6

Prove that, foreachn € Z*, 12 + 22 + 32 +
Solution:
Let S(n) denote the given statement.

Basic step: We note that is S(1) is the statement
12 = % -1-(14 1)- (2 + 1) which is clearly true.
Induction Step: We assume that the statement S(n) is true for n = k where k is an integer > 1; that is, we

assume that the following statement is true.

SU) = 12422 4 32 4 oo 2 = HEDED

Adding (k + 1)? to both sides of this, we obtain

k(k+1)(2k+1)

Stk) =124+22+3%2+ +k?+(k+1)?% = + (k+1)2

k (2k+1)

= (ke + D {4 (ke + 1)
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=2k + Dk +1) + 6(k + 1)}

T 6

1

=-(k + D{2k?> + k + 6k + 6}

T 6

= = (k + 1){2k? + 7k + 6}

== (k +1)(k +2)(2k + 3)

This is precisely the statement S(k + 1). Thus, on the basis of the assumption that S(n) is true for n = k >
1, the truth ness of S(n) for n = k + 1 is established.

3. By mathematical induction, Prove That (n!) > 2" for all integersn > 1.
Solution:
Basic step: Forn = 1, S(n) reads (1!) > 21=1 which is obviously true. Thus S(n) is verified for n = 1.
Induction step: We assume that S(n) is true for n = k, where k is an integer > 1; that is, we assume that
(k") = 2k=1 or2k-1 < k!istrue
2k =2.2k"1 < 2 k!
<(k+1)-k!,because 2 < (k+1)fork > 1
=(k+1)!
(k +1)! > 2k

This is precisely the statement S(n) for n = k + 1. Thus, on the assumption that S(n)is true forn = k > 1,
We have proved that S(n) is true forn = k + 1.

Hence, by mathematical induction, it follows that the statement S(n) is true for all integers n > 1.
4. Prove that every positive integer n > 24 can be written as a sum of 5’s and/or 7’s.

Solution:

Basic step: We note that 24 = (7 +7) + (5 +5)

This shows S(24) is true.

Induction step: We assume that S(n) is true for n = k where k > 24. Then

Suppose this representation of k has r number of 7°s and s number of 5’s. Since k > 24 we should have
r>2ands > 2.

Using this representation of k, we find that
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={(7+7+

T

(7+7+

r—2

(7+7+

r—2

This shows that k + 1is sum of 7°s and 5’s. Thus, S(k + 1) is true.

5. Prove by mathematical induction that, for all positive integers n > 1.
1:2+2-343-4+ +n(n+1) = zn(n+1)(n+2)

Solution:

Here, we have to prove the statement
Sm)=1-2+2-3+3-4+ +n(n+1) = zn(n+1)(n+2) forall integers n > 1.
Basic step: We note that S(1) is the statement
1:2=2-1-1+1)-2+1)
Which is clearly true. thus, the statement S(n)is verified forn = 1.

Induction step: We assume that the statement S(n) is true for n = k where k is an integer > 1; that is, we

assume that the following statement is true:

S(k)=1-2+2-3+3-4+ +k(k +1) = sk(k + 1)(k + 2)
Using this we find that (by adding (k + 1)(k + 2) to both side)
S(k)=1-2+4+2-3+3-4+ +k(k+1)+k+1)(k+2)

= Zk(k+ D0k +2) + (k + 1)(k +2)

= (k+ Dk +2) 2k + 1}

=2 (k+1D)(k +2)(k +3)

This is precisely the statement S(k + 1). Thus, on the basis of the assumption that S(n) is true for n = k >
1, the truth ness of S(n) for n = k + 1 is established.

6. Prove, by mathematical induction that 1% + 3% + 52 + -1)2= w for all
integers n > 1.
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Solution:
Let S(n) denote the given statement.
Basic step: We note that is S(1) is the statement
12 = g -1-(2—1)-(2+ 1) which is clearly true.
Induction Step: We assume that the statement S(n) is true for n = k where k is an integer > 1; that is, we

assume that the following statement is true.

S() =12 +32+5%+ + (2k — 1)? = KEEDCED

Adding (2k + 1)? to both sides of this, we obtain

k(2k—1)(2k+1)

S(k) =17 +3% + 5% + + k- 12+ Qk+1)% = + (2k + 1)?

= 2k + D {*ED 4 @k + )

= 2 ((2k + 1){k(2k — 1) + 32k + 1)}

= 2 ((2k + 1){2k? — k + 6k + 3}
=~ ((2k + 1){2k? + 5k + 3}

= 2 (2k + 1)(k +2)(2k + 3)

This is precisely the statement S(k + 1). Thus, on the basis of the assumption that S(n) is true for n = k >
1, the truth ness of S(n) for n = k + 1 is established.

7. Prove by mathematical induction that, for all positive integers n > 1.
1-342-4+3-5+ +n(n+2)=:n(n+1)2n+7)
Solution:

Here, we have to prove the statement
Sm)=1-3+2-4+3-5+ +n(n+2) ==n(n+1)(2n +7) for all integers n > 1.
Basic step: We note that S(1) is the statement
1:3==-1-(1+1)-2+7)
Which is clearly true. thus, the statement S(n)is verified forn = 1.

Induction step: We assume that the statement S(n) is true for n = k where k is an integer > 1; that is, we

assume that the following statement is true:
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Sk)=1-3+2-44+3-5+ +k(k+2)=%k(k+1)(2k+7)
Using this we find that (by adding (k + 1)(k + 3) to both side)

S(k)=1-2+2-34+3-4+ +k(k+2)+ (k+ 1Dk +3) =%k(k+1)(2k+7)+(k+
D (k + 3)

= (k+ 1 {2 k(2k +7) + (k + 3)}

= (k+ 1){2k? + 7k + 6k + 18}

= (k + 1){2k? + 13k + 18}
=%(k+ 1)(k + 2)(2k + 9)

This is precisely the statement S(k + 1). Thus, on the basis of the assumption that S(n) is true for n = k >
1, the truth ness of S(n) for n = k + 1 is established.

8. Prove that every positive integer greater than or equal to 14 can be written as a sum of 3’s and/or 8’s.
Solution:
Basic step: We note that 14 = (3 +3) + 8
This shows S(14) is true.
Induction step: We assume that S(n) is true for n = k where k > 14. Then
k=3B+3+

Suppose this representation of k has » number of 3’s and s number of 8’s. Since k = 14 we should have
r>2ands > 2.

Using this representation of k, we find that

k+1={(3+3+

r

(3+3+

r

(3+3+

r+3 s—1

This shows that k + 1is sum of 3’s and 8’s. Thus, S(k + 1) is true.

9. Prove by mathematical induction for any integer n > 1
1 n
(3n-1)(3n+2)  6n+4
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Solution:

Here, we have to prove the statement

S(n) = % + i + ! " - for all integers n > 1.

(3n—-1)(3n+2) - 6n+

Basic step: We note that S(1) is the statement

1 1

25 61+4
Which is clearly true. thus, the statement S(n)is verified forn = 1.
Induction step: We assume that the statement S(n) is true for n = k where k is an integer > 1; that is, we

assume that the following statement is true:

1 kK
(3k-1)(3k+2)  6k+4

SU) = =+—+

1

Using this we find that (by adding ————

to both side)

1 1 1 k 1
S(k) = 2:5 - (3k-1)(3k+2) + (3k+2)(3k+5)  6k+4 + (3k+2)(3k+5)

_ k(3k+2)(3k+5)+(6k+4)
T (6k+4)(3k+2)(3k+5)

_ 9k3+421k%+16k+4
"~ (6k+4)(3k+2)(3k+5)

(k—=1)(3k+2)?
T (6k+4)(3k+2)(3k+5)

_ (k+1)(3k+2)
T (6k+4)(3k+5)

This is precisely the statement S(k + 1). Thus, on the basis of the assumption that S(n) is true for n = k >
1, the truth ness of S(n) for n = k + 1 is established.

10. Prove by mathematical induction that, for every positive integer n, 5 divides n®> — n
Solution:
Let S(n) be the given statement.
Basic step: We note that S(1) is the statement
5 divides 1° — 1
Since 1° — 1 = 0, this statement is true
Induction step: We assume that the statement S(n) is true for n = k where k is an integer > 1; that is, we

assume that the following statement is true:
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5 divides k° — k,

This means that k> — k is a multiple of 5; that is k> — k = 5m, for some positive integer m.
Consequently, we find that
(k+1)°—(k+1) = (k> +5k*+10k3 + 10k? + 5k + 1) — (k + 1)
= (k5 — k) + 5(k* + 2k3 + 2k? + k)
=5m + 5(k* + 2k3 + 2k? + k)
=5(m+k*+ 2k3 + 2k? + k)
This shows that (k + 1) — (k + 1) is a multiple of 5; that is, 5 divides (k + 1)> — (k + 1).

This is precisely the statement S(n) for n = k + 1. Thus, on the assumption that S(n)is true forn = k > 1,
We have proved that S(n) is true forn = k + 1.
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® Recursive Definition:

For describing a sequence, the two methods are commonly used.
(1) Explicit method (i) Recursive method
In explicit method, the general term of the sequence is explicitly indicated

In recursive method, first few terms of the sequence must be indicated explicitly and in the second part the
rule which will enable us to obtain new term if the sequence from the terms already known must be indicated.

