Fluid Mechanics 18ME43

FLUID MECHANICS NOTES
MODULE-1

e Fluids & Their Properties
e Fluid Pressure and Its Measurements

Module -1: Fluids & Their Properties:

Concept of fluid, Systems of units. Properties of fluid; Mass density, Specific weight,
Specific gravity, Specific volume, Viscosity, Cohesion, Adhesion, Surface tension&
Capillarity. Fluid as a continuum, Newton’s law of viscosity (theory
&problems).Capillary rise in a vertical tube and between two plane surfaces (theory &
problems). Vapor pressure of liquid, compressibility and bulk modulus, capillarity,
surface tension, pressure inside a water droplet, pressure inside a soap bubble and liquid
jet. Numerical problems

10 INTRODUCTION: In general matter carl(bg\}/}?stinguished by the physical forms
known as solid, liquid, and gas. The liquid ag&ﬁga'seous phases are usually combined and
given a common name of fluid. Solids gdj/%} from fluids on account of their molecular
structure (spacing of molecules and e(a?evwith which they can move). The intermolecular
forces are large in a solid, smaller inQa liquid and extremely small in gas.

Fluid mechanics is the study of fluids at rest or in motion. It has traditionally been
applied in such area as the design of pumps, compressor, design of dam and canal, design
of piping and ducting in chemical plants, the aerodynamics of airplanes and automobiles.
In recent years fluid mechanics is truly a ‘high-tech’ discipline and many exciting areas
have been developed like the aerodynamics of multistory buildings, fluid mechanics of

atmosphere, sports, and micro fluids.
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11 DEFINITION OF FLUID: A fluid is a substance which deforms continuously under
the action of shearing forces, however small they may be. Conversely, it follows that: If a
fluid is at rest, there can be no shearing forces acting and, therefore, all forces in the fluid

must be perpendicular to the planes upon which they act.

Shear force, F N
| Sy :> 1
X

Fluid deforms continuougly under the action of a shear force

oF f (Deformation Rate)
= = etormation Rate,
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Shear stress in a moving fluid: \<\

@ 'S
Although there can be no shear stress in a flai rest, shear stresses are developed when
the fluid is in motion, if the particles of tlu'é)ﬁmd move relative to each other so that they
have different velocities, causing the@\gmal shape of the fluid to become distorted. If,
on the other hand, the velocity of the fluid is same at every point, no shear stresses will be

produced, since the fluid particles are at rest relative to each other.

Differences between solids and fluids: The differences between the behaviour of solids

and fluids under an applied force are as follows:

i.  For asolid, the strain is a function of the applied stress, providing that the elastic
limit is not exceeded. For a fluid, the rate of strain is proportional to the applied
stress.

ii.  The strain in a solid is independent of the time over which the force is applied and,
if the elastic limit is not exceeded, the deformation disappears when the force is
removed. A fluid continues to flow as long as the force is applied and will not

recover its original form when the force is removed.

Dept of Mechanical Engg, GMIT, Bharathinagara Page 2



Fluid Mechanics 18ME43

Differences between liquids and gases:

Although liquids and gases both share the common characteristics of fluids, they have
many distinctive characteristics of their own. A liquid is difficult to compress and, for
many purposes, may be regarded as incompressible. A given mass of liquid occupies a
fixed volume, irrespective of the size or shape of its container, and a free surface is
formed if the volume of the container is greater than that of the liquid.

A gas is comparatively easy to compress (Fig.1). Changes of volume with pressure are
large, cannot normally be neglected and are related to changes of temperature. A given
mass of gas has no fixed volume and will expand continuously unless restrained by a

containing vessel. It will completely fill any vessel in which it is placed and, therefore,

does not form a free surface. Free surface © e oo
T T }
o | s
'- ; ! K7,
\ A §$\‘\
(a) Solid MC}ﬂa))‘Liquid
XY

{\&.}

Fig.1 Comparison of Solid, Liquid and Gas
12 Systems of Units:

The official international system of units (System International Units). Strong efforts are
underway for its universal adoption as the exclusive system for all engineering and
science, but older systems, particularly the CGS and FPS engineering gravitational
systems are still in use and probably will be around for some time. The chemical engineer
finds many physiochemical data given in CGS units; that many calculations are most
conveniently made in fps units; and that SI units are increasingly encountered in science

and engineering. Thus it becomes necessary to be expert in the use of all three systems.
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Sl system:
Primary quantities: Derived quantities:
Mass in Kilogram kg Force in Newton (1 N = 1 kg.m/s?) N
Length in Meter m Pressure in Pascal (1 Pa=1N/m?)  N/m?
Time in Second S or as sec Work, energy in Joule (1J =1 ]
N.m
Temperature in Kelvin = K )
Power in Watt (1 W =1 J/s) w
Mole mol
CGS Units:
The older centimeter-gram-second (cgs) system has the following units for derived
quantities: o \\
)
Quantity .‘;\\{(' Unit
o)
Force indyne (1 dyn = i\g;cm/sz) dyn
O

. N
Work, energy in erg\(\1 erg=1dyncm=1x107J) erg

Heat Energy in calorie ( 1 cal = 4.184 J) cal

Dimensions: Dimensions of the primary quantities:

Fundamental dimension Symbol
Length L
Mass M
Time t
Temperature T
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Dimensions of derived quantities can be expressed in terms of the fundamental

dimensions.
Quantity Representative symbol =~ Dimensions
Angular velocity ® tt
Area A L?
Density p M/L3
Force F ML/t?
Kinematic viscosity v L%/t
Linear velocity % L/t

o
1.3 Properties of fluids: f)sx\\

1.3.1 Mass density or Specific mass (/p\b"?

Mass density or specific mass is{{ﬁé mass per unit volume of the fluid.

Mass
Volume

Unit: kg/m?®
With the increase in temperature volume of fluid increases and hence mass density
decreases in case of fluids as the pressure increases volume decreases and hence mass
density increases.
1.3.2  Weight density or Specific weight (y):
Weight density or Specific weight of a fluid is the weight per unit volume.
Weight _ W dW_
Volume V dv

Unit: N/m® or Nm™.
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With increase in temperature volume increases and hence specific weight
decreases.

With increases in pressure volume decreases and hence specific weight increases.
Note: Relationship between mass density and weight density:

We have y = Weight
Volume
_massxg
Volume
Y=pXg

1.3.3 Specific gravity or Relative density (S):
It is the ratio of density of the fluid to the density of a standard fluid.

Piuid

S=
p standard fluid

Unit: It is a dimensionless quantity and has no un\jg\
In case of liquids water at 4°C is considered as tandard liquid. Pwater = 1000 kg/m®
1.3.4 Specific volume (V ): It is the vqurg)gs\ber unit mass of the fluid.

i

7y o
v = Volume _ i or dvgs\;
mass M {c{M
Unit: m¥/kg

As the temperature increases volume increases and hence specific volume increases. As

the pressure increases volume decreases and hence specific volume decreases.
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Solved Problems:

Ex.1 Calculate specific weight, mass density, specific volume and specific gravity of a
liquid having a volume of 4m?® and weighing 29.43 kN. Assume missing data suitably.

y="7
W
Y= — p="?
v V=2
3
_ 29.432(10 S_o
. 3
y=17357.58 N/m’® V=4m
W = 29.43 kN
=29.43 x10°N
To find p - Method 1:
W =mg
N
29.43x10%=mx9.81 Mettiod 2 :
'\Q;
i
m = 3000 kg & r=r9
N\
{\0 7357.5=p 9.81
L p="e 3000
v.o4 p=750 kg/m?®
p=750 kg/m?®
M
p=_
\Y V
) V=—
v=Y
3000 11
V=_=__
p 750

v =1.33x10"°m*/kg

vV =1.33X10°m*/ kg
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S=—" g
’YStan dard p Standaard

_ 73575 or g_ 750
9810 1000

S=0.75 S=0.75

Ex.2 Calculate specific weight, density, specific volume and specific gravity and if one
liter of Petrol weighs 6.867N.

W
Y=__
\ V = 1Litre
_ 61.327 V= 19—3 m?
»
Qé 867N
y=6867N/m’ 3\%& '
P
w4
s=—1 6\9
YStan dard ‘<\
p=sg
= % 6867 = px 9.81
vV
M M = 6.867 ~ 9.81
107
07
M = 0.7 kg

V =1.4x10°m*/ kg
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Ex.3 Specific gravity of a liquid is 0.7 Find i) Mass density ii) specific weight. Also find
the mass and weight of 10 Liters of liquid.

S Y

= S=07
7/Standard y:pg VZ’)
p="?
0.7=—"— 6867 = p x 9.81 M =2
9810 W2
867N/ i p =700 kg / m® V =10 litre
r= — 10x10°%m?
S— p
Stan dard
p
0.7=—— .
1000 \<\
&
: N
p=700kg/ m MC’}
\y
M O
p=__ Q
V
700 = M
10x10°°
M = 7kg

1.3.5 Viscosity: Viscosity is the property by virtue of which fluid offers resistance
against the flow or shear deformation. In other words, it is the reluctance of the fluid to
flow. Viscous force is that force of resistance offered by a layer of fluid for the motion of

another layer over it.
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In case of liquids, viscosity is due to cohesive force between the molecules of
adjacent layers of liquid. In case of gases, molecular activity between adjacent layers is
the cause of viscosity.

e Newton’s law of viscosity:

Let us consider a liquid between the fixed plate and the movable plate at a
distance ‘Y’ apart, ‘A’ is the contact area (Wetted area) of the movable plate, ‘F’ is the
force required to move the plate with a velocity ‘U’ According to Newton’s law shear

stress is proportional to shear strain. (Fig.2)

Area of contact = A

k) T
Movable Plate — Yy
N R
|\\\\|____________.___._ __________ :____
NN Liquid _________
B N S
e [/ A N
Fixed Plate .} Linear  Non-linear
TTTTTIIITT T e
i é\/{.U M1k Velocity distribution or
Q velocity profile
Fig.2 Definition diagram of Liquid viscosity
¢ Fa A
1
¢ Fa _
Y
¢ FaU
Faﬂ
Y
AU
F=p.
Y

‘w’ is the constant of proportionality called Dynamic Viscosity or Absolute Viscosity or

Coefficient of Viscosity or Viscosity of the fluid.

U
E:IIJLJ7 —_ ST=U

A Y
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‘t’ is the force required; Per Unit area called ‘Shear Stress’. The above equation is called

Newton’s law of viscosity.

Velocity gradient or rate of shear strain:
It is the difference in velocity per unit distance between any two layers.

If the velocity profile is linear then velocity gradient is given by E If the velocity profile
Y

is non — linear then it is given byﬂ.
dy

¢ Unit of force (F): N.
¢ Unit of distance between the twp plates (Y): m

¢ Unit of velocity (U): m/s

¢ Unit of velocity gradient :Ez M/ _ /gt

Y m
| Y [ o o5
¢ Unit of dynamic viscosity (t): t=p. _,.‘{,’; ’

S&
6./;&)‘\

X<
®

Ty
M:_
U
N/m?. m
=
m/s

N - sec
= o2 or u="P,-S

dyne
NOTE: In CGS system unit of dynamic viscosity is Y

>— and is called poise (P).
m

If the value of p is given in poise, multiply it by 0.1 to get itin N—SZ
m

1 Centipoises = 10 Poise.
¢ Effect of Pressure on Viscosity of fluids:

Pressure has very little or no effect on the viscosity of fluids.
¢ Effect of Temperature on Viscosity of fluids:

1. Effect of temperature on viscosity of liquids: Viscosity of liquids is due to cohesive force

between the molecules of adjacent layers. As the temperature increases cohesive force
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decreases and hence viscosity decreases.
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2. Effect of temperature on viscosity of gases: Viscosity of gases is due to molecular
activity between adjacent layers. As the temperature increases molecular activity
increases and hence viscosity increases.

+ Kinematics Viscosity: It is the ratio of dynamic viscosity of the fluid to its mass density.
.. KinematicV is cosity =M
p
Unit of KV:

KV =M

p

NS /m?

=
kg /m®

~ NS ms

m2X ki
g \(\
(kgm) s m 4 & F=ma

O
K X < N
LSZ szxkg m/s m%‘.)\
\~\)

N=Kg.m/s
. KinematicV is cosity =
NOTE: Unit of kinematics Viscosity in CGS system is cm?s and is called stoke (S)

If the value of KV is given in stoke, multiply it by 10 to convert it into m?/s.

The Fig. 3 illustrates how p changes for different fluids.
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Bingham plastic Pseudo plastic

plastic
Newtonian

Shear stress, 1

Dilatant

Ideal, (1=0)

Rate of shear, du/dy
Fig.3 Variation of Viscosity based on Behaviour of Liquids
e Plastic: Shear stress must reach a certain minimum before flow commences.

e Bingham plastic: As with the plastic above a minimum shear stress must be achieved.

With this classification n = 1. An example is sewage sludge.

e Pseudo-plastic: No minimum shear stress neces’s@ and the viscosity decreases with
rate of shear, e.g. colloidal substances like ,czj;a&,’ milk and cement.

N\
e Dilatant substances; Viscosity increasggza)}[h rate of shear e.g. quicksand.

7y o
e Thixotropic substances: Viscosity%é:feases with length of time shear force is applied
. . : N
e.g. thixotropic jelly paints. ™\

e Rheopectic substances: Viscosity increases with length of time shear force is applied

e Viscoelastic materials: Similar to Newtonian but if there is a sudden large change in

shear they behave like plastic

The figure shows the relationship between shear stress and velocity gradient for two
fluids, A and B. Comment on the Liquid ‘A’ and Liquid ‘B’ ?
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Shear stress
F 9

Welocity gradient

Comments: (i) The dynamic viscosity of liquid A > the dynamic viscosity of liquid B
(11) Both liquids follow Newton’s Law of Viscosity

N
<&
4
i
)
x<
Solved Problems: {\0
1 Viscosity of water is 0.01 poise. Find its kinematics viscosity if specific gravity is
0.998.

Kinematics viscosity = ? p=0.01P

S=0.998 =0.01x0.1

g=_F p =0.001 N_f

pstan drad m

u
.. Kinmetic Vis cosity = 5

0.998 = —& _0.001
1000 998
KV=1x10 °m?/s
p=998 kg/m’
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2 A Plate at a distance 0.0254mm from a fixed plate moves at 0.61m/s and requires a

force of 1.962N/m? area of plate. Determine dynamic viscosity of liquid between the

plates.
U=0.61m/s
Y=00254mm | — _ _____
=0.0254 x 10°m i
T~ TTTTTTT7T7TTTTTTTTT]
1=1.962 N/ m?
p=7?
Assuming linear velocity distribution
U
T=U
Y
1962 =px — oo N\
0.0254 x 10 <
&
NS :)i\\
n=817 x10°_ d?
m? XS

3. A plate having an area of 1m? i‘gﬂragged down an inclined plane at 45° to horizontal
with a velocity of 0.5m/s due to its own weight. Three is a cushion of liquid 1mm
thick between the inclined plane and the plate. If viscosity of oil is 0.1 PaS find the
weight of the plate.

y=1mm=1x103m

A =1m?

U =0.5m/s
Y = 1x10°m
w = 0.1NS/m?
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W=7
F =W x cos 45°
=W x0.707

F=0.707W
F

T=

A
= 0.707W

1
1t =0.707WN / m?

Assuming linear velocity distribution,

U
T=U__

Y
0.707W = 0.1 x— 22

1x10° \<\
K7/
&
W =70.72 N :;\\
"\%
N

/\

4, Aflat plate is sliding at a constant velocity of 5 m/s on a large horizontal table. A thin
layer of oil (of absolute viscosity = 0.40 N-s/m?) separates the plate from the table.
Calculate the thickness of the oil film (mm) to limit the shear stress in the oil layer to
1 kPa,

Given : t =1 kPa = 1000 N/m2; U = 5m/s; p = 0.4 N-s/m?

Applying Newton’s Viscosity law for the oil film -
du U
T=H__ TH_
dy 'y
5
1000=0.4_
y
y=2x10°=2mm
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5 A shaft of $ 20mm and mass 15kg slides vertically in a sleeve with a velocity of 5
m/s. The gap between the shaft and the sleeve is 0.1mm and is filled with oil.

Calculate the viscosity of oil if the length of the shaft is 500mm.

0.1 mm I 0 Q%me
1 X
i 5 500 d AN
i | e . 1 [500
1 L[> | mm
v L ?|| ||
;'l l RENE

D = 20mm = 20x10°3m \(\
M = 15 kg ) Q}Q)‘
W = 15x 9.81 t)‘}
W = 147.15N &0
y =0.1mm O
y=0.1x10°mm

U =5m/s

F=W

F=147.15N

p="?

A=TIDL
A=T1x20x10°x0.5
A =0.031 m?
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U
T=U __
Y
4746.7 = ux ———
H 0.1x103
1=0.095 N_f
m
F
T=__
A
_147.15
0.031

t=4746. 7N/ m?

6. If the equation of velocity profile over 2 plate f&Q- 2y?3. in which ‘V” is the velocity
in m/s and ‘y’ is the distance in ‘m’ Detiﬁgne shear stress at (1) y =0 (i1) y = 75mm.

Take 1 =8.35P.
a. aty=0 \0
/\0
— \
b. aty=75mm
=75x10°m
1=8.35P
=8.35x0.1 E
m2
=0.835 E
m2

Dept of Mechanical Engg, GMIT, Bharathinagara Page 19



18ME43

Fluid Mechanics

V=2y*"
d_V:2xgy2’3*l
dy 3
_G\uUs
3y
at,y:O,El=34_=oo
dy 30

dv:3 4

at,y=75x10"m, _ _
dy  ¥75x10°

ﬂ: 3.16/s
y
dv \<\
T=H — R’/
dy .'\Q}
S
at,y =0, 7=0.835xx0 \969
<\0
T=00

at,y=75x10"°m,z=0.835 x 3.16

7=2.64 N/ m?

Page 20
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7. Acircular disc of 0.3m dia and weight 50 N is kept on an inclined surface with a

slope of 45°. The space between the disc and the surface is 2 mm and is filled with oil

of dynamics viscosity 1:_82 What force will be required to pull the disk up the

inclined plane with a velocity of 0.5m/s.

2mm=2x10m=y

F =P —50 cos45

F = (P —35,35)
y=2x10"m
U=0.5m/s U:(P_35'35)N/m2
0.07

T=p
Y

(P—-3535) 0.5

2x10°°

=1x

L 0.07 J

P =52.85N
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8 Dynamic viscosity of oil used for lubrication between a shaft and a sleeve is 6 P. The
shaft is of diameter 0.4 m and rotates at 190 rpm. Calculate the power lost in the

bearing for a sleeve length of 0.09 m .Thickness of oil is 1.5 mm.

LSS SIS

u= 620.6E
0.4 m m?

- - = N =190 rpm
R

1 |
I 1

0.0% m

Power lost = ?

A=TIDL
=TI x 0.4 x0.09 A =0.11n?
Y =1.5x10%m

9. Two large surfaces are 2.5 cm apart. This spa&s filled with glycerin of absolute
viscosity 0.82 NS/m?. Find what force ié&veauired to drag a plate of area 0.5m?
between the two surfaces at a speed ogfyyﬁ’fﬁm/s. (1) When the plate is equidistant from
the surfaces, (ii) when the plate isé&ém from one of the surfaces.

Case (i) When the plate is equidista‘f\t\from the surfaces,

S SIS R S SS

25 cm+ |

TN NN
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_ IIDN
60

U

_11x0.4x190
60

U=3979m/s

U
T=MW.__
Y
_06x 3979
1.5x 103

T=1.592 x 10°N / m?

F 150 x10° \<\
A Q}Qf
&
F=1.591x @ 0.11
N
/\0
F=175.010 N
T=FxR
= 175.01x0.2
T =35Nm
P=2HNT
60,000

P = 0.6964KW

P =696.4W
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Let F1 be the force required to overcome viscosity resistance of liquid above the

plate and F, be the force required to overcome viscous resistance of liquid below the
plate. In this case F1 = F,. Since the liquid is same on either side or the plate is equidistant

from the surfaces.

.
1= HlY
0.0125

1= 39.36N / m?

%: 39.36
F,=19.68N
.. Tatal force required to drag the plate =F; +F, = 19@*19.68
F=39.36N o
Case (ii) when the plate is at 1cm from orgzp(?%e surfaces.

\'0../
Here F1 #F£™

_— LSS S

lem R 0.6 m/s
25cmT >
/ F2

1.5cm

- NANNNNNN
3 _
o~ T a9.=
F — A49.2>x<0.5
1 — 24a.6 1N

=
= 32.8
Fo — 32.8><0.5

F> —16. 4NN
Page 24
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Total Force F=F1 + F, =246 +16.4
F=41N

10. Through a very narrow gap of ht a thin plate of large extent is pulled at a velocity "V’.
On one side of the plate is oil of viscosity ui and on the other side there is oil of
viscosity p». Determine the position of the plate for the following conditions.

i.  Shear stress on the two sides of the plate is equal.

il. The pull required, to drag the plate is minimum.

Condition 1: Shear stress on the two sides of the plate is equal F1 = F>

— / [/

hl F Velocity =V

NANNNAN Q\'\Q’

0‘%;
y =?forF1= Fé\,

/\

U AN
T=H__

Y
F_LY
A My
F=Au.£

Y

Al V
Fl _%l

(h-vy)

AMV
F2=[2

y
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F1=F2

AV AppV
h-y y

upy=uo (h-y)

HpY+Hoy=toh
poh —h

= ory=H1
H1+u2 Ho +1

y

. . dF
Condition 2: The pull required, to drag the plate is minimum (i.e.]__]

minimum)
.. Total drag forced required

Y AN
5 e

N\
ANSNNNANNNNNN

y=?if, F1+F 2isto be min imum

AV
r hy

AtV
Fyl b2l
y
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F=FR+F,
F=AH1V+AH2V
h vy y

For F to be min.ﬁzo
dy

1..3.6 Capillarity :
Miniscus

Cohesion < Adhesion Cohesion > Adhesion
Eg: Water Eg: Mercury

Any liquid between contact surfaces attains curved shaped surface as shown in
figure. The curved surface of the liquid is called Meniscus. If adhesion is more than
cohesion then the meniscus will be concave. If cohesion is greater than adhesion

meniscus will be convex.
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Capacity rise Capillary fall
Cohesion < Adhesion Cohesion > Adhesion
Eg: Water Eg: Mercury
Surface Surface

— = o = = _—— - -

CREEEE Surface [ == Surface
b= tension :::Z:::Z::: tension
] & =
] R’/ M Stk

,,,,,,,,,,,, \ $<\ ]

Capillarity is the phenomena by which qué%i‘s will rise or fall in a tube of small diameter

dipped in them. Capillarity is due to @hesmn adhesion and surface tension of liquids. If
adhesion is more than cohesion th\ there will be capillary rise. If cohesion is greater
than adhesion then will be capillary fall or depression. The surface tensile force supports
capillary rise or depression.

Angle of contact:

Surface ~» Surface AR
tension K&/ tension efﬁie
ZEZEZEZEIE:E Surface [~ Surface
:::::::::::: tension ::::::::::: tension
6 > Angle of contact 6 > Angle of contact
- Acute —> Obtuse
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Note:
The angle between surface tensile force and the vertical is called angle of contact. If

adhesion is more than cohesion then angle of contact is obtuse.

Capillary Rise

Water
{positive) (negative)

e To derive an expression for the capH@y rise of a liquid in small tube
dipped in it: :;\\

Let us consider a small tube of dlamete@g) dipped in a liquid of specific weight y. ‘h’ is

the capillary rise. For the ethbnu@
Vertical force due to surface tension = Weight of column of liquid ABCD
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[o(1ID)] cosb =y x volume

D2

[o(11D)] cosb=y x xh

:4cww
yD

h

It can be observed that the capillary rise is inversely proportional to the diameter of the
tube.

Note:

The same equation can be used to calculate capillary depression. In such cases © 6 > will

be obtuse ‘h’ works out to be —ve.

D\
&Z;‘\

Excess Pressure inside a Water Droplet: s\\Q,

Pressure inside a Liquid droplet: Liquid.dr@plets tend to assume a spherical shape since a
sphere has the smallest surface area p@\unit volume.

The pressure inside a drop of fluid~can be calculated using a free-body diagram of a
spherical shape of radius R cut in half, as shown in Figure below and the force developed
around the edge of the cut sphere is 2nRo. This force must be balance with the difference
between the internal pressure pi and the external pressure Ap acting on the circular area
of the cut. Thus,

2nRo = ApnR?
2x0 _4xo

Ap :( Pinternat ~ Pexternal ): R = D

Molecules on surface

Attractive forces|
Surface

Apnr?
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The excess pressure within a Soap bubble:

The fact that air has to be blown into a drop of soap solution to make a bubble should
suggest that the pressure within the bubble is greater than that outside. This is in fact the
case: this excess pressure creates a force that is just balanced by the inward pull of the
soap film of the bubble due to its surface tension.

! bubble
Consider a soap bubble of radius r as shown in Figure 1. Let the external pressure be
Po and the internal pressure P1. The excess pressure AP within the bubble is therefore
given by: Excess pressure Ap= (P1 — Po)

Consider the left-hand half of the bubble. The force acting from right to left due to the
internal excess pressure can be shown to be PA, where A is the area of a section through
the centre of the bubble. If the bubble is in equilibrium this force is balanced by a force
due to surface tension acting from left to right. Thig\force is 2x2nrc (the factor of 2 is
necessary because the soap film has two sides:)ahere ‘c’ 1s the coefficient of surface

tension of the soap film. Therefore K74
p j)i\\{v

2x2nrc = ApA = Apnr? giving: R

Excess pressure in a soap bubble (P) i\‘gﬁﬂr

Bulk Modulus (K): O

When a solid or fluid (liquid or gas) is subjected to a uniform pressure all over the
surface, such that the shape remains the same, then there is a change in volume.
Then the ratio of normal stress to the volumetric strain within the elastic limits is called
as Bulk modulus. This is denoted by K.
_Normal stress
~ volumetric strain
_ FIA _—pV
C—AVIV AV

where p = increase in pressure; V = original volume; AV = change in volume

The negative sign shows that with increase in pressure p, the volume decreases by AV
i.e. if p is positive, AV is negative. The reciprocal of bulk modulus is called compressibility.

C = Compressib ility :i _AvV
K pVv

S.1. unit of compressibility is N-1m2 and C.G.S. unit is dyne-1 cm2.
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Vpour Pressure:
Vapor pressure is defined as the pressure at which a liquid will boil

(vaporize) and is in equilibrium with its own vapor (fig). Vapor
pressure rises as temperature rises. For example, suppose you are
camping on a high mountain (say 3,000m in altitude); the
atmospheric pressure at this elevation is about 70 kPa and the

boiling temperature is around 90°C. This has consequences for

cooking. For example, eggs have to be cooked longer at elevation to
become hard-boiled since they cook at a lower temperature.
A pressure cooker has the opposite effect. Namely, the tight

lid on a pressure cooker causes the pressure to increase above the
normal atmospheric value. This causes water to boil at a
temperature even greater than 100°C; eggs can be cooked a lot
faster in a pressure cooker!
N

,Q’;Q}‘
B

Vapor pressure is important to fluid flo ecause, in general, pressure in a flow decreases as

velocity increases. This can lead to cavitation, which is generally destructive and undesirable.
In particular, at high speeds the local pressure of a liquid sometimes drops below the vapor
pressure of the liquid. In such a case, cavitation occurs. In other words, a “cavity" or bubble
of vapor appears because the liquid vaporizes or boils at the location where the pressure dips
below the local vapor pressure.

Cavitation is not desirable for several reasons. First, it causes noise (as the cavitation
bubbles collapse when they migrate into regions of higher pressure). Second, it can lead to
inefficiencies and reduction of heat transfer in pumps and turbines (turbo machines). Finally,
the collapse of these cavitation bubbles causes pitting and corrosion of blades and other
surfaces nearby. The left figure below shows a cavitating propeller in a water tunnel, and the

right figure shows cavitation damage on a blade.
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Problems:
1. Capillary tube having an inside diameter 5mm is dipped in water at 20°. Determine the
heat of water which will rise in tube. Take =0.0736N/m at 20°C.

h 4 cosO
yD
0 = 0° (assumed)
_ 4 x 0.0736 x cosO
9810 x5x 10°°
y=9810N / m®
h=6x10"m

2. Calculate capillary rise in a glass tube when immersed in Hg at 20%. Assume
o for Hg at 20° as 0.51N/m. The diameter of the tube is 5mm. 6 = 130°c.

s=_"
\‘/\\ ¥s tan dard

4 ocos 6 \
= _yr ,«Q)
O
:)sr\\\ 13.6=—1_
9 9810
h=-1.965x10"m <

/™

{\&.}

h

y=133.416 x 10°N/ m®

-ve sign indicates capillary depression.

3. Determine the minimum size of the glass tubing that can be used to measure water

level if capillary rise is not to exceed 2.5mm. Take o = 0.0736 N/m.

h= 4oc0s0
yD
D - 4%0.0736 x cos0 D=2
9810 x 2.5x10°
h=25x10"m
D =0.012m
c=0.0736 N/ m
D=12mm
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4. A glass tube 0.25mm in diameter contains Hg column with air above it. If o=
0.51N/m, what will be the capillary depression? Take 6 = - 40° or 140°,

h = 4oc0sb D = 0.25x10°m
yD
c=0.5IN/m
_ 4x0.51x cos140
133.146x107° x0.25x10°®
0 =140

h=-46.851x10"°m
y=133.416 x 10° N/m’

5. If a tube is made so that one limb is 20mm in ¢ and the other 2mm in ¢ and water is

poured in the tube, what is the difference in the&vel of surface of liquid in the two

limbs. ¢ = 0.073 N/m for water. .{Z;‘\
'\‘2;
2mm ¢ :;\
M Oc«
2 XS Th
hil H----= "\Q """" re
ho

U I I
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4cc0s0

h=h=
1 /D

_ 4 x0.073 x coso
9810 x (20 x10‘3)

=0.01488m

_4x0.073x coso

" 9810 x (20 x10°%)
=1.488x10°m
h=h,—h,
—0.01339m
h=13.39 &
= 15.o9mm K7/
&

6. A clean glass tube is to be selecteqqﬁ?ﬁs\;e design of a manometer to measure the
pressure of kerosene. Specific @él‘fy of kerosene = 0.82 and surface tension of
kerosene = 0.025 N/m. If the 'é;pillary rise is to be limited to 1 mm, calculate the
smallest diameter (cm) of the glass tube

Soln. Given For kerosene o = 0.025 N/m ; Sp.Gr. = 0.82; hmax = 1mm

Assuming contact angle 6 = 0°, Ykerosene =0 .82 x 9810 = 8044.2 N/m?
Let ‘d’ be the smallest diameter of the glass tube in Cm

Then using formula for capillary rise in (h)

46Cosd _ 4x0.025 CosO" _ 1

h= = =
(e 8044.2x( ") 1000
yker osene 100 100
d,,=1.24 Cm

Dept of Mechanical Engg, GMIT, Bharathinagara Page 35



Fluid Mechanics 18ME43

7. The surface tension of water in contact with air at 20°C is 0.0725 N/m. The pressure
inside a droplet of water is to be 0.02 N/cm? greater than the outside pressure.
Calculate the diameter of the droplet of water.

