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 FLUID MECHANICS NOTES 
 

 

 
 Fluids & Their Properties 

MODULE-1 

 Fluid Pressure and Its Measurements 
 

 

 

Module -1: Fluids & Their Properties: 
Concept of fluid, Systems of units. Properties of fluid; Mass density, Specific weight, 

Specific gravity, Specific volume, Viscosity, Cohesion, Adhesion, Surface tension& 

Capillarity. Fluid as a continuum, Newton’s law of viscosity (theory 

&problems).Capillary rise in a vertical tube and between two plane surfaces (theory & 

problems). Vapor pressure of liquid, compressibility and bulk modulus, capillarity, 

surface tension, pressure inside a water droplet, pressure inside a soap bubble and liquid 

jet. Numerical problems 

 
 

1.0 INTRODUCTION: In general matter can be distinguished by the physical forms 

known as solid, liquid, and gas. The liquid and gaseous phases are usually combined and 

given a common name of fluid. Solids differ from fluids on account of their molecular 

structure (spacing of molecules and ease with which they can move). The intermolecular 

forces are large in a solid, smaller in a liquid and extremely small in gas. 

Fluid mechanics is the study of fluids at rest or in motion. It has traditionally been 

applied in such area as the design of pumps, compressor, design of dam and canal, design 

of piping and ducting in chemical plants, the aerodynamics of airplanes and automobiles. 

In recent years fluid mechanics is truly a ‘high-tech’ discipline and many exciting areas 

have been developed like the aerodynamics of multistory buildings, fluid mechanics of 

atmosphere, sports, and micro fluids. 
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δu 

1.1 DEFINITION OF FLUID: A fluid is a substance which deforms continuously under 

the action of shearing forces, however small they may be. Conversely, it follows that: If a 

fluid is at rest, there can be no shearing forces acting and, therefore, all forces in the fluid 

must be perpendicular to the planes upon which they act. 

 

Shear force, F δl
 

y 
 
 

x 

Fluid deforms continuously under the action of a shear force 
 

τyx  
= 

dFx 
= f (Deformation Rate) 

dA 
y 

 

Shear stress in a moving fluid: 

 

Although there can be no shear stress in a fluid at rest, shear stresses are developed when 

the fluid is in motion, if the particles of the fluid move relative to each other so that they 

have different velocities, causing the original shape of the fluid to become distorted. If, 

on the other hand, the velocity of the fluid is same at every point, no shear stresses will be 

produced, since the fluid particles are at rest relative to each other. 

 

Differences between solids and fluids: The differences between the behaviour of solids 

and fluids under an applied force are as follows: 

 

i. For a solid, the strain is a function of the applied stress, providing that the elastic 

limit is not exceeded. For a fluid, the rate of strain is proportional to the applied 

stress. 

ii. The strain in a solid is independent of the time over which the force is applied and, 

if the elastic limit is not exceeded, the deformation disappears when the force is 

removed. A fluid continues to flow as long as the force is applied and will not 

recover its original form when the force is removed. 

δy 
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Differences between liquids and gases: 

 

Although liquids and gases both share the common characteristics of fluids, they have 

many distinctive characteristics of their own. A liquid is difficult to compress and, for 

many purposes, may be regarded as incompressible. A given mass of liquid occupies a 

fixed volume, irrespective of the size or shape of its container, and a free surface is 

formed if the volume of the container is greater than that of the liquid. 

 

A gas is comparatively easy to compress (Fig.1). Changes of volume with pressure are 

large, cannot normally be neglected and are related to changes of temperature. A given 

mass of gas has no fixed volume and will expand continuously unless restrained by a 

containing vessel. It will completely fill any vessel in which it is placed and, therefore, 

does not form a free surface. Free surface 

 

 

(a) Solid (b) Liquid (c) Gas 
 
 
 

 

Fig.1 Comparison of Solid, Liquid and Gas 

 

1.2 Systems of Units: 

The official international system of units (System International Units). Strong efforts are 

underway for its universal adoption as the exclusive system for all engineering and 

science, but older systems, particularly the CGS and FPS engineering gravitational 

systems are still in use and probably will be around for some time. The chemical engineer 

finds many physiochemical data given in CGS units; that many calculations are most 

conveniently made in fps units; and that SI units are increasingly encountered in science 

and engineering. Thus it becomes necessary to be expert in the use of all three systems. 

k 

k k 

k 
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Quantity Unit 

Mass in Kilogram kg 

Length in Meter m 

Time in Second s or as sec 

Temperature in Kelvin K 

Mole mol 

 

Quantity Unit 

Force in Newton (1 N = 1 kg.m/s2) N 

Pressure in Pascal (1 Pa = 1 N/m2) N/m2 

Work, energy in Joule ( 1 J = 1 

N.m) 

 

J 

Power in Watt (1 W = 1 J/s) W 

 

SI system: 

Primary quantities: Derived quantities: 
 

 
 

CGS Units: 

The older centimeter-gram-second (cgs) system has the following units for derived 

quantities: 

Quantity Unit 

Force in dyne (1 dyn = 1 g.cm/s2) dyn 

Work, energy in erg ( 1 erg = 1 dyn.cm = 1 x 10-7 J ) erg 

Heat Energy in calorie ( 1 cal = 4.184 J) cal 

 
Dimensions: Dimensions of the primary quantities: 

 

Fundamental dimension Symbol 

Length L 

Mass M 

Time t 

Temperature T 
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Dimensions of derived quantities can be expressed in terms of the fundamental 

dimensions. 

 

Quantity Representative symbol Dimensions 

Angular velocity  t-1 

Area A L2 

Density  M/L3 

Force F ML/t2 

Kinematic viscosity  L2/t 

Linear velocity v L/t 

 

1.3 Properties of fluids: 

1.3.1 Mass density or Specific mass (): 

Mass density or specific mass is the mass per unit volume of the fluid. 

 

  = 
Mass 

Volume 

 = 

 
Unit: kg/m3 

M 
or 

dM 

V dV 

With the increase in temperature volume of fluid increases and hence mass density 

decreases in case of fluids as the pressure increases volume decreases and hence mass 

density increases. 

1.3.2 Weight density or Specific weight (): 

Weight density or Specific weight of a fluid is the weight per unit volume. 

 

  = 
Weight 

=
 

Volume 

W 
or 

dW 

V dV 

Unit: N/m3 or Nm-3. 
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With increase in temperature volume increases and hence specific weight 

decreases. 

With increases in pressure volume decreases and hence specific weight increases. 

Note: Relationship between mass density and weight density: 

 

We have  = 
Weight 

Volume 

 = 
mass x g 

Volume 

 =  x g 

1.3.3 Specific gravity or Relative density (S): 

It is the ratio of density of the fluid to the density of a standard fluid. 

ρfluid 
 

S = ρstandard fluid 
 

Unit: It is a dimensionless quantity and has no unit. 

In case of liquids water at 4oC is considered as standard liquid. water = 1000 kg/m3 

1.3.4 Specific volume (  ): It is the volume per unit mass of the fluid. 

     = 
Volume 

=  
V 

mass M 
or 

dV 

dM 

Unit: m3/kg 

As the temperature increases volume increases and hence specific volume increases. As 

the pressure increases volume decreases and hence specific volume decreases. 
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Solved Problems: 

Ex.1 Calculate specific weight, mass density, specific volume and specific gravity of a 

liquid having a volume of 4m3 and weighing 29.43 kN. Assume missing data suitably. 

  ? 

  
W

 
V 

  ? 

  ? 

 
29.43X10

3
 

4 
S  ? 

 = 7357.58 N/m
3

 
V  4 m

3
 

W  29.43 kN 

 29.43 x10
3 
N 

To find  - Method 1: 

W  mg 
 

29.43 x 103  m x 9.81 

 
m  3000 kg 

 
Method 2 : 

 
   g 

 

   
m 
 

3000 
7357.5   9.81 

v 4 
  750 kg / m

3
 

 

  750 kg / m3 

 

 
V 

 
  

M
 

V 

i)  









M 

 
4 

3000 

  
V

 
M 

 
1 1 

 
  1.33 x 10

3 
m

3 
/ kg 

  
 
 

750 

 
  1.33X10

3 
m

3 
/ kg 
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S  

 


Stan dard 

S 
  

Standaard 

 

 
7357.5 

or
 

9810 
S  

750 

1000 
 

S  0.75 S  0.75 
 
 

Ex.2 Calculate specific weight, density, specific volume and specific gravity and if one 

liter of Petrol weighs 6.867N. 

 

  
W

 
V 

 

 
6.867 

103 

 
  6867N / m

3
 

 
V  1Litre 

V  10
3 

m
3

 

W  6.867N 

S  

 

S tan dard 

 

 
  s g 

 

 
6867 

9810 

 
S  0.7 

6867  x 9.81 

 
  700kg / m

3
 

 

 

  
V

 
M 

 

M  6.867  9.81 

 
103 

 

0.7 

  1.4x10
3 

m
3 
/ kg 

 

M  0.7 kg 
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Ex.3 Specific gravity of a liquid is 0.7 Find i) Mass density ii) specific weight. Also find 

the mass and weight of 10 Liters of liquid. 

S  

 

S tan dard 

 

 
  g 

 

S  0.7 

V  ? 

  ? 

0.7 
    

 
9810 

 
  6867N / m

3
 

6867   x 9.81 

 
  700 kg / m

3
 

M  ? 

W  ? 

V  10 litre 

 10x10
3 

m
3

 

 

 

S  



ρ 
 

 
0.7 

Stan dard 

 

 






1000 

 

  700kg / m
3

 

 

  
M

 
V 

 
700  

M
 

 

10x10
3

 

 

M  7kg 
 

 
 

1.3.5 Viscosity: Viscosity is the property by virtue of which fluid offers resistance 

against the flow or shear deformation. In other words, it is the reluctance of the fluid to 

flow. Viscous force is that force of resistance offered by a layer of fluid for the motion of 

another layer over it. 
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Area of contact = A 
F 

Movable Plate 
U U 

Liquid 

Fixed Plate Linear Non-linear 

In case of liquids, viscosity is due to cohesive force between the molecules of 

adjacent layers of liquid. In case of gases, molecular activity between adjacent layers is 

the cause of viscosity. 

 Newton’s law of viscosity:

Let us consider a liquid between the fixed plate and the movable plate at a 

distance ‘Y’ apart, ‘A’ is the contact area (Wetted area) of the movable plate, ‘F’ is the 

force required to move the plate with a velocity ‘U’ According to Newton’s law shear 

stress is proportional to shear strain. (Fig.2) 

 
 

 

 

 

Y 
 

 
 

 

 

 

 
 

 

 

 

 F A 

Velocity distribution or 

velocity profile 

Fig.2 Definition diagram of Liquid viscosity 

 F 
1

 
Y 

 F U 

 F 
AU

 
Y 

F= . 
AU

 
Y 

‘’ is the constant of proportionality called Dynamic Viscosity or Absolute Viscosity or 

Coefficient of Viscosity or Viscosity of the fluid. 

F 
 .

U 

A Y 
    

U
 

Y 
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‘’ is the force required; Per Unit area called ‘Shear Stress’. The above equation is called 

Newton’s law of viscosity. 

Velocity gradient or rate of shear strain: 

It is the difference in velocity per unit distance between any two layers. 

If the velocity profile is linear then velocity gradient is given by 
U 

. If the velocity profile 
Y 

is non – linear then it is given by 
du 

. 
dy 

 Unit of force (F): N. 

 Unit of distance between the twp plates (Y): m 

 Unit of velocity (U): m/s 

 Unit of velocity gradient : 
U 
 

m / s 
 / s  s1 

Y m 

 Unit of dynamic viscosity ():  =  . 
u
 

y 

  
 y 

U 

 
N / m

2 
. m 

m / s 

μ ⇒
N - sec 

or 
m 2 

 
μ ⇒Pa - S 

 

 

NOTE: In CGS system unit of dynamic viscosity is 
dyne . S 

Cm 2 

 

and is called poise (P). 

If the value of  is given in poise, multiply it by 0.1 to get it in 

 
1 Centipoises = 10-2 Poise. 

 Effect of Pressure on Viscosity of fluids:

Pressure has very little or no effect on the viscosity of fluids. 

 Effect of Temperature on Viscosity of fluids:

NS 
.
 

m 2 

1. Effect of temperature on viscosity of liquids: Viscosity of liquids is due to cohesive force 

between the molecules of adjacent layers. As the temperature increases cohesive force 
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decreases and hence viscosity decreases. 
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

2. Effect of temperature on viscosity of gases: Viscosity of gases is due to molecular  

activity between adjacent layers. As the temperature increases molecular activity 

increases and hence viscosity increases. 

 Kinematics Viscosity: It is the ratio of dynamic viscosity of the fluid to its mass density.

 KinematicV is cosity  





Unit of KV: 

KV  






 
NS / m

2
 

kg / m
3

 

 

 

 
NS m 

 

m
2 
x 

kg 

 
 kg m  s m

3 
2 

 
   

 
F  ma 

 
s2 x 

m2 
x 

kg 
 m / s 

N  Kg.m / s
2

 

 

 KinematicV is cosity  m
2 
/ s 

NOTE: Unit of kinematics Viscosity in CGS system is cm2/s and is called stoke (S) 

If the value of KV is given in stoke, multiply it by 10-4 to convert it into m2/s. 

 

The Fig. 3 illustrates how μ changes for different fluids. 

3 
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Fig.3 Variation of Viscosity based on Behaviour of Liquids 

 Plastic: Shear stress must reach a certain minimum before flow commences.

 Bingham plastic: As with the plastic above a minimum shear stress must be achieved. 

With this classification n = 1. An example is sewage sludge.

 Pseudo-plastic: No minimum shear stress necessary and the viscosity decreases with 

rate of shear, e.g. colloidal substances like clay, milk and cement.

 Dilatant substances; Viscosity increases with rate of shear e.g. quicksand.

 Thixotropic substances: Viscosity decreases with length of time shear force is applied

e.g. thixotropic jelly paints. 

 Rheopectic substances: Viscosity increases with length of time shear force is applied

 Viscoelastic materials: Similar to Newtonian but if there is a sudden large change in 

shear they behave like plastic

 
The figure shows the relationship between shear stress and velocity gradient for two 

fluids, A and B. Comment on the Liquid ‘A’ and Liquid ‘B’ ? 



Fluid Mechanics                                                                                      18ME43 
 

Dept of Mechanical Engg, GMIT, Bharathinagara Page 15  

 

 
 

 

Comments: (i) The dynamic viscosity of liquid A > the dynamic viscosity of liquid B 

(ii) Both liquids follow Newton’s Law of Viscosity 

 

 

 

 

 

 

 

 

 

 
Solved Problems: 

1. Viscosity of water is 0.01 poise. Find its kinematics viscosity if specific gravity is 

0.998. 

Kinematics viscosity = ?  = 0.01P 

S = 0.998 = 0.01x0.1 


S = 


   = 0.001  

NS
 

m 2 

s tan drad 
 

μ 
∴Kinmetic Vis cosity = 

ρ
 

 

 

0.998 = 
     

1000 
= 

0.001 

998 

 

 

  998 kg / m
3
 

KV = 1 x 10 
6 
m 

2 
/ s 
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2. A Plate at a distance 0.0254mm from a fixed plate moves at 0.61m/s and requires a 

force of 1.962N/m2 area of plate. Determine dynamic viscosity of liquid between the 

plates. 

 

U = 0.61 m/s 
 

 

Y = 0.0254 mm 

= 0.0254 x 10-3m 
 

 

  1.962 N / m
2

 

 = ? 

Assuming linear velocity distribution 

   
U

 
Y 

 

1.962   x 
0.61 

 

 

0.0254 x 10
3

 

 

  8.17  x 10
5  NS

 
m2 

3. A plate having an area of 1m2 is dragged down an inclined plane at 450 to horizontal 

with a velocity of 0.5m/s due to its own weight. Three is a cushion of liquid 1mm 

thick between the inclined plane and the plate. If viscosity of oil is 0.1 PaS find the 

weight of the plate. 

 

y = 1 mm = 1 x 10-3m 
 

Plate 

450 
U = 0.5 m/s 

W 450 

 
 

A =1m2 

U = 0.5m/s 

Y = 1x10-3m 

 = 0.1NS/m2 
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W = ? 

F = W x cos 450 

= W x 0.707 

F = 0.707W 

  
F

 
A 

  
0.707W 

1 

  0.707WN / m
2

 

 

 

Assuming linear velocity distribution, 

  . 
U

 
Y 

 

0.707W  0.1 x 
0.5 

 

 

1 x 10
3

 

 

W  70.72 N 
 

 
 

4. A flat plate is sliding at a constant velocity of 5 m/s on a large horizontal table. A thin 

layer of oil (of absolute viscosity = 0.40 N-s/m2) separates the plate from the table. 

Calculate the thickness of the oil film (mm) to limit the shear stress in the oil layer to 

1 kPa, 

Given :  = 1 kPa = 1000 N/m2; U = 5m/s;  = 0.4 N-s/m2 

Applying Newton’s Viscosity law for the oil film - 

τ = μ  
du  

= μ 
U

 

dy y 

1000 = 0.4 
5
 

y 

y = 2 x 10
-3  

= 2 mm 
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5. A shaft of  20mm and mass 15kg slides vertically in a sleeve with a velocity of 5 

m/s. The gap between the shaft and the sleeve is 0.1mm and is filled with oil. 

Calculate the viscosity of oil if the length of the shaft is 500mm. 

0.1 mm 
20 0.1 mm 

 
    
    

500 

mm 

    
    
    

 

5 m/s 
 
 

D = 20mm = 20x10-3m 

M = 15 kg 

W = 15x 9.81 

W = 147.15N 

y = 0.1mm 

y = 0.1 x 10-3mm 

U = 5m/s 

F = W 

F = 147.15N 

= ? 

A =  D L 

A =  x 20 x 10-3 x 0.5 

A = 0.031 m2 

500 

mm 

5 m/s 
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  .
U

 
Y 

 

4746.7   x 

 

 

 

5 
 

 

0.1x10
3

 

 

  0.095  
NS

 
m2 

 

  
F

 
A 

 

 
147.15 

0.031 

 

  4746.7N / m
2

 

 
 

6. If the equation of velocity profile over 2 plate is V= 2y2/3. in which ‘V’ is the velocity 

in m/s and ‘y’ is the distance in ‘m’ . Determine shear stress at (i) y = 0 (ii) y = 75mm. 

Take  = 8.35P. 

a. at y = 0 

b. at y = 75mm 

= 75 x 10-3m 

 = 8.35 P 

= 8.35 x 0.1  
NS

 
m 2 

 

 0.835 
NS

 
m 2 
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3 0 

V  2y
2/3

 

 

 
dv 

 2x 
dy 

2 
y2 / 31 

3 
 

 
4 

y1/ 3 

3 

 

at, y  0, 
dv 

 3 
4 
 

dy 
 

at, y  75x10
3 

m, 
dv 

 3 
dy 

4 

3 75x10
3

 

 

dv 
 3.16 / s 

dy 

  . 
dv

 
dy 

 

at, y  0,   0.835x



  



at, y  75 x10
3 

m,  0.835 x 3.16 

 

  2.64 N / m
2
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Motion 

450 

450 

 

7. A circular disc of 0.3m dia and weight 50 N is kept on an inclined surface with a 

slope of 450. The space between the disc and the surface is 2 mm and is filled with oil 

of dynamics viscosity 
1NS 

. What force will be required to pull the disk up the 
m 2 

 

inclined plane with a velocity of 0.5m/s. 
 

P 

 

 

 
 

2 mm = 2 x 10-3 m = y 

 

W = 150 N 
 

 

 

 

D = 0.3m 

 x 0.3m
2

 

A = 
4 

A = 0.07m2 

W = 50N 

   1 
NS

 
m2 

F  P  50 cos45 

 
F  (P  35,35) 

y  2x10
3 

m 

U  0.5m / s 

 

  
(P  35.35) 

N / m
2 

0.07 
 

 

  .
U

 
Y 

 
 P  35,35  

 1 x
 

 
 

 

 

 

0.5 
 

 
0.07 




2x10
3

 

 

P  52.85N 
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8. Dynamic viscosity of oil used for lubrication between a shaft and a sleeve is 6 P. The 

shaft is of diameter 0.4 m and rotates at 190 rpm. Calculate the power lost in the 

bearing for a sleeve length of 0.09 m .Thickness of oil is 1.5 mm. 

 

 
 = 6=0.6 

NS
 

m 2 

N = 190 rpm 

 

 

 
Power lost = ? 

A =  D L 

=  x 0.4 x0.09    A = 0.11m2 

Y = 1.5x10-3 m 

9. Two large surfaces are 2.5 cm apart. This space is filled with glycerin of absolute 

viscosity 0.82 NS/m2. Find what force is required to drag a plate of area 0.5m2 

between the two surfaces at a speed of 0.6m/s. (i) When the plate is equidistant from 

the surfaces, (ii) when the plate is at 1cm from one of the surfaces. 

Case (i) When the plate is equidistant from the surfaces, 
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U  
DN 

60 
 

 
 x 0.4 

60 

x 190 

 

U  3.979 m / s 
 

  . 
U

 
Y 

 

 0.6 x 
3.979 

 

 

1.5 x 10
3

 

 

  1.592 x 10
3 
N / m 

2
 

 

 
F 
 1.59 

A 

 
x 10

3
 

 

F  1.591x 10
3 
x 0.11 

 

F  175.01 N 
 

 

T  F x R 

 

 175.01x0.2 

 

T  35Nm 

 

P  
2NT 

60,000 

 

P  0.6964KW 

 

P  696.4W 
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1 

U 

Let F1 be the force required to overcome viscosity resistance of liquid above the 

plate and F2 be the force required to overcome viscous resistance of liquid below the 

plate. In this case F1 = F2. Since the liquid is same on either side or the plate is equidistant 

from the surfaces. 

1  1 
Y

 

1  0.82x 
0.6 

 

 

0.0125 

 

  39.36N / m
2

 

 

F1  39.36 
A 

 

F1  19.68N 

 Tatal force required to drag the plate =F1 +F2 = 19.68+19.68 

F= 39.36N 

Case (ii) when the plate is at 1cm from one of the surfaces. 

 
 

Here F1 ≠F2 
 
 

 

 

2.5 cm 

1 cm   F1 

 
F2 

1.5 cm 

0.6 m/s 

 
 

 

F1 
= 

A 
49.2 

F1 = 

F1 = 

49.2x 0.5 

24.6 N 

F2 
= 

A 

F2 = 

32.8 

32.8x 0.5 

 

F2 = 16.4 N 
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2 

Total Force F = F1 + F2 = 24.6 + 16.4 

F = 41N 

 
10. Through a very narrow gap of ht a thin plate of large extent is pulled at a velocity `V’. 

On one side of the plate is oil of viscosity 1 and on the other side there is oil of 

viscosity 2. Determine the position of the plate for the following conditions. 

i. Shear stress on the two sides of the plate is equal. 

ii. The pull required, to drag the plate is minimum. 

 
 

Condition 1: Shear stress on the two sides of the plate is equal F1 = F2 
 
 

 
       

        1  
 

     

h   F1  

                          F2    

        2  

 

Velocity = V 

 
       

 

 

 

y  ? for F1  F2 

 

  . 
U

 
Y 

 

F 
 . 

U 

A Y 

 

F  A. 
U

 
Y 

 

A V 

1  

(h  y) 

 

A V 

F   
2  

y 

F1 
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

F1  F2 

 
A1V 

 
A2V 

  

hy y 

 

1y2 (hy) 

 
1y2y2h 

    h  2h 
 

y  

 ory  1 1

 
2 

 

Condition 2: The pull required, to drag the plate is minimum (i.e.[ 
dF

] 
dy 

 
minimum ) 

 Total drag forced required 
 
 

 
       

        1  

h   F1  V 

                          F2    
y   2 

 
 

 

 

y  ? if , 

 

F  
A1V 

F1 F 2 is to be min imum 

1 h y 

 

F  
A2V 

 

2 
y 

1 2 
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μ1 

μ 2 

1 + 
μ1

 

μ 2 

Miniscus 

F =  F1   + F2 

F = 
Aμ1V 

+ 
Aμ 2 V 

h y y 
 

For 
 

F to be 
 

min . 
dF 

= 0
 

dy 
dF 

= 0 = +Aμ 
dy 

V ≡(h y) 2 
Aμ 2 Vy 

Vμ1A = ( Vμ 2 A 
 

 

h y) 2 y2
 

(h y)2 
μ 

=   1  

y2 μ 
2 

h  y 
= 

μ1 

y  μ 2 

 

(h y) = y 

 

h = y + y 

 

h = y 1 + 
 

∴y = 
h

 

 

 

 

 

 

1..3.6 Capillarity : 

Miniscus 

 

Cohesion < Adhesion 

Eg: Water 

Cohesion > Adhesion 

Eg: Mercury 
 

Any liquid between contact surfaces attains curved shaped surface as shown in 

figure. The curved surface of the liquid is called Meniscus. If adhesion is more than 

cohesion then the meniscus will be concave. If cohesion is greater than adhesion 

meniscus will be convex. 

μ1 

μ 2 

μ1 

μ 2 

1 

2 
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Cohesion < Adhesion 

Eg: Water 

Cohesion > Adhesion 

Eg: Mercury 
 

 

Surface 

tension 
Surface 

tension 
 

Surface 

tension 
Surface 

tension 
 
 

 

 

 

Capillarity is the phenomena by which liquids will rise or fall in a tube of small diameter 

dipped in them. Capillarity is due to cohesion adhesion and surface tension of liquids. If 

adhesion is more than cohesion then there will be capillary rise. If cohesion is greater 

than adhesion then will be capillary fall or depression. The surface tensile force supports 

capillary rise or depression. 

Angle of contact: 
 

 

Surface 

tension 

 

Surface 

tension 

 




Surface 

tension 

 




Surface 

tension 
 

 

 

 
 

  Angle of contact 

 Acute 

  Angle of contact 

 Obtuse 

Capacity rise Capillary fall 
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
 




A 

C 

Dia ‘D’ 

D 

B 

Note: 

The angle between surface tensile force and the vertical is called angle of contact. If 

adhesion is more than cohesion then angle of contact is obtuse. 

 
 

 

 

 To derive an expression for the capillary rise of a liquid in small tube 

dipped in it: 

Let us consider a small tube of diameter ‘D’ dipped in a liquid of specific weight . ‘h’ is 

the capillary rise. For the equilibrium, 

Vertical force due to surface tension = Weight of column of liquid ABCD 
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(D) cos   x volume 

 

(D) cos x 

 
h  

4  cos

 D 

D
2
 

x h 
4 

 

 

It can be observed that the capillary rise is inversely proportional to the diameter of the 

tube. 

