MICROPROCESSORS AND MICROCONTROLLERS

MODULE -1
THE x86 MICROPROCESSOR & ALP
THE x86 MICROPROCESSOR
BRIEF HISTORY OF THE x86 FAMILY':

A study of history is not essential to understand the microprocessor, but it provides a historical

perspective of the fast-paced evolution of the computer.

Evolution from 8080/8085 to 8086:

In 1978, Intel Corporation introduced a 16-bit microprocessor called the 8086. This processor
was a major improvement over the previous generation 8080/8085 series Intel microprocessors in
several ways:

1. The 8080/8085 was an 8-bit system (meaning that, the microprocessor could work on only 8
bits of data at a time; data larger than 8 bits need to be broken into 8-bit pieces to be
processed by the CPU). In contrast, the 8086 is a 16-bit microprocessor.

2. The 8086's capacity of 1 mega-byte of memory exceeded the 8080/8085's capability of
handling a maximum of 64K bytes of memory.

3. The 8086 was a pipelined processor, as opposed to the non-pipelined 8080/8085 (In a
system with pipelining, the data and address buses are busy transferring data, while the
CPU is processing information; thereby increasing the effective processing power of the
micro-processor).

Table: Evolution of Intel microprocessors up to the 8088

Product 8008 | 8080 | 8085 | 8086 | 8088
Year introduced 1972 | 1974 1976 1978 1979
Technology PMOS | NMOS | NMOS | NMOS | NMOS
Number of pins 18 40 40 40 40

Number of transistors 3000 4500 6500 | 29,000 | 29,000
Number of instructions 66 111 113 133 133

Physical memory 16KB | 64KB | 64KB | 1MB 1MB
Virtual memory None | None | None | None | None
Internal data bus 8 8 8 16 16
External data bus 8 8 8 16 8
Address bus 8 16 16 20 20
Data types 8 8 8 8/16 8/16

Evolution from 8086 to 8088:
The 8086 is a microprocessor with a 16-bit data bus internally and externally, meaning that all

registers are 16 bits wide and there is a 16-bit data bus to transfer data in and out of the CPU.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Although the introduction of the 8086 marked a great advancement over the previous generation of
microprocessors, there was still some resistance in using the 16-bit external data bus:

v Atthat time, all peripherals were designed around an 8-bit microprocessor

v"In addition, a printed circuit board with a 16-bit data bus was much more expensive.
Therefore, Intel came out with the 8088 version. It is identical tothe 8086 as far as programming is
concerned, but externally it has an 8-bit data bus instead of a 16-bit bus. It has the same memory
capacity, 1IMB.
Success of the 8086:
In 1981, Intel's fortunes changed forever when IBM picked up the 8088 as their microprocessor of
choice in designing the IBM PC. The 8088-based IBM PC was an enormous success, because 1BM and
Microsoft made it an open system (meaning that, all documentation and specifications of the
hardware and software of the PC were made public). This made it possible for many other vendors
to clone the hardware successfully and thus generated a major growth in both hardware and
software designs based on the IBM PC. This is in contrast with the Apple computer, which was a

closed system (blocking any attempt at cloning by other manufacturers, both domestically and overseas).

Other Microprocessors: the 80286, 80386, and 80486:
Intel introduced the 80286 in 1982. Its features included —

v"16-bit internal and external data buses.

v 24 address lines, which give 16 mega-bytes of memory (2% = 16M bytes).

v Virtual memory — a way or fooling the microprocessor into thinking that it has access to an
almost unlimited amount of memory by swapping data between disk storageand RAM.

v The 80286 can operate in one of two modes: real mode and protected mode. Real mode is
simply a faster 8088/8086 with the same maximum of 1M bytes of memory. Protected
mode allows for 16M bytes of memory but is also capable of protecting the operating system
and programs from accidental or deliberate destruction by a user, a feature that is absent in
the single-user 8088/8086. IBM picked up the 80286 for the design of the IBM PCAT.

With users demanding even more powerful systems, in 1985 Intel introduced the 80386 (sometimes
called 80386DX):

v Internally and externally a 32-bit microprocessor.

v/ 32-bit address bus; capable of hand ling physical memory of up to 4 giga-bytes (2* = 4G
bytes).

v Virtual memory was increased to64 terabytes(2® = 64T bytes).

o All microprocessors discussed so far were generalpurpose microprocessors and could not
handle mathematical calculations rapidly. For this reason, Intel introduced numeric data

processing chips, called math-coprocessors, such as the 8087, 80287, and 80387.
MAHESH PRASANNA K., VCET, PUTTUR

O

MICROPROCESSORS AND MICROCONTROLLERS

Later Intel introduced the 386SX, which is internally identical to the 80386 but has a 16-bit
external data bus and a 24-bit address bus, which gives a capacity of 16M bytes (2% = 16M bytes)
of memory. This makes the 386SX system much cheaper.

With the introduction of the 80486 in 1989, Intel put a greatly enhanced version of the
80386 and the math-coprocessor on a single chip plus additional features such as cache
memory. Cache memory is static RAM with a very fast access time. Note that, all programs
written for the 8088/86 will run on 286, 386, and 486 computers.

In 1992, Intel released the newest x86 microprocessor — the Intel Pentium:

v

<

By using submicron fabrication technology, Intel designers were able to utilize more than 3
million transistors on the Pentium chip.

The Pentium had speeds of 60 and 66 MHz (twice that of 80486 and over 300 times faster than
that of the original 8088).

Separate 8K cache memory for code and data.

64-bit external data bus with 32-bit register and 32-bit address bus capable of addressing 4GB of
memory.

Improved floating-point processor.

Pentium is packaged in a 273-pin PGA chip.

It uses BICMOS technology, which combines the speed of bipolar transistors with the power
efficiency of CMOS technology.

Table: Evolution of Intel’s Microprocessors (from the 8086 to the Pentium Pro)

Product 8086 | 80286 | 80386 80486 Pentium | Pentium Pro
Year introduced 1978 1982 1985 1989 1993 1995
Technology NMOS | NMOS | CMOS CMOS BICMOS BICMOS
Clock rate (MHz) 3-10 | 10-16 | 1633 25-33 60, 66 150
Number of pins 40 68 132 168 273 387
Number of transistors | 29,000 | 134,000 | 275,000 | 1.2 million | 3.1 million | 5.5 million
Physical memory 1IMB | 16MB 4GB 4GB 4GB 64GB
Virtual memory None 1GB 64TB 64TB 64TB 64TB
Internal data bus 16 16 32 32 32 32
External data bus 16 16 32 32 64 64
Address bus 20 24 32 32 32 36
Data types 8/16 8/16 8/16/32 8/16/32 8/16/32 8/16/32

In 1995, Intel introduced the Pentium Pro, the sixth generation of the x86 family.

v" Pentium Pro is an enhanced version of Pentium that uses 5.5 million transistors.

v It was designed to be used for 32-bit servers and workstations.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o In 1997, Intel introduced its Pentium Il processor. This 7.5-million-transistor processor ‘featured
MMX (Multi-Media extension) technology incorporated into the CPU. MMX allows for fast
graphics and audio processing.

o In 1998 the Pentium Il Xcon processor was released. Its primary market is for servers and
workstations.

o In 1999 the Celeron was released. Its lower cost and good performance make it ideal for PCs used
to meet educational and home business needs.

o In 1999, Intel released the Pentium Ill. This 9.5-million-transistor processor includes 70 new
instructions called SIMD that enhance video and audio performance in such areas as 3-D
imaging, and streaming audio that have become common features of on-line computing. In 1999,
Intel also introduced the Pentium 1l Xeon processor, designed more for servers and business
workstations with multiprocessor configurations.

Table: Evolution of Intel’s Microprocessors (from the Pentium II to Itanium)

Product Pentium Il | Pentium Il | Pentium 4 | Itanium Il
Year introduced 1997 1999 2000 2002
Technology BICMOS BICMOS BICMOS | BICMOS
Number of transistors | 7.5 million | 9.5 million | 42 million | 220 million
Cache size 512K 512K 512K 3MB
Physical memory 64GB 64GB 64GB 64GB
Virtual memory 64TB 64TB 64TB 64TB
Internal data bus 32 32 32 64
External data bus 64 64 64 64
Address bus 36 36 36 64
Data types 8/16/32 8/16/32 8/16/32 | 8/16/32/64

o The Pentium 4, which debuted late in 1999 had the speeds of 1.4 to 1.5 GHz. The Pentium 4
represents the first completely new architecture since the development of the Pentium Pro. The
new 32-bit architecture, called NetBurst, is designed for heavy multimedia processing such as
video, music, and graphic file manipulation on the Internet. The system bus operates at 400
MHz. In addition, new cache and pipelining technology and an expansion of the multimedia
instruction set are designed to make the P4 a high- end media processing microprocessor.

o Intel has selected Itanium as the new brand name for the first product in its 64-bit family of
processors, formerly called Merced. The evolution of microprocessors is increasingly

influenced by the evolution of the Internet. The Itanium architecture is designed to meet

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Internet-driven needs for powerful servers and high-performance work-stations. The Itanium will
have the ability to execute many instructions simultaneously plus extremely large memory

capabilities.

INSIDE THE 8088/86:
The following Fig shows the internal block diagram of the 8088/86 CPU.

Execution Unil (EU) Bus Interface Unit (BIU)
AH AL CS
BH BL ES
cu | oo | sS I
CH CL DS
BP IP
DI A
S1
=
Sp
A A
: \
1 Y Muluplexed Address generaticn
A A I bus and bus control
Y)
Operands
A A Y
¥ \ Instruction
queue
ALU]
| -
A
\
Flags

Fig: Internal Block Diagram of the 8088/86 CPU

Pipelining:
There are two ways to make the CPU process information faster:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

1. Increase the working frequency — The designers can make the CPU work faster by increasing
the frequency under which it runs. But, it is technology dependent, meaning that the designer
must use whatever technology is available at the time, with consideration for cost. The
technology and materials used in making ICs (integrated circuits) determine the working
frequency, power consumption and the number of transistors packed into a single-chip
microprocessor.

2. Change the internal architecture of the CPU — The processing power of the CPU can be altered
by changing the internal working of the CPU. (In 8085, the CPU had to fetch an instruction

from memory, then execute it and then fetch again, execute it, and so on; i.e., 8085 CPU could

either fetch or execute at a given time).

The idea of pipelining is to allow the CPU to fetch and execute at the same time as shown in

following Fig.

Nonpipelined
(e.g., B08S)

Pipelined
(¢.g., 8086)

fetch 1 exec | feich 2 exec 2
fetch 1 exec |
—
fetch 2 cxec 2
fetch 3 exec 3

Intel implemented the concept of pipelining in the 808886 by splitting the internal structure of
the microprocessor into two sections:
o The execution unit (EU)
o The bus interface unit (BIU)
v" The BIU accesses memory and peripherals while the EU executes instructions
previously fetched.
v' Thisworks only if the BIU keeps ahead of the EU; thus the BIU of the 8088/86 has
a buffer, or queue. The buffer is 4 bytes long in the 8088 and 6 bytes in the
8086. If any instruction takes too long to execute, the queue is filled to its

— These two sections work simultaneously.

maximum capacity and the buses will sit idle.

v" The BIU fetches a new instruction whenever the queue has room for 2 bytes in
the 6-byte 8086 queue and for 1byte in the 4-byte 8088 queue. In some

Fig: Pipelined vs. Non-pipelined Execution

circumstances, the microprocessor must flush out the queue.
MAHESH PRASANNA K., VCET, PUTTUR

Registers:

MICROPROCESSORS AND MICROCONTROLLERS

For example, when a jump instruction is executed, the BIU starts to fetch
information from the new location in memory and information in the queue that
was fetched previously is discarded. In this situation the EU must wait until the
BIU fetches the new instruction. This is referred to in computer science
terminology as a branch penalty. In a pipelined CPU, this means that too
much jumping around reduces the efficiency ofa program.

Pipelining in the 808886 has two stages, fetch and execute, but in more powerful
computers, pipelining can have many stages. The concept of pipelining
combined with an increased number of data bus pins has, in recent years, led to

the design of very powerful microprocessors.

In the CPU, registers are used to store information temporarily. Information could ne one or two bytes of

data to be processed or the address of the data. The registers of 8088/86 fall into six categories; as given

in the following Table.

Table: Register of 8088/86/286 by Category

Category | Bits Register Names
General 16 AX, BX, CX, DX
8 AH, AL, BH, BL, VH, CL, DH, DL
Pointer 16 SP (Stack Pointer), BP (Base Pointer)
Index 16 S| (Source Index), DI (Destination Index)
Segment | 16 | CS (Code Segment), DS (Data Segment), SS (Stack Segment), ES (Extra Segment)
Instruction | 16 IP (Instruction Pointer)
Flag 16 FR (Flag Register)

The general-purpose registers in 8088/86 can be accessed as either 16-bit or 8-bit registers. All other

registers can be accessed only as the full 16 bits. In 8088/86, data types are either 8 or 16 bits. To access
12-bit data, a 16-bit register must be used with the highest 4 bits set to 0.

- 8-bit register:
AX
16-bit register D7 De|Ds|D4]D3IJD2) DI DO
16-bit register:
AH AL
Ribitregister | 8-bit register pis|oi4jo13|Diz|pu|p| Dy J o8 | b7 D6 | D5 | D4 | D3| D2 DI | DD

Fig: Structure of General-Purpose Register & Numbering Bits of a Register

Different registers in the 808886 are used for different functions. Some instructions use only specific

registers to perform their tasks. The first letter of each general-purpose register indicates its use:

v AX is used for the accumulator

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v' BX as a base addressing register
v' CX as acounter in loop operations

v DX to point to data in 1/0 operations.

INTRODUCTION TO ASSEMBLY PROGRAMMING:

e}

The CPU can work only in binary; it can do so at very high speeds. But, it is quite tedious
and slow for humans to deal with 0s and 1s in order to program the computer. A program
that consistsof 0sand 1s iscalled machine language.

Although the hexadecimal system was used as a more efficient way to represent binary
numbers, the process of working in machine code was still cumbersome for humans.
Eventually, Assembly languages were developed, which provided mnemonics for the machine
code instructions, plus other features that made programming faster and less prone to error.
The term mnemonic is typically used in computer science and engineering literature to refer to
codes and abbreviations that are relatively easy to remember.

Assembly language programs (ALPs) must be translated into machine code by a program
called an assembler.

Assembly language is referred to as a low-evel language because it deals directly with the
internal structure of the CPU. To program in Assembly language, the programmer must know the

number of registers and their size, as well as other details of the CPU.

Today, one can use many different programming languages, such as QC++, BASIC, C#,
and numerous others. These languages are called high-level languages; because the
programmer does not have to be concerned with the internal details of the CPU.

An assembler is used to translate an Assembly language program into machine code
(sometimes called object code); high-level languages are translated into machine code by a
program called a compiler. For instance, to write a program in C, one must usea C compiler to
translate the program into machine language.

There are numerous assemblers available for translating x86 Assembly language programs into

machine code. M ost commonly used assemblers, MASM / TASM.

Assembly Language Programming:

An Assembly language program consists of —

v Aseries of lines of Assembly language irstructions —

e An Assembly language instruction consists of a mnemonic

e Optionally followed by one or two operands.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v The operands are the data items being manipulated, and the mnemonics are the commands to
the CPU, telling it what to do with those items.

E.g.
Opcode (Mnemonic) Source operand (register
Relative addressing)
AGAIN: ADD AX, COUNT [BX] ; ADD ELEMENT OF COUNT TO AX.
Label—provides a \ Destination operand \ Comment
Means of branching (register addressing)

To this instruction

MOV Instruction:

The MOV instruction copies data from one location to another. The format is —

MOV destination,source ;copy scurce operand to destination

The Following Figure shows the operation of the MOV BX, CX instruction.

Register array
AX
MOV BXCKX
l BX 76 A F
Destination Source
ox 1 2 3 4 1 234
.-—"'--—-"_'-._.-"-‘-q..-_

The MOV instruction does not affect the source operand. The following program first loads CL with
value 55H, then moves this value around to various registers inside the CPU.

MOV CL,55H ;move 55H into register CL

MOV DL,CL :copy the contents of CL into DL (now DL=CL=55H)
MOV AH,OL ;copy the contents DL into AH (now AH=DL=55H)
MOV AL,BH ;copy the contents BH into AL (now AL=AH=355H)
Mo¥ BH,CL ;copy the contents CL intc BH {(now BH=CL=55H)
MoV CH,EBH jcopy the contents BH inte CH (now CH=BH=35H}

o0 00
M M

The use of 16-bit registers is demonstrated below:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

MOV CX,d468FH ;move 468FH into CX (now CH=46,CL=EF)

MOV AN, CX jcopy contents of CX to AX (now AX=CX=46EFH)
MOV DX, B¥ jcopy contents of AX to DX (now DE=AX=468FH)
MOV BX, DX rcopy contents of DX to BX (now BX=DX=468FH)
MOY¥ DI, BX ;now DI=BX=468FH

M2V S5I,DI jnow SI=DI=468FH

MoV DS, 81 ynow DS=5T=468FH

MOV BP,DI snow BP=DI=4&HFH

In 8086 CPU, data can be moved among all the registers (except the flag register) as long as the source
and destination registers match in size.

MOV AX,5HFCH imove 5HFCH into AX (LEGAL)
MOV DX,6678H ;move 66TEH into DX (LEGRL)
MOV 5I,924BH ;move 924B into SI (LEGAL)
MOV BP,Z245%H ;move 2459H into BP {LEGAL}
MOV D3,2341H ;move 2341H into DS (ILLEGAL)
MOV CX,8876H ;move B8876H intc CX (LEGRL)
MOV C5,3F47H :move 3F47H into C5 {ILLEGAL)
MOV BH, 99H ;move 99H into BH |[LEGAL)
Note the following three points with regarding MOV instruction:
1. Values cannot be loaded directly into any segment register (CS, DS, SS, and ES). To load a value
into a segment register, first load it to a non-segment register and then move it to the segment

register, as shown below.

MOV AX,2345H ;load 2345H into AX
MOV DS, EX ;then load the value of AX into DS

MOY DI,1400H ;load 1400H into DI
MOV ES,DI ;then move it into ES, now ES=DI=1400

2. If a value less than FFH is moved into a 16-bit register, the rest of the bits are assumed to be all
zeros. E.g.: MOV BX, 5 ; result will be BX = 0005, i.e., BH = 00 and BL = 05.
3. Moving a value that is too large into a register will cause an error.

MOV BL, 7FZH ;ILLEGAL: TF2H is larger than 8 bits
MOV AX, ZFE456H ILLEGAL: the wvalue is larger than AX

ADD Instruction:
The ADD instruction has the following format —

ADD destination, socurce ADD the source operand to the destination

The ADD instruction tells the CPU to add the source and the destination operands and put the result in the
destination.

MOV AL, Z5H jmove 25 into AL MOV DH, 25H rmove 25 inte DH
MOV BL,34H ;move 324 inte BL | MOV CL,34H ;move 34 into CL
ADD AL,BL ;AL = AL + BL ADD DH,CL ;jadd CL toe DH: OH = DH + CL

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Executing above program results in AL (or DH) = 59H (25H + 34H = 59H) and BL (or CL) = 34H.
Notice that, the contents of the source operand do not change.

It is not necessary to move both data items into registers before adding them together.

MOV DH,25H ;load one operand into DH
ADD DH, 344 :add the second operand to DH

Hence, for MOV and ADD instructions, the source operand may be an immediate data — this is called an
immediate operand. Please note, the destination operand has always been a register.

The largest number that an 8-bit register can hold is FFH. To use numbers larger than FFH (255 decimal),
16-bit registers (such as AX, BX, CX, or DX) must be used.

MOV AX,34EH ;move 34EH into AX MOV CX,34EH ;load 34EH into CX
MOV DX, 6ASH :move 6ASH into DX ADD CX, 6A5H ;add 6ASH to CX (now CK«9F3H)
ADD DX, AX ;add AX to DX: DX = DX + AX

Running the above program(s) give DX (or CX) = 9F3H (34E + 6A5 = 9F3H) and AX = 34EH.

INTRODUCTION TO PROGRAM SEGMENTS:

A typical Assembly language program consists of at least three segments:

1. Code segment — contains the Assembly language instructions that perform the tasks that the
program was designed to accomplish.

2. Data segment — is used to store information (data) that needs to be processed by the instructions
in the code segment.

3. Stack segment — is used by the CPU to store i information temporarily.

Origin and Definition of the Segment:

A segment is an area of memory that includes up to 64K bytes and begins on an address evenly
divisible by 16 (such an address ends in OH). In 8085, there was only 64K byte (2'°® = 16KB) of
memory for all code, data, and stack information; in the 8088/86 there can be up to 64K bytes of
memory assigned to each category. Within an Assembly language program, these categories are called
the code segment, data segment, and stack segment. For this reason, the 8088/86 can only handle a
maximum of 64K bytes of code, 64K bytes of data, and 64K bytes of stack at anygiven time, all though it
has arange of 1M bytes (2% = 1M bytes) of memory.

Logical Address and Physical Address:
There are three types of addresses mentioned with the 8086:
1. The physical address — is the 20-bit address that is actually put on the address pins of the 8086

microprocessor and decoded by memory interfacing circuitry. This is an actual physical location

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

in RAM or ROM within the 1M byte memory range. This address can have a range of 00000H —
FFFFFH for the 8086, and real mode 286, 386, and 486 CPUs.

2. The offset address — is a location within a 64K byte segment range. Hence, an offset address can
range from 0000H — FFFFH.

3. The logical address — consists of a segment value and an offset address.

EFFFF| F Y
FFFFF 55 - 0dK Real mode memory
FFFFF
FO0oo
Stack Seornent
En000 EQ00o W
0000
9FFFF A
0000 . —
E0000 ES— 64K]
20000 1FFFF
Fatra Seament s0000 \
Joon 1FO00 Offset = FODO
0000 FFFF
* BdK-byte
o sagment
60000 DE - o Segment register
50000 10000 < {Fooo]
Trata Seoment. 40000 4
40000
0000 P
- 00000
000 Cnde Seerment. s _ gaK
10000
aoona
20000

Fig: Hlustration of Physical Address, Offset, and Logical Address
Code Segment:
To execute a program, the 8086 fetches the instruction (opcode and operands) from the code
segment. The logical address of an instruction always consists of a CS (code segment) and an IP

(instruction pointer), shown in the following Fig.

s P

L]
L
=
=
C =]
L
-
lad

The physical address for the location of the instruction isgenerated by
o Shifting the CS left by one hex digit and then adding it to the IP. IP contains the offset address.
The resulting 20-bit address is called the physical address.
o To clarify this concept; assume values in CS and IP as shown in the above diagram. The offset
address is contained in IP; in this case it is 95F3H. The logical address is CS: IP, or 2500: 95F3H.
Then the physical address will be 25000 +95F3 = 2E5F3H.

The physical address of an instruction can be calculated as follows:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

1. Start with CS, 2 5 0 0
-~

2. Shift left CS. 2 5 0} 0 D

3. Add IP. + 9 5 F 3

4. Physical address. 2 E 5 F 3

Fig: Calculation of Physical Address
The microprocessor will retrieve the instruction from memory locations starting at 2E5F3. Since IP can
have a minimum value of 0000H and a maximum of FFFFH; the logical address range in this example
is 2500:0000 to 2500: FFFF. This means that the lowest memory location of the code segment will be
25000H (25000+0000) and the highest memory location will be 34FFFH (25000+FFFF).

If CS = 24F6H and IP = 634AH, show (a) the logical address, and (b) the offset address.
Calculate (c) the physical address, (d) the lower range, and (e) the upper range of the
code segment.

Solution:

(a) 24F6:634A (b) 634A (c) ZBZAA (24F60 + 634A)
(d) 24F60 (24F60 + 0000) (&) 34FSF (24F60 + FFEF)

Logical Address vs. Physical Address in the Code Segment:

In the code segment, CS and IP hold the logical address of the instructions to be executed. The
following Assembly language instructions have been assembled (translated into machine code) and
stored in memory. The three columns show the logical address of CS: IP, the machine code stored at

that address, and the corresponding Assembly language code.

LOGICAL ADDRESE MACHINE LANGUAGE ASSEMEBLY LANGUAGE
CS5:1P QFCODE AND OPERAND MMEMONICS AND OFERAND
1132:0100 BO57 MOV AL, 57

1132:0102 B&Eh MOV DH, 86

1132:0104 B272 MOV DL, 72

1132:0106 B9D1 MOV CX, DX

The program above shows that the byte at address 1132:0100 contains BO, which is the opcode for
moving a value into register AL, and address 1132:01101I contains the operand (in this case 57) to be
moved to AL. Therefore, the instruction "MOVAL, 57” has a machine code of B0O57, where BO is the

opcode and 57 is the operand.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

The following are the physical addresses and contents of each location for the above program.

LOosICAL ADDRESS PHYSICAL ADDRESS MACHINE CODE CONTENTS

1132:0100 11420 B0

1132:0101 11421 57

1132:0102 11422 BE

1132:0103 11423 86

1132:0104 11424 B2

1132:0L105 11425 72
Data Segment:

Assume that a program is being written to add 5 bytes of data, such as 25H, 12H, 15H, IFH, and 2BH.
One way to add them is as follows:

MOV AL,00H ;initialize AL
ADD AL,2%5H ;add 25H to AL
ADD AL,1ZH ;add 1ZH to AL
ADD AL,15H ;add 15H to AL
ADD AL,1FH (add 1FH to AL
ADD AL,2BH ;add 2BH Lo AL

In the program above, the data and code are mixed together. The problem with writing the program
this way is that, if the data changes, the code must be searched for every place the data isincluded, and
the data retyped.

The idea to overcome the problem is to set aside an area of memory is strictly for data. In x86
microprocessors, the area of memory set aside for data is called the data segment. Just as the code
segment is associated with CS and IP as its segment register and offset, the data segment uses register
DS and an offset value.

The following demonstrates how data can be stored in the data segment and the program rewritten so
that it can be used for any set of data. Assume that the offset for the data ssgment beginsat 200H.

= 2 ; MOV AL,QD jclear AL

-’ﬁf”?ﬁ"-’ = f’” ADD AL,[0200] ;add the contents of DS:200 te AL
D::UED} - ‘E ADD AL,[02011 ;add the contents of DS:201 to AL
55:90202 = 15 | apy aL,[0202) ;add the contents of DS:202 to AL
ﬁgfg; % ADD AL,[0203] ;add the contents of DS:203 to AL

+B ADD AL.[D204)] ;add the contents of DS5:204 to AL

NOTE:
1. The offset address is enclosed in brackets. The brackets indicate that the operand represents the
address of the data and not the data itself. If the brackets were not included, as in '‘MOV AL,
0200", the CPU would attempt to move 200 into AL instead of the contents of offset address
200.
2. DEBUG assumes that all numbers are in hex (no "H" suffix is required), whereas
MASM/T ASM assumes that they are in decimal and the "H"must be included for hex data.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

This-program will run with any set of data. Changing the data has no effect on the code. Although
this program is an improvement over the preceding one, it can be improved even further.

If the data had to be stored at a different offset address (say 450H), the program would have to
be rewritten. One way to solve this problem would be to use a register to hold the offset address, and
before each ADD, to increment the register to access the next byte.

The 808886 allows only the use of registers BX, Sl, and DI as offset registers for the data
segment In other words, while CS uses only the IP register as an offset, DS uses only BX, DI, and SI
to hold the offset address of the data.

Table: Default Segments and Offset Register Pairs

Segment Offset Special Purpose
CS IP Instruction address
DS SI, DI, BX, an 8- or 16-bit number Data address
SS SP or BP Stack address
ES SlI, DI, BX for string instructions | String destination address

The term pointer is often used for a register holding an offset address. Inthe following example, BX is
used as a pointer.

MOV AL,D ;initialize AL

MOV BX,0200H iBX points to ofifset addr of first byte
aADD AL,[BX] ;add the first byte to AL

INC BX ;increment BX to point to the next byte
ADD AL,[BX] ;add the next byte to AL

INC BX ;increment the peointer

ADD AL,[B¥] sadd the next byte to AL

INC BX ;increment the pointer

ADD AaL,[BX] ;add the last byte to AL

The INC instruction adds 1 to (increments) its operand. "INC BX" achieves the same result as
"ADD BX, 1"

Logical Address and Physical Address in the Data Segment:
The physical address for data is calculated using the same rules as for the code segment. That is, the
physical address of data is calculated by shifting DS left one hex digit and adding the offset value, as

shown in following Examples.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Assume that DS is 5000 and the offset is 1950. Calculate the physical address.
Solution: DS 2 offset

5 0 0 0 : 1 9 5 0

The physical address will be 50000 + 1950 = 51950.

1. Start with DS. 5 0 0 0

2. Shift DS lefi.

3. Add the offset. s 1 9 5 0

4. Physical address. 5 Loy sgto

If DS = 7FA2H and the offsct is 438EH, calculate (a) the physical address, (b) the lower
range, and (c) the upper range of the data segment. Show (d) the logical address.

Solution:
(a) 83DAE' (TFA20 + 438E) (b) 7EA20 (TFA20 + 0000)
(c) 8FAILF (7FA20 + FFFF) (d) 7FA2:438E

Assume that the DS register is 578C. To access a given byte of data at physical
memory location 67F66, does the data segment cover the range where the data resides?
If not, what changes need 1o be made?

Solution:

No, since the range is 578C0 to 678BF, location 67F66 is not included in this range. To
access that byte, DS must be changed so that its range will include that byte.

Little Endian Conversion:
Previous examples used 8bit or 1-byte (16-bits) data. In this case the bytes are stored one after

another in memory. The 16-bit data can be used as follows:

MOV AX, 35F3H ;load 35F3H into AX
MOV [1500] ,AX ;copy the contents of AX to offset 1500

In this case, the low byte goes to the low memory location and the high byte goes to the high memory
location. In the above example, memory location DS: 1500 contains F3H and memory location DS: 1501

contains 35H (DS: 1500 = F3 and DS: 1501 = 35). This is called little endian conversion.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

E: In the big endian method, the high byte goes to the low address, where as in the little endian
method, the high byte goes to the high address and the low byte goes to the low address. All Intel

microprocessors use the little endian conversion.

Assume memory locations with the following contents: DS:6826 = 48 and DS:6827 =
22. Show the contents of register BX in the instruction “MOV BX,[6826]".

Solution:

According to the little endian convention used in all x86 microprocessors, register BL
should contain the value from the low offset address 6826 and register BH the value
from the offset address 6827, giving BL = 48H and BH = 22H.

DS:6826 = 48 BH BL
3 27 =192
DS:6827 = 22)
Extra Segment (ES):

ES is a segment register used as an extra data segment. Its use is essential for string operations.

Memory map of IBM PC:

The 20-bit address of 8088/86 allows a total T
of 1M bytes (1024K bytes) of memory RAM
space with the address range 00000H — -
FFFFFH. Memory map is the process of
allocating the 1M bytes of memory space to
various sections of the PC.
Out of 1IMB — 9FFFFH
v" 640KB from the address 00000H — Video Display ke
9FFFFH were set aside for RAM,; AL BFFEFH
v' the 128KB from A0000H — BFFFFH ROM CO000H
were allocated for video memory; 256K FFFFFH
v" the remaining 256KB from CO000H
— FFFFFH were set aside for ROM. Fig: Memory Allocation in the PC
More about RAM:

In the early 1980s most PCs came with only 64K to 256K bytes of RAM memory, which was
considered more than adequate at the time. Users had to buy memory expansion boards to expand

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

memory up to 640K, if they needed additional memory. The need for expansion depends on the
Windows version being used and the memory needs of the application software being run.

The Windows operating system first allocates the available RAM on the PC for its own use
and then lets the rest be used for applications such as word processors. The complicated task of
managing RAM memory is left to Windows, since the amount of memory used by Windows varies
among its various versions and the memory needs of the application packages vary. For this reason we
do not assign any values for the CS, DS, and SS registers; since such an assignment means
specifying an exact physical address in the range 00000-9FFFFH , and this is beyond the knowledge
of the user.

Another reason is that assigning a physical address might work on a given PC but it might not
work on a PC with a different OS version and RAM size. Inother words, the program would not be
portable toanother PC.

Therefore, memory management is one of the most important functions of the operating system
andshould be lefttoWindows.

Video RAM:
From AOOOOH to BFFFFH is set aside for video. The amount used and the location vary depending on the
video board installed on the PC.

More about ROM:

From CO000H to FFFFFH is set aside for ROM. Not all the memory space in this range is used by the
PC's ROM. Of this, 256K bytes, only the 64K bytes from location FOOOOH — FFFFFH are used by
BIOS (basic input/output system) ROM.

Some of the remaining space is used by various adapter cards (such as the network card), and
the rest is free. In recent years, newer versions of Windows have gained some very powerful
memory management capabilities and can put to good use all the unused memory space beyond 640.

The 640KB memory space from 00000 to 9FFFFH is referred to as conventional memory,
while the 384K bytes from AQO00H to FFFFFH are called the UMB (upper memory block) in

Microsoft literature.

Functions of BIOS ROM:
Since the CPU can only execute programs that are stored in memory, there must be some permanent
(nonvolatile) memory to hold the programs, telling the CPU what to do when the power is turned on.

This collection of programs held by ROM is referred to as BIOS in the PC literature.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

BIOS, which stands for basic input-output system, contains programs to test RAM and other

components connected to the CPU. It also contains programs that allow Windows to communicate with

peripheral devicessuchasthekeyboard, video, printer, and disk.

It is the function of BIOS to test all the devices connected to the PC when the computer is turned

on and to report any errors. For example, if the keyboard is disconnected from the PC before the

computer is turned on,BIOS will report an error on the screen, indicating that condition.

After testing and setting up the peripherals; BIOS will load Windows from disk into RAM and

hand overcontrol of the PC toWindows. Windows always controlsthe PC onceit isloaded.

THE STACK:
What is Stack, and Why is it Needed?

@)

There must be some place for the CPU to store information safely and temporary. The stack is a
section of read/write memory (RAM) used by the CPU to store information temporarily.

The CPU needs this storage area since there are only a limited number of registers.

The disadvantage of the stack is its access time — since the stack is in RAM, it takes much longer
to access compared to the access time of registers. Note that, the registers are inside the CPU and
RAM is outside.

How the Stack are Accessed?

O

O

If the stack isasection of RAM,there must be registers inside the CPU to point to it.

The two main registers used to access the stack are the SS (stack segment) register and the SP (stack
pointer) register.

These registers must be loaded before any instructions accessing the stack are used.

Every register inside the x86 (except segment registers and SP) can be stored in the stack and
brought back intothe CPU from the stack memory.

The storing of a CPU register in the stack is called a push, and loading the contents of the stack into
the CPU register is called a pop. In other words, a register is pushed onto the stack to store its
contents and popped off the stack to retrieve it.

The job of the SP is very critical when push and pop are performed. In the x86, the stack pointer
register (SP) points at the current memory location used for the top of the stack and as data is
pushed onto the stack it is decremented. It is incremented as data is popped off the stack into the
CPU.

When an instruction pushes or pops a general-purpose register, it must be the entire 16-bit register.
In other words, one must code "PUSH AX *; there are no instructions such as "PUSH AL" or
"PUSH AH".

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o The reason that the SP is decremented after the push is to make sure that the stack is growing
downward from upper addresses to lower addresses. This is the opposite of the IP (instruction
pointer). As was seen in the preceding section, the IP points to the next instruction to be executed

and isincremented as each instruction isexecuted.

Pushing onto the Stack:
As each PUSH is executed, the contents of the registers are saved on the stack and SP is decremented by

2. For every byte of data saved on stack, SP is decremented.

Assuming that SP = 1236, AX = 24B6, DI = 85C2, and DX = 5F93, show the contents of the
stack as each of the following instructions is executed.
PUSH AX
PUSH DI
PUSH DX
Solution:
$S:1230 : 93
SS:1231 SF
SS:1232 C2 C2
$8:1233 85 85
SS:1234 B6 B6 B6
SS:1235 ’ 24 24 24
—g
$8:1236
Start: After After After
SP=123 PUSHAX PUSH DI PUSH DX
SP=1234 SP=1232 SP=1230

Notice, how the data is stored on the stack. In the x86, the lower byte is always stored in the memory

location with the lower address.

Popping the Stack:
With every POP, the top 2 bytes of the stack are copied to the register specified by the instruction and the
stack pointer in incremented twice. Although the data actually remains in memory, it is not accessible

since the stack pointer is beyond that point.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Assuming that the stack is as shown below, and SP ~ 18FA, show the contents of the stack and
registers as each of the following instructions is executed:
POP CX
POP DX ——
POP BX SS:18FA 23
Solution: SRISER 14 l
SS:I8FC 6B 6B
SS:18FD 2C 2C
SS:18FE 91 9_l» 91
SS:18FF F6 F6 F6
§S:1900
Start: After After After
SP = 18FA POP CX POPDX POP BX
SP=I8FC SP=18FE SP = 1900
CX = 1423 DX =2C6B BX = F691

Logical

o

Address vs. Physical Address for the Stack:

The exact physical location of the stack depends on the value of the SS (stack segment) register
and SP (stack pointer). To compute the physical address for stack, shift left SS and then add
offset SP register.

Memory management is the responsibility of the operating system. Hence, the Windows
operating system will assign the values for the SP and SS.

The top of the stack is the last stack location occupied. BP is another register that can be used as
an offset into the stack.

Table: Default Segments and Offset Register Pairs

Segment Offset Special Purpose
CS IP Instruction address
DS SI, DI, BX, an 8- or 16-bit number Data address
SS SP or BP Stack address
ES S, DI, BX for string instructions | String destination address

If SS = 3500H and the SP is FFFEH,

(a) Calculate the physical address of the stack. (b) Calculate the lower range.
(c) Calculate the upper range of the stack segment. (d) Show the stack’s logical address.
Solution:

(a) 44FFE (35000 + FFFE) (b) 35000 (35000 + 0000)
(c) 44FFF (35000 + FFFF) (d) 3500:FFFE

NOTE:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

1. A single physical address may belong to many different logical addresses. This shows the
dynamic behavior of the segment and offset concept in the 8086 CPU.

L :] .i “:E”l Eb:!i]:i] _ddxess [hi“]
1C00:5020 15020
1500:0020 15020
1502:00090 15020
1400:1029 15020
1302:2000 15020

2. When adding the offset to the shifted segment register; if an address beyond the maximum
allowed range (FFFFFH) is resulted, then wrap-around will occur.

What is the range of physical addresses if CS = FF59? 00000

Solution: OF58F

The low range is FF590 (FF590 + 0000).
The range goes to FFFFF and wraps around, FES90

from 00000 to OF58F (FF390 + FFFF = OF38F),
as shown in the illustration. FFFFF

3. In calculating the physical address, it is possible that two segments can overlap, as illustrated in
the following Fig.

Nonoverlapping Overlapping
Segments - Segments
25000
CS = 2500
30000
J4FFF
CS = 3000
— 3FFFF
40500
St DS = 4050
B 50000
DS =6321 - S04FF
1320F R
5FFFF
82100
$S =8210
920FF

Fig: Non-overlapping vs. Overlapping Segments
THE FLAG REGISTER:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o The flag register is a 16-bit register sometimes referred to as the status register. Although the
register is 16 bits wide, only some of the bits are used. The rest are either undefined or reserved
by Intel.

o Six of the flags are called conditional flags, meaning that they indicate some condition that
resulted after an instruction was executed. These six are CF, PF, AF, ZF, SF, and OF.

o The three remaining flags are sometimes called control flags, since they are used to control the

operation of instructions before they are executed.

I3 <3 1% 3215 10 9 8 7 6: -5 4 23 L F O
[R[RIR]R]OF[DFIIFIFlSF]ZFllflAF[U]PF'U[(‘F]

R = reserved SF = sign flag

U = undefined ZF = zero flag

OF = overflow flag AF = auxiliary carry flag .
DF = direction flag PF = parity flag

IF = interrupt flag CF = carry flag

TF = trap flag

BT 15 14 13 12 11 10 9 &8 7 6 5 4 3 2 1 0
OF | DF | IF | TF | SF | zF AF PF CF

Fig: Flag Register
Key to remember: in One Day International Tendulkar Scored Zero, All People Cried.

Bitsof the Hag Register:

CF, the Carry Flag — This flag is set whenever there is a carry out, either from d7 after an 8bit
operation or from d15after a 16-bitdata operation.

PF, the Parity Flag — After certain operations, the parity of the result's low-order byte is checked.
If the byte has an even number of 1s, the parity flagis setto 1; otherwise, it iscleared.

AF, Auxiliary Carry Flag — If there is a carry from d3 to d4 of an operation, this bit is set; otherwise,
it is cleared (set equal to zero). This flag is used by the instructions that perform BCD (binary
coded decimal) arithmetic.

ZF, the Zero Flag — Trezero flag is set to 1 if the result of arithmetic or logical operation is zero;
otherwise, itiscleared.

SF, the Sign Flag — Binary representation of signed numbers uses the most significant bit as the sign
bit. After arithmetic or logic operations, the status of this sign bit is copied into the SF, thereby
indicating thesign of the result.

TF, the Trap Flag — When this flag is set, it allows the program to single-step, meaning to execute one

instruction at a time. Single-stepping is used for debugging purposes.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

IE, Interrupt Enable Flag — This bit is set or cleared to enable or disable only the external
maskable interrupt requests.

DF, the Direction Flag — This bit is used to control the direction of string operations. If D = 1, the
registers are automatically decremented; if D = 0, the registers are automatically incremented. The state of
the D flag bit is controlled by STD (set D flag) and CLD (clear D flag) instructions.

OF, the Overflow Flag — This flag is set whenever the result of a signed number operation is too
large, causing the high-order bit to overflow into the sign bit. In general, the carry flag is used to
detect errors in unsigned arithmetic operations. The overflow flag is only used to detect errors in signed

arithmetic operations.

Show how the flag register is affected by the addition of 38H and 2FH.
Solution:
MOV BH.38H :BH= 38H
-ADD BH.2FH ;add 2F to BH, now BH=6TH
38 0011 1000
+ 2F olo 1111
67 0110 0111
CF = 0 since there is no carry beyond d7 ZF = 0 since the result is not zero
AF = | since there is a carry from d3 1o d4 SF = 0 since d7 of the result is zero
PF = 0 since there is an odd number of 15 in the result

Flag Register and ADD Instruction:
The flag bits affected by the ADD instruction are CF, PF, AF, ZF, SF, and OF. The following

examples are given to understand how each of these flag bits is affected. Please note that, MOV

instructions have no effect on the flag.

Show how the flag register is affected by

MOV AL, 9CH sAL=9CH

MOV DH, 64H ; DH-64H

ATCD AL, DH snow AL=0
Solution: :

oC 1001 1100
+ 64 0110 0100

00 0000 0000
CF = | since there is a carry beyond d7 ZF = | since the result is zero
AF = | since there is a carry from d2 to d4 SF = 0 since d7 of the result is zero
PF = 1 since there is an even number of |s in the result

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Show how the flag register is affected by

MOV A¥,34F5H ;A¥X= 34F5H
ADD AX, 95EBH inow AX= CAE(H
Solution;
34F5 0011 0100 1111 0101
+ 95EB 1001 0101 1110 1011
CAEOQ 1100 1010 1110 0000
CF = 0 since there is no carry beyvond d13 ZF = 0 since the result is not zero
AF = | since there is a carry from d3 to d4 5F = | since dI5 of the result is one

PF = (since there is an odd number of 1s in the lower byte

Show how the flag register is affected by
MOV BX,AAAAH ;BX= AARARH
ADD BX,5556H ;now BX= 0000H

Solution:
AAAA 1010 1010 1010 1010
+ 5556 0101 0101 0101 0110
0000 0000 0000 0000 0000
CF = | since there is a carry beyond d153 ZF = | since the result is zero
AF = | since there is a carry from d3 to d4 SF =0 since d| 5 of the result is zero

PF = 1 since there is an even number of 1s in the lower byte

Show how the flag register is affected by
MOV RAX, 94C2H ;AX=94C2H
MOV BX,323EH ; BX=323EH

ADD AX,BX ;now AX=CT00H
MOV DX, AX :now DX=C700H
MOV CX,DX ;now CX=C700H
Solution:
94C2 1001 D100 1100 0010
% 323E 0011 0016 0011 1110
C700 1100 0111 Q000 0000
After the ADD operation, the following are the flag bits:
CF = 0 since there is no carry beyond d15 ZF = 0 since the result is not zero
AF = | since there is a carry from d3 to d4 SF = 1 since d15 of the result is 1

PF = 1 since there is an even number of 1s in the lower byte

Use of Zero Flag for Looping:

v One of the most widely used applications of the flag register is the use of the zero flag to
implement program loops.

v' The term loop refers to a set of instructions that is repeated a number of times. For
example, to add 5 bytes of data, a counter can be used to keep track of how many times the
loop needs to be repeated. Each time the addition is performed the counter is decremented
and the zero flag is checked. When the counter becomes zero, the zero flag is set (ZF =

1) and the loop is stopped.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v~ The following example shows the implementation of the looping concept in the program,

which adds 5 bytes of data. Register CX is used to hold the counter and BX is the offset

pointer (Sl or DI could have been used instead). AL is initialized before the start of the loop.

v In each iteration; ZF is checked by the JNZ instruction. JNZ stands for "Jump Not Zero"

meaning that, if ZF =0, jump to a new address. If ZF = 1, the jump is not performed and the

instruction below the jump will be executed.

v" Notice that the JNZ instruction must come immediately after the instruction that decrements
CX since JNZ needs to check the effect of "DEC CX" on ZF. If any other instruction(s) were

placed between them, that instruction(s) might affect the zero flag.

MOV CX,05 :CX holds the lgop count
MOV BX,0200H ;BX hclds the offset data address
MOV AL,00 rinitialize AL
ADD 1P: ADD AL,{ BX] ;add the next byte to AL
INC BX iincrement the data pointer
DEC CX ;decrement the loop counter
JNZ ADD _LP ;jump to next iteration 1if counter not zero

x86 ADDRESSING MODES:

The CPU can access operands (data) in various ways, called addressing modes. The number of

addressing modes is determined when the microprocessor is designed and cannot be changed. The

x86 provides a total of seven distinct addressing modes:

[1] Register [2] Immediate

[5] Based Relative [6] Indexed Relative

[3] Direct
[7] Based Indexed Relative

[4] Register Indirect

Table: Summary of the x86 Addressing Modes

Addressing Mode Operand Default Segment
Register reg none
Immediate data none
Direct |ofiset] DS
Register indirect [BX] DS
[SI] DS
[DI] DS
Based relative [BX]+disp DS
[BP]+disp SS
Indexed relative [DI]+disp DS
[SI]+disp §S) DS
Based indexed relative [BX][SI]+disp DS
[BX][DI]+disp DS
[BP][SI}+disp SS
[BP][DI]+disp SS

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

1. Register AddressingMode
The register addressing mode involves the use of registers to hold the data to be manipulated.
Memory is not accessed when this addressing mode is executed;therefore, it isrelatively fast.

MOV BM,DX ;ecopy the contentas of DX into BY
MOV ES,A¥ ;cepy the contents of AX into ES

ADD AL,BH ;add the contents of BH to contents of AL

2. Immediate Addressing Mode
In immediate addressing mode (as the name implies), when the instruction is assembled, the operand
comes immediately after the opcode. For this reason, this addressing mode executes quickly. In this
addressing mode, the source operand is a constant. Immediate addressing mode can be used to load
information into any of the registers except the segment registers and flag registers.

MOV AX,2550H smove 2550H into AX
MOV CX,625 ;load the decimal value €25 into CX
MOV BL, 40H ;load 40H inte BL

3. Direct Addressing Mode
In the direct addressing mode, the data is in some memory location(s) and the address of the data in
memory comes immediately after the instruction. Note that, in immediate addressing mode, the operand
itself is provided with the instruction; whereas in direct addressing mode, the address of the operand is
provided with the instruction. This address is the offset address and one can calculate the physical address
by shifting left the DS register and adding it to the offset as follows:

PA = { DS } : { DirectAddress}
M3 DL,[2400] smove contents of DS:2400H into DL

Notice the bracket around the address. In the absence of this bracket, executing the command will give an

error since it is interpreted to move the value 2400 (16-bit data) into register DL, an 8-bit register.

Find the physical address of the memory location and its contents after the execution of the fol-
lowing, assuming that DS = 1512H.

MOV AL, 99H

MOV [3518] ,AL

Solution:

First AL is initialized to 99H, then in line two, the contents of AL are moved to logical address
DS:3518, which is 1512:3518, Shifting DS left and adding it to the offset gives the physical
address of 128638H (15120H + 3518H = 18638H). That means after the execution of the second
instruction, the memory location with address 18638H will contain the value 99H.

Before After

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Eg: MOV BX, [5634] BX | ABCDH | | 8645H |
DS:5634H 45H LS byte
DS:5635H 86H MS byte
Before After
Eg: MOV CL, [5634] CL | F2H | [45H
DS:5634H 45H
DS:5635H 86H

4. Register Indirect Addressing Mode
In the register indirect addressing mode, the address of the memory location where the operand resides is

held by a register. The registers used for this purpose are Sl, DI, and BX. If these three registers are used
as pointers, that is, if they hold the offset of the memory location, they must be combined with DS in
order to generate the 20-bit physical address.

BX

PA:{ DS } : < Sl
Dl

MOV AL,[BX] ;moves into AL the contents of the memory
jlocation pointed to by DS5:BX.
Notice that BX is in brackets. In the absence of brackets, the code is interpreted as an instruction moving
the contents of register BX to AL (which gives an error because source and destination do not match);
instead of the contents of the memory location whose offset address is in BX. The physical address is
calculated by shifting DS left one hex position and adding BX to it. The same rules apply when using

register Sl or DI.

MOV CL,[51] smove contents of D5:51 into CL
MOV [DI] . AH rmove contents of AH into DS:DI

Assume that DS = 1120, 81 = 2498, and AX = 17FE. Show the contents of memory locations
after the execution of "Mov [51] ,AX"

Solution: .

The contents of AX are moved into memory locations with logical address DS:SI and DS:SI +
1; therefore, the physical address starts at DS (shifted left) + SI = 13698. According to the little
endian convention, low address 13698H contains FE, the low byte, and high address 13699H
will contain 17, the high byte.

5. Based Relative Addressing Mode
In the based relative addressing mode, base registers BX and BP, as well as a displacement value are used
to calculate (what is called) the effective address. The default segments used for the calculation of the
physical address (PA) are DS for BX and SS for BP.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

PA=| DS BX
or : or + 8 or 16 bit displacement
SS BP
MOV CX,[BX] +10 smove DS:BX+10 and DS:BX+410+41 into CX
;PA = DS (shifted left) + BX + 10
Alternative codings are “MOV CX, [BX+10]” or “MOV CX, 10/BX] . In the case of BP register —
MOV AL,[BE] +5 ;PA = SS (shifted left) + BP + 5

Alternative codings are “MOV AL, [BP+5]” or “MOV AL, 5[/BP] .
o In “MOV AL, [BP+5]”, BP+5 is called the effective address; since the 5 byte from the
beginning of the offset BP is moved to register AL. Similarly, in “MOV CX, [BX+10]”, BX+10
is called the effective address.

6. Indexed Relative Addressing Mode
The indexed relative addressing mode works the same as the based relative addressing mode, except that

registers DI and Sl hold the offset address.

PA=| DS Sl
or : or + 8 or 16 bit displacement
SS DI
MOV DX,[SI]+5 ;PR = DS (shifted left) + SI + 5

MoV CL,[DI]+20 ;BPA = DS (shifted left) + DI + 20

Assume that DS = 4500, 88 = 2000, BX = 2100, SI = 1486, DI = 8500, BP = 7814, and AX =
2512. All values are in hex. Show the exact physical memory location where AX is stored in
cach of the following. All values are in hex.

{a) MOV[BX] +20, AX (b) MOV SI] +10,AX

(c) MOV[DI] +4,AX (d) MOV EF] +12,AX

Solution:

In each case PA = segment register (shifted left) + offset register + displacement.
(a) DS:BX+20 location 47120 = (12) and 47121 = (25)

(b) DS:S[+10 location 46496 = (12) and 46497 = (25)

(c) DS:DI+4 location 4D504 = (12) and 4D505 =(25)

(d) SS:BP+12 location 27826 = (12) and 27827 = (25)

7. Based Indexed Addressing Mode
By combining based and indexed addressing modes, a new addressing mode is derived called the based

indexed addressing mode. In this mode, one base register and one index register are used.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

PA=| DS BX Si
or . < or + or + 8 or 16bit displacement
SS BP Dl
MOV CL,[BX][DI]+8 ;PA = DS {shifted left) + BX + DI + 8
MOV CH,[BXI[511+20 :PA = D5 (shifted left) + BX + SI + 20
MOV AH,[BP][DI) +12 ;PA = S5 (shifted left) + BP + DI + 12
MOV AH,[BPI[S1]+2% ;PA = S5 (shifted left) + BP + SI + 29

The coding of the instructions above can vary. The last example can also be written as —

MOV AH,[BP+SI+29]
MOV AH,[SI+BP+29] ;the register order deoes not matter
Mote that "Mov A¥,[STI[DI] +displacement” is illegal
Segment Overrides:
The following Table summarizes the offset registers that can be used with the four segment registers.

Table: Default Segments and Offset Register Pairs

Segment Offset Special Purpose
CS IP Instruction address
DS SlI, DI, BX, an 8- or 16-bit number Data address
SS SP or BP Stack address
ES SI, DI, BX for string instructions | String destination address

The x86 CPU allows the program to override the default segment and use any segment register. To do
that, one needs to specify the segment in the code.

For example, in "MOV AL, [BX]", the physical address of the operand to be moved into AL is
DS: BX. To override that default, specify the desired segment in the instruction as "MOV AL, ES: [BX]
"". Now the address of the operand being moved to AL is ES: BX instead of DS: BX.
The following Table shows more examples of segment overrides shown next to the default address in the

absence of the override.
Table: Sample Segment Overrides

Instruction Serment Used Default Segmenl
MOV AX, CS:[BP] CS:BP S5:BP

MOV DX, S5:[SI] 58:51 D&:S1

MOV AX, DS [BFP] D5:BP 55.BP

MOV CX ES:[BX]+12 ES:BX+12 DS:BX+12
MOV S5 [BX][DI]+32,AX S5:.BX+DI+-32 DS:BX+DI+32

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

ASSEMBLY LANGUAGE PROGRAMMING
DIRECTIVES AND A SIMPLE PROGRAM:
A given Assembly language program (ALP) is a series of statements. There are two types of statements in
x86 ALP:

1. Assembly language instructions — instructions that are given to the microprocessor to do
the specific task. The Assembly language instruction can be translated into object code or
machine language. (E.g.: MOV, ADD, etc.)

2. Pseudo instructions/Directives — instructions that give directions to the assembler about
how it should translate the Assembly language instructions into machine code. These
instructions are not translated into machine code. They are used by the assembler to
organize the program as well as other output files. (E.g.: DB, DW, ASSUME, etc.)

An Assembly language instruction consists of four fields:

[label:] mnemonic [operands] [;comment]

Brackets indicate that the field is optional; do not type the brackets.

E.g.
Opcode (Mnemonic) Source operand (register
Relative addressing)
AGAIN: ADD AX, COUNT [BX] ; ADD ELEMENT OF COUNT TO AX.
Label—provides a Destination operand Comment
Means of branching (register addressing)

To this instruction

1. The label field allows the program to refer to a line of code by name. The label field cannot exceed 31
characters. Labels for directives do not need to end with a colon. A label must end with a colon when it
refers to an opcode generating instruction; the colon indicates to the assembler that this refers to code
within this code segment.

2, 3. The Assembly language mnemonic (instruction) and operand(s) fields together perform the real work
of the program and accomplish the tasks for which the program was written. In Assembly language
statements such as ADD AL, BL or MOV AX, 6764; ADD and MOV are mnemonic opcode, and “AL, BL”
and “AX, 6764 are the operands.

4. The comment filed begins with a ;. The assembler ignores comments. The comments are optional,

but are highly recommended for someone to read and understand the program.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Model Definition:
The first statement in an Assembly language program is the MODEL directive. This directive selects the
size of the memory model. Among the options for the memory model are SMALL, MEDIUM,
COMPACT, and LARGE.

*MODEL SMALL ; this directive defines the model as small
SMALL is one of the most widely used memory models for Assembly language programs This model
uses a maximum of 64K bytes of memory for code and another 64KB for data. The other models are

defined as follows:

.MODEL MEDIUM sthe data must fit into 64K bytes

;but the code can exceed 64K bytes of memory
.MODEL COMPACT ;the data can exceed 64K bytes

;but the code cannot exceed 64K bytes

.MODEL LARGE ;both data and code can exceed 64K

;but no single set of data should exceed 64K
.MODEL HUGE ;both code and data can exceed 64K

:data items (such as arrays) can exceed 64K
.MODEL TINY sused with COM files in which data and code

smust fit into €4K bytes
Segment Definition:
The x86 CPU has four segment registers: CS (code segment), DS (data segment), SS (stack segment), and
ES (extra segment). Every line of an Assembly language program must correspond to one of these
segments. The simplified segment definition format uses three simple directives: ".CODE", ".DATA",
and ".STACK", which correspond to the CS, DS, and SS registers, respectively.

Segments of a Program:
Although one can write an Assembly language program that uses only one segment, normally a program

consists of at least three segments: the stack segment, the data segment, and the code segment.

. 3TACK imarks the beginning cf the stack segment
.DATA ;jmarks the beginning cof the data segment
. CODE ;jmarks the beginning cof the code segment

Assembly language statements are grouped into segments in order to be recognized by the assembler and
consequently by the CPU.

v The stack segment defines storage for the stack

v’ The data segment defines the data that the program will use

v The code segment contains the Assembly language instructions.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

;THE FORM OF AN ASSEMBLY LANGUAGE PROGRAM
;NOTE: USING SIMPLIFIED SEGMENT DEIFINITION
.MODEL SMALL
.STACE 64
.DATA
DATAl DB 52H
DATAZ DB 29H
SUM DB ?
.CODE
MAIN PROC FAR ithis is the program entry pcint
MOV AX,RDATA ;load the data segment address
MOV D5,AX ;assign value to DS
MOV AL,DATA] ,get the first operand
MOV BL,DATA2 ;get the second operand
ADD AL,BL radd the cperands
MOV SUM, AL ;store the result in location SUM
MOV AH,4CH iget up tec return to OS
INT 21H H
MAIN ENDP
END MAIN ;this is the program exit point

Fig: Simple Assembly Language Program

*MODEL SMALL - directive defines a model that uses a maximum of 64KB of memory for code and

another 64KB of memory for data.

*STACK 64 — directive reserves 64 bytes of memory for the stack.

*DATA — directive marks the beginning of the data segment.

v

The data segment defines three data items: DATAL, DATAZ2, and SUM. Each is defined as DB
(define byte). The DB directive is used by the assembler to allocate memory in byte-sized chunks.
Memory can be allocated in different sizes; such a 2 bytes, which has the directive DW (define
word).

The data items defined in the data segment can be accessed in the code segment by their labels.
DATAL and DATAZ are given initial vales in the data section; and SUM in not given an initial

value, but storage is set aside for it.

*CODE - directive marks the beginning of the code segment.

v
v

v
v
v

MAIN - is the name (label) of procedure.

PROC - directive defines a procedure. A procedure is a group of instructions designed to
accomplish a specific function.

A PROC directive may have the option FAR or NEAR, which are the program entry point(s).
ENDP — directive defines the end of the procedure.

PROC and ENDP statements must have the same label (here it is MAIN).

It is the job of the OS (operating system) to assign exact values for the segment registers. When program

begins executing, the OS allocates some of RAM available to the segment registers. This is done as

follows:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

MOV AX,@DATA ;DATA refers to the start of the data segment
MOV DS, AX

No segment register can be loaded directly. Hence, two lines are required, as shown above.
END - directive ends the entire program by indicating to OS that the entry point MAIN has ended. The
label for the entry point (MAIN, here) and the END must match.

+THE FORM OF AN ASSEMBLY LANGUAGE PROGRAM
; USING SIMPLIFIED SEGMENT DEFINITION
.MODEL SMALL
.STACK 64
.DATA
;place data definitions here

.
’

.CODE

MAIN PROC FAR ;this is the program entry point
MOV AX,@DATA ;load the data segment address
MOV DS, AX ;assiga value to DS

‘
;place code here

’

MOV AH,4CH iset up to
INT 214 ;return to OS
MAIN ENDP
END MAIN ;this is the program exit point

ASSEMBLE, LINK AND RUN A PROGRAM:
Once the Assembly language program has been written; there are three steps to create an executable

Assembly language program:

Step Input Program Output
1. Edit the program Keyboard Editor myfile.asm
2. Assemble the program myfile.asm | MASM or TASM | myfile.obj
3. Link the program myfile.obj | LINK or TLINK | myfile.exe

o Text editors are used to create and/or edit the program. These editors must be able to produce an
ASCII file.

o The source file must end in “.asm” for these assemblers. This “.asm” file will be assembled by an
assembler (such MASM/TASM).

+ The MASM and LINK programs are the assembler and linker programs for Microsoft’s
MASM assembler. In Borland’s TASM assembler, TASM and TLINK programs are the
assembler and linker programs.

o The assembler will produce an object file (.obj) and a list file (.Ist), along with other files that
may be useful to the programmer. All syntax errors produced by the assembler must be corrected
in the object file.

* The assembler creates the opcodes, operands, and offset addresses under the “.obj” file.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

The list file (.Ist) lists all the opcodes and the offset addresses, as well as errors that the
assembler detected. This file can be displayed on the monitor by the command: C>type
myfile.lst | more.

The cross-reference file (.crf) provides an alphabetical list of all symbols and tables used

in the program as well as program line numbers in which they are referenced.

o The object file (.obj) is the input for the LINK program, which produces the executable program

(.exe). The LINK program sets up the file, so that, it can be loaded by the OS and executed.

o We use DEBUG to execute the program and analyze the results.

When the program is working successfully, it can be run at the OS level by typing the
command: C>myfile. When the program name is typed in at the OS level, the OS loads
the program in memory. This is referred as mapping; which means that the program is
mapped into the physical memory of the PC.

When there are many segments for code or data, there is a need to see where each is
located and how many bytes are used by each. The “.map” file gives the name of each

segment, where it starts, where it stops, and its size in bytes.

C>MASM C:MYFILE.ASM <enter>

Microsoft (R) Macro Assembler Version 50
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [C:MYFILE.OBJ]: C: <enter>

EDITOR Source listing [HUL.L3T] :C:MYFILE.ILST <enter>
PROGRAM

Cross-reference | NUL.CRF] : <enter>

47962 + 413345 Bytes symbol space free
myfile.asm

0 Warning Errors
0 Severe Errors

ASSEMBLER
PROGRAM

C>LINK C:MYFILE.OBJ <enter>

myfilelst q—J

LF"‘}'f"[‘-'-"f Microsoft (R) Overlay Linker Version 3.64
Copyright (C) Microsoft Corp 1983-1988. ALl rights reserved.

myfile.ob) 'S other ob). Mes Run File [C:MYFILE.EXE] :C:<enter>
List File [NUL.MAP] : <enter>
LINKER Libraries [.LIB] :<enter>
PROGRAM LINK : warning L4021l: no stack segment
C>DEBUG C:MYFILE.EXE <enter>
l s myfiemap U CS:0 1 <enter>
myfile.exe 1064:0000 BBEALD MOV AX, 1066

-D 1066:0 F <enter>

1066:0000 52 2% 00 00 00 DO 0O OD-0d QO OO 0O 00 00 00 00 R)
-G <enter>

Frogram terminated normally

-D 1066:0 F <enter>

1066:0000 52 23 7B 00 00 00 0D O0-00 OO0 OO0 00 00 00 00 00 Ry-.
-Q <enter>

[ne-3

Fig: Steps to Create a Program & Creating and Running the .exe File

PAGE and TITLE Directives:
The PAGE and the TITLE are two directives used make the “.Ist” file more readable.

FAGE [lines] ,[columns]

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

PAGE directive tells the printer how the list should be printed. In the default mode, the output will

have 66 lines per page and with a maximum of 80 characters per line. The default settings can be altered

to 60 and 132 as follows:
BRGE 60,132

When the list is printed in more than one page, the assembler can be instructed to print the title of the
program on the top of each page by using the TITLE directive. The text after the TITLE pseudo-

instruction cannot be more than 60 ASCII characters.

MORE SAMPLE PROGRAMS:
The following Fig shows the program and the list file generated when the program was assembled. After
the program was assembled and linked, DEBUG was used to dump the code segment to see what value is

assigned to the OS register. Remember that the value you get could be different for "MOV AX, Xxxx" as

well as for CS in the program examples.

Write, run, and analyze a program that adds 5 bytes of data and saves the result. The data should be
the following hex numbers: 25, 12, 15, 1F, and 2B.

PAGE 60,132

TITLE PROG2-1 |EXE) PURPOSE: ADDS 5 BYTES OF DATA
.MODEL SMALL
.STACK 64
.DATA

DATA IN DB 25H,12H, 158, 1F4, 2EH

S DB ?

’
.QODE

MAIN PROC FAR
MOV AX,QDATA
MOV DS,AX
MOV CcX,05 ;set up loop ccunter CX=5
MOV BX,0FFSET DATA IN ;set up data pcinter BX

¥ MOV AL,0Q ;initialize AL

AGAIN: ADD AL,[BX] ;add next data item to AL
INC BX ;make BX point to next data item
DEC CX ;decrement loop counter
JNZ AGAIN ;jump Lf loop COUNter not zero
MOV SUM, AL ;locad result into sum
MOV AH,4CH ;set up return
INT 21H ;return to OS

MAIN ENDP
END MAIN

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

After the program was assembled and linked, it was run using DEBUG:
Crdebug progZ-l.exe

-u es:0 19

1067:0000 B366LO MOV a¥, 10640

1067:0002 BEDH MOV DS, AX

1067:0005 B%0500 MOV C¥,0005

1067:0008 BBOOQ0OD MOV B, 0000

1067:0000 0207 ADD AL,[BX]

1067 ::000F 43 INC BX

1067:0010 49 DEC Cx

10670013 A20500 MOV | 0005] ,AL

1067:0016 B44C MOV AH,4C

1067:0018 C0Z21 INT 21

~d 1066:0 £

1066:0000 25 12 15 1F 2B 00 00 OO-00 00 OO0 00 00 00 00 00 %...4.....000uu.
=g

Program terminated normally

-d 1086:0 £

10660000 25 12 15 1F 2B 96 00 QO0=040 OO0 OO0 OO0 OO0 0O 00 OO0 %. .. 4.coo..
-

faed

Fig: Program 2-1
= INC destination — adds 1 to the specified destination. The destination may be a register or
memory location.
Flags affected: AF, OF, PF, SF, and ZF. The CF is not affected.
Egl: INC AL : Add one to the contents of AL.
Eg2: INC BX : Add one to the contents of BX.

= DEC destination — subtract 1 from the specified destination. The destination may be a register or
a memory location.
Flags affected: AF, OF, PF, SF, and ZF. The CF is not affected.

Eg: DEC AL : Subtract 1 from the contents of AL.

= JNZ label — jump if not zero; if ZF = 0, jumps to the label specified. Checks for zero flag.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

[Microsoft (R) Macro Assembler Version 5.10 213/7

25 Source Lines
25 Total Lines
25 Symbols

PROG 1 (EXE) PURPOSE: ADDS 5 BYTES OF DATA Page I-1
1 PAGE 60,132
2 TITLE PROG2-1 (EXE) PURPOSE: ADDS 5 BYTES OF DATA
3 MODEL SMALL
4 STACK 64
5 2
6 DATA
70000 2512 151F 2B DATA_IN DB 25H,12H,15H,1FH,2BH
8 0005 00 SUM DB ?
9 ;
10 LCODE
11 0000 MAIN PROC FAR
120000 B8 -—-R MOV AX,@DATA
130003 8E D8 MOV DS,AX
14 0005 B9 0005 MOV CX,05 :set up loop counter CX=5
150008 BB 0000 R MOV BX.OFFSET DATA_IN :set up data pointer BX
16 000B B0 00 MOV AL,0 .initialize AL
17000D 0207 AGAIN: ADDAL,[BX] :add next data item to AL
18 000F 43 INC BX :make BX point to next data item
190010 49 DEC (X :decrement loop counter
200011 75 FA INZ AGAIN Jjump if loop counter not zero
210013 A20005 R MOV SUMAL ;load result into sum
220016 B44C MOV AH.4CH :set up return
230018 CD 21 INT 2IH ;refurn to OS
24 001A MAIN ENDP
25 END MAIN
Microsoft (R} Macro Assembler Version 5 10 20137
PROG2-1 (EXE) PURPOSE: ADDS 5 BYTES OF DATA Symbols-1
Segments and Groups:
Naome Length Align Combine Class
DGROUP.........ccnt GROUP
DATA 0006 WORD PUBLIC'DATA
g i e 0040 PARA STACK 'STACK'
TEXT . . 001A WORD PUBLIC'CODE'
Symbols
Name Type Valee Attr
AGAIN L NEAROOOD TEXT
DATA IN LBYTEMOOD DATA
PRI oo omnmarrmsns F PROCODO0 TEXT Length = 001A
BUM -ooumsnme L BYTEODDS — DATA
ACODE i 0w TEXT _TEXT
ODESIZE TEXT 0
B} o O B TR R e LA TEXT 0101h
ATASIZE TEXT 0
@FILENAME TEXT prog2 1
@VERSION TEXT 510

45756 + 410160 Bytes symbol space free 0 Warning Errors 0§ Severe Erors

Fig: MASM List for Program 2-1

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

SET: It is an operator which tells the assembler to determine the offset or displacement of a named
data item (variable) from the start of the segment.
Eg: MOV AX, OFFSET MES1 ; Loads the offset of variable MES1 in AX register.

Write and run a program that adds four words of data and saves the result. The values will be 234DH,
IDE6H, 3BC7H, and 566AH. Use DEBUG to verify the sum is D364.

TITLE PROG2-2 (EXE) PURPOSE: ADDS 4 WORDS OF DATA
PAGE 60,132
.MODEL SMALL

.STACK &4
.DATA :

DATA_IN DW 234DH, 1DE€H, 3BCT7H, 566AK
ORG 10H

SUM DW ?
.CODE

MAIN PROC FAR
MOV AX,@DATA
MOV DS, AX
MOV C¥,04 jsct up loop counter CX=4
MOV DI,OFFSET DATA IN ;set up data pointer DI
MOV BX,00 ;initiallize BX

ADD LP: ADD BX,[DI] ;add contents pointed at by [DI] to BX
INC DI ;increment DI twice
INC DI ;to point to next word
DEC CcX ;decrement loop counter
JNZ ADD LP ;jump if loop counter not zerc
MOV SI,OFFSET SUM ;load pointer for sum
MOV [SI],BX ;store in data segment
MOV AH,4CH ;set up return
INT 21H ;return to 08

MRIN ENDP
END MATN

After the program was assembled and linked, it was run using DEBUG:
C>debug c:progl-2.exe

1068:0000 B86810 MOV AX,1066

-0 1066:0 1F .
1066:0000 4D 23 E6 1D C7 3B 6A 56-00 00 00 00 00 00 OC Q0 M#£f.G;iV.evewrus
1066:0010 00 00 00 DO GO 00 00 00-00 00 00 00 00 00 0C 00 ..vevvievuannnne
.S

Program terminated normally

-0 1066:0 1F

1066:0000 4D 23 E6 1D C7 3B 6A 56-00 00 00 00 00 00 00 00 M#f.G/iVieeos.n.
1066:0010 64 D3 00 00 OC 00D 00 00-00 00 00 00 OC 00 OO0 Q0 dS.vevivnnnenrns
-Q

>

Fig: Program 2-2

The ORG directive can be used to set the offset addresses for data items. In the above program, the ORG
directive causes SUM to be stored at DS: 0010.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

[Write and run a program that transfers 6 bytes of data from memory locations with offset of 0010H
to memory locations with offset of 0028H.

TITLE PROGZ-32 (EXE) FURFOSE: TRANSFERS & BYTES OF DATA
FAGE ©0,132
.MODEL SMALL

.S3TACK 64
.DATA
ORC 10H
DATA IN DB 25H, 4FH, 85H, 1FH, 2BH, 0C4H
- ORG ZRH
COPY DB & DUOE(?)
.CODE
MAIN PROC FAR
= MOV AX,BDATA
MoV 05, AX

MOV S1,0FFSET DATA IN ;51 points to data to be copled
MOV DI,QFFSET COPY ;DI points to copy of data

MOV CX,06H iloop counkter = 6

MOV LOOE: MOV AL,[5I] imove the next byte from DATA arsa to AL

= MOV [DI ,AL imove the next byte to COPY area

INC 51 ;increment DATA polinter
INC DI rinerement COPY pointer
DEC CX ;decrement LOOP counter
JNE MOV LOOF jjump if loop counter not zero
MoV AH,ICH ;set up te return
INT 21H yreturn to 05

MAIN ENDP
END MAIN

After the program was assembled and linked, it was run using DEBUG:
Crdebug prog2-3.exe -

-u caz:b 1

1069:0000 BRE68LO MoV R, 1066

-d 1066:0 Zf

1066:0000 00 00 00 OO0 00 OO0 00 O00-00 OO0 DO 0O Q0 Q0 00 00 ...c.ivecrnnannnnna
1066:0010 25 4F 83 1F 2B C4 00 00-00 Q0 DO 00 00 00 00 OO0 %0..4D....veun..
1066:0020 00 00 00 0OC OO0 OO0 OO 0O0-00 OD DO 00 OO0 00 0D 00 ..vvvverencanens
=q

Program terminated normally

-d 1lde6:0 2t

1066:0000 00 00 00 00 OO0 OO OO0 OO0-00 OO0 DO 00 00 00 0D 00 &.iceveeunnnnnnnn
1066:0010 25 4F BS5 1F 2B C4 00 00-00 OO0 DO 00 00 OO0 0D OO0 R0..4D..ecasesss
1066:0020 00 00 OO0 OO QO Q0 00 QO0-25 4F B5 1F 2B C4 0D 00 0. .#D..weenans
T

[0

Fig: Program 2-3

CONTROL TRANSFER INSTRUCTIONS:

In an ALP, instructions are executed sequentially. Sometimes, it is often necessary to transfer program

control to a different location. Since the CS: IP registers always point to the address of the next
instruction to be executed; they must be updated when a control transfer instruction is executed. There are

many instructions in the x86 to achieve this.

FAR and NEAR:
o If control is transferred to a memory location within the current code segment, it is NEAR. This is

sometimes called intra-segment (within segment) jump.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

* Ina NEAR jump, the IP is updated and CS remains the same, since control is still inside

the current code segment.
o If control is transferred to a memory location outside the current code segment, it is a FAR or
intersegment (between segments) jump.
* InaFAR jump, because control is passing outside the current code segment, both CS and
IP have to be updated to the new values.

Conditional Jumps:

In the conditional jump, control is transferred to a new location if a certain condition is met. The flag
register is the one that indicates the current condition. For example, with "JNZ label", the processor looks
at the zero flag to see if it is raised. If not, the CPU starts to fetch and execute instructions from the
address of the label. If ZF = I, it will not jump but will execute the next instruction below the JNZ.

Table: 8086 Conditional Jump Instructions

Mnemonic | Condition Tested “Jump IF ...”

JA/INBE (CF = 0) and (ZF = 0) above/not below nor zero
JAE/JNB CF=0 above or equal/not below
JB/INAE CF=1 below/not above nor equal
JBE/INA (CF or ZF) =1 below or equalnot above
IC CF=1 carry

JENZ - | ZF =1 equal/zero

JG/INLE ({SF xor OF) or ZF) = 0 greater/not less nor equal
JGE/INL (SF xor OF) =0 greater or equal/not less
JL/INGE (SF xor OR) =1 less/not greater nor equal
JLE/ING ({SF xor OF) or ZF) = 1 less or equal/not greater
INC CF=0 not carry

INE/INZ ZF =0 not equal/not zero

INO OF=0 not overflow

INP/JPO PF =0 not parity/parity odd

INS SF =0 not sign

JO OF =1 overflow

JP/JPE PF =1 parity/parity equal

IS SF =1 sign

Note:
“Above” and “below™ refer to the relationship of two unsigned values; “greater”™ and “less” refer
to the relationship of two signed values.

Short Jumps:
o All conditional jumps are short jumps. In a short jump, the address of the target must be within —
128 to +127 bytes of the IP.
o The conditional jump (short jump) is a two byte instruction: One byte is the opcode of the J

condition and the second byte is a value between 00 and FF.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

An offset range of 00 to FF gives 256 possible addresses; these are split between backward jumps
(to —128) and forward jumps (to +127).
o In a jump backward, the second byte is the 2's complement of the displacement value. To

calculate the target address, the second byte is added to the IP of the instruction after the jump.

.MODEL SMALL
.STACK 64
.DATA
DATA IN DB 25H,12H,15H, 1FH,2BH
SUM DB 2
.CODE
Ml fgf;c iﬁf‘@mm 1067:0000 E86610 MOV AX,1066
MOV DS, AX 1067:0003 ZEDSB MOV DS, AX
MOV CX,05 1067:0005 B90500 MOV CX,0005
MOV BX,OFFSET DATA IN | 1067:0008 BROOOO MOV BX,0000
3 MOV AL,O 1067:000D 0207 ADD AL,[BX]
AGAIN: ADD AL, BX] 1067:000F 43 INC BX
INC BX 1067:0010 49 DEC CX
DEC CX 1067:0011 75FA JNZ 00CD
JNZ AGAIN 1067:0013 220500 MOV | 0005] ,AL
NM& i}f“aﬁ 1067:0016 B44C MOV AH,4C
e Sih 1067:0018 CD21 INT 21
MAIN ENDP
END MAIN

o The instruction "JNZ AGAIN" was assembled as "JNZ 000D", and 000D is the address of the
instruction with the label AGAIN. The instruction "JNZ 000D" has the opcode 75 and the target
address FA, which is located at offset addresses 0011 and 0012.

Opcode

75 Disp Short

o This is followed by "MOV SUM, AL", which is located beginning at offset address 0013. The IP
value of this MOV (0013), is added to FA to calculate the address of label AGAIN (0013+ FA=
000D) and the carry is dropped.

o Inreality, FA is the 2's complement of -6, meaning that the address of the target is -6 bytes from
the IP of the next instruction.

o Similarly, the target address for a forward jump is calculated by adding the IP of the following

instruction to the operand. In that case the displacement value is positive, as shown next.

0ods 8a 47 02 AGAIN: MOW AL,[B¥] +2
ooos ac el CMP EL,6lH
0oda 72 06 JB HEXT
aooc ac Ja CMP AL,7AH
QO0E T1 02 Ja HEXT
0010 29 DF AND MAL,ODFH
oo1z B2 04 NEXT: MGV [5I) ,AL

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o In the program above, "JB NEXT" has the opcode 72 and the target address 06 and is located at
IP = 000A and 000B.

o The jump will be 6 bytes from the next instruction, which is IP = 000C. Adding gives us 000CH
+ 0006H = 0012H, which is the exact address of the NEXT label.

o Look also at "JA NEXT", which has 77 and 02 for the opcode and displacement, respectively.
The IP of the following instruction, 0010, is added to 02 to get 0012, the address of the target
location.

Note that, regardless of whether the jump is forward or backward, for conditional jumps, the address of
the target address can never be more than —128 to +127 bytes away from the IP associated with the
instruction following the jump If any attempt is made to violate this rule, the assembler will generate a
"relative jump out of range" message. These conditional jumps are sometimes referred to as SHORT

jumps.

Unconditional Jumps:
"JMP label" is an unconditional jump in which control is transferred unconditionally to the target
location label. The unconditional jump can take the following forms:

1. SHORT JUMP — which is specified by the format "JMP SHORT label". This is a jump in which
the address of the target location is within —128 to +127 bytes of memory relative to the address
of the current IP.

v In this case, the opcode is EB and the operand is 1 byte in the range 00 to FF. The
operand byte is added to the current IP to calculate the target address. If the jump is
backward, the operand is in 2's complement. This is exactly like the J condition case.

v Coding the directive "short" makes the jump more efficient; i.e., it will be assembled into

a 2-byte instruction instead of a 3-byte instruction.

Opeode

EB Disp Short

2. NEAR JUMP, which is the default, has the format "JNP label". This is a near jump (within the
current code segment) and has the opcode E9. The target address can be any of the addressing
modes of direct, register, register indirect, or memory indirect:

v (a) Direct JUMP: is exactly like the short jump explained earlier, except that the target
address can be anywhere in the segment within the range +32767 to —32768 of the
current IP.

v (b) Register indirect JUMP: the target address is in a register. For example, in "JMP
BX", IP takes the value BX.

MAHESH PRASANNA K., VCET, PUTTUR

3.

MICROPROCESSORS AND MICROCONTROLLERS

v (c) Memory indirect JMP: the target address is the contents of two memory locations
pointed at by the register. Example: "JMP [DI]" will replace the IP with the contents of
memory locations pointed at by DI and DI + 1.

Opcode

Disp
Low

Disp Near
E9 High

FAR JUMP, which has the format "JMP FAR PTR label". This is a jump out of the current code

segment, meaning that not only the IP but also the CS is replaced with new values.

Opcode

P IP cs Cs

Low High Lew High Far

EA

CALL Statement:

@)

Another control transfer instruction is the CALL instruction, which is used to call a procedure.
CALLSs to procedures are used to perform tasks that need to be performed frequently. This makes
a program more structured.

The target address could be in the current segment, in which case it will be a NEAR call or
outside the current CS segment, which is a FAR call.

To make sure that after execution of the called subroutine the microprocessor knows where to
come back, the microprocessor automatically saves the address of the instruction following the
call on the stack. It must be noted that in the NEAR call only the IP is saved on the stack, and in a
FAR call both CS and IP are saved.

When a subroutine is called, control is transferred to that subroutine and the processor saves the
IP (and CS in the case of a FAR call) and begins to fetch instructions from the new location.

After finishing execution of the subroutine, for control to be transferred back to the caller, the last
instruction in the called subroutine must be RET (return). The RET instruction in the case of
NEAR and FAR is different. For NEAR calls, the IP is restored; for FAR calls, both CS and IP
are restored.

This will ensure that control is given back to the caller. As an example, assume that SP = FFFEH

and the following code is a portion of the program unassembled in DEBUG:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

12EB0:0200 EB1295 MOV BX,S8512
1980:0203 ESFAO0 CALL 0300
12B0:0206 BEZF14d MOV AX, 14ZF
|2
=
a5 ;
12B0:0300 53 PUSH BX N rvamm e
19B0030L an FFFC 06
=
...... ;.. ;.. e e =i FFFD {]2
12B0:0308 5B POP BX .
12E0:0308 C3 RET FFFE

Fig: IP in the Stack

Since the CALL instruction is a NEAR call, (different IP, same CS), only IP is saved on the stack. In this
case, the IP address of the instruction after the call is saved on the stack as shown in above Fig. This IP
will be 0206, which belongs to the "MOV AX, 142F" instruction.

The last instruction of the called subroutine must be a RET instruction that directs the CPU to
POP the top 2 bytes of the stack into the IP and resume executing at offset address 0206. For this reason,
the number of PUSH and POP instructions (which alter the SP) must match. In other words, for every
PUSH there must be a POP.

Assembly Language Subroutines:

In Assembly language programming it is common to have one main program and many subroutines to be
called from the main program. This allows you to make each subroutine into a separate module. Each
module can be tested separately and then brought together.

The main program is the entry point from the OS and is FAR, as explained earlier, but the
subroutines called within the main program can be FAR or NEAR. Remember that NEAR routines are in
the same code segment, while FAR routines are outside the current code segment. If there is no specific
mention of FAR after the directive PROC, by default, it will be NEAR, as shown in the following Fig.

Rules for Names in Assembly Language:
v By choosing label names that are meaningful, a programmer can make a program much easier to
read and maintain. There are several rules that names must follow.
v’ Each label name must be unique.
v The names used for labels in Assembly language programming consist of alphabetic letters in
both upper- and lowercase, the digits 0 through 9, and the special characters question mark(?),
period(.), at(@), under line(_), and dollar sign ($).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v" The first character of the name must be an alphabetic character or special character. It cannot be a
digit.

v/ Names may be up to 31 characters long.

LCODE
MATH PROC FAR ;THIS IS THE ENTRY POINT FOR OF

MOV BX, BDATA

MO 05, aX

CALL EUBER1

CALL SUBR2

CALL SUBR3

MOV AH, 4CH

INT Z1H
MAIN ENDP

!
SUER1 FROC

RET '
SUER1 ENDE

SUER2 PROC

RET
SUEBRZ ENDP

SUER3 PROC

RET
SUER3 ENDP

END MATIN ;THIS IS THE EXIT POINT

Fig: Shell of Assembly Language Subroutines

DATA TYPES AND DATA DEFINITIONS:

o The assembler supports all the various data types of the x86 microprocessor by providing data

directives that define the data types and set aside memory for them.

o The 8088/86 microprocessor supports many data types, but none are longer than 16 bits wide
since the size of the registers is 16 bits. It is the job of the programmer to break down data larger
than 16 bits (0000 to FFFFH, or 0 to 65535 in decimal) to be processed by the CPU.

o The data types used by the 8088/86 can be 8-bit or 16-bit, positive or negative. If a number is less
than 8 bits wide, it still must be coded as an 8-bit register with the higher digits as zero. Similarly,
if the number is less than 16 bits wide it must use all 16 bits, with the rest being 0Os.

o For example, the number 5 is only 3 bits wide (101) in binary, but the 8088/86 will accept it as 05
or "0000 0101" in binary. The number 514 is "10 0000 0010" in binary, but the 8088/86 will
accept it as "0000 0010 0000 0010™ in binary.

Assembler Data Directive:
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

The following are some of the data directives used by the x86 microprocessor and supported by all

software vendors.

= ORG (origin) — is used to indicate the beginning of the offset address. The number that comes

after ORG can be either in hex or in decimal. If the number is not followed by H, it is decimal

and the assembler will convert it to hex.

= DB (define byte) — directive allows allocation of memory in byte-sized chunks. This is indeed the

smallest allocation unit permitted. DB can be used to define humbers in decimal, binary, hex, and

ASCII. For decimal, the D after the decimal number is optional, but using B (binary) and H

(hexa- decimal) for the others is required. Regardless of which one is used, the assembler will

convert numbers into hex. To indicate ASCII, simply place the string in single quotation marks

(‘'like this"). Either single or double quotes can be used around ASCII strings.

DATAI
DATA2
DATA3
DATA4
DATAS

DATAG

DB - 25

DB 10001001B

DB 12H
ORG (010H
DB ‘2591
ORG 0018H
DB 7
ORG 0020H

DB ‘My name is Jog*

;DECIMAL
:BINARY
:HEX

(ASCIINUMBERS

.SET ASIDE A BYTE

ASCI CHARACTERS

= DUP (duplicate) — is used to duplicate a given number of characters. This can avoid a lot of

typing. For example, contrast the following two methods of filling six memory locations with

FFH:
0030 ORG 0030H
0030 FF FF FF FF FF FF DATA7 DB OFFH,0FFH,0FFH,0FFH,0FFH,0FFH ; 6 FF
0038 ORG 38H
0038 0005 DATAS DB 6 DUP(OFFH) ;FILL 6 BYTES WITH FF
0040) ORG 40H
0040 0020 [DATA9 DB 32DUP(?) ;SET ASIDE 32 BYTES
N]
0060 ORG 60H
0060 0005(DATA10 DB 5 DUP (2 DUP (99)) JFILL 10 BYTES WITH 99
0002
63
]]

= DW (define word) — is used to allocate memory 2 bytes (one word) at a time. The following are

some examples of DW:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

0070 ORG 70H

0070 03BA DATAIl DW 954 ;DECIMAL

0072 0954 DATA1Z2 DW 1001010101008 ;BINARY

0074 253F DATA13 DW 253FH ;HEX

0078 ORG 78H

(078 0009 0002 0007 000C DATA14 DW 9,2,7,0CH,00100000B,5,"HI’ :MISC. DATA
0020 0005 4849

0086 0008[.] DATA1S DW 8 DUP(?) SET ASIDE 8 WORDS

= EQU (equate) — is used to define a constant without occupying a memory location. EQU does not

set aside storage for a data item but associates a constant value with a data label so that when the

label appears in the program; its constant value will be substituted for the label.
(@]

Using EQU for the counter constant in the immediate addressing mode:

COUNT EQU 25 COUNT DB 25
When executing the "MOV CX,
COUNT™", the register CX will be loaded with the

value 25.

instructions

What is the real advantage of EQU? First, note that EQU can also be used in the data segment:
COUNT EQU 25

COUNTER1 DB COUNT

COUNTER2 DB COUNT

EQU can also be used outside the data segment, even in the middle of a code segment.

When executing the same instruction "MOV CX,
COUNT" it will be in the direct addressing mode.

Assume that there is a constant (a fixed value) used in many different places in the data and code

segments. By the use of EQU, one can change it once and the assembler will change all of them, rather

than making the programmer tries to find every location and correct it.

= DD (define double word) — directive is used to allocate memory locations that are 4 bytes (two
words) in size. Again, the data can be in decimal, binary, or hex. In any case the data is converted
to hex and placed in memory locations according to the rule of low byte to low address and high

byte to high address. DD examples are:

00AD ORG DDADH
00AQ 0O0O03FF DATAlL6 DD 1023 DECIMAL
00A4 00089650 DATALT DO 1000100101 10010111008 BINARY
00AR 3C2AS57F1 DATAIY DD 5C2ASTFIH HEX
00AC 00000023 00024784 DATA1D DD 23H,34789H,65533

O000OFFFD

= DQ (define quad word) — is used to allocate memory 8 bytes (four words) in size. This can be

used to represent any variable up to 64 bits wide:

a0Co ORG 00COH

O0CO CIZ3450000000000 DATAZD Dy 4523CZH HEX

O0CE 4948000000000000 DATAZL DQ CHI ASCH CHARACTERS
0000 0O0OOOOOOOOOOMCD DATAZZ DO 7 MNOTHING

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

= DT (define ten bytes) — is used for memory allocation of packed BCD numbers. The application
of DT will be seen in the multibyte addition of BCD numbers. For now, observe how they are
located in memory. Notice that the "H" after the data is not needed. This directive allocates 10

bytes, but a maximum of 18 digits can be entered.

00ED ORG O00EOH

QOEQ 29985643 728000000:0 DATA23 DT BOTH4IFO9829 BCD
00

OOEA 0OOOOOOCO0OO0O0OMOMN0 DATAZ4d DT 7 MNOTHING
00

It is essential to understand the way operands are stored in memory. The following Fig shows the memory

dump of the data section, including all the examples discussed here.

-D 1065:0
1066:0000
1066:0010
10660020
10&£:0030
1066:0040
10e6: 0080
1066:0070
1066:0080
1066: 0090
1066: 00AR0
10660080
1066:00C0
1066: G000
1066:00ED

104
19

32

4D

FF

00
63
BA
20
00
FF
83
c2
00
29

oo
HY
€D

Co=-00
00-00
20-69
00-FF
on-00
63-63
D0-08
oo-00
00-00
oo-rF2 57
00-00
O0-48
00-00
o0-00

(HY
€3
25
48
oo
%6
FF
oo
oo
86

oo
Y
oo
i
0o
oo

00 .
00 .

0o

0o
0o

................

I e R

Looking at the memory dump shows that, all of the data directives use the little endian format for storing

data (the least significant byte is located in the memory location of the lower address and the most

significant byte resides in the memory location of the higher address).

For example, look at the case of "DATA20 DQ 4523C2", residing in memory starting at offset
00COH. C2, the least significant byte, is in location 00CO, with 23 in 00C1, and 45, the most significant
byte, in 00C2. It must also be noted that for ASCII data, only the DB directive can be used to define data

of any length, and the use of DO, DQ, or DT directive for ASCII strings of more than 2 bytes gives an

assembly error. When DB is used for ASCII numbers, notice how it places them backwards in memory.
For example, see “DATA4 DB ‘2591 at origin 10H: 32, ASCII for 2, is in memory location 10H; 35,

ASCII for 5, is in 11H; and so on.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

L SEGMENT DEFINITION:

The way that segments have been defined in the programs above is a newer definition referred to as
simple segment definition. It is supported by Microsoft's MASM 5.0 and higher and/or Borland's TASM

version 1 and higher. The older, more traditional definition is called the full segment definition.

Segment Definition:

4

In the full segment definition, the ".MODEL" directive is not used. Further, the directives "
STACK"".DATA", and" .CODE" are replaced by SEGMENT and ENDS directives that
surround each segment.

The SEGMENT and the ENDS directives indicate to the assembler the beginning and ending of a

segment and have the following format:

label SEGMENT [options]
iplace the statements belonging to this segment here
label ENDS

The label, or name, must follow naming conventions and must be unique.

The [options] field gives important information to the assembler for organizing the segment, but
is not required.

The ENDS label must be the same label as in the SEGMENT directive.

The following Fig shows the full segment definition and simplified format, side by side.

;FULL SEGMENT DEFINITION :SIMPLIFIED FORMAT
;—— stack segment —- .MODEL SMALL
namel SEGMENT «STACK 64

DB 64 DUP (?) H)
namel ENDS H
;—= data segment —- a
name? SEGMENT DATA

name3

;place data definitions here :place data definitions here
name? ENDS ;

i~ code segment - H -—

SEGMENT .CODE

MAIN PROC FAR MAIN PROC FAR
ASSUME MOV AX, @DATA
MOV AX, nane2 MOV DS, AX
MOW DS, AX o's

MAIN ENDP MAIN ENDP

name3 ENDS END MAIN
ERD MAIN ’

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

ck Segment Definition:
The stack segment shown below contains the line: "DB 64 DUP (?)" to reserve 64 bytes of memory for
the stack. The following three lines in full segment definition are comparable to ".STACK 64" in simple

definition:
STSEG SE®ENT ;the "SEQMENT" directive begins the segment
DB 64 DUP (?) ;this segment contains only one line
STSEG EZNDS ;the "ENDS" seament ends the segment

Data Segment Definition:
In full segment definition, the SEGMENT directive names the data segment and must appear before the
data. The ENDS segment marks the end of the data segment:

DTSEG SEGMENT ;i the SEGMENT directive begins the secment
;define your data here
DTSEG ENDS ;the ENDS segment ends the segment
Code Segment Definition:

The code segment also begins and ends with SEGMENT and ENDS directives:

CDSSEG SEGMENT ;the SEGMENT directive begins the segment
;vour code is here
CDSEG ENDS ithe ENDS segment ends the segment
Example:
TITLE PURPCSE: ADDS 4 WORDS OF DATA
FAGE 60,132
STSEG SEGMENT TITLE PROG2-2 (EXE) PURPOSE: ADDS 4 WORDS OF DATA
Db A 1 SIS e MODEL SMALL
STSEG ENDS STACK 64
DTSEG SEGMENT L
DATA_IN DWW 234DH, 1DE6H, 3BCTH, 5662H |’ DATA
ORG 104 DATA_IN DW 234DH, 1DE€H, 3BC7H, S66AK
SUM bW ? ORG 10H
DTSEG ENDS SUM DW ?
CDSEG SEGMENT .CODE
MAIN PROC FAR MAIN PROC FAR
ASSUME CS:CDSEG, DS:DTSEG, SS:STSEG MOV AX,EDATA
MOV AX, DTSEG MoV DS, AX
MOV DS, AX MOV CX,04 jsct up loop counter CX=4
MOV CX' 04 MOV ~ DI,OFFSET DATA_ IN ;set up data pointer DI
bR A MoV BX,00 sinitialize BX
MOV DI,OFFSET DATA_IN ADD_LP: ADD BX,[DI] ;add contents pointed at by [DI} to BX
MoV BX, 00 INC DI ;increment DI twice
ADD_LP: ADD BX,[DI] INC DI ;to point to next word
INC DI DEC CX ;decrement loop counter
ING DI JINZ ADD LP ;jump if loop counter not zer
DEC cX . MOV SI,CFFSET SUM ;load pointer for sum
JNZ ADD_LP 383 [Aﬁllqéﬁx ;store in data segment
OFFSET ‘ ;set up return
Wy oL UEEEER. S INT 21H ;return to 0S
MOV [s1] ,B8X
; MRIN ENDP
MOV AH, 4CH END MAIN
INT 21H)
MAIN ENDP
CDSEG ENDS
END MAIN

Fig: Program 2-2, Rewritten with Full Segment Definition
v"In full segment definition, immediately after the PROC directive is the ASSUME directive, which
associates segment registers with specific segments by assuming that the segment register is equal
to the segment labels used in the program.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v If an extra segment had been used, ES would also be included in the ASSUME statement.

v' The ASSUME statement is needed because a given Assembly language program can have several
code segments; one or two or three or more data segments and more than one stack segment. But
only one of each can be addressed by the CPU at a given time; since, only one of each of the
segment registers available inside the CPU.

v' ASSUME tells the assembler which of the segments defined by the SEGMENT directives should

be used.

Using the emu8086 Assembler:
There is a simple and popular assembler called emu8086; that one can use for assembling the 8086

Assembly language programs. It is available from the www.emu8086.com website. Examine the

following Fig for screenshots using emu8086.

i edit: £:\emu8DB6\MySource\mycode.asm RS T =10] xj
fie e& bookmads assembler emulator math asciicodes help

0 vt ol .| & ’ = x s 3]
new open examples save compie emulae | calculator convertor ophons heip about
¥l ; multi-segment executabhle file template. —!

-

;5 flat assembler syntax

format MZ
entry code_seg:start ; set entry point
stack 256

segment data_ seg
5 add your data here?

DATA1 DB
DATA2 DB 29H
SUN DB ?

pkey db “press anv key...$"

segment code_segyg

start:

3 set segment r»registers:
mov ax, data_seg
mov ds, ax o
nov es, ax

3 add your code here
MOU AL, [DATAL]l ;get the first operand
MOU BL., IDATA2] sget the second operand

ADD AL, BL ;add the operands
MOU [SUMI.AL sstore the result in location SUM
mov dx, pke
mov ah, g <
int 21h 5 output string at ds:dx
; wait for any key....
mov ah, 1
int 21h
mov ax, 4c®Bh ; exit to operating systen.
int 21h
Fig: emu8086

NOTE: emu8086 requires putting brackets around variables, unlike MASM/TASM.
MAHESH PRASANNA K., VCET, PUTTUR

http://www.emu8086.com/

MICROPROCESSORS AND MICROCONTROLLERS

EXE vs COM Files:
All program examples so far were designed to be assembled and linked into EXE

files. The COM file,

similar to the EXE file, contains the executable machine code and can be run at the OS level.

Why COM Files?
v" The EXE file can be of any size. Due to limited amount of memory, on

compact code in the form of COM file.

e needs to have very

v' COM files are used because of their compactness, since they cannot be greater than 64K bytes.

The reason for the 64K-byte limit is that the COM file must fit into a single

segment, and since in

the x86 the size of a segment is 64K bytes, the COM file cannot be larger than 64K.

v" To limit the size of the file to 64K bytes requires defining the data inside the code segment and

also using an area (the end area) of the code segment for the stack.
Table: EXE vs. COM File Format

EXE File COM File
o] 1. Maximum size 64K
1. Unlimited size
bytes
)] 2. No stack segment
2. Stack segment is defined o
definition
3. Data segment is
3. Data segment is defined defined in code
segment
) 4. Smaller file (takes
4. Larger file (takes more memory)
less memory)
5. Header block (contains information such as size, address location in
)] 5. Does not have a
memory, and stack address of the EXE module), which occupies 512]
] header file
bytes of memory precedes every EXE file

FLOWCHARTS AND PSEUDOCODE:

Structured programming is a term used to denote programming techniques that can make a program easier

to code, debug, and maintain over time. There are certain principles that every structured program should

follow. Some of these are as follows:

1. The program should be designed before it is coded. By using techniques of flowcharting or

pseudocode, the design of the program is clear to the person coding it, as

will maintain the program later.

MAHESH PRASANNA K., VCET, PUTTUR

well as to those who

MICROPROCESSORS AND MICROCONTROLLERS

2. Using comments within the program and documentation accompanying the program also will
help someone else to know what the program does. It may even help the programmer who wrote
the program remember how it worked years later!

3. The main routine should consist of calls to subroutines that perform the work of the program.
This is sometimes called top-down programming. Use subroutines to accomplish tasks that are
repeated. This saves time in coding and also makes the program easier to read.

4. Data control is very important. It can be very frustrating and time consuming to track through a
long program to find where a variable was changed. First of all, the programmer should document
the purpose of each variable, and which subroutines might alter its value. Further, each subroutine
should document its input and output variables, and which input variables might be altered within
it.

Flow Charts & Pseudocode:
Flowcharts use graphic symbols to represent different types of program operations. These symbols are

connected together into a flowchart to show the flow of execution of the program.

Process

Decision

?

Subroutine

Input/
Qutput

Connector

O

Fig: Commonly used Flowchart Symbols
The limitations of flowchart are —
v" We can’t write much in the little boxes
v" We can’t get the clear picture of the program without getting bogged down in the details.
An alternative to using flowchart is pseudocode, which involves writing brief descriptions of the flow of

the code.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

trol Structures:
Structured programming used three basic types of program control structures —

1. Sequence
Statement |
Statement 1
Statement 2 ;
. Statement 2
Fig: SEQUENCE Pseudocode vs Flowchart
2. Control
IF (condition) THEN
Statement |
ELSSElmemz | Statement 1 ’ . | Statement 2 |
’T“
Fig: IF-THEN-ELSE Pseudocode vs Flowchart
Condition
IF (condition) THEN ’
Statement |
Fig: IF-THEN Pseudocode vs Flowchart
3. lteration

Statement 1

Condition
9

l Yes

Fig: REPEAT-UNTIL Pseudocode vs Flowchart
MAHESH PRASANNA K., VCET, PUTTUR

REPEAT
Statement 1
UNTIL (condition)

MICROPROCESSORS AND MICROCONTROLLERS

Condition
T
Yes

Fig: WHILE-DO Pseudocode vs Flowchart

The purpose of flowchart or pseudocode is to show the flow of the program and what the program does;

WHILE {condition) DO
Statement 1

not the specific Assembly language instructions.

Start :
Count = 5
Repeat
Add next byte
—— | Add one byte : Increment pointer
H Decrement count
Until Count =0
Increment
pointer Store SUM
Decrement
counter
no ycs
Store
SUM

Fig: Flowchart vs Pseudocode for Program 2-1

By: MAHESH PRASANNA K.,
DEPT. OF CSE, VCET.

*khkkkkkkik

*hkkkkhkkiikkk

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

MODULE -2
A AND L INSTRUCTIONS & INT 21H AND INT 10H PROGRAMMING
ARITHMETIC & LOGIC INSTRUCTIONS AND PROGRAMS
INTRUCTIONS SET DESCRIPTION:

UNSIGNED ADDITION AND SUBTRACTION:
Unsigned numbers are defined as data in which all the bits are used to represent data and no bits are set

aside for the positive or negative sign. This means that the operand can be between 00 and FFH (0 to 255
decimal) for 8-bit data, and between 0000 and FFFFH (0 to 65535 decimal) for 16-bit data.

Unsigned numbers Signed numbers
255 FFH +127 TFH
254 FEH +126 7EH
-_-’—___‘--__‘ -\-_-’—___i-.-_.
o e]
132 8dH +2 02H
131 B3H +1 14
130 82H +0 20H
129 81H -1 FFH
128 BOH -2 FEH
]
4 04H —124 84H
3 03H —125 BaH
2 o2H —126 B2H
1 01H =127 81H
4] o0H -128 80H

Addition of Unsigned Numbers:
ADD destination, source ;destination = destination + source
v The instructions ADD and ADC are used to add two operands. The destination operand can be a
register or in memory. The source operand can be a register, in memory, or immediate.
v" Remember that memory-to-memory operations are never allowed in x86 Assembly language.
v The instruction could change any of the ZF, SF, AF, CF, or PF bits of the flag register, depending

on the operands involved. The overflow flag is used only in signed number operations.

Show how the flag register is affected by

MO AL, 0F5H
ADD AL, 0BH
Solution:
F3H 11X1 0X01
DBH + 0000 1011
100H 0000 o000

After the addition, the AL register (destination) contains 00 and the flags are as follows:
CF = 1, since there is a carry out from D7
SF = 0, the status of D7 of the result

PF = 1. the number of 1s is zero (zero is an even number)
AF = 1, there is a carry from D3 to D4
ZF = 1, the result of the action i3 zero (for the 8 bits)

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

h-addition, two cases will be discussed:
CASEL: Addition of Individual Byte and Word Data:

Write a program to calculate the total sum of 5 bytes of data. Each byte represents the daily
wages of a worker. This person does not make more than 5255 (FFH) a day. The decimal data is

as follows: 125, 235, 197, 91, and 48.

TITLE PROG3-124 {EXE) ADDING 5 BYTES
PAGE 60,132
LMODEL SMALL
.STACK 54
. DATA
COUNT EQU ns
DATA DE 125,235,197, 91, 48
ORG 0D0OBH
S DwW ?
CODE

MAIN FROC FAR
MOV X, BDATA

MO Ne, AX

MOV CX,COUNT jCX is the loop counter

MO 5I,0FFSET DATA ;3I i= the data pointer

MOV AX,00 ;BX will hold the sum
BRCE: ADD AL, SI] ;jadd the next byte Lo AL

JNC OVER ;if no carry, continue

INC AH ;else accumulate carry in AH
OVER: INC 51 tincrement data pointer

DEC CX jdecrement loop counter

JHZ BACE ;1f not finished, go add next byte

MOV SUM, AX ;store sum

MOV AH,4CH

INT 21H ;go back to Q5
MAIN ENDFE

END MATIN

Program 3-1a
These numbers are converted to hex by the assembler as follows: 125 = 7DH, 235 = 0EBH, 197 = 0C5H,
91 = 5BH, 48 = 30H. This program uses AH to accumulate carries as the operands are added to AL
register. Three iterations of the loop are shown below:
1. In the first iteration of the loop, 7DH is added to AL with CF =0 and AH = 00. CX = 04 and ZF
=0.
2. In the second iteration of the loop, EBH is added to AL, which results in AL = 68H and CF = 1.
Since a carry occurred, AH is incremented. CX = 03 and ZF = 0.
3. In the third iteration, C5H is added to AL, which makes AL = 2DH. Again a carry occurred, so
AH is incremented again. CX = 02 and ZF = 0.
This process continues until CX = 00 and the zero flag becomes 1, which will cause JNZ to fall through.

Then the result will be saved in the word-sized memory set aside in the data segment.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Although this program works correctly, due to pipelining it is strongly recommended that the

following lines of the program be replaced:

Replace these lines With these lines

BACEKE: ADD AL,[5I BACE: ADD AL,[5I]
JHC OVER ADC AH, 00 ;add 1 to AH if CFP=1
INC AH INC Sl

OVER: INC SI
The instruction "JNC OVER" has to empty the queue of pipelined instructions and fetch the instructions
from the OVER target every time the carry is zero (CF = 0). Hence, the "ADC AH, 00" instruction is
much more efficient.
The addition of many word operands works the same way. Register AX (or CX, DX, or BX) could be
used as the accumulator and BX (or any general-purpose 16-bit register) for keeping the carries. Program

3-1b is the same as Program 3-1a, rewritten for word addition.

Write a program to calculate the total sum of five words of data. Each data value represents the
vearly wages of a worker. This person does not make more than $635,555 (FFFFH) a vear. The
decimal data is as follows: 27345, 28521, 29533, 30105, and 32375,

TITLE PROG3-1B (EXE) ADDING 5 WORDS
FAGE 00,132
LJMODEL SMALL
LSTACE 64
DATR
COUNT EQU 0h
[ATA oW 27345,28521,29533,30105,32375
ORG 0010H

M DW 2 DUPR(?)

.CODE

MAIN PROC FAR
MOV AX,@DATA
MOV DS, AX

MoV CH,COUNT jCX 13 the loop counter
MOV SI,0FFSET DATA $81 is the data pointer
MOV R¥,00 ;A¥ will hold the sum
MOV B¥,AX ;BX will hold the ecarries
EACHK: ADD A¥,[BT) tradd the next word teo AX
ADC BX,0 jadd carry to BX
INC 5I rinecrement data polinter twlce
INC SI ito point to next word
DEC CX jdecrement loop counter
JMNE BACK tif not finished, continue adding
MOV SUM, X ;store the sum
MoV SUM+2,BY istore the carries
MOV AH,4CH
INT £1H igo back to O3
MAIN ENDF
END MARIN

Program 3-1b

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

SE2: Addition of Multiword Numbers:

TITLE PROG3=2 (EXE) MULTIACRD ADDITION
PLGE 60,132
_MODEL SMALL
.STACK &4
.DATA
DATAL D0 S4BFBY9963CETH
ORG 0010H
DATAZ DO 3FCD4FAZ3BEDH
ORG 0020H
DATA3 DO 2
.CODE

MAIN FROC FAR
MOV RX,BDATA

MOV D5,AX
CLC sclear carry before first addition
MOV SI,OFFSET DATAL :5I is pointer for operandl
MOV DI,OFFSET DATAZ DI is pointer for coperand?
MOV BX,0FFSET DATA3 ;B¥ is pointer for the sum
MoV Cx,04 ;CH is the loop counter
BACK:MOV AX,[5I] imove the first operand to AX
ADC A¥,[DI] ;add the second operand to AX
MOV [B¥] ,AX ;store the sum
INC s8I ;point to next word of operandl
INC 5T
INC DI jpoint to next word of operandZ?
ING DI
ING BX ;jpoint to next word of sum
INC BX
LOOF BACKE ;if not finished, continue adding
MOV AH,4CH
INT 21H oo back to QS
MATN ENDFE
END MAIN

Program 3-2

0 Assume, a program is needed that will add the total Indian budget for the last 100 years or the
mass of all the planets in the solar system.

0 In cases like this, the numbers being added could be up to 8 bytes wide or even more. Since
registers are only 16 bits wide (2 bytes), it is the job of the programmer to write the code to break
down these large numbers into smaller chunks to be processed by the CPU.

o If a 16-bit register is used and the operand is 8 bytes wide, that would take a total of four

iterations. However, if an 8-bit register is used, the same operands would require eight iterations.

v In writing this program, the first thing to be decided was the directive used for coding the data in
the data segment. DQ was chosen since it can represent data as large as 8 bytes wide.
v In the addition of multibyte (or multiword) numbers, the ADC instruction is always used since the

carry must be added to the next-higher byte (or word) in the next iteration. Before executing

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

ADC, the carry flag must be cleared (CF = 0) so that in the first iteration, the carry would not be
added. Clearing the carry flag is achieved by the CLC (clear carry) instruction.

v’ Three pointers have been used: Sl for DATAL, DI for DATA2, and BX for DATA3 where the
result is saved.

v' There is a new instruction in that program, "LOOP xxxx", which replaces the often used "DEC
CX™ and "INZ xxxx".

LODP xxxx ;is equivalent to DEC CX
JMZ MMM

When "LOOP xxxx" is executed, CX is decremented automatically, and if CX is not 0, the microprocessor
will jump to target address xxxx. If CX is 0, the next instruction (the one below "LOOP xxxx") is

executed.

Subtraction of Unsigned Numbers:
SUB dest,source;dest = dest - source

The x86 uses internal adder circuitry to perform the subtraction command. Hence, the 2's complement
method is used by the microprocessor to perform the subtraction. The steps involved is —

1. Take the 2's complement of the subtrahend (source operand)

2. Add it to the minuend (destination operand)

3. Invert the carry.
These three steps are performed for every SUB instruction by the internal hardware of the x86 CPU. It is
after these three steps that the result is obtained and the flags are set. The following example illustrates

the three steps:

Show the steps involved in the following:

MOLT AT AR s YA AT =T1FH

MOV AL, 3FH ; Lload AL=3FH

MOV BH, Z£3H ; load BH=Z3H

SUB AL, BE ;subtract BH from AL. Place rezult in AL
. ¥
Solution:
AL 3F 0011 1111 0o 11
™ oy ART M i 1 a | = e
=BH :hi =" U1 1] U | i QML EmeaT

LC 1 0001 1100 CF=0 (step 3)

The flags would be set as follows: CF =0, ZF =0, AF = 0, PF = (, and SF = (.
The programmer must look at the carry flag (not the sign flag) to determine if the result is pos-
itive or negative,

v’ After the execution of SUB, if CF = 0, the result is positive; if CF = 1, the result is negative and

the destination has the 2's complement of the result.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o Normally, the result is left in 2's complement, but the NOT and INC instructions can be used to
change it. The NOT instruction performs the 1’s complement of the operand; then the operand is
incremented to get the 2's complement; as shown in the following example:

Analyze the following program:
sfrom the data segment:

CATAL DH 4CH
DATAZ DB BEH
DATA3 DB T

jfrom the code segment:
MOY DH, DATAL
SUB DH, DATAZ

:load DH with DATALl wvalue (4CH)
;subtract DATAZ (6E) from DH (4CH)
JHNC NEXT ;if CF=0 jump teo MNEXT target

NOT CH ;if CF=1 then take 1's complement
INC DH jand increment to get Z's complement

NEXT : MO DATAS, DH ;save DH in DATRZ
Solution:
Following the three steps for "SUB DH,DATA2":
4C 0100 1100 0190 1140

-EE 0110 1110 1001 g0l (2" 5 complement)
-22 01101 1110 CF=1 (step 3}result iz negative

SBB (Subtract with Borrow):

This instruction is used for multibyte (multiword) numbers and will take care of the borrow of the lower
operand. If the carry flag is 0, SBB works like SUB. If the carry flag is 1, SBB subtracts 1 from the result.
Notice the "PTR" operand in the following Example.

Analyze the following program:

DARTA A DL 6250 2FRH

DATE B Do 412953BH

RESULT Do ?
Mo AX, WORD BPTR DATAR A sAX=02FA
SUB AX,WORD FTE D.-“aII-.:E JEUE 963B from AX
MOV WORD PTE RESULT,AX ;save the result

MOV AX,WORD PTE i_.la'-'-.'j.fl._j-". +2 :r\Pi:DEE:'-_:.-
SEB AX,WORD PTR DATA B +2 ;50B 0412 with bhorrow
MO WORD PTR RESULT+Z,AX ;save the result
Solution:
After the SUB, AX = 62FA - 963B = CCBF and the carry flag is set. Since CF = 1, when SEB
is executed, AX =625 - 412 - | =212, Therefore, the value stored in RESULT is 0212CCBF.

The PTR (pointer) data directive is used to specify the size of the operand when it differs from the defined
size. In above Example; "WORD PTR" tells the assembler to use a word operand, even though the data is

defined as a double word.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

UNSIGNED MULTIPLICATION AND DIVISION:
One of the major changes from the 8080/85 microprocessor to the 8086 was inclusion of instructions for

multiplication and division. The use of registers AX, AL, AH, and DX is necessary.

Multiplication of Unsigned Numbers:
In discussing multiplication, the following cases will be examined: (1) byte times byte, (2) word times
word, and (3) byte times word.
8-bit * 8-bit AL *BL 16-bit * 16-bit AX* BX
16-bit AX 32-bit DX AX

byte x byte: In byte-by-byte multiplication, one of the operands must be in the AL register and the

second operand can be either in a register or in memory. After the multiplication, the result is in AX.

RESULT DW 3 sresult is defined in the data segment
MOV AL, 2EH ;a byte is moved to AL
MOV BL, 6EH rimmediate data must be in a register
MUL BL ;AL = 28 x 65H

MOV RESULT,AX ;the result is saved
In the program above, 25H is multiplied by 65H and the result is saved in word-sized memory named
RESULT. Here, the register addressing mode is used.
The next three examples show the register, direct, and register indirect addressing modes.

i from the data segment:

DATAL DE 25H
DATAZ DE o5H
RESULT D 2

;from the code segment:
MO AL, DATRI
MOV BL, DATAZ
MUL BL jregister addressing mode
MOV BRESULT;AX

or
MOV AL,DATAL
MUL DATRZ ;jdirect addressing mode
MoV RESULT,AX

or

MOV AL, DATAI

MoV S5I,0FFSET DATAZ

MOL BYTE PIR [§1I] ;jregister indirect addressing mode
MOV RESULT,AX

v In the register addressing mode example, any 8-bit register could have been used in place BL.

<

Similarly, in the register indirect example, BX or DI could have been used as pointers.
v'If the register indirect addressing mode is used, the operand size must be specified with the help

of the PTR pseudo-instruction. In the absence of the "BYTE PTR" directive in the example above,

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

the assembler could not figure out if it should use a byte or word operand pointed at by SI. This
confusion may cause an error.
word x word: In word-by-word multiplication, one operand must be in AX and the second operand can
be in a register or memory. After the multiplication, registers DX and AX will contain the result. Since

word-by-word multiplication can produce a 32-bit result, DX will hold the higher word and AX the lower

word.
DATAS D 2378H
DaATRA DWW 2F7%H
RESULT1 (B 2 DUF(Z)
MOV BX¥,DATAZ ;load first operand into AX
MOL DATA4 multiply i€ by the second operand

MOV BRESULT1,AX ;store the lower word result
MOV RESULT1+Z,DX ;stoce the higher word result

word x byte: This is similar to word-by-word multiplication, except that AL-contains the byte operand
and AH must be set to zero.

i from the data segment:

DATAS CB .6BH
DATAR Di¥ L2C3H
RESILT3 oW 2 DUPI?)
;from the code segment:
MOV AL, DATAS :Al. holds byte operand
SUB AH,AH FARH must be cleared
MUL DATAS jbyte in AL mult. by word operand
MOV BX,0FFSET RESULT3 ;BX points to product
MOV [BX] ,BX ;A% holds lower word
MOV [EX]}R,EK * ;DX holds higher word

Table: Unsigned Multiplication Summary

Multiplication Operand | Operand 2 Result
byie = byte AL regisier or memory AX
word x word AX register or memory DX AX

word x byte AL=byte, AH=0 registerormemory DX AX

Division of Unsigned Numbers:
In the division of unsigned numbers, the following cases are discussed:
1. Byte over byte
2. Word over word
3. Word over byte
4. Double-word over word

8-bit AL Q:AL 16-bit AX Q: AX

8-bit BL R: AH 16-bit BX R: DX

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

16-bit AX Q:AL 32-bit DA AX Q: AX
8-bit BL R: AH 16-bit BX R: DX

In divide, there could be cases where the CPU cannot perform the division. In these cases an interrupt is
activated. This is referred to as an exception. In following situations, the microprocessor cannot handle
the division and must call an interrupt:

1. If the denominator is zero (dividing any number by 00)

2. If the quotient is too large for the assigned register.
In the IBM PC and compatibles, if either of these cases happens, the PC will display the "divide error"

message.

byte/byte: In dividing a byte by a byte, the numerator must be in the AL register and AH must be set to
zero. The denominator cannot be immediate but can be in a register or memory. After the DIV instruction

is performed, the quotient is in AL and the remainder is in AH.

QOuUTl DB ?
REMAINL DB 'y
susing immediate addressing mode will give an error
MoW - AL, DATA7 imove data inte AL
3UB AH,AH ;clear AH
oIy 140 ;immed. mode not allowed!!

sallowable modes include:
jusing direct mode’

MOV AL, DATAT AL helds numerater

SUB AH,AE BH must be cleared

DIV DATASR ;idivide AX by DATAB

MOV QOUTI,AL ;ouotient = AL = (8

MOV REMAINL,AH jremainder = AH = 035
jusing register addressing mode*

MOV L, DATAY ;AL holds numerator

SUE AH,AE ;AH must be cleared

MoV BH,DATASR smove denom. to register

DIV BH jdivide AX by BH

MOV QOUTI1,AL ;jquotient = AL = (8

MOV REMAINL,AH jremainder = AH = 05
susing register indirect addressing mode

MOV AL, DATAT ;AL holds numerator

EUB AH,AH $2H must be cleared

MOV BX,0FFSET [CATAS ;BEX holds offset of DATRS

DIV BYTE PTE [BX] jdivide AX by DATAB

MOV QOUTZ, AX
MOV REMAINDZ, DX

word/word: In this case, the numerator is in AX and DX must be cleared. The denominator can be in a

register or memory. After the DIV; AX will have the quotient and the remainder will be in DX.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

MOV AX, 10030
SUB DX, DX

MoV BX, 100

DIV BX

MOV QOUTZ, AX
MOV REMAINMDZ, DX

;AX holds numerator
DX must be cleared
+BX used for denocminateor

A¥ = g4H = 100
D = 32H = 50

;quotient =
jremainder =

word/byte: Here, the numerator is in AX and the denominator can be in a register or memory. After the

DIV instruction, AL will contain the quotient, and AH will contain the remainder. The maximum quotient

is FFH.

The following program divides AX = 2055 by CL = 100. Then AL = 14H (20 decimal) is the quotient and

AH = 37H (55 decimal) is the remainder.

MOV AX, 2055
MOV CL, 100

DIV CL

MOV QUD, AL

MOV REMI,AH

holds numerator
used for denominator

holds guotient
‘holds remaindar

Double-word/word: The numerator is in DX and AX, with the most significant word in DX and the least

significant word in AX. The denominator can be in a register or in memory. After the DIV instruction; the

quotient will be in AX, and the remainder in DX. The maximum quotient is FFFFH.

i from the data segment:

DATAL DD 105432
DATRZ OW Logag
QuUaT oW ?
REMRIN oW 1
tfrom the code segment:
MOV
MO
DIV DATAZ
MOV QUOT, AX
MOV REMAIN, DX

AY,WORD PTR DATAL
DX, WoRD PTR DATAL+2;DX higher word of numerater

+A¥ holds lower word

jAX holds quotlent
;DX holds remainder

v"In the program above, the contents of DX: AX are divided by a word-sized data value, 10000.

v The 8088/86 automatically uses DX: AX as the numerator anytime the denominator is a word in

size.

v Notice in the example above that DATAI is defined as DD but fetched into a word-size register
with the help of WORD PTR. In the absence of WORD PTR, the assembler will generate an

error.
Table: Unsigned Division Summary
Division Numerator Denominator Qunﬂent Rem.
byte/byte AL =byte, AH=0 register or memory ALl AH
word/word AX =word, DX =0 register or memory AX? DX
word/byte AX =word register or memory AL! AH
doubleword'word DXAX = doubleword register or memory AX1 DX

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

LOGIC INSTRUCTIONS:
Here, the logic instructions AND, OR, XOR, SHIFT, and COMPARE are discussed with examples.

Inputs Output
AND A B | AANDB
BND destination, source 0 0 0
v’ This instruction will perform a logical AND on the operands and 0 1 0
place the result in the destination. The destination operand can be a 1 0 0
register or memory. The source operand can be a register, memory, 1 1 1

or immediate.
. . A —D_ A AND B
v" AND will automatically change the CF and OF to zero, and PF, B—

ZF, and SF are set according to the result. The rest of the flags are

either undecided or unaffected.

Show the results of the following:
MOV BL,35H
AND BL,0FH 'AND BL with 0FH. Place the result in BL.
Solution:
A5H g 1 X L. G 1
CEH -0.p o0 1 3.1 1
58 o o o T+ S i Bl o Flag settings will be; SF=0,ZF =0, PF = 1, CF=0F = Q.

v" AND can be used to mask certain bits of the operand. The task of clearing a bit in a binary

number is called masking. It can also be used to test for a zero operand.

¥Xx X ¥ xxxx LUnknown numbear AND DH,DH

= 00001111 Mask JE HEXX
0000 xxxx Result

HEXX:

v" The above code will AND DH with itself, and set ZF =1, if the result is zero. This makes the CPU
to fetch from the target address XXXX. Otherwise, the instruction below JZ is executed. AND

can thus be used to test if a register contains zero.

Inputs Output
OR A | B | AORB
OR destination, source 0 0 0
v' The destination and source operands are ORed and the result is 0 1 1
placed in the destination. 1 0 1
v' The destination operand can be a register or in memory. The 1 1 1
source operand can be a register, memory, or immediate. A j)_ AORE
v" OR will automatically change the CF and OF to zero, and PF, ZF, | B

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

and SF are set according to the result. The rest of the flags are either undecided or unaffected.

Show the results of the following:

MOV AY, 0504 ‘AY = (0504
OR' AX, ODAGEH {R¥ = DF6C
Solution:

0504 0000 0101 Q000 Q400 _
DAGBH 1101 1010 0110 1000 Flags will be: SF=1,ZF=0,PF=1, CF=0F =0.
DF6C 1101 1111 0110 1100 Notice that parity is checked for the lower 8 bits only.

v" The OR instruction can be used to test for a zero operand. For example, "OR BL, 0"will OR the
register BL with 0 and make ZF = 1, if BL is zero. "OR BL, BL" will achieve the same result.
v OR can also be used to set certain bits of an operand to 1.
XXX xXxxx Unknown number

+ 00001111 Mask
xxxx%x 1111 BResul

Inputs Output
XOR
A B A XORB
XOR dest,s

ast e O 0 0

v The XOR instruction will eXclusive-OR the operands and place the 5 1 1

result in the destination. XOR sets the result bits to 1 if they are 1 5 1

not equal; otherwise, they are reset to 0. 1 1 5

v' The destination operand can be a register or in memory. The

. .] A
source operand can be a register, memory, or immediate. B i— AXOR B

v OR will automatically change the CF and OF to zero, and PF, ZF,

and SF are set according to the result. The rest of the flags are either undecided or unaffected.

Show the results of the following:

MOV DE, 54H
XOR DE, 78H
Solution:
24H G Lro0ol1lol1lo0od
784 0 1 1 110900
2C 00101100 Flagsettingswillbe: SF=0,ZF=0,PF=0,CF=0F=0.

The XOR instruction can be used to clear the contents of a register by XORing it with itself.
Show how "XOR AH,AH" clears AH, assuming that AH = 45H.

Solution:
45H 01000101
45H p1000101

oo oooooaoo Flag settings will be: SF =0, ZF = 1, PF =1, CF = OF = (.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v~ XOR can be used to see if two registers have the same value. "XOR BX, CX" will make ZF = 1, if
both registers have the same value, and if they do, the result (0000) is saved in BX, the
destination.

v/ XOR can also be used to toggle (invert/compliment) bits of an operand. For example, to toggle bit
2 of register AL:

¥ KK NX XX Unknown number
@&@0000 1111 Mask
xXxx XXXX Hesult

¥OR AL, 04H ;¥OR AL with 0000 0100

v" This would cause bit 2 of AL to change to the opposite value; all other bits would remain

unchanged.

SHIFT
o Shift instructions shift the contents of a register or memory location right or left.
0 The number of times (or bits) that the operand is shifted can be specified directly if it is once
only, or through the CL register if it is more than once.
0 There are two kinds of shifts:
v" Logical — for unsigned operands

v" Arithmetic — signed operands.

SHR: This is the logical shift right. The operand is shifted right bit by bit, and for every shift the LSB
(least significant bit) will go to the carry flag (CF) and the MSB (most significant bit) is filled with 0.

v" SHR does affect the OF, SF, PF, and ZF flags.

v" The operand to be shifted can be in a register or in memory, but immediate addressing mode is

not allowed for shift instructions. For example, "SHR 25, CL" will cause the assembler to give an

error.
C
SHR 00—
Eg:
SHR BH, CL R/M Cy
0 — — |
Shift right Before After
BH 0100 0100 0001 0001
CL 02H
Cy 1 | 0 |

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Show the result of SHR in the following;
MOV AL, 9AH
MOV EL3 jset number of times to shift
SHR AL, CL

Solution:
9AH = 10011010
01001101 CF =0 (shifted once)
00100110 CF = 1 (shifted twice)
00010011 CF = 0 (shifted three times)

After shifting right three times, AL = 13H and CF = (.

v"If the operand is to be shifted once only, this is specified in the SHR instruction itself rather than

placing 1 in the CL. This saves coding of one instruction:

MoV BX, OFFFFE ;BA=FFFFH .
SHR BX,1 ;jshift right BX once only

v' After the above shift, BX = 7FFFH and CF = 1.

Show the results of SHR in the following:
sfrom the data segment:

DATAL oW T177H
;£rom the code segmant:
TIMES EQU 4
MOV CL, TIMES i CL=04

SHR DATARL, CL ;shift DATAl CL times

Solution:
After the four shifts, the word at memory location DATA1 will contain 0777. The four LSBs are
lost through the carry, one by one, and 0s fill the four MSBs.

SHL.: Shift left is also a logical shift. It is the reverse of SHR. After every shift the LSB is filled with 0
and the MSB goes to CF.
v SHL does affect the OF, SF, PF, and ZF flags.
v The operand to be shifted can be in a register or in memory, but immediate addressing mode is
not allowed for shift instructions. For example, "SHL 25, CL" will cause the assembler to give an

error.
Target register or memory
C
SHL -
Eg:
SHL BH, CL Cy R/M
\ le— e— 0
Shift left without Cy Before After
BH 0010 0010 | 1000 1000 |
CL 02H
Cy 1 | 0 |

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Show the effects of SHL in the following: Caalenbe podadise W
MOV ' DH, 6
Y CL.4 MOV DH, &
SHL ~ DH,CL sHL DH, 1
SHL DHE,1
SHL DH,1
Solution: SHL DH,1
00000110
CF=(QoooLLioe {shifted left once)
CF=0 g0011000
Ch={ 00110000
CFP=(01100000 (shifted four times)
After the four shifts left, the DH register has 60H and CF = (.

COMPARE of Unsigned Numbers:

CME destination,source :compare dest and src

v" The CMP instruction compares two operands and changes the flags according to the result of the
comparison. The operands themselves remain unchanged.

v The destination operand can be in a register or in memory and the source operand can be in a
register, memory, or immediate.

v The compare instruction is really a SUBtraction, except that the values of the operands do not
change.

v The flags are changed according to the execution of SUB. Although all the flags (CF, AF, SF, PF,
ZF, and OF flags) are affected, the only ones of interest are ZF and CF.

v It must be emphasized that in CMP instructions, the operands are unaffected regardless of the
result of the comparison. Only the flags are affected.

Table: Flag Settings for Compare Instruction

Compare Operands | CF | ZF Remark

destination > source | 0 0 | destination — source; results CF=0& ZF =0

destination = source | 0 1 | destination — source; resultsCF=0& ZF =1

destination < source | 1 0 | destination —source; results CF=1& ZF =0

CATAL DW 235FH

MOV AX,0CCCCH

CME AX,DATAL jcompare CCCC with 235F
JNCZ OVER ;jump if CF=(Q
SUB RAX,ARX

OVER: INC DATAl
v In the program above, AX is greater than the contents of memory location DATAL (OCCCCH >
235FH); therefore, CF = 0 and JNC (jump no carry) will go to target OVER.

MAHESH PRASANNA K., VCET, PUTTUR

v

MICROPROCESSORS AND MICROCONTROLLERS

MOV EX, 78E8H
MOV CX, 9FFFH
CMFE BX,Cx ;jcompare TB8BE with 9FFF
JWC NEXT
ADD BX, 40008
NEXT: ADD C¥, 250H

In the above code, BX is smaller than CX (7888H < 9FFFH), which sets CF = 1, making "JNC
NEXT" fall through so that "ADD BX, 4000H" is executed.

In the example above, CX and BX still have their original values (CX = 9FFFH and BX =7888H)
after the execution of "CMP BX, CX".

Notice that CF is always checked for cases of greater or smaller than, but for equal, ZF must be

used.
TEME LB 7
MoW AL, TEME smove the TEMP wvariable into AL
CMP AL, 99 scompare AL with %9
JZ HOT_HOT if ZF=1 (TEMP = 39} jump to HOIT HOT
INC B ;otherwise (EF=0) increment BX
HOT HOT: HLT jhalt the system

The above program sample has a variable named TEMP, which is being checked to see if it has
reached 99.

In the following Program the CMP instruction is used to search for the highest byte in a series of 5 bytes

defined in the data segment.

v

v

The instruction "CMP AL, [BX]" works as follows ([BX] is the contents of the memory location
pointed at by register BX).

o If AL <[BX], then CF = 1 and [BX] becomes the basis of the new comparison.

e If AL > [BX], then CF = 0 and AL is the larger of the two values and remains the basis of

comparison.

Although JC (jump carry) and JNC (jump no carry) check the carry flag and can be used after a
compare instruction, it is recommended that JA (jump above) and JB (jump below) be used
because,

e The assemblers will unassembled JC as JB, and JNC as JA.
The below Program searches through five data items to find the highest grade.
The program has a variable called "Highest" that holds the highest grade found so far. One by
one, the grades are compared to Highest. If any of them is higher, that value is placed in Highest.
This continues until all data items are checked. A REPEAT-UNTIL structure was chosen in the
program design.
The program uses register AL to hold the highest grade found so far. AL is given the initial value
of 0. A loop is used to compare each of the 5 bytes with the value in AL.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v If AL contains a higher value, the loop continues to check the next byte. If AL is smaller than the
byte being checked, the contents of AL are replaced by that byte and the loop continues.

Assume that there is a class of five people with the following grades: 69, 87, 96, 45, and 75.
Find the highest grade.

TITLE PROG3-3 (EXE) CMF EXAMPLE
PRGE 60,132
-MODEL SMALL
LSTACE 64
P e e s
DATA
GRADES DB 60,87,96,453,73
ORG RpO0E
HIGHEST DB E
. CODE
MAIHN PROC FAR

MO AX¥, (DATA
MO DS, AX

MOV C¥,; 5 jeset up loop counter

MOV EX,0FFSET GRADES BX points to GRADE data

SUER AL, LL ;AL holds highest grade found se far
AGATIN: CMP AaL,[BX] jcompare next grade to highest

JB HEXT sjump if AL still highest

MO aL,[BX] jelse AL helds new highest
MNEXT: TN B ;point to next grade

LOOP GAIN ;ocontinue search

MOV HIGEEST, AL jatore highest grade

MoV AH, 4CH

INT Z1H fg0 back to 08
MATIH ENDF

END MATH

Program 3-3

NOTE:
There is a relationship between the pattem of lowercase and uppercase letters, as shown below for A and
a:
A 0100 0001 41H
a 0110 0001 61H
The only bit that changes is d5. To change from lowercase to uppercase , d5 must be masked.

Note that small and capital letters in ASCII have the following values:

Letter Hex Binary Letter Hex Binary

A 41 0100 0001 a 61 0110 0001
B 42 0100 0010 b 62 0110 0010
C 43 01000011 C 63 0110 0011
X 59 0101 1001 v 79 0111 1001
Z 5A 0101 1010 z TA 0111 1010

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Count = §
Highest =

Count = 5
Highesi = 0

REPEAT
IF (Mext > Highest)
THEN
Highest = Next
ENDIF
Decrement Count
UNTIL Count = 0

yes

L

Store Highest

Highest = next

Decrement cournt
[ncrement pointer

!

no yes

L 3§

Store Highest

O 5 5 e e

Fig: Flowchart and Pseudocode for Program 3-3

The following Program uses the CMP instruction to determine if an ASCII character is uppercase or
lowercase.
v The following Program first detects if the letter is in lowercase, and if it is, it is ANDed wit h
1101 1111B = DFH. Otherwise, it is simply left alone.
v' To determine if it is a lowercase letter, it is compared with 61H and 7AH to see if it is in the
range a to z. Anything above or below this range should be left alone.
In the following Program, 20H could have been subtracted from the lowercase letters instead of ANDing

with 1101 1111B.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

TITLE F 5 EXE} LOWERCASE T0 UPPERCASE CONVERSION
PAGE g0, 132
.MODEL SMALL
.STACK &4
« DATA
CATAL DB ‘m¥ NAME is jOe'
ORG 00ZCH
DATAZ LB 14 DUEB(?)
.CODE

MAIN PROC FAR
MOV AX, BDATA
MOV DS, BX
Mow SI,OFFSET DATRAL 78I pointe to original data
MOV BX,0FFSET DATAZ ;BX points to uppercase data

MOV CX, 14 ;CH is loop counter
BACK:MOV AL,[5I] ;get next character
CMP AL, 61H tif lass than ‘a’ :
JB OVER ;then no need to convert
CHEP AL, TRH jif greater than "z’
JA OVER jthen no need to convert
AND AL,11011L11E jmask dS to convert to uppercase
CVER:MOV [BX] ,AL jstore uppercase character
InC SI ;increment pointer to original
INC BX rincrement peointer to uppercase data
LOOE BACK jcontinue locping if CK > O
MOV AH,4CH
INT 21H ;go back to G5
MAIN ENDP
END MAIM
Program 3-4
Digit | BCD
BCD AND ASCII CONVERSION: 0 | 0000
o BCD (binary coded decimal) is needed because we use the digits 0 to 9 for 1 | 0001
numbers in everyday life. Binary representation of 0 to 9 is called BCD. 2 | 0010
o In computer literature, one encounters two terms for BCD numbers: (1) unpacked 3 0011
BCD, and (2) packed BCD. 4 10100
5 0101
Unpacked BCD: 6 | 0110
o Inunpacked BCD, the lower 4 bits of the number represent the BCD number and 7 | 0111
the rest of the bits are 0. 8 | 1000
e Example: "0000 1001" and "0000 0101" are unpacked BCD for 9 and 5, 9 |1001

respectively.
0 In the case of unpacked BCD it takes 1 byte of memory location or a register of 8 bits to contain

the number.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Packed BCD:
0 In the case of packed BCD, a single byte has two BCD numbers in it, one in the lower 4 bits and
one in the upper 4 bits.
e For example, "0101 1001" is packed BCD for 59.
0 It takes only 1 byte of memory to store the packed BCD operands. This is one reason to use

packed BCD since it is twice as efficient in storing data.

ASCI1 Numbers:
o0 In ASCII keyboards, when key "0" is activated, for example, "011 0000" (30H) is provided to the

computer. In the same way, 31H (011 0001) is provided for key "1", and so on, as shown in the

following list:
Key ASCII (hex) Binaxy BCD {unpacked)
0 30 011 0000 0000 0000
1 31 011 0001 0000 0001
2 32 011 0010 0000 0010
3 33 gLl Q011 QooQ 0011
4 34 011 0100 0000 0100
5 35 011 0101 0000 0101
6 36 011 9110 ocoo 0110
7 37 011 0111 0000 0111
g 38 011 1000 oood 1000
g 39 311 1001 0000 1001

It must be noted that, although ASCII is standard in many countries, BCD numbers have universal

application. So, the data conversion from ASCII to BCD and vice versa should be studied.

ASCII to BCD Conversion:
To process data in BCD, first the ASCII data provided by the keyboard must be converted to BCD.

Whether it should be converted to packed or unpacked BCD depends on the instructions to be used.

ASCII to Unpacked BCD Conversion:

To convert ASCII data to BCD, the programmer must get rid of the tagged "011" in the higher 4 bits of
the ASCII. To do that, each ASCII number is ANDed with "0000 1111" (OFH), as shown in the next
example. These programs show three different methods for converting the 10 ASCII digits to unpacked

BCD. All use the same data segment:

ASC LB '9562481273"
ORG 0010H
UNEACE DB 10 DUE(?)

The data is defined as DB.
¢ In the following Program 3-5a; the data is accessed in word-sized chunks.

e The Program 3-5b used the PTR directive to access the data.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

¢ The Program 5-3c uses the based addressing mode (BX+ASC is used as a pointer.

MOV CX,5

MOV BX,0FFSET ASC ;BX points to ASCII datsa

MOV DI,QFFSET UMFACE DI peints to unpacked BCD data
AGRIN: MoV AX,.[BX] smove next 2 ASCII numbers to AX

AND AX,0FOFH jremowve ASCII 3s

MOY [DI] ,AX :store unpacked BCD

ADD 0I,2 spoint to next unpacked BCD data

ADD BX,2 ;point te next RBASCII data

LOOPF AGAIN

Program 3-5a

MOV CX, 5 ;CX 1s loop counter

MOV BX,0FFSET ASC iBH points to ASCII data

MOow DI,QFFSET UNEACK :DI points te unpacked BCD data
AGRIN: MOV AXN,WORD PTR [BX] ;move next 2 ASCII numbers to AX

AND A¥,0FQOFH sremove ASCII 3s

MOV WORD PTR [DI],AX jstore unpacked BCD

ADD DI, ?2 spoint to next unpacked BCD data

ADD BX, 2 ipoint to next ASCII data

LOOP AGAIN

Program 3-5b

MOV CX,;10 ;load the counter
SUB | BX,BX jclear BX

AGRIN: MOV AL, ASC] BY] ijmove to AL content of mem [BX+ASC
AND AL,0FH :mask the upper nibble
MOV UMNPACE] BX] , AL jnove to mem [BX+UNPACE] the AL
INC BX jpoint to next byte
LOCP AGAIN ;loop until it is finished

Program 3-5¢
ASCII to Packed BCD Conversion:
To convert ASCII to packed BCD, it is first converted to unpacked BCD (to get rid of the 3) and then
combined to make packed BCD.
For example, for 9 and 5 the keyboard gives 39 and 35, respectively. The goal is to produce 95H or"1001 0101",

which is called packed BCD. This process is illustrated in detail below:

Key ASCH Unpacked BCD Packed BCD
4 34 Qoono100
7 37 oooe01il 0LO0011L or 47H
ORG Qol0oR
VAL ASC CB -
VAL BCD DB ?
;reminder: DB will put 34 in 0010H location and 37 in 0011H
MOV AX,WORD PTR VAL ASC ;AH=37,AL=34
AND RX, 0FOFH imask 3 to get unpacked BCD
XCHG, AH, AL ;jewap AH and AL.
Mo CL, 4 ;CL=04 to shift 4 times
SHL AH,CL jshift left AH to get” AH=40H
OR AL, AH ;OR them to get packed BCD
MO VAL BCD, AL isave the result

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

After this conversion, the packed BCD numbers are processed and the result will be in packed BCD
format. There are special instructions, such as DAA and DAS, which require that the data be in packed

BCD form and give the result in packed BCD.

e For the result to be displayed on the monitor or be printed by the printer, it must be in ASCII

format. Conversion from packed BCD to ASCII is discussed next.

Packed BCD to ASCII Conversion:
To convert packed BCD to ASCII, it must first be converted to unpacked and then the unpacked BCD is
tagged with 011 0000 (30H).
The following shows the process of converting from packed BCD to ASCII:
Packed BCD Unpacked BCD ASCI

29H 02H & 03H 32H & 39H
goi0 1001 o000 0010 & QOOQOQ 1001 Q11 Q010 & D11 1001

VALL _ECD DE 29H
WVALZ-AEC oW ?

MOV AL,VAL1_BCD

MOV BH, AL fjcopy AL te AH. now AH=29,AL=29H
AND RX,0F00FH smask 9 from AH and 2 from AL

MOV CL, ;CL=04 for shift

SHE AH,CL ishift right AH te get unpacked BCD
oR BM,3030H jocombine with 30 teo get ASCII

XCHE AH,AL tewap for ASCII storage convention

MOV VAL3 ASC,nd jstore the ASCII

e After learning bow to convert ASCII to BCD, the application of BCD numbers is the next step.
e There are two instructions that deal specifically with BCD numbers: DAA and DAS.

BCD Addition and Correction:
In BCD addition, after adding packed BCD numbers, the result is no longer BCD. Look at this example:

MoV AL,17H
ADD AL,Z8H

Adding them gives 0011 1111B (3FH), which is not BCD! A BCD number can- only have digits from
0000 to 1001 (or 0 to 9). The result above should have been 17+ 28 = 45 (0100 0101).
v To correct this problem, the programmer must add 6 (0110) to the low digit: 3F + 06 = 45H.
The same problem could have happened in the upper digit (for example, in 52H + 87H = D9H).
v Again to solve this problem, 6 must be added to the upper digit (D9H + 60H = 139H), to ensure
that the result is BCD (52 + 87 = 139).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

DAA
The DAA (decimal adjust for addition) instruction in x86 microprocessors is provided exactly for the
purpose of correcting the problem associated with BCD addition. DAA will add 6 to the lower nibble or
higher nibble if needed; otherwise, it will leave the result alone.
The following example will clarify these points:

DATAL DB 47H

DATAZ DB Z5H
DATAZ oB?

MOV AL,DATAI ;AL holds first BCD operand

MOV BL,DATAZ :BL holds second BCD operand

ADD AL,BL ;BCD addition

DAM radjust for BCD addition

MOV DATA3, AL ;store result in correct BCD form

After the program is executed, the DATAZ field will contain 72H (47 + 25 =72).
v Note that DAA works only on AL. In other words, while the source can be an operand of any
addressing mode, the destination must be AL in order for DAA to work.
v" It needs to be emphasized that DAA must be used after the addition of BCD operands and that
BCD operands can never have any digit greater than 9. In other words, no A-F digit is allowed.
v"Itis also important to note that DAA works only after an ADD instruction; it will not work after
the INC instruction.

Summary of DAA Action:
1. If after an ADD or ADC instruction the lower nibble (4 bits) is greater than 9, or if AF = 1, add
0110 to the lower 4 bits.
2. If the upper nibble is greater than 9, or if CF = 1, add 0110 to the upper nibble.

In reality there is no other use for the AF (auxiliary flag) except for BCD addition and correction. For
example, adding 29H and 18H will result in 41H, which is incorrect as far as BCD is concerned.

See the following code:

Hex BCD Hex BCD

29 o010 1001 33 G010 Q011
+ + 01 1000 + 72 + [Q11L Q101

ﬁ %%Ug o001 Because AF = | D8 1101 1000 Because the upper nibble 15 greater than 9,
+ B + 0110 DAA adds 6 to fower nibble, | + &+ 0110 DAA adds 6 to upper nibble.

17 0100 01i1l The final result is BCD, 128 0010 1000 The final result is BCD.

The above example shows that 6 is added to the upper nibble due to the fact it is greater than 9.

Egl: ; AL=0011 1001 =39 BCD
; CL=0001 0010 =12 BCD
ADD AL, CL ; AL =0100 1011 =4BH
DAA ; Since 1011 > 9; Add correction factor 06.

; AL =0101 0001 =51 BCD

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Eg2: ; AL =1001 0110 =96 BCD
; BL=0000 0111 =07 BCD
ADD AL, BL ; AL=1001 1101 =9DH
DAA ; Since 1101 > 9; Add correction factor 06

; AL =1010 0011 = A3H
; Since 1010 > 9; Add correction factor 60
; AL = 0000 0011 =03 BCD. The result is 103.

More Examples:
1: Add decimal numbers 22 and 18.

MOV AL, 22H ; (AL)=22H

ADD AL, 18H ; (AL) = 3AH lllegal, incorrect answer!

DAA ; (AL) =40H Just treat it as decimalwith CF =0
3AH In this case, DAA same as ADD AL, 06H

+06H When LS hex digit in AL is >9, add 6 to it

=40H

2: Add decimal numbers 93 and 34.

MOV AL, 93H ; (AL)=93H

ADD AL, 34H ; (AL) =C7H, CF =0 lllegal & Incorrect!

DAA ; (AL) = 27H Just treat it as decimal with CF =1
C7H In this case, DAA same as ADD AL, 60H

+60H When MS hex digit in AL is >9, add 6 to it

=27H

3: Add decimal numbers 93 and 84.

MOV AL, 93H ; (AL)=93H

ADD AL, 84H ; (AL) =17H, CF =1 Incorrect answer!

DAA ; (AL) = 77H Just treat it as decimal with CF = 1 (carry generated?)
17H In this case, DAA same as ADD AL, 60H

+60H When CF =1, add 6 to MS hex digit of AL and treat

=77H Carry as 1 even though not generated in this addition

4: Add decimal numbers 65 and 57.

MOV AL, 65H ; (AL)= 65H

ADD AL, 57H : (AL) = BCH

DAA ; (AL) = 22H Just treat it as decimal with CF =1
BCH In this case, DAA same as ADD AL, 66H

+66H

=22H CF=1

5: Add decimal numbers 99 and 28.

MOV AL, 99H ; (AL)=99H

ADD AL, 28H i (AL)=C1H,AF=1

DAA ; (AL) = 27H Just treat it as decimal with CF =1
C1H In this case, DAA same as ADD AL, 66H

+66H 6 added to LS hex digit of AL, as AF =1

=27H CF=1 6 added to MS hex digit of AL, as it is >9

6: Add decimal numbers 36 and 42.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

MOV AL, 36H ; (AL)=36H

ADD AL, 42H ; (AL) = 78H

DAA ; (AL) = 78H Just treat it as decimal with CF =0
78H

+00H In this case, DAA same as ADD AL, 00H

=78H

The following Program demonstrates the use of DAA after addition of multibyte packed BCD numbers.

[Two sets of ASCII data have come in from the keyboard. Write and run a program to:
1. Convert from ASCII to packed BCD.
2. Add the multibyte packed BCD and save it.
3. Convert the packed BCD result to ASCIL
TITLE PROG3-6 [EXE) ASCII TO BCD CONVERSION AND ADDITION
PAGE 60,132
MODE SMALL
.STARCE B4
. DATA)
DATR1 ASC DB "DE4914781e"
ORG 0010H
DATRZ ASC DB "0072687188" .
ORG 0020H
DATAZ BCD DR & DUP (?)
ORG 0028H
DATRA BCD DB 5 DUER ()
ORG OD30H
DATAS RDD DB 5 DUE (7}
ORG 0040H
DATAE ASC DB 10 DUE (7}
. CODE
MATIN PROC FAR
MOV AX, @DATA
MOV DS, AX
MOV BX,OFFSET DATAL_ASC iBX points to Eirst ASCII data
Mo OI,OFFSET DATA3 BCD :DI points to first BCD data
MoV C¥,10 ;CX holds number bytes to convert
CALL COWNV_BCD joonvert ASCII te BCD
MOV B¥,0FFSET DATARZ ASC ;BX points to second ASCII data
MO DI, OFFSET DATA#:BCD :DI points to sacond BCD data
MOV C¥,10 ;C¥X holds number bhytes to convert
CALL CONV_BCD joconvert ASCII to BCD
CARLL BCD ADD ;add the BCD operands
MOV SI;0FFSET DATAS ADD iSI polints to BCD result
MOV DI, OFFSET DhThE:ﬁSC ;DI points to ASCII result
MOV CX.05 ;CX holds count for convert
CALL CONV_ASC jconvert result to ASCII
MOV AH, 4ACH
INT 21H igo back to OS5
MATN EMNDF

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

;THIS SUBROUTINE CONVERTS ASCII TO PACKED BCD
CoONV BCD FROC

AGAIN: MOV a¥,[BX) tBX=pointer for ASCII data
XCHG AH,AL ;
AND E¥, OFOFH ;mask ASCII 3s
PUSH CX ;save the counter
MOV cL, 4 ishift AH left 4 bits
SHL AH,CL yto get ready for packing
Ok AL, AH " jcombine to make packed BCD
MOV [DI] ;AL iDI=pointer for BCD data
ADD B¥, 2 ;point to next 2 ASCII bytes
INC DI fpoint to next BCD data
POP° CX ;restore loop counter
LODP AGCAIN
RET

CONV_BCD ENDP

;THIS SUBRQUTINE ADDS TWO NMULTIBYTE PACKED BCD OPERARNDS
BCD_ADD FROC

MOV BX,OFFSET DATA3_BCD sBX=pointer for operand 1
MOV DI,OFFSET DATA4 BCD ;DI=pointer for operand 2
MOV SXI,0FFSET DATAE:ADD i 8I=pointer for sum

MOV CX, 05

CLC

BACK: MOV BRL,[BX] +4 ;get next byte of operand L
ADC AL,[DI]+4 ;add next byte of operand 2

DA jcorrect for BCD addition

MOV [5I)] %4,AL j;save sum

DEC. BX ;point to next byte of coperand 1
DEC DI ipoint toc next byte of operand 2
DEC SI jpoint to next byte of sum

LOOP BACEK

EET

BCD_ADD ENLP

;THIS SUBROUTINE CONVERTS FROM PACKED BCD TO ASCII
COWV_ASC FROC

AGRINZ: MOV AL,[5I) :S3I=pointer for BCD data
MOV BH, AL jduplicate to unpack
BND - AX,0F00FH junpack
PUSH CX ;save counter
MOV CL, 04 ;jshift right 4 bits to unpack
SHR AH,CL jthe upper nibble
OR EY, 3030 smake it ASCII
XCHG AH,AL sewap for ASCII storage convention
MOV [DI] , AX retore ASCIT data
INC sI ;point to next BCD data
ADD DI, 2 jpoint to next ASCII data
BOPE CX ;restore loop counter
LOOP AGAINZ
RET
CONV_ASC ENDF
END MAIN
Program 3-6

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

BCD Subtraction and Correction:
The problem associated with the addition of packed BCD numbers also shows up in subtraction. Again,
there is an instruction (DAS) specifically designed to solve the problem.
Therefore, when subtracting packed BCD (single-byte or multibyte) operands, the DAS instruction is put
after the SUB or SBB instruction. AL must be used as the destination register to make DAS work.
Summary of DAS Action:

1. If after a SUB or SBB instruction the lower nibble is greater than 9, or if AF =1, subtract 0110

from the lower 4 bits.

2. If the upper nibble is greater than 9, or CF = 1, subtract 0110 from the upper nibble.
Due to the widespread use of BCD numbers, a specific data directive, DT, has been created. DT can be
used to represent BCD numbers from 0 to 10% — 1 (that is, twenty 9s).
Assume that the following operands represent the budget, the expenses, and the balance, which is the

budget minus the expenses.

BUDGET oT 87985141012
EXPENSES DT 31610840392
BALANCE DT ? ;balanca = budget - expenses
MOV CX,10 joountar=10
MOV B¥,00 ;pointer=0
CLC iclear carrcy for the 1st iteration

BACK: MOVAL,BYTE PTR BUDGET BX] ;get a byte of the BUDGET
S5B2 AL,BYTE FTE EXPENSES[BX] ;subtract a bvte from it

DAS jeorrect the result for BCD
Mo BYTE PTE BALANCEH BX] ,AL ;=zave it in BALANCE
INC BX tincrement for the next byte
LOOF BACK ;continue until CX=0

Notice in the code section above that,
v no H (hex) indicator is needed for BCD numbers when using the DT directive, and
v’ the use of the based relative addressing mode (BX + displacement) allows access to all three

arrays with a single register BX.

Egl: ; AL =0011 0010 =32 BCD
; CL=00010111=17 BCD

SUB AL, CL ; AL=0001 1011 = 1BH
DAS ; Subtract 06, since 1011 > 9.

; AL =0001 0101 =15 BCD

Eg2: ; AL =0010 0011 =23 BCD
; CL =0101 1000 =58 BCD
SUB AL, CL ; AL =1100 1011 =CBH
DAS ; Subtract 66, since 1100 >9 & 1011 > 9.

; AL =0110 0101 =65 BCD, CF=1.
: Since CF =1, answer is — 65.

MAHESH PRASANNA K., VCET, PUTTUR

More Examples:

MICROPROCESSORS AND MICROCONTROLLERS

1: Subtract decimal numbers 45 and 38.

MOV AL, 45H
SUB AL, 38H
DAS

ODH
-06H
=07H

; (AL)=45H
; (AL) = 0DH Illegal, incorrect answer!
; (AL) =07H Just treat it as decimal with Cy =0

In this case, DAS same as SUB AL, 06H
When LS hex digit in AL is >9, subtract 6

2: Subtract decimal numbers 63 and 88.

MOV AL, 63H
SUB AL, 88H
DAS

DBH
-66H
=75H

; (AL)=63H
; (AL) = DBH, Cy=1 lllegal & Incorrect!
; (AL) = 75H Just treat it as decimal with Cy = 1 (carry generated?)

In this case, DAS same as SUB AL, 66H

When Cy =1, it means result is negative

Result is 75, which is 10’s complement of 25

Treat Cy as 1 as Cy was generated in the previous subtraction itself!

3: Subtract decimal numbers 45 and 52.

MOV AL, 45H
SUB AL, 52H
DAS

F3H
-60H
=93H

: (AL)= 45H
; (AL)=F3H, Cy =1 Incorrect answer!
; (AL) = 93H Just treat it as decimal with Cy = 1 (carry generated?)

In this case, DAS same as SUB AL, 60H
When Cy =1, it means result is negative
Result is 93, which is 10’s complement of 07

4: Subtract decimal numbers 50 and 19.

MOV AL, 50H
SUB AL, 19H
DAS

37H
-06H
=31H

: (AL)= 50H
:(AL)=37H, Ac=1
; (AL) = 31H Just treat it as decimal with Cy =0

In this case, DAS same as SUB AL, 06H
06H is subtracted from AL as Ac =1

5: Subtract decimal numbers 99 and 88.

MOV AL, 99H
SUB AL, 88H
DAS

11H
-00H
=11H

; (AL)=99H
; (AL) = 11H
; (AL) = 11H Just treat it as decimal with Cy = 0

In this case, DAS same as SUB AL, 00H

6: Subtract decimal numbers 14 and 92.

MOV AL, 14H
SUB AL, 92H
DAS

82H
-60H
=22H

; (AL)= 14H
;(AL)=82H,Cy=1
; (AL) = 22H Just treat it as decimal with Cy =1

In this case, DAS same as SUB AL, 60H
60H is subtracted from ALasCy =1
22 is 10’s complement of 78

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

ROTATE INSTRUCTIONS:

In many applications there is a need to perform a bitwise rotation of an operand. The rotation instructions

ROR, ROL and RCR, RCL are designed specifically for that purpose. They allow a program to rotate an

operand right or left.

o In rotate instructions, the operand can be in a register or memory. If the number of times an

operand is to be rotated is more than 1, this is indicated by CL. This is similar to the shift

instructions.

0 There are two types of rotations. One is a simple rotation of the bits of the operand, and the other

is a rotation through the carry.

ROR (rotate right)

In rotate right, as bits are shifted from left to right they exit from the right end (LSB) and enter the left

end (MSB). In addition, as each bit exits the LSB, a copy of it is given to the carry flag. In other words, in

ROR, the LSB is moved to the MSB and is also copied to CF, as shown in the diagram.

c

L

If the operand is to be rotated once, the 1 is coded, but if it is to be rotated more than once, register CL is

used to hold the number of times it is to be rotated.

Eg:
ROR BH, 1 R/IM Cy
B o gl
Rotate right without Cy Before After
BH 0100 0010 0010 0001
Cy 1 0
MOV AL, 36H ;AL=0011 01190
EOR AL,1 FAL=0001 1011 CF=0
ROR AL, 1 JAL=1000 1101 CF=1
EOR AL,1 FAL=1100 0110 CF=1
ror
MO AL, 36H JAL=0011 0110
MO CL, 3 JCL=3 number of times to rotate
ROR AL, CL ;AL=1100 0110 CF=1
;the operand can be a word:
MOV BX, OCTESH JB¥=1100 0111 1110 0101
MOV CL, & iCL=6 number of times to rotate
BOR BX.CL ;B¥=1001 0111 0001 1111 CF=1

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

L (rotate left)

In rotate left, as bits are shifted from right to left they exit the left end (MSB) and enter the right end
(LSB). In addition, every bit that leaves the MSB is copied to the carry flag. In other words, in ROL the
MSB is moved to the LSB and is also copied to CF, as shown in the diagram.

c

L]

If the operand is to be rotated once, the 1 is coded. Otherwise, the number of times it is to be rotated is in

CL. Eg:
ROL BH, CL Cy R/IM
i —
Rotate left without Cy Before After
BH 0010 0010 | 1000 1000 |
CL 02H
Cy 1 | 0 \
MoV BH, 7T2H ;EH=0111 0QOLO
ROL EH,1 ;BH=1110 0100 CF=0
BOL BH, 1 ;EH=1100 1001 CF=1
ROL BH,1 ;EH=1001 0011 CF=1
ROL BH,1 ;EH=0010 0111 CF=1
Fors
MOV EBH, 72H fBH=0111 QOLO
MO CL,4 FCL=4 number of times Lo roLate
ROL BH, CL ;BH=0010 Q111 CF=1
! The operand can be a word:
MOV DK, 67280 ;DX=0110 0111 0010 1C10
MO CL,;3 ;CL=32 numbar of times to rotate

EOL L¥,CL ;Dx¥=0011 1001 0101 0011 CF=1

The following Program shows an application of the rotation instruction. The maximum count in Program
will be 8 since the program is counting the number of 1s in a byte of data. If the operand is a 16-bit word,

the number of 1s can go as high as 16.

Write a program that finds the number of 1s in a byte,
tFrom the data segmant:
DATAL DB 97H
COUNT DB 7
:From the code segmant:
5UB BEL,BL jeclear BL to keep the number of 1s
MOV DL, & jrotate total of 8 times
MOV AL,DATAL
AGAIN: ROL AL,1 jrotate it once
C HEXT ;check for 1
INC BL ;1f CF=1 then add one to count
MEXT: DEC DL fgo through this 8 times
JNE AGRIN ;if not finished go back
Mo COUNT,BL ;zsave the number of l1ls

Program 3-7
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

The Program is similar to the previous one, rewritten for a word-sized operand. It also provides the count
in BCD format instead of hex. Reminder: AL is used to make a BCD counter because the because, the

DAA instruction works only on AL.

Write a program to count the number of 15 in a word. Provide the count in BCD.
DATAW]1 oW 97F4H
COUNTZ ‘DB 7
SUB AL,AL fclear AL to keep the number of 1s in BCD
MOV bDL,1& :rotate total of 16 times
MOV BX,DATAW] ;move the operand to BX
AGARIN: BOL BX,1 ;rotate it once
JNC NEXT icheck for 1. If CF=0 then jump
ADD AL,1 ;if CF=1 then add one to count
DAR tadjust the count for BCD
NEXT: DEC DL tge through this 16 times
JHZ AGARIN i1f not finished go back
MOV COUNTZ,AL ;save the number of 13 in COUNTZ

Program 3-8

RCR (rotate right through carry)
In RCR, as bits are shifted from left to right, they exit the right end (LSB) to the carry flag, and the carry
flag enters the left end (MSB). In other words, in RCR the LSB is moved to CF and CF is moved to the
MSB. In reality, CF acts as if it is part of the operand. This is shown in the diagram.

C

If the operand is to be rotated once, the 1 is coded, but if it is to be rotated more than once, the register CL

holds the number of times.

Eg:
RCR BH, 1 R/IM Cy
|
Rotate right with Cy Before After
BH 0100 0010 1010 0001
Cy 1 0

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

clC imake CF=0
Mo AL, Z28H +AL=0010 C110
ECE AL, 1 +AL=0001 0011 CF=0
ECE AL,1 tBL=0000 1001 CF=1
RCR ALl ;AL=1000 Q100 CF=1
or: .
CLC jmake CF=0
MOV AL, 26H ;AL=0010 0110
MoV L3 ;CL=3 gumber of times to rotate
RCER AL,CL tAL=1000 Q0100 CF=1

;the cperand can be a word

STC imake CF=1

MoV BX, 37F1H ;BX=0011 0111 1111 0001

MOV 3 B 1CL=5 number of times to rotate
ECER BX,CL sBX=0001 1001 1011 1111 CF=0

RCL (rotate left through carry)

In RCL, as bits are shifted from right to left, they exit the left end (MSB) and enter the carry flag, and the
carry flag enters the right end (LSB). In other words, in RCL the MSB is moved to CF and CF is moved
to the LSB. In reality, CF acts as if it is part of the operand. This is shown in the following diagram.

-

If the operand is to be rotated once, the 1 is coded, but if it is to be rotated more than once, register CL

holds the number of times.

Eg:
RCL BH, CL Cy R/M
e «
Rotate left with Cy Before After
BH 0010 0010 | 1000 1010 |
CL 02H
Cy 1 | 0 |
5TC ijmake CEF=1
MoV BL, 15H ;BL=0001 0101
RCL BL,1 ' :0010 1011 CF=0
RCL EL,1 0101 QllO CF=(
ar:
STC ;make CF=1
Mo BL,15H ;BL=0001 0101
MOV CL, 2 ;CL=2 number of times for rotation
RCL BL,CL ;BL=0101 0110 CF=0
sthe cperand can be a word: :
CLC rmake CF=0
MOV RX,191CH FAX=0001 1001 Q001 1100
MO CL, S iCL=5 number of times to rotate
RCL LX,CL s BX=0010 0011 1000 0001l CF=l

MAHESH PRASANNA K., VCET, PUTTUR

8088/86

MICROPROCESSORS AND MICROCONTROLLERS

INTERRUPTS IN x86 PC

INTERRUPTS

(0]

(0}

An interrupt is an external event that informs the CPU that a device needs its service. In 8088/86,
there are 256 interrupts: INT 00, INT 01, ..., INT FF (sometimes called TYPES).

When an interrupt is executed, the microprocessor automatically saves the flag register (FR), the
instruction pointer (IP), and the code segment register (CS) on the stack; and goes to a fixed

memory location.

0 In x86 PCs, the memory locations to which an interrupt goes is always four times the value of the
interrupt number. For example, INT 03 will go to address 0000CH (4 * 3 = 12 = OCH). The
following Table is a partial list of the interrupt vector table.

Table: Interrupt Vector
Cs
— }INT FF
0003FC IP _j
INT Physical Logical :
Number | Address Address
INT 00 00000 0000 - 0000
INTOL | 00004 | 0000 — 0004) } INT 08
ooo1s | IP
INT 02 00008 0000 — 0008 . CSs }INT 05
00014 P
INT 03 0000C 0000 - 000C - cs
} INT 04 signed number overflow
INT 04 00010 0000 - 0010 00010 (':F'S
INTO5 | 00014 | 0000 - 0014 T P FINT 93 breatpolnt
= }INT 02 NMI
00008 L
INT FF 003FC 0000 - 03FC cs 3 INT 61 signad-step
00004 P
i) } INT 00 divide error
00000 1P

Interrupt Service Routine (ISR):

v
v

For every interrupt there must be a program associated with it.

When an interrupt is invoked, it is asked to run a program to perform a certain service. This
program is commonly referred to as an interrupt service routine (ISR). The interrupt service
routine is also called the interrupt handler.

When an interrupt is invoked, the CPU runs the interrupt service routine. As shown in the above
Table, for every interrupt there are allocated four bytes of memory in the interrupt vector table.
Two bytes are for the IP and the other two are for the CS of the ISR.

These four memory locations provide the addresses of the interrupt service routine for which the
interrupt was invoked. Thus the lowest 1024 bytes (256 x 4 = 1024) of memory space are set
aside for the interrupt vector table and must not be used for any other function.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Find the physical and logical addresses in the interrupt vector table associated with:
(a) INT 12H {b) INT 8

Solution;

(a) The physical addresses for INT 12H are 00048H~0004BH since (4 x 12H = 48H). That_
means that the physical memory locations 48H, 49H, 4AH, and 4BH are set aside for the CS
and IP of the ISR belonging to INT 12H. The logical address is 0000:0048H-0000:004BH.

(b) For INT 8, we have 8 x 4 = 32 = 20H; therefore, memory addresses 00020H,

00021H, 00022H, and 00023H in the interrupt vector table hold the CS:IP of the INT 8 ISR.
The logical address is 0000:0020H—0000;0023H.

Difference between INT and CALL Instructions:

The INT instruction saves the CS: IP of the following instruction and jumps indirectly to the subroutine
associated with the interrupt. A CALL FAR instruction also saves the CS: IP and jumps to the desired
subroutine (procedure).

The differences can be summarized as follows:

CALL Instruction

INT instruction

A CALL FAR instruction can jump to any
location within the 1M byte address range
of the 8088/86 CPU.

INT nn goes to a fixed memory location in
the interrupt vector table to get the address

of the interrupt service routine.

A CALL FAR instruction is used by the
programmer in the sequence of

instructions in the program.

An externally activated hardware interrupt
can come-in at any time, requesting the
attention of the CPU.

A CALL FAR instruction cannot be
masked (disabled).

INT nn belonging to externally activated

hardware interrupts can be masked.

A CALL FAR instruction automatically
saves only CS: IP of the next instruction

on the stack.

INT nn saves FR (flag register) in addition
to CS: IP of the next instruction.

At the end of the subroutine that has been
called by the CALL FAR instruction, the
RETF (return FAR) is the last instruction.
RETF pops CS and IP off the stack.

The last instruction in the interrupt service
routine (ISR) for INT nn is the instruction
IRET (interrupt return). IRET pops off the
FR (flag register) in addition to CS and IP.

Processing Interrupts:
When the 8088/86 processes any interrupt (software or hardware), it goes through the following steps:
1. The flag register (FR) is pushed onto the stack and SP is decremented by 2, since FR is a 2-byte

register.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

IF (interrupt enable flag) and TF (trap flag) are both cleared (IF = 0 and TF = 0). This masks
(causes the system to ignore) interrupt requests from the INTR pin and disables single stepping
while the CPU is executing the interrupt service routine.

The current CS is pushed onto the stack and SP is decremented by 2.

The current IP is pushed onto the stack and SP is decremented by 2.

The INT number (type) is multiplied by 4 to get the physical address of the location within the
vector table to fetch the CS and IP of the interrupt service routine.

From the new CS: IP, the CPU starts to fetch and execute instructions belonging to the ISR
program.

The last instruction of the interrupt service routine must be IRET, to get IP, CS, and FR back

from the stack and make the CPU run the code where it left off.

The following Figure summarizes these steps in diagram form.

@Am LINE w
PROGRAM INTERRUPT
SERVICE
PUSH FLAGS PROCEDURE

CLEAR IF / PUSH
CLEAR TF
PUSH CS REGISTERS
v PUSH IP
FETCH ISR ADDRESS
; \ POP IP
POP CS
Y POP FLAGS \r POP REGISTERS
G IRET)

Categories of Interrupts:
INT nn is a 2-byte instruction where the first byte is for the opcode and the second byte is the interrupt
number. We can have a maximum of 256 (INT 00 INT FFH) interrupts. Of these 256 interrupts, some are

used for software interrupts and some are for hardware interrupts.

1.

(0}

Hardware Interrupts:

There are three pins in the x86 that are associated with hardware interrupts. They are INTR
(interrupt request), NMI (non-maskable interrupt), and INTA (interrupt acknowledge).

INTR is an input signal into the CPU, which can be masked (ignored) and unmasked through the

use of instructions CLI (clear interrupt flag) and ST (set interrupt flag).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o If IF =0 (in flag register), all hardware interrupt requests through INTR are ignored. This has no
effect on interrupts coming from the NMI pin. The instruction CLI (clear interrupt flag) will make
IF=0.

0 To allow interrupt request through the INTR pin, this flag must be set to one (IF = 1). The STI
(set interrupt flag) instruction can be used to set IF to 1.

0 NMI, which is also an input signal into the CPU, cannot be masked and unmasked using

instructions CLI and STI; and for this reason it is called a non-maskable interrupt.

o0 INTR and NMI are activated externally by putting 5V on the pins of NMI and INTR of the x86
microprocessor.

0 When either of these interrupts is activated, the x86 finishes the instruction that it is executing,
pushes FR and the CS: IP of the next instruction onto the stack, then jumps to a fixed location in
the interrupt vector table and fetches the CS: IP for the interrupt service routine (ISR) associated
with that interrupt.

0 At the end of the ISR, the IRET instruction causes the CPU to get (pop) back its original FR and
CS: IP from the stack, thereby forcing the CPU to continue at the instruction where it left off

when the interrupt came in.

e Intel has embedded "INT 02" into the x86 microprocessor to be used only for NMI.

e Whenever the NMI pin is activated, the CPU will go to memory location 00008 to get the address
(CS: IP) of the interrupt service routine (ISR) associated with NMI.

e Memory locations 00008, 00009, 0000A, and 0000B contain the 4 bytes of CS: IP of the ISR
belonging to NMI.

e The 8259 programmable interrupt controller (PIC) chip can be connected to INTR to expand the

number of hardware interrupts to 64.

/ 8086

8259 \

e
————————
l—
«———— | INTERRUPT
«—— [INPUTS

l———————
* |
VT I PO AR Foa el

——d INTA INT
r+ INER o 10

INTERRUPT AND
TYPE TO 8086
0 < DO

A

o
T
o

e o e 0 2 0
A

* ® o o o @

e e o 0o e

5

INTA |——

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Software Interrupts:

If an ISR is called upon as a result of the execution of an x86 instruction such as "INT nn", it is
referred to as software interrupt, since it was invoked from software, not from external hardware.
Examples of such interrupts are DOS "INT 21H" function calls and video interrupts "INT 10H".
These interrupts can be invoked in the sequence of code just like any other x86 instruction.

Many of the interrupts in this category are used by the MS DOS operating system and IBM BIOS
to perform essential tasks that every computer must provide to the system and the user.

Within this group of interrupts there are also some predefined functions associated with some of
the interrupts. They are "INT 00" (divide error), "INT 01" (single step), "INT 03" (breakpoint),
and "INT 04" (signed number overflow). Each is described below.

The rest of the interrupts from "INT 05" to "INT FF" can be used to implement either software or

hardware interrupts.

Functions associated with INT 00 to INT 04:

Interrupts INT 00 to INT 04 have predefined tasks (functions) and cannot be used in any other way.

INT 00 (divide error)

v

This interrupt belongs to the category of interrupts referred to as conditional or exception
interrupts. Internally, they are invoked by the microprocessor whenever there are conditions
(exceptions) that the CPU is unable to handle.

One such situation is an attempt to divide a number by zero. Since the result of dividing a number
by zero is undefined, and the CPU has no way of handling such a result, it automatically invokes
the divide error exception interrupt.

In the 8088/86 microprocessor, out of 256 interrupts, Intel has set aside only INT O for the
exception interrupt.

INT 00 is invoked by the microprocessor whenever there is an attempt to divide a number by
zero.

In the x86 PC, the service subroutine for this interrupt is responsible for displaying the message
"DIVIDE ERROR" on the screen if a program such as the following is executed:

MO AL, 972 s BAL=92
EUB CL,CL : CL=0
DIV CL ;92 /0=undefined result

INT 0 is also invoked if the quotient is too large to fit into the assigned register when executing a

DIV instruction. Look at the following case:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

MOW AX,OFFFFH fAX=FFFFH

MOV BL, 2 ;BL=2

DIV EL €5535/2 = 32767 larger than 255
smaximum capacity of AL

INT 01 (single step)

v

In executing a sequence of instructions, there is a need to examine the contents of the CPU's
registers and system memory. This is often done by executing the program one instruction at a
time and then inspecting registers and memory. This is commonly referred to as single-stepping,
or performing a trace.

Intel has designated INT 01 specifically for implementation of single-stepping. To single-step, the
trap flag (TF) (D8 of the flag register), must be set to 1. Then after execution of each instruction,
the 8088/86 automatically jumps to physical location 00004 to fetch the 4 bytes for CS: IP of the
interrupt service routine, which will dump the registers onto the screen.

Intel has not provided any specific instruction for to set or reset (unlike IF, which uses STI and
CLI instructions to set or reset), the TF; one can write a simple program to do that. The following

shows how to make TF = 0:

PUSHF

POP AX

AND AX,1111111011111111B
PUSH AX

POPF

Recall that, TF is D8 of the flag register.

To make TF = 1, one simply uses the OR instruction in place of the AND instruction above.

INT 02 (non-maskable interrupt)

v"All Intel x86 microprocessors have a pin designated NMI. It is an active-high input. Intel has set

aside INT 2 for the NMI interrupt. Whenever the NMI pin of the x86 is activated by a high (5 V)
signal, the CPU jumps to physical memory location 00008 to fetch the CS: IP of the interrupt
service routine associated with NMI.

The NMI input is often used for major system faults, such as power failures. The NMI interrupt
will be caused whenever AC power drops out. In response to this interrupt, the microprocessor

stores all of the internal registers in a battery-backed-up memory or an EEPROM.

INT 03 (breakpoint)
v' To allow implementation of breakpoints in software engineering, Intel has set aside INT 03.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

In single-step mode, one can inspect the CPU and system memory after the execution of each
instruction, a breakpoint is used to examine the CPU and memory after the execution of a group
of instructions.

INT 3 is a 1-byte instruction; where as all other “INT nn” instructions are 2-byte instructions.

INT 04 (signed number overflow)

4

MO
MOV
ADD
INTO

This interrupt is invoked by a signed number overflow condition. There is an instruction
associated with this, INTO (interrupt on overflow).

The CPU will activate INT 04 if OF = 1. In cases, where OF = 0, the INTO instruction is not
executed; but is bypassed and acts as a NOP (no operation) instruction.

To understand this, look at the following example: Suppose in the following program; DATA1=
+64 = 0100 0000 and DATAZ2 = +64 = 0100 0000. The INTO instruction will be executed and the
8088/86 will jump to physical location 00010H, the memory location associated with INT 04.
The carry from D6 to D7 causes the overflow flag to become I.

Now, the INTO causes the CPU to perform "INT 4" and jump to physical location 00010H of the

vector table to get the CS: IP of the service routine.

AL, DATAL + 64 0100 0000
BL, DATAZ + + 64 0100 0000)
AL, B;; add BL to AL +128 1000 0000 OF=1 and the result is not +128

Suppose that the data in the above program was DATAL = +64 and DATA2 = +17. In that case,
OF would become 0; the INTO is not executed and acts simply as a NOP (no operation)

instruction.

x86 PC AND INTERRUPT ASSIGNMENT:

(0}

Of the 256 possible interrupts in the x86;
v some are used by the PC peripheral hardware (BIOS)
v some are used by the Microsoft operating system

v'the rest are available for programmers of software applications.

.[For a given ISR, the logical address is FOO0:FF53. Verify that the physical address is FFF53H.

Solution:

Since the logical address is FOO0:FF53, this means that CS = FOOOH and [P = FF53H. Shifting
left the segment register one hex digit and adding it to the offset gives the physical address

FFF53H.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

INT 21H & INT 10H PROGRAMMING

The INT instruction has the following format:

INT =xx;the interrupt number xx can be 00 - FFH

Interrupts are numbered 00 to FF; this gives a total of 256 interrupts in x86 microprocessors. Of these 256

interrupts, two of them are the most widely used: INT 10H and INT 21H.

BI1OS INT 10H PROGRAMMING:
0 INT 10H subroutines are burned into the ROM BIOS of the x86-based IBM PC and compatibles

and are used to communicate with the computer's screen video. The manipulation of screen text

or graphics can be done through INT 10H.
0 There are many functions associated with INT 10H. Among them are changing the color of
characters or the background color, clearing the screen, and changing the location of the cursor.

0 These options are chosen by putting a specific value in register AH.

Monitor Screen in Text Mode:
v" The monitor screen in the x86 PC is divided into 80 columns and 25 rows in normal text mode
(see the following Fig). In other words, the text screen is 80 characters wide by 25 characters

long.

Decimal Hex

ﬁU,DU ['I['I_T‘?\ (/{]_ﬂﬁm ﬂﬂm

screen centler SCreen center
12, 39 0cz27

24,00 24.79 1&.00 18,4F
X A X i

Fig: Cursor Locations (row, column)

v Since both a row and a column number are associated with each location on the screen, one can
move the cursor to any location on the screen simply by changing the row and column values.

v" The 80 columns are numbered from 0 to 79 and the 25 rows are numbered O to 24. The top left
comer has been assigned 00, 00 (row = 00, column = 00). Therefore, the top right comer will be
00, 79 (row = 00, column = 79).

v Similarly, the bottom left comer is 24, 00 (row = 24, column = 00) and the bottom right corner of

the monitor is 24, 79 (row = 24, column = 79).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

INT-10H Function 06H: Clearing the Screen
To clear the screen before displaying data; the following registers must contain certain values before INT
10H is called: AH = 06, AL = 00, BH = 07, CX = 0000, DH = 24, and DL= 79. The code will look like

this:

Mo RH, OB ;AH=0& to select scroll function
MoV AL, 0D i AL=00 the entire page

Mo EH, Q7 ;BH=(7 for normal attribute

Mo CH, 0O JCH=00 row wvalue of start point
MoV CL, 00 JCL=00 column wvalue of start point
MoV OH, 24 ;DH=24 row wvalue of ending point
Mo 0L, 79 DL=T72 ecolumn value of ending point
INT 10H sinvoke the interrupt

Remember that DEBUG assumes immediate operands to be in hex; therefore, DX would be
entered as 184F. However, MASM assumes immediate operands to be in decimal. In that case
DH =24 and DL = 79.

In the program above, one of many options of INT 10H was chosen by putting 06 into AH.
Option AH =06, called the scroll function, will cause the screen to scroll upward.

The CH and CL registers hold the starting row and column, respectively, and DH and DL hold
the ending row and column.

To clear the entire screen, one must use the top left cursor position of 00, 00 for the start point
and the bottom right position of 24, 79 for the end point.

Option AH = 06 of INT 10H is in reality the "scroll window up" function; therefore, one could
use that to make a window of any size by choosing appropriate values for the start and end rows

and columns.

To clear the screen, the top left and bottom right values are used for start and stop points in order
to scroll up the entire screen. It is more efficient coding to clear the screen by combining some of
the lines above as follows:

Mow A¥, 0e00H jscroll entire screen

MOV BH, 07 snormal attribute

MOV CX, 0000 jatmrt at 00,00

MOV DX, 1B4FH jend at 24,79 thex = 18, 4F)
INT 10H iinvoke the lnterrupt

INT 10H Function 02: Setting the Cursor to a Specific Location

v
v

INT 10H function AH = 02 will change the position of the cursor to any location.

The desired position of the cursor is identified by the row and column values in DX, where DH =
row and DL = column.

Video RAM can have multiple pages of text, but only one of them can be viewed at a time. When
AH = 02, to set the cursor position, page zero is chosen by making BH = 00.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Write the code to set the cursor position to row = |5 = 0FH and column = 25 = |9H.

Solution:
MOV BH, 02 PE2Ll SUrSor option
MOV BH,00 ipage 0
MOV DL, 25 reolumn positicn
MOV DH,15 irow position
INT 10E jinvoke interrupt 10H

Write a program that (1) ¢lears the screen and (2) sets the cuisor at the center of the screen.

Solution:

The center of the screen is the point at which the middie row.and middle column meet. Row 12
15 at the middle of rows 0 to 24 and column 39 (or 409 15 at the middle of columns 0 to 79. By
setting row = DH = 12 and column = DL = 39, the cursor is set o the screen center.

relearing tha. scraen
MOV RX, 0600H :scroll the eatire page

MO EH, 07 rnormal aAttribote

MOV Cx, 0000 jrow and céldmn: of top. left

MOV Di, 184FH jrow and columm of bottom right
INT 10H jinvake the video BIGSE servic

;setting the cursor to the center of screen

MOV AH, 02 ;set cursoriepbtion

MOV EH, 00 rpaget O

MOV DL, 39 jeceniter column position
MOV DH 12 joenter row position
INT 10H finvoke dnterrupt 10H

INT 10H Function 03: Get Current Cursor Position
In text mode, it is possible to determine where the cursor is located at any time by executing the

following:
MOV AH,03 ;option 03 of BIOS INT 10H
MoV BH, 00 ipage 00
INT 10H sinterrupt 10H routine

v’ After execution of the program above, registers DH and DL will have the current row and column
positions, and CX provides information about the shape of the cursor.

v The reason that page 00 was chosen is that the video memory could contain more than one page
of data, depending on the video board installed on the PC.

v In text mode, page 00 is chosen for the currently viewed page.

Attribute Byte in Monochrome Monitors:
v" There is an attribute associated with each character on the screen.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

The attribute provides information to the video circuitry, such as color and intensity of the

character (foreground) and the background.
v The attribute byte for each character on the monochrome monitor is limited. The following Fig
shows bit definitions of the monochrome attribute byte.

D7 Do | DE | D4 | D3] D2 | D1 D

| R] PR | : .
—|fareground intensity I

0 = normal inteasity
1 = highlighted intensity

background intensity

0 = nonblinking
1 = blinking

Fig: Attribute Byte for Monochrome Monitors
The following are some possible variations of the attributes shown in the above Fig.

Binary Hex Result

0000 0000 00 white on white (no display)
Qoo 0111 07 white on black normal

0000 1111 oF white on black highlight
1000 0111 a7 white on black blinking
0111 0111 17 black on black (no display)
0111 0000 70 black on white

1111 Q000 FO black on white blinking

Write a program using INT 10H to:

(a) Change the video mode.

(b) Display the letter "D" in 200H locations with attributes black on white blinking (blinking
letters "D" are black and the screen background is white).

(c) Then use DEBUG to run and verify the program.

Solution:

(a) INT 10H function AH = 00 is used with AL = video mode to change the video mode. Use
AL =103.

MOV AH,00 ; 3ET MODE OPTION
MoV AL,03 ;CHANGE THE VIDED MODE
INT 10H tMODE OF B80X25 FOR ANY COLOR MONITOR

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

(b) With INT 10H function AH = 09, one can display a character a certain number of times with
specific attributes.

MOV AH,09 ; DISPLAY OPTION

MOV BH, 00 sPAGE. 0

MOV AL,44H :THE ASCII FOR LETTER "D"
MOV CX,200H sREPEAT IT 200H TIMES
MOV BL,OFOH’ ;BLACK ON WHITE BLINKING
INT 108

(c) Reminder: DEBUG assumes that all the numbers are in hex.

Crdebug

-A

1131:0100 MOV AH, 00

1131:0102 MOV AL,03 ;CHANGE THE VIDEO MODE

1131:0104 INT 10

1131:0106 MOV AH, 09

1131:0108 MOV BH, OO
. 1131:010A MOV AL, 44

1131:010C MOV CX, 200

1131:010F MOV BL,FOQ

1131:0111 INT 10

1131:0113 INT 3

1131:0114
Now see the result by typing in the command -G Make sure that IP = 100 befcre running it.
As an exercise, change the BL register to other attribute values given earlier. For example, BL
= (07 white on black, or BL = 87H white on black blinking,

Attribute Byte in CGA Text Mode:
The bit definition of the attribute byte in CGA text mode is shown in the following Fig.

D7 | D6 | DS | D4 | D3 | D2 | D1 | DO

B R G B I R G B
background foreground
B = blinking
I = foreground intensity
Blinking and intensity apply to foreground only.

From the bit definition, it can be seen that, the background can take eight different colors by combining
the prime colors red, blue, and green. The foreground can be any of 16 different colors by combining red,

blue, green, and intensity.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Binary Hex Color effect
0oo0 0000 (4] Black on black
0ooo0 0001 0l Blue on black

o001l 001d 12 Gresn on blue
0001 0100 14 Red on blue
0001 1111 1F High-intenaity white on bhlue

The following Program shows the use of the attribute byte in CGA mode.

Write a program that puts 20H (ASCII space) on the entire screen. Use high-intensity white on
4 blue background attnbute for any chamcters o be displayed.

Solution:

Graphics: Pixel Resolution and Color:

(0}

(0}

(0}

O O O O©

In the text mode, the screen is viewed as a matrix of rows and columns of characters.
In graphics mode, the screen is viewed as a matrix of horizontal and vertical pixels.
The number of pixels varies among monitors and depends on monitor resolution and the video
board.
There are two facts associated with every pixel on the screen:
v The location of the pixel
v’ Its attributes, color, and intensity
These two facts must be stored in the video RAM.
Higher the number of pixels and colors, the larger the amount of memory is needed to store.
The CGA mode can have a maximum of 16K bytes of video memory.
This 16K bytes of memory can be used in three different ways:
v Text mode of 80 x 25 characters: Use AL = 03 for mode selection in INT 10H option AH
= 00. In this mode, 16 colors are supported.
v Graphics mode of resolution 320 x 200 (medium resolution): Use AL = 04. In this mode,
4 colors are supported.
v Graphics mode of resolution 640 x 200 (high resolution): Use AL = 06. In this mode,
only 1 color (black and white) is supported.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o Hence, with a fixed amount of video RAM, the number of supported colors decreases as the
resolution increases.
Table: The 16 Possible Colors

I |R|G|B| Color I R|G|B Color
0({0|0|0| Black 1{0(0]|0 Gray
0({0|0]1 Blue 11001 Light Blue
0[{0| 1|0 Green 11010 Light Green
0/0|1]1] Cyan 110111 Light Cyan
0j1|0|0 Red 111010 Light Red
0({1|0]|1| Magenta 11101 Light Magenta
0/1]1]0]| Brown 11,110 Yellow
O(1|1]1| White 1|1 | 1] 1] High Intensity White

INT 10H and Pixel Programming:
To draw a horizontal line, choose values for the row and column to point to the beginning of the line and

then continue to increment the column until it reaches the end of the line, as shown in Example below:

Write a program to: (a) clear the screen, (b) set the mode to CGA of 640 * 200 resolution, and
(c) draw a horizontal line starting at column = 100, row = 50, and ending at column 200, row 50.
Solution:

MOV AX,0600H ;SCEOLL THE SCREEN

MOV BH,07 ;MOEMAL ATTREIBUTE

MOV CX,0000 ;FROM ROW=00, COLUMN=00

MOV D¥,134FH +T0 EOW=18H; COLUMN=4FH

LI 10H F INVORE INTERRUPRT: TO CLEAR SCREEN

MOW AH,00 +SET MODE

MOV AL, D08 JMOLDE = D& {CGA HIGH RESOIUTIOM)

INT 10H :INVOKE INTERROPT TO CHANGE MODE

MOV CX,100 JS8TART LINE AT COLUMN =100 AND

MOV DX, 50 ;ROW = 50
BACK: MOV = AH,OCH ;AH=0CH TO DRAW A LINE

MOV AL; 01 ;PIXELS = WHITE

INT 10H FINVOKE INTERRUPRT :TQO DEAW LINE

INC cx ;INCREMENT HORIZONTAL EOSITION

CMP CX,200 ;DRAW LINE-UNTIL COLUMN = 200

JNI BACK

DOS INTERRUPT 21H:
0 INT21H is provided by DOS, which is BIOS-ROM based.
0 When the OS is loaded into the computer, INT 21H can be invoked to perform some extremely

useful functions. These functions are commonly referred to as DOS INT 21H function calls.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

INT-21H Option 09: Outputting a String of Data to the Monitor

v" INT 21H can be used to send a set of ASCII data to the monitor. To do that, the following
registers must be set: AH = 09 and DX = the offset address of the ASCII data to be displayed.

v The address in the DX register is an offset address and DS is assumed to be the data segment.
INT 21H option 09 will display the ASCII data string pointed at by DX until it encounters the
dollar sign "$".

v In the absence of encountering a dollar sign, DOS function call 09 will continue to display any

garbage that it can find in subsequent memory locations until it finds "$".

DATE _ASC DB "The earth is but one country', 'S5’
MOV AH, 00 ;option 08 teo display string of data
MOV DX, OFFSET DATR ASC sD¥= offset address of data
INT Z1H ;invoke the interrupt

INT 21H Option 02: Outputting a Single Character to the Monitor
v To output a single character to the monitor, 02 is put in AH, DL is loaded with the character to be

displayed, and then INT 21H is invoked. The following displays the letter "J'.

MOV AH, 02 ;joption 02 displays cone character
MOV DL, "J! ;DL holds the character to be displayed
INT 21H ;invoke the interrupt

INT 21H Option 01: Inputting a Single Character, with Echo
This function waits until a character is input from the keyboard, and then echoes it to the monitor. After

the interrupt, the input character (ASCII value) will be in AL.

MOV AH,01 ;option 01 inputs eone character
INT 21H ;after the interrupt, AL = input character (ASCII)

The Program 4-1 does the following:
1. clears the screen
2. sets the cursor to the center of the screen, and
3. starting at that point of the screen, displays the message "This is a test of the display routine".

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

TIILE FROG4-1 SIMPLE DISPLAY EROGRAM
PAGE 60,132
.MODEL SMALL
- STACK &4
.DATA
MESSAGE DB 'This is a test of the display routine','S'
.CODE

MAIN PROC FAR
MOV AX,@DATA
MOV DS, AX j
CALL CLEAR yCLEAR THE SCREEN

CALL CURSCR ;SET CURSOR POSITION

CALL DISFLAY 7 DISFLAY MESSAGE

MOV AH,4CH

INT 21H ;GO BACK TO DOS
MAIN ENDP

§ THIS SUBROUTINE CLEARS THE SCREEN

CLERR PROC
MOV AX,0600H : ; SCROLL SCREEN FUNCTION
MoV BH,07 i NORMAL ATTRIBUTE
MoV Cx, 0000 § SCROLL FROM ROW=0(Q, COL=00
MOV DX, 184FH :TO ROW=1BH, COL=4FH
INT 10H # INVORE INTEREUPT T0 CLERR SCREEN
RET
CLEARR EWNDP

. B i i s " Pl e i B B P s e el

s THIS SUBRQUTINE SETS THE CURSOR AT THE CENTEE OF THE SCREEN

CURSOE FROC
MOV &H, 02 ; SET CURSDR FUNCTION
MoV BH, 00 ;FAGE 00
MoV DH, 12 { CENTER ROW
MoV DL, 3% i s CENTER COLUMN
INT 10H F INVOKE INTERRUFT T0 SET CURSOR POSITION
EET

CURSORE ENDP

s THIS SUBROUTINE DISPLAYS A STRING ON THE SCREEN
DISFLAY PROC

MOV AH,09 ;DISPLAY FUNCTION
MOV DX, QFFEET MESSAGE ;DM POINTE TO QUTEUT BUFFER
INT 21H INVOKE INTERRUPT TC DISFLAY STRING
EET
DISPLRY ENDE
END MRIN
Program 4-1

INT 21H Option OAH: Inputting a String of Data from the Keyboard
v Option 0AH of INT 21H provides a means by which one can get data from the keyboard and
store it in a predefined area of memory in the data segment.
v" To do this; the register options are: AH = 0AH and DX = offset address at which the string of

data is stored.

v" This is commonly referred to as a buffer area.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

DOS requires that a buffer area be defined in the data segment and the first byte specifies the size
of the buffer. DOS will put the number of characters that came in through the keyboard in the
second byte and the keyed-in data is placed in the buffer starting at the third byte.

For example, the following program will accept up to six characters from the keyboard, including
the return (carriage return) key. Six locations were reserved for the buffer and filled with FFH.

The following shows portions of the data segment and code segment:

ORG Qol10H
DATA]l DB 6,7,6 DUP (FF);0010H=06, 0012H to 0017H = FF
MOV BH, OAH ;string input option of INWT Z1H
. MOV D¥.0OFFSET DATAIL ;1load the offset address of buffer
INT 21H sinvoke interrupt 21H

The following shows the memory contents of offset 0010H:

0010 0011 90012 0013 0014 0013 001s Q017
06 o FF FF FF FFE EF FF

When this program is executed, the computer waits for the information to come in from the
keyboard.

When the data comes in, the IBM PC will not exit the INT 21H routine until it encounters the
return key.

Assuming the data that was entered through the keyboard was "USA" <RETURN>, the contents
of memory locations starting at offset 0010H would look like this:

o010 001X 0012 0013 0014 0015 001e 0017
06 03 55 53 41 0D FF FF
USACER

The step-by-step analysis is given below:

0010H = 06 DOS requires the size of the buffer in the first location.

0011H=03 The keyboard was activated three times (excluding the RETURN key) to
key in the letters U, S, and A,

0012H = 55H This is the ASCII hex value for letter U.

0013H = 53H This is the ASCII hex value for letter S.

0014H = 41H Ths is the ASCII hex value for letter A.

0015H = 0DH This is the ASCII hex value for CR (carriage return).

The OAH option of INT 21H accepts the string of data from the keyboard and echoes (displays) it
on the screen as it is keyed in.

Use of Carriage Return and Line Feed:

(0]

In the Program 4-2, the EQU statement is used to equate CR (carriage return) with its ASCII
value of ODH, and LF (line feed) with its ASCII value of OAH.
This makes the program much more readable. Since the result of the conversion was to be

displayed in the next line, the string was preceded by CR and LF.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o Inthe absence of CR the string would be displayed wherever the cursor happened to be.
0 In the case of CR and no LF, the string would be displayed on the same line after it had been

returned to the beginning of the line.

sProgram 4-2 performs the following: (1) clears ths screen, (2) sets
jthe cursor at the beginning of the third line from the top of the
;acreen, (3) accepts the message "IBM perSonal COmputer"™ from the
skevboard, (4) converts lowercase letters of the message to uppercase,
: (%) displays the converted results on the next line.

TITLE PROG4 -2
PAGE 60,132
CMODEL SMALL
. STACK 64
. DATA
BUFFER OB 22,2,22 DUP (?) ;BUFFER FOR KEYED-IN DATA
ORG 18H
DATAREA oB CR,LF, 22 DUP (7),'S’ ;DATA HERE AFTER CONVERSION
i DTSEG ENDS .

CE EQU ODH
LF EQU OAH

B e . s . e e s .

.CODE
MAIN FEOC FAR
MOV AX, 8DATA
MOV DS,AX

CALL CLEAR ;CLEAR THE SCREEN
CALL CURSOR ;SET CURSOR POSITION
CALL GETDATA ;INPUT & STRING INTO BUFFER
CALL CONVERT ; CONVERT STRING TO UPPERCASE
CALL DISPLAY ;DISPLAY STRING DATAREA
MOV AH,4CH
INT 21H ;GO BACK TO DOS
MAIN ENDP

¢ THIS SUBROUTINE CLEARS THE SCREEN

CLEAR PROC
MOV r¥,0600H ;3CROLL SCREEW FUNCTION
MOV BH, 07 sNORMAL ATTRIBUTE
MO Cx, 0000 :ECROLL FROM ROW=00, COL=00
MO D¥,184FH ;10 ROW=18H, 4FH
INT 10H :INVOKE INTERRUPT TO CLEAR SCREEN
RET

CLEARENDF

i THIS SUBROUTINE SETS THE CURSOR TO THE BEGINNING OF THE 3RD LINE
CURSOR EROC

MO AH,02 ;5ET CURSOR FUNCTION
MOV BH,DO ;PAGE 0O
MO DL, 01 sCOLUMN 1
MOV DH, 03 ;ROW 3
INT 10H ; INVOKE INTERRUPT TO SET CURSOR
RET
CURSOR ENDFE

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

JTHIS SUBROUTINE DISPLAYS A STRING ON THE SCREEN
DISFLAY FROC

MOV RH,09 ;DISPLAY STRING FUNCTION
MOV DX,0FFSET DATAREA ;DX POINTS TO BUFFER
INT 21H i INWOKE INTERRUFT TO DISPLAY STRING
RET
DISFLAY ENDFE

;TH1IS EUBROUTINE PUTS DATAR FROM THE EEYBOARD INTO A BUFFER
GETDATA FROC

MOV AH,ORH i INPUT STRING FUNCTION

MOV DX, 0FFSET BUFFER ;DX POINTS TO BUFFER

INT 214 ; INVOKE INTERRUPT TO INPUT STRING
RET

GETDATA ENDP

CONVERT FROC
MOV BEX,0FFSET BUFFER
MoV CL,[B¥] +1 ;GET THE CHAR COUNT
SUB CH,CH " JCH = TOTAL CHARARCTER COUNT
MOV DI,CX ;INCEXING INTO BUFFER
MOV BYTE PTR[BX+DI] +2,20H ;EEPLACE CR WITH SPARCE
MOV SI,OFFSET DATARER+2 ;STRING ADDRESS

AGRIN: MOV AL,[BX] +2 ;GET THE KEYED-IN DATA
CMP LL,&1H JCHECE FOR 'a!
JB NEXT : ;1IF BELOW, GO TO NEXT
CMP AL, TAH jCHECK FOR 'z
JA NEXT ;IF ABOVE GO TO NEXT
AND AL,11011111B ;CONVERT TC CAPITAL

NEXT: MOV [5I] ;AL ;PLACE IN DATA AREA
INC =1 ; INCREMENT PBOINTERS
INC BX
LODP AGAIN ;LOOP IF COUNTER NOT ZERD
RET

CONVERT EMNDE
END MAIN

Program 4-2

0 The Program 4-3 prompts the user to type in a name. The name can have a maximum of eight
letters.

0 After the name is typed in, the program gets the length of the name and prints it to the screen.

TITLE PROG4E-3 READS IN LAST NAME AND DISPLAYS LENGTH
PARGE 60,132
MODEL SMALL

.STACH &4 (?)

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

-DATA
MESSAGEL CB '"What is your last name?','§'
ORG 20H
BUFFER1 CB 9,7,9 DUP (O)
ORG 30
MESSAGEZ DR CR,LF, "The number of letters in your name is: ', 'S’
ROW EQU 08
COLUMN EQU Q5
CR EQU ODH ;EQUATE CR WITH ASCII CODE FOR CARRIACE RETURN
LF EQU QAH ;EQUATE LF WITH ASCII CODE FOR LINE FEED
.CODE
MATH FROC FAR

MoV AX, BDATA
MCAS Ds, AX
CARLL CLEAR
CALL CURSOR

MCY AH, 02 ;DISPLRY THE FROMPT
MOV DX,0FFSET MESSAGEL
INT 21H
MoV AH, ORH ;GET LAST NAME FROM KEYBORRD
MOV DX, OFFSET BUFFER1
INT 21H
MoV BX,QFFSET BUFFER1 ;FIND QUT NUMBER OF LETTERE IN NAME
MOV CL,[BX+1] {GET NUMBER OF LETTERS
CE CL, 30H MAREE IT ARSCII
MCV MESSAGEZ2+40,CL tPLACE AT END COF STRING
MOV AH,089 +DISPLARY SECOND MESSAGE
Mo DX, OFFSET MESSAGEZ
INT 218
MOV AHL, 4CH
INT 214 ;GO BACK TO DOS
MAIN ENDF
CLEAR PROC +CLERR THE SCREEN
MOV RX,0600H
MOV BH, 07

MOV CX,0000
MOV DX, 184FH

INT 104
RET

CLEAR ENDP

CURSOR PROC ;SET CURSOR POSITION
MOV AH, 02
MOV BH, 00
MOV DL, COLUMN
MOV DH, ROW
INT 104
RET

CURSOR ENDP
END MAIMN

Program 4-3

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o Program 4-4 demonstrates many of the functions described:

Write a program to perform the following: (1) clear the screen, (2) set the cursor at row 5 and
column 1 of the screen, (3) prompt "There is a message for you from Mr. Jones. To read it enter,
Y ". If the user enters "Y" or 'y’ then the message "Hi! I must leave town tomorrow, therefore I will
not be able to see you" will appear on the screen. If the user enters any other key, then the prompt
"No more messages for you" should appear on the next line.

TITLE FROGRAM 4-4
PALGE &0, 132

.MODEL SMALL
.ETACK &4
-DATA
FROMPT1 OB '"There is a message for you from Mr. Jones. !
CB '"To read it enter Y','s!
MESESAGE CB CR,LF,'Hi! I must leave town tomorrow, '
LB 'therefore I will not bhe able to see you','s'
FROMPTZ2 LB CR,LF, "No more messages for you','§'
;DTSEG ENDS
CR EQU QLH
LF ECQU 0AH
. CODE

MAIN FROC FAR
MOV RAX,BDATA

MoV DE, AX
CALL CLEAR ; CLEAR THE SCEREEN .
CARLL CIRSOR +SET CURSOR POSITION
MoV &H, 09 + DISPLAY THE PROMPT
MOV DX¥,0FFSET PROMPT1
INT 21H
MW AH, 07 fGET OMNE CHAR, HO ECHO
INT 21H
CMP AL,'Y" i IF "Y', COHTINUE
JE OVER
CME AL, "y’
JZ OVER :
MOV AH,09 s DISPLAY SECCHND PROMPT IF NMOT 7Y
MOV D¥,0FFSET PROMPTZ
INT 214
JME EXIT
OVEE = MOV AH,09 +DISFLAY THE MESSAGE
MoV D¥,0FFSET MESSAGE
INT 21H
EXIT:MOV AH,4CH
INT 21H ;G0 BACK TO DOS
MAIN EMDE
CLEAR FROC ;CLEARE THE SCREEM

MOV AX,0600H
MOV BH,07
MOV CX,0000
MOV DX¥,184FH
INT 10H

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

CURSOR PROC iSET CURSOR FDSITION
MOV RH,02
MOV BH,00
MOV DL,05 fCOLUMH 5
MOV DH, 0B ;ROW 8
INT 10H
RET -
CURSOR ENDP
END MAIN
Program 4-4

INT 21H Option 07: Keyboard Input without Echo
v" Option 07 of INT 21H requires the user to enter a single character but that character is not
displayed (or echoed) on the screen.

v’ After execution of the interrupt, the PC waits until a single character is entered and provides the

character in AL.

MOV
INT

AH,07 :keyboard input without echo
21H

Using the LABEL Directive to Define a String Buffer:

0 A more systematic way of defining the buffer area for the string input is to use the LABEL

directive.

0 The LABEL directive can be used in the data segment to assign multiple names to data. When

used in the data segment it looks like this:

name LABEYL attribute

0 The attribute can be BYTE, WORD, DWORD, FWORD, QWORD, or TBYTE.

JOE LABEL BYTE
TOM DB 20 DUP(0)

By: MAHESH PRASANNA K.,
DEPT. OF CSE, VCET.

*khkkkkkkik

*khkkkkhkikkx

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND M

ICROCONTROLLERS

MODULE -3

SIGNED NUMBERS AND STRINGS & MEMORY INTERFACING & 8255

SIGNED NUMBERS

& STRINGS

SIGNED NUMBER ARITHMETIC OPERATIONS:

o0 Ineveryday life, numbers are used that could be positive or negative. For example, a temperature

of 5 degrees below zero can be represented as -5,

o0 Computers must be able to accommodate such

and 20 degrees above zero as +20.

numbers. To do that, an arrangement for the

representation of signed positive and negative numbers is made:

v The most significant bit (MSB) is set asid

v The rest of the bits are used for the magni

e for the sign (+ or -)
tude.

0 The sign is represented by 0 for positive (+) numbers and 1 for negative (-) humbers.

o0 Note that, entire 8-bit or 16-bit operand will be treated as magnitude in the case of unsigned

number representation.
Byte-sized Signed Numbers:
0 In signed byte operands, D7 (MSB) is the sign a
the number.
v If D7 =0, the operand is positive
v If 07 = 1, the operand is negative.

nd D6 to DO are set aside for the magnitude of

D7 | Do | D5 | D4 | D3

D2 | DI | DO

sign magnitude

0 The range of positive numbers that can be represented by the format above is 0 to + 127.

0 0000
+1 0ooo
+5 0000
+127 o111

o0 If a positive number is larger than +127, a word si

o0o0aQ
0001
0101

1111

zed operand must be used.

0 For negative numbers D7 is 1, but the magnitude is represented in 2's complement.

0 Although the assembler does the conversion,

it is still important to understand how the

conversion works. To convert to negative number representation (2's complement), follow these

steps:
v Write the magnitude of the number in 8-b
v"Invert each bit

v Add1ltoit.
MAHESH PRASANNA K., VCET, PUTTUR

it binary (no sign).

MICROPROCESSORS AND MICROCONTROLLERS

Decimal Binary ~ Hex

-128 1000 Q000 80
o, ¥ 1000 0001 Bl
~126 1000 0010 B2
=2 1111 1110 FE
| 1111 1111 FF
] 0000 0000 00
+1 0oo0 0001 01
2 Qoo0 0010 02
+127 1 O 1

Show how the computer would represent 35,

Solution:
1. 0000 0101 5§ 1in E=bit binary
N L invert each bit
3, 11111011 add 1 (hex = FBH)

This is the signed number representation in 2's complement for -5,

Show —34H as it is represented intemally.

Soluation:
i, 0011 0100
2. 1E0Q I01L
3. 1100 1100 {which iz CCH)

Show the representation for — 128,

Solution:
1. 1000 003
ol T B o R
] 1000 0000 Notice that this is not negative zero (—0).

Word-sized Signed Numbers:
0 In x86 computers a word is 16-bits in length. Setting aside the MSB (D15) for the sign leaves a
total of 15 bits (D14 — DO) for the magnitude. This gives a range of -32,768 to +32,767.
o If a number is larger than this, it must be treated as a multiword operand and be processed chunk
by chunk the same way as unsigned numbers.

DI5S D14 D13| D12 | D11 | D10 D’?IDE D7 | Dé | D5 | D4 D3|D2 D1 | DO

| sign magnitude

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Decimal Binary Hex
o uishpn g - 1000 0000 0000 0000 anon
-32, 767 1000 0000 Q000 0001 q001
-32, ThRE 1000 00Q0 QO0OQ 0010 goo02
-2 1111 1111 1111 1110 EFFE
-1 11131 1111 1111 1111 FFFF
0 QOO0 0000 Q00O 0000 Qo000
+1 0000 0000 C0ODO 0001 onol
+2 o000 Q000 0000 0010 ooz
+32, 766 0111 1111 13111 1119 7FFE
+32, 767 Gllilllll I1LYE E114 ITFF

Overflow Problem in Signed Number Operations:

What is an overflow? If the result of an operation on signed numbers is too large for the register, an

overflow occurs and the programmer must be notified. Look at following Example:

Look at the following code and data segments:

DATAL DE + 96

DATAZ LE + /)

(0}

In the example above; +96 is added to +70 and the result according to the CPU is =90 (5AH).
Why?

The reason is that, the result was more than what AL could handle. Like all other 8-bit registers,
AL could only contain up to +127. The designers of the CPU created the overflow flag
specifically for the purpose of informing the programmer that the result of the signed number

operation is erroneous.

Hence, when using signed numbers, a serious problem with regarding overflow arises that must be dealt

with. The CPU indicates the existence of the problem by raising the OF (overflow) flag, but it is up to the

programmer to take care of it. The CPU understands only 0s and 1s and ignores the human convention of

positive and negative numbers.

When Overflow Flag is Set in 8-bit Operations?

In 8-hit signed number operations, OF is set to 1, if either of the following two conditions occurs:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

1. Thereis a carry from D6 to D7, but no carry out of D7 (CF = 0)
2. There s a carry from D7 out (CF = 1), but no carry from D6 to D7.

Observe the results of the following:

MOV DL,- 128 +DL=1000 0000 (DL=80H)
MOV . CH,-2 ;CH=1111 1110 (CH=FEH)
ADD DL, CH ;DL=0111 1110 (DL=TEH=+126 invalid!)
—-128 1000 0000
* -2 1111 1110
=130 0111 1110 oF=1, SF=0 (positive], CF=1
According to the CPU, the result is +126, which is wrong. The error is indicated by the fact that
OF =1.
Chserve the results of the following:
MOV AL,-2 sAL=1111 1110 (AL=FEH)
MOV CL,- 5 ;CI=1111 1011 (CL=FBH)
ADD CL, AL PCI=1111 1001 (CL=F9H=7 which is correct).

-2 1111 1110

+-5

1111 1011 3
-7 1111 1001 OF =0, CF=0, and 5F = | (negative); the result is correct since OF = (.

Observe the results of the following:

MOV DH, +7 +DH=0000 0111 (DH=0TH)
MO BH, +18 fBEH=0001 0010 (BEH=12H}
ADD BH, DH ;BE=0001 1001 {(BEH=19H=+25h, correct)
+7 0000 0111
+ +18 001 Q010
+25 0001 1001 OF = 0, CF = 0, and SF = 0 {positive).

When Overflow Flag is Set in 16-bit Operations?

In 16-bit signed number operations, OF is set to 1, if either of the following two conditions occurs:
1. Thereis a carry from D14 to D15, but no carry out of D15 (CF = 0)
2. There s a carry from D15 out (CF = 1), but no carry from D14 to D15.

Observe the results in the following;

MoV AX,6E2FH - ; 28,207

MOV C¥,13DdH i+ 5,076

ADD BX, CH j= 33,283 is the expected answer
BE2F 0110 1110 0010 1111
+13D4 0001 00131 1101 0100
Bz03 1000 0010 0000 0011 = -32,253 incorrect!

OF=1,CF=0,8F=1

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Observe the results in the following:

MOV DX, 542FH ; 21,551
MOV BX,1Z2EQH ; 44,832

ADD DH,BX i=26,383
543F 0101 0100 0010 1111
+12E0 0001 0010 1110 0000
6707 0110 0111 0000 1111 =26,383 (correct answer), OF =0, CF =0, §F =0

Avoiding Erroneous Results in Signed Number Operations:
0 To avoid the problems associated with signed number operations, one can sign extend the
operand.
0 Sign extension copies;
v' the sign bit (D7) of the lower byte of a register into the upper bits of the register, or
v'the sign bit of a 16-bit register into another register.
0 The instructions used to perform the sign extension are;
0 CBW (convert signed byte to signed word) — will copy D7 (the sign flag) of AL to all bit
positions of AH register.

MOV AL,+96 +AL=0110 Qo000
7 1] 7] CBW ;now AH=0000 0000 and AL=0110 0000
- or: :
MOV AL,-2 ;AL=1111 1110
AH AL . CEW +AH=1111 1111 and AL=1111 1110

o CWD (convert signed word to signed double word): will copy D15 of AX to all bot positions of
DX register.

15 0 15 . 0

-

DX AX

example:

MoV ¥, 4280 sRAX=0000 Q001 0000 0100 or AX=0104H
CHWD DX=0000H and AX=0104H

example:

MoV A¥,-32766 ;R=1000 O000 0000 DO10B er AX=EODZH
CHWD ;D¥=FFFF and AX=B002Z

In the following Example (program for addition of any two signed bytes);
v If the overflow flag is not raised (OF = 0), the result of the signed number is correct and JNO

(jump if no overflow) will jump to OVER.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v If OF = 1, (which means that the result is erroneous), each operand must be sign extended and
then added. That is the function of the code below the JNO instruction.

Rewrite Example 6-4 to provide for handling the overflow problem.
Solution:
DATAL D3 +96
CATAZ 85 +10
RESULT)
SUB AH,AH i B=0
MOV AL, DATAI GET OPERAND 1
MOV BL, DATA “
ADD AL,BL
JNO OVER N G) TO OVER
MOV AL, DATA2 HERWISE GET OPERAND 2 TO
can ;SIGN EXTEND IT
MD BY,AX AVE IT IN BX
MON AL,DATA] BACE QFERAND 1 TO
Caw
ADD AX,;BX
QVER: MOV RESULT ; AX]
5 AR AL
0 o0 0000 0110 Q000 +26 after sign extension
a Qoo Qoco 100 Ollo +70 afker aign extension
0 oo o000 1910 QL1 +166

IDIV (signed number division):

The Intel manual says that IDIV means "integer division"; it is used for signed number division. In
actuality, all arithmetic instructions of 8088/86 are for integer numbers regardless of whether the
operands are signed or unsigned. To perform operations on real numbers, the 8087 coprocessor is used.
Remember that real numbers are the ones with decimal points such as "3.56".

Division of signed numbers is very similar to the division of unsigned numbers (already discussed).

Division Numerator Denominator Quotient Rem.
byte/byte AL = byte CBW register or memory AL AH
word/word AX = word CWD register or memory AN DX
word/byte AX = word register or memory ALl AH
doubleword/'word DXAX = doubleword register or memory AX2 nx
Notes:

1. Divide error interrupt if —127 = AL = +127.
2. Divide errar interrupt if -32,767 > AL > +31,767.

Egl:
IDIV CH Before After
FOH =-10H CH FOH EE =-12H
AL 25H EEH Quotient
AH 01H 05H Remainder

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Eg2:
IDIV BL Before After
FOH = -3H BL FDH FB =-5H
AL 10H EBH Quotient
AH 00H 01H Remainder

An application of signed number arithmetic is given in the following Program. It computes the average of
the Celsius temperatures: +13, -10, + 19, +14, -18, -9, +12, -19, and + 16.

[TITLE PEOG 6-1 FIND THE AVERAGE TEMPERATUERE
BAGE e0,132
.MDDEL STMALL
LSTARCK 64
.DATA
SIGN DAT DB +13,-10,+19,+14,-18,-9,+12,-13,+16
DRG 0010H
AVERAGE DwW 72

REMAINDER DW ?
.CODE

MAIN PROC FAR
MOV AX,BDATA
MOV DS, AX

MOV CX,9 ; LOAD COUNTER
SUB BX,BY ;CLEAR BX, USED AS ACCUMULATOR
MoV 31,0FFSET EIGN_D&T s 8ET UFP POINTER
BACK :MOV ARL,[511 ;MOVE BYTE INTO AL
CBW ;SIGN EXTEND INTC AY
ADD BX,AX :2DD TO BX
INC 21 ; INCREMENT FOINTER
LOOP BACK 1 100F IF HOT FINISHED
MOV AL, 9 ;MOVE COUNT TO AL
CEW ;SIGN EXTEND INTO AX
MOV X, AX ; EAVE DENOMINATOR IN CX
MOV RX,BX ;MOVE SUM TO RX
CWD ;SICN EXTEND THE SO0M
IDIV CX :FIND THE AVERAGE
MOW BVERAGE AX ;ESTORE THE AVERAGE (QUOTIENT)
MOV REMAINDER,DX :STCORE THE REMAINLDER
MOV AH,d4CH
INT 21H :G0 BACK TO DOS

MAIN ENDP
) END MATIN

Program 6-1

IMUL (signed number multiplication)
Signed number multiplication is similar in its operation to the unsigned multiplication. The only
difference between them is that the operands in signed number operations can be positive or negative;

therefore, the result must indicate the sign.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Multiplication Operand 1 Operand 2 Result
byte x byte AL register or memory AX!
word = word AX register or memory DX AXZ
word = byte AL = bytc CBW rcgister or memory DX AX?
Notes:

I CF=1 and OF = | if AH has part of the result, but if the result is not large enough to need the AH,
the sign bit is copied to the unused bits and the CPU makes CF = 0 and OF = 0 to indicate that.

2. CF=1 and CF = | if DX has part of the result, but if the result is not large enough to need the
DX, the sign bit is copied to the unused bits and the CPU makes CF = 0 and OF =0 to indicate that.
Oz can use the J condition to find out which of the conditions above has ecourmed. The rest of the

flags are undefined,
Egl:
IMUL CH Before After
FEH =-02 CH FEH
AL 02H FCH FFFCH =-04
AH [34H FFH
Arithmetic Shift:

The arithmetic shift is used for signed numbers. It is basically the same as the logical shift, except that the
sign bit is copied to the shifted bits. SAR (shift arithmetic right) and SAL (shift arithmetic left) are two
instructions for the arithmetic shift.

SAR (shift arithmetic right)

SAR destinatiocn,count

Sign
bit
Eg:
SAR BH, CL R/IM Cy
—>| —> |
Shift right Before After
1100 0000 = -40H BH 1100 0000 1111 0000
11110000 =-10H CL 02H
Cy 1 | 0 |

As the bits of the destination are shifted to the right into CF, the empty bits are filled with the sign bit.

One can use the SAR instruction to divide a signed number by 2, as shown next:

MO AL, =10 FAal=-10=FEE=1111 0110

SAR AL,1 ;AL is arithmetic shifted right once
;AL=1111 1011=FDH=-5

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Using DEBUG, evaluate the results of the following:

MoV A¥,-9
MOV BL,2
IDIV BL jdivide -9 by 2 results in FCH
MD‘F H;-g
SAR F. ¥ Pl idivide -2 by 2 with arithmetic shift
ijresults in FBH
Solution:

The DEBUG trace demonstrates that an IDIV of -9 by 2 gives FCH (- 4), whereas SAR -9
gives FBH (-5). This is because SAR rounds negative numbers down but IDIV rounds up.

SAL (shift arithmetic left)
SAL & SHL (shift left) do exactly the same thing.

Target register or memory
C

SHL -}

SAL = -0

Signed Number Comparison

CMPE dest, scurce

Although the CMP (compare) instruction is the same for both signed and unsigned numbers, the J
condition instruction used to make a decision for the signed numbers is different from that used for the
unsigned numbers.
o In unsigned number comparisons, CF and ZF are checked for conditions of larger, equal, and
smaller.
0 Insigned number comparison, OF, ZF, and SF are checked.

destination > source OF=3F or ZF=0
deatination = =source 2P=1
destination < source OF=negation of SF

o The memories used to detect the conditions above are as follows:

JG Jump Greater jump if OF=5F or ZF=0

JGE Jump Greater or Egual Jump if OF=SF

JL Jump Less jump if OF=inverse of SF

JLE Jump Less or Egual jump if OF=inverse of S5F or ZF=1
JE Jump if Egqual jump of ZF = 1

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

TITLE FROGG-/ ;FIND THE LUWEST IEMFERATURE
PAGE 60,132
.MODEL SMALL
LSTACK 64
DATA
SIGN DAT DB +13,-10,+19,+14,-18,-9,+12,-19, +16
ORG BOL0H
1LOWEST DB 7

- CODE
MAIN PROC FAR
MOV AX, BDATA

MO D5, AX

MOV Cx,B s LOAD COUNTER (NUMEEE ITEMS - 1)

MOV S5I,0FFSET SIGN DAT :5ET UF POINTER

MOV AL,[SI] ;AL HOLDS IOWEST VALUE FOUND SO FAR
BACE :THNC SI ; INCREMENT FOINTER

CMF AL,[8I] ; COMPARE NEXT BYTE TD LOWEST

JLE SEARCH ;IF AL IS LOWEST, CONTINUE SEARCH

MOV AL,[5I] ;OTHERWISE SAVE NEW LOWEST
SEARCH:ILOOF BACEK ;LOOP IF WOT FINISHED

MoV LOWEST, AL 5AVE LOWEST TEMPERATURE

MOV AH, 1CH

INT 21H + G50 BACE TO DOS
MAIN ENDF

END MAIN

Program 6-2

STRING & TABLE OPERATIONS:
0 There is a group of instructions referred to as string instructions in the x86 family of

MiCroprocessors.

0 They are capable of performing operations on a series of operands located in consecutive memory
locations.

0 For example, while the CMP instruction can compare only 2 bytes (or words) of data, the CMPS
(compare string) instruction is capable of comparing two arrays of data located in memory
locations pointed at by the Sl and DI registers. These instructions are very powerful and can be
used in many applications,

Use of Sl and DI, DS and ES in String Instructions:

o For string operations to work, designers of CPUs must set aside certain registers for specific
functions. These registers must permanently provide the source and destination operands.

o In 088/86 microprocessor, the SI and DI registers always point to the source and destination
operands, respectively.

0 To generate the physical address, the 8088/86 always uses Sl as the offset of the DS (data
segment) register and DI as the offset of ES (extra segment).

0 The ES register must be initialized for the string operation(s) to work.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Byte-and Word Operands in String Instructions:

0 Ineach of the string instructions, the operand can be a byte or a word.

0 Operands are distinguished by the letters B (byte) and W (word) in the instruction mnemonic.
DF, the Direction Flag:

0 To process operands located in consecutive memory locations; it requires that, the pointer be
incremented or decremented.

0 In string operations this is achieved by the direction flag. Of the 16 bits of the flag register (DO -
D15), bit 11 (D10) is set aside for the direction flag (DF).

0 ltis the job of the string instruction to increment or decrement the SI and DI pointers; but it is the
job of the programmer to specify the choice of increment or decrement by setting the direction
flag to high or low.

o0 The instructions CLD (clear direction flag) and STD (set direction flag) are specifically designed
for the purpose.

0 CLD (clear direction flag) will reset (put to zero) the DF, indicating that the string instruction
should increment the pointers automatically. This is referred to as auto-increment.

0 STD (set the direction flag) sets DF to 1, indicating to the string instruction that the pointers Sl
and DI should be decremented automatically. This is referred to as auto-decrement.

Table: Summary of String Operations

Instruction Mnemonic | Destination | Source Prefix
Move string byte MOVSB ES: DI DS: Sl REP
Move string word MOVSW ES: DI DS: Sl REP
Store string byte STOSB ES: DI AL REP
Store string word STOSW ES: DI AX REP
Load string byte LODSB AL DS: Sl None
Load string word LODSW AX DS: Sl None

Compare string byte CMPSB ES: DI DS: SI | REPE/REPNE
Compare string word | CMPSW ES: DI DS: SI | REPE/REPNE

Scan string byte SCASB ES: DI AL REPE/REPNE
Scan string word SCASW ES: DI AX | REPE/REPNE
REP/REPZ/REPNZ Prefix:

0 REP (repeat) prefix allows a string instruction to perform the operation repeatedly.
0 REP assumes that CX holds the number of times that the instruction should be repeated.
o0 In other words, the REP prefix tells the CPU to perform the string operation and then decrements

the CX register automatically. This process is repeated until CX becomes zero.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o REPZ (repeat zero)/REPE (repeat equal) repeat the string operation as long as source and
destination operands are equal (ZF = 1) or until CX becomes zero.
0 REPNZ (repeat not zero)/REPNE (repeat not equal) repeat the string operation as long as
source and destination operands are not equal (ZF = 0) or until CX becomes zero.
Instruction Code Condition for Exit
REP CX=0
REPE/REPZ CX=00rZF=0
REPNE/REPNZ CX=0orzZF=1

Using string instructions, write a program that transfers a block of 20 bytes of data.

Solution:

;in the data segment:

DATAL DB ' ABCDEFGHIJKLMNOPQRST'
(JRG FOK
DATAZ DB 20 DUP (?)

:in the code segment:
MOV AX, @DATA

W 5 ;INITIALIZE THE DATA EFGMEET
ﬁ%& ;%:?E :INITIALIZE THE EXTRA BEGMLﬁEleCRE”ENm
éLD ;CLEAR DIRECTION FL%Q FOR DLUTOLN M
MOV S1,0FFSET DATAL ; LOAD THE SOUBCE“PO;ETER a B
MOV DI,OFFSET DRTR2 s LOAD THE DE?IINnTIOh POLN
MOV cx, 20 : LORD THE COUNTER g T
REP MOWVIE : REPEAT UNTIL CX BECOMES ZE

v’ After the transfer of every byte by the MOVSB instruction, both the SI and DI registers are

incremented automatically once only (notice CLD).
v' The REP prefix causes the CX counter to be decremented and MOVSB is repeated until CX
becomes zero.
v An alternative solution for above Example would change only two lines of code:
MOV CX, 10
REP MOVSB
v In this case the MOVSW will transfer a word (2 bytes) at a time and increment the Sl and DI

registers each twice. REP will repeat that process until CX becomes zero. Notice that, the CX has
the value of 10 in it; since 10 words is equal to 20 bytes.
STOS and LODS Instructions:
STOSB - stores the byte in the AL register into memory location pointed at by ES: DI and then
increment DI once (if DF = 0) or decrement DI once (if DF = 1).
STOSW - stores the content of AX in memory locations ES: DI and ES: DI+1 (AL into ES: DI and AH
into ES: DI+1) then increments DI twice (if DF = 0) or decrements DI twice (if DF = 1).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

SB - loads the contents of memory location pointed at by DS: Sl into AL and increments Sl once (if
DF = 0) or decrements Sl once (if DF =1).
LODSW - loads the content of memory locations pointed at by DS: Sl into AL and DS: SI+l into AH.
The Sl is incremented twice if DF = 0 or Sl is decremented twice if DF = 1.

e LODS is never used with a REP prefix.

Testing Memory using STOSB and LODSB:

v The following Example uses string instructions STOSB and LODSB to test an area of RAM

memory.

First AAH is written into 100 locations by using word-sized operand AAAAH and a count of 50.
In the test part, LODSB brings in the contents of memory locations into AL one by one, and each
time it is eXclusive-ORed with AAH (the AH register has the hex value of AA).

o If they are the same, ZF = | and the process is continued.

o0 Otherwise, the pattern written there by the previous routine is not there and the program
will exit.

| Write a program that: _ _

| {1) Uses STOSB to store byte AAH in 100 memory lccatmps. ‘ :

| {7 Uses LODS to test the contents of each location to see if AAH is there. If the test fails, the
system should display the message "bad memory”.

solution:

| Assuming that ES and DS have been assigned in the ASSUME directive, the following is from

the code segment:
;PUT PATTERN AARAAH IN TO 50 WORD LOCATIONS
MOV ~ AX,DTSEG ; INITIALIZE
MOV DS, AX ;DS REG
MOV ES,AX ;AND ES REG
LD ;CLEAR DF FOR INCREMENT
MOV C¥, 50 :LOAD THE COUNTER (50 WORDS)
MOV~ DI,OFFSET MEM AREA ;LOAD THE POINTER FOR DESTINATION
MOV AX,OAAARH ; LOAD THE PATTERN
REP STOSW ; REPEAT UNTIL CX=0
;BRING IN THE PATTERN AND TEST IT ONE BY ONE
MOV . SI,OFFSET MEM AREA ;LOAD THE POINTER FOR SOURCE
MOV CX, 100 - ;LOAD THE COUNT (COUNT 100 BYTES)
AGAIN:, LODSB ; LOAD INTO AL FROM DS:5I
¥OR AL, AH ;IS PATTERN THE SAME? _
JNZ OVER ;IF NOT THE SAME THEN EXIT
LOOP AGAIN ;CONTINUE UNTIL CX=0
JMP EXIT ;EXIT PROGRAM
OVER: MOV RH,09 :{. DISPLAY
MOV DY, OFFSET MESSAGE { THE MESSAGE
INT 21H ;{ ROUTINE
EXIT:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

CMPS (Compare String):
o CMPS allows the comparison of two arrays of data pointed at by the Sl and DI registers.
0 One can test for the equality or inequality of data by the use of REPE or REPNE prefixes,
respectively.
0 The comparison can be performed a byte at a time or a word at time by using CMPSB or
CMPSW forms of the instruction.
For example, if comparing "Euorop” and "Europe" for equality, the comparison will continue using the

REPE CMPS as long as the two arrays are the same.

Assuming that there is a spelling of "Europe” in an clectronic dictionary and a user types in
"Euorope", write a program that compares these two and displays the following message,
depending on the result: , '

1. If they are equal, display "The spelling is correct”.

2. If they are not equal, display "Wrong spelling".

Solution:

DRT DICT DB 'Europe’

DAT TYPED DB 'Euorope’

MESSAGEL DB 'The spelling is correct','s'
MESSAGEZ DB 'Wirong spelling','$'

i from the code segment:

CLD ;DF=0 FOR IMNCREMENT

MGV SI,OFFSET DAT DICT s SI=DATA] OFFSET

MOV DI,OFFSET DAT TYEPED ; DI=DATAZ OFFSET

MOV CX, 08 ; LOAD THE COUNTER

REEPFE CMP3IB sREPEAT A5 LONG AS EQUAL OR UNTIL CX=0
JE OVER ;IF ZF=1 THEN DISPLAY MESSAGE]

MOW DX, QFFSET MESSRAGEZ :1F ZF=0 THEN DISFLAY MESSAGE2
JME DISPLAY

QOVER: MOV DX,OFFSET MESSAGEI]
DISFLAY: MOV AH, 09
INT 21H

v' Here, the two arrays are to be compared letter by letter.

v’ The first characters pointed at by Sl and DI are compared. In this case they are the same ("E"), so
the zero flag is set to 1 and both SI and DI are incremented.

v" Since ZF = 1, the REPE prefix repeats the comparison.

v" This process is repeated until the third letter is reached. The third letters “0” and "r" are not the

same; therefore, ZF = 0, and the comparison will stop.

SCAS (Scan String):
0 SCASB - compares each byte of the array pointed at by ES: DI with the contents of the AL

register, and depending on which prefix, REPE or REPNE, is used, a decision is made for

equality or inequality.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o For example, in the array "Mr. Gones", one can scan for the letter "G" by loading the AL register

with the character "G" and then using the "REPNE SCASB" operation to look for that letter.

then displays the corrected name.
Solution:

:in the data segment:
DATAL DB 'Mr. Gones','Ss'

rand in the code segment:

MOV AX,BDATA

MOV DS, hrX

MO ES, AX

CLD

MOV DI,OFFSET DATAI]
MOV CX, 09

MOV AL, 'G'

REPNE SCASH

rorr
JNE OVER
DEC DI
MOV E¥TE FTR { DI],'Jd'
OVER: MOW AH,09
MOV DX,OFFSET DATAlL
INT 21H

Write a program that scans the name "Mr. Gones" and replacesthe "G" with the letter "J",

;DF=0 FOR INCREMENT

;ES5:DI=ARRAY QFFSET

; LENGTH OF ARPAY

; SCANNING FOR THE 'LETTER 'G'
;REPEAT THE SCANNING IF NOT EQUAL

;UNTIL CX IS ZERO. JUMP IF Z=0
; DECREMENT TO POINT AT 'G'
;REPLACE 'G' WITH 'J°

; DISPLAY

; THE

; CORRECTED NAME

v' Here, the letter "G" is compared with "M".

v" Since they are not equal, DI is incremented and CX is decremented, and the scanning is repeated
until the letter "G™ is found or the CX register is zero. In this example, since "G" is found, ZF =1,
indicating that there is a letter "G" in the array.

Replacing the Scanned Character:
0 SCASB can be used to search for a character in an array, and if it is found, it will be replaced
with the desired character. (See Example given above).
o0 In string operations the pointer is incremented after each execution (if DF = 0). Therefore, in the
example above, DI must be decremented, causing the pointer to point to the scanned character
and then replace it.

XLAT Instruction and Look-Up Tables:
0 There is often a need in computer applications for a table that holds some important information.

To access the elements of the table, 8088/86 microprocessors provide the XLAT (translate)
instruction.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o To understand the XLAT instruction, one must first understand tables. The table is commonly
referred to as a look-up table.

o Assume that one needs a table for the values of x2, where x is between 0 and 9. First the table is
generated and stored in memory:

SQUR TABLE DB 0,1,4,9,16,25,36,49,64,81

0 Itis possible to access the square of any number from 0 to 9 by the use of XLAT instruction.
v' To do that, the register BX must have the offset address of the look-up table, and the
number whose square is sought must be in the AL register.
v Then after the execution of XLAT, the AL register will have the square of the number.
0 The following shows how to get the square of 5 from the table:
MOV BX,0FFSET SQUR_TABLE ;lcad the offset address of table
MOV AL,05 ;AL=05 will retrieve 6th element
KLAT ;pull the element out of table
;and put in AL
0 After execution of this program, the AL register will have 25 (19H), the square of 5.
0 It must be noted that, for XLAT to work the entries of the look-up table must be in sequential
order and must have a one-to-one relation with the element itself. This is because of the way
XLAT work.

o0 Inactuality, XLAT is one instruction, which is equivalent to the following code:

SUBE hH, AH ; BH=(
MO 81, nX ;5I=000X _
MOV AL,[BX+5TI] :GET THE SIth ENTRY FROM BEGINNING

:0F THE TABLE POINTED AT BY BX

Code Conversion using XLAT:
o0 In many microprocessor-based systems, the keyboard is not an ASCII type of keyboard.
0 One can use XLAT to translate the hex keys of such keyboards to ASCII.

0 Assuming that the keys are 0-F, the following is the program to convert the hex digits of 0-F to
their ASCII equivalents.

;data segment:

PLSC II..I':‘.EI_ DB IDI;.lIfHET;.S“J'4Iplr5lpl5'rl-lr';.8l
- DB '9','&','B','C','B’;'E';’F'

HEX VALU DB ?

ASC VALU DB ?

jcode segment:
MOV BX,0FFSET ASC TABL ;B¥= TAELE OFFSET
MOV AL, HEX VALU sAL=THE EEX DATA
®LAT :GET THE ASCII EQUIVALENT
MO ASC WALU, AL sMOVE IT TO MEMORY

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

MEMORY & MEMORY INTERFACING

SEMICONDUCTOR MEMORIES

»

»

»

In the design of computers, semiconductor memories are used as primary storage for code and
data. Semiconductor memories are connected directly to the CPU. For this reason, semiconductor
memories are referred to as primary memory. Most widely used semiconductor memories are
ROM and RAM.

Read-only memory (ROM) contains system software and permanent system data.

Random access memory (RAM) or read/write memory contains temporary data and application

software.

Memory Organization:

»

»

»

»

»

The number of bits that a semiconductor memory chip can store is called its capacity. It can be in
the units of K bits (kilobits)/M bits (megabits).

Memory chips are organized into a number of locations within the IC. Each location can hold 1
bit, 4-bits, 8-bits, or even 16-bits.

Each memory chip contains 2* locations, where x is the number of address pins on the chip.

Each location contains y bits, where y is the number of data pins on the chip.

The entire chip will contain 2* x y bits — the capacity of the chip.

The pin connections common to all memory devices are —

»

»

Address Connections. All memory devices have address inputs that select a memory location
within the memory device. Address inputs are always labeled from A, to A, (Note, ‘n’ is one less
than the total number of address pins). The number of address pins found on a memory device is
determined by the number of memory locations found within it.

Data Connections. All memory devices have a set of data outputs or input/outputs. The device

illustrated in the following Figure has a common set of I/O (input/output) connections.

An oy
Ay oy Cutput
Address Aa O, or
connections input/output
: connection
A Oy

WE fp——mon Write

A pseudo- Cs OE
memeory component illustrat-
ing the address, data, and

control connections

MAHESH PRASANNA K., VCET, PUTTUR

»

»

MICROPROCESSORS AND MICROCONTROLLERS

As shown in the Fig. above; the memory chips have CS (chip select) pin that must be activated
for memory contents to be accessed. That means, no data can be written into or read form the
memory chip unless CS is activated.

Sometimes, OE (output enable)/RD (read)/WR (write) pins may also be present along with CS
pin.

Examples: 1] A given memory chip has 12 address pins and 8 data pins. Find the memory

organization and the capacity.

Solution:

=
=
=

Memory chip has 12 address lines < 2 = 4,096 locations.
Memory chip has 8 data lines «» Each location hold 8 bits of data.
Thus, the memory organization is 4,096 x 8 = 4K x 8 = 32K bits capacity.

Examples: 2] A 512K memory chip has 8 data pins. Find the organization.

Solution:

=

4 4 4 3

The memory chip has 8 data lines <> Each location within the chip can hold 8 bits of data.
Given, the capacity of the memory chip = 512K.

Hence, the locations within the memory chip = 512K / 8 = 64K.

Since, 2'° = 64K; the memory chip has 16 address lines.

Hence, the memory organization is: 64K x 8 = 512K bits capacity.

MEMORY ADDRESS DECODING:

(0}

(0}

(0}

(0}

Consider a 32K x 8 capacity memory chip. This chip has 15 (2'° = 32K) address lines and 8 data
lines.

Suppose, this memory chip is to be interfaced to x86 microprocessor, which is having 20 address
lines and 16 data lines.

This means that, the microprocessor sends out a 20-bit memory address whenever it reads or
writes data. Hence there is a mismatch that must be corrected.

The decoder corrects the mismatch by decoding the address pins that do not connect to the

memory component.

Simple Logic Gates as Address Decoder:

v

v

The CS (chip select) input pin (in any memory chip) is usually active low and can be activated
using some simple logic gates; such as NAND gate and Inverters.
The following Fig. shows some simple NAND gate decoding for memory chips, along with the

address range calculations.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

LA

D7 DO
= A0
— 2K % 8
’ Alk : 1 s
Al o=
oo S
AlE i e
Al9 —P= OE _WR
MF.MR_J L MEMW
AlY Al

5000 1 1000 | 0000 | o000 | oooo | =08000H address of the first location

0000 1 111 111 1111 = OFFFFH address of the last location

Fig: Simple Logic Gates as Decoder (1)

D7 DO
—— K = B

Al ——1Ald

AlT ol ES_

Al18 %
" OE
MEMRJ
Al9 AD

w001 | 0000 | 0000 | oooo | oooo | =90000H address of the first location

1001 | 111 1111 | 1111 1111 — OFFFFH address of the last location

Fig: Simple Logic Gates as Decoder (2)
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o Notice that, the output of the NAND gate is active low and that the CS pin is also active low. That
makes them a perfect match.

0 Also notice that Al9-A16 must equal 1001 in order for CS to be activated. This results in the
assignment of addresses 9000H to 9FFFFH to this memory block.

Referring to above Fig, we see that the memory chip has 64K bytes of space. Show the cal-
culation that verifies that address range 90000 to 9FFFFH is comprised of 64K bytes.
Solution:

To calculate the total number of bytes for a given memory address range, subtract the two
addresses and add | to get the total bytes in hex. Then the hex number is converted to decimal
and divided by 1024 to get K bytes.

SFFFF FFFF
—90000 + 1
OFFFF 10000 hex = 65,536 decimal = 64K

Using the 74L.S138 as Decoder:
0 The 74LS138 has 8 NAND gates in it; therefore, a single chip can control 8 blocks of memory.
0 In 74LS138 decoder; the three inputs A, B, C generates eight active low outputs YO to Y7.

Function Table

Block Diagram I
nputs
Enable | Select | Outputs
s 7 YOP— GIG2 |[CBA| YOYIY2Y3YAYSY6YT
4 YI'P— XH |XXX HHHHHHHH
AT B Téf % L L X |XXX HHHHHHHH
1 vilb— H L |LLL|LHHHHHHH
; vsl— H L |LLH| HLHHHHHH
S : vélo— H L |LHL| HHLHHHHH
Y7fo— H L |LHH| HHHLHHHH
il H L |HLL|l HHHHLHHH
@A GIB Gl H L |HLH HHHHHLHH
? H L |HHLl HHHHHHLH
1 H L |HHH| HHHHHHHL
L
Enable

o0 Each Y output can be connected to the CS of memory chip, allowing control of 8 memory blocks
by a single 74L.S138.

v Consider the following memory decoding diagram. We have, A0-A15 from the CPU, directly
connected to A0-A15 of the memory chip.

v' A16-Al8 are used for the A, B, and C inputs of 74LS138; A19 is controlling G1 pin. G2A and
G2B are grounded.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Address range CO000—CFFFF is assigned to Y4. ””””
' D7 Di
Alo
Al7 | AD
T AILS 64K11 = 8
ROM
ALY AlS
Vpp
OF
CE
Each Y controls

one block.
v" Toenable 74LS138; G2A =0, G2B =0; and G1 = 1.
v Toselect Y4; CBA = 100.

v" This gives the address range (for the memory chip controlled by Y4): CO000H to CFFFFH.

i

Al4 A Yo lo PR (Y
AlS B Yijo —_— 16K * 8
Al6———C Y2 — ROM
AlT——— G2 Y3 o e
Alg—Po— G2B Al3
_ Gl

Al9 Vpp

OE

| CE

Each Y controls
one block.

Looking at the designin ~ ahove Fig. , find the address range for (a) Y4, (b) Y2, and (c) Y7, and.
verify the block size controlled by each Y.

Solution:

(a) The address range for Y4 is calculated as follows.

A19 AlS Al7 Alé al15 Ald Al3 R12 All AlQ A9 A8 AT A6 A5 A4 A3 A2 Al AO
1 10 1y 0~ =0* 0= "d" 0 -0 8st58 5020 201 20040 liell
T R L Lo B} daa syt 81 REC RUTES | S IO e G 0 I 0 o = S DR CF ST

The above shows that the range for Y4 is FOOO0H to F3FFFH. In Figure 10-13, notice that A19,
A18, and A17 must be | for the decoder to be activated. Y4 will be selected when A16 A15 Al4
= 100 (4 in binary). The remaining A13-A0 will be 0 for the lowest address and [for the high-
est address.

(b) The address range for Y2 is E8000H to EBFFFH.

ALS AlS A17 Al6é Al15 Al4 Al13 AlZ All AlO A9 A8 AT A6 AS A4 A3 A2 Al AD
g - SETRM R T sl 1T depe g g S O0meng TiE e sy oSSR A A =R SETUE T
SRR A Gl A Bl i e PR e [P S W T L

(¢) The address range for Y7 is FCO00H to FFFFFH. Notice that FFFFF — FC000H = 3FFFH,
which is equal to 16,383 in decimal. Adding | to it because of the 0 location, we have 16,384.
16,384/1024 = 16K, the block (chip) size.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Ao -
Adidress b t ——
Ay]

Ou 3764 T
[z 1]
0,]
RD ——o OF
Ayl A o b FDO0 - FIFEF CE
A B b F2uMen - FAFFF
Age C 1 | FA0MM - FSFEF
Y S E600 - FTFFF
: 4 o FBO00 - FYFEF
= G2A > FAlOD - FBEFF
= G2B ip -
AL L_o Gl s b FOCOKY - FDFFF
7 b_FEO0D - FEFFE
A
A 110
A

(L1}

A cireuit that uses eight 2764 EPROMs for a 64K x 8 section of memory in an 8088 microprocessor
-pbased system. The addresses selected in this circult are FQO00H-FFFFFH.

DATA INTEGRITY IN RAM & ROM:
0 When storing data, one major concern is maintaining data integrity — ensuring that, the data

retrieved is the same as the data stored.

0 The same principle applies when transferring data from one place to another — ensuring that, the
data received is the same as the data transmitted.

0 There are many way to ensure data integrity depending on the type of storage.

0 The checksum method is used for ROM and the parity bit method is used for DRAM.

0 For mass storage devices such as hard disks and for transferring data on the Internet, the CRC
(cyclic redundancy check) method is employed.

Checksum Byte:

o0 During the current surge, or when the PC is turned on, or during operation, the contents of the
ROM may be corrupted.

0 To ensure the integrity of the contents of ROM, every PC must perform a checksum calculation.
The process of checksum will detect any corruption of the contents of ROM.

0 The checksum method uses a checksum byte. This checksum byte is an extra byte that is tagged
to the end of a series of bytes of data.

0 To calculate the checksum byte of a series of bytes of data, the following steps can be taken .
1. Add the bytes together and drop the carries.
2. Take the 2's complement of the total sum, and that is the checksum byte, which becomes the

last byte of the stored information.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o To perform the checksum operation, add all the bytes, including the checksum byte. The result
must be zero. If it is not zero, one or more bytes of data have been changed (corrupted).

Assume that we have 4 bytes of hexadecimal data: 25H, 62H, 3FH, and 52H.

ia) Find the checksum byte.

(b} Perform the checksum operation to ensure data integrity.

{c) If the second byte 62H had been changed to 22H, show how checksum detects the error.

Solution:
(a) The checksum is calculated by first adding the bytes.

25H
+ BZH
+ 3FH
X o2H
1 18H

The sum is 118H, and dropping the carry, we get 18H. The checksum byte is the 2's
complement of 18H, which is E8H,

by Adding the series of bytes including the checksum byte must result in zero. This
indicates that all the bytes are unchanged and no byte is corrupted.

25H
62H
3FH
52H
E8H
QO0H (dropping the carry)

+ =+ +

%]

() Adding the series of bytes including the checksum byte shows that the result is not zero,
which indicates that one or more bytes have been corrupted.

25H
+ 22H
+ 3FH
+ 52H
+ E8H
1 COH dropping the carry, we get COH.

Assuming that the last byte of the following data is the checksum byte, show whether the data
has been corrupted or not: 28H, C4H, BFH, 9EH, 87H, 65H, 83H, 50H, ATH, and S1H.

Solution:

The sum of the bytes plus the checksum byte must be zero; otherwise, the dara is corrupted
28H + C4H + BFH + 9EH + 87H + 65H + 83H + 50H + ATH + 51H = 500H

By dropping the accumulated carries (the 5), we get 00. The data is not corrupted. See Figure
10-17 for a program that performs this verification.

Checksum Program:
v" When the PC is turned on, one of the first things the BIOS does is to test the system ROM. The
code for such a test is stored in the BIOS ROM.

v The following Figure shows the program using the checksum method.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v Notice in the code how all the bytes are added together without keeping the track of carries. Then,

the total sum is ORed with itself to see if it is zero. The zero flag is expected to be set to high
upon return from this subroutine. If it is not, the ROM is corrupted.

EC4C

EC4C B90020
ECAF

EC4F 32C0
ECS1

EC51 0207
ECE3 43
EC54 EZFB
ECH56 QACD
ECHE C3

2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424

ROS CHECKSUM PROC
MOV
ROS CHECKSUM_CNT
= ¥OR
C26:
ADD
INC
LOOP
OR
RET
ROS CHECKSUM ENDE

SUBROUTIHNE
MWEAR ;WEXT ROS_MODULE
C¥,B192 ;NUMBER OF BYTES TO ADD
SENTRY PT. FOR OPTIOWAL ROS TEST
AL, AL

AL, DS :[BX]

BX JEOINT TO MEXKT BYTE

C26 ;ADD ALL BYTES IN ROS MODULE
AL,AL ; SUM = 07

Fig: PC BIOS Checksum Routine

Use of Parity Bit in DRAM Error Detection:

0 System boards or memory modules are populated with DRAM chips of various organizations,

depending on the time they were designed and the availability of a given chip at a reasonable

cost.

o0 The memory technology is changing so fast that DRAM chips on the boards have a different look
every year or two. While early PCs used 64K DRAMSs, current PCs commonly use 1G chips.

0 To understand the use of a parity bit in detecting data storage errors, we use some simple

examples from the early PCs to clarify some very important design concepts.

DRAM Memory Banks:

v The arrangement of DRAM chips on the system or memory module board is often referred to as a
memory bank. For example, the 64K bytes of DRAM can be arranged as one bank of 8 IC chips
of 64K x 1 organization, or 4 bank of 16K x 1 organization.

v The first IBM PC introduced in 1981, used memory chip of I6K x | organization.

v The following Figure shows the memory banks for 640K bytes of RAM using 256K and 1M
DRAM chips.

v"Notice the use of an extra bit for every byte of data to store the parity bit.

v With the extra parity bit every bank requires an extra chip of x 1 organization for parity check.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

d7 ... d4 d3- d Parity
Bank 3: 64K = 9 64K % & 64K * 4 64K % 1
i 64K = 4 64K = 4 B4k = |
: |
e 256K * 4 256K * 4 256K * |
Bl G 236K = 4 256K % 4 256K = |
Mote: 04K = 4 is a single 256K-bit chip
V56K x4 1% a4 Singlll 1 M-bit Ehlp

v" The following Figure shows DRAM design and parity bit circuitry for a bank of DRAM.

& multiplexed addresses

MAD to MA7 to all banks . to all banks
\ Bank 4 . l WE
- —] } }
AO-A3_ i A ——[AD 5P
As-a1l ! B jo—ww 5 IR W -
Py S o "l'.r -"Ill.z WE' e
K =1

TP P — s
7

Ad
415158 A5 DRAM
A4-AT =[] A "— A6
."\]1-.&15_= F E o—W AT
— O——M— D

el
Address ‘Fﬂ G Jo———ti

[D 0
— p|?[5]!
select BEASD ——0IRAS p [P D 4 .H_E_' T
CAs0 —OCAS 6 3T arity bit
7418245 THT S
DO —— 745280
__ A
f— r B
= MD7 . —|3—
D7 e = {0 all banks s g aven
DIR G| MDOMD? MD F 1=
= to all banks G odd |—
; | 741874 = H
RAMADDRscet ——0])—{B— Ql—pc arRiss I
P Ofs—PCK to NMI
Enable RAM PCR | VEMR %}LR MEMR—[>o—-
from PB4 of 8255 L
PRE \
(] MEMW —>o —|'>c~ AN

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

First, note the use of the 74LS158 to multiplex the 16 address lines A0-A15, changing them to the
8 address lines of MAO-MATY (multiplexed address) as required by the 64K x | DRAM chip.

The resistors are for the serial bus line termination to prevent undershooting and overshooting at
the inputs of DRAM. They range from 20 to 50 ohms, depending on the speed of the CPU and the
printed circuit board layout.

A few additional observations above Figure should be made. The output of multiplexer addresses
MAO-MA7 will go to all the banks. Likewise, memory data MDO-MD7 and memory data parity
MDP will go to all the banks.

The 74L.S245 not only buffers the data bus MDO-MD?7 but also boosts it to drive all DRAM
inputs. Since the banks of the DRAMSs are connected in parallel and the capacitance loading is

additive, the data line must be capable of driving all the loads.

Parity Bit Generator/Checker in IBM PC:

o

(0}

There are two types of errors that can occur in DRAM chips:

Hard error — some bits or an entire row of memory cell inside the memory chip get stuck to high
or low permanently, thereafter always producing | or O regardless of what you write into the
cell(s).

Soft error — a single bit is changed from 1 to 0 or from 0 to 1 due to current surge or certain kinds
of particle radiation in the air. Parity is used to detect soft errors.

Including a parity bit to ensure data integrity in RAM is the most widely used method; since, it is
the simplest and cheapest.

This method can only indicate if there is a difference between the data that was written to
memory and the data that was read.

It cannot correct the error as is the case with some high-performance computers. In those
computers and some of the x86-based servers, the EDC (error detection and correction) method is
used to detect and correct the error bit.

The early IBM PC and compatibles use the 74S280 parity bit generator and checker to implement
the concept of the parity bit.

745280 Parity Bit Generator & Checker:
v The 745280 chip has 9 inputs and 2 outputs. Depending on whether an even or odd number of

ones appear in the input, the even or odd output is activated (according to following Table).

v' As can be seen from Table, if all 9 inputs have an even number of 1 bits, the even output goes

high (as in cases 1 and 4). If the 9 inputs have an odd number of high bits, the odd output goes
high (as in cases 2 and 3).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

PR Inputs Outputs
191 Case

B pp 7 A-H |1 | Even| ODD

c

o 11 ; i5} + 1 Even | 0 1 0

g 12 2 E”":"“ 2 | Even [1] 0 1
13} (6)

P X S~ oo 3 | odd [0] 0 | 1

z 2) 4 |odd |[1] 1 | 0

o

The way the IBM PC uses this chip is as follows:

v Notice that in above Figure (DRAM design and parity bit circuitry for a bank of DRAM), inputs
A — H are connected to the data bus, which is 8 bits, or one byte. The | input is used as a parity bit
to check the correctness of the byte of data read from memory. When a byte of information is
written to a given memory location in DRAM, the even-parity bit is generated and saved on the
ninth DRAM chip as a parity bit with use of control signal MEMW . This is done by activating the
tri-state buffer using MEMW . At this point, | of the 745280 is equal to zero, since MEMR high.

v" When a byte of data is read from the same location, the parity bit is gated into the | input of the
745280 through MEMR. This time the odd output is taken out and fed into a 74LS74. If there is a
difference between the data written and the data read, the Q output (called PCK, parity bit check)
of the 74LS74 is activated and Q activates NMI, indicating that there is a parity bit error,
meaning that the data read is not the same asthe data written. Consequently, it will display
a parity bit error message.

v For example, if the byte of data written to a location has an even number of Is, A to H has an even
number of Is, and | is zero, then the even-parity output of 74S280 becomes 1 and is saved on
parity bit DRAM. This is case 1 shown in the above Table. If the same byte of data is read and
there is an even number of Is (the byte is unchanged), | from the ninth bit DRAM, which is 1, is
input to the 745280, even becomes low, and odd becomes high, which is case 2 in the above
Table. This high from the odd output will be inverted and fed to the 74LS74, making Q low.
This means that Q is high thereby indicating that the written byte is the same as the byte read and
there is no errors occurred.

v" If the number of 1s in the byte has changed from even to odd and the 1 from the saved parity
DRAM makes the number of inputs even (case 4 above), the odd output becomes low, which is
inverted and passed to the 74LS74 D flip-flop. This makes Q = 1 and Q = 0, which signals the

NMI to display a parity bit error message on the screen.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

16-BIT MEMORY INTERFACING:

In this section, memory interfacing for 16-bit CPUs will be discussed. 80286 is taken as an example, but

the concepts can apply to any 16-bit microprocessor.

ODD & EVEN Banks:
In a 16-bit CPU such as the 80286, memory locations 00000-FFFFF are designated as odd and even bytes
as shown in the following Fig. This Figure shows only 1M byte of memory; the concept of odd and even

banks applies to the entire memory space of a given processor with a 16-bit data bus.

0Odd Bank Even Bank
(BHE =) (AD=10)
D13 D& D7 Do
00001 00000
00003 00002
00005 CO004
FEFFF FFFFE

Fig: ODD & EVEN Banks of Memory

To distinguish between odd and even bytes, the CPU provides a | BHE | A0 Memory Selection
signal called BHE (bus high enable). BHE in association with A0 0 0 | Even Word | DO - D15
is used to select the odd or even byte according to following 0 1 | OddByte | D8-D15
Table. 1 0 | EvenByte | DO-D7
1 1 None -
The following Figure shows 640KB of DRAM for 16-bit buses.
Parity dls d)2 dil ds Parity d7 d4 d3 do
256K = | 256K x 4 256K * 4 256K = | 256K x 4 256K x 4
64K =] G4K x 4 64K = 4 4K =] 64K = 4 64K * 4

Fig: 640K Bytes of DRAM with ODD & EVEN Banks Designation

The following Figure shows the use of A0 and BHE as bank selectors. Here, the 74L.S245 chip is used as
a data bus buffer.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

to other even banks

7418245 /i/\'\ 256K = 8
Do i AD |=—a Al
47 Al -———a A2
D7 D7 A2 le——q A3
A —QIG CS A17le—dal7
MEMR ——DIR
chip seleet
decoding circuitry to other odd banks
T4LS245 /‘\|\ 256K % 8
D8 e D0 AOle—d Al
Al fe——g A2
I = D7 . Axle A3
SEE—G |_Oﬂ Al7 A17
MEME DIR
AlT Al

Fig: 16-bit Data Connection in the Systems with 16-bit Data Bus

Memory Cycle Time and Inserting Wait States:

0 To access an external device such as memory or 1/O, the CPU provides a fixed amount of time
called a bus cycle time. During this bus cycle time, the read and write operation of memory or 1/O
must be completed.

0 The bus cycle time used for accessing memory is often referred to as MC (memory cycle) time.
The time from when the CPU provides the addresses at its address pins to when the data is
expected at its data pins is called memory read cycle time.

0 The processors such as the 8088/86, the memory cycle time takes 4 clocks, and from 286 to
Pentium, the memory cycle time is only 2 clocks.

o If memory is slow and its access time does not match the MC time of the CPU, extra time can be

requested from the CPU to extend the read cycle time. This extra time is called a wait state (WS).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

ONE BUS CYCLE |
|
J

I
]

I | |

f T | T, 1 Ty

—r
« ./ ./ /S \
ADDRESS _(VALID ADDRESS)_‘
ADDRESS/DATA DATA FROM MEMURY)*
ﬁﬁ \ /

Simplified 8086/8088 read bus cycle

» It must be noted that, memory access time is not the only factor in slowing down the CPU. The
other factor is the delay associated with signals going through the data and address path.
» Delay associated with reading data stored in memory has the following two components:

1. The time taken for address signals to go from CPU pins to memory pins, (going through
decoders and buffers (e.g., 74LS245)); plus the time taken for the data to travel from memory
to CPU, is referred to as a path delay.

2. The memory access time to get the data out of the memory chip. This is the larger (80% of the
read cycle time) of the two components.

» The total sum of these two (path delay + memory access time) must equal the memory read cycle
time provided by the CPU.

Calculate the memory cycle time of a 20-MHz 8386 system with
{a) O WS,

{b) 1 WS, and

(c) 2 WS.

Assume that the bus speed is the same as the processor speed.

Solution:

1/20 MHz = 50 ns is the processor clock period. Since the 386 bus cycle time of zero wait states
15 2 clocks, we have;

80386 20 MHz
Memory cycle time with 0 WS 2% 50 =100 ns
Memory cycle ime with 1 WS 100 + 50 = 150 ns
Memory cycle time with 2 WS 100 + 50 + 500 = 200 ns

[t is preferred that all bus activities be completed with 0 WS. However, if the read and write
operations cannot be completed with (0 WS, we request an extension of the bus cycle time. This
extension 15 in the form of an integer number of WS, That is, we can have 1, 2, 3, and so on
WS, but not 1.25 W5,

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

A 20-MHz 80386-based system 15 using ROM of 150 ns speed. Calculate the number of wait
states needed if the path delay is 25 ns.

Solution:

If ROM access time is 130 ns and the path delay is 25 ns, every time the 80386 accesses ROM
it must spend a total of 175 ns to get data into the CPU. A 20-MHz CPU with zero WS provides
only 100 ns (2 x 50 ns = 100 ns) for the memory read cycle time. To match the CPU bus speed
with this ROM we must insert 2 wait states. This makes the cycle time 200 ns (100 + 50 + 50
= 200 ns). Notice that we cannot ask for 1.5 WS since the number of WS must be an integer.
That would be like going to the store and wanting to buy half an apple. You must get one or
more complete WS or none at all.

Accessing EVEN & ODD Words:

0 Intel defines 16-bit data as a word. The address of a word can start at an even or an odd number.

0 For example, in the instruction "MOV AX, [2000]" the address of the word being fetched into AX
starts at an even address. In the case of "MOV AX, [2007]" the address starts at an odd address.

o0 In systems with a 16-bit data bus, accessing a word from an odd addressed location can be
slower.

0 As shown in the following Fig, in the 8-bit system, accessing a word is treated like accessing two
bytes regardless of whether the address is odd or even. Since accessing a byte takes one memory

cycle, accessing any word will take 2 memory cycles.

MC (Memory Cycle)

D7 Do
Assume that DS = FOOO
FFF31 “MOV AL,[FF51]" Odd byte takes | MC
FFF52 “MOV AL [FF32]" Even byte takes | MC

FFF70 B e =
“MOV AX,[FF70]" Even word takes 2 MC
FFF71
FFF9I ‘
= “MOV AX,[FF91]" Odd word takes 2 MC
FFF92

Fig: Accessing EVEN & ODD Words in 8-bit CPU
o0 In the 16- bit system, accessing a word with an even address takes one memory cycle. That is

because; one byte is carried on D0-D7 and the other on D8-DI5 in the same memory cycle.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o But, accessing a word with an odd address requires two memory cycles. For example, see how

accessing the word in the instruction "MOV AX, [F617]" works as shown in following Fig.

D15 D& D7 DO DS = FODO
MOV AX,[F617]

FF617 FF616

Ist Memory Cycle (MC)
FFal9 FFal8

Znd MC

Fig: Accessing an Odd-Addressed Word in 16-bit Processor
Assuming that DS = FOOOH in this instruction, the contents of physical memory locations FF6
I7H and FF6I8H are being moved into AX.
In the first cycle, the 286 CPU accesses location FF617H and puts it in AL.
In the second cycle, the contents of memory location FF618H are accessed and put into AH.
Hence, it will be wise to put any words on an even address if the program is going to be run on a
16-bit system.
A pseudo-instruction is specifically designed for this purpose. It is the EVEN directive and is
used as follows:

EVEN

VALUEL D

This directive ensures that, the VALUEL, a word-sized operand, is located in an even address
location. Hence, an instruction such as “MOV AX, VALUE1” will take only a single memory

cycle.

Bus Bandwidth:

»

»

The main advantage of the 16-bit data bus is; doubling of the rate of transfer of information
between the CPU and the outside world. The rate of data transfer is generally called bus
bandwidth. In other words, bus bandwidth is a measure of how fast buses transfer information
between the CPU and memory or peripherals. The wider the data bus, the higher the bus
bandwidth.

But, the advantage of the wider external data bus comes at the cost of increasing the size of the
printed circuit board. Bus bandwidth is measured in MB (megabytes) per second and is calculated
as follows:

bus bandwidth = (1/bus cycle time) x bus width in bytes

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o In the above formula, bus cycle time can be either memory or 1/0 cycle time.

Calculate memory bus bandwidth for the following microprocessors if the bus speed is 20 MHz.

(a) 286 with 0 WS and | WS (16-bit data bus)
(b) 386 with 0 WS and 1 WS (32-bit data bus)

Solution:

The memory cycle time for both the 286 and 386 is 2 clocks, with zero wait states. With the 20
MHz bus speed we have a bus clock of 1/20 MHz = 50 ns.

(a) Bus bandwidth = (1/(2 x 50 ns)) x 2 bytes = 20M bytes/second (MB/s)
With 1 wait state, the memory cycle becomes 3 clock cycles ‘
3 % 50 = 150 ns and the memory bus bandwidth is = (1/150 ns) x 2 bytes = 13.3 MB/S

(b) Bus bandwidth = (1/(2 x 50 ns)) x 4 bytes = 40 MB/s
With 1 wait state, the memory cycle becomes 3 clock cycles :
3 x 50 = 150 ns and the memory bus bandwidth is = (1/150 ns) x 4 bytes = 26.6 MB/S

From the above it can be seen that the two factors influencing bus bandwidth are:

|. The read/write cycle time of the CPU
2. The width of the data bus

Notice in this example that the bus speed of the 286/386 was given as 20 MHz. That
means that the CPU can access memory on the board at this speed. 1f this 286/386 is used on a
PC board with an ISA expansion slot, it must slow down to 8 MHz when communicating leth
the ISA bus since the maximum bus speed for the ISA bus is 8 MHz. This is done by the chipset
circultry.

0 There are two ways to increase the bus bandwidth:
v Use a wider data bus.
v' Shorten the bus cycle time.

o While the data bus width has increased from 16-bit in the 80286 to 64-bit in the Pentium, the bus
cycle time is reaching a maximum of 133 MHz.

8255 1/0 PROGRAMMING
8088 INPUT/OQUTPUT INSTRUCTIONS:

o All x86 microprocessors, from the 8088 to the Pentium, can access external devices called ports.
This is done using 1/O instructions.

0 The x86 CPU has I/O space in addition to memory space. While memory can contain Opcode and
data, 1/0 ports contain data only.

0 There are two instructions for this purpose: OUT and IN. These instructions can send data from
the accumulator (AL or AX) to ports or bring data from ports into the accumulator.
0 Inaccessing ports, we can use an 8-bit or 16-bit data port.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

8-bit Data Ports:

0}
(0}

(0]

The 8-bit 1/0 operation of the 8088 is applicable to all x86 CPUs from the 8088 to the Pentium.
The 8-bit port uses the DO-D7 data bus to communicate with 1/0 devices.

In 8-bit port programming, register AL is used as the source of data, when using the OUT
instruction; and as the destination, for the IN instruction. This means that to input or output data
from any other registers, the data must first be moved to the AL register.

Instructions OUT and IN have the following formats:

Inputting Data Cutputting Data

Format: IN dest, source oUT dest, source

{1} - IN AL,port# OUT porté#, AL

(2} MOV D¥,port# MOV DX, port#
IN AL, DX ouT DX,AL

In format (1) —

v

port# is the address of the port and can be from 00 to FFH, allowing up to 256 input and 256
output ports.
In this format, the 8-bit port address is carried on address bus A0-A7.

No segment register is involved in computing the address.

In format (2) -

v

»

»

»

port# is the address of the port and can be from 0000 to FFFFH, allowing up to 65,536 input and
65,536 output ports.

In this format, the 16- bit port address is carried on the address bus A0-A15.

The use of a register as a pointer for the port address has an advantage in that the port address can
be changed very easily, especially in. cases of dynamic compilations where the port address can
be passed to DX.

I/0 instructions are widely used in programming peripheral devices such as printers, hard disks,
and keyboards.

The port address can be either 8-bit or 16-bit. For an 8-bit port address, we can use the immediate
addressing mode.

The following program sends a byte of data to a fixed port address of 43H:

MOV AL, 36H ;al=36H
ouT 43H, AL rgend value 36H to port address 43H

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

The 8-bit address used in immediate addressing mode limits the number of ports to 256 for input

plus 256 for output. To have a larger number of ports we must use the 16-bit port address
instruction.

» To use the 16-bit port address, register indirect addressing mode must be used. The register used
for this purpose is DX.

» The following program sends values 55H and AAH to I/O port address 300H (a 16-bit port

address).
BACK: MOV DX, 300H ;DX = port address 300H
MOV AL, 55H
00T DX, &L ;toggle the bits
MOV AL, ORRH
QuUT DX, AL itoggle the bits

JHMP BACK

» We can only use register DX for 16-bit 1/0 addresses; no other register can be used for this

purpose. Also, notice the use of register AL for 8-bit data:

MOV DX, 37BH ;DX=378 the port address
MOV AL, BL ;load data into accumulator
QUT DX, AL ;write contents of AL to port

;whose address is in DX

» Just like the OUT instruction, the IN instruction uses the DX register to hold the address and AL
to hold the arrived 8-bit data. In other words, DX holds the 16-bit port address while AL receives
the 8-bit data brought in from an external port.

» The following program gets data from port address 300H and sends it to port address 302H.

MOV D, 3008 iload port address
IH AL, DX ;bring in data
MOV DX, 302H

ouT 0¥, AL ;send it out

In a given 8088-based system, port address 22H is an input port for monitoring the temperature.
Write Assembly language instructions to monitor that port continuously for the temperature of
100 degrees. If it reaches 100, then BH should contain "Y".

Solution:

BACK: IN aAL,22H ;get the temperature from port # 22H
CMP AL, 100 }is temp = 1002
JNZ BACK ;if not, keep monitoring
MOW BH, 'Y rtemp = 100, load '¥Y' into BH

1/0 ADDRESS DECODING & DESIGN:
The decoding of 1/0 ports is done by using TTL logic gates 74LS373 and 74LS244. The following are the

steps:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

1. The control signals IOR and IOW are used along with the decoders.

2. For an 8-bit port address, A0-A7 is decoded.

3. If the port address is 16-bit (using DX), A0-A15 is decoded.

Using 74LA373 in an Output Port Design:

o0 In every computer, whenever data is sent out by the CPU via the data bus, the data must be
latched by the receiving device. While memories have an internal latch to grab the data, a latching
system must be designed for simple 1/O ports.

0 The 74LS373 can be used for this purpose. Notice in the following Fig. that in order to make the
741.S373 work as a latch, the OC pin must be grounded.

a o
Voo GND
é::; D Q L\;, lf'-' o—— Function Table
— =t CLK ._Q e {_}u[pm Enahle
== ig — Conitrol G D Oufput
.= = = L H H H
pt —_— L H L L
= fg == T L X Q0
8D G ocl| 80— H A X %
Enable -

Output control

Fig: 74LS373 D Latch

0 For an output latch, it is common to AND the output of the address decoder with the control

signal IOW to provide the latching action as shown in Figure.
T4LS373

Do DO —ﬂl 3— Qo
system i
data LEDs
bus _
I e)7
AD _ ——
8 oC
) ¥V
AT
[OW

Fig: Design for “OUT 99H, AL”

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

f Show the design of an output port with an /O address of 31FH using the 74L8373.

Solution:

31F9H is decoded, then ANDed with IOW to activate the G pin of the 74LS373 latch. This is
shown in Figure pelow.

T4L5373
DO DO —0| a—— QU
system o
data LEDs
bus
D7 Q7
Al —
— G oc
=0 —
{ v
—.
AT ——
A9
1OW

Fig: Design for Output Port Address of 31FH

IN Port Design Using the 74LA244:

0 When the data is coming in by way of a data bus, it must come in through a three-state buffer.

This is referred to as tri-stated. See the following Fig for the internal circuitry of 74L.S244.

Vee IE
1A-1 N 1Y
1A-2 N 1Y-2
|
14-3 N 1¥-3
1A-4 N 1¥-4
1 - 2Y-1
2A- [-
Mo
2A-2 N 2Y-2
2A-3 N 2Y-3
2A-4 N 2v-4
GND
| -
2G

Fig: 74LS244 Octal Buffer
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o Here, since 1G and 2G each control only 4 bits of 74LS244, both must be activated for 8 bits
input. The following Fig shows the use of 74LS244 as an entry port to the system data bus. In the
following Figures, the address decoder and IOR control signal together activate the tri-state input.

T4LS244
S0 > DO
i - to system
switches it s
57
ﬁu =l -
system = ™
address —_____| D__Do—_
bus — Lt
A7T——C
IOR

Fig: Input Port Design for “IN AL, 5FH”

Show the design of “IN AL,9FH” using the 7415244 as a tri-state buffer.

Solution:

9FH is decoded, then ANDed with IOR. To actiw.lratc OC of the 7418244, it must be inverted
since OC is an active-low pin. This is shown in Figure elow.

T4L.5244
I~
S0 D0
O to DO-D7
switches of system
data bus
S7 D7
AD L ——
Sy 1G 26

system
address ——— Do——c:)0
oS ——@ |_C

A7

IOR
Fig: Design for “IN AL, 9FH”

Memory-Mapped 1/O:

» Communicating with the 1/0O devices using IN and OUT instructions is referred to as peripheral

1/0. Some designers also refer to it as isolated 1/0.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

» Some new RISC processors do not have IN and OUT instructions; they use memory-mapped I/O.

» In memory-mapped 1/O, a memory location is assigned to be an input and output port.

Memory

FFFFF

IM o= 8

MO0

Memory + 11D
FFFFF

FFFF

Ak = 8

The mamory
and /O maps for the 8086/
B088 microprocassors.
(a) Isolated I¥O (b) Memory-
mapped /0

» The following are the differences between peripheral 1/0 and memory-mapped 1/O in x86 PC:

Isolated (Peripheral) 1/0

Memory-Mapped 1/0

The IN and OUT instructions | 1. Instructions that access memory locations are used
transfer data between the instead of IN and OUT instructions: MOV AL, [2000]
microprocessors accumulator or will access the input port & MOV [2000], AL will access
memory and the 1/0 device. the output port.

2. Entire 20-bit address, A0-A19, must be decoded
Only AQ-A15 are decoded; Hence, (decoding circuitry is expensive); Hence DS must be
DS initialization is not required; loaded before accessing memory-mapped 1/0:
decoding circuitry may be less MOV AX,3000H ;load the segment value
expensive. MOV DS, AX

MOV AL,[5000] ;get a byte from loc. 350008

IOR and IOW control signals are]

3. MEMR and MEMW control signals are used.
used.
Limited only to 65,536 input ports | 4. The number of ports can be as high as 2° (1,048,576).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

and 65,536 output ports.

5. Data should be moved to))))
) 5. Arithmetic and logic operations can be performed
accumulator for any kind of]])
) directly, without moving data to accumulator.
operations.

6. The user can expand the memory to)
)) .) 6. Uses memory address space, which could lead to
its full size without using any)
] memory space fragmentation.
memory space for 1/0 devices.

1/0 ADDRESS MAP OF x86 PCs:
Any system that needs to be compatible with the x86 IBM PC must follow the 1/0 map of the following
Table:

Table: 1/0 Map for x86 PC

Hex Range Device

000-01F DMA controller 1, 8237A-5
020-03F Interrupt controller 1, 8259A, Master
040-05F Timer, §254-2

060-06F 8042 (keyboard)

070-07F Real-time clock, NMI mask
080-09F DMA page register, 7418612
0AO-0BF Interrupt controller 2, 8237A-5
0CO-0DF DMA controller 2, 8237A-5
OF0 Clear math coprocessor busy
OF1 Reset math coprocessor
OF8—0FF Math coprocessor

1FO-1FR8 Fixed disk

200-207 Game /0

20C-20D Reserved

21F Reserved

278-27F Parallel printer port 2
2B0-2DF Alternate enhanced graphics adapter
2E1 GPIB (adapter ()

2E2 & 2E3 Data acquisition (adapter 0)
2F8-2FF Serial port 2

300-31F Prototype card

360-363 PC network (low address)
364-367 Reserved

368368 PC network (high address)
36C-36F Reserved

378-37F Parallel printer port |

380-38F SDLC, bisynchronous 2
390393 Cluster

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

3A0-3AF Bisynchronous 1

3B0-3BF Monochrome display and printer adapter
3C0-3CF Enhanced graphics adapter
3D0-3DF Color/graphics monitor adapter
3F0-3F7 Disk controller

3F8-3FF Serial port 1

6E2 & 6E3 Data acquisition (adapter 1)
790-793 Cluster (adapter 1)

AE2 & AE3 Data acquisition (adapter 2)
B90-B93 Cluster (adapter 2)

EEZ & EE3 Data acquisition (adapter 3)
1390-1393 Cluster (adapter 3)

22E1 GPIB (adapter 1)

2390-2393 Cluster (adapter 4)

42E1 GPIB (adapter 2)

62E1 GPIB (adapter 3)

82E1 GPIB (adapter 4)

A2E1 GPIB (adapter 5)

C2EI GPIB (adapter 6)

E2E1 GPIB (adapter 7)

Absolute vs. Linear Select Address Decoding:
0 Indecoding addresses, either all the address lines or a selected number of them are decoded.
o If all the address lines are decoded, it is called absolute decoding.
o If only selected address pins are used for decoding, it is called linear select decoding —
This is cheaper due to the less number of input and the fewer the gates needed for
decoding. The disadvantage is that it creates what are called aliases, the same port with

multiple addresses. Hence, port address documentation is necessary.

Portable Addresses 300 — 31FH in x86 PC:
In the x86 PC, the address range 300H — 31FH is set aside for prototype cards to be plugged into the
expansion slot. These prototype cards can be data acquisition boards used to monitor analog signals such
as temperature, pressure, and so on. Interface cards using the prototype address space use the following
signals on the 62-pin section of the ISA expansion slot:

1. IOR and IOW. Both are active low.

2. AEN signal: AEN = 0 when the CPU is using the bus.

3. AO0-A9 for address decoding.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

of Simple Logic Gates as Address Decoders:
The following Fig shows the circuit design for a 74LS373 latch connected to port address 300H of an x86
PC via an ISA expansion slot. Notice the use of signals A0-A9 and AEN. AEN is low when the x86
microprocessor is in control of the buses. Here, we are using simple logic gates such as NAND and
inverter gates for the I/O address decoder. These can be replaced with the 74LS138 chip because the
74L.S138 is a group of NAND gates in a single chip.

xD0 T4L8373 p——
from
buffered LEDs
data bus
‘ Al xXD7 G oc —
trom !
expansion
slot AT DG 47
B |
AR -9 g

Fig: Using Simple Logic Gates for 1/0 Address Decoder (1/0 Address 300H)

Use of 74L.S138 as Decoder:
The following Fig shows the 74L.S138.

Function Table

Block Diagram

Inputs

Enable | Select | Cutputs
s 7 YOP— GIG2 [CBA| YOYIY2Y3Y4Y5Y6YT
4 Yip— X H |XXXHHEHHHHHH
T vib— L X [XXX HHHHHHHH
) vilb— H L |LLL|LHHHHHHH
; vskbb— H L |[LLH| HLHHHHHH
— C : v6lb— H L |LHL|HHLHHHHH
Y7b— H L |LHH| HHHLHHHH
— = HL |HLLlHHHHLHHH
@A G2B Gl HL |HLH HHHHHLHH
' r | H L |HHL| HHHHHHLH
| H L |HHH| HHHHHHHL

Enable

The following Fig is an example of the use of a 74LA138 for an 1/0 address decoder.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

AL
! == cf= == XDO
7415138 m 2 Feaiw
o A - data bus
Al B o
AZ C OC OC |—— XD7
AEN Q {_E'_Eﬁ* LJ
A3 o| G2B
A4 —— v ———— |
G1 |_°
AQ Port Address 304H

IOR

Fig: Using 74L.S138 for 1/0O Address Decoding
v This is an address decoding for an input port located at address 304H.

v The Y4 output, together with the IOR signal, controls the 74L.S244 input buffer.
v Note that, each Y output can control a single 1/O device.

IBM PC 1/0O Address Decoder:
The following Fig shows a 74L.S138 chip used as an I/O address decoder in the original IBM PC.

74L5138
AS——— A 0 o—————— to 8237 CS (00-0FH)
Ab—— B v1 lo——— t0 8259 CS_U{J—IFH)
Al—1C v2 lo————— to 8253 CS (40-4FH)
v1 jo——— to 8255 C5 (60-6FH) writing to
o Y410 :@——[}0- DMA page
e G2B register

A9—0| G2A

J -l o—1 G1 ysjo———=~C ‘j)U writing 11_110
- J Y6 [0 not used "—OD NMI register
Y710 not used

ow —

AEN = 0 when CPU in charge of buses

Fig: Port Address Decoding in the Original IBM PC

v Notice that, while A0 to A4 go to individual peripheral input addresses, A5, A6, and A7 are

responsible for the selection of outputs YO to Y7.

v In order to enable the 74LS138, pins A8, A9, and AEN all must be low. While A8 and A9 will

directly affect the port address calculations, AEN is low only when the x86 is in control of the
system bus (see the following Table).

Table: Port Address Decoding Table on the Original PC

Gl GZA|[G2B |[C B A

AEN| A9 Al AT A6 AS A4ATA2ATAD
0 0 0 o0 00 0 0 0 0 00 Lowest port address
0 (0 0 S T T Y R A FF Highest port address

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Port 61H and Time Delay Generation:
0 In order to maintain compatibility with the IBM PC and run operating systems such as MS-DOS

and Windows, the assignment of I/O port addresses must follow the standard.

0 Port 61H is a widely used port. We can use this port to generate a time delay which will work in
any PC with any type of processor from the 286 to the Pentium.

0 1/O port 61H has eight bits (D0-D7). Bit D4 is of particular interest to us. In all 286 and higher
PCs bit D4 of port 61H changes its state every 15.085 microseconds (us) (stays low for 15.085
Ks and then changes to high and stay high for the same amount of time before it goes low again).

0 This toggling of bit D4 goes on indefinitely as long as the PC is on.

e The following program shows how to use port 61H to generate a delay of 1/2 second. In this

program all the bits of port 310H are toggled with a 1/2 second delay in between.

TOGGLING ALL BITS OF PORT 310H EVERY 0.5 SEC
MOV D¥,310H

HERE: MOV AL, 55H ;toggle all bits
ouT DX, AL
MoV Cx,33144 ;delay=33144x15.085 us=0.5 sec

CALL TDELAY
MOV AL, 0AAH
ouT D, AL
MOV Cx, 33144
CALL TDELAY
iR GRS

sCH=COUNT OF 15.0853 MICROSEC

TDELAY FROC HMNEAR
PUSH AX i save AKX
Wl: IH AL, BLH

AND &L, 000100008
CMP AL, AR

JE Wl ;wait for 15.085 usec
MO AH, AL '
LOOP W1 janother 15.085 usec
POP 4 rrestore AX
EET

TDELAY EWNDFP

Notice that, when port 61H is read, all the bits are masked except D4. The program waits for D4 to

change every 15.085 s before it loops again.

PROGRAMMING & INTERFACING THE 8255:
The 8255 is -
» awidely used 40-pin DIP 1/O chip.
» Having three separately accessible ports, A, B, and C, which can be programmed to be input or

output port, hence the name PPI (programmable peripheral interface).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

» They can also be changed dynamically, in contrast to the 74LS244 and 74LS373, which are hard-
wired.
Port A (PAO-PA7):
» This 8-bit port A can be programmed all as input or all as output.
Port B (PB0-PB7):
» This 8-bit port B can be programmed all as input or all as output.
Port C (PCO-PC7):
» This 8-bit port C can be programmed all as input or all as output.
» It can also be split into two parts; CU (upper bits PC4-PC7) and CL (lower bits PC0-PC3). Each
can be used as input or output.

» Any bit of Port C can be programmed individually.

3 1 PAS RIC5%
O 2 PA2
34 I'pp PAD 32—
] 3 PAI —334 pi PAl |——
d 4 pao 321 p2 PA2 —2—
PAL 3l p3 PA3 L
cl5RD —30 1 pg Pas 20
RD 20 pe pas |39
C16CS 28] pe pag 38
4 7 GND —211 p7 pa7 31
_5l®E
- ’_LII'L] —30 WR pRO L&
9 AD —21 An PBI _LLEE
10 PC? —5 Al PB2
35 | RESET pE3 2L
111 PCé —61Cs PB4 |24
o 12 pCs Pha 2~
, | 23
= 13 PC4 PB7
1 14 PCO poy Hé—
115
] 15 PC e 6
O 16 PC2 ﬁ_ﬂ_ﬁ
317 PC3 PCs Hd—
peg L
] 18 PBO PCS 0
19 PBI
O 20 PB2

Fig: 8255 PPI Chip
RD and WR:
» Active low input signals to 8255.
» If 8255 is using peripheral 1/O design, IOR and IOW of the system bus are connected to these two
pins.
» If 8255 is using memory-mapped I/0, MEMR and MEMW of the system bus will activate these
two pins.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

RESET:
» Active high signal input to 8255.
» Used to clear the control register.
» When RESET is activated, all the ports are initialized as input ports.

» This pin must be connected to the RESET output of the system bus, or grounded, making it

inactive.
CS| Al | A0 Selects
0 0 0 Port A
0 0 1 Port B
0 1 0 Port C
0| 1|1 Control Register
1 X X | 8255 is not selected
A0, Al, and CS:

» CS (chip select) selects the entire chip.
» Address pins A0 and A1l selects specific port within the 8255.

» These three pins are used to access ports A, B, C, or the control register; as shown in the table:

D7 — b0
Uz o
34| Do PAD 4
'_.ié (5] PAl 3
~22 1 po PA2 [
2l b3 PA3
\% D4 PAd ‘;g Port A
\;T D3 PAS |32
~2£ De PAS (2
2T oy PAT |-
IORC 5 18
RD PBQ
1OWC 36 WR PBI 19
:,5 — 2 A PB2 i{’
RESET ‘2 Al Fa3 2; Port B
=SE 2> RESET PB4 |— ort
5 cs PBS ;j
PB6 |2
PB7 |23
pCo |ld
pCi |3
PC2 :?
PC3
PC4 13 Port C
FCs |2
pce L1
pc7 |10

T4ALSI38 B2C S5

Mode Selection of the 8255A:

The ports (A, B, and C) of the 8255 can be programmed in various modes, as shown in the following Fig.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

or [os Jos | od Joa o2 |1 [oo
| I

Group A Group B
Port & T— :
fpgsr PCT - LA FLowen, PC3 - PO |
1w g © 8wl 1-.-.,...;;.,.“].
(Poth | Pt B o
1 & g, De Skmd -'-_1|‘¢u-_|:|lm
) = hoaie 0 I | e
O = Ko 1 f = R 1
1= adn T k
1 8 D R
0= BER M

Fig: Control Word Format

Mode 0, the simple I/O mode, is the most widely used mode. In this mode, any of the ports A, B, CU, and
CL can be programmed as input or output. In this mode, all bits are out or all are in. In other words, there
is no control of individual bits.

(a) Find the control word if PA = out, PB = in, PCO—PC3 = in, and PC4—PIC_'? = out.
(b) Program the 8255 to get data from port A and send it to port B. In addition,
data from PCL is sent out to the PCU.

Use port addresses of 300H-303H for the 8255 chip.

Solution:
(a) From Figure 11-12 we get the control word of 1000 0011 in binary or 83H.
(b) The code is as follows:

BB255C EQU 300H ;Base address of 82533 chip

CHNTL EQU E3H ;PA=gut, PB=in, FCL=in, PCU=out

MOV DX,BE255C+3; locad control reg. address
;(300H + 3 = 303H)

MO AL, CHNTL ;load contreol byte

ouT DX, AL ;send it to control register
MoV D¥,BB255C+1 ;load PB address

IN AL, DX ;get the data from FB
MOV DX,BB255C jload PA address

ouT DX, AL ;jsend it to FA

MOV DX, B8255C+2 ;load PC address

IN AL, DX ;aget the bits from PCL
AND &L, OFH smask the upper bits
ROL AL, 1

ROL AL, 1 ;shift the bits

ROL AL,1 ;to upper positicn

ROL AL, 1

QuT DX, AL ;send it to BCU

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

The 8255 shown in Figure 11-13 is configured as follows: pert A as input, B as output, and all
the bits of port C as output.

(a) Find the port addresses assigned to A, B, C, and the control register,

(b} Find the control byte (word) for this configuration.

(¢) Program the ports to input data from port A and send it to both ports B and C.

Solution:
{a) The port addresses are as follows:

cs Al A0 Address Port

11 0001 OO 0 0 310H Port A

11 0001 00 0 1 31IH Port B

11 0001 00 1 0 312H Port C

11 0001 00 1 1 313H Control register

(b} The control word is 90H, or 1001 0000
(c) One version of the program is as follows:

MOV AL, 90H :control byte Ph=in,. PB=out, PC=out
MoV DX, 313H :load control reg address

ouT D, AL :sand it to control register

MOV DX, 310H ; load PR address

IN AL, DX jget the data from PA

Mo D¥,311H $load PB address

ouT 0¥, AL ;send it to EB

L)k ¥, 3120 i load PBC address

ooT DX, AL jyand to PC

Using the EQU directive one can rewrite the above program as follows:
CNTLEYTE EQU a0H ;PA=in, PB=out, PC=out

PORTA EQU 310H
FORTE EQU 311H
BORTC EQU 31EH
CNTLREG EQT 313H

MOV AL, CNTLEBYTE
MDA DX, CHTLREG
QoT DX, AL

MOV DX, PORTA

IH AL, DX

rand so on.

D0 R ——— DO
D7 D7 af— A
{DW—E{ ——l |
A2 TOR RD
e —-
aﬁ A0— AD
:;_ Al Al —- 1
AEN —0 olcs

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Show the address decoding where port A of the 8255 has an /O address of 300H, then write a
program to toggle all bits of PA continuously with a 1/4 second delay. Use INT 16H to exit if
there is a keypress.

Solution:

The address decoding for the 8255 is shown in Figure 11-14. The control word for all ports as
| output is 80H. The program below will toggle all bits of PA indefinitely with a delay in between.

To prevent locking up the system, we press any key to exit to DOS.

MOV DX, 3034 jCONTROL REG ADDRESS
MoV AL, 80H ;ALL PORTS AS OQUTEUT
oIT 0¥, AL

AGATN: MOV DX, 300H
MO AL, 55H
our DX, AL
CALL QSDELAY ;1/4 SEC DELAY

MOV AL, DRAH ; TOGGLE BIT
OUT DX, AL : .
CALL QSDELAY

MOV AH, 01

INT 16H :CHECKE EKEYFRESS
J 5 AGATN sPRESS ANY KEY TO EXIT
MOV RH, 4CH
IHT 21H EXIT
QSDELAY FROC HEAR
MOV CcX, 16572 ;16,572x15.065 usec=1/4 sec
PUSH AKX
Wl IN AL, &1H

AND AL, DOQD10O00B
CMP AL, AH

JE W1l
MOV AH, AL
LoOF Wl
FOF AX
RET

QSDELAY EMDE

Notice the use of INT 161 option AH = 01 where the keypress is checked. If there is no key-
press, it will continue. We must do that to avoid locking up the x86 PC.

DGH DO |

D7 D7 |—b~ A
ow— W —

A2 OR RD
j— (L

A0—— AD
AT Al— Al — |

AY =

AEN ——q o| CS

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

ering 300 — 31FH Address Range:

0 When accessing the system bus via the expansion slot; we must make sure that the plug-in card
does not interfere with the working of system buses on the motherboard.

To do that we isolate (buffer) a range of I/O addresses using the 74L.S245 chip.

In buffering, the data bus is accessed only for a specific address range, and access by any address
beyond the range is blocked.

0 The following Fig shows how the 1/0 address range 300H-31FH is buffered with the use of the
74L.S245.
74158245
[p] i
System buffered
data bus {from -
expansion slot
—_— —— XD7
B D7 G DIR XD
AT | |
AEN A2 IOR

o0 The following Fig shows another example of 8255 interfacing using the 74L.S138 decoder. As
shown in the Fig., YO and Y1 are used for the 8255 and 8253, respectively. The Table shows the
74LS 138 address assignment.

Selector Address Assignment
Y0 300-303 Used by 8255
Y1 304-307 Used by 8253
Y2 308-30B Available
Y3 30C—30F Available
Y4 310-313 Available
B155
e ST
D7 D7 PA7 :>
Jie p o PBO
WR—WR ppy :
L AD—] A0 [D
LS8 L 1 PCT 8253
A2—— A - BV} D0 CLED —
sM—IC Fijo— . OUTO [—
AS—G2A y2l0],, 47 RD—{RD GATI |—
Ab Y3 |o— "—-; Al Al OUTI |—
ié% >—B valo |2 Al—JAl cLk2|—
AE . [15 e
T4L804 T4LS520 Gl oles T Lo
A9

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o The following Fig shows the circuit for buffering all the buses. The 74LS244 is used to boost the
address and control signals.

TALS245
T,
[N e [}
D1) ————— DI
D2 D1 To
Ei E; Cable
05 D5 Connector
[Ha m— B
D7 DIR OC e 7
| | i
T4L5244
IOR [OR
1YW . T
A —— A0 To
o — Cable
h: X Connector
Ad Ad
AS 16 IG AS
11 g
T4L5244
Ab Ak
A7 e AT
AR |—— AR Ta
AY —— ﬁ'n Cable
AEN RS TR Connector
16 16
ry 171
. L = = T4LS138
e To Voo of all IC chips of the add- A5 A
GND ini board Af——IB
Tao Cable Connector iﬁ . Elﬁ. Y410
= AEM DGR
o Ay—1G1

GND = pins Bl, B31

Fig: Design of 8-bit ISA PC Bus Extender

» The following shows a test program to toggle the PA and PB bits. Notice that in order to avoid

locking up the system, INT 16H is used to exit upon pressing any key.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Write a program to toggle all bits of PA and PB of the 8255 chip on the PC Trainer, Puta 1/2
second delay in berween “on™ and “off” states, Use INT 16H to exit if there is a keypress.
Solution:
The program below toggles all bits of PA and PB indefinitely. Pressing any key exits the pro-
gram. :

MOW DX, 303H ;CONTROL REG ADDRESS

MOW AL, B0H fALL PORTS AS QUTPRUT

OUT DX, AL
AGRIN: MOV DX, 300H :FPA RDDRESS

MOW AL, 35H

OUT DX, AL

INC DX ; BB ADDRESS

QUT DX,AL

CALL HSDELAY ;1/2 SEC DELAY

MOV DX, 300H i PA ADDRESS

MOW AL, QARH

OUT DX, AL -

INC DX i PB ADDRESS

OUT DX, AL

CALL HSDELAY $1/2 SEC DELAY

MOV AH,01

INT 1&H s CHECK KEYFRESS

JE AGAIN tPRESS ANY KEY TO EXIT

MOW AH, 4CH :

INT Z1H fEXIT
HSDELRY FROC NEAR

MO CX,33144 F33144%15,085 usec=1/2 seac

PUSH AX

Wl: IN AL, 61H

AND AL, Q00100008

CMF AL,AH

JE Wl

MOV AH, AL

LOOP | Wl

BOP AX

RET
HSDELRY ENDE
Notice the use of INT 16H option AH = 01 where the keypress is checked. If there is no key-
press, it will continue.

Visual C/C++ 1/O Programming:

0 Microsoft Visual C++ is a programming language widely used on the Windows platform.

o Since Visual C++ is an object-oriented language, it comes with many classes and objects to make
programming easier and more efficient.

o But, there is no object or class for directly accessing 1/0 ports in the full Windows version of
Visual C++.

0 The reason for that is that Microsoft wants to make sure the x86 system programming is under
full control of the operating system. This prevents any hacking into the system hardware.

o This applies to Windows NT, 2000, XP, and higher.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Hence, none of the system INT instructions such as INT 21H and I/O operations are applicable in
Windows XP and its subsequent versions.

To access the 1/0 and other hardware features of the x86 PC in the XP environment you must use
the Windows Platform SDK provided by Microsoft.

The situation is different in the Windows 9x (95 and 98) environment.

While INT 21H and other system interrupt instructions are blocked in Windows 9x, direct 1/0
addressing is available.

To access I/O directly in Windows 9x, you must program Visual C++ in console mode.

The instruction syntax for 1/O operations is shown in the following Table.

x86 Assembly Visual C++
OUT port#, AL | _outp (port#, byte)
OUT DX, AL | _outp (port#, byte)
IN AL, port# _inp (port#)
IN AL, DX _inp (port#)

Notice the use of the underscore character (_) in both the _outp and _inp instructions.

Also note that, while the x86 Assembly language makes a distinction between the 8-bit and 16-bit
I/O addresses by using the DX register, there is no such distinction in C programming. In other
words, for the instruction "outp (port#, byte)" the port# can take any address value between 0000
and FFFFH.

Write a Visual C++ program for Windows 98 to toggle all bits of PA and PB of the 8255 chip.
Use the kbhit function to exit if there is a keypress.

Solution:

//Tested by Dan Bent

#include<conioc.h>

#include<stdio.h>

$include<iostream.h>

$include<icmanip.h>

#include<windows.h>

vold main/()

{

cout<<setiosflags{iocs::unitbuf); // clear screen buifer
cout<<"This program toggles the bits for Port A and rPort B.";
outp {0x303, 0x80); J/MAEE PA,PB of 8255 ALL OUTFUT
do

_outp (0x300, 0x33) ¢ S /SEND 55H TQ PORT A

outp {0x301, 0x55) ; /S /SEND 55H TO PORT B

_sleepiﬁﬂﬂ}: J/DELAY of 500 msec.

“outp (0x300, OxAR) ; //HOW SEND ARH TO PA, and PB

_outp (0x301, OxAR) 7

sleep(500) ;

}

while {(!'kbhit({)):

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Write a Visual C++ program for Windows 98 to get a byte of data from PA and send it to both
PB and PC of the 8255 chip in PC Trainer.

Solution:
#¥include<conio.h>
#include<stdio.h>
#include<iostream.h>
$include<iomanip.h>
#include<windows.h>
tinclude<process.h>
{//Tested by Dan Bent
void main()
{
unsigned char ﬁybyte;
cout<<setiosflags (ios::unitbuf);// clear screen buffer
system("CLS") ;

_outp (0x303, 0x90) ; //PA=in, PB=out, PC=ocut
_sleep(5); {/wait 5 milliseconds
mybyte= inp (0x300); {/get byte from PA

_outp (0x301, mybyte); //send toc FB

_sleap(5);

_outp (0x302, mybvyte); //send to Port C
_sleep(5);

cout<<mybyte; //send to PC screen also

cont<<™\ n\n":

1/0 Programming in Linux C/C++:
0 Linux is a popular operating system for the x86 PC.
0 The following Table provides the C/C++ syntax for 1/O programming in the Linux OS
environment.

x86 Assembly Linux C/C++
OUT port#, AL | outb (byte, port#)
OUT DX, AL | outb (byte, port#)
IN AL, port# inb (port#)
IN AL, DX inb (port#)

Compiling & Running Linux C/C++ Programs with 1/O Functions:

e To compile the I/O programs, the following points must be noted:
0 To compile with a keypress loop, you must link to library ncurses as follows:
> gcc -Incurses toggle.c -o toggle
e To run the program, you must either be root or root must change permissions on executable for
hardware port access.
Example: (as root or superuser)

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

> chown root toggle
> chmod 4750 toggle

¢ Now toggle can be executed by users other than root.

Write a C/C++ program for a PC with the Linux OS to toggle all bits of PA and PB of the 8255
chip on the PC Trainer. Put a 500 ms delay between the “on™ and “off” states. Pressing any key
should exit the program.

Solution:

i This program demonstrates low level I/D

£ using C language on a Linux based system.

i Tested by Nathan Noel £

finclude <stdio.h> // for printfl)

finclude <unistd.h> ff for usleep()

$include <sys/io.h> [/ for cuth() and inb()
$include <ncurses.h> // for console ifo functions

int main ()
{
int n=0; // temp char wvariable
int delay=5 ef5; // sleep delay wvariable

ioperm(0x2300,4,0x300); // get port perxmission
outb (Ox80, 0x303) ; FfY send control word

i begin ncurses setup ————————
fi-—- {needed for consale ifo) ————-
initscr(); // initialize screen for ncurses
chreak () ; ff do not wait for carriage return
noachao () ; ff do not echo input character
halfdelay (1} ; /f only wait for 1mz for input
// from keyboard
ff——— end nourses setup —————————n
do /7 main toggle loop
{
printf ("0x55 \nh\z"); f/ display status to screen
refresh(); ff refreshl) to update console

outh {0x55,0x300) ; // send 0x55% to Porth (01010101B)
outbh {0x55,0x301); // send 0x55 to PortB (01010101E)

usleep (delay) ; f¢ wait for 500ms (5 &5 microseconds)
printf ("0xAA “n\r"): /{ display status to screen
refresh(); f¢ refreshi() to update conscle

outb {0xaa, 0x300); // send 0xA2& to PorthA (10101010E)
outb {0xaa,0x301); // send OxARA to PortE (10101010E)
usleep (delay) ; Ff wait for 500ms
/Y get input from keyboard
n=getchi{); ff if no keypress in lms, n=0
// due to halfdelay(}
}

while (n<=0}; // test for keypress
£/ 1f keypress, exit program
endwin() ; // close program conscle for ncurses
return 0; Ff exit program

}

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Write a CICH; program for a PC with the Linux OS to get a byte of data from port A and
send it to both port B and port C of the 8255 in the PC Trainer,

Solution:

£ This program gets data from Port A& and
i sends a copy to both Port B and Port C.
£ Tested by: Nathan Hoel -- Z/10/2002

tinclude <stdio.h>

finclude <unistd.h=
tinclude <sysfic.h>
$include <ncurses.h>

int main {}

{
int n=07 JF temp variable
int 1=0; !/ temp variable 3

ioperm (3x300,4,0x300) ;// get permission to use ports
outlk (Dx%0, 0x303) ; A send controel word for
/f PartA=input, PortB=output, FPortC=cutput

initser(); /f initialize screen for ncurses
chreak() ; J¥ do not wait for carriage return
noschao() ; ff do not echo input character
halfdelay(1); /¢ only wait for lms for input
do A/ main toggle loop

{

i=ink (0x300) ; Af get data from Porth

usleepiles); Af sleep for 100ms

cutkbi{i,0x301}; /f =end data te PortB

ocutb{i, 0x302}; Af send data to PortC

n=getch{] ; AFf get input from keyboard

ff if no keypress in 1ms, n=0
I while{n<=0) ; ff test for keypress

Af 1L keypress, exit program

endwini); /Y claose program window
return (0) ;- A exit program
1
By: MAHESH PRASANNA K.,
DEPT. OF CSE, VCET.
*kkkkhkkkikkk
*kkhkkhkkikk

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

MODULE -4
ARM EMBEDDED SYSTEMS & ARM PROCESSOR FUNDAMENTALS

ARM EMBEDDED SYSTEMS

The ARM processor core is a key component of many successful 32-bit embedded systems. ARM cores are

widely used in mobile phones, handheld organizers, and a multitude of other everyday portable consumer
devices.

The first ARML1 prototype was designed in 1985. Over one billion ARM processors had been
shipped worldwide by the end of 2001. The ARM Company bases their success on a simple and
powerful original design, which continues to improve today through constant technical innovation.

For example, one of ARM’s most successful cores is the ARM7TDMI. It provides up to 120
Dhrystone MIPS and is known for its high code density and low power consumption, making it ideal for

mobile embedded devices.

THE RISC DESIGN PHYLOSOPHY':

v' The ARM core uses reduced instruction set computer (RISC) architecture. RISC is a design

philosophy aimed at delivering simple but powerful instructions that execute within a single cycle
at a high clock speed.

v" The RISC philosophy concentrates on reducing the complexity of instructions performed by the
hardware because it is easier to provide greater flexibility and intelligence in software rather than
hardware. As a result, a RISC design places greater demands on the compiler.

v In contrast, the traditional complex instruction set computer (CISC) relies more on the hardware
for instruction functionality, and consequently the CISC instructions are more complicated. The

following Figure illustrates these major differences.

CISC RISC
. Greater :
Compiler reatet . Compiler
Complexity

Code Code

Generation Generation
Greater
Complexity Processor Processor

Fig: CISC vs. RISC

CIsC RISC

1. Complex instructions, taking multiple clock 1. Simple instructions, taking single clock

2. Emphasis on hardware, complexity is in the | 2. Emphasis on software, complexity is in the

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

micro-program/processor complier

3. Complex instructions, instructions executed by | 3. Reduced instructions, instructions executed by

micro-program/processor hardware

4. Variable format instructions, single register set | 4. Fixed format instructions, multiple register sets

and many instructions and few instructions

5. Many instructions and many addressing modes | 5. Fixed instructions and few addressing modes

6. Conditional jump is usually based on status | 6. Conditional jump can be based on a bit

register bit anywhere in memory

7. Memory reference is embedded in many | 7. Memory reference is embedded in
instructions LOAD/STORE instructions

The RISC philosophy is implemented with four major design rules:

1.

Instructions—RISC processors have a reduced number of instruction classes. These classes
provide simple operations that can each execute in a single cycle. The compiler or programmer
synthesizes complicated operations (for example, a divide operation) by combining several
simple instructions. Each instruction is having fixed length to allow the pipeline to fetch future
instructions before decoding the current instruction.
o In contrast, in CISC processors the instructions are often of variable size and take many
cycles to execute.
Pipelines—The processing of instructions is broken down into smaller units that can be executed
in parallel by pipelines. Ideally the pipeline advances by one step on each cycle for maximum
throughput. Instructions can be decoded in one pipeline stage.
0 There is no need for an instruction to be executed by a mini-program called microcode as
on CISC processors.
Registers—RISC machines have a large general-purpose register set. Any register can contain
either data or an address. Registers act as the fast local memory store for all data processing
operations.
0 Incontrast, CISC processors have dedicated registers for specific purposes.
Load-store architecture—The processor operates on data held in registers. Separate load and
store instructions transfer data between the register bank and external memory. Memory accesses
are costly, so separating memory accesses from data processing provides an advantage because
you can use data items held in the register bank multiple times without needing multiple memory
accesses.
0 In contrast, with a CISC design the data processing operations can act on memory
directly.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

e These design rules allow a RISC processor to be simpler, and thus the core can operate at higher
clock frequencies.
o0 In contrast, traditional CISC processors are more complex and operate at lower clock

frequencies.

THE ARM DESIGN PHYLOSOPHY':

There are a number of physical features that have driven the ARM processor design.

v Portable embedded systems require battery power. The ARM processor has been specially
designed to be small to reduce power consumption and extend battery operation—essential for
applications such as mobile phones and personal digital assistants (PDAS).

v High code density is another major requirement since embedded systems have limited memory
due to cost and/or physical size restrictions—useful for applications that have limited on-board
memory, such as mobile phones and mass storage devices.

v' Embedded systems are price sensitive

0 Hence, use slow and low-cost memory devices to get substantial savings—essential for
high-volume applications like digital cameras.

0 Also, reduce the area of the die taken up by the embedded processor; smaller the area
used by the embedded processor, reduced cost of the design and manufacturing for the
end product.

v ARM has incorporated hardware debug technology within the processor so that software
engineers can view what is happening while the processor is executing code. With greater
visibility, software engineers can resolve issues faster.

v' The ARM core is not a pure RISC architecture because of the constraints of its primary
application—the embedded system. In some sense, the strength of the ARM core is that it does
not take the RISC concept too far.

Instruction Set for Embedded Systems:
The ARM instruction set differs from the pure RISC definition in several ways that make the ARM
instruction set suitable for embedded applications:

v Variable cycle execution for certain instructions—Not every ARM instruction executes in a
single cycle. For example, load-store-multiple instructions vary in the number of execution cycles
depending upon the number of registers being transferred. The transfer can occur on sequential
memory addresses. Code density is also improved since multiple register transfers are common

operations at the start and end of functions.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Inline barrel shifter leading to more complex instructions—The inline barrel shifter is a hardware
component that preprocesses one of the input registers before it is used by an instruction. This
expands the capability of many instructions to improve core performance and code density.
Thumb 16-bit instruction set—ARM enhanced the processor core by adding a second 16-bit
instruction set called Thumb that permits the ARM core to execute either 16- or 32-bit
instructions. The 16-bit instructions improve code density by about 30% over 32-bit fixed-length
instructions.

Conditional execution—An instruction is only executed when a specific condition has been
satisfied. This feature improves performance and code density by reducing branch instructions.
Enhanced instructions—The enhanced digital signal processor (DSP) instructions were added to
the standard ARM instruction set to support fast 16x16-bit multiplier operations. These

instructions allow a faster-performing ARM processor.

These additional features have made the ARM processor one of the most commonly used 32-bit

embedded processor cores.

EMBEDDED SYSTEM HARDWARE:

Embedded systems can control many different devices, from small sensors found on a production line, to

the real-time control systems used on a NASA space probe. All these devices use a combination of

software and hardware components.

The following Figure shows a typical embedded device based on an ARM core. Each box represents a

feature or function. The lines connecting the boxes are the buses carrying data.

ROM

ARM — SEAM
processor FLASHROM

4[Memory cnnlrol]er]

— DRAM
[Interrupt controller] \

4[AHB—external bridge J External bus

AHB arbiter |

[AHB-AFPB bridge]

- W Ethernet
[Rczu—tl me cJockJ—

physical

Console —— Serial UARTSs

[ARM] [Contmllers] [Fcriphcrals] Bus

Figure: An ARM-based Embedded Device, a Microcontroller
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

\We can separate the device into four main hardware components:

1.

4.

The ARM processor controls the embedded device. Different versions of the ARM processor are
available to suit the desired operating characteristics. An ARM processor comprises a core (the
execution engine that processes instructions and manipulates data) plus the surrounding
components (memory and cache) that interface it with a bus.

Controllers coordinate important functional blocks of the system. Two commonly found
controllers are interrupt and memory controllers.

The peripherals provide all the input-output capability external to the chip and are responsible for
the uniqueness of the embedded device.

A bus is used to communicate between different parts of the device.

ARM Bus Technology:

Embedded devices use an on-chip bus that is internal to the chip and that allows different peripheral

devices to be interconnected with an ARM core.

There are two different classes of devices attached to the bus:

1.

The ARM processor core is a bus master—a logical device capable of initiating a data transfer
with another device across the same bus.
Peripherals tend to be bus slaves—Ilogical devices capable only of responding to a transfer

request from a bus master device.

A bus has two architecture levels:

A physical level—covers the electrical characteristics and bus width (16, 32, or 64 bits).

The protocol—the logical rules that govern the communication between the processor and a peripheral.

AMBA Bus Protocol:

v

v

The Advanced Microcontroller Bus Architecture (AMBA) was introduced in 1996 and has been
widely adopted as the on-chip bus architecture used for ARM processors.

The first AMBA buses introduced were the ARM System Bus (ASB) and the ARM Peripheral Bus
(APB). Later ARM introduced another bus design, called the ARM High Performance Bus
(AHB).

Using AMBA, peripheral designers can reuse the same design on multiple projects. A peripheral
can simply be bolted onto the on-chip bus without having to redesign an interface for each
different processor architecture. This plug-and-play interface for hardware developers improves
availability and time to market.

AHB provides higher data throughput than ASB because it is based on a centralized multiplexed
bus scheme rather than the ASB bidirectional bus design. This change allows the AHB bus to run

at higher clock speeds.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v ARM has introduced two variations on the AHB bus: Multi-layer AHB and AHB-Lite.
0 The Multi-layer AHB bus allows multiple active bus masters.
0 AHB-Lite is a subset of the AHB bus and it is limited to a single bus master.
v The example device shown in the above Figure has three buses:
0 an AHB bus for the high- performance peripherals
0 an APB bus for the slower peripherals

o athird bus for external peripherals, proprietary to this device.

Memory:
An embedded system has to have some form of memory to store and execute code. You have to compare
price, performance, and power consumption when deciding upon specific memory characteristics, such as

hierarchy, width, and type.

Hierarchy: All computer systems have memory arranged in some form of hierarchy. The following
Figure shows the memory trade-offs: the fastest memory cache is physically located nearer the ARM
processor core and the slowest secondary memory is set further away. Generally the closer memory is to

the processor core, the more it costs and the smaller its capacity.

Cache

Main
memory

Secondary
storage

Performance/costs

| MB | GB
Memory Size

Figure: Memory Storage Trade-offs
v' The cache is placed between main memory and the core. It is used to speed up data transfer
between the processor and main memory. A cache provides an overall increase in performance
but with a loss of predictable execution time. Although the cache increases the general
performance of the system, it does not help real-time system response.
v' The main memory is large—around 256 KB to 256 MB (or even greater), depending on the
application—and is generally stored in separate chips. Load and store instructions access the main

memory unless the values have been stored in the cache for fast access.

MAHESH PRASANNA K., VCET, PUTTUR

v

MICROPROCESSORS AND MICROCONTROLLERS

Secondary storage is the largest and slowest form of memory. Hard disk drives and CD-ROM

drives are examples of secondary storage.

Width: The memory width is the number of bits the memory returns on each access—typically 8, 16, 32,
or 64 bits.

v

The memory width has a direct effect on the overall performance and cost ratio. Lower bit

memories are less expensive, but reduce the system performance.

The following Table summarizes theoretical cycle times on an ARM processor using different memory

width devices.

Types:

Table: Fetching Instruction from Memory

Instruction Size | 8-bit Memory | 16-bit Memory | 32-bit Memory
ARM 32-bit 4 cycles 2 cycles 1 cycles

Thumb 16-bit 2 cycles 1 cycles 1 cycles

There are many different types of memory:
Read-only memory (ROM) is the least flexible of all memory types because it contains an image
that is permanently set at production time and cannot be reprogrammed.

0 ROMs are used in high-volume devices that require no updates or corrections. Many devices also
use a ROM to hold boot code.

Flash ROM can be written to as well as read, but it is slow to write so you shouldn’t use it for
holding dynamic data.

o Its main use is for holding the device firmware or storing long-term data that needs to be preserved
after power is off. The erasing and writing of flash ROM are completely software controlled with
no additional hardware circuitry required, which reduces the manufacturing costs.

Dynamic random access memory (DRAM) is the most commonly used RAM for devices. It has
the lowest cost per megabyte compared with other types of RAM. DRAM is dynamic—it needs
to have its storage cells refreshed and given a new electronic charge every few milliseconds, so
you need to set up a DRAM controller before using the memory.

Static random access memory (SRAM) is faster than the more traditional DRAM, but requires
more silicon area. SRAM is static—the RAM does not require refreshing. The access time for
SRAM is considerably shorter than the equivalent DRAM because SRAM does not require a
pause between data accesses. But cost of SRAM is high.

Synchronous dynamic random access memory (SDRAM) is one of many subcategories of DRAM.
It can run at much higher clock speeds than conventional memory. SDRAM synchronizes itself
with the processor bus, because it is clocked. Internally the data is fetched from memory cells,

pipelined, and finally brought out on the bus in a burst.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Peripherals:
Embedded systems that interact with the outside world need some form of peripheral device. A
peripheral device performs input and output functions for the chip by connecting to other devices or
sensors that are off-chip.
o0 Each peripheral device usually performs a single function and may reside on-chip.
0 Peripherals range from a simple serial communication device to a more complex 802.11
wireless device.
v'All ARM peripherals are memory mapped—the programming interface is a set of memory-
addressed registers. The address of these registers is an offset from a specific peripheral base
address.
v" Controllers are specialized peripherals that implement higher levels of functionality within an
embedded system.

0 Two important types of controllers are memory controllers and interrupt controllers.

Memory Controllers: Memory controllers connect different types of memory to the processor bus.
0 On power-up a memory controller is configured in hardware to allow certain memory devices to
be active. These memory devices allow the initialization code to be executed.
Some memory devices must be set up by software; for example, when using DRAM, you first have to set

up the memory timings and refresh rate before it can be accessed.

Interrupt Controllers: When a peripheral or device requires attention, it raises an interrupt to the
processor. An interrupt controller provides a programmable governing policy that allows software to
determine which peripheral or device can interrupt the processor at any specific time by setting the
appropriate bits in the interrupt controller registers.

There are two types of interrupt controller available for the ARM processor: the standard interrupt
controller and the vector interrupt controller.

1. The standard interrupt controller sends an interrupt signal to the processor core when an external
device requests servicing. It can be programmed to ignore or mask an individual device or set of
devices.

0 The interrupt handler determines which device requires servicing by reading a device
bitmap register in the interrupt controller.

2. The vector interrupt controller (VIC) is more powerful than the standard interrupt controller,
because it prioritizes interrupts and simplifies the determination of which device caused the
interrupt.

0 Depending on the type, the VIC will either call the standard interrupt exception handler,

which can load the address of the handler.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

EMBEDDED SYSTEM SOFTWARE:
An embedded system needs software to drive it. The following Figure shows four typical software

components required to control an embedded device.

Application

Operating system

Initialization Device drivers

Hardware device

Figure: Software Abstraction Layers Executing on Hardware

v The initialization code is the first code executed on the board and is specific to a particular target
or group of targets. It sets up the minimum parts of the board before handing control over to the
operating system.

v" The operating system provides an infrastructure to control applications and manage hardware
system resources.

v The device drivers provide a consistent software interface to the peripherals on the hardware
device.

v An application performs one of the tasks required for a device.

o For example, a mobile phone might have a diary application.

There may be multiple applications running on the same device, controlled by the operating

system.

Initialization (Boot) Code:

v' Initialization code (or boot code) takes the processor from the reset state to a state where the
operating system can run. It usually configures the memory controller and processor caches and
initializes some devices.

v/ The initialization code handles a number of administrative tasks prior to handing control over to
an operating system image.

0 We can group these different tasks into three phases: initial hardware configuration,
diagnostics, and booting.

1. Initial hardware configuration involves setting up the target platform, so that it can boot an
image. The target platform comes up in a standard configuration; but, this configuration normally

requires modification to satisfy the requirements of the booted image.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o0 For example, the memory system normally requires reorganization of the memory map,
as shown in the following Example.
Example: Initializing or organizing memory is an important part of the initialization code, because many

operating systems expect a known memory layout before they can start.

Before After
Oxfiffffff
I/0 Regs ——|1/0 Regs
FAST SRAM
= Boot ROM
DRAM DRAM
large | large
contiguous contiguous
block block
Boot ROM |~ L—=| FAST SRAM
0x00000000

Figure: Memory Remapping
The above Figure shows memory before and after reorganization. It is common for ARM-based embedded
systems to provide for memory remapping because it allows the system to start the initialization code
from ROM at power-up. The initialization code then redefines or remaps the memory map to place RAM
at address 0x00000000—an important step because then the exception vector table can be in RAM and
thus can be reprogrammed.

2. Diagnostics are often embedded in the initialization code. Diagnostic code tests the system by
exercising the hardware target to check if the target is in working order. It also tracks down
standard system-related issues. The primary purpose of diagnostic code is fault identification and
isolation.

3. Booting involves loading an image and handing control over to that image. The boot process
itself can be complicated if the system must boot different operating systems or different versions
of the same operating system.

o0 Booting an image is the final phase, but first you must load the image. Loading an image
involves anything from copying an entire program including code and data into RAM, to
just copying a data area containing volatile variables into RAM. Once booted, the system

hands over control by modifying the program counter to point into the start of the image.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Operating System:

v The initialization process prepares the hardware for an operating system to take control. An
operating system organizes the system resources: the peripherals, memory, and processing time.
v" ARM processors support over 50 operating systems. We can divide operating systems into two
main categories: real-time operating systems (RTOSs) and platform operating systems.
1. RTOSs provide guaranteed response times to events. Different operating systems have different
amounts of control over the system response time.
0 A hard real-time application requires a guaranteed response to work at all.
o0 In contrast, a soft real-time application requires a good response time, but the
performance degrades more gracefully if the response time overruns.
2. Platform operating systems require a memory management unit to manage large, non-real-time
applications and tend to have secondary storage.
0 The Linux operating system is a typical example of a platform operating system.
Applications:
v' The operating system schedules applications—code dedicated to handle a particular task. An
application implements a processing task; the operating system controls the environment.
0 An embedded system can have one active application or several applications running
simultaneously.
v" ARM processors are found in numerous market segments, including networking, auto-motive,
mobile and consumer devices, mass storage, and imaging.
v" ARM processor is found in networking applications like home gateways, DSL modems for high-
speed Internet communication, and 802.11 wireless communications.
v" The mobile device segment is the largest application area for ARM processors, because of mobile
phones.
v

ARM processors are also found in mass storage devices such as hard drives and imaging products
such as inkjet printers—applications that are cost sensitive and high volume.

In contrast, ARM processors are not found in applications that require leading-edge high
performance. Because these applications tend to be low volume and high cost, ARM has decided

not to focus designs on these types of applications.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

ARM PROCESSOR FUNDAMENTALS

A programmer can think of an ARM core as functional units connected by data buses, as shown in the

following Figure.

Data

‘ X Instruction
" | decoder

Sign extend

Write Read
rls Register file] Rd
pc rO—ri5 Result
Rn|A Rm | B
A |B|Acc
+ ¥ L
[Barrf:l shifter]
L * !HI\'F MAC

o |

L

[Address register] =

—l J —h-| Incrementer |

Address

Figure: ARM Core dataflow Model
The arrows represent the flow of data, the lines represent the buses, and the boxes represent either an
operation unit or a storage area.
v Data enters the processor core through the Data bus. The data may be an instruction to execute
or a data item.

o0 Figure shows a Von Neumann implementation of the ARM—data items and instructions
share the same bus. (In contrast, Harvard implementations of the ARM use two different
buses).

v' The instruction decoder translates instructions before they are executed. Each instruction
executed belongs to a particular instruction set.
v" The ARM processor, like all RISC processors, uses load-store architecture—means it has two

instruction types for transferring data in and out of the processor:
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o load instructions copy data from memory to registers in the core

0 store instructions copy data from registers to memory
There are no data processing instructions that directly manipulate data in memory. Thus, data
processing is carried out in registers.
Data items are placed in the register file—a storage bank made up of 32-bit registers.

o0 Since the ARM core is a 32-bit processor, most instructions treat the registers as holding
signed or unsigned 32-bit values. The sign extend hardware converts signed 8-bit and
16-bit numbers to 32-bit values as they are read from memory and placed in a register.

ARM instructions typically have two source registers, Rn and Rm, and a single result or
destination register, Rd. Source operands are read from the register file using the internal buses
A and B, respectively.

The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the register values Rn
and Rm from the A and B buses and computes a result. Data processing instructions write the
result in Rd directly to the register file.

Load and store instructions use the ALU to generate an address to be held in the address register
and broadcast on the Address bus.

0 One important feature of the ARM is that register Rm alternatively can be preprocessed in
the barrel shifter before it enters the ALU. Together the barrel shifter and ALU can
calculate a wide range of expressions and addresses.

After passing through the functional units, the result in Rd is written back to the register file using
the Result bus.
For load and store instructions the Incrementer updates the address register before the core reads

or writes the next register value from or to the next sequential memory location.

The processor continues executing instructions until an exception or interrupt

ri
changes the normal execution flow. rl
r2
r3
REGISTERS: rd
General-purpose registers hold either data or an address. They are identified with the ’f
ro
letter r prefixed to the register number. For example, register 4 is given the label r4. 7
The Figure shows the active registers available in user mode. (A protected mode is r8
r9
normally used when executing applications). 70
v The processor can operate in seven different modes. ril
-7
v’ All the registers shown are 32 bits in size. r/2
ri3sp
v There are up to 18 active registers: ri4lIr
0 16 data registers and 2 processor status registers. ri3 pe
0 The data registers visible to the programmer are r0 to r15. cpsr
MAHESH PRASANNA K., VCET, PUTTUR | -

MICROPROCESSORS AND MICROCONTROLLERS

v~ The ARM processor has three registers assigned to a particular task or special function: r13, ri14,
and r15. They are given with different labels to differentiate them from the other registers.
0 Register r13 is traditionally used as the stack pointer (sp) and stores the head of the stack
in the current processor mode.
0 Register r14 is called the link register (Ir) and is where the core puts the return address
whenever it calls a subroutine.
0 Register r15 is the program counter (pc) and contains the address of the next instruction
to be fetched by the processor.
v"In ARM state the registers r0 to r13 are orthogonal—any instruction that you can apply to r0 you
can equally well apply to any of the other registers.
v In addition to the 16 data registers, there are two program status registers: cpsr (current program

status register) and spsr (saved program status register).

CURRENT PROGRAM STATUS REGISTER:

The ARM core uses the cpsr to monitor and control internal operations. The cpsr is a dedicated 32-bit

register and resides in the register file. The following Figure shows the basic layout of a generic program

status register. Note that the shaded parts are reserved for future expansion.

. Flags Status Extension Control
Ficlds | i n n |
Bit 31302928 T 65 4 0
N\ Z|C|V I|\F|T| Mode
Function “—F— o
Condition Interrupt Processor
flags Masks mode
Thumb
state

Figure: A Generic Program Status Register (psr)

The cpsr is divided into four fields, each 8 bits wide: flags, status, extension, and control. In current
designs the extension and status fields are reserved for future use.

v The control field contains the processor mode, state, and interrupt mask bits.

v The flags field contains the condition flags.
Some ARM processor cores have extra bits allocated. For example, the J bit, which can be found in the
flags field, is only available on Jazelle-enabled processors, which execute 8-bit instructions.
It is highly probable that future designs will assign extra bits for the monitoring and control of new

features.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Processor Modes:

v

v

The processor mode determines which registers are active and the access rights to the cpsr
register itself. Each processor mode is either privileged or non-privileged:
0 A privileged mode allows full read-write access to the cpsr.
0 A non-privileged mode only allows read access to the control field in the cpsr, but still
allows read-write access to the condition flags.
There are seven processor modes in total:
o six privileged modes (abort, fast interrupt request, interrupt request, supervisor, system,
and undefined)
e The processor enters abort mode when there is a failed attempt to access
memory.
e Fast interrupt request and interrupt request modes correspond to the two
interrupt levels available on the ARM processor.
e Supervisor mode is the mode that the processor is in after reset and is generally
the mode that an operating system kernel operates in.
e System mode is a special version of user mode that allows full read-write access
to the cpsr.
e Undefined mode is used when the processor encounters an instruction that is
undefined or not supported by the implementation.
0 one non-privileged mode (user).

e User mode is used for programs and applications.

Banked Registers:

The following Figure shows all 37 registers in the register file.

v
v
v

v

Of these, 20 registers are hidden from a program at different times.

These registers are called banked registers and are identified by the shading in the diagram.

They are available only when the processor is in a particular mode; for example, abort mode has
banked registers r13_abt, r14_abt and spsr_abt.

Banked registers of a particular mode are denoted by an underline character post-fixed to the
mode mnemonic or _mode.

Every processor mode except user mode can change mode by writing directly to the mode bits of
the cpsr.

All processor modes except system mode have a set of associated banked registers that are a
subset of the main 16 registers.

A banked register maps one-to-one onto a user mode register.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v If you change processor mode, a banked register from the new mode will replace an existing
register.

o0 For example, when the processor is in the interrupt request mode, the instructions you
execute still access registers named r13 and r14. However, these registers are the banked
registers r13_irg and rl4 _irq. The user mode registers r13_usr and rl4_usr are not
affected by the instruction referencing these registers. A program still has normal access

to the other registers r0 to r12.

User and
system
rt)
ri
r2
r3
rd
5 Fast
6 interrupt
= request
ré8 r8_fig
r9 r9_fig
rio ri0_fig
11 r11_fig Interrupt | ,
g, L request Supervisor Undefined Abort
ri3 sp ri3_fig ri3_irg ri3_sve ri3_undef ri3_abt
rid lr rid_fig ri4d_irg rid sve ri4_undef rid abt
ri5 pc
cpsr
- spsr_fig| | spsr_irg| |spsr_svc| |spsr_undef| | spsr_abt

Figure: Complete ARM Register Set
v The processor mode can be changed by a program that writes directly to the cpsr (the processor
core has to be in privileged mode) or by hardware when the core responds to an exception or
interrupt.
v' The following exceptions and interrupts cause a mode change: reset, interrupt request, fast
interrupt request, software interrupt, data abort, prefetch abort, and undefined instruction.
v’ Exceptions and interrupts suspend the normal execution of sequential instructions and jump to a

specific location.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v The following Figure illustrates what happens when an interrupt forces a mode change.

User mode

r0
rl
r2
r3
r4

10 Interrupt

T request

N mode

ri3 sp (=~——| ri3_irg

rid lr |=——| rid_irg

ri5 pc

cpsr |

- N spsr_irg

Figure: Changing Mode on an Exception

v The Figure shows the core changing from user mode to interrupt request mode, which happens
when an interrupt request occurs due to an external device raising an interrupt to the processor
core.

v This change causes user registers r13 and r14 to be banked. The user registers are replaced with
registers r13 _irq and r14_irq, respectively.

0 Note r14 _irq contains the return address and rl13_irg contains the stack pointer for
interrupt request mode.

v' The above Figure also shows a new register appearing in interrupt request mode: the saved
program status register (spsr), which stores the previous mode’s cpsr. The cpsr being copied into
spsr_irq.

v To return back to user mode, a special return instruction is used that instructs the core to restore

the original cpsr from the spsr_irq and bank in the user registers r13 and r14.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v Note that, the spsr can only be modified and read in a privileged mode. There is no spsr available

in user mode.

v Another important feature to note is that the cpsr is not copied into the spsr when a mode change
is forced due to a program writing directly to the cpsr. The saving of the cpsr only occurs when
an exception or interrupt is raised.

v" When power is applied to the core, it starts in supervisor mode, which is privileged. Starting in a
privileged mode is useful since initialization code can use full access to the cpsr to set up the
stacks for each of the other modes.

v The following Table lists the various modes and the associated binary patterns. The last column
of the table gives the bit patterns that represent each of the processor modes in the cpsr.

Table: Processor Mode

Mode Abbreviation | Privileged | Mode[4:0]
Abort abt yes 10111
Fast Interrupt Request fig yes 10001
Interrupt Request irg yes 10010
Supervisor SvC yes 10011
System Sys yes 11111
Undefined und yes 11011
User usr no 10000

State and Instruction Sets:
v" The state of the core determines which instruction set is being executed. There are three

instruction sets:

e ARM
e Thumb
e Jazelle.

v" The ARM instruction set is only active when the processor is in ARM state.
v" The Thumb instruction set is only active when the processor is in Thumb state. Once in Thumb
state the processor is executing purely Thumb 16-bit instructions.
v You cannot inter-mingle sequential ARM, Thumb, and Jazelle instructions.
v The Jazelle J and Thumb T bits in the cpsr reflect the state of the processor.
0 When both J and T bits are 0, the processor is in ARM state and executes ARM
instructions. This is the case when power is applied to the processor.

0 Whenthe T bit is 1, then the processor is in Thumb state.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v To change states the core executes a specialized branch instruction.
The following Table compares the ARM and Thumb instruction set features.
Table: ARM and Thumb Instruction Set Features

- ARM (cspr T=0) Thumb (cspr T =1)
Instruction size 32-bit 16-bit
Core instructions 58 30
Conditional execution most only branch instructions
Data processing | access to barrel shifter and | separate barrel shifter and
instructions ALU ALU instructions

Program status register | read-write in privileged mode no direct access

] 15 general-purpose registers | 8 general-purpose registers +7 high registers
Register usage
+pC +pC

v' The ARM designers introduced a third instruction set called Jazelle. Jazelle executes 8-bit
instructions and is a hybrid mix of software and hardware designed to speed up the execution of
Java byte-codes.
v To execute Java byte-codes, you require the Jazelle technology plus a specially modified version
of the Java virtual machine.
The following Table gives the Jazelle instruction set features.
Table: Jazelle instruction set features
- Jezelle (cspr T=0,J-1)

Instruction size 8-hit

] Over 60% of the Java byte-codes are implemented in hardware;
Core Instructions]]
the rest of the codes are implemented in software

Interrupt Masks:
v"Interrupt masks are used to stop specific interrupt requests from interrupting the processor.
v’ There are two interrupt request levels available on the ARM processor core—
0 interrupt request (IRQ)
o fast interrupt request (FIQ).
v The cpsr has two interrupt mask bits, 7 and 6 (or | and F), which control the masking of IRQ and
FIQ, respectively.
v The | bit masks IRQ when set to binary 1; and similarly, the F bit masks FIQ when set to binary
1.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Condition Flags:

v" Condition flags are updated by comparisons and the result of ALU operations that specify the S
instruction suffix.

o0 For example, if a SUBS subtract instruction results in a register value of zero, then the Z
Flag in the cpsr is set. This particular subtract instruction specifically updates the cpsr.

v With processor cores that include the DSP extensions, the Q bit indicates if an overflow or
saturation has occurred in an enhanced DSP instruction. The flag is “sticky” in the sense that the
hardware only sets this flag. To clear the flag you need to write to the cpsr directly.

v In Jazelle-enabled processors, the J bit reflects the state of the core; if it is set, the core is in
Jazelle state. The J bit is not generally usable and is only available on some processor cores. To
take advantage of Jazelle, extra software has to be licensed from both ARM Limited and Sun
Microsystems.

v" Most ARM instructions can be executed conditionally on the value of the condition flags.

The following Table lists the condition flags and a short description on what causes them to be set.

Table: Condition Flags

Flag | Flag Name Set When

Q Saturation | the result causes an overflow and/or saturation

oVerflow | the result causes a signed overflow

Carry the result causes an unsigned carry

Zero the result is zero

Zl Nl 0O <

Negative | bit 31 of the result is a binary 1

These flags are located in the most significant bits in the cpsr. These bits are used for conditional

execution. The following Figure shows a typical value for the cpsr with both DSP extensions and Jazelle.

3130292827 24 76 54 0
0|10{10|0 0 oj1\0f 10011
| : 111 : |
nzCvg i iF t SVC

Figure: Example: cspr = nzCvqjiFt_SVC
v For the condition flags a capital letter shows that the flag has been set. For interrupts a capital
letter shows that an interrupt is disabled.
v In the cpsr example shown in above Figure, the C flag is the only condition flag set. The rest

nzvq flags are all clear.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v~ The processor is in ARM state because neither the Jazelle j nor Thumb t bits are set. The IRQ
interrupts are enabled, and FIQ interrupts are disabled.

v Finally, you can see from the Figure, the processor is in supervisor (SVC) mode, since the
mode[4:0] is equal to binary 10011.

Conditional Execution:

v" Conditional execution controls whether or not the core will execute an instruction.

v’ Prior to execution, the processor compares the condition attribute with the condition flags in the
cpsr. If they match, then the instruction is executed; otherwise the instruction is ignored.

v The condition attribute is post-fixed to the instruction mnemonic, which is encoded into the
instruction.

v" The following Table lists the conditional execution code mnemonics. When a condition
mnemonic is not present, the default behavior is to set it to always (AL) execute.

Table: Condition Mnemonics

Mnemonic Name Condition flags

EQ equal Z

NE not equal z

CS HS carry set/unsigned higher or same C

CC LO carry clear/unsigned lower c

MI minus/negative N

PL plus/positive or zero n

VS overflow V

VC no overflow v

HI unsigned higher zC

LS unsigned lower or same Zore

GE signed greater than or equal NVor nv

LT signed less than Nvor nV

GT signed greater than NzV or nzv

LE signed less than or equal Zor Nvor nV

AL always (unconditional) ignored
PIPELINE:

v A pipeline is the mechanism in a RISC processor, which is used to execute instructions.
v' Pipeline speeds up execution by fetching the next instruction while other instructions are being

decoded and executed.

0 Fetch]—'UDcmdc)—{]Exccuth

Figure: ARMY Three-stage Pipeline
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

The above Figure shows a three-stage pipeline:

0 Fetch loads an instruction from memory.

o Decode identifies the instruction to be executed.

0 Execute processes the instruction and writes the result back to a register.

The following Figure illustrates pipeline using a simple example.

Fetch Decode Execute

Time | Cycle 1 O ADD)——o{])—_.o
Cycle2 (] suB H-f] aoD H—f))
| Cycle3) cvp H-+f] sue Hf)

Figure: Pipelined Instruction Sequence

v The Figure shows a sequence of three instructions being fetched, decoded, and executed by the

processor.
0 The three instructions are placed into the pipeline sequentially.
o0 In the first cycle, the core fetches the ADD instruction from memory.
o In the second cycle, the core fetches the SUB instruction and decodes the ADD
instruction.
0 In the third cycle, both the SUB and ADD instructions are moved along the pipeline. The

ADD instruction is executed, the SUB instruction is decoded, and the CMP instruction is
fetched.

v This procedure is called filling the pipeline.

v The pipeline allows the core to execute an instruction every cycle.

As the pipeline length increases, the amount of work done at each stage is reduced, which allows

the processor to attain a higher operating frequency. This in turn increases the performance.

0 The increased pipeline length also means increased system latency and there can be data

dependency between certain stages.

0 The pipeline design for each ARM family differs. For example, The ARM9 core increases the

pipeline length to five stages, as shown in Figure.

U Fetch }—-ODccedc)—-{:]Exccuth—'O Mcmm}'}—-o Write)

Figure: ARM9 Five-stage Pipeline

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o The ARM9 adds a memory and writeback stage, which allows the ARM9 to —
= process on average 1.1 Dhrystone MIPS per MHz
= increase the instruction throughput in ARM9 by around 13% compared with an
ARM?7.
0 The ARMI0 increases the pipeline length still further by adding a sixth stage, as shown in the

following Figure.

O Fetch }—-U [ssue)—FaDchch—'U Exccutc)—-{)}‘lcmﬂr}-)—ba Writh

Figure: ARM10 Six-stage Pipeline

0 The ARM10 -
= can process on average 1.3 Dhrystone MIPS per MHz
= have about 34% more throughput than an ARM?7 processor core
= but again at a higher latency cost.
NOTE: Even though the ARM9 and ARM10 pipelines are different, they still use the same pipeline
executing characteristics as an ARM7. Hence, code written for the ARM7 will execute on an ARM9 or
ARM10.

Pipeline Executing Characteristics:
v" The ARM pipeline will not process an instruction, until it passes completely through the execute
stage.
0 For example, an ARM?7 pipeline (with three stages) has executed an instruction only
when the fourth instruction is fetched.

The following Figure shows an instruction sequence on an ARM?7 pipeline.

Fetch Decode Execute

Time | Cycle 1 m Iﬁigifrc
Cycle 2 11 SV

Cycle 3 ifgf;:’c
{ Cycle 4 AND |

Figure: ARM Instruction Sequence

v' The MSR instruction is used to enable IRQ interrupts, which only occurs once the MSR
instruction completes the execute stage of the pipeline. It clears the | bit in the cpsr to enable the
IRQ interrupts.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v Once the ADD instruction enters the execute stage of the pipeline, IRQ interrupts are enabled.

The following Figure illustrates the use of the pipeline and the program counter pc.

Time 0x8000 LDR pc, [pc,#0]
0x8004 NOP
0x8008 DCD jumpAddress

|

Fetch Decode Execute
) oco H-f) noP | LDR |
pc+ 8

(0x8000 + 8)

Figure: Example: pc = address + 8

v In the execute stage, the pc always points to the address of the instruction plus 8 bytes. In other

words, the pc always points to the address of the instruction being executed plus two instructions

ahead.

v Note when the processor is in Thumb state the pc is the instruction address plus 4.

v' There are three other characteristics of the pipeline.

o First, the execution of a branch instruction or branching by the direct modification of the

pc causes the ARM core to flush its pipeline.

o0 Second, ARM10 uses branch prediction, which reduces the effect of a pipeline flush by

predicting possible branches and loading the new branch address prior to the execution of

the instruction.

o0 Third, an instruction in the execute stage will complete even though an interrupt has been

raised. Other instructions in the pipeline will be abandoned, and the processor will start

filling the pipeline.

EXCEPTIONS, INTERRUPTS AND THE VECTOR TABLE:

v" When an exception or interrupt occurs, the processor sets the pc to a specific memory address.

The address is within a special address range called the vector table.

0 The entries in the vector table are instructions that branch to specific routines designed to

handle a particular exception or interrupt.

0 The memory map address 0x00000000 (or in some processors starting at the offset

Oxffff0000) is reserved for the vector table, a set of 32-bit words.

v" When an exception or interrupt occurs, the processor suspends normal execution and starts

loading instructions from the exception vector table (see the following Table).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Table: The Vector Table

Exception/Interrupt | Shorthand | Address | High Address
Reset RESET | 0x00000000 | 0x00000000
Undefined instruction | UNDEF | 0x00000004 | Oxffff0004
Software interrupt SWiI 0x00000008 | Oxffff0008
Prefetch abort PABT 0x0000000c | OxffffOOOC
Data abort SABT 0x00000010 Oxffff0010
Reserved - 0x00000014 | Oxffff0014
Interrupt request IRQ 0x00000018 | Oxffff0018
Fast interrupt request FIQ 0x0000001c | Oxffff00lc

v’ Each vector table entry contains a form of branch instruction pointing to the start of a specific

routine:

0 Reset vector is the location of the first instruction executed by the processor when power

is applied. This instruction branches to the initialization code.

Undefined instruction vector is used when the processor cannot decode an instruction.
The SWI

instruction is frequently used as the mechanism to invoke an operating system routine.

Software interrupt vector is called when you execute a SWI instruction.

Prefetch abort vector occurs when the processor attempts to fetch an instruction from an
address without the correct access permissions. The actual abort occurs in the decode
stage.

Data abort vector is similar to a prefetch abort, but is raised when an instruction attempts
to access data memory without the correct access permissions.

Interrupt request vector is used by external hardware to interrupt the normal execution
flow of the processor. It can only be raised if IRQs are not masked in the cpsr.

Fast interrupt request vector is similar to the interrupt request, but is reserved for
hardware requiring faster response times. It can only be raised if FIQs are not masked in

the cpsr.

CORE EXTENSIONS:

v’ Core extensions are the standard hardware components placed next to the ARM core.

v They improve performance, manage resources, and provide extra functionality and are designed

to provide flexibility in handling particular applications.

Each ARM family has different extensions available. There are three hardware extensions: cache and

tightly coupled memory, memory management, and the coprocessor interface.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Cache and Tightly Coupled Memory:
v The cache is a block of fast memory placed between main memory and the core. It allows for
more efficient fetches from some memory types. With a cache the processor core can run for the
majority of the time without having to wait for data from slow external memory.

v" Most ARM-based embedded systems use a single-level cache internal to the processor.

v" ARM has two forms of cache. The first is found attached to the Von Neumann-style cores. It

combines both data and instruction into a single unified cache, as shown in the following Figure.

[ARM core]

[Unified cache]

[Logic and control]

-
1

—(A]"»'[BA bus interface LII]'l'[]— [L{Maln memory]

) | .

On-chip AMBA bus

Figure: Von Neumann Architecture with Cache
v' The second form, attached to the Harvard-style cores, has separate caches for data and

instruction, as shown in the following Figure.

ARM core)
[Logic anld control j
D I

TCM TCM

{ Data 1 [Iﬂ&;truction] D I

it
™y
4[,&]\;[]3,& bus interface unit F— [[L’Mam I]'Ieml:'ll'}"j

D+1

On-chip AMBA bus

Figure: Harvard Architecture with TCMs
v A cache provides an overall increase in performance, but at the expense of predictable execution.
But the real-time systems require the code execution to be deterministic— the time taken for
loading and storing instructions or data must be predictable.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v This is achieved using a form of memory called tightly coupled memory (TCM). TCM is fast
SRAM located close to the core and guarantees the clock cycles required to fetch instructions or
data.

v' TCMs appear as memory in the address map and can be accessed as fast memory.

By combining both technologies, ARM processors can have both improved performance and predictable
real-time response. The following Figure shows an example core with a combination of caches and
TCMs.

ARM core
I
[Logic and control J
D 1
b ! Data [nstruction
Diata Instruction cache cache
TCM TCM D

| LL[-
[AMEA bus interface unitJ— Main mcmory]
D+1T
On-chip AMBA bus

Figure: Harvard Architecture with Caches and TCMs

Memory Management:

v" Embedded systems often use multiple memory devices. It is usually necessary to have a method
to organize these devices and protect the system from applications trying to make inappropriate
accesses to hardware. This is achieved with the assistance of memory management hardware.

v" ARM cores have three different types of memory management hardware—

0 no extensions providing no protection
0 amemory protection unit (MPU) providing limited protection
0 amemory management unit (MMU) providing full protection

v Non protected memory is fixed and provides very little flexibility. It is normally used for small,
simple embedded systems that require no protection from rogue applications.

v" MPUs employ a simple system that uses a limited number of memory regions. These regions are
controlled with a set of special coprocessor registers, and each region is defined with specific
access permissions. This type of memory management is used for systems that require memory
protection but don’t have a complex memory map.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v" MMUs are the most comprehensive memory management hardware available on the ARM. The
MMU uses a set of translation tables to provide fine-grained control over memory. These tables
are stored in main memory and provide a virtual-to-physical address map as well as access
permissions. MMUSs are designed for more sophisticated platform operating systems that support

multitasking.

Coprocessors:

v Coprocessors can be attached to the ARM processor. A coprocessor extends the processing
features of a core by extending the instruction set or by providing configuration registers. More
than one coprocessor can be added to the ARM core via the coprocessor interface.

v The coprocessor can be accessed through a group of dedicated ARM instructions that provide a
load-store type interface.

0 For example, coprocessor 15: The ARM processor uses coprocessor 15 registers to
control the cache, TCMs, and memory management.

v' The coprocessor can also extend the instruction set by providing a specialized group of new
instructions.

o0 For example, there are a set of specialized instructions that can be added to the standard
ARM instruction set to process vector floating-point (VFP) operations.

v" These new instructions are processed in the decode stage of the ARM pipeline.

o If the decode stage sees a coprocessor instruction, then it offers it to the relevant
COprocessor.

o0 If the coprocessor is not present or doesn’t recognize the instruction, then the ARM takes
an undefined instruction exception, which allows you to emulate the behavior of the

coprocessor in software.

By: MAHESH PRASANNA K.,
DEPT. OF CSE, VCET.

*khkkkkkhkik

*hkkkhkhikkk

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

MODULE -5

INTRODUCTION TO THE ARM INSTRUCTION SET
INTRODUCTION TO THE ARM INSTRUCTION SET

Different ARM architecture revisions support different instructions. However, new revisions usually add

instructions and remain backwardly compatible. Code you write for architecture ARMvAT should execute

on an ARMV5TE processor.

The following Table provides a complete list of ARM instructions available in the ARMvV5E

instruction set architecture (ISA). This ISA includes all the core ARM instructions as well as some of the

newer features in the ARM instruction set.

Table: ARM Instruction Set

Mnemonics ARMISA Description

ADC vl add two 32-bit values and carry

ADD vl add two 32-bit values

AND vl logical bitwise AND of two 32-bit values

B vl branch relative 4+/— 32 MB

BIC vl logical bit clear (AND NOT) of two 32-bit values

BKPT v5 breakpoint instructions

BL vl relative branch with link

BLX v5 branch with link and exchange

BX v4AT branch with exchange

CDP CDP2 v2v5 coprocessor data processing operation

CLZ v5 count leading zeros

CMN vl compare negative two 32-bit values

CMP vl compare two 32-bit values

EOR vl logical exclusive OR of two 32-bit values

LDC LDCZ v2v5 load to coprocessor single or multiple 32-bit values

LDM vl load multiple 32-bit words from memory to ARM registers
LDR vl vd v5E load a single value from a virtual address in memory
Mnemonics ARM ISA Description

MCR MCR2 MCRR v2v5v5E move to coprocessor from an ARM register or registers
MLA v2 multiply and accumulate 32-bit values

MOV vl move a 32-bit value into a register

MRC MRC2 MRRC v2v5v5E move to ARM register or registers from a coprocessor
MRS v3 move to ARM register from a status register (cpsr or spsr)
MSR v3 move to a status register (cpsr or spsr) from an ARM register
MUL v2 multiply two 32-bit values

MVN vl move the logical NOT of 32-bit value into a register

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Mnemonics ARM ISA Description

ORR vl logical bitwise OR of two 32-bit values

PLD v5E preload hint instruction

QADD v5E signed saturated 32-bit add

QDADD v5E signed saturated double and 32-bit add

QDsuB v5E signed saturated double and 32-bit subtract

Qsue v5E signed saturated 32-bit subtract

RSB vl reverse subtract of two 32-bit values

RSC vl reverse subtract with carry of two 32-bit integers

SBC vl subtract with carry of two 32-bit values

SMLAxy v5E signed multiply accumulate instructions ((16 x 16) + 32 = 32-bit)
SMLAL viM signed multiply accumulate long ((32 x 32) + 64 = 64-bit)

SMLALxy v5E signed multiply accumulate long ((16 x 16) + 64 = 64-bit)

SMLAWy v5E signed multiply accumulate instruction (((32 x 16) > 16) + 32 = 32-bit)
SMULL v3M signed multiply long (32 x 32 = 64-bit)

Mnemonics ARM ISA Description

SMULxy v5E signed multiply instructions (16 x 16 = 32-bit)

SMULWy v5E signed multiply instruction ((32 x 16) > 16 = 32-bit)

STC STC2 v2v5 store to memory single or multiple 32-bit values from coprocessor
STM vl store multiple 32-bit registers to memory

STR vl v4 v5E store register to a virtual address in memory

SuB vl subtract two 32-bit values

SWI vl software interrupt

SWP v2a swap a word/byte in memory with a register, without interruption
TEQ vl test for equality of two 32-bit values

TST vl test for bits in a 32-bit value

UMLAL v3M unsigned multiply accumulate long ((32 x 32) + 64 = 64-bit)
UMULL v3M unsigned multiply long (32 x 32 = 64-bit)

In the following sections, the hexadecimal numbers are represented with the prefix Ox and binary numbers
with the prefix Ob. The examples follow this format:
PRE <pre-conditions>
<instruction/s>
POST <post-conditions>
In the pre- and post-conditions, memory is denoted as
mem<data_size>[address]
This refers to data_size bits of memory starting at the given byte address. For example, mem32[1024] is
the 32-bit value starting at address 1 KB.

ARM instructions process data held in registers and memory is accessed only with load and store

instructions.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

ARM instructions commonly take two or three operands. For instance, the ADD instruction
below adds the two values stored in registers rl and r2 (the source registers). It writes the result to register

r3 (the destination register).

Instruction
Syntax

Destination
register (Rd)

Source
register 1 (Rn)

Source
register 2 (Rm)

ADD r3, rl1, r2

r3

rl

r2

ARM instructions classified as—data processing instructions, branch instructions, load-store

instructions, software interrupt instruction, and program status register instructions.

DATA PROCESSING INSTRUCTIONS:

The data processing instructions manipulate data within registers. They are—
v" move instructions, arithmetic instructions, logical instructions, comparison instructions, and

multiply instructions.

Most data processing instructions can process one of their operands using the barrel shifter.

If you use the S suffix on a data processing instruction, then it updates the flags in the cpsr.

Move and logical operations update the carry flag C, negative flag N, and zero flag Z.

0 The Cflag is set from the result of the barrel shift as the last bit shifted out.

0 The N flag is set to bit 31 of the result.

0 The Z flag is set if the result is zero.

MOVe Instructions:

Move instruction copies N into a destination register Rd, where N is a register or immediate value. This

instruction is useful for setting initial values and transferring data between registers.

Syntax: <instruction>{<cond=>}{S} Rd, N

MoV Move a 32-bit value into a register

Rd =N

MVN move the NOT of the 32-bit value into a register

Rd =~N

Example: This example shows a simple move instruction. The MOV instruction takes the contents of

register r5 and copies them into register r7, in this case, taking the value 5, and overwriting the value 8 in

register r7.
PRE r5=5
r7=238
MOV 7,15 ;letr7=r5
POST r5=5
r7=>5

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Barrel Shifter:

In above Example, we showed a MOV instruction where N is a simple register. But N can be more than
just a register or immediate value; it can also be a register Rm that has been preprocessed by the barrel
shifter prior to being used by a data processing instruction.

v' Data processing instructions are processed within the arithmetic logic unit (ALU).

v" A unique and powerful feature of the ARM processor is the ability to shift the 32-bit binary
pattern in one of the source registers left or right by a specific number of positions before it enters
the ALU.

v" Pre-processing or shift occurs within the cycle time of the instruction.

0 This shift increases the power and flexibility of many data processing operations.
o0 This is particularly useful for loading constants into a register and achieving fast
multiplies or division by a power of 2.

v There are data processing instructions that do not use the barrel shift, for example, the
MUL (multiply), CLZ (count leading zeros), and QADD (signed saturated 32-bit add)
instructions.

Rn Em

.

[Barrcl shiftcr]

Pre-processing

Result N

No pre-processing

\ﬂhrilhmctic logic uni%

Rd

Figure: Barrel Shifter and ALU
v" Figure shows the data flow between the ALU and the barrel shifter.

<

Register Rn enters the ALU without any pre- processing of registers.
v' We apply a logical shift left (LSL) to register Rm before moving it to the destination register. This
is the same as applying the standard C language shift operator « to the register.

v' The MOV instruction copies the shift operator result N into register Rd. N represents the result of
the LSL operation described in the following Table.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Table: Barrel Shifter Operations

Mnemonic Description Shift Result Shift amount y
LSL logical shift left xLSLy «x<vy #0-31 or Rs
LSR logical shift right xLSRy (unsigned)x >y #1-32 or Rs
ASR arithmetic right shift ~ xASRy (signed)x>> y #1-32 or Rs
ROR rotate right xRORy ((unsigned)x>> y) | (x < (32 —y)) #1-31orRs
RRX rotate right extended =~ xRRX (c flag < 31) | ((unsigned)x > 1) none

Note: x represents the register being shifted and y represents the shift amount.

Condition Bags

v" The five different shift operations that you can use within the barrel shifter are summarized in the
above Table.
PRE r5=5
r7==8
MOV r7,r5 LSL#2 ;letr7=r5%4=(r5<<2)
POST r5=5
r7 =20
v The above example multiplies register r5 by four and then places the result into register r7.
v The following Figure illustrates a logical shift left by one.
e —
Bit Bit Bit
31 2 0
([ey) (0}------- (0] = 0x80000004
Condition Bags
/ 31
([mecv) é (0)(0}------- (0)(0) - oxo0000008
\u_.- —

v

Condition flags
updated when
S is present

Figure: Logical Shift Left by One
For example, the contents of bit O are shifted to bit 1. Bit 0 is cleared. The C flag is updated with
the last bit shifted out of the register. This is bit (32 - y) of the original value, where y is the shift
amount. When y is greater than one, then a shift by y positions is the same as a shift by one

position executed y times.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Example: This example of a MOVS instruction shifts register r1 left by one bit. This multiplies register rl
by a value 2. As you can see, the C flag is updated in the cpsr because the S suffix is present in the
instruction mnemonic.
PRE cpsr = nzcvgiFt_USER

r0 = 0x00000000

rl = 0x80000004
MOVS r0, rl, LSL #1
POST cpsr =nzCvqiFt_USER

r0 = 0x00000008

rl = 0x80000004

The following Table lists the syntax for the different barrel shift operations available on data processing
instructions. The second operand N can be an immediate constant preceded by #, a register value Rm, or
the value of Rm processed by a shift.

Table: Barrel Shifter Operation Syntax for data Processing Instructions

N shift operations Syntax

Immediate #immediate

Register Rm

Logical shift left by immediate Rm, LSL #shift imm
Logical shift left by register Rm, LSL Rs

Logical shift right by immediate Rm, LSR #shift_imm
Logical shift right with register Rm, LSR Rs
Arithmetic shift right by immediate Rm, ASR #shift imm
Arithmetic shift right by register Rm, ASR Rs

Rotate right by immediate Rm, ROR #shift imm
Rotate right by register Rm, ROR Rs

Rotate right with extend Rm, RRX

Arithmetic Instructions:
The arithmetic instructions implement addition and subtraction of 32-bit signed and unsigned values.

Syntax: <instruction>{<cond>}{S} Rd, Rn, N

ADC | add two 32-bit values and carry Rd = Rn+ N+ carry
ADD | add two 32-bit values Rd=Rn+ N
RSB | reverse subtract of two 32-bit values Rd = N — Rn

RSC | reverse subtract with carry of two 32-bit values | Rd = N — Rn —!(carry flag)

SBC | subtract with carry of two 32-bit values Rd = Rn — N—!{carry flag)

SUB | subtract two 32-bit values Rd = Rn— N

N is the result of the shifter operation.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Example: The following simple subtract instruction subtracts a value stored in register r2 from a value
stored in register r1. The result is stored in register r0.
PRE r0 = 0x00000000
rl = 0x00000002
r2 = 0x00000001
SUB 0, rl, r2
POST r0 = 0x00000001

Example: The following reverse subtract instruction (RSB) subtracts rl from the constant value #0,
writing the result to r0. You can use this instruction to negate numbers.
PRE r0 = 0x00000000
rl = 0x00000077
RSBr0, rl,#0 ;Rd = 0x0 -rl
POST r0 = -r1 = Oxffffff89

Example: The SUBS instruction is useful for decrementing loop counters. In this example, we subtract the
immediate value one from the value one stored in register rl. The result value zero is written to register
rl. The cpsr is updated with the ZC flags being set.
PRE cpsr = nzcvgiFt_USER

rl = 0x00000001
SUBS 1, rl, #1
POST cpsr = nZCvqiFt USER

r1 = 0x00000000

Using the Barrel Shifter with Arithmetic Instructions:
The wide range of second operand shifts available on arithmetic and logical instructions is a very
powerful feature of the ARM instruction set. The following Example illustrates the use of the inline barrel
shifter with an arithmetic instruction. The instruction multiplies the value stored in register r1 by three.
Example: Register rl is first shifted one location to the left to give the value of twice rl. The ADD
instruction then adds the result of the barrel shift operation to register rl1. The final result transferred into
register r0 is equal to three times the value stored in register rl.
PRE r0 = 0x00000000

rl = 0x00000005
ADD 0, rl, rl, LSL#1
POST r0 = 0x0000000f

rl1 = 0x00000005
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Logical Instructions:

Logical instructions perform bitwise logical operations on the two source registers.

Syntax: <instruction={=cond=}{S} Rd, Rn, N

AND logical bitwise AND of two 32-bit values Rd = Rn& N
ORR logical bitwise OR of two 32-bit values Rd=Rn|N
EOR logical exclusive OR of two 32-bit values Rd = Rn™ N
BIC logical bit clear (AND NOT) Rd = Rn& ~N

Example: This example shows a logical OR operation between registers r1 and r2. Register r0 holds the
result.
PRE r0 = 0x00000000
rl = 0x02040608
r2 = 0x10305070
ORR 10, rl,r2
POST r0 =0x12345678

Example: This example shows a more complicated logical instruction called BIC, which carries out a
logical bit clear.
PRE rl1=0b1111
r2 =0b0101
BICrO, r1, r2
POST r0=0b1010
This is equivalentto — Rd = Rn AND NOT (N)
In this example, register r2 contains a binary pattern where every binary 1 in r2 clears a corresponding bit
location in register rl.
This instruction is particularly useful when clearing status bits and is frequently used to change interrupt

masks in the cpsr.

NOTE: The logical instructions update the cpsr flags only if the S suffix is present. These instructions

can use barrel-shifted second operands in the same way as the arithmetic instructions.

Comparison Instructions:
v The comparison instructions are used to compare or test a register with a 32-bit value.

v They update the cpsr flag bits according to the result, but do not affect other registers.

MAHESH PRASANNA K., VCET, PUTTUR

v After the bits have been set, the information can then be used to change program flow by using

v

MICROPROCESSORS AND MICROCONTROLLERS

conditional execution.

It is not required to apply the S suffix for comparison instructions to update the flags.

Syntax: <instruction=>{<cond=} Rn, N

CMN compare negated flags set as a result of Rn+ N
CMP compare flags set as a result of Rn — N
TEQ test for equality of two 32-bit values flags set as a result of Rn ™ N
TST test bits of a 32-bit value flags set as a result of Rn& N

N is the result of the shifter operation.

Example: This example shows a CMP comparison instruction. You can see that both registers, r0 and r9,
are equal before executing the instruction. The value of the Z flag prior to execution is 0 and is
represented by a lowercase z. After execution the Z flag changes to 1 or an uppercase Z. This change

indicates equality.

PRE

CMP
POST

cpsr = nzcvgiFt_USER

ro=4
r9=4
ro, r9

cpsr = nZcvgiFt_USER

The CMP is effectively a subtract instruction with the result discarded; similarly the TST

instruction is a logical AND operation, and TEQ is a logical exclusive OR operation.

For each, the results are discarded but the condition bits are updated in the cpsr.

It is important to understand that comparison instructions only modify the condition flags of the
cpsr and do not affect the registers being compared.

Multiply Instructions:

The multiply instructions multiply the contents of a pair of registers and, depending upon the instruction,

accumulate the results in with another register.

The long multiplies accumulate onto a pair of registers representing a 64-bit value. The final result is

placed in a destination register or a pair of registers.

Syntax: MLA{<cond=}{S} Rd, Rm, Rs,

MUL{=<cond>=}{S} Rd, Rm, Rs

MLA multiply and accumulate

Rd = (Rm™Rs) 4+ Rn

MUL multiply

Rd = Rni*Rs

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Syntax: <instruction={<cond=}{S} RdLo, RdHi, Rm, Rs

SMLAL | signed multiply accumulate long | [RdHi, RdLo] = [RdHi, RdLo] + (Rm *Rs)

SMULL | signed multiply long [RdHi, RdLo] = Rm*Rs

UMLAL | unsigned multiply accumulate [RdHi, RdlLo] = [RdHi, RdlLo] + (Rm*Rs)
long

UMULL | unsigned multiply long [RdHi, RdLo] = Rm™*Rs

The number of cycles taken to execute a multiply instruction depends on the processor implementation.

For some implementations the cycle timing also depends on the value in Rs.

Example: This example shows a simple multiply instruction that multiplies registers rl and r2 together
and places the result into register r0. In this example, register rl is equal to the value 2, and r2 is equal to
2. The result, 4, is then placed into register r0.
PRE r0 = 0x00000000

rl = 0x00000002

r2 = 0x00000002
MUL O, r1, r2 ; rO =rl*r2
POST r0 = 0x00000004

rl = 0x00000002

r2 = 0x00000002

The long multiply instructions (SMLAL, SMULL, UMLAL, and UMULL) produce a 64-bit result. The
result is too large to fit a single 32-bit register so the result is placed in two registers labeled RdLo and
RdHi. RdLo holds the lower 32 bits of the 64-bit result, and RdHi holds the higher 32 bits of the 64-bit
result. The following shows an example of a long unsigned multiply instruction.

Example: The instruction multiplies registers r2 and r3 and places the result into register r0 and rl.
Register r0 contains the lower 32 bits, and register rl contains the higher 32 bits of the 64-bit result.
PRE r0=0x00000000

r1 = 0x00000000

r2 = 0xf0000002

r3 = 0x00000002

UMULL rO, r1, r2, r3 ; [r1,r0] = r2*r3
POST r0 = 0xe0000004 :=RdLo
rl1 = 0x00000001 ;= RdHi

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

BRANCH INSTRUCTIONS:

A branch instruction changes the flow of execution or is used to call a routine. This type of instruction

allows programs to have subroutines, if-then-else structures, and loops.
The change of execution flow forces the program counter pc to point to a new address. The ARMV5E
instruction set includes four different branch instructions.

Syntax: B{<cond>} label
BL{=<cond=} Tabel
BX{<cond=} Rm
BLX{<cond>} label | Rm

B branch pc=label

BL | branch with link pc=label
Ir=address of the next instruction after the BL

BX branch exchange pc=Rm & Oxfffffffe, T=Rfm & 1

BLX | branch exchange with link | pc=label, T=1
pc=Rm & Oxfffffffe, T=Rm & 1
Ir=address of the next instruction after the BLX

v The address label is stored in the instruction as a signed pc-relative offset and must be within
approximately 32 MB of the branch instruction.

v' T refers to the Thumb bit in the cpsr. When instructions set T, the ARM switches to Thumb state.

Example: This example shows a forward and backward branch. Because these loops are address specific,
we do not include the pre- and post-conditions. The forward branch skips three instructions. The
backward branch creates an infinite loop.

B forward

ADD rl, r2, #4

ADD rO0, r6, #2

ADD r3, r7, #4
forward

SUB 1, r2, #4
backward

ADD r1, r2, #4

SUB 1, r2, #4

ADD r4,r6,r7

B backward

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

In this example, forward and backward are the labels. The branch labels are placed at the beginning of the

line and are used to mark an address that can be used later by the assembler to calculate the branch offset.

v" The branch with link, or BL, instruction is similar to the B instruction but overwrites the link

register Ir with a return address. It performs a subroutine call.

Example: This example shows a simple fragment of code that, branches to a subroutine using the BL

instruction. To return from a subroutine, you copy the link register to the pc.

BL subroutine ; branch to subroutine

CMP r1, #5 ; compare rl1 with 5

MOVEQ r1, #0 ;if (rl==5)thenrl =0
subroutine

<subroutine code>

MOV pc, Ir ; return by moving pc = Ir
v" The branch exchange (BX) and branch exchange with link (BLX) are the third type of branch
instruction.

v' The BX instruction uses an absolute address stored in register Rm. It is primarily used to branch
to and from Thumb code. The T bit in the cpsr is updated by the least significant bit of the branch
register.

v Similarly the BLX instruction updates the T bit of the cpsr with the least significant bit and

additionally sets the link register with the return address.

LOAD-STORE INSTRUCTIONS:

Load-store instructions transfer data between memory and processor registers. There are three types of

load-store instructions: single-register transfer, multiple-register transfer, and swap.

Single-Register Transfer:
v These instructions are used for moving a single data item in and out of a register.

v The data types supported are signed and unsigned words (32-bit), half-words (16-bit), and bytes.

Here are the various load-store single-register transfer instructions.

Syntax: <LDR|STR={<cond>}{B} Rd,addressing!
LDR{<cond>}SB|H|SH Rd, addressing?
STR{<cond>}H Rd, addressingZ

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

LDR load word into a register Rd <- mem32[address|
STR save byte or word from a register | Rd -> mem32[address|
LDRB | load byte into a register Rd <- mem8[address|
STRB | save byte from a register Rd -= mem8[address]|
LDRH load halfword into a register Rd <- meml6[address]
STRH save haltword into a register Rd - meml6[address]
LDRSB | load signed byte into a register Rd <- SignExtend
(mem8[address])
LDRSH | load signed halfword into a register | Rd <- SignExtend
(meml6[address|)

v" LDR and STR instructions can load and store data on a boundary alignment that is the same as
the data type size being loaded or stored.
0 For example, LDR can only load 32-bit words on a memory address that is a multiple of
four bytes—a0, 4, 8, and so on.

Example: This example shows a load from a memory address contained in register r1, followed by a store
back to the same address in memory.

; load register r0 with the contents of

; the memory address pointed to by register

prl.

LDR r0, [r1] ; = LDR r0, [r1, #0]
; store the contents of register r0 to
; the memory address pointed to by
; register rl.

STRr0, [r1] ; = STR O, [rl, #0]
The first instruction loads a word from the address stored in register r1 and places it into register r0. The
second instruction goes the other way by storing the contents of register rO to the address contained in
register rl. The offset from register r1 is zero. Register rl is called the base address register.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Single-Register Load-Store Addressing Modes:
The ARM instruction set provides different modes for addressing memory. These modes incorporate one
of the indexing methods: preindex with writeback, preindex, and postindex.

Table: Index Methods

Base address

Index method Data register Example
Preindex with writeback mem[base + offset] base + offset LDR rO,[r1,#4]!
Preindex mem|[base + offset] not updated LDR r0, [rl,#4]
Postindex mem[base] base + offset LDR rO,[r1],#4

Note: ! indicates that the instruction writes the calculated address back to the base address register.
v" Preindex with writeback calculates an address from a base register plus address offset and then
updates that address base register with the new address.
v Preindex offset is the same as the preindex with writeback but does not update the address base
register.
0 The preindex mode is useful for accessing an element in a data structure.
v Postindex only updates the address base register after the address is used.
0 The postindex and preindex with writeback modes are useful for traversing an array.
Example:
PRE r0 = 0x00000000
rl = 0x00090000
mem32[0x00009000] = 0x01010101
mem32[0x00009004] = 0x02020202
LDR rO0, [r1, #4]!
Preindexing with writeback:
POST(1) r0 = 0x02020202
rl = 0x00009004
LDR r0, [r1, #4]
Preindexing:
POST(2) r0 = 0x02020202
rl = 0x00009000
LDR 0, [r1], #4
Postindexing:
POST(3) r0 = 0x01010101
rl = 0x00009004
v" The above Example used a preindex method. This example shows how each indexing method

affects the address held in register r1, as well as the data loaded into register r0.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

The addressing modes available with a particular load or store instruction depend on the instruction class.
The following Table shows the addressing modes available for load and store of a 32-bit word or an
unsigned byte.

Table: Single-Register Load-Store Addressing, Word or Unsigned Byte

Addressing! mode and index method Addressing' syntax

Preindex with immediate offset [Rn, #+/-offset 12]

Preindex with register offset [Rn, +/-Rm]

Preindex with scaled register offset [Rn, +/-Rm, shift #shift_imm]
Preindex writeback with immediate offset [Rn, #+/-offset 12]!

Preindex writeback with register offset [Rn, +/-Rm]!

Preindex writeback with scaled register offset [Rn, +/-Rm, shift #shift imm]!
Immediate postindexed [Rn], #+/-offset 12

Register postindex [Rn], +/-Rm

Scaled register postindex [Rn], +/-Rm, shift #shift imm

v A signed offset or register is denoted by “+/-”, identifying that it is either a positive or negative
offset from the base address register Rn. The base address register is a pointer to a byte in
memory, and the offset specifies a number of bytes.

v" Immediate means the address is calculated using the base address register and a 12-bit offset
encoded in the instruction.

v’ Register means the address is calculated using the base address register and a specific register’s
contents.

v' Scaled means the address is calculated using the base address register and a barrel shift operation.

The following Table provides an example of the different variations of the LDR instruction.
Table: Examples of LDR Instructions using Different Addressing Modes

Instruction 0= rl + =
Preindex LDR r0, [rl,#0x4]! mem3Z2[rl+0x4] 0x4
with
writeback

LDR r0,[rl,r2]! mem32 [r1+r2] r2

LDR r0,[rl,r2,LSR#0x4]! mem32[rl+ (r2 LSR 0x4)] (r2 LSR 0x4)
Preindex LDR r0, [rl,#0x4] mem3Z2 [rl+0x4] not updated

LDR r0,[rl,r2] mem32[rl+rz] not updated

LDR r0,[rl,-r2,LSR #0x4] mem32[rl-(r2 LSR 0x4)] not updated
Postindex LDR r0, [rl1],#0xd mem32[r1] 0x4

LDR r0,[rl],r2 mem3Z2[r1] r2

LDR r0,[rl],r2,LSR #0x4 mem32[rl1] (r2 LSR 0x4)

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

The following Table shows the addressing modes available on load and store instructions using 16-bit

halfword or signed byte data.

Table: Single-Register Load-Store Addressing, Halfword, Signed Halfword, Signed Byte and Doubleword

Addressing” mode and index method Addressing” syntax
Preindex immediate offset [Rn, #+/-offset 8]
Preindex register offset [Rn, +/-Rm]

Preindex writeback immediate offset [Rn, #+/-offset 8]!
Preindex writeback register offset [Rn, +/-Rm]!
Immediate postindexed [Rn], #+/-offset 8
Register postindexed [Rn], +/-Rm

These operations cannot use the barrel shifter. There are no STRSB or STRSH instructions since STRH

stores both a signed and unsigned halfword; similarly STRB stores signed and unsigned bytes.
The following Table shows the variations for STRH instructions.

Table: Variations of STRH Instructions

Instruction Result rl + =
Preindex with STRH r0, [rl,#0x4]! meml6[rl1+0x4]=r0 0x4
writeback

STRH r0,[rl,r2]! meml6[rl1+r2]=r0 re
Preindex STRH r0, [r1,#0x4] meml6 [rl1+0x4]=r0 not updated

STRH r0,[rl,r2] meml6[rl+r2]=r0 not updated
Postindex STRH r0, [rl1],#0x4 meml6[rl1]=r0 Ox4

STRH r0,[rl1],r2 meml6[rl]=r0 re

Multiple-Register Transfer:

v Load-store multiple instructions can transfer multiple registers between memory and the

processor in a single instruction.

v" The transfer occurs from a base address register Rn pointing into memory.

0 Multiple-register transfer instructions are more efficient from single-register transfers for

= moving blocks of data around memory and
= saving and restoring context and stacks.
v" Load-store multiple instructions can increase interrupt latency.

v' ARM implementations do not usually interrupt instructions while they are executing.

0 For example, on an ARMY7 a load multiple instruction takes 2 + Nt cycles, where N is the

number of registers to load and t is the number of cycles required for each sequential

access to memory.

v If an interrupt has been raised, then it has no effect until the load-store multiple instruction is

complete.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v~ Compilers, such as armcc, provide a switch to control the maximum number of registers being

transferred on a load-store, which limits the maximum interrupt latency.

Syntax: <LDM|STM={<cond>}<addressing mode> Rn{!},<registers=>{"}

LDM | load multiple registers | {Rd}*N <- mem32[start address + 4*N| optional Rn updated

STM | save multiple registers | {Rd}*™ -> mem32[start address + 4*N| optional Rn updated

The following Table shows the different addressing modes for the load-store multiple instructions. Here N
is the number of registers in the list of registers.

Table: Addressing Mode for Load-Store Multiple Instructions

Addressing

mode Description Start address End address Rnl

IA increment after Rn Rn+4*N — 4 Rn+4*N
IB increment before En+4 Rn+ 4*N Rn+ 4*N
DA decrement after Rn — 4*N 4+ 4 Rn Rn — 4*N
DB decrement before Rn — 4*N Rn—4 Rn —4*N

v' Any subset of the current bank of registers can be transferred to memory or fetched from
memory.
v' The base register Rn determines the source or destination address for a load-store multiple
instruction. This register can be optionally updated following the transfer. This occurs when
register Rn is followed by the ! character, similar to the single-register load-store using preindex
with writeback.
Example: In this example, register r0 is the base register Rn and is followed by !, indicating that the
register is updated after the instruction is executed. You will notice within the load multiple instruction
that the registers are not individually listed. Instead the “-” character is used to identify a range of
registers. In this case the range is from register r1 to r3 inclusive.
Each register can also be listed, using a comma to separate each register within “{”” and “}” brackets.
PRE mem32[0x80018] = 0x03

mem32[0x80014] = 0x02

mem32[0x80010] = 0x01

r0 = 0x00080010

rl = 0x00000000

r2 = 0x00000000

r3 = 0x00000000
LDMIA r0!, {r1-r3}
POST r0 = 0x0008001c

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

rl = 0x00000001
r2 = 0x00000002
r3 = 0x00000003
The following Figure shows a graphical representation.

Memory

Address pointer address Data

0x80020 | 0x00000005
0x8001c | 0x00000004
0x80018 | 0x00000003 | r3 = 0x00000000
0x80014 | 0x00000002 | r2=0x00000000
rl) = 0x80010 — | 0x80010 | 0x00000001 | ri =0x00000000
0x8000c | 0x00000000

Figure: Pre-condition for LDMIA Instruction
v The base register r0 points to memory address 0x80010 in the PRE condition.
Memory addresses 0x80010, 0x80014, and 0x80018 contain the values 1, 2, and 3 respectively.

AN

v’ After the load multiple instruction executes, registers rl, r2, and r3 contain these values as shown

in the following Figure.

Memory

Address pointer address Data

0x80020 | 0x00000005
rl) = 0x8001c — | 0x8001c | 0x00000004
0x80018 | 0x00000003 | r7 =0x00000003
0x80014 | 0x00000002 | r2 =0x00000002
0x80010 | 0x00000001 | r1 =0x00000001
0x8000c | 0x00000000

Figure: Post Condition for LDMIA Instruction
v’ The base register r0 now points to memory address 0x8001c after the last loaded word.
v" Now replace the LDMIA instruction with a load multiple and increment before LDMIB
instruction and use the same PRE conditions.
v’ The first word pointed to by register r0 is ignored and register r1 is loaded from the next memory
location as shown in the following Figure.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Memory

Address pointer address Data

0x80020 | 0x00000005
rl) = 0x8001¢c — | 0x8001c | 0x00000004 | r3 =0x00000004
0x80018 | 0x00000003 | r2 =0x00000003
0x80014 | 0x00000002 | r1 =0x00000002
0x80010 | 0x00000001
0x8000c | 0x00000000

Figure: Post Condition for LDMIB Instruction
v’ After execution, register r0 now points to the last loaded memory location. This is in contrast

with the LDMIA example, which pointed to the next memory location.

e The decrement versions DA and DB of the load-store multiple instructions decrement the start
address and then store to ascending memory locations.
e This is equivalent to descending memory but accessing the register list in reverse order.
o With the increment and decrement load multiples; you can access arrays forwards or backwards.
e They also allow for stack push and pull operations.
The following Table shows a list of load-store multiple instruction pairs.

Table: Load-Store Multiple Pairs when Base Update used

Store Multiple | Load Multiple
STMIA LDMDB
STMIB LDMDA
STMDA LDMIB
STMDB LDMIA

e If you use a store with base update, then the paired load instruction of the same number of

registers will reload the data and restore the base address pointer.

e This is useful when you need to temporarily save a group of registers and restore them later.
Example: This example shows an STM increment before instruction followed by an LDM decrement
after instruction.

PRE r0 = 0x00009000
r1 = 0x00000009
r2 = 0x00000008
r3 = 0x00000007
STMIB r0!, {r1-r3}
MOV rl, #1
MOV r2, #2
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

MOV 13, #3

PRE(2) r0 = 0x0000900c
rl = 0x00000001
r2 = 0x00000002
r3 = 0x00000003

LDMDA r0!, {r1-r3}

POST r0 = 0x00009000
rl = 0x00000009
r2 = 0x00000008
r3 = 0x00000007

The STMIB instruction stores the values 7, 8, 9 to memory. We then corrupt register rl to r3. The

LDMDA reloads the original values and restores the base pointer r0.

Example: We illustrate the use of the load-store multiple instructions with a block memory copy example.
This example is a simple routine that copies blocks of 32 bytes from a source address location to a
destination address location.
The example has two load-store multiple instructions, which use the same increment after addressing
mode.
; r9 points to start of source data
; r10 points to start of destination data
; r11 points to end of the source
loop
; load 32 bytes from source and update r9 pointer
LDMIA r9!, {r0-r7}
; store 32 bytes to destination and update r10 pointer
STMIAT10!, {rO-r7} ; and store them
; have we reached the end
CMP r9,rill1
BNE loop
v' This routine relies on registers r9, r10, and r11 being set up before the code is executed.
v Registers r9 and r11 determine the data to be copied, and register r10 points to the destination in
memory for the data.
v" LDMIA loads the data pointed to by register r9 into registers r0 to r7. It also updates r9 to point
to the next block of data to be copied.
v' STMIA copies the contents of registers r0 to r7 to the destination memory address pointed to by

register r10. It also updates r10 to point to the next destination location.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v~ CMP and BNE compare pointers r9 and r11 to check whether the end of the block copy has been
reached.

v If the block copy is complete, then the routine finishes; otherwise the loop repeats with the
updated values of register r9 and r10.

e The BNE is the branch instruction B with a condition mnemonic NE (not equal). If the previous

compare instruction sets the condition flags to not equal, the branch instruction is executed.

The following Figure shows the memory map of the block memory copy and how the routine moves

through memory.

High memory

ril
11 Source —
9
Copy
memory
location
Destination |-
rio T
Low memory

Figure: Block Memory Copy in the Memory map
Theoretically this loop can transfer 32 bytes (8 words) in two instructions, for a maximum possible
throughput of 46 MB/second being transferred at 33 MHz. These numbers assume a perfect memory

system with fast memory.

Stock Operation: The ARM architecture uses the load-store multiple instructions to carry out stack
operations.
e The pop operation (removing data from a stack) uses a load multiple instruction.

e The push operation (placing data onto the stack) uses a store multiple instruction.

v" When using a stack you have to decide whether the stack will grow up or down in memory.
0 Astack is either —
= ascending (A) — stacks grow towards higher memory addresses or
= descending (D) — stacks grow towards lower memory addresses.
v" When you use a full stack (F), the stack pointer sp points to an address that is the last used or full

location (i.e., sp points to the last item on the stack).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v If you use an empty stack (E) the sp points to an address that is the first unused or empty location

(i.e., it points after the last item on the stack).

e There are number of load-store multiple addressing mode aliases available to support stack
operations (see the following Table).
Table: Addressing Methods for Stack Operations

Addressing mode Description Pop = LDM Push = STM
FA full ascending LDMFA LDMDA STMFA STMIB
FD full descending LDMFD LDMIA STMFD STMDB
EA empty ascending LDMEA LOMDB STMEA STMIA
ED empty descending LDMED LDMIB STMED STMDA

¢ Next to the pop column is the actual load multiple instruction equivalent.
o0 For example, a full ascending stack would have the notation FA appended to the load
multiple instruction—LDMFA. This would be translated into an LDMDA instruction.
e ARM has specified an ARM-Thumb Procedure Call Standard (ATPCS) that defines how routines
are called and how registers are allocated. In the ATPCS, stacks are defined as being full
descending stacks. Thus, the LDMFD and STMFD instructions provide the pop and push

functions, respectively.

Example: The STMFD instruction pushes registers onto the stack, updating the sp. The following Figure

shows a push onto a full descending stack.

PRE Address Data POST Address Data
0x80018 | 0x00000001 0x80018 | 0x00000001

sp — | 0x80014 | 0x00000002 0x80014 | 0x00000002
0x80010 | Empty 0x80010 | 0x00000003
0x8000c | Empry sp — | 0x8000c | 0x00000002

Figure: STMFD Instruction — Full Stack push Operation

You can see that when the stack grows the stack pointer points to the last full entry in the stack.
PRE rl =0x00000002

r4 = 0x00000003

sp = 0x00080014
STMFD sp!, {r1, r4}
POST rl1 =0x00000002

r4 = 0x00000003

sp = 0x0008000c

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Example: The following Figure shows a push operation on an empty stack using the STMED instruction.

PRE Address Data POST Address Data
0x80018 | Ox00000001 Ox80018 | 0x00000001
0x80014 | 0x00000002 O0x80014 | 0x00000002

sp —= | 0x80010 | Empry O0x80010 | 0x00000003
0x8000c | Empry O0x8000c | 0x00000002
0x80008 | Empty sp —=| 0x80008 | Empty

Figure: STMED Instruction — Empty Stack push Operation

The STMED instruction pushes the registers onto the stack but updates register sp to point to the next

empty location.

PRE

rl = 0x00000002
r4 = 0x00000003

sp = 0x00080010

STMED sp!, {r1, r4}

POST

v

rl1 = 0x00000002
r4 = 0x00000003
sp = 0x00080008

When handling a checked stack there are three attributes that need to be preserved: the stack base,
the stack pointer, and the stack limit.

The stack base is the starting address of the stack in memory.

The stack pointer initially points to the stack base; as data is pushed onto the stack, the stack
pointer descends memory and continuously points to the top of stack. If the stack pointer passes
the stack limit, then a stack overflow error has occurred.

Here is a small piece of code that checks for stack overflow errors for a descending stack:

: check for stack overflow

SUB sp, sp, #size
CMP sp, r10
BLLO _stack overflow ; condition
ATPCS defines register r10 as the stack limit or sl. This is optional since it is only used when
stack checking is enabled.
The BLLO instruction is a branch with link instruction plus the condition mnemonic LO.
o If spis less than register r10 after the new items are pushed onto the stack, then stack
overflow error has occurred.
o If the stack pointer goes back past the stack base, then a stack underflow error has

occurred.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Swap Instruction:
The swap instruction is a special case of a load-store instruction. It swaps the contents of memory with
the contents of a register.
This instruction is an atomic operation—it reads and writes a location in the same bus operation,
preventing any other instruction from reading or writing to that location until it completes.

Syntax: SWP{B}{=cond=} Rd,Rm, [Rn]

SWP swap a word between memory and a register | tmp =mem32[Rn]
mem32[Rn|=Rm
Rd =tmp

SWPB | swap a byte between memory and a register tmp = mem8|Rn|
mem8[Rn|=Rm
Rd = tmp

Swap cannot be interrupted by any other instruction or any other bus access. We say the system “holds

the bus” until the transaction is complete. Also, swap instruction allows for both a word and a byte swap.

Example: The swap instruction loads a word from memory into register rO and overwrites the memory
with register r1.
PRE mem32[0x9000] = 0x12345678
r0 = 0x00000000
rl =0x11112222
r2 = 0x00009000
SWP r0, