
12. MATHEMATICAL INDUCTIONDiscrete Mathematics 

 
 
 
 
 
 
 

 

Mathematical induction, is a technique for proving results or establishing statements 

for natural numbers. This part illustrates the method through a variety of examples. 

 

Definition 
 

Mathematical Induction is a mathematical technique which is used to prove a 

statement, a formula or a theorem is true for every natural number. 
 

The technique involves two steps to prove a statement, as stated below: 
 

Step 1(Base step): It proves that a statement is true for the initial value. 
 

Step 2(Inductive step): It proves that if the statement is true for the n
th

 iteration (or 

number n), then it is also true for (n+1)
th

 iteration ( or number n+1). 

 

How to Do It 
 

Step 1: Consider an initial value for which the statement is true. It is to be shown that 

the statement is true for n=initial value. 
 

Step 2: Assume the statement is true for any value of n=k. Then prove the statement is 

true for n=k+1. We actually break n=k+1 into two parts, one part is n=k (which is 

already proved) and try to prove the other part. 

 

Problem 1 
 

3
n
-1 is a multiple of 2 for n=1, 2, ... 

 

Solution 
 

Step 1: For n=1, 3
1
-1 = 3-1 = 2 which is a multiple of 2 

 

Step 2: Let us assume 3
n
-1 is true for n=k, Hence, 3

k
 -1 is true (It is an 

assumption) We have to prove that 3
k+1

-1 is also a multiple of 2 
 

3
k+1

 – 1 = 3 × 3
k
 – 1 = (2 × 3

k
) + (3

k
 –1) 

 

The first part (2×3
k
) is certain to be a multiple of 2 and the second part (3

k
 -1) is also 

true as our previous assumption. 
 

Hence, 3
k+1

 – 1 is a multiple of 2. 
 

So, it is proved that 3
n
 – 1 is a multiple of 2. 

 
 

 

Problem 2 
 

1 + 3 + 5 + ... + (2n-1) = n
2
 for n=1, 2, ... 
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Solution 
 

Step 1: For n=1, 1 = 1
2
, Hence, step 1 is satisfied. 

 
Step 2: Let us assume the statement is true for n=k. 
 

Hence, 1 + 3 + 5 + ... + (2k-1) = k
2
 is true (It is an assumption) 

 

We have to prove that 1 + 3 + 5 + ... + (2(k+1)-1) = (k+1)
2
 also 

holds 1 + 3 + 5 + ... + (2(k+1) – 1) 
 

= 1 + 3 + 5 + ... + (2k+2 – 1) 
 

= 1 + 3 + 5 + ... + (2k + 1) 
 

= 1 + 3 + 5 + ... + (2k – 1) + (2k + 1) 
 

= k
2
 + (2k + 1) 

 

= (k + 1)
2
 

 

So, 1 + 3 + 5 + ... + (2(k+1) – 1) = (k+1)
2
 hold which satisfies the step 

2. Hence, 1 + 3 + 5 + ... + (2n – 1) = n
2
 is proved. 

 

Problem 3 
 

Prove that (ab)
n
 = a

n
b

n
 is true for every natural number n 

 

Solution 
 

Step 1: For n=1, (ab)
1
 = a

1
b

1
 = ab, Hence, step 1 is satisfied. 

 

Step 2: Let us assume the statement is true for n=k, Hence, (ab)
k
 = a

k
b

k
 is true (It is 

an assumption). 
 

We have to prove that (ab)
k+1

 = a
k+1

b
k+1

 also hold 
 

Given, (ab)
k
 = a

k
b

k 

Or, (ab)
k
 (ab)= (a

k
b

k
) (ab) [Multiplying both side by ‘ab’] 

Or, (ab)
k+1 

= (aa
k
) ( bb

k
) 

Or, (ab)
k+1 

= (ak+1bk+1) 
Hence, step 2 is proved.  

So, (ab)
n
 = a

n
b

n
 is true for every natural number n. 

 

Strong Induction 
 

Strong Induction is another form of mathematical induction. Through this induction 

technique, we can prove that a propositional function, P(n) is true for all positive 

integers, n, using the following steps: 
 
 Step 1(Base step): It proves that the initial proposition P(1) true.



 Step 2(Inductive step): It proves that the conditional statement


[  (1) ⋀   (2) ⋀   (3) ⋀ … … … … ⋀   (  )] →   (   + 1) is true for positive integers k. 
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13. RECURRENCE RELATIONDiscrete Mathematics 

 
 
 
 
 
 
 

 

In this chapter, we will discuss how recursive techniques can derive sequences and be 

used for solving counting problems. The procedure for finding the terms of a sequence in 

a recursive manner is called recurrence relation. We study the theory of linear 

recurrence relations and their solutions. Finally, we introduce generating functions for 

solving recurrence relations. 

 

Definition 
 

A recurrence relation is an equation that recursively defines a sequence where the next 

term is a function of the previous terms (Expressing Fn as some combination of Fi with 

i<n). 

 

Example: Fibonacci series: Fn = Fn-1 + Fn-2, Tower of Hanoi: Fn = 2Fn-1 + 1 

 

Linear Recurrence Relations 
 

A linear recurrence equation of degree k is a recurrence equation which is in the format 
xn= A1 xn-1+ A2 xn-1+ A3 xn-1+... Ak xn-k (An is a constant and Ak≠0) on a sequence of 

numbers as a first-degree polynomial. 

 

These are some examples of linear recurrence equations: 

 

Recurrence Initial values Solutions 

relations   

Fn = Fn-1 + Fn-2 a1=a2=1 Fibonacci number 
   

Fn = Fn-1 + Fn-2 a1=1, a2=3 Lucas number 
   

Fn = Fn-2 + Fn-3 a1=a2=a3=1 Padovan sequence 
   

Fn = 2Fn-1 + Fn-2 a1=0, a2=1 Pell number 
   

 

How to solve linear recurrence relation 
 
Suppose, a two ordered linear recurrence relation is: Fn = AFn-1 +BFn-2 where A and B are 

real numbers. 
 

The characteristic equation for the above recurrence relation is: 
 

x
2
 − Ax − B = 0 

 
Three cases may occur while finding the roots: 
 

Case 1: If this equation factors as (x- x1)(x- x1) = 0 and it produces two distinct real 

roots x1 and x2, then Fn = ax1
n
+ bx2

n
 is the solution. [Here, a and b are constants] 

 

Case 2: If this equation factors as (x- x1)
2
 = 0 and it produces single real root x1, then 

Fn = a x1
n
+ bn x1

n
 is the solution. 

 
Case 3: If the equation produces two distinct real roots x1 and x2 in polar form x1 = r ∠ θ and x2 = r ∠(- θ), then Fn = r

n
 (a cos(nθ)+ b sin(nθ)) is 

the solution.  
50  

http://mathworld.wolfram.com/RecurrenceEquation.html
http://mathworld.wolfram.com/Sequence.html
http://mathworld.wolfram.com/FibonacciNumber.html
http://mathworld.wolfram.com/LucasNumber.html
http://mathworld.wolfram.com/PadovanSequence.html
http://mathworld.wolfram.com/PellNumber.html


Discrete Mathematics 
 
 
 

Problem 1 
 
Solve the recurrence relation Fn = 5Fn-1 - 6Fn-2 where F0 = 1 and F1 = 4 

 

Solution 
 

The characteristic equation of the recurrence relation is: 

x
2
 – 5x + 6=0, 

So, (x-3) (x-2) = 0 
 

 

Hence, the roots are: 
 

x1 = 3 and x2= 2 
 

 

The roots are real and distinct. So, this is in the form of case 1 

Hence, the solution is: 
 

Fn = ax1
n
+ bx2

n 

 
 

Here, Fn = a3
n
+ b2

n
 (As x1 = 3 and x2= 

2) Therefore, 
 

1=F0 = a3
0
+ b2

0
 = a+b 

4=F1 = a3
1
+ b2

1
 = 3a+2b 

Solving these two equations, we get a = 2 and b = -1 

Hence, the final solution is: 
 

Fn = 2.3
n
 + (-1) . 2

n
= 2.3

n
 - 2

n 

 
 
 

Problem 2 
 
Solve the recurrence relation Fn = 10Fn-1 - 25Fn-2 where F0 = 3 and F1 = 17 

 

Solution 
 

The characteristic equation of the recurrence relation is: 

x
2
 –10x -25 =0, 

So, (x – 5)
2
 = 0 

 
Hence, there is single real root x1 = 5 
 
As there is single real valued root, this is in the form of case 

2 Hence, the solution is: 
 

Fn = ax1
n
 + bnx1

n 

 

3 = F0= a.5
0
+ b.0.5

0
 = a 

 

17 = F1= a.5
1
 + b.1.5

1
 = 5a+5b 

 
Solving these two equations, we get a = 3 and b = 2/5 
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Hence, the final solution is: 
 

Fn = 3.5
n
 + (2/5) .n.2

n 

 

Problem 3 
 
Solve the recurrence relation Fn = 2Fn-1 - 2Fn-2 where F0 = 1 and F1 = 3 

 

Solution 
 
The characteristic equation of the recurrence relation is: 
 

x
2 

–2x -2 =0   
Hence, the roots are:   

x1 = 1+ i and x2= 1- i 

In polar form,   

x1 = r ∠ θ and x2 = r ∠(- θ), where r= √2 and θ= π / 4 

 
The roots are imaginary. So, this is in the form of case 3. 

Hence, the solution is: 
 

Fn = (√2 )
n
 (a cos(n. π / 4) + b sin(n. π / 4)) 

 

1 = F0 = (√2 )
0
 (a cos(0. π / 4) + b sin(0. π / 4) ) = a 

 

3 = F1 = (√2 )
1
 (a cos(1. π / 4) + b sin(1. π / 4) ) = √2 ( a/√2 + 

b/√2) Solving these two equations we get a = 1 and b = 2 
 
Hence, the final solution is: 
 

Fn = (√2 )
n
 (cos(n. π / 4)+ 2 sin(n. π / 4)) 

 
 

Particular Solutions 
 

A recurrence relation is called non-homogeneous if it is in the form 
 

Fn = AFn–1 + BFn-2 + F(n)  where F(n) ≠ 0 
 
The solution (an) of a non-homogeneous recurrence relation has two parts. First part is 

the solution (ah) of the associated homogeneous recurrence relation and the second part 

is the particular solution (at). So, an= ah + at 

 

Let F(n)  = cx
n
 and x1 and x2 are the roots of the characteristic equation: 

 

x
2
 = Ax+ B which is the characteristic equation of the associated homogeneous 

recurrence relation: 
 
 If x ≠ x1 and x ≠ x2, then at = Ax

n

 If x = x1, x ≠ x2, then at = Anx
n

 If x= x1 = x2, then at = An
2
x

n
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Problem 
 

Solve the recurrence relation Fn = 3Fn-1 +10Fn-2 +7.5
n
 where F0 = 4 and F1 = 3 

 

Solution 
 
The characteristic equation is: 
 

x
2
 –3x -10 =0 

 
Or, (x - 5)(x + 2) = 0 
 
Or, x1= 5 and x2= -2 
 
Since, x= x1 and x ≠ x2, the solution is: 

at = Anx
n
 = An5

n 

After putting the solution into the non-homogeneous relation, we get: 
 

 An5
n
 = 3A(n – 1)5

n-1
 + 10A(n – 2)5

n-2
 + 7.5

n 

Dividing both sides by 5
n-2

, we get: 

 An5
2
 = 3A(n – 1)5 + 10A(n – 2)5

0
 + 7.5

2 

Or, 25An = 15An – 15A + 10An – 20A + 175 

Or, 35A = 175 

Or, A = 5 

So, Fn = n5
n+1 

 
Hence, the solution is: 
 

Fn = n5
n+1

 + 6.(-2)
n
  -2.5

n 

 
 

Generating Functions 
 

Generating Functions represents sequences where each term of a sequence is 

expressed as a coefficient of a variable x in a formal power series. 
 
Mathematically, for an infinite sequence, say 0, 1, 2, … … … … , , … … …, the generating function will be: 

∞ 

= 0 +  1  +  2  2 + … … … + + … … … = ∑  
 =0 

 

Some Areas of Application: 
 
Generating functions can be used for the following purposes:  
 For solving a variety of counting problems. For example, the number of ways to 

make change for a Rs. 100 note with the notes of denominations Rs.1, Rs.2, 
Rs.5, Rs.10, Rs.20 and Rs.50



 For solving recurrence relations


 For proving some of the combinatorial identities


 For finding asymptotic formulae for terms of sequences
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Problem 1 
What are the generating functions for the sequences { } with = 2 and = 3  ? 