Problems:
1. Find an explicit definition of the sequence defined recursively by
a, =7,a, =2a,_,+1forn=>2.
Solution: By repeated use of the given recursive definition we find that
a, =2a,_1+1=2{2a, ,+1}+1

=2{2Qap_3+ D+ 1}+1=2%a,_;+22+2+1

= 2" a1y + 2" 42 4 +22+2+1
=2"ta; +(1+2+22+2%+ +2n73 4 2772

Using a; = 7 and the standard result

n_
1+a+a?+ad+ "‘1=“a—_11fora>1

This becomes a,, = 7 - 2" 1 + % =8-2"1-1
2. Obtain the recursive definition for the sequence {a,,} is each of the following cases.
(i).a, =5n (ii).a, = 6™ (iii).a, =3n+7
(iv).a, =n(n+2) (v).a, =n? (wi).a, =2 - (1"
Solution:
(i). Herea, = 5,a, = 10,a; = 15,a, = 20,
We can rewrite theseas a, = 5and a,, = a,_; + 5 forn = 2.

This is the Recursive definition of the given sequence.

(ii). Here a; = 6,a, = 62,a; = 63,a, = 6%,
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We can rewrite these as a;, = 6 and a,,,, = 6a, forn > 1.

This is the Recursive definition of the given sequence.

(iii). Here a; = 10,a, = 13,a; = 16,a, = 19,

We can rewrite these as a, = 10 and a,, = a,,_; + 3 forn > 2.

This is the Recursive definition of the given sequence.

(iv). Here a; = 3,a, = 8,a; = 15,a, = 24,

We observe thata, —a;, =5=2-14+3,a3—a,=7=2"2+3,a,—a3;=9=2-3+3
We can rewrite these as a,, 41 —a, =2n+3thena,,; = a, +2n+ 3 forn > 1.
Hencea; =3anda,,; = a, +2n+3forn > 1.

This is the Recursive definition of the given sequence.

(v). Herea, = 1,a, = 4,a; = 9,a, = 16,

We observe thata, —a;, =3 =2-1+1,a3—a,=5=2"2+1,a,—a3=7=2-3+1
We can rewrite these as a, 41 —a, =2n+1thena,,; =a,+2n+1forn > 1.
Hencea; =1landa,,; =a, +2n+1forn > 1.

This is the Recursive definition of the given sequence.

(vi). Herea, = 3,a, =1,a; =3,a, =

We observe that a, —a; = =2 =2(-1),a3 —a; =2 =2(1),a, —az = -2 =2(-1)

We can rewrite these as a,,41 — a, = 2(—=1)" then a4, = a, + 2(—1)"
Hencea; =3and a,,; = a, + 2(—1)" forn > 1.

This is the Recursive definition of the given sequence.

3. The Fibonacci numbers are defined recursively by F, =0,F; =1and E, = F,,_; + F,,_, forn > 2
Evaluate F, to F;,

Solution:

Given F, =F,_; + F,_, forn > 2
F,=F,+F,=1+0=1
Fs=F,4+F=1+1=2

F4:F3+F2:2+1:3
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Fs=F,+F;=3+2=5

Fo=F;+F,=5+3=8

F,=F;+Fs=8+5=13

Fg=F,+Fs=13+8=21

Fo=Fg+F,=21+413 =34

Fio=Fo+Fg=34+21=55

Note: The Sequence formed by the Fibonacci numbers is called the Fibonacci sequence.
4. The Lucas numbers are defined recursively by L, = 2,L; =1and L, = L, + L,_, forn > 2

Evaluate L, to L,

Solution:

GivenlL, =L,_; +L,_,forn>2

Ly=L,+Ly=1+2=3

Ly=L,+L,;=3+1=4

Ly=L;+L,=4+3=7

Ls=L,+L;=7+4=11

Le=Ls+L,=114+7 =18

Ly=L¢+Ls=18+11=29

Lg =1L, +Ls=29+18 =47

Ly=1Lg+L,=47+29 =76

Lig=Lo+Lg=76+47=123

Note: The Sequence formed by the Lucas numbers is called the Lucas sequence.

n
5. For the Fibonacci sequence Fy, Fy, F,, Prove that E, —\/_[ 1”— (#) ]

Solution:

Forn = 0 and n = 1, the required results read (respectively)

T[(Hf) ] f [1-1]=0

=50 - ()] =& sl =1
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Which is true.

Thus, the required result is true for n = 0 and n = 1. We assume that the result is true forn = 0,1, 2, .... k,
where k > 1. Then, we find that

Fiv1 = Fie + Frq

Froq = % (”f)k - (1‘7‘/5)](]+% I(“f)k_l - (1_2—6)](_1] using the assumption made

R =3[ (22 1)- )
- (59
(25 (=9

Foo = % _(1+2\/§)k+1 _ (¥)k+1l

This shows that the required result is true for n = k + 1. Hence by mathematical induction, the result is true
for all non — negative integers n.

k-1

=+
(=5)
(=25

Fan =5 |(559)

k-1

k-1 k-1
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® The Rules of Sum and Product:

Rule of sum:

Suppose two tasks T; and T, are to be performed. if the task T; can be performed in m different ways and the
task T, can be performed in n different ways and if these two tasks cannot be performed simultaneously, then
one of the two tasks (T, or T,) can be performed in m + n ways.

Example: Suppose T; is the task of selecting a prime no. < 10 and T, is the task of selecting an even number
< 10. then T; can be performed in 4 ways and T, can be performed in 4 ways. But since 2 is both a prime and
an even number < 10 the task T1 or T, can be performed in4 + 4 — 1 =7 ways.

Rule of product:

Suppose two tasks are to be performed one after the other. If T, can be performed in n, different ways, and
for each of these ways T, can be performed in n,different ways. then both of the tasks can be performed in
n, * n, different ways.

Example: Suppose a person has 8 shirts and 5 ties. Then He has 8 * 4 = 40 different ways of choosing a shirt
and a tie.

Problems:

1. Cars of a particular manufacturer come in 4 models, 12 colours, 3 engine sizes and 2 transmission
types (a) how many distinct cars can be manufactured? (b) of these how many have the same colour?

Solution:
(a) By the product rule, it follows that the number of distinct cars that can be manufactured is 4*12*3*2 =288
(b) for any chosen colour, the number of distinct cars that can be manufactured is 4*3*2=24

2. Abit is either 0 or 1. A byte is a sequence of 8 bits. Find (i) the number of bytes. (ii) the number of
bytes that begin with 11 and end with 11. (iii) The number of bytes that begin with 11 and do not end
with 11. (iv) the number of bytes that begin with 11 or end with 11.

Solution:
(i) Since each byte contains 8 bits and each bit is 0 or 1, the number of bytes is 28 = 256

(i) In a byte beginning and ending with 11, there occur 4 open positions. These can be filled un 2* = 16 ways.
Therefore, there are 16 bytes which begin and end with 11.

(iii) These occur 6 open positions in a byte beginning with 11. these positions can be filled is 2% = 64 ways.
thus, there are 64 bytes that begin with 11. since there are 16 bytes that begin and end with 11, the number
of bytes that begin with 11 but do not end with 11 is 64-16 = 48.

(iv) As in (iii) the numbers of bytes that end with 11 is 64. Also, the number of bytes that begin and end with
11 is 16. Therefore, the number of bytes that begin or end with 11 is 64 + 64 =16 = 112.

3. Find the number of 3 digit even numbers with no repeated digits.
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Solution:

Here we consider number of the form x y z, where each of x,y,z represents a digit under the given
restrictions. Since x y z has to be even, z has to be 0, 2, 4, 6 or 8. If z is 0, then x has 9 choices and y z has
2, 4, 6, 8 (4 choices) then x has 8 choices (Note that x cannot be 0). Therefore, z and x can be chosen in
1 X9+ 4 x 8 =41 ways. For each of these ways, y can be chosen in 8 ways.

Hence, the desired number is 41 * 8 = 328.
4. Find the number of proper divisors of 441000.
Solution:

We note that 441000 = 23 x 32 x 53 x 72, Therefore, every divisor of n = 441000 must be of the form
d=2Px31Tx5"x75where0<p<3,0<qg<20<r<30<s<2.

Thus, for a divisor d, p can be chosen in 4 ways, g in 3 ways, r in 4 ways and s in 3 ways. Accordingly, the
number of possible d’s is 4 X 3 X 4 X 3 = 144. Of these, two divisors (namely 1 and n) are not proper
divisors. Therefore, the number of proper divisors of the given number is 144 — 2 = 142.

5. How many among the first 100,000 positive integers contain exactly one 3, one 4 and one 5 in their
decimal representations?

Solution:

The number 100000 does not contain 3 or 4 or 5. Therefore, we have to consider all possible positive integers

with 5 places that meet the given conditions. In a 5-place integer the digit 3 can be in any one of the 5 places.
Subsequently, the digit 4 can be in any one of the 4 remaining places. Then the digit 5 can be in any one of
the 3 remaining places. There are 2 places left and either of these may be filled by 5 digits (digits from 0 to
9 other tan 3, 4, 5). Thus, thereare 5 X 4 X 3 X 7 X 7 = 2940 integers of the required type.
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® Permutations:

Suppose that we are given n distinct objects and wish to arrange r of these objects in a line. Since there are
n ways of choosing the first object, and after this done n — 1 ways of choosing the second object.... And
finally, n — r + 1 ways of choosing rt" object, it follows by the product rule of counting (stated in the
preceding section) that the number of different arrangements, or permutations (as they are commonly called)
isn(n—1)(n-2) (n —r + 1). We denote this number by P(n,r) and is referred to as the number
of permutations of size r of n objects.

P(nr) = n

(n—r)!

Generalization

Suppose it is required to find the number of permutations that can be formed from a collection of n objects
of which n, are of one type , n, are of a second type , n, are of k" type, with n; + n, +
n;, = n. Then, the number of permutations of the objects is

n!

