
 Prepared by

 Prof Pankaja K. & Prof Geetha P.

 Module1

1.1. Introduction to Data Structures:

Data structure is a representation of logical relationship existing between individual elements of data.

In other words, a data structure defines a way of organizing all data items that considers not only the

elements stored but also their relationship to each other. The term data structure is used to describe

the way data is stored.

To develop a program of an algorithm we should select an appropriate data structure for that

algorithm. Therefore, data structure is represented as: Algorithm + Data structure = Program

A data structure is said to be linear if its elements form a sequence or a linear list. The linear data

structures like an array, stacks, queues and linked lists organize data in linear order. A data structure

is said to be non linear if its elements form a hierarchical classification where, data items appear at

various levels.

Trees and Graphs are widely used non-linear data structures. Tree and graph structures represent

hierarchical relationship between individual data elements. Graphs are nothing but trees with certain

restrictions removed.

Data structures are divided into two types:

 • Primitive data structures.

 • Non-primitive data structures.

Primitive Data Structures are the basic data structures that directly operate upon the machine

instructions. They have different representations on different computers. Integers, floating point

numbers, character constants, string constants and pointers come under this category.

Non-primitive data structures are more complicated data structures and are derived from primitive

data structures. They emphasize on grouping same or different data items with relationship between

each data item. Arrays, lists and files come under this category. Figure 1.1 shows the classification of

data structures.

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

Data Structures Operations:

1. Traversing

2. Searching

3. Inserting

4. Deleting

5. Sorting

6. Merging

1. Traversing- It is used to access each data item exactly once so that it can be processed.

2. Searching- It is used to find out the location of the data item if it exists in the given collection

 of data items.

3. Inserting- It is used to add a new data item in the given collection of data items.

4. Deleting- It is used to delete an existing data item from the given collection of data items.

5. Sorting- It is used to arrange the data items in some order i.e. in ascending or descending

 order in case of numerical data and in dictionary order in case of alphanumeric data.

6. Merging- It is used to combine the data items of two sorted files into single file in the sorted

 form.

Review of Arrays

The simplest type of data structure is a linear array. This is also called one dimensional array.

Definition:

Array is a data structure that can store a fixed-size sequential collection of elements of the same type.

An array is used to store a collection of data, but it is often more useful to think of an array as a

collection of variables of the same type. An array holds several values of the same kind. Accessing

the elements is very fast. It may not be possible to add more values than defined at the start, without

copying all values into a new array. An array is stored so that the position of each element can be

computed from its index.

For example, an array of 10 integer variables, with indices 0 through 9, may be stored as 10 words at

memory addresses 2000, 2004, 2008, 2036, so that the element with index i has the address 2000 + 4

× i.

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

Address Calculation in single (one) Dimension Array:

Array of an element of an array say “A[I]” is calculated using the following formula:

Address of A [I] = B + W * (I – LB)

Where,

B = Base address

W = Storage Size of one element stored in the array (in byte)

I = Subscript of element whose address is to be found

LB = Lower limit / Lower Bound of subscript, if not specified assume 0 (zero)

Example:

Given the base address of an array B[1300…..1900] as 1020 and size of each element is 2 bytes in the

memory. Find the address of B[1700].

Solution:

The given values are: B = 1020, LB = 1300, W = 2, I = 1700

Address of A [I] = B + W * (I – LB)

= 1020 + 2 * (1700 – 1300)

= 1020 + 2 * 400

= 1020 + 800

= 1820 [Ans]

Address Calculation in Double (Two) Dimensional Array:

While storing the elements of a 2-D array in memory, these are allocated contiguous memory

locations. Therefore, a 2-D array must be linearized so as to enable their storage. There are two

alternatives to achieve linearization: Row-Major and Column-Major.

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

C allows for arrays of two or more dimensions. A two-dimensional (2D) array is an array of arrays. A

three-dimensional (3D) array is an array of arrays of arrays.

In C programming an array can have two, three, or even ten or more dimensions. The maximum

dimensions a C program can have depends on which compiler is being used.

More dimensions in an array means more data be held, but also means greater difficulty in managing

and understanding arrays.

How to Declare a Multidimensional Array in C

A multidimensional array is declared using the following syntax:

type array_name[d1][d2][d3][d4]………[dn];

Where each d is a dimension, and dn is the size of final dimension.

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

Examples:

1. int table[5][5][20];

2. float arr[5][6][5][6][5];

In Example 1:

 int designates the array type integer.

 table is the name of our 3D array.

 Our array can hold 500 integer-type elements. This number is reached by multiplying the

value of each dimension. In this case: 5x5x20=500.

In Example 2:

 Array arr is a five-dimensional array.

 It can hold 4500 floating-point elements (5x6x5x6x5=4500).

When it comes to holding multiple values, we would need to declare several variables. But a single

array can hold thousands of values.

Explanation of a 3D Array

A 3D array is essentially an array of arrays of arrays: it's an array or collection of 2D arrays, and a 2D

array is an array of 1D array.

The diagram below shows a 3D array representation:

3D Array Conceptual View

3D array memory map.

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

Example to show reading and printing a 3D array

#include<stdio.h>

#include<conio.h>

void main()

{

int i, j, k;

int arr[3][3][3]=

 {

 {

 {11, 12, 13},

 {14, 15, 16},

 {17, 18, 19}

 },

 {

 {21, 22, 23},

 {24, 25, 26},

 {27, 28, 29}

 },

 {

 {31, 32, 33},

 {34, 35, 36},

 {37, 38, 39}

 },

 };

clrscr();

printf(":::3D Array Elements:::\n\n");

for(i=0;i<3;i++)

{

 for(j=0;j<3;j++)

 {

 for(k=0;k<3;k++)

 {

 printf("%d\t",arr[i][j][k]);

 }

 printf("\n");

 }

 printf("\n");

}

}

Note: refer notes for dynamic 1D & 2D arrays and also for pointers.

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

Structures

Structure is a user defined data type that can hold data items of different data types.

Structure Declaration

struct tag { member 1; member 2;

member m; }

In this declaration, struct is a required keyword ,tag is a name that identifies structures of this type.

The individual members can be ordinary variables, pointers, arrays or other structures. The member

names within a particular structure must be distinct from one another, though a member name can be

same as the name of a variable defined outside of the structure and individual members cannot be

initialized within a structure-type declaration. For example:

struct student

{ char name [80];

 int roll_no;

 float marks;

 }s1,s2;

we can now declare the structure variable s1 and s2 as follows: struct student s1, s2; where

s1 and s2 are structure type variables whose composition is identified by the tag student.

Nested Structure

 It is possible to combine the declaration of the structure composition with that of the structure

variable .It is then called a nested structure.

struct dob

{ int month;

int day;

int year;

 };

struct student

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

{ char name [80];

int roll_no;

float marks;

struct dob d1;

}st;

The member of the nested structure can be accessed by using the dot operator twice.(ie)st.d1.year

Array of structures

It is also possible to define an array of structures that is an array in which each element is a structure.

The procedure is shown in the following example:

 struct student{

char name [80];

int roll_no ;

float marks ;

} st [100];

In this declaration st is a 100- element array of structures.

It means each element of st represents an individual student record.

Accessing members of a structure using the dot operator

The members of a structure are usually processed individually, as separate entities. Therefore, we

must be able to access the individual structure members. A structure member can be accessed by

writing

structurevariable. member name.

This period (.) is an operator, it is a member of the highest precedence group, and its associativity is

left-to-right.

e.g. if we want to print the detail of a member of a structure then we can write as

printf(“%s”,st.name); or printf(“%d”, st.roll_no) and so on. More complex expressions involving the

repeated use of the period operator may also be written. For example, if a structure member is itself a

structure, then a member of the embedded structure can be accessed by writing.

variable.member.submember.

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

Thus in the case of student and dob structure, to access the month of date of birth of a student, we

would write

st.d1.month // accessing member of nested structure

The use of the period operator can be extended to arrays of structure, by writing

array [expression]. member

Structures members can be processed in the same manner as ordinary variables of the same data type.

Single-valued structure members can appear in expressions. They can be passed to functions and they

can be returned from functions, as though they were ordinary single-valued variables.

e.g. suppose that s1 and s2 are structure variables having the same composition as described earlier. It

is possible to copy the values of s1 to s2 simply by writing

s2=s1; //copying one structure to another which are of the same type

USER-DEFINED DATA TYPES (typedef)

The typedef feature allows users to define new data types that are equivalent to existing data types.

Once a user-defined data type has been established, then new variables, arrays, structure and so on,

can be declared in terms of this new data type. In general terms, a new data type is defined as

typedef type new- type;

Where type refers to an existing data type and new-type refers to the new user-defined data type.

e.g. typedef int age;

 In this declaration, age is user- defined data type equivalent to type int. Hence, the variable

declaration

age male, female;

is equivalent to writing

int age, male, female;

The typedef feature is particularly convenient when defining structures, since it eliminates the need to

repeatedly write struct tag whenever a structure is referenced. As a result, the structure can be

referenced more concisely.

In general terms, a user-defined structure type can be written as

typedef struct { member 1; member 2: - - - - - - member m; }new-type;

The typedef feature can be used repeatedly, to define one data type in terms of other user-defined data

types.

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

STRUCTURES AND POINTERS

The beginning address of a structure can be accessed in the same manner as any other address,

through the use of the address (&) operator.

Thus, if variable represents a structure type variable, then & variable represents the starting address of

that variable. A pointer to a structure can be defined as follows:

struct student *ptr;

ptr represents the name of the pointer variable of type student. We can then assign the beginning

address of a structure variable to this pointer by writing

ptr= &variable; //pointer initialisation

Let us take the following example:

typedef struct {

char name [40];

int roll_no;

float marks;

}student;

student s1,*ps;

In this example, s1 is a structure variable of type student, and ps is a pointer variable whose object is

a structure variable of type student. Thus, the beginning address of s1 can be assigned to ps by

writing.

ps = &s1;

An individual structure member can be accessed in terms of its corresponding pointer variable by

using the -> operator (arrow operator)

ptr →member

Where ptr refers to a structure- type pointer variable and the operator → is comparable to the period

(.) operator. The associativity of this operator is also left-to-right.

The operator → can be combined with the period operator (.) to access a submember within a

structure. Hence, a submember can be accessed by writing

ptr → member.submember

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

PASSING STRUCTURES TO A FUNCTION

There are several different ways to pass structure–type information to or from a function. Structure

member can be transferred individually , or entire structure can be transferred. The individual

structures members can be passed to a function as arguments in the function call; and a single

structure member can be returned via the return statement. To do so, each structure member is treated

the same way as an ordinary, single- valued variable.

A complete structure can be transferred to a function by passing a structure type pointer as an

argument. It should be understood that a structure passed in this manner will be passed by reference

rather than by value. So, if any of the structure members are altered within the function, the

alterations will be recognized outside the function. Let us consider the following example:

include <stdio.h>

typedef struct{

char name[10];

int roll_no;

float marks ;

} record student={“Param”, 2,99.9};

void adj(record*ptr)

{

ptr → name=”Tanishq”;

ptr → roll_no=3;

ptr → marks=98.0;

return;

}

main ()

{printf(“%s%d%f\n”, student.name, student.roll_no,student.marks);

adj(&student);

printf(“%s%d%f\n”, student.name, student.roll_no,student.marks);

}

Let us consider an example of transferring a complete structure, rather than a structure-type pointer,

to the function.

include <stdio.h>

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

typedef struct{

char name[10];

int roll_no;

float marks;

}record student={“Param,” 2,99.9};

void adj(record stud) /*function definition */

{

stud.name=”Tanishq”;

stud.roll_no=3;

stud.marks=98.0;

return;

}

main()

{

printf(“%s%d%f\n”, student.name,student.roll_no,student.marks);

adj(student);

printf(“%s%d%f\n”, student.name,student.roll_no,student.marks);

}

Union is a derived datatype , like structure, i.e. collection of elements of different data types which

are grouped together. Each element in a union is called member.

 Union and structure in C are same in concepts, except allocating memory for their members.

 Structure allocates storage space for all its members separately.

 Whereas, Union allocates one common storage space for all its members, or memory space is

shared between its members.

 Only one member of union can be accessed at a time. All member values cannot be accessed

at the same time in union. But, structure can access all member values at the same time. This

is because, Union allocates one common storage space for all its members, where as Structure

allocates storage space for all its members separately.

 Many union variables can be created in a program and memory will be allocated for each

union variable separately.

 The table below will help you how to form a C union, declare a union, initializing and

accessing the members of the union.

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

Type Using normal variable Using pointer variable

Syntax

union tag_name

{

data type var_name1;

data type var_name2;

data type var_name3;

};

union tag_name

{

data type var_name1;

data type var_name2;

data type var_name3;

};

Example

union student

{

int mark;

char name[10];

float average;

};

union student

{

int mark;

char name[10];

float average;

};

Declaring

union variable
union student report; union student *report, rep;

Initializing

union variable

union student report = {100,

“Mani”, 99.5};

union student rep = {100, “Mani”,

99.5};report = &rep;

Accessing

union members

report.mark

report.name

report.average

report -> mark

report -> name

report -> average

Example program for C union:

#include <stdio.h>

#include <string.h>

union student

{

 char name[20];

 char subject[20];

 float percentage;

};

int main()

{

 union student record1;

 union student record2;

 // assigning values to record1 union variable

 strcpy(record1.name, "Raju");

 strcpy(record1.subject, "Maths");

 record1.percentage = 86.50;

 printf("Union record1 values example\n");

 printf(" Name : %s \n", record1.name);

 printf(" Subject : %s \n", record1.subject);

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

 printf(" Percentage : %f \n\n", record1.percentage);

 // assigning values to record2 union variable

 printf("Union record2 values example\n");

 strcpy(record2.name, "Mani");

 printf(" Name : %s \n", record2.name);

 strcpy(record2.subject, "Physics");

 printf(" Subject : %s \n", record2.subject);

 record2.percentage = 99.50;

 printf(" Percentage : %f \n", record2.percentage);

 return 0;

}

Output:

Union record1 values example

Name :

Subject :

Percentage : 86.500000;

Union record2 values example

Name : Mani

Subject : Physics

Percentage : 99.500000

Explanation for above C union program:

 There are 2 union variables declared in this program to understand the difference in accessing

values of union members.

Record1 union variable:

 “Raju” is assigned to union member “record1.name” . The memory location name is

“record1.name” and the value stored in this location is “Raju”.

 Then, “Maths” is assigned to union member “record1.subject”. Now, memory location name

is changed to “record1.subject” with the value “Maths” (Union can hold only one member at a

time).

 Then, “86.50” is assigned to union member “record1.percentage”. Now, memory location

name is changed to “record1.percentage” with value “86.50”.

 Like this, name and value of union member is replaced every time on the common storage

space.

 So, we can always access only one union member for which value is assigned at last. We can‟t

access other member values.

 So, only “record1.percentage” value is displayed in output. “record1.name” and

“record1.percentage” are empty.

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

Record2 union variable:

 If we want to access all member values using union, we have to access the member before

assigning values to other members as shown in record2 union variable in this program.

 Each union members are accessed in record2 example immediately after assigning values to

them.

 If we don‟t access them before assigning values to other member, member name and value

will be over written by other member as all members are using same memory.

 We can‟t access all members in union at same time but structure can do that.

Example program – Another way of declaring C union:

 In this program, union variable “record” is declared while declaring union itself as shown in the

below program.

#include <stdio.h>

#include <string.h>

union student

{

 char name[20];

 char subject[20];

 float percentage;

}record;

int main()

{

 strcpy(record.name, "Raju");

 strcpy(record.subject, "Maths");

 record.percentage = 86.50;

 printf(" Name : %s \n", record.name);

 printf(" Subject : %s \n", record.subject);

 printf(" Percentage : %f \n", record.percentage);

 return 0;

}

Output:

Name :

Subject :

Percentage : 86.500000

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

 We can access only one member of union at a time. We can‟t access all member values at the

same time in union. But, structure can access all member values at the same time. This is

because, Union allocates one common storage space for all its members. Where as Structure allocates

storage space for all its members separately.

Difference between structure and union in C:

S.no C Structure C Union

1

Structure allocates storage

space for all its members

separately.

Union allocates one common storage space for all its members.

Union finds that which of its member needs high storage space

over other members and allocates that much space

2
Structure occupies larger

memory space.
Union occupies lower memory space over structure.

3
We can access all members of

structure at a time.
We can access only one member of union at a time.

4

Structure example:

struct student

{

int mark;

double average;

};

Union example:

union student

{

int mark;

double average;

};

 5

For above structure, memory

allocation will be like below.

int mark – 2B

double average – 8B

Total memory allocation = 2+8

= 10 Bytes

For above union, only 8 bytes of memory will be allocated

since double data type will occupy maximum space of memory

over other data types.

Total memory allocation = 8 Bytes

POINTERS & DYNAMIC MEMORY ALLOCATION FUNCTIONS:

When a variable is defined the compiler (linker/loader actually) allocates a real memory address for

the variable.

– int x; will allocate 4 bytes in the main memory, which will be used to store an

integer value.

When a value is assigned to a variable, the value is actually placed to the memory that was allocated.

– x=3; will store integer 3 in the 4 bytes of memory.

The process of allocating memory during program execution is called dynamic memory

allocation.

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

C language offers 4 dynamic memory allocation functions. They are,

1. malloc() : malloc (number * sizeof(int));

2. calloc() : calloc (number, sizeof(int));

3. realloc() : realloc (pointer_name, number * sizeof(int));

4. free() : free (pointer_name);

1. MALLOC():

 is used to allocate space in memory during the execution of the program.

does not initialize the memory allocated during execution. It carries garbage value.

returns null pointer if it couldn‟t able to allocate requested amount of memory.

2. CALLOC():

 calloc () function is also like malloc () function. But calloc () initializes the allocated memory

to zero. But, malloc() doesn‟t.

3. REALLOC():

 Realloc () function modifies the allocated memory size by malloc () and calloc () functions

to new size.

If enough space doesn‟t exist in memory of current block to extend, new block is allocated for

the full size of reallocation, then copies the existing data to new block and then frees the old

block.

 4. FREE():

free () function frees the allocated memory by malloc (), calloc (), realloc () functions and

returns the memory to the system.

DIFFERENCE BETWEEN STATIC MEMORY ALLOCATION AND DYNAMIC MEMORY

ALLOCATION IN C:

Static memory allocation Dynamic memory allocation

In static memory allocation, memory

is allocated while writing the C

program. Actually, user requested

memory will be allocated at compile

time.

In dynamic memory

allocation, memory is

allocated while executing the

program. That means at run

time.

Memory size can‟t be modified while

execution.

Example: array

Memory size can be modified

while execution.

Example: Linked list

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

DIFFERENCE BETWEEN MALLOC() AND CALLOC() FUNCTIONS IN C:

malloc() calloc()

It allocates only single block of

requested memory

It allocates multiple blocks of

requested memory

int *ptr;ptr = malloc(20 * sizeof(int)

);

For the above, 20*4 bytes of memory

only allocated in one block.