 

Note: 

The same equation can be used to calculate capillary depression. In such cases ‘  ’ will 

be obtuse ‘h’ works out to be –ve. 

 
Excess Pressure inside a Water Droplet: 

 

Pressure inside a Liquid droplet: Liquid droplets tend to assume a spherical shape since a 

sphere has the smallest surface area per unit volume. 

The pressure inside a drop of fluid can be calculated using a free-body diagram of a 

spherical shape of radius R cut in half, as shown in Figure below and the force developed 

around the edge of the cut sphere is 2R. This force must be balance with the difference 

between the internal pressure pi and the external pressure p acting on the circular area  

of the cut. Thus, 

2R = pR2 

p   p 

 

 
int ernal 

 p
external 

  
2  

R 
 

4  

D 
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(V – V) 

The excess pressure within a Soap bubble: 

The fact that air has to be blown into a drop of soap solution to make a bubble should 

suggest that the pressure within the bubble is greater than that outside. This is in fact the 

case: this excess pressure creates a force that is just balanced by the inward pull of the 

soap film of the bubble due to its surface tension. 

Consider a soap bubble of radius r as shown in Figure 1. Let the external pressure be      

Po and the internal pressure P1. The excess pressure P within the bubble is therefore 

given by: Excess pressure p= (P1 – P0) 

 

Consider the left-hand half of the bubble. The force acting from right to left due to the 

internal excess pressure can be shown to be PA, where A is the area of a section through 

the centre of the bubble. If the bubble is in equilibrium this force is balanced by a force 

due to surface tension acting from left to right. This force is 2x2πr (the factor of 2 is 

necessary because the soap film has two sides) where ‘’ is the coefficient of surface 

tension of the soap film. Therefore 

2x2πr = pA = pπr2 giving: 

Excess pressure in a soap bubble (P) = 4/r 

Bulk Modulus (K): 

When a solid or fluid (liquid or gas) is subjected to a uniform pressure all over the 

surface, such that the shape remains the same, then there is a change in volume. 

Then the ratio of normal stress to the volumetric strain within the elastic limits is called 

as Bulk modulus. This is denoted by K. 

K  
Normal stress 

volumetric strain 

K  
F / A 

 V / V 
 
 pV 

V 
 

where p = increase in pressure; V = original volume; V = change in volume 

The negative sign shows that with increase in pressure p, the volume decreases by V 

i.e. if p is positive, V is negative. The reciprocal of bulk modulus is called compressibility. 

C  Compressib ility  
1

 
K 
 
V 

pV 

S.I. unit of compressibility is N–1m2 and C.G.S. unit is dyne–1 cm2. 
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Vpour Pressure: 

Vapor pressure is defined as the pressure at which a liquid will boil 

(vaporize) and is in equilibrium with its own vapor (fig). Vapor 

pressure rises as temperature rises. For example, suppose you are 

camping on a high mountain (say 3,000m in altitude); the 

atmospheric pressure at this elevation is about 70 kPa and the 

boiling temperature is around 90C. This has consequences for 

cooking. For example, eggs have to be cooked longer at elevation to 

become hard-boiled since they cook at a lower temperature. 

A pressure cooker has the opposite effect. Namely, the tight 

lid on a pressure cooker causes the pressure to increase above the 

normal atmospheric value. This causes water to boil at a 

temperature even greater than 100C; eggs can be cooked a lot 

faster in a pressure cooker! 

 

 

 

 
Vapor pressure is important to fluid flows because, in general, pressure in a flow decreases as 

velocity increases. This can lead to cavitation, which is generally destructive and undesirable. 

In particular, at high speeds the local pressure of a liquid sometimes drops below the vapor 

pressure of the liquid. In such a case, cavitation occurs. In other words, a "cavity" or bubble 

of vapor appears because the liquid vaporizes or boils at the location where the pressure dips 

below the local vapor pressure. 

Cavitation is not desirable for several reasons. First, it causes noise (as the cavitation 

bubbles collapse when they migrate into regions of higher pressure). Second, it can lead to 

inefficiencies and reduction of heat transfer in pumps and turbines (turbo machines). Finally, 

the collapse of these cavitation bubbles causes pitting and corrosion of blades and other 

surfaces nearby. The left figure below shows a cavitating propeller in a water tunnel, and the 

right figure shows cavitation damage on a blade. 

 

 

 

 

 
Liquid 
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Problems: 

1. Capillary tube having an inside diameter 5mm is dipped in water at 200. Determine the 

heat of water which will rise in tube. Take  =0.0736N/m at 200 C. 

h  
4 cos

 D 
 

 
4 x 0.0736 x cos

9810 x 5 x 10
3

 

 
h  6 x 10

3 
m 

  0
0 
(assumed) 

 
  9810N / m

3
 

 

 

2. Calculate capillary rise in a glass tube when immersed in Hg at 200c. Assume 

 for Hg at 200c as 0.51N/m. The diameter of the tube is 5mm.  = 1300c. 

 
h  

4 cos 

D 

S  



S tan dard 

 

h  1.965 x10
3 

m 

13.6 






9810 

 

 
-ve sign indicates capillary depression. 

  133.416 x 10
3 
N / m

3
 

 

 

3. Determine the minimum size of the glass tubing that can be used to measure water 

level if capillary rise is not to exceed 2.5mm. Take  = 0.0736 N/m. 

h  
4cos

 D 
 

D  
4 x 0.0736 x cos0 

9810 x  2.5 x 103
 

D  ? 

 
h  2.5x10

3 
m 

D  0.012 m 

 
D  12 mm 

 
  0.0736 N / m 



Fluid Mechanics                                                                                      18ME43 
 

Dept of Mechanical Engg, GMIT, Bharathinagara Page 34  

 

4. A glass tube 0.25mm in diameter contains Hg column with air above it. If  = 

0.51N/m, what will be the capillary depression? Take  = - 400 or 1400. 

 

h  
4cos

 D 
D  0.25x10

3 
m 

 
  0.51N / m 

  
4x0.51x cos140 

133.146x10
3 

x0.25x10
3

 

 
  140 

 

h  46.851x10
3 

m  
  133.416 x 10

3
 

 
N / m

2
 

 

 

5. If a tube is made so that one limb is 20mm in  and the other 2mm in  and water is 

poured in the tube, what is the difference in the level of surface of liquid in the two 

limbs.  = 0.073 N/m for water. 

2 mm 



h 

h1 
h2 
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h  h  
4cos

1 
D 

 

 
4 x 0.073 x coso 

9810 x (20 x10
3 

) 

 

 0.01488m 
 

h  
4 x 0.073x coso 

 

2 
9810 x (20 x10

3 
) 

 

 1.488 x 10
3 

m 

h  h1  h 2 

 

 0.01339m 

 

h  13.39mm 

 

6. A clean glass tube is to be selected in the design of a manometer to measure the 

pressure of kerosene. Specific gravity of kerosene = 0.82 and surface tension of 

kerosene = 0.025 N/m. If the capillary rise is to be limited to 1 mm, calculate the 

smallest diameter (cm) of the glass tube 

 

Soln. Given For kerosene  = 0.025 N/m ; Sp.Gr. = 0.82; hmax = 1mm 

 

Assuming contact angle  = 0, kerosene =0 .82 x 9810 = 8044.2 N/m3 

Let ‘d’ be the smallest diameter of the glass tube in Cm 

Then using formula for capillary rise in (h) 
 

h =  
4 σ Cosθ 

= 

γ  (
 dcm 

)
 

4x0.025 Cos0
°
 

8044.2x(
 dcm 

) 
= 

1 

1000 
ker osene 100 100 

dcm = 1.24 Cm 
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7. The surface tension of water in contact with air at 20°C is 0.0725 N/m. The pressure 

inside a droplet of water is to be 0.02 N/cm2 greater than the outside pressure. 

Calculate the diameter of the droplet of water. 

 
 

Given: Surface Tension of Water  =0.0725 N/m, p= 0.02 N/cm2 = 0.02×10-4N/m2 
 

Let ‘D’ be the diameter of jet 
 

p  
4


D 

0.02 10
4 
 

4  0.0725 

D 
 

D = 0.00145m = 1.45mm 

 

8. Find the surface tension in a soap bubble of 40mm diameter when inside pressure is 

2.5 N/m2 above the atmosphere. 

 

Given: D = 40mm = 0.04 m, p = 2.5 N/m2 

Let ‘’ be the surface tension of soap bubble 

p  
8


D 

2.5  
 4


0.04 

 

 = 0.0125 N/m 

 

9. Determine the bulk modulus of elasticity of a liquid, if the pressure of the liquid is 

Increased from 70 N/cm2 to 130 N/cm2 The volume of the liquid decreases by 0.15per 

cent 

 

Given: Initial Pressure = 70 N/cm2, Final Pressure = 130 N/cm2 

Decrease in Volume = 0.15% 

 

p = Increase in Pressure = (130-70) = 60 N/cm2 
 

K  
p 


 
 




 
60 

 0.15 




= 4×104 N/cm2 

 
 

  100 
   
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Module -1: 2.Fluid Pressure and Its Measurements: 
Definition of pressure, Pressure at a point, Pascal’s law, Variation of pressure with depth. 

Types of pressure. Measurement of pressure using simple, differential & inclined 

manometers (theory & problems). Introduction to Mechanical and electronic pressure 

measuring devices. 

 
2.0 INTRODUCTION: Fluid is a state of matter which exhibits the property of flow. 

When a certain mass of fluids is held in static equilibrium by confining it within solid 

boundaries (Fig.1), it exerts force along direction perpendicular to the boundary in 

contact. This force is called fluid pressure (compression). 

Fig.1 Definition of Pressure 

In fluids, gases and liquids, we speak of pressure; in solids this is normal stress. 

For a fluid at rest, the pressure at a given point is the same in all directions. Differences 

or gradients in pressure drive a fluid flow, especially in ducts and pipes. 

2.1 Definition of Pressure: Pressure is one of the basic properties of all fluids. Pressure 

(p) is the force (F) exerted on or by the fluid on a unit of surface area (A). 

Mathematically expressed: 

p  
F   N 



A 
 

m 2  
The basic unit of pressure is Pascal (Pa). When a fluid exerts a force of 1 N over an area 

of 1m2, the pressure equals one Pascal, i.e., 1 Pa = 1 N/m2.Pascal is a very small unit, so 

that for typical power plant application, we use larger units: 

Units: 1 kilopascal (kPa) = 103 Pa, and 

1 megapascal (MPa) = 106 Pa = 103 kPa. 
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2.2 Pressure at a Point and Pascal’s Law: 

Pascal’s Principle: Pressure extends uniformly in all directions in a fluid. 

By considering the equilibrium of a small triangular wedge of fluid extracted from a 

static fluid body, one can show (Fig.2) that for any wedge angle θ, the pressures on the 

three faces of the wedge are equal in magnitude: 

 

 
Fig.2 Pascal’s Law 

 
Independent of px = py = pz independent of ‘’ 

 

Pressure at a point has the same magnitude in all directions, and is called isotropic. 

 

This result is known as Pascal's law. 

 
 

2.3 Pascal’s Law: In any closed, static fluid system, a pressure change at any one point is 

transmitted undiminished throughout the system. 
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1 2 

2.3.1 Application of Pascal’s Law: 
 

Fig.3 Application of Pascal’s Law 

• Pressure applied to a confined fluid increases the pressure throughout by the same 

amount. 

• In picture, pistons are at same height: 

P  P  
F1  

F2 
 

F2 
 

A2 

A1 A2 F1 A1 

• Ratio A2/A1 is called ideal mechanical advantage 

2.4 Pressure Variation with Depth: 

Consider a small vertical cylinder of fluid in equilibrium, where positive z is pointing 

vertically upward. Suppose the origin z = 0 is set at the free surface of the fluid. Then the 

pressure variation at a depth z = -h below the free surface is governed by 
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( p  p)A  W  pA 

⇒ pA  gAz  0 

⇒ p  -gz 

⇒ 
dp 

dz 
 -g or 

dp 

dz 
 - Eq.(1) (as z → 0) 

Therefore, the hydrostatic pressure increases linearly with depth at the rate of the specific 

weight γ = ρg of the fluid. 

Homogeneous fluid: ρ is constant 
 

By simply integrating the above equation-1: 
 

∫dp  - ∫g dz ⇒ p  -gz  C 

 

Where C is constant of integration 
 

When z = 0 (on the free surface), p= C = p0 = (the atmospheric pressure). 
 

Hence, p  -gz  p0 

 

Pressure given by this equation is called ABSOLUTE PRESSURE, i.e., measured above 

perfect vacuum. 

However, for engineering purposes, it is more convenient to measure the pressure above 

a datum pressure at atmospheric pressure. By setting p0 = 0, 

p  -gz  0  -gz = gh 

p = h 

The equation derived above shows that when the density is constant, the pressure in a 

liquid at rest increases linearly with depth from the free surface. 

For a given pressure intensity ‘h’ will be different for different liquids since, ‘’ will be 

different for different liquids. 

∴h   
P

 

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S1h1 = S2h2 

Hint-1: To convert head of 1 liquid to head of another liquid. 

S = 
γ
 

γ
Staandard 

 

 

 
p  1h1 

S1 = 
γ1 

 

γ
Staandard 

 
p   2 h 2 

∴γ1 = S1 γStaandard 

 
γ21 = S2 γStaandard 

 

∴S1 γS tandard 
h1 = S2 γS tandard 

h2 

 

 

Hint: 2 Swater x hwater = Sliquid x hliquid 

1x hwater = Sliquid x hliquid 

 
 

Pressure head in meters of water is given by the product of pressure head in 

meters of liquid and specific gravity of the liquid. 

Eg: 10meters of oil of specific gravity 0.8 is equal to 10x0.8 = 8 meters of water. 

Eg: Atm pressure is 760mm of Mercury. 

NOTE:P =    h 

 

kPa 
kN 

m
 

m3 

hwater = Sliquid x hliquid 

1h1   2 h 2 
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Solved Examples: 

Ex. 1. Calculate intensity of pressure due to a column of 0.3m of (a) water (b) Mercury 

(c) Oil of specific gravity-0.8. 

Soln: (a) Given: h = 0.3m of water 

 
water 

 9.81 
kN

 
m 3 

p  ? 

p
water 

p
water 

 
  

water 
h

water 

 2.943 kPa 

(b) Given: h = 0.3m of Hg 

mercury = Sp.Gr. of Mercury X water = 13.6 x 9.81 

mercury = 133.416 kN/m3 

pmercury = mercury hmercury 

= 133.416 x 0.3 

p = 40.025 kPa or 40.025 kN/m2 

(c) Given: h = 0.3 of Oil Sp.Gr. = 0.8 

oil = Sp.Gr. of Oil X water = 0.8 x 9.8 

oil = 7.848 kN/m3 

poil = oil hoil 

= 7.848 x 0.3 

poil = 2.3544 kPa or 2.3544 kN/m2 

Ex.2. Intensity of pressure required at a point is 40kPa. Find corresponding head in 

(a) water (b) Mercury (c) oil of specific gravity-0.9. 

Solution: Given Intensity of pressure at a point 40 kPa i.e. p = 40 kN/m2 

(a) Head of water hwater =? 

 

h
water 

 
p 

 
water 

 
40 

9.81 

hwater  4.077m of water 
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(b) Head of mercury ‘hmercury =? 

mercury = Sp.Gr. of Mercury X water  = 13.6 x 9.81 
h
 

 
 

p 
 

40 
  

mercury = 133.416 kN/m3 
mercury  

mercury 133.416 

hwater  0.3m of mercury 
 

(c) Head of oil ‘hoil =? 

oil = Sp.Gr. of Oil X water = 0.9 x 9.81 
h

oil 
  

p 

 
oil 

 
40 

8.829 

oil = 8.829 kN/m3 
h

oil 
 4.53m of oil 

Ex.3 Standard atmospheric pressure is 101.3 kPa Find the pressure head in (i) Meters of 

water (ii) mm of mercury (iii) m of oil of specific gravity 0.6. 

(i) Meters of water hwater 

p = water hwater 

101.3 = 9.81 x hwater 

hwater = 10.3 m of water 

(ii) Meters of water hwater 

p = mercury x hmercury 

101.3 = (13.6x9.81) x hmercury 

h = 0.76 m of mercury 

(iii) p = oil hoil 

101.3 = (0.6 x 9.81) x h 

h = 17.21m of oil of S = 0.6 

Ex.4 An open container has water to a depth of 2.5m and above this an oil of S = 0.85 for 

a depth of 1.2m. Find the intensity of pressure at the interface of two liquids and at the 

bottom of the tank. 

(i) At the Oil - water int erface 

p
A 

= γ0il hoil = (0.85 x 9.81) x 1.2 

pA = 10 kPa 
1.2 m 

(ii) At the bottom of container 

p
B 

= γ
oil 

xh
oil 

+ γ
water 

+ h
water 

2.5 m 

pB = pA + γ
water

h
water 

pB = 10 kPa + 9.81 x 2.5 

pB = 34.525 kPa 

 

Oil = 0.8
x
5 

A 
 

WATER 

B x 
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2.5 Types of Pressure: Air above the surface of liquids exerts pressure on the exposed 

surface of the liquid and normal to the surface. 

 Atmospheric pressure 

The pressure exerted by the atmosphere is called 

atmospheric pressure. Atmospheric pressure at a place depends 

on the elevation of the place and the temperature. 

Atmospheric pressure is measured using an instrument 

called ‘Barometer’ and hence atmospheric pressure is also 

called Barometric pressure. However, for engineering purposes, 

it is more convenient to measure the pressure above a datum 

pressure at atmospheric pressure. By setting patmophere = 0, 

 

 
Unit: kPa . ‘bar’ is also a unit of atmospheric pressure 1-bar = 100 kPa.= 1 kg/cm2 

 Absolute pressure: Absolute pressure at a point is the intensity of pressure at 

that point measured with reference to absolute vacuum or absolute zero pressure. 

Absolute pressure at a point is the intensity of pressure at that point measured with 

reference to absolute vacuum or absolute zero pressure (Fig.4) . 

Absolute pressure at a point can never be negative since there can be no pressure 

less than absolute zero pressure. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4 Definition of Absolute Pressure, Gauge Pressure and Vacuum Pressure 

p = -gz = ρgh 
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p2 (gauge) = . h = gh 

Absolute pressure at a point = Atmospheric pressure ± Gauge pressure 

Gauge Pressure: If the intensity of pressure at a point is measurement with reference 

to atmosphere pressure, then it is called gauge pressure at that point. 

Gauge pressure at a point may be more than the atmospheric pressure or less than 

the atmospheric pressure. Accordingly gauge pressure at the point may be positive or 

negative (Fig.4) 

Negative gauge pressure: It is also called vacuum pressure. From the figure, It is 

the pressure measured below the gauge pressure (Fig.4). 

 

 

 

NOTE: If we measure absolute pressure at a Point below the free surface of the liquid, 

then, p1 = patm 

 

 

If gauge pressure at a point is required, then atmospheric 

pressure is taken as zero, then, 

 

 

 
 

Also, the pressure is the same at all points with the same depth from the free surface 

regardless of geometry, provided that the points are interconnected by the same fluid. 

However, the thrust due to pressure is perpendicular to the surface on which the pressure 

acts, and hence its direction depends on the geometry. 

p2 (absolute) = . h + patm 
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Solved Example: Convert the following absolute pressure to gauge pressure: 

(a) 120kPa (b) 3kPa (c) 15m of H2O (d) 800mm of Hg. 

Solution:  

(a) pabs = patm + pgauge 

 pgauge = pabs – patm = 120 – 101.3 = 18.7 kPa 

(b) pgauge = 3-101.3 = -98.3 kPa 

pgauge = 98.3 kPa (vacuum) 

(c) habs = hatm + hgauge 

15 =10.3 +hgauge 

hgauge = 4.7m of water 

(d) habs = hatm + hgauge 

800 =760 + hgauge 

hgauge = 40 mm of mercury 

 

2.6 Vpour Pressure: 

Vapor pressure is defined as the pressure at which a liquid will boil 

(vaporize) and is in equilibrium with its own vapor. Vapor pressure 

rises as temperature rises. For example, suppose you are camping 

on a high mountain (say 3,000 m in altitude); the atmospheric 

pressure at this elevation is about 70 kPa and the boiling 

temperature is around 90C. This has consequences for cooking. 

For example, eggs have to be cooked longer at elevation to 

become hard-boiled since they cook at a lower temperature. 

A pressure cooker has the opposite effect. Namely, the 

tight lid on a pressure cooker causes the pressure to increase 

above the normal atmospheric value. This causes water to boil at 

a temperature even greater than 100C; eggs can be cooked a lot 

faster in a pressure cooker! 

 

 

 

 

 

 

 

 
Liquid 
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Fig.5 
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patm = mercury × y 

 

Vapor pressure is important to fluid flows because, in general, pressure in a flow 

decreases as velocity increases. This can lead to cavitation, which is generally destructive 

and undesirable. In particular, at high speeds the local pressure of a liquid sometimes 

drops below the vapor pressure of the liquid. In such a case, cavitation occurs. In other 

words, a "cavity" or bubble of vapor appears because the liquid vaporizes or boils at the 

location where the pressure dips below the local vapor pressure. 

Cavitation is not desirable for several reasons. First, it causes noise (as the 

cavitation bubbles collapse when they migrate into regions of higher pressure). Second, it 

can lead to inefficiencies and reduction of heat transfer in pumps and turbines (turbo 

machines). Finally, the collapse of these cavitation bubbles causes pitting and corrosion 

of blades and other surfaces nearby. The left figure below shows a cavitating propeller in 

a water tunnel, and the right figure shows cavitation damage on a blade. 

2.7 Measurement of Pressure: Measurement of pressure 

● Barometer 

● Simple manometer 

● Piezometer column 

● Bourdon gage 

● Pressure transducer 

2.7.1 Barometer: A barometer is a device for measuring 

atmospheric pressure. A simple barometer consists of a tube 

more than 760 mm long inserted in an open container of mercury 

with a closed and evacuated end at the top and open tube end at 

the bottom and with mercury extending from the container up 

into the tube. 

Strictly, the space above the liquid cannot be a true vacuum. It contains mercury 

vapor at its saturated vapor pressure, but this is extremely small at room temperatures 

(e.g. 0.173 Pa at 20oC). The atmospheric pressure is calculated from the relation Patm = 

ρgh where ρ is the density of fluid in the barometer. 

pat’o’ = mercury x y + pvapor = patm 

With negligible pvapor = 0 
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2.7.2 Simple Manometer: Simple monometers are used to measure intensity of pressure 

at a point. They are connected to the point at which the intensity of pressure is required. 

Such a point is called gauge point 

 Types of Simple Manometers 

Common types of simple manometers are 

a) Piezometers 

b) U-tube manometers 

c) Single tube manometers 

d) Inclined tube manometers 

a) Piezometers 
 

 
Arrangement for the measurement 

negative or vacuum or section 

pressure 

X 
 

h 

h 
Pipe 

X 
A 

 

 

Piezometer consists of a glass tube inserted in the wall of the vessel or 

pipe at the level of point at which the intensity of pressure is to be measured. The other 

end of the piezometer is exposed to air. The height of the liquid in the piezometer gives 

the pressure head from which the intensity of pressure can be calculated. 

To minimize capillary rise effects the diameters of the tube is kept more than 

12mm. 

h 

X 

Pipe 
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X 
A 

Pipe 

Merits 

 

 

 
Demerits 

 

 Simple in construction 

 Economical 

 
 

 Not suitable for high pressure intensity. 

 Pressure of gases cannot be measured. 

(b) U-tube Manometers: 
 

Manometer 

reading 

X 

 
Manometri 

liquid 

 
 

 

Pipe 
 

 

 

 

 

 

 

A U-tube manometers consists of a glass tube bent in U-Shape, one end of which 

is connected to gauge point and the other end is exposed to atmosphere. U-tube consists 

of a liquid of specific of gravity other than that of fluid whose pressure intensity is to be 

measured and is called monometric liquid. 

c 

A 
X 

Tank 
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 Manometric liquids

 Manometric liquids should neither mix nor have any chemical reaction with the 

fluid whose pressure intensity is to be measured. 

 It should not undergo any thermal variation. 

 Manometric liquid should have very low vapour pressure. 

 Manometric liquid should have pressure sensitivity depending upon the 

magnitude. Of pressure to be measured and accuracy requirement. 

 
Gauge equations are written for the system to solve for unknown quantities. 

 To write the gauge equation for manometers

Steps: 

1. Convert all given pressure to meters of water and assume unknown pressure in meters 

of waters. 

2. Starting from one end move towards the other keeping the following points in mind. 

 Any horizontal movement inside the same liquid will not cause change in 

pressure. 

 Vertically downward movement causes increase in pressure and upward 

motion cause decrease in pressure. 

 Convert all vertical columns of liquids to meters of water by multiplying them 

by corresponding specify gravity. 

 Take atmospheric pressure as zero (gauge pressure computation). 

3. Solve for the unknown quantity and convert it into the required unit. 
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Solved Problem: 

1. Determine the pressure at A for the U- tube manometer shown in fig. Also calculate 

the absolute pressure at A in kPa. 

 

 

X 
A 750mm 

 
 

500mm 

 
 

Water 
Hg (S = 13.6) 

 

 

 

X 
A 750mm 

 

 
500mm 

 
 

Water 
Hg (S = 13.6) 

 
 

Let ‘hA’ be the pressure head at ‘A’ in ‘meters of water’. 

hA  0.75  0.5 x13.6  0 

 

hA  6.05 m of water 

 

p   h 

 

 9.81 x 6.05 

 

p  59.35 kPa(gauge pressure ) 

 

pabs  patm  pgauge 

 

 101.3  59.35 

 

pabc  160.65 kPa 
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2. For the arrangement shown in figure, determine gauge and absolute pressure at the 

point M. 