 

Solution 
When = 2, generating function, G(x) = ∑∞ =0 2   = 2 + 2  + 2 2 + 2 3 + … … … 

When = 3  , G( ) = ∑∞ =0 3     = 0 + 3  + 6 2 + 9 3 + … … … 
 

 

Problem 2 
 
What is the generating function of the infinite series; 1, 1, 1, 1, ……….? 

 

Solution 
Here, = 1, 0 ≤ ≤ ∞. 

Hence, G(x) = 1 +  +  2 +  3 + … … … = 

1 
 
(1−  
) 

    

 

Some Useful Generating Functions 

 For =   , G( ) = ∑ =0∞ = 1 +   +  2  2 + … … … = 1⁄   
             (1 −   ) 

 For = (   + 1), G( ) = ∑∞ 

 

(   + 1)  = 1 + 2  + 3 2 + … … … = 

1  
   
 

2 

 

      

 
=
0       

              (1−  ) 
 For =   , G( ) = ∑∞ = 1 ++ 2 + … … … +  2 = (1 +  ) 

    
 
=0    1   2    

 For = 

1 

, G( ) = ∑∞ 
  

= 1 +  + 
2 

+ 
3 
… … … = 

  
 

  

2! 
3
! 

  

    !  =0  !       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.  PROPOSITIONAL LOGICDiscrete Mathematics 

 
 
 
 
 
 
 
 

The rules of mathematical logic specify methods of reasoning mathematical statements. 

Greek philosopher, Aristotle, was the pioneer of logical reasoning. Logical reasoning 

provides the theoretical base for many areas of mathematics and consequently computer 

science. It has many practical applications in computer science like design of computing 

machines, artificial intelligence, definition of data structures for programming languages 

etc. 

 

Propositional Logic is concerned with statements to which the truth values, “true” and 

“false”, can be assigned. The purpose is to analyze these statements either individually 

or in a composite manner. 

 

Prepositional Logic – Definition 
 

A proposition is a collection of declarative statements that has either a truth value "true” 

or a truth value "false". A propositional consists of propositional variables and 

connectives. We denote the propositional variables by capital letters (A, B, etc). The 

connectives connect the propositional variables. 
 

Some examples of Propositions are given below: 
 "Man is Mortal", it returns truth value “TRUE”



 "12 + 9 = 3 – 2", it returns truth value “FALSE”


 

The following is not a Proposition: 
 
 "A is less than 2". It is because unless we give a specific value of A, we cannot say 

whether the statement is true or false.


 

Connectives 
 
In propositional logic generally we use five connectives which are: OR (V), AND (Λ), Negation/ NOT (¬), Implication / if-then (→), If and only if (⇔). 

 

OR (V): The OR operation of two propositions A and B (written as A V B) is true if at 

least any of the propositional variable A or B is true. 
 

The truth table is as follows: 
 

A B A V B 
   

True True True 
   

True False True 
   

False True True 
   

False False False 
   

 
 

AND (Λ): The AND operation of two propositions A and B (written as A Λ B) is true if 

both the propositional variable A and B is true. 
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The truth table is as follows: 
 

A B A Λ B 
   

True True True 
   

True False False 
   

False True False 
   

False False False 
   

 
 

Negation (¬): The negation of a proposition A (written as ¬A) is false when A is true 

and is true when A is false. 
 

The truth table is as follows: 
 

A ¬A 
  

True False 
  

False True 
  

 

 

Implication / if-then (→): An implication A →B is False if A is true and B is false. The 

rest cases are true. 
 

The truth table is as follows: 
 

A B A → B 
   

True True True 
   

True False False 
   

False True True 
   

False False True 
   

 
 
If and only if (⇔): A ⇔B is bi-conditional logical connective which is true when p and q are both false or both are true. 

 

The truth table is as follows: 
 

A B A ⇔ B 

   

True True True 
   

True False False 
   

False True False 
   

False False True 
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Tautologies 
 
A Tautology is a formula which is always true for every value of its propositional variables. 
 

Example: Prove [(A → B) Λ A] →B is a tautology 
 
The truth table is as follows: 
 

A B A → B (A → B) Λ A [(A → B) Λ A] →B 
     

True True True True True 
     

True False False False True 
     

False True True False True 
     

False False True False True 
     

 

As we can see every value of [(A → B) Λ A] →B is “True”, it is a tautology. 

 

Contradictions 
 

A Contradiction is a formula which is always false for every value of its propositional 

variables. 
 

Example: Prove (A V B) Λ [(¬A) Λ (¬B)] is a contradiction 
 
The truth table is as follows: 
 

A B A V B ¬A ¬B 
(¬A) Λ 

(A V B) Λ [(¬A) Λ (¬B)] 
(¬B)       

       

True True True False False False False 
       

True False True False True False False 
       

False True True True False False False 
       

False False False True True True False 
       

 

As we can see every value of (A V B) Λ [(¬A) Λ (¬B)] is “False”, it is a contradiction. 

 

Contingency 
 

A Contingency is a formula which has both some true and some false values for every 

value of its propositional variables. 
 

Example: Prove (A V B) Λ (¬A) a contingency 
 
The truth table is as follows: 
 

A B A V B ¬A (A V B) Λ (¬A) 
     

True True True False False 
     

True False True False False 
     

False True True True True 
     

False False False True False 
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As we can see every value of (A V B) Λ (¬A) has both “True” and “False”, it is a 

contingency. 

 

Propositional Equivalences 
 
Two statements X and Y are logically equivalent if any of the following two conditions hold:  
 The truth tables of each statement have the same truth values.





 The bi-conditional statement X ⇔ Y is a tautology.


 

Example: Prove ¬ (A V B) and [(¬A) Λ (¬B)] are equivalent 
 

 

Testing by 1
st

 method (Matching truth table):  
A B A V B ¬ (A V B) ¬A ¬B [(¬A) Λ (¬B)] 

       

True True True False False False False 
       

True False True False False True False 
       

False True True False True False False 
       

False False False True True True True 
       

 
 

Here, we can see the truth values of ¬ (A V B) and [(¬A) Λ (¬B)] are same, hence the 

statements are equivalent. 

 

Testing by 2
nd

 method (Bi-conditionality):  
A B ¬ (A V B) [(¬A) Λ (¬B)] 

[¬ (A V B)] ⇔[(¬A) Λ (¬B)] 

     

True True False False True 
     

True False False False True 
     

False True False False True 
     

False False True True True 
     

As [¬ (A V B)] ⇔ [(¬A) Λ (¬B)] is a tautology, the statements are equivalent. 

 

Inverse, Converse, and Contra-positive 
 

A conditional statement has two parts: Hypothesis and Conclusion. 
 

Example of Conditional Statement: “If you do your homework, you will not be 

punished.” Here, "you do your homework" is the hypothesis and "you will not be 

punished" is the conclusion. 

 

Inverse: An inverse of the conditional statement is the negation of both the hypothesis 

and the conclusion. If the statement is “If p, then q”, the inverse will be “If not p, then 

not q”. The inverse of “If you do your homework, you will not be punished” is “If you do 

not do your homework, you will be punished.” 
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Converse: The converse of the conditional statement is computed by interchanging the 

hypothesis and the conclusion. If the statement is “If p, then q”, the inverse will be “If q, 

then p”. The converse of "If you do your homework, you will not be punished" is "If you 

will not be punished, you do not do your homework”. 
 

Contra-positive: The contra-positive of the conditional is computed by interchanging the 

hypothesis and the conclusion of the inverse statement. If the statement is “If p, then q”, the 

inverse will be “If not q, then not p”. The Contra-positive of " If you do your homework, you 

will not be punished” is" If you will be punished, you do your homework”. 

 

Duality Principle 
 

Duality principle set states that for any true statement, the dual statement obtained by 

interchanging unions into intersections (and vice versa) and interchanging Universal set 

into Null set (and vice versa) is also true. If dual of any statement is the statement 

itself, it is said self-dual statement. 
Example: The dual of (A ∩ B) ∪ C is (A∪ B) ∩ C 

 

Normal Forms 
 

We can convert any proposition in two normal forms: 

 Conjunctive normal form


 Disjunctive normal form


 

Conjunctive Normal Form 
 
A compound statement is in conjunctive normal form if it is obtained by operating AND 
among variables (negation of variables included) connected with ORs. 
 

Examples 
 (P ∪Q) ∩ (Q ∪ R)




 (¬P ∪Q ∪S ∪¬T)


 

Disjunctive Normal Form 
 
A compound statement is in conjunctive normal form if it is obtained by operating OR 
among variables (negation of variables included) connected with ANDs. 
 

Examples 
 (P ∩ Q) ∪ (Q ∩ R)




 (¬P ∩Q ∩S ∩¬T)
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Predicate Logic deals with predicates, which are propositions containing variables. 

 

Predicate Logic – Definition 
 

A predicate is an expression of one or more variables defined on some specific domain. A 

predicate with variables can be made a proposition by either assigning a value to the 

variable or by quantifying the variable. 
 

The following are some examples of predicates: 

 Let E(x, y) denote "x = y"


 Let X(a , b, c) denote "a + b + c = 0"


 Let M(x, y) denote "x is married to y"


 

Well Formed Formula 
 

Well Formed Formula (wff) is a predicate holding any of the following - 

 All propositional constants and propositional variables are wffs


 If x is a variable and Y is a wff, ∀x Y and ∃x Y are also wff




 Truth value and false values are wffs


 Each atomic formula is a wff


 All connectives connecting wffs are wffs


 

Quantifiers 
 

The variable of predicates is quantified by quantifiers. There are two types of quantifier 

in predicate logic: Universal Quantifier and Existential Quantifier. 

 

Universal Quantifier 
 
Universal quantifier states that the statements within its scope are true for every value of the specific variable. It is denoted by the symbol ∀. 
∀x P(x) is read as for every value of x, P(x) is true. 

 

 
Example: "Man is mortal" can be transformed into the propositional form ∀x P(x) where P(x) is the predicate which denotes x is mortal and the universe of discourse is all men. 

 

Existential Quantifier 
 
Existential quantifier states that the statements within its scope are true for some values of the specific variable. It is denoted by the symbol ∃. 
∃x P(x) is read as for some values of x, P(x) is true. 
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Example: "Some people are dishonest" can be transformed into the propositional form ∃x P(x) where P(x) is the 
predicate which denotes x is dishonest and the universe of discourse is some people. 

 

Nested Quantifiers 
 

If we use a quantifier that appears within the scope of another quantifier, it is called 

nested quantifier. 

 

Examples 
 

 ∀a ∃b P (x, y) where P (a, b) denotes a + b=0




 ∀a ∀b ∀c P (a, b, c) where P (a, b) denotes a + (b+c) = (a+b) +c


Note: ∀a ∃b P (x, y) ≠ ∃a ∀b P (x, y) 
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To deduce new statements from the statements whose truth that we already know, 

Rules of Inference are used. 

 

What are Rules of Inference for? 
 

Mathematical logic is often used for logical proofs. Proofs are valid arguments that 

determine the truth values of mathematical statements. 
 
An argument is a sequence of statements. The last statement is the conclusion and all its preceding 
statements are called premises (or hypothesis). The symbol “∴”, (read therefore) is placed before the 
conclusion. A valid argument is one where the conclusion follows from the truth values of the premises. 
 

Rules of Inference provide the templates or guidelines for constructing valid arguments 

from the statements that we already have. 

 

Addition 
 

If P is a premise, we can use Addiction rule to derive P V Q. 
 

P 
 

---------- 
∴ P V Q 

 

Example 
 
Let P be the proposition, “He studies very hard” is true 
 

Therefore: "Either he studies very hard Or he is a very bad student." Here Q is the 

proposition “he is a very bad student”. 

 

Conjunction 
 

If P and Q are two premises, we can use Conjunction rule to derive P Λ Q. 
 

P  
Q  

---------- 
∴ P Λ Q 

 
 
 

Example 
 
Let P: “He studies very hard” 
 

Let Q: “He is the best boy in the class” 
 

Therefore: "He studies very hard and he is the best boy in the class" 
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Simplification 
 

If P Λ Q is a premise, we can use Simplification rule to derive P. 
 

P Λ Q  
---------- 

∴ P 

 

Example 
 

"He studies very hard and he is the best boy in the 

class" Therefore: "He studies very hard" 

 

Modus Ponens 
 

If P and P→Q are two premises, we can use Modus Ponens to derive Q. 
 

P→Q  
P  

---------- 
∴ Q 

 

Example 
 

"If you have a password, then you can log on to facebook" 

"You have a password" 

Therefore: "You can log on to facebook" 

 

Modus Tollens 
 

If P→Q and ¬Q are two premises, we can use Modus Tollens to derive ¬P. 