Problems:

1. Four different mathematics books, five different computer science books and two different control
theory books are to be arranged in a shelf. How many different arrangements are possible if (a) The
books in each particular subject must be together? (b) Only mathematics books must be together?

Solution:

(a) The mathematics books can be arranged among themselves in 4! Ways, the computer science books in
5! Ways the control theory books in 2! Ways, and the three groups in 3! Ways. Therefore, the number of
possible arrangements is 4! * 51 * 21 * 31 = 34560.

(b) Consider the 4 mathematics boos as one single book. Then we have 8 books which can be arranged in 8!
Ways. In all of these ways the mathematics books are together. But the mathematics books can be arranged
among themselves in 4! Ways. Hence, the number of arrangements is 8! * 4! = 967680

2. Find the number of permutations of the letters of the word MASSASAUGA. In how many of these,
all four “‘A’s are together? How many of them begin with S?

Solution:

The given word has 10 letters of which 4 are A, 3 are S and 1 each are M, U and G. Therefore, the required
number of permutations is

10!

a3 e iren - 20200

It is a permutation all A’s are to be together, we treat all of A’s as one single letter. Then the letters to be
permuted read (AAAA), S, S, S, M, U, G (which are 7 in number) and the number of permutations is
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PRSI T

For permutations beginning with S, there occur nine open positions to fill, where two are S, four are A, and
one each of M, U, G. The number of such permutations is

9!
AR T N A

= 7560

3. (a) How many arrangements are there for all letters in the word SOCIOLOGICAL?
(b) In how many of these arrangements (i) A and G are adjacent? (ii) all the vowels are adjacent?
Solution:

(a) The given word has 12 letters of which three are O, two each are C, I, L and one each are S, A, G.
Therefore, the number of arrangements of these letters is

12!
3«21« 2% 21« 11 % 11 % 1!

= 25200

(b)
(i) If, in an arrangement, A and G are to be adjacent, we treat A and G together as a single letter, say X so

that we have three numbers of O’s, two each of C, L, | and one each of S and X, totalling 11 letters. These

can be arranged in Ways

31x21%21% 2111

Further the letters A and G can be arranged among themselves in two ways.

Therefore, the total number of arrangements in this case is

11!

3T 2s s o < 2 = 1663200

(i) If, in an arrangement, all the vowels are to be adjacent, we treat all the vowels present in the given word
(A, O, I) asasingle letter, say Y, so that we have two each of C and L and one each of S, G & Y totalling to

. 71
7 letters. These can be arranged in ————— ways
AEVAESRENAEN N

Further, since the given words contains 3 O’s, two I’s and one A, the letters A, O, | (clubbed as Y) can be
6!

arranged among themselves is
3121x1!

Ways.
6!
X
PAEVAESRESRENY 31x21%1!

= 75600

Therefore, the total number of arrangements in this case is

4. How many Positive integers n can we form using the digits 3, 4, 4, 5, 5, 6, 7 if we want n to exceed
5,000,000?

Solution:
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Here n must be of the form n = x;x,x3x,X5x6X
Where x4, x5, , X are the given digits with x; = 5,6 or 7. Suppose we take x; = 5. Then where

X,X3X4X5XeX7 18 an arrangement of the remaining 6 digits which contains two 4’s and one each of 3, 5, 6, 7.
The number of such arrangements is

6!
n2

360

Similarly, we take x; = 6. Then where x,x;x,x5x¢x- IS an arrangement of the remaining 6 digits which
contains two each of 4 & 5 and one each of 3 & 7. The number of such arrangements is
6!

Trziorn - 180

Similarly, we take x; = 7. Then where x,x;x,xsx¢x-, IS an arrangement of the remaining 6 digits which
contains two each of 4 & 5 and one each of 3 & 6. The number of such arrangements is
6!

Trziorn - 180

Accordingly, by the Sum Rule, the number of n’s of the desired type is 360 + 180 + 180 = 720.

5. How many numbers greater than 1,000,000 can be formed by using the digits 1, 2, 2, 2, 4, 4, 0?
Solution:
Here n must be of the form n = x;x,x3x, XXX

Where x4, x5, ,Xx- are the given digits with x; = 1,2 or 4. Suppose we take x; = 1. Then where
X2X3X4XsXeX7 1S an arrangement of the remaining 6 digits which contains three 2’s and two 4’s. The number
of such arrangements is

6!
3121~ 0V

Similarly, we take x; = 2. Then where x,x;x,xsx,x, IS an arrangement of the remaining 6 digits which
contains two 2’s and two 4’s. The number of such arrangements is

6!

oz~ 180

Similarly, we take x; = 4. Then where x,x;x,xsxsx, IS an arrangement of the remaining 6 digits which
contains three 2’s and one 4. The number of such arrangements is

6!

3 - 120

Accordingly, by the Sum Rule, the number of n’s of the desired type is 60 + 180 + 120 = 360.

Prepared by: Venkatesh P Sri Sairam College of Engineering, Anekal. Page |17



5«.@
s s Al RAM Regulation-2018 (CBCS Scheme)  Discrete Mathematical Structures-18CS36
COLLEGE OF ENGINEERING

® Combinations:

Suppose we are interested in selecting (choosing) a set of r objects from a set of n > r objects without regard
to order. The set of r objects being selected is traditionally called a Combination of r objects (or briefly r-
combination).

The total number of combinations of r-different objects that can be selected from n different objects can be
obtained by proceeding in the following way. Suppose this number is equal to C, say; that is, suppose there
is a total of C number of combinations of r different objects chosen from n different objects. Take any one
of these combinations. The r objects in this combination can be arranged in r! Different ways. Since there
are C combinations, the total number of permutations is C - r!. But this is equal to P(n,r). Thus,

P(nr) n!

Cc(nr)= foro<r<n

o (n-nr)'r!
Problems:

1. A certain question paper contains two parts A and B each containing 4 questions. How many different
ways a student can answer 5 questions by selecting at least 2 questions from each part?

Solution: The different ways a student can select his 5 questions are.
(i) 3 questions from part A and 2 questions from part B. this can be done in C(4, 3) * C(4,2) = 24 ways.
(ii) 2 questions from part A and 3 questions from part B. this can be done in C(4,2) * C(4,3) = 24 ways.

Therefore, the total number of ways a student can answer 5 questions under given restrictions is 24 + 24 =
48.

2. Prove the following identities.
Clnr—=1)+Cn,r)=C(n+1,7)
C(m2)+Cn,2) =C(m+n,2) —mn

Proof:

n! n!
(r—-1! (n—-r+1)! T rl (n—-r)!

H.Cn,r—1)+Cn,r) =

_ n! { 1 l}
- r-!'(n-rn! \n-r+1 r

_ n! . n+1
- (r-)!'(n-r)! rnm-r+1)

_ (n+1)!
T (n—r+1)!

=C(n+1,7)

m! n!
m—2)!-2 t (n—-2)!-2

(i). C(m,2) + C(n,2) = .

=% fm(m—-1)+n(n-1)}
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=%{m2+n2—m—n}

=% (m+n)((m+n—-1) —mn

(m+n)!

—————mn
2 (m+n-2)!

=C(m+n,2)—mn

3. Awoman has 11 close relatives and she wishes to invite 5 of them to dinner. In how many ways can
she invite them in the following situations:
(). There is no restriction on the choice.
(if).  Two particular persons will not attend separately.
(iif).  Two particular persons will not attend together.

Solution:

(). Since there is no restriction on the choice of invitees, five out of 11 can be invited in

C(11,5) = % = 462 ways

(ii). Since two particular persons will not attend separately, they should both be invited or not invited.

Suppose if both of them are invited, then three are more invitees are to be selected from the remaining 9
relatives. This can be done in

c(9,3) = = 84 ways

Suppose if both of them are not invited, then five invitees are to be selected from the remaining 9 relatives.
This can be done in

Cc(9,5) = = 126 ways

Therefore, the total number of ways in which the invitees can be selected in this case is 84 + 126 = 210.

(iii). Since two particular persons (Say P, & P,) will not attend together, only one of them can be invited or
none of them can be invited. The number of ways of choosing the invitees with P; invited is

C(9,4) = = 126 ways

Similarly, the number of ways of choosing the invitees with P, invited is 126 ways

If both P, & P, are not invited, then the number of ways of inviting the invitees is
c(9,5) = = 126 ways

Therefore, the total number of ways in which the invitees can be selected in this case is
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126 + 126 + 126 = 378.

4. Find the number of arrangements of all the letters in TALLAHASSEE. How many of these
arrangements have no adjacent A’s?

Solution:

The number of letters in the given word is 11 of which 3 are A’s, 2 each are L’s, S’s, E’s and 1 each are T
and H. Therefore, the number of arrangements (permutations) of the letters in the given word is

11!
3121212111 1!

= 831600

If we disregard the A’s, the remaining 8 letters can be arranged in

8!

oz - 0040

In each of these arrangements, there are 9 possible locations for the three A’s. These locations can be chosen
in C(9, 3) ways. Therefore, the number of arrangements having no adjacent A’s is

9!
5040 x €(9,3) = 5040 X —— = 5040 x 84 = 423360

316!
5. A committee of 12 is to be selected from 10 men and 10 women. In how many ways can the selection
be carried out if
(a) there are no restrictions?
(b) there must be six men and six women?
(c) there must be an even number of women?
(d) there must be more women than men?
(e) there must be at least eight men?

Solution:

(a). If there is no restriction than it is a simple selection of 12 out of 20.

= 125970

(b). For 6 men out of 10 and 6 women out of 10. These are two different stages of selection that's why product
rule is used

_ 100 100
€(10,6) X C(10,6) = 7 X = = 44100

(c). 2, 4, 6, 8 or 10 can be the number of women in committee and corresponding to that men will be 10, 8,
6, 4 and 2.