250mm 
 

X 

M 750 mm 
 

 
Oil (S = 0.8) 

Mercury (13.6) 

 

 

Let ‘hM’ be the pressure head at the point ‘M’ in m of water, 

hM - 0.75 x 0.8 – 0.25 x 13.6 = 0 

hM = 4 m of water 
 
 

p   h 

 

p  39.24 kPa 

 

pabs  101.3  39.24 

 

pabs140.54 kPa 
 

 

3. If the pressure at ‘At’ is 10 kPa (Vacuum) what is the value of ‘x’? 
 

 

 

 

Oil (S = 1.2) 
 

 

 

pA = 10 kPa (Vacuum) 

pA = - 10 kPa 

x 

x 

A 

Mercury 

m 200m 
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pA  
 10 

  1.019 m of 
 9.81 

 

water 

 

h A   1.019 m of water 

 

 1.019  0.2 x1.2  x (13.6)  0 

 

x  0.0572 m 
 

 

4. The tank in the accompanying figure consists of oil of S = 0.75. Determine the 

 
pressure gauge reading in 

kN 
.
 

m 2 

 

 

 
 

 

Let the pressure gauge reading be ‘h’ m of water 

h – 3.75 x 0.75 + 0.25 x 13.6 = 0 

h = - 0.5875 m of water 

p =  h 

p = -5.763 kPa 

p = 5.763 kPa (Vacuum) 

25 cm 

3.75 m 

S = 0.75 

Mercury 

Air 
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5. A closed tank is 8m high. It is filled with Glycerine up to a depth of 3.5m and linseed 

oil to another 2.5m. The remaining space  is  filled  with  air  under  a  pressure  of 

150 kPa. If a pressure gauge is fixed at the bottom of the tank what will be its reading. 

Also calculate absolute pressure. Take relative density of Glycerine and Linseed oil 

as 1.25 and 0.93 respectively. 

 

2 m 

 

2.5 m 

 
3.5 m 

 

 
 

PH  150 kPa 

1.25 

h  
150 

M 
9.81 

h M  15.29 m of water 

Let ‘hN’ be the pressure gauge reading in m of water. 

hN -3.5 x 1.25 -2.5 x 0.93 =15.29 

hN = 21.99 m of water 

p = 9.81 x 21.99 

p = 215.72 kPa (gauge) 

pabs = 317.02 kPa 

 
6. A vertical pipe line attached with a gauge and a manometer contains oil and Mercury 

as shown in figure. The manometer is opened to atmosphere. What is the gauge 

reading at ‘A’? Assume no flow in the pipe. 

hA-3 x 0.9 + 0.375 x 0.9 - 0.375 x 13.6 = 0 

hA = 2.0625 m of water 

p =  x h 

= 9.81 x 21.99 

Air M 
X 

150 kPa 

Linseed oil 

S = 

Glycerin 
N 
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hA 
hB 

x B x A 

Ih 

 

A 
 

 

S = 0.9 

 

3 m 
 

 

 

37.5 cm 

 

S = 13.6 
 

p = 20.23 kPa (gauge) 

pabs = 101.3 +20.23 

pabs = 121.53 kPa 

 DIFFERENTIAL MANOMETERS

Differential manometers are used to measure pressure difference between any two 

points. Common varieties of differential manometers are: 

(a) Two piezometers. 

(b) Inverted U-tube manometer. 

(c) U-tube differential manometers. 

(d) Micro manometers. 

 
 

(a) Two Pizometers 
 

The arrangement consists of two pizometers at the two points between which the 

pressure difference is required. The liquid will rise in both the piezometers. The 

difference in elevation of liquid levels can be recorded and the pressure difference can be 

calculated. It has all the merits and demerits of piezometer. 
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SM 

y1 X 

x 

y2 

S1 
x 

 

(b) Inverted U-tube manometers: 
 

Inverted U-tube manometer is used to measure small difference in pressure 

between any two points. It consists of an inverted U-tube connecting the two points 

between which the pressure difference is required. In between there will be a lighter 

sensitive manometric liquid. Pressure difference between the two points can be calculated 

by writing the gauge equations for the system. 

Let ‘hA’ and ‘hB’ be the pr head at ‘A’ and ‘B’ in meters of water 

hA – (Y1 S1) + (x SM) + (y2 S2) = hB. 

hA – hB = S1 y1 – SM x – S2 y2, 

pA – pB =  (hA – hB) 

 

(c) U-tube Differential manometers 

 

S2 
 

 

 

 

 

 

A differential U-tube manometer is used to measure pressure difference between 

any two points. It consists of a U-tube containing heavier manometric liquid, the two 

S1 

x 
A y1 

x 
y2 

x 
B 

SM 
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limbs of which are connected to the gauge points between which the pressure difference 
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S = 0.9 

30 cm 

 
40 cm 

Water 
x 

B 

120 cm 

Water 

x 
A 

is required. U-tube differential manometers can also be used for gases. By writing the 

gauge equation for the system pressure difference can be determined. 

Let ‘hA’ and ‘hB’ be the pressure head of ‘A’ and ‘B’ in meters of water 

hA + S1 Y1 + x SM – Y2 S2 = hB 

hA – hB = Y2 S2 – Y1 S1– x SM 

Solved Problems: 

(1) An inverted U-tube manometer is shown in figure. Determine the pressure difference 

between A and B in N/M2. 

Let hA and hB be the pressure heads at A and B in meters of water. 
 

 
 

hA – (190 x 10-2) + (0.3 x 0.9) + (0.4) 0.9 = hB 

hA – hB = 1.23 meters of water 

pA – pB =  (hA – hB) = 9.81 x 1.23 

pA – pB = 12.06 kPa 

pA – pB = 12.06 x 103 N/m2 
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2. In the arrangements shown in figure. Determine the ‘h’. 
 

 

 
2N /cm2 

 

 

AIR 

 

 
 

AIR 

25 cm of Mercury (Vacuum) 

= - 0.25 x 13.6 

= - 3.4 m of water 

 

 

 

 

 

 

 

 

 
1.5 m 

4 m 

 

 

Water 

 
 

h 

 

KERO 

S = 0.8 

2N/cm2 = 2 x 1002 N/m2 = 

20 kPa 

h = 20 9.81 

h = 2.038 meters of water 

 

 

S = 1.5 

2.038 + 1.5 – (4 + 1.5 – h) 0.8 = – 3.4, h = 3.6 m 
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21 kPa 

105.00 m 

(5 m) 

00 m 

A 
y 

Water 

Oil 

 

S = 0.8 

B 

C Air 

x 

3. In figure given, the air pressure in the left tank is 230 mm of Mercury (Vacuum). 

Determine the elevation of gauge liquid in the right limb at A. If liquid in the right 

tank is water. 
 
 

 

 

 

 

 

 

 

 

102.00 m 
 

 

(2 m) 
 

100. 
 

 

 

 

 
 

S = 1.6 
 

 

h  
Pc 

c 





hB = 230mm of Hg 

 

 
= 0.23 x 13.6 

hB = - 3.128 m of water 

21 
 

 

9.81 

hc  2.14m of water 

– 3.128 + 5 x 0.8 + y x 1.6 – (y + 2) = 2.14 

– 3.128 + 5 x 0.8 + y x 1.6 – y – 2 = 2.14 

y = 5.446 m 

 Elevation of A = 100 – 5.446 

Elevation of A = 94.553m 
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4. Compute the pressure different between ‘M’ and ‘N’ for the system shown in figure. 

 

S = 0.92 
 

 

 

 

 

 

0.3 m 
 

 

 

 
 

 

 

Let ‘hM’ and ‘ hN’ be the pressure heads at M and N in m of water. 

hm + y x 1.15 – 0.2 x 0.92 + (0.3 – y + 0.2) 1.15 = hn 

hm + 1.15 y – 0.184 + 0.3 x 1.15 – 1.15 y + 0.2 x 1.15 = hn 

hm + 0.391 = hn 

hn – hm = 0.391meters of water 

 
 

pn – pm =  (hN – hm) 

= 9.81 x 0.391 

pn – pm = 3.835 kPa 

M 

0.2 m 

S = 1.15 

N 
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5. Petrol of specify gravity 0.8 flows up through a vertical pipe. A and B are the two 

points in the pipe, B being 0.3 m higher than A. Connection are led from A and B to a 

U–tube containing Mercury. If the pressure difference between A and B is 18 kPa, 

find the reading of manometer. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Hg 
 

pA – pB = 18kPa 

PA   PB 
 



hA – hB = 
18 

 

 

9.81 
 

hA  hB 1.835m of 

 

water 

hA + y x 0.8 – x 13.6 – (0.3 + y – x) 0.8 = hB 

hA – hB = – 0.8y + 13.66 x + 0.24 + 0.8 y – 0.8 x 

hA  hB 12.8 x  0.24 

1.835 = 12.8x + 0.24 

x = 0.1246 m 

R 
x 

0.3 m 
S = 0.8 

x 

A 
(y) 

x 
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p 

Water 

50 mm 

h 

S = 0.8 

 

Kerosene 

Air 

6. A cylindrical tank contains water to a height of 50mm. Inside is a small open 

cylindrical tank containing kerosene at a height specify gravity 0.8. The following 

pressures are known from indicated gauges. 

pB = 13.8 kPa (gauge) 

pC = 13.82 kPa (gauge) 

Determine the gauge pressure pA and height h. Assume that kerosene is prevented 

from moving to the top of the tank. 

 

 

A 

 

 

 

 

 

 

 

 
 

 

 

 

pB pC 
 

pC = 13.82 kPa 

hC = 1.409 m of water 

pB = 13.8 kPa 

hB = 1.407 meters of water 

1.409 – 0.05 = hA  hA = 1.359 meters of water 

 pA = 1.359 x 9.81 

 pA = 13.33 kPa 

hB – h x 0.8 – (0.05 – h) = hA 

1.407 – 0.8 h – 0.05 + h = 1.359 

0.2 h = 1.359 – 1.407 + 0.05 

0.2 h = 0.002 

h = 0.02 m 
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7. Find the pressure different between A and B if d1 = 300mm, d2 = 150mm,d3 = 460mm, 

d4 = 200mm and 13.6. 

 

Let hA and hB be the pressure head at A and B in m of water. 

hA+ 0.3 – (0.46 + 0.2 Sin 45) 13.6 = hB 

hA - hB = 7.88m of water 

pA – pB = (7.88 ) (9.81) 

pA – pB = 77.29 kPa 

 
8. What is the pressure pA in the fig given below? Take specific gravity of oil as 0.8. 

 

 

 

 

 

 

 
 

 

 
 

Hg 

 

hA + (3 x 0.8) + (4.6 - 0.3) (13.6) = 0 

hA = 2.24 m of oil 

pA = 9.81 x 2.24 

pA = 21.97 kPa 

d4    

0.2 m 

C 

Water 

B 

Water 

d3 

0.46 m 

d1 

0.3 m 

d2 

0.15 m 

4.6 m 

0.3 m 
Water 

Oil 

S = 0.8 

3 m 

pA Air 
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pA = 2.7 kPa 

S = 1.4 

0.05 m d 
Oil 

S = 0.6 

2.0 mm 
3 

10 m m 

Air 

9. Find ‘d’ in the system shown in fig. If pA = 2.7 kPa 
 
 

 

 

 

 

 

 

 

 

00 mm 
 

 

 
h  

p A
 

A 



Hg 
 

 
2.7 

9.81 

 

h A  0.2752 m of water 

 

h A   (0.05 x 0.6)  (0.05  0.02  0.01)0.6 

 

 (0.01 x13.6)  (0.03 x13.6)  d x1.4)  0 

 

0.0692  1.4d  0 

 

d  0.0494 m 
 

or 

 

d  49.4 mm 
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C 
B 

10. Determine the absolute pressure at ‘A’ for the system shown in fig. 

S = 0.7 
 

 

 

 

 

600 

 

 

 

 

 
 

hA - (0.25 x 0.8) + (0.15 x 0.7) + (0.3 x 0.8)-(0.6) = 0 

hA = 0.455 m of water 

pA = hA x 9.81 

pA = 4.464 kPa 

pabs = 101.3 + 4.464 

pabs = 105.764 kPa 

SINGLE COLUMN MANOMETER: 

Single column manometer is used to measure small pressure intensities. 

S 

A 
C1 C1 

U – tube 
(Area=a) 

h2 
y 

B 
h1 

 
B1 B1 

 

 
 

Sm 
 

 

A single column manometer consists of a shallow reservoir having large cross 

sectional area when compared to cross sectional area of U – tube connected to it. For any 

change in pressure, change in the level of manometeric liquid in the reservoir is small () 

Air 

150 

100 

Oil 

x A 

S = 0.8 

300 Water 
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and change in level of manometric liquid in the U- tube is large. 
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To derive expression for pressure head at A: 

BB and CC are the levels of manometric liquid in the reservoir and U-tube before 

connecting the point A to the manometer, writing gauge equation for the system we have, 

+ y x S – h1 x Sm = 0 

Sy = Smh1 

 

Let the point A be connected to the manometer. B1B1 and C1 C1 are the levels of 

manometeric liquid. Volume of liquid between BBB1B1 = Volume of liquid between 

CCC1C1 

A∆ = a h2 

∆ = 
ah2 

A 

Let ‘hA’ be the pressure head at A in m of water. 

hA + (y +∆ ) S – (∆ + h1+h2 ) Sm = 0 

hA = (∆ + h1+h2) Sm – (y + ∆) S 

= ∆ Sm + h1 Sm + h2 Sm – yS – ∆S 

hA = ∆ (Sm – S) + h2 Sm 

hA = 
ah

2 (Sm – S) + h2 Sm 

A 

It is enough if we take one reading to get ‘h2’ If ‘ 
a 

’ is made very small (by increasing 
A 

‘A’) then the I term on the RHS will be negligible. 

Then hA = h2 Sm 
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A 
x 
A 

C     

h2 C 

y C      


B 



B 

B 

C 
h1 

B 

8 m 

INCLINED TUBE SINGLE COLUMN MANOMETER: 
 

Inclined tube SCM is used to measure small intensity pressure. It consists of a 

large reservoir to which an inclined U – tube is connected as shown in fig. For small 

changes in pressure the reading ‘h2’ in the inclined tube is more than that of SCM. 

Knowing the inclination of the tube the pressure intensity at the gauge point can be 

determined. 

hA = 
a 

h sin (Sm  S )  h 
 

sin .Sm 
A 

2 2 

If ‘ 
a 

’ is very small then hA = (h2 = Sin) Sm. 
A 

 
 

2.7.3 MECHANICAL GAUGES: 

Pressure gauges are the devices used to measure pressure at a point. They are used 

to measure high intensity pressures where accuracy requirement is less. Pressure gauges 

are separate for positive pressure measurement and negative pressure measurement. 

Negative pressure gauges are called Vacuum gauges. 

Mechanical gauge consists of an elastic element which deflects under the action 

of applied pressure and this deflection will move a pointer on a graduated dial leading to 

the measurement of pressure. Most popular pressure gauge used is Bordon pressure 

gauge. 
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BASIC PRINCIPLE: 
 

 

 

 

Elastic Element 

(Phosphor Bronze) 

Link 

 
Sector Pinion 

 

 

 

 

 

 

Graduated Dial 

 

Togauge Point 
 

 

 

 

 

The arrangement consists of a pressure responsive element made up of phosphor 

bronze or special steel having elliptical cross section. The element is curved into a 

circular arc, one end of the tube is closed and free to move and the other end is connected 

to gauge point. The changes in pressure cause change in section leading to the movement. 

The movement is transferred to a needle using sector pinion mechanism. The needle 

moves over a graduated dial. 

 

Bourdon gage: 

 
Is a device used for measuring gauge pressures the pressure element is a hollow curved 

metallic tube closed at one end the other end is connected to the pressure to be measured. 

When the internal pressure is increased the tube tends to straighten pulling on a linkage to 

which is attached a pointer and causing the pointer to move. When the tube is connected 

the pointer shows zero. The bourdon tube, sketched in figure. 

It can be used for the measurement of liquid and gas pressures up to 100s of MPa. 
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2.7.4 Electronic Pressure Measuring Devices: 

Electronic Pressure transducers convert pressure into an electrical output. These devices 

consist of a sensing element, transduction element and signal conditioning device to 

convert pressure readings to digital values on display panel. 

 

Sensing Elements: 

The main types of sensing 

elements are 

• Bourdon tubes, 

• Diaphragms, 

• Capsules, and 

• Bellows. 
 

 

Dr. Nagaraj Sitaram, Principal & P 

Management, Bidadi, Ramanagar District, Karnataka 
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Pressure Transducers: 

A transducer is a device that turns a mechanical signal into an electrical signal or an 

electrical signal into a mechanical response (e.g., Bourdon gage transfers pressure to 

displacement). 

 
There are a number of ways to accomplish this kind of conversion 

 Strain gage 

 Capacitance 

 Variable reluctance 

 Optical 

Normally Electronic Pressure transducers are costly compared to conventional 

mechanical gauges and need to be calibrated at National laboratories before put in to use. 
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FLUID DYNAMICS 

Forces acting on the fluids 
Following are the forces acting on the fluids 

1. Self-Weight   

2. Pressure Forces, F p 

3. Viscous Force, F v 

4. Turbulent Force, F t 

5. Surface Tension Force,  

6. Compressibility Force,  

 

Dynamics of fluid is governed by Newton’s Second law of motion, which states 

that the resultant force on any fluid element must be equal to the product of the mass and 

the acceleration of the element. 

∑F = Ma 

Surface tension forces and Compressibility forces are not significant and may be 

neglected. Hence 

(1) becomes 

∑F = Fg + Fp + Fv + Ft 

Reynold’s Equation of motion and used in the analysis of Turbulent flows. For 

laminar flows, turbulent force becomes less significant and hence (1) becomes 

∑F = Fg + Fp + Fv 

Navier - Stokes Equation. If viscous forces are neglected then the (1) reduces to 

 

∑F = Fg + Fp = M × a 

 

Euler’s Equation of motion. 

Euler equation of motion 

Consider a stream lime in a flowing fluid in S direction as shown in the figure. 

On this stream line consider a cylindrical element having a cross sectional area dA 

and length ds. 
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Forces acting on the fluid element are: Pressure forces at both ends: 

 
• Pressure force, pdA in the direction of flow 

 

• Pressure force (p+( ∂ p/∂ s)ds)dA in the direction opposite to the flow direction 
 

• Weight of element ρdads acting vertically downwards 
 

Let φ be the angle between the direction of flow and the line of action of the weight 

of the element. The resultant force on the fluid element in the direction of s must be 

equal to mass of fluid element× acceleration in direction s (according to Newton’s 

second law of motion)
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Fluid Dynamics                                                                               18ME43 
 

Dept of Mechanical Engg, GMIT, Bharathinagara Page 4 
 

ρ 

2g 

Equation (c) is called as Bernoulli’s equation, Where 
p 

= pressure energy per unit weight of the fluid or also called as pressure head 

v2 

= kinetic energy per unit weight of the fluid or kinetic head 

z= potential energy per unit weight or potential head 

Assumption made in deriving the Bernoulli’s Equation 

Following assumptions were made to derive the bernoulli’s equation 

• The flow is steady 

 

• The flow is ideal ( Viscosity of the fluid is zero) 

 

• The flow is in-compressible 

 

• The flow is irrotational. 

Limitations on the use of the Bernoulli Equation 
• Steady flow: The first limitation on the Bernoulli equation is that it is applicable to 

steady flow. 

 

• Friction-less flow: Every flow involves some friction, no matter how small, 

and frictional effects may or may not be negligible. 

• In-compressible flow: One of the assumptions used in the derivation of the 

Bernoulli equation is that ρ = constant and thus the flow is in-compressible. 

Strictly speaking, the Bernoulli equa- tion is applicable along a streamline, 

and the value of the constant C, in general, is different for different 

streamlines. But when a region of the flow is irrational, and thus there is no 

vorticity in the flow field, the value of the constant C remains the same for all 

streamlines, and, therefore, the Bernoulli equation becomes applicable across 

streamlines as well. 

Kinetic Energy correction factor 

In deriving the Bernoulli’s Equation, the velocity head or the kinetic energy per 

unit weight of the fluid has been computed based on the assumption that the 

velocity is uniform over the entire cross section of the stream tube. But in real 

fluids, the velocity distribution is not uniform. Therefore, to obtain the kinetic 

energy possessed by the fluid at differently sections is obtained by integrating the 

kinetic energies possessed by different fluid particles. 

It is more convenient to express the kinetic energy in terms of the mean velocity of 

flow. But the actual kinetic energy is greater than the computed using the mean 

velocity. Hence a correction factor called ‘ Kinetic Energy correction factor,α is 

introduced. 
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Rotary or Vortex Motion 

A mass of fluid in rotation about a fixed axis is called vortex. The rotary motion 

of fluid is also called vortex motion. In this case the rotating fluid particles have 

velocity in tangential direction. Thus the vortex motion is defined as motion in 

which the whole fluid mass rotates about an axis. 

The vortex motion is of two types: 

1. Free vortex. 

        2. Forced vortex. 

Free vortex flow 

Free vortex flow is that type of flow in which the fluid mass rotates without any 

external applied contact force. The whole mass rotates either due to fluid pressure 

itself or the gravity or due to rotation previously imparted. Energy is not expended 

to any outside source. The free vortex motion is also called Potential vortex or Ir-

rotational vortex. 

 

Relationship between velocity and radius in free vortex 

It is obtained by putting the value of external torque equal to Zero or on other 

words the time rate of change of angular momentum, i.e., moment of the momentum 

must be Zero. Consider a fluid particle of mass ’M’ at a radial distance ’r’ from the 

axis of rotation, having a tangential velocity ’u’. Then, 
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Forced vortex flow 

Forced vortex motion is one in which the fluid mass is made to rotate by means of 

some external agencies. The external agency is generally the mechanical power 

which imparts the constant torque on the fluid mass. The forced vortex motion is 

also called flywheel vortex or rotational vortex. The fluid mass in this forced vortex 

flow rotates at constant angular velocity ω. The tangential velocity of any fluid 

particle is given by, 

u = ω × r 
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2 

APPLICATIONS OF BERNOULLI’S EQUATION 

Venturi Meter 

 
Venturimeter is a device for measuring discharge in a pipe. 

 
A Venturi meter consists of: 

 Inlet/ Convergent cone 

 Throat 

 Outlet/ Divergent cone 

The inlet section Venturi meter is same diameter as that type of the pipe to which it is 

connected, followed by the short convergent section with a converging cone angle of 

21±1o and its length parallel to the axis is approximately equal to 2.7(D–d), where ’D’ is 

the pipe diameter and ’d’ is the throat diameter. 

The cylindrical throat is a section of constant cross-section with its length equal to 

diameter. The flow is minimum at the throat. Usually, diameter of throat is 1 the pipe 

diameter. 

A long diverging section with a cone angle of about 5-7o where in the fluid is retarded 

and a large portion of the kinetic energy is converted back into the pressure energy. 

Principle of Venturi Meter: 

The basic principle on which a Venturi meter works is that by reducing the cross-

sectional area of the flow passage, a pressure difference is created between the two 

sections, this pressure difference enables the estimation of the flow rate through the pipe. 
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SO 

SO 

substituting the value of v2 in equation Q =a2v2 we have, 
 

 

Above equations is for ideal fluids and is called as the theoretical discharge 

equation of a venturi meter. For real fluids the equation changes to, 

 

Expression for ’h’ given by the differential manometer 

• Case 1:when liquid in the manometer is heavier than the liquid flowing through 

the pipe. 

h = x
Σ 

SH 
− 1

Σ
 

where:SH is the specific gravity of heavier liquid 

SO is the specific gravity of liquid flowing through pipe. 

x difference in liquid columns in U-tube. 

• Case 2:when liquid in the manometer is lighter than the liquid flowing through 

the pipe. 

h = x
Σ

1 − 
SL 

Σ
 

where:SL is the specific gravity of heavier liquid 

SO is the specific gravity of liquid flowing through pipe. 

x difference in liquid columns in U-tube. 

Orifice Meter 

An orifice is a small aperture through which the fluid passes. The thickness of an 

orifice in the direction of flow is very small in comparison to its other dimensions. 

If a tank containing a liquid has a hole made on the side or base through which 

liquid flows, then such a hole may be termed as an orifice. The rate of flow of the 

liquid through such an orifice at a given time will depend partly on the shape, size 

and form of the orifice. 

An orifice usually has a sharp edge so that there is minimum contact with the 

fluid and conse- quently minimum frictional resistance at the sides of the orifice. If 

a sharp edge is not provided, the flow depends on the thickness of the orifice and  

the roughness of its boundary surface too. 
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Orifice Meter 

 
• It is a device used for measuring the rate of flow through a pipe. 

•  It is a cheaper device as compared to venturi meter. The basic principle on 

which the Orifice meter works is same as that of Venturi meter. 

• It consists of a circular plate with a circular opening at the center. This circular 

opening is called an Orifice. 

• The diameter of the orifice is generally varies from 0.4 to 0.8 times the pipe 

diameter. 

 

Expression for Discharge through Orifice meter 
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P3. A  horizontal  venturimeter  with  inlet diameter 20cm and throat diameter 10 cm is used to measure the flow of oil of specific gravity 

0.8. The discharge of oil through venturimeter is 60li/s. 

Find the reading of the oil-mercury manometer. Take 

Cd= 0.98 
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P5. The inlet and throat diameters of a horizontal 

venturimeter are 30cm and 10cm respectively. The liquid 

flowing through the venturimeter is water. The pressure 

intensity at inlet is 13.734N/cm2 while the vacuum 

pressure head at the throat is 37 cm of mercury. Find the 

rate of flow. Assume that 4% of the differential head is lost 

between the inlet and the throat. Find also the values of 

Cd for the Venturimeter. 

 

A 30cmX15cm Venturimeter is inserted in a vertical pipe carrying 

water flowing in the upward direction. A differential mercury 

manometer connected to the inlet and throat gives a reading of 20cm. 

Find the discharge. Take Cd = 0.98 
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A 20cmX10cm venturimeter is inserted in a vertical pipe 

carrying oil of sp.gr 0.8, the flow of oil is in the upward 

direction. The difference of levels between the throat and inlet 

section is 50cm. The oil mercury differential manometer gives 

a reading of 30cm of Mercury. Find the discharge of oil. 

Neglect the losses. 
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In a vertical pipe conveying oil of specific gravity 0.8, two 

pressure gauges have been installed at A and B where 

the diameters are 16cm and 8cm respectively. A is 2 

meters above B. The pressure gauge readings have 

shown that the pressure at B is greater than at A by 

0.981N/cm2. Neglecting all losses, calculate the flow rate. 

If the gauges at A and B are replaced by tubes filled with 

the same fluid and connected to a U tube containing 

Mercury, Calculate the difference of level of Mercury in 

the two limbs of the U tube. 