 

P→

Q 

¬Q  
---------- 

∴ ¬P 

 

Example 
 

"If you have a password, then you can log on to facebook" 

"You cannot log on to facebook" 

 
Therefore:  "You do not have a password " 
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Disjunctive Syllogism 
 

If ¬P and P V Q are two premises, we can use Disjunctive Syllogism to derive 

Q. ¬P  
P V Q  

---------- 
∴ Q 

 

Example 
 
"The ice cream is not vanilla flavored" 
 

"The ice cream is either vanilla flavored or chocolate flavored" 

 

Therefore: "The ice cream is chocolate flavored” 

 

Hypothetical Syllogism 
 

If P → Q and Q → R are two premises, we can use Hypothetical Syllogism to derive P → 

R P → Q  
Q → R  

---------- 
∴ P → R 

 

Example 
 
"If it rains, I shall not go to school” 
 

"If I don't go to school, I won't need to do homework" 

 

Therefore: "If it rains, I won't need to do homework" 

 

Constructive Dilemma 
 

If ( P → Q ) Λ (R → S) and P V R are two premises, we can use constructive dilemma to 

derive Q V S. 

 

( P → Q ) Λ (R → S)  
P V R  

---------- 
∴ Q V S 

 

Example 
 
“If it rains, I will take a leave” 
 

“If it is hot outside, I will go for a shower” 
 

“Either it will rain or it is hot outside” 

 

Therefore:  "I will take a leave or I will go for a shower" 
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Destructive Dilemma 
 

If (P → Q) Λ (R → S) and ¬Q V ¬S are two premises, we can use destructive dilemma 

to derive P V R. 

(P → Q ) Λ (R → S)  
¬Q V ¬S  
---------- 

∴ P V R 

 

Example 
 
“If it rains, I will take a leave” 
 

“If it is hot outside, I will go for a shower” 
 

“Either I will not take a leave or I will not go for a shower” 

 

Therefore: "It rains or it is hot outside" 
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Part 3: Group Theory 
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8.  OPERATORS AND POSTULATESDiscreteMathematics 

 
 
 
 
 
 
 

 

Group Theory is a branch of mathematics and abstract algebra that defines an algebraic 

structure named as group. Generally, a group comprises of a set of elements and an 

operation over any two elements on that set to form a third element also in that set. 
 

In 1854, Arthur Cayley, the British Mathematician, gave the modern definition of group 

for the first time: 
 

“A set of symbols all of them different, and such that the product of any two of 

them (no matter in what order), or the product of any one of them into itself, 

belongs to the set, is said to be a group. These symbols are not in general 

convertible [commutative], but are associative.” 
 
 

In this chapter, we will know about operators and postulates that form the basics of 

set theory, group theory and Boolean algebra. 
 

Any set of elements in a mathematical system may be defined with a set of operators 

and a number of postulates. 
 
A binary operator defined on a set of elements is a rule that assigns to each pair of elements a unique element from that set. For example, given the set 
A={1,2,3,4,5}, we can say ⊗ is a binary operator for the operation = ⊗ , if it specifies a rule for finding c for the pair of (a,b), such that a,b,c ∈ A. 

 

 

The postulates of a mathematical system form the basic assumptions from which rules 

can be deduced. The postulates are: 

 

Closure 
 

A set is closed with respect to a binary operator if for every pair of elements in the set, 

the operator finds a unique element from that set. 
 

Example: Let A = { 0, 1, 2, 3, 4, 5, …………. } 
 
This set is closed under binary operator into (*), because for the operation c = a + b, for any a, b ∈ A, the product c ∈ A. 

 
The set is not closed under binary operator divide (÷), because, for the operation c = a + b, for any a, b ∈ A, the product c may not be in the set A. If a = 7, b = 2, then c = 3.5. Here a,b ∈ A but c 
∉ A. 

 

Associative Laws 
A binary operator ⊗ on a set A is associative when it holds the following property: 

( ⊗  ) ⊗ = ⊗ ( ⊗ ), where x, y, z ∈ A 

 

Example: Let A = { 1, 2, 3, 4 } 
 
The operator plus ( + ) is associative because for any three elements, x,y,z ∈ A, the property (x + y) + z = x + ( y + z ) holds.  
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The operator minus ( - ) is not associative since 
 

( x – y ) – z ≠ x – ( y – z ) 

 

Commutative Laws 
A binary operator ⊗ on a set A is commutative when it holds the following property: 

⊗ = ⊗ , where x, y ∈ A 

 

Example: Let A = { 1, 2, 3, 4 } 
 
The operator plus ( + ) is commutative because for any two elements, x,y ∈ A, the property x + y = y + x holds. 

 

The operator minus ( - ) is not associative since 
 

x – y  ≠  y – x 

 

Distributive Laws 
 
Two binary operators ⊗ and ⊛ on a set A, are distributive over operator ⊛ when the following property holds: 

⊗ ( ⊛ ) = ( ⊗  ) ⊛ ( ⊗ ) , where x, y, z ∈ A 

 

Example: Let A = { 1, 2, 3, 4 } 
 
The operators into ( * ) and plus ( + ) are distributive over operator + because for any three elements, x,y,z ∈ A, the property x * ( y + z ) = ( x * y ) + ( x * z ) holds. 

 

However, these operators are not distributive over * since 
 

x + ( y * z ) ≠ ( x + y ) * ( x + z ) 

 

Identity Element 
 
A set A has an identity element with respect to a binary operation ⊗ on A, if there exists an element ∈ A, such that the following property holds: 

⊗ = ⊗ , where x ∈ A 

 

Example: Let Z = { 0, 1, 2, 3, 4, 5, ……………….. } 
 
The element 1 is an identity element with respect to operation * since for any element x ∈ Z, 

 

1 * x = x * 1 
 

On the other hand, there is no identity element for the operation minus ( - ) 
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Inverse 
 
If a set A has an identity element with respect to a binary operator ⊗, it is said to have an inverse whenever for every element x ∈ A, there exists another element y ∈ A, such 

that the following property holds: 
⊗ = 

 

Example: Let A = { ………….. -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ………….. } 
 

Given the operation plus ( + ) and = 0, the inverse of any element x is (-x) since x + (-

x) = 0 

 

De Morgan’s Law 
 

De Morgan’s Laws gives a pair of transformations between union and intersection of two  
(or more) sets in terms of their complements. The laws are: 

(A⋃B)′ = A′⋂ B′ 
(A⋂B)′ = A′⋃ B′ 

 

 

Example: Let A = { 1, 2, 3, 4}, B = {1, 3, 5, 7}, and 
 

Universal set U = { 1, 2, 3, ………, 9, 10 } 
A′ = { 5, 6, 7, 8, 9, 10} 
B′ = { 2, 4,6,8,9,10} 
A ⋃ B = {1, 2, 3,4, 5, 7} 
A⋂B = { 1,3} 

 
(A ⋃ B)′ = { 6, 8,9,10} A′⋂B′ = { 6, 8,9,10} 

Thus, we see that (A⋃B)′  = A′⋂ B′ 
(A ∩ B)′ = { 2,4, 5,6,7,8,9,10} 
A′ ∪ B′ = { 2,4, 5,6,7,8,9,10} 

Thus, we see that (A⋂B)′  = A′⋃ B′ 
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Semigroup 
 

A finite or infinite set ‘S’ with a binary operation ‘0’ (Composition) is called semigroup if 

it holds following two conditions simultaneously: 
 Closure: For every pair (a, b) ∈ S, (a 0 b) has to be present in the set S.



 Associative: For every element a, b, c ∈S, (a 0 b) 0 c = a 0 (b 0 c) must hold.


 

Example: 
 

The set of positive integers (excluding zero) with addition operation is a semigroup. For 

example, S = {1, 2, 3,...} 
 
Here closure property holds as for every pair (a, b) ∈ S, (a + b) is present in the set S. For example, 1 +2 =3 ∈ S] 

 
Associative property also holds for every element a, b, c ∈S, (a + b) + c = a + (b + c). For example, (1 +2) +3=1+ (2+3)=5 

 

Monoid 
 
A monoid is a semigroup with an identity element. The identity element (denoted by e or E) of a set S is an element 
such that (a 0 e) = a, for every element a ∈ S. An identity element is also called a unit element. So, a monoid holds 
three properties simultaneously: Closure, Associative, Identity element. 

 

Example 
 
The set of positive integers (excluding zero) with multiplication operation is a monoid. S 

= {1, 2, 3,...} 
 
Here closure property holds as for every pair (a, b) ∈ S, (a × b) is present in the set S. [For example, 1 ×2 =2 ∈ S and so on] 

 
Associative property also holds for every element a, b, c ∈S, (a × b) × c = a × (b × c) [For example, (1 ×2) ×3=1 × (2 ×3) =6 and so on] 

 
Identity property also holds for every element a ∈S, (a × e) = a [For example, (2 ×1) = 2, (3 ×1) =3 and so on]. Here identity element is 1. 

 

Group 
 
A group is a monoid with an inverse element. The inverse element (denoted by I) of a set S is an element such that (a 
0 I) = (I 0 a) =a, for each element a ∈ S. So, a group holds four properties simultaneously - i) Closure, ii) Associative, 
iii) Identity element, iv) Inverse element. The order of a group G is the number of elements in G and the order of an 
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element in a group is the least positive integer n such that a
n
 is the identity element of 

that group G. 

 

Examples 
 
The set of N×N non-singular matrices form a group under matrix multiplication operation. 
 

The product of two N×N non-singular matrices is also an N×N non-singular matrix which 

holds closure property. 
 

Matrix multiplication itself is associative. Hence, associative property holds. 
 

The set of N×N non-singular matrices contains the identity matrix holding the identity 

element property. 
 

As all the matrices are non-singular they all have inverse elements which are also non-

singular matrices. Hence, inverse property also holds. 

 

Abelian Group 
 
An abelian group G is a group for which the element pair (a,b) ∈G always holds commutative law. So, a group holds 
five properties simultaneously - i) Closure, ii) Associative, iii) Identity element, iv) Inverse element, v) Commutative. 

 

Example 
 

The set of positive integers (including zero) with addition operation is an abelian group. 

G = {0, 1, 2, 3,…} 
 
Here closure property holds as for every pair (a, b) ∈ S, (a + b) is present in the set S. [For example, 1 +2 =2 ∈ S and so on] 

 
Associative property also holds for every element a, b, c ∈S, (a + b) + c = a + (b + c) [For example, (1 +2) +3=1 + (2 +3) =6 and so on] 

 
Identity property also holds for every element a ∈S, (a × e) = a [For example, (2 ×1) =2, (3 ×1) =3 and so on]. Here, identity element is 1. 

 
Commutative property also holds for every element a ∈S, (a × b) = (b × a) [For example, (2 ×3) = (3 ×2) =3 and so on] 

 

Cyclic Group and Subgroup 
 
A cyclic group is a group that can be generated by a single element. Every element of a 

cyclic group is a power of some specific element which is called a generator. A cyclic 

group can be generated by a generator ‘g’, such that every other element of the group 

can be written as a power of the generator ‘g’. 

 

Example 
 
The set of complex numbers {1,-1, i, -i} under multiplication operation is a cyclic group. 
 

There are two generators: i and –i as i
1
=i, i

2
=-1, i

3
=-i, i

4
=1 and also (–i)

1
=-i, (–i)

2
=-1, 

(–i)
3
=i, (–i)

4
=1 which covers all the elements of the group. Hence, it is a cyclic group. 
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Note: A cyclic group is always an abelian group but not every abelian group is a cyclic 

group. The rational numbers under addition is not cyclic but is abelian. 
 

A subgroup H is a subset of a group G (denoted by H ≤ G) if it satisfies the four 

properties simultaneously: Closure, Associative, Identity element, and Inverse. 
 

A subgroup H of a group G that does not include the whole group G is called a proper 

subgroup (Denoted by H<G). A subgroup of a cyclic group is cyclic and a abelian 

subgroup is also abelian. 

 

Example 
 
Let a group G = {1, i, -1, -i} 
 

Then some subgroups are H1= {1}, H2= {1,-1}, 
 

This is not a subgroup: H3= {1, i} because that (i) 
-1

 = -i is not in H3 

 

Partially Ordered Set (POSET) 
 

A partially ordered set consists of a set with a binary relation which is reflexive, anti-

symmetric and transitive. "Partially ordered set" is abbreviated as POSET. 

 

Examples 
 

1. The set of real numbers under binary operation less than or equal to (≤) is a poset. 
 

Let the set S = {1, 2, 3} and the operation is ≤ 
 

The relations will be {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)} This relation R is reflexive as {(1, 1), (2, 
2), (3, 3)} ∈ R 

 

This relation R is anti-symmetric, as 
 

{(1, 2), (1, 3), (2, 3)} ∈ R and {(1, 2), (1, 3), (2, 3)} ∉ R This relation R is also transitive. 
Hence, it is a poset. 

 
 
 

2. The vertex set of a directed acyclic graph under the operation ‘reachability’ is a 

poset. 

 

Hasse Diagram 
 
The Hasse diagram of a poset is the directed graph whose vertices are the element of 

that poset and the arcs covers the pairs (x, y) in the poset. If in the poset x<y, then the 

point x appears lower than the point y in the Hasse diagram. If x<y<z in the poset, then 

the arrow is not shown between x and z as it is implicit. 

 

Example 
 
The poset of subsets of {1, 2, 3} = {ϕ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} 

is shown by the following Hasse diagram: 
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 {1, 2, 3} 

{1, 2} 
{2, 3} 

{1, 3}  

 
 

{3} 
{1} 

{ 2} 
 
 
 

{ϕ } 
 
 

 

Linearly Ordered Set 
 
A Linearly ordered set or Total ordered set is a partial order set in which every pair of element is comparable. The elements a, b ∈S are 
said to be comparable if either a ≤ b or b ≤ a holds. Trichotomy law defines this total ordered set. A totally ordered set can be defined 
as a distributive lattice having the property {a ∨ b, a ∧ b} = {a, b} for all values of a and b in set S. 

 

Example 
 
The powerset of {a, b} ordered by ⊆ is a totally ordered set as all the elements of the power set P= {ϕ, {a}, {b}, {a, b}} are comparable. 

 

Example of non-total order set 
 
A set S= {1, 2, 3, 4, 5, 6} under operation x divides y is not a total ordered set. 
 
Here, for all (x, y) ∈S, x ≤ y have to hold but it is not true that 2 ≤ 3, as 2 does not divide 3 or 3 does not divide 2. Hence, it is not a total ordered set. 

 

Lattice 
 
A lattice is a poset (L, ≤) for which every pair {a, b} ∈ L has a least upper bound (denoted by a ∨ b) and a greatest lower bound (denoted by a ∧ 
b).LUB ({a,b}) is called the join of a and b.GLB ({a,b}) is called the meet of a and b. 

a∨b 
 

a  b 

 

a ∧b 
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Example 
 

f 

 

e  d 

 
 
 

c  b 

 
 

 

a 
This above figure is a lattice because for every pair {a, b} ∈ L, a GLB and a LUB exists. 

 
f 

 
e 

 
 
 

 
d 

 

 

 c 

 

a   b 

 
 

 

This above figure is a not a lattice because GLB (a, b) and LUB (e, f) does not exist. 
 

Some other lattices are discussed below: 

 

Bounded Lattice 
 
A lattice L becomes a bounded lattice if it has a greatest element 1 and a least element 0. 

 

Complemented Lattice 
 
A lattice L becomes a complemented lattice if it is a bounded lattice and if every element in the lattice has a complement. An 
element x has a complement x’ if Ǝx(x ∧x’=0 and x ∨ x’ = 1) 

 

Distributive Lattice 
 
If a lattice satisfies the following two distribute properties, it is called a distributive lattice. 

 a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)




 a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
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Modular Lattice 
 
If a lattice satisfies the following property, it is called modular lattice. a ∧( b ∨ (a ∧ d)) = (a ∧ b) ∨ (a ∧ d) 

 

Properties of Lattices 

 

Idempotent Properties 
 a v a = a



 a ∧ a = a


 

Absorption Properties 
 a v (a ∧ b) = a




 a ∧ (a v b) = a


 

Commutative Properties 
 a v b = b v a



 a ∧ b = b ∧ a


 

Associative Properties 
 a v (b v c)= (a v b) v c



 a ∧ (b ∧ c)= (a ∧ b) ∧ c


 

Dual of a Lattice 
The dual of a lattice is obtained by interchanging the ‘v’ and ‘∧’ operations. 

 

Example 
The dual of [a v (b ∧ c)] is [a ∧ (b v c)] 
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Part 4: Counting & Probability 
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10. COUNTING THEORY Discrete Mathematics 

 
 
 
 
 
 
 

 

In daily lives, many a times one needs to find out the number of all possible outcomes for a 

series of events. For instance, in how many ways can a panel of judges comprising of 6 men 

and 4 women be chosen from among 50 men and 38 women? How many different 10 lettered 

PAN numbers can be generated such that the first five letters are capital alphabets, the next 

four are digits and the last is again a capital letter. For solving these problems, mathematical 

theory of counting are used. Counting mainly encompasses fundamental counting rule, the 

permutation rule, and the combination rule. 

 

The Rules of Sum and Product 
 

The Rule of Sum and Rule of Product are used to decompose difficult counting 

problems into simple problems. 
 
 The Rule of Sum: If a sequence of tasks T1, T2, …, Tm can be done in w1, w2,… 

wm ways respectively (the condition is that no tasks can be performed 

simultaneously), then the number of ways to do one of these tasks is w1 + w2 +… 

+wm. If we consider two tasks A and B which are disjoint (i.e. A ∩ B = Ø), then 

mathematically |A ∪ B| = |A| + |B|




 The Rule of Product: If a sequence of tasks T1, T2, …, Tm can be done in w1, 
w2,… wm ways respectively and every task arrives after the occurrence of the 
previous task, then there are w1 × w2 ×...× wm ways to perform the tasks. 
Mathematically, if a task B arrives after a task A, then |A×B| = |A|×|B|



 

Example 
 

Question: A boy lives at X and wants to go to School at Z. From his home X he has to 

first reach Y and then Y to Z. He may go X to Y by either 3 bus routes or 2 train routes. 

From there, he can either choose 4 bus routes or 5 train routes to reach Z. How many 

ways are there to go from X to Z? 
 

Solution: From X to Y, he can go in 3+2=5 ways (Rule of Sum). Thereafter, he can go Y 

to Z in 4+5 = 9 ways (Rule of Sum). Hence from X to Z he can go in 5×9 =45 ways 

(Rule of Product). 

 

Permutations 
 

A permutation is an arrangement of some elements in which order matters. In other 

words a Permutation is an ordered Combination of elements. 

 

Examples 
 From a set S ={x, y, z} by taking two at a time, all permutations are:



 
xy, yx, xz, zx, yz, zy. 
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 We have to form a permutation of three digit numbers from a set of numbers S= 
{1, 2, 3}. Different three digit numbers will be formed when we arrange the 
digits. The permutation will be = 123,132,213,231,312,321



 

Number of Permutations 
 

The number of permutations of ‘n’ different things taken ‘r’ at a time is denoted by 
n
Pr 

 
 ! = 

(  −   )! 
where  ! = 1.2.3. … . . (  − 1). 

 

 

Proof: Let there be ‘n’ different elements. 
 
There are n number of ways to fill up the first place. After filling the first place (n-1) 

number of elements is left. Hence, there are (n-1) ways to fill up the second place. After 

filling the first and second place, (n-2) number of elements is left. Hence, there are (n-2) 

ways to fill up the third place. We can now generalize the number of ways to fill up r-th 

place as [n – (r–1)] = n–r+1 

 

So, the total no. of ways to fill up from first place upto r-th-place: 
n
Pr = n (n–1) (n–2)..... (n–r+1) 

= [n(n–1)(n–2) ... (n–r+1)] [(n–r)(n–r–1)-----3.2.1] / [(n–r)(n–r–1) .. 3.2.1] 
 
Hence, 
 

n
Pr = n!/(n-r)! 

 

Some important formulas of permutation 
 

1. If there are n elements of which a1 are alike of some kind, a2 are alike of another  
kind; a3 are alike of third kind and so on and ar are of r

th
 kind, where (a1 + a2 + ...  

ar) = n.  
Then, number of permutations of these n objects is = n! / [ (a1!) (a2!)..... (ar!)]. 

 

2. Number of permutations of n distinct elements taking n elements at a time =  
n
Pn = n! 

 

3. The number of permutations of n dissimilar elements taking r elements at a time, 

when x particular things always occupy definite places = 
n-x

pr-x 
 

4. The number of permutations of n dissimilar elements when r specified things 

always come together is: r! (n−r+1)! 

 

5. The number of permutations of n dissimilar elements when r specified things 

never come together is: n!–[r! (n−r+1)!] 

 

6. The number of circular permutations of n different elements taken x elements at 

time = 
n
Px /x 

 

7. The number of circular permutations of n different things = 
n
Pn /n 
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Some Problems 
 
Problem 1: From a bunch of 6 different cards, how many ways we can permute it? 

 

Solution: As we are taking 6 cards at a time from a deck of 6 cards, the permutation 

will be 
6
P6 = 6! = 720 

 
 

 

Problem 2: In how many ways can the letters of the word 'READER' be arranged? 

 

Solution: There are 6 letters word (2 E, 1 A, 1D and 2R.) in the word 'READER'. 

 

The permutation will be = 6! / [(2!) (1!)(1!)(2!)] = 180. 
 
 
 
 

Problem 3: In how ways can the letters of the word 'ORANGE' be arranged so that the 

consonants occupy only the even positions? 

 

Solution: There are 3 vowels and 3 consonants in the word 'ORANGE'. Number of ways 

of arranging the consonants among themselves= 
3
P3 = 3! = 6. The remaining 3 vacant 

places will be filled up by 3 vowels in 
3
P3 = 3! = 6 ways. Hence, the total number of 

permutation is 6×6=36 

 

Combinations 
 

A combination is selection of some given elements in which order does not matter. 
 

The number of all combinations of n things, taken r at a time is: 
 

 ! = 
  ! (  −   )! 

 

Problem 1  
Find the number of subsets of the set {1, 2, 3, 4, 5, 6} having 3 elements. 
 

Solution  
The cardinality of the set is 6 and we have to choose 3 elements from the set. Here, the 

ordering does not matter. Hence, the number of subsets will be 
6
C3=20. 

 

Problem 2  
There are 6 men and 5 women in a room. In how many ways we can choose 3 men and 

2 women from the room? 

 

Solution  
The number of ways to choose 3 men from 6 men is 

6
C3 and the number of ways to 

choose 2 women from 5 women is 
5
C2  

Hence, the total number of ways is: 
6
C3 ×

5
C2=20×10=200 
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Problem 3  
How many ways can you choose 3 distinct groups of 3 students from total 9 students? 
 

Solution  
Let us number the groups as 1, 2 and 3 

For choosing 3 students for 1
st

 group, the number of ways: 
9
C3 

The number of ways for choosing 3 students for 2
nd

 group after choosing 1 
st

 group: 
6
C3 The 

number of ways for choosing 3 students for 3
rd

 group after choosing 1
st

 and 2
nd

 group: 
6
C3 

Hence, the total number of ways = 
9
C3 ×

6
C3 × 

3
C3 = 84×20×1 =1680 

 

Pascal's Identity 
 

Pascal's identity, first derived by Blaise Pascal in 19th century, states that the number 

of ways to choose k elements from n elements is equal to the summation of number of 

ways to choose (k-1) elements from (n-1) elements and the number of ways to choose  

elements from n-1 elements. 
 

Mathematically, for any positive integers k and n:  
n
Ck = 

n-1
Ck-1 + 

n-1
Ck 

 
Proof: 

  −1   −1 +   −1         

= 

(  − 1 )! 

+ 

   (  − 1)! 

        

(  − 1)! (  −   )!   ! (  −  − 1)! 

= (  − 1 )! 

       − 

( 

 

+  

 

)   ! (  −  )!   ! (  −  )! 

= ( − 1 )! ∙   ! (  −   )!  
 ! 

=   ! (  −  )! 

 

=  
 
 
 
 

Pigeonhole Principle 
 

In 1834, German mathematician, Peter Gustav Lejeune Dirichlet, stated a principle 

which he called the drawer principle. Now, it is known as the pigeonhole principle. 

 

Pigeonhole Principle states that if there are fewer pigeon holes than total number of 

pigeons and each pigeon is put in a pigeon hole, then there must be at least one pigeon 

hole with more than one pigeon. If n pigeons are put into m pigeonholes where n>m, 

there's a hole with more than one pigeon. 

 

Examples 
 

1. Ten men are in a room and they are taking part in handshakes. If each person 
shakes hands at least once and no man shakes the same man’s hand more than 
once then two men took part in the same number of handshakes. 
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2. There must be at least two people in a big city with the same number of hairs on 

their heads. 

 

The Inclusion-Exclusion principle 
 

The Inclusion-exclusion principle computes the cardinal number of the union of 

multiple non-disjoint sets. For two sets A and B, the principle states: 
|A ∪B| = |A| + |B| – |A∩B| 

 

For three sets A, B and C, the principle states: 
|A∪B∪C | = |A| + |B| + |C| – |A∩B| – |A∩C| – |B∩C| + |A∩B∩C | 

 

The generalized formula: 

|⋃ | = ∑  |   ∩  | + ∑  |   ∩   ∩ | − … … + (−1)  −1| ∩ … ∩ | 

      1 2  

 =1  1≤ < ≤    1≤ < < ≤       

 

 

Problem 1 
 

How many integers from 1 to 50 are only multiples of 2 or 3? 