Given: Surface Tension of Water ¢ =0.0725 N/m, Ap= 0.02 N/cm? = 0.02x10*N/m?

Let ‘D’ be the diameter of jet

ap =19

D

002 x10° = 4 x 0.0725

D =0.00145m = 1.45mm

8. Find the surface tension in a soap bubble of 40mm diameter when inside pressure is
2.5 N/m? above the atmosphere.

Given: D = 40mm = 0.04 m, Ap = 2.5 N/m?

Let ‘o’ be the surface tension of soap bubbley; 2
N\

o =0.0125 N/m

9. Determine the bulk modulus of elasticity of a liquid, if the pressure of the liquid is
Increased from 70 N/cm? to 130 N/cm? The volume of the liquid decreases by 0.15per
cent

Given: Initial Pressure = 70 N/cm?, Final Pressure = 130 N/cm?
Decrease in Volume = 0.15%

-.Ap = Increase in Pressure = (130-70) = 60 N/cm?
Ap 60

B AV Y = [0.15) = 4X104 N/Cm2
) )

K =

\
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Module -1: 2.Fluid Pressure and Its Measurements:

Definition of pressure, Pressure at a point, Pascal’s law, Variation of pressure with depth.
Types of pressure. Measurement of pressure using simple, differential & inclined
manometers (theory & problems). Introduction to Mechanical and electronic pressure
measuring devices.

20 INTRODUCTION: Fluid is a state of matter which exhibits the property of flow.
When a certain mass of fluids is held in static equilibrium by confining it within solid
boundaries (Fig.1), it exerts force along direction perpendicular to the boundary in

contact. This force is called fluid pressure (compression).

v !

—k/ Free surface
- Air \

Liquid

Body

_.t
T oK

Fig.1 Definitiogﬁf}ﬁressure

In fluids, gases and liquids, we seéa‘k of pressure; in solids this is normal stress.

h

]
|
=

. N : o .
For a fluid at rest, the pressure at agj\uén point is the same in all directions. Differences
or gradients in pressure drive a fluid flow, especially in ducts and pipes.
21 Definition of Pressure: Pressure is one of the basic properties of all fluids. Pressure

@ is the force (F) exerted on or by the fluid on a unit of surface area (A).

i
A \me

The basic unit of pressure is Pascal (Pa). When a fluid exerts a force of 1 N over an area

Mathematically expressed:

of 1m?, the pressure equals one Pascal, i.e., 1 Pa = 1 N/m?2.Pascal is a very small unit, so
that for typical power plant application, we use larger units:
Units: 1 kilopascal (kPa) = 10 Pa, and

1 megapascal (MPa) = 10° Pa = 10° kPa.
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22 Pressure at a Point and Pascal’s L aw:

Pascal’s Principle: Pressure extends uniformly in all directions in a fluid.
By considering the equilibrium of a small triangular wedge of fluid extracted from a

static fluid body, one can show (Fig.2) that for any wedge angle 0, the pressures on the

three faces of the wedge are equal in magnitude:

p}lﬁxﬁg—

i

Fig\% Pascal’s Law
Re
\

Independent of  px = py = p; independent of ‘©’

Pressure at a point has the same magnitude in all directions, and is called isotropic.

This result is known as Pascal's law.

23 Pascal’s Law: In any closed, static fluid system, a pressure change at any one point is

transmitted undiminished throughout the system.
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2.3.1 Application of Pascal’s Law:

F1=P1A1

O/ N O

Fig.3 Application of Pascal’s Law
«  Pressure applied to a confined fluid increases {Qe pressure throughout by the same
amount. Q‘;‘\
« In picture, pistons are at same heighgs'\@
P= R@?ﬂ kR R_A
A A R A
« Ratio A2/A: is called ideal mechanical advantage
24 . it h:
Consider a small vertical cylinder of fluid in equilibrium, where positive z is pointing
vertically upward. Suppose the origin z = 0 is set at the free surface of the fluid. Then the

pressure variation at a depth z = -h below the free surface is governed by

S

I 0

h
p+dp

cross sectional
. _
LLI area = A
f r

L —————
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(p+Ap)A+W =pA
= ApA + pgAAz =0
= Ap =-pgAz
= dp.
dz
Therefore, the hydrostatic pressure increases linearly with depth at the rate of the specific

=-pg or 3_2 =-y EQq(l) (asAz— 0)

weight y = pg of the fluid.
Homogeneous fluid: p is constant
By simply integrating the above equation-1:
fdp=- fpgdz = p=-pyz+C
Where C is constant of integration

When z = 0 (on the free surface), p= C = po = (the atmospheric pressure).

Hence, p= ,OQ(\L Po

Pressure given by this equation is called AB§8 Q E PRESSURE, i.e., measured above
erfect vacuum.
P &

Y
However, for englneerlng purposes, |®‘more convenient to measure the pressure above

a datum pressure at atmospheric pr&sure By setting po =

p=-p9z+0=-pgz = pgh

p=vh
The equation derived above shows that when the density is constant, the pressure in a
liquid at rest increases linearly with depth from the free surface.
For a given pressure intensity ‘h’ will be different for different liquids since, “y’ will be
different for different liquids.

o=k

/4
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Hint-1: To convert head of 1 liquid to head of another liquid.

s=_ "'
YStaandard
Sl = Yl
YStaandard
p=vh
'.'yl = Sl YStaandard
p=7,h,
721 = S2 YStaandard
vihi=7v,h,
- Sl YS tandard hl = S2 YS tandard h2
Hint: 2 Swater X hwater: Squuid X hquuid \<\
1X hwater = Siiquid X hquuid 3(\(2/?}
Nwater = Siiquid X hquuid C/«b‘
(\,}../
N\

Pressure head in meters of water is given by the product of pressure head in
meters of liquid and specific gravity of the liquid.
Eg: 10meters of oil of specific gravity 0.8 is equal to 10x0.8 = 8 meters of water.

Eg: Atm pressure is 760mm of Mercury.

NOTE:P = vy h
Vol
kPa k—l:l m

m
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Solved Examples:
Ex. 1. Calculate intensity of pressure due to a column of 0.3m of (a) water (b) Mercury

(c) Oil of specific gravity-0.8.
Soln: (a) Given: h = 0.3m of water

y =9.81 k_N
water m 3
p="7?

pwater = 7/ water hwater
Poaer = 2-943 kPa

(b) Given: h =0.3m of Hg
Ymercury = Sp Gr. of Mercury X Ywater = 13.6 x 9.81
Ymercury = 133.416 kN/m®

Pmercury = Ymercury hmercury

=133.416 x 0.3
= 2 R
p = 40.025 kPa or 40.025 kN/m \<\
(c) Given: h=0.3 of Oil Sp.Gr. =0.8 Q}

Yoil = SP.Gr. of Oil X ywater —‘,9():8 x 9.8
Yoil = 7.848 KN/m? \y
Poit = Yoil Noil Q
=7.848x0.3
Poil = 2.3544 kPa or 2.3544 kN/m?
Ex.2. Intensity of pressure required at a point is 40kPa. Find corresponding head in
(a) water (b) Mercury (c) oil of specific gravity-0.9.
Solution: Given Intensity of pressure at a point 40 kPa i.e. p = 40 KN/m?
@ Head of water hyater =?

p__40
Vwaer  9.81
Nyarer = 4.077m of  water

h

water
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(b) Head of mercury ‘hmercury =?

Ymercury = SpGr Of Mercury X Ywater = 136 X 981 h _ p _ 40

Ymercury = 133.416 kN/m?® e Y meraury  133.416
Nyaeer = 0.3M of mercury

(c) Head of oil “hoii =? p 40

Yoil = SP.Gr. of Oil X ywater = 0.9 x 9.81 Vo 8.

Yoil = 8.829 KN/m? h,;, =4.53m of oil

Ex.3 Standard atmospheric pressure is 101.3 kPa Find the pressure head in (i) Meters of
water (ii) mm of mercury (iii) m of oil of specific gravity 0.6.
(i) Meters of water hwater
P = Ywater Nwater
101.3 = 9.81 X hwater
hwater = 10.3 m of water

(i)  Meters of water hwater O

&

P = Ymercury X Nmercury ,{(/Q)
101.3 = (13.6x9.81) x ré’ngg\@
h=0.76 m of mercy(g()'/
(@il))  p = oil ol Q
101.3=(0.6x9.81) x h
h=17.21m of oil of S = 0.6
Ex.4 An open container has water to a depth of 2.5m and above this an oil of S = 0.85 for
a depth of 1.2m. Find the intensity of pressure at the interface of two liquids and at the
bottom of the tank.
(i) AttheOil - water interface

PA= Yo h,,=(0.85 x 9.81) x 1.2 _

pa=10 kPa tem | Oi=08
(ii) At the bottom of container EZEIEZEZEZEZEIE_:_EIEZ;ZEZ;
Pa=Yoi XNt + Vuater + Nusater 25m | o WATER ~ ]
Ps=Pa * YuaterMuater 1 E:E:E:E:E:E:E:E:Ei%E:E:E:E:

Ps= 10 kPa + 9.81 x 2.5
P = 34.525kPa
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2.5 Tvpes of Pressure: Air above the surface of liquids exerts pressure on the exposed
surface of the liquid and normal to the surface.

e Atmospheric pressure

The pressure exerted by the atmosphere is called

atmospheric pressure. Atmospheric pressure at a place depends IP“'”'

on the elevation of the place and the temperature. T i
Atmospheric pressure is measured using an instrument v

called ‘Barometer’ and hence atmospheric pressure is also  _ 114"..,

called Barometric pressure. However, for engineering purposes, ; & *

it is more convenient to measure the pressure above a datum Mercury barometer

pressure at atmospheric pressure. By setting patmophere =0,

p=-pgz = pgh
Unit: kPa . ‘bar’ is also a unit of atmospheric pressure 1-bar = 100 kPa.= 1 kg/cm?

e Absolute pressure: Absolute pressure at apoint is the intensity of pressure at

that point measured with reference to, &Qs%;ﬁie vacuum or absolute zero pressure.
Absolute pressure at a point is the gg%gity of pressure at that point measured with
reference to absolute vacuum or@lute zero pressure (Fig.4) .

Absolute pressure at a point\can never be negative since there can be no pressure

less than absolute zero pressure.

@ """""""""" @ Positive pressure
— Negative pressarg
. gage OF POSTIVE Vacuum
gage
_________ Standard
+ atmosphene Local
------------------ X p= 0 gage
atmosphere -
", absolute B, gage (negative)
P03 KPa ’
4.7 psi
30,080, Hg
Ta0 mm He @ R T
34 1t HaO
AL bar
p_absolute
1
Zero absolute
. . ressure p =0 absolute
- W

Fig.4 Definition of Absolute Pressure, Gauge Pressure and Vacuum Pressure
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Gauge Pressure: If the intensity of pressure at a point is measurement with reference
to atmosphere pressure, then it is called gauge pressure at that point.

Gauge pressure at a point may be more than the atmospheric pressure or less than
the atmospheric pressure. Accordingly gauge pressure at the point may be positive or
negative (Fig.4)

Negative gauge pressure: It is also called vacuum pressure. From the figure, It is

the pressure measured below the gauge pressure (Fig.4).

Absolute pressure at a point = Atmospheric pressure £ Gauge pressure

NOTE: If we measure absolute pressure at a Point below the free surface of the liquid,

then,| p2 (absolute) =y. h + pam | P1=Patm
Py = Py
If gauge pressure at a point is required, then atmospheric [ 2
pressure is taken as zero, then, O h
p2 (gauge) = . h = pgh &\\af’ i® AL
0
A\

Also, the pressure is the same at @‘Boints with the same depth from the free surface
regardless of geometry, provided that the points are interconnected by the same fluid.
However, the thrust due to pressure is perpendicular to the surface on which the pressure
acts, and hence its direction depends on the geometry.

P.llm

Water

Py=Py=Pc=Pp=Pg=Pr=Ps=P

Py# P

am + Pgh
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Solved Example: Convert the following absolute pressure to gauge pressure:
@ 120kPa (b) 3kPa (c) 15m of H20 (d) 800mm of Hg.

Solution:
(a) Pabs = Patm * Pgauge
.. Pgauge = Pabs — Patm = 120 — 101.3 = 18.7 kPa
(b)  pgauge = 3-101.3 = -98.3 kPa
Pgauge = 98.3 kPa (vacuum)
© Pabs = Natm + Ngauge
15 =10.3 +hgauge
hgauge = 4.7m of water
@ Pabs = Natm + Ngauge
800 =760 + hgauge
hgauge = 40 mm of mercury
N
2.6 Vpour Pressure: P

Vapor pressure is defined as the pressure at \&}h a liquid will boil
(vaporize) and is in equilibrium with its\@@ﬂ?’vapor. Vapor pressure
rises as temperature rises. For exarry@ suppose you are camping
on a high mountain (say 3,000 m in altitude); the atmospheric

pressure at this elevation is about 70 kPa and the boiling

temperature is around 90°C. This has consequences for cooking.

For example, eggs have to be cooked longer at elevation to
become hard-boiled since they cook at a lower temperature.

A pressure cooker has the opposite effect. Namely, the
tight lid on a pressure cooker causes the pressure to increase
above the normal atmospheric value. This causes water to boil at
a temperature even greater than 100°C; eggs can be cooked a lot

faster in a pressure cooker!

Dept of Mechanical Engg, GMIT, Bharathinagara Page 46



Fluid Mechanics 18ME43

Fig.5
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Vapor pressure is important to fluid flows because, in general, pressure in a flow
decreases as velocity increases. This can lead to cavitation, which is generally destructive
and undesirable. In particular, at high speeds the local pressure of a liquid sometimes
drops below the vapor pressure of the liquid. In such a case, cavitation occurs. In other
words, a "cavity" or bubble of vapor appears because the liquid vaporizes or boils at the
location where the pressure dips below the local vapor pressure.

Cavitation is not desirable for several reasons. First, it causes noise (as the
cavitation bubbles collapse when they migrate into regions of higher pressure). Second, it
can lead to inefficiencies and reduction of heat transfer in pumps and turbines (turbo
machines). Finally, the collapse of these cavitation bubbles causes pitting and corrosion
of blades and other surfaces nearby. The left figure below shows a cavitating propeller in
a water tunnel, and the right figure shows cavitation damage on a blade.

2.7 Measurement of Pressure: Measurement of pl:,\e§su re

e Barometer '0\
e Simple manometer &
e Piezometer column ™
e Bourdon gage 0
e Pressure transducer (3}\
O\ . .
271 Barometer: A barometer Ns a device for measuring
(1) Prapor
atmospheric pressure. A simple barometer consists of a tube . _l_ :
more than 760 mm long inserted in an open container of mercury { - Tube
with a closed and evacuated end at the top and open tube end at i )
the bottom and with mercury extending from the container up 1= ih b f

into the tube. PR S——
Strictly, the space above the liquid cannot be a true vacuum. It contains mercury
vapor at its saturated vapor pressure, but this is extremely small at room temperatures
(e.g. 0.173 Pa at 20°C). The atmospheric pressure is calculated from the relation Pam =
pgh where p is the density of fluid in the barometer.
Pat'o'= Ymercury X'y + Pvapor = Patm

With negligible Pvapor =0

[ Patm = Ymercury X Y |
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272 Simple Manometer: Simple monometers are used to measure intensity of pressure
at a point. They are connected to the point at which the intensity of pressure is required.

Such a point is called gauge point

¢ Types of Simple Manometers
Common types of simple manometers are
a) Piezometers
b) U-tube manometers
c) Single tube manometers
d) Inclined tube manometers

a) Piezometers

Arrangement for the measurement
negative or vacuum or section
pressure

Pipe
Piezometer consists of a glass tube inserted in the wall of the vessel or
pipe at the level of point at which the intensity of pressure is to be measured. The other
end of the piezometer is exposed to air. The height of the liquid in the piezometer gives
the pressure head from which the intensity of pressure can be calculated.
To minimize capillary rise effects the diameters of the tube is kept more than

12mm.
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Merits
= Simple in construction
= Economical
Demerits
= Not suitable for high pressure intensity.

= Pressure of gases cannot be measured.

(b) U-tube Manometers:

Manometer
reading Manometric
liquid
Pipe =0
=
I §
Tan o
¢ 77777
3
AT Q}‘?
s
S 3

A U-tube manometers consists of a glass tube bent in U-Shape, one end of which
is connected to gauge point and the other end is exposed to atmosphere. U-tube consists
of a liquid of specific of gravity other than that of fluid whose pressure intensity is to be

measured and is called monometric liquid.
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e Manometric liquids
¢ Manometric liquids should neither mix nor have any chemical reaction with the
fluid whose pressure intensity is to be measured.
¢ It should not undergo any thermal variation.
¢ Manometric liquid should have very low vapour pressure.
¢ Manometric liquid should have pressure sensitivity depending upon the
magnitude. Of pressure to be measured and accuracy requirement.

Gauge equations are written for the system to solve for unknown quantities.

e To write the gauge equation for manometers
Steps:
1. Convert all given pressure to meters of water and assume unknown pressure in meters
of waters.
2. Starting from one end move towards the other kefsbing the following points in mind.
¢ Any horizontal movement inside @ﬁle liquid will not cause change in
pressure. f’}t)\
¢ Vertically downward mov@n&eﬁt causes increase in pressure and upward
motion cause decrease iﬁxbressure.
¢ Convert all vertical columns of liquids to meters of water by multiplying them
by corresponding specify gravity.
¢ Take atmospheric pressure as zero (gauge pressure computation).

3. Solve for the unknown quantity and convert it into the required unit.
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Solved Problem:

1. Determine the pressure at A for the U- tube manometer shown in fig. Also calculate
the absolute pressure at A in kPa.

Hg (S = 13.6)
&

Let ‘ha’ be the pressure head at ‘A’ in ;\@%rs of water’.
hy+0.75 — 0.5 x13%§>_<

x<
h,=6.05m @1\ ater
p=yh
=0.81x6.05
p = 59.35 kPa(gauge pressure )
Paps = Pam + Pgauge

=101.3 +59.35

p.,, = 160.65 kPa
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2. For the arrangement shown in figure, determine gauge and absolute pressure at the
point M.

Mercury (13.6)

0il (S = 0.8)

Let ‘hm’ be the pressure head at the point ‘M’ in m of water,

hm-0.75x0.8-0.25x13.6=0

hm = 4 m of water

ki
%,

p = 39.24kPa 6\9
o
Pas= 101.3 + 39.24

P.,.140.54 kPa

3. [Ifthe pressure at ‘At’ is 10 kPa (Vacuum) what is the value of ‘x’?

0il (S =1.2)

pa = 10 kPa (Vacuum)
pa =- 10 kPa
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Pa_10_ 1019 mof water

y 981

h,=-1.019m of water
~1.019+0.2x1.2 + X (13.6) =0
x=0.0572 m

4. The tank in the accompanying figure consists of oil of S = 0.75. Determine the

.. kN
pressure gauge reading in 5

=

o Mercury

Let the pressure gauge reading be ‘h’ m of water
h—3.75x0.75+0.25x 13.6 =0
h =-0.5875 m of water
p=vh
p =-5.763 kPa
p = 5.763 kPa (Vacuum)
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5. Aclosed tank is 8m high. It is filled with Glycerine up to a depth of 3.5m and linseed
oil to another 2.5m. The remaining space is filled with air under a pressure of
150 kPa. If a pressure gauge is fixed at the bottom of the tank what will be its reading.
Also calculate absolute pressure. Take relative density of Glycerine and Linseed oil
as 1.25 and 0.93 respectively.

Air M 150 kPa 2m
v ¥ vV v v |
-------------------------- 2.5 m
- hinseed e -] |
] [35m
- Glycenit ]
omr=—s
N5 =125
P, = 150 kPa
M:E@_ '§§
9.81 &

hy, =15.29 mof Watg\'\‘:o
Let ‘hn’ be the pressure gauge reading in m of water.
hn -3.5 X 1.25\@5 x 0.93 =15.29
N\
hn = 21.99 m of water
p=9.81x21.99
p = 215.72 kPa (gauge)
Pabs = 317.02 kPa

6. A vertical pipe line attached with a gauge and a manometer contains oil and Mercury
as shown in figure. The manometer is opened to atmosphere. What is the gauge
reading at ‘A’? Assume no flow in the pipe.

ha-3x0.9+0.375x0.9-0.375x13.6 =0
ha = 2.0625 m of water
p=yxh

=9.81 x 21.99
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—~
o=[
S=0.9
3m
37.5cm
O\/
S=136

p = 20.23 kPa (gauge)
Pabs = 101.3 +20.23
pabs = 12153 kPa

e DIFFERENTIAL MANOMETERS \<\

Differential manometers are used to mg@g/@b‘ pressure difference between any two
points. Common varieties of differential rr&abo%\neters are:
(8  Two piezometers. \0'/
(b) Inverted U-tube manom@e(?}.
() U-tube differential manometers.

(d) Micro manometers.

(a) Two Pizometers

The arrangement consists of two pizometers at the two points between which the
pressure difference is required. The liquid will rise in both the piezometers. The
difference in elevation of liquid levels can be recorded and the pressure difference can be

calculated. It has all the merits and demerits of piezometer.
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(b) Inverted U-tube manometers:
/ 7. “/>
‘7 Su
:: Y1 x
Y2

Inverted U-tube manometer is used to measure small difference in pressure
between any two points. It consists of an inverte@U-tube connecting the two points
between which the pressure difference is req@g’d‘. In between there will be a lighter
sensitive manometric liquid. Pressure diff&@s& between the two points can be calculated
by writing the gauge equations for the s&@té/m.

Let ‘ha’ and ‘hg’ be the pr Head at ‘A’ and ‘B’ in meters of water

ha— (Y1 S1) + (X Sm) + (Y2 S2) = he.

ha—hg=S1y1—SmX—S2 Vs,

pa—ps =7 (ha—he)

(c) U-tube Differential manometers

S

Y
S 4
M g7 7777

A differential U-tube manometer is used to measure pressure difference between

any two points. It consists of a U-tube containing heavier manometric liquid, the two
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limbs of which are connected to the gauge points between which the pressure difference
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is required. U-tube differential manometers can also be used for gases. By writing the
gauge equation for the system pressure difference can be determined.
Let ‘ha’ and ‘hg’ be the pressure head of ‘A’ and ‘B’ in meters of water
ha+S1Yi+XSv—Y2S,=hg
ha—hg=Y2S;-Y1S1—XSm
Solved Problems:
(1) An inverted U-tube manometer is shown in figure. Determine the pressure difference
between A and B in N/M?2.
Let ha and hg be the pressure heads at A and B in meters of water.

N

ha— (190 x 10?2) + (0.3 x 0.9) + (0.4) 0.9 = hg
ha — hg = 1.23 meters of water

pa—ps =7y (ha—hg) =9.81 x1.23

pa—ps = 12.06 kPa

pa— ps = 12.06 x 10% N/m?
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2. In the arrangements shown in figure. Determine the ‘h’.

2N /cm? @):I

2.038+ 15— (4+15-h)0.8=—134,

@ 25 cm of Mercury (Vacuum)
e =-0.25x13.6

= - 3.4 m of water
| AR AIR
Mo oNfem? = 2 X 1002 N/ =
kERe
TR o0 kP
e
L e e AL
oo~~~ h=2.038 meters of water
i A s
______ , |
GFFFFFS—S=15

W 36m
®‘
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3. In figure given, the air pressure in the left tank is 230 mm of Mercury (Vacuum).
Determine the elevation of gauge liquid in the right limb at A. If liquid in the right

tank is water.
@ 21 kPa

105.00 m Air C
o X
B
(5 m) oil | 102.00m
s Water
(2 m)
100.00 m
y
A
o
AN
S LH0
o2
N\
/\0
~ Pc
h= —
hs = 230mm of Hg 21
9.81

h.= 2.14m of water

=0.23x13.6
hs = - 3.128 m of water
-3.128+5x0.8+yx16-(y+2)=214
—-3.128+5x08+yx16-y-2=214
y =5.446 m
.. Elevation of A = 100 — 5.446
Elevation of A = 94.553m
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4. Compute the pressure different between ‘M’ and ‘N’ for the system shown in figure.

.f e ———————— i
/ 10.2 m

0.3m

Let ‘hm’ and © hn’ be the pressureesads at M and N in m of water.
hm+yx 1.15 - 0.2 x 0.92,4 (0.3 — y + 0.2) 1.15 = hn
hm+ 1.15y—0.184 +$Qéq< 1.15-1.15y+0.2x1.15=hn
hm+0.391=hn &
<
hn—hm = 0.3®1eters of water
N\

Pn—Pm =7 (hn — hm)
=9.81 x 0.391
pn — pm = 3.835 kPa
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5. Petrol of specify gravity 0.8 flows up through a vertical pipe. A and B are the two
points in the pipe, B being 0.3 m higher than A. Connection are led from A and B to a
U—tube containing Mercury. If the pressure difference between A and B is 18 kPa,

find the reading of manometer.

/\O
R
PR K, VAN S ——
0.3m
S=0.8
: _______________ ||
xl E;
O\/ ? -------- f
y 777777 !
&
N\
pa— ps = 18kPa {Z;Q} ’
PaPy
Y Qfo
18 6\'
ha—hg = N
9.81

h,— hg=1.835m of water
ha+yx08-x136-(0.3+y—x)0.8=hg
ha—hg=-0.8y + 13.66 x + 0.24 + 0.8 y — 0.8 X
ha— hs=12.8 X +0.24

1.835=12.8x+0.24

X =0.1246 m
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6. A cylindrical tank contains water to a height of 50mm. Inside is a small open
cylindrical tank containing kerosene at a height specify gravity 0.8. The following
pressures are known from indicated gauges.

ps = 13.8 kPa (gauge)
pc = 13.82 kPa (gauge)
Determine the gauge pressure pa and height h. Assume that kerosene is prevented
from moving to the top of the tank.

Air ]:@ PA

__________________________________ T

i gttt el tatiti] 50 mm

\”Q
pc = 13.82 kz@
hc = 1.409 m of water

pe = 13.8 kPa

hs = 1.407 meters of water

1.409 —0.05 = ha .. ha = 1.359 meters of water
- pa=1.359x9.81

. pa=13.33 kPa

hge —h x 0.8 —(0.05—h) = ha
1.407-0.8h-0.05+h=1.359

0.2 h=1.359 — 1.407 + 0.05

0.2 h=0.002

h=0.02m
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7. Find the pressure different between A and B if d; = 300mm, d2 = 150mm,ds = 460mm,
ds = 200mm and 13.6.

ds
0.2 ny
ds
0.46m
B ~Td
- 1
Water _“J 03m |
d> :::

0.15 M| Mrrrrrrr i i 7 s

Let ha and hg be the pressure head at A and B in m of water.
ha+ 0.3 — (0.46 + 0.2 Sin 45) 13.6 = hg

ha - hg = 7.88m of water \<\

PA— pe = (7.88) (9.81 ﬂ,\@Q"

Pa—ps = 77.29 kP%;.)*

x<
8 What is the pressure pa in the fi‘@b iven below? Take specific gravity of oil as 0.8.
PN -
3m
Qil
$=0.8 4.6m
Water | 0. mr
| LY
2
H
Hf!!ffj’j:e g
ha+(3x0.8) + (4.6 -0.3) (13.6) =0
ha =2.24 m of oil
pa=9.81x224
pa = 21.97 kPa
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9. Find ‘d’ in the system shown in fig. If pa = 2.7 kPa

pa = 2.7 kPa
S=14

Air
0.05 m - [d
Oil | E 1T
S=0.6 ]
20 S 300 mm
mm
JOT ’
Hg
h =P _27
A y 981

h ,=0.2752 m of water
o
hx +(0.05X0.6) + (0.05 +0.02 — 091)0.6
.'\Qf
+(0.01x13.6) - (0.03 xls.@?‘d X1.4) = 0
\9

/\0
0.0692 — 1.4d =0 <
d=0.0494m

or

d=49.4mm
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10. Determine the absolute pressure at ‘A’ for the system shown in fig.

S=07

] 1 150 oil
T 100 x A

600 | il 5=08

'''''''''' Water-——-—-—] |300

k = o o o o o=

ha-(0.25x0.8) +(0.15x0.7) + (0.3 x 0.8)-(0.6) =0
ha = 0.455 m of water

pa = ha x 9.81

Pa = 4.464 kPa

pabs = 1013 + 4464 ,\<\
Pabs = 105.764 kPa K74}

SINGLE COLUMN MANOMETER: SS\

Single column manometer is ugsg\fg measure small pressure intensities.

I A/SSSSS LSS LSS S,

7777

7 7

7
Z

Sm

A single column manometer consists of a shallow reservoir having large cross
sectional area when compared to cross sectional area of U — tube connected to it. For any

change in pressure, change in the level of manometeric liquid in the reservoir is small (A)
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and change in level of manometric liquid in the U- tube is large.
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To derive expression for pressure head at A:
BB and CC are the levels of manometric liquid in the reservoir and U-tube before
connecting the point A to the manometer, writing gauge equation for the system we have,
+yxXS—h1xSm=0
.Sy = Smhy

Let the point A be connected to the manometer. Bi1B1 and C; C; are the levels of
manometeric liquid. Volume of liquid between BBB:B: = Volume of liquid between
CCC:C:

AA=ah
\o
A

Let ‘ha’ be the pressure head at A in m of water.
ha+(y+A)S—(A+hith,)Sm=0 \(\\
ha = (A + hathy) Sm— (y + A) S ,Q/?f
=ASm+hs Sm+hy Sm—;@—Agj)g\

ha=A(Sm-S)+hSm  x&7
O
ah, Q$
ha= —-(SM—S) +hz Sm
A

.. It is enough if we take one reading to get ‘hy’ If 2 is made very small (by increasing
A

‘A’) then the I term on the RHS will be negligible.
Then ha =hz Sm
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INCLINED TUBE SINGLE COLUMN MANOMETER:

NN VA A 7

8m

Inclined tube SCM is used to measure small intensity pressure. It consists of a
large reservoir to which an inclined U — tube is connected as shown in fig. For small
changes in pressure the reading ‘hy’ in the inclined tube is more than that of SCM.