 

 

 

 



Fluid Dynamics                                                                               18ME43 
 

Dept of Mechanical Engg, GMIT, Bharathinagara Page 20 
 

 

 

 

 

 

 

 

 



Fluid Dynamics                                                                               18ME43 
 

Dept of Mechanical Engg, GMIT, Bharathinagara Page 21 
 

 

 

 

 

 



Fluid Dynamics                                                                               18ME43 
 

Dept of Mechanical Engg, GMIT, Bharathinagara Page 22 
 

 

 



Fluid Dynamics                                                                               18ME43 
 

Dept of Mechanical Engg, GMIT, Bharathinagara Page 23 
 

 

 

  



FLUID MECHANICS                                                                          18ME43 
 

Dept of Mechanical Engg. GMIT, Bharathinagara Page 1 
 

MODULE 3 

DIMENTIONAL ANALYSIS 
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 MODULE-2 

Fluid Kinematics 

 
 

 

 

 

 
2.0 Definitions 

Pressure or Pressure intensity ( p): It is the Fluid pressure force per unit area of 

application. Mathematically, P  
p 

. Units are Pascal or N/ m 2. 
A 

Total Pressure (P): This is that force exerted by  the fluid on  the contact surface    

( of the submerged surfaces), when the fluid comes in contact with the surface 

always act ing normal to the contact surface. Units are N. 

 
Centre of Pressure: It  is defined as the point of applicat ion of the total  pressure 

on the contact surface. 

 
The submerged surface may  be  either plane or  curved. In  case of  plane surface,   

it may be vert ical,  horizontal or inclined. Hence, the above four cases may be 

studied for obtaining the total pressure and centre of pressure. 



  

F 

P 

G 

2.1 Hydrostatic Forces on Plane Horizontal Surfaces: 

 If a plane surface immersed in a fluid is horizontal, then 
 

 Hydrostatic pressure is uniform over the entire surface. 
 

 The resultant force acts at the centroid of the plane. 

 

 
 

Consider a horizontal surface immersed in a static fluid as shown in  Fig.  As all 

the points on the plane are at equal depth from the free surface of the liquid, the 

pressure intensity will be equal on the ent ire surface and given by p = g y , 

where y is the depth of the fluid surface Let A = 

Area of the immersed surface 

The total pressure force act ing on the immersed surface is P 

 
 

P = p x  Area of the surface =  g y A 

P = gA y 

 
 

Where y is the  centroidal distance immersed surface from the free surface of 

the liquid and h is the centre of pressure. 



  

h 

b 

P 

G 
C 

dh 

2.2 Hydrostatic Forces on Vertical Plane Surface: 

Vertical Plane surface submerged in liquid 

Consider a vertical plane surface of some arbitrary shape immersed in a liquid of mass density 

as shown in Figure below: 

 

End View Elevation 

Let, A = Total area of the surface 
 

h = Depth of Centroid of the surface from the free surface 

G = Centroid of the immersed surface 

C = Centre of pressure 
 

h C.P. = Depth of centre of pressure 

Consider a rectangular strip of breadth b and depth dy at a depth y from the free surface. 

Total Pressure: 

The pressure intensity at a depth y acting on the strip is p = gh 

Total pressure force on the strip = dP = (gh)dA 

 The Total pressure force on the entire area is given by integrating the above expression over 

the entire area P =  dP =  (gh)dA= g h dA Eq.(1) 

But  y dA is the Moment of the entire area about the free surface of the liquid given by 
 

∫hdA = Ah 

 
  

Substituting in Eq.(1), we get P = ρgAh = γAh Eq.(2) 

Where  is the specific weight of Water 

For water, =1000 kg/m3 and g = 9.81 m/s2. The force will be expressed in Newtons (N) 



  

2.3 Hydrostatic Force on a Inclined submerged surface: 
 

The other important utility of the hydrostatic equation is in the determination of force 

acting upon submerged bodies. Among the innumerable applications of this is the force 

calculation in storage tanks, ships, dams etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4 :Force upon a submerged object 

First 

consi 

der a 

plana 

r 

arbitr 

ary 

shap 

e 

 

submerged  in  a liquid as  shown in the  figure. The  plane makes  an  angle   with the liquid 

surface, which is a free surface. The depth of water over the plane varies linearly. This 

configuration is efficiently handled by prescribing a coordinate frame such that the y-axis is 

aligned with the submerged plane. Consider an infinitesimally small area at a (x,y). Let this small 

area be located at a depth  from the free surface.dA = dx.dy 
 

Differential Force acting on the differential area dA of plane, 

dF  (Pressure)  (Area)  (h)  (dA) 
 

(Perpendicular to plane) 
 
 

 
 

Then, Magnitude of total resultant force FR 



  

A 



FR  AhdA  A y sin dA 
Where h  y sin




 A 

  sin

ydA  yc A 

A 

 
whereyc: y coordinate of the center of area (Centroid) 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 x2dA  I y 
 

(2nd moment of Area) 
 

 
 

 

Where 
 hc : Pressure at the centroid = (Pressure at the centroid)  Area 

 

- Magnitude of a force on an INCLINED plane 

- Dependent on Area, and Depth of centroid 

- Perpendicular to the surface (Direction) 

i) Position of FR on y-axis  ‘yR’ : y coordinate of the point of action of FR 

Moment about x axis: 

FR yR  (Ayc sin ) yR  A ydF  A  sin  y2dA   sin   y2dA 

FR = γAy c sinθ = (γ hc )A 

ydA 1st moment of the area 

- Related with the center of area 

A 

c.f.Centeror 1st moment 
 

 xdm  MXC  ydm  MYC 

M & M (XC & YC: Center of Mass) 

 

A 
xdA

= xc & 
A 

ydA 
= yc (xc&yc: Center of Area) 

Moment of inertia or 2nd moment 

 r 2dm  I 
M 

  

 
(2nd moment of Mass) 

 y2dA  Ix   

A &  

Then,   

 



  

A h 

So=0.85 

Po yo = 2 m 
yo/3 

 
S= 1.00 

yw = 3.25 m 

Pw 

yw/3 

∫h 
2 
dA 

 h =
  A 

 =
 Ix 

where 
Ix

  A y
2dA 

:2nd moment of area 
R 

c c 

 

 
or, by using the parallel-axis theorem, 

Ix  Ixc  Ayc
2


 

 

(The centre of pressure below the centroid) 

 

Solved Examples: 

Q1. A rectangular tank 10 m x 5 m  and  3.25  m deep is divided by a part it ion 

wall parallel to the shorter wall of the tank. One of the  compartments contains 

water to a  depth of  3.25 m  and  the  other oil of  specific gravity 0.85 to  a  depth  

of 2 m. Find the resultant  pressure on the part it ion. 

Solution: 
 

 

 
The problem can be solved by considering hydrostat ic pressure distribut ion 

diagram for both water and oil as shown in Fig.  

From hydrostat ic law, the pressure intensity p at any depth ywis given by 

p = So g yw 

where is the mass density of the liquid 

Pressure force P = p x Area 

Pw = 1000 x 10 x 3.25 x 5 x 3.25 = 528.125 kN ( ) 

 g Syw 
 g So yo 

Ah 
= h +

  G 
 

C.P. 

I Sin 
2
θ




 h 

h A 



  

Acting at 3.25/ 3 m from the base 

Po = 0.85 x 1000 x 10 x 2.0 x 5 x 2.0 = 200 kN ( ) 

Acting at 2/ 3 m from the base. 

Net Force P = Pw – Po = 528.125 – 200.0 = 328.125 kN ( ) 

Location: 

Let P act at  a  distance y  from the  base. Taking moments of  Pw,Po and  P  about  

the base, we get 

P x y = Pwx yw / 3 – Pox yo /3 

328.125 y = 528.125 x ( 3.25/ 3) – 200 x ( 2/ 3) or y = 1.337 m. 

 
 

Q2. Determine the total force and locat ion of centre of pressure for  a  circular  

plate of 2 m dia immersed vert ically in water with its top edge 1.0 m below the  

water surface 

Solution: 

  D
2
 

A = 
4 

 
  2

2
 

4 

 
 3.142 m 

1.0 m  
y = 2 m 

Assume 

 = 1000 kg/ m3 and g = 10 m/ s 2 

We  know that  the total pressure force 
 

P  =  SogA y  =  1000 x  10  x  3.142 x  2 

G 

2.0 m  C 

B 

 

 

 
is given by 

= 62.83 kN 
 

 

Centre of Pressure 

The Centre of pressure is given by 

h  y  
I g

 

A y 
 

Ig  
 R4

 

4 
 
 1

4
 

4 
 0.785 m

4
 

 
 

h  2 
0.785 

 

 

3.142 2 

 

 2.125 m 



  

(I ) 

Q.3 A large tank of sea water has a door in the side 1 m square. The top of the door is 5 m 

below the free surface. The door is hinged on the bottom edge. Calculate the force required at 

the top to keep it closed. The density of the sea water is 1033 kg/m3. 

Solution: The total hydrostatic force F = γsea 
water

A h
c 

 

γsea 

 
water 

= 1033 x9.81 = 10133.73N / m3
 

Given A = 1m X 1m = 1m2 

h = 5 + 
1 

= 5.5m 
c 2 

 

F = 10133.73X1X5.5 = 55735.5N 

Acting at centre of pressure (yc.p): 

From the above hc = 5.5m, A = 1m2 
 

( ) BD 
3
 1X1

3
 

 
 

Ic xx 
= 

12
 = 

12 

= 0.08333m 

h 
C.P. = hc + 

 
c   xx 

Ah c 

 

= 5.5 + 
0.08333 

 
 

1X5.5 

 

= 5.515m 

 

Distance of Hydrostatic force (F) from the bottom of the hinge = 6-5.515 = 0.48485m 

The force ‘P’ required at the top of gate (1m from the hinge) 

PX1 = FX0.48485 = 55735.5X0.48485 

P = 27023.4 N = 27.023 kN 

Q.4 Calculate the total hydrostatic force and location of centre of pressure for a circular plate of 

2.5 m diameter immersed vertically in water with its top edge 1.5 m below the oil surface (Sp. 

Gr.=0.9) 

Solution: 

π × D
2
 

A = 
4

 

 
π × 22

 

= 
4

 

 
 

= 4.91 m2
 

1.5 m 

 

 
G 

 

y = 2.75m 

Assume 

 = 0.9X1000=900 kg/ m3,g=9.8 m/ s2 

2.5 m  C 
C

 

B 

γ
oil 

= 900 X 9.81 = 8829 N / m3
 

4 



  

 
S= 1.00 

yw = 1.5 m 

Pw 

yw/3 

hc = 2.75m 

We know that the total pressure force is given by ‘F’ 

F = oil A hc = 8829 x 4.91 x 2 .75 = 238184 N = 238.184 kN 

Centre of Pressure: 

The Centre of pressure is given by 

(I ) 
h C.P. = hc +

 c x x  

Ah 

 

Ig = 

 
π R 

4
 

4 

c 

 

π×1.254
 

= 
4

 

 

= 1.9175 m4
 

 
h C.P. 

 
= 2.75 + 

1.9175 
 

 

4.91× 2.75 

 
= 2.892m 

 

Q.5 A  square tank with 2  m  sides and 1.5 m  high contains water to  a  depth of  1  

m   and  a   liquid  of  specific gravity 0.8 on 

the water to a depth of 0.5 m. Find the 

magnitude and location of hydrostatic pressure 

on one face of tank. 

Solution: 

The problem can be solved by 

considering hydrostat ic pressure 

dist ribut ion diagram for water as shown 

in Fig.  From hydrostat ic law, the  g Syw 

pressure intensity p  at  any depth  ywis given by p = So g yw 

where  is the mass density of the liquid 

Pressure force P = p x Area 

 
Pw = 1000 x 10 x 2.0 x 1.5 x 1.5 = 45 kN ( ) 

 

cting at 1.5/ 3=0.5 m from the base 



  

 


G 

Q.6 A trapezoidal channel 2m wide at the bottom and 1m deep has side slopes 1:1. Determine: i) 

Total pressure ii) Centre of pressure, when it is full of water 

 

Ans: Given B = 2m  Area of flow A = (B+sy)y = 3m2 

The combined centroid will be located based on two triangular areas and one rectangle 

(shown as G1, G2, G2) 

y  
A1  h1  A2  h2  A3  h3 

A1  A2  A3 

The total area A = 3m2 

Area of rectangle = 2 ×1 = 2m2 

Area of Triangle = 
1 

×1×1=0.5m2 
2 

 
 1  1 

      (2 1)  0.5  
 2 

 (11)
 
 0.333  

 2 
 (11)

 
 0. 

y 
3 

i) The total pressure P = w×A× y = 9810×3×0.444 = 13080N 

ii) Centre of pressure 

 
The centroidal moment of Inertia of Rectangle and Triangle is 

IG1  


IG1  

2 1
3
 

12 

11
3

 
 

 

36 

 0.1667m 
4
 

 
 0.028m 

4
 

at 0.5m 

 
at 0.333m 

from water  surface 

 
from water  surface 

 
  

h  y 
I g 

A y 
Eq.1 

The moment of Inertia about combined centroid can be obtained by using parallel axis theorem 
I  I  A d 2  I  A d 2  I  A d 2  (as both the triangles are similar) 

G G1 1 1 G 2 2 2 G 2 2 2 

I  0.1667  0.00618 2I  A d 2 
G G 2 2    2 

I  0.1667  0.00618 20.028  0.0062  0.2408m 4 

Substituting in Eq.1, The centre of pressure from free surface of water 
 

  

h  y 
I g 

 Eq.1 
A y 

 
 

h  0.444 
0.2408 

 
 

3  0.444 
 0.6252m 



  

h 

60° 

1.2m 

x 

xp 1.5m 

a 

3.0m 

CP 

CG 

 
3 

2 

2 

Q.7. A rectangular plate 1.5m x 3.0m is submerged in water and makes an angle of 60° with the 

horizontal, the 1.5m sides being horizontal. Calculate the magnitude of the force on the plate and 

the location of the point of application of the force, with reference to the top edge of the plate, 

when the top edge of the plate is 1.2m below the water surface. 

Solution: 
1.2 

 
 h = 

sin 60° 
+ 1.5 = 1.386 + 1.5 = 2.886m 

A = 3m X 1.5m = 4.5m2 
 

h = y sin 60° = 2.886 sin 60° = 2.499m 
 

F  ghA  1000  9.81 2.499  31.5 
 

 F  109.92 103 N  109.92 kN 

I Sin 
2 60




h C.P. 
= h +

  G 
 

Ah 
 
 

 
 

∴ h
C .P. 

2 

2.886 
12  2.886 

 2.886  0.260  3.146m 

From the top edge of the plate, a  3.146 1.386  1.760m 

Q.8 A vertical bulkhead 4m wide divides a storage tank. On one side of the bulkhead petrol 

(S.G. = 0.78) is stored to a depth of 2.1m and on the other side water is stored to a depth of 1.2m. 

Determine the resultant force on the bulkhead and the position where it acts. 

 

 
Solution: 

F  ghA  g 
h 
 bh  1 gh 2  b 

  

2 2 

 

F1  1 7809.81 2.12  4 N  67.5 kN 
 

F2  1 10009.811.22  4 N  28.25 kN 

Hence the resultant force 

FR  F1  F2  67.5  28.25  39.25 kN 

Petrol 
Width = 4m 

2.1m 

F1 
F 

F2 xR 

1.2m 

Wate 

x1 O x2 



  

bh(h 2) 

FR•yR = F1• y1 – F2• y2 

3 



h C.P. 
= h +

 IG 
= 

Ah 

h bh 
3

 

2 
+ 

12 

1 
=  

h 
+ 

h 

2 6 
= 2 h 

From the diagram, y = h – 2/3h = 1/3h 

Hence, y1 = 2.1 / 3 = 0.7m and y2 = 1.2 / 3 = 0.4m 

Taking moments about ‘O’, 

i.e. 39.25 × yR = 67.5 × 0.7 – 28.25 × 0.4 and hence yR = 0.916m 

Q.9 A hinged, circular gate 750mm in diameter is used to close the opening in a sloping side of a 

tank, as shown in the diagram in Error! Reference source not found.. The gate is kept closed 

against water pressure partly by its own weight and partly by a weight on the lever arm. Find the 

mass M required to allow the gate to begin to open when the water level is 500mm above the top 

of the gate. The mass of the gate is 60 kg. (Neglect the weight of the lever arm.) 

Solution: 

a 
500 

sin 45
 707mm 

x  a  375 1082mm 

h  x sin 45  765mm 

F  ghA  1000  9.81 0.765  0.752 4

 F  3.315103 N  3.315 kN 
 

IG d4 4 d2 
   

 x P   x   x 
Ax 

64 
 
d2 x 

 x  
16  x 

0.752 
xP  1.082  

161.082 
 1.082  0.032  1.114m 

Taking moments about the hinge 

FxP a  Mg  0.8  mg 0.375cos 45

33151.114  0.707  9.81M 0.8  60 0.375cos 45

M  0.8  
33151.114  0.707 

 60  0.375cos 45

9.81 mg 

 

 

 

0.8m 

0.375 cos 45° 

 

 
 

45° 

 

 

 

 

 

 
Hinge 

M × 0.8  137.5 16  121.5 

M  
121.5 

 152 kg 
0.8 

0.375m 

mg 

 
yp-a 

F 

800m 
Hing    

 
500m 

Mg 

m 

   750mm 

F 



  

1. 

2.25 Sin2 30
CC1   hC.P.    2.25  

3 X 2.25
 

CC1  hC.P.  2.33333 m 

Q.10. A rectangular plate 1 m x 3 m is immersed in water such that its upper and 

lower edge is at depths 1.5 m and 3 m respect ively.  Determine the total pressure 

acting on the plate and locate it. 

 

 

 
Solution: 

A = 1 x 3 = 3 m 2 

w = 9810 N/ m3 

C1 G1 


5 m 

3 m A1 
A 

G 
   CP 

3m
 

B 

h = 
3m + 1.5m 

= 2.25m 
c 2 

1m 
We know that the total pressure force is given by 

F = water Ahc= 9810 x 3.0 x 2.25 = 66217.5 N 

Sin  = 1.5 / 3 = 0.5 

 = 30 o 

Centre of Pressure; The Centre of pressure is given by 

( ) bd
3  1× 33

 

  
 

IC x x 
= 

12 
= 

12 

= 2.25 m 

hc= 2.25m  
(I ) 

 

Sin 
2
θ 

CC1 = h C.P. = hc +
    c   x x  

Ah 
c 

 

4 



  

hc. p.  2.125m 

1.917  Sin
2 
53.13

4.909  2 A  h 
c. p. 

I  Sin
2

h  h   G  2 

Q 11. A circular plate 2.5m diameter is immersed in water, its greatest and least depth below the 

free surface being 3m and 1m respectively. Find 

(i) The total pressure on one face of the plate and (ii) Position of centre of pressure 

 

 
Ans: Given d = 2.5m, 
   Sin

1   2 




 
2.5 




 

  53.13





h  11  2m 

A  
 

d 
2
 

4 
 
 


4 

 

2.5
2 
 4.909m

2
 


IG  

64
 

 

d 
4 


  
 2.54   

 1.917m 
4

 

64 
 
 

 

F = wA h = 9.81×4.909×2 = 96.31 kN 
 

 
Q.12. A 2m wide and 3m deep rectangular plane surface lies in water in such a way the top of 

and bottom edges are at a distance of 1.5m and 3m respectively from the surface. Determine the 

hydrostatic force and centre of pressure 

 
Ans: Given A = 3m × 2m = 6m2, 

IG 
2  3

3
 

12 
 4.5m

4
 

Hydrostatic force 

P   w  A  h 

P  9.81 6  
 3  1.5 


  

 2 

P = 132.435 kN 

sin   
3.0 1.5 

 0.5 
3 

  30





  

 

The centre of pressure 
I  Sin

2


hC.P  h   G 
 

A h 

4.5  1
4


hC.P  2.25 
6  2.25 

 2.33m 

 

 

Q.13 A rectangular plate 2 m x 3 m is immersed in  oil  of  specific gravity 0.85  

such that its ends are at depths 1.5 m and 3 m respect ively.  Determine the total 

pressure acting on the plate and locate it . 

 
Solution: 

A = 2 x 3 = 6 m 2 

So = 0.85 

Assume 

 = 1000 kg/ m3 

g = 10 m/ s 2 
 

y   = GG1 
 

h  = CC1 

Sin  = 1.5 / 3 = 0.5 

 = 30 o 

GG1 = G1A1 + A1G = G1A1 + AG Sin 

GG1 = 1.5 + ( 3/ 2) Sin 30 = 2.25 m 

We know that the total pressure force is given by 
 

P = SogA y = 0.85 x 1000 x 10 x 6 x 2.25 = 114.75 kN 

Centre of Pressure 

The Centre of pressure is given by 

h  y  
I g

 

A y 

 

sin2

C1 G1 

3 m 

5 m 

A1 

G 



A 

C 
B 

2 m 

1. 



  

Ig 
bd 

3
 

12 
 

2 3
3
 

12 
 4.5 m

4
 

 
 

h  2.25 
4.5 

 

 

6 2.25 

 

sin 
2 
30  2.33 m 

 

 

Q.14. A Circular plate with a concentric hole  is immersed in water  in  such  a 

way that its greatest and least depth below water surface are 4 m and 1.5 m 

respect ively.  Determine the total pressure on the plate and locate it  if  the  

diameter of the plate and hole are 3 m and 1.5 m respect ively.  

 
Solution: 

Assume 

 = 1000 kg/ m3 and g = 10 m/ s 2 

A  
 D2  

 d 
2  

 32  
 1.5

2  5.3014 m
2

 

4 4 
 

y   = GG1 
 

h  = CC1 

Sin  = 2.5 / 3 = 0.833  and    =  30o 

GG1 = G1A1 + A1G = G1A1 + AG Sin  

GG1 = 1.5 + ( 3/ 2) 0.833 = 2.75 m 

We know that the total pressure force is given by 
 

P = SogA y = 1000 x 10 x5.3014 x 2.75 = 144.7885 kN 

Centre of Pressure 

The Centre of pressure is given by 

h  y  
I g

 

A y 

 

sin2

I    
 R4  

 r 
4  

 1.5
4  
 0.75

4  3.728 m
4

 

g 
4 4 

h  2.75 
3.728 

5.3014  2.75 
sin 

2 
30  2.814 m 



  

Q.15 . A circular plate of dia 1.5 m is  immersed in a  liquid of relat ive density of  

0.8 with its plane making an angle of 30 o with the horizontal. The centre of the  

plate is at a  depth of  1.5 m  below the  free surface. Calculate the total force on 

one side of the plate and locat ion of centre of pressure. 

Solution: 

Assume 

 = 1000 kg/ m3 and g = 10 m/ s 2 

So = 0.80 

 D2
 

A 
4 

 
 1.5

2
 

4 

 
 1.767 m

2
 

 
 

y   = GG1 
 

h  = CC1 

 = 30 o 

GG1 = G1A1 + A1G = G1A1 + AG Sin 

GG1 = 1.5 + ( 3/ 2) 0.833 = 2.75 m 

We know that the total pressure force is given by 
 

P = SogA y = 0.8 x 1000 x 10 x 1.767 x 2.75 = 38.874 kN 

Centre of Pressure 

The Centre of pressure is given by 

h  y  
I g

 

A y 

 

sin2



Ig  
 R4

 

4 
 
  0.75

4
 

4 
 0.2485 m

4
 

 
 

h  2.75 
0.2485 

 

 

1.767  2.75 

 

sin 
2 
30  2.763 m 





  

O 

50 m 

5 m G 

Q.16 A vert ical gate closes a circular tunnel of 5  m  diameter running full  of 

water, the pressure at the bottom of the gate is 0.5 MPa.  Determine  the  

hydrostat ic force and the posit ion of centre of pressure. 

Solution: Assume  = 1000 kg/ m3 and g = 10 m/ s 2 
 

 
Pressure intensity at the bottom of the gate is = p =Sogy 

Where y is the depth of point from the free surface. 

0.5 x 106 = 1000 x 10 x y 

y = 50 m 

Hence the free surface of water is at 50 m from the bottom of the gate 

 D2
 

A 
4 

 
  5

2
 

4 

 
 19.635 m

2
 

 
 

y = OG = 50 - 2.5 = 47.5 m 

We know that the total pressure force is given by 
 

P = SogA y = 1000 x 10 x 19.635 x 47.5 =9326.625 kN 

Centre of Pressure 

The Centre of pressure is given by 

h  y  
I g

 

A y 
 

Ig 
 R4

 

4 
 
  2.5

4
 

4 
 30.68 m

4
 

 
 

h  47.5 
30.68 

 

 

19.635  47.5 

 

 47.533 m 

i.e. 50.0 – 47.533 = 2.677 m from the bottom of the gate or tunnel. 





  

 



  

plane 

 
cp 

Curved 
surface 

2.4 Hydrostatic Forces on Curved Surfaces 
 

Since this class of surface is curved, the direction 

of the force is different at each location on the 

surface. Therefore, we will evaluate the x and y 

components of net hydrostatic force separately. 

Consider curved surface, a-b. Force balances  

in x & y directions yield 

Fh = FH 

Fv = Wair +W1 + W2 

 

 

 

From this force balance, the basic rules for determining the horizontal and vertical component of 

forces on a curved surface in a static fluid can be summarized as follows: 

Horizontal Component, Fh 
 

The horizontal component of force on a curved surface equals the force on the plane area formed 

by the projection of the curved surface onto a vertical plane normal to the component. 

 

The horizontal force will act through the c.p. 

(not the centroid) of the projected area. 

from the Diagram: 

All elements of the analysis are performed with the 

vertical plane. The original curved surface is 

important only as it is used to define the projected 

vertical plane. 

 

 
ycp 

Fh 

b’ 
b
 

hcg 
a’  a 

   Projected vertical 



  

 F    F  x  y 
2 2 

Therefore, to determine the horizontal component of force on a curved surface in a hydrostatic 

fluid: 

Vertical Component - Fv 

The vertical component of force on a curved surface equals the weight of the effective column of 

fluid necessary to cause the pressure on the surface. 

The use of the words effective column of fluid is important in that there may not always actually 

be fluid directly above the surface. (See graphics below) 

This effective column of fluid is specified by identifying the column of fluid that would be 

required to cause the pressure at each location on the surface. 