 

Solution 

 

From 1 to 100, there are 50/2=25 numbers which are multiples of 

2. There are 50/3=16 numbers which are multiples of 3. 
 

There are 50/6=8 numbers which are multiples of both 2 and 3. 

So, |A|=25, |B|=16 and |A∩B|= 8. 
|A ∪ B| = |A| + |B| – |A∩B| =25 + 16 – 8 = 33 

 

 

Problem 2 
 

In a group of 50 students 24 like cold drinks and 36 like hot drinks and each student 

likes at least one of the two drinks. How many like both coffee and tea? 

 

Solution 

 

Let X be the set of students who like cold drinks and Y be the set of people who like hot 
 

drinks. 
 

So, 
 

 

|X∩Y| = |X| + 
|Y| – |X∪Y| = 
24 + 36 – 50 = 
60 – 50 = 10 

Hence, there are 10 students who like both tea and 
coffee. 
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Whenever sets are being discussed, the relationship between the elements of the sets is 

the next thing that comes up. Relations may exist between objects of the same set or 

between objects of two or more sets. 

 

Definition and Properties 
 

A binary relation R from set x to y (written as xRy or R(x,y)) is a subset of the Cartesian 

product x × y. If the ordered pair of G is reversed, the relation also changes. 
 
Generally an n-ary relation R between sets A1, ... , and An is a subset of the n-ary product 

A1×...×An. The minimum cardinality of a relation R is Zero and maximum is n
2
 in this case. 

A binary relation R on a single set A is a subset of A × A. 
 

For two distinct sets, A and B, having cardinalities m and n respectively, the maximum 

cardinality of a relation R from A to B is mn. 

 

Domain and Range 
 

If there are two sets A and B, and relation R have order pair (x, y), then: 
 The domain of R is the set { x | (x, y) ∈ R for some y in B }




 The range of R is the set { y | (x, y) ∈ R for some x in A }


 

Examples 
 

Let, A = {1,2,9} and B = {1,3,7} 

 

 Case 1: If relation R is ‘equal to’ then R = {(1, 1), (3, 3)}


 Case 2: If relation R is ‘less than’ then R = {(1, 3), (1, 7), (2, 3), (2, 7)}


 Case 3: If relation R is ‘greater than’ then R = {(2, 1), (9, 1), (9, 3), (9, 7)}
 

 

Representation of Relations using Graph 
 

A relation can be represented using a directed graph. 
 

The number of vertices in the graph is equal to the number of elements in the set from 

which the relation has been defined. For each ordered pair (x, y) in the relation R, there 

will be a directed edge from the vertex ‘x’ to vertex ‘y’. If there is an ordered pair (x, x), 

there will be self- loop on vertex ‘x’. 
 

Suppose, there is a relation R = {(1, 1), (1,2), (3, 2)} on set S = {1,2,3}, it can be 

represented by the following graph: 
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Figure: Representation of relation by directed graph 

 

Types of Relations 
1. The Empty Relation between sets X and Y, or on E, is the empty set ∅ 

 

2. The Full Relation between sets X and Y is the set X×Y  
3. The Identity Relation on set X is the set {(x,x) | x ∈ X} 

 

4. The Inverse Relation R' of a relation R is defined as: R’= {(b,a) | (a,b) ∈R} Example: If R = {(1, 2), (2,3)} then R’ will be {(2,1), 
(3,2)} 

 

 

5. A relation R on set A is called Reflexive if ∀a∈A is related to a (aRa holds). Example: The relation R = {(a,a), (b,b)} on set X={a,b} is 
reflexive 

 

6. A relation R on set A is called Irreflexive if no a∈A is related to a (aRa does not hold). 
 

Example: The relation R = {(a,b), (b,a)} on set X={a,b}  is irreflexive  
7. A relation R on set A is called Symmetric if xRy implies yRx, ∀x∈A and ∀y∈A. 

 

Example: The relation R = {(1, 2), (2, 1), (3, 2), (2, 3)} on set A={1, 2, 3} is 
symmetric. 

 
8. A relation R on set A is called Anti-Symmetric if xRy and yRx implies x=y ∀x ∈ A and ∀y ∈ A. 

 

Example: The relation R = {(1, 2), (3, 2)} on set A= {1, 2, 3} is antisymmetric. 

 
9. A relation R on set A is called Transitive if xRy and yRz implies xRz, ∀x,y,z ∈ A. Example: The relation R = {(1, 2), (2, 3), (1, 3)} on set A= {1, 2, 

3} is transitive. 

 

10. A relation is an Equivalence Relation if it is reflexive, symmetric, and 

transitive. 
 

Example: The relation R = {(1, 1), (2, 2), (3, 3), (1, 2),(2,1), (2,3), (3,2), (1,3), 

(3,1)} on set A= {1, 2, 3} is an equivalence relation since it is reflexive, 

symmetric, and transitive. 
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A Function assigns to each element of a set, exactly one element of a related set. 

Functions find their application in various fields like representation of the computational 

complexity of algorithms, counting objects, study of sequences and strings, to name a 

few. The third and final chapter of this part highlights the important aspects of functions. 

 

Function – Definition 
 
A function or mapping (Defined as f: X→Y) is a relationship from elements of one set X to 

elements of another set Y (X and Y are non-empty sets). X is called Domain and Y is called 

Codomain of function ‘f’. 
 
Function ‘f’ is a relation on X and Y s.t for each x ∈X, there exists a unique y ∈ Y such that (x,y) ∈ R. x is called pre-image and y is called image of function f. 

 

A function can be one to one, many to one (not one to many). A function f: A→B is said 

to be invertible if there exists a function g: B→A 

 

Injective / One-to-one function 
 
A function f: A→B is injective or one-to-one function if for every b ∈ B, there exists at most one a ∈ A such that f(s) = t. 

 

This means a function f is injective if a1 ≠ a2 implies f(a1) ≠ f(a2). 
 

 

Example 
 

1. f: N →N, f(x) = 5x is injective.  

2. f: Z
+
→Z

+
, f(x) = x

2
 is injective. 

3. f: N→N, f(x) = x
2
 is not injective as (-x)

2
 = x

2
 

 

Surjective / Onto function 
 
A function f: A →B is surjective (onto) if the image of f equals its range. Equivalently, for every b ∈ B, there exists some a ∈ A 
such that f(a) = b. This means that for any y in B, there exists some x in A such that y = f(x). 

 

Example 
 

1. f : Z
+
→Z

+
, f(x) = x

2
 is surjective.  

2. f : N→N, f(x) = x
2
 is not injective as (-x)

2
 = x

2
 

 

Bijective / One-to-one Correspondent 
 

A function f: A →B is bijective or one-to-one correspondent if and only if f is both 

injective and surjective. 
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Problem: 
 
Prove that a function f: R→R defined by f(x) = 2x – 3 is a bijective function. 
 

 

Explanation: We have to prove this function is both injective and 

surjective. If f(x1) = f(x2), then 2x1 – 3 = 2x2 – 3 and it implies that x1 = x2. 

Hence, f is injective. 
 
Here, 2x – 3= y 
 

So, x = (y+5)/3 which belongs to R and f(x) = 

y. Hence, f is surjective. 
 
Since f is both surjective and injective, we can say f is bijective. 
 

 

Composition of Functions 
 

Two functions f: A→B and g: B→C can be composed to give a composition g o f. This is a 

function from A to C defined by (gof)(x) = g(f(x)) 

 

Example 
 
Let f(x) = x + 2 and g(x) = 2x, find ( f o g)(x)  and ( g o f)(x) 
 

 

Solution 
 
(f o g)(x) = f (g(x)) = f(2x) = 2x+2 
 
(g o f)(x) = g (f(x)) = g(x+2) = 

2(x+2)=2x+4 Hence, (f o g)(x) ≠ (g o f)(x) 

 

Some Facts about Composition 
 If f and g are one-to-one then the function (g o f) is also one-to-one.




 If f and g are onto then the function (g o f) is also onto.




 Composition always holds associative property but does not hold commutative 
property.
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Part 2: Mathematical Logic 
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2. There must be at least two people in a big city with the same number of hairs on 

their heads. 

 

The Inclusion-Exclusion principle 
 

The Inclusion-exclusion principle computes the cardinal number of the union of 

multiple non-disjoint sets. For two sets A and B, the principle states: 
|A ∪B| = |A| + |B| – |A∩B| 

 

For three sets A, B and C, the principle states: 
|A∪B∪C | = |A| + |B| + |C| – |A∩B| – |A∩C| – |B∩C| + |A∩B∩C | 

 

The generalized formula: 

|⋃ | = ∑  |   ∩  | + ∑  |   ∩   ∩ | − … … + (−1)  −1| ∩ … ∩ | 

      1 2  

 =1  1≤ < ≤    1≤ < < ≤       

 

 

Problem 1 
 

How many integers from 1 to 50 are only multiples of 2 or 3? 

 

Solution 

 

From 1 to 100, there are 50/2=25 numbers which are multiples of 

2. There are 50/3=16 numbers which are multiples of 3. 
 

There are 50/6=8 numbers which are multiples of both 2 and 3. 

So, |A|=25, |B|=16 and |A∩B|= 8. 
|A ∪ B| = |A| + |B| – |A∩B| =25 + 16 – 8 = 33 

 

 

Problem 2 
 

In a group of 50 students 24 like cold drinks and 36 like hot drinks and each student 

likes at least one of the two drinks. How many like both coffee and tea? 

 

Solution 

 

Let X be the set of students who like cold drinks and Y be the set of people who like hot 
 

drinks. 
 

So, 
 

 

|X∩Y| = |X| + 
|Y| – |X∪Y| = 
24 + 36 – 50 = 
60 – 50 = 10 

Hence, there are 10 students who like both tea and 
coffee. 
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Closely related to the concepts of counting is Probability. We often try to guess the 

results of games of chance, like card games, slot machines, and lotteries; i.e. we try to 

find the likelihood or probability that a particular result with be obtained. 
 

Probability can be conceptualized as finding the chance of occurrence of an event. 

Mathematically, it is the study of random processes and their outcomes. The laws of 

probability have a wide applicability in a variety of fields like genetics, weather 

forecasting, opinion polls, stock markets etc. 

 

Basic Concepts 
 

Probability theory was invented in the 17th century by two French mathematicians, 

Blaise Pascal and Pierre de Fermat, who were dealing with mathematical problems 

regarding of chance. 

 

Before proceeding to details of probability, let us get the concept of some definitions. 

 

Random Experiment: An experiment in which all possible outcomes are known and the 

exact output cannot be predicted in advance is called a random experiment. Tossing a 
fair coin is an example of random experiment. 

 

Sample Space: When we perform an experiment, then the set S of all possible 
outcomes is called the sample space. If we toss a coin, the sample space S = {H, T} 

 

Event: Any subset of a sample space is called an event. After tossing a coin, getting 
Head on the top is an event. 

 

The word "probability" means the chance of occurrence of a particular event. The best 
we can say is how likely they are to happen, using the idea of probability. 

Total number of favourable outcome 
Probability of occurence of an event = Total number of Outcomes 

 

As the occurrence of any event varies between 0% and 100%, the probability varies 

between 0 and 1. 

 

Steps to find the probability: 
 

Step 1: Calculate all possible outcomes of the experiment. 
 
Step 2: Calculate the number of favorable outcomes of the 

experiment. Step 3: Apply the corresponding probability formula. 

 
 
 
 
 
 

 

42  



Discrete Mathematics 
 
 
 

Tossing a Coin 
 

If a coin is tossed, there are two possible outcomes: Heads (H) or Tails 

(T) So, Total number of outcomes = 2 

 
Hence, the probability of getting a Head (H) on top is ½ and the probability of getting a 
Tails (T) on top is ½ 

 

Throwing a Dice 
 

When a dice is thrown, six possible outcomes can be on the top: 1, 2, 3, 4, 5, 

6. The probability of any one of the numbers is 1/6 

 
The probability of getting even numbers is 3/6=1/3 

The probability of getting odd numbers is 3/6=1/3 

 

Taking Cards From a Deck 
 

From a deck of 52 cards, if one card is picked find the probability of an ace being drawn 
and also find the probability of a diamond being drawn. 

 

Total number of possible outcomes: 

52 Outcomes of being an ace: 4 

 
Probability of being an ace = 4/52 =1/13 

Probability of being a diamond = 13/52 =1/4 

 

Probability Axioms 
 

1. The probability of an event always varies from 0 to 1. [0 ≤ P(x) ≤ 1]  
2. For an impossible event the probability is 0 and for a certain event the probability 

is 1.  
3. If the occurrence of one event is not influenced by another event, they are called 

mutually exclusive or disjoint. 