Total = 80 bytes

int *ptr;Ptr = calloc(20, 20 *

sizeof(int));For the above, 20

blocks of memory will be

created and each contains

20*4 bytes of memory.

Total = 1600 bytes

malloc () doesn‟t initializes the

allocated memory. It contains garbage

values

calloc () initializes the

allocated memory to zero

type cast must be done since this

function returns void pointer int

ptr;ptr = (int)malloc(sizeof(int)*20

);

Same as malloc () function

int *ptr;ptr = (int*)calloc(20,

20 * sizeof(int));

Array Operations: All operations remain same as mentioned above for data structures operations.

Note: Refer 1
st
 lab program for the operations.

SORTING:

Sorting takes an unordered collection and makes it an ordered one.

In bubble sort method the list is divided into two sub-lists sorted and unsorted. The smallest element is bubbled

from unsorted sub-list. After moving the smallest element the imaginary wall moves one element ahead. The

bubble sort was originally written to bubble up the highest element in the list. But there is no difference

whether highest / lowest element is bubbled. This method is easy to understand but time consuming. In this

type, two successive elements are compared and swapping is done. Thus, step-by-step entire array elements are

checked. Given a list of „n‟ elements the bubble sort requires up to n-1 passes to sort the data.

Algorithm for Bubble sort: Bubble_Sort(A[], N)

Step1 : Repeat for p = 1 to N-1

 Begin

Step2 : Repeat for j = 1 to N-p

 Begin

Step3 : if (A[j] < A[j-1])

 Swap (A[j], A[j-1]);

 End for

 End for

Exit

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

Example:

 Ex:- A list of unsorted elements are: 10 47 12 54 19 23 (Bubble up for highest value shown here)

/* bubble sort implementation */

#include<stdio.h>

#include<conio.h>

void main()

{

int i,n,temp,j,arr[25];

printf("Enter the number of elements in the Array: ");

scanf("%d",&n);
printf("\nEnter the elements:\n\n");

for(i=0 ; i<n ; i++)

 scanf("%d",&arr[i]);

for(i=0 ; i<n ; i++)

{

 for(j=0 ; j<n-i-1 ; j++)

{

 if(arr[j]>arr[j+1]) //Swapping Condition is Checked

 {

 temp=arr[j];

 arr[j]=arr[j+1];

 arr[j+1]=temp;

 }

 }

}

printf("\nThe Sorted Array is:\n\n");

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

for(i=0 ; i<n ; i++)

 printf(" %4d",arr[i]);

}

SEARCHING TECHNIQUE

1. LINEAR SEARCH

Linear search or sequential search is a method for finding a target value within a list. It sequentially

checks each element of the list for the target value until a match is found or until all the elements have

been searched.

Linear search runs in at worst linear time and makes at most n comparisons, where n is the length of

the list. If each element is equally likely to be searched, then linear search has an average case of n/2

comparisons, but the average case can be affected if the search probabilities for each element vary.

Linear search is rarely practical because other search algorithms and schemes, such as the binary

search algorithm and hash tables, allow significantly faster searching for all but short lists.

int linear_search(int *list, int size, int key, int* rec)
{

 // Basic Linear search

 int found = 0;

 int i;

 for (i = 0; i < size; i++)

 {

 if (key == list[i])

 found = 1;

 return found;

 }

 Return found;

 }

2. BINARY SEARCH

 We always get a sorted list before doing the binary search. Now suppose we have an

ascending order record. At the time of search it takes the middle record/element, if the searching

element is greater than middle element then the element mush be located in the second part else it is

in the first half. In this way this search algorithm divides the records in the two parts in each iteration

and thus called binary search.

In binary search, we first compare the key with the item in the middle position of the array. If there's

a match, we can return immediately. If the key is less than the middle key, then the item must lie in

the lower half of the array; if it's greater then the item must lie in the upper half of the array. So we

repeat the procedure on the lower or upper half of the array depending on the comparison.

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

int BinarySearch(int *array, int N, int key)

{

 int low = 0, high = N-1, mid;

 while(low <= high)

 {

 mid = (low + high)/2;

 if(array[mid] < key)

 low = mid + 1;

 else if(array[mid] == key)

 return mid;

 else if(array[mid] > key)

 high = mid-1;

 }

 return -1;

}

SPARSE MATRICES

A sparse matrix is a matrix in which most of the elements are zero. By contrast, if most of the

elements are nonzero, then the matrix is considered dense. When storing and manipulating sparse

matrices on a computer, it is beneficial and often necessary to use specialized algorithms and data

structures that take advantage of the sparse structure of the matrix. Operations using standard dense-

matrix structures and algorithms are slow and inefficient when applied to large sparse matrices as

processing and memory are wasted on the zeroes. Sparse data is by nature more easily compressed

and thus require significantly less storage. Some very large sparse matrices are infeasible to

manipulate using standard dense-matrix algorithms.

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

Storing a sparse matrix

A matrix is typically stored as a two-dimensional array. Each entry in the array represents an element

ai,j of the matrix and is accessed by the two indices i and j. Conventionally, i is the row index,

numbered from top to bottom, and j is the column index, numbered from left to right. For an m × n

matrix, the amount of memory required to store the matrix in this format is proportional to m × n

In the case of a sparse matrix, substantial memory requirement reductions can be realized by storing

only the non-zero entries.

Sparse Matrix Representations

A sparse matrix can be represented by using TWO representations...

1. Triplet Representation

2. Linked Representation

1. Triplet Representation

In this representation, we consider only non-zero values along with their row and column index

values. Each non zero value is a triplet of the form <R,C,Value) where R represents the row in which

the value appears, C represents the column in which the value appears and Value represents the non-

zero value itself. In this representation, the 0
th

 row stores total rows, total columns and total non-zero

values in the matrix.

For example, consider a matrix of size 5 X 6 containing 6 number of non-zero values. This matrix can

be represented as shown in the image...

In above example matrix, there are only 6 non-zero elements (those are 9, 8, 4, 2, 5 & 2) and matrix

size is 5 X 6. We represent this matrix as shown in the above image. Here the first row in the right

side table is filled with values 5, 6 & 6 which indicates that it is a sparse matrix with 5 rows, 6

columns & 6 non-zero values. Second row is filled with 0, 4, & 9 which indicates the value in the

matrix at 0th row, 4th column is 9. In the same way the remaining non-zero values also follows the

similar pattern.

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

2. Linked Representation

In linked representation, we use linked list data structure to represent a sparse matrix. In this linked

list, we use two different nodes namely header node and element node. Header node consists of

three fields and element node consists of five fields as shown in the image...

Consider the above same sparse matrix used in the Triplet representation. This sparse matrix can be

represented using linked representation as shown in the below image...

In above representation, H0, H1,...,H5 indicates the header nodes which are used to represent indexes.

Remaining nodes are used to represent non-zero elements in the matrix, except the very first node

which is used to represent abstract information of the sparse matrix (i.e., It is a matrix of 5 X 6 with 6

non-zero elements).

In this representation, in each row and column, the last node right field points to it's respective header

node.

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

Basic operations on Sparse Matrix

 Reading a sparse matrix

 Displaying a sparse matrix

 Searching for a non zero element in a sparse matrix

Note :Refer class notes for implementation of basic operations of sparse matrices

POLYNOMIALS

A polynomial object is a homogeneous ordered list of pairs < exponent,coefficient>, where each

coefficient is unique.

Operations include returning the degree, extracting the coefficient for a given exponent, addition,

multiplication, evaluation for a given input

Polynomial operations

 Representation

 Addition

 Multiplication

Representation of a Polynomial: A polynomial is an expression that contains more than two terms.

A term is made up of coefficient and exponent. An example of polynomial is

P(x) = 4x
3
+6x

2
+7x+9

A polynomial thus may be represented using arrays or linked lists. Array representation assumes that

the exponents of the given expression are arranged from 0 to the highest value (degree), which is

represented by the subscript of the array beginning with 0. The coefficients of the respective

exponent are placed at an appropriate index in the array. The array representation for the above

polynomial expression is given below:

A polynomial may also be represented using a linked list. A structure may be defined such that it

contains two parts- one is the coefficient and second is the corresponding exponent. The structure

definition may be given as shown below:

 struct polynomial

{

int coefficient;

int exponent;

struct polynomial *next;

};

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

Thus the above polynomial may be represented using linked list as shown below:

Addition of two Polynomials:

For adding two polynomials using arrays is straightforward method, since both the arrays may

be added up element wise beginning from 0 to n-1, resulting in addition of two polynomials.

Addition of two polynomials using linked list requires comparing the exponents, and

wherever the exponents are found to be same, the coefficients are added up. For terms with

different exponents, the complete term is simply added to the result thereby making it a part of

addition result. The complete program to add two polynomials is given in subsequent section

Refer notes for memory representation of polynomial

STRINGS

 Strings are Character Arrays

Strings in C are simply array of characters.

– Example: char s [10]; This is a ten (10) element array that can hold a character

string consisting of 9 characters. This is because C does not know where the end of

an array is at run time. By convention, C uses a NULL character '\0' to terminate all

strings in its library functions

– For example: char str [10] = {'u', 'n', 'I', 'x', '\0'};

 It‟s the string terminator (not the size of the array) that determines the length of the

string.

 Accessing Individual Characters

 The first element of any array in C is at index 0. The second is at index 1, and so on...

char s[10];

s[0] = 'h'; s [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

s[1] = 'i‟;

s[2] = '!';

s[3] = '\0';

 This notation can be used in all kinds of statements and expressions in C:

 For example:

c = s[1];

if (s[0] == '-') …

switch (s[1]) ...

H i ! \0

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

 String Literals

String literals are given as a string quoted by double quotes.

– printf("Long long ago.");

 Initializing char array ...

– char s[10]="unix"; /* s[4] is '\0'; */

– char s[]="unix"; /* s has five elements */

– Printing with ptintf()

 Example:

 Char str[] = "A message to display";

 printf ("%s\n", str);

 printf expects to receive a string as an additional parameter when it sees %s in the format

string

– Can be from a character array.

– Can be another literal string.

– Can be from a character pointer (more on this later).

– printf knows how much to print out because of the NULL character at the end of all

strings.

– When it finds a \0, it knows to stop.

 Printing with puts()

The puts function is a much simpler output function than printf for string printing.

– Prototype of puts is defined in stdio.h

 int puts(const char * str). This is more efficient than printf because your program

doesn't need to analyze the format string at run-time.

 For example:

 char sentence[] = "The quick brown fox\n";

 puts(sentence);

 Prints out: The quick brown fox

 Inputting Strings with gets()

gets() gets a line from the standard input.

The prototype is defined in stdio.h

char *gets(char *str)

– str is a pointer to the space where gets will store the line to, or a character array.

– Returns NULL upon failure. Otherwise, it returns str.

 char your_line[100];

 printf("Enter a line:\n");

 gets(your_line);

 puts("Your input follows:\n");

 puts(your_line);

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

You can overflow your string buffer, so be careful!

 Inputting Strings with scanf ()

To read a string include:

– %s scans up to but not including the “next” white space character

– %ns scans the next n characters or up to the next white space character, whichever

comes first

Example:

 scanf ("%s%s%s", s1, s2, s3);

 scanf ("%2s%2s%2s", s1, s2, s3);

– Note: No ampersand(&) when inputting strings into character arrays! (We‟ll explain

why later …)

Difference between gets

– gets() read a line

– scanf("%s",…) read up to the next space

Example:

#include <stdio.h>

int main () {

 char lname[81], fname[81];

 int count, id_num;

 puts ("Enter the last name, firstname, ID number separated");

 puts ("by spaces, then press Enter \n");

 count = scanf ("%s%s%d", lname, fname,&id_num);

 printf ("%d items entered: %s %s %d\n",

 count,fname,lname,id_num);

 return 0;

}

 The C String Library

 String functions are provided in an ANSI standard string library.

– Access this through the include file:

#include <string.h>

 Includes functions such as:

 Computing length of string

 Copying strings

 Concatenating strings

This library is guaranteed to be there in any ANSI standard implementation of C.

 strlen() returns the length of a NULL terminated character string:

 strlen (char * str) ; Defined in string.h

 A type defined in string.h that is equivalent to an unsigned int

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

 char *str

 Points to a series of characters or is a character array ending with '\0'

 strcpy() copying a string comes in the form:

 char *strcpy (char * destination, char * source);

 A copy of source is made at destination. Source should be NULL terminated

and destination should have enough room (its length should be at least the

size of source). The return value also points at the destination.

 strcat() comes in the form:

 char * strcat (char * str1, char * str2);

Appends a copy of str2 to the end of str1 & a pointer equal to str1 is returned.

Ensure that str1 has sufficient space for the concatenated string!

 Array index out of range will be the most popular bug in your C programming

career.

Example:

#include <string.h>

#include <stdio.h>

int main() {

 char str1[27] = "abc";

 char str2[100];

 printf("%d\n",strlen(str1));

 strcpy(str2,str1);

 puts(str2);

 puts("\n");

 strcat(str2,str1);

 puts(str2);

}

 strcmp() can be compared for equality or inequality

 If they are equal - they are ASCII identical

 If they are unequal the comparison function will return an int that is interpreted

 as:

 < 0 : str1 is less than str2

 0 : str1 is equal to str2

 > 0 : str1 is greater than str2

 Four basic comparison functions:

 int strcmp (char *str1, char *str2) ;

 Does an ASCII comparison one char at a time until a difference is found

between two chars

– Return value is as stated before

 Prepared by

 Prof Pankaja K. & Prof Geetha P.

 If both strings reach a '\0' at the same time, they are considered equal.

 int strncmp (char *str1, char * str2, size_t n);

 Compares n chars of str1 and str2

– Continues until n chars are compared or

– The end of str1or str2 is encountered

 Example:

 int main() {

 char str1[] = "The first string.";

 char str2[] = "The second string.";

 size_t n, x;

 printf("%d\n", strncmp(str1,str2,4));

 printf("%d\n", strncmp(str1,str2,5));

 }

Note: Refer lab program 2 for implementation

MODULE 2

STACKS AND QUEUES

There are certain situations in computer science that one wants to restrict insertions and

deletions so that they can take place only at the beginning or the end of the list, not in the

middle. Two of such data structures that are useful are:

• Stack. • Queue.

Linear lists and arrays allow one to insert and delete elements at any place in the list i.e., at

the beginning, at the end or in the middle.

STACK:

A stack is a list of elements in which an element may be inserted or deleted only at one end,

called the top of the stack. Stacks are sometimes known as LIFO (last in, first out) lists. As

the items can be added or removed only from the top i.e. the last item to be added to a stack is

the first item to be removed.

The two basic operations associated with stacks are:

• Push: is the term used to insert an element into a stack.

• Pop: is the term used to delete an element from a stack.

.

All insertions and deletions take place at the same end, so the last element added to the stack

will be the first element removed from the stack. When a stack is created, the stack base

remains fixed while the stack top changes as elements are added and removed. The most

accessible element is the top and the least accessible element is the bottom of the stack.

 Representation of Stack:

Let us consider a stack with N elements capacity. This is called as the size of the stack. The

number of elements to be added should not exceed the maximum size of the stack. If we

attempt to add new element beyond the maximum size, we will encounter a stack overflow

condition. Similarly, you cannot remove elements beyond the base of the stack. If such is the

case, we will reach a stack underflow condition. (an empty stack)

When an element is added to a stack, the operation is performed by push. The removal of an

element is performed by the pop operation.

Stack Using Array

A stack data structure can be implemented using one dimensional array. But stack

implemented using array, can store only fixed number of data values. This implementation is

very simple, just define a one dimensional array of specific size and insert or delete the

values into that array by using LIFO principle with the help of a variable 'top'. Initially top

is set to -1. Whenever an element is to be inserted into the stack, increment the top value by

one and then insert. Whenever an element is to be deleted from the stack the stack, then

delete the top value and decrement the top value by one.

Stack Implementation

 Using static arrays

 Using dynamic arrays

 Using linked list

Stack Operations using Array

A stack can be implemented using array as follows...

push(value) - Inserting value into the stack

In a stack, push() is a function used to insert an element into the stack. In a stack, the new

element is always inserted at top position. Push function takes one integer value as parameter

and inserts that value into the stack. We can use the following algorithm to push an element

on to the stack...

Step 1: Check whether stack is FULL. (top == SIZE-1)

Step 2: If it is FULL, then display "Stack is FULL!!! Stack overflow!!!" and terminate the

function.

Step 3: If it is NOT FULL, then increment top value by one (top++) and set stack[top] to

value (stack[top] = value).

pop() - Delete a value from the Stack

In a stack, pop() is a function used to delete an element from the stack. In a stack, the element

is always deleted from top position. Pop function does not take any value as parameter. We

can use the following algorithm to pop an element from the stack...

Step 1: Check whether stack is EMPTY. (top == -1)

Step 2: If it is EMPTY, then display "Stack is EMPTY!!! Deletion is not possible!!!" and

terminate the function.

Step 3: If it is NOT EMPTY, then delete stack[top] and decrement top value by one (top--).

display() - Displays the elements of a Stack

We can use the following algorithm to display the elements of a stack...

Step 1: Check whether stack is EMPTY. (top == -1)

Step 2: If it is EMPTY, then display "Stack is EMPTY!!!" and terminate the function.

Step 3: If it is NOT EMPTY, then define a variable 'i' and initialize with top. Display

stack[i] value and decrement i value by one (i--).

Step 3: Repeat above step until i value becomes '0'.

Implementation of stack operations using array
define N 5

int a[N],tos=-1;

void push()

{

 int key;

 if (tos==N-1)

 {

 printf("stack full\n");

 return;

 }

 printf("enter the elemnt to be inserted\n");

 scanf("%d",&key);

 a[++tos]=key;

 }

 void pop()

 {

 if (tos==-1)

 printf("underflow\n");

 else

 {

 printf("the popped element is %d",a[tos]);

 tos--;

 }

 }

 void display()

 {

 int i;

 if (tos== -1)

 {

 printf("no elements in stack\n");

 return;

 }

 for(i=tos;i>=0;i--)

 printf("%d\t",a[i]);

 }

Stack using dynamic arrays

Issues with static stack

 Can run out of space when stack size is set too small

 Can waste memory if stack size set too large

Use a dynamic array implementation where memory for the stack array is set

dynamically.(Implementation –refer class notes)

Stack using Linked list

A stack can be represented as a linked list(using a singly linked list or one way list).The data

field stores the elements of the stack and the link field hold pointers to the neighbouring

elements of the stack. The start pointer behaves as the top pointer and . NULL pointer in the

last node indicates the bottom of the stack. In a stack push and pop operations are performed

at one end called top. We can perform similar operations at one end of list using top pointer.

Push operation is done by inserting a node at the start of the list and pop is done by deleting

the element pointed to by the top pointer.