Thus, to identify the Effective Volume - Veff: 

Fv = Veff 
 

 
 

Fluid above the surface 

 

 
1 
  Fy 




No fluid actually above surface 

R     tan      Fx 


 

Veff 

b 
fluid 

P P 

a P 

Veff 
a 

P 

P 
P 

b 



  

F2 + F2 x y 30.6562 + 48.1542 

3π 

Q.17 Find the horizontal and vert ical component of force and its point of 

applicat ion due to water per meter length of  the  gate  AB having  a  quadrant  

shape of radius 2.5 m shown in Fig. Find  also the resultant force in magnitude 

and direct ion. 

Solution: 

Assume 

 = 1000 kg/ m3 and g = 9.81 m/ s2 

R = 2.5 m, Width of gate = 1 m 

Horizontal force Fx 

Fh = Force on the projected area of the 

curved surface on the vert ical plane 

= Force on BC 

A = 2 .5 x 1 = 2 .5m2 

y = 
2.5 

= 1.25 m 
2 

F = water Ahc= 9810 x 2.5 x 1.25 = 30656 N = 30.656kN 

2 5 
 

This will act at a distance 

 

Vertical Force Fy 

h = 
3 

× 2.5 = 
3 

m from the free surface of liquid AC 

Fy= Weight of water ( imaginary) supported by AB 

= water  x Area of ACBx Length of gate 

π× 2.52 
= 9810 x 

4 
x1= 48154N=48.154kN 

 
This will act at a distance The 

Resultant force 

x = 
4 × 2.5 

= 1.061 m from CB 

F = = = 57.084 kNand its 
 

inclination is given by 

Fy 

α = tan 1 
Fx 

 
= tan 1 

 

48.154 
 

 

30.656 

 
= 57.51o 

C 

R=2.5m 

A 

B 

Fx 



Fy F 



  

F 
2 
 F 

2
 

x y 
20

2 
 31.426

2
 

Q.18 Find the horizontal and vert ical component of force and its point of 

applicat ion due to water per meter length of  the  gate  AB having  a  quadrant 

shape of radius 2 m shown in Fig. Find also the resultant force in magnitude and 

direct ion. 

Solution: 

Assume 

 = 1000 kg/ m3 and g = 10 m/ s 2 

R = 2 m, Width of gate = 1 m 

Horizontal force Fx 

Fx = Force on the projected area of the curved 

surface on the vert ical plane 

= Force on BO = P = SogA y 

A = 2 x 1 = 2 m2 

y  
2 
 1 m 

2 

Fx = 1000 x 10 x 2 x 1 = 20 kN 

This will act at a distance h  
2 
 2  

4 
m from the free surface of liquid 

3 3 

Vertical Force Fy 

Fy= Weight of water ( imaginary) supported by AB 

= Sog x Area of AOBx Length of gate 

  2
2
 

= 1000 x 10 x 
4 

x1= 31.416 kN 

 
This will act at a distance x  

4  2 
 0.848 m from OB 

3


Resultant  force F    37.25 
 

kNand its inclinat ion is given by 

  tan
1  Fy  

 tan
1 31.426  

 57.527
o
  

F 
 


 20 


 x 

O 

R=2m 

A 

B 

Fx 



Fy F 



  

Q.19. A cylinder holds water in a channel as  shown  in  Fig.  Determine  the 

weight of 1 m length of the cylinder. 

Solution: 

Radius of Cylinder = R = 2m 

Length of cylinder = 1 m 

Weight of Cylinder = W 

Horizontal force exerted by water= F 
x 

 

 

Fx = Force on vert ical area BOC 
 

= SogA y = 1000 x 10 x (4x 1)x (2/ 2) = 40 kN ( ) 

The vertical force exerted by water= Fy =Weight of water enclosed in BDCOB 
 

 

 
   2

2 
Fy = Sog 



 xL=1000 x10x3.142=31.416kN () 
4 





For equilibrium of the cylinder the weight of the cylinder must be equal to the 

force exerted by the water on the cylinder. Hence, the weight of the cylinder is 

31.416 kN per meter length . 

 
 

Q.20. Fig. shows the cross sect ion of a tank full of water under pressure. The 

length of the tank is 2 m.  An  empty cylinder lies along the length of the tank on  

one of its corner as shown. Find the resultant force act ing on the curved surface 

of the cylinder. 

Solution: 

R=1 m 

L  =  2 m 

p = gh = 1000 x 10x h  =  20 x 103 

h = 2 m 

For this pressure, the free surface should be 2 m above A 

C 

D O 

Radius of 

cylinder=2 m 

A 

Fx 

Water in a 

channel 

W 

Fy 
B 

20kPa 
A 

R=1m 

1.5m B 

C 



  

Horizontal component of force Fx 
 

Fx = SogA y 

A = 1.5x 2.0 = 3 m2 

y  2  
1.5 

 2.75 m 
2 

Fx = 1000 x 10 x 3.0x 2.75 = 82.5 kN ( ) 

 

The vertical force exerted by water = Fy 

Fy = Weight of water enclosed in ABC 

= Weight of water enclosed in CODEABC 

= Weight of water enclosed in ( CODFBC – AEFB) 

 

But Weight of water enclosed in CODFBC 

= Weight of water enclosed in ( COB+ODFBO) 

R
2   1

2 
=   g   

4  
 BO  OD  2  1000 10  

4 
1 2.5  2  65.708 kN 

   

Weight of water in AEFB = Sog[ Area of AEFB]x 2.0 

= Sog[ Area of ( AEFG+AGBH- AHB] x 2.0 

sin  = AH/ AO = 0.5/ 1.0 = 0.5.  = 30 o 

BH = BO – HO = 1.0 – AO cos  = 1.0 – 1 x cos 30o = 0.134 

Area ABH = Area ABO – Area AHO 

= R 
2 


30 
 

 

360 
 

AH  HO 
  1

2 
 

1 

2.0 12 
 

0.5  0.866 
 0.0453

 

2.0 

Weight of  water in AEFB = 1000x10[AE xAG+AG xAH–0.0453] x 0.2 

= 1000x10[2.0 x0.134+0.134 x0.5–.0453] x 0.2 

= 5794 N 

Fy =65708 – 5794 = 59914 N (Ans) 



  

Q.21. Calculate the resultant water pressure on  the  Tainter gate  of radius 8 m 

and width unity as shown in Fig.  

 
Solution: 

Horizontal component of force Fx 
 

Fx = So g A y 

DB = OB sin 30 = 8 x 0.5 = 4.0 m 

A = 4 x 1.0 = 4 m2 

y  
4 
 2 m 

2 

The Horizontal force exerted by water = Fx 

 

Fx = 1000 x 10 x 4.0x 2.0 = 80.0 kN ( ) 

 

The vertical force exerted by water = Fy 

Fy = Weight of water enclosed in CDBC 

= Weight of water enclosed in ( CDOBC – DOB) 

= Sog 

R

2 
 

30
  

BD  DO  
 1000 10 


  8

2 
 

1
 

 
 

 
4.0  8.8cos30 

 15.13 kN
 

 
 





Resultant force 

 

360 

F 

2.0 





 12 

 81.418 kN 

2.0 




kN and its inclination is given by 

  tan
1  Fy  

 tan
1 15.13 

 10.71
o

  
F 

 

 80 

 x 

F 
2 
 F 

2
 x y 80

2 
 15.13

2
 

C 
R=8m 

D 

30o 
O 

B 

Fx 



Fy F 



  

Q.22 Length of a Tainter gate perpendicular to paper is 0.50m. Find: 

i) Total horizontal  thrust of water on gate. 

ii) Total vertical  component of water pressure against  gate. 

iii) Resultant  water pressure on gate and its inclinat ion with horizontal. 
 

 
 

Ans:  Given L = 0.5m, 

AD = BC = 3m, W = 9.81 kN/ m 3 

 

(i) Total horizontal thrust of water on 

gate 
 

 
Fh = W × A × h 

 

Fh = 9.81× ( 3.0×0.5) × 
3
 

2 
 

Fh = 22.07 kN  Rightward 
 

Acting at 
I 

 

 
 Sin

2 
90

h
c.p.  hc 

     G 
A  h 

c 

 0.5  3
3  2 

       Sin 12 90

h
c.p. 

 1.5  
   

 1.5  0.5  2.0m 
(3.0  0.5) 1.5 



  

F 
2 
 F 

2
 

h v 
22.072  

 8.0242
 

 

(ii) Total vert ical component of water pressure against gate = upward thrust due 

area ABC 

 

Upward thrust due  area ABC = Area AOC - ΔOBC 
 

 R 
2 

1 
OB  BC 

Area ABC = 12 2 

 6
2 

 
1 

3cos 30  3 

Area ABC = 12 2 

Area ABC =  1.636 m2 

 

Fv = W × Area ABC × L 

Fv = 9.81 × 1.636 × 0.5 = 8.024 kN  upward 

 

(iii) Resultant water pressure on gate and its inclinat ion with horizontal 

 

R    23.48 kN 

 

  tan
1  8.024  

 0.3637 
  


Inclination 

 
  20

 22.07 




Q23. A 3.6 m x 1.5 m wide rectangular gate  MN is vert ical and is hinged  at 

point 150 mm below the centre of gravity of the gate. The total depth of water is 

6 m. What horizontal force must be  applied at 

the bottom of the gate to keep the gate closed? 

Solution: 

Total pressure act ing on the gate is Fx 
 

Fx = SogA y 

= 1000 x 10 x (3.6 x 1.5) x (6-3.6/2) 

= 226.8 kN 

Acting at 

I 
  

h  y  
g

 

A y 

6 m 

3.6m 

Fx 

0.15m 

F 



  

water 

Ig 
bd 

3
 

 

 

12 
 

1.5 3.6
3 

12 
 5.832 m

4
 

 
 

h  4.2 
5.832 

 

 

5.4 4.2 

 

 4.457 m 

 

Let F be the force applied at the bottom of the gate required to retain the gate in equilibrium. 

From the conditions of equilibrium, taking moments about the hinge, we get 

F (1.8 – 0.15) = Fx [4.457-(4.2+0.15)] 

F = 14.707 kN (Ans). 

 

Q.24 A culvert in the side of a reservoir is closed by a vertical rectangular gate 2m wide       

and 1m deep as shown in figure. The gate is hinged about a horizontal axis which passes 

through the centre of  the gate. The free  surface of water  in the reservoir is 2.5 m above the  

axis of the hinge. The density of water is 1000 kg/m3. Assuming that the hinges are frictionless 

and that the culvert is open to atmosphere, determine 

(i) The force acting on the gate when closed 

due to the pressure of water. 

(ii) The moment to be applied about the hinge 

axis to open the gate. 

 
Solution: (i) The total hydrostatic force 

F = γA hc 

 

γ = 1000 x9.81 = 9810 N / m
3

 

 
Given   A = 1m X 2m = 2m2 

h = 2 +  
1 

= 2.5m 
c 2 

F = 9810X2X2.5 = 49050N 

(ii) The moment applied about hinge axis to open the gate is say ‘M’ 

The centre of pressure (hc.p): 



  

(I ) 

From the above hc = 2.5m, A = 2m2 
 

( ) BD 
3
 2X1

3
 

 
 

Ic xx 
= 

12
 = 

12 

= 0.167m 

h 
C.P. 

= hc + 

 
c  xx 

Ah c 

= 2.5 + 
0.167 

 
 

2X2.5 
= 2.53334 m 

 

Distance of Hydrostatic force (F) from the water surface = 2.5334m. 

Distance of hinge from free surface = 2.5m 

Distance between hinge and centre of pressure of force ‘F’ = 2.5334 m - 2.5m = 0.0334m 

Taking moment about Hinge to open the gate ‘M’ = F X 0.0334 = 49050 N X 0.0334 m 

The moment applied about hinge axis to open the gate ‘M’ = 1638.27 N-m 

 

 

Q.25 Figure shows a rectangular flash board AB which is 4.5m high and is pivoted at C. What 

must be the maximum height of C above B so that the flash board will be on the verge of tipping 

when water surface is at A? Also determine if the pivot of the flash board is at a height h =1.5m, 

the reactions at B and C when the water surface is 4m above B. 

 
Ans: 

(i) The flash board would tip about the hinge point 

‘C’ when the line of action of resultant ‘R’  

pressure force ‘F’ lies from C to A anywhere on the 

board. 

The limiting condition being the situation when the 

resultant force ‘F’ passes through ‘C’ 

The resultant force ’F’ also passes through the 

centroid of the pressure diagram and the centre lies 

at 
1 
 AB  

4.5 
 1.5m 

3 3 

Hence the maximum height of ‘C’ from 

‘B’ = (4.5m-3.0m) =1.5m (from bottom) 

(ii) The pivot of the flash board is at a height h =1.5m from point B, the reactions at B and 

C when the water surface is 4m above B. 

h  
4.0 

 2.m 
2 

4 



  

   
Hydrostatic force 

 
 

P  gAh = 1000×9.81×(4.0×1.0)×2=78.48 kN acting at ̅ ̅̅̅ 

hcp  2.0 
1 (4.0)

3 
Sin

2 
90





4.0  2.0 

 

 2.67m 

 

from free water surfcae 

 

Or h = (4.0-2.67) = 1.33m from bottom 

Let RA and RB be the reaction. 

RA + 78.48 = RB 

by taking moment about pivot ‘C’ 

RA ×2.5 + 78.48×0.17 = RB×1.5 

On solving RA =104.38kN RB = 182.86 kN 

 

 

 

 
2.5 Gravity Dam: 

A gravity dam is a dam constructed from concrete or stone masonry and designed to hold back 

water by primarily utilizing the weight of the material alone to resist the horizontal pressure of 

water pushing against it. Gravity dams are designed so that each section of the dam is stable, 

independent of any other dam section 

Gravity dams generally require stiff rock foundations of high bearing strength (slightly 

weathered to fresh); although they have been built on soil foundations in rare cases. The bearing 

strength of the foundation limits the allowable position of the resultant which influences the 

overall stability. Also, the stiff nature of the gravity dam structure is unforgiving to differential 

foundation settlement, which can induce cracking of the dam structure. 

 
 

Gravity dams provide some advantages over embankment dams. The main advantage is that they 

can tolerate minor over-topping flows as the concrete is resistant to scouring. This reduces the 

requirements for a cofferdam during construction and the sizing of the spillway. Large 

overtopping flows are still a problem, as they can scour the foundations if not accounted for in 

the design. A disadvantage of gravity dams is that due to their large footprint, they are 

susceptible to uplift pressures which act as a de-stabilising force. Uplift pressures (buoyancy) can 

be reduced by internal and foundation drainage systems which reduces the pressures. 



  

2.5.1 Forces Acting on Gravity Dams: 

 

Forces that act on a gravity dam (Fig.1) are due to: 

 

 Water Pressure(Hydrostatic) 

 Uplift Pressure 

 Earthquake Acceleration 

 Silt Pressure 

 Wave Pressure 

 Ice Pressure 

 

>> Self Weight (W) counters the forces listed above. 

 

 

 

Fig. Forces on Gravity Dams 

 

 
 

 Force due to hydrostatic Pressure:

 

Force due to hydrostatic Pressure is the major external force on a gravity dam. The intensity of 

pressure from zero at the water surface to the maximum (γH) at the base. The force due to this 

pressure is given by γH2, acting at H/3 from the base. In Fig.1, the forces P1 and P2 are due to 

hydrostatic pressure acting on the upstream and the downstream sides respectively. These are 

horizontal components of the hydrostatic force due to head water (upstream side) and tail water 

(downstream side) of the dam respectively. 



  

The forces marked as P3 and P4 are the weight of water held over the inclined faces of the dam 

on the upstream slope and downstream slope respectively. These are the respective vertical 

components of the hydrostatic force on the two faces mentioned. 

 

 Force due to Uplift Pressure:

 
Water that seeps through the pores, cracks and fissures of the foundation material and water that 

seeps through the body of the dam to the bottom through the joints between the body of the dam 

and the foundation at the base, exert an uplift pressure on the base of the dam. The force (U) due 

to this acts against the weight of the dam and thus contributes to destabilizing the dam. 

 

According to the recommendation of the United States Bureau of Reclamation (USBR), the 

uplift pressure intensities at the heel (upstream end) and the toe (downstream end) are taken to be 

equal to the respective hydrostatic pressures. A linear variation of the uplift pressure is often 

assumed between the heel and the toe. Drainage galleries can be provided (Fig.) to relieve the 

uplift pressure. In such a case, the uplift pressure diagram gets modified as shown in Fig. 

 

 Earthquake Forces:

 
The effect of an earthquake is perceived as imparting an acceleration to the foundations of the 

dam in the direction in which the wave travels at that moment. It can be viewed (resolved) as 

horizontal and vertical components of the random acceleration. 



  

2.6 Lock Gates 
Whenever a dam or a weir is constructed across a river or canal, the water levels on both the 

sides of the dam will be different. If it is desired to have navigation or boating in such a river or a 

canal, then a chamber, known as lock, is constructed between these two different water levels. 

Two sets of gates (one on the upstream side and the other on downstream side of the dam) are 

provided as shown in fig - 1. 

 

(Source: http://www.codecogs.com/library/engineering/fluid_mechanics/water_pressure/lock- 

gate.php) 
 

 
Now   consider   a    set    of    lock    gates AB and BC hinged    at    the    top    and    bottom    

at A and C respectively as shown in fig - 2(a). These gates will be held in contact at b by the 

water pressure, the water level being higher on the left hand side of the gates as shown in fig - 

2(b). 

http://www.codecogs.com/library/engineering/fluid_mechanics/water_pressure/lock-gate.php
http://www.codecogs.com/library/engineering/fluid_mechanics/water_pressure/lock-gate.php


  

Let, 

 
 P = Water pressure on the gate AB or BC acting at right angles on it 

 F = Force exerted by the gate BC acting normally to  the  contact  surface  of  the  two  

gates AB and BC (also known as reaction between the two gates), and 

 R = Reaction at the upper and lower hinge 

 
Since the gate AB is in equilibrium, under the action of the above three forces, therefore they 

will meet at one point. Let,P and F meet at O, then R must pass through this point. 

Let, = Inclination of the lock gate with the normal to the walls of the lock. 

From the geometry of the figure ABO, we find that it  is  an  isosceles  triangle  having  its  

angles OBA and OAB both equal to . 

 
 

  (1) 

and now resolving the force at right angles to AB 
 

 

 

 
 

(2) 

Now let us consider the water pressure on the top and bottom hinges of the gate, Let, 

 
 H1 = Height of water to the left side of the gate. 

 A1 = Wetted area (of one of the gates) on left side of the gate 

 P1 = Total pressure of the water on the left side of the gate 

 H2, A2, P2 = Corresponding values for right side on the gate 

 RT = Reaction of the top hinge, and 

 RB = Reaction of bottom hinge 
 

Since the total reaction (R) will be shared by the two hinges (RT), therefore 

and total pressure on the lock gate, 

 
(3) 

 

 

 

Similarly, 

Since the directions of P1 and P2 are in the opposite direction, therefore the resultant pressure, 



  

We know that the pressure P1 will act through its center of pressure, which is at a height            

of  from the bottom of the gate. Similarly, the pressure P2 will also act through its center of 

pressure which is also at a height of  from the bottom of the gate. 

A little consideration will show, that half of the resultant pressure (i.e., P1 - P2 or P)will be 

resisted by the hinges of one lock gate (as the other half will be resisted by the other lock gates). 

 

 
where h is the distance between the two hinges. 

Also resolving the forces horizontally, 

From equations (4) and (5) the values of RB and RT may be found out. 

(4) 

 

 

 
(5) 

 

 

Q. 26 Two lock gates of 7.5m height are provided in a canal of 16m width meeting at an angle  

of 120.Calculate the force acting on each gate, when the depth of water on upstream side is 5m. 

 
Given, 

 
 Height of lock gates = 7.5m 

 Width of lock gates = 16m 

 Inclination of gates = 

 H = 5m 

 

From the geometry of the lock gate, we find that inclination of the lock gates with the walls, 
 

and 

width of each gate =  =  = 9.24 m 

Wetted area of each gate, and force acting on each gate, 

http://www.codecogs.com/library/engineering/fluid_mechanics/water_pressure/lock-gate.php#eq4
http://www.codecogs.com/library/engineering/fluid_mechanics/water_pressure/lock-gate.php#eq5
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Module-2B: Fundamentals of fluid flow (Kinematics) 

Introduction. Methods of describing fluid motion. Velocity and Total acceleration of a fluid 

particle. Types of fluid flow, Description of flow pattern. Basic principles of fluid flow, three- 

dimensional continuity equation in Cartesian coordinate system. Derivation for Rotational and 

irroational motion. Potential function, stream function, orthogonality of streamlines and 

equipotential lines. Numerical problems on Stream function and velocity potential. Introduction 

to flow net. 

 

2.7 Methods of Describing Fluid Motion: 

Fluid kinematics refers to the features of a fluid in motion. It only deals with the motion of fluid 

particles without taking into account the forces causing the motion. Considerations of velocity, 

acceleration, flow rate, nature of flow and flow visualization are taken up under fluid kinematics. 

A fluid motion can be analyzed by one of the two alternative approaches, called 

Lagrangian and Eulerian. 

In Lagrangian approach, a particle or a fluid element is identified and followed during the 

course of its motion with time as demonstrated in 

 

 

 

 
 

1 
 

 

 

2 
 

 

In
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l 
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Fig. Lagrangian Approach ( Study of each particle with time) 

 

Fig. Eulerian Approach ( Study at fixed station in space) 

 
Example: To know the attributes of a vehicle to be purchased, you can follow the specific 

vehicle in the traffic flow all along its path over a period of time. 

Difficulty in tracing a fluid particle (s) makes it nearly impossible to apply the Lagrangian 

approach. The alternative approach, called Eulerian approach consists of observing the fluid by 

setting up fixed stations (sections) in the flow field (Fig.). 

Motion of the fluid is specified by velocity components as functions of space and time. 

This is considerably easier than the previous approach and is followed in Fluid Mechanics. 

Example: Observing the variation of flow properties in a channel like velocity, depth etc, at a 

section. 

 

2.8 Velocity 

Velocity of a fluid along any direction can be defined as the rate of change of displacement of 

the fluid along that direction. 

u  
dx 

dt 

Where dx is the distance traveled by the fluid in time dt. 

Velocity of a fluid element is a vector, which is a function of space and time. 

Let V be the resultant velocity of a fluid along any direction and u, v and w be the velocity 

components in x, y and z-directions respectively. 



 



Mathematically the velocity components can be written as 

u = f ( x, y, z, t ) 

v = f ( x, y, z, t ) 

w = f ( x, y, z, t )    

and V = ui + vj + wk = V 

Where u  
dx 

;v  
dy 

, w  
dz

 

u
2 
 v 

2
  w 

2
 

dt dt dt 

2.9 Acceleration 

Acceleration of a fluid element along any direction can be defined as the rate of change of 

velocity of the fluid along that direction. 

If ax , ay and az are the components of acceleration along-x, y and z- directions respectively, they 

can be mathematically written as 

du 
a x 

dt 

But u = f (x, y, z, t) and hence by chain rule, we can write, 
 

a   
u dx 

 
u dy 

 
u dz 

 
u 

    

x 
x dt y dt z dt t 

Similarly 

a    
v dx 

 
v dy 

 
v dz 

 
v 

    

y 
x dt y dt z dt t 

 
 

 
and a   

w dx 
 
w dy 

 
w dz 

 
w 

    

z 
x  dt y  dt z  dt t 

 

But  u  
dx 

;v  
dy 

, w  
dz

 

dt dt dt 

Hence 

Local accln 
Convective accln 

 

a  u 
u 

 v 
u 

 w 
u 

 
u 

    

x 
x y z t 

a  u 
v 

 v 
v 

 w 
v 

 
v 

    

Total Acceleration 
y 

x y z t 



  

If A is the resultant acceleration vector, it is given by 

For steady flow, the local acceleration will be zero 

Problems 

 
2.10 Types of fluid flow 

2.10.1 Steady and unsteady flows: 

A flow is said to be steady if the properties (P) of the fluAidaandifloaw dj o naokt change with time (t) 

at any section or point in a fluid flow.  
 
P  0 

x y z 
 

a 



t 

A flow is said to be unsteady if the properties (P) of the fluid and flow change with time (t) at 

any section or point in a fluid flow. 

 
P  0 

t 

Example: Flow observed at a dam section during rainy season, wherein, there will be lot of 

inflow with which the flow properties like depth, velocity etc.. will change at the dam section 

over a period of time representing it as unsteady flow. 

2.10.2. Uniform and non- uniform flows: 

A flow is said to be uniform if the properties (P) of the fluid and flow do not change (with 

direction) over a length of flow considered along the flow at any instant. 

 
P  0 

x 

A flow is said to be non-uniform if the properties (P) of the fluid and flow change (with 

direction) over a length of flow considered along the flow at any instant. 

 
P  0 

x 

a 
2 
 a 

2 
 a 

2
 

x y z 
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v2 v3 4 
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4 y4 

v1 

y1 

Example Flow observed at any instant, at the dam section during rainy season, wherein, the flow 

varies from the top of the overflow section to the foot of the dam and the flow properties like 

depth, velocity etc., will change at the dam section at any instant between two sections, 

representing it as non-uniform flow. 

 

Fig. Different types of fluid flow 

 
 

Consider a fluid flow as shown above in a channel. The flow is said to be steady at sections 1 

and 2 as the flow does not change with respect to time at the respective sections (y1=y2 and v1 = 

v2).. 

The flow between sections 1 and 2 is said to be uniform as the properties does not change 

between the sections at any instant (y1=y2 andv1 = v2). 

The flow between sections 2 and 3 is said to be non-uniform flow as the properties vary over the 

length between the sections. 

 
Non-uniform flow can be further classified as Gradually varied flow and Rapidly varied flow. As 

the name itself indicates, Gradually varied flow is a non-uniform flow wherein the flow/fluid 

properties vary gradually over a long length (Example between sections 2 and 3). 

Rapidly varied flow is a non-uniform flow wherein the flow/fluid properties vary rapidly within 

a very short distance. (Example between sections 4 and 5). 

 
Combination of steady and unsteady flows and uniform and non-uniform flows can be classified 

as steady-uniform flow (Sections 1 and 2), unsteady-uniform flow, steady-non-uniform flow 

(Sections 2 and 3) and unsteady-non-uniform flow (Sections 4 and 5). 
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2.10.3 One, Two and Three Dimensional flows 

Flow is said to be one-dimensional if the properties vary only along one axis / direction and will 

be constant with respect to other two directions of a three-dimensional axis system. 