€(10,2) x €(10,10) + €(10,4) x €(10,8) + €(10,6) x €(10,6) + €(10,8) x €(10,4) + €(10,10) x
€(10,2) = 63090

(d). Number of women can be 7, 8, 9 or 10 and number of men will be 5, 4, 3, 2 respectively.
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€(10,7) x €(10,5) + €(10,8) x €(10,4) + €(10,9) x €(10,3) + €(10,10) x €(10,2) = 40935

(e). Number of men can be 8, 9 or 10 in this case and respectively number of women can be 4, 3 and 2.

€(10,8) x €(10,4) + €(10,9) x €(10,3) + €(10,10) x €(10,2) = 10695
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® Binomial and Multinomial Theorems:

Binomial Theorem:

On the basic properties of C(n,r) = (Z) Is that it is the coefficient of x"y™" and x™~"y" in the expansion

of the expression (x + y)™, where x and y are real numbers. In other words,

n _ n -
G+ =20 () 7y = i (1) Ayt
This result is known as the binomial theorem for a positive integral index.

Multinomial Theorem:

For positive integers n and k the coefficient of xi* x,? x3° ........x.¢
(g +x +x3+
Problems:
1. Find the coefficient of
(i) x%y3 in the expansion of (2x — 3y)*2

(i) x*2 in the expansion of x3(1 — 2x)1°

15
(iii) x° in the expansion of (3x2 — E)

X

Solution:

n

By the Binomial theorem, we have (x + y)™ = X', (r) X"y = 2o

(). (2x = 39)"2 = $i2, (1) 20y (=3y) 12"
— Z%io (1T2) 2r(_3)12—rxry12—r
In the expansion, the coefficient of x°y3 (which corresponds to r = 9) is

12 59/ _ay12-9 — _ 99 3 12!
(g)2°=3)2 = 22 x 33 x 2

_ 99 5 33 y 12X11x10

= —(219x 33 x 11 x 10)
(ii). x3(1 — 2x)10 = 71‘0=0 (1r0) (—2x)T 1107
x3(1 _ 2x)10 — %o=0 (17,0) (—Z)T xT+3

In the expansion, the coefficient of x12 (which corresponds to r = 9) is

expansion of
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() (2»° = =10 x 2%) = =5120
. o222 =52, (5 Gy (-
— 27120 (1T5) 3r(_2)15—rx3r—15

In the expansion, the coefficient of x°y3 (which corresponds to r = 5) is

15\ 55, 5\15-5 _ ;910 25 15!
(5)3(2) =(=2)7" x3 X 5101

= 210 x 35 x 3003

2. Determine the coefficient of
(i) xyz? in the expansion of (2x —y — z)*
(i) x*y* in the expansion of (2x3 — 3xy? + z?%)°
(iii) x2y2z3 in the expansion of (3x — 2y — 4z)’
(iv) a?b3c?d® in the expansion of (a + 2b — 3¢ + 2d + 5)1©
(v) w3x2yz? in the expansion of 2w — x + 3y — 2z)8
Solution:

By the multinomial theorem, we have (x; + x, + x5 +

(i). The general term is the expansion of (2x —y — z)* is (n1

Forn, = 1,n, = 1,n5 = 2 this becomes

(L 1 Jeveyica=( 1) @enenhye

4!
111! 2!

This shows that the required coefficient is (1 41L 2) Q)(-D(-1)?% = x (=2) =-12

) )

(ii). The general term is the expansion of (2x3 — 3xy? + z2)% is ( 6 ) (2x3)™M(=3xy?)"2(z%)"s
ny, n,, ng

For ng = 0,n, = 2,n, = 3 this becomes

(3, g, 0) X (=3xy?)* ()" = (3, g, o) @3(=3)2(1)°x 1y

This shows that the required coefficient is (3 g 0) (2)3(3)? = 3?—;' X 72 = 4320

(iii). The general term is the expansion of (3x — 2y — 4z)7 is (nL n72 n3) Bx)™1(—2y)"2(—4z)"s
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For ny = 2,n, = 2,n3; = 3 this becomes

7 2 2 3= 2 2 3..2.,2,3
(5 2 3)@E(42%=(, 5 )B4z
This shows that the required coefficient is
(2 ; 3) (3)2(=2)%(—4)3 = o X 9 X4 X (—64) = —483840

(iv). The general term is the expansion of (a + 2b — 3¢ + 2d + 5)% is

(Tll, ny, 31?, Ny, ns)(a)nl(Zb)nz(—3c)n3(2d)n4(5)n5

Forn, =2,n, =3,n3 =2,n, =5,ns =16 — (2+ 3 4+ 2 + 5) = 4, this becomes

(2, 3, 126, 5, 4)(a)z(Zb)3(—3c)2(2d)5(5)4=(z, 3, 126, 5, 4)(2)3(—3)2(2)5(5)4a2b3c2d5

This shows that the required coefficient is

16 3 srng 16! A YR ) ;
(2, 3 2, 5, 4)(2)( 3)%(2)°(5) mxz X32x5 (4')2X2 X3x5

(v). The general term is the expansion of (2w — x + 3y — 2z)8is

8

(nl, n,, Nz n4) (ZW)nl(—x)”z(3y)n3(_zz)n4

Forn, = 3,n, = 2,n; = 1,n, = 2 this becomes

(3’ 2’8 1 2) (2w)*(=x)?(By) (=22)* = (3‘ 2,8 L 2) (2)°(-1)2(3)1(-2)%) wixZyz?

This shows that the required coefficient is

3r2r1!2!

(3 2 ’ 1 >(2)3( 1)2(3)'(-2)%) = x 23 x 3 x 22 = 161280
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® Combinations with repetitions:

Suppose we wish to select, with repetition, a combination of r objects from a set of n distinct objects. The

=0 - cr b —1,n—1).

number of such selections is givenby C(n +r —1,r) = e

Inother words, C(n+r —1,r) = C(r + n— 1,n — 1) represents the number of combinations of m distinct
objects, taken r at a time, with repetition allowed.

The following are other interpretations of this number:

Cln+r—1,r)=C(r+n-—1,n-1) represents the number of ways in which r identical objects can be
distributed among n distinct containers.

Cln+r—1,r)=C(r+n—-1,n-1) represents the number of nonnegative integer solutions of the
equation.

Problems:
1. In how many ways we can distribute 10 identical marbles among 6 distinct containers?
Solution:

The selection consists in choosing with repetitions » = 10 marbles for n = 6 distinct containers

The required number is C(6 + 10 — 1,10) = C(15,10) = —— = 3003

2. Find the number of non-negative integer solutions of the inequality x ; + x, + x3 + -+ x4 < 10
Solution:
We have to find the number of nonnegative integer solutions of the equation

x1+ xZ +x3 + -+ x6:9_x7

where 9 — x, < 9 so that x; is non negative integer. Thus, the required number in the number of nonnegative
solutions of the equation.

x]l +x2+x3+

This number is C(7 + 9 — 1,9) = €(15,9) = =~ = 5005

9l 6

3. In How many ways can we distribute 7 apples and 6 oranges among 4 children so that each child gets
at least 1 apple?

Solution:

Suppose we first give 1 apple to each child. This exhausts 4 apples. The remaining 3 apples can be distributed
among 4 children in C(4+ 3 —1,3) = C(6,3) ways. Also, 6 oranges can be distributed among the 4
childrenin C(4 + 6 — 1,6) = €(9, 6) ways. Therefore, by the product rule, the number ways of distributing
the given fruits under the given condition is
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€(6,3) X €(9,6) = —— x —— = 20 x 84 = 1680
3! 3! 6! 3!

4. A message is made up of 12 different symbols and it is to be transmitted through a communication
channel. In addition to the 12 symbols, the transmitter will also send a total of 45 blank spaces
between the symbols, with at least three spaces between each pair of consecutive symbols. In how
many ways can the transmitter send such a message?

Solution:

The 12 symbols can be arranged in 12! Ways. For each of these arrangements, there are 11 positions between
the 12 symbols. Since there must be at least three spaces between successive symbols, 33 of the 45 spaces
will be used up. The remaining 12 spaces are to be accommodated in 11 positions. This can be done in
C(11+12—-1,12) = €(22,12) ways. Consequently, by the product rule, the required number is

21

12! x €(22,12) = 12! x - = 3.097445 x 10

121 x 10

5. In how many ways can one distribute eight identical balls into four distinct containers so that (i) no
container is left empty? (ii) the fourth container gets an odd number of balls?

Solution:

(). First, we distribute one ball in to each container. Then we distribute the remaining 4 balls into 4
containers. The number of ways of doing this is the required number. This number is

C4+4-1,4)=C(7,4) =3

35

(ii). If the fourth container has o get an odd number of balls, we have to put 1 or 3 or 5 or 7 balls into it.

Suppose we put 1 ball into the fourth container and the remaining 7 balls can be put into the remaining three
containers in

C3+7—-1,7) =C(9,7) ways

Similarly, we put 3 balls into the fourth container and the remaining 5 balls can be put into the remaining
three containers in

C(3+5—1,5)=C(7,5) ways

Similarly, we put 5 balls into the fourth container and the remaining 3 balls can be put into the remaining
three containers in

C(3+3—-1,3)=C(5,3) ways

Similarly, we put 7 balls into the fourth container and the remaining 1 ball can be put into the remaining
three containers in

C3+1-1,1) =C(3,1) ways

Thus, the total number of ways of distributing the given balls so that the fourth container gets an odd number
of balls is
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€(9,7)+C(7,5) +C(5,3)+C3,1) = —+ L+ > 4+ —36421+10+3 =70

7!x2! 5!x2! 3Ix2! 1!x2!