Overflow/Underflow:

No limitation on the capacity of a linked stack and hence no overflow condition. Underflow

or empty condition occurs when top==NULL

Linked Stack implementation

struct node

{

 int data;

 struct node *next;

 };

 typedef struct node stack;

 stack *top=NULL;

 stack *getnode()

 {

 stack *newnode;

 newnode=(stack*)malloc(sizeof(stack));

 if (newnode==NULL)

 printf("error in memory alloc\n");

 printf("enetr data\n");

 scanf("%d",&newnode->data);

 newnode->next=NULL;

 return newnode;

 }

// Function to traverse and display elements of stack

 void traverse()

 {

 stack *temp=top;

 if (temp==NULL)

 {

 printf("stack empty\n");

 return;

 }

 while(temp!=NULL)

 {

 printf("%d",temp->data);

 temp=temp->next;

 }

 }

//Function to implement push operation

 void pushlinkedstack()

 {

 stack *n1;

 n1=getnode();

 if (top==NULL)

 { top=n1;

 n1->next=NULL;

 return;

 }

 n1->next=top;

 top=n1;

 }

//Function to implement pop operation

 void poplinkedstack()

 {

 stack *temp;

 if (top==NULL)

 {

 printf("stack empty\n");

 return;

 }

 temp=top;

 top=top->next;

 printf("the element deleted is %d",temp->data);

 free(temp);

 }

Algebraic Expressions:

An algebraic expression is a legal combination of operators and operands. Operand is the

quantity on which a mathematical operation is performed. Operand may be a variable like x,

y, z or a constant like 5, 4, 6 etc. Operator is a symbol which signifies a mathematical or

logical operation between the operands. Examples of familiar operators include +, -, *, /, ^

etc. An algebraic expression can be represented using three different notations. They are

infix, postfix and prefix notations:

Infix: It is the form of an arithmetic expression in which we fix (place) the arithmetic

operator in between the two operands.

Example: (A + B) * (C - D)

Prefix: It is the form of an arithmetic notation in which we fix (place) the arithmetic

operator before (pre) its two operands. The prefix notation is called as polish notation (due to

the polish mathematician Jan Lukasiewicz in the year 1920).

 Example: * + A B – C D

Postfix: It is the form of an arithmetic expression in which we fix (place) the arithmetic

operator after (post) its two operands. The postfix notation is called as suffix notation and is

also referred to reverse polish notation.

Example: A B + C D - *

The three important features of postfix expression are:

1. The operands maintain the same order as in the equivalent infix expression.

2. The parentheses are not needed to designate the expression unambiguously.

3. While evaluating the postfix expression the priority of the operators is no longer relevant.

We consider five binary operations: +, -, *, / and $ or ↑ (exponentiation). For these binary

operations, the following in the order of precedence (highest to lowest):

OPERATOR PRECEDENCE VALUE

Exponentiation ($ or ↑ or ^) Highest 4

*, / Next highest 3

+, - Lowest 2

Lowermost (endofexpn) 1

Applications of stacks:

1. Stack is used by compilers to check for balancing of parentheses, brackets and braces.

2. Stack is used to evaluate a postfix expression.

3. Stack is used to convert an infix expression into postfix/prefix form.

4. In recursion, all intermediate arguments and return values are stored on the processor’s

stack.

5. During a function call the return address and arguments are pushed onto a stack and on

return they are popped off. Conversion from infix to postfix:

Conversion from infix to postfix expression
Procedure to convert from infix expression to postfix expression is as follows:

(algorithm)

1. Scan the infix expression from left to right.

2. a) If the scanned symbol is left parenthesis, push it onto the stack.

b) If the scanned symbol is an operand, then place directly in the postfix expression (output).

c) If the symbol scanned is a right parenthesis, then go on popping all the items from the

stack and place them in the postfix expression till we get the matching left parenthesis.

d) If the scanned symbol is an operator, then go on removing all the operators from the stack

and place them in the postfix expression, if and only if the precedence of the operator which

is on the top of the stack is greater than (or greater than or equal) to the precedence of the

scanned operator and push the scanned operator onto the stack otherwise, push the scanned

operator onto the stack

Note :Refer class notes for examples and steps in conversion(detailed)

Evaluation of postfix expression
1. Scan the postfix expression from left to right.

2. If the scanned symbol is an operand, then push it onto the stack.

3. If the scanned symbol is an operator, pop two symbols from the stack ,assign to operand 2

and operand1 respectively. Perform operation and push onto stack

4. Repeat steps 2 and 3 till the end of the expression.

(Refer class notes for steps in conversion and examples)

Recursion
Recursion is deceptively simple in statement but exceptionally complicated in

implementation. Recursive procedures work fine in many problems. Many programmers

prefer recursion though simpler alternatives are available. It is because recursion is elegant to

use though it is costly in terms of time and space.

 Introduction to Recursion:

A function is recursive if a statement in the body of the function calls itself. Recursion is the

process of defining something in terms of itself. For a computer language to be recursive, a

function must be able to call itself.

For example, let us consider the function factr() shown below, which computers the factorial

of an integer.

int factorial (int);

main() {

int num, fact;

 printf (“Enter a positive integer value: ");

 scanf (“%d”, &num);

fact = factorial (num);

printf ("\n Factorial of %d =%5d\n", num, fact);

 }

int factorial (int n)

 { int result;

 if (n == 0) return (1);

else

result = n * factorial (n-1);

return (result);

 }

A non-recursive or iterative version for finding the factorial is as follows:

factorial (int n)

 { int i, result = 1;

if (n == 0)

return (result);

else

{

for (i=1; i<=n; i++)

result = result * i;

 return (result);

 } }

The operation of the non-recursive version is clear as it uses a loop starting at 1 and ending at

the target value and progressively multiplies each number by the moving product. When a

function calls itself, new local variables and parameters are allocated storage on the stack and

the function code is executed with these new variables from the start. A recursive call does

not make a new copy of the function. Only the arguments and variables are new. As each

recursive call returns, the old local variables and parameters are removed from the stack and

execution resumes at the point of the function call inside the function.

When writing recursive functions, there must be an exit condition somewhere to force the

function to return without the recursive call being executed. If there is no exit condition, the

recursive function will loop forever until you run out of stack space and indicate error about

lack of memory, or stack overflow.

 Differences between recursion and iteration:

• Both involve repetition.

• Both involve a termination test.

 • Both can occur infinitely.

Iteration Recursion

Iteration explicitly uses a repetition structure Recursion achieves repetition through

repeated function calls.

Iteration terminates when the loop ends Recursion terminates when a base case is

recognized

Iteration keeps modifying the counter until

the loop continuation condition fails.

Recursion keeps producing simple versions

of the original problem until the base case is

reached.

Iteration normally occurs within a loop, so

the extra memory usage is avoided

Recursion causes another copy of the

function and hence a considerable memory

space’s occupied.

. It reduces the processor’s operating time . It increases the processor’s operating time

 Factorial of a given number:

The operation of recursive factorial function is as follows:

Start out with some natural number N (in our example, 5).

The recursive definition is:

 n = 0, 0 ! = 1 Base Case

 n > 0, n ! = n * (n - 1) ! Recursive Case

Recursion Factorials:

5! = 5*4! = 5*4*3! = 5*4*3*2! = 5*4*3*2*1! = 5*4*3*2*1*0! = 5*4*3*2*1*1 =120

We define 0! to equal 1, and we define factorial N (where N > 0), to be N * factorial (N-1).

All recursive functions must have an exit condition that is a state when the function

terminates. The exit condition in this example is when N = 0.

Tracing of the flow of the factorial () function:

When the factorial function is first called with, say, N = 5, here is what happens:

FUNCTION: Does N = 0? No Function Return Value = 5 * factorial (4)

At this time, the function factorial is called again, with N = 4.

FUNCTION: Does N = 0? No Function Return Value = 4 * factorial (3)

At this time, the function factorial is called again, with N = 3.

FUNCTION: Does N = 0? No Function Return Value = 3 * factorial (2)

At this time, the function factorial is called again, with N = 2.

FUNCTION: Does N = 0? No Function Return Value = 2 * factorial (1)

At this time, the function factorial is called again, with N = 1.

FUNCTION: Does N = 0? No Function Return Value = 1 * factorial (0)

At this time, the function factorial is called again, with N = 0.

FUNCTION: Does N = 0? Yes Function Return Value = 1

Now, trace the way back up! See, the factorial function was called six times. At any function

level call, all function level calls above still exist! So, when we have N = 2, the function

instances where N = 3, 4, and 5 are still waiting for their return values.

So, the function call where N = 1 gets retraced first, once the final call returns 0. So,

the function call where N = 1 returns 1*1, or 1. The next higher function call, where N = 2,

returns 2 * 1 (1, because that's what the function call where N = 1 returned). Just keep

working up the chain till the final solution is obtained.

When N = 2, 2 * 1, or 2 was returned. When N = 3, 3 * 2, or 6 was returned. When N

= 4, 4 * 6, or 24 was returned. When N = 5, 5 * 24, or 120 was returned.

And since N = 5 was the first function call (hence the last one to be recalled), the value 120 is

returned.

The Towers of Hanoi:

In the game of Towers of Hanoi, there are three towers labeled 1, 2, and 3. The game starts

with n disks on tower A. For simplicity, let n is 3. The disks are numbered from 1 to 3, and

without loss of generality we may assume that the diameter of each disk is the same as its

number. That is, disk 1 has diameter 1 (in some unit of measure), disk 2 has diameter 2, and

disk 3 has diameter 3. All three disks start on tower A in the order 1, 2, 3. The objective of

the game is to move all the disks in tower 1 to entire tower 3 using tower 2. That is, at no

time can a larger disk be placed on a smaller disk.

The rules to be followed in moving the disks from tower 1 tower 3 using tower 2 are as

follows:

• Only one disk can be moved at a time.

 • Only the top disc on any tower can be moved to any other tower.

• A larger disk cannot be placed on a smaller disk.

The towers of Hanoi problem can be easily implemented using recursion. To move the largest

disk to the bottom of tower 3, we move the remaining n – 1 disks to tower 2 and then move

the largest disk to tower 3. Now we have the remaining n – 1 disks to be moved to tower 3.

This can be achieved by using the remaining two towers. We can also use tower 3 to place

any disk on it, since the disk placed on tower 3 is the largest disk and continue the same

operation to place the entire disks in tower 3 in order.

The program that uses recursion to produce a list of moves that shows how to accomplish the

task of transferring the n disks from tower 1 to tower 3 is as follows:

void towers_of_hanoi (int n, char *a, char *b, char *c);

int cnt=0;

int main (void)

 {

int n;

 printf("Enter number of discs: ");

scanf("%d",&n);

towers_of_hanoi (n, "Tower 1", "Tower 2", "Tower 3");

 getch();

}

void towers_of_hanoi (int n, char *a, char *b, char *c)

{

 if (n == 1)

{ ++cnt;

 printf ("\n%5d: Move disk 1 from %s to %s", cnt, a, c);

return;

 }

 else

{

towers_of_hanoi (n-1, a, c, b); ++cnt;

printf ("\n%5d: Move disk %d from %s to %s", cnt, n, a, c);

towers_of_hanoi (n-1, b, a, c); return;

} }

Output of the program:

RUN 1:

Enter the number of discs: 3

1: Move disk 1 from tower 1 to tower 3.

 2: Move disk 2 from tower 1 to tower 2.

 3: Move disk 1 from tower 3 to tower 2.

4: Move disk 3 from tower 1 to tower 3.

 5: Move disk 1 from tower 2 to tower 1.

6: Move disk 2 from tower 2 to tower 3.

7: Move disk 1 from tower 1 to tower 3.

 Fibonacci Sequence Problem:

A Fibonacci sequence starts with the integers 0 and 1. Successive elements in this sequence

are obtained by summing the preceding two elements in the sequence. For example, third

number in the sequence is 0 + 1 = 1, fourth number is 1 + 1= 2, fifth number is 1 + 2 = 3 and

so on. The sequence of Fibonacci integers is given below:

0 1 1 2 3 5 8 13 21

A recursive definition for the Fibonacci sequence of integers may be defined as follows:

Fib (n) = n if n = 0 or n = 1

Fib (n) = fib (n-1) + fib (n-2) for n >=2

We will now use the definition to compute fib(5):

fib(5) = fib(4) + fib(3)

 =fib(3) + fib(2) + fib(3)

=fib(2) + fib(1) + fib(2) + fib(3)

=fib(1) + fib(0) + fib(1) + fib(2) + fib(3)

=1 + 0 + 1 + fib(1) + fib(0) + fib(3)

=1 + 0 + 1 + 1 + 0 + fib(2) + fib(1)

=1 + 0 + 1 + 1 + 0 + fib(1) + fib(0) + fib(1)

=1 + 0 + 1 + 1 + 0 + 1 + 0 + 1 = 5

fib(2) is computed 3 times, and fib(3),is computed 2 times in the above calculations. The

values of fib(2) or fib(3) are saved and reused whenever needed.

A recursive function to compute the Fibonacci number in the nth position is given below:

main()

{

printf (“=nfib(5) is %d”, fib(5));

}

fib (int n) {

int x;

if (n==0 | | n==1) return n;

x=fib(n-1) + fib(n-2);

return (x);

}

 Program to calculate the greatest common divisor:

int check_limit (int a[], int n, int prime);

int check_all (int a[], int n, int prime);

long int gcd (int a[], int n, int prime);

void main()

{

int a[20], stat, i, n, prime;

 printf (“Enter the limit: “);

scanf (“%d”, &n);

 printf (“Enter the numbers: “);

 for (i = 0; i < n; i ++)

 scanf (“%d”, &a[i]);

 printf (“The greatest common divisor is %ld”, gcd (a, n, 2));

}

int check_limit (int a[], int n, int prime)

{

 int i;

for (i = 0; i < n; i++)

 if (prime > a[i]) return 1;

return 0;

 }

int check_all (int a[], int n, int prime)

{

 int i;

for (i = 0; i < n; i++)

 if ((a[i] % prime) != 0) return 0;

 for (i = 0; i < n; i++)

 a[i] = a[i] / prime; return 1;

}

long int gcd (int a[], int n, int prime)

 {

 int i;

 if (check_limit(a, n, prime)) return 1;

 if (check_all (a, n, prime))

 return (prime * gcd (a, n, prime));

 else

return (gcd (a, n, prime = (prime == 2) ? prime+1 : prime+2));

}

Output:

Enter the limit: 5

Enter the numbers: 99 55 22 77 121

The greatest common divisor is 11

Ackerman’s Function

In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of

the simplest andearliest-discovered examples of a total computable function that is not

primitive recursive. All primitive recursive functions are total and computable, but the

Ackermann function illustrates that not all total computable functions are primitive recursive.

The two-argument Ackermann function, is defined as follows for nonnegative integers m and

N

A(m,n) = n+1 if m=0

 A(m-1,1) if m>0 and n=0

 A(m-1,A(m,n-1)) if m>0 andn>0

Its value grows rapidly, even for small inputs. For example A(4,2) is an integer of 19,729

decimal digits.

/* Akerman Function*/

#include<stdio.h>

#include<stdlib.h>

int ack(int,int,int);

main()

{

int m,n;

printf("Enter the value for m : ");

scanf("%d",&m);

printf("Enter the value for n : ");

scanf("%d",&n);

printf("The value is : %d\n",ack(m,n);

}

int ack(int m,int n,)

{

if(m==0)

 return(n+1);

else if(m>0 && n==0)

 return ack(m-1,1);

else

 return ack(m-1,ack(m,n-1));

}

Queue

A queue is a linear list in which elements can be added at one end and elements can be

removed only at other end. So the information in this list is processed in same order as it was

received .Hence queue is called a FIFO structure.(First In First Out).

Ex: people waiting in a line at a bus stop.

The first person in queue is the first person to take bus. Whenever new person comes he joins

at end of the queue.

Type of queues

1. Linear Queue 2. Circular queue. 3. Priority queue 4.Deque

Linear Queue

It is a linear data structure.

It is considered as ordered collection of items.

It supports FIFO (First In First Out) property.

It has three components:

A Container of items that contains elements of queue.

A pointer front that points the first item of the queue.

A pointer rear that points the last item of the queue.

Insertion is performed from REAR end.

Deletion is performed from FRONT end.

Insertion operation is also known as ENQUEUE in queue.

Deletion operation is also known as DEQUEUE in queue.

Implementation of Queue

Queue can be implementing by two ways:

 Array implementation.(Static and Dynamic arrays)

 Linked List implementation.

Array Representation of Queue

In Array implementation FRONT pointer initialized with 0 and REAR initialized

with -1.Consider the implementation: - If there are 5 items in a Queue,

Note: In case of empty queue, front is one position ahead of rear : FRONT = REAR +

1;.This is the queue underflow condition.

The queue is full when REAR =N-1.This is the queue overflow condition.

The figure above ,the last case after insertion of three elements, the rear points to 4, and

hence satisfies the overflow condition although the queue still has space to accommodate one

more element .This problem can be overcome by making the rear pointer reset to the starting

position in the queue and hence view the array as a circular representation. This is called a

circular queue.

Implementation of queue using arrays

include <conio.h>

 # define MAX 5

int Q[MAX];

int front=0, rear=-1;

void insertQ() //Enqueue

{

int data;

if(rear == MAX-1)

 { printf("\n Linear Queue is full");

 return; }

 printf("\n Enter data: ");

scanf("%d", &data);

 Q[++rear] = data;

printf("\n Data Inserted in the Queue ");

}

void deleteQ() // dequeue

 { if(front>rear) //OR front=rear +1

{

 printf("\n\n Queue is Empty.."); return;

 }

 printf("\n Deleted element from Queue is %d", Q[front]);

 front++;

}

void displayQ()

{ int i;

 if(front >rear)

 { printf("\n\n\t Queue is Empty"); return; }

 printf("\n Elements in Queue are: ");

 for(i = front; i < rear; i++)

 printf("%d\t", Q[i]);

}

Circular Queue

In a normal Queue Data Structure, elements can be inserted until queue becomes full. But

once if queue becomes full, no more elements can be inserted until all the elements are

deleted from the queue. For example consider the queue below...

After inserting all the elements into the queue.

Now consider the following situation after deleting three elements from the queue...

This situation also says that Queue is Full and the new elementcannot be inserted because,

'rear' is still at last position. In above situation, even though we have empty positions in the

queue they cannot be used to insert new element. This is the major drawback in normal queue

data structure. This is overcome in circular queue data structure.

So what’s a Circular Queue?

A circular queue is linear data structure that contains a collection of data which allows

addition of data at the end of the queue and removal of data at the beginning of the queue.

Circular queues have a fixed size.Circular queue follows FIFO principle. Queue items are

added at the rear end and the items are deleted at front end of the circular queue.

A circular queue looks like

Note:
Note that the container of items is an array. Array is stored in main memory. Main memory is

linear. So this circularity is only logical. There cannot be physical circularity in main

memory.

Consider the example with Circular Queue implementation

Addition causes the increment in REAR. It means that when REAR reaches N-1 position then

Increment in REAR causes REAR to reach at first position that is 0.

1

2

3

4

 if(rear == N -1)

 rear = 0;

 else

 rear = rear + 1;

The short-hand equivalent representation may be

1 rear = (rear + 1) % N;

Deletion causes the increment in FRONT. It means that when FRONT reaches the N-1

position, then increment in FRONT, causes FRONT to reach at first position that is 0.