Flow is said to be two-dimensional if the properties vary only along two axes / directions and 

will be constant with respect to other direction of a three-dimensional axis system. 

Flow is said to be three-dimensional if the properties vary along all the axes / directions of a 

three-dimensional axis system. 

 
 
 

Fig. a) One- dimensional flow Fig. b) Two-dimensional flow 
 

Fig. c) Three-dimensional flow 

2.10.4. Description of flow pattern 

Laminar and Turbulent flows: 

s 



  

y 

x 

Velocity 

x 

When the flow occurs like sheets or laminates and the fluid elements flowing in a layer does not 

mix with other layers, then the flow is said to be laminar when the Reynolds number (Re) for the 

flow will be less than 2000. 

 

 

 

R  
 vD 

e 





Fig. 5Laminar flow 

When the flow velocity increases, the sheet like flow gets mixes with other layer and the flow of 

fluid elements become random causing turbulence. There will be eddy currents generated and 

flow reversal takes place. This flow is said to be Turbulent when the Reynolds number for the 

flow will be greater than 4000. For flows with Reynolds number between 2000 to 4000 is said to 

be transition flow. 

 
 

Fig. Compressible and Incompressible flows: 

Flow is said to be Incompressible if the fluid density does not change (constant) along the flow 

direction and is Compressible if the fluid density varies along the flow direction 

 
 Constant (incompressible) and  Constant (compressible) 
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x 

2.10.5 Path line, Streamline, Streak line and Stream tube: 

Path Line: It is the path traced by a fluid particle over a period of time during its motion along 

the fluid flow. 

 

Fig. 7 Path line 

Example Path traced by an ant coming out from its dwelling 

 
Stream Lines 

It is an imaginary line such that when a tangent is drawn at any point it gives the velocity of the 

fluid particle at that point and at that instant. 

 

Fig. Stream lines 

Example Path traced by the flow when an obstruction like a sphere or a stick is kept during its 

motion. The flow breaks up before the obstruction and joins after it crosses it. 

 
Streak lines: 

It is that imaginary line that connects all the fluid particles that has gone through a point/section 

over a period of time in a fluid motion. 



 

Stream lines 
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Fig. a) Irrotational flow 
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Fig.  Streak lines 

Stream tube: 

It is an imaginary tube formed by stream line on its surface such that the flow only enters the 

tube from one side and leaves it on the other side only. No flow takes place across the stream 

tube. This concept will help in the analysis of fluid motion. 

 

 
Fig. Stream tube 

 

 

 

 

2.10.6. Rotational and Irrotational flows: 

Flow is said to be Rotational if the fluid elements does not rotate about their own axis as they 

move along the flow and is Rotational if the fluid elements rotate along their axis as they move 

along the flow direction 

 

 



  

 

 

We know that for an irrotational two dimensional fluid flow, the rotational fluid elements about z 

axis must be zero. 

w  
1 v 

 
u 



z 
2 

x y 






Substituting for u and v in terms of velocity potential-, we get 

1          1  2 2 
wz  2 


x 

 
y 

  
y 
 

x 
 


2 

xy 

 
yx 

  0 Laplace Eq. 

      


Hence for the flow to be irrotational, the second partial derivative of Velocity potential - must 

be zero. This is true only when  is a continuous function and exists. 

 
Thus the properties of a velocity potential are: 

1. If the velocity potential  exists, then the flow should be irrotational 

2. If the velocity potential  satisfies the Laplace Equation, then it represents a possible case 

of a fluid flow. 

Similarly for stream function 

w  
1 v 

 
u 



z 
2 

x y 






Substituting for u and v in terms of stream function-, we get 

1          1 2 2 
wz  2 


x 

 
x   

y 
 y 

 
2 

 
x

2
 

 
y

2
   0 Laplace Eq. 

      
The above equation is known as Laplace equation in

Thus the properties of a Stream function are: 

1. If the Stream function  exists, then it represents a possible case of a fluid flow. 

2. If the Stream function satisfies the Laplace Equation, then the flow should be 

irrotational. 

2.10.7 Basic principles of fluid flow: 



  

Fluid flow x 

1 
2 

dx 

The derivation is based on the concept of Law of conservation of mass. 

Continuity Equation 

Statement: The flow of fluid in a continuous flow across a section is always a constant. Consider 

an enlarging section in a fluid flow of fluid density. Consider two sections 1 and 2 as shown in 

Fig. Let the sectional properties be as under 
 

Fig.  Fluid flow through a control volume 

 
A1and A2= Cross-sectional area, V1and V2= Average flow velocity and 

 
1 and 2 = Fluid density at Section-1 and Section-2 respectively 

dt is the time taken for the fluid to cover a distance dx 

The mass of fluid flowing across section 1-1 is given by 

m1 = Density at section 1 x volume of fluid that has crossed section 1= 1×A1× dx 

 
Mass rate of fluid flowing across section 1-1 is given by 

m1  
(Densityat section- 1 × volume of fluid that has crossedsection- 1) 

dt dt 

1  A1 
 

dx 
 

dt 
1
 

 A1 V1  Eq.1 

Similarly Mass rate of fluid flowing across section 2-2 is given by 

m2  
(Densityat section- 2 × volume of fluid that has crossedsection- 2) 

dt dt 

 2  A2 
 

dx 
 

dt 
2

 

 A2 V2  Eq.2 



  

From law of conservation of mass, mass can neither be created nor destroyed. Hence, from Eqs. 

1 and 2, we get 

1  A1 V1  2  A2 V2 Eq.3 

If the density of the fluid is same on both side and flow is incompressible then 1  2 the 

equation 3 reduces to A1 V1  A2 V2 

 
The above equations discharge continuity equation in one dimensional form for a steady, 

incompressible fluid flow. 

Rate of flow or Discharge ( Q): 

Rate of flow or discharge is said to be the quantity of fluid flowing per second across a section of 

a flow. Rate of flow can be expressed as mass rate of flow or volume rate of flow. Accordingly 

Mass rate of flow = Mass of fluid flowing across a section / time 

Rate of flow = Volume of fluid flowing across a section / time 

2.10.7.1 Continuity Equation in three dimensional or differential form 

Consider a parallelepiped ABCDEFGH in a fluid flow of density  as shown in Fig. Let the 

dimensions of the parallelepiped be dx, dy and dz along x, y and z directions respectively. Let 

the velocity components along x, y and z be u, v and w respectively. 
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z 

Fig. Parallelepiped in a fluid flow 

Mass rate of fluid flow entering the section ABCD along x direction is given by  × Area × Vy 

Mx1   u dy dz 
…(01) 

Similarly mass rate of fluid flow leaving the section EFGH along × direction is given by, 

y 

D H 

A 
E 

v 

C 

dy 

u 
G 

w 

B 
F 

dz 

dx 



  



















M  

 u  

 
 udx

 
dy dz 

x2 
 x 




…(02) 

Net gain in mass rate of the fluid along the x axis is given by the difference between the mass 

rate of flow entering and leaving the control volume. i.e. Eq. 1 – Eq. 2 

dM x 
  u dy dz  


 u 



 
 udx

 
dy dz 

x 

dM x 
  



x 
 udx dy dz 

 

…(03) 

Similarly net gain in mass rate of the fluid along the y and z axes are given by 

dM y 

 
dM 

  



y 

   



 vdx dy dz 

 
 wdx dy dz 

 

…(04) 

z 
z …(05) 

Net gain in mass rate of the fluid from all the threeaxes are given by 

dM  
 
 udx dy dz 

x 

 
 vdx dy dz 

y 

 
 wdx dy dz 

z 

From law of conservation of Mass, the net gain in mass rate of flow should be zero and hence   
 u




  
 v 

 
 

 
 0 

 

 
x y z 

w  dx dy dz 
  

 u
  
 v 

 
 w

 
 0 

or 
 
x y z 




This expression is known as the general Equation of Continuity in three dimensional form or 

differential form. 

If the fluid is incompressible then the density is constant and hence 

  u 
 
 v 

 
 w  

 0
 

 
x y z 

The continuity equation in two-dimensional form for compressible and incompressible flows is 

respectively as below 
  
 u 

 
 v 

 
 0 

 
x y 

  u 
 
 v  

 0
 

 
x y 



  

2.10.8 Velocity Potential Function () and Stream Function (): 

2.10.8.1 Velocity Potential ( ): 

Velocity Potential  is a scalar function of space and time such that its negative derivative with 

respect to any direction gives the velocity component in that direction 

Thus  =  (x,y,z,t) and flow is steady then, 

u = -(  / x); v = -(  / y) ; w = -(  / z) 

 

Continuity equation for a three dimensional fluid flow is given by 

[( u/ x)+( v/ y) +( w/ z)] = 0 

Substituting for u, v and w, we get 

[( / x)(-  / x)+( / y)(-  / y) +( / z) (-  / z)] = 0 

i.e. [( 2 / x2)+( 2/ y2)+( 2 / z2)] = 0 

The above equation is known as Laplace equation in 

For a 2 D flow the above equation reduces to 

[( 2 / x2)+( 2/ y2)] = 0 

 
We know that for an irrotational two dimensional fluid flow, the rotational fluid elements about z 

axis must be zero. i.e. z = ½ [( v/ x) - ( u/ y)] 

Substituting for u and v, we get 

wz= ½ [( / x)(-  / y) - ( / y)(-  / x)] 

 

For the flow to be irrotational, the above component must be zero 

z = ½ [ (- 2 / x  y) - (- 2 /  y  x)] = 0 

i.e. (- 2 / x  y) = (- 2 /  y  x) 

This is true only when  is a continuous function and exists. 

Thus the properties of a velocity potential are: 

1. If the velocity potential  exists, then the flow should be irrotational. 

2. If the velocity potential  satisfies the Laplace Equation, then it represents a possible case 

of a fluid flow. 



  

Equi-potential lines: 

It is an imaginary line along which the velocity potential  is a constant 

i.e.  = Constant 

 d = 0 

But  = f (x,y) for a two dimensional steady flow 

 d = (  / x)dx + (  / y)dy 

Substituting the values of u and v, we get 

d = – u dx – v dy  0 

or u dx = – v dy 

or (dy/dx) = – u/v … (01) 

Where dy/dx is the slope of the equi-potential line. 

2.10.8.2 Stream Function ( ) 

Stream Function  is a scalar function of space and time such that its partial derivative with 

respect to any direction gives the velocity component at right angles to that direction. 

Thus  =  (x,y,z,t) and flow is steady then, 

u = -(  / y); v = (  / x) 

Continuity equation for a two dimensional fluid flow is given by 

[( u/ x)+( v/ y)] = 0 

Substituting for u and v, we get 

[( / x)(-  / y)+( / y)(  / x)] = 0 

i.e. [ (- 2 / x  y) + ( 2 /  y  x)] = 0 

or ( 2 / x  y) = ( 2 /  y  x) 

This is true only when  is a continuous function. 

We know that for an irrotational two dimensional fluid flow, the rotational fluid elements about z 

axis must be zero.i.e. z = ½ [( v/ x) - ( u/ y)] 

Substituting for u and v, we get 

z = ½ [( / x)(  / x) - ( / y)(-  / y)] 

For the flow to be irrotational, the above component must be zero 

i.e. [( 2 / x2)+( 2/ y2)] = 0 

The above equation is known as Laplace equation in 



  

y x 
v   

 
 


y x 
u   

 
  




Thus the properties of a Stream function are: 

1. If the Stream function  exists, then it represents a possible case of a fluid flow. 

2. If the Stream function  satisfies the Laplace Equation, then the flow should be irrotational. 

 
Line of constant stream function or stream line 

It is an imaginary line along which the stream function  is a constant 

i.e.  = Constant 

d  = 0 

But  = f (x,y) for a two dimensional steady flow 

d  = (  / x)dx + (  / y)dy 

Substituting the values of u and v, we get 

d  = v dx – u dy  0 

or v dx = u dy 

or (dy/dx) = v/u … (02) 

Where dy/dx is the slope of the Stream line. 

 
 

From Eqs. 1 and 2, we get that the product of the slopes of equi-potential line and stream line is 

given by -1. Thus, the equi-potential lines and stream lines are orthogonal to each other at all the 

points of intersection. 

2.10.8.3 Relationship between Stream function () and Velocity potential () 

We know that the velocity components are given by 

u = - (  / x) v = -(  / y) 

and      u = - (  / y) v = (  / x) 

Relation between ( and): 

 

 

 

Thus u = - (  / x) = - (  / y) and v = -(  / y) = (  / x) 

Hence  (  / x) = (  / y) and (  / y) = - (  / x) 

-lines and -lines intersect orthogonally 



  

2.11 Flow net & its Applications: 

A grid obtained by drawing a series of equi-potential lines and stream lines is called a Flow net. 

The flow net is an important tool in analysing two dimensional flow irrotational flow problems. 

A grid obtained by drawing a series of streamlines () and equipotential () lines is known as 

flow net. The construction of flow net (- lines) is restricted by certain conditions 

 The flow should be two dimensional 

 The flow should be steady 

 The flow should be Irrotational 

 The flow is not governed by gravity force 
 

Uses of Flow net 

To determine 

 The streamlines and equipotential lines

 Quantity of seepage, upward lift pressure below the hydraulic structures (dam, gate, locks 

etc.)

 Velocity and pressure distribution, for given boundaries of flow

 To design streamlined structure

 Flow pattern near well



  

 

Methods of Drawing flow net 

• Analytical Method 

• Graphical Method 

• Electrical Analogy Method 

• Hydraulic Models 

• Relaxation Method 

• Hele Shaw or Viscous Analogy Method 

The practical use of streamlines and velocity potential lines are: 

(i) Quantity of seepage 

(ii) Upward lift pressure below the hydraulic structures (dam, gate, locks etc.) 

(iii) Velocity and pressure distribution, for given boundaries of flow 

(iv) To design streamlined structure flow pattern near well 

 

 

 

 

 

Solved Problems: 



log e x  
2 

log e y  A, 

 

s 

 

Q.1. The velocity field in a fluid is given by, 

V  3x  2 yi  2z  3x 2 j  2t  3zk 

i. What are the velocity components u, v, and w? 

ii. Determine the speed at the point (1,1,1). 

iii. Determine the speed at time t=2 s at point (0,0,2) 

 

u  3x  2 y, v  2z  3x
2 , w  2t  3zk 

Solution: The velocity components at any point (x, y, z) are 

Substitute x=1, y=1, z=1 in the above expression 

u = (3*1+2*1) = 5, v = (2*1+3*1) = 5, w = (2t-3) 

V2 = u2 + v2 + w2 

= 52 + 52 + (2t-3)2 

 

V1,1,1  4t 
2 
12t  59

= 4 t 2 – 12 t + 59 

Substitute t = 2 s, x=0, y=0, z=2 in the above expression for u, v and w 

u = 0, v = (4 + 0) = 4, w = (4 – 6) = -2 

V 2(0,0,2,2) = (0 + 15 + 4) = 20 

V = 4.472 units 

 
Q. 2. The velocity distribution in a three-dimensional flow is given by: 

u = - x, v = 2y and w = (3-z). Find the equation of the stream line that passes through point 

(1,1,1). 

 

dx 
 

dy 
 

dz 
or

 dx 


 dy 
 
 

dz 






u v w 

dx  
 

dy 

 x 2 y 

 x 2 y 3  z 

Solution: The stream line equation is given by 

Integrating we get 

Where A is an integral constant. Substituting x=1 & y=1, A = 0 

Considering the x and z components, 
 



  

e e 

 x 3  z 

t 

3 

 dx 
 
 

dy 






 log x   log 3  z  B, 

Integrating we get 

Where B is an integral constant. Substituting x=1 & z=1, B = log e 2 

   log  x   log 3 - z  log  2   log  3  z 


e e 

 

or x  
 3  z 




e e  
 2 

 

From Eqs. 1 and 2, the final equatio
2
n of the stream line that passes through the point (1,1,1) is 

 

x  
1

 
 
 3  z 

  
 2   







Q3. A fluid particle moves in the following flow field starting from the points (2,1,0) at t=0. 

Determine the location of the fluid particle at t = 3 s 

 
 

 
Solution 

Integrating we get 

2 

u  , v 
2x 

ty 
2
 

18 
, w  

z
 

2t 

 

u  
dx 

dt 
2 

 
t 2 

 

 

2x 

t 3 

 
or 2xdx  t 

 
2 
dt 

x   



x
2 


 A 
3 
t 
 4 

3 

2 33    

x    4   13 
3 

Where A is an integral constant. Substituting x=2, t=0, A = 4 

Integrating we get 

y 



  

3 


 
dy ty

2 
dy tdt 

 
    

1 t 
2
 

v   or 
dt 18 y

2 
18 

   B 
y 36 

 

 

 

 
Where B is an integral constant. 

 
2 

 

 

 

 

 
1 3

2 
3 4 

1 
 1 

t
  1  or y 

y 36 4 3 
y 36 

w  
dz 

 z 
or 

2dz 
 

dt 

 

Substituting y=1, t=0, B = -1 

At t = 3 s, 

Integrating we get 

dt 2t z t 

2 log e z  log e t  C 
 

Where C is an integral constant. 

Substituting z=0, t=0, C = 0 

 
2 log e 

 
z  log e 

 
t or z2  t 

At t = 3 s, 
z

2 
 3 or z 

From Eqs. 1, 2 and 3, at the end of 3 seconds the particle is at a point 
4 

  13, , 
 3 



Q.4. The following cases represent the two velocity components, determine the third component 

of velocity such that they satisfy the continuity equation: 

(i) u = x2 + y2 + z2 ; v = xy2 - yz2 + xy; (ii) v = 2y2 ; w = 2xyz. 

Solution: 

The continuity equation for incompressible flow is given by 

[( u/ x)+( v/ y) +( w/ z)] = 0 …(01) 

u = x2 + y2 + z2; ( u/ x) = 2x 

v = xy2 - yz2 + xy; ( v/ y) = 2xy - z2 + x 

Substituting in Eq. 1, we get 

3 



  

2x + 2xy – z2 + z + ( w/ z) = 0 

Rearranging and integrating the above expression, we get 

w = (-3xz – 2xyz + z3/3) + f(x,y) 

Similarly, solution of the second problem 

u = -4xy – x2y2 + f(y,z). 

 

 
Q.5. Find the convective acceleration at the middle of a pipe which converges uniformly from 

0.4 m to 0.2 m diameter over a length of 2 m. The rate of flow is 20 lps. If the rate of flow 

changes uniformly from 20 lps to 40 lps in 30 seconds, find the total acceleration at the middle of 

the pipe at 15th second. 

Solution: D1 = 0.4 m, D2 = 0.2 m, L = 2 m, Q = 20 lps = 0.02 m3/s. 

Q1 = 0.02 m3/s and Q2 = 0.04 m3/s 

Case (i): Flow is one dimensional and hence the velocity components v = w = 0 

Convective acceleration = u( u /x) 

A1 = (/4)(D1
2) = 0.1257 m2 

A2 = (/4)(D2
2) = 0.0314 m2 

u1 = Q/A1 = 0.02/0.1257 = 0.159 m/s 

and u2 = Q/A2 = 0.02/0.0314 = 0.637 m/s 

As the diameter changes uniformly, the velocity will also 

Change uniformly. The velocity u at any distance x from 

inlet is given by 

u = u1 + (u2 – u1)/(x/L) = 0.159 + 0.2388 x 

( u /x) = 0.2388 

Convective acceleration = u( u /x) = (0.159 + 0.2388 x) 0.2388 

At A, x = 1 m and hence 

(Convective accln) x = 1 = 94.99 mm/s2 

Case (ii): Total acceleration = (convective + local) acceleration at t =15 seconds 

Rate of flow Qt = 15 = Q1 + (Q2 – Q1)(15/30) = 0.03 m3/s. 

u1 = Q/A1 = 0.03/0.1257 = 0.2386 m/s 

1 

2 

0.4 m 0.2 m 
A 

2m 



  

and u2 = Q/A2 = 0.03/0.0314 = 0.9554 m/s 

The velocity u at any distance x from inlet is given by 

u = u1 + (u2 – u1)/(x/L) = 0.2386 + 0.3584 x 

( u /x) = 0.3584 

Convective acceleration = u( u /x) = (0.2386 + 0.3584 x) 0.3584 

At A, x = 1 m and hence 

(Convective accln) x = 1 = 0.2139 m/s 2 

Local acceleration 

Diameter at A is given by D = D1 + (D1 – D2)/(x/L) = 0.3 m 

and A = (/4)(D2) = 0.0707 m2 

When Q1 = 0.02 m3/s, u1 = 0.02/0.0707 = 0.2829 m/s 

When Q2 = 0.04 m3/s, u2 = 0.02/0.0707 = 0.5659 m/s 

Rate of change of velocity = Change in velocity/time 

= (0.5629-0.2829)/30 = 9.43 x 10 -3m/s 2 

Total acceleration = 0.2139 + 9.43 x 10 -3 = 0.2233 m/s2 

 

Q.6. In a flow the velocity vector is given by V = 3xi + 4yj -7zk. Determine the equation of the 

stream line passing through a point M (1, 4, 5). 

 
Ans: Given the Velocity vector V = 3xi+4yj -7zk 

 u = 3x ; v = 4y; w = -7z 

To determine the equation of the stream line passing through a point M (1, 4, 5) 

The 3-D equation of streamline is given by, 

dx  
 

dy  
 

dz 

u v w 

dx 


 dy 


 dz 
Eq.1

 

3x 4 y  7z 

The streamline equation at point M (1, 4, 5), x =1, y = 4, z = 5 

Substituting the values of x, y, and z in Eq.1 

dx  
 

dy  
 

dz 
   

3 16  35 

The equation of a streamline ds = 3i +16k – 35k 



  

Q.7. A 250 mm diameter pipe carries oil of specific gravity 0.9 at a velocity of 3 m/s. At another 

section the diameter is 200 mm. Find the velocity at this section and the mass rate of flow of oil. 

Solution: 

D1 = 0.25 m; D2 = 0.2 m; So = 0.9; V1 = 3 m/s;  = 1000 kg/m3(assumed); 

V2 = ?; Mass rate of flow = ? 

From discharge continuity equation for steady incompressible flow, we have 

Q = A1V1 = A2V2 (01) 

A1 = (/4)D1
2 = (/4)0.25 2 = 0.0499 m2 

A2 = (/4)D2
2 = (/4)0.20 2 = 0.0314 m2 

Substituting in Eq. 1, we get 

Q = 0.0499 x 3 = 0.1473 m3/s 

Mass rate of flow =  Q = 0.1479 x 1000 = 147.9 kg/m3 (Ans) 

V2 = (A1 / A2) x V1 = (D1 / D2)2 x V1 = (0.25/0.2)2 x 3 = 4.6875 m/s (Ans) 

 
Q.8. In a two dimensional incompressible flow the fluid velocity components are given by 

u = x – 4y and v = -y – 4x 

Where u and v are x and y-components of velocity of flow. Show that the flow satisfies the 

continuity equation and obtain the expression for stream function. If the flow is potential, obtain 

also the expression for the velocity potential. 

 
Solution: 

u = x – 4y and v = -y – 4x 

( u / x) = 1  and ( v / y) = -1 

( u / x)+ ( v / y) = 1-1 = 0. 

Hence it satisfies continuity equation and the flow is continuous and velocity potential exists. 

Let  be the velocity potential. 

Then (   / x) = -u = - (x – 4y) = -x + 4y (1) 

and (   / y) = -v = - (-y – 4x) = y + 4x (2) 

Integrating Eq. 1, we get 

 = (-x2/2) + 4xy + C (3) 



  

Where C is an integral constant, which is independent of x and can be a function of y. 

Differentiating Eq. 3 w.r.t. y, we get 

(  / y) = 0 + 4x + ( C / y)  y + 4x 

Hence, we get ( C / y) = y 

Integrating the above expression, we get C = y2/2 

Substituting the value of C in Eq. 3, we get the general expression as 

 = (-x2/2) + 4xy + y2/2 

 

Stream Function 

Let  be the velocity potential. 

Then (  / x) = v = (-y – 4x) = -y - 4x (4) 

and (  / y) = u = -(x – 4y) = -x + 4y (5) 

Integrating Eq. 4, we get 

 = - y x - 4 (x2/2) + K (6) 

Where K is an integral constant, which is independent of x and can be a function of y. 

Differentiating Eq. 6 w.r.t. y, we get 

(  / y) = - x – 0 + ( K / y)  -x + 4 y 

Hence, we get ( K / y) = 4 y 

Integrating the above expression, we get C = 4 y2/2 = 2 y2 

Substituting the value of K in Eq. 6, we get the general expression as 

 = - y x - 2 x2 + 2 y2 

 

Q.9. The components of velocity for a two dimensional flow are given by 

u = x y; v = x2 – 
y
 
2 

Check whether (i) they represent the possible case of flow and (ii) the flow is irrotational.  
 

 

Solution:  

2 y 2 

u = x y; and v = x  – 
2 

2 



  

 

 

  

( u / x) = y ( v / y) = -y 

( u / y) = x ( v / x) = 2x 

For a possible case of flow the velocity components should satisfy the equation of continuity. 

 u   v 
i.e.  

x 
   

y 
  0 

   

Substituting, we get y – y = 0. 

Hence it is a possible case of a fluid flow. 

For flow to be irrotational in a two dimensional fluid flow, the rotational component in z 

direction (z) must be zero, where 

1  v   u  1 

w          2x  x  0 z 
2 x y 2 
   

Hence, the flow is not irrotational. 

 
 

Q.10. Find the components of velocity along x and y for the velocity potential  = a Cos xy. 

Also calculate the corresponding stream function. 

Solution: 

 = a Cos xy. 

   
 u  aySinxyx 

 
(1) 

 


and    v  axSinxyy (2) 

 

Hence  u = ay Sin xy  and v = ax Sin xy. 

 
 

Q.11. The stream function and velocity potential for a flow are given by, 

 = 2xy and  = x2 – y2 

Show that the conditions for continuity and irrotational flow are satisfied 

Solution: 

From the properties of Stream function, the existence of stream function shows the possible case 

of flow and if it satisfies Laplace equation, then the flow is irrotational. 

(i)  = 2xy 



  

 

(  / x) = 2 y and (  / y) = 2 x 

( 2 / x2) = 0 and ( 2 / y2) = 0 

( 2 / x  y) = 2 and ( 2 / y  x) = 2 

( 2 / x  y) = ( 2 / y  x) 

Hence the flow is Continuous. 

( 2 / x2) + ( 2 / y2) = 0 

As it satisfies the Laplace equation, the flow is irrotational. 