6. Find the number of integer solutions of x; + x, + x3 + x, =32 where x; > 0,1 < i < 4.
Solution:

Given x; + x, + x5 +x, = 32, wherex; = 0,1 <i < 4.

35!
321x3!

The required number is C(4 + 32 — 1,32) = C€(35,32) = = 6545

7. Find the number of positive integer solutions of the equation x; + x, + x3 = 17
Solution:
Given x; + x, + x5 = 17, werequire x; > 1,1 <i < 3.

Letussety, =x; —1, y, =x,—1, y; = x5 — 1, then y;, y,, y; are all nonnegative integers.

Then the given equationisreads (y; + 1) + (v, + D+ (ys + 1) =170ry; + y, + y; = 14

The required number is C(3 + 14 — 1,14) = C(16,14) = —— = 120

14!x2!

8. Find the number of positive integer solutions of the equation x; + x, + x5 + x, + x5 = 30 where
X122, 23, x3=24,x,22,x5=20

Solution:
Given x; + x, + x5 + x4, + x5 = 30

Let us set y; =x;—2,y,=x,—3, y3=X3— 4V, =X, — 2, ¥ys = xsthen y;,v,,v3,y,,ys are all
nonnegative integers.

Then the given equation is reads

1 +2)+ 0 +3)+ s+ D)+ +2)+ (s +0)=300ry; +y, +y3 + ¥, +y5 = 19

23!
19!x4!

The required number is C(5 + 19 — 1,19) = €(23,19) = = 8855
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MODULE -3
RELATIONS AND FUNCTIONS
® Syllabus:

Relations and Functions: Cartesian Products and Relations, Functions — Plain and One-to One,
Onto Functions. The Pigeon-hole Principle, Function Composition and Inverse Functions.
Relations: Properties of Relations, Computer Recognition — Zero-One Matrices and Directed
Graphs, Partial Orders — Hasse Diagrams, Equivalence Relations and Partitions.

® Cartesian Products:

For set A,B < U, the Cartesian product of A and B is denoted by A xB and equals
{(a,b) |aeAbeB}

Example: Let U = {1,2,3,....7}, A = {2,3,4},B = {4,5}

Then (). AX B = {(2,4),(2,5),(3,4),(3,5), (44), (4,5)}
(). B2 = BxB = {(4,4),(4,5),(5,4),(5,5)}
(c).B® = BxBXxB = {(a,b,c)|a,b,ceB}

® Relation:

For sets A, B < U any subset of A x B is Called a Relation From A to B and any subset of A x A
is called a Binary relation on A.

Example:

Let A and B be finite sets with |B| = 3. If there are 4096 relations from A to B what is |A|?
Solution: If [A] = m,|B| = n then there are 2™" relations from A to B.

Givenn = 3,2™" = 4096 ~ m =4 = |A|.

® Functions:

Let A and B be two non-empty sets. Then a function f from A to B is a relation from A to B such
that for each a in A there is a unique b in B such that (a,b) €f

Types of Functions:

(). Floor function:
The function f: R — Z, is given by

f(x) = |x] = The greatest integer less than or equal to x.
13.8] =3
|-3.8] = —4

(b). Ceiling Function:
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The function g: R — Z is defined by g(x) = [x]
[3] =3,[3.01] = [3.7] = 4 = [4]

[-3.01] = [-3.7] = -3

(c). Identity function:

A function f: A —» A such that f(a) = a for every a € A is called the identity function (or identity
mapping) on A.

In other words, a function f on a set A is an identity function if the image of every element of A
(under f) is itself.

A
(d). Constant function:

A function f: A - B such that f(a) = c forevery a € A, where c is a fixed element of B, is called
a Constant function.

In other words, a function f from A to B is a constant function if all elements of A have the same
image (say c) in B.

A B

(e). Injective or one-to-one: A function f: A - B is called one-to-one, if each element of B
appears at most once as the image of an element of A.
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In other words, If different elements of A have different images in B under f; If whenever f(a,) =
f(az) fOI’ a, a, € A, then a, = a,

A

(f). Surjective or onto: A function f: A — B is called onto if for every element b of B there is an
element a of A such that f(a) = b

In other words. f is an onto function from A to B if every element of B has a Preimage in A.

A B

(9). Bijective or one-to-one correspondence: A function which is both one-to-one and onto is
called Bijective.

Note: Number of one-to-one functions from A to B is

P(n,m) =(n7_1—!m)!Where |[Al =m,|Bl=n&m>=n

Number of onto functions from A to B is
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Problems:
1. LetA =1{1,2,3,4,56,7},B = {w, x,y, z}. Find the number of Onto Functions from A to B.
Solution: Givenm = |A| =7&n = |B| =4

P(7,4) = Z;O(—nk(;k)(z} — k)7 = 8400
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® Pigeonhole Principle:

If m pigeons occupy n pigeon holes and if m > n, then two or more pigeons occupy the same
pigeonhole.

Generalization:

If m pigeons occupy n pigeonholes, then at least one pigeonhole must contain (p + 1) or more

pigeons, where p = l@

n

Pigeons Pigeonholes Pigeons Pigeonholes
f

]

0

]

x 3
y 2b J
y
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Problems:

1. ABC is an equilateral triangle whose sides are of length 1cm each. If we select 5 points
inside the triangle, prove that at least 2 of these points are such that the distance between

. 1
them is less than > cm.

Solution:

Consider the triangle DEF formed by the mid points of the sides BC, CA and AB of the given
triangle ABC. Then the triangle ABC is partition into 4 small equilateral triangles, each of which

has sides equal to % cm treating each of these four portions as a pigeonhole and 5 points chosen
inside the triangle as pigeons, we find by using the pigeonhole principle that at least one portion
must contain two or more points. Evidently the distance between such points is < % cm.

2. A magnetic tape contains a collection of 5 lakh strings made up to four or fewer number of
English Letters can all the strings is the collection be distinct?

Solution:

Each place is an n letter string can be filled in 26 ways. Therefore, the possible number of strings
made up of n letters is 26™ consequently, the total number of different possible strings made up of
four or fewer letter is 26* + 263 + 262 + 26 = 4,75,254.

Therefore, if there are 5 lakh strings in the tape, then at least one string is repeated. Thus, all the
strings in the collection cannot be distinct.

3. Shirts numbered consecutively from 1 to 20 are worn by 20 students of a class. When any
3 of these students are chosen to be a debating team from the class, the sum of their shirt
numbers is used as a code number of the team. Show that if any 8 of the 20 are selected,
then from these 8 we may form at least two different teams having the same code number.

Solution:

From the 8 of the 20 students selected the numbers of teams of 3 students that can be formed is
8¢3=56. According to the way in which the code number of a team is determined, we note that the
smallest possible code number is 1 + 2 4+ 3 = 6 and the largest possible code number is 18 +
19 4+ 20 = 57. Thus, the code number vary from 6 to 57, and these are 52 in number. As such
only 52 code number are available for 56 possible teams, consequently by the pigeonhole principle,
at least two different teams will have the same code number.
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® Composition of functions:

Consider three non-empty sets A, B, C and the functions f: A - B and g: B = C. the composition
of these two functions is defined as the function gof: A = C with (gof)(a) = g{f(a)} for all
aeA.

Problems:

1. Consider the function f and g defined by f(x) = x3 and g(x) =x?+ 1 V xeR find
gof, fog, f? and g*

Solution:

Here, both f and g are defined on R, therefore all of the functions gof, fog, f? = fofand g? =
gog are defined on R and we find

(gof)(x) = g{f ()} = g(x*) = () +1=x°+1
(fog)(x) = flg()} = f(x*+1) = (x* +1)°

f2x) = (fof)(x) = f{f()} = f(x*) = (x*)° =x°
g?(x) = (gog)(x) = g{g(x)} = g(x* +1) = (x* + 1) +1

2. Let fand g be function from R to R defined by f(x) = ax + b and g(x) = 1 — x + x? if
(gof)(x) = 9x? — 9x + 3 determine a, b.

Solution: We have (gof)(x) = 9x2 — 9x + 3 = g{f (x)}

= g{ax + b}
=1-—(ax+b) + (ax + b)?
= a’x?+ (2ab — a)x + (1 — b + b?)
Comparing the corresponding coefficients
9=a?9=a—2ab,3=1-—b+ b>.
a =13, b=-1,2

® Invertible Functions:

A function f: A — B is said to be invertible if there exists a function g: B — A such that gof = I,
and fog = Iz where I, is the identity function on A and Iis the identity function on B.

Problems:

1. Let A= {1,234} and f and g be function From A to A given by f =
{(1,4),(2,1),(3,2),(4,3)} g ={(1,2),(2,3),(3,4), (4,1)}. Prove that f and g are inverse
of each other.
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Solution:
(gofH(1) = g{f(D} = g4 Ly(1)
(gof)(2) = g{f(D} = g(1) = Ia(2)
(goNB) = g{fR)} = g(2) = I,(3)
(gof)(4) = g{f(®)} = g(3) = I4(4)
(fog)(D) = flg(D)} = f(2) = 1 = (1)
(fog)(2) = flg(2)} = f3) = 2 = I5(2)
(fog)(3) = flg(3)} = f(4) = 3 = I5(3)
(fog)(4) = flg(®)} = f(1) = 4 = Iz(4)

Thus, for all x € A, we have(gof)(x) = I,(x) and (fog)(x) = Iz(x), therefore g is an inverse
of f and f is an inverse of g.