1

2

3

4

 if(front == N -1)

 front = 0;

 else

 front = front + 1;

The short-hand equivalent representation may be

front = (front + 1) % N;

In any queue it is necessary that:

Before insertion, fullness of Queue must be checked (for overflow).

Before deletion, emptiness of Queue must be checked (for underflow).

Use count variable to hold the current position (in case of insertion or deletion).

Operation of Circular Queue using count

 Addition or Insertion operation.

 Deletion operation.

 Display queue contents

Array Implementation of Circular Queue

#define MAX 4

int CQ[MAX], n;

int r = -1;

int f = 0,ct=0;

void enqueue() //function to insert an element to queue

{

 int key;

 if (ct == n)

 {

 printf("Queue Overflow\n");

 return;

 }

 printf("\nenter the element for adding in queue : ");

 r = (r+1)%n;

 scanf("%d", &key);

 CQ[r]=key;

 ct++;

}

void dequeue() //function to remove an element from queue

{

 if (ct == 0)

 {

 printf("Queue Underflow\n");

 return ;

 }

 printf("Element deleted from queue is : %d\n", CQ[f]);

 f=(f+1)%n;

 ct--;

}

void display()

{

 int i,k=f;

 if (ct == 0)

 {

 printf("Queue is empty\n");

 return;

 }

 printf("contents of Queue are :\n");

 for (i = 0; i < ct; i++)

 {

 printf("%d\t", CQ[k]);

 k=(k+1)%n;

 }}

Double ended queue (deck)

Double Ended Queue is also a Queue data structure in which the insertion and deletion

operations are performed at both the ends (front and rear). That means, we can insert at both

front and rear positions and can delete from both front and rear positions.

Double Ended Queue can be represented in TWO ways, those are as follows...

Input Restricted Double Ended Queue

Output Restricted Double Ended Queue

Input Restricted Double Ended Queue

In input restricted double ended queue, the insertion operation is performed at only one end

and deletion operation is performed at both the ends.

Output Restricted Double Ended Queue

In output restricted double ended queue, the deletion operation is performed at only one end

and insertion operation is performed at both the ends.

Deque is a variation of queue data structure, pronounced “deck”, which stands for double-

ended queue. In a deque values can be inserted at either the front or the back, A collection of

peas in a straw is a good example..

Queues and deques are used in a number of ways in computer applications. A printer, for

example, can only print one job at a time. During the time it is printing there may be many

different requests for other output to be printed. To handle this printer will maintain a queue

of pending print tasks. Since you want the results to be produced in the order that they are

received, a queue is the appropriate data structure.

For a deque the defining property is that elements can only be added or removed from the

end points. It is not possible to add or remove values from the middle of the collection.

Operations on deque

 Insertfront

 Deletefront

 INsertrear

 Deleterear

Deque Implementation

 Using arrays

 Linked list –Doubly linked list

Array Implementation of Deque

#include<stdio.h>

#define N 5

int dq[N],front=0,rear=-1,count=0;

//insert element at the rear end

void insertrear()

{

int key;

if (count==N)

 printf("overflow\n");

else

 {

 printf("enter the key to be inserted\n");

 scanf("%d",&key);

 rear=(rear+1)%N;

 dq[rear]=key;

 count++;

 }

}

//insert element at the front

void insertfront()

{

 int key;

 if (count==N)

 printf("overflow\n");

 else

 {

 printf("enter the key elemet\n");

 scanf("%d",&key);

 if (front==0)

 front=N-1;

 else

 front=front-1;

 dq[front]=key;

 count++;

 }}

//delete element from the front

 void deletefront()

 {

 if (count==0)

 printf("underflow\n");

 else

 {

 printf("element deleted is%d",dq[front]);

 front=(front+1)%N;

 count--;

 }

 }

//delete element from the rear end

 void deleterear()

 {

 if (count==0)

 printf("underflow\n");

 else

 {

 printf("%d is rear value\n",rear);

 printf("element deleted is %d",dq[rear]);

 if (rear==0)

 rear=N-1;

 else

 rear=rear-1;

 count--;

 }

 }

 void display()

 {

 int i,k;

 if (count==0)

 printf("empty queue\n");

 else

 {

 k=front;

 for(i=0;i<count;i++)

 {

 printf("%d\t",dq[k]);

 k=(k+1)%N;

 }

 }

 }

Deque Implementation using Doubly Linked List

#include<stdio.h>

struct deque

{

 int data;

 struct node *left;

 struct node *right;

};

 typedef struct deque node;

 node *start=NULL;

node *getnode()

 {

 node *newnode;

 newnode=(node *)malloc(sizeof(node));

 if (newnode==NULL)

 printf("error in memory alloc\n");

 printf("enetr data\n");

 scanf("%d",&newnode->data);

 newnode->left=newnode->right=NULL;

 return newnode;

 }

 void insertbegin()

 {

 node *n;

 n=getnode();

 if (start==NULL)

 {

 start=n;

 return;

 }

 n->right=start;

 start->left=n;

 start=n;

 }

 void traverse()

 {

 node *temp=start;

 if (temp==NULL)

 {

 printf("list empty\n");

 return;

 }

 while(temp!=NULL)

 {

 printf("%d",temp->data);

 temp=temp->right;

 }

 }

 void insertend()

 {

 node *temp=start;

 node *n;

 n=getnode();

 if (start==NULL)

 {

 start=n;return;

 }

 while(temp->right!=NULL)

 temp=temp->right;

 n->left=temp;

 temp->right=n;

 }

 void delbegin()

 {

 node *temp;

 if (start==NULL)

 {

 printf("list empty\n");

 return;

 }

 temp=start;

 start=temp->right;

 start->left=NULL;

 printf("the element to be deleted is %d",temp->data);

 free(temp);

 }

 void delend()

 {

 node *temp,*prev;

 if (start==NULL)

 {

 printf("list empty\n");

 return;

 }

 if (start->right==NULL)

 {

 printf("node deleted is %d",start->data);

 free(start);

 start=NULL;

 return;

 }

 temp=start;

 while(temp->right!=NULL)

{

 prev=temp;

 temp=temp->right;

}

prev->right=NULL;

printf("deleted info is %d",temp->data);

free(temp);

 }

Priority Queue:

A priority queue is a collection of elements such that each element has been assigned a

priority and such that the order in which elements are deleted and processed comes from the

following rules:

1. An element of higher priority is processed before any element of lower priority.

2. two elements with same priority are processed according to the order in which they were

added to the queue.

A prototype of a priority queue is time sharing system: programs of high priority are

processed first, and programs with the same priority form a standard queue.

Implementation of a Priority Queue

A priority queue can be implemented by creating a sorted or ordered list. A sorted list can be

used to store the elements so that when an element is to be removed, the queue need not be

searched for an element with the highest priority, since the element with the highest priority

is already in the first position. Insertions are handled by inserting the elements in order.

C Program to Implement Priority Queue to Add and Delete Elements

#include <stdio.h>

#define MAX 5

int pri_que[MAX];

int front=0, rear=-1;

/* Function to insert value into priority queue */

void insert_by_priority(int data)

{

 if (rear== MAX - 1)

 {

 printf("\nQueue overflow no more elements can be inserted");

 return;}

 if (rear == -1))

 {

 rear++;

 pri_que[rear] = data;

 }

 else

 check(data);

 rear++;

}

/* Function to check priority and place element */

void check(int data)

{

 int i,j;

 for (i = 0; i <= rear; i++)

 {

 if (data >= pri_que[i])

 {

 for (j = rear + 1; j > i; j--)

 pri_que[j] = pri_que[j - 1];

 pri_que[i] = data;

 return;

 }

 }

 pri_que[i] = data;

}

/* Function to delete an element from queue */

void delete_by_priority(int data)

{

 int i;

 if (rear==-1)

 {

 printf("\nQueue is empty no elements to delete");

 return;

 }

 printf(“The element deleted is %d”,pri_qui[front];

 front++;

 }

/* Function to display queue elements */

void display_pqueue()

{ int i;

 if (rear == -1))

 {

 printf("\nQueue is empty");

 return;}

 for (i=front; i <= rear; i++)

 {

 printf(" %d ", pri_que[i]);

 }

Linked Representation of a Priority Queue

A priority queue can be implemented using linked lists. When a priority queue is

implemented as a linked list, then every node of the list has three fields (1)the data part

(2)The priority number of the element(3)the address of the next element.

Implementation of priority queue

struct pqueue

{

int priority;

int info;

struct node *next;

};

typedef struct pqueue node;

node *start=NULL;

void insert(int item,int item_priority)

{

struct node *new1,*temp;

new1=(struct node *)malloc(sizeof(struct node));

if(start==NULL)

{

printf(“Memory not available\n”);

return;

}

new1->info=item;

new1->priority=item_priority;

/*Queue is empty or item to be added has priority more than first element*/

if(start==NULL || item_priority < start->priority)

{

new1->next=start;

start=new1;

}

else

{

temp =start;

while(temp->next!=NULL && temp->next->priority<=item_priority)

temp=temp->next;

new1->next=temp->next;

temp->next=new1;

}

}/*End of insert()*/

void del()

{

struct node *temp;

if(start==NULL)

{

printf(“Queue Underflow\n”);

}

else

{

temp=start;

printf(“the deleted element is %d”,temp->info);

start=start->next;

free(temp);

}

}/*End of del()*/

 Applications of Queue:

1. It is used to schedule the jobs to be processed by the CPU.

2. When multiple users send print jobs to a printer, each printing job is kept in the printing

queue. Then the printer prints those jobs according to first in first out (FIFO) basis.

3. Breadth first search uses a queue data structure to find an element from a graph.

Multiple stacks

A sequential representation of a single stack using array is simple since only the top of the

stack needs to be maintained and kept track. A linear structure like array can be used to

represent multiple stacks. If multiple stacks are to be implemented, the array can be

approximately divided into equal sized segments, each segment denoting a stack. The top and

bottom of each stack are to be kept track of to manage insertions and deletions into the

individual stacks.

Consider a set of N stacks to be implemented sunig an array. The array can be divided into N

equal sized segments .

Say if the array can hold 20 elements, and 4 stacks are to be implemented then each

individual stack hold 5 elements.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19

stack 0 stack 1 stack 2 stack 3

tos[0]=-1,b[0]=-1 tos[1]=b[1]=4 tos[2]=b[2]=9 tos[3]=b[3]=14

If i denotes an individual stack ,to establish multiple stacks, an array of top(tos[i])and bottom

pointers (b[i])are maintained to keep track of the top and bottom of every stack.

Every stack‘s bottom and top pointer is set to B[i]=tos[i]=(size/n)*i-1 which enables

dividing the stack to be divided into equal sized segments.

Overflow in any stack

 tos[i]=b[i+1] // top pointer of one stack points to the bottom position of the following stack

Underflow in any stack

tos[i]=b[i] //top and bottom pointer of a stack in the same position

Implementation of multiple stacks using array

#define memsize 20 //size of array

#define maxstack 4 //number of stacks

int s[memsize],tos[maxstack],b[maxstack],n;

int main()

{

int i;

scanf(“%d”,&n); //number of stacks

for(i=0;i<n;++)

 tos[i]=b[i]=(memsize/n)*i-1;

b[n]=memsize-1;

// use switch case to call the different operations push, pop and display

}

void push()

{

 int ele;

scanf(“%d”,&i); //stack number on which operation is to be done

if (tos[i]==b[i+1])

{ printf(“stack %d is full”, i);return;}

printf(“enter the value to be inserted\n”);

scanf(“%d”,&ele);

s[++tos[i]]=ele;

}

void pop()

{

printf(“enter the stack number\n”);

scanf(“%d”,&i);

if (tos[i]==b[i])

 {

 printf(“empty stack\n”);return;}

printf(“deleted element is %d”,s[tos[i]--];

}

void disp()

{

printf(“enter the stack number\n”);

scanf(“%d”,&i);

if (tos[i]==b[i])

 {

 printf(“empty stack\n”);return;}

printf(“contents are \n”);

for(j=b[i]+1;j<=tos[i];j++)

 printf(“%d”,s[j]);

}

 Prepared by

 Geetha.P,Asst Professor

Pankaja K, Asso Professor

Dept of CSE,CiTech

DO IT NOW.................SOMETIMES “LATER” BECOMES “NEVER”.THERE IS NO

SUBSTITUTE FOR HARD WORK!!!

 GOOD LUCK!!!!

Source : diginotes.in

MODULE 3

LINKED LISTS

Linked list is a linear data structure that consists of a sequence of elements where
each element (usually called a node) comprises of two items - the data and a
reference (link) to the next node. The last node has a reference to null. The entry
point into a linked list is called the head (start) of the list. It should be noted that
head is not a separate node, but the reference to the first node. If the list is empty
then the start is a null reference. The list with no nodes –empty list or null list.

Note: The head is a pointer which points to the first node in the list. The
implementation in the class, it has been discussed with the pointer’s name as
start. Head or start refers to the starting node.

A linked list is a dynamic data structure. The number of nodes in a list is not fixed
and can grow and shrink on demand. Any application which has to deal with an
unknown number of objects will need to use a linked list.

Arrays –drawbacks

(1)The size of the arrays is fixed: So we must know the upper limit on the number
of elements in advance. (static in nature)

(2) Inserting and a new element in an array of elements is expensive, because room
has to be created for the new elements and to create room existing elements have to
shifted. Same holds good for deletion also.

Advantages of linked list:
Efficient memory utilization: The memory of a linked list is not pre-allocated.
Memory can be allocated whenever required. And it is de-allocated when it is no
longer required.

Insertion and deletion operations are easier and efficient:
Linked list provide flexibility in inserting a data item at a specified position and
deletion of a data item from the given position.

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

Extensive manipulation:
We can perform any number of complex manipulations without any prior idea of
the memory space available. (i.e. in stacks and queues we sometimes get overflow
conditions. Here no such problem arises.)
Arbitrary memory locations
Here the memory locations need not be consecutive. They may be any arbitrary
values. But even then the accessing of these items is easier as each data item
contains within itself the address to the next data item. Therefore, the elements in
the linked list are ordered not by their physical locations but by their logical links
stored as part of the data with the node itself.

As they are dynamic data structures, they can grow and shrink during the execution
of the
program

Disadvantages of linked lists

 They have a tendency to use more memory due to pointers requiring extra
storage space.

 Nodes in a linked list must be read in order from the beginning as linked lists
are inherently sequentially accessed.(cannot be randomly accessed)

 Nodes are stored incontiguously, greatly increasing the time required to
access individual elements within the list.

 Difficulties arise in linked lists when it comes to reverse traversing. For
instance, singly linked lists are cumbersome to navigate backwards[1] and
while doubly linked lists are somewhat easier to read, memory is wasted in
allocating space for a back pointer.

Note : No particular data structure is the best. The choice of the data structure
depends on the kind of application that needs to be implemented. While
for some applications linked lists may be useful, for others, arrays may
be useful.

Operations on linked lists

 Creation of a list

Creation operation is used to create a linked list. Once a linked list is
created with one node, insertion operation can be used to add more
elements in a node.

 Insertion of an element into a linked list

Insertion operation is used to insert a new node at any specified
location in the linked list. A new node may be inserted.

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

https://en.wikipedia.org/wiki/Linked_list#cite_note-1

Source : diginotes.in

(a) At the beginning of the linked list
(b) At the end of the linked list
(c) At any specified position in between in a linked list

 Deletion of a node from the linked list

Deletion operation is used to delete an item (or node) from the linked
list. A nodemay be deleted from the
(a) Beginning of a linked list
(b) End of a linked list
(c) Specified location of the linked list

 Traversing and displaying the elements in the list

Traversing is the process of going through all the nodes from one end
to another end of a linked list. In a singly linked list we can visit from
lptr to rptr, forward traversing,nodes only. But in doubly linked list
forward and backward traversing is possible

 Counting the number of elements in the list
 Searching for an element in the list
 Merging two lists(Concatenating lists)

Merging is the process of appending the second list to the end of the
first list. Consider a list A having n nodes and B with m nodes. Then
the operation concatenation will place the 1st node of B in the (n+1)th
node in A. After concatenation A will contain (n+m) nodes

Linked List Basic Operations

INsertBegin

The method creates a node and inserts it at the beginning of the list.

Traversing

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

Start with the head and access each node until you reach null. Do not change the
head reference.

INsertend

The method appends the node to the end of the list. This requires traversing, but
make sure you stop at the last node

Inserting "after"

Find a node containing "key" and insert a new node after it. In the picture below,
we insert a new node after "E":

Inserting "before"

Find a node containing "key" and insert a new node before that node. In the picture
below, we insert a new node before "A":

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

For the sake of convenience, we maintain two references prev and cur. When we
move along the list we shift these two references, keeping prev one step before cur.
We continue until cur reaches the node before which we need to make an insertion.
If cur reaches null, we don't insert, otherwise we insert a new node between prev
and cur.

Deletion

Find a node containing "key" and delete it. In the picture below we delete a node
containing "A"

The algorithm is similar to insert "before" algorithm. It is convinient to use two
references prev and cur. When we move along the list we shift these two references,
keeping prev one step before cur. We continue until cur reaches the node which we
need to delete. There are three exceptional cases, we need to take care of:

1. list is empty
2. delete the head node
3. node is not in the list

Type of linked lists

Depending on the way in which the links are used to maintain adjacency, several
different types of linked lists are possible

1. Singly linked list
2. Doubly linked list
3. Circular linked list

Singly linked list

In a singly linked list, each node except the last one contains a single pointer to the
next element.The last node has a null pointer to indicate the termination of the list.

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

Doubly Linked List

A doubly linked list is a linked data structure that consists of a set of sequentially
linked nodes. Each node contains two fields, called links, that are references to the
previous and to the next node in the sequence of nodes. The beginning and ending
nodes' previous and next links, respectively, point to NULL, to facilitate traversal
of the list.

The two node links allow traversal of the list in either direction. While adding or
removing a node in a doubly linked list requires changing more links than the same
operations on a singly linked list, but the operations are simpler and more efficient
(for nodes other than first nodes) because there is no need to keep track of the
previous node during traversal or no need to traverse the list to find the previous
node, so that its link can be modified.

Double-linked lists require more space per node , and their elementary operations
are more expensive; but they are often easier to manipulate because they allow
sequential access to the list in both directions. In particular, one can insert or delete
a node in a constant number of operations given only that node's address.
(Compared with singly- , which require the previous node's address in order to
correctly insert or delete.) Some algorithms require access in both directions.

CIRCULAR LINKED LIST

In a circularly-linked list, the first and final nodes are linked together. This can be
done for both singly and doubly linked lists. To traverse a circular linked list, you
begin at any node and follow the list in either direction until you return to the
original node. Viewed another way, circularly-linked lists can be seen as having no
beginning or end. This type of list is most useful for managing buffers for data
ingest, and in cases where you have one object in a list and wish to iterate through

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

https://en.wikipedia.org/wiki/Reference_(computer_science)
https://en.wikipedia.org/wiki/Field_(computer_science)
https://en.wikipedia.org/wiki/Node_(computer_science)

Source : diginotes.in

all other objects in the list in no particular order.Note that a circular lisr does not
have a natural “first” or a “last” node. There is no NULL at the end. A circular
linked list can be a singly circular linked list or doubly circular linked list.