Knowing the inclination of the tube the pressure ‘i\n\tensity at the gauge point can be
determined. ‘9)3
ha= _h sin@(Sm-S)+h sinH.Slag\\
2 2 CM

o X

a A
If © _’ is very small then hA<\ 2 = SinB) Sm.
A

> o

273 MECHANICAL GAUGES:

Pressure gauges are the devices used to measure pressure at a point. They are used
to measure high intensity pressures where accuracy requirement is less. Pressure gauges
are separate for positive pressure measurement and negative pressure measurement.
Negative pressure gauges are called Vacuum gauges.

Mechanical gauge consists of an elastic element which deflects under the action
of applied pressure and this deflection will move a pointer on a graduated dial leading to
the measurement of pressure. Most popular pressure gauge used is Bordon pressure

gauge.
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BASIC PRINCIPLE:

Elastic Element
(Phosphor Bronze)

¢—

[_Llnk
<.—Sector Pinion

Graduated Dial

7
’L'HTogauge Point

<7;\\

The arrangement consists of a preséa?e responsive element made up of phosphor
bronze or special steel having elllp@.\éf cross section. The element is curved into a
circular arc, one end of the tube is at)sed and free to move and the other end is connected
to gauge point. The changes in pressure cause change in section leading to the movement.
The movement is transferred to a needle using sector pinion mechanism. The needle

moves over a graduated dial.

Bourdon gage:

Is a device used for measuring gauge pressures the pressure element is a hollow curved

metallic tube closed at one end the other end is connected to the pressure to be measured.
When the internal pressure is increased the tube tends to straighten pulling on a linkage to
which is attached a pointer and causing the pointer to move. When the tube is connected
the pointer shows zero. The bourdon tube, sketched in figure.

It can be used for the measurement of liquid and gas pressures up to 100s of MPa.
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(G
Section AA

\

v Flattesed mbe deflects

\
\ | owrward nader pressuce

\
[
”

High pressure

2.74 Electronic Pressure Measuring Devices:
Electronic Pressure transducers convert pressure into an electrical output. These devices
consist of a sensing element, transduction element and signal conditioning device to

convert pressure readings to digital values on dis%}panel.

Connected s<\<2’
0 fiuid Diaphragm :')“
?g%&‘:we -vlaphrag . Trace of pressure vs. time
/
recorded & <\<§ridge f
s ) " circuit, \
& S £ /1 power [ ,\//\/—
MR supply,
- amplifier Chart recorder

Electrical strain gage
fused to diaphragm surface

Sensing Elements:

The main types of sensing A 2 SN N,
i PMCGTEOM e w
elements are ( %
- Bourdon tubes, SN S e ——
]

« Diaphragms,

) o)
smomoN momon
« Capsules, and =——— % - ﬁ

« Bellows.

RAOT RO
£}

- {F) :ﬂ] |
Dr. Nagaraj Sitaram, Principal & Plofg;?XrlréE Institute of Em@;&g&%ﬁl

Management, Bidadi, Ramanagar District, Karnataka
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Pressure Transducers:
A transducer is a device that turns a mechanical signal into an electrical signal or an

electrical signal into a mechanical response (e.g., Bourdon gage transfers pressure to

displacement).

There are a number of ways to accomplish this kind of conversion

e Strain gage

e Capacitance

e Variable reluctance

e Optical

Normally Electronic Pressure transducers are costly compared to conventional

mechanical gauges and need to be calibrated at NathQaI laboratories before put in to use.
N\
K7/
5
&n

o X
~

{\}

Dr. Nagaraj Sitaram, Principal & Professor, Amrutha Institute of Engineering &
Management, Bidadi, Ramanagar District, Karnataka
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FLUID DYNAMICS

Forces acting on the fluids
Following are the forces acting on the fluids

Self-Weight

Pressure Forces, F p
Viscous Force, Fy
Turbulent Force, F ¢
Surface Tension Force,
Compressibility Force,

ogakrwdpE

Dynamics of fluid is governed by Newton’s Second law of motion, which states
that the resultant force on any fluid element must be equal to the product of the mass and
the acceleration of the element.

>F= Ma
Surface tension forces and Compressibility forces are not significant and may be

neglected. Hence
(1) becomes \<\
Q) 3

SF= Fg+g@§ffﬂ+ Fi

Reynold’s Equation of motion and %éf?m the analysis of Turbulent flows. For
laminar flows, turbulent force b{@i&mes less significant and hence (1) becomes

ZF = Fg P Fp + Fv
Navier - Stokes Equation. If viscous forces are neglected then the (1) reduces to

ZF:Fg+Fp:MXa

Euler’s Equation of motion.
Euler equation of motion
Consider a stream lime in a flowing fluid in S direction as shown in the figure.

On this stream line consider a cylindrical element having a cross sectional area dA
and length ds.
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(p+(ep/ és)ds)dA S direction

4
ds p
ds | |dz
;c‘p
PAA  LgdAds

Forces acting on the fluid element are: Pressure forces at both ends:
*Pressure force, pdA in the direction offlow\

<
*Pressure force (p+( 0 p/0 s)ds)dA n&‘ﬁb direction opposite to the flow direction

. o /"Q‘ .
*Weight of element pdads act}Qg,Qertlcally downwards
\/

\
Let ¢ be the angle between the direction of flow and the line of action of the weight

of the element. The resultant force on the fluid element in the direction of s must be
equal to mass of fluid elementx acceleration in direction s (according to Newton'’s
second law of motion)

pda— (pda+(dp/ds)ds)dA) — pgdcosd = pdadsa; (a)

where a,is the accelaration in direction of s now

dv

Iy = —
odt

where v is function of s and 1

dvds dv
 dsdr v di

Ir:'rff.\' dv
“Vosdr o
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since
ds :
dr
If the flow is steady.
dv
—n
dt
hence,
o \'av
R
Substituting the valve of a, in equation (a) and simplifying,
d dv
—a—fdsdA — pgdsdAcos ¢ = pdads x va—;
Dividing the whole equation by pdsdA,
dp dv
— ﬁ" oy gCO§¢ =V x
dp dv
= s r— =0
pas + gcosQ +v v
But from the figure we have
dz .
CoOSQ = — \Q\
o
Hence, ‘\&
1dp Q& vt)v _d
p @ ds ds
¢
2P gdz+vdv=0 (b)

Equation (b)is known as Euler's equation of motion.
Bernoulli’s Equation of motion from Euler’s equation

Statement: In a steady, incompressible fluid, the total energy remains same along a streamline
throughout the reach.
Bernoulli’s equation may be obtained by integrating Euler's equation of motion i.e, equation (b) as

i
%’ - / gdz+ / vdv = constant

If the flow is in-compressible, p is constant and hence,

y
P v
-+ 8+ Y constant
>
P U
S — e — -t T cOnstant (c)
Ps 2
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Equation (c) is called as Bernoulli’s equation, Where

5: pressure energy per unit weight of the fluid or also called as pressure head
;’;: kinetic energy per unit weight of the fluid or kinetic head

z= potential energy per unit weight or potential head

Assumption made in deriving the Bernoulli’s Equation

Following assumptions were made to derive the bernoulli’s equation
The flow is steady

The flow is ideal ( Viscosity of the fluid is zero)
The flow is in-compressible

«The flow is irrotational.
Limitations on the use of the Bernoulli Equation

- Steady flow: The first limitation on the Bernoulli equation is that it is applicable to
steady flow.

« Friction-less flow: Every flow involves some friction, no matter how small,
and frictional effects may or may not be ne@\ﬁgible.

« In-compressible flow: One of the assuimptions used in the derivation of the
Bernoulli equation is that p = co &én&t}and thus the flow is in-compressible.
Strictly speaking, the Bernoullicequa- tion is applicable along a streamline,
and the value of the cons\'@‘ft C, in general, is different for different
streamlines. But when a f“eglon of the flow is irrational, and thus there is no
vorticity in the flow field, the value of the constant C remains the same for all
streamlines, and, therefore, the Bernoulli equation becomes applicable across
streamlines as well.

Kinetic Energy correction factor

In deriving the Bernoulli’s Equation, the velocity head or the Kinetic energy per

unit weight of the fluid has been computed based on the assumption that the
velocity is uniform over the entire cross section of the stream tube. But in real
fluids, the velocity distribution is not uniform. Therefore, to obtain the Kinetic
energy possessed by the fluid at differently sections is obtained by integrating the
Kinetic energies possessed by different fluid particles.
It is more convenient to express the Kinetic energy in terms of the mean velocity of
flow. But the actual kinetic energy is greater than the computed using the mean
velocity. Hence a correction factor called ‘ Kinetic Energy correction factor,a is
introduced.
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¥ 3
I 2 VY m VW :
—_ utl_—l_l +21 = =+ ==+ 23+ = Constani
p 2 p 2

In most of the problems of twrbulent Aow, the value of a=1,

Rotary or Vortex Motion

A mass of fluid in rotation about a fixed axis is called vortex. The rotary motion
of fluid is also called vortex motion. In this case the rotating fluid particles have
velocity in tangential direction. Thus the vortex motion is defined as motion in
which the whole fluid mass rotates about an axis.

The vortex motion is of twotypes:

1. Free vortex.
2. Forced vortex.

Free vortex flow

Free vortex flow is that type of flow in which \th fluid mass rotates without any
external applied contact force. The whole mass Totates either due to fluid pressure
itself or the gravity or due to rotation pg:éo%lfsly imparted. Energy is not expended
to any outside source. The free vortexzmotion is also called Potential vortex or Ir-
rotational vortex. é\,\ g

{\
Relationship between velocity and radius in free vortex

It is obtained by putting the value of external torque equal to Zero or on other
words the time rate of change of angular momentum, i.e., moment of the momentum
must be Zero. Consider a fluid particle of mass "M’ at a radial distance ’r’ from the
axis of rotation, having a tangential velocity "u’. Then,

Angular momentum = Mass x velociry

Mament o f the Momentum = Momentum = radius = mur

d{mur)

Time rate of change of angular moment i
Time rat han mgular momentum
dr

But for free vortex,
:}I FHRLF )

ar

Integrating, we get

/' A\ mur)

f 0 = Mur = Constant = ur = constant
o
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Forced vortex flow

Forced vortex motion is one in which the fluid mass is made to rotate by means of
some external agencies. The external agency is generally the mechanical power
which imparts the constant torque on the fluid mass. The forced vortex motion is
also called flywheel vortex or rotational vortex. The fluid mass in this forced vortex
flow rotates at constant angular velocity w. The tangential velocity of any fluid
particle is given by,

u=wXr

where " is the radius of the fluid particle from the axis of rotation. Hence angular velocity @ is given
by,

[
i) = = = constant
r

Variation of pressure of a rotating fluid in any plane is given by,

dp = pfm—r]u’r' —pedz
r

Integrating the above equation for points | and 2, we get

/II: dp = /:.:p-: ﬁ Jdr —“&JA’J:

ﬁ-lp\—lfl ) = _’JL‘.}_ :p_l{::.f

if the point 1 and 2 lies on free surface of twhé&qujd then p; = p» and hence above equation reduces

(4] ‘xn/
Bmai-Lm-

If the point 1 lies on the axis of rotaion, then v = @ = r| = @ = 0 = (Lhence above equation reduces

I--l

Lo,
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APPLICATIONS OF BERNOULLI’S EQUATION

Venturi Meter

Venturimeter is a device for measuring discharge in a pipe.

: | h

'}- :

HO
i i
d, —
v '

P Conver- :
Inlet Le- gent _J _Divergent part

part [
Throat

A Venturi meter consists of:
e Inlet/ Convergentcone
e Throat
e Qutlet/ Divergent cone

o\
The inlet section Venturi meter is same diameter 't}tat type of the pipe to which it is
connected, followed by the short convergent s@n with a converging cone angle of

21+1° and its length parallel to the axis is apmsg&mately equal to 2.7(D-d), where *D’ is
the pipe diameter and ’d’ is the throat diargefﬁr.

The cylindrical throat is a section Q{é\dﬁstant cross-section with its length equal to
diameter. The flow is minimum at the throat. Usually, diameter of throat is 1 the pipe
diameter.

A long diverging section with a cone angle of about 5-7° where in the fluid is retarded
and a large portion of the kinetic energy is converted back into the pressure energy.

Principle of Venturi Meter:

The basic principle on which a Venturi meter works is that by reducing the cross-
sectional area of the flow passage, a pressure difference is created between the two
sections, this pressure difference enables the estimation of the flow rate through the pipe.

Dept of Mechanical Engg, GMIT, Bharathinagara Page 7
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Expression for Discharge through Venturi meter

Inlet Throat
T
{ [~ , e T
| o ]
1 2 --_'--____ 1 I|
X T
. ] A
¥

Let, dj=diameter at section 1-1
pi1= pressure at section at -1
v = velocity at section at 1-1
a)= area of cross-section at 1-1

da. pa2. v2, az be corresponding values at section 2-2,

Applying Bernoulli equation between 1-1 and 2-2 we have,

¥ ¥
b, =20

z + Iz
pg 2 ' pg g
Since pipe is horizontal, z;=23, . Q

Q,o
n 3@ v
ﬁx+_‘\§mﬂ+3x

I CQ:; B ri— rf
S
<\ = A= 2N

where h = Illa.l'_’i is the pressure difference between section 1-1 and 2-2.

from continuity equation, we have

Hence,

apv arva

ava

= V| =
{f|
Hence
33 3
h :_![“l a,l
gl m
) —_—
3 1 2o}
> Va ZFN (1)
2= /28

"b"lllﬂi a3
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substituting the value of v in equation Q =a;v> we have,

| il

O = v m

fa i
\ar—a;

Above equations is for ideal fluids and is called as the theoretical discharge
equation of a venturi meter. For real fluids the equation changes to,

. a)as —
Oucr = Cy—=—=—==1/2¢h

||. ay —

Expression for ’h’ given by the differential manometer

+ Case 1:when liquid in the manometer is heavier than the liquid flowing through
the pipe.

where:Sy is the specific gravity of heavier liquid
So is the specific gravity of liquid flowing through pipe.

. Y X 4
x difference in liquid columns in -firbe.
« Case 2:when liquid in the manometeradstighter than the liquid flowing through

the pipe. &\

9 s

X >
X =x l—il‘

3

{\\; So
where:S is the specific gravity of heavier liquid
So is the specific gravity of liquid flowing through pipe.
x difference in liquid columns in U-tube.

Orifice Meter

An orifice is a small aperture through which the fluid passes. The thickness of an
orifice in the direction of flow is very small in comparison to its other dimensions.

If a tank containing a liquid has a hole made on the side or base through which
liquid flows, then such a hole may be termed as an orifice. The rate of flow of the
liquid through such an orifice at a given time will depend partly on the shape, size
and form of the orifice.

An orifice usually has a sharp edge so that there is minimum contact with the
fluid and conse- quently minimum frictional resistance at the sides of the orifice. If
a sharp edge is not provided, the flow depends on the thickness of the orifice and

the roughness of its boundary surface too.
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Orifice Meter

«It is a device used for measuring the rate of flow through a pipe.

« It is a cheaper device as compared to venturi meter. The basic principle on
which the Orifice meter works is same as that of Venturi meter.

«It consists of a circular plate with a circular opening at the center. This circular

opening is called an Orifice.
*The diameter of the orifice is generally varies from 0.4 to 0.8 times the pipe

diameter.

Expression for Discharge through Orifice meter

2D D/2 Vena contracta
Orifice 2
Direction R
of flow X o &N\
|| ) Di &rtial manometer
QQ
| |
o
Q\

Let, dy=diameter at section 1-1

p1= pressure at section at ||

vi= velocity at section at |-1

a,= area of cross-section at 1-1

dy, p2, v2, ay be corresponding values at section 2-2,

Applying Bemoulli equation between 1-1 and 2-2 we have,

)
I’: Vi

Py Vi,
T <l &2
pg 28

ps

o
T
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Since pipe is horizontal, z)=z3,
Hence,

> »
N _R_. %

pe 28 pg 2g
Nt B S

PE 2g

ar

h_ £

or

2 2
2eh=v5—Wv|

| — .
vy = U'2£h+i1 (1)

MNow section (2) is at the vena-contracta and a; represents the area at the vena-contracta.

If the area a,, is the area of the orifice, then we have

where C.is the co-efficient of contraction. .\<\
' *

<&
@

From continuity equation, we have @Q"

dpvy = daa *(\ ar {ii)

aav: a,C, .

V| = ——— ) = ——r3 (1)
a) i)

Substituting the value of v, in equation (i), we get

f 2.1
azCoy
vy = 1 [26h+ =22
\ ai
2eh
= V3 = ———

dy | 22
- (2)°C
substituting the value of vz in equation Q =azv2 we have,

1,Ce v/ Tgh ,
Q % )
1 (%)c?

V- @
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Above equation can be simplified by using

1— (%
Cc=Cy “'2
1-(&)a
or
S I (Z“,')'C::-
1-(8)°

Substituting the this value of C, in(iv),

V! ?.‘)C _ VIR

Oucr = ap X Cf = =
V=@ i-@e
1
or
. Cduuul Sdbothl V <57 -Q];
Qm! /-—;
\ ul u

where C; is the co-efficient of discharge for orifice meter.
Pitot tube

Pitot tube is a device used to measure the velocity of fl w§\nv point in a pipe or a channel.
Principle: If the velocity at any point decreases, re at that point increases due to the con-
version of the Kinetic energy into pressure energy. &&mplul form, the pitot tube consists of a glass

tube, bent at right angles,

) (2

Let, py= pressure at section at 11
vi= velocity at section at 1-1
p2= pressure at section at |-1
va= velocity at section at 1-1
H= depth of tube in the liquid
h= rise of liquid in the tube above free surface
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Applying Bemoulli equation between 1-1 and 2-2 we have,

-
-,

il ¥
PV, P2 Y

AT A
But zy=z; as points( | jand (2) are on the same line and v,=()
ﬁ: pressure head at (1)=H
ﬁ: pressure head at (2)=(h+H)
Substituting these values we get,

H+:—L —(h+H) . h=

by
2

or vi=+/2gh

this is the theoretical velocity. Actual velocity is given by
(Vi)as = o/ 28h

there fore velocity at any point is,
Vaer = Cyy/ 2gh
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P1l. An oil of sp.gr. 0.8 is flowing through a venturimeter having inlet
diameter 20cm and throat 10cm. The oil mercury differential
manometer shows a reading of 25cm. Calculate the discharge of oil
through the horizontal venturimeter. Take Cd= 0.98.

Solution. Given:
Sp. gr. of oil, 5,=08
Sp. gr. of mercury, 5,=136

Reading of differential manometer, x = 25 cm

< Difference of pressure head, i = x [g}—l]

136 4]

e?([ om of il = 5117 2 1] = A0 om af wil

Dia. at inlet, d;=20cm
R .,» =& 2
GEgdi=T X 20° = 314,16 cm

dy=10cm

x 3 b
ay=~x 10°=78.54 cm*
RS
C‘ =098 @ ¢
. The discharge Q is given by equation (O%Q’

- 7a§

98 x 116X 7854 x JTX 981X 400

JB1416)° - (78.54)’

2142137568  21421375.68 B

)
m'/s
) J98696-6I68 - 304
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P2. A horizontal venturimeter with inlet diameter 30cm and throat
diameter 15cm is used to measure the flow of water. The differential
manometer connected to the inlet and throat is 20cm. Calculate the
discharge. Take Cd= 0.98.

Solution. Given:

Dia. at inlet, d,=30cm

" Arca at inlet, a= ; di= ; (30)" = 706.85 cm’
Dia. at throat, dy=15cm

ay= % x 1821767 em’

C‘ - 0.98
Reading of differential manometer = x = 20 cm of mercury.
. Difference of pressure head is given by (6.9)

5 l
ax|2-)
* ' '(s.

where §, = Sp. gravity of mercury = 13.6, S, = Sp. gravity of water = |

136
=20|—~1{=20x12.6 cm =252.0 :
[ l ] x 12,6 cm cm o(:\Qm
The discharge through venturimeter is given by &.8)
Q=C, -t {\ % J2gh

>

X
(@s X oo X1787__ « Ax981%252

J(706.85) - (176.7)}

8606759336 o 36067593.36
:;499636.9 - 312229 684.4

= 125756 cm'ls = 2220 |jy/s = 125.756 lits. Ans.
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P3. A horizontal venturimeter with inlet diameter 20cm and throat diamete

0.8. The discharge of oil through venturimeter is 60li/s.
Find the reading of the oil-mercury manometer. Take
Cd=0.98

Solution, Given : d;=20¢m
0= ; 20*=314.16 e
dy=10cm

ay= = x 107 = 78.54 cm?
4

Cd = 0.98
0 = 60 litres/s = 60 x 1000 cm*/s

Using the equation (6.8), Q@=C, —"r;._a—_T X/ 2gh

Va; —ay
or 60 1000=9.81 x —HIOXT8 __ o o gRTh = 107106878V
J(31416)° - (78.5@)‘,\ 304
304 X 60000 <
or «/l_l 2 — ]@&
1071068.78
h =(‘7-029)2=@cm of oil
) {\Q
S,
But h =X _h — l
S,

where ;= Sp. gr. of mercury = 13.6
, =5p. gr.of il =0.8
x = Reading of manometer

28998 = x [”—6 - l} = 16x
08

xs m—% =18.12cm.
16

Reading of oil-mercury differential manometer = 18,12 cm. Ans.
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P5. The inlet and throat diameters of a horizontal
venturimeter are 30cm and 10cm respectively. The liquid
flowing through the venturimeter is water. The pressure

intensity at

inlet

is 13.734N/cm? while the vacuum

pressure head at the throat is 37 cm of mercury. Find the
rate of flow. Assume that 4% of the differential head is lost
between the inlet and the throat. Find also the values of
Cgq for the Venturimeter.

Dia. at inlet,

Dia. at throat,

Pressure,

Pressure head,

Differential head,

Head lost,

Discharge

d,=30cm
4 3 3
a,= I (30)" = 706.85 cm®
d,=10cm
R 3 2
a,= e (10)° = 78.54 cm
= 13.734 Niem® = 13.734 x 10* N/im®

‘ 4
L =-I'—73‘—“—10—=l4mofwatcr
pg  1000x9.8]

o &N\
2 o 37 cmof mcrcurQ)\\
Pg

_37xl36§;\‘§w““__sm"mof\tatcr
&@ - ppg
0~ (~5.032) = 14.0 + 5.032

= 19.032 m of water = 1903.2 cm

4
hy=4% of h= — x 19.032 = 0.7613 m
100

[h—h 19032 - .7613
Cy= 4 f o 2002000 Lod
V & Y 19032

0.98 x 706,85 x 78.54 x /2 x 981 x 19032
=3
J(70685)" - (78.54)*

_ 1051322478
/4996369 - 6168

= 149692.8 cm’/s = 0.14969 m/s. Ans.

A 30cmX15cm Venturimeter is inserted in a vertical pipe carrying

water flowing in the upward direction. A differential mercury

manometer connected to the inlet and throat gives a reading of 20cm.
Find the discharge. Take Cd = 0.98

Dept of Mechanical Engg, GMIT, Bharathinagara
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Solution. Given:
Dia. at inlet,

Dia. at throat,

Discharge,

18ME43

d, =30 cm
a, = % (30)% = 706.85 cm’
d,=15cm

a,=§(15)2= 176.7 cm?

h=x|i§—'-] 20[%-10] 20 x 12.6 = 252.0 cm of water
C;=098
0=C, —2_ x .[2gh

al“‘g

A 20cmX10cm venturimeter is 1nserted in a vertical pipe
carrying oil of sp.gr 0.8, the flow 0‘1} oil is in the upward
direction. The difference of level ween the throat and inlet
section is 50cm. The oil mercu ifferential manometer gives
a reading of 30cm of Me;g&y Find the discharge of oil.

Neglect the losses.

Q

Solution. Dia. atinlet,  d, =20 cm

Dia. at throat,

0= ; (201 = 314.16 cm?
dy=10cm
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Sp. gr. of oil, 5,=08
Sp. gr. of mercury, 5,=13.6
Differential manometer reading, x = 30 cm

18ME43

ay = %(10) = 78.54 cm?

( S,
h (ﬂ‘+¢|) p_""")-x[—_l]
pg \ P8 S
-30[%82-1 =30[17=1)=30x 16 =480 cm of oil
Cd= 1.0
The discharge, 0 = C; ==t x |/2gh
a -az
__LOX3M4I6XTBS sy
J(314.16)" - (78.54)’ o
o 239326307 _ 2950 75 cm¥s = 78.725 litres/s. Ans.
T \
/::\’\,\C/‘

In a vertical pipe conéw\a\';ring oil of specific gravity 0.8, two
pressure gauges have been installed at A and B where
the diameters are 16cm and 8cm respectively. A is 2
meters above B. The pressure gauge readings have
shown that the pressure at B is greater than at A by
0.981N/cm2. Neglecting all losses, calculate the flow rate.
If the gauges at A and B are replaced by tubes filled with
the same fluid and connected to a U tube containing
Mercury, Calculate the difference of level of Mercury in

the two limbs of the U tube.

Dept of Mechanical Engg, GMIT, Bharathinagara
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Solution. Given :
Sp. gr. of oil, §,=08
Density. p =08 x 1000 = 800 <&
m
Dia. at A, Dy,=16cm=0.16m
Arca at A, A= -:-(.16)’ = 0.0201 m*
Dia. at B, Dy=8cm=0.08 m
Area at B, Ay= ; (.08)* = 0.005026 m*
(i) Difference of pressures, py —p, = 0.981 N/cm®
=0.981 x 10* N/m* = 98'2"
Difference of pressure head
- 9810
Ps = Pa = lzs

pg  BO0Ox981 .

Applying Bernoulli's equation between A and B, taking the reference
line passing through B, we have,

pl/ Y B V12/ Zg +z,= pz/ iy b sz/ 2g + 25 +hy,

®a’ Y-Ps/ Y) + 2 5~ 25= (Va%/ 2g - vz*/ 29)

(pa/y-Ps/v) +2.0- 0.0 = (vg?/ 2g - v,%/ 2g)

-1.25+2.0 = (va*/ 2g - vx*/ 2Q) \<\

2
bi\@)
\@%

{\Q
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0.75 = (VBZ/ Zg - VAZ/ 2g) (1)

Now applying Continuity equation at A and B, we

get, . Wem
ApVa=AgVs

Ve= ApVa /Ag=4V; \ ‘ {
Substituting the value of Vi in equation (1), we get

0.75 = 16 vx%/ 2g - va*/ 2g = 18 v4*/ 2g ; Va= 0.99m/s 2
Rate of flow, Q= AxVx *
Q=0.99* 0.01989 Cum/s :
Difference of level of mercury in the u - Tube:
Let x = Difference of Mercury level

Then h= x[ (sm/s0)- 1]
h=(pa/yt+za) - (ps/ v+ 2s)

=(pa/y-pe/Y) + (z2at+2zs)=-1.25+2.00 =0.75m
0.78 = x[ (13.6/0.8)-1] = 16x

]

X=4.687 cm

P.9: Find the discharge of water flowing through a pipe 30cm
diameter placed in an inclined itidn where a venturimeter is
inserted, having a throat di of 18 cm. The difference of

pressure between the main an%% throat is measured by a liquid of
sp.gr. 0.6 in an inverted U o@e which gives a reading of 30cm. The
loss of head between thec@j.n and the throat is 0.2 times the kinetic
head of the pipe.
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Solution. Dia. at inlet =30cm
Y =30cm ’
a = ; (30)* = 706.85 cm’ P
WX N

Dia. at throat, dy=15cm e
. a,=§(l$)’=l76.7cmz
Reading of differential manometer, x = 30 cm ¥
Difference of pressure head,  is given by

o

P8 Pg
Also hu[l-i]

)

where §; = 0.6 and S, = 1.0
,30[]._9.:9_] = 30 x .4 = 12.0 cm of water

Loss of head, /i, = 0.2 x kinetic head of pipe = 0.2 x 51—
2.4

Now applying Bernoulli’s equation at sections (1) and (2), we get

2
£L+-I *-!_ &+ +1.L+h“
pE 28 pPa 28

2 2
P2y = - ¢ L BESR . SESE >
e (PR*:') (Pk*z’]’ 2g 2n§§‘

(L’-L-o-g.) (—-l-oz h = 12.0 cm of water

But
Px PR 6.3
and z‘ ,_-02xv, Ry
12.0 oy -
® 2: 2g
2 2
12.0 + 0.8 ~ X2 =0
& 28

Page 22
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Applying continuity equation at (1) and (2), we get
a,v, = a2V2
T e\

- S
Vl——‘z—

a E 30 2 4
60
Substituting this value of v, in equation (1), we get

2 2 * 2 5
12,0 + %(32-) -2 =0 or12.0+13-[%— ]:o

20\4) 2 2816
2 2
or Y2105-1] =-120 or S22 = 120
% 28
V= M =574 cm/s
T
Discharge = GV, S
= 176.7 1574 6f/s = 27800 cm'/s = 27.8 litres/s. Ans.
&
D
Qf:)
o
N
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MODULE 3
DIMENTIONAL ANALYSIS
1. WHAT IS DIMENSIONAL ANALYSIS?

Dimensional analysis 15 a means of simplifying a physical problem by appealing to
dimensional homogeneity to reduce the number of relevant vanables.

It is particularly useful for:
- presenting and interpreting expenimental data;

- attacking problems not amenable to a direct theoretical solution;

. checking equations;

. establishing the relative importance of particular physical phenomena:
- physical modelling.

Example.

The drag force F per unit length on a long smooth cylinder is a function of air speed [,
density p, diameter D) and viscosity p. However, instead of having to draw hundreds of
graphs portraying its vanation with all combinations of these parameters, dimensional
analysis tells us that the problem can be reduced to a single dimensionless relationship

cp = f(Re)
where ep is the drag coefficient and Re 1s the Reynolds number.

*

2 and the experimental data to a single graph of ¢p a Re.

D

2. DIMENSIONS \@%

In this instance dimensional analysis has reduced d&g&r of relevant vanables from 5 1o

2.1 Dimensions and Units (\Q

A dimension is the type of physical quantity.
A unit 1s a means of assigning a numerical value to that quantity.

S1 units are preferred in scientific work.

2.2 Primary Dimensions
In fluid mechanics the primary or fundamental dimensions, together with their S1 units are:
mass M (kilogram, kg)
length L {metre, m)
time T {second, s)
temperature e (kelvin, K)

In other arcas of physics additional dimensions may be necessary. The complete set specified
by the SI system consists of the above plus

clectric current l (ampere, A)
luminous intensity C (candela, cd)
amount of substance n {mole, mol)
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2.3 Dimensions of Derived Quantities

Dimensions of common denved mechanical quantities are given in the following table.

Quantity Common Symbol(s) | Dimensions
Area A L

Geometry Volume V £y
Second moment of area |/ L
Velocity U EX:
Acceleration a ¥

= R Angle 0 1 (IIC dimensionless)
Angular velocity [0} T
Quantity of flow (4] g gl
Mass flow rate ) MT '
Force F MLT™
Moment, torque T MLT™

Dynamics Energy, work, heat EW ML°T™~
Power P MLT"
Pressure, stress p.T ML'T~
Density p ML™
Viscosity u ML'T
Kinematic viscosity v LT’

Fluid properties | Surface tension a MT ™
Thermal conductivity k MLT "
Specific heat G s + O\ L'T9"
Bulk modulus K o ML'T*

@
2.4 Working Out Dimensions bi\

N

In the following, [ | means “dimensions ({5

D

Example.

.

1 4

Iy

Solution.
From the definition,
- Jorce/ area
W=3Uky " velocity ! lengh
Hence,
MLT?A? P
W= "

Use the definition T=p ‘:—l to determine the dimensions of viscosity.

Alternatively, dimensions may be deduced indirectly from any known formula involving that

quantity.

Dept of Mechanical Engg. GMIT, Bharathinagara
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3. FORMAL PROCEDURE FOR DIMENSIONAL ANALYSIS
3.1 Dimensional Homogeneity
The Principle of Dimensional Homogeneity

All additive terms in a physical equation must have the same dimensions.

Examples:
s=ut+tar’ — all terms have the dimensions of length (L)
£+2—.+:=H — all terms have the dimensions of length (L)
g =g

Dimensional homogeneity is a useful tool for checking formulae. For this reason it is useful
when analysing a physical problem to retain algebraic symbols for as long as possible, only
substituting numbers nght at the end. However, dimensional analysis cannot determine
numerical factors; ¢.g. it cannot distinguish between %ar’ and ar” in the first formula above.

Dimensional homogeneity is the basis of the formal dimensional analysis that follows.

3.2 Buckingham's Pi Theorem o
N

Experienced practitioners can do dimensional analys mspection. However, the formal
tool which they are unconsciously using is Bucki#hem s Pi Theorem':

Lo
Buckingham’s Pi Theorem \Q{"

O

(1) If a problem involves {\

n relevant variables
m independent dimensions
then it can be reduced to a relationship between
n - m non-dimensional parameters [1;, .., Mo

(2) To construct these non-dimensional I1 groups:
(1) Choose m dimensionally-distinct scaling variables (aka repeating variables).
(1) For cach of the # — m remaining variables construct a non-dimensional [T of the form
I1 = (variable)(scale,)" (scale, )" (scale; )" -
where a, b, ¢, ... are chosen so as to make each I'1 non-dimensional.

Note, In order to ensure dimensional independence in {MLT} systems it is common ~ but not
obligatory - to choose the scaling vanables as: a purcly geometric quantity (c.g. a length), a
kinematic (time- but not mass-containing) quantity (c.g. velocity or acccleration) and a
dynamic (mass- or force-containing) quantity (c.g. density).
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3.3 Applications

Example.

Obtain an expression in non-dimensional form for the pressure gradient in a honizontal pipe
of circular cross-section. Show how this relates to the familiar expression for fnctional head
loss.

Step 1. Identify the relevant vanables.
dpide, p, V, D, k. p

Step 2. Write down dimensions.
dp Lforce/area] ~ MLT =L~ CMLT

dr lengih L
P ML
v LT
D L
k, L
M ML'T!
Step 3. Establish the number of independent dimensions and non-dimensional groups.
MNumber of relevant vaniables: n=6
Number of independent dimensions: m=3 (M.LandT)

Number of non-dimensional groups (Ils n-m=3

Step 4. Choose m (= 3) dimensionally-independent scaling vasables.
e.g. geometric (D), kinematic/time-dependent (1), mic/mass-dependent (p).

Step 5. Create the [1s by non-dimensionalising thn@ni_ng variables: dp/dy, k, and p.
I, = dp DV p %‘
dy Q:)

Considering the dimensions of bo :

MULUTU=IML2T :Hb TI]b(ML\].

=Mth:hu-b LT 2=b

Equate powers of primary dimensions. Since M only appears in [p] and T only
appears in [ 1] it is sensible to deal with these first.

M: 0=1+¢ = ¢=-=]
T: 0=-2-5 = b=-1
L: 0==-2+a+b-3¢ = a=2-b+3c =1
Hence,
p¥
& dr :
[lt=d—Dl o = (Check: OK - ratio of two pressures)
¥ P

M, = % (by inspection, since &, is a length)
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11, = uD*F*p*
In terms of dimensions:
ML'T" = (ML'T ' YL)*(LT )" (ML)
= Mlo‘L Iraed L‘T -8
Equating exponents:
M: 0=l+c = c=-1
T 0=-1-b = b=-1
Iz 0=-1+a+b-3¢ = a=1-b+3c =-1
Hence,
mn, = —:'5 (Check: OK  this is the reciprocal of the Reynolds number)
p
Step 6. Set out the non-dimensional relationship.
I, = f(I1,.11,)
or
pE
dx 3
—= (=) (*)
pyV- / D pVD
Step 7. Rearrange (if required) for convenience. ’\Q
We are free to replace any of the Ils by a po@yr*of that I1, or by a product with the
other Ils, provided we retain the same of independent dimensionless groups.
In this case we recogmise that IT; is rocal of the Reynolds number, so it looks
better to use I, =(I1,) ' =Re as ird non-dimensional group. We can also write
- N o h -
the pressure gradient in tm&zd loss: i pgT. With these two modifications
the non-dimensional relationship (*) then becomes
gh, k
—_—= f(—=,R
vt =R
or
Ly k,
h, = EX?XI(B,RC)
Since numerical factors can be absorbed into the non-specified function, this can
casily be identified with the Darcy-Weisbach equation
h, = xi.'_'
D2g
where A is a function of relative roughness £,/D and Reynolds number Re, a function
given (Topic 2) by the Colebrook-White equation.
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Example.

The drag force on a body in a fluid flow is a function of the body size (expressed via a
charactenstic length L) and the flmd velocity ¥V, density p and wviscosity p. Perform a
dimensional analysis to reduce this to a single functional dependence

€ = f(Re)

where ¢p) is a drag coefficient and Re is the Reynolds number.

What additional non-dimensional groups might appear in practice?

Notes.

(n

Dimensional analysis simply says that there is a relationship; it doesn’t (except in the
case of a single I1, which must, therefore, be constant) say what the relationship 1s.
For the specific relationship one must appeal to theory or, more commonly,
experimental data.

If Iy, IT,, T, ... are suitable non-dimensional groups then we are liberty to replace
some or all of them by any powers or products with the other Ils, provided that we
retain the same number of independent non-dimensional groups; e.g ()™, (my’,
HI/(I];)“.

(3) It is extremely common in fluid mechanics to find (often after the rearrangement

(4)

(3)

mentioned in (2)) certain combinations which can be recognised as key parameters
such as the Reynolds number (Re = pUL/p) or fr&c number ( Fr= U/J;L- ).
N\

Often the hardest part of the duncnssooa?a‘lysns is determining which are the
relevant variables. For example, surf: ion is always present in free-surface
flows, but can be neglected if the We umber We = pl/"L/a 1s large. Similarly, all
fluids are compressible, but com ility cffects on the flow can be ignored if the
Mach number (Ma = Ulc) is . velocity is much less than the speed of sound.

Although three primary diniSeSions (M.LT) may sppear when the variables are listed,
they do not do so indcpendently. The following example illustrates a case where M
and T always appear in the combination MT =, hence giving only onc independent
dimension.

Dept of Mechanical Engg. GMIT, Bharathinagara
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Example.
The tip deflection & of a cantilever beam is a function of tip load W, beam length /. second
moment of arca / and Young's modulus E. Perform a dimensional analysis of this problem.

Step 1. Identify the relevant vanables.
o, W, I IE.

Step 2. Write down dimensions.
5 L
W MLT?
l L
! By
E MLT?

Step 3. Establish the number of independent dimensions and non-dimensional groups.
Number of relevant vanables: n=35 2
Number of independent dimensions: m=2 (Land MT " - note)
Number of non-dimensional groups (IIs): n-m=3

Step 4. Choose m (= 2) dimensionally-independent scaling vanables.
c.g. geometric (/), mass- or time-dependent (E).

Step S. Create the [1s by non-dimensionalising the remaining variables: 8, / and W.
These give (after some algebra, not reproduced bc&
b N\

o
Mn=- .
L5 Q‘Q)
m, ser &
[ D
v L. %‘?:)
U E5 (3\
Step 6. Set out the non-dimensional rgiionship.
I, = f(I1,,11,)
or
o I W
=u fi=—s)
/ / I EP
This is as far as dimensional analysis will get us. Detailed theory shows that, for small clastic
deflections,
n)
5o L0
3 El
or

Dept of Mechanical Engg. GMIT, Bharathinagara Page 7
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4. PHYSICAL MODELLING
4.1 Method

If a dimensional analysis indicates that a problem is described by a functional relationship
between non-dimensional parameters IT;, I, IT;, ... then full similarity requires that these
parameters be the same at both full (“prototype™) scale and model scale. 1.c.

(nl). =(n|)p
(), =(IL,),
ctc.

Example.

A prototype gate valve which will control the flow in a pipe system conveying paraffin is to
be studied in a model. List the significant vanables on which the pressure drop across the
valve would depend. Perform dimensional analysis to obtain the relevant non-dimensional

groups.

A 1/5 scale model is built to determine the pressure drop across the valve with water as the
working fluid.

(a) For a particular opening, when the velocity of paraffin in the prototype is 3.0 ms™
what should be the velocity of water in the model for dynamic similanty?

(b) What is the ratio of the quantities of flow in prototype and modcl?
(c) Find the pressure drop in the prototype ifitisﬁl)\@ainthcmodcl.

(The density and viscosity of parsffin sre 800 kg psdnd 0.002 kg m™ 5" respectively. Take
the kinematic viscosity of water as 1.0 x10™° &2’

<

Solution. \Q}

The pressure drop Ap is expected t upon the gate opening A, the overall depth 4, the
velocity V, density p and viscosity p

List the relevant vanables:

Ap.h,d. V,p,p
Write down dimensions:

Ap ML'T?

h L

d L

V LT

P ML™*

" ML T

Number of vanables: n =6
Number of independent dimensions: m =3 (M, Land T)
Number of non-dimensional groups: n —m =3

Dept of Mechanical Engg. GMIT, Bharathinagara Page 8
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Choose m (= 3) scaling vanables:
geometric (d): kinematic/time-dependent (1) dynamic/mass-dependent (p).

Form dimensionless groups by non-dimensionalising the remaining vanables: Ap, & and p.
nl =AM«:‘-DPL
M L'T® =(ML'T *XL)*(LT ")"(ML")*

— MluL lraed !.T 2-b

M: 0=1+¢ = c=-1

Tz =-2-b = b=-2

L 0=-l1+a+b-3¢ = a=1+3c-b =0
= M=V " =i

I, = 5 (by inspection, since /& is a length)

I, = pd“V'p’ (probably obvious by now, but here goes anyway ...)
MPL'T" =(ML'T "YL)*(LT )" (ML)’
=MlnLl-.cn# I.T =&

M: 0=1+c¢ = c=-1
T: 0=-1-b+0 = b=-l
L: 0=-1+a+b-3¢ = a=1+3c-b \Q‘
- n = oty =_ll__ Q)’
L} }ld P p,.d Q‘
Recognition of the Reynolds number suggests L@ replace I, by
Vi
m, =(I1,) " =¥ Q‘%
“ o
Hence, dimensional analysis yiclds <\
I, =f(":vn'|)
(X
I
i:/(i'u)
py- d p

(a) Dynamic similarity requires that all non-dimensional groups be the same in model and
prototype; i.c.

(), (%)

I, = (-3] = (-3-) (automatic if similar shape; 1.¢. “geometne similanty”™)

p

Dept of Mechanical Engg. GMIT, Bharathinagara
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2]

»
From the last, we have a velocity ratio
V, Wp),d, 0.002/80 1

—'P-: = ra K = =0.5
Ve (Wp).d, 1.0x10 5
Hence,
v
V, =t e E0ms”
5 0.5

(b) The ratio of the quantitics of flow is
0, p (velocity x area), - r, [d, ]:
e

Q. (velocity x area),

(c) Finally, for the pressure drop,

il

[

n,=(_“_’L] _(A&) = ‘A”_’-—-['_] - 20 053
i . 1000

NG pV? ). (Ap). p.\V.
Hence,
Ap, =02xAp, =02x60 =120kPa \Q\
d
S
@“.‘)
S
\\

Dept of Mechanical Engg. GMIT, Bharathinagara
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4.2 Incomplete Similarity (“Scale Effects”)

For a multi-parameter problem it is ofien not possible to achieve full similanty. In particular,
it is rare to be able to achieve full Reynolds-number scaling when other dimensionless
parameters are also involved. For hydraulic modelling of flows with a free surface the most
important requirernent is Froude-number scaling (Section 4.3)

It is common to distinguish three levels of similarity.

Geometric similarity — the ratio of all corresponding lengths in model and prototype are the
same (i.e. they have the same shape).

Kinematic similarity — the ratio of all corresponding lengths and times (and hence the ratios
of all corresponding velocities) in model and prototype are the same.

Dynamic similarity — the ratio of all forces in model and prototype are the same; e.g.
Re = (mertial force) / (viscous force) 1s the same mn both.

Geometne similanty i1s almost always assumed. However, in some applications — notably
rniver modelling — it 1s necessary to distort vertical scales to prevent undue influence of, for
example, surface tension or bed roughness.

Achieving full similanity is particularly a problem with the Reynolds number Re = ULAv.

- Using the same working fluid would require a velocity ratio inversely proportional to
the length-scale ratio and hence impractically large velocities in the scale model.

- A velocity scale fixed by, for example, the Fc?k number (see Section 4.3) means
that the only way to maintain the same Re s number is to adjust the kinematic
viscosity (substantially).

@
‘\pmtam if flows in both model and prototype
by viscous siresses 1s much less than that by
f molecular viscosity p 15 ummportant. In some
fring transition to turbulence in boundary layers (for
roughness strips).

In practice, Reynolds-number similarity is
are fully turbulent; then momentum
turbulent eddies and so the precise v
cascs this may mean deliberately tg
example by the use of tripping wires

Surface effects

Full geometric similarity requires that not only the main dimensions of objects but also the
surface roughness and, for mobile beds, the sediment size be in proportion. This would put
impossible requirements on surface finish or grain size. In practice, it is sufficient that the

surface be acrodynamically rough: w k, /v = 5, where u, = .,,‘t_ /p is the friction velocity and
k; a typical height of surface irregulanties. This imposes a minimum velocity in model tests.

Other Fluid Phenomena
When scaled down in size, fluid phenomena which were negligible at full scale may become
important in laboratory models. A common example is surface tension.

Dept of Mechanical Engg. GMIT, Bharathinagara Page 11
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4.3 Froude-Number Scaling

The most important parameter to preserve in hydraulic modelling of free-surface flows dnven
by gravity is the Froude number, Fr= L’/Jg_L. Preserving this parameter between model (m)
and prototype (p) dictates the scaling of other vanables in terms of the length scale ratio.

Velocity
(Fr),, =(Fr),

) () - )

L.c. the velocity ratio is the square root of the length-scale ratio.

Quantity of flow
$/2
: 0. |L
Q~velocity xarea — —=|—
Q’ LP
Force
F ~ pressure x arca = f. _|L
F’ L’

This arises since the pressure ratio is equal to the length-scale ratio — this can be scen from

cither hydrostatics (pressurc = height) or from the dynamic pressurc (proportional to
(velocity)’ which, from the Froude number, is proportional to length).

N
t ~ length + velocity = :4 g [i_:}l% &\(Q.Q’

Time

4

Hence the quantity of flow scales as the V&h-salc ratio to the 52 power, whilst the

time-scale ratio is the square root of the -scale ratio. For example, at 1:100 gecometric
scale, a full-scale tidal peniod of 12.4 ho es 1.24 hours.
Example.

The force exerted on a bridge picer in a river is to be tested in a 1:10 scale model using water
as the working fluid. In the prototype the depth of water is 2.0 m, the velocity of flow is
1.5m s™' and the width of the river is 20 m.

(a) List the vanables affecting the force on the pier and perform dimensional analysis.
Can you satisfy all the conditions for complete similarity? What is the most important
parameter to choose for dynamic similarity?

(b)  What arc the depth, velocity and quantity of flow in the model?

(c) If the hydrodynamic force on the model bridge pier is 5 N, what would it be on the
prototype?

Dept of Mechanical Engg. GMIT, Bharathinagara Page 12
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5. NON-DIMENSIONAL GROUPS IN FLUID MECHANICS

Dynamic similarity requires that the ratio of all forces be the same. The ratio of different
forces produces many of the key non-dimensional parameters in fluid mechanics.

(Note that “inertial force™ means “mass x acceleration” — since it is equal to the total applied
force it is often one of the two “forces™ in the ratio.)

J inertial
Reynolds number Re= E-L-L = w (viscous flows)
u viscous force

2
Froude number Fr= l— = M (frec-surface flows)
gravitational force

pU’L inertial force

Weber number We = = (surface tension)
a surface tension

; 3

Rossby number Ro= l— = M (rotating flows)
QL Coriolis force

- 3 1”2

Mach number Ma= l— = mana{ fo — ] (compressible flows)
c compressibility force

These groups occur regularly when dimensional analysis is applied to fluid-dynamical
problems. They can be derived by considering forces on a small volume of fluid. They can
also be derived by non-dimensionalising the differential equations of fluid flow (sec White,
Chapter 5), or the online notes for the 4™-year Computational Hydraulics unit.

Q&
eﬁz”\
e
\?’%

{\Q
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MODULE-2

Fluid Kinematics

2.0 Definitions
Pressure or Pressure intensity ( p): It is the Fluid pressure force per unit area of

p :
application. Mathematically, P :K- Units are Pascal or N/ m 2,
Total Pressure (P): This is that force exerted by the fluid on the contact surface
( of the submerged surfaces), when the fluid comes in contact with the surface
always acting normal to the contact surface. Unitg\are N.

N\
Py X
Centre of Pressure: It is defined as the B\Q@YOf application of the total pressure
on the contact surface. ">‘\
0

xO
The submerged surface may be e@}r plane or curved. In case of plane surface,
it may be vertical, horizontal ofsinclined. Hence, the above four cases may be

studied for obtaining the total pressure and centre of pressure.



2.1 Hydrostatic Forces on Plane Horizontal Surfaces:

» If a plane surface immersed in a fluid is horizontal, then

= Hydrostatic pressure is uniform over the entire surface.

= The resultant force acts at the centroid of the plane.

Consider a horizontal surface immersed in a static fluid as shown in Fig. As all
the points on the plane are at equal depth from the free surface of the liquid, the
pressure intensity will be equal on the entire surf\@se and given by p=pgvy, B
where y 13 the depth of the fluid surface Let A = Q}Qf’

Area of the immersed surface &6

The total pressure force acting on tr}é@ﬁmersed surface is P
\

P =px Area of the surface = pg y A

P=pgAy

Where Yis the centroidal distance immersed surface from the free surface of

the liquid and h'is the centre of pressure.



2.2 Hydrostatic Forces on Vertical Plane Surface:

Vertical Plane surface submerged in liquid
Consider a vertical plane surface of some arbitrary shape immersed in a liquid of mass density p

as shown in Figure below:

End View Elevation
Let, A = Total area of the surface ”. \{\
h = Depth of Centroid of the surface from the free sufface
G = Centroid of the immersed surface CE%\
C = Centre of pressure 5}\:‘;"

h cp.= Depth of centre of pressure <

Consider a rectangular strip of breadth b and depth dy at a depth y from the free surface.
Total Pressure:

The pressure intensity at a depth y acting on the strip is p = pgh

Total pressure force on the strip = dP = (pgh)dA

.. The Total pressure force on the entire area is given by integrating the above expression over

the entire area P = | dP = [ (pgh)dA= pg/ h dA Eq.(1)

But | y dA is the Moment of the entire area about the free surface of the liquid given by
fidA = Ah

Substituting in Eq.(1), we get P = pgAﬁ= yAh_ Eq.(2)

Where v is the specific weight of Water
For water, p=1000 kg/m® and g = 9.81 m/s?. The force will be expressed in Newtons (N)



2.3 Hydrostatic Force on a Inclined submerged surface:

The other important utility of the hydrostatic equation is in the determination of force
acting upon submerged bodies. Among the innumerable applications of this is the force
calculation in storage tanks, ships, dams etc.

First
consi
der a
plana
r
arbitr
ary
' shap
N\ o

Figure 3.4 :For\cé}upon a submerged object

submerged in a liquid as shown in the figure. The plane makes an angle & with the liquid
surface, which is a free surface. The depth of water over the plane varies linearly. This
configuration is efficiently handled by prescribing a coordinate frame such that the y-axis is

aligned with the submerged plane. Consider an infinitesimally small area at a (x,y). Let this small

area be located at a depth fzfrom the free surface.dA = dx.dy

Differential Force acting on the differential area dA of plane,

dF = (Pressure)- (Area) = (sh) - (dA)

(Perpendicular to plane)

Then, Magnitude of total resultant force Fr



Fr =] /hdA= ], 7(ysing)dA Where N =Y siné

= ysin@ [aydA <+<—| 15t moment of the area

- Related with the center of area
JaYdA=yA

whereyc: y coordinate of the center of area (Centroid)

c.f.Centeror 1st moment

[ xdm=MX¢ [ ydm =MY,
M & M (XC & YC: Center of Mass)
J.A XdA: XC & J.A b = yc (xc&yc: Center of Area)

Moment of inertia or 2nd moment
[r2dm=1 O
M (2nd momengdam’ass)
' ysz =ly gs\
A &

9
Then, | (;\,Q'

AN
AN

Fr=7vAy .Sin6 = (y h))A

Where}/ hC : Pressure at the centroid = (Pressure at the centroid) x Area

- Magnitude of a force on an INCLINED plane
- Dependent on / [, Area, and Depth of centroid

- Perpendicular to the surface (Direction)

i) Position of FR on y-axis ‘yR’ : y coordinate of the point of action of FR

Moment about x axis:

FrYr = (AYSin )y = [, ydF = [, ysin Oy*dA= ySip(0] , y*dA




2 l, | 2
~.h —M =“where * = ,[A y*dA :2" moment of area

® h,A  hA

. 2
or, by using the parallel-axis theorem, lx=lxc +AYc

| Sin %"

Jh.. =h+
C.P. Ah

(The centre of pressure below the centroid)

Solved Examples:

Q1. Arectangular tank 10 mx 5 m and 3.25 m deep is divided by a partition
wall parallel to the shorter wall of the tank. One of the compartments contains
water to a depth of 3.25 m and the other oil of specific gravity 0.85 to a depth
of 2 m. Find the resultant pressure on the partiti&n.

. \
Solution: N\
2
-3313131313132313333:33132%52{5- ”
fr el
o A A
-SSR0 A
e =820l N L
[T Py meer N [S6085
-yl - 3o Po e=2mo
S L Tk D ,,gr Yald
>
;X pgSeve
P9 Sy

The problem can be solved by considering hydrostatic pressure distribution
diagram for both water and oil as shown in Fig.

From hydrostatic law, the pressure intensity p at any depth ywis given by
P=Sopg Yyw

where pis the mass density of the liquid

Pressure force P = p x Area

Pw =1000 x 10 x 3.25x 5 x 3.25=528.125 kN ( =)



Acting at 3.25/ 3 m from the base

Po=0.85x 1000 x 10 x 2.0 x 5x 2.0 =200 kN ( «)

Acting at 2/ 3 m from the base.

Net Force P = Py — Po = 528.125 — 200.0 = 328.125 kN ( —)

Location:

Let Pact at a distance y from the base. Taking moments of Pw,Po, and P about
the base, we get

PXy=PuXyw/3—-PoXYo/3

328.125 y=528.125 x (3.25/ 3) =200 x (2/3) or y=1.337 m.

Q2. Determine the total force and location of centre of pressure for a circular
plate of 2 m dia immersed vertically in water with its top edge 1.0 m below the
water surface

Solution: R W e mam—- Y YR

A\ :

x D' gx 2 3142 S&° 10m
= = = 9. m 3 i =2
4 4 .j@“ y=em
Assume C‘?}
A\ g
p =1000 kg/ m*and g =10 m/ s 2 <K3 ~+20m| @
B

We know that the total pressure force is given by
P = SopgAy = 1000 x 10 x 3.142 x 2 = 62.83 kN

Centre of Pressure

The Centre of pressure is given by
I

h=y+_°
Ay
4 4

l,= 2R XL g 785 m*
4 4

. 0.785

_p, 2% o905 m
2+ 3 1a2x 2



Q.3 A large tank of sea water has a door in the side 1 m square. The top of the door is 5 m

below the free surface. The door is hinged on the bottom edge. Calculate the force required at

the top to keep it closed. The density of the sea water is 1033 kg/m3.

Solution: The total hydrostatic force F = Yeea  water N

Yeea water — 1033 x9.81=10133.73N/ m*
Given A=1m X 1m=1m?

1
h =5+ _=55m
¢ 2

F =10133.73X1X5.5 = 55735.5N

Acting at centre of pressure (Yc.p):

From the above he = 5.5m, A = 1m?

) BD® 1X1°
ﬂ - _——=o0083m O
€ xx 12 =

12 <
(IC)XX fQ&%
hep =h + Ah. =5.5 +<§$m:5.515m

Distance of Hydrostatic force (F) from ottom of the hinge = 6-5.515 = 0.48485m
The force ‘P’ required at the top of gate (1m from the hinge)
PX1 = FX0.48485 = 55735.5X0.48485
P =27023.4 N =27.023 kN
Q.4 Calculate the total hydrostatic force and location of centre of pressure for a circular plate of

2.5 m diameter immersed vertically in water with its top edge 1.5 m below the oil surface (Sp.

Gr.=0.9)

Solution:

A bl w2 =4.91m’
4 4

Assume

p = 0.9X1000=900 kg/ m®g=9.8 m/ s?

Yo =900 X 9.81 = 8829 N/ m?



he =2.75m

We know that the total pressure force is given by ‘F’
F = % Ahe=8829 x4.91 x 2 .75 = 238184 N = 238.184 kN
Centre of Pressure:

The Centre oz p)ressure is given by
I

C XX

hep =h.  +ah
tR* mx1.25°
l,= = =1.9175 m*
4 4
1.9175
=/. +—F = /.
hep =2.75 291X 275 2.892m

Q5 A square tank with 2 m sides and 1.5 m high contains water to a depth of 1

m and a liquid of specific gravity 0.8 on
the water to adepth of 0.5 m. Find the

magnitude and location of hydrostatic pressure

on one face of tank. ’35
Solution: M\}\S}
The problem can be solv«{ﬁ‘ by
considering hydrostatic pressure

distribution diagram for water as shown

in Fig. From hydrostatic law, the
pressure intensity p at any depth ywis given by p=Sopo g yw
where p is the mass density of the liquid

Pressure force P = p x Area

Pw=1000x 10 x 2.0x 1.5x 1.5 =45kN ( =)

cting at 1.5/ 3=0.5 m from the base



Q6 A trapezoidal channel 2m wide at the bottom and 1m deep has side slopes 1:1. Determine: i)
Total pressure ii) Centre of pressure, when it is full of water

Ans: Given B =2m Area of flow A = (B+sy)y = 3m?
The combined centroid will be located based on two triangular areas and one rectangle
(shown as G1, G2, G2)

9 _ Al X h1+ A2 X h2+ A3 X h3 combined
A+A+A; G = 4/9=0.444 m
The total area A = 3m? 2 (33m “)33‘“

Area of rectangle = 2 x1 = 2m?

1 G j I < O:;- 1m
Area of Triangle = — X1x1=0.5m 2 o |o0s5m )
2 "y

1m

i

( |_1 _| rl —| ie\ = (B+sy)y = 3m°
_ l(@x1)x05 x (Ix1) | x0.333+] _ x (1
i R 2> —

3

i) The total pressure P = ywxAx Y = 9810x3x0.444 = 13080N

. LN

ii) Centre of pressure = \\

)
The centroidal moment of Inertia of Rectangle atq%*ﬁiangle is
3 ?
lg; = 21 0.1667m* at 0.5m from water — surface
12 X
1x1° D

le: = 36 =0.028m“* at 0.333m from water — surface
- - 1y
h =Y+T-~-Eq.l
The momeXt of Inertia about combined centroid can_be obtained by using parallel axis theorem
_ 2 2 2 - ..
I = ((IGl)+ Ad )+ ((IGZ )+ Ad )+ ((IGZ)+ Ad ) (as both the triangles are similar)
| =(0.1667+0.00618)+2((1 )+ Ad?)
G G2 2 2

I, =(0.1667 +0.00618)+ 2(0.028 +0.0062) = 0.2408m"*
Substituting in Eqg.1, The centre of pressure from free surface of water
_
h=y+_2...Eq1l
Ay
0.2408

h=0. T 0.6252m
h=044d+ 2 0442



Q.7. A rectangular plate 1.5m x 3.0m is submerged in water and makes an angle of 60° with the
horizontal, the 1.5m sides being horizontal. Calculate the magnitude of the force on the plate and
the location of the point of application of the force, with reference to the top edge of the plate,

when the top edge of the plate is 1.2m below the water surface.
AV

7} I
Solution: 60°\"/

1.2 >
+1.5=1.386 + 1.5 = 2.886m = 1.2m -

A=3mX 1.5m=4.5m?
h=ysin 60°=2.886 sin 60° =2.499m

F = pghA = 1000 x 9.81x 2.499 x 3x1.5

F=109.92x10% N =109.92 kN
_15in?60°
hee =h Y

3 N
> = 2,886+ 0.260 = 3.146m
122886 ¥

From the top edge of the plate, a = 3.146 —1.386 = 1.760m
Q.8 A vertical bulkhead 4m wide divides a storage tank. On one side of the bulkhead petrol

. h.p, = 2.886 +

(S.G. =0.78) is stored to a depth of 2.1m and on the other side water is stored to a depth of 1.2m.

Determine the resultant force on the bulkhead and the position where it acts.

N Width = 4m
Petrol
Solution: h
F=pghA=pg - bh =; pgh?- b 2.1m \VA
2 7y
Fy=1x780x9.81x 2.12 x 4 N = 67.5 kN fo— 3 Lom
Fi / o \‘\ Wate
F=1x1000x9.81x1.22 x 4N=2825kN ¥/ /v oy x

0]
Hence the resultant force Xi X2

Fr=F,— F,= 67.5 - 28.25 = 39.25 kN



| h bh®
e ST 3T B 1ryz -
From the diagram, y = h — ?/3h = Y/3h
Hence, y1=2.1/3=0.7m and y2=12/3=0.4m
Taking moments about ‘O’, | Fr.yr=Fi.y1— F2. Y2
l.e. 39.25 x yr = 67.5 x 0.7 — 28.25 % 0.4 and hence yr = 0.916m

Q.9 A hinged, circular gate 750mm in diameter is used to close the opening in a sloping side of a

tank, as shown in the diagram in Error! Reference source not found.. The gate is kept closed
against water pressure partly by its own weight and partly by a weight on the lever arm. Find the
mass M required to allow the gate to begin to open when the water level is 500mm above the top
of the gate. The mass of the gate is 60 kg. (Neglect the weight of the lever arm.)

Solution:
500

sin 45°

a= =707mm

X = a + 375 =1082mm
h = x sin 45° = 765mm
F = pghA = 1000 x 9.81x 0.765x (7 0. 757@"

F = 3.315x10% N = 3.315kN 0

Ig nd* 4 _ d2
Xp=X+__=X+__

A =X+
X 64 nd? x 16 - x
0.752

Xp=1.082 +——— =1.082 +0.032 =1.114m
16x1.082

Taking moments about the hinge :
F(xp—a) = Mg x 0.8 + mgx 0.3750s 45° D ———
3315(1.114 — 0.707) = 9.81(Mx 0.8 + 60x 0.375c0s 450) )
3315(1.114 = 0.707) o 0 37606 45° l

9.81 mg
M x 0.8=137.5-16=121.5

M= 554
0.8

0.8m

A\ 4

A 4

Hinge
4

Mx 0.8=




Q.10. Arectangular plate 1 mx 3 mis immersed in water such that its upper and
lower edge is at depths 1.5 mand 3 mrespectively. Determine thetotal pressure
acting on the plate and locate it.

Solution:
A=1x3=3 m?

Yw = 9810 N/ m?

+1.
h= M+ LSM s e
: 2

We know that the total pressure force is given by
F = #vater ANc= 9810 x 3.0 X 2.25 = 66217.5 N
Sine=15/3=05

0=30° . {\
N\
Centre of Pressure; The Centre of pressure is give&@y‘
( ) bd® 1x33 ,‘;\\
- T =2.25m &
Cxx 1212 X
hc: 2.25m <&}

(1) sin%
CC, =hg, =h, +—ah

c

2.25 Sin*30°

3 X 2.25
CC,=he,=2.33333m

CC,=h., =225 +



Q 11. A circular plate 2.5m diameter is immersed in water, its greatest and least depth below the
free surface being 3m and 1m respectively. Find
(1) The total pressure on one face of the plate and (ii) Position of centre of pressure

Ans leanj\r 2.5m,

=Sin*
0= 53.13"
h=1+1=2m

A=Zd? =% 55 4 900m?
4 4

L= T g Fox(25) =1017m’
° 64 64

F = ywA h = 9.81x4.909x2 = 96.31 kN

o &N\
B I 5 o N\
h —h+ I x Sln_H P 1.917x Sin“53.13 ‘(}
P Axh 4.909 x 2 g\\
h.,=2.125m
X2,
4,

Q.12. A 2m wide and 3m deep rectan%ﬁé’r plane surface lies in water in such a way the top of
and bottom edges are at a distance of 1.5m and 3m respectively from the surface. Determine the
hydrostatic force and centre of pressure

Ans: Given A =3m x 2m = 6m?,

3
= 23 _45m!
12

W.L.
hvd

Hydrostatic force

P=y,xAx
P =9.81x6x ?3”5\

)
P =132.435 kN

sin 0= 3'03_1'5 =05

0=30°

Im

3m



The centre of Er%SSU re
In

Q.13 A rectangular plate 2 m x 3 m is immersed in oil of specific gravity 0.85
such that its ends are at depths 1.5 m and 3 m respectively. Determine the total

pressure acting on the plate and locate it.

Solution:
A=2x3=6 m?
So=0.85
Assume
p=1000 kg/ m?
g=10m/s?

y =GG:

h = CC;
Sin#=15/3=05
6=30°

GGy = G1AL + A1G = G1A1 + AG Sin @
GG1=15+(3/2)Sin30=2.25m

We know that the total pressure force is given by

P =SopgA y=0.85x1000 x 10 x 6 x 2.25 =114.75 kN

Centre of Pressure

The Centre of pressure is given by



| = bdg':2><33

; =45m’
12 12

— 45 .,
= sin“30=2.33m
h=2.25+ 6x 2.05

X Z.

Q.14. A Circular plate with a concentric hole is immersed in water in such a
way that its greatest and least depth below water surface are 4 m and 1.5 m
respectively. Determine the total pressure on the plate and locate it if the

diameter of the plate and hole are 3mand 1.5 m respectively.

Solution:

Assume
p =1000 kg/ m*and g =10 m/ s 2

A=%(D?-d?)=" (3¢ -15%)=5.3014 m’
4 4

S/ =G0y

_ Ch
h = CC; \?}
Sin #=2.5/3=0.833 and @ = 3@\0\0
GG1 =G1A1 + A1G =G1A1 + AG Sin @
GG1=1.5+(3/2)0.833=2.75m

We know that the total pressure force is given by

P = SopgAy = 1000 x 10 x5.3014 x 2.75 = 144.7885 kN

Centre of Pressure

The Centre of pressure is given by

h=y+_°_ sin2g
Ay
| =Z(R*-r*)=*[L5'-0.75*)=3.728m*
v 4 4
h=2.7 3728 Gn230-2.814m

+—
5.3014 x2.75



Q.15 . Acircular plate of dia 1.5 mis immersed in a liquid of relative density of
0.8 with its plane making an angle of 30 ° with the horizontal. The centre of the
plate is at a depth of 1.5 m below the free surface. Calculate the total force on

one side of the plate and location of centre of pressure.

Solution:
Assume
p=1000kg/mPandg=10m/s?
S0 =10.80
A= ”fz _LS ) 267 me
y =GG;
h = CC,
6=30°
GG1 = G1A1 + A1G = G1A; + AG Sin 6 O
GG1=15+(3/2)0833=275m \,\@Qf’
We know that the total pressure force is given
P = SopgAy = 0.8 x 1000 x 10 x 1.767 X = 38.874 kN
Centre of Pressure ¢
The Centre of pressure is given by
h=y +I—g_ siné
Ay
l, = ”54 S 2'754 =0.2485 m"*
h=2754+ _ 02485 2302763 m

' 1.767 x2.75



Q.16 A vertical gate closes a circular tunnel of 5 m diameter running full of
water, the pressure at the bottom of the gate is 0.5 MPa. Determine the
hydrostatic force and the position of centre of pressure.

Solution: Assume p = 1000 kg/ m®*and g = 10 m/ s 2

50m

Pressure intensity at the bottom of the gate is = p =Sopgy
Where y is the depth of point from the free surface.
0.5x10%=1000x 10 xy

¢ {\
y=50m 0\
Hence the free surface of water is at 50 m from tiké\(béttom of the gate
, D%
D" gx% ) 0
A= — = =19.635m x\“\}
4 4 O
'\

y=0G=50-25=475m
We know that the total pressure force is given by
P=SopgA y=1000 x 10 x 19.635 x 47.5 =9326.625 kN

Centre of Pressure

The Centre of pressure is given by
I

h=y+_°

Ay

4 4
Ig= 7R _ X 2.5 _30.68 m*

4
_ 30.68
_ _ 9088 47533m

N=47.5% 19 635x 475

i.e. 50.0 — 47.533 = 2.677 m from the bottom of the gate or tunnel.



PROPERTIES OF PLANE SECTIONS

Mome nt of Product of
Geometry Centroid Imertia Imertia Area
Ixx Ixy
= A2 -
x L 2./2 0 b-L
_ ? 12
| b 1
T ar? 2
= 0,0 0 TR
J_ 4
bL’ 2 .
L V I/ ~ b“L b-L
3. 73 36 72 2
e I
4R , T 8 n R’
0,a=— R ———o\ 0
3T 8§ In \ 2
1 |—R —_— £.*
's\.A}
,’ /

5 1
- L “];isg b(b — 2S)L2 1
L a =" "\:v.'“j_ _b- L
3 X 36 72 2
—
R

| b

4R T4 , 1 4| , TR’
a=— —— — R -——|rR
3T 16 9nm 8 9m 4
h(b+2b,) |b'(b +4bb +b )
a — 1 1 1 0 (b + b 1) —
3(btb) 36(b+b) 2
Fluid Specific Weight
1bf/fi3 N /m? 1bf /83 N /m’
AT 0752 11.8 Seawater 64.0 10,050
Oil 573 8,996 Glycerin 78.7 12,360
Water 62.4 9,790 Mercury 846. 133,100
Ethy1 492 7,133 Carbon 991 15,570




2.4 Hydrostatic Forces on Curved Surfaces

Since this class of surface is curved, the direction
of the force is different at each location on the
surface. Therefore, we will evaluate the x and y

components of net hydrostatic force separately.

Consider curved surface, a-b. Force balances
in X & y directions yield

Fn = Fn

FV = Wair +W1 + W2

From this force balance, the basic rules for determining the horizontal and vertical component of
7
forces on a curved surface in a static fluid can be summslﬁed as follows:

&
Horizontal Component, Fn t)s‘\\{”
The horizontal component of force on a cqr\\@(cpsurface equals the force on the plane area formed

by the projection of the curved surfacegéfé a vertical plane normal to the component.

The horizontal force will act through the c.p. I N
(not the centroid) of the projected area. h a’l— a
. @ |_Projected vertical
from the Diagram: l plane
All elements of the analysis are performed with the y—“| Curved
_-’cg icp surface

vertical plane. The original curved surface is Fr
important only as it is used to define the projected

vertical plane.



Therefore, to determine the horizontal component of force on a curved surface in a hydrostatic
fluid:

Vertical Component - Fv

The vertical component of force on a curved surface equals the weight of the effective column of
fluid necessary to cause the pressure on the surface.

The use of the words effective column of fluid is important in that there may not always actually
be fluid directly above the surface. (See graphics below)

This effective column of fluid is specified by identifying the column of fluid that would be
required to cause the pressure at each location on the surface.

Thus, to identify the Effective Volume - Vegr:

Fluid above the surface

No fluid actually above surface
L2F)
R={QF)+(F) 0 =tan LZ—FJ




Q17 Find the horizontal and vertical component of force and its point of
application due to water per meter length of the gate AB having a quadrant
shape of radius 2.5 m shown in Fig. Find also the resultant force in magnitude
and direction.

Solution:

Assume
p =1000 kg/ m® and g = 9.81 m/ s?
R =2.5m, Width of gate =1 m

Horizontal force Fy

Fn = Force onthe projected area of the

curved surface on the vertical plane

= Force onBC
A=25x1=2.5m
2.5
y= =1.25m ~\~§\
2 SO
F = #vater ANc= 9810 x 2.5 x 1.25 = 30656 N @656kN
2
This will act at a distance h=2x zsxérhfrom the free surface of liquid AC
/\
\

Vertical Force Fy

Fy=  Weight of water (imaginary) supported by AB
=  %water X Area of ACBx Length ofgate

mx 2.5
4

9810 x x1= 48154N=48.154kN

— 4x25
This will act at a distance The X= BT 1.061 m from CB

Resultant force E
X

- 4

F= JF2+F2 =/30.656° + 48.154? = 57.084 kNand its a

inclination is given by v

o Fy 48.154
o=tan* — =tan! 30.656 =57.51°

Fx



Q18 Find the horizontal and vertical component of force and its point of
application due to water per meter length of the gate AB having a quadrant
shape of radius 2 m shown in Fig. Find also the resultant force in magnitude and
direction.

Solution:

Assume
p=1000 kg/ m¥and g=10m/s?
R =2m, Width of gate =1m

Horizontal force Fy

Fx = Force on the projected area of the curved

surface on the vertical plane

= ForceonBO=P=S,pgAy

A=2x1=2m?
)_/zgzlm ~\»§\
2 "\C}‘
Fy = 1000 x 10 X 2 x 1 = 20 kN &\\
4 €A

This will act at adistance h =—2 2= \g‘)ffom the free surface of liquid
O

Vertical Force Fy
Fy=  Weight of water (imaginary) supported by AB
= Sopg x Area of AOBx Length of gate

7% 2
= 1000 x10 x x1=31.416 kN

4x2
This will act at a distance X=___=0.848mfrom OB

3
Resultant force F=./F7+F?=+20°+31.426" =37.25 Fx
kNand its inclination is given by 9 |

Fr| F

a= tan’1|r F,:v—||: tanlli_Pl'ggBWHz 57.527°
L1 -



Q19. Acylinder holds water in achannel as shown in Fig. Determine the
weight of 1 m length of the cylinder.

Solution: C//- Ra(_JIius o_f
) i~ cylinder=2 m
Radius of Cylinder = R = 2m :
Length of cylinder =1 m E,—
Weight of Cylinder = W Water ina

Horizontal force exerted by water= F  channel
Fx = Force on vertical area BOC
= SopgAy=1000 x 10 x (4x 1)x (2/ 2) =40 kN ( —)

The vertical force exerted by water= Fy =Weight of water enclosed in BDCOB

(7% 2%)
Fy = Sopg | |xL=1000x10x3.142=31.416kN.( 7)
\ J RN
el
g\,\&j

For equilibrium of the cylinder the weﬁ%t of the cylinder must be equal to the
force exerted by the water on the cy@}}fer. Hence, the weight of the cylinder is
31.416 kN per meter length .

Q20. Fig. shows the cross section of a tank full of water under pressure. The
length of the tank is 2 m. An empty cylinder lies along the length of the tank on
one of its corner as shown. Find the resultant force acting on the curved surface

of the cylinder.

Solution:

R=1m

L=2m

p=,ppgh =1000 x 10x h = 20 x 10®
h=2m

For this pressure, the free surface should be 2 m above A




Horizontal component of force Fx
Fx = SopgA'y

A=15x20=3m?
1.5
+

2
Fx = 1000 x 10 x 3.0x 2.75 = 82.5 kN ( —)

y=2 =2.75m

The vertical force exerted by water = Fy
Fy = Weight of water enclosed in ABC
= Weight of water enclosed in CODEABC
= Weight of water enclosed in (CODFBC - AEFB)

But Weight of water enclosed in CODFBC

= Weight of water enclosed in ( COB+ODFBO)
[ ZR? ] ~F\¢(x<12 ]
= pg\T+ BOxOD |x2 leOOx]{Q 3 +1x 2.5J><2 =65.708 kN
] @
Weight of water in AEFB = Sqpg[ Area of AIEE%]X 2.0
= Sopg[Area of(AEFG+AGBt§§AT—IB]x 2.0
sin @ = AH/ AO = 0.5/ 1.0 = 0.5.+.0 = 30 °
BH =BO-HO=10-A0cos6=1.0-1xcos 30°=0.134
Area ABH = Area ABO —Area AHO

30 AHxHO _ rx1?x 1 _05x 0.866:0.0453

360 2.0 12 2.0
..Weight of water in AEFB = 1000x10[AE XAG+AG xAH-0.0453]x 0.2
= 1000x10[2.0 x0.134+0.134 x0.5-.0453] x 0.2
=5794 N
Fy =65708 — 5794 = 59914 N (Ans)

:72;R2><




Q.21. Calculate the resultant water pressure on the Tainter gate of radius 8 m

and width unity as shown in Fig.

Solution:
Horizontal component of force Fx R=8
. c. D 0

FX: SopgAy - 30°
DB=0Bsin30=8x05=4.0m B
A=4x1.0=4m?
VzizZm

2

The Horizontal force exerted by water = Fx

Fx = 1000 x 10 x 4.0x 2.0 = 80.0 kN ( —)

.\.g\
The vertical force exerted by water = Fy K74 N
Fy = Weight of water enclosed in CDBG&\K

= Weight of water enclosed in (C@ﬁ?BC - DOB)
_ [, 30 BDxDO| e [ ., 1
=Sopg| AR*x T - = 3000 x10' 7x 82x ~ 4.0 x 8.8c0s30]

| - — N\ _ - 7 '=15.13 kN

[ 360 59 | ! 12 20 |

Resultant force  F= \[F2+F; =+/80°+15.13° =81.418 kN Fx

kN and its inclination is given by F Fa |
F y

a=tan™ Fy—‘ = tan‘lﬁég']Hﬂ =10.71° v

5T —



Q22 Length of a Tainter gate perpendicular to paper is 0.50m. Find:
i) Total horizontal thrust of water ongate.
ii) Total vertical component of water pressure against gate.
iil) Resultant water pressure on gate and its inclination with horizontal.

Ans: Given L=0.5m,
AD =BC =3m, yW =9.81 kN/ m3

(i) Total horizontal thrust of water on
gate

Fh=yWxAxh =

Fh =9.81x (3.0%x0.5) x i

N |

Fh =22.07 kN — Rightward

Acting at )
| x Sin?90°

G

Nep. =+ S pr—

05x3° )
- 12 |xSin 90°
h, =15+ =1.5+0.5=2.0m

P (3.0x0.5)x1.5




(i) Total vertical component of water pressure against gate = upward thrust due
area ABC

Upward thrust due area ABC = Area AOC - AOBC

2
nx R _EXOBXBC

Area ABC = 12 2

nx6’ 1. 3cos30°x3
Area ABC = 12 2
Area ABC = 1.636 m2

Fv=yW x Area ABC x L
Fv=9.81 x 1.636 x 0.5 = 8.024 kN T upward

(i) Resultant water pressure on gate and its inclination with horizontal

R=F2+F =/(22.07) +(8.024)* =23.48 kN

« &\
0= tan‘1|( 8'024? — 0.3637 0\\

\ 22,07 ) K
N

Inclination 0 =20°
(\)../
O
Q23. A3.6 mx1.5 mwide rectangﬁlar gate MN is vertical and is hinged at

point 150 mm below the centre of gravity of the gate. The total depth of water is

6 m. What horizontal force must be applied at R Ty v
the bottom of the gate to keep the gate closed? [
Solution:
Total pressure acting on the gate is Fx L ;
Fx = SopgAy 6m f

= 1000 x 10 x (3.6 x 1.5) x (6-3.6/2)

= 226.8kN 5o
Acting at Fx f _____

I 0.15m

R=y+_%

Ay F



_ bd® _15x36

Iy =5.832m*
12 12
- 5.832
- =4.457 m
N=42+5 1x42

Let F be the force applied at the bottom of the gate required to retain the gate in equilibrium.
From the conditions of equilibrium, taking moments about the hinge, we get

F (1.8 — 0.15) = Fx [4.457-(4.2+0.15)]

F = 14.707 kN (Ans).

Q.24 A culvert in the side of a reservoir is closed by a vertical rectangular gate 2m wide
and 1m deep as shown in figure. The gate is hinged about a horizontal axis which passes
through the centre of the gate. The free surface of water in the reservoir is 2.5 m above the
axis of the hinge. The density of water is 1000 kg/m3. Assuming that the hinges are frictionless

and that the culvert is open to atmosphere, determine

. ) o N\
(i) The force acting on the gate when closed N\

O surface
due to the pressure of water. '\’v 3

(if) The moment to be applied about the hinge,;;;’>‘

2m

axis to open the gate. C‘}\.V

Solution: (i) The total hydrostatic force

F=vA h,

=1000 x9.81=9810 N/m® i 5 o

’Y water

Given A=1m X 2m=2m?

1
h =2+ _ =2.5m
¢ 2

F =9810X2X2.5 = 49050N

(i) The moment applied about hinge axis to open the gate is say ‘M’

The centre of pressure (hc_p)i



From the above he = 2.5m, A = 2m?
) BD® 2x1°

___——=0.167m'
Cxx 12 - 12
h., =h_+ (I) =2.5+ M—253334m
cP ° Ah, 2X2.5 '
Distance of Hydrostatic force (F) from the water surface = 2.5334m.
Distance of hinge from free surface =2.5m

Distance between hinge and centre of pressure of force ‘F’ =2.5334 m - 2.5m = 0.0334m
Taking moment about Hinge to open the gate ‘M’ =F X 0.0334 =49050 N X 0.0334 m
The moment applied about hinge axis to open the gate ‘M’ = 1638.27 N-m

Q.25 Figure shows a rectangular flash board AB which |s 4.5m high and is pivoted at C. What
must be the maximum height of C above B so that thg: ﬂ@sh board will be on the verge of tipping
when water surface is at A? Also determine if tm(\bwot of the flash board is at a height h =1.5m,

N

the reactions at B and C when the water surfacs. IS 4m above B.

Ans: ~
(i) The flash board would tip about the hinge point
‘C’ when the line of action of resultant ‘R’

pressure force ‘F’ lies from C to A anywhere on the
board.

The limiting condition being the situation when the
resultant force ‘F’ passes through ‘C’

Van Pivot

The resultant force ’F’ also passes through the

centroid of the pressure diagram and the centre lies

at];xAB—45—15

3 3
Hence the maximum height of ‘C’ from Y. ki
‘B’ = (4.5m-3.0m) =1.5m (from bottom) T R
(if) The pivot of the flash board is at a height h =1.5m from point B, the reactions at B and

C when the water surface is 4m above B.

ﬁ_40_2m

2




Hydrostatic force P = pgAh = 1000x9.81x(4.0x1.0)x2=78.48 kN acting at

3c:A2 o
0 1x(40)°Sin"90

) = 2.67m from free water surfcae
40x20

h

Or h = (4.0-2.67) = 1.33m from bottom

A
Let Ra and Rg be the reaction. T % Ra
2.5m
Ra +78.48 =Rp
by taking moment about pivot ‘C’
- C
Ra x2.5 + 78.48%0.17 = Rgx1.5 0.17m
78.48 kKN
On solving Ra =104.38kN  Rg = 182.86 kN LSiiIL]
<—R;p
B
N
@ Y

2.5 Gravity Dam: K72

A gravity dam is a dam constructed from conéfete or stone masonry and designed to hold back
water by primarily utilizing the weight of@“_e material alone to resist the horizontal pressure of
water pushing against it. Gravity dams@% designed so that each section of the dam is stable,
independent of any other dam section

Gravity dams generally require stiff rock foundations of high bearing strength (slightly
weathered to fresh); although they have been built on soil foundations in rare cases. The bearing
strength of the foundation limits the allowable position of the resultant which influences the
overall stability. Also, the stiff nature of the gravity dam structure is unforgiving to differential
foundation settlement, which can induce cracking of the dam structure.

Gravity dams provide some advantages over embankment dams. The main advantage is that they
can tolerate minor over-topping flows as the concrete is resistant to scouring. This reduces the
requirements for a cofferdam during construction and the sizing of the spillway. Large
overtopping flows are still a problem, as they can scour the foundations if not accounted for in
the design. A disadvantage of gravity dams is that due to their large footprint, they are
susceptible to uplift pressures which act as a de-stabilising force. Uplift pressures (buoyancy) can
be reduced by internal and foundation drainage systems which reduces the pressures.



251 Forces Acting on Gravity Dams:
Forces that act on a gravity dam (Fig.1) are due to:

e Water Pressure(Hydrostatic)
e Uplift Pressure

o Earthquake Acceleration

o Silt Pressure

o Wave Pressure

o lIce Pressure

>> Self Weight (W) counters the forces listed above.

Wave Pressure Diagram

S
>Q) ’ Tl Warer
./ Pressure Nagram

-A

P ey H

Drm'r:rﬂ_::r:l W -

- wglfery ’
JE——N = .
o l Heel A Toe

14
Sele Hytradynamic  Head Water T I : | g l\ I T H,
Pressure  Pressire Pressure 7Hi
Piagram  Diagram fMiagram l L'plift Pressure
Diggram

H:
2

4

Fig. Forces on Gravity Dams

e Force due to hydrostatic Pressure:

Force due to hydrostatic Pressure is the major external force on a gravity dam. The intensity of
pressure from zero at the water surface to the maximum (yH) at the base. The force due to this
pressure is given by yH2, acting at H/3 from the base. In Fig.1, the forces P1 and P2 are due to
hydrostatic pressure acting on the upstream and the downstream sides respectively. These are
horizontal components of the hydrostatic force due to head water (upstream side) and tail water
(downstream side) of the dam respectively.



The forces marked as P3 and P4 are the weight of water held over the inclined faces of the dam
on the upstream slope and downstream slope respectively. These are the respective vertical
components of the hydrostatic force on the two faces mentioned.

e Force due to Uplift Pressure:

Water that seeps through the pores, cracks and fissures of the foundation material and water that
seeps through the body of the dam to the bottom through the joints between the body of the dam
and the foundation at the base, exert an uplift pressure on the base of the dam. The force (U) due
to this acts against the weight of the dam and thus contributes to destabilizing the dam.

According to the recommendation of the United States Bureau of Reclamation (USBR), the
uplift pressure intensities at the heel (upstream end) and the toe (downstream end) are taken to be
equal to the respective hydrostatic pressures. A linear variation of the uplift pressure is often
assumed between the heel and the toe. Drainage galleries can be provided (Fig.) to relieve the
uplift pressure. In such a case, the uplift pressure diagram gets modified as shown in Fig.

e Earthquake Forces:

N
The effect of an earthquake is perceived as impartidgs an acceleration to the foundations of the
dam in the direction in which the wave travels @\ at moment. It can be viewed (resolved) as
horizontal and vertical components of the rangam acceleration.

<
N
<\0



2.6 Lock Gates
Whenever a dam or a weir is constructed across a river or canal, the water levels on both the
sides of the dam will be different. If it is desired to have navigation or boating in such a river or a
canal, then a chamber, known as lock, is constructed between these two different water levels.
Two sets of gates (one on the upstream side and the other on downstream side of the dam) are
provided as shown in fig - 1.

Fig-1 : Loc {@;e

(Source: httD://WWW.codecoqs.com/librarv/em?éerinq/fluid mechanics/water_pressure/lock-

gate.php) XX
®
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B
Fig-2(a) : Plan of lock gate Fig-2(b) : Elevation of lock gate

Now consider a set of lock gates ABand BC hinged at the top and bottom
at A and C respectively as shown in fig - 2(a). These gates will be held in contact at b by the
water pressure, the water level being higher on the left hand side of the gates as shown in fig -

2(b).


http://www.codecogs.com/library/engineering/fluid_mechanics/water_pressure/lock-gate.php
http://www.codecogs.com/library/engineering/fluid_mechanics/water_pressure/lock-gate.php

Let,

= P = Water pressure on the gate AB or BC acting at right angles on it

= F = Force exerted by the gate BC acting normally to the contact surface of the two
gates AB and BC (also known as reaction between the two gates), and

= R =Reaction at the upper and lower hinge

Since the gate AB is in equilibrium, under the action of the above three forces, therefore they
will meet at one point. Let,P and F meet at O, then R must pass through this point.

Let, & = Inclination of the lock gate with the normal to the walls of the lock.

From the geometry of the figure ABO, we find that it is an isosceles triangle having its
angles - OBA and .~ OAB both equal to «.

Hecosa = F cos o

and now resolving the force at right angles to AB
F=FHsina + Fsina = 2K sin «

2 H_l}ljl & %\\
S = — &

2 sin o & (2)
Now let us consider the water pressure on the té)&(\olnd bottom hinges of the gate, Let,

{n

7y

o
= H1 = Height of water to the left side@’%&ﬁe gate.
= Al = Wetted area (of one of the ga‘%&) on left side of the gate
= P1 =Total pressure of the water on the left side of the gate
= H2, A2, P2 = Corresponding values for right side on the gate
= RT = Reaction of the top hinge, and
= RB = Reaction of bottom hinge

Since the total reaction (R) will be shared by the two hinges (RT), therefore

R=HRr+ Rg (3)
and total pressure on the lock gate,
P=wAx o W
w.
:>P1=H'_4.1'><—1= L1
2 2

1 As He

Similarly, /1 = =5

Since the directions of P1 and P2 are in the opposite direction, therefore the resultant pressure,
P=P -PF



We know that the pressure P1 will act through its center of pressure, which is at a height

H
of 3 from the bottom of the gate. Similarly, the pressure P2 will also act through its center of

pressure which is also at a height of 2~ from the bottom of the gate.
A little consideration will show, that half of the resultant pressure (i.e., P1 - P2 or P)will be

resisted by the hinges of one lock gate (as the other half will be resisted by the other lock gates).

P Hy, P Ha,
Rrsina x h = I:—l ¥ —1_] — |:_2 o —2_]
2 3 2 3 4)

where h is the distance between the two hinges.

Also resolving the forces horizontally,
Py —F = Rgsinoa + Rrsina (5)

From equations (4) and (5) the values of RB and RT may be found out.

Q. 26 Two lock gates of 7.5m height are provided in a canal of 16m width meeting at an angle
of 120°.Calculate the force acting on each gate, when the depth of water on upstream side is 5m.

Given,

= Height of lock gates = 7.5m
=  Width of lock gates = 16m
= Inclination of gates = 120°”
= H=5m

From the geometry of the lock gate, we find that inclination of the lock gates with the walls,

P 1) L

and
) 16,/2 5
width of each gate = teen = coe30® = 9.24 m

. - 3
. Wetted area of each gate, A = 0 % 9.24 = 46.2m* and force acting on each gate,


http://www.codecogs.com/library/engineering/fluid_mechanics/water_pressure/lock-gate.php#eq4
http://www.codecogs.com/library/engineering/fluid_mechanics/water_pressure/lock-gate.php#eq5

= 1133 KN

]
>
[ kg

P=wAx = 9.81 x 46.:

ra |
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2.7 Methods of Describing FIy:f&i‘ Motion:

Fluid kinematics refers to the features\of a fluid in motion. It only deals with the motion of fluid
particles without taking into account the forces causing the motion. Considerations of velocity,
acceleration, flow rate, nature of flow and flow visualization are taken up under fluid kinematics.
A fluid motion can be analyzed by one of the two alternative approaches, called
Lagrangian and Eulerian.
In Lagrangian approach, a particle or a fluid element is identified and followed during the
course of its motion with time as demonstrated in

£ (5 © E © A OE
= [] [] o
, A @

A O




Fig. Lagrangian Approach ( Study of each particle with time)
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Fig. Eulerian Approach ( Study at fixed station in space)

Example: To know the attributes of a vehicle to be ﬁhrchased, you can follow the specific
vehicle in the traffic flow all along its path over a p&rj‘fcvd of time.
Difficulty in tracing a fluid particle (s) make it nearly impossible to apply the Lagrangian
approach. The alternative approach, called Eéferian approach consists of observing the fluid by
setting up fixed stations (sections) in the ( field (Fig.).

Motion of the fluid is specified ﬁy velocity components as functions of space and time.
This is considerably easier than the previous approach and is followed in Fluid Mechanics.
Example: Observing the variation of flow properties in a channel like velocity, depth etc, at a
section.

2.8 Velocity
Velocity of a fluid along any direction can be defined as the rate of change of displacement of
the fluid along that direction.
u= I
dt
Where dx is the distance traveled by the fluid in time dt.
Velocity of a fluid element is a vector, which is a function of space and time.
Let V be the resultant velocity of a fluid along any direction and u, v and w be the velocity

components in X, y and z-directions respectively.



Mathematically the velocity components can be written as

u=~f(xvyzt)

v=~Ff(xYy1zt)

w=Ff(xYy,zt)
and  V=ui+vj+wk= V|5 JuZ+ v+ w?
Whereu:d_x;v:dy W—dz

. dt dt
2.9 Acceleration
Acceleration of a fluid element along any direction can be defined as the rate of change of
velocity of the fluid along that direction.
If ax , ay and a; are the components of acceleration along-x, y and z- directions respectively, they

can be mathematically written as

du
a, = —
dt O
But u=f(x, y, z, t) and hence by chain rule, we car{k;\iﬁj&ite,
oudx oudy oudz oJu t;‘\\
a - udx, Qudy oudz, u of
oxdt oydt ozdt 6t\~§;'
Similarly {\0
ovdx ovdy ovdz ov
y Tt ——+—
oxdt oydt ozdt ot
and _owdx owdy owdz oW

%7 X oy dt oz dt ot

But u:g( ;v:dy,W:dZ

dt  dt  dt
Hence

Local accln
Convective accln

ou ou ou ou

a=U 4V —+ W —+ —

d N M Vv Total Acceleration

a=
U X oy oz ot



If A is the resultant acceleration vector, it is given by
For steady flow, the local acceleration will be zero

Problems

2.10 Types of fluid flow

2101 Steady and unsteady flows:
A flow is said to be steady if the properties (P) of the fluid_and;floy ?Igr nof, change with time (t)
X y z

at any section or point in a fluid flow. I
la|= \a/+a +a,

°(P)=0
ot
A flow is said to be unsteady if the properties (P) of the fluid and flow change with time (t) at

any section or point in a fluid flow.

E(P) #0 O
ot 0\
Example: Flow observed at a dam section dursi\r@;réiny season, wherein, there will be lot of

inflow with which the flow properties like d@,ﬁﬁh velocity etc.. will change at the dam section
over a period of time representing it as ur@éol)dy flow.
2.10.2. Uniform and non- uniform flows:

A flow is said to be uniform if the properties (P) of the fluid and flow do not change (with

direction) over a length of flow considered along the flow at any instant.
(p) =0
OX

A flow is said to be non-uniform if the properties (P) of the fluid and flow change (with

direction) over a length of flow considered along the flow at any instant.

E(P) #0
OX



Example Flow observed at any instant, at the dam section during rainy season, wherein, the flow
varies from the top of the overflow section to the foot of the dam and the flow properties like
depth, velocity etc., will change at the dam section at any instant between two sections,

representing it as non-uniform flow.

® ©
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N
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Fig. Different types of fluid flow

Consider a fluid flow as shown above in a channel. Tmi\flow is said to be steady at sections 1
and 2 as the flow does not change with respect to k[rjﬁ%f at the respective sections (y1=y> and vi1 =
V2).. t>$<\

The flow between sections 1 and 2 is sa{"gi’to be uniform as the properties does not change
between the sections at any instant (y13y> a}lndvl = Vo).

The flow between sections 2 and 3 is said to be non-uniform flow as the properties vary over the

length between the sections.

Non-uniform flow can be further classified as Gradually varied flow and Rapidly varied flow. As
the name itself indicates, Gradually varied flow is a non-uniform flow wherein the flow/fluid
properties vary gradually over a long length (Example between sections 2 and 3).

Rapidly varied flow is a non-uniform flow wherein the flow/fluid properties vary rapidly within

a very short distance. (Example between sections 4 and 5).

Combination of steady and unsteady flows and uniform and non-uniform flows can be classified
as steady-uniform flow (Sections 1 and 2), unsteady-uniform flow, steady-non-uniform flow

(Sections 2 and 3) and unsteady-non-uniform flow (Sections 4 and 5).



2.10.3 One, Two and Three Dimensional flows

Flow is said to be one-dimensional if the properties vary only along one axis / direction and will
be constant with respect to other two directions of a three-dimensional axis system.

Flow is said to be two-dimensional if the properties vary only along two axes / directions and
will be constant with respect to other direction of a three-dimensional axis system.

Flow is said to be three-dimensional if the properties vary along all the axes / directions of a

three-dimensional axis system.
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Fig. a) One- dimensional flow Fig. b) Two-dimensional flow
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Fig. ¢) Three-dimensional flow
2.10.4. Description of flow pattern

Laminar and Turbulent flows:



When the flow occurs like sheets or laminates and the fluid elements flowing in a layer does not
mix with other layers, then the flow is said to be laminar when the Reynolds number (Re) for the
flow will be less than 2000.
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Fig. 5Laminar flow
When the flow velocity increases, the sheet like flow ge{s\mixes with other layer and the flow of
fluid elements become random causing turbulence, &here will be eddy currents generated and
flow reversal takes place. This flow is said togs:\Tl;rbulent when the Reynolds number for the
flow will be greater than 4000. For flows W'@%I‘Qeynolds number between 2000 to 4000 is said to

N\

be transition flow. {\Q
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Fig. Compressible and Incompressible flows:

Flow is said to be Incompressible if the fluid density does not change (constant) along the flow

direction and is Compressible if the fluid density varies along the flow direction

p= Constant (incompressible) and p# Constant (compressible)



2.10.5 Path line, Streamline, Streak line and Stream tube:
Path Line: It is the path traced by a fluid particle over a period of time during its motion along
the fluid flow.

t=0

Fig. 7 Path line

Example Path traced by an ant coming out from its dwelling

Stream Lines
It is an imaginary line such that when a tangent is drawn at any point it gives the velocity of the
fluid particle at that point and at that instant.
N\
\)
i N
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Fig. Stream lines
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Example Path traced by the flow when an obstruction like a sphere or a stick is kept during its

motion. The flow breaks up before the obstruction and joins after it crosses it.

Streak lines:
It is that imaginary line that connects all the fluid particles that has gone through a point/section

over a period of time in a fluid motion.



Fig. Streak lines

Stream tube:
It is an imaginary tube formed by stream line on its surface such that the flow only enters the
tube from one side and leaves it on the other side only. No flow takes place across the stream

tube. This concept will help in the analysis of fluid motion.

Stream lines

Fig. Stream tube

2.10.6. Rotational and Irrotational flows:
Flow is said to be Rotational if the fluid elements does not rotate about their own axis as they
move along the flow and is Rotational if the fluid elements rotate along their axis as they move

along the flow diregtion
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Fig. a) Irrotational flow
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We know that for an irrotational two dimensional fluid flow, the rotational fluid elements about z

axis must be zero.
_ 1| ov B ou
2|3x By

Substituting for u and v in terms of velocity potential-¢, we get

[ar a¢\ ar_a¢ﬂ 1 ¢ ¢ |

| =0 Laplace Eg.
L L ) \ )J L@XGy GyGXJ

Hence for the flow to be irrotational, the second partial derivative of Velocity potential -¢p must

be zero. This is true only when ¢ is a continuous function and exists.

Thus the properties of a velocity potential are:
7
1. If the velocity potential ¢ exists, then the flow s’hbﬁld be irrotational
2. If the velocity potential ¢ satisfies the LW Equatlon then it represents a possible case

of a fluid flow. 6,‘
Similarly for stream function y AC\}\'&)
_1lév éu h
' 2lax By

Substituting for u and v in terms of stream function-y, we get

ofoy) o owll=1ldy +dy |
[ax%@ ( @;‘{] 2 oxX2 W+ J 0 Laplace Eg.
LU )Y L

The above equation is known as Laplace equation iny

=2

Thus the properties of a Stream function are:
1. If the Stream function y exists, then it represents a possible case of a fluid flow.
2. Ifthe Stream function ysatisfies the Laplace Equation, then the flow should be

irrotational.

2.10.7 Basic principles of fluid flow:



The derivation is based on the concept of Law of conservation of mass.
Continuity Equation
Statement: The flow of fluid in a continuous flow across a section is always a constant. Consider

an enlarging section in a fluid flow of fluid densityy. Consider two sections 1 and 2 as shown in
Fig. Let the sectional properties be as under

W

dx
Fig. Fluid flow through a control volume

R
\)
Asand A,= Cross-sectional area, Viand V2= Averag ow velocity and

y e
P 3

Q
p1 and p2 = Fluid density at Section-1 and Segy%h-Z respectively

M\S)./
dt is the time taken for the fluid to cov%%raistance dx

The mass of fluid flowing across section 1-1 is given by
mz = Density at section 1 x volume of fluid that has crossed section 1= p1xAix dx

Mass rate of fluid flowing across section 1-1 is given by
m, (Densityat section- 1 x volume of fluid that has crossedsection- 1)

dt dt
dx

plelxazplelxvl """ Eq.l

Similarly Mass rate of fluid flowing across section 2-2 is given by
m, (Densityat section- 2 x volume of fluid that has crossedsection- 2)

dt dt
dx




From law of conservation of mass, mass can neither be created nor destroyed. Hence, from Eqgs.
1 and 2, we get

PixAXV, =p,x A, xV, Eq3

If the density of the fluid is same on both side and flow is incompressible then p=p, the

equation 3 reducesto AgxV; = A, xV,

The above equations discharge continuity equation in one dimensional form for a steady,
incompressible fluid flow.

Rate of flow or Discharge ( Q):
Rate of flow or discharge is said to be the quantity of fluid flowing per second across a section of

a flow. Rate of flow can be expressed as mass rate of flow or volume rate of flow. Accordingly
Mass rate of flow = Mass of fluid flowing across a section / time

Rate of flow = Volume of fluid flowing across a section / time

2.10.7.1 Continuity Equation in three dimensional or differential form

Consider a parallelepiped ABCDEFGH in a fluid flov»Qof density y as shown in Fig. Let the
dimensions of the parallelepiped be dx, dy and dz a@n X, y and z directions respectively. Let
the velocity components along x, y and z be u, vgq%bw respectively.
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Fig. Parallelepiped in a fluid flow
Mass rate of fluid flow entering the section ABCD along x direction is given by p x Area x Vy

M= p u dy dz .01
Similarly mass rate of fluid flow leaving the section EFGH along x direction is given by,



= r,o u+© (p u)dx1 dy dz

e | & ...(02)
Net gain in mass rate of the fluid along the x axis is given by the difference between the mass
rate of flow entering and leaving the control volume. i.e. Eq. 1 — Eq. 2

dMX=PUdde—[

M

pu+ i(p u)dx—| dydz
OX

0
dM, =~ —(pu)dxdydz
X ...(03)
Similarly net gain in mass rate of the fluid along the y and z axes are given by
0
dM, =~ —(pv)dx dy dz
@é ...(04)
dM =- " (pw)dxdydz
oz ...(05)
Net gain in mass rate of the fluid from all the threeaxes are given by
0 0 0
dM =— —(pu)dxdydz—__(pv)dxdydz—__(,ow)dxdy dz
OX 6’y 0z /\
From Ia\{v (9f conservatjon of Ma§ the ne‘q gainin ma@é}ate of flow should be zero and hence

(pu)+ = (pv)+ (/OW)| T yﬁz\

6X 6y oz 1 &
2 (pu)+? (pv)+ % (pw) =03
or Lax oy 0z St

This expression is known as the general Equation of Continuity in three dimensional form or
differential form.
If the fluid is incompressible then the density is constant and hence

[ou ov owl

_ 4+ 4+ =0

L ox oy oz J
The continuity equation in two-dimensional form for compressible and incompressible flows is
respectively as lpeg

(pu)+ % (o V)

X oy
ou ov |
_+_

i



2.10.8 Velocity Potential Function (¢) and Stream Function (y):

2.10.8.1 Velocity Potential (¢ ):

Velocity Potential ¢ is a scalar function of space and time such that its negative derivative with
respect to any direction gives the velocity component in that direction

Thus ¢ = ¢ (x,y,z,t) and flow is steady then,

U=-(0/oX);v=-(0/0Yy);W=-(0¢/02)

Continuity equation for a three dimensional fluid flow is given by
[(6ulox)+(0VvIoy) +(Owldz)] =0

Substituting for u, v and w, we get
[Glox)(-0dlox)+(@/oy)(-0ploy)+(@1oz) (-0plo2)] =0

ie.  [(02¢ 10 x2)+(0 20/ y2)+(0 2¢ 16 22)] = 0

The above equation is known as Laplace equation in ¢ .
N\

For a 2 D flow the above equation reduces to 74N
[(8 %0 10 x?)+(8 %lo y?)] = 0 ';\\{V
O

We know that for an irrotational two di@gﬁsional fluid flow, the rotational fluid elements about z
axis must be zero. i.e. ®z =% [(0 VIO X) - (0 uld y)]
Substituting for u and v, we get

W= [(0 /0 X)(-0 ¢ 10y) - (010 y)(-0 § 10 X)]

For the flow to be irrotational, the above component must be zero
owZ=%[(-0%/0x0Yy)-(-0%p/0yox)]=0
i.e. (0% /ox0y)=(-0%/0YyoX)
This is true only when ¢ is a continuous function and exists.
Thus the properties of a velocity potential are:
1. If the velocity potential ¢ exists, then the flow should be irrotational.
2. If the velocity potential ¢ satisfies the Laplace Equation, then it represents a possible case

of a fluid flow.



Equi-potential lines:
It is an imaginary line along which the velocity potential ¢ is a constant
i.e. ¢ = Constant
dp=0
But ¢ = f (x,y) for a two dimensional steady flow
dd = (6 ¢ /0 X)dx + (0 ¢ /0 y)dy
Substituting the values of u and v, we get
dp=—udx-vdy=0
orudx=-vdy
or (dy/dx) = —ulv ... (01)
Where dy/dx is the slope of the equi-potential line.
2.10.8.2 Stream Function (v )
Stream Function  is a scalar function of space and time such that its partial derivative with

respect to any direction gives the velocity component at\fibht angles to that direction.
Ve X
'Y
NQ
u=-@y /oY) v=(0y/loX) o>

7y

Thus v = v (X,y,z,t) and flow is steady then,

Continuity equation for a two dimensioia&L‘)fhﬁgflow is given by
[(6 uld X)+(@ VIo y)] =0 N\
Substituting for u and v, we get
[(G1ox)(-0wy loy)+(@1oy) O wlox)]=0
i.e. [(02yloxoy)+ @2y loyox)]=0
or(02y/loxoy)=(02yl0yodx)
This is true only when v is a continuous function.
We know that for an irrotational two dimensional fluid flow, the rotational fluid elements about z
axis must be zero.i.e. @ = Y2 [(oVIOX) - (Ful dy)]
Substituting for u and v, we get
@, =% [(219X)(P wlOX) - (O10Y)(-2 wldy)]
For the flow to be irrotational, the above component must be zero
ie. [(0¢10X)+(3*#Iy?)] =0

The above equation is known as Laplace equation in y



Thus the properties of a Stream function are:
1. If the Stream function  exists, then it represents a possible case of a fluid flow.

2. If the Stream function  satisfies the Laplace Equation, then the flow should be irrotational.

Line of constant stream function or stream line

It is an imaginary line along which the stream function v is a constant
i.e. y = Constant

dy=0

But v = f (x,y) for a two dimensional steady flow

dwy = (0 vy /0 x)dx + (0 y /10 y)dy

Substituting the values of u and v, we get

dy=vdx—-udy=20

or v dx = udy
o 0 2 o ... (02)
Where dy/dx is the slope of the Stream line. R’ ;\

W

From Egs. 1 and 2, we get that the productgfme slopes of equi-potential line and stream line is
given by -1. Thus, the equi-potential ling§;and stream lines are orthogonal to each other at all the
points of intersection. h
2.10.8.3 Relationship between Stream function () and Velocity potential (¢)
We know that the velocity components are given by

u=-(2¢l0x) v =-(2¢10Y)
and u=-(2wldy) v=(8wloX)
Relation between (¢ andy):

__0¢_ oy
X oy
yo_0¢_ow

oy oOX

Thus u=-(2@/0x)=-(Qwldy)andv =-(2¢13y) = (OwlIX)
Hence (2@/0x)=(Pwldy)and (8¢13y) =-(FwloX)

@-lines and y~lines intersect orthogonally



2.11 Flow net & its Applications:
A grid obtained by drawing a series of equi-potential lines and stream lines is called a Flow net.
The flow net is an important tool in analysing two dimensional flow irrotational flow problems.
A grid obtained by drawing a series of streamlines (y) and equipotential (¢) lines is known as
flow net. The construction of flow net (¢-wy lines) is restricted by certain conditions

v The flow should be two dimensional

v The flow should be steady

v The flow should be Irrotational

v The flow is not governed by gravity force

Equipotential

Uses of Flow net

To determine

e The streamlines and equipotential lines

e Quantity of seepage, upward lift pressure below the hydraulic structures (dam, gate, locks
etc.)

e Velocity and pressure distribution, for given boundaries of flow

e To design streamlined structure

e Flow pattern near well
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Methods of Drawing flow net

Analytical Method
Graphical Method

Electrical Analogy Method

Hydraulic Models
Relaxation Method

Hele Shaw or Viscous Analogy Method

The practical use of streamlines and velocity potential lines are:

(i)

(i)
(iii)
(iv)

Quantity of seepage

Upward lift pressure below the hydraulic structures (dam, gate, locks etc.)

Velocity and pressure distribution, for given boundaries of flow

To design streamlined structure flow pattern near well

Solved Problems:

CONVERG/ /v G

ST7REAM LINES




Q.1. The velocity field in a fluid is given by,
V,=(3x+2y)i+ (22 +3x? )j +(2t-32)k
I.  What are the velocity components u, v, and w?
ii.  Determine the speed at the point (1,1,1).
iii.  Determine the speed at time t=2 s at point (0,0,2)

u=(3x+2y),v=1_(22+3¢), w=(2t- 32)k
Solution: The velocity components at any point (X, y, z) are

Substitute x=1, y=1, z=1 in the above expression
u=(3*1+2*1) =5, v = (2*1+3*1) = 5, w = (2t-3)
VZ2=u?+ Vv + w2

=52 + 52 + (2t-3)?

Viay= /(4t?-12t + 59) Q&
=4t2-12t+59 &
Substitute t = 2 s, x=0, y=0, z=2 in the above e@&%ssion foru,vand w
i
u=0,v=(@4+0=4,w=(4-6)=-2 \g‘;"
V 20022 = (0+ 15+ 4) = 20 Q&}

V = 4.472 units

Q. 2. The velocity distribution in a three-dimensional flow is given by:
u=-x,v=_2yandw = (3-z). Find the equation of the stream line that passes through point
(1,1,2).

d_dy_dz_dx _dy_ dz
u v w -x 2y (3-2
dx dy
-X 2y

Solution: The stream line equation is given by

Integrating we get
Where A is an integral constant. Substituting x=1 & y=1, A=0

Considering the x and z components,

Iogex:2 log. .y +A,



dx _ dy

—x:(3—3

~logx=-log (3-2) +B,
Integrating we get

Where B is an integral constant. Substituting x=1 & z=1,B=1log e 2

~.—log x=—1log (3-2)+log 2=-1Iog [3—2\
e e e e _2_J
orx=(377]
From Eqgs. 1 and 2, the final equgtio% of the stream line that passes through the point (1,1,1) is

1

X :W i (37_7\

Q3. A fluid particle moves in the following flow field sta/r{ing from the points (2,1,0) at t=0.
Determine the location of the fluid particle at t =3s Q \\

t? ty? %1\\
u =—,v=y—8, wes
2X 1 X t
Solution {\&}
Integrating we get
dx t?
=—"=_—or 2xdx =t?dt
2X
2 t3
3
3
)(2 = t_+ 4
3
% 43
X*="_+4=/[3
3

Where A is an integral constant. Substituting x=2,t=0,A=4

Integrating we get



dy ty* dy tdt 1 t?

dt 18 y* 18 y 36

Where B is an integral constant.

Substituting y=1, t=0, B = -1
Att=3s,
Integrating we get A
21og,z=log t+C_ >
{V}

Where C is an integral constant. .‘33}\\

_ o 72 _
Substituting z=0, t=0, C =0 2log. 2= IOQ p-L

A\
Att=3s, 22:301\%;\/5
From Egs. 1, 2 and 3, at the end of 3 seconds the particle is at a point

wT

4

Q.4. The following cases represent the two velocity components, determine the third component
of velocity such that they satisfy the continuity equation:

(u=x2+y>+722;v=xy?-yz? +xy; (ii) v=2y? ; w = 2xyz.

Solution:

The continuity equation for incompressible flow is given by

[(PuldX)+(2VvIPy) +(dwldz)]=0 ..(01)
u=x2+y?+ 7 (Gulox) = 2x

V=xy?-yz22+xy;  (OVIOY) = 2xy - 72 + X

Substituting in Eq. 1, we get



2X+2xy -2+ 72+ (OwWlP2) =0

Rearranging and integrating the above expression, we get
w = (-3xz — 2xyz + 23/3) + f(x,y)

Similarly, solution of the second problem

u = -4xy — x?y? + f(y,2).

Q.5. Find the convective acceleration at the middle of a pipe which converges uniformly from
0.4 m to 0.2 m diameter over a length of 2 m. The rate of flow is 20 Ips. If the rate of flow
changes uniformly from 20 Ips to 40 Ips in 30 seconds, find the total acceleration at the middle of
the pipe at 15th second.
Solution: D1=0.4m, D>=0.2m, L=2m, Q =20 Ips = 0.02 m?/s.

Q1 =0.02 m¥s and Q2 = 0.04 m®/s
Case (i): Flow is one dimensional and hence the velocit\(qomponents v=w=0

-.Convective acceleration = u( &u /&) K7/ @
A1 = (n14)(D1?) = 0.1257 m? »>‘§\
Az = (714)(D2?) = 0.0314 m? 75
~N
ur = Q/A1 =0.02/0.1257 = 0.15@5%/3
and  u2 = Q/A2=0.02/0.0314 = 0.637 m/s

As the diameter changes uniformly, the velocity will also

Change uniformly. The velocity u at any distance x from
inlet is given by
U =ug+ (U2 —ug)/(x/L) = 0.159 + 0.2388 x
(Aulék) =0.2388
-~.Convective acceleration = u( au /&x) = (0.159 + 0.2388 x) 0.2388
At A, x =1 m and hence
(Convective accln) x = 1 = 94.99 mm/s?
Case (ii): Total acceleration = (convective + local) acceleration at t =15 seconds
Rate of flow Q: = 15 = Q1 + (Q2 — Q1)(15/30) = 0.03 m3/s.
u1 = Q/A1 =0.03/0.1257 = 0.2386 m/s



and u2=Q/A2=0.03/0.0314 = 0.9554 m/s
The velocity u at any distance x from inlet is given by

U =up + (uz —u1)/(x/L) = 0.2386 + 0.3584 x

(& /éx) =0.3584
..Convective acceleration = u( au /&) = (0.2386 + 0.3584 x) 0.3584
At A, x =1 m and hence
(Convective accln) x = 1 = 0.2139 m/s 2
Local acceleration
Diameter at A is given by D = D1 + (D1 — D2)/(x/L) = 0.3 m
and A = (a74)(D?) = 0.0707 m?
When Q: = 0.02 m¥/s, u; = 0.02/0.0707 = 0.2829 m/s
When Q2 = 0.04 m%/s, u, = 0.02/0.0707 = 0.5659 m/s
Rate of change of velocity = Change in velocity/time

= (0.5629-0.2829)/30 = 9.\4\'&x 10 -3m/s 2
. Total acceleration = 0.2139 + 9.43 x 10 ° = O.%Q@rﬁ/sz
S
i

Q.6. In a flow the velocity vector is given by?\/'= 3xi + 4yj -7zk. Determine the equation of the
stream line passing through a point M Q,@, ).

Ans: Given the Velocity vector V = 3xi+4yj -7zk
= u=3x;v=4y,w=-7z
To determine the equation of the stream line passing through a point M (1, 4, 5)
The 3-D equation of streamline is given by,
dx dy dz
uovow
& _dv_dz gqq
3x 4y -7z
The streamline equation at point M (1, 4,5),x=1,y=4,z=5
Substituting the values of X, y, and z in Eqg.1
dx dy dz
3 16 -35
The equation of a streamline ds = 3i +16k — 35k



Q.7. A 250 mm diameter pipe carries oil of specific gravity 0.9 at a velocity of 3 m/s. At another
section the diameter is 200 mm. Find the velocity at this section and the mass rate of flow of oil.
Solution:

D; =0.25m; D2 =0.2 m; So = 0.9; V1 =3 m/s; p = 1000 kg/m3(assumed);

V2=7; Mass rate of flow = ?

From discharge continuity equation for steady incompressible flow, we have

Q=AVi=A\V; (01)

A1 = (7d4)D12? = (7/4)0.25 2 = 0.0499 m?

Az = (md4)D22 = (74)0.20 2 = 0.0314 m?

Substituting in Eq. 1, we get

Q=0.0499 x 3=0.1473 m%/s

Mass rate of flow = pQ = 0.1479 x 1000 = 147.9 kg/m? (Ans)

Vo = (A1 / As) X V1 = (D1 / D2)? X V1 = (0.25/0.2)? X 3 = 4.6875 m/s (Ans)

N\
\
Q.8. In a two dimensional incompressible flow the {ﬁg”w‘velocity components are given by
u=x-4yandv =-y-4x s\\
<

Where u and v are x and y-components@;\?élocity of flow. Show that the flow satisfies the
continuity equation and obtain the expr@s\sion for stream function. If the flow is potential, obtain

also the expression for the velocity potential.

Solution:

u=x-4y and v=-y-4x

(Puldx)=1 and (&v/dy)=-1

(Puldx)+ (8v 1dy) =1-1=0.
Hence it satisfies continuity equation and the flow is continuous and velocity potential exists.
Let ¢ be the velocity potential.
Then (2@ /10X)=-u=-(Xx—4y)=-x+4y (1)
and (8¢ 10y) =-v=-(-y—-4x) =y+4x (2
Integrating Eq. 1, we get

¢=(-x?12) + 4xy + C (3)



Where C is an integral constant, which is independent of x and can be a function of y.
Differentiating Eq. 3 w.r.t. y, we get
(O@18y) =0+ 4x+(CI0y) =y + 4x
Hence, we get (JC /8y) =y
Integrating the above expression, we get C = y?/2
Substituting the value of C in Eq. 3, we get the general expression as
&= (-X?12) + 4xy + y?/2

Stream Function

Let  wbe the velocity potential.

Then (Gwldx)=v=(-y—-4x)=-y-4x 4)
and (Pwldy)=u=-(Xx-4y)=-x+4y 5)
Integrating Eq. 4, we get

w=-yx-4(x2/2) +K ,§\<\ (6)
Where K is an integral constant, which is indepencjg\rjvéf x and can be a function ofy.
Differentiating Eq. 6 w.r.t. y, we get 6;%

(Bwldy)=-x-0+(JK /o"y)/\?}ée# 4y

Hence, we get (FK /2dy) =4y N\
Integrating the above expression, we get C =4 y%/2 = 2 y?
Substituting the value of K in Eq. 6, we get the general expression as

Y=-yX-2x2+2y?

Q.9. The components of velocity for a two dimensional flow are given by
y 2
2
Check whether (i) they represent the possible case of flow and (ii) the flow is irrotational.

u=xy; V=X

Solution:

u=xy; and v=x2-Y_



(Pulox) =y (Ov1dy) =-y
(Puldy) =x (8Vv 16X) =2x
For a possible case of flow the velocity components should satisfy the equation of continuity.

ou ov
Le. (BYLL(?}_\:O
\ Y
Substituting, we gety —y = 0.
Hence it is a possible case of a fluid flow.

For flow to be irrotational in a two dimensional fluid flow, the rotational component in z

direction (az) must be zero, where
ilfav) (el 1

Wz =] o |-l o l1=o[2x=x]=0
)

Hence, the flow is not irrotational.

Q.10. Find the components of velocity along x and y fo(’tﬁe velocity potential ¢ = a Cos xy.
O

Also calculate the corresponding stream functions.\,\ O

Solution: f’}’%
_ )
¢(; a\Cos Xy. AC‘}\,
(53 J = —u = —aySin(xy) N (1)
and (ggf) =-v =—axSin(xy) ()

Hence u=aySinxy and v =ax SinXxy.

Q.11. The stream function and velocity potential for a flow are given by,
W= 2Xy and @g=x%-y?
Show that the conditions for continuity and irrotational flow are satisfied
Solution:
From the properties of Stream function, the existence of stream function shows the possible case

of flow and if it satisfies Laplace equation, then the flow is irrotational.

(i) y=2xy



(Pwlox)=2y and (Pwldy)=2x

(B*w16x?) =0 and  (B%*wldy?) =0

(B*wldxdy)=2 and (F*wldy OX)=2
(B%w 10X By) = (8% 18y OX)
Hence the flow is Continuous.

(B*w10x?) + (8?w1dy?) =0
As it satisfies the Laplace equation, the flow is irrotational.
From the properties of Velocity potential, the existence of Velocity potential shows the flow is
irrotational and if it satisfies Laplace equation, then it is a possible case of flow
(ii p=x —y

(P@l1x)=2x and  (2¢ldy)=-2y

(O%*@10x%) =2 and  (F%@10y?) =-2

(P°¢10x3y)=0 and  (F°@Iy Ix) =0

o <N\
o’'p _0°¢ A\\
oxoy  Oyox O
a &
Hence the flow is irrotational 6/2)‘
2 m)../
i S
ox* T ayr N

As it satisfies the Laplace equation, the flow is Continuous.

Q.12. In a 2-D flow, the velocity components are u = 4y and v = -4x
i.  Isthe flow possible?
ii.  if so, determine the stream function
iii.  What is the pattern of stream lines?
Solution:

For a possible case of fluid flow, it has to satisfy continuity equation.

e (), (], )

)Y
u=4y and V = -4X
(Puldx) =0 (Avidy)=0



Substituting in Eqg. 1, we get 0.
Hence the flow is possible.

Stream function

We know that (@ w/dx) =V = - 4x (2)
and (Pwldy)=-u=-4y (3)
y=-2x*+C(y) (4)

Where C is an integral constant and a function of y.

Differentiating Eq. 4, w.r.t. y, we get
(Pwldy)=0+IC(y)I1dy=-u=-4y

Integrating the above expression w.r.t. y we get
Cy) =-2y2.

Substituting the above value in Eq. 4, we get the general expression as
w=-2x2 -2y’ =-2 (x*+y?)

The above equation is an expression of concentric cirr\lé‘sand hence the stream function is

concentric circles. &
Y
5
@
Q.13. A stream function in a two dimensig(@ flow is w = 2 x y. Determine the corresponding
velocity potential. Q&}

Solution:

Given w=2XY.
u=-20dox)=-(0wldy)=-2x (01)
V=-(24Iy)= (Oylox) = 2y (02)

Integrating Eq. 1, w.r.t. X, we get

@=2x%2+C=x>+C(y) (03)

Where C(y) is an integral constant independent of x
Differentiating Eq. 3 w.r.t. y, we get
(P9 Dy) =0+ (5C(y) I1dy) =-2y
Integrating the above expression w.r.t. y, we get
C(y) =-y?
Substituting for C(y) in Eq. 3, we get the general expression for ¢ as



#=x>+C=x2-y> (Ans)

Q.14. The velocity potential for a flow is given by the function ¢ = x? - y2. Verify that the flow is
incompressible.

Solution:

From the properties of velocity potential, we have that if ¢ satisfies Laplace equation, then the

flow is steady incompressible continuous fluid flow.

Given P=x>-y?
(Pd1Ox) =2 x (O@ldy) =-2y
(O%*@10x%) =2 ~\{\ (8%910%) =-2
From Laplace Equation, we have (9@ /8x?) + (ﬁi@fééy) =2-2=0
>

Q.15. If for a two dimensional potential flgyc\;‘{ the velocity potential is given by ¢ = x (2y-1).

Determine the velocity at the point P (4, §)."Determine also the value of stream function v at the
point ‘P’. N\

Ans:
(i) The velocity at the point P (4, 5), x =4,y =5
d =X (2y-1).
0
% y—@y-1), y—a-2y)
OX
Q@:—V:XXZ, V:_2X
oy

u at ‘P’(4,5) = -9 Units/s
v(4,5) at ‘P’ = -8 Units/s

Velocity at P = -9i-8j, Velocity +/(-9)° +(~8)* =12.04 Units

(i) Stream function yp (4,5)



Given ¢ = x (2y-1)
% _ y-2y-1=¥

OX
o¢

S
<

oy

=-V=Xx2=-

oy
oy

OX

=-u=(2y-1)...Eq.l

W _=_2x_ Eq2

OX

Integrating Eq.1 with respect ‘y’ we get

2><y2

Jdy=p=——-y+C(t(x)Eq3

Differentiating Eq.3 with respect to °x’

0

W_C fom Eq.2 Ve 2x

oX  OX OX A
oC ) N
— ==X Integrating —» C = —x * @
OX \\ <
Substituting value of C in EQ.3 6/2)‘

7y o

W:

Q.16. A stream function is given by y = 2x?-2y?. Determine the velocity and velocity potential

(y2 —y— x2) \@\"

function at (1, 2)

Ans:

Given: y = 2x2-2y?
(el174
OX

oy

=4x=-v;v=-4x= Velocity at (1,2), y—=_4 Units

Resultant velocity V(1,2) = +/(-4)? + (-8)% = 8.94 Units

0

_é:—u :>Q¢:—(—4y):4y:>¢:4xx><y+C(f(y)onIy)---eq1
gx OX

_é:_v :@:—(—4x):4x:>¢:4xx>< y +C(f (x)only)---eq2

oy oX



0 oC oC 0
—¢:(4x+ Y= =4x— ¢ Ax — (5'//\] C =4x-4x=0
= 2y

oy CaC 4y @L‘ K )
From Eq.1

8_:0Integrating C=0

oy

P =4xXxYy = @ =4x1x 2 =8 Units

Q.17. The velocity potential ¢ for a two dimensional flow is given by (x? — y?) + 3xy. Calculate:
(i) the stream function y and (ii) the flow rate passing between the stream lines through (1, 1)
and (1, 2).

Ans: Given ¢ = (X2 — y?) + 3xy
() To determine the y function

dy = Y ax + WY dy..-Eq.(1)
OX oy

dy =—-vdx + udy---Eq.(2) A

N\

As per definition of velocity potential (¢) and streargft;nctlon (v);

0¢_0ow _yand 9¢_ @5\
ox oy oy .Cox
~%_ox+3y)=Nand ¥_ 5y @})V( v _

OX oy oy < OX J

Substituting the value of u and v in terms of x and y in equation 2, we obtain

dy =-vdx+udy =—(—2y+3x)dx+(2x+3y)dy
dy = (2y+3x)dx +(2x+3y)dy---Eq.3

Integrating the equation-3 (partially w.r.t ‘x’ the ‘dX term’ and w.r.t ‘y’ the ‘dy-term’)

y/_|(2xy+ x2\|+|(2xy+ yz\| 4xy+~ (X +Y)
\ 2 ) 2 ) 2

Iy/=4xy+§2(x2+y2)|

(i) The flow rate passing between the stream lines through (1, 1) and (1, 2).




. L 3
The equation of stream function is given by |V/ =4xy+ E(XZ + yz)

The value of Point streamline at (1, 1) is obtained by substitutingx =1,y =1

= 4xy + §(x2 + yz): 4x1x1+ 3(12 +1%) = 7Units
¢ 2 2

The value of Point streamline at (1, 2) is obtained by substituting x =1, y =2

= 4Axy + §(x2 + yz): 4x1x2+ 3(12 +2%) =15.5Units
€2 2 2

The flow rate passing between the stream lines through (1, 1) and (1, 2)

d=vae2 - yay = (15.5-7)

(\
q=85 mZ/s/ugu{mdth
R

Q.18. The velocity components in a 2- dimer]si@nal incompressible flow field are expressed as

( )
U—|i+2x xx‘yq (xxy —2y—x—|
\ 3 3)

Is the flow irrotational? If so determine the corresponding stream function.

Ans: Given the components of velocity

(y?’ 2 \ ( 2 X3\

U=|?+2x—x xy |, v=lxxy —2y——|

The condition for lrrorational flow

rg;p@;w
L))



3

ov 6( ) xw ou=d(y 2 w
Xxy and RHS oy 0 __ +2x—-x xy
y( 3

LHS = -2y -
_3_
X ) )

i.e. LHS = (y? — x%) and RHS = (y?> — x?)
Hence the flow is Irrorational

The corresponding stream function “y’can be obtained by using following relationship

oy ( 2 x3)
—_=v=lxxy 2y |..Eq1
OX \ 3)
6(// (ys 2 \
—=-u=-__42x-x xy - Eq.2
oy 3 )
Integrating Eq.1 with respect to ‘x’ » \{\

xZxy? x* &°
= S 2y ¥C,(f(y)) - Eq3

Differentiating Eq.3 with respect to ‘y’ 745

~
szxzxy—2x+ﬁ {\0
oy oy
oc, __Y°
oy 3
4
Integratin g, C, = 312 +C; (assumingC=0)
4
y
C=-21_
Y12

The stream function ‘y’ is given by

2 4 4
X y

W= — T——2xXxy— —t—"—

12 12






FLUID MECHANICS 18ME43

Module 5:
COMPRESSIBLE FLOWS

Overview

In general, the liquids and gases are the states of a matter that comes under the same
category as “fluids”. The incompressible flows are mainly deals with the cases of
constant density. Also, when the variation of density in the flow domain is negligible,
then the flow can be treated as incompressible. Invariably, it is true for liquids
because the density of liquid decreases slightly with temperature and moderately with
pressure over a broad range of operating conditions. Hence, the liquids are considered
as incompressible. On the contrary, the compressible flows are routinely defined as
“variable density flows”. Thus, it is applicable only for gases where they may be
considered as incompressible/compressible, depending on the conditions of operation.
During the flow of gases under certain conditions, the density changes are so small
that the assumption of constant density can be made with reasonable accuracy and in
few other cases the density changes of the gases. a(&very much significant (e.g. high
speed flows). Due to the dual nature of ga§e§ they need special attention and the
broad area of in the study of motion of qgsln\)ressmle flows is dealt separately in the
subject of “gas dynamics”. Many ¢Qg)ffeer1ng tasks require the compressible flow
applications typically in the demg@b? a building/tower to withstand winds, high speed
flow of air over cars/trains/airplanes etc. Thus, gas dynamics is the study of fluid
flows where the compressibility and the temperature changes become important.
Here, the entire flow field is dominated by Mach waves and shock waves when the
flow speed becomes supersonic. Most of the flow properties change across these
waves from one state to other. In addition to the basic fluid dynamics, the knowledge
of thermodynamics and chemical Kinetics is also essential to the study of gas

dynamics.
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FLUID MECHANICS 18ME43

Thermodynamic Aspects of Gases

In high speed flows, the kinetic energy per unit mass (V 2/2) is very large which is

substantial enough to strongly interact with the other properties of the flow. Since the
science of energy and entropy is the thermodynamics, it is essential to study the
thermodynamic aspects of gases under the conditions compressible high speed flows.

Perfect gas: A gas is considered as a collection of particles (molecules, atoms, ions,
electrons etc.) that are in random motion under certain intermolecular forces. These
forces vary with distances and thus influence the microscopic behavior of the gases.
However, the thermodynamic aspect mainly deals with the global nature of the gases.
Over wide ranges of pressures and temperatures in the compressible flow fields, it is
seen that the average distance between the molecules is more than the molecular
diameters (about 10-times). So, all the flow properties may be treated as macroscopic

in nature. A perfect gas follows the relation of pressure, density and temperature in

the form of the fundamental equation. LN\
N

— pRT: *’%‘é_: 4.1.1

o pRT BT 613

Vo X d

\%
Here, M is the molecular weight ok(f% gas, R is the gas constant that varies from gas
N\

to gas and ﬁ(: 8314J/kg.K) is the universal gas constant. In a calorically perfect

gas, the other important thermodynamic properties relations are written as follows;

(ohY . _[2e)

= — =|— V_R
LGV C AL (41.2)
c :_Ji;c _ R ’ych

In Eq. (4.1.2), the parameters are specific heat at constant pressure (cp), specific heat
at constant volume (c,), specific heat ratio(y), specific enthalpy (h) and specific

internal energy (e) .
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First law of thermodynamics: A system is a fixed mass of gas separated from the

surroundings by a flexible boundary. The heat added (q ) and work done (w) on the

system can cause change in energy. Since, the system is stationary, the change in
internal energy. By definition of first law, we write,

oq+ow=de (4.1.3)

For a given de , there are infinite number of different ways by which heat can be
added and work done on the system. Primarily, the three common types of processes
are, adiabatic (no addition of heat), reversible (no dissipative phenomena) and

isentropic (i.e. reversible and adiabatic).

Second law of thermodynamics: In order to ascertain the direction of a

thermodynamic process, a new state variable is defined as ‘entropy (s) >. The change
in entropy during any incremental process (ds) is equal to the actual heat added
divided by the temperature (dq/T ) , plus a(gbntrlbutlon from the irreversible

dissipative phenomena (ds, ) occurring Wihe system.

CA
5 Vo | o
ds = —(f‘;;st_ (4.1.4)
&
Since, the dissipative phenomena always increases the entropy, it follows that
d > @ - . .
Sz T ds > 0 (Adiabatic process) (4.1.5)

Egs. (4.1.4 & 4.1.5) are the different forms of second law of thermodynamics. In order
to calculate the change in entropy of a thermodynamic process, two fundamental
relations are used for a calorically perfect gas by combining both the laws of

thermodynamics;

s-clu T
T]J 'Lpl

—+R1n
tl u‘o}

s—s-cln
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An 1sentropic process 15 the one for which the entropy 15 constant and the process 15
reversible and adiabatic. The 1sentropic relation 1s given by the following relation;

Fof ¥ilp-1)
&=[&] | E] @17
a4

Important Properties of Compressible Flows

The simple definition of compressible flow is the vanable density flows. In general,
the densify of gases can vary erther by changes in pressure and temperature. In fact,
all the high speed flows are associated with sigmificant pressure changes. So, let us
recall the following fluid properties important for compressible flows;

Bulk modulus(E ): It is the property of that fluid that represents the variation of
density (o) with pressure (p) at constant temperature (I'). Mathematically, if is

represented as.

)
F ooy Ei] =@L@T 418
(2 RGi @18)
Qfo
In terms of fimte changes, 1t 15 a;}@mtﬁdas.
N\

(&%) (80 p) (419)
"TUAT AT

Coefficient of volume expansion ( £ ): It is the property of that fluid that represents the

vanation of density with temperature at constant pressure. Mathematically, 1t 1s
represented as.

4f3) 48]

In terms of fimte changes, 1t 15 approximated as,

_(bex) (80 p0)
P = ar (L1

Dept of Mechanical Engg, GMIT, Bharathinagara. Page 4



FLUID MECHANICS 18ME43

Compressibility(x ) : It is defined as the fractional change in the density of the fluid

element per unit change in pressure. One can write the expression for x as follows;

L_1fdp)

=dp=pxdp (4.1.12)
)

In order to be more precise, the compression process for a gas involves increase in
temperature depending on the amount of heat added or taken away from the gas. If the
temperature of the gas remains constant, the definition is refined as isothermal

compressibility (; ) . On the other hand, when no heat is added/taken away from the
gases and in the absence of any dissipative mechanisms, the compression takes place

isentropically. It is then, called as isentropic compressibility (x;) .

o - 1o}, K:l(a_/’\ (4.1.13)
A - G

Being the property of a fluid, the gases have high’\@Ues of compressibility
(zq: 10°m? /N for air at 1atm) while qu\t{ﬁéﬁ have low values of compressibility

much less than that of gases (x; = 5{{1,((5;10 m?/N for water at 1atm) . From the basic

definition (Eq. 4.1.12), it is see’@gﬁ]at whenever a fluid experiences a change in
pressure dp , there will be a corresponding change in d p . Normally, high speed
flows involve large pressure gradient. For a given change in dp , the resulting change
in density will be small for liquids (low values of x) and more for gases (high values

of x ). Therefore, for the flow of liquids, the relative large pressure gradients can
create much high velocities without much change in densities. Thus, the liquids are
treated to be incompressible. On the other hand, for the flow of gases, the moderate to
strong pressure gradient leads to substantial changes in the density (Eq.4.1.12) and at
the same time, it can create large velocity changes. Such flows are defined as

compressible flows where the density is a variable property and the fractional change

in density (d pjp) is too large to be ignored.
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Fundamental Equations for Compressible Flow

Consider a compressible flow passing through a rectangular control volume as shown
in Fig. 4.1.1. The flow is one-dimensional and the properties change as a function of
x, from the region ‘1” to ‘2’ and they are velocity(u), pressure( p), temperature(T),
density ( p) and internal energy (e) . The following assumptions are made to derive

the fundamental equations;

Flow is uniform over left and right side of control volume.

Both sides have equal area (A), perpendicular to the flow.

Flow is inviscid, steady and nobody forces are present.

No heat and work interaction takes place to/from the control volume.

Let us apply mass, momentum and energy equations for the one dimensional flow as

shown in Fig. 4.1.1. LN
N
Conservation of Mass: '\(,O}
5
i
—PihA+ pU, A :,&:}ﬁ P = pU; (4.1.14)

Conservation of Momentum:

PUAU +p (UAU=-(—pA+pPA) =p+pWi=p+p (4.1.15)
1 1 1 2 2 2 1 2 1 11 2 22

Steady Flow Energy Conservation:

T 0 u i
ﬂ+.;Jj+—]=£+.;=.l+—' Sht—=h+—
[ 2 p 2 2 2
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Here, the enthalpy h |, =e + p\| Is defined as another thermodynamic property of the

|
L 7)

gas.

(1) A (2)

) r——pq———n N L,

and 7 | 7

— ¢ |

5 | ¢ | — &
a'I___/f____l 2

A . O

2 ‘ Area’A’ ©a

Rectangular Control Volume
— x-direction

Fig. 4.1.1: Schematic representation of one-dimensional flow.

&
,Q;Q}\
&

Z

N\
/\0
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Wave Propagation in a Compressible Media
Consider a gas confined in a long tube with piston as shown in Fig. 4.2.1(a). The gas

may be assumed to have infinite number of layers and initially, the system is in
equilibrium. In other words, the last layer does not feel the presence of piston. Now,
the piston is given a very small ‘push’ to the right. So, the layer of gas adjacent to the
piston piles up and is compressed while the reminder of the gas remains unaffected.
With due course of time, the compression wave moves downstream and the
information is propagated. Eventually, all the gas layers feel the piston movement. If
the pressure pulse applied to the gas is small, the wave is called as sound wave and
the resultant compression wave moves at the “speed of sound”. However, if the fluid
is treated as incompressible, the change in density is not allowed. So, there will be no
piling of fluid due to instantaneous change and the disturbance is felt at all other
locations at the same time. So, the speed of sound depends on the fluid property i.e.
‘compressibility’. The lower is its value; more will be the speed of sound. In an ideal
incompressible medium of fluid, the speed of sound is infinite. For instance, sound
travels about 4.3-times faster in water (1484 m/'s){a\nd 15-times as fast in iron (5120
m/s) than air at 20°C.

&

Let us analyze the piston dynaml@cé‘s shown in Fig. 4.2.1(a). If the piston moves
at steady velocity dV , the comgke%lon wave moves at speed of sound a into the
stationary gas. This infinitesimal disturbance creates increase in pressure and density
next to the piston and in front of the wave. The same effect can be observed by
keeping the wave stationary through dynamic transformation as shown in Fig. 4.2.1
(b). Now all basic one dimensional compressible flow equations can be applied for a

very small control enclosing the stationary wave.
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FLUID MECHANICS 18ME43

Continuity equation: Mass flow rate () is conserved across the stationary wave.

m=paA=(p+dp)(a—dv)A :dv=(%\)dp (4.2.1)

Momentum equation: As long as the compression wave is thin, the shear forces on

the control volume are negligibly small compared to the pressure force. The

momentum balance across the control volume leads to the following equation;

(1)
(p+dp)A-pA=ma-m(a—-dV) :dV:L—Jdp (4.2.2)
pa
Piston Weak pressure wave (moving) Piston Weak pressure wave (stationary)
v Pt llapp o« p+ap i a pp
i N a-dv ! L
E‘ . COI'I'I'}T&SS&(' medium HE Stﬂtionary medium I- ““’.@}res_ﬁed medium E Stationary medium
. i o Path of gas moxl.ring at 'L
Piston path .- i QU T
! M";é “\\ Path of gas moving at "¢ — g7’
o Path of Il-ressure\@ye e :
= i > .’\C} : >
'y i X i X
z p+dp i £t p+dp i
\%\_ -\\i\—‘
P PP
ok i * V4 ! i
v i !
) i T X
{\ a—dVv Th—
| b
i > v i
(a) (b)

Fig. 4.2.1: Propagation of pressure wave in a compressible medium: (a) Moving wave; (b) Stationary wave.
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Energy equation: Since the compression wave is thin, and the motion is very rapid,

the heat transfer between the control volume and the surroundings may be neglected
and the thermodynamic process can be treated as adiabatic. Steady flow energy
equation can be used for energy balance across the wave.

hed ~(h+dh)+(2=9Y F v (1 (4.2.3)
2 2 a)

Entropy equation: In order to decide the direction of thermodynamic process, one can

apply T —ds relation along with Egs (4.2.2 & 4.2.3) across the compression wave.

d
Tds=dh-=0 _ 4_0 (4.2.4)
P

Thus, the flow is isentropic across the compression wave and this compression wave
can now be called as sound wave. The speed of the sound wave can be computed by

equating Eqs.(4.2.1 & 4.2.2).
N
’ﬂ'-_rl1 :',@J S_p'.
o) 255 3)

I'x
7 \
\\
Further simplification of Eq. (4.2.5) is possible by evaluating the differential with the

use of isenropic equation.

p
—=constant — |n p—»In p = constant (4.2.6)

0

Differentiate Eq. (4.2.6) and apply perfect gas equation ( p= o RT ) to obtain the

expression for speed of sound. is obtained as below;

(@J -7P :>a=\/7:p=1/7RT (4.2.7)
. P p
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Mach number

It may be seen that the speed of sound is the thermodynamic property that varies from
point to point. When there is a large relative speed between a body and the
compressible fluid surrounds it, then the compressibility of the fluid greatly influences

the flow properties. Ratio of the local speed (V) of the gas to the speed of sound (a )

is called as local Mach number (M ) .

v
M="=_V (4.2.8)
a yRT

There are few physical meanings for Mach number;

(@) 1t shows the compressibility effect for a fluid i.e. M < 0.3 implies that fluid is

incompressible.

(b) It can be shown that Mach number is proportional to the ratio of Kinetic to internal
o\
energy. N
A&
(V'/2) v 2 WGV )
_Vvi _ Vv /2,Y>& (27/2) — M 2 (4.2.9)
e o RTGEY) a(r-1) 2

(c) It is a measure of directed motion of a gas compared to the random thermal motion

of the molecules.

directed kineticener
M2V ad (4.2.10)

a2 random Kineticenergy

Dept of Mechanical Engg, GMIT, Bharathinagara. Page 11



FLUID MECHANICS 18ME43

Compressible Flow Regimes

In order to illustrate the flow regimes in a compressible medium, let us consider the
flow over an aerodynamic body (Fig. 4.2.2). The flow is uniform far away from the

body with free stream velocity (V. ) while the speed of sound in the uniform stream is

a.,. Then, the free stream Mach number becomes M., (=V, /a, ) . The streamlines can

be drawn as the flow passes over the body and the local Mach number can also vary
along the streamlines. Let us consider the following distinct flow regimes commonly

dealt with in compressible medium.

Subsonic flow: It is a case in which an airfoil is placed in a free stream flow and the
local Mach number is less than unity everywhere in the flow field (Fig. 4.2.2-a). The
flow is characterized by smooth streamlines with continuous varying properties.
Initially, the streamlines are straight in the free stream, but begin to deflect as they
approach the body. The flow expands as it passed over the airfoil and the local Mach

number on the top surface of the body is more thaQ(the free stream value. Moreover,
Vo X

the local Mach number (M) in the surface Qt:t/hé airfoil remains always less than 1,

when the free stream Mach number (I\/ﬂl\cy?s sufficiently less than 1. This regime is

&
defined as subsonic flow which faJ\Isfj}T the range of free stream Mach number less

] N\
than 0.8 i.e. M _<0.8.

Transonic flow: If the free stream Mach number increases but remains in the

subsonic range close to 1, then the flow expansion over the air foil leads to supersonic
region locally on its surface. Thus, the entire regions on the surface are considered as
mixed flow in which the local Mach number is either less or more than 1 and thus
called as sonic pockets (Fig. 4.2.2-b). The phenomena of sonic pocket is initiated as
soon as the local Mach number reaches 1 and subsequently terminates in the
downstream with a shock wave across which there is discontinuous and sudden
change in flow properties. If the free stream Mach number is slightly above unity
(Fig. 4.2.2-c), the shock pattern will move towards the trailing edge and a second
shock wave appears in the leading edge which is called as bow shock. In front of this
bow shock, the streamlines are straight and parallel with a uniform supersonic free
stream Mach number. After passing through the bow shock, the flow becomes

subsonic close to the free stream value. Eventually, it further expands over the airfoil
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surface to supersonic values and finally terminates with trailing edge shock in the
downstream. The mixed flow patterns sketched in Figs. 4.2.2 (b & c), is defined as the

transonic regime.

M == M <]
MmI:WO.S 08<M, <l —
_—‘\/x’_ _F\/—\—H

(a) (b)
1

Wedge shaped

/ o ok M >/bodv M>1
Trailing edge —_—
/ . shock Mw »1.2 Mm -5
(d)

Oblique shock close to
surface of the body

(e)

Oblique shock

(c)

Fig. 4.2.2: lllustration of compressible flow regime: (a) subsonic flow; (b & c) transonic flow; (d) supersonic flow; (d)

hypersonic flow.

Supersonic flow: In a flow field, if the Mach number is more than 1 everywhere in

the domain, then it defined as supersonic fIO\&\{n\ order to minimize the drag, all
aerodynamic bodies in a supersonic flow, {@Cgénerally considered to be sharp edged
tip. Here, the flow field is characterizgg,”% straight, oblique shock as shown in Fig.
4.2.2(d). The stream lines ahead of,\ﬂité\}shock the streamlines are straight, parallel and
horizontal. Behind the oblique sh%\ck, the streamlines remain straight and parallel but
take the direction of wedge surface. The flow is supersonic both upstream and
downstream of the obliqgue shock. However, in some exceptional strong oblique

shocks, the flow in the downstream may be subsonic.

Hypersonic flow: When the free stream Mach number is increased to higher

supersonic speeds, the oblique shock moves closer to the body surface (Fig. 4.2.2-¢).
At the same time, the pressure, temperature and density across the shock increase
explosively. So, the flow field between the shock and body becomes hot enough to
ionize the gas. These effects of thin shock layer, hot and chemically reacting gases
and many other complicated flow features are the characteristics of hypersonic flow.
In reality, these special characteristics associated with hypersonic flows appear

gradually as the free stream Mach numbers is increased beyond 5.
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As a rule of thumb, the compressible flow regimes are classified as below;

M < 0.3 (incompressibleflow)

M < 1 (subsonic flow)

0.8 < M < 1.2 (transonicflow)

M > 1 (supersonic flow)

M > 5 and above (hypersonic flow)

Rarefied and Free Molecular Flow: In general, a gas is composed of large number of

discrete atoms and molecules and all move in a random fashion with frequent
collisions. However, all the fundamental equations are based on overall macroscopic
behavior where the continuum assumption is valid. If the mean distance between
atoms/molecules between the collisions is large enough to be comparable in same
order of magnitude as that of characteristics dimension of the flow, then it is said to
be low density/rarefied flow. Under extreme situations, the mean free path is much
larger than the characteristic dimension of the flow. Such flows are defined as free
molecular flows. These are the special cases occ‘ut{%g in flight at very high altitudes

(beyond 100 km) and some laboratory device\@%h as electron beams.

D

Vo X 4

/ \
\\
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Isentropic and Characteristics States

An isentropic process provides the useful standard for comparing various types of
flow with that of an idealized one. Essentially, it is the process where all types of
frictional effects are neglected and no heat addition takes place. Thus, the process is
considered as reversible and adiabatic. With this useful assumption, many
fundamental relations are obtained and some of them are discussed here.

Stagnation/Total Conditions

When a moving fluid is decelerated isentropically to reach zero speed, then the
thermodynamic state is referred to as stagnation/total condition/state. For example, a
gas contained in a high pressure cylinder has no velocity and the thermodynamic state
is known as stagnation/total condition (Fig. 4.3.1-a). In a real flow field, if the actual

conditions of pressure ( p), temperature (T ), density (o) , enthalpy(h), internal

energy (e) , entropy (s) etc. are referred to as static conditions while the associated
gy p

stagnation parameters are denoted as p,,To, 25, h‘ox,{e%and Sy, respectively. The

stagnation state is fixed by using second Iay{'\&f;thermodynamlcs where S=s,as
represented in enthalpy-entropy diagraﬁrp‘}a‘lled as the Mollier diagram (Fig. 4.3.1-b).
A\ S
O »
N\ Mellier diagram
= tant
Enthalpy 4 P, = constan
Stagnation
state Stagnation L -
=0 E.eal state } state y p = constant
V=0
PTG Py .7, 0.k
gy and & __.,____'{ ¢ and § T o B0 7 hr
g, and 5,

(a) (b)

Fig 4.3.1: (a) Schematic representation of stagnation condition; (b) Mollier diagram.
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The simplified form of energy equation for steady. one-dimensional flow with no
heat addition, across two regions 1 and 2 of a control volume is given by,

“’ FL+— 43.1)

For a calorically perfect gas. replacing. i=¢,T . so the Eq. (4.3.1) becomes.

u’ Th
cL+—4=c¢c T +-=
P 1 L 2

(432)

If the region “1° refers to any arbitrary real state in the flow field and the region “2°
refers to stagnation condition then Eq. (4.3 2) becomes.

-
£

CFT+%=L" T (433)

P

It can be solved for (I,/T) as

LRI S P 0 - N P
T 2, T zyﬁfé;\lj 2a* (7-1)
' 434
=1 +| r— :l ] M*
For an isentropic process, the @iﬂﬂd}mnnc relation 1s given by,
\ I-'
PR
t“""] L (435)
F La T
From Egqs (4.3.4) and (4.3.53), the following relations may be obtained for stagnation
pressure and density.
= -
2
P (43.6)

In general if the flow field 1s isentropic thronghout, the stagnation properties are
constant at every point in the flow. However, if the flow in the regions ‘17 and “27 is
non-adiabatic and irreversibile, thenT, = 1,0 Py, # Pl P & P
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Characteristics Conditions

Consider an arbitrary flow field, in which a fluid element is travelling at some Mach
number (M )and velocity (V) at a given point ‘A’. The static pressure, temperature
and density are  p,T and p, respectively. Now, imagine that the fluid element is
adiabatically slowed down (if M > 1) or speeded up (if M <1) until the Mach
number at ‘A’ reaches the sonic state as shown in Fig. 4.3.2. Thus, the temperature

will change in this process. This imaginary situation of the flow field when a real state
in the flow is brought to sonic state is known as the characteristics conditions. The

associated parameters are denoted as p*,T", p~, a"etc.

Flow field

Fig. 4.3.2: IIIustra@s}éf characteristics states of a gas.

4

/\\'
Now, revisit Eq. (4.3.2) and Dse the relations for a calorically perfect gas, by

: _IrR _ . :
replacing, Cp— alnd a= /yRT . Another form of energy equation is obtained as
}/_

below;
2 u2

Ji,zi (4.3.7)
2 y-1 2

2
&
-1

<

At the imagined condition (point 2) of Mach 1, the flow velocity is sonicand us a",

Then the Eq. (4.3.7) becomes,

—

y-1 2 (4.3.8)
a~  ut_ y+1 .

Ty-1 2 2(y-1)
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Like stagnation properties, these imagined conditions are associated properties of any

fluid element which is actually moving with velocity u _ If an actual flow field is non-
adiabatic from A — B, then a” # g .Og the other hand if the general flow fieldis

adiabatic throughout, then a’is a constant value at every point in the flow. Dividing

u”both sides for Eq. (4.3.8) leads to,

L (4.3.9)

This equation provides the relation between actual Mach number (M ) and

characteristics Mach number (M ) . It may be shown that when M approaches

infinity, M “reaches a finite value. From Eq. (4.3.9), it may be seen that

M=1 =M =1 O}‘

M<1l = M~ <1
M>1 = M~ a?‘ (4.3.10)

\\}}
M—)oo:»{\l\}l /
}/_

Relations between stagnation and characteristics state

The stagnation speed and characteristics speed of sound may be written as,

a,=+yR T, @ =4yRT" (4.3.11)

Rewrite Eq. (4.3.7) for stagnation conditions as given below;

4+ -0 (4.3.12)
y-1 2 y-1
Equate Egs. (4.3.8) and (4.3.12)
7,_+_1 . @2 (a*\z T 2
a =0 > —] F—7— (4.3.13)
2(y-1) y-1 la,) T, 7+1
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More nseful results may be obtained for Eqs. (4.3 4) & (4.3.6). when we define
p=p T=T"; p=p".a=a" for Mach 1

2V e (2 F
P_=| =_| - P _ ; 4319
P \r+l) g \r+1)
With =14 (for air), the Eqgs (4.3.13) & (4.3.14) reduces to constant value.
| = L o833 Z_oss £ o634 (4.3.15)
\ g Iy Py e

Critical speed and Maximum speed

The critical speed of the gas (u) is same as that speed of sound (a*)at sonic state i.e.

u'=a"atM =1. A gas can attain the maximum speed (u,,) Whenit is

hypothetically expanded to zero pressure. The sta@emperature corresponding to this
state is also zero. The maximum speed of th@&s‘represents the speed corresponding
to the complete transformation of kineg@;}\ergy associated with the random motion
of gas molecules into the directed k@éﬁc energy. Rearranging Eg. (4.3.3), one can

obtain the following equation; O

T:T+(u\u2;AtT=O; u—u - |27RTe
0 LZ}/ ) e y-1

(w Y 2 (43.16)
or,| ™= -
L & )y -1
Now, the Eqgs (4.3.13) & (4.3.16) can be simplified to obtain the following relation;
Up, |2t (4.3.17)
a y-1
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Steady Flow Adiabatic Ellipse

It is an ellipse in which all the points have same total energies. Each point differs
from the other owing fo relative proporfions of thermal and kKinetic energies
comresponding to different Mach numbers. Now, rewrite Eq. (4.3.3) by replacing

vR
CF=f_landa=u'_VRT_,
%+":if=f1 :::r:«!:+(%]ﬂ'I =c (4.3.18)

When T =0, u=u,, sothatthe constant appearing in Fq. (4.3.18) can be considered

as, c= yin . Then, Eq. (4.3.18) is written as follows;

(2%, w (2 )a
u +[—Ja'=u‘ =
\

Tl H@—\I_J L

=1 (43.19)

Replacing the value of u2_ from Eq. {4_3‘&@%}1; Eg. (43.19), one can write the
following expression; Cé)i\

&
.7y (4320)

o 'al}

This is the equation of an ellipse with major axis as u_,_and minor axis as a, as

shown in Fig. 4.3 3 Now, rearrange Eq. (4.3.20) in the following form:
b
a’ =a[;—[1—Ja|; (43.21)
Now, differentiate Fq. (4.3.21) with respect to u and simplify;

da [ ¥-1 [;r.r'* (}‘—l 2 \da
b il D A § V' M=—|—|— 4322
du |\ > ]ka_J 2 = 71 Jdu (4.3.22)
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Incompreszsible limit

d F 3 / i
M=03 sSubsonic
NN

hhhhh i

e
Ll

Supersonic

Hypersonic

Il

Fig. 4.3.3: Steady flow adiabatic ellipse.

Thus, the change of slope from point to point on the ellipse indicates the change in
Mach number and hence the speed of sound and velocity. So, it gives the direct
comparison of the relative magnitudes of thermal and kinetic energies. Different
compressible flow regimes can be obtained with the knowledge of slope in Fig. 4.3.2.

o\
The following important inferences may be dra%Lng\
N4

z
4

©
- In high Mach numbers flows, the‘&é}ges in Mach number are mainly due to

the changes in speed of sound&(‘/’
- Atlow Mach numbers ﬂOQSf\,:{he changes in Mach number are mainly due to

the changes in the velocity.
- When the flow Mach number is below 0.3, the changes in speed of sound is

negligible small and the flow is treated as incompressible.
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One-Dimensional Analysis
Mach Waves

Consider an aerodynamic body moving with certain velocity (V) in a still air. When
the pressure at the surface of the body is greater than that of the surrounding air, it
results an infinitesimal compression wave that moves at speed of sound (a) . These

disturbances in the medium spread out from the body and become progressively
weaker away from the body. If the air has to pass smoothly over the surface of the

body, the disturbances must ‘warn’ the still air, about the approach of the body. Now,

let us analyze two situations: (a) the body is moving at subsonic speed (V <a;M <1);

(b) the body is moving at supersonic speed (V >a; M > 1) .

Case I: During the motion of the body, the sound waves are generated at different

time intervals (t ) as shown in Fig. 4.4.1. The distance covered by the sound waves
can be represented by the circle of radius (at, 2at &at ....... so on) . During same time
intervals (t ) , the body will cover distances rgj@sented by, Vt, 2Vt, 3Vt so on. At

subsonic speeds (V <a; M < 1) , the bo%;‘/ will always remains inside the family of

<&
circular sound waves. In other WOJ@} he information is propagated through the sound

. o \ . Ay
wave in all directions. Thus, the surrounding still air becomes aware of the presence
of the body due to the disturbances induced in the medium. Hence, the flow adjusts

itself very much before it approaches the body.

Case Il: Consider the case, when the body is moving at supersonic speed

(V >a; M > 1) . With asimilar manner, the sound waves are represented by circle of

radius (at, 2at, 3at......so on) after different time (t ) intervals. By this time, the body

would have moved to a different location much faster from its initial position. At any
point of time, the location of the body is always outside the family of circles of sound
waves. The pressure disturbances created by the body always lags behind the body

that created the disturbances. In other words, the information reaches the surrounding
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air much later because the disturbances cannot overtake the body. Hence, the flow
cannot adjust itself when it approaches the body. The nature induces a wave across
which the flow properties have to change and this line of disturbance is known as
“Mach wave”. These mach waves are initiated when the speed of the body approaches

the speed of sound (V=a; M = 1) . They become progressively stronger with increase

in the Mach number.

Subsonic Supersonic
V<a

V=>a

6 E

N
SO’
Fig. 4.4.1: Spread of disturbanc%%éu\bjsonic and supersonic speeds.
in
Some silent features of a Mach Wava@e“ﬁsted below;

- The series of wave fronts}orm a disturbance envelope given by a straight line
which is tangent to the family of circles. It will be seen that all the disturbance
waves lie within a cone (Fig. 4.4.1), having a vertex/apex at the body at time
considered. The locus of all the leading surfaces of the waves of this cone is
known as Mach cone.

- All disturbances confine inside the Mach cone extending downstream of the
moving body is called as zone of action. The region outside the Mach cone
and extending upstream is known as zone of silence. The pressure disturbances
are largely concentrated in the neighborhood of the Mach cone that forms the

outer limit of the zone of action (Fig. 4.4.2).
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- The half angle of the Mach cone is called as the Mach angle (, )that can be

easily calculated from the geometry of the Fig. 4.4.1.

(M )

M> 1 Zone of silence Mach line
—_—
—_— M.  Zone of action
[ J!’??!
—_—

Mach line

Fig. 4.4.2: lllustration of a Mach wave.
Shock Waves

Let us consider a subsonic and supersonic flow past a body as shown in Fig. 4.3.3. In
both the cases, the body acts as an obstruction to the flow and thus there is a change in
energy and momentum of the flow. The changes- ir(ﬂow properties are communicated
through pressure waves moving at speed of ,scﬁnd everywhere in the flow field (i.e.
both upstream and downstream). As shom@iﬁ Fig. 4.3.3(a), if the incoming stream is

subsonicie. M <1, V <a,,the so\&r)d/ waves propagate faster than the flow speed

and warn the medium about the pxésence of the body. So, the streamlines approaching
the body begin to adjust themselves far upstream and the flow properties change the
pattern gradually in the vicinity of the body. In contrast, when the flow is supersonic,

(Fig. 4.3.3-b)i.e. M _>1, V_>a,, the sound waves overtake the speed of the body

and these weak pressure waves merge themselves ahead of the body leading to
compression in the vicinity of the body. In other words, the flow medium gets
compressed at a very short distance ahead of the body in a very thin region that may
be comparable to the mean free path of the molecules in the medium. Since, these
compression waves propagate upstream, so they tend to merge as shock wave. Ahead
of the shock wave, the flow has no idea of presence of the body and immediately

behind the shock; the flow is subsonic as shown in Fig. 4.3.3(b).
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The thermodynamic definition of a shock wave may be written as “the
instantaneous compression of the gas”. The energy for compressing the medium,
through a shock wave is obtained from the kinetic energy of the flow upstream the
shock wave. The reduction in kinetic energy is accounted as heating of the gas to a
static temperature above that corresponding to the isentropic compression value.
Consequently, in flowing through the shock wave, the gas experiences a decrease in
its available energy and accordingly, an increase in entropy. So, the compression

through a shock wave is considered as an irreversible process.

Ahead of shock/ Behind the shock/

f Before the shock After the shock

—O—\’t MDV;
MV

(a) Subsonic flow ' (b) Supersonic flow
M <1, V. <a, 2 Mopls Yosa,
'\Q;
Fig. 4.4.3: lllustration ofshock wave phenomena.
Normal Shock Waves é\?)"/
{\

A normal shock wave is one of the situations where the flow properties change
drastically in one direction. The shock wave stands perpendicular to the flow as
shown in Fig. 4.4.4. The quantitative analysis of the changes across a normal shock
wave involves the determination of flow properties. All conditions of are known
ahead of the shock and the unknown flow properties are to be determined after the

shock. There is no heat added or taken away as the flow traverses across the normal

shock. Hence, the flow across the shock wave is adiabatic (G =0).

Given Unknown conditions
conditions
P Fa T ParP T=7 P < P
T A w [ are mew T,-7,
M =1 »
Ahead of shock/ Mz <1 Behind the shock/
Before the shock After the shock

Fig. 4.4.4: Schematic diagram of a standing normal shock wave.
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Two-Dimensional Analysis
Oblique Shock Wave

The normal shock waves are straight in which the flow before and after the wave is
normal to the shock. It is considered as a special case in the general family of oblique
shock waves that occur in supersonic flow. In general, oblique shock waves are
straight but inclined at an angle to the upstream flow and produce a change in flow
direction as shown in Fig. 4.5.1(a). An infinitely weak oblique shock may be defined
as a Mach wave (Fig. 4.5.1-b). By definition, an oblique shock generally occurs, when

a supersonic flow is ‘turned into itself” as shown in Fig. 4.5.1(c). Here, a supersonic
flow is allowed to pass over a surface, which is inclined at an angle (&) to the
horizontal. The flow streamlines are deflected upwards and aligned along the surface.
Since, the upstream flow is supersonic; the streamlines are adjusted in the
downstream an oblique shock wave angle () with the horizontal such that they are

parallel to the surface in the downstream. All the ,st{eamlines experience same

N\
deflection angle across the oblique shock. t,.\Q;‘

%35\\0

- 3 Oblique shock
£ lique shock
Flow upstream of the shock - - PR Mach wave ® @
okt low downstream of the < 22> P
shock wave ’2\'
¢ } PP
,\\ Ho 7
>
~= & . o M>1 > I P> A
Change in flow direction —_—r & a M, =M,
M,

Oblique shock wave

(b)

(a)

Fig. 4.5.1: Schematic representation of an oblique shock.
(a) Attached shock; (b) Detached shock; (c) Strong and weak shock.
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Oblique Expansion Waves

Another class of two dimensional waves occurring in supersonic flow shows the
opposite effects of oblique shock. Such types of waves are known as expansion
waves. When the supersonic flow is “turned away from itself”, an expansion wave is

formed as shown in Fig. 4.5.5(a). Here, the flow is allowed to pass over a surface

which is inclined at an angle (¢) to the horizontal and all the flow streamlines are

deflected downwards. The change in flow direction takes place across an expansion
fan centered at point ‘A’. The flow streamlines are smoothly curved till the
downstream flow becomes parallel to the wall surface behind the point ‘A’. Here, the
flow properties change smoothly through the expansion fan except at point ‘A’. An
infinitely strong oblique expansion wave may be called as a Mach wave. An
expansion wave emanating from a sharp convex corner is known as a centered
expansion which is commonly known as Prandtl-Meyer expansion wave. Few

features of PM expansion waves are as follows;
Q
- Streamlines through the expansion Wavqaé smooth curved lines.

- The expansion of the flow take hfa‘c“é though an infinite number of Mach
waves emitting from the cent@x‘f‘A’ It is bounded by forward and rearward
Mach lines as shown in FJQ:%S 5(b). These Mach lines are defined by Mach

angles i.e.

Forward Mach angle: z ., =sin™ (¥ M,) (4.5.11)
Rearward Mach angle: x ., =sin™(/M,)

- The expansion takes place through a continuous succession of Mach waves
such that there is no change in entropy for each Mach wave. Thus, the
expansion process is treated as isentropic.

- The Mach number increases while the static properties such as pressure,

temperature and density decrease during the expansion process.
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. Forward Mach line
Expansion fan @

@ @ M,I =1 Rearward Mach line
F
Tll M, >1 My =M, = @
a Pa<p; 5L M,
Tﬂ {TI \
TR e - w o
& T
A P -
o7

{b)
Fig. 4.5.5: Schematic representation of an expansion fan.
The quantitative analysis of expansion fan involves the determination of
M,, p,,T, and p, for the given upstream conditions of M., p,,T,, p,and 6,. Consider

the infinitesimal changes across a very weak wave (Mach wave) as shown in Fig.

4.5.6.

Fig. 4.5.6: Infinitesimal change across a Mach wave.
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Use trigonometric identities and Taylor series expansion, Eq. (4.5.12) can be
simplified as below;

V
dQ:(d—m (4.5.13)
tan u,
Since, sin y,= 1 = tan y,= L , SO the Eq. (4.5.13) can be simplified and
’ M NIV

integrated further from region ‘1’ to 2°,

d@:,/Mz_ldT;’_ :Td6’=wr~/:|\/|2_1_dv\/_ (4.5.14)
0 M
From the definition of Mach number,
V=Ma _ 4V _dM da (4.5.15)
\Y M a

For a calorically perfect gas, the energy equation can be written as,
(aY y-1 da  (y-1) S -1 )_1

ka_OJD;H_MZ k JML M? | dM (4.5.16)

Use Egs (4.5.15 & 4.5.16) in Eq. (4.5.14)')and integrate from =10 to 6,,

/\\} MI M’—1 dM
2

(4.5.17)
My 1+

The integral in the Eq. (4.5.18) is known as Prandtl-Meyer function, V(M ) :

V(M)=IH5—“M—Z_1M2 \/Eﬂtan-l 77;&6/# —1)}—tan’1\/|v|2—1 (4.5.18)
1+ M?2 7=

2
Finally, Eq. (4.5.17) reduces to,

0, =v(M,)-v(M,) (4.5.19)

Thus, for a given upstream Mach number M, one can obtain v(M, ), subsequently

calculate using given v (M 2) and 6,. Since, the expansion process is isentropic, the

flow properties can be calculated from isentropic relations.
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Hypersonic Flow

Introduction to Hypersonic Flow

The hypersonic flows are different from the conventional regimes of supersomic
flows. As a mule of thumb, when the Mach number i1s greater than 5, the flow 15
classified as hypersonic. However, the flow does not change its feature all of a sudden
durning this transition process. So, the more appropnate defimtion of hypersonic flow
would be regime of the flow where certain physical flow phenomena become more
important with mncrease i the Mach number. One of the physical meanings may be
given to the Mach number as the measure of the ordered motion of the gas to the
random thermal motion of the molecules. In other words, it is the ratio of ordered
energy to the random energy as given i Eq. (4.6.1).

+ _(V2)V®  Ordered kinetic energy
_{ _
(12)a* Randum'@ﬁc energy

(4.6.1)

(O
In the case of hypersomic flows, it 1%1@& directed/ordered kinetic energy that
dominates over the energy assuciai@h random motion of the molecules. Now,
recall the energy equation EJLPTES@D the form of flow velocity (I7). speed of sound

{a:..';.-’RT;]EIﬂd stagnation speed of sound {ac, =ﬁ||';r’RT[, }

n 5
i Fd

Fi { - AR :
& @ v o_fa +(f_l LA 452)
yr-1 y-1 2 -y

Eq. (40.2) forms an adiabafic ellipse which 15 obtammed for steady flow energy

equation. When the flow approaches the hypersonic linut, the ratio becomes o1

Ty
Then, Eq. (4.6.2) simplifies to the following expression.

2a; _2yRI,
y=1 -1

= (4.6.3)

In other words, the entire kinetic energy of the flow gets converted to internal energy
of the flow which is a function total temperature (T ) of the flow.
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The study/research on hypersonic flows revels many exciting and unknown flow
features of aerospace vehicles in the twenty-first century. The presence of special
features in a hypersonic flow is highly dependent on type of trajectory, configuration
of the wvehicle design, mission requirement that are decided by the nature of
hypersonic atmosphere encountered by the flight vehicle. Therefore, the hypersonic
flight vehicles are classified in four different types, based on the design constraints
imposed from mission specifications.

- Reentry vehicles (uses the rocket propulsion system)

- Cruise and acceleration vehicle (air-breathing propulsion such as

ramjet/scramjet)

- Reentry vehicles (uses both air-breathing and rocket propulsion)

- Aero-assisted orbit transfer vehicle (presence of ions and plasma in the

vicinity of spacecraft)

Characteristics Features of Hypersonic Flow ~
N
There are certain physical phenomena that,»e§~sehtially differentiate the hypersonic
O
flows as compared to the supersonic f@@s Even though, the flow is treated as
{n
supersonic, there are certain special f&@;ﬂfes that appear when the speed of the flow is
more than the speed of sound typ@%ﬁy beyond the Mach number of 5. Some of these

characteristics features are listed here;

Thin shock layer: It is known from oblique shock relation (- £— M) that the shock

wave angle () decreases with increase in the Mach number (M) for weak shock
solution. With progressive increase in the Mach number, the shock wave angle
reaches closer to the flow deflection angle (') . Again, due to increase in temperature

rise across the shock wave, if chemical reaction effects are included, the shock wave
angle will still be smaller. Since, the distance between the body and the shock wave is
small, the increase in the density across the shock wave results in very high mass
fluxes squeezing through small areas. The flow region between the shock wave and
the body is known as thin shock layer as shown in Fig. 4.6.1(a). It is the basic
characteristics of hypersonic flows that shock waves lie closer to the body and shock
layer is thin. Further, the shock wave merges with the thick viscous boundary layer

growing from the body surface. The complexity of flow field increases due to thin
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shock layer where the boundary layer thickness and shock layer thickness become

comparable.
Oblique shock 20 -4
1aM <5 M5 (£-98)
_ - - 8 { degrees)
— 7 - g 25
- Thin shock layer 5 I 2:0 >
(a)
Bow shock
\
High temperature shock layer
Shock wave b Boundary layer edge
'__”_-"“ Entropy layer T Y=~ Blunt body

-~ =T H .
Boundary layer |- — (y} Convective and radiative heat flux
' R
M3 Blunt body \
Shock stand-off distance T T, Wall
Shock stand-off
distance
{b) (c) {d)
Euler equation Navier-Stokes equation
Continuum model . )
Collisionless Boltzmann equation
Discrete model ‘ Boltzmann equation
] | | | | [
i I | I I [
iscid limi 100 .
Inviscid limit 0 0.01 0.1 1 1 Free molecular regime
Knudsen number ’\\
"y
(e) <
tw\ ~4

Fig. 4.6.1: Few important phenomena in a hypersonic flov@hin shock layer; (b) Entropy layer; (c) Temperature
profile in a boundary layer; (d) High tem@{ ture shock layer; (e) Low density effects.

PR
Entropy layer: The aerodynamj\c(‘}})}dy configuration used in hypersonic flow
environment is typically blunt to\avoid thin shock layers to be closer to the body. So,
there will be a detached bow shock standing at certain distance from the nose of the
body and this shock wave is highly curved (Fig. 4.6.1-b). Since, the flow process
across the shock is a non-isentropic phenomena, an entropy gradient is developed that
varies along the distance of the body. At the nose portion of the blunt body, the bow
shock resembles normal to the streamline and the centerline of the flow will
experience a larger entropy gradient while all other neighboring streamlines undergo
the entropy changes in the weaker portion of the shock. It results in an entropy layer
that persists all along the body. Using the classical Crocco’s theorem, the entropy
layer may be related to vorticity. Hence, the entropy layer in high Mach number
flows, exhibits strong gradient of entropy which leads to higher vorticity at higher
magnitudes. Due to the presence of entropy layer, it becomes difficult to predict the
boundary layer properties. This phenomenon in the hypersonic flow is called as

vortcity generation. In addition to thin shock layer, the entropy layer also interacts
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with viscous boundary layer that leads to very complicated and unknown flow
features.
Viscous-Inviscid interaction: When a high velocity, hypersonic flow is slowed down

in the vicinity of the aerodynamic body due to viscous effects within the boundary
layer, the major portion of the kinetic energy is transformed into the internal energy of
the gas known as viscous dissipation leading to increase in temperature. For a cold
wall, the typical temperature profile in a boundary layer is shown in Fig. 4.6.1(c).
Since, the pressure is constant in the normal direction through the boundary layer, the
increase in temperature results decrease in density. In order to pass through a given
mass flux at reduced density, the thickness of the boundary layer must be larger.
Thus, the displacement thickness increases, causing the body shape to appear much
thicker and displacing outer inviscid flow. Hence, the free stream flow encounters an
inflated object which changes the shock shape and in turn boundary layer parameters
such as surface pressure, wall heat flux, skin friction etc. Again, when the boundary
layer becomes thick, it essentially merges with the thin shock layer. Thus, there are
major interactions of viscous boundary Iayer,;"[ﬁm shock layer and outer inviscid
flows. This phenomenon is known as visc;%ég)iﬁviscid interaction and has important

effect on the surface pressures and the ”sm“BT ity of hypersonic vehicles.

High temperature effects: The ki,r]e\t?é}énergy of the high speed, hypersonic flow is
dissipated by the effect of friction within the boundary layer (Fig. 4.6.1-d). The
extreme viscous dissipation can result in substantial increase in temperature (~10000
K) exciting the vibration within the molecules and can cause dissociation, ionization
in the gas. Typically, in the range of 2000K-4000K, the oxygen molecules start
dissociating and with increase in temperature, dissociation of nitrogen molecules
takes place. Further increase in temperature (> 9000 K), ionization of both oxygen
and nitrogen can start. This leads to chemical reaction within the boundary layer. As a
result, the gases within the boundary layer will have variable specific heat ratio and
gas constant which are functions of both temperature and pressure. Therefore
treatment of air or any fluid flowing with hypersonic speed over any configuration
should be done properly by incorporating all the microscopic changes which
essentially leads to change in thermodynamic properties with temperature. If the
vibrational excitation and chemical reactions takes place very rapidly in comparison
to time taken by the fluid element to move in the flow field, then it is called as

equilibrium flow. When there is sufficient time lag, then it is treated as non-
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equilibrium flow. All these phenomena are called as high temperature real gas effects.
The presence of high temperature reacting plasma in the vicinity of the flight vehicle
influence the aerodynamic parameters, aerodynamic heating and subsequently,
communication is blocked. Flight parameters like pitch, roll, drag, lift, defection of
control surfaces get largely deviated from their usual estimate of calorically perfect
gas. The presence of hot fluid in the vicinity of vehicle surface induces heat transfer
not only through convection but also through radiation. Communication waves which
are necessarily radio waves get absorbed by free electrons formed from ionization of
atmospheric fluid. This phenomenon is called as communication blackout where on
board flight parameters and ground communication is lost.

Low density flow: At standard sea level conditions, all the fluids are treated as

continuum so that the global behavior is same as that of average fluid properties. In
these conditions, the fluid contains certain desired number of molecules and the

average distance between two successive collisions of the molecules is specified by its

mean free path (}L ~ 7 x107 m) . Since, the hype@bnic flows are encountered atvery

high altitude (~100 km), the density of the méc 'l]}m is very less and the mean free path
may be in the order of 0.3m. So, the/i'ag)% no longer a continuous substance, rather
treated as individual and Widelym’iéfaced particles in the matter. Under these
conditions, all the fundamental ecﬁﬂ\a\tions based on continuum assumption break down
and they are dealt with the concepts of kinetic theory. This regime of the
aerodynamics is known as low-density flows. Further increase in altitude (~ 150 km),
the air density becomes so low that only a few molecules impact on the surface per
unit time. This regime of flow is known as free molecular flow. Thus, a hypersonic
vehicle moves in different flow regimes during the course of its flight i.e. from a
dense atmosphere to a rarefied atmosphere. The similarity parameter that governs

different regimes of the flow for certain characteristic dimension L , is then defined as

Knudsen number (Kn ) .

[

Kn = (4.6.4)
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Large value of Kn implies free molecular flow (Kn — o)  while small value of Kn is

the regime of continuum flow(Kn <0.2) as shown in Fig. 4.6.1(e). In the inviscid

limit, the value of Kn approaches to zero while the free molecular flow regime begins
with Kn =1 . In the low density regimes, the Boltzmann equation is used to deal with
the fundamental laws.

 Bow shock

I. High temperature effect
Low density effect

. \ {Discrete particle model)

Thin shock layer

Thickened shock

_ "~ _ Boundary layer)
Vorticity interaction - ¢ <
v e _/\\.} ‘ Y
AN

“<_ Boundary layer
. Shock wave
Viscous interaction
Fig. 4.6.2: Characteristics features of hypersonic flow.

From these characteristics of hypersonic flows, it is clear that Mach number to be
greater than 5 is the most formal definition of hypersonic flow rather it is desired to
have some of the characteristics features summarized in Fig. 4.6.2. It is more
important that one of these characteristics features should appear in the flow
phenomena so that the definition becomes more appropriate. There are many
challenges for experimental simulation of hypersonic flow in the laboratory.

Understanding the challenges faced by hypersonic flight and driving solutions these

problems on case to case basic are the most research themes on hypersonic flows.
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Hypersonic Flow

Inviscid Hypersonic Flow Relations

In general, the hypersonic flows are characterized with viscous boundary layers
interacting the thin shock layers and entropy layers. The analysis of such flow fields is
very complex flows and there are no standard solutions. In order to get some
quantitative estimates, the flow field at very high Mach numbers is generally analyzed
with inviscid assumption so that the mathematical complications are simplified. In
conventional supersonic flows, the shock waves are usually treated as mathematical
and physical discontinuities. At hypersonic speeds, some approximate forms of shock

and expansion relations are obtained in the limit of high Mach numbers.

Hypersonic shock relations

Consider the flow through a straight oblique shock as shown in Fig. 4.7.1(a). The
notations have their usual meaning and upstream and downstream conditions are
denoted by subscripts ‘1’ and ‘2°, respectively. LQ{\IS revisit the exact oblique shock
relations and simplify them in the limit of higg;%ch numbers.

S

(@) )

Fig. 4.7.1: Geometry of shock and expansion wave: (a) obligue shock; (b) centered expansion wave.
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What is fluid flow?

Fluid flows encountered in everyday life include
meteorological phenomena (rain, wind, hurricanes, floods, fires)
environmental hazards (air pollution, transport of contaminants)
heating, ventilation and air conditioning of buildings, cars etc.
combustion in automobile engines and other propulsion systems
interaction of various objects with the surrounding air/water
complex flows in furnaces, heat exchangers, chemical reactors etc.
processes in human body (blood flow, breathing, drinking ...)

and so on and so forth

What is CFD?

Computational Fluid Dynamics (CFD) proxides a qualitative (and

sometimes even quantitative) predictior{@‘ fluid flows by means of

/3

&/
* mathematical modeling (part@\}lifferential equations)

O .. - .
* numerical methods (discretization and solution techniques)
/s\

+ software tools (solvers,bre— and postprocessing utilities)

CFD enables scientists and engineers to perform ‘numerical experiments
(i.e. computer simulations) in a ‘virtual flow laboratory

Why use CFD?

Numerical simulations of fluid flow (will) enable
Architects to design comfortable and safe living environments
designers of vehicles to improve the aerodynamic characteristics
chemical engineers to maximize the yield from their equipment
petroleum engineers to devise optimal oil recovery strategies
surgeons to cure arterial diseases (computational hemodynamics)
meteorologists to forecast the weather and warn of natural disasters

safety experts to reduce health risks from radiation and other hazards
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