 

If A1, A2....An are mutually exclusive/disjoint events, then 
P(Ai ∩ Aj) = ϕ for i≠j and P(A1 ∪ A2 ∪.... An) = P(A1) + P(A2)+..... P(An) 

 

Properties of Probability 
 

1. If there are two events x and    which are complementary, then the probability of 
the complementary event is: 

P(  ) = 1– P(x) 
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2. For two non-disjoint events A and B, the probability of the union of two events: P(A∪ B) 

= P(A) + P(B) 
 
 

3. If an event A is a subset of another event B (i.e. A ⊂ B), then the probability of A is less 
than or equal to the probability of B. Hence, A ⊂ B implies P(A) ≤ p(B) 

 

Conditional Probability 
 

The conditional probability of an event B is the probability that the event will occur given 

an event A has already occurred. This is written as P(B|A). If event A and B are mutually 

exclusive, then the conditional probability of event B after the event A will be the 

probability of event B that is P(B). 

 

Mathematically: P(B|A) = P(A ∩ B) / P(A) 
 

 

Problem 1 
 

In a country 50% of all teenagers own a cycle and 30% of all teenagers own a bike and 

cycle. What is the probability that a teenager owns bike given that the teenager owns a 

cycle? 

 

Solution 
 
Let us assume A is the event of teenagers owning only a cycle and B is the event of 

teenagers owning only a bike. 
 

So, P(A) = 50/100 = 0.5 and P(A ∩ B) = 30/100= 0.3 from the given 

problem. P(B|A) = P(A ∩ B) / P(A) = 0.3/0.5 = 0.6 
 
Hence, the probability that a teenager owns bike given that the teenager owns a cycle is 

60%. 

 

Problem 2 
 
In a class, 50% of all students play cricket and 25% of all students play cricket and 

volleyball. What is the probability that a student plays volleyball given that the student 

plays cricket? 

 

Solution 
 

Let us assume A is the event of students playing only cricket and B is the event of 

students playing only volleyball. 
 

So, P(A) = 50/100=0.5 and P(A ∩ B) = 25/100=0.25 from the given 

problem. P(B|A) = P(A ∩ B) / P(A) =0.25/0.5 =0.5 
 
Hence, the probability that a student plays volleyball given that the student plays cricket 

is 50%. 
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Problem 3 
 
Six good laptops and three defective laptops are mixed up. To find the defective laptops 

all of them are tested one-by-one at random. What is the probability to find both of the 

defective laptops in the first two pick? 

 

Solution 
 

Let A be the event that we find a defective laptop in the first test and B be the event 

that we find a defective laptop in the second test. 
 

Hence, P(A ∩ B) = P(A)P(B|A) =3/9 × 2/8 = 1/21 

 

Bayes' Theorem 
 

Theorem: If A and B are two mutually exclusive events, where P(A) is the probability of 

A and P(B) is the probability of B, P(A | B) is the probability of A given that B is true. P(B 

| A) is the probability of B given that A is true, then Bayes’ Theorem states: 
P(B | A) P(A) 

P(A | B) = ∑ni=1 P(B | Ai)P(Ai) 

 

Application of Bayes’ Theorem 
 In situations where all the events of sample space are mutually exclusive events.





 In situations where either P( Ai ∩ B ) for each Ai or P( Ai ) and P(B|Ai ) for each Ai is 
known.



 

Problem 
 
Consider three pen-stands. The first pen-stand contains 2 red pens and 3 blue pens; the 

second one has 3 red pens and 2 blue pens; and the third one has 4 red pens and 1 blue 

pen. There is equal probability of each pen-stand to be selected. If one pen is drawn at 

random, what is the probability that it is a red pen? 

 

Solution 
 

Let Ai be the event that i
th

 pen-stand is selected. 

Here, i = 1,2,3.  
Since probability for choosing a pen-stand is equal, P(Ai) = 1/3 
 
Let B be the event that a red pen is drawn. 
 
The probability that a red pen is chosen among the five pens of the first pen-stand, 
 

P(B|A1) = 2/5 
 
The probability that a red pen is chosen among the five pens of the second pen-stand, 
 

P(B|A2) = 3/5 
 
The probability that a red pen is chosen among the five pens of the third pen-stand, 
 

P(B|A3) = 4/5 
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According to Bayes’ Theorem, 
 

P(B) = P(A1).P(B|A1) + P(A2).P(B|A2) + P(A3).P(B|A3) 
 

= 1/3 ∙ 2/5  +  1/3 ∙ 3/5  +  1/3 ∙ 4/5 
 

= 3/5 
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Part 5: Mathematical Induction & Recurrence  

Relations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

47 



12. MATHEMATICAL INDUCTIONDiscrete Mathematics 

 
 
 
 
 
 
 

 

Mathematical induction, is a technique for proving results or establishing statements 

for natural numbers. This part illustrates the method through a variety of examples. 

 

Definition 
 

Mathematical Induction is a mathematical technique which is used to prove a 

statement, a formula or a theorem is true for every natural number. 
 

The technique involves two steps to prove a statement, as stated below: 
 

Step 1(Base step): It proves that a statement is true for the initial value. 
 

Step 2(Inductive step): It proves that if the statement is true for the n
th

 iteration (or 

number n), then it is also true for (n+1)
th

 iteration ( or number n+1). 

 

How to Do It 
 

Step 1: Consider an initial value for which the statement is true. It is to be shown that 

the statement is true for n=initial value. 
 

Step 2: Assume the statement is true for any value of n=k. Then prove the statement is 

true for n=k+1. We actually break n=k+1 into two parts, one part is n=k (which is 

already proved) and try to prove the other part. 

 

Problem 1 
 

3
n
-1 is a multiple of 2 for n=1, 2, ... 

 

Solution 
 

Step 1: For n=1, 3
1
-1 = 3-1 = 2 which is a multiple of 2 

 

Step 2: Let us assume 3
n
-1 is true for n=k, Hence, 3

k
 -1 is true (It is an 

assumption) We have to prove that 3
k+1

-1 is also a multiple of 2 
 

3
k+1

 – 1 = 3 × 3
k
 – 1 = (2 × 3

k
) + (3

k
 –1) 

 

The first part (2×3
k
) is certain to be a multiple of 2 and the second part (3

k
 -1) is also 

true as our previous assumption. 
 

Hence, 3
k+1

 – 1 is a multiple of 2. 
 

So, it is proved that 3
n
 – 1 is a multiple of 2. 

 
 

 

Problem 2 
 

1 + 3 + 5 + ... + (2n-1) = n
2
 for n=1, 2, ... 
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Solution 
 

Step 1: For n=1, 1 = 1
2
, Hence, step 1 is satisfied. 

 
Step 2: Let us assume the statement is true for n=k. 
 

Hence, 1 + 3 + 5 + ... + (2k-1) = k
2
 is true (It is an assumption) 

 

We have to prove that 1 + 3 + 5 + ... + (2(k+1)-1) = (k+1)
2
 also 

holds 1 + 3 + 5 + ... + (2(k+1) – 1) 
 

= 1 + 3 + 5 + ... + (2k+2 – 1) 
 

= 1 + 3 + 5 + ... + (2k + 1) 
 

= 1 + 3 + 5 + ... + (2k – 1) + (2k + 1) 
 

= k
2
 + (2k + 1) 

 

= (k + 1)
2
 

 

So, 1 + 3 + 5 + ... + (2(k+1) – 1) = (k+1)
2
 hold which satisfies the step 

2. Hence, 1 + 3 + 5 + ... + (2n – 1) = n
2
 is proved. 

 

Problem 3 
 

Prove that (ab)
n
 = a

n
b

n
 is true for every natural number n 

 

Solution 
 

Step 1: For n=1, (ab)
1
 = a

1
b

1
 = ab, Hence, step 1 is satisfied. 

 

Step 2: Let us assume the statement is true for n=k, Hence, (ab)
k
 = a

k
b

k
 is true (It is 

an assumption). 
 

We have to prove that (ab)
k+1

 = a
k+1

b
k+1

 also hold 
 

Given, (ab)
k
 = a

k
b

k 

Or, (ab)
k
 (ab)= (a

k
b

k
) (ab) [Multiplying both side by ‘ab’] 

Or, (ab)
k+1 

= (aa
k
) ( bb

k
) 

Or, (ab)
k+1 

= (ak+1bk+1) 
Hence, step 2 is proved.  

So, (ab)
n
 = a

n
b

n
 is true for every natural number n. 

 

Strong Induction 
 

Strong Induction is another form of mathematical induction. Through this induction 

technique, we can prove that a propositional function, P(n) is true for all positive 

integers, n, using the following steps: 
 
 Step 1(Base step): It proves that the initial proposition P(1) true.



 Step 2(Inductive step): It proves that the conditional statement


[  (1) ⋀   (2) ⋀   (3) ⋀ … … … … ⋀   (  )] →   (   + 1) is true for positive integers k. 

 
 
 
 
 

49  



13. RECURRENCE RELATIONDiscrete Mathematics 

 
 
 
 
 
 
 

 

In this chapter, we will discuss how recursive techniques can derive sequences and be 

used for solving counting problems. The procedure for finding the terms of a sequence in 

a recursive manner is called recurrence relation. We study the theory of linear 

recurrence relations and their solutions. Finally, we introduce generating functions for 

solving recurrence relations. 

 

Definition 
 

A recurrence relation is an equation that recursively defines a sequence where the next 

term is a function of the previous terms (Expressing Fn as some combination of Fi with 

i<n). 

 

Example: Fibonacci series: Fn = Fn-1 + Fn-2, Tower of Hanoi: Fn = 2Fn-1 + 1 

 

Linear Recurrence Relations 
 

A linear recurrence equation of degree k is a recurrence equation which is in the format 
xn= A1 xn-1+ A2 xn-1+ A3 xn-1+... Ak xn-k (An is a constant and Ak≠0) on a sequence of 

numbers as a first-degree polynomial. 

 

These are some examples of linear recurrence equations: 

 

Recurrence Initial values Solutions 

relations   

Fn = Fn-1 + Fn-2 a1=a2=1 Fibonacci number 
   

Fn = Fn-1 + Fn-2 a1=1, a2=3 Lucas number 
   

Fn = Fn-2 + Fn-3 a1=a2=a3=1 Padovan sequence 
   

Fn = 2Fn-1 + Fn-2 a1=0, a2=1 Pell number 
   

 

How to solve linear recurrence relation 
 
Suppose, a two ordered linear recurrence relation is: Fn = AFn-1 +BFn-2 where A and B are 

real numbers. 
 

The characteristic equation for the above recurrence relation is: 
 

x
2
 − Ax − B = 0 

 
Three cases may occur while finding the roots: 
 

Case 1: If this equation factors as (x- x1)(x- x1) = 0 and it produces two distinct real 

roots x1 and x2, then Fn = ax1
n
+ bx2

n
 is the solution. [Here, a and b are constants] 

 

Case 2: If this equation factors as (x- x1)
2
 = 0 and it produces single real root x1, then 

Fn = a x1
n
+ bn x1

n
 is the solution. 

 
Case 3: If the equation produces two distinct real roots x1 and x2 in polar form x1 = r ∠ θ and x2 = r ∠(- θ), then Fn = r

n
 (a cos(nθ)+ b sin(nθ)) is 

the solution.  
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Problem 1 
 
Solve the recurrence relation Fn = 5Fn-1 - 6Fn-2 where F0 = 1 and F1 = 4 

 

Solution 
 

The characteristic equation of the recurrence relation is: 

x
2
 – 5x + 6=0, 

So, (x-3) (x-2) = 0 
 

 

Hence, the roots are: 
 

x1 = 3 and x2= 2 
 

 

The roots are real and distinct. So, this is in the form of case 1 

Hence, the solution is: 
 

Fn = ax1
n
+ bx2

n 

 
 

Here, Fn = a3
n
+ b2

n
 (As x1 = 3 and x2= 

2) Therefore, 
 

1=F0 = a3
0
+ b2

0
 = a+b 

4=F1 = a3
1
+ b2

1
 = 3a+2b 

Solving these two equations, we get a = 2 and b = -1 

Hence, the final solution is: 
 

Fn = 2.3
n
 + (-1) . 2

n
= 2.3

n
 - 2

n 

 
 
 

Problem 2 
 
Solve the recurrence relation Fn = 10Fn-1 - 25Fn-2 where F0 = 3 and F1 = 17 

 

Solution 
 

The characteristic equation of the recurrence relation is: 

x
2
 –10x -25 =0, 

So, (x – 5)
2
 = 0 

 
Hence, there is single real root x1 = 5 
 
As there is single real valued root, this is in the form of case 

2 Hence, the solution is: 
 

Fn = ax1
n
 + bnx1

n 

 

3 = F0= a.5
0
+ b.0.5

0
 = a 

 

17 = F1= a.5
1
 + b.1.5

1
 = 5a+5b 

 
Solving these two equations, we get a = 3 and b = 2/5 
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Hence, the final solution is: 
 

Fn = 3.5
n
 + (2/5) .n.2

n 

 

Problem 3 
 
Solve the recurrence relation Fn = 2Fn-1 - 2Fn-2 where F0 = 1 and F1 = 3 

 

Solution 
 
The characteristic equation of the recurrence relation is: 
 

x
2 

–2x -2 =0   
Hence, the roots are:   

x1 = 1+ i and x2= 1- i 

In polar form,   

x1 = r ∠ θ and x2 = r ∠(- θ), where r= √2 and θ= π / 4 

 
The roots are imaginary. So, this is in the form of case 3. 