Convention(usual practice)
Let a pointer(last) point to last node of circular list and allow the following node to
be the first node. If last is pointer to the last node of the circular list, the last node
can be referenced by the last pointer and the first node by referencing last->next. If
last ==NULL, it indicates an empty list

Advantages of Circular Linked Lists:
1) Any node can be a starting point. We can traverse the whole list by starting from
any point. We just need to stop when the first visited node is visited again.

2) Circular lists are useful in applications to repeatedly go around the list. For
example, when multiple applications are running on a PC, it is common for the
operating system to put the running applications on a list and then to cycle through
them, giving each of them a slice of time to execute, and then making them wait
while the CPU is given to another application. It is convenient for the operating
system to use a circular list so that when it reaches the end of the list it can cycle
around to the front of the list.

3) Multiplayer board games can be implemented using circular lists where each
player waits for his turn to play in a circular fashion.

Header Linked List.

A header linked list is a linked list which always contains a special node called the

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

header node at the beginning of the list. It is an extra node kept at the front of a list.
Such a node does not represent an item in the list. The information portion might
be unused. There are two types of header list

1. Grounded header list: is a header list where the last node contains the null
pointer.

2. Circular header list: is a header list where the last node points back to the
header node.

More often , the information portion of such a node could be used to keep global
information about the entire list such as:

 number of nodes (not including the header) in the list count in the header node
must be adjusted after adding or deleting the item from the list

 pointer to the last node in the list it simplifies the representation of a queue
 pointer to the current node in the list eliminates the need of a external pointer

during traversal

Circular Singly Linked Lists

IN a singly linked circular list, the pointer field of the last node stores the address of
the starting node
In the list.Hence it is easy to traverse the list given the address of any node in the list.

Circular Doubly Linked List

A circular, doubly-linked list is shown in Figure . The last element of the list is made
the predecessor of the first node,and the first element is the successor of the last. We
no longer need both a head and tail variable to keep track of the list. Even if only a
single variable is used, both the first and the last list elements can be found.

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

1. Implementation of Singly linked list

#include<stdio.h>
#include<stdlib.h>
struct SLL
{

char info;
struct SLL *next;

};
typedef struct SLL node;
node *start;

node *getnodeSLL()
{

node *newnode;
new1=(node*)malloc(sizeof(node));
printf(“\n Enter the data”);
scanf(“%d”, &new1->info);
new1->next=NULL;
return new1;

}

void insert_front()
{

node *n1;
n1=getnodeSLL();
if(start==NULL)
{

start=n1;
return;

}
n1->next=start;
start=n1;

}

void delete_front()
{

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

node *temp = start;
if(start==NULL)
{

printf(“\n List is empty”);
return;

}
printf(“\nt%d\t is deleted ”,temp->info);
start=temp->next;
free(temp);
}

}

void insert_end()
{

node *n1,*temp = atsrt;
n1=getnodeSLL();
if(start==NULL)
{

start=n1;
return;

}
while(temp-> next!=NULL)

temp=temp->next;

temp->next=n1;
}

void delete_end()
{

node *temp=start, *prev;
if(start==NULL)
{

printf(“\n Empty list”);
return;

}
if(start->next==NULL)
{

printf(“\nt%d\t is deleted”,start->info);
free(start);
start=NULL; return;

}
while(temp->next != NULL)
{

prev = temp;

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

temp = temp->next;
}
prev->next = NULL;
printf(“\nThe deleted node is %d\t”, temp->info);
free(temp);

}

void display()
{

node *temp=start;
if(start==NULL)
{

printf(“\n Empty list”);
return;

}
printf(“\n The details are”);
while(temp!=NULL)
{

printf(“\n %d\t”,temp->info);
temp=temp->next;

}

}

int main()
{

int n,m,i;
while(1)
{

printf(“\n Enter 1:insert_front\n 2:insert_end\n 3:delete_front\n
4:delete_end\n 5:display”);
scanf(“%d”,&m);
switch(m)
{

case1: insert_front(); break;
case 2: insert_end();break;
case 3: delete_front();break;
case 4 : delete_end();break;
case 5:display();break;
case 6: exit(0);

}

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

}
return 0;

}

2. Implementation of Doubly Linked list

#include<stdio.h>
#include<stdlib.h>
struct DLL
{

int info;
struct DLL *lptr,*rptr;

};
typedef struct DLL node;
node *start=NULL;

node *getnodeDLL()
{

node *new1;
new1=(node*)malloc(sizeof(node));
printf(“\n Enter the data”);
scanf(“%d”, &new1->info);
new1->lptr=NULL;
new1->rptr=NULL;
return new1;

}

void insert_front()
{

node *n;
n=getnodeDLL();
if(start == NULL)
{

start = n;
return;

}
n->rptr=start;
start->lptr=n;
start=n;

}

void delete_front()

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

{
node *temp = start;
if(start==NULL)
{

printf(“\n List is empty”);
return;

}
printf(“\nt%d\t is deleted ”,temp->info);
start=temp->rptr;
start->lptr=NULL;
free(temp);

}

void insert_end()
{

node *n1,*temp = start;
n1=getnodeDLL();
if(start==NULL)
{

start=n1;
return;

}
while(temp->rptr!=NULL)

temp=temp->rptr;

temp->rptr=n1;
n1->lptr=temp;

}

void delete_end()
{

node *temp =start;
if(start==NULL)
{

printf(“\n Empty list”);
return;

}
if(start->next==NULL)
{

printf(“\nt%d\t is deleted”,start->info);
free(start);
start=NULL; return;

}

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

while(temp->rptr!=NULL)
temp=temp->rptr;

(temp->lptr)->rptr=NULL;
printf(“\nThe deleted node is %d\t”, temp->info);
free(temp);

}

void traverse()
{

node *temp = start;
if(start==NULL)
{

printf(“\n Empty list”);
return;

}
printf(“\n The details are”);
while(temp!=NULL)
{

printf(“\n %d\t”,temp->info);
temp=temp->rptr;

}

}

int main()
{

int n,m,i;
while(1)
{

printf(“\n Enter 1:insert_front\n 2:insert_end\n 3:delete_front\n
4:delete_end\n 5:display”);
scanf(“%d”,&m);
switch(m)
{

case1: insert_front(); break;
case 2: insert_end();break;
case 3: delete_front();break;
case 4 : delete_end();break;
case 5:traverse();break;
case 6: exit(0);

}
}

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

return 0;
}

3. Implementation of Circular Singly Linked list using last pointer

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>

struct CSLL
{
 int info;
 struct CSLL *next;
};
typedef struct CSLL node;
node *last = NULL;

void insert_begin()
{
 node *new1;

 new1 = getnodeSLL();
 if (last == NULL)
 {
 last =new1;
 last->next = last;
 return;
 }
 new1 -> next = last->next;
 last -> next = new1;

}

void insert_end()
{
 node *new1;
 new1 = getnodeSLL();
 if (last == NULL)
 {
 last =new1;
 last->next = last;

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

 return;
 }
 new1 -> next = last->next;
 last->next = new1;
 last = new1;
}

void del_end()
{
 node *prev,*temp=last->next;
 if (last == NULL)
 {
 printf("\n empty");
 return;
 }

 if (last->next == temp->next)
 {
 printf("deleted item is %d ", last->info);
 free(last);
 last = NULL;
 return;

 }
 printf("deleted item is %d ", last->info);
 while(temp->next != last)
 temp=temp->next;

 temp->next = last->next;
 free(last);
 last = temp;
}

void display()
{
 node *temp = last->next;
 if(last == NULL)
 {
 printf("list empty\n");
 return;
 }
 do
 {
 printf("%d ",temp->info);

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

 temp=temp->next;
}while(temp != last->next);

}

main()
{
 int choice; clrscr();
 while (1)
 {

printf("\n1.Insert_beg\n 2.Isert_end\n 3.del end \n 4. Display\n 5.Quit\n");
printf("Enter your choice : ");
scanf("%d", &choice);
switch (choice)
{
 case 1: insert_begin();
 break;
 case 2: insert_end();
 break;
 case 3: del_end();
 break;
 case 4: display();
 break;
 case 5: exit(1);
 default:

 printf("Wrong choice\n");
}

 }
 getch();
}

4. Program to implement Addition of two polynomials with 3 variables in each
term. Use Circular Singly Linked List with header node.

#include<stdio.h>
#include<conio.h>
#include<math.h>
struct poly
{
 int coef, expo1,expo2,expo3,flag;
 struct poly *next;
};
typedef struct poly node;

void insert_end(node *h, int a, int x, int y, int z)

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

{
 node *temp = h->next, *new1;
 new1 = (node*) malloc(sizeof(node));
 new1->coef = a;
 new1->expo1 = x;
 new1->expo2 = y;
 new1->expo3 = z;
 new1->flag=0;
 while(temp->next != h)
 temp = temp -> next;

 temp -> next = new1;
 new1 -> next = h;
}

void read_poly(node *head)
{
 int a,x,y,z;
 char ch;
 do
 {
 printf("\nenter coef & expo1, expo2, expo3\n");
 scanf("%d%d%d%d",&a,&x,&y,&z);
 insert_end(head,a,x,y,z);
 printf("do u want to continue(Y/N) ?");
 ch=getche();
 }while(ch == 'Y' || ch == 'y');
}

void add_poly(node *h1,node *h2,node *h3)
{
 node *p1=h1->next, *p2;
 int x;

 while(p1 != h1)
 {
 p2 = h2 -> next;
 while(p2 != h2)
 {
 if(p1->expo1 == p2->expo1 && p1->expo2 == p2->expo2 && p1->expo3

== p2->expo3)
 {

x = p1->coef + p2->coef;
insert_end(h3,x,p1->expo1,p1->expo2,p1->expo3);

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

p1->flag=1;
p2->flag=1;

 }
 p2 = p2->next;

 }
 p1 = p1 -> next;

 }
 p1=h1->next;
 p2=h2->next;

 while(p1 != h1)
 {
 if(p1 -> flag==0)

 insert_end(h3, p1->coef, p1->expo1, p1->expo2, p1->expo3);
 p1 = p1 -> next;
 }

 while(p2 != h2)
 {
 if(p2 -> flag == 0)

 insert_end(h3,p2->coef,p2->expo1, p2->expo2, p2->expo3);
 p2 = p2->next;
 }
}

void display(node *h)
{
 node *temp = h->next;
 if(temp == h)
 {
 printf("list empty\n");
 return;
 }
 while(temp != h)
 {
 printf(" %+ dx^%dy^%dz^%d ",temp->coef,temp->expo1,temp->expo2,temp-
>expo3);
 temp=temp->next;
 }
}

void evaluate(node *h)
{

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

int x,y,z,sum=0;
node *temp = h->next;
printf("\nEvauate the resultant polynomial by giving values for X, Y and Z");
scanf("%d%d%d",&x,&y,&z);
while(temp != h)
{

sum = sum + temp->coef * pow(x,temp->expo1) * pow(y,temp-
>expo2) * pow(z,temp->expo3);

temp = temp->next;
}
printf("\nSum = %d",sum);

}

main()
{
 node *h1,*h2,*h3;
 clrscr();
 h1 = (node*) malloc(sizeof(node));
 h1->next = h1;
 h2 = (node*) malloc(sizeof(node));
 h2->next = h2;
 h3 = (node*) malloc(sizeof(node));
 h3->next = h3;
 printf("\nenter the first poly");
 read_poly(h1);
 printf("\nenter the second poly");
 read_poly(h2);
 add_poly(h1,h2,h3);
 printf("\nTHE FIRST POLY IS\n");
 display(h1);
 printf("\nTHE SEC POLY IS\n");
 display(h2);
 printf("\nADDition of TWO poly are\n");
 display(h3);
 evaluate(h3);
 getch();
}

5. Write function for inserting a new node before the key element in DLL*/
void ins_node_bef_Key()
{

node *temp=start,*new1;
int key;

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

if(start == NULL)
{

printf("Insertion is not possible\n");
return;

}
printf("Enter the key\n");
scanf("%d",&key);
if(start->info==key)
{

insert_front();
return;

}
while(temp!=NULL && temp->info!=key)

temp=temp->rptr;

if(temp==NULL)
{

printf("Key not found\n");
return;

}
new1=getnode();
(temp->lptr)->rptr=new1;
new1->lptr=temp->lptr;
new1->rptr=temp;
temp->lptr=new1;

}

6. Write function to delete the key element in DLL*/

void del_key()
{

node *temp=start;
int key;
if(start == NULL)
{

printf("Deletion not possible\n");
return;

}
printf("Enter the key to be deleted\n");
scanf("%d",&key);
if(start->info == key)

 {
printf("\n deleted element is %d ", start->info);
start=start->rptr;

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

free(temp);
return;

 }

while(temp!=NULL&&temp->info!=key)
temp=temp->rptr;

if(temp ==NULL)
{

printf("Key not found”);
return;

}
(temp->lptr)->rptr=temp->rptr;
(temp->rptr)->lptr=temp->lptr;
printf("The deleted element is %d",temp->info);
free(temp);
return;

}

7. Write function for concatenation of two lists
 Assuming two linked lists are created with start1 pointing to 1st list and start2
pointing to 2nd list

node * concat(node *start1, node *start2)
{
 node *temp = start1;
 if(start1 == NULL)

return (start2);
 if(start2 == NULL)

return(start1);
 if(start1 == NULL && start2 == NULL)
 {
 Printf(“list is empty”);

return;
 }
 While (temp -> next != NULL)

temp = temp -> next;

 temp -> next = start2;
 return (start1);
}

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

8. Function to reverse SLL
void reverse()
{
 node *temp, *prev = NULL;

while(start != NULL)
{

temp = start;
start = start -> next’
temp -> next = prev;
prev = temp;

}
start = temp;

}

9. Function to display nodes in reverse order in DLL
void display()
{
 node *temp = start;

while(temp -> rptr != NULL)
temp = temp -> rptr;

 while(temp != NULL)
{

printf(“%d”,temp->info);
temp = temp -> lptr;

 }
}

10. Write function to delete all nodes in SLL & DLL
void del_all()
{

node *temp = start;
if(start == NULL)
{

printf(“list is empty”);

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

return;
}
while(temp != NULL)
{

start = start -> next;
printf(“ %d deleted from the list ”,temp -> info);
free(temp);
temp = start;

}
}

11. Write a program to implement queue using Singly linked list:
 Method I
 You should make use of Insert_front(), Delete_End() and Display() functions
 Method II
 Insert_End(), Delete_front and Display()

12. Write a program to implement stack using Singly linked list:
 Method I
 You should make use of Insert_front(), Delete_Front() and Display() functions
 Method II
 Insert_End(), Delete_End() and Display()

13. To find the length of the list
 void length()
 {
 node *temp = start;
 while(temp!=NULL)

{
 temp=temp->next;

 cnt++;
}
printf(“ length of list are %d”, cnt);

 }

14. To display odd and even nodes in the list along with its count

void odd_even_inlist()

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

 {
 node *temp = start;
 printf(“ even nodes are \n”);
 while(temp!=NULL)
 {

 if(temp -> info % 2 == 0)
{

 printf(“ %d “, temp -> info);
 even++;

 }
 temp = temp -> next;
 }
 temp = start;
 printf(“ odd nodes are \n”);
 while(temp!=NULL)
 {

 if(temp -> info % 2 != 0)
{

 printf(“ %d “, temp -> info);
 odd++;

 }
 temp = temp -> next;
 }
 printf(“ Even and odd num are %d & %d “, even,odd);
 }

15. To search for a given node in the SLL and display the status

void search_key()
{

int key;
node *new1,*prev,*temp = start;
if(start == NULL)
 {
 printf("empty ");
 return;
 }

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

printf("enter the key");
scanf("%d",&key);
while(temp != NULL && temp->info != key)
 {
 prev = temp;
 temp = temp->next;
 }

 if(temp == NULL)
 {
 printf("key not found");
 return;
 }
 printf(" key found");

}

16. write a function to insert a node before key element in SLL

void ins_node_before_key()
{

int key;
node *new1,*prev,*temp = start;
if(start == NULL)
 {
 printf("insertion not possible ");
 return;
 }

printf("enter the key");
scanf("%d",&key);
while(temp != NULL && temp->info != key)
 {
 prev = temp;
 temp = temp->next;
 }

 if(temp == NULL)

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

 {
 printf("key not found");
 return;
 }

 new1 = getnode();
 if(start->info == key)
 {
 new1->next = start;
 start = new1;
 return;
 }

 new1->next = temp;
 prev->next = new1;

}

17. write a function to delete a key node in SLL

void del_key()
{

int key;
node *new1,*prev,*temp = start;

if(start == NULL)
 {
 printf("list empty ");
 return;
 }
printf("enter the key to be deleted");
scanf("%d",&key);
while(temp != NULL && temp->info != key)
 {
 prev = temp;
 temp = temp->next;
 }

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

 if(temp == NULL)
 {
 printf("key not found");
 return;
 }
 if(start->info == key)
 {
 start=start->next;
 free(temp);
 return;
 }

 if(temp->info == key && temp->next == NULL)
 {
 free(temp);
 prev->next=NULL;
 return;
 }

 prev->next = temp->next;
 free(temp);

}

18. Create SLL of integers and write C functions to perform the following
a. Create a node list with data 10,20 and 30
b. Insert a node with value 15 in between 10 and 20
c. Delete the node whose data is 20
d. Display the resulting SLL

struct sll
{

int info;
struct sll *next;

};
typedef struct sll node;
node *start = NULL;

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

void ins_front()
{
 node *new1;
 new1=getnode();
 new1->next = start;
 start=new1;
}

void ins_key_bef20()
{

int key;
node *new1,*prev,*temp = start;
if(start == NULL)
 {
 printf("insertion not possible ");
 return;
 }
while(temp != NULL && temp->info != 20)
 {
 prev = temp;
 temp = temp->next;
 }
 new1 = getnode(); /* 15 is stored in new1->info*/
 new1->next = temp;
 prev->next = new1;

}

void del_key20()
{

int key;
node *new1,*prev,*temp = start;

if(start == NULL)
 {
 printf("list empty ");
 return;

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

 }
while(temp != NULL && temp->info != 20)
 {
 prev = temp;
 temp = temp->next;
 }
 prev->next = temp->next;
 free(temp);

}

void display()
{

node *temp=start;
 if(start == NULL)

{
printf("The sll is empty");
return;

}
printf("The contents of sll are \n");
while(temp!=NULL)
{
 printf("%d \n",temp->info);
 temp=temp->next;

 }
}

int main()
{

int choice,n,i;
clrscr();
 while(1)
 {

printf("1. insert begin\t 2.insert key\t 3. Del key\t 4. Display \t 5.
Exit\n");
scanf("%d",&choice);
switch(choice)
{

case 1: for(i=0;i<3;i++)

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

Source : diginotes.in

 ins_front(); /* this function is called 3 times with values
entered first entered as 30 then 20 and
last 10*/

 break;
case 2:ins_key_bef20();break;
case 3:del_key20();break;
case 4:display();break;
case 5:printf("Exiting ... \n");exit(1);

break;
default : printf("Invalid choice\n");

}
}

}

 ---------------------------------o-----------------------------------

Prepared By CiTech
Ms. Pankaja K and Ms. Geetha P

DATA STRUCTURES APPLICATIONS 15CS33

MODULE 4

TREES

In linear data structure, data is organized in sequential order and in non-linear data structure, data is

organized in random order. Tree is a very popular data structure used in wide range of applications. A tree

data structure can be defined as follows...