From the properties of Velocity potential, the existence of Velocity potential shows the flow is 

irrotational and if it satisfies Laplace equation, then it is a possible case of flow 

(ii)  = x2 – y2 

(  / x) = 2 x 

 

and 

 
(  / y) = -2 y 

( 2 / x2) = 2 and ( 2 / y2) = -2 

( 2 / x  y) = 0 and ( 2/ y  x) = 0 
 

 
2





xy 
  
 

2

yx 

Hence the flow is irrotational 

 
2

x 
2
 

 
2

y 2 
0 

As it satisfies the Laplace equation, the flow is Continuous. 

 
 

Q.12. In a 2-D flow, the velocity components are u = 4y and v = -4x 

i. Is the flow possible? 

ii. if so, determine the stream function 

iii. What is the pattern of stream lines? 

Solution: 

For a possible case of fluid flow, it has to satisfy continuity equation. 

 u   v 
i.e.  

x 
   

y 
  0 (1) 

   

u = 4y and v = -4x 

( u / x) = 0 ( v / y) = 0 



  

Substituting in Eq. 1, we get 0. 

Hence the flow is possible. 

Stream function 

We know that  (  / x) = v = - 4x (2) 

and (  / y) = - u = - 4y (3) 

 = - 2x2 + C(y) (4) 

Where C is an integral constant and a function of y. 

Differentiating Eq. 4, w.r.t. y, we get 

(  / y) = 0 +  C(y) / y = - u = - 4y 

Integrating the above expression w.r.t. y we get 

C(y) = -2y2. 

Substituting the above value in Eq. 4, we get the general expression as 

 = - 2x2 – 2y2 = - 2 (x2+ y2) 

The above equation is an expression of concentric circles and hence the stream function is 

concentric circles. 

 
Q.13. A stream function in a two dimensional flow is  = 2 x y. Determine the corresponding 

velocity potential. 

Solution: 

Given  = 2 x y. 

u = - ( / x) = -( / y) = - 2 x (01) 

v = - ( / y) =  ( / x) =  2 y (02) 

Integrating Eq. 1, w.r.t. x, we get 

 = 2 x2/2 + C = x2 + C(y) (03) 

Where C(y) is an integral constant independent of x 

Differentiating Eq. 3 w.r.t. y, we get 

( / y) = 0 + ( C(y) / y) = - 2 y 

Integrating the above expression w.r.t. y, we get 

C(y) = - y2 

Substituting for C(y) in Eq. 3, we get the general expression for  as 



  

 = x2 + C = x2 - y2 (Ans) 

 

 

 

 

 

 
Q.14. The velocity potential for a flow is given by the function  = x2 - y2. Verify that the flow is 

incompressible. 

Solution: 

From the properties of velocity potential, we have that if  satisfies Laplace equation, then the 

flow is steady incompressible continuous fluid flow. 

Given  = x2 - y2 

(  / x) = 2 x (  / y) = -2 y 

( 2 / x2) = 2 ( 2 / 2y) = -2 

From Laplace Equation, we have ( 2 / x2) + ( 2 / 2y) = 2 – 2 = 0 

 
Q.15. If for a two dimensional potential flow, the velocity potential is given by  = x (2y-1). 

Determine the velocity at the point P (4, 5). Determine also the value of stream function  at the 

point ‘P’. 

 

Ans: 

(i) The velocity at the point P (4, 5), x =4, y = 5 

 = x (2y-1). 

 
 u  (2 y 1), 

x 
 

 v  x  2, 

y 

 

u  (1  2 y) 

v  2x 

u at ‘P’(4,5) = -9 Units/s 

v(4,5) at ‘P’ = -8 Units/s 

Velocity at P = -9i-8j, Velocity 

 

 
(ii) Stream function P (4, 5) 

 

 
 
 12.04 

 

 

 
Units  92  

  82
 



  

   y2   y  x2 

(4)2  (8)2 





Given  = x (2y-1) 

  
 u  (2 y  1)  




x y 
  

 v  x  2   




y x 

 
 u  (2 y 1) Eq.1 

y 

  
 u  2x Eq.2 

x 

Integrating Eq.1 with respect ‘y’ we get 

2  y 
2
 

 d   
2 

 y  C( f (x))Eq.3 

Differentiating Eq.3 with respect to ’x’ 

  
 
C 

x x 

 
from 

 
Eq.2 

 
 2x 

x 
C 

 2x 
x 

Integrating  C  x 
2
 

Substituting value of C in Eq.3 

 

 

 

 
Q.16. A stream function is given by  = 2x2-2y2. Determine the velocity and velocity potential 

function at (1, 2) 

Ans: Given:  = 2x2-2y2 

 
 4x  v; v  4x  Velocity at (1,2), 

x 
 

  4 y  u; u  4 y  Velocity at (1,2), 
y 

 

v  4 

 
u  8 

 
Units 

Units 

Resultant velocity V(1,2) =  8.94 Units 

 
 u 

x 
 

 v 

y 

 


x 

 


x 

 
 (4 y)  4 y    4  x  y  C( f ( y)only)eq1 

 

 (4x)  4x    4  x  y  C( f ( x)only)eq2 



  



2 

2 
  4 xy  

3 x 
2 
 y

2 

 
 (4 x  

C 
)  

C
 

 
 

 4 x  
 

 
C

 
 

 

 4 x  
   

 
C 

 
 

 4 x  4 x  0 
y y y y y 

 
x 

 
y 

From Eq.1 C 
 0 Integratin g 

y 

 

C  0 

  4 x  y    41 2  8 Units 

Q.17. The velocity potential  for a two dimensional flow is given by (x2 – y2) + 3xy. Calculate: 

(i) the stream function  and (ii) the flow rate passing between the stream lines through (1, 1) 

and (1, 2). 

 
Ans: Given  = (x2 – y2) + 3xy 

(i) To determine the  function 

d  
 

dx  
 

dyEq.(1) 

x y 

d  v dx  udyEq.(2) 

As per definition of velocity potential () and stream function (); 

 
 
  u and  

  
 

 v
 

x y y x 

u  
 

 (2x  3 y)  
 and  

 (2 y  3x)  

 
  

 v 

x y y 
 

x 


Substituting the value of u and v in terms of x and y in equation 2, we obtain 
 
 

d  v dx  udy  (2 y  3x)dx  (2x  3 y)dy 

d  2 y  3xdx  2x  3 ydyEq.3 

Integrating the equation-3 (partially w.r.t ‘x’ the ‘dx-term’ and w.r.t ‘y’ the ‘dy-term’) 

  
 

2xy  
3 

x2 
 
 
 

2xy  
3 

y2 
 = 4 xy  

3 x 
2 
 y

2 
     
     2  2 

(ii) The flow rate passing between the stream lines through (1, 1) and (1, 2). 



  

q = 8.5 m2/s/unit width 

 

The equation of stream function is given by 

 

 
The value of Point streamline at (1, 1) is obtained by substituting x = 1, y = 1 

 
 

  4 xy  
3 x 2  

 y
2   4 11 

3 
(1

2  
1

2 
)  7Units 

(1,1) 
2 2

 
 

The value of Point streamline at (1, 2) is obtained by substituting x = 1, y = 2 
 
 

  4 xy  
3 x2  

 y
2   4 1 2  

3 
(1

2  
 2

2 
)  15.5Units 

(1,2) 
2 2

 
 

The flow rate passing between the stream lines through (1, 1) and (1, 2) 

q = (1,2) - (1,1) = (15.5-7) 
 

 
 

 
Q.18. The velocity components in a 2-dimensional incompressible flow field are expressed as 

 

 y3
 2   2 x3 

u  

 3 
 2x  x  y , 



v   x  y 



 2 y  

3 






Is the flow irrotational? If so determine the corresponding stream function. 

 

 
Ans: Given the components of velocity 

 

 y 3 2   2 x3 
u  

 3 
 2x  x  y , 


v   x  y 



 2 y  
3 



The condition for Irrorational flow 

 v   u  
x 

   
y 




   

2 
  4xy  

3 x 2  
 y

2 



  

y 

y 

2 x 

v   2 x
3  u   y

3 
2 

LHS 
x 

 
x 
 x  y  2 y   and 3 

RHS y 
 
 

  2x  x  y 

  y  3 

i.e. LHS = (y2 – x2) and RHS = (y2 – x2) 

Hence the flow is Irrorational 

 

 

 

 
The corresponding stream function ‘’can be obtained by using following relationship 

 

  2 x 3 
 v   x  y 

x 

  y3
 

 2 y   Eq.1 
3 

2 
 u  

y  3 
 2x  x  y  Eq.2 




Integrating Eq.1 with respect to ‘x’ 

  
x 

2 
 y 

2 

  

2 

 
 

x 
4 


12 

 
C1  f ( y) Eq.3 

Differentiating Eq.3 with respect to ‘y’ 



y 

 C1 

y 

 x 
2 
 y  2 x  

C1
 

y 

  
y 

3

 

3 
4 

Integratin g, C1   
12 

 C; 

4 

C1   
12

 

The stream function ‘’ is given by 

(assu min g C  0) 

 

 12 

4 

  
y
 

12 

4 

 
x 

 2 x  y 
2  y 

2 

2 

  
x
 

y 
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Module 5: 

COMPRESSIBLE FLOWS 

Overview 

 
In general, the liquids and gases are the states of a matter that comes under the same 

category as “fluids”. The incompressible flows are mainly deals with the cases of 

constant density. Also, when the variation of density in the flow domain is negligible, 

then the flow can be treated as incompressible. Invariably, it is true for liquids 

because the density of liquid decreases slightly with temperature and moderately with 

pressure over a broad range of operating conditions. Hence, the liquids are considered 

as incompressible. On the contrary, the compressible flows are routinely defined as 

“variable density flows”. Thus, it is applicable only for gases where they may be 

considered as incompressible/compressible, depending on the conditions of operation. 

During the flow of gases under certain conditions, the density changes are so small 

that the assumption of constant density can be made with reasonable accuracy and in 

few other cases the density changes of the gases are very much significant (e.g. high 

speed flows). Due to the dual nature of gases, they need special attention and the 

broad area of in the study of motion of compressible flows is dealt separately in the 

subject of “gas dynamics”. Many engineering tasks require the compressible flow 

applications typically in the design of a building/tower to withstand winds, high speed 

flow of air over cars/trains/airplanes etc. Thus, gas dynamics is the study of fluid 

flows where the compressibility and the temperature changes become important. 

Here, the entire flow field is dominated by Mach waves and shock waves when the 

flow speed becomes supersonic. Most of the flow properties change across these 

waves from one state to other. In addition to the basic fluid dynamics, the knowledge 

of thermodynamics and chemical kinetics is also essential to the study of gas 

dynamics. 
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 
  


T
 

 
  


T
 

p v 

Thermodynamic Aspects of Gases 

 

In high speed flows, the kinetic energy per unit mass V 
2 
2 is very large which is 

substantial enough to strongly interact with the other properties of the flow. Since the 

science of energy and entropy is the thermodynamics, it is essential to study the 

thermodynamic aspects of gases under the conditions compressible high speed flows. 

Perfect gas: A gas is considered as a collection of particles (molecules, atoms, ions, 

electrons etc.) that are in random motion under certain intermolecular forces. These 

forces vary with distances and thus influence the microscopic behavior of the gases. 

However, the thermodynamic aspect mainly deals with the global nature of the gases. 

Over wide ranges of pressures and temperatures in the compressible flow fields, it is 

seen that the average distance between the molecules is more than the molecular 

diameters (about 10-times). So, all the flow properties may be treated as macroscopic 

in nature. A perfect gas follows the relation of pressure, density and temperature in 

the form of the fundamental equation. 

 
 

p   RT ; R  
R

 
M 

(4.1.1) 

 

Here, M is the molecular weight of the gas, R is the gas constant that varies from gas 

to gas and R  8314 J kg.K is the universal gas constant. In a calorically perfect 

gas, the other important thermodynamic properties relations are written as follows; 
 

c    
 h   

;
 

  p 

c  
 e 

 v 

; cp  cv  R 
 

 
(4.1.2) 

c    
  R  

; c   
R   

;    
cp

 
  p 

 1 
v 

 1 c 
v 

 

In Eq. (4.1.2), the parameters are specific heat at constant pressure  cp  , specific heat 

at  constant  volume  cv  ,  specific  heat  ratio   ,  specific  enthalpy  h 

internal energy e . 

and specific 
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First law of thermodynamics: A system is a fixed mass of gas separated from the 

surroundings by a flexible boundary. The heat added q  and work done w on the 

system can cause change in energy. Since, the system is stationary, the change in 

internal energy. By definition of first law, we write, 

 q   w  de (4.1.3) 

 

For a given de , there are infinite number of different ways by which heat can be 

added and work done on the system. Primarily, the three common types of processes 

are, adiabatic (no addition of heat), reversible (no dissipative phenomena) and 

isentropic (i.e. reversible and adiabatic). 

Second law of thermodynamics: In order to ascertain the direction of a 

thermodynamic process, a new state variable is defined as ‘entropy s ’. The change 

in entropy during any incremental process ds is equal to the actual heat added 

divided by the temperature dq T  , plus a contribution from the irreversible 

dissipative phenomena  dsirrev  occurring within the system. 

 

ds  
 q 

 ds 
 

(4.1.4) 
T 

irrev 

 

Since, the dissipative phenomena always increases the entropy, it follows that 
 

ds  
 q 

; 

T 
ds  0 Adiabatic process



(4.1.5) 

 

Eqs. (4.1.4 & 4.1.5) are the different forms of second law of thermodynamics. In order 

to calculate the change in entropy of a thermodynamic process, two fundamental 

relations are used for a calorically perfect gas by combining both the laws of 

thermodynamics; 
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 
  


dp 

 
  


p 

 
  


p 

T 

T 

T s 

Compressibility  : It is defined as the fractional change in the density of the fluid 

element per unit change in pressure. One can write the expression for  as follows; 

 

  
1  d  

 
 d    dp 

 

(4.1.12) 

 

In order to be more precise, the compression process for a gas involves increase in 

temperature depending on the amount of heat added or taken away from the gas. If the 

temperature of the gas remains constant, the definition is refined as isothermal 

compressibility T   . On the other hand, when no heat is added/taken away from the 

gases and in the absence of any dissipative mechanisms, the compression takes place 

isentropically. It is then, called as isentropic compressibility s  . 
 

     
1    

;
 

 T 

    
1   

 s 

 
(4.1.13) 

 

Being the property of a fluid, the gases have high values of compressibility 

  10
5 

m
2

 N for air at 1atm while liquids have low values of compressibility 

much less than that of gases      510
10 

m
2   

N for water at 1atm . From the basic 

definition (Eq. 4.1.12), it is seen that whenever a fluid experiences a change in 

pressure dp , there will be a corresponding change in d  . Normally, high speed  

flows involve large pressure gradient. For a given change in  dp , the resulting change 

in density will be small for liquids (low values of  ) and more for gases (high values 

of  ). Therefore, for the flow of liquids, the relative large pressure gradients can 

create much high velocities without much change in densities. Thus, the liquids are 

treated to be incompressible. On the other hand, for the flow of gases, the moderate to 

strong pressure gradient leads to substantial changes in the density (Eq.4.1.12) and at 

the same time, it can create large velocity changes. Such flows are defined as 

compressible flows where the density is a variable property and the fractional change 

in density d    is too large to be ignored. 
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Fundamental Equations for Compressible Flow 

 
Consider a compressible flow passing through a rectangular control volume as shown 

in Fig. 4.1.1. The flow is one-dimensional and the properties change as a function of 

x, from the region ‘1’ to ‘2’ and they are velocityu  , pressure  p , temperature T  , 

density     and internal energy e . The following assumptions are made to derive 

the fundamental equations; 

 
 Flow is uniform over left and right side of control volume. 

 Both sides have equal area  A , perpendicular to the flow. 

 Flow is inviscid, steady and nobody forces are present. 

 No heat and work interaction takes place to/from the control volume. 

 

 

Let us apply mass, momentum and energy equations for the one dimensional flow as 

shown in Fig. 4.1.1. 

 

Conservation of Mass: 

 
1u1 A  2u2 A  0 

 
 

 1u1  2u2 

 

 
(4.1.14) 

 

Conservation of Momentum: 
 

 (u A)u     (u  A)u  ( p A  p A)  p   u2 
 p   u

2
 (4.1.15) 

1 1 1 2 2 2 1 2 1 1   1 2 2 2 

 

Steady Flow Energy Conservation: 
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Here, the enthalpy h 
 
 e  

p  
is defined as another thermodynamic property of the 

  
 

gas. 
 
 

 

Fig. 4.1.1: Schematic representation of one-dimensional flow. 
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Wave Propagation in a Compressible Media 

Consider a gas confined in a long tube with piston as shown in Fig. 4.2.1(a). The gas 

may be assumed to have infinite number of layers and initially, the system is in 

equilibrium. In other words, the last layer does not feel the presence of piston. Now, 

the piston is given a very small ‘push’ to the right. So, the layer of gas adjacent to the 

piston piles up and is compressed while the reminder of the gas remains unaffected. 

With due course of time, the compression wave moves downstream and the 

information is propagated. Eventually, all the gas layers feel the piston movement. If 

the pressure pulse applied to the gas is small, the wave is called as sound wave and 

the resultant compression wave moves at the “speed of sound”. However, if the fluid 

is treated as incompressible, the change in density is not allowed. So, there will be no 

piling of fluid due to instantaneous change and the disturbance is felt at all other 

locations at the same time. So, the speed of sound depends on the fluid property i.e. 

‘compressibility’. The lower is its value; more will be the speed of sound. In an ideal 

incompressible medium of fluid, the speed of sound is infinite. For instance, sound 

travels about 4.3-times faster in water (1484 m/s) and 15-times as fast in iron (5120 

m/s) than air at 20ºC. 

Let us analyze the piston dynamics as shown in Fig. 4.2.1(a). If the piston moves 

at steady velocity dV , the compression wave moves at speed of sound a into the 

stationary gas. This infinitesimal disturbance creates increase in pressure and density 

next to the piston and in front of the wave. The same effect can be observed by 

keeping the wave stationary through dynamic transformation as shown in Fig. 4.2.1 

(b). Now all basic one dimensional compressible flow equations can be applied for a 

very small control enclosing the stationary wave. 
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  

a 

Continuity equation:  Mass flow rate  m  is conserved across the stationary wave. 

 

m    a A    d  a  dV  A  dV  
 a  

d 
 



(4.2.1) 

 

Momentum equation: As long as the compression wave is thin, the shear forces on  

the control volume are negligibly small compared to the pressure force. The 

momentum balance across the control volume leads to the following equation; 

 

 1 

 p  dp A  pA  m a  m a  dV   dV    dp 
 

(4.2.2) 

 

 

 

 

Fig. 4.2.1: Propagation of pressure wave in a compressible medium: (a) Moving wave; (b) Stationary wave. 
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 p 



 
a 




a 

Energy equation: Since the compression wave is thin, and the motion is very rapid, 

the heat transfer between the control volume and the surroundings may be neglected 

and the thermodynamic process can be treated as adiabatic. Steady flow energy 

equation can be used for energy balance across the wave. 

 

 
2 

h   h  dh 
2 

a  dV 
2

 

2 
 dV  

 1  
dh 

 


(4.2.3) 

 

Entropy equation: In order to decide the direction of thermodynamic process, one can 

apply T  ds relation along with Eqs (4.2.2 & 4.2.3) across the compression wave. 

 

T ds  dh  
dp 

 0 


 ds  0 

 

(4.2.4) 

 

Thus, the flow is isentropic across the compression wave and this compression wave 

can now be called as sound wave. The speed of the sound wave can be computed by 

equating Eqs.(4.2.1 & 4.2.2). 

 

 

 

Further simplification of Eq. (4.2.5) is possible by evaluating the differential with the 

use of isenropic equation. 

 

p 
 constant 


 ln p   ln   constant 

 

(4.2.6) 

 

Differentiate Eq. (4.2.6) and apply perfect gas equation  p   RT  to obtain the 

expression for speed of sound. is obtained as below; 

 

 p 
 
 s 

 
 p 


 a  



(4.2.7)  RT  
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V 
2 
2 V 

2 
2 

RT  1

 2V 
2

 

a
2  1

Mach number 

 
It may be seen that the speed of sound is the thermodynamic property that varies from 

point to point. When there is a large relative speed between a body and the 

compressible fluid surrounds it, then the compressibility of the fluid greatly influences 

the flow properties. Ratio of the local speed V  of the gas to the speed of sound a  

is called as local Mach number M  . 
 

M  
V 


a 

V 

 RT 

 

(4.2.8) 

 

There are few physical meanings for Mach number; 
 

(a) It shows the compressibility effect for a fluid i.e. 

incompressible. 

M  0.3 implies that fluid is 

 

(b) It can be shown that Mach number is proportional to the ratio of kinetic to internal 

energy. 

V 2 

 
2 

   
  1

M 

 

(4.2.9) 

e c v T 2 

(c) It is a measure of directed motion of a gas compared to the random thermal motion 

of the molecules. 

2 V 2 directed kineticenergy 
M     (4.2.10) 

a
2 

random kineticenergy 


2 
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Compressible Flow Regimes 

 
In order to illustrate the flow regimes in a compressible medium, let us consider the 

flow over an aerodynamic body (Fig. 4.2.2). The flow is uniform far away from the 

body with free stream velocity  V  while the speed of sound in the uniform stream is 

a . Then, the free stream Mach number becomes M   V a  . The streamlines can 

be drawn as the flow passes over the body and the local Mach number can also vary 

along the streamlines. Let us consider the following distinct flow regimes commonly 

dealt with in compressible medium. 

Subsonic flow: It is a case in which an airfoil is placed in a free stream flow and the 

local Mach number is less than unity everywhere in the flow field (Fig. 4.2.2-a). The 

flow is characterized by smooth streamlines with continuous varying properties. 

Initially, the streamlines are straight in the free stream, but begin to deflect as they 

approach the body. The flow expands as it passed over the airfoil and the local Mach 

number on the top surface of the body is more than the free stream value. Moreover, 

the local Mach number M  in the surface of the airfoil remains always less than 1, 

when the free stream Mach number M   is sufficiently less than 1. This regime is 

defined as subsonic flow which falls in the range of free stream Mach number less 

than 0.8 i.e. M   0.8 . 

 

Transonic flow: If the free stream Mach number increases but remains  in  the 

subsonic range close to 1, then the flow expansion over the air foil leads to supersonic 

region locally on its surface. Thus, the entire regions on the surface are considered as 

mixed flow in which the local Mach number is either less or more than 1 and thus 

called as sonic pockets (Fig. 4.2.2-b). The phenomena of sonic pocket is initiated as 

soon as the local Mach number reaches 1 and subsequently terminates in the 

downstream with a shock wave across which there is discontinuous and sudden 

change in flow properties. If the free stream Mach number is slightly above unity  

(Fig. 4.2.2-c), the shock pattern will move towards the trailing edge and a second 

shock wave appears in the leading edge which is called as bow shock. In front of this 

bow shock, the streamlines are straight and parallel with a uniform supersonic free 

stream Mach number. After passing through the bow shock, the flow becomes 

subsonic close to the free stream value. Eventually, it further expands over the airfoil 
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surface to supersonic values and finally terminates with trailing edge shock in the 

downstream. The mixed flow patterns sketched in Figs. 4.2.2 (b & c), is defined as the 

transonic regime. 

 

 
Fig. 4.2.2: Illustration of compressible flow regime: (a) subsonic flow; (b & c) transonic flow; (d) supersonic flow; (d) 

hypersonic flow. 

 

Supersonic flow: In a flow field, if the Mach number is more than 1 everywhere in  

the domain, then it defined as supersonic flow. In order to minimize the drag, all 

aerodynamic bodies in a supersonic flow, are generally considered to be sharp edged 

tip. Here, the flow field is characterized by straight, oblique shock as shown in Fig. 

4.2.2(d). The stream lines ahead of the shock the streamlines are straight, parallel and 

horizontal. Behind the oblique shock, the streamlines remain straight and parallel but 

take the direction of wedge surface. The flow is supersonic both upstream and 

downstream of the oblique shock. However, in some exceptional strong oblique 

shocks, the flow in the downstream may be subsonic. 

Hypersonic flow: When the free stream Mach number is increased to higher 

supersonic speeds, the oblique shock moves closer to the body surface (Fig. 4.2.2-e). 

At the same time, the pressure, temperature and density across the shock increase 

explosively. So, the flow field between the shock and body becomes hot enough to 

ionize the gas. These effects of thin shock layer, hot and chemically reacting gases 

and many other complicated flow features are the characteristics of hypersonic flow. 

In reality, these special characteristics associated with hypersonic flows appear 

gradually as the free stream Mach numbers is increased beyond 5. 
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As a rule of thumb, the compressible flow regimes are classified as below; 

M  0.3 incompressibleflow

M  1 subsonic flow

0.8  M  1.2 transonicflow

M  1 supersonic flow

M  5 and above hypersonic flow


Rarefied and Free Molecular Flow: In general, a gas is composed of large number of 

discrete atoms and molecules and all move in a random fashion with frequent 

collisions. However, all the fundamental equations are based on overall macroscopic 

behavior where the continuum assumption is valid. If the mean distance between 

atoms/molecules between the collisions is large enough to be comparable in same 

order of magnitude as that of characteristics dimension of the flow, then it is said to  

be low density/rarefied flow. Under extreme situations, the mean free path is much 

larger than the characteristic dimension of the flow. Such flows are defined as free 

molecular flows. These are the special cases occurring in flight at very high altitudes 

(beyond 100 km) and some laboratory devices such as electron beams. 
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 Isentropic and Characteristics States 

An isentropic process provides the useful standard for comparing various types of 

flow with that of an idealized one. Essentially, it is the process where all types of 

frictional effects are neglected and no heat addition takes place. Thus, the process is 

considered as reversible and adiabatic. With this useful assumption, many 

fundamental relations are obtained and some of them are discussed here. 

Stagnation/Total Conditions 

 
When a moving fluid is decelerated isentropically to reach zero speed, then the 

thermodynamic state is referred to as stagnation/total condition/state. For example, a 

gas contained in a high pressure cylinder has no velocity and the thermodynamic state 

is known as stagnation/total condition (Fig. 4.3.1-a). In a real flow field, if the actual 

conditions of pressure  p , temperature T  , density    , enthalpyh , internal 

energy e , entropy s etc. are referred to as static conditions while the associated 

stagnation parameters are denoted as p0 ,T0 , 0 , h0 , e0 and s0 , respectively. The 

stagnation state is fixed by using second law of thermodynamics where s  s0 as 

represented in enthalpy-entropy diagram called as the Mollier diagram (Fig. 4.3.1-b). 
 