2. Consider the function f:R — R defined by f(x) = 2x + 5. Let a function g:R - R be
defined by g(x) = z(xl_s) Prove that g is an inverse of f.
Solution:
We check that for any xeR
(gof)(x) = glf ()] = g(2x + 5)
=1/2(2x+5—=5)=x = Ix(x)

(fog)(x) = flg(x)] = f{1/2(x = 5)}

= 2{1/2(x=5)}+5=x = Iz(x)

® Properties of Functions:

Theorem 1: A function f: A — B is invertible if and only if one-to-one and onto.

Proof: Suppose that f is invertible then there exists a unique function g: B — A such that gof =
I, and fog = IgTake any a,, a, € A then

fla) = f(az) = g{f(ap} = g{f(ax)}
= (gof)(ay) = (gof)(a2)

= Ih(ay) = Lh(ay)

:>a1: az

This prove f is one-to-one
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Next, take any b € B. Then g(b) e Aand b = Iz(b)
= (fog)(b) = f{g(b)}.
Thus, b is the image of an element g(b) € A under f. therefore, f is onto as well.

Conversely, suppose that f is one-to-one and onto then for each b € B there is a unique a € A such
that b = f(a) now consider the function g: B — A defined by g(b) = a then

(gof)(a) = g{f(a)} =g(b) =a= Iy(a)and (fog)(b) = f{g(b)} = f(a)=b= Iz(b)

These show that f is invertible with g as the inverse. This completes the proof of the theorem.

Theorem 2: If f: A - B and g: B — C are invertible functions, then
gof: A - Cisan invertible function and (gof)™! = f~log™.

Proof: Since f and g are invertible functions; they are both one-to-one and onto consequently
gof is both one-to-one and onto therefore, gof is invertible. Now the inverse £~ of f is a function
from B to A and the inverse g~ of g is a function from C to B.

Therefore, if h = f~log~? then h is a function from C to A.
We find that
(gof)oh = (gof)o(f~rog™) = go(fof "og™ = golzog™*

=gog™' = I

ho(gof) = (ftog™olgof) = f~to(g tog)of = f~rolgof
=ftof =1,

The above expression show that h is the inverse of gof,

i.e., h = (gof)t. Thus (gof) " =h = f"tog~! this completes the proof of the theorem.
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® Zero-one matrices and Directed graphs:

Power of R:

Given a set A and a relation R on A we define the powers of R recursively by
(@RI =R (b)forn e Z*,R"*1 = RoR™

Example:

If A=1{1,2,3,4} and R = {(1,2) (1,3) (2,4) (3,2)} then R? = {(1,4),(1,2),(3,4)},R® = {(1,4)}
and forn > 4,R™ = ¢.

Zero Matrix:

An m x n Zero-matrix E = (e;;)mxn I a rectangular array of number arranged is m rows and n
columns, where each e;;, for 1 <i <m and 1 <i < n denote the entry is the i**row and "
column of E, and each such entry is O or 1.

n x n (0,1) matrix:

Forn€Zz*, I, = (8;)  isthen xn (0,1)-matrix where

1if =i
8ij:={ )

0, ifi +# ]

® Digraph of a relation:

Let V be a finite nonempty set. A directed graph G on V is made up of the elements of V, called
the vertices or nodes of G, and a subset E, of V' X IV that contains the edges or arcs, of G. The set
V is called the vertex set of G, the set E edge set. We then write G = (V, E) to denote the graph.

If a,b € V and (a, b) € E then there is an edge from a to b vertex a is called the origin or source
of the edge with b the terminus or terminating vertex and we say that b is adjacent from a and that
a is adjacent to b. In addition, if a # b, then (a,b) # (b, a). An edge of the form (a, a) is called
a loop.

Problems:
1. Let A = {1,2,3,4} and let R be the relation on A defined by xRy if and only if y = 2x.
a) Write down R as asset of ordered pairs.
b) Draw the digraph of R.
c) Determine the in-degrees and out-degrees of the vertices in the digraph.
Solution:
a) We observe that for x,y € 4, (x,y) € R ifand only if y = 2x. thus R = {(1,2), (2,4)}.
b) The digraph of R is as shown below
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1)

c¢) From the above digraph, we note that 3 is an isolated vertex and that for the vertex 1,2,4 the in-
degrees and out-degrees are as shown in the table

Vertex 1
In-degree 0

Out-degree 1

2. LetA ={1,2,3,4,6} and R be a relation on A defined by aRb if and only if a is a multiple
of b. Represent the relation R as a matrix and draw its digraph.

Solution: R = {(1,1),(2,1),(2,2), (3,1), (3,3), (4,1), (4,2), (4,4), (6,1), (6,2), (6,3), (6,6)}

[10000]
[11000]
Mp=l10100]|
1101%

3. Find the relation represented by the digraph given below. Also write down its matrix.

Prepared by: Venkatesh P Sri Sairam College of Engineering, Anekal. Page |11



g-ul
E SAI RAM Regulation-2018 (CBCS Scheme) Discrete Mathematical Structures-18CS36
COLLEGE OF ENGINEERING

Solution:

By examining the given digraph which has 4 vertices, we note that the relation R represented by it
is defined on the set A = {1,2,3,4} and is given by R = {(1,2),(1,4),(2,2),(2,3),(4,1),(4,4)}.
The matrix of R is

0101
0110
0000
1001

MR=
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® Properties of Relations:

1. Reflexive relation:
A relation R on a set A is said to be reflexive, if (a,a) € R, for all a € A.
Example: <

2. Irreflexive relation:
A relation is said to be irreflexive, if (a,a) € R for any a € A.
Example: <, >

3. Symmetric Relation:
A relation R on a set is said to be symmetric, If (b, a) € R whenever (a,b) € R forall a,b € A.
A relation which is not symmetric is called an Asymmetric relation.
Example: If A = {1,2,3}and R, = {(1,1),(1,2), (2,1}, R, = {(1,2),(2,1),(1,3)}
R; is symmetric and R, is asymmetric.

4. Antisymmetric relation:

A relation R on a set A is said to be antisymmetric, if whenever (a,b) € R and (b, a) € R then
a=bh.

Example: is less than or equal to.

5. Transitive Relation:

A relation on a set A is said to be transitive if whenever (a,b) € R and (b,c) € R then (a,c) € R
forall a,b,c € A.

Examples:

1. Determine nature of the relations.
[1] A = {1,2,3}, R, = {(1,2),(2,1),(1,3),(3,1)}
- Symmetric but not reflexive.

[2] R, ={(1,1),(2,2),(3,3),(2,3)}

- Reflexive but not symmetric.

[38] R; = {(1,1),(2,2),(3,3)}

- Reflexive and symmetric.

[4] Ry = {(1,1),(2,2),(3,3),(2,3),(3,2)}
- Both reflexive and symmetric.

[5] Rs = {(1,1),(2,3),(3,3)}

- Neither reflexive nor symmetric
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2. IfA= {1,234}, R, ={(1,1),(2,3),(3,4),(2,4)} is transitive R, = {(1,3),(3,2)} is not
transitive.

® Equivalence relation:

A relation that is reflexive, symmetric and transitive.
Problems:

1. ArelationRonasetA = {a,b,c} is represented by the following matrix.
101
My = [O 1 0] determine whether R is an Equivalence relation.

001
Solution: R = {(a,a), (a,c), (b,b), (c,c)} we note that (a,c) € R but (c,a) € R

~ R is not symmetric
~R is not equivalence

2. For a fixed integer n > 1 prove that the relation congruent modulo n is an equivalence
relation on the set of all integers Z.

Solution: For a, b € z, we say that a is congruent to b modulo n if a — b is a multiple of n or
equivalently, a — b = kn for some k € Z.

Let us denote this relation by R so that aRb means a = b (mod n) we have to prove that R is

an equivalence relation.
We note that for every a € Z, a — a = 0 is a multiple of n ie, a = a(imod n),aRa
R is reflexive. Next for all a,b € z
aRb - a = b mod n.
— a — b is a multiple of n
— b — ais a multiple of n

- b=amodn
- bRa
R is symmetric.
Lastly, we note that for all a,b,c € Z
aRb and bRc = a = b(mod n) and b = c(mod n)
= a— b and b — c are multiples of n
= (a—b)+ (b—c) = (a—c)isamultiple of n
= a =c(modn) = aRc
R is transitive. This proves that R is equivalence relation.

® Equivalence Class:
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Let R be an equivalence relation on a set A and a € A. Then the set of all those elements
x of A which are related to a by R is called the equivalence class of a with respect to R.
a =[a] =R(a) = {x € A|(x,a) € R}

Example:

R ={(1,1),(1,3),(2,2),(3,1),(3,3)} defined on the set A = {1,2,3} we find elements x of A for
which (x,1) € R arex = 1,x = 3. Therefore {1,3} is the equivalence class of 1

e, [1] = {1,3}, [2] = [2],[3] = {1,3}

® Partition of a set:

Let A be a non-empty set suppose that there exist non-empty subsets A1,A2,Aa, Ak of A such
that the following two conditions hold.

1) A'isthe unionof A;,A4,, A3, Ag thatis A = A ,UA,UA,, ...UAg
2) Any two of the subsets 4,4, A,, As, Ay are disjoint i.e., 4; NA; = ¢
for i #j then the set P = { A, A4, A;, Ag} is called a partition of A. also
Ay are called the blocks or cells of the partition.

A =1{1,2,3,4,5,6,7,8} and its following subsets A, = {1,3,5,7}, 4, = {2,4}, A; = {6,8}
P = {A,, A,, A3} is a Partition of A with A1 A2 Asas blocks of the partition?

A, ={1,3,5} then P, = {A,, A3, A,} in not a partition of the set A. Because although the subsets
A,, Az and A, are mutually disjoint A is not the union of these subsets. We find if A; = { 5,6,8}
then P, = {A;, A,, A5} is also not a partition of A because A is the union of A4, A,, As. A,, Asare
not disjoint.

Problems:

1. For the set A and the relation R on A

A =1{1,2,3,4,5},R = {(1,1),(2,2),(2,3),(3,2), (3,3), (4,4), (4,5), (5,4), (5,5)}
Defined on A find the partition of A induced by R.
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Solution:

{1}, [2] =1{23}, [3] =1{2,3}, [4] ={4,5}, [5] =

, [2] and [4] are distinct these constitute the partition

By examining the given R, we find that [1]
{4,5} of these equivalence classes only [1
P of A determined by R then

P ={[1], [2], [4]} is the partition induced by R
A =[1]U[2] U [4] = {1}U{2,3}U{4,5}
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® Partial orders:

A relation R on a set A is said to be a partial ordering relation or a partial order on A if (i) R is
reflexive (ii) R is antisymmetric and (iii) R is transitive on A.

Poset:

A set with a partial order R defined on it is called a partially ordered set or Poset.
Example: less than or equal to. On set of integers.

Total Order:

Let R be a partial order on a set A. Then R is called a total order on A. if for all x,y € A either
xRy or yRx. In this case the poset (4, R) is called a totally ordered set.

Hasse Diagram:

A Hasse diagram is a graphical rendering of a partially ordered set displayed via the cover
relation of the partially ordered set with an implied upward orientation. A point is drawn for each
element of the poset, and line segments are drawn between these points according to the following
two rules:

1. If x < y inthe poset, then the point corresponding to x appears lower in the drawing than the
point corresponding to y.

2. The line segment between the points corresponding to any two elements x and y of the poset is
included in the drawing iff x covers y or y covers x .

Problems:

1. LetA={1,2,3,4}and R = {(1,1),(1,2),(2,2),(2,4),(1,3),(3,3),(3,4),(1,4), (44)}.
Verify that R is a partial order on A. also write down the Hasse diagram for R.
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Solution:

We observe that the given relation R is reflexive and transitive. Further R does not contain
ordered pairs of the form (a, b) and (b, a) with b # a. R is antisymmetric as such R is a partial
order on A.

The Hasse diagram for R must exhibit the relationships between the elements of A as defined by
R. if (a, b) € R there must be an upward edge froma to b.

2. LetA ={1,2,3,4,6,8,12} on A, define the partial ordering relation R by xRy if and only
if x/y draw the Hasse diagram for R.

Solution:
R ={(1,1),(1,2), (1,3),(1,4),(1,6),(1,8), (1,12),(2,2), (2,4), (2,6), (2,8), (2,12),
(3,3),(3,6),(3,12), (4,4), (4,8), (4,12), (6,6), (6,12), (8,8), (12,12)}.

The Hasse diagram for this R is as shown below.

3. Draw the Hasse diagram representing the positive divisors of 36.
Solution:

The set of positive divisors of 36 is

Dse = {1,2,3,4,6,9,12,18,36} The relation R of divisibility (that is aRb if and only if a
divides b) is a partial order on this set. The Hasse diagram for this partial order is required
here.
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1 is related to all elements of D5
2 is related to 2,4,6,12,18,36

3 is related to 3,6,9,12,18,36

4 is related to 4,12,36

6 is related to 6,12,18,36

9 is related to 9,18,36

12 is related to 12 and 36

18 is related to 18 and 36

36 is related to 36.

The Hasse diagram for R must exhibit all of the above facts.

4. A partial order Ronset A = {1,2,3,4} is represented by the following diagraph. Draw
the Hasse diagram for R.

Solution:
By observing the given diagraph, we note that
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R = {(1,1),(22),(3,3),(44),(1,2), (1,3),(1,4), (24)}
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® External elements in Posets:

Upper bond of a subset B of A: an element a € A is called an upper bound of a subset B of A
if xRa for all x € B.

Lower bound of a subset B of A: an element a € A is called lower bound of a subset B is A if
aRx for all x € B.

Supremum (LUB): An element a € A is called the LUB of a subset B of A if the following two
conditions hold.

i) A is an upper bound of B.
ii) If a is an upper bound of B then aRa’.

Infimum (GLB): Anelement a € A is called the GLB of a subset B of A if the following two
conditions hold

i) A is a lower bound of B.
ii) If a! is a lower bound of B then a’Ra.

Problems:

1. Consider the Hasse diagram of a Poset (A, R) given below.

If B = {c,d, e} find (if they exist).

) All upper bounds of B

i) All lower bounds of B

iii) The least upper bound of B
iv) The greatest lower bound of B

Solution:
(i) All of ¢, d, e which are is B are related to f, g, h therefore f, g, h re upper bounds of B.

(ii) The elements a, b and c are related to all of ¢, d, e which are in B. therefore a, b and c are
lower bounds of B.
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(iii) The upper bound f of B is related to the other upper bounds g and h of B. Therefore, f is
the LUB of B.

(iv) The lower bounds a and b of B are related to the lower bound c of B. therefore C is the GLB
of B.

2. Consider the Poset whose Hasse diagram is shown below. Find LUB and GLB of B =
{c,d, e}

By examining all upward paths from c, d, e is the given Hasse diagram. We find that LUB (B) =

e. by examining all upward paths to c, d, e we find that GLB(B) = a.

® Lattice:

Let (A, R) be a Poset this Poset is called a lattice. For all x,y € A the elements LUB {x, y} and
GLB {x,y} exist is A.

Example: Let (4, R) be Poset. The Poset is called a.

1). Consider the set N of all-natural numbers and let R be the partial order “less than or equal to”
then for any x, y € N, we note that LUB {x, y} = Max{x,y} and GLB {x,y} = min{x, y} and
both of these belong to N. Therefore, the Poset (N, <) is a lattice.

2). Consider the Poset (Z*, |) where Z™ is set of all positive integer & | is the divisibility set. We
can check that for any a, b € Z*, the least common multiple of a & b is the LUB {a, b} & the
GCD of a & b is GLB {a, b}. Since these belongs to Z* we infer that (Z*, 1) is a lattice.

3). Consider the poset where Hasse Diagram is
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By examining the Hasse diagram, we note that GLB {3, 4} does not exist.

= The poset is not a Lattice
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MODULE-4
THE PRINCIPLE OF INCLUSION & EXCLUSION, RECURRENCE RELATIONS

® The principle of Inclusion — Exclusion:

If S is a finite set, then the number of elements in S is called the order (or the size, or the
cardinality) of S and is denoted by |S|. If A and B are subsets of S, then the order od A U B is
given by the formula

|AUB| = |A| + |B| —|ANnB|

Thus, for determining the number of elements that are in A U B, we include all elements in A
and B but exclude all elements common to A and B.

Principle of Inclusion — Exclusion for n sets.

Let S be a finite set and A4, 4, ............A, be subset of S. Then the principle of
inclusion — exclusion for A4, 4, ... ... ... ... A, states that

|A; UA, U A,
= 2|4 —Z|A; n 4| + 2] n A N A + o+ (DAL N A, N Ay

Generalization:

The principle of inclusion — exclusion as given by expression
N = SO _Sl + SZ _53 + -+ (_1)TlSn

The number of elements in S that satisfy none of the conditions C;, C, ..... C,. The following
expression determines the number of elements in S that satisfy exactly m of the n conditions
0<m<n<);

E, =S, — (mIr D) S + (m; %) Smar k(=0 ("),

Problems:

1. Out of 30 students in a hostel, 15 study History, 8 study Economics, and 6 study
Geography. It is known that 3 students study all these subjects. Show that 7 or more
students’ study none of these subjects.

Solution:

Let ‘S’ denote the set of all students in the hostel and A,, A,, A5 denotes the set of students who
study History, Economics and Geography, respectively.

Given, = Y|Ai|=15+8+6 =29 and
53 = |A1nA2 ﬂA3| = 3

The number of students who do not study any of the three subjects is |4; N 4, N A;|
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1A, N A, n A5l = [S|-ZIAl +X|Ain4;| —Z|A; nA; n A

=S| =5+, — 53
=30-29-5,-3=5,—-2
Where, S, = ¥|4; n 4]

We know that (A4, N A, N A3) is a subset of (4; N 4;) for i,j = 1,2,3. Therefore, each of
|A; N A;|, which are 3 in number, is greater that (or) equal to | A; N A, N Az

S, = Y|AinA;| =3/ 4, nA, N Az =09.

2. How many integers between 1 and 300(inclusive) are?
(i) divisible by at least one of 5, 6, 8?
(ii) divisible by none of 5, 6,8?
Solution:

Let S = {1,2,......,300}. So that, |S| = 300. Also, let A;, A,, A; be subset of whose
elements are divisible by 5, 6, 8, resp.

(i) the number of elements of S that are divisible by at least one of 5, 6, 8 is, |A; U A, U A;|

|A1 U Ay U As| = | Ay + | Az + | A3l = { 1A N Az + AL N Az + |[A, N A3} + A1 N
A, N Az

We know that

|A;| =60, |A,|=50, |As|=37, |A4,NnA,| =10

|A; N Azl =7, [A, N As| =12 |A; NA, NAz| =2

|A; N A, N A3 =(60+50+37)- (10+7+2)+2 = 120.

Thus 120 elements of S are divisible by at least one 5, 6, 8.

(ii) The number of elements of S that are divisible by none of 5, 6, 8. Is,

3. Find the number of non-negative integer solutions of the equation.
X1 +X2 +X3+ X4 = 18
Under the conditions X; < 7,for 1 =1,2,3,4
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Solution:

Let S denote the set of all non-negative integer solutions of the given equation. The number of
such solutions is, C(4 + 18 — 1,18) = €(21,18)

|S| = C(21,18).

Let A, be the subset of S that contains the non-negative integer solutions of the given equation
under the conditions X; > 7,X, = 0,X3>0,X, >0

Ay = { (X1, X5, X3,X,) €S|X;>7}
Similarly, 4, = { (X1, X5, X5, X,) € S|X, > 7}
Az = { (X1, X3, X3,X,) €S|X5>7}
Ay ={ (X1, X5, X3,X,) €S|X,>7}
Therefore, the required solution, |4, N A, N 4; N A, |
LetussetY; = X; — 8. Then, X; > 7((ie)X = 8)
Corresponds to ¥; = 0, when written in terms of ¥;,Y; + X; + X, + X5 + X, = 10.

The number of non-negative integer solutions of this equation is C(4+ 10— 1,10) =
C(13,10).

|A;| = €(13,10)
Similarly, |A,| = |A5;] = |A4] = €(13,10)

letustake ¥; = X; —8, Y, = X, —8.Then X; > 7 and X, > 7 correspond to ¥; > 0 and
Y, > 0.

When written in terms of Y; and Y, ,

Vi +Y, + X+ X, =2.

The number of non-negative integer solutions of this equationis C(4 +2 —1,2) = C(5,2)
|A; N Ay, therfore |[A; N A,| = C(5,2)

|41 N Azl = A1 N Ayl =142 N As| = |42 N Ayl = [A3 N Ay| = C(5,2).

The given equation, more than two Xi’s cannot be greater than 7 simultaneously.

1A, n A, 0 Asl = 1SI = SIAil + Z|Ain 4| = Z|Ain A4 n A + 1A, n A, n A3 n A,

=C(21,18)—(i)xc(13,10)+(g)xC(S,Z)—0+0

= 1330 — (4 x 286) + (6 X 30) = 366

4. In how many ways 5 number of a’s, 4number of b’s and 3 number of ¢’s can be
arranged so that all the identical letters are not in a single block?
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Solution:

The given letters are 5+4+3 = 12 in number of which 5 are a’s, 4are b’s, and 3 are ¢’s. If S is
the set of all permutations (arrangements) of these letters, we’ve,

12!
514!3!
Let A: be the set of arrangements of the letters where the 5 a’s are in a single block.

N

The number of such arrangements is,

8l
Al =713

Similarly, if A; is the set of arrangements of the letters where the 4 b’s are in a single block
and As is the set of arrangements of the letters where the 3 ¢’s are in a single block

We have,

9! 10!
|A,| = e and |4;| =t

Likewise,
5! 6! 7!
|A1nA2|=—!, |A1nA2|=E, |AznA3|=§
|A1nA2 ﬂA3| =3'
The required number of arrangements is,
|A; NA, N Al
=[S ={l 41U 4, U A5 [} +{| A N A,| + [ A N A3| + | A, N A5l} — | Ay
N A, N As|

12! {8! 9! 10!}+{5! 6! 7!}

“5ia3r 3 s tna TGttty
= 27720 — (280 + 504 + 1260) + (20 + 30 + 42) — 6

= 25762.

5. In how many ways can the 26 letters of the English alphabet be permuted so that none
of the patterns CAR, DOG, PUN (or) BYTE occurs?

Solution:
Let S denote the set of all permutations of the 26 letters. Then |S|= 26!

Let Az be the set of all permutations in which CAR appears. This word, CAR consists of three
letters which from a single block.

Prepared by: Venkatesh P Sri Sairam College of Engineering, Anekal. Page | 4



SAI RAM Regulation-2018 (CBCS Scheme) Discrete Mathematical Structures-18CS36

COLLEGE OF ENGINEERING

The set A: therefore consists of all permutations which contains this single block and the 23
remaining letters. |A1| = 24!

Similarly, if A2, As, Asare the set of all permutations which contain DOG, PUN and BYTE
respectively.

We have, |4,| = 24! |45 = 24! |4,] = 23!

Likewise, |4; N 4,] = |[4A; N As| = |4, N 45| = (26 — 6 + 2)! = 22!

|A; N Ayl =14, N A, = |A; N Ayl = (26 — 7 4+ 2) = 21!

| A; N A, N A = (26 — 9 + 3)! = 20!

|A,NA, NA = A NA;NA = A, NA3NnA, =(26—10+ 3)! = 19!

|A; NA, NAsNA, =(26—-13+4) =17!

Therefore, the required number of permutations is given by,

AN A, N A3 n Ayl = IS = SIA + 3|4 n 4| = 2|4 n 4 n A + | Ay n Ay N A5 N Ay
=26!—(3x24!1+23) 4+ (3%x221+3%x21) — (201 +3 x 19) + 17!

6. In how many ways can one arrange the letters in the word CORRESPONDENTS so
that

(i) There is no pair of consecutive identical letters?

(i) There are exactly two pairs of consecutive identical letters?
(iii) There are at least three pairs of consecutive identical letters?
Solution:

In the word CORRESPONDENTS, there occur one each of C, P, D and T and two each of O,
R, E, S, N. If S is the set of all permutations of these 14 letters, we’ve,
14!
151 = (21)5

Let A1, A2, Az, A4, Asbe the set of permutations in which O’s, R’s, E’s, N’s appear in pairs
respectively.

13! .
Then, |4;| = ant fori=1,2345
12!

11!

Also, |4; N 4;| = @7

10!
|Ain4;nA,nA,| =Gy |AinA;n4,
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From these,

14! 13!
(21)5’ =(C(51) % 20

12! 11!
N’ =C((5,3) x 202

AN

=C(5,2) X —

S, =C(54) X — Ss = C(5,5) x9!

QU“

Accordingly, the number of permutations where these is no pair of consecutive identical letter
is,

g =si- (st (2)s-(E)n+(Ds=(3)s
14! 13! 12! 11! 10!
= (2!)5‘(5)XWJF(g)xm—(g)XWJf(i)X(z!)l—(g)x‘?’
The number of permutations where there are exactly two pairs of consecutive identical letters,
g == (s (D)n-(5)s

=D xar- (DG @t (D) g (G)(E)=e

The number of permutations where there are at least three pair of consecutive identical letter
is,

4

3 )S >

11! 10!
=( )X(Z!)Z 2 ><(2!)1_(2
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® Derangements:

A permutation of n distinct objects in which none of the objects is in its natural place is called
a derangement.

Formula for d,,
The following is the formula for d,, forn > 1:

o 1 1 1 (™
dn—n. 1—E+z—§+”"+ .y

For example, D, = 2! [1 —%+%] =1

t-i]-1(1m1+2-0) -

Dy =31[1-1+
D,=, Ds=4% Dy=26° D,=1854
Problems:
1. Evaluate ds, dg, d-, dg

Solution:

ds=5{1-T+2—>+2—2

1 1

=120{2 -1+
2 6 24 120

} =44

1111 11
d6—6-{1‘ﬂ+a‘a+a‘a+a}

1 1 1 1 1
- 720{5‘?;—5—%}— 256
Similarly, d, ~ [7! x e~1] ~ [5040 x 0.3679] ~ 1854

dg ~ [8! x e ] = [40320 % 0.3679] ~ 14833

2. From the set of all permutations of n distinct objects, one permutation is chosen at
random. What is the probability that it is not a derangement?

Solution:

The number of permutations of n distinct objects is n!. The number of derangements of these
objects is d,,.

The probability that a permutation chosen is not a derangement,
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3. In how many ways can the integers 1, 2, 3....10 be arranged in a line so that no even
integer is in its natural place.

Solution:

Let A; be the set of all permutations of the given integer where 2 is in its natural place. A2 be
the set of all permutations in which 4 is in its natural place, and so on. The number of
permutations where no even integer is in its natural place is |4, N A, N A; N A, N Ag|. This
is given by,

|A1nA2 ﬂ/T5|=|S|—51+52—S3+54—55
We note that |S|=10!

Now, the permutations in Al are all of the form by, bs, b, ... by, Where b,bsb, ....by,is a
permutation of 1,3, 4, 5, .... 10 as such |Al| = 9!

Similarly, |A,|= |A3] = |A4]= |Ag| = 9!
Sothat, S; = X|4;| =5x 9! = C(5,1) x 9!

The permutations in A; NnA, are all of the form b; 2bs4bsbg ...by, Where
bybsbs bg ... by, is a permutations of 1, 3, 5, 6, ...10 . As such |[4; N A4,| = 8!

Similarly, each of |4; n A;| = 8! Are there are C(10,2) such terms, S, = X|4; N 4;| =
C(5,2) 8!

Like wise S; = €(5,3) x 7!, S, = C(5,4) x 6!, S5 = €(5,5) X 5!
Accordingly, Expression (1) gives the required number as,
|A1 N A,
=10!'—=C(5,1) x9!'+C(5,2) x8!'— €(53) x 7'+ (C(54) x6!—C(55) x5!
= 2170680

4. Prove that, for any positive integer n, n! = ¥x_, (Z) i

Solution:

For any positive integer n, the total number of permutations of 1,2, 3, .... N is n!. In each such
permutations there exists K (where 0 < k < n ) elements which are in their natural positions

called fixed elements, and n-k elements which are not in their original positions. The k element
n

ca be chosen in (k

)Ways and the remaining n-k elements can then be chosen in d,,_;, ways.
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n

k
elements. As k varies from 0 to n, we count all of the n!