Tree is a non-linear data structure which organizes data in hierarchical fashion and the tree structure follows

a recursive pattern of organizing and storing data.

Every individual element is called as Node. Node in a tree data structure, stores the actual data of that

particular element and link to next element in hierarchical structure.

if there are N number of nodes in a tree structure, then there can be a maximum of N-1 number of links.

Example

1. Root

In a tree data structure, the first node is called as Root Node. Every tree must have root node. We can say that

root node is the origin of tree data structure. In any tree, there must be only one root node. We never have

multiple root nodes in a tree. Ex: ‘A’ in the above tree

2. Edge

In a tree data structure, the connecting link between any two nodes is called as EDGE. In a tree with 'N'

number of nodes there will be a maximum of 'N-1' number of edges. Ex: Line between two nodes.

3. Parent

In a tree data structure, the node which is predecessor of any node is called as PARENT NODE. In simple

words, the node which has branch from it to any other node is called as parent node. Parent node can also be

defined as "The node which has child / children".

Ex: A,B,C,E & G are parent nodes

4. Child

In a tree data structure, the node which is descendant of any node is called as CHILD Node. In simple words,

the node which has a link from its parent node is called as child node. In a tree, any parent node can have any

number of child nodes. In a tree, all the nodes except root are child nodes.Ex: B & C are children of A, G &

H are children of C and K child of G

5. Siblings

In a tree data structure, nodes which belong to same Parent are called as SIBLINGS. In simple words, the

nodes with same parent are called as Sibling nodes.Ex: B & C are siblings, D, E and F are siblings, G & H

are siblings, I & J are siblings

6. Leaf

In a tree data structure, the node which does not have a child is called as LEAF Node. In simple words, a leaf

is a node with no child. In a tree data structure, the leaf nodes are also called as External Nodes. External

node is also a node with no child. In a tree, leaf node is also called as 'Terminal' node.Ex: D,I,J,F,K AND

Hare leaf nodes

7. Internal Nodes

In a tree data structure, the node which has atleast one child is called as INTERNAL Node. In simple words,

an internal node is a node with atleast one child.

In a tree data structure, nodes other than leaf nodes are called as Internal Nodes. The root node is also said to

be Internal Node if the tree has more than one node. Internal nodes are also called as 'Non-Terminal' nodes.

Ex: A,B,C,E & G

8. Degree of a node

In a tree data structure, the total number of children of a node is called as DEGREE of that Node. In simple

words, the Degree of a node is total number of children it has. The highest degree of a node among all the

nodes in a tree is called as 'Degree of Tree'.Ex: Degree of B is 3, A is 2 and of F is 0

9. Level of a node

In a tree data structure, the root node is said to be at Level 0 and the children of root node are at Level 1 and

the children of the nodes which are at Level 1 will be at Level 2 and so on... In simple words, in a tree each

step from top to bottom is called as a Level and the Level count starts with '0' and incremented by one at each

level (Step).

10. Height

In a tree data structure, the total number of egdes from leaf node to a particular node in the longest path is

called as HEIGHT of that Node. In a tree, height of the root node is said to be height of the tree. In a tree,

height of all leaf nodes is '0'.

11. Depth

In a tree data structure, the total number of egdes from root node to a particular node is called as DEPTH of

that Node. In a tree, the total number of edges from root node to a leaf node in the longest path is said to be

Depth of the tree. In simple words, the highest depth of any leaf node in a tree is said to be depth of that tree.

In a tree, depth of the root node is '0'.

12. Path

In a tree data structure, the sequence of Nodes and Edges from one node to another node is called as PATH

between the two Nodes. Length of a Path is total number of nodes in that path. In below example the path A -

B - E - J has length 4.

13. Sub Tree

In a tree data structure, each child from a node forms a subtree recursively. Every child node will form a

subtree on its parent node.

The ancestors of a node are all the nodes along the path from the root to that node.

 Ex: ancestor of j is B & A

A forest is a set of n 0 disjoint trees. The notion of a forest is very close to that of a tree because if we

remove the root of a tree we get a forest. For example, in figure 1 if we remove A we get a forest with three

trees.

General Tree Representations

A general Tree Structure can be represented with the following three methods. Those methods are as

follows...

1. List Representation

2. Left Child - Right Sibling Representation

3. Degree two Representation (Binary Tree Representation)

Consider the following tree...

1. List Representation

There are several ways to draw a tree. One useful way is as a list. The tree in the above figure could be

written as the list (A(B(D,E(I,J),F),C(G(K),H)) – list representation (with rounded brackets).The

information in the root node comes first followed by a list of the subtrees of that node.Now, how do we

represent a tree in memory? If we wish to use linked lists, then a node must have a varying number of fields

depending upon the number of branches.

Possible node structure for a tree of degree k called k-ary tree

Each link field is used to point to a subtree. This node structure is cumbersome for the following reasons (1)

Multiple node structure for different tree nodes (2) Waste of space (3) Excessive use of links.

The other alternate method is to have linked list of child nodes which allocates memory only for the nodes

which have children.

In this representation, we use two types of nodes, one for representing the node with data and another for

representing only references. We start with a node with data from root node in the tree. Then it is linked to an

internal node through a reference node and is linked to any other node directly. This process repeats for all

the nodes in the tree.

The above tree example can be represented using List representation as follows...

2. Left Child - Right Sibling Representation

In this representation, we use list with one type of node which consists of three fields namely Data field, Left

child reference field and Right sibling reference field. Data field stores the actual value of a node, left

reference field stores the address of the left child and right reference field stores the address of the right

sibling node. Graphical representation of that node is as follows...

In this representation, every node's data field stores the actual value of that node. If that node has left child,

then left reference field stores the address of that left child node otherwise that field stores NULL. If that

node has right sibling then right reference field stores the address of right sibling node otherwise that field

stores NULL. The above tree example can be represented using Left Child - Right Sibling representation as

follows...

Data link1 link2 link k

3. Degree two tree (Binary Tree)

The left child-right sibling representation can be converted to a degree two tree by simply rotating the right

sibling pointers clockwise by 45 degrees.IN this representation, the two children of a node are called the left

child and the right child. It is equivalent to converting a normal tree to binary tree. Degree two trees or left

child-right child trees are nothing but binary trees.

 Root of the general tree is the root of the binary tree.

 The first child node of any node in the general tree remains as the left subtree’s root in the binary

tree.Its right sibling in general tree becomes the right child node.

Note: refer notes for examples.

Binary Tree

In a general tree, every node can have arbitrary number of children. Binary tree is a special type of tree data

structure in which every node can have a maximum of 2 children. One is known as left child and the other is

known as right child.A tree in which every node can have a maximum of two children is called as

Binary Tree.In a binary tree, every node can have either 0 children or 1 child or 2 children but not more than

2 children.Example

Types of Binary Trees

1. Strictly Binary Tree

In a binary tree, every node can have a maximum of two children. But in strictly binary tree, every node

should have exactly two children or none. That means every internal node must have exactly two children. A

strictly Binary Tree can be defined as follows...

A binary tree in which every node has either two or zero number of children is called Strictly Binary Tree.

Strictly binary tree is also called as Full Binary Tree or Proper Binary Tree or 2-Tree.

Strictly binary tree data structure is used to represent mathematical expressions.

2. Complete Binary Tree

In a binary tree, every node can have a maximum of two children. But in strictly binary tree, every node

should have exactly two children or none and in complete binary tree all the nodes must have exactly two

children and at every level of complete binary tree there must be 2level number of nodes. For example at

level 2 there must be 2
2
 = 4 nodes and at level 3 there must be 2

3
 = 8 nodes.

A binary tree in which every internal node has exactly two children and all leaf nodes are at same level is

called Complete Binary Tree.Complete binary tree is also called as Perfect Binary Tree.

3. Almost complete Binary Tree

It is complete binary tree but completeness property is not followed in last level. In the above tree absence of

leaf nodes L, M, N, O and P indicates its almost complete binary tree.

4. Right Skewed BT 5. Left Skewed BT

Here the tree grows only towards right. Here the tree grows only towards left

6.Extended Binary Tree

A binary tree can be converted into Full Binary tree by adding dummy nodes to existing nodes wherever

required.The full binary tree obtained by adding dummy nodes to a binary tree is called as Extended Binary

Tree.

In above figure, a normal binary tree is converted into full binary tree by adding dummy nodes (In pink

colour).

7. Binary Search Tree(BST)

 BST is a binary tree with a difference that for any node x, data of left subtree < data(x) and data of right

subtree >= data(x). The above condition should be satisfied by all the nodes.

Binary Tree Representations

A binary tree data structure is represented using two methods. Those methods are as follows...

1. Array Representation

2. Linked List Representation

Consider the following binary tree...

1. Array Representation

In array representation of binary tree, we use a one dimensional array (1-D Array) to represent a binary tree.

Consider the above example of binary tree and it is represented as follows...

To represent a binary tree of depth 'n' using array representation, we need one dimensional array with a

maximum size of 2
n+1

 - 1.

For any node with the position i, 2i + 1 gives the position of the left child & 2i + 2 gives the positon of the

right child. For any node with a position i, its parent node position is identified by using formula (i-1) / 2.

If i is the position of the left child i+1 gives the position of right child.

Advantages of array representation

 Faster access

 Easy for implementation

 Good for complete binary trees

Disadvantages

 Wastes memory for skewed trees

 Implementation of operations requires rearranging(shifting)of array elements

2. Linked List Representation

The linked notation uses a doubly linked list to represent a binary tree. In a double linked list, every node

consists of three fields. First field for storing left child address, second for storing actual data and third for

storing right child address.In this linked list representation, a node has the following structure...

The above example of binary tree represented using Linked list representation is shown as follows...

Binary Tree Traversals

Tree traversal is a method of visiting the nodes of a tree in a particular order. The tree nodes are visited

exactly once and displayed as they are visited.

Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree Traversal.

There are three types of binary tree traversals.

1. In - Order Traversal

2. Pre - Order Traversal

3. Post - Order Traversal

Consider the following binary tree...

1. In - Order Traversal (leftChild - root - rightChild)

In In-Order traversal, the root node is visited between left child and right child. In this traversal, the left child

node is visited first, then the root node is visited and later we go for visiting right child node. This in-order

traversal is applicable for every root node of all subtrees in the tree. This is performed recursively for all

nodes in the tree.

In the above example of binary tree, first we try to visit left child of root node 'A', but A's left child is a root

node for left subtree. so we try to visit its (B's) left child 'D' and again D is a root for subtree with nodes D, I

and J. So we try to visit its left child 'I' and it is the left most child. So first we visit 'I' then go for its root

node 'D' and later we visit D's right child 'J'. With this we have completed the left part of node B. Then visit

'B' and next B's right child 'F' is visited. With this we have completed left part of node A. Then visit root

node 'A'. With this we have completed left and root parts of node A. Then we go for right part of the node A.

In right of A again there is a subtree with root C. So go for left child of C and again it is a subtree with root

G. But G does not have left part so we visit 'G' and then visit G's right child K. With this we have completed

the left part of node C. Then visit root node 'C' and next visit C's right child 'H' which is the right most child

in the tree so we stop the process.

That means here we have visited in the order of I - D - J - B - F - A - G - K - C - H using In-Order Traversal.

In-Order Traversal for above example of binary tree is

I - D - J - B - F - A - G - K - C - H

2. Pre - Order Traversal (root - leftChild - rightChild)

In Pre-Order traversal, the root node is visited before left child and right child nodes. In this traversal, the

root node is visited first, then its left child and later its right child. This pre-order traversal is applicable for

every root node of all subtrees in the tree.

In the above example of binary tree, first we visit root node 'A' then visit its left child 'B' which is a root for

D and F. So we visit B's left child 'D' and again D is a root for I and J. So we visit D's left child 'I' which is

the left most child. So next we go for visiting D's right child 'J'. With this we have completed root, left and

right parts of node D and root, left parts of node B. Next visit B's right child 'F'. With this we have completed

root and left parts of node A. So we go for A's right child 'C' which is a root node for G and H. After visiting

C, we go for its left child 'G' which is a root for node K. So next we visit left of G, but it does not have left

child so we go for G's right child 'K'. With this we have completed node C's root and left parts. Next visit C's

right child 'H' which is the right most child in the tree. So we stop the process.

That means here we have visited in the order of A-B-D-I-J-F-C-G-K-H using Pre-Order Traversal.

Pre-Order Traversal for above example binary tree is

A - B - D - I - J - F - C - G - K - H

3. Post - Order Traversal (leftChild - rightChild - root)

In Post-Order traversal, the root node is visited after left child and right child. In this traversal, left child node

is visited first, then its right child and then its root node. This is recursively performed until the right most

node is visited.

Here we have visited in the order of I - J - D - F - B - K - G - H - C - A using Post-Order Traversal.

Post-Order Traversal for above example binary tree is

I - J - D - F - B - K - G - H - C - A

Note : refer notes for programs.

Iterative Inorder Traversal

Traversal techniques using recursion consumes system stack space .The stack space used may not be

acceptable for unbalanced trees of trees of larger heights.IN such cases, iterative traversal can be

implemented by simulating stack space with the help of an array.Another solution would be to use threaded

binary trees during traversal.

#define size 10

int top = -1;

struct Tree

{

 int data;

 struct Tree *lptr, *rptr;

};

typedef struct Tree node;

node *root,*stack[size];

void push(node *temp) //function to push

{

 if(top == size – 1)

 {

 Printf(“stack full”);

 Return;

 }

 stack[++top] = temp;

}

node *pop() //function to pop

{

 if(top == – 1)

 {

 printf(“stack empty”);

 Return;

 }

 return(stack[top--]);

}

void iterative inorder(node *root)

{

 node *cur = root;

 while(1)

 {

 while(cur!=NULL)

 {

 push(cur);

 cur=cur->lptr;

 }

 if(top == -1) break;

 cur = pop();

 printf(“%d “, cur->data);

 cur=cur->rptr;

 }

}

2. Level Order Traversal

 Level order traversal is a method of traversing the nodes of a tree level by level as in breadth first

traversal.

 Level order traversal uses queue thus avoiding stack space usage.

 Here the nodes are numbered starting with the root on level zero continuing with nodes on level

1,2,3…..

 The nodes at any level is numbered from left to right

 Visiting the nodes using the ordering of levels is called level order traversal

 Queue uses FIFO principle

 (ref :Wikipedia)

The level order traversal of the above tree is F B G A D I C E H

Implementation of level order traversal

void Level_Order(node *root)

{

 int f = 0, r = -1; //global declaration

 node *q[size], *cur;

 q[++r] = root;

 while(r >= f)

 {

 cur = q[f++];

 printf(“%d “, cur->data);

 if(cur->lptr != NULL)

 q[++r] = cur->lptr;

 if(cur->rptr != NULL)

 q[++r] = cur->lptr;

 }

}

Building Binary Tree from Traversal Pairs:

Sometimes it is required to construct a binary tree if its traversals are known. From a single traversal it is not

possible to construct unique binary tree. However any of the two traversals are given then the corresponding

tree can be drawn uniquely:

• Inorder and preorder

 • Inorder and postorder

• Inorder and level order

The basic principle for formulation is as follows:

If the preorder traversal is given, then the first node is the root node. If the postorder traversal is given then

the last node is the root node. Once the root node is identified, all the nodes in the left sub-trees and right

sub-trees of the root node can be identified using inorder.

Same technique can be applied repeatedly to form sub-trees.

It can be noted that, for the purpose mentioned, two traversal are essential out of which one should be inorder

traversal and another preorder or postorder; alternatively, given preorder and postorder traversals, binary tree

cannot be obtained uniquely.

Example 1:

Construct a binary tree from a given preorder and inorder sequence:

Preorder: A B D G C E H I F Inorder: D G B A H E I C F

Solution:

From Preorder sequence A B D G C E H I F, the root is: A

From Inorder sequence D G B A H E I C F, we get the left and right sub trees:

Left sub tree is: D G B

Right sub tree is: H E I C F

 A

 DGB HEICF

To find the root, left and right sub trees for D G B:

From the preorder sequence B D G, the root of tree is: B

From the inorder sequence D G B, we can find that D and G are to the left of B.

The Binary tree upto this point looks like:

 A

 B HEICF

 DG

To find the root, left and right sub trees for D G:

From the preorder sequence D G, the root of the tree is: D

From the inorder sequence D G, we can find that there is no left node to D and G is at the right of D.

The Binary tree upto this point looks like

 A

 B HEICF

 D

 G

To find the root, left and right sub trees for H E I C F:

From the preorder sequence C E H I F, the root of the left sub tree is: C

From the inorder sequence H E I C F, we can find that H E I are at the left of C and F is at the right of C.

The Binary tree upto this point looks like:

 A

 B C

 D HEI F

 G

To find the root, left and right sub trees for H E I:

From the preorder sequence E H I, the root of the tree is: E

From the inorder sequence H E I, we can find that H is at the left of E and I is at the right of E.

The Binary tree upto this point looks like:

 A

 B C

 D E F

 G H I

Refer class notes for other examples

Properties of Binary Tree

1. Prove that max no of nodes in a BT of depth K is 2
k
 - 1

Total no of nodes = 2
0
 + 2

1
 + 2

2
 + + 2

i

 The above sequence is in geometric progression

 = (2
 i+1

 - 1) / (2 – 1)

 = 2
 i+1

 - 1

 = 2
n
 – 1 (where i+1 = n = height of tree or depth of tree)

=> max no of nodes in a BT of depth K = 2
k
 - 1

2. Max no of nodes on level i of a BT is 2
i-1

, i>=1 or 2
i
, i>=0

Proof by induction on i;

Induction base: Root is the only node on level i = 1.

 Hence max no of nodes on level i =1

 2
i-1

 = 2
0
 = 1

Induction Hypothesis:

 Let I be an arbitrary positive integer > 1

 Assume that max no of nodes on level i-1 is 2

Induction Step:

 We know that max no of nodes on level i-1-2
 i-2

 by induction hypothesis

 We know that each node in a BT max degree is 2

 Max no of nodes on level i = twice the max no of nodes on level i-2 i.e 2
 i-1

 Hence the proof

3. Prove that no of leaf nodes = no of nodes of degree-2 nodes or for any nonempty Binary Tree T, if N0

is the no of leaf nodes and N2 no of nodes of degree 2 then N0 = N2 +1

 Proof: Let N1 be the no of nodes of degree 1

 Let N be the total no of nodes

 Since all nodes in T are atmost of degree 2 we have

 N = N0 + N1 + N2--(1)

 If we count no of branches in a BT we see that every node except the root has a branch leading into it.

 If B no of branches then

 N = B + 1(because all branches step from a node of degree 1 or 2)

 Therefore B = N1 + 2N2

 N = B + 1

 N = N1 + 2N2 + 1--(2)

 From (1) & (2) we get

N0 + N1 + N2 = N1 + 2N2 + 1

N0 = N2 + 1

Hence the proof

Binary Search Tree

In a binary tree, every node can have maximum of two children but there is no order of nodes based on their

values. In binary tree, the elements are arranged as they arrive to the tree, from top to bottom and left to right.

A binary tree has the following time complexities...

 Search Operation - O(n)

 Insertion Operation - O(1)

 Deletion Operation - O(n)

To enhance the performance of binary tree, we use special type of binary tree known as Binary Search Tree.

Binary search tree mainly focus on the search operation in binary tree. Binary search tree can be defined as

follows...

Binary Search Tree is a binary tree in which every node contains only smaller values in its left subtree

and only larger values in its right subtree.

Example

The following tree is a Binary Search Tree. In this tree, left subtree of every node contains nodes with

smaller values and right subtree of every node contains larger values.

Every Binary Search Tree is a binary tree but all the Binary Trees need not to be binary search trees.

Operations on a Binary Search Tree

The following operations are performed on a binary search tree...

 Search

 Insertion

 Deletion

 Traversal

Search Operation in BST

In a binary search tree, the search operation is performed with O(log n) time complexity. The search

operation is performed as follows...

Step 1: Read the search element from the user

Step 2: Compare, the search element with the value of root node in the tree.

Step 3: If both are matching, then display "Given node found!!!" and terminate the function

Step 4: If both are not matching, then check whether search element is smaller or larger than that node

value.

Step 5: If search element is smaller, then continue the search process in left subtree.

Step 6: If search element is larger, then continue the search process in right subtree.

Step 7: Repeat the same until we find exact element or we completed with a leaf node

Step 8: If we reach the node with search value, then display "Element is found" and terminate the

function.

Step 9: If we reach a leaf node and it is also not matching, then display "Element not found" and

terminate the function.

Insertion Operation in BST

In a binary search tree, the insertion operation is performed with O(log n) time complexity. In binary search

tree, new node is always inserted as a leaf node. The insertion operation is performed as follows...

Step 1: Create a newNode with given value and set its left and right to NULL.

Step 2: Check whether tree is Empty.

Step 3: If the tree is Empty, then set set root to newNode.

Step 4: If the tree is Not Empty, then check whether value of newNode is smaller or larger than the node

(here it is root node).

Step 5: If newNode is smaller than or equal to the node, then move to its left child. If newNode is larger than

the node, then move to its right child.

Step 6: Repeat the above step until we reach to a leaf node (e.i., reach to NULL).

Step 7: After reaching a leaf node, then isert the newNode as left child if newNode is smaller or equal to that

leaf else insert it as right child.

Deletion Operation in BST

In a binary search tree, the deletion operation is performed with O(log n) time complexity. Deleting a node

from Binary search tree has following three cases...

Case 1: Deleting a Leaf node (A node with no children)

Case 2: Deleting a node with one child

Case 3: Deleting a node with two children

Case 1: Deleting a leaf node

We use the following steps to delete a leaf node from BST...

Step 1: Find the node to be deleted using search operation

Step 2: Delete the node using free function (If it is a leaf) and terminate the function.

Case 2: Deleting a node with one child

We use the following steps to delete a node with one child from BST...

Step 1: Find the node to be deleted using search operation

Step 2: If it has only one child, then create a link between its parent and child nodes.

Step 3: Delete the node using free function and terminate the function.

Case 3: Deleting a node with two children

We use the following steps to delete a node with two children from BST...

Step 1: Find the node to be deleted using search operation

Step 2: If it has two children, then find the largest node in its left subtree (OR) the smallest node in its right

subtree.

Step 3: Swap both deleting node and node which found in above step.

Step 4: Then, check whether deleting node came to case 1 or case 2 else goto steps 2

Step 5: If it comes to case 1, then delete using case 1 logic.

Step 6: If it comes to case 2, then delete using case 2 logic.

Step 7: Repeat the same process until node is deleted from the tree.

Example

Construct a Binary Search Tree by inserting the following sequence of numbers...

 10,12,5,4,20,8,7,15 and 13

Refer notes for examples and implementation.

Threaded Binary Tree

A binary tree is represented using array representation or linked list representation. When a binary tree is

represented using linked list representation, if any node is not having a child we use NULL pointer in that

position. In any binary tree linked list representation, there are more number of NULL pointer than actual

pointers. Generally, in any binary tree linked list representation, if there are 2N number of reference fields,

then N+1 number of reference fields are filled with NULL (N+1 are NULL out of 2N). This NULL pointer

does not play any role except indicating there is no link (no child).

A. J. Perlis and C. Thornton have proposed new binary tree called "Threaded Binary Tree", which make use

of NULL pointer to improve its traversal processes. In threaded binary tree, NULL pointers are replaced by

references to other nodes in the tree, called threads.

Threaded Binary Tree is also a binary tree in which all left child pointers that are NULL (in Linked list

representation) points to its in-order predecessor, and all right child pointers that are NULL (in Linked list

representation) points to its in-order successor. If there is no in-order predecessor or in-order successor, then

it points to root node.

Consider the following binary tree...

To convert above binary tree into threaded binary tree, first find the in-order traversal of that tree...

In-order traversal of above binary tree...

H - D - I - B - E - A - F - J - C - G

When we represent above binary tree using linked list representation, nodes H, I, E, F, J and G left child

pointers are NULL. This NULL is replaced by address of its in-order predecessor, respectively (I to D, E to

B, F to A, J to F and G to C), but here the node H does not have its in-order predecessor, so it points to the

root node A. And nodes H, I, E, J and G right child pointers are NULL. This NULL pointers are replaced by

address of its in-order successor, respectively (H to D, I to B, E to A, and J to C), but here the node G does

not have its in-order successor, so it points to the root node A. The above example binary tree in threaded

notation is as follows:

In above figure threads are indicated with dotted links.

Note :Refer notes for implementation of TBT

Expression Trees:

A Binary Expression Tree is …

A special kind of binary tree in which:

1. Each leaf node contains a single operand

2. Each nonleaf node contains a single binary operator

3. The left and right subtrees of an operator node represent subexpressions that must be evaluated before

applying the operator at the root of the subtree.

Example :

 Levels Indicate Precedence

 The levels of the nodes in the tree indicate their relative precedence of evaluation (we do not need

parentheses to indicate precedence).

 Operations at higher levels of the tree are evaluated later than those below them.

 The operation at the root is always the last operation performed.

Refer class notes for examples.

References:

http://btechsmartclass.com/DS/U3_T3.html

http://www.iare.ac.in/sites/default/files/DS.pdf

 Prepared by

 P.Geetha. Asst Professor

 Pankaja K, Asst Professor

Department of CSE,

 Cambridge Institute of Technology

MODULE 5

GRAPHS, HASHING, SORTING, FILES

A graph is an abstract data structure that is used to implement the mathematical concept of

graphs. It is basically a collection of vertices (also called nodes) and edges that connect these

vertices. A graph is often viewed as a generalization of the tree structure, where instead of

having a purely parent-to-child relationship between tree nodes, any kind of complex

relationship can exist.

Graphs - Terminology and Representation

Definitions: Graph, Vertices, Edges

 Define a graph G = (V, E) by defining a pair of sets:

1. V = a set of vertices

2. E = a set of edges

 Edges:

o Each edge is defined by a pair of vertices

o An edge connects the vertices that define it

 Vertices:

o Vertices also called nodes

o Denote vertices with labels

 Representation:

o Represent vertices with circles, perhaps containing a label

o Represent edges with lines between circles

 Example:

o V = {A,B,C,D}

o E = {(A,B),(A,C),(A,D),(B,D),(C,D)}

Many algorithms use a graph representation to represent data or the problem to be

solved

 Examples of Graph applications:

o Cities with distances between

o Roads with distances between intersection points

o Course prerequisites

o Network and shortest routes

o Social networks

o Electric circuits, projects planning and many more...

Graph Classifications

 There are several common kinds of graphs

o Weighted or unweighted

o Directed or undirected

o Cyclic or acyclic

o Multigraphs

Kinds of Graphs: Weighted and Unweighted

 Graphs can be classified by whether or not their edges have weights

 Weighted graph: edges have a weight

o Weight typically shows cost of traversing

o Example: weights are distances between cities

 Unweighted graph: edges have no weight

o Edges simply show connections

o Example: course prerequisites

Kinds of Graphs: Directed and Undirected

 Graphs can be classified by whether or their edges are have direction

o Undirected Graphs: each edge can be traversed in either direction

o Directed Graphs: each edge can be traversed only in a specified direction

Undirected Graphs

 Undirected Graph: no implied direction on edge between nodes

o The example from above is an undirected graph

fig 1

o In diagrams, edges have no direction (ie there are no arrows)

o Can traverse edges in either directions

 In an undirected graph, an edge is an unordered pair

o Actually, an edge is a set of 2 nodes, but for simplicity we write it with

parenthesis

 For example, we write (A, B) instead of {A, B}

 Thus, (A,B) = (B,A), etc

 If (A,B) ∈ E then (B,A) ∈ E

Directed Graphs

 Digraph: A graph whose edges are directed (ie have a direction)

o Edge drawn as arrow

o Edge can only be traversed in direction of arrow

o Example: E = {(A,B), (A,C), (A,D), (B,C), (D,C)}

fig 2

 In a digraph, an edge is an ordered pair

o Thus: (u,v) and (v,u) are not the same edge

o In the example, (D,C) ∈ E, (C,D) ∉ E

Degree of a Node

 The degree of a node is the number of edges incident on it.

 In the example above: (fig 1)

o Degree 2: B and C

o Degree 3: A and D

o A and D have odd degree, and B and C have even degree

 Can also define in-degree and out-degree

o In-degree: Number of edges pointing to a node

o Out-degree: Number of edges pointing from a node

Graphs: Terminology Involving Paths

 Path: sequence of vertices in which each pair of successive vertices is connected by

an edge

 Cycle: a path that starts and ends on the same vertex

 Simple path: a path that does not cross itself

o That is, no vertex is repeated (except first and last)

o Simple paths cannot contain cycles

 Length of a path: Number of edges in the path

 Examples

Cyclic and Acyclic Graphs

 A Cyclic graph contains cycles

o Example: roads (normally)

 An acyclic graph contains no cycles

o Example: Course prerequisites

Multigraph: A graph with self loops and parallel edges is called a multigraph.

Connected and Unconnected Graphs and Connected Components

 An undirected graph is connected if every pair of vertices has a path between it

o Otherwise it is unconnected

 A directed graph is strongly connected if every pair of vertices has a path between

them, in both directions

Data Structures for Representing Graphs

 Two common data structures for representing graphs:

o Adjacency lists

o Adjacency matrix

Adjacency List Representation

An adjacency list is a way in which graphs can be represented in the computer’s

memory. This structure consists of a list of all nodes in G. Furthermore, every node is

in turn linked to its own list that contains the names of all other nodes that are

adjacent to it. The key advantages of using an adjacency list are:

 It is easy to follow and clearly shows the adjacent nodes of a particular node.

 It is often used for storing graphs that have a small-to-moderate number of edges.

That is, an adjacency list is preferred for representing sparse graphs in the computer’s

memory; otherwise, an adjacency matrix is a good choice.

 Adding new nodes in G is easy and straightforward when G is represented using an

adjacency list. Adding new nodes in an adjacency matrix is a difficult task, as the size

of the matrix needs to be changed and existing nodes may have to be reordered. Each

node has a list of adjacent nodes

Example (undirected graph): (fig 1)

Fig (1) adjacency lsit for the graph of fig3

fig 3

o Example (directed graph):

o A: B, C, D

o B: D

o C: Nil

o D: C

B D C A

B

C

D

A D

D A

A B C

Adjacency Matrix Representation

An adjacency matrix is used to represent which nodes are adjacent to one another. By

definition, two nodes are said to be adjacent if there is an edge connecting them. In a directed

graph G, if node v is adjacent to node u, then there is definitely an edge from u to v. That is,

if v is adjacent to u, we can get from u to v by traversing one edge. For any graph G having n

nodes, the adjacency matrix will have the dimension of n * n. In an adjacency matrix, the

rows and columns are labelled by graph vertices. An entry aij in the adjacency matrix will

contain 1, if vertices vi and vj are adjacent to each other. However, if the nodes are not

adjacent, aij will be set to zero. It. Since an adjacency matrix contains only 0s and 1s, it is

called a bit matrix or a Boolean matrix. The entries in the matrix depend on the ordering of

the nodes in G. Therefore, a change in the order of nodes will result in a different adjacency

matrix.

Aij = 1 if there is an edge from Vi to Vj

 0 otherwise

Adjacency Matrix: 2D array containing weights on edges

o Row for each vertex

o Column for each vertex

o Entries contain weight of edge from row vertex to column vertex

o Entries contain ∞ if no edge from row vertex to column vertex

o Entries contain 0 on diagonal (if self edges not allowed)

 Example undirected graph (assume self-edges not allowed):

 A B C D

A 0 1 1 1

B 1 0 ∞ 1

C 1 ∞ 0 1

D 1 1 1 0

 Example directed graph (assume self-edges allowed):

 A B C D

A ∞ 1 1 1

B ∞ ∞ ∞ 1

C ∞ ∞ ∞ ∞

D ∞ ∞ 1 ∞

Disadv:Adjacency matrix representation is easy to represent and feasible as long as the

graph is small and connected. For a large graph ,whose matrix is sparse, adjacency

matrix representation wastes a lot of memory. Hence list representation is preferred

over matrix representation.

Graph traversal algorithms

Traversing a graph, is the method of examining the nodes and edges of the graph. There are

two standard methods of graph traversal. These two methods are:

1. Breadth-first search 2. Depth-first search

While breadth-first search uses a queue as an auxiliary data structure to store nodes for

further processing, the depth-first search scheme uses a stack.

Breadth-first search algorithm

 Breadth-first search (BFS) is a graph search algorithm that begins at the root node and

explores all the neighbouring nodes. Then for each of those nearest nodes, the algorithm

explores their unexplored neighbour nodes, and so on, until it finds the goal. That is, we start

examining the node A and then all the neighbours of A are examined. In the next step, we

examine the neighbours of neighbours of A, so on and so forth. This means that we need to

track the neighbours of the node and guarantee that every node in the graph is processed and

no node is processed more than once. This is accomplished by using a queue that will hold

the nodes that are waiting for further processing.

Algorithm for BFS traversal

 Step 1: Define a Queue of size total number of vertices in the graph.

 Step 2: Select any vertex as starting point for traversal. Visit that vertex and insert it

into the Queue.

 Step 3: Visit all the adjacent vertices of the verex which is at front of the Queue

which is not visited and insert them into the Queue.

 Step 4: When there is no new vertex to be visit from the vertex at front of the Queue

then delete that vertex from the Queue.

 Step 5: Repeat step 3 and 4 until queue becomes empty.

 Step 6: When queue becomes Empty, then the enqueue or dequeue order gives the

BFS traversal order.

Depth-first Search Algorithm

Depth-first search begins at a starting node A which becomes the current node. Then, it

examines each node N along a path P which begins at A. That is, we process a neighbour of

A, then a neighbour of neighbour of A, and so on.

 During the execution of the algorithm, if we reach a path that has a node N that has already

been processed, then we backtrack to the current node. Otherwise, the unvisited

(unprocessed) node becomes the current node. The algorithm proceeds like this until we

reach a dead-end (end of path P). On reaching the deadend, we backtrack to find another path

P. The algorithm terminates when backtracking leads back to the starting node A.

 In this algorithm, edges that lead to a new vertex are called discovery edges and edges that

lead to an already visited vertex are called back edges. Observe that this algorithm is similar

to the in-order traversal of a binary tree. Its implementation is similar to that of the breadth-

first search algorithm but here we use a stack instead of a queue.

We use the following steps to implement DFS traversal...

 Step 1: Define a Stack of size total number of vertices in the graph.

 Step 2: Select any vertex as starting point for traversal. Visit that vertex and push it

on to the Stack.

 Step 3: Visit any one of the adjacent vertex of the verex which is at top of the stack

which is not visited and push it on to the stack.

 Step 4: Repeat step 3 until there are no new vertex to be visit from the vertex on top

of the stack.

 Step 5: When there is no new vertex to be visit then use back tracking and pop one

vertex from the stack.

 Step 6: Repeat steps 3, 4 and 5 until stack becomes Empty.

 Step 7: When stack becomes Empty, then produce final spanning tree by removing

unused edges from the graph

 PTO

Applications OF graphs

 Graphs are constructed for various types of applications such as:

 In circuit networks where points of connection are drawn as vertices and component

wires become the edges of the graph.

 In transport networks where stations are drawn as vertices and routes become the

edges of the graph.

 In maps that draw cities/states/regions as vertices and adjacency relations as edges.

 In program flow analysis where procedures or modules are treated as vertices and

calls to these procedures are drawn as edges of the graph.

 Once we have a graph of a particular concept, they can be easily used for finding

shortest paths, project planning, etc.

 In flowcharts or control-flow graphs, the statements and conditions in a program are

represented as nodes and the flow of control is represented by the edges.

 In state transition diagrams, the nodes are used to represent states and the edges

represent legal moves from one state to the other.

 Graphs are also used to draw activity network diagrams. These diagrams are

extensively used as a project management tool to represent the interdependent

relationships between groups, steps, and tasks that have a significant impact on the

project.

Introduction to sorting

Sorting means arranging the elements of an array so that they are placed in some relevant

order which may be either ascending or descending. That is, if A is an array, then the

elements of A are arranged in a sorted order (ascending order) in such a way that A[0] < A[1]

< A[2] < < A[N]. For example, if we have an array that is declared and initialized as int

A[] = {21, 34, 11, 9, 1, 0, 22}; Then the sorted array (ascending order) can be given as: A[] =

{0, 1, 9, 11, 21, 22, 34; A sorting algorithm is defined as an algorithm that puts the elements

of a list in a certain order, which can be either numerical order, lexicographical order, or any

user-defined order

Insertion Sort

Insertion sort is a very simple sorting algorithm in which the sorted array (or list) is built one

element at a time. We all are familiar with this technique of sorting, as we usually use it for

ordering a deck of cards while playing bridge. The main idea behind insertion sort is that it

inserts each item into its proper place in the final list. To save memory, most implementations

of the insertion sort algorithm work by moving the current data element past the already

sorted values and repeatedly interchanging it with the preceding value until it is in its correct

place. Insertion sort is less efficient as compared to other more advanced algorithms such as

quick sort, heap sort, and merge sort.

Technique:

 The array of values to be sorted is divided into two sets. One that stores sorted values and

another that contains unsorted values.

 The sorting algorithm will proceed until there are elements in the unsorted set.

 Suppose there are n elements in the array. Initially, the element with index 0 (assuming LB =

0) is in the sorted set. Rest of the elements are in the unsorted set.

 The first element of the unsorted partition has array index 1 (if LB = 0).

 During each iteration of the algorithm, the first element in the unsorted set is picked up and

inserted into the correct position in the sorted set.

ALGORITHM INSERTION-SORT (ARR, N)

Step 1: Repeat Steps 2 to 5 for K = 1 toN–1

Step 2: SET TEMP = ARR[K]

 Step 3: SET J = K - 1

Step 4: Repeat while TEMP <= ARR[J]

SET ARR[J + 1] = ARR[J]

 SETJ=J-1 [END OF INNER LOOP]

Step 5: SET ARR[J + 1] = TEMP [END OF LOOP]

Step 6: EXIT

To insert an element A[K] in a sorted list A[0], A[1], ..., A[K–1], we need to compare A[K]

with A[K–1], then with A[K–2], A[K–3], and so on until we meet an element A[J] such that

A[J] <= A[K]. In order to insert A[K] in its correct position, we need to move elements A[K–

1], A[K–2], ..., A[J] by one position and then A[K] is inserted at the (J+1)th location..

Radix Sort

Radix sort is a linear sorting algorithm for integers and uses the concept of sorting names in

alphabetical order. When we have a list of sorted names, the radix is 26 (or 26 buckets)

because there are 26 letters in the English alphabet. So radix sort is also known as bucket

sort. Observe that words are first sorted according to the first letter

o/f the name. That is, 26 classes are used to arrange the names,

where the first class stores the names that begin with A, the second

class contains the names with B, and so on. During the second pass, names are grouped

according to the second letter. After the second pass, names are sorted on the first

two letters. This processis continued till the nth pass, where n is the

length of the name with maximum number of letters. After every pass, all the

names are collected in order of buckets. That is, first pick up

the names in the first bucket that contains the names beginning with

A. In the second pass, collect the name from the second bucket, and so

on. When radix sort is used on integers, sorting is done on each of the digits in the number.

The sorting procedure proceeds by sorting the least significant to the

most significant digit. While sorting the numbers, we have ten buckets, each for one

digit (0, 1, 2, …, 9) and the number of passes will depend on the length of the number having

maximum number of digits.

Algorithm for RadixSort (ARR, N)

Step 1: Find the largest number in ARR as LARGE

Step 2: [INITIALIZE] SET NOP = Number of digits in LARGE

Step 3: SET PASS = 0

Step 4: Repeat Step 5 while PASS <= NOP-1

Step 5: SET= I=0 and INITIALIZE buckets

Step 6: Repeat Steps 7 to 9 while I<N-1

Step 7: SET DIGIT = digit at PASSth place in A[I]

Step 8: Add A[I] to the bucket numbered DIGIT

Step 9: INCREMENT bucket count for bucket numbered DIGIT [END OF LOOP]

Step 10: Collect the numbers in the bucket [END OF LOOP]

Step 11: END

Sort the numbers given below using radix sort. 345, 654, 924, 123, 567, 472, 555, 808,

911

 In the first pass, the numbers are sorted according to the digit at ones place.

 Bin 0 Bin 1 Bin2 Bin 3 Bin4 Bin 5 Bin 6 Bin7 Bin8 Bin 9

 911 472 123 654 345 67 808

 924 555

After this pass, the numbers are collected bucket by bucket. The new list thus formed is used

as an input for the next pass. 911,472,123,654,924,345,555,67,808

In the second pass, the numbers are sorted according to the digit at the tens place

Bin 0 Bin 1 Bin2 Bin 3 Bin4 Bin 5 Bin 6 Bin7 Bin8 Bin 9

808 911 123 345 654 67 472

 924 555

After this pass, the numbers are collected bucket by bucket. The new list thus formed is used

as an input for the next pass. 808,911,123,924,345,654,555,67,472

In the third pass, the numbers are sorted according to the digit at the hundreds place

Bin 0 Bin 1 Bin2 Bin 3 Bin4 Bin 5 Bin 6 Bin7 Bin8 Bin 9

67 123 345 472 555 654 808 911

 924

The sorted order is as above :67,123,345,472,555,654,808,911,924

Address Calculation Sort

 Is based on hashing.

 It is a distribution based sorting technique.

 A hash function is applied on each element of the unsorted list

 The address generated is taken as the position where the element is stored in a hash

table organised as a array of pointers to elements.

 The elements that map to the same location are stored as a linked list of elements.

 If more than one element maps to the same location, they are inserted into the linked

list in order using any sorting technique.

 After all elements have been hashed, the linked lists are concatenated to form the

sorted list.

 The hash function should satisfy the property that if a key x is less than y,then

f(x)<f(y).This is called order preserving property.

Example:

Sort 25 57 48 37 12 92 86 33 using address calculation

sort

Let us create 10 sub lists. Initially each of these sublist is empty. An array of pointer f(10) is

declared, where f(i) refers to the first element in the file, whose first digit is i. The number is

passed to hash function, which returns its last digit (ten’s place digit), which is placed at that

position only, in the array of pointers.

num= 25 – f(25) gives 2

57 – f(57) gives 5

48 – f(48) gives 4

37 – f(37) gives 3

12 – f(12) gives 1

92 – f(92) gives 9

86 – f(86) gives 8

33 – f(33) gives 3 which is repeated.

Thus it is inserted in 3
rd

 sublist (4
th

) only, but must be checked with the existing elements for

its proper position in this sublist.

Hashing

Why Hashing?

Internet has grown to millions of users generating terabytes of content every day. According

to internet data tracking services, the amount of content on the internet doubles every six

months. With this kind of growth, it is impossible to find anything in the internet, unless we

develop new data structures and algorithms for storing and accessing data. So what is wrong

with traditional data structures like Arrays and Linked Lists? Suppose we have a very large

data set stored in an array. The amount of time required to look up an element in the array is

either O(log n) or O(n) based on whether the array is sorted or not. If the array is sorted then

a technique such as binary search can be used to search the array. Otherwise, the array must

be searched linearly. Either case may not be desirable if we need to process a very large data

set. Therefore we discuss a new technique called hashing that allows us to update and retrieve

any entry in constant time O(1). The constant time or O(1) performance means, the amount of

time to perform the operation does not depend on data size n.

The Map Data Structure(Hash Map)(Hash function)

 In a mathematical sense, a map is a relation between two sets. We can define Map M as a set

of pairs, where each pair is of the form (key, value), where for given a key, we can find a

value using some kind of a “function” that maps keys to values. The key for a given object

can be calculated using a function called a hash function. In its simplest form, we can think

of an array as a Map where key is the index and value is the value at that index. For example,

given an array A, if i is the key, then we can find the value by simply looking up A[i]. The

idea of a hash table is more generalized and can be described as follows.

The concept of a hash table is a generalized idea of an array where key does not have to be an

integer. We can have a name as a key, or for that matter any object as the key. The trick is to

find a hash function to compute an index so that an object can be stored at a specific location

in a table such that it can easily be found.

 STATIC HASHING

This kind of hashing is called static hashing since the size of the hash table is fixed.(an

array)

Example:

Suppose we have a set of strings {“abc”, “def”, “ghi”} that we’d like to store in a table. Our

objective here is to find or update them quickly from a table, actually in O(1). We are not

concerned about ordering them or maintaining any order at all. Let us think of a simple

schema to do this. Suppose we assign “a” = 1, “b”=2, … etc to all alphabetical characters. We

can then simply compute a number for each of the strings by using the sum of the characters

as follows.

“abc” = 1 + 2 + 3=6, “def” = 4 + 5 + 6=15 , “ghi” = 7 + 8 + 9=24

If we assume that we have a table of size 5 to store these strings, we can compute the location

of the string by taking the sum mod 5. So we will then store

“abc” in 6 mod 5 = 1, “def” in 15 mod 5 = 0, and “ghi” in 24 mod 5 = 4 in locations 1, 0 and

4 as follows.

0 1 2 3 4

def abc ghi

Now the idea is that if we are given a string, we can immediately compute the location using

a simple hash function, which is sum of the characters mod Table size. Using this hash value,

we can search for the string.

Problem with Hashing -collision

The method discussed above seems too good to be true as we begin to think more about the

hash function. First of all, the hash function we used, that is the sum of the letters, is a bad

one. In case we have permutations of the same letters, “abc”, “bac” etc in the set, we will end

up with the same value for the sum and hence the key. In this case, the strings would hash

into the same location, creating what we call a “collision”. This is obviously not a good thing.

Secondly, we need to find a good table size, preferably a prime number so that even if the

sums are different, then collisions can be avoided, when we take mod of the sum to find the

location. So we ask two questions.

Question 1: How do we pick a good hash function?

Question 2: How do we deal with collisions?

The problem of storing and retrieving data in O(1) time comes down to answering the above

questions. Picking a “good” hash function is key to successfully implementing a hash table.

What we mean by “good” is that the function must be easy to compute and avoid

collisions as much as possible. If the function is hard to compute, then we lose the advantage

gained for lookups in O(1). Even if we pick a very good hash function, we still will have to

deal with “some” collisions.

The process where two records can hash into the same location is called collision. We can

deal with collisions using many strategies, such as linear probing (looking for the next

available location i+1, i+2, etc. from the hashed value i), quadratic probing (same as linear

probing, except we look for available positions i+1 , i + 4, i + 9, etc from the hashed value i

and separate chaining, the process of creating a linked list of values if they hashed into the

same location.This is called collision resolution.

Popular hash functions

Hash functions that use numeric keys are very popular.. However, there can be cases in real-

world applications where we can have alphanumeric keys rather than simple numeric keys. In

such cases, the ASCII value of the character can be used to transform it into its equivalent

numeric key. Once this transformation is done, any hash function can be applied to generate

the hash value.

 Division Method

It is the most simple method of hashing an integer x. This method divides x by M and then

uses the remainder obtained. In this case, the hash function can be given as

 h(x) = x mod M

The division method is quite good for just about any value of M and since it requires only a

single division operation, the method works very fast. However, extra care should be taken to

select a suitable value for M. Generally, it is best to choose M to be a prime number because

making M a prime number increases the likelihood that the keys are mapped with a

uniformity in the output range of values.

A potential drawback of the division method is that while using this method, consecutive

keys map to consecutive hash values. On one hand, this is good as it ensures that consecutive

keys do not collide, but on the other, it also means that consecutive array locations will be

occupied. This may lead to degradation in performance.

Example :

Calculate the hash values of keys 1234 and 5462. Solution Setting M = 97, hash values can

be calculated as:

h(1234) = 1234 % 97 = 70

 h(5642) = 5642 % 97 = 16

Mid-Square Method

The mid-square method is a good hash function which works in two steps:

Step 1: Square the value of the key. That is, find k
2
.

Step 2: Extract the middle r digits of the result obtained in Step 1.

The algorithm works well because most or all digits of the key value contribute to the result.

This is because all the digits in the original key value contribute to produce the middle digits

of the squared value. Therefore, the result is not dominated by the distribution of the bottom

digit or the top digit of the original key value. In the mid-square method, the same r digits

must be chosen from all the keys. Therefore, the hash function can be given as:

h(k) = s where s is obtained by selecting r digits from k
2
.

Example Calculate the hash value for keys 1234 and 5642 using the mid-square method. The

hash table has 100 memory locations. Solution Note that the hash table has 100 memory

locations whose indices vary from 0 to 99.

This means that only two digits are needed to map the key to a location in the hash table, so r

= 2.

When k = 1234, k
2
 = 1522756, h (1234) = 27

When k = 5642, k
2
 = 31832164, h (5642) = 21

Observe that the 3rd and 4th digits starting from the right are chosen.

Folding Method

The folding method works in the following two steps:

 Step 1: Divide the key value into a number of parts. That is, divide k into parts k1, k2, ..., kn,

where each part has the same number of digits except the last part which may have lesser

digits than the other parts.

Step 2: Add the individual parts. That is, obtain the sum of k1 + k2 + ... + kn. The hash value

is produced by ignoring the last carry, if any. Note that the number of digits in each part of

the key will vary depending upon the size of the hash table. .

Example Given a hash table of 100 locations, calculate the hash value using folding method

for keys 5678, 321, and 34567. Solution Since there are 100 memory locations to address, we

will break the key into parts where each part (except the last) will contain two digits. The

hash values can be obtained as shown below:

key 5678 321 34567

 Parts 56 and 78 32 and 1 34, 56 and 7

Sum 134 33 97

Hash value 34 (ignore the last carry) 33 97

Collision Resolution Strategies

1. Open Addressing/Closed Hashing

2. Chaining

Once a collision takes place, open addressing or closed hashing computes new positions

using a probe sequence and the next record is stored in that position

The process of examining memory locations in the hash table is called probing. Open

addressing technique can be implemented using linear probing, quadratic probing, double

hashing.

Linear Probing

When using a linear probe to resolve collision, the item will be stored in the next available

slot in the table, assuming that the table is not already full.

This is implemented via a linear search for an empty slot, from the point of collision. If the

physical end of table is reached during the linear search, the search will wrap around to the

beginning of the table and continue from there.If an empty slot is not found before reaching

the point of collision, the table is full.

If h is the point of collision, probe through h+1,h+2,h+3..................h+i. till an empty slot is

found

Searching a Value using Linear Probing

The procedure for searching a value in a hash table is same as for storing a value in a hash

table. While searching for a value in a hash table, the array index is re-computed and the key

of the element stored at that location is compared with the value that has to be searched. If a

match is found, then the search operation is successful. The search time in this case is given

as O(1). If the key does not match, then the search function begins a sequential search of the

array that continues until:

 the value is found,or

 the search function encounters a vacant location in the array, indicating that the value

is not present, or

 the search function terminates because it reaches the end of the table and the value is

not present.

Probe Sequence ::(h+i)%Table size

Disadvantage:

As the hash table fills, clusters of consecutive cells are formed and the time required for a

search increases with the size of the cluster. It is possible for blocks of data to form when

collisions are resolved. This means that any key that hashes into the cluster will require

several attempts to resolve the collision. More the number of collisions, higher the probes that

are required to find a free location and lesser is the performance. This phenomenon is called

clustering. To avoid clustering, other techniques such as quadratic probing and double

hashing are used.

Quadratic Probing

A variation of the linear probing idea is called quadratic probing. Instead of using a

constant “skip” value, if the first hash value that has resulted in collision is h, the successive

values which are probed are h+1, h+4, h+9, h+16, and so on. In other words, quadratic

probing uses a skip consisting of successive perfect squares.

Probe sequence :h,h+1
2
,h=2

2
,h=3

2
..............................h+i

2

H(k)=(h+i
2)

%Tablesize

Double Hashing

In double hashing, we use two hash functions rather than a single function. Double hashing

uses the idea of applying a second hash function to the key when a collision occurs. The

result of the second hash function will be the number of positions form the point of collision

to insert.There are a couple of requirements for the second function:

 it must never evaluate to 0

 must make sure that all cells can be probed

A popular second hash function is: Hash2(key) = R - (key % R) where R is a prime number

that is smaller than the size of the table.But any independent hash function may also be used.

Double hashing minimizes repeated collisions and the effects of clustering.

Chaining

Chaining is another approach to implementing a hash table; instead of storing the data

directly inside the structure, have a linked list structure at each hash element. That way, all

the collision, retrieval and deletion functions can be handled by the list, and the hash

function's role is limited mainly to that of a guide to the algorithms, as to which hash

element's list to operate on.

The linked list at each hash element is often called a chain. A chaining hash table gets its

name because of the linked list at each element -- each list looks like a 'chain' of data strung

together.Operations on the data structure are made far simpler, as all of the data storage

issues are handled by the list at the hash element, and not the hash table structure itself.

Chaining overcomes collision but increases search time when the length of the overflow

chain increases

Drawbacks of static hashing

1. Table size is fixed and hence cannot accommodate data growth.

2. Collsions increases as data size grows.

Avoid the above conditions by doubling the hash table size. This increase in hash table size is

taken up, when the number of collisions increase beyond a certain threshold. The threshold

limit is decided by the load factor.

Load factor

The load factor α of a hash table with n key elements is given by α= n / hash table size

The probability of a collision increases as the load factor increases. We cannot just double the

size of the table and copy the elements from the original table to the new table ,since when

the table size is doubled from N to 2N+1, the hash function changes. It requires reinserting

each element of the old table into the new table (using the modified hash function).This is

called Rehashing. Rehashing in large databases is a tedious process and hence dynamic

hashing.

Dynamic hashing schemes

Dynamically increases the size of the hash table as collision occurs.There are two types:

Extendible hashing (directory): uses a directory that grows or shrinks depending on the

data distribution. No overflow buckets

Linear hashing(directory less): No directory. Splits buckets in linear order, uses overflow

buckets.

Extendible hashing :

 Uses a directory of pointers to buckets/bins which are collections of records

 The number of buckets are doubled by doubling the directory, and splitting just the

bin that overflowed.

 Directory much smaller than file, so doubling it is much cheaper. Only one bin of

data entries is split and rehashed.

Global Depth

– Max number of bits needed to tell which bucket an entry belongs to.

Local Depth

- The number of least significant digits that is common for all the numbers sharing

the same bin.

On overflow:

If global depth =Local depth

1. Double the hash directory

2. SPlit the overflowing bin

3. Redistribute elements of the overflowing bin

4. Increment the global and local depth

If global depth >Local depth

1. SPlit the overflowing bin

2. Redistribute elements of the overflowing bin

3. Increment the local depth

Linear Hashing

Basic Idea:

• Pages are split when overflows occur – but not necessarily the page with the

overflow.

• Directory avoided in LH by using overflow pages. (chaining approach)

• Splitting occurs in turn, in a round robin fashion.one by one from the first bucket to

the last bucket.

• Use a family of hash functions h0, h1, h2, ...

– Each function’s range is twice that of its predecessor.

• When all the pages at one level (the current hash function) have been split, a new

level is applied.

 Insert in Order using linear hashing: 1,7,3,8,12,4,11,2,10,13.....

After insertion till 12:

When 4 inserted overflow occurred. So we split the bucket (no matter it is full or partially

empty). And increment pointer.

So we split bucket 0 and rehashed all keys in it. Placed

3 to new bucket as (3 mod 6 = 3) and (12 mod 6 = 0). Then 11 and 2 are inserted. And

now overflow. s is pointing to bucket 1, hence split bucket 1 by re- hashing it.

After split:

Insertion of 10 and 13: as (10 mod 3 = 1) and bucket 1 < s,

we need to hash 10 again using h1(10) = 10 mod 6 = 4th bucket.

Note :Files topics can be referred from the text book reference(reema thareja)

 Prepared by

 Geetha.P,Asst Professor

Pankaja K, Asso Professor

Dept of CSE,CiTech

HARD WORK BEATS TALENT WHEN TALENT DOES NOT WORK HARD

GOOD LUCK!!!

	b1
	b2
	Disadvantages of linked lists
	Linked List Basic Operations