 

 
Fig 4.3.1: (a) Schematic representation of stagnation condition; (b) Mollier diagram. 
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2 

a 

1 2  1 2 

u 

 

Characteristics Conditions 

 
Consider an arbitrary flow field, in which a fluid element is travelling at some Mach 

number M  and velocity V  at a given point ‘A’. The static pressure, temperature 

and density are p,T and  , respectively. Now, imagine that the fluid element is 

adiabatically slowed down if M  1 or speeded up if M  1 until the Mach 

number at ‘A’ reaches the sonic state as shown in Fig. 4.3.2. Thus, the temperature 

will change in this process. This imaginary situation of the flow field when a real state 

in the flow is brought to sonic state is known as the characteristics conditions. The 

associated parameters are denoted as p
 
,T 

 
,   

, a
 
etc. 

 

 
 

 
 

 
Fig. 4.3.2: Illustration of characteristics states of a gas. 

 

Now, revisit Eq. (4.3.2) and use the relations for a calorically perfect gas, by 

 
replacing, 

below; 

c 
  R 

and a 
p 

 1 

 
. Another form of energy equation is obtained as 

a2 u2 a2 u2 

 
1  1  2  2  (4.3.7) 

 

 

 

At the imagined condition (point 2) of Mach 1, the flow velocity is sonic and u  a
 
. 

Then the Eq. (4.3.7) becomes, 

 

a2 

 
u2 






 

a2 

 
a2 

  

 1 2  1 2 (4.3.8) 
2 2 

or,  
 1 

 
2

  
 1 

a
2 

2( 1) 

 RT 
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a u 
2

 

 RT 



A B 

 a2 

a 

1 2  1 

Like stagnation properties, these imagined conditions are associated properties of any 

fluid element which is actually moving with velocity u . If an actual flow field is non-

adiabatic from A  B , then  a
  
 a

  
.On the other hand if the general flow field is 

adiabatic throughout, then a
 
is a constant value at every point in the flow. Dividing 

u
2 
both sides for Eq. (4.3.8) leads to, 

 

1  1    a
 

2

 

 1 
 

2 
 

2( 1) 
 

u 




or, M 

2 


 

2 
 

 

 1 / M 2    1

(4.3.9) 

 

This equation provides the relation between actual Mach number M  and 

characteristics Mach number M 
  . It may be shown that when M approaches 

infinity, M 
 
reaches a finite value. From Eq. (4.3.9), it may be seen that 

 

M  1 

M  1 

M  1 

  M 
  
 1 

  M 
  
 1 

  M 
  
 1 

 

 
 

(4.3.10) 
 

M    M 
 






Relations between stagnation and characteristics state 

 
The stagnation speed and characteristics speed of sound may be written as, 

 

a0  ; a
 
 (4.3.11) 

 

Rewrite Eq. (4.3.7) for stagnation conditions as given below; 

 

a2 u2 a2 

 
  o  (4.3.12) 

 

 

Equate Eqs. (4.3.8) and (4.3.12), 
 

 1 

2  1



2 

a  0  

 1 

 a
 

2

 

  
   0 

 
T 

 



T0 

2 
 

 

 1 

 
(4.3.13) 

 

 

 

 

 

 

 

 

 1 

 1 

 R T0 



FLUID MECHANICS                                                                       18ME43 
 

Dept of Mechanical Engg, GMIT, Bharathinagara. Page 19  

max 

 
2  


R 

0 

 

 

 

 

 

 

 
 

Critical speed and Maximum speed 

 

The critical speed of the gas  u  is same as that speed of sound  a  at sonic state i.e. 

u   a at M   1 .   A   gas   can   attain   the maximum   speed u  when it is 

hypothetically expanded to zero pressure. The static temperature corresponding to this 

state is also zero. The maximum speed of the gas represents the speed corresponding 

to the complete transformation of kinetic energy associated with the random motion 

of gas molecules into the directed kinetic energy. Rearranging Eq. (4.3.3), one can 

obtain the following equation; 

 

T  T  
  1  

u
2 
; At T  0; 

 



u  u max 

 u 
2 

2 
(4.3.16) 

or, 
 max 

  



  a0     1 

Now, the Eqs (4.3.13) & (4.3.16) can be simplified to obtain the following relation; 

umax 
a

(4.3.17) 

2 RT0 

 1 

 1 

 1 
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













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





Fig. 4.3.3: Steady flow adiabatic ellipse. 

 

Thus, the change of slope from point to point on the ellipse indicates the change in 

Mach number and hence the speed of sound and velocity. So, it gives the direct 

comparison of the relative magnitudes of thermal and kinetic energies. Different 

compressible flow regimes can be obtained with the knowledge of slope in Fig. 4.3.2. 

The following important inferences may be drawn; 

- In high Mach numbers flows, the changes in Mach number are mainly due to 

the changes in speed of sound. 

- At low Mach numbers flows, the changes in Mach number are mainly due to 

the changes in the velocity. 

- When the flow Mach number is below 0.3, the changes in speed of sound is 

negligible small and the flow is treated as incompressible. 
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 One-Dimensional Analysis 

Mach Waves 

 

Consider an aerodynamic body moving with certain velocity V 




in a still air. When 

the pressure at the surface of the body is greater than that of the surrounding air, it 

results an infinitesimal compression wave that moves at speed of sound a . These 

disturbances in the medium spread out from the body and become progressively 

weaker away from the body. If the air has to pass smoothly over the surface of the 

body, the disturbances must ‘warn’ the still air, about the approach of the body. Now, 

let us analyze two situations: (a) the body is moving at subsonic speed V  a; M  1 ; 

(b) the body is moving at supersonic speed V  a; M  1 . 

 
Case I: During the motion of the body, the sound waves are generated at different 

time intervals t  as shown in Fig. 4.4.1. The distance covered by the sound waves 

can be represented by the circle of radius at, 2at, 3at.......so on . During same time 

intervals t  , the body will cover distances represented by, Vt, 2Vt, 3Vt so on . At 

subsonic speeds V  a; M  1 , the body will always remains inside the family of 

circular sound waves. In other words, the information is propagated through the sound 

wave in all directions. Thus, the surrounding still air becomes aware of the presence 

of the body due to the disturbances induced in the medium. Hence, the flow adjusts 

itself very much before it approaches the body. 

Case   II:   Consider   the   case,   when   the   body  is   moving  at   supersonic  speed 

V   a; M   1 . With a similar manner, the sound waves are represented by circle of 

radius at, 2at, 3at.......so on after different time t  intervals. By this time, the body 

would have moved to a different location much faster from its initial position. At any 

point of time, the location of the body is always outside the family of circles of sound 

waves. The pressure disturbances created by the body always lags behind the body 

that created the disturbances. In other words, the information reaches the surrounding 
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air much later because the disturbances cannot overtake the body. Hence, the flow 

cannot adjust itself when it approaches the body. The nature induces a wave across 

which the flow properties have to change and this line of disturbance is known as 

“Mach wave”. These mach waves are initiated when the speed of the body approaches 

the speed of sound V  a; M  1 . They become progressively stronger with increase 

in the Mach number. 

 

 
Fig. 4.4.1: Spread of disturbances at subsonic and supersonic speeds. 

 

Some silent features of a Mach wave are listed below; 

 
- The series of wave fronts form a disturbance envelope given by a straight line 

which is tangent to the family of circles. It will be seen that all the disturbance 

waves lie within a cone (Fig. 4.4.1), having a vertex/apex at the body at time 

considered. The locus of all the leading surfaces of the waves of this cone is 

known as Mach cone. 

- All disturbances confine inside the Mach cone extending downstream of the 

moving body is called as zone of action. The region outside the Mach cone  

and extending upstream is known as zone of silence. The pressure disturbances 

are largely concentrated in the neighborhood of the Mach cone that forms the 

outer limit of the zone of action (Fig. 4.4.2). 
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M  

- The half angle of the Mach cone is called as the Mach angle  m  that can be 

easily calculated from the geometry of the Fig. 4.4.1. 










Fig. 4.4.2: Illustration of a Mach wave. 

 

Shock Waves 

 
Let us consider a subsonic and supersonic flow past a body as shown in Fig. 4.3.3. In 

both the cases, the body acts as an obstruction to the flow and thus there is a change in 

energy and momentum of the flow. The changes in flow properties are communicated 

through pressure waves moving at speed of sound everywhere in the flow field (i.e. 

both upstream and downstream). As shown in Fig. 4.3.3(a), if the incoming stream is 

subsonic i.e. M   1; V  a , the sound waves propagate faster than the flow speed 

and warn the medium about the presence of the body. So, the streamlines approaching 

the body begin to adjust themselves far upstream and the flow properties change the 

pattern gradually in the vicinity of the body. In contrast, when the flow is supersonic, 

(Fig. 4.3.3-b) i.e. M   1; V  a , the sound waves overtake the speed of the body 

and these weak pressure waves merge themselves ahead of the body leading to 

compression in the vicinity of the body. In other words, the flow medium gets 

compressed at a very short distance ahead of the body in a very thin region that may 

be comparable to the mean free path of the molecules in the medium. Since, these 

compression waves propagate upstream, so they tend to merge as shock wave. Ahead 

of the shock wave, the flow has no idea of presence of the body and immediately 

behind the shock; the flow is subsonic as shown in Fig. 4.3.3(b). 
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The thermodynamic definition of a shock wave may be written as “the 

instantaneous compression of the gas”. The energy for compressing the medium, 

through a shock wave is obtained from the kinetic energy of the flow upstream the 

shock wave. The reduction in kinetic energy is accounted as heating of the gas to a 

static temperature above that corresponding to the isentropic compression value. 

Consequently, in flowing through the shock wave, the gas experiences a decrease in 

its available energy and accordingly, an increase in entropy. So, the compression 

through a shock wave is considered as an irreversible process. 

 

 
 

Normal Shock Waves 

Fig. 4.4.3: Illustration of shock wave phenomena. 

 

A normal shock wave is one of the situations where the flow properties change 

drastically in one direction. The shock wave stands perpendicular to the flow as 

shown in Fig. 4.4.4. The quantitative analysis of the changes across a normal shock 

wave involves the determination of flow properties. All conditions of are known 

ahead of the shock and the unknown flow properties are to be determined after the 

shock. There is no heat added or taken away as the flow traverses across the normal 

shock. Hence, the flow across the shock wave is adiabatic q  0 . 
 

 
Fig. 4.4.4: Schematic diagram of a standing normal shock wave. 
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 Two-Dimensional Analysis 
 

Oblique Shock Wave 

 
The normal shock waves are straight in which the flow before and after the wave is 

normal to the shock. It is considered as a special case in the general family of oblique 

shock waves that occur in supersonic flow. In general, oblique shock waves are 

straight but inclined at an angle to the upstream flow and produce a change in flow 

direction as shown in Fig. 4.5.1(a). An infinitely weak oblique shock may be defined 

as a Mach wave (Fig. 4.5.1-b). By definition, an oblique shock generally occurs, when 

a supersonic flow is ‘turned into itself” as shown in Fig. 4.5.1(c). Here, a supersonic 

flow is allowed to pass over a surface, which is inclined at an angle   to the 

horizontal. The flow streamlines are deflected upwards and aligned along the surface. 

Since, the upstream flow is supersonic; the streamlines are adjusted in the 

downstream an oblique shock wave angle   with the horizontal such that they are 

parallel to the surface in the downstream. All the streamlines experience same 

deflection angle across the oblique shock. 

 

 
Fig. 4.5.1: Schematic representation of an oblique shock. 

 (a) Attached shock; (b) Detached shock; (c) Strong and weak shock. 
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m1 1 

m2 2 

Oblique Expansion Waves 

 
Another class of two dimensional waves occurring in supersonic flow shows the 

opposite effects of oblique shock. Such types of waves are known as expansion 

waves. When the supersonic flow is “turned away from itself”, an expansion wave is 

formed as shown in Fig. 4.5.5(a). Here, the flow is allowed to pass over a surface 

which is inclined at an angle   to the horizontal and all the flow streamlines are 

deflected downwards. The change in flow direction takes place across an expansion 

fan centered at point ‘A’. The flow streamlines are smoothly curved till the 

downstream flow becomes parallel to the wall surface behind the point ‘A’. Here, the 

flow properties change smoothly through the expansion fan except at point ‘A’. An 

infinitely strong oblique expansion wave may be called as a Mach wave. An 

expansion wave emanating from a sharp convex corner is known as a centered 

expansion which is commonly known as Prandtl-Meyer expansion wave. Few 

features of PM expansion waves are as follows; 

- Streamlines through the expansion wave are smooth curved lines. 

- The expansion of the flow takes place though an infinite number of Mach 

waves emitting from the center ‘A’. It is bounded by forward and rearward 

Mach lines as shown in Fig. 4.5.5(b). These Mach lines are defined by Mach 

angles i.e. 

Forward Mach angle:   sin
1 1 M  

(4.5.11) 

Rearward Mach angle:   sin
1 1 M 



- The expansion takes place through a continuous succession of Mach waves 

such that there is no change in entropy for each Mach wave. Thus, the 

expansion process is treated as isentropic. 

- The Mach number increases while the static properties such as pressure, 

temperature and density decrease during the expansion process. 
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Fig. 4.5.5: Schematic representation of an expansion fan. 

 

The quantitative analysis of expansion fan involves the determination of 

M 2 , p2 ,T2  and 2 for the given  upstream conditions of  M1 , p1 ,T1 , 1 and 2 . Consider 

the infinitesimal changes across a very weak wave (Mach wave) as shown in Fig. 

4.5.6. 

 

 
Fig. 4.5.6: Infinitesimal change across a Mach wave. 
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M 
2 
1 

M 
2 
1 

dV
 

    dV 
M 

2 
1 

M 
2 
1 dM  1 

 1 
 

1 

Use trigonometric identities and Taylor series expansion, Eq. (4.5.12) can be 

simplified as below; 

d  
dV V 

tan m 

 
(4.5.13) 

 
 

Since, sin m  
M

  tan m 
1 

, so the Eq. (4.5.13) can be simplified and 

integrated further from region ‘1’ to ‘2’, 
 

 
d 

2 

  d 
M 2 

 (4.5.14) 
V 

 M 
V 

1 1 

 

From the definition of Mach number, 

 
V  Ma  

dV 
 

dM 
 

da 
 

(4.5.15) 
V M a 

For a calorically perfect gas, the energy equation can be written as, 

 a 
2

  1 da   1    1 

1 


 o 

  1 M 

2   
    M 1 M 

2 

 dM (4.5.16) 

 a 2 a    2     2 

Use Eqs (4.5.15 & 4.5.16) in Eq. (4.5.14) and integrate from   0 to 2 , 
 

2 

 d  2  0 
1 

 
M 2 


M1 1


 1 

M 
2 M 

2 

 
(4.5.17) 

The integral in the Eq. (4.5.18) is known as Prandtl-Meyer function,  M  . 
 

 M     1 M 




tan

1
 
 1 

M 
2 

 1 1
 
 tan

1
 

 
(4.5.18) 

1 M 
2  

2 

Finally, Eq. (4.5.17) reduces to,  
2   M 2   M1 




(4.5.19) 

 

Thus, for a given upstream Mach number M1 , one can obtain  M1  , subsequently 

calculate using given  M 2  and 2 . Since, the expansion process is isentropic, the 

flow properties can be calculated from isentropic relations. 

  

 

 

M 
2 
1 dM 

M 
2 
1 
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Hypersonic Flow 
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The study/research on hypersonic flows revels many exciting and unknown flow 

features of aerospace vehicles in the twenty-first century. The presence of special 

features in a hypersonic flow is highly dependent on type of trajectory, configuration 

of the vehicle design, mission requirement that are decided by the nature of 

hypersonic atmosphere encountered by the flight vehicle. Therefore, the hypersonic 

flight vehicles are classified in four different types, based on the design constraints 

imposed from mission specifications. 

- Reentry vehicles (uses the rocket propulsion system) 

- Cruise and acceleration vehicle (air-breathing propulsion such as 

ramjet/scramjet) 

- Reentry vehicles (uses both air-breathing and rocket propulsion) 

- Aero-assisted orbit transfer vehicle (presence of ions and plasma in the 

vicinity of spacecraft) 

 
Characteristics Features of Hypersonic Flow 

 
There are certain physical phenomena that essentially differentiate the hypersonic 

flows as compared to the supersonic flows. Even though, the flow is treated as 

supersonic, there are certain special features that appear when the speed of the flow is 

more than the speed of sound typically beyond the Mach number of 5. Some of these 

characteristics features are listed here; 

Thin shock layer: It is known from oblique shock relation     M  that the shock 

wave angle   decreases with increase in the Mach number M  for weak shock 

solution. With progressive increase in the Mach number, the shock wave angle 

reaches closer to the flow deflection angle   . Again, due to increase in temperature 

rise across the shock wave, if chemical reaction effects are included, the shock wave 

angle will still be smaller. Since, the distance between the body and the shock wave is 

small, the increase in the density across the shock wave results in very high mass 

fluxes squeezing through small areas. The flow region between the shock wave and 

the body is known as thin shock layer as shown in Fig. 4.6.1(a). It is the basic 

characteristics of hypersonic flows that shock waves lie closer to the body and shock 

layer is thin. Further, the shock wave merges with the thick viscous boundary layer 

growing from the body surface. The complexity of flow field increases due to thin 



FLUID MECHANICS                                                                       18ME43 
 

Dept of Mechanical Engg, GMIT, Bharathinagara. Page 32  

shock layer where the boundary layer thickness and shock layer thickness become 

comparable. 

Fig. 4.6.1: Few important phenomena in a hypersonic flow: (a) Thin shock layer; (b) Entropy layer; (c) Temperature 

profile in a boundary layer; (d) High temperature shock layer; (e) Low density effects. 

 
 

Entropy layer: The aerodynamic body configuration used in hypersonic flow 

environment is typically blunt to avoid thin shock layers to be closer to the body. So, 

there will be a detached bow shock standing at certain distance from the nose of the 

body and this shock wave is highly curved (Fig. 4.6.1-b). Since, the flow process 

across the shock is a non-isentropic phenomena, an entropy gradient is developed that 

varies along the distance of the body. At the nose portion of the blunt body, the bow 

shock resembles normal to the streamline and the centerline of the flow will 

experience a larger entropy gradient while all other neighboring streamlines undergo 

the entropy changes in the weaker portion of the shock. It results in an entropy layer 

that persists all along the body. Using the classical Crocco’s theorem, the entropy 

layer may be related to vorticity. Hence, the entropy layer in high Mach number 

flows, exhibits strong gradient of entropy which leads to higher vorticity at higher 

magnitudes. Due to the presence of entropy layer, it becomes difficult to predict the 

boundary layer properties. This phenomenon in the hypersonic flow is called as 

vortcity generation. In addition to thin shock layer, the entropy layer also interacts 
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with viscous boundary layer that leads to very complicated and unknown flow 

features. 

Viscous-Inviscid interaction: When a high velocity, hypersonic flow is slowed down 

in the vicinity of the aerodynamic body due to viscous effects within the boundary 

layer, the major portion of the kinetic energy is transformed into the internal energy of 

the gas known as viscous dissipation leading to increase in temperature. For a cold 

wall, the typical temperature profile in a boundary layer is shown in Fig. 4.6.1(c). 

Since, the pressure is constant in the normal direction through the boundary layer, the 

increase in temperature results decrease in density. In order to pass through a given 

mass flux at reduced density, the thickness of the boundary layer must be larger.  

Thus, the displacement thickness increases, causing the body shape to appear much 

thicker and displacing outer inviscid flow. Hence, the free stream flow encounters an 

inflated object which changes the shock shape and in turn boundary layer parameters 

such as surface pressure, wall heat flux, skin friction etc. Again, when the boundary 

layer becomes thick, it essentially merges with the thin shock layer. Thus, there are 

major interactions of viscous boundary layer, thin shock layer and outer inviscid 

flows. This phenomenon is known as viscous-inviscid interaction and has important 

effect on the surface pressures and the stability of hypersonic vehicles. 

High temperature effects: The kinetic energy of the high speed, hypersonic flow is 

dissipated by the effect of friction within the boundary layer (Fig. 4.6.1-d). The 

extreme viscous dissipation can result in substantial increase in temperature (~10000 

K) exciting the vibration within the molecules and can cause dissociation, ionization 

in the gas. Typically, in the range of 2000K-4000K, the oxygen molecules start 

dissociating and with increase in temperature, dissociation of nitrogen  molecules 

takes place. Further increase in temperature (> 9000 K), ionization of both oxygen  

and nitrogen can start. This leads to chemical reaction within the boundary layer. As a 

result, the gases within the boundary layer will have variable specific heat ratio and 

gas constant which are functions of both temperature and pressure. Therefore 

treatment of air or any fluid flowing with hypersonic speed over any configuration 

should be done properly by incorporating all the microscopic changes which 

essentially leads to change in thermodynamic properties with temperature. If the 

vibrational excitation and chemical reactions takes place very rapidly in comparison 

to time taken by the fluid element to move in the flow field, then it is called as 

equilibrium  flow.  When  there  is  sufficient  time  lag,  then  it  is  treated  as  non- 
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equilibrium flow. All these phenomena are called as high temperature real gas effects. 

The presence of high temperature reacting plasma in the vicinity of the flight vehicle 

influence the aerodynamic parameters, aerodynamic heating and subsequently, 

communication is blocked. Flight parameters like pitch, roll, drag, lift, defection of 

control surfaces get largely deviated from their usual estimate of calorically perfect 

gas. The presence of hot fluid in the vicinity of vehicle surface induces heat transfer 

not only through convection but also through radiation. Communication waves which 

are necessarily radio waves get absorbed by free electrons formed from ionization of 

atmospheric fluid. This phenomenon is called as communication blackout where on 

board flight parameters and ground communication is lost. 

Low density flow: At standard sea level conditions, all the fluids are treated as 

continuum so that the global behavior is same as that of average fluid properties. In 

these conditions, the fluid contains certain desired number of molecules and the 

average distance between two successive collisions of the molecules is specified by its 

mean free path    7 10
9 

m . Since, the hypersonic flows are encountered at very 

high altitude (~100 km), the density of the medium is very less and the mean free path 

may be in the order of 0.3m. So, the air is no longer a continuous substance, rather 

treated as individual and widely spaced particles in the matter. Under these 

conditions, all the fundamental equations based on continuum assumption break down 

and they are dealt with the concepts of kinetic theory. This regime of the 

aerodynamics is known as low-density flows. Further increase in altitude (~ 150 km), 

the air density becomes so low that only a few molecules impact on the surface per 

unit time. This regime of flow is known as free molecular flow. Thus, a hypersonic 

vehicle moves in different flow regimes during the course of its flight i.e. from a 

dense atmosphere to a rarefied atmosphere. The similarity parameter that governs 

different regimes of the flow for certain characteristic dimension L , is then defined as 

Knudsen number Kn  . 

Kn  



L 

 
(4.6.4) 
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Large value of Kn implies free molecular flow Kn   while small value of Kn is 

the regime of continuum flowKn  0.2 as shown in Fig. 4.6.1(e). In the inviscid 

limit, the value of Kn approaches to zero while the free molecular flow regime begins 

with Kn  1 . In the low density regimes, the Boltzmann equation is used to deal with 

the fundamental laws. 

 

 
Fig. 4.6.2: Characteristics features of hypersonic flow. 

From these characteristics of hypersonic flows, it is clear that Mach number to be 

greater than 5 is the most formal definition of hypersonic flow rather it is desired to 

have some of the characteristics features summarized in Fig. 4.6.2. It is more 

important that one of these characteristics features should appear in the flow 

phenomena so that the definition becomes more appropriate. There are many 

challenges for experimental simulation of hypersonic flow in the laboratory. 

Understanding the challenges faced by hypersonic flight and driving solutions these 

problems on case to case basic are the most research themes on hypersonic flows. 
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 Hypersonic Flow 

Inviscid Hypersonic Flow Relations 

 
In general, the hypersonic flows are characterized with viscous boundary layers 

interacting the thin shock layers and entropy layers. The analysis of such flow fields is 

very complex flows and there are no standard solutions. In order to get some 

quantitative estimates, the flow field at very high Mach numbers is generally analyzed 

with inviscid assumption so that the mathematical complications are simplified. In 

conventional supersonic flows, the shock waves are usually treated as mathematical 

and physical discontinuities. At hypersonic speeds, some approximate forms of shock 

and expansion relations are obtained in the limit of high Mach numbers. 

 
Hypersonic shock relations 

Consider the flow through a straight oblique shock as shown in Fig. 4.7.1(a). The 

notations have their usual meaning and upstream and downstream conditions are 

denoted by subscripts ‘1’ and ‘2’, respectively. Let us revisit the exact oblique shock 

relations and simplify them in the limit of high Mach numbers. 

 

Fig. 4.7.1: Geometry of shock and expansion wave: (a) oblique shock; (b) centered expansion wave. 
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What is fluid flow? 

 
Fluid flows encountered in everyday life include 

meteorological phenomena (rain, wind, hurricanes, floods, fires) 

environmental hazards (air pollution, transport of contaminants) 

heating, ventilation and air conditioning of buildings, cars etc. 

combustion in automobile engines and other propulsion systems 

interaction of various objects with the surrounding air/water 

complex flows in furnaces, heat exchangers, chemical reactors etc. 

processes in human body (blood flow, breathing, drinking . . . ) 

and so on and so forth 

 

What is CFD? 

Computational Fluid Dynamics (CFD) provides a qualitative (and 

sometimes even quantitative) prediction of fluid flows by means of 

• mathematical modeling (partial differential equations) 

• numerical methods (discretization and solution techniques) 

• software tools (solvers, pre- and postprocessing utilities) 

CFD enables scientists and engineers to perform ‘numerical experiments’ 

(i.e.  computer simulations) in a ‘virtual flow laboratory’ 

 

Why use CFD? 
 

Numerical simulations of fluid flow (will) enable 

Architects to design comfortable and safe living environments 

designers of vehicles to improve the aerodynamic characteristics 

chemical engineers to maximize the yield from their equipment 

petroleum engineers to devise optimal oil recovery strategies 

surgeons to cure arterial diseases (computational hemodynamics) 

meteorologists to forecast the weather and warn of natural disasters 

safety experts to reduce health risks from radiation and other hazards 
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