Hence, the solution is: 
 

Fn = (√2 )
n
 (a cos(n. π / 4) + b sin(n. π / 4)) 

 

1 = F0 = (√2 )
0
 (a cos(0. π / 4) + b sin(0. π / 4) ) = a 

 

3 = F1 = (√2 )
1
 (a cos(1. π / 4) + b sin(1. π / 4) ) = √2 ( a/√2 + 

b/√2) Solving these two equations we get a = 1 and b = 2 
 
Hence, the final solution is: 
 

Fn = (√2 )
n
 (cos(n. π / 4)+ 2 sin(n. π / 4)) 

 
 

Particular Solutions 
 

A recurrence relation is called non-homogeneous if it is in the form 
 

Fn = AFn–1 + BFn-2 + F(n)  where F(n) ≠ 0 
 
The solution (an) of a non-homogeneous recurrence relation has two parts. First part is 

the solution (ah) of the associated homogeneous recurrence relation and the second part 

is the particular solution (at). So, an= ah + at 

 

Let F(n)  = cx
n
 and x1 and x2 are the roots of the characteristic equation: 

 

x
2
 = Ax+ B which is the characteristic equation of the associated homogeneous 

recurrence relation: 
 
 If x ≠ x1 and x ≠ x2, then at = Ax

n

 If x = x1, x ≠ x2, then at = Anx
n

 If x= x1 = x2, then at = An
2
x

n
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Problem 
 

Solve the recurrence relation Fn = 3Fn-1 +10Fn-2 +7.5
n
 where F0 = 4 and F1 = 3 

 

Solution 
 
The characteristic equation is: 
 

x
2
 –3x -10 =0 

 
Or, (x - 5)(x + 2) = 0 
 
Or, x1= 5 and x2= -2 
 
Since, x= x1 and x ≠ x2, the solution is: 

at = Anx
n
 = An5

n 

After putting the solution into the non-homogeneous relation, we get: 
 

 An5
n
 = 3A(n – 1)5

n-1
 + 10A(n – 2)5

n-2
 + 7.5

n 

Dividing both sides by 5
n-2

, we get: 

 An5
2
 = 3A(n – 1)5 + 10A(n – 2)5

0
 + 7.5

2 

Or, 25An = 15An – 15A + 10An – 20A + 175 

Or, 35A = 175 

Or, A = 5 

So, Fn = n5
n+1 

 
Hence, the solution is: 
 

Fn = n5
n+1

 + 6.(-2)
n
  -2.5

n 

 
 

Generating Functions 
 

Generating Functions represents sequences where each term of a sequence is 

expressed as a coefficient of a variable x in a formal power series. 
 
Mathematically, for an infinite sequence, say 0, 1, 2, … … … … , , … … …, the generating function will be: 

∞ 

= 0 +  1  +  2  2 + … … … + + … … … = ∑  
 =0 

 

Some Areas of Application: 
 
Generating functions can be used for the following purposes:  
 For solving a variety of counting problems. For example, the number of ways to 

make change for a Rs. 100 note with the notes of denominations Rs.1, Rs.2, 
Rs.5, Rs.10, Rs.20 and Rs.50



 For solving recurrence relations


 For proving some of the combinatorial identities


 For finding asymptotic formulae for terms of sequences
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Problem 1 
What are the generating functions for the sequences { } with = 2 and = 3  ? 

 

Solution 
When = 2, generating function, G(x) = ∑∞ =0 2   = 2 + 2  + 2 2 + 2 3 + … … … 

When = 3  , G( ) = ∑∞ =0 3     = 0 + 3  + 6 2 + 9 3 + … … … 
 

 

Problem 2 
 
What is the generating function of the infinite series; 1, 1, 1, 1, ……….? 

 

Solution 
Here, = 1, 0 ≤ ≤ ∞. 

Hence, G(x) = 1 +  +  2 +  3 + … … … = 

1 
 
(1−  
) 

    

 

Some Useful Generating Functions 

 For =   , G( ) = ∑ =0∞ = 1 +   +  2  2 + … … … = 1⁄   
             (1 −   ) 

 For = (   + 1), G( ) = ∑∞ 

 

(   + 1)  = 1 + 2  + 3 2 + … … … = 

1  
   
 

2 

 

      

 
=
0       

              (1−  ) 
 For =   , G( ) = ∑∞ = 1 ++ 2 + … … … +  2 = (1 +  ) 

    
 
=0    1   2    

 For = 

1 

, G( ) = ∑∞ 
  

= 1 +  + 
2 

+ 
3 
… … … = 

  
 

  

2! 
3
! 

  

    !  =0  !       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14. GRAPH AND GRAPH MODELSiscrete Mathematics 

 
 
 
 
 
 
 

 

The previous part brought forth the different tools for reasoning, proofing and problem 

solving. In this part, we will study the discrete structures that form the basis of 

formulating many a real-life problem. 
 

The two discrete structures that we will cover are graphs and trees. A graph is a set of 

points, called nodes or vertices, which are interconnected by a set of lines called edges. 

The study of graphs, or graph theory is an important part of a number of disciplines in 

the fields of mathematics, engineering and computer science. 

 

What is a Graph? 
 

Definition: A graph (denoted as G = (V, E)) consists of a non-empty set of vertices or 

nodes V and a set of edges E. 
 

Example: Let us consider, a Graph is G = (V, E) where V = {a, b, c, d} and E = {{a, 

b}, {a, c}, {b, c},{c, d}} 
 

a  c 

 
b 

d 
  

 

Figure: A graph with four vertices and four edges 
 

Even and Odd Vertex: If the degree of a vertex is even, the vertex is called an even 

vertex and if the degree of a vertex is odd, the vertex is called an odd vertex. 
 

Degree of a Vertex: The degree of a vertex V of a graph G (denoted by deg (V)) is the 

number of edges incident with the vertex V. 
 

Vertex Degree Even / Odd 

   

a 2 even 

b 2 even 

c 3 odd 

d 1 odd 
 
 

Degree of a Graph: The degree of a graph is the largest vertex degree of that graph. 

For the above graph the degree of the graph is 3. 

 

The Handshaking Lemma: In a graph, the sum of all the degrees of vertices is equal 

to twice the number of edges. 
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Types of Graphs 
 

There are different types of graphs, which we will learn in the following section. 

 

Null Graph 
 

A null graph has no edges. The null graph of n vertices is denoted by Nn 

 

a c 
 
 

 

b 
 

Null graph of 3 vertices 

 

Simple Graph 
 

A graph is called simple graph/strict graph if the graph is undirected and does not 

contain any loops or multiple edges. 
 

a c 
 
 
 
 
 
 
 

 

b 
 

Simple graph 

 

Multi-Graph 
 

If in a graph multiple edges between the same set of vertices are allowed, it is called 

Multi-graph. 
 

a c 
 
 
 
 
 
 
 

 

b 
 

Multi-graph 

 

Directed and Undirected Graph 
 

A graph G = (V, E) is called a directed graph if the edge set is made of ordered vertex 

pair and a graph is called undirected if the edge set is made of unordered vertex pair. 
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a c 
 
 
 
 
 
 
 

 

b 
 

Undirected graph 
 

a c 
 
 
 
 
 
 
 

 

b 
 

Directed graph 

 

Connected and Disconnected Graph 
 

A graph is connected if any two vertices of the graph are connected by a path and a 

graph is disconnected if at least two vertices of the graph are not connected by a path. If 

a graph G is unconnected, then every maximal connected subgraph of G is called a 

connected component of the graph G. 
 

 

a  c 

 
b 

d 
  

 

Connected graph 
 

a c 
 

 
 
 
 
 
 
 

b 
d 

Unconnected graph 
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Regular Graph 
 
A graph is regular if all the vertices of the graph have the same degree. In a regular 

graph G of degree r, the degree of each vertex of G is r. 
 

a c 
 
 
 

 

c 

 

d 
 
 

 

Regular graph of degree 3 

 

Complete Graph 
 

A graph is called complete graph if every two vertices pair are joined by exactly 

one edge. The complete graph with n vertices is denoted by Kn 

 

a c 
 
 
 
 
 
 
 

 

b 
 

Complete graph K3 

 

Cycle Graph 
 
If a graph consists of a single cycle, it is called cycle graph. The cycle graph with n 

vertices is denoted by Cn 

 

a c 
 
 
 
 
 
 
 

 

b 
 

Cyclic graph C3 
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Bipartite Graph 
 
If the vertex-set of a graph G can be split into two sets in such a way that each edge of 

the graph joins a vertex in first set to a vertex in second set, then the graph G is called a 

bipartite graph. A graph G is bipartite if and only if all closed walks in G are of even 

length or all cycles in G are of even length. 
 

a c 
 
 
 
 
 
 

 

b d 
 

Bipartite graph 

 

Complete Bipartite Graph 
 
A complete bipartite graph is a bipartite graph in which each vertex in the first set is joined to 

every single vertex in the second set. The complete bipartite graph is denoted by Kr,s where 

the graph G contains x vertices in the first set and y vertices in the second set. 

 

a c 
 
 
 
 
 
 

 

b 
d  

 

Complete bipartite graph K2,2 

 

Representation of Graphs 
 

There are mainly two ways to represent a graph: 

 Adjacency Matrix


 Adjacency List


 

Adjacency Matrix 
 
An Adjacency Matrix A[V][V] is a 2D array of size V×V where V is the number of vertices in a 

undirected graph. If there is an edge between Vx to Vy then the value of A[Vx][ Vy]=1 and 

A[Vy][ Vx]=1, otherwise the value will be zero. And for a directed graph, if there is an edge 

between Vx to Vy, then the value of A[Vx][ Vy]=1, otherwise the value will be zero. 

 

Adjacency Matrix of an Undirected Graph 
 
Let us consider the following undirected graph and construct the adjacency matrix: 
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a  c 

 
b 

d 
  

 

An undirected graph 
 

Adjacency matrix of the above undirected graph will be: 
 

 a b c d 
     

a 0 1 1 0 
     

b 1 0 1 0 
     

c 1 1 0 1 
     

d 0 0 1 0 
     

 
 
 

Adjacency Matrix of a Directed Graph 
 
Let us consider the following directed graph and construct its adjacency matrix: 
 

a  c 

 
b 

d 
  

 

A directed graph 
 

Adjacency matrix of the above directed graph will be: 
 

 a b c d 
     

a 0 1 1 0 
     

b 0 0 1 0 
     

c 0 0 0 1 
     

d 0 0 0 0 
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Adjacency List 
 
In adjacency list, an array (A[V]) of linked lists is used to represent the graph G with V 

number of vertices. An entry A[Vx] represents the linked list of vertices adjacent to the 

Vx-th vertex. The adjacency list of the graph is as shown in the figure below: 
 
 

 
a  b 

 

b   a 

 

c  a 

 

d   c 

 
 

 
c 

 

 c 

 

b   d 

 
 
 

 

Planar vs. Non-planar graph 
 

Planar graph: A graph G is called a planar graph if it can be drawn in a plane without 

any edges crossed. If we draw graph in the plane without edge crossing, it is called 

embedding the graph in the plane. 
 

a c 
 
 
 
 
 
 
 
 

b d 
 

Planar graph 
 
Non-planar graph: A graph is non-planar if it cannot be drawn in a plane without graph 

edges crossing. 
 

a c 
 
 
 
 
 
 
 
 

b d 
 

Non-planar graph 
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Isomorphism 
 
If two graphs G and H contain the same number of vertices connected in the same way, they are called isomorphic graphs (denoted by G≅H). 

 

It is easier to check non-isomorphism than isomorphism. If any of these following 

conditions occurs, then two graphs are non-isomorphic: 
 The number of connected components are different



 Vertex-set cardinalities are different


 Edge-set cardinalities are different


 Degree sequences are different 

 

Example 
 
The following graphs are isomorphic: 
 

a c 
 

c 
a    

     

      

b d b d a d c b 
 

Three isomorphic graphs 

 

Homomorphism 
 
A homomorphism from a graph G to a graph H is a mapping (May not be a bijective mapping) h: G


H such that: (x, y) ∈ E(G) 


 (h(x), h(y)) ∈ E(H) 

. It maps adjacent vertices of graph G to the adjacent vertices of the graph H. 

