Module 1

Stress & Strain

Objectives:
Classify the stresses into various categories and define elastic properties of materials and
compute stress and strain intensities caused by applied loads in simple and compound sections

and temperature changes.
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1.1 Classification of Engineering Materials

Engineering Materials
|

Metal & Their Alloys Non-Metals
Ex: Iron, Steel, Copper, Aluminium etc.., Ex: Glass, Rubber
Ferrous Metals
(Iron will be main constitute)
Ex: Cast Iron, Wrought Iron
& Steel

Non- Ferrous Metals
(Other than Iron will be main
constitute)

Ex: Copper, Aluminium,

Brass, Tin, Zinc Etc..,

w \V
1.2 Choice of Selection of Engineering %

» Auvailability of materials.
> Sustainability of materials for the o@mdmons @?

» Cost of materials.
R\

Density
Shape



1.4 Mechanical Properties

Load (F or P)
It is defined as any external force acting on a body

Elasticity
It is the property by virtue of which a material deformed under the load is enable to
return to its original dimension when load is removed.

If the body regains completely its original shape, it is said to be perfectly elastic.

Stress

a | Elasticity | Plasticity \0
Strain 0
v
In the above figure, the specimen is&&o point A, well within the elastic limit
I

E. When load corresponding to poi adually @1 ed the curve follows the same
path AO and Strain complet

behaviour. Steel i

pears. S a behaviour is known as Elastic

i oF"a material which exhibits large deformations in longitudinal
directio e application of tensile force before failure.

A ductile material must be strong and plastic. The ductility is measured in terms of %

elongation or % reduction in cross-sectional area of test specimen.

Ex: Mild steel, Brass, Aluminium, Nickel, Zinc, Tin, Lead etc..,




Brittleness
It is the property of a material which exhibits little or no yielding before failure.

Generally brittle materials are have higher strength in compression than in tension.

Ex: Cast Iron, High carbon steel, Concrete, Stone, Glass, Ceramic materials etc..,

Malleability
It is the property of a material which permits the material to be ex@ in all

directions without rupture.

A malleable material possesses a high degree of plasticityg%cessariwreat
strength . Q
L ¥ \

-

Ex: Gold, Lead, Soft steel

Strength
Itis the

AJ |
It is the property of a material which enables it to absorb energy without fracture.

Ve




This property is desirable in parts subjected to impact and shock loads. Toughness is
measured in terms of energy required per unit volume of the material to cause rupture
under the action of gradually increasing tensile load.

Hardness
It is the ability of the material to resist indentation or surface abrasion.

It embraces many different properties such as resistance to wear, scratching,

o b
TestProcedure TestResult ‘\

Stiffness Qw \0

It is the ability of a material to resist& n under str

The stiffness is measured by the n%

Creep

deformation, machinability etc..,

Load

elast|C|t nQGase of axially loaded members

Whenever ine"su jected to a constant stress at high

it will undergo a slow and permanent

erial to absorb energy and to resist shock and Impact

It is me

the amount of energy absorbed per unit volume within elastic limit,




1.5 Stress, Strain and Hook’s law

The most fundamental concepts in mechanics of materials are stress and strain. These
concepts can be illustrated in their most elementary form by considering a prismatic bar
subjected to axial forces. A prismatic bar is a straight structural member having the same
cross section throughout its length, and an axial force is a load directed along the axis of the

member, resulting in either tension or compression in the bar.

Axially loaded bar

‘ ' Prismatic bar
1.5.1 Stress %
r@is ing force@¥ setup in

When a body is acted upon by external force F, or Load P, inti

the body such a body is said to be in state of stress, hence t istance of€& y the body

against deformation due to the application of load is calle ress. Q.

The Internal resisting force per unit area at an*s@of the bod;% known as Stress
It is denoted by o (Sigma),

ForP N
A mm?2

Ed Load or ,-‘ ce

In general, the pface may be uniform throughout the area or may

vary in intensi
1.5.1.1 Types of

1) Normal Str
a) Tensile Stress
b) Compressive Stress
2) Shear Stress
3) Bearing Stress



1. Normal Stress
A normal stress is a stress that occurs when a member is loaded by an axial force. (Axial
force is the force acting along the axis of the specimen).

Normal stress can be either tensile or compressive in nature.

a) Tensile stress
When a load is acting in such a way that it tends to extend the material in the direction of

application of load is called tensile load and the corresponding stress is called tensile stress.

F or P+ >F or P Q
P F N
Tensile stress, 6 = o Q
A mn\Q

g\

\
b) Compressive stress v \Q
@
When a load is acting in such a way that it tends to shorten the materlal in the direction of
» -

application of load is called compressive load and the correspondlng stress is called

compressive stress.

PorF N
A mm?2

Compressive stress, ¢ =

stresses is required, it is customary to define tensile

stresses as positive a

4
2. Shear Stres;~/

Shearing stress is a force that causes two contacting parts or layers to slide upon each other in

e stresses as negative.

opposite directions. The stress developed at the contacting surfaces is known as shear stress.

PorF ¢ |

I-}P or F

Shearing Force __ PorF N

Shear Stress, 1= =
’ Shearing Area A mm?2




3. Bearing Stress
A Localised compressive stress at the surface of contact between two members of a machine

part that are relatively at rest is known as Bearing stress or crushing stress.

t

P
—

P
—

N

Bearing Stress P.E
earin =—=—
g A td mm?2

Where, é
t = Thickness of Plate Q Q
d = Diameter of the bolt Q . O

1.5.2 Strain v \0’

When a body is subjected to some external force &me chanogﬁn dimensions of the

The ratio of change in dimensions of the@t e origin«gﬁensions is known as Strain

(e) 0

hghge'in Pimension

inal Dimension

a) Tensile Szal
b) Compressive Strain
2) Lateral Strain
3) Shear Strain

4) Volumetric Strain



1. Linear Strain

A straight bar will change in length when loaded axially, becoming longer when in tension and
shorter when in compression. This change in dimensions in axial direction is known as Linear
Strain.

Tensile Strain,

| |
{ a
|

! ‘

) ) Change in length (Extensmn) dl
Tensile Strain € = —
Original length
Compressive Strain, Q !

. . in Lengt uctlon) dl 61
Compressive Strain € -
Orlglnal gth 1

VIS

Lateral strain, also known as transverse strain, which takes place at right angles to the
AN $4 W /

direction of applied load is known as lateral strain.

BV il W/

Lateral strain

@
g B——

Lateral strain

2. Lateral Strain

10



3. Shear Strain

Shear strain is the ratio of deformation to original dimensions. In the case of shear strain, it is

the amount of deformation perpendicular to a given line rather than parallel to it.

MHotrra YMram Wrapar Wrgan

4. Volumetric Strain Q

It is the ratio of change in volume to its original volume V

1.5.3 Poison’s ratio Qh
It is the ratio of lateral strain to linear strain %

) ateral Spra
Poison’s r
i L1ne train

N

Volumetric Strain, €, =

Poisson's ratio

Lateral strain

U
Linear strain <= (D j) C=">> Linear strain
f

Lateral strain

11



1.5.4 Hook’s Law

It states that “When a material is loaded within its elastic limit, stress is directly
proportional to the strain”

Stress o Strain

Stress
e ;
Strain

(0]
ie —=E
€

= Constant

Where,

E = A constant of proportionality known as Modulus of EIasti%‘
o = Stress & € = Strain Q Q
Hook’s law holds good for tension as well as compression. Q * 0
1.5.5 Modulus of Elasticity or Young’s Modulus (%b \Q‘

Modulus of Elasticity or Young’s Modulus (E) 1% ant of pﬁ;}gtlonallty and is defined
as the ratio of linear stress to linear strain wi C I|m|t

ess (Ter%e or Compressive) _ g

Modulus of Elasticity, : ; :
Y Strain @ensﬂe or Compressive) &

®

\
Pa or GPa

fess or yield stress to the working or allowable or design

Ultimate or Yield Stress
Working or Allowable or Design Stress

12



1.6 Stress — Strain Relation or Diagram for Ductile Material (Mild Steel or Low carbon

steel)

A stress-strain diagram for a typical structural steel as a specimen in tension is shown in Figure.

Strains are plotted on the horizontal axis and stresses on the vertical axis.

Standard tensile test specimen

[ et
—

= Lo 4

neck

~r A\

o~ | 0

\
L
<
A 4
The load on the test specimen is increased g om zero i guitable increments till the

specimen fails and the corresponding grap E e computed$ shown in the figure below.

Stress 0 ——p

‘-\ True
5 - stress-strain
. curve
Ultimate tensile stress igp®T

"""""""""" E Engg. '

stress-sirain
B C curve
D F
A

A : Proportional limit
B : Elastic limit
C, D : Upper and lower yield points
E : Ultimate stress point
F : Breaking point

Strain € ————

13



Proportional Limit (A)

From O to A the curve is straight and linear and hence proportional limit is the limiting value
of stress upto which stress is directly proportional to strain and hence Hooke’s law holds good
upto point A.

Stress a Strain
Elastic Limit (B)

The point B is slightly beyond point A and is known as Elastic limit. Upto point B, the material
will regain its original size and shape when load is removed. This indicaigs that the material

has elastic properties upto point B.

Upper Yield Point (C) g(Q

If the material is stressed beyond point B, plastic deformaﬁ ts and the‘p\terlal does not
regain its original size and shape upon unload and t % enon is &[ d as Yielding.

A point at which Maximum load or stress %

yielding of the material is called as Upp\% pOInt «o» % this point the dislocations or

to 1n1t1ate e plastlc deformation or

slip in the crystalline structure starts

Lower Yield Point

material and h

A point at TaY Atress required to maintain the plastic deformation or
yielding of the mat as Lower yield point “D” and this point depicts the end of

plastic deform

Dislocations or slip become too much in number and they restrict each other’s movement.

14



Ultimate Stress point (E)

After Lower Yield point D, Strain Hardening in the materials takes place. Strain hardening,
also known as work hardening, is the strengthening of a metal occurs because of dislocation
movements within the crystal structure of the material and hence there is a positive rise in curve

from D to E. In this region as stress increases strain also increases

At point E the specimen takes maximum load, and the corresponding stress at point E is called

the ultimate stress point “E”.

Breaking Point (F)
Beyond the ultimate stress point is reached Necking takes place and%& sectional area
d

considerably decreases, the load carrying capacity of the specm&
portion E to F the strain increases with decrease in stress. At e

es and e in the
specw{egoreaks The

stress at this point is called breaking stress or fracture stre 0

1.7 True Stress - Strain and Engineering Streg
Let P be the load, A, be the original area of &s ction, A l@the area of cross-section at

any instant.

Engineering stress is ivi ed\@the original cross-sectional area of a

material. Also kn

Load P N

rjginal Area of Cross—section A, mm?2

True stress is the a ed by the actual cross-sectional area (the changing area

V4

i Specimen at that load

Load

N
True Stress ¢ = : - = >
Actual Area of Cross—section atany instant A mm

with respect to

|

Engineering strain is the change in length to its original length in a tensile test. Also known
as nominal strain.

. . ) 81
Engineering Strain € = T

I . - . 81
True strain is the sum of all the strains over the original length. True Straine = T

15



Additional Information — Photo Gallery

OVERALL LENGTH

A
\

DISTANCE BETWEEN SHOULDERS

GAGE

LENGTH
GRIP SECTION - -

DIA. OR WIDTH
WIDTH OF

GRIP SECTION -E =
"REDUCED" SECTION

Detailed information for specimen preparation
» &I

UTM for testing and Computer to plot Stress-Strain curve.

16



Plastic
Region

v

Dislocation
M disappeared

d

Location of plastic region Location of Dislocation upon Loading and Unloading

~t=d=42nm

©
?-9 4 ~w~d=46nnm
g : —4—d=58nm
: —o—d =89 nm
17

-a—d=118 nm

T T 1

L T T

0 002 004 006 008 0.1 0.12 0.14
strain

L]

Specimens undergoing test Actual Stress-Strain curve
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1.7 Stress — Strain Relation or Diagram for Brittle Material

Brittle materials, which includes cast iron,
Fracture glass, and stone do not have a yield point, and
do not strain-harden. Therefore, the ultimate

Stress O

strength and breaking strength are the same. A
typical stress—strain curve is shown in the

figure.

Strain €

Proof Stress: .Y

For materials which do not have clearly
defined yield point, an arbitrary yield point is

proof stress defined by drawing a line which is offset by a
certain strain value and is parallel to the

original stress-strain line (within proportional
< limit). The strain by which line is offset can

be 0.1% or 0.2% and the corresponding stress

is the Proof Stress at 0.1% or 0.2% strain

0.2% .
respectively.

Additional fo

Final Length—Initial Length
on= fg, g x 100
Initial Length

. Lg-L
% Elongation = fL - x 100

i

Percentage Reduction in Area,

Initial Area—Final Area

% Reduction = x 100

Initial Area

i Ai—A
% Reduction = ——— x 100

1

______________________________________________________________________________________________|
18



1.8 Problems

1. The following data refer to a mild steel specimen tested in a laboratory

Diameter of the specimen - 25mm

e Length of the specimen — 300 mm

e Extension under a load of 15kN — 0.045 mm

e Load at yield point — 127.65kN

e Maximum load — 208.60kN

e Length of the specimen after failure — 375mm Q

e Neck diameter —17.75mm

Determine Young’s modulus, Yield stress, Ultimate stress, % tion, %R&hction in
area, safe or permissible stress adopting a factor of safety& {'\

Given Data:

do = 25mm, df = 17.75mm, L, = 300mm, Ls= 7@? 0. 045%1qmax = 208.60kN
1'td0 X2 Q
Avrea of the specimen, A = = 90 87 r’r@
4

F _ 15x103

il = 30 o O
A 49087 ;

5

o=

1 _ 0.045

8_

T~ 300

N
—Young’s 203.66x10° —
mm

— Yield stress oy=

208.60x103 _
A 490.87

— Ultimate str

375-300

. Lg-L
— % Elongation = % x 100 =

i

x100 = 25%

At 100

i

. A
—9% Reduction = —

nd¢® _ mx17.752
A= 2 = 2 = 247.44 mm?

19



490.87—247.44
490.87

x100 = 49.59 %

Ultimate or Yield Stress

— FOS = - -
Working or Allowable or Design Stress

Note:
In question they have asked for safe permissible stress hence take yield stress for calculation
For Maximum permissible stress take ultimate stress for calculation

Yield Stress

. FOS =
Working or Allowable or Design Stress

WKkt, FOS = 2 V
260.04 Q ;

Working or Allowable or Design Stress

2=
_ _ 260.04 _ b'
Working stress or Design stress = i

2. A rod 150 cm long and a diameter 2 ¢ x ected t an aX|aI pull of 20kN. If the

modulus of elasticity of material is 2 6
rod.

Given data:

etermln(;tress strain and Elongation of

®

\

O _ 6366
E 200x103

= 3.183x10*

ol = € x 1 =3.183x10* x 1500

ol = 0.477 mm
|
20



3. A bar of a rectangular section of 20 mm x 30 mm and a length of 500 mm is subjected
to an axial compressive load of 60 kN. If E = 102 kN/mm2 and v = 0.34, determine the
changes in the length and the sides of the bar.

e Since the bar is subjected to compression, there will be decrease in length, increase in
breadth and depth. These are computed as shown below

e L =500 mm, b =20 mm, d =30 mm, P =60 x1000 = 60000 N, E = 102000 N/mm2

e Cross-sectional area A = 20 x 30 = 600 mm2

e Compressive stress o = P/A = 60000/600 = 100 N/mm2

e Longitudinal strain eL = o/E = 100/102000 = 0.00098 Q
e Lateral strain glat= v eL = 0.34 x 0.00098 = 0.00033 Q
e Decrease in length 6L = e. L = 0.00098 x 500 = 0.49 mm Q% . 0
e Increase in breadth &b = latb = 0.00033 x 20 = 0.0066 0

\

e Increase in depth 8d = elatd = 0.00033 x 30 = o.oowg' o

4. Determine the stress in each section &showr@n the following figure when
subjected to an axial tensile load of the cent |on is of square cross-section;

the other portions are of circ

hat WI|| b the total extension of the bar? For

*
f \

i :<” l“(l mm 400

-._‘mm t ‘}‘— '";“ _——.1

‘znmo——— =R - 20 kN

the bar material E =

i

T '
20 mm dia 30mm 15 mm dia

square

The bar consisl" gifons with change in diameter. Loads are applied only at the ends.

The stress and n in each section of the bar are computed separately. The total
extension of the bar is then obtained as the sum of extensions of all the three sections. These
are illustrated in the following steps.

The bar is in equilibrium under the action of applied forces

Stress in each section of bar = P/A and P = 20000N

21



i. Area of Bar A = n x 202/4 = 314.16 mm?2

ii. Stress in Bar A : A = 20000/ 314.16 = 63.66MPa

iii. Area of Bar B = 30 x30 = 900 mm2

iv. Stress in Bar B : o8 = 20000/ 900 = 22.22MPa

v. Area of Bar C = n x 152/4 = 176.715 mm2

vi. Stress in Bar C : oc = 20000/ 176.715 = 113.18MPa

Extension of each section of bar = cL/E and E = 210000 MPa

I. Extension of Bar A =63.66 x 250 / 210000= 0.0758 mm

ii. Extension of Bar B = 22.22 x 100 / 210000= 0.0106 mm

iii. Extension of Bar C = 113.18 x 400 / 210000= 0.2155 mm Q
Total extension of the bar = 0. 302mm

5. Determine the overall change in length of the bar S %e flgt(goelow with
following data: E = 100000 N/mm2

20 mm dia -

30000 N 14 mm dia 10 mm dia )
: e S oo A4 N - 16000

20000N

i} I
I
< 100 mm-»|<— 140 mm —»€—150 mm —
The bar is wit jected to forces at ends as well as at other interior

locations. It i ilibrium of each portion separately and compute the
change in length i ¢ total change in length of the bar is then obtained as the

sum of extension {'sections as shown below.
Forces acting on on of the bar for equilibrium

30000N =—p- g 30000 N

20000N
S i pticiard | 50000 N

50000 N —pc—fm' 0N | g 16000N

22



Sectional Areas

mx202 Tx142 Tx102

=314.16 mm?: A, = = 153.94 mm?; A;; = —, = 7854 mm?

AI=

Chanee in length in Portion [

Portion I of the bar i1s subjected to an axial compression of 30000N. This results in decrease in

length which can be computed as

BL; 30000 x 100

5L — 0.096
'= 4,E 314.16 x 100000 mm

Chanee in length in Portion IT
Portion IT of the bar is subjected to an axial compression of 50000N ( 30000 + 20000). This

results in decrease in length which can be computed as
Pyl 50000 x 140

= = 0.455mm
ApE 153.94 x 100000

§LI =

Change 1n length 1 Portion ITT
Portion IIT of the bar is subjected to an axial compression of (50000 — 34000) = 16000N. This

results in decrease in length which can be computed as

5;. — Pobu 16000 x 150 0.306
= = = . mm
™ 4,,E — 78.54 x 100000

Since each portion of the bar results in decr«nmgth th%can be added without any

0 ;g5 +0. 30690 857mm

algebraic signs.

Hence Total decrease in lengt

Note: A

For equilibriu Mgy be subjected to tension and some other portion
to compressio rease in length in different portions of the bar. In
such cases inlengt ' omputed as the sum of change in length of each portion
of the bar with prope :,16"‘“-': s. Generally positive sign (+) is used for increase in length

s

ig geﬁse in length.

and negative s

23



1.9 Elongation of tapering bars of circular cross section

Consider a circular bar uniformly tapered from diameter d1 at one end and gradually increasing

to diameter d2 at the other end over an axial length L as shown in the figure below.

dj_’:*l — -—d— - Er —_———— —d;z— -4~ ——P
S S | l
A T—— A B
i S
| I
l ; |
Since the diameter of the bar is continuously changing, the elongatlon iS omputed over
an elementary length and then integrated over the entire length. C elementary strip

of diameter d and length dx at a distance of x from end A.

Using the principle of similar triangles the following equ d can be (Qt'&ned
O
dy, —dy dy, —dy
d=d; + x =dy + kx ,wherek = 7
T (dy+kx)?
Cross—sectional area of the baratx : A, — %
, 2 4p
Axial stress at x.'t‘}'x —- — = —2
Ax m (dl -|—kx)
Change in length over dx :ddx = Gxde = %P dx 3
B wE (.dl+kx)
AN i AL
~—1
. dy+kx
Total change in length: §L = fé‘ 4P dx 5 — ;‘; [( 1 —" ) ]
7E (d +kx) 0

After rearranging the terms: §L =

ﬂ:Ek [(i’f + fil}]

1
Upon substituting the limits : 6L = — - —
P g (d, + kL} dl}

After rearranging the terms: 6L =

IFER [dl M]

: d, —d,

_ o 4P [dy —d,
With the above substitution: 8L = =

IIEFCLH dz]_T[Ek dyd>

dy . . : . .
i the above expression. following equation for elongation of

o dz—
Substituting for k = —

tapering bar of circular section can be obtained

Total change in length: 6L = Fﬁ%
12

24



Problem:
A bar uniformly tapers from diameter 20 mm at one end to diameter 10 mm at the other end
over an axial length 300 mm. This is subjected to an axial compressive load of 7.5 kN. If E =

100 kN/mmz2, determine the maximum and minimum axial stresses in bar and the total change

in length of the bar.

P =7500 N, E = 100000 N/mm’ " d; = 10mm, d, = 20mm.L = 300mm

e Minimum compressive stress occurs at dy = 20mm as the sectional area 15 maximum.

T %20°

e Areaatdh= = 314.16mm?

o 0. =22 _9387MPa

min - 31416

e Maximum compressive stress oceurs at d; = 10mm as the sectional area is minimum.

2
o Areaatd, =“:° = 78.54mm?
o Opin = % — 955MPa
« Total decrease in length: 8L = PL _ _2X75003EW  _ ) 143mm

nEdyd; 7w x 100000 %10 %20

25



1.10 Elongation of tapering bars of rectangular cross section
Consider a bar of same thickness t throughout its length, tapering uniformly from a breadth B
at one end to a breadth b at the other end over an axial length L. The flat is subjected to an

axial force P as shown in the figure below.

Since the breadth of the bar is continuously changing, the elon
elementary length and then integrated over the entire length

a st compued over an
&m er an eIeQe ary strip of

breadth bx and length dx at a distance of x from left end.
Using the principle of similar triangles the foIIowygglon for bxa\be obtained

B—b B—b
b,= b+ x=b+kx,wher'ek=T
Cross—sectional area of the baratx: 4, = b, t = (b + kx)t
| P P
Axial stress atx:0, = A_x = m
. o _ gxdx _  Pdx
Change 1n length over dx :ddx E £t {'b )
, _ Pdx _
Total change in length: 6L = fﬂ Et(b+kx} Eﬂ\ [In(b + .Rx)]n
Upon substituting the limits : 6L =m[hl(b + kL) — In(b)]
B—b
But(b+ij=b+TL=B
With the ab bstitution: 6L = P [In(B)— In(h)] = P In(B/b)
i e above substitution: =Ftk n(b) ik
B-b
Substituting for k = I in the above expression. following equation for elongation of tapering

bar of rectangular section can be obtained

PL
oL = E,_!_(B—_b)hl(g,fb)

26



Problem

An aluminium flat of a thickness of 8 mm and an axial length of 500 mm has a width of 15 mm
tapering to 25 mm over the total length. It is subjected to an axial compressive force P, so that
the total change in the length of flat does not exceed 0.25 mm. What is the magnitude of P, if

E = 67,000 N/mm2 for aluminium?

t=8mm. B =2%5mm.b=15mm. L =500 mm. 6L =0.25 mm. E =67000MPa. P ="

_ Et(B—Db)SL _ 67000 x 8 x (25— 15) x 0.25
- In(B/b)L In(25/15) x 500

= 5.246kN

1.11 Elongation in Bar Due to Self-Weight

@A

&

\
A"
» O
dy 0\

F‘FI C)

Stressaty-y : oy =

ﬂ‘My:pydy/E

L d 2 12
Total change in length : 0L = f PYIY _ fBY L _ P2

Strain at y-y :
Change in leng

0 E 2E 2E
AL)L WL
This can also be written as : OL = (pAL) =
2AE 2AE

W = p A L represents the total weight of the bar

27



Problem:

A stepped steel bar is suspended vertically. The diameter in the upper half portion is 10 mm,
while the diameter in the lower half portion is 6 mm. What are the stresses due to self-weight
in sections B and A as shown in the figure. E = 200 KN/mmz. Weight density, p = 0.7644x10-
3N/mma. What is the change in its length if E = 200000 MPa?

LELELSAELEELS
1, ]
10 mmg ———._ 1m
(Aq) 1 <
=]

ernr.n—r

N "Q’Q&O“

C

Stress at B will be due to weight of portion of the Ea” ' CDO

7
¢
<.

Sectional area of BC: A2= 1t X 62/4 = 28.27

Weight of portion BC: W2=p A2L2=0. 3x 28. 27{‘ 00 = 21.61IN
Stress at B: oB = W2/A2=21.61/28,2 MPa

Stress at A will be due t of the b@BC + AB
\

Sectional area of
Weight of porti 10-3x 78.54 x 1000 = 60.04N
Stress at A: ¢ 61) / 78.54 = 1.04 MPa
Change in
This is caused due to and is computed as

‘SLBC _ Wl _ 2161x1000 _ 0.00191mm

2A:E 2x28.27x200000

Change in Length m portion AB
This 1s caused due to weight of AB and due to weight of BC acting as a concentrated load at B

and is computed as:

WL, WL, 60.04%1000 21.61%1000
OLap = + = + = 0.0033mm
2A4E E A, 2x%78.54x200000 200000 x 78.54

Total change n length = 0.00191+ 0.0033 = 0.00521mm
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1.12 Compound or composite bars

A composite bar can be made of two bars of different materials rigidly fixed together so that
both bars strain together under external load. As the strains in the two bars are same, the stresses
in the two bars will be different and depend on their respective modulus of elasticity. A stiffer
bar will share major part of external load.

In a composite system the two bars of different materials may act as suspenders to a third rigid
bar subjected to loading. As the change in length of both bars is the same, different stresses are

produced in two bars.

1.10.1 Stresses in a Composite Bar &Q

Let us consider a composite bar consisting of a solid bar, of dia pletelyegcased in
a hollow tube of outer diameter D and inner diameter d, subjtho ensile fQ{&P as shown

in the following figure. ‘“ A"
g g A « 0

Let the extensi
of solid bar

bar and hol u

7

Since change in le ar is equal to the change in length of hollow tube, we can

establish the relatio n the stresses in solid bar and hollow tube as shown below :

UsL UHL E
— or G—g — JH =5
Eg Ey : Ey
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osL oyl

_ s
ES EH 5 H EH
. m(D*— d*
Area of cross section of the hollow tube : Ay = nD"-d)
4
. . wd?
Area of cross section of the solid bar : A¢ = ”

Load carried by the hollow tube : Py = 0xzAy and Load carried by the solid bar : P = 045

ButP=Pg+ Py = o5 As+ og Ag

- E - . .
With g, = 0y E—S . the following equation can be written
H
_ ES _ ES
P = UHE_"AS+JHAH_UH(AH+EA5}

Es/En is called modular ratio. Using the above equation stressgn tHeg8llow tgb@a‘h"be
calculated. Next, the stress in the solid bar can be calculatw the equa&p\

_ \
P=0sAs+ GH% 0\

& °
Q" o

.\Q
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Problems.

A flat bar of steel of 24 mm wide and 6 mm thick is placed between two aluminium alloy flats
24 mm x 9 mm each. The three flats are fastened together at their ends. An axial tensile load
of 20 kN is applied to the composite bar. What are the stresses developed in steel and
aluminium alloy? Assume Es = 210000 MPa and EA = 70000MPa.

—_— 9 mm Aluminium flat

A

S mm  Aluminium flat

2 v —

24 mm

Section AA

Area of Steel flat: Ag=24x6=144 mm’

~ - 2
Area of Aluminium alloy flats: Ay =2x24 x 9 =432 mm"”

d’sL . JAL

Since all the flats elongate by the same extent. we have the condition that T E
s A

The relationship between the stresses in steel and aluminum flats can be established as:
Since P=Pg+ P,y = ag Ag+ oy Ay This can be written as

P = 3CFA .;15 + 0y 'qA = 04 (3!45 + .qu
From which stress in aluminium alloy flat can be computed as:

p 20 x 1000 23 15 P
T e el e . u
47T (BA,+ 4, (3x144+432)

Stress 1n steel flat can be computed as:

gs = 3% 23.15=69.45MPa

31



2. A short post is made by welding steel plates into a square section and then filling inside with
concrete. The side of square is 200 mm and the thickness t = 10 mm as shown in the figure.
The steel has an allowable stress of 140 N/mmz and the concrete has an allowable stress of 12
N/mmz2. Determine the allowable safe compressive load on the post. Ec = 20 GPa, Es = 200
GPa.

Since the composite post is subjected to compressive load, both concrete and steel tube will
shorten by the same extent. Using this condition following relation between stresses in concrete

and steel can be established.

GcL CFsL Esg
EC E_S' 5 C Ec C

. - 2 . . . .
Assume that load 1s such that o; = 140 N/mm". Using the above relationship. the stress in
concrete corresponding to this load can be calculated as follows:
140 = 10 0, or o, = 14 N/mm? > 12 N/mm’

Hence the assumed load is not a safe load.

. - 2 . . .
Instead assume that load 1s such that . = 12 N/mm". The stress in steel corresponding to this
load can be calculated as follows:

g, =12 x 10 or o, = 120 N/mm? < 140 N/'mm’
Hence the assumed load is a safe load which is calculated as shown below.
Area of concrete section Ac = 180 x180 = 32400mm’.

Area of steel tube As = 200 x 200 — 32400 = 7600 mm".
P= 0. Ac+ 0.A, = 12 x 32400 + 120 X 7600 = 1300.8kN
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3. A rigid bar is suspended from two wires, one of steel and other of copper, length of the wire
is 1.2 m and diameter of each is 2.5 mm. A load of 500 N is suspended on the rigid bar such
that the rigid bar remains horizontal. If the distance between the wires is 150 mm, determine
the location of line of application of load. What are the stresses in each wire and by how much

distance the rigid bar comes down? Given Es= 3Ecu= 201000 N/mmz.

f_,_sffff P Copper 2.5mm dia
2.5mm dia

N rme , Q
i Q. o
Al ] s p ’ 0

i. Area of copper wire (Acu) = Area of steel wire 2. 52/4 01 mm2
the wires m st be same. This condition

ii. For the rigid bar to be horizontal, elongatl

leads to the following relationship betwe s in stee@ copper wires as:
skl A“
E;
Os = E—gcu = Squ
cu
iii. Using force S & and steel wire can be calculated as:

s A = 3 6cuAs+ ocu Acu = oeu (3As + Acu)

F °00 25.46 MP
Oeu =4 + 34s)  (491+ 3x491) - @

M  0,=3x2546=7637MPa

iv. Downward rf8VBIERT of rigid bar = elongation of wires

g 76.37 '
§L.= =L = %x 1200 = 0.456
sTF 201000 mm

=

v. Position of load on the rigid bar is computed by equating moments of forces carried by
steel and copper wires about the point of application of load on the rigid bar.
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P.x= P. (150 — x)
(76.37 x 4.91)x = (25.46 x 4.91) (150 — x)

- = (0.333
150 — x

x = 37.47mm from steel wire

Note:

If the load is suspended at the centre of rigid bar, then both steel and copper wire carry the
same load. Hence the stress in the wires is also same. As the moduli of elasticity of wires are
different, strains in the wires will be different. This results in unequal tion of wires
causing the rigid bar to rotate by some magnitude. This can be preven offsetting the load

or with wires having different length or with different diamete t eIong%i@of wires
Q N

WI e same. v 0\6‘
4
&
0(‘

.\Q
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1.13 Temperature stresses in a single bar

If a bar is held between two unyielding (rigid) supports and its temperature is raised, then a
compressive stress is developed in the bar as its free thermal expansion is prevented by the
rigid supports. Similarly, if its temperature is reduced, then a tensile stress is developed in the
bar as its free thermal contraction is prevented by the rigid supports. Let us consider a bar of
diameter d and length L rigidly held between two supports as shown in the following figure.

Let « be the coefficient of linear expansion of the bar and its temperature is raised by AT (°C)

Fixed end Fmed end

/A L LR

<] )

76+ N Q‘
- N

e | — 5 e

anTL \0
e Free thermal expansion in the bar = o AT L. ﬁ v 0

e Since the supports are rigid, the final leng x r does t change. The fixed ends
exert compressive force on the bar so asQ hortenm@ the bar by o AT L.

e Hence the compressive strain i TL / L =

e Compressive stress =
 Hence the ther ’ ar=aATE

Note:
The bar can ve forces generated in the bar due to temperature
increase or ensile forces generated due to temperature decrease.

Problem / ’

A rail line is lai ient temperature of 30°C. The rails are 30 m long and there is a
clearance of 5 mm between the rails. If the temperature of the rail rises to 60°C, what is the
stress developed in the rails?. Assume a = 11.5 x 10-6/°C, E = 2,10,000 N/mm2

e L =30,000 mm, o.= 11.5 x 10-6/°C, Temperature rise AT = 60-30 = 30,C

o Free expansion of rails = a AT L =11.5 x 10-6 X 30 x 30000 = 10.35mm

o Thermal expansion prevented by rails = Free expansion — clearance = 10.35 - 5 = 5.35mm

e Strain in the rails ¢ = 5.35/30000 = 0.000178

o Compressive stress in the rails = ¢ X E = 0.000178 x 210000 =37.45N/mm:.

______________________________________________________________________________________________|
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1.14 Temperature Stresses in a Composite Bar

A composite bar is made up of two bars of different materials perfectly joined together so that
during temperature change both the bars expand or contract by the same amount. Since the
coefficient of expansion of the two bars is different thermal stresses are developed in both the

bars. Consider a composite bar of different materials with coefficients of expansion and

modulus of elasticity, as a1, E1and a2, E2, respectively, as shown in the following figure. Let

the temperature of the bar is raised by AT and a1> a2

o ATL
[« |

f,ﬂf1+E1 f,—-A1

N =
P i3 \&\3

Free expansion in bar 1 = a1 AT L and Free expa%ﬂar 2= @gﬂ_ Since both the bars
expand by AL together we have the followi

e Bar 1: AL < a1 AT L. The bar gets co d resulti |Qompresswe stress

e Bar2: AL> a2AT L. The b resultmg in ten5|le stress.

e J‘.".TL AL
Compressive stram in Bar 1 : £, = -
. .. AL— a, ATL
Tensile stram in Bar 2 : &, = %
ayATL — AL AL — a,ATL
g1+ &2 = + = (ay — "IZ)"E"T
L L
Let c1and o2 Mg&ﬂre stresses in bars. The above equation can be written as:
1, 92
—+—=—=(a; —az)AT
F g =(m—a)

In the absence of external forces, for equilibrium, compressive force in Bar 1 = Tensile force

in Bar 2. This condition leads to the following relation

o141 = 02 4
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Using the above two equations, temperature stresses in both the bars can be computed. This is
illustrated in the following example.
Note:

If the temperature of the composite bar is reduced, then a tensile stress will be developed in

bar 1 and a compressive stress will be developed in bar 2, since a1 > a2.

Problems

1 A steel flat of 20 mm x 10 mm is fixed with aluminium flat of 20 mm x 10 mm so as to make
a square section of 20 mm x 20 mm. The two bars are fastened togethg#at their ends at a
temperature of 26°C. Now the temperature of whole assembly is raise%

in each bar. Es= 200 GPa, Ea= 70 GPa, as=11.6 x 10-6/°C, aag 0-6/°C. Q

& 0

”Find the stress

e Net temperature rise. AT =55 — 26 =29°C.

e Area of Steel flat (As) = Area of Aluminium flat (Aa) =20 x10 =200 mm?2

e Forequilibrium, o, A, = 0, A,; 0, = 0, willbe one of the conditions to be
satisfied by the composite assembly.

e But 2—2+;—:= (@, — @ )AT = (23.2 — 11.6) X 29 x 10~® = 0.000336

Oz !
200000 70000

e 270000a, = 4709600 ;

= 0.000336

o o_(tensile) = o, (compressive) = 17.44MPa as 0, = 05

7
7

mm is placed between two copper bars of 20 mm x 6 mm
each so as to for ar of section of 20 mm x 20 mm. The three bars are fastened
together at their e e temperature of each is 30°C. Now the temperature of the
whole assembl y 30°C. Determine the temperature stress in the steel and copper

bars. Es = 2Ecu= 210 kN/mmz2, as = 11 x 10-6/°C, aicu = 18 x 10-6/°C.
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e Net temperature rise, AT = 30°C.

e Area of Steel flat (A;)= 20x 8=160 mm’

e Area of Copper flats (Ay) =2 x 20 x 6 =240 mm®

e Forequilibrium, 6; A; = Gey Acu; 0z = 1.5 0.y will be one of the conditions to be
satisfied by the composite assembly.

o But %+ = (g, —a,)AT = (18 —11) x 30 x 107° = 0.00021
ECH ES

15apy

« —u = 0.00021
105000 210000

Oy = 12.6MPa (compressive) and o;= 18.9MPa (tensile) as a, > a,

1.15 Simple Shear stress and Shear Strain 0
Consider a rectangular block which is fixed at the bottom and a f@l applied Q,the top
) ‘DN
v

surface as shown in the figure (a) below.

&

Equal and opp

to rotate the

and the she

force is applied i ~direction as shown in Figure (b), then they are termed as
negative shear sbe’ér stress.

The Shear Strain (¢p) = AA*/AD = tan¢. Since ¢ is a very small quantity, tand = ¢. Within the

réa on which it acts is called positive shear stress (7). If

elastic limit, T oc port =G ¢

The constant of proportionality G is called rigidity modulus or shear modulus.

Note:

Normal stress is computed based on area perpendicular to the surface on which the force is
acting, while, the shear stress is computed based on the surface area on which the force is

acting. Hence shear stress is also called tangential stress.
I ——
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1.16 Complementary Shear Stresses

Consider an element ABCD subjected to shear stress (t) as shown in figure (a). We cannot

have equilibrium with merely equal and opposite tangential forces on the faces AB and CD as

these forces constitute a couple and induce a turning moment. The statical equilibrium demands

that there must be tangential components (t*°) along AD and CB such that that can balance the

turning moment. These tangential stresses (T°°) is termed as complimentary shear stress.

T
A—h—h—r—r—ra ,—:-—:-Ep—:-_p.,
v 4
T v T
¥ 4 4
= @
D C- 0 g - - - - L3 * 0
< I \
simple shear Complimentary >
sfress shear stress
(a) (b)

Let t be the thickness of the block. Turnlni rWnt duetot \@I be (t xtx Las) Lecand

Turning moment due to ©” will be (t° c) Las. %ce these moments have to be equal

for equilibrium we have;

®

(r xtxLec) Las.

From which it ensities of shearing stresses across two mutually
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1.17 Volumetric strain

This refers to the slight change in the volume of the body resulting from three mutually
perpendicular and equal direct stresses as in the case of a body immersed in a liquid under
pressure. This is defined as the ratio of change in volume to the original volume of the body.
Consider a cube of side ,,a* strained so that each side becomes ,,a + da’.

e Hence the linear strain = da/a.

e Change in volume = (a + da)s —a3 = + 3a2da. (ignoring small higher order terms)

1.18 Bulk Modulus V
This is defined as the ratio of the normal stresses (p) to the v. %&stram (s@nd denoted
erial in &ulon to E, G and

e VVolumetric strain ev=+ 3a2 da/as = + 3 da/a

o The volumetric strain is three times the linear strain

by ‘K’. Hence K = p/ev. This is also an elastic constant o

V.

1.19 Relation between elastic constantsé
1.19.1 Relation between E,G and v Q

Consider a cube of material o jected to §e actlon of the shear and complementary
sfpe’& hown in the figure below.

shear stresses and

T
A
; < C
Y
I - h
LTB +
- i
’f
. 3
-
-
- )
&
’
1
-
T

e Since, within elastic limits, the strains are small and the angle ACB may be taken as 45o.
e Since angle between OA and OB is very small hence OA =~ OB. BC, is the change in the
length of the diagonal OA

e Strain on the diagonal OA = Change in length / original length = BC/OA

= AC cos45/ (a/sin45) = AC/2a=adp/2a=¢ /2

e It is found that strain along the diagonal is numerically half the amount of shear stain.

______________________________________________________________________________________________|
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e But from definition of rigidity modulus we have, G =t /¢

e Hence, Strain on the diagonal OA =1/ 2G
The shear stress system is equivalent or can be replaced by a system of direct stresses at 450 as
shown below. One set will be compressive, the other tensile, and both will be equal in value to

the applied shear stress.

g1=+1

Co . . 31 T3 T T T
Strain in diagonal OA due to direct stresses =— — V— = — v—=—(1 v
g E E E T E E( + )
T T

Equating the strain in diagonal OA we have " F (1+ v)

Relation between E,G and v can be expressedas : E = 2G(1 + v)

Y oY
.\Q
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1.19.2 Relation between E,K and v

Consider a cube subjected to three equal stresses a shown in the figure below.

- A
4
? s
/ /
i
'3
Fd
" [
a o e a
Strain in any one direction=—— V—— v—=— (1 — 2v)
E E E E
Since the volumetric strain is three times the linear strain: &, = 3% (1-2v)
a

From definition of bulk modulus : £, = %

a a

Relation between E.K and v can be expressed as : E = 3K(1 — 2v)

Note: Theoretically v < 0.5 as E cannot be zero

1.19.3 Relation between E, G and K Q v (\{\ i

We have E = 2G(1+v) from which v=(E - 2G) / 2G
We have E = 3K(1-2v) from which v = (3K -E) / 6K

(E-2G)/2G=(3K -E) /6K or (6EK - 12GK) = (6GK - 2EG) or 6EK+2EG = (6GK +12GK)

9GK
(3K+G)

Relation between E,G and K can be expressed as: E =

s/

=
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1.20 Exercise problems

1. A steel bar of a diameter of 20 mm and a length of 400 mm is subjected to a tensile force of
40 kN. Determine (a) the tensile stress and (b) the axial strain developed in the bar if the
Young"s modulus of steel E = 200 kN/mm2

Answer: (a) Tensile stress = 127.23MPa, (b) Axial strain = 0.00064

2. A 100 mm long bar is subjected to a compressive force such that the stress developed in the

bar is 50 MPa. (a) If the diameter of the bar is 15 mm, what is the axial compressive force?
(b) If E for bar is 105 KN/mmz, what is the axial strain in the bar?
Answer: (a) Compressive force = 8.835 kN, (b) Axial strain = 0.00040

3. A steel bar of square section 30 x 30 mm and a length of %&ubjecteo@ an axial

tensile force of 135 kN. Determine the changes in dimensi e bar. E %2 0
kN/mmz, v =0.3.

Answer: Increase in length 6/ = 0.45 mm, Decre@ dth 6b eﬁ% x 10-3mm

Qmeters 20, 15 and 10 mm along
cted to va us forces is shown in figure below.

4. A stepped circular steel bar of a lengt

lengths 40, 50 and 65 mm, resp

If E =200 kN/mmz2, d an‘e in\&ength
20 kN 20 mm dia 15 kN
- || 2T B 1 10mmdia | 1OKN
15 mm dia 1I5KN C
A
40mm | 45 i A 65 mm _|

Answer : Total decrease in length = 0.022mm
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5. A stepped bar is subjected to axial loads as shown in the figure below. If E = 200 GPa,
calculate the stresses in each portion AB, BC and CD. What is the total change in length of
the bar?

20 mm dia
10 mm dia
20 kM 30 kN
— — 1 — 1 > {0kN
A B c D
|(—C|.2—:-
- 0 dm—=lte—— 06m —=

m to a diameter of

Answer: Total increase in length = 0.35mm ‘

6. A 400-mm-long aluminium bar uniformly tapers from a diame%
dle sectidhis 60 MPa.

\
of the t&&E 67,000

15 mm. It is subjected to an axial tensile load such that str

What is the load applied and what is the total change in th
MPa? (Hint: At the middle diameter = (25+15)/2 = %
Answer: Load = 18.85kN, Increase in Iength

§ mm in trengthened by four steel bars
eter of each steel bar is 30 mm. The column is

Nf{i& the stresses in the steel and the concrete.

7. A short concrete column of 250 mm
near the corners of the cross-secti

subjected to an axial
Es=15Ec=21

the steel bar is

rete is not to exceed 2.1 N/mmz, what area of
n may support a load of 350 kN?

Answer: Stre ess in steel = 36.75N/mm:, Area of steel = 7440 mm:2
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8. Two aluminium strips are rigidly fixed to a steel strip of section 25 mm x 8 mm and 1 m
long. The aluminium strips are 0.5 m long each with section 25 mm x 5 mm. The composite
bar is subjected to a tensile force of 10 kN as shown in the figure below. Determine the
deformation of point B. Es = 3EA = 210 kN/mmz2. Answer: 0.203mm

(Hint: Portion CB is a single bar, Portion AC is a composite bar. Compute elongation

separately for both the portions and add)

:Alummmm strip Steel strip

OS‘L 25 mm\%,
08 A 1UkN
05 —T—ﬁ L"”'

- 500 mm } 500 —1-‘

&

‘\
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Module 2
Compound Stresses

Objectives:

Derive the equations for principal stress and maximum in-plane shear stress and calculate their

magnitude and direction. Draw Mohr circle for plane stress system and interpret this circle.

Learning Structure

e 2.1 Introduction é

e 2.2 Plane Stress Or 2-D Stress System Or Biaxial Stress S
e 2.3 Expressions For Normal And Tangential Components Qre On A G{ﬁ Plane
e 2.4 Mohr’s Circle

o 25 Pr(?blems | Q "o
Q

e 2.6 Thick Cylinders %

e 2.7 Thin Cylinders
e Outcomes QQ

&

e Further Reading
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2.1 Introduction

Structural members are subjected to various kinds of loads. This results in combination of
different stresses which changes from point to point. When an element (considered at any point)
in a body is subjected to a combination of normal stresses (tensile and/or compressive) and shear
stresses over its various planes, the stress system is known as compound stress system. In a
compound stress system, the magnitude of normal stress may be maximum o n some plane and
minimum on some plane, when compared with those acting on the element. Similarly, the
magnitude of shear stresses may also be maximum on two planes when compared with those
acting on the element. Hence, for the considered compound stress system it is important to find
the magnitudes of maximum and minimum normal stresses, maximum r stresses and the
inclination of planes on which they act. Q

2.2 PLANE STRESS OR 2-D STRESS SYSTEM OR BIAXIAL S@STEM

acting in all the three directions. However, for conveni in most gb; ems, variation of
stresses along a particular direction can be neglecte remaln tresses are assumed to
act in a plane. Such a system is called 2-D s m and 65 dy iscalled plane stress

body.
9

Generally a body is subjected to 3—D state of stress syste oth nor ahd shear stresses
I!e

fess system, a body consists of two normal stresses (fx and fy),
icular to each other, with a state of shear (q) as shown in figure.
and BC carry normal stress fx they are called planes of fx. These

In a general two
which are mutua
Further, since
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planes are parallel to Y—axis. Similarly, planes AB and CD represent planes of fy, which are
parallel to X—axis.

2.2.1 PRINCIPAL STRESSES AND PRINCIPAL PLANES

For a given compound stress system, there exists a maximum normal stress and a minimum
normal stress which are called the Principal stresses. The planes on which these Principal
stresses act are called Principal planes. In a general 2-D stress system, there are two Principal
planes which are always mutually perpendicular to each other. Principal planes are free from
shear stresses. In other words Principal planes carry only normal stresses.

2.2.2 MAXIMUM SHEAR STRESSES ANDITS PLANES

For a given 2-D stress system, there will be two maximum shear fequal magnitude)
which act on two planes. These planes are called planes of m ear. Th anes are
mutually perpendicular. Further, these planes may or may n%ry ormal STQ . The planes
of maximum shear are always inclined at 450 with Princ

GIVEN PLANE
Consider a rectangular element ABCD
system as shown in figure. Let f n
resultant stress ‘R' on any
with respect to the

2.3 EXPRESSIONS FOR NORMAL AND T§$AL COMP&IENTS OF STRESS ON A

ckness s cted to a general 2-D stress
resentt ormal and tangential components of

is 1nc11na«1t an angle ‘?' measured counter clockwise
®

\

fn

fs fx

T
I
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To derive expression for f,
Consider the Free Body Diagram of portion FBE as shown in figure.

P °
Applying equilibrium along N-direction, we
Q.

DEr=0[ N\ +vel
£, (EF 1)—f, (BE 1) sin 6—q(BE 1)cos8 —£, (BF 1)cos8 —q(BF 1)sin 8 =0

fn:fxEsmE|+chosEi+f}, E|:-::-sB+quinE|
EF EF EF EF

since E:siﬂB and E:|::c::usB
EF EF
L, =f,sm?0+2q sin6 cos 8 + £, cos’B

But cos 26= 2 cos* B-1 Hence cos® B:%(l+cos 287
Also cos 20=1-23sin"0 Hence sin Bz%(l—cosEB)

f, =1, %(I—EOSEB) + £ %(1+cos 2B+ s 28

£+, f, £, _
f,= | > cos2B +gsm 28 —emm-- (1)
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Equation (1) is the desired expression for normal component of stress on a given plane,
inclined at an angle ¢ ' measured counter clockwise with respect to the plane of fy or X—
axis

To derive expression for fs
Consider the Free Body Diagram of portion FBE shown infigure above. For equilibrium
along T direction, we have

fyw
am v “~

EFr=0[% +wve]
£,(EF.1)— f, (BE.1) cos8 +q (BE. 1) sin 8 + £, (BF.1) sin 6~ q(BF.1) cosd =0

fszfxEmsE'—qumB—fYEsmB+chosB
EF E EF EF

Since B—:sin 3 —=rcosf

LE, =1, sinB oozl — qsin’ B f, cosd sin B +qcos” 8
Sf,=(, — £,) sin® cos® + g (cos” B—sin” 6)

H

Since sing 8= 2 sinb cosf and cos2B=rcos B—zin 6

fir —
f, :( zfy]sin 28+gqcos 26 -——--—- (2)

Equation (2) is the desired expression for tangential component of stress on a given plane,
inclined at an angle ¢ &' measured counter clockwise with respect to the plane of fy or X—
axis.
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Note:

The resultant stress ‘R’, and its inclination © & on the given plane EF which is inclined at
an angle ¢ ¥’ measured counter clockwise with respect to the plane of fy or X-axis, can be
determined from the normal (fn) and tangential (fs) components obtained from eqgns. (1)

and (2).
R=.f+f’

o
va

2.3.1 Expresions for Principal stresses and Principal planes

Q

Consider a rectangular element ABCD of unit thickness dto ge *’2 D stress system
as shown in figure. Let f, and fs represent the normal ential com&nents of stress on any
plane EF which is inclined at an angle “ &’ ounter |se with respect to the
plane of fy or X-axis %

AT,

The expression for normal component of stress f,on any given plane EF is given by

£+, -,

t= - cos 284 qsin 20 ———
x 5 5 q (1)

Tofindvaluesof & at which f n is maximum or minimum, the necessary condition is
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i _ g
do

Fromeqn (1) —[ = > FJ I:—E gitl 28)+2qcos 28=10

_2q
£, —f @

x 7

L tan 28, =—

Inclination of principal planes can be obtained from eqn. (2). It gives two values of & differing
by 90°. Hence, Principal planes are mutually perpendicular. Here, the two irincipal planes are

designated as © ,; and 8 p2.
Graphical representation of egn. (2) leads to the following é Q
~

S~ £, ) +4q

_Eq
26,
{fg-ﬁ,.} -l:.’f'“-f'r'}
. EV AV
From the above figures,
A 4 '\Q\
. 2 g (f, —f,)
sin 28, = & = = Coz 20 =% - =
JE —£,) +4q JE ) +4q
Substituting in eqn.(1)
n:fx+f},ifx—f}, fir —fy tq 2q
: 2 NJE=-f)t+aqd i )7 +4d]
On simplification,
B+ 1
fu,2= St G- +4q S—Y

Equation (3) is the desired expression for Principal stresses. Here, the Principal stresses are
represented by fn1 and fn.
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2.4 Mohr’s Circle

The formulae developed so far (to find fn, fs, fa-max , fa-min , Op1 , 6p2 , fs max, Os1 , 6s2) may be used
for any case of plane stress. A visual interpretation of these relations, devised by the German
Engineer Christian Otto Mohr in 1882, eliminates the necessity of remembering them. In this
interpretation a circle is used; accordingly, the construction is called Mohr's Circle. If this
construction is plotted to scale the results can be obtained graphically; usually, however, only a
rough sketch is drawn and results are obtained from itanalytically.

Rules for applying Mohr's Circle to compound stresses

1. The normal stresses fx and fy are plotted along X-axis. Tensile ir&re treated as
e

positive and compressive stresses are treated as negative.
2. The shear stress q is plotted along Y-axis. It is consider en its ent
about the center of the element is clockwise and negaq its mam@ about the

center of the element is anti-clockwise. \'\
B TR
4 94— q ——Pp ¢
+ + + -
qg —»q qQ qe4¢——
POSITIVE MEGATIVE MEGATIVE POSITIVE

hen measured in counter clockwise sense.
sponds to an angle 6 inthe element.

3. Positive an
Further, an

4. A plane
coordinates of the

esponds to a point on the Mohr's circle. Further, the
ohr's circle represent the stresses acting on the plane

Procedure to co hr's circle

Consider an element subjected to normal stresses fx and fy accompanied by shear stress g as
shown in figure. Let fx be greater than fy.
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q
+
q
Fx fu
g
-
q
Y
1. In the rectangular coordinate system, locate point A which will b Id be a pointon
the circle representing the stress condition on the plane fx of t t The
coordinates of point A are (fx , ).
2. Similarly locate point B, representing stress condltlons of the eement The

coordinates of point B are (fy—q)
3. Join AB to cut X-axis at point C. Point C corresp e center @ohrs circle.
4. With C as center and CA as radius, draw a cw&;

$-max

Fig

From figure, it can be seen that OD and OE represent maximum and minimum normal
stresses which are nothing but principal stresses. The coordinates of points D and E give the
stress condition on principal planes. It can be seen that the value of shear stress is ‘0’ on these

two planes. Further, angles BCD = 2 Bpl and BCE =2 sz (measured counter clockwise) give
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inclinations of the principal planes with respect to plane of f, or X-axis. It is seen that 2 8,; ~ 2
U2 = 180°
p2 :

Hence, ©p1~ %52 = 90°.

It can be observed that shear stress reach maximum values on planes corresponding two points
F and G on the Mohr's circle. The coordinates of points F and G represents the stress conditions
on the planes carrying maximum shear stress. The ordinate CF and CG represent the maximum
shear stresses. The angles BCG = 28, and BCF =29, (measured counter clockwise) give
inclinations of planes carrying maximum shear stress with respect to plane of fy or X-axis. It is

seen that 2 95 ~ 28, = 180° . Q

Hence, 51 ~ %5, =90°.

Also it is seen that 29 ~2 8 ~ 29 |, ~ 28, = 90°, Henc E ~9K°92—45°

locate point M on the circle such that angle B 2 e(meas }counter clockwise) as
shown in figure. The coordinates of point M S norm shear stresses on that

plane. From figure, ON is the normal stress s the s r stress

2.5 Problems: Q QQ

1. In a 2-D stress syste re es,of{\agnltudes 100 MPa and 150 MPa act
in two perpendi stfiesse®on these planes have magnitude of 80
MPa. Use Mo

To find the normal and tangential stresses on a pl ig ed at ® @he plane of fy , first

() Principal
(i) Maxim 1¥’planes and
(iii) Norm a plane inclined at 45° to 150 MPa stress.

q =80 MPa

If Mohr's circle is drawn to scale, all the quantities can be obtained graphically. However, the
present example has been solved analytically using Mohr's circle.

Construct Mohr's circle with earlier fig
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From figure

£, +£,
OC =T =-125MPa

To find Radius of Circle

T =fx_fy
2

=25 MFPa

V

CA=.JCH? +HA® =83.82
L Radine=CD=CE=CF=CG=CA=283 UWS’

To find Principal Stress and Principal Planes Q
fi _max =0C+CD Q 0
=-125-83.82 %
=-208.82

ut 28p) = L ACH=a="72" 63

ence, Bp; = 369,32

urther, 28p2 = L ACE = 180 + o= 2520 65
Hence, Spy = 1269.32
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2.6 Thick Cylinders
2.6.1 Difference in treatment between thin and thick cylinders - basic assumptions:

The theoretical treatment of thin cylinders assumes that the hoop stress is constant across the
thickness of the cylinder wall (Fig. 6.1), and also that there is no

pressure gradient across the wall. Neither of these assumptions can be used for thick

cylinders for which the variation of hoop and radial stresses is shown in (Fig. 6.2), their values
being given by the Lame equations: -

-
oy = A+ %
B
o =A——
Where: -

o= Hoop stress (% = Pa).
: N
o,= Radial stress (F = Pa).

r= Radius (m). A and B are Constants.

) A
=

Figure 6.1: - Thin cylinder subjected to internal pressure.
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o, (tensile)

Stress distributions

o, =A+B/r? o= A-B/r2

Figure - Thick cylinder subjected to internal pressure.
2.6.2 Thick cylinder- internal pressure only: -

Consider now the thick cylinder shown in (Fig. 6.3) subjecte k@nternal pressure P, the
t \0
\"

external pressure being zero.

4
0\

9

The two k ] W ich enable the Lame constants A and B to be

determined are:

Atr=R

Note: -The"Inte

radial compression (i.e. thinning) of the cylinder walls and the normal stress convention takes

ure is considered as a negative radial stress since it will produce a

compression as negative.

Substituting the above conditions in egn. (.2),
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B
JT:A_T_Z

~P=A-—and 0=4-—

1 2
_ PR,? _ PR,*R,?
Then 4 = 7R and B = ®7—R,7)

Substituting A and B in equations 6.1 and 6.2,

P S -
T {Rzz—fhz) 72

_ _PRZ [ Rj]
Oy (Rzz_Rlz) 1+ 2

2.6.3 Longitudinal stress: - Q QQ

Consider now the

pressure Py and an e

=]
-

F

Closed ends

Figure: - Cylinder longitudinal section.
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For horizontal equilibrium:

Plz * R_Rlz — PZZ * R-RZE = JL * H[Rzz — RIZ]

Where or 1s the longitudinal stress set up m the cylinder walls,

= A, constant of the Lame equations. ....6.6
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2.7 Thin Cylinders

2.7.1 Introduction

When the thickness of the wall of the cylinder is less thanl—1 to Tl of the diameter of

cylinder then the cylinder is considered as thin cylinder.

Otherwise it is termed as thick cylinder.

>
s

<
Q" ¢
L=Length of the
cylinder d= Diamete . O
: \

cylinder

t = thickness

P=Internal
Generally, ¢ylind d for transporting or storing fluids i.e. liquids and

gases. Example inders, boilers, storage tanks etc.

Due to the fluids inside a cylinder, these are subjected to fluid pressure or internal
pressure (Say P). Hence at any point on the wall of the cylinder, three types of
stresses are developed in three perpendicular directions. These are:-

1. Circumferential Stress or Hoop Stress ( h) ©
2. Longitudinal Stress ( LY¥
3.Radial Stress ( Gr)

_____________________________________________________________________________________________________________|
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2.7.2 Assumptions in Thin Cylinders
1. It is assumed that the stresses are uniformly distributed throughout the thickness of the wall.

2. As the magnitude of radial stresses is very small in thin cylinders, they are neglected while

analyzing thin cylinders i.e. 6r=0

2.7.3 Stresses in Thin Cylinder

1. Circumferential Stress ( h):-0This stress is directed along the tangent to the circumference of
the cylinder. This stress is tensile in nature. This stress tends to increase iﬁe

ter.

X

Progeciecd
The bursting i ce if the force due to internal fluid
pressure(P) a nd downwards becomes more than the

resisting for,

circumferential str oped in the cylinder.

Total diametri Ing force= P * Projected area of the curved surface

=P*d*L
Resisting force due to circumferential stress= 2* pn* t * L
Under equilibrium, Resisting force = Total diametrical Bursting force

Z*O-h*t*sz*d* L
i : _Pd
Circumferential stress, ©Oh =2t

_____________________________________________________________________________________________________________|
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2. Longitudinal Stress ( L)0- This stress is directed along the length of the cylinder. This stress
is also tensile in nature. This stress tends to increase the length.

& o

II

Total longitudinal bursting force (on tg&s of cylind@y) Z * d2

=P* QQ

Area of crossection where 1 stress is developed= IT *

|?ré<’\

= L*xII*d*t
longitudinal Bursting force

d * t Resisting fo
Under equilibri

Note:- Due to the presence of longitudinal stress and hoop stress, there is shear
stress developed in the cylinder. Maximum in-plane shear stress is given by

- Pd
(Tmax)inplane = O-h GL ="

2 8t
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2.7.4 Strains in Thin Cylinder

1. Strain in longitudinal direction , EL=- % On
EHE
. . Pd
Longitudinal strain =  erL-z& (1-21)
Y

. e Oh
2.  Strain in circumferential direction, €h = E_ —u—E

Circumferential strain = 8h=zF')r% (2- ) &

- pd W
3. Volumetric strain = Ev= 4tE(5'4“) \é
0
Where p = Poisson’s ratio c’
E= Modulus of Elasticity : & Q@
2.7.5 For Objectiv S, L
1. (a) Major princ irgumferential stress ( Oh)
(b)Minor pri
2. If Gt is the permi the cylinder material, then major principal stress



3. In order to produce pure shear state of stress in thin walled cylinders,
6h=-(oL)

4. Maximum shear stress in the wall of the cylinder (not in-plane shear stress) is given by :

oh Pd
T = o
max at

2
5. In case of thin spherical shell, longitudinal stress and circumferential stress are equal and
given by

GL=0h= Pt (tensile) V@
(Tmax)inplane = &Q Q

c..b‘ A\"
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Module 3

Bending Moment and Shear Force

Objectives:

Determine the shear force, bending moment and draw shear force and bending moment diagrams, describe
behaviour of beams under lateral loads. Stresses induced in beams, bending equation derivation & Deflection
behaviour of beams

Learning Structure

3.1 Types Of Beams V‘
3.2 Shear Force Q QQ

3.3 Bending Moment

3.4 Shear Force Diagram And Bending Moment v
3.5 Relations Between Load, Shear And Mom

3.6 Problems Q
3.7 Pure Bending «

3.8 Effect Of Bending In Beams
3.9 Assumptions Ma ing Thedly

Further
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3.1 TYPES OF BEAMS

a) Simple Beam
l N

A simple beam is supported by a hinged support atone end and aroller support at the other end.

b) Cantilever beam

a

_

Q
A cantilever beam is supported at one end only by a fixed SIQL . 0
c) Overhanging beam. l b

I 1
! Owverhang !

‘\
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: S
— | l :
v : o o Rax-Wia
1 : 1 - !
.
Fig 2 :Shear Force Fig 3 : Bending Mé)ment

Consider a simply supported beam subjected to loads W1 and Wsa. %and Re be the
reactions at supports. To determine the internal forces at C pass a s@ . The effects of
Ra and W1 to the left of section are shown in Fig (b) and (c). In the effegt of applied
load has been transferred to the section by adding a pair of $ opposi §ces at that
section. Thus at the section, moment M = (W1a-Rax) and sh orce F = (, 2 1), exists. The
moment M which tend to bends the beam is called bendi ent an{ ich tends to shear

the beam is called shear force. 0
Thus the resultant effect of the forces at one ‘ e section rgajces to a single force and a

couple which are respectively the vertica ar and the Qﬁding moment at that section.
Similarly, if the equilibrium of the righ side porti ﬁonsidered, the loading is reduced
to a vertical force and a couple actinON opposite divéction. Applying these forces to a free

pe obtained by considering the algebraic sum of all the

moments of vertica g on any one side of the section.

3.2 Shear Force
It is a single vertical force developed internally at any point on the beam to balance the
external vertical forces and keep the point in equilibrium. It is therefore equal to algebraic sum
of all external forces acting to either left or right of the section.

3.3 Bending Moment
It is a moment developed internally at each point in a beam that balances the external
moments due to forces and keeps the point in equilibrium. It is the algebraic sum of moments

to section of all forces either on left or on right of the section.
. _______________________________________________________________________________________________________________________________|

54



3.3.1 Types of Bending Moment
1) Sagging bending moment

The top fibers are in compression and bottom fibers are in tension.
2) Hogging bending moment

The top fibers are in tension and bottom fibers are in compression.

Sagging Bending Moment ‘ }%g Bendieg@ment

A
nQﬁent QQ

3.4.1 Diagram Shear . Q\

The SFD is one she}r force from section to section along the
length of the b agram at any section gives the Shear Force at
that section.

3.4 Shear Force Diagram and Bendi

3.4.2 Bendi
The BMD S one ariation of Bending Moment from section to section along

the length of the ifiate of the diagram at any section gives the Bending Moment
at that section

3.4.3 Point of Contraflexure

When there is an overhang portion, the beam is subjected to a combination of Sagging and
Hogging moment. The point on the BMD where the nature of bending moment changes from
hogging to sagging or sagging to hogging is known as point of contraflexure. Hence, at point

54



of contraflexure BM is zero. The point corresponding to point of contraflexure on the beam is
called as point of inflection.

3.5 RELATIONS BETWEEN LOAD, SHEAR AND MOMENT

Consider a simply supported beam subjected to a Uniformly Distributed Load w/m. Let us
assume that a portion PQRS of length &z is cut and taken out. Consider the equilibrium of
this portion

Al q lJW F M ﬂ M+AM

>

> V=0 |f+6
Q RSN
F— (F+0F)-w [x =0 v Ixg &

\

&H .o
Limit (1x [ 0, then or F = «Q < °
&rium QQ

(07 =

Taking moments about section

Rate of chang D at any point on the beam is equal to the

7

1) when the load i ion is zero, Shear Force remains constant and Bending

2) When ther Distributed Load (UDL), Shear Force varies linearly and BM
varies paraboli .
3) When there is Uniformly Varying Load (UVL), Shear Force varies parabolically and
Bending Moment varies cubically.
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3.6 Problems:

1 Asimply supported beam is carrying point loads, as shown in figure. Draw the SFD

and BMD for the beam.

l4kN llOkN lSkN

C D E

» e »le

<&
rl < r“ Vl‘

Im 2m Im

11

+ve SFD

2m

»
»

Todraw S.F.D. and B.M.D. we need
Raand Rg.

By taking moment of all the forces about
point A, we get

Re X 6— (8 x 4) — (10@(4”) 0
Re = 11 kN

From conditio eqU|I|b um:

Ra+ 11—
Ra=11
Shear ulations
FA + Q— 11kN
—@A = +11 kN SF

+11 4=+7kN
Ieftosz Fo=+11-4-10=7 kN
SFrlght Fo=+11-4-10=—3kNSF
|efto@ Fe=+11-4-10=—3 kN
SFleftof E ~ Fe=+11-4-10-8=—11KkNSF

’ of B Fe=+11-4-10-8=-11 kN
q%Bending moment Calculations
Atx =0, Ma=10
Atx=1m; Mc=+Ral=11x1=11kNm At
X=3m, Mp=11%x3-4(3-1)=25kN m
At x=4m

Me=11x4—4(4-1)—10 (4—3) =22 kN m At
X=6m Mg=0
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2. Draw the SF and BM diagram for the simply supported beam loaded as shown in

fig.
To draw S.F.D. and B.M.D. we need Ra and
¢_I 20kN/m 20kN Rs.
JAVAYAYAN /\/\ Q’%OkN-*w By taking moment of all the forces about
A E point A, we get
« e >le > Rgx4—(20x3)—(20x 1.5%2)-30=0
1.5m O 5m 1m 1m Rs =28.125 kN
From condition of static gquilibrium:
Ra+28.125-30-2 Q
21.875 Ra =21.875 kN Q
Shear Force Cal
— SFatA A_+2187 Q
+V8 SFD SF left of = +21.875 ¢ 3&; -8.175 kN SF
— rlght of C& =+21. 8 =-8.175 kN SF
«— \ B Fp = +21% 0-8175kNSF
1.09m 87175 .875-30=-8.175 kN SF
| -ve SFD $ E F521.875 —30=-8.175 kN SF
28.175 |

eftof E @E = +21.875-30-20 = -28.125 kN SF
Ieft of%@ Fg = +21.875-30-20 = -28.125 kN
SFis between A & C at x = 1.09m
ding moment Calculations
"Q =0, Ma=0
Atx=15m;
Mc = 21.875 x1.5 — 20 x 1.5%/2=10.31 KN m At x
=1.09 m;
Mmax = 21.875 x1.09-20 x1.09%/2=11.96 kN m
Atx=2m;
Mp = 21.875 x2 — 20 x 1.5(0.75+0.5)=6.25 kN m
Atx=2m;
Mp =21.875 x2 — 20 x 1.5(0.75+0.5)+30
=36.25kNm
At x=3m
Me = 21.875 x3 — 20 x 1.5(0.75+1.5)+30
=28.125kN m
At X=4m Mg=0
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3. Acantilever is shown in fig. Draw the BMD and SFD. What is the reaction at
supports?

To draw S.F.D. and B.M.D. we need Ra and

$_| 2kN/m 20k Re.
ﬂ ANV By taking moment of all the forces about

point A, we get

. e )l Regx4—(20%x3)—(20x 1.5%2)-30=0
2m 4m " |Re=28.125kN
From condition of static equilibrium:
24 Ra+28.125-30-20 =
20 Ra = 21.875 kN Q
Shear Force Calculati
E— SFatB
+ve SFD SFright of C $
—— SF left of C 20 kN ‘
SF rlght =+20+2 &24 kN

r\%noment is c Eered from right to left the
icl ise mo ts are considered to be +ve and

wise mo&nts are considered to be -ve

Bendi ment Calculations
Atx =0, Mg=0
1 AQ¥= 4 m; M. = -20x 4 =- 80 kN-m At
=6m;

Ma = -(20 X6+ 2 x2%/2)=124 kN m




Stresses in Beams

3.7 Pure Bending

F : : L
M M w : : W
( ) : [ L 1 1
iy W : :
Sagaing .
+ ;
! ' SFD
( ) f : -
M Hoaging M EE
: " +

‘0)

0

‘)' b
A beam or a part of a beam is said to be un(&re ending i@} is subjected to only Bending

din
Moment and no Shear Force. Q QQ

3.8 Effect of Bending in B

EMD

Qo

*
The figure show: i Be}fding Movement. The topmost layer is under
maximum com st layer is under maximum tensile stress. In
between there ther subjected to tension nor to compression. Such

beam is cal

- - _———t e - - -

Fig-1

When the beam is subjected to sagging, all layers below the neutral layer will be under tension
and all layers above neutral layer will be under compression. When the beam is subjected to
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hogging, all layers above the neutral layer will be under tension and all the layers below
neutral layer will be under compression and vice versa if it is hogging bending moment

3.9 Assumptions made in simple bending theory

e The material is isotropic and homogenous.

o The material is perfectly elastic and obeys Hooke's Law i.e., the stresses are within the
limit of proportionality.

« Initially the beam is straight and stressfree.

e Beam is made up of number of layers and they undergo bending independently.

« Bending takes place over an arc of a circle and the radius of curvature is very large
when compared to the dimensions of the beam.

« Normal plane sections before bending remain normal and pl &\er bending.

0

ange
e Young's Modulus of Elasticity is same under tension a nd cor@

3.9.1 Euler- Bernoulli bending Equation (Flexure FQ ) OQ
\
M S E A (O
Iy RY, \

I = Moment of Inertia of cross s m about

F = Direct Stress (Tensi ) engoQ\d in any layer of the beam (N/mm?)
Y = Distance of is (M)

E =Young's M rial of the beam ( N/mm?)

R = Radius of

where,
M = Resisting moment developed inside @erial against%plied bending movement and
is numerically equal to bending mome ie (Nmr&\?

ioMef the/Neutral Angle. (mm?)

G H
B I e e -
C D
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Consider two section very close together (AB and CD). After bending the sections will be at
A1 Bz and C1 Dy and are no longer parallel. AC will have extended to A1 C1 and B1 D1 will
have compressed to B1D:. The line EF will be located such that it will not change in length.
This surface is called neutral surface and its intersection with Z-Z is called the neutral axis.

The development lines of A'B' and C'D' intersect at a point O at an angle of 6 radians and the
radius of EiF1 = R.

Let y be the distance(E'G") of any layer H1G1 originally parallel to EF.
Then H1G1/ E1F1 =(R+y)0 /R 6 = (R+y)/R

and the strain at layer H1G1= = (H1G1- HG) / HG = (H1G1- HG) / EF Q

=[(R+y)6-RO]/R6 é Q
=y IR, Q O
The relation between stress and strain is 6= E. The@v \é

E-EyR &Q ¢,°

G/E=y/R Q Q@
Let us consider an elemental ar avdistance vy, &n the Neutral Axis.
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Section viodulus(Z)

it
F=—.
IY
%
i*fmaxzﬂ max
I ¥

Therefore, M = e . &

Section modulus of a beam is the ratio of moment of inertia of the cross ion of the bea m
about the neutral axis to the distance of the farthest fiber from neutralQ

Therefore, = L unit = mn%
¥
\
More the section modulus more will be the moment o re»e (or) rrxm'&nt carrying capacity
of the beam. For the strongest beam, the section m ust be m

&

1. Asteel bar 10 cm wide and 8 |s subj e?&o bending mome nt. The
radius of neutral surface is eterml ximum and minimum bending
stress in the beam.

3.10 Problems

Solution : Assu

lower most fiber, Because for a simply supported beam

tensile stress (+ve most fiber, while compressive stress is at top most fiber
/'

(—ve value).
=800 N/mm?

fmin Occurs at a distance of — 4mm
R =1000mm

fmin = E.ymin/R = (2 X 105 x — 4
/2000 fmin=—-800 N/mm?
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2. A simply supported rectangular beam with symmetrical section 200mm in dept h
has mome nt of inertia of 2.26 x 10> m* about its neutral axis. Determine the longest
span over which the beam would carry a uniformly distributed load of 4kN/m run
such that the stress due to bending does not exceed 125 MN/m?.

Solution: Given data:
Depth d =200mm =0.2m
I = Moment of inertia = 2.26 x 10-5 m4
UDL = 4kN/m
Bending stress s = 125 MN/m? = 125 x 108 N/m?
Span =?
Since we know that Maximum bending moment for a simply supporte ith UDL on its
entire span is given by = WL?/8 Q

i.e; M =WL?%8 ----nnmmmmmm- (A)
From bending equation M/l = f/ymax

Ymax = d/2 = 0.2/2 = 0.1m Q
M = f.l/ymax = [(125 x 106) x (2.26 x 10)]/ 0.1 = ZE‘

Substituting this value in equation ( A); we get
28250 = (4 x 103)L%/8

L=7.52m Q QQ

3. Find the dime nsi est rgct@ular beam that can be cut out of a log
of 25 mm di N\

Solution:

m Whén Z will be maximum
)/(d/2) = bd?/6 = b.(25° — b?)/6

The vaﬂMénrim at dz/db = 0:

i.e.; d/db[25%b/6 — b%6] =0
25%/6 — 3b%/6 =0
b? = 25%/3
b =14.43 mm
d =20.41 mm
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3.11 Deflection of Beams

3.11.1 INTRODUCTION

Under the action of external loads, the beam is subjected to stresses and deformation at various
points along the length. The deformation is caused due to bending moment and shear force.
Since the deformation caused due to shear force in shallow beams is very small, it is generally
neglected.

3.11.1.1 Elastic Line:
It is a line which represents the deformed shape of the beam. Hence, it is the line along which
the longitudinal axis of the beam bends.

3.11.1.2 Deflection: %
Vertical displacement measured from original neutral surface (r@ lier cha@) to the

neutral surface of the deformed beam. Q

3.11.1.3 Slope: v
Angle made by the tangent to the elastic curve With%@ to horlz%x

The designers have to decide the dimension % not only baSed on strength requirement
but also based on considering deflection. la m nlcaI co gaents excessive deflection causes
mis-alignment and non performance of ine. In bu¢ it give rise to psychological unrest
and sometimes cracks in roofi 1afS. Deflectiolf calculations are required to impose
consistency conditions i n ter;qn\iﬁ&te structures.

3.11.1.4 Strength:
It is a measure of the resistance offered by the beam to load
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3.11.1.5 Stiffness:

It is a measure at the resistance offered by the beam to deformation. Usually span / deflection
is used to denote the stiffness. Greater the stiffness, smaller will be the deflection. The term
(EI) called “flexural rigidity” and is used to denote the stiffness.

3.11.2 Flexural Rigidity

The product of Young's modulus and moment of inertia (EI) is used to denote the flexural
rigidity.

B (x+dx, y+dy)

(8 + da

into an arc of the circle. Let (x,y) be co- ordinates of A and
of B. Let the length of arc AB = ds. Let the tangents at A
4 ) with respect to x-axis.

Let AB be th
(x+dx,y
and B make angles

We have

Differentiating both sides with respect of x;
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2
sec 8 g = d—g
do ds _ &
sec?d - =—§; —.
we have from figure ds=Rd6 8 _ %
g

again in Ale ABC, E =zec B

2
Fromeq. 1, d—f = ze;2d l sec o
di E
4
*

d'y d%y
o w o w oY
E sec’ Blzecd 1+tan25)§ R
a N
d°y "o
1 e 2

Since dy/dx is s

or
M _dy
Bl dz?
2
M =EI jx—f

This is also known as Euler - Bernoulli's equation.
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NOTE:

e While deriving Y-axis is taken upwards
o Curvature is concave towards the positive y axis.
« This occurs for sagging BM, which is positive.

Sign Convention

Bending moment =" Sagging +vc

If Y is+"¢ - Deflection is upwards ‘ Q

Y is —¢ - Deflection is downwards
If & is+"—Slope is Anticlockwise GQ OQ
*

& is - V¢ — Slope is clockwise

Methods of Calculating Deflection and Slope

Q C’O
e Double Integration method ‘

e Macaulay's method
« Strain energy method Q QQ
e Moment area method

e Conjugate Bea

Each method h

Relationshi Slope and Deflection
It T -
. . dy
Differentiating — - Elope (9
dx
. L d*y .
Differentiating E - M Bending moment
. o dhd 4y
Differentiatin — = —= = 5Shear force
g = e (E)
. o dF d*y .
Differentiatin — = — =Loadin
g - o g (W)
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3.11.3 Macaulay's Method

1. Take the origin on the extreme left.

2. Take a section in the last segment of the beam and calculate BM by considering left
portion.

3. Integrate (x-a) using the formula

[ (z-a)’
i dw =
| (z-a) d= 5

4. If the expression (x-a)" becomes negative on substituting the value of lect the terms

section and impose a UDL in the opposite direction to countera Q
6. If a couple is acting, the BM equation is modified as; M M (x-a)O\O
A\

{,M ‘Q | >\¢
a T TRB

containing the factor (x-a)"
5. If the beam carries UDL and if the section doesn't cuts the UDL;@he UDL upto the

ETy'" = %F.r — P{z— 1L)
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Atx=0;y=00C>=0
Atx=Ly=0

0=LPL>— LPL® (L

= — %PLE
Maximum deflection occurs at x = L/2

Substituting the values of x and Ci in equation.... (2) i Q
ELypas = PLP - LPGL - L) — £ PL*(L) Qb o’
Q :

\
PL? A\
Ymax = _M b \é

The negative sign indicates that the deflectio iw the unde&ned neural axis
Q" o

‘firnn.rr = m

3. Determine the
carrying

ongin 5§i ply supported beam of length L
l.19ad ‘w’ for the entire length of the beam.

Ely" = %'HJGL.T.' — %wﬂarz

Ely' = il_L”‘fJL‘T'g - %H"”Ia RS T 1)
Ely = jzw,La® — grw,a? + Cre +Cy )

At x =0y=0and C; =0

|
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Atx=Ly=0
0= iu‘ L* — lu-‘,,L'L + L

C]_ == —EH"GLJ

Substituting the C1 values in equation 2 we get
Ely = u S La® Lot — %u‘aLa.’r

Ty

X = L/2, y is maximum due to symmetric Ioading
Ely,n. = %*H:EL(%L]I — —u ol lL] — —u LA %

ET Yiar = 354 e L‘JL+ ‘ Q
'S'rnnrr = 5“‘DL.4 Q
JRAFET

Q
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Module 4

TORSION OF SHAFTS

Objectives:

Explain the structural behavior of members subjected to torque, Calculate twist and stress induced
in shafts subjected to bending and torsion. & Understand the concept of stability and derive
crippling loads for columns

Learning Structure Q
e 4.1 Bending Moment V

e 4.2 ASSUMPTIONS IN TORSION THEORY Q@ . 0
e 4.3 Problems b

e 4.4 Columns and Struts: Q \
e 45SLENDERNESS RATIO % "0

e 4.6 EFFECTIVE LENGTH OF COLUV\&

e 7 Euler’s Theorem Q QQ

e Qutcomes

e Further Readi
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4.1 Bending Moment

The moment applied in a vertical plane containing the longitudinal axis is resisted by
longitudinal tensile and compressive stresses of varying intensities across the depth of bea m
and are called as bending stresses. The moment applied is called Bending Moment.

4.1.1 Torsional Moment

The moment applied in a vertical plane perpendicular to the longitudinal axis i.e., in the plane of
the cross section of the member, it causes twisting of layers which will be resisted by the shear
stresses. The moment applied is called Torsion Moment or Torsional Mo@orsion is useful
form of transmitting power and its application is seen in screws and %

4.2 ASSUMPTIONS IN TORSION THEORY Q

1. Material is homogenous and isotropic

2. Plane section remain plane before and after twisti warpag\délanes
;!t

3. Twist along the shaft is uniform.
aftert\ﬁptlng

4. Radii which are straight before twisting rem
5. Stresses are within the proportional Iimit

4.2.1 DERIVATION OF TOR & EQU/Q%N
Torsional Rigidity

As product
section to
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Polar Modulus : (Zp)

e have II =

P

f
r

Meaimum shear stress occurs at surface

I
T=f, =
R
T =f; Z,

I
Where Zp 1z called polar modulus Zp = =z Q

POWER TRANSMITTED BY SHAFT %
Power transmitted = Torsional moment x Angle through WhQ\ rsional f{&ent rotates /

unit tank
If the shaft rotates with ‘N' rpm Q
« (N 2nJ

'

Power transmutted = % Hm/fzec
2T T

ower transmitted inkw =

60x1000 30,000

Note:
Nisinrp

s

4.3 Problems:
1. Find th“&hear stress induced in a solid circular shaft of diameter 200

mm when the shaft transmits 190 kW power at 200 rpm

Given data: Power transmitted, P = 190 kw, I, = 127 X 10° mm*

speed N =200 rpm and diameter of shaft = 200 mm.
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Substituting all the values fs = 5.78N/mm?.

2. A solid shaft of mild steel 200 mm in diameter is to be replaced by hollow shaft of
allowable shear stress is 22% greater. If the power to be transmitted is to be increased
by 20% and the speed of rotation increased by 6%, determine the maximum internal
diameter of the hollow shaft. The external diameter of the hollow shaft is to be 200 mm.

Solution: Given that:

Diameter of solid shaft d =200 mm
For hollow shaft diameter, do =200 mm
Shear stress; th=1.221
Power transmitted; Pnu=1.20 Ps
Speed N = 1.06 Q
As the power transmitted by hollow shaft Q
Py = 1.20 Ps . O
(27N TH)/60 = (21.Ns.T5)/60 x 1.20 R

Nit.Th = 1.20 No.T 6 0\\3
1.06 Ne.Th = 1.20 NsTs 5
1.06/1.20 Tw=Ts

1.06/1.20 x /16 - (di)4/d%=$/l6 t.[dP
1.06/1.20 x 1.2@00)4 — (dg&200] = t, x [200]°

®
ufi torue of 1.5 MN.cm Estimate the diameter for
and the twist are limited to 1 kN/cm? and 10
Take G =80 x 10° N/cm?

0/32.d*. d/2

1x %108 * 32 = 1/d°
/"
d=
emﬂ/
: 2n/1.5%x108*32=1/d°
d =19.69 cm
0=T.L/C.Ip

1.5 x 10° * 200 d/80 * 10° * n/32 d* = /180
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o®=1.5x10°* 180 * 200 * 32/ (80 * 10° * 1t * m)
d=27.97 cm
4. A hollow circular shaft of 20 mm thickness transmits 300 kW power at 200 r.p.m.
Determine the external diameter of the shaft if the shear strain due to torsion is not
to exceed 0.00086. Take modulus of rigidity = 0.8 x 10° N/mm?,
Solution: Let di = inner diameter of circular shaft
do = outer diameter of circular shaft
Then do =di+ 2t where t = thickness
do=di +2*20
do=dj +40

di =do —40 Q
Since we have Q
Power transmitted = 21t NT/60
300,000 =2x * 200 * T / 60 & . OQ

— T = 14323900 N mm \
Also, we have C =f/y v A%
— 0.8 * 10° = f;/0.00086 \0
— f= 68.8 N/mm? Q 0
Now T =n/16. fs.(ds' — di* / do) % C,
14323900 = fs /16 * 68.8 (do* — (do Q 0
1060334.6 do = dg* — (do — 40)*

= (d02 - d()2 + 80do—

o + 800)

Vol

60e d o~ 16000 =0
Using trial and error method to solve the above equation for do, we get do = 107.5 mm.
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Elastic Stability of Columns
4.4 Columns and Struts:

Columns and struts are structural members subjected to compressive forces. Theses members
are often subjected to axial forces, although they may be loaded eccentrically. The lengths of

these members are large compared to their lateral dimensions. In general vertical compressive
members called columns and inclined compressive members are called struts.

4.4.1 CLASSIFICATION OF COLUMNS:

Columns are generally classified in to three general types. The d| tween types of
columns is not well, but a generally accepted measure is based Ei nderness ratio (le/r

mm)-

4.4.1 .1 Short Column
A short column essentially fails by crushing and no%!k kling. A \umn is said to be short,

if le/b =15 or le /rmin =50, where le = effecti Iea‘g ral dimension and r min=
minimum radius of gyration.

4.4.1 .2 Long Column : Q QQ

A long column es
failure is less th

nd'w%)y crushing. In long columns, the stress at
is said to be long le/b > 15 or le /rmin> 50.

An intermediate co h fails by a combination of crushing and buckling.
4.4.1.4 Elastic

Consider a long column subjected to an axial load P as shown in figure. The column deflects
laterally when a small test load F is applied in lateral direction. If the axial load is small, the
column regains its stable position when the test load is removed. At a certain value of the axial
load, the column fails to regain its stable position even after the removal of the test load. The
column is then said to have failed by buckling and the corresponding axial load is called Critical
Load or failure Load or Crippling Load
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F ——

Te V‘
4.5 SLENDERNESS RATIC,G") Q

Slenderness ratio is defined as the ratio of effective Iengtw &the co@(to the minimum
radius of gyration (r min ) Of the cross section. 6

i\

Since an axially loaded columnter@iss@buckle abéé the axis of minimum moment of inertia
i ulate slenderness ratio.

Further, ‘ gtional area of column.

4.6 EFFECT;

Effective length is tf an imaginary column with both ends hinged and whose
critical load is the ¢ olumn with given end conditions. It should be noted that the
material and geometric ppéperties should be the same in the above columns. The effective
length of a column depends on its end condition. Following are the effective lengths for some
standard cases.
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Both endsare Both ends arefixed One end fixed and One end fixed and
hinged other end hinged other end is free

\ ;i !

&
Q‘Q&Qp

A il > T
c’o
Effective Length L. = Effective Length %e Len%ih Effective Length L. =
& —

L Le= _ & QQ 2L

ails by buckling.

loaded.
i fectly straight and the cross sections are uniform (prismatic).

e The column is initially free from stress.
e The column is perfectly elastic, homogeneous and isotropic.

4.7.1 Eulers Critical Load for Long Columns

Case (1) Both ends hinged

Consider a long column with both ends hinged subjected to critical load P as shown.




P

Consider a section at a distance x from
section. Bending moment in terms ofglpa nd defleckign y is given by

o
. emmeeneenes (1)
We can also wri ending moment is proportional to the
curvature of t ction can be expressed as
or SUTIRTTRS )
where E is the §and I is the moment of Inertia.
Substituting e
d*y
~Py= EI g
4
or d—:;r + 3 =0
d EI
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This is a second order differential equation, which has a general solution form of

7= sin[xg] + COS[LJ%] -3

where C1 and C; are constants. The values of constants can be obtained by applying the
boundary conditions:

() y=0at x =0. That is, the deflection of the column must be zero at each end since it is

pinned at each end. Applying these conditions (putting these values into the eq. (3)) gives us
the following results: For y to be zero at x =0, the value of C, must be z

(i) Substitutingy =0 at x = L in eq. (3) lead to the following. Q
0= sin [LJE] Q
EI

While for y to be zero at x = L, then either Cy r@zero (Whiéoeaves us with no equation

at all, if C1 and C; are both zero), or «

which results i

Taking least significant value of n,i.e. n=1

ince cos (0) = 1).
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We have F= I
or Frg = ﬂjf d
where le =L.

Case (2) Both ends fixed

Consider a long column with both ends fixed subjected to critical load P as shown.
T Q‘Q' "0

\

-
Consider a se origin. Let y be the deflection of the column at this
section. Be i ad P, fixed end moment M 0 and deflection y is given

by

Ad=—Py+ Mg S——
We can also r beams/columns the bending moment is proportional to the

curvature of the beam, which, for small deflection can be expressed as

M _d'y
Bl axt
a
or M=EI ij Rt )
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where E is the Young's modulus and | is the moment of Inertia.

Substituting eq.(1) in eq.(2)

dﬂ
~Py+Myg =EI —=
4 dz
2
ot d_j?' + i V= ﬂ
d=* |EI Bl
This is a second order differential equation, which has a general solutio of

A

y=C1sin [X“\[:] + Cz EOS[K‘J:] - (3} Q
where C1 and C; are constants. The values of constan&&e obtalna& applying the

boundary cond%

() y=0at x =0. That is, the deflection of th must be zec?at near end since it is
fixed. Applying this condition (putting thes&es into the Q, (3)) gives us the following

result: 0
M’D :
F
ii)AtX=0= ust be zero, since it is fixed.

—_ — sin x\/i B
EI [ ]

o "’
Substituting th condition ineq. (4)

P
D=0 .=
EI

Hence, =10

Substituting the constants C1 and C: in eq. (3) leads to the following
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~~(5)

=]~

U cos| x E +
| &7

|~
|




The variation of limiting stress ‘f' versus slenderness ratio N the above equation is

shown below.

f
The above plot shows that the limiting stress ‘f' decrease reases. &ft when very
small, limiting stress is is close to infinity, which i |s nal. lelthg stress cannot be

greater than the yield stress of the material. ‘i
1. Eulers formula determines the critical Io t the orkm@oad Suitable factor of safety

(which is about 1.7 to 2.5) should be co ed to obtﬁﬁallowable load.

4.7.2 Rankine's critical L

Y
{d

=+ e 1
P F. P ()
ETE, Prp =Fankine’s critical load
Po =t & = Crushing load for short columns
Fr= ﬂjff = Euler’ s critical load for long columns

' ’
Rankine Gordon Load is given by the following empirical formula,

This relationship is assumed to be valid for short, medium and long columns. This relation can
be used to find the load carrying capacity of a column subjected to crushing and/or buckling.

From eq. (1)
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Substituting Pc and Pe in the above relation

J. 4 Jo A
Pr = = -
NEA
a4 TR
TRl
jﬂ
. i
since R N G
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Module 5: Theories of Failure

Objectives:

Various types of theories of failure and its importance

Learning Structure

e 5.0 Introduction

e 5.1 Stress-Strain relationships Q

e 5.2 Types of Failure Q

e 5.3 Use of factor of safety in design Q% OQ

e 5.4 Theories of Failure

\
e 55Problems V \Q"

e QOutcomes

\ Feter i «@c’ °
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5.0 Introduction:

Failure indicate either fracture or permanent deformation beyond the
operational range due to yielding of a member. In the process of designing a
machine element or a structural member, precautions has to be taken to avoid

failure under service conditions.

When a member of a structure or a machine element is subjected to a system of
complex stress system, prediction of mode of failure is necess o involve in

appropriate design methodology. Theories of failure or % n as failure
5.1 _Stress-Strain relationships

criteria are developed to aid design.
Following Figure-1 represents stress strain rel &p for dﬁ}ent type of
materials.

.- o(True)

. (True)
: f(Engineering)

Stress
(o}

f(Engineering)

N |
P, | d
1 | /
' ! !
1 1 /
1 }
Elastic Iw.l Plastic range Strain \
outte GG

r

Q  Stress
(]

—» |'— 0.2 % offset Strain

Low ductility

Stress
Stress

f (Ultimate fracture)

Strain Strain

Elastic — perfectly plastic material

ormewaterial

Figure-: Stress-Strain Relationship

Bars of ductile materials subjected to tension show a linear range within which the materials
exhibit elastic behaviour whereas for brittle materials yield zone cannot be identified. In general,
various materials under similar test conditions reveal different behaviour. The cause of failure of a
ductile material need not be same as that of the brittle material.
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5.2  Types of Failure:
The two types of failure are,

Yielding - This is due to excessive inelastic deformation rendering the structural member or
machine part unsuitable to perform its function. This mostly occurs in ductile materials.

Fracture - In this case, the member or component tears apart in two or more parts. This
mostly occurs in brittle materials.

53 Use of factor of safetyin design:
In designing a member to carry a given load without failure, usually a fact@p o y (FS or N) is

used. The purpose is to design the member in such a way that it can '@ty N times the actual
working load without failure. Factor of safety is defined as Fact Safety (FS)Q Ultimate

Stress/Allowable Stress. o)
Q \
5.4 Theories of Failure: V 0\'
@) Maximum Principal Stress Theory (Rankin h& 0

b) Maximum Principal Strain Theory (St. \gn eory) 6
C) Maximum Shear Stress Theory (Tres r Q,

d) Maximum Strain Energy Theory (@d’ theor%{\

5.4.1 Maximum Pri S ThgoQ‘ (Rankine theory)
\

According to this
principal stress)

o1 (maximum principal stress), 62 (Minimum
y), yielding would
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occur. In a two dimensional loading situation for a ductile material where
tensile and compressive yield stress are nearly of same magnitude

01 = £ Oy 02 = %Oy

Yield surface for the situation is, as shown in Figure-2

5, 0
Figure- 2: Yield M)rrespg:dmg

to maximum ;6 stress

Yielding occurs when t @l stress ig, at the boundary of the rectangle.
Consider, for examg , , QP*a thin walled pressure vessel. Here
01= 262, 61 beir : , hoop stress and o, the axial stress. As

i tNe stress follows the dotted line. At a point

e elastic limit but at b, o1 reaches oy
ng will then begin at point b. This theory

, ent with experiment. However, this theory is

being used successSrll e materials.

/

5.4.2 Maximum Erincipal Strain Theory (St. Venant’s Theory)

According to this theory, yielding will occur when the maximum principal
strain just exceeds the strain at the tensile yield point in either simple
tension or compression. If € and e are maximum and minimum
principal strains corresponding to o1 and o>, in the limiting case

&1 = (1/E)(01- vo2) |01 > o]
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&2 = (I/E)(o2- vo1) |02 > |o]
This resultsin,

E e1-01-vor-+09
E e-0,-vo1-+ 09

The boundary of a yield surface in this case is shown in Figure — 3.

6,=0,tvo,; ‘ Q

o, A%
W
D . o;=0,tv 0'2>

:
Figure-3:  Yiel me vcorresgg?ﬂjing to
maximu al strai ory

&

543 M y (Tresca theory)

According
stress just
yield point 6= o3
six conditions

would occur when the maximum shear
at the tensile yield point. At the tensile
IS"maximum shear stress is c,/2. This gives us
irhensional stress situation:

G1- 62=+0y
62_ GS:iGy
03- Gl:iGy



‘o

-G y

Figure — 4: Yield surface corresponding
to maximum shear stress theory Q

In a biaxial stress situation (Figure - 4) case, o3 = @ves .

_ <
6,~0,=0, if6,>0,0, <0
6,—6,= G if6,<0,0, >0

v

_ > ‘9
0,= 0, if 6,> 0,
0,= 0, if6,<o0, Q

= 1 >

Figure — 5: Mohr’s circle for
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pure shear

5.4.4 Maximum strain energy theory (Beltrami’s theory)

According to this theory failure would occur when the total strain energy
absorbed at a point per unit volume exceeds the strain energy absorbed per
unit volume at the tensile yield point. This may be expressed as,

(172)(c1 €1 + 62 82 + 03 £3) = (1/2) oy &y V@

Substituting €1, €, €3 and &y in terms of the stresses we r@

6?+62+62-2v (6.0, g © 601)=02
1 P2 73 17242 "3+ 3

(o1/ 6y)* + (62/ 6y)? - 2v(01 62/ 6%) = 1
The above equation represents an ellip g |eId &yface Is shown in
F igure - 6 &

P AQ QQ

Gy 4 A
7

N g / .
Y / G.f E(1—\’)
G},ff,,fE(’Iq-v} ‘7\/ / ’ o,
-0,. .
%: Yield surface corresponding
aximum strain energy theory.

It has been shown earlier that only distortion energy can cause yielding but in
the above expression at sufficiently high hydrostatic pressure 61 = 6, = 063 =6
(say), yielding may also occur. From the above we may write 6*(3 — 2v) = 6,2
and ifv ~ 0.3, atstress level lower than yield stress, yielding would occur. This
is in contrast to the experimental as well as analytical conclusion and the
theory is not appropriate.
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5.4.5 Superposition of yield surfaces ofdifferent failure theories:
A comparison among the different failure theories can be made by superposing
the yield surfaces as shown in figure — 7. It is clear that an immediate
assessment of failure probability can be made just by plotting any experimental
in the combined yield surface. Failure of ductile materials is most accurately
governed by the distortion energy theory where as the maximum principal strain
theory is used for brittle materials.

A/'

~ N\

C, sg?

N Iy =5 . L. ;

N -7 .7 @«—— Maximum principal stram theory

Ny O, - V% .

o _|v¢#———— Maximum distortion energy theory
/7% 7w

i /

< o3 >C)

o
1 NAst——— Maximum shear stress theory
N ‘,'//.\/\ e Maximum principal stress theory » S
B

0=l RN W
/'/'/ ' 0
Figure — 7: Comparison of d;ﬂ% i‘ailurg;l@\&ies
5.5 Problems: $ {\0
Numerical-1: A shaft_i y a torque of 5 KN-m. The material

e\g%uired diameter using Maximum
afety of 2.5.

has a yield poin
shear stress t

Factor of Sanmate Stress/Allowable Stress
Since ox = 6y = 0, Tmax = 25.46 X 10%/d?
Therefore 25.46 X 10%/d3 = 6,/(2*FS) = 350*10%/(2*2.5)

Hence, d = 71.3 mm
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Numerical-2: The state of stress at a point for a material is shown in
the following figure Find the factor of safety using (a) Maximum shear
stress theory Take the tensile yield strength of the material as 400 MPa.

—
Y

,_‘; % C,=40 MPa

Y T=20 MPa
1

G,=125MPa

From the Mohr’s circle shown below we determine, V
o1 = 42.38MPa and Q %" . O

_ \
o2 = -127.38MPa <
2 bs \0

from Maximum Shear Stress theory
(01 - 62)/2= ,/(2*FS) «"
Q safety Q 2.356

.

By substitution and calculation
P4

T
, o QO
| \
Lo~
’ | \
- / | \
2, | ' 1
T‘ ! o— 20MPa | o= iﬂ\ﬂ’n
\ I 1
\
N ;N —20 MPa
80 Mp- ) > + ”
7 i \2 MPa “
Cf'aIIr | \(}1
-" g =120)Fa *a
\ I
=_10 MP:
44.72 MPa
Numerical-3: A cantilever rod is loaded as shown in the following

figure. If the tensile yield strength of the material is 300 MPa determine the
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rod diameter using (a) Maximum principal stress theory (b) Maximum
shear stress theory

At the outset it is necessary to identify the mostl & sed ele TorS|onaI
shear stress as well as axial normal stress is the s& the length of
the rod but the bearing stress is largest at th end. among the four
corner elements on the rod, the eleme mostlt)&ded as shown in

following figure ‘
A
16T Q
— ﬁ (Torsional shear stress)
.I‘i / 2
/{md ) .
- e P{; | — ‘ (Axial stress)
A /L4
A—— e
L 4 321?“ (Bending stress)
nd

Shear streZue

its small value co
L, the eleme

t is also developed but this is neglected due to
other stresses. Substituting values of T, P, F and
ay be shown as in following figure.

12732 2445
d? +d3

!

— (4074
L d? J
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The principal stress for the case is determined by the following equation,

2

o1 . 1 N ,[ 4074 v
12 2 d2 d3 ) - 4 d2 d3 ) d3 J

By Maximum Principal Stress Theory, Setting, 61 = 6, we get d = 26.67mm

B 1{12732 2445 \l+J1 {12732 2445 \'l

By maximum shear stress theory by setting (61 — 62)/2 = 6,/2, we get, d =
30.63mm

Numerical-4: The state of plane stress shown occuﬁ&ritical point
of a steel machine component. As a result of several ests it Qas been
found that the tensile yield strength is ¢y=250M he gr of steel
used. Determine the factor of safety with respe& yield using“maximum

shearing stress criterion. V

Y
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ermines

Tn= (602425912 = 65MPa
Ga= 20+65 = 85 -=20-65 = -45 MPa

m@ stress at yield is t,= %2 oy = %2 (250) = 125MPa

Factor of safety, FS = 1/ 1y = 125/65 = 1.92

The correspo
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Summary:

Different types of loading and  criterion  for of Qwuctural
members/machine parts subjected to static Ioadlnﬂ on { nt failure
theories have been discussed. Development of yi ace an |zat|on of

design criterion for ductile and brittle materials % trated. \

Assignments: & ‘

& IS nec&ary to rotate the shaft shown

ed. '[h rank shaft is made of ductile steel
teRsion and compression. With E =

Assignment-1: A Force F =
in the following flgure
whose elastic limi

207 X 10° kP e the diameter of the shaft using
maximum she or of safety = 2. Consider a point on the
periphery at swer,d =10.4 cm)
/ /\\ ~-20 cm \“/?—E{D s
. SO Tl e ‘/‘7’7/‘.«
l\ | 4»\11,\“_\ A LA
\\L/‘ AT =
t | i L i15 cm
\§ T
FI

Assignment-2:  Following figure shows three elements a, b and ¢ subjected
to different states of stress. Which one of these three, do you think will yield
first according to i) maximum stress theory, ii) maximum strain theory, and iii)
maximum shear stress theory? Assume Poisson’s ratio v = 0.25 [Answer: i) b,
i) &, and iii) c]
|
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Assignment-3: Determine the diameter of a ductile steel bar if the tensile
load F is 35,000N and the torsional moment T is 1800N.m. Use factor of safety

= 1.5. E = 207*10%Pa and oy, = 207,000kPa. Use the maximum shear stress
theory. (Answer: d =4.1cm)

Assignment-4: At a pint in a steel mem : stat & stress shown in
e

Figure. The tensile elastic limit is 413. the she g stress at a point is
206.85kPa, when yielding starts, wi
e

tensifg, stress ¢ at the point
accordlng to maximum shearlng str

ory? (Aésﬁer Zero)

.<-
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