 

A homomorphism is an isomorphism if it is a bijective mapping. Homomorphism always 

preserves edges and connectedness of a graph. The compositions of homomorphisms 

are also homomorphisms. To find out if there exists any homomorphic graph of another 

graph is a NP-complete problem. 

 

Euler Graphs 
 

A connected graph G is called an Euler graph, if there is a closed trail which includes 

every edge of the graph G. An Euler path is a path that uses every edge of a graph 

exactly once. An Euler path starts and ends at different vertices. 
 

An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler circuit 

always starts and ends at the same vertex. A connected graph G is an Euler graph if and 

only if all vertices of G are of even degree, and a connected graph G is Eulerian if and 

only if its edge set can be decomposed into cycles. 
 
 
 
 
 
 

 

63  

http://mathworld.wolfram.com/Graph.html
http://en.wikipedia.org/wiki/Degree_%28graph_theory%29#Degree_sequence
https://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
https://en.wikipedia.org/wiki/NP-complete


Discrete Mathematics 
 

 

a 
1 

b  d 
    

  
2 

3 
4 

7   
    

f 
6 c 5 e 

  

    

 

Euler graph 
 

The above graph is an Euler graph as “a 1 b 2 c 3 d 4 e 5 c 6 f 7 g” covers all the edges 

of the graph. 
 

a 
1 

b 
  

5 
4 

2  

 
 
 
 

d 
3 c 

  

 

Non-Euler graph 

 

Hamiltonian Graphs 
 

A connected graph G is called Hamiltonian graph if there is a cycle which includes every 

vertex of G and the cycle is called Hamiltonian cycle. Hamiltonian walk in graph G is a 

walk that passes through each vertex exactly once. 
 

If G is a simple graph with n vertices, where n ≥ 3 If deg(v) ≥ 1/2 n for each vertex v, 

then the graph G is Hamiltonian graph. This is called Dirac's Theorem. 
 

If G is a simple graph with n vertices, where n ≥ 2 if deg(x) + deg(y) ≥ n for each pair 

of non-adjacent vertices x and y, then the graph G is Hamiltonian graph. This is called 

Ore's theorem. 
 

a 
1 

b 
  

  5 

8 
6 

2 
e  4 

 7  

d 
3 c 

  

 

Hamiltonian graph 
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a 
1 

 b 
   

  5 
f  

6 
 

8 
 

2   

 e  4 
 

7 
 9 

   

d 
3  c 

   

 

Non-Hamiltonian graph 
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TRODUCTION TO TR 

Tree is a discrete structure that represents hierarchical relationships between individual 

elements or nodes. A tree in which a parent has no more than two children is called a 

binary tree. 

 

Tree and its Properties 
 

Definition: A Tree is a connected acyclic graph. There is a unique path between every 

pair of vertices in G. A tree with N number of vertices contains (N-1) number of edges. 

The vertex which is of 0 degree is called root of the tree. The vertex which is of 1 degree 

is called leaf node of the tree and the degree of an internal node is at least 2. 
 

Example: The following is an example of a tree: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A tree 
 

 

Centers and Bi-Centers of a Tree 
 

The center of a tree is a vertex with minimal eccentricity. The eccentricity of a vertex X 

in a tree G is the maximum distance between the vertex X and any other vertex of the 

tree. The maximum eccentricity is the tree diameter. If a tree has only one center, it is 

called Central Tree and if a tree has only more than one centers, it is called Bi-central 

Tree. Every tree is either central or bi-central. 

 

Algorithm to find centers and bi-centers of a tree 
 
Step 1: Remove all the vertices of degree 1 from the given tree and also remove their 

incident edges. 
 
Step 2: Repeat step 1 until either a single vertex or two vertices joined by an edge is 

left. If a single vertex is left then it is the center of the tree and if two vertices joined by 

an edge is left then it is the bi-center of the tree. 
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Problem 1 
 
Find out the center/bi-center of the following tree: 
 
 
 

 

f 
 
 
 
 

 

a b c d e 

 
 
 

 

g 
 
 

 

Tree T1 
 

 

Solution 
 

At first, we will remove all vertices of degree 1 and also remove their incident edges and 

get the following tree: 
 
 

 

b c d 
 
 

 

Tree after removing vertices of degree 1 from T1 
 

 

Again, we will remove all vertices of degree 1 and also remove their incident edges and 

get the following tree: 
 
 

 

c 
 
 

 

Tree after again removing vertices of degree 1 
 

 

Finally we got a single vertex ‘c’ and we stop the algorithm. As there is single vertex, 

this tree has one center ‘c’ and the tree is a central tree. 
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Problem 2 
 
Find out the center/bi-center of the following tree: 
 
 

 

h 
 
 
 
 

 

a b c d 
e

 
f 

 
 
 

 

g 
 
 

 

A tree T2 
 

 

Solution 
 

At first, we will remove all vertices of degree 1 and also remove their incident edges and 

get the following tree: 
 
 
 

b c d e 

 

 

Tree after removing vertices of degree 1 from T2 
 

 

Again, we will remove all vertices of degree 1 and also remove their incident edges and 

get the following tree: 
 
 

 

c d 
 
 
 
 

Tree after again removing vertices of degree 1 
 

 

Finally, we got two vertices ‘c’ and ‘d’ left, hence we stop the algorithm. As two vertices 

joined by an edge is left, this tree has bi-center ‘cd’ and the tree is bi-central. 
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Labeled Trees 
 

Definition: A labeled tree is a tree the vertices of which are assigned unique numbers 

from 1 to n. We can count such trees for small values of n by hand so as to conjecture a 

general formula. The number of labeled trees of n number of vertices is n
n-2

. Two 

labelled trees are isomorphic if their graphs are isomorphic and the corresponding points 

of the two trees have the same labels. 

 

Example 
 
 

 

1 2 
 
 

 

A labeled tree with two vertices 
 
 

 

1 2 3 1 3 2 

 2 1  3  
 
 
 

 

Three possible labeled tree with three vertices 
 

 

Unlabeled trees 
 

Definition: An unlabeled tree is a tree the vertices of which are not assigned any 

numbers. The number of labeled trees of n number of vertices is (2n)! / (n+1)!n! 

 

Example 
 
 
 
 
 
 
 

 

An unlabeled tree with two vertices 
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An unlabeled tree with three vertices 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Two possible unlabeled trees with four vertices 
 
 

 

Rooted Tree 
 

A rooted tree G is a connected acyclic graph with a special node that is called the root of 

the tree and every edge directly or indirectly originates from the root. An ordered rooted 

tree is a rooted tree where the children of each internal vertex are ordered. If every 

internal vertex of a rooted tree has not more than m children, it is called an m-ary tree. 

If every internal vertex of a rooted tree has exactly m children, it is called a full m-ary 

tree. If m = 2, the rooted tree is called a binary tree. 
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 Root Node  

Internal  Internal 

Node Internal Node 
 Node  

 
 
 
 
 
 

 

Leaf Leaf Leaf Leaf Leaf Leaf 

Node Node Node Node Node Node 

 

A Rooted Tree 
 

 

Binary Search Tree 
 

Binary Search tree is a binary tree which satisfies the following property: 
 X in left sub-tree of vertex V, Value(X)  Value (V)



 Y in right sub-tree of vertex V, Value(Y)  Value (V)


 

So, the value of all the vertices of the left sub-tree of an internal node V are less than or 

equal to V and the value of all the vertices of the right sub-tree of the internal node V 

are greater than or equal to V. The number of links from the root node to the deepest 

node is the height of the Binary Search Tree. 

 

Example 

 

50 
 
 
 
 

 

40 70 
 

 
 
 

 

30 45 60 
 

 

A Binary Search Tree 
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Algorithm to search for a key in BST 
 
BST_Search(x, k) 
 

if ( x = NIL or k = Value[x] ) 

return x;  
if ( k < Value[x])  

return BST_Search (left[x], k);  
else  

return BST_Search (right[x], k) 

 

Complexity of Binary search tree 
 

 Average Worst 

 Case case 

Space Complexity O(n) O(n) 

Search Complexity O(log n) O(n) 

Insertion O(log n) O(n) 
Complexity   

Deletion O(log n) O(n) 
Complexity   
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A spanning tree of a connected undirected graph G is a tree that minimally includes all of 

the vertices of G. A graph may have many spanning trees. 

 

Example 
 

 

f 
 
 
 
 

 

b c d 
 
 
 
 

 

e 
 
 
 

A Graph G 
 

 

f 
 
 
 
 

 

b c d 
 
 
 
 

 

e 
 
 

 

A Spanning Tree of Graph G 
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Minimum Spanning Tree 
 

A spanning tree with assigned weight less than or equal to the weight of every possible 

spanning tree of a weighted, connected and undirected graph G, it is called minimum 

spanning tree (MST). The weight of a spanning tree is the sum of all the weights 

assigned to each edge of the spanning tree. 

 

Example 
 

 

  f  
f 

 
 

1 
 

7 
 

    
   

1 
 

  2  
2  

5 
 

3 
 

b c 
 

3  d  

   b c d 

  1 14   
 

9 
   

    

4   
e 

 
e     

Weighted Graph G A Minimum Spanning Tree of Graph G 
 

 

Kruskal's Algorithm 
 

Kruskal's algorithm is a greedy algorithm that finds a minimum spanning tree for a 

connected weighted graph. It finds a tree of that graph which includes every vertex and 

the total weight of all the edges in the tree is less than or equal to every possible 

spanning tree. 

 

Algorithm 
 
Step 1: Arrange all the edges of the given graph G (V,E) in non-decreasing order as per 
their edge weight. 

 

Step 2: Choose the smallest weighted edge from the graph and check if it forms a cycle 

with the spanning tree formed so far. 
 

Step 3: If there is no cycle, include this edge to the spanning tree else discard it. 

 

Step 4: Repeat Step 2 and Step 3 until (V-1) number of edges are left in the spanning 
tree. 
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Problem 
 

Suppose we want to find minimum spanning tree for the following graph G using 

Kruskal’s algorithm. 
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Weighted Graph G 
 

 

Solution 
 
From the above graph we construct the following table: 

 

Edge Vertex Edge 

No. Pair Weight 

E1 (a, b) 20 

E2 (a, c) 9 

E3 (a, d) 13 

E4 (b, c) 1 

E5 (b, e) 4 

E6 (b, f) 5 

E7 (c, d) 2 

E8 (d, e) 3 

E9 (d, f) 14 
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Now we will rearrange the table in ascending order with respect to Edge weight: 

 

Edge Vertex Edge 

No. Pair Weight 

E4 (b, c) 1 

E7 (c, d) 2 

E8 (d, e) 3 

E5 (b, e) 4 

E6 (b, f) 5 

E2 (a, c) 9 

E3 (a, d) 13 

E9 (d, f) 14 

E1 (a, b) 20 
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 After adding vertices  After adding edge E4  
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After adding edge E8 
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After adding edge E2 
 
 

 

Since we got all the 5 edges in the last figure, we stop the algorithm and this is the 

minimal spanning tree and its total weight is (1+2+3+5+9) = 20. 

 

Prim's Algorithm 
 

Prim's algorithm, discovered in 1930 by mathematicians, Vojtech Jarnik and Robert C. 

Prim, is a greedy algorithm that finds a minimum spanning tree for a connected 

weighted graph. It finds a tree of that graph which includes every vertex and the total 

weight of all the edges in the tree is less than or equal to every possible spanning tree. 

Prim’s algorithm is faster on dense graphs.  
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Algorithm 

 

1. Create a vertex set V that keeps track of vertices already included in MST. 

 

2. Assign a key value to all vertices in the graph. Initialize all key values as infinite. 

Assign key value as 0 for the first vertex so that it is picked first. 

 

3. Pick a vertex ‘x’ that has minimum key value and is not in V. 

 

4. Include the vertex U to the vertex set V. 

 

5. Update the value of all adjacent vertices of x. 

 

6. Repeat step 3 to step 5 until the vertex set V includes all the vertices of the graph. 

 

Problem 
 

Suppose we want to find minimum spanning tree for the following graph G using Prim’s 

algorithm. 
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Weighted Graph G 
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Solution 
 
Here we start with the vertex ‘a’ and proceed. 
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After adding vertex ‘a’ 
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After adding vertex ‘b’ 
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 a    a  
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 After adding vertex ‘d’   After adding vertex ‘e’  
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After adding vertex ‘f’ 
 

 

This is the minimal spanning tree and its total weight is (1+2+3+5+9) = 20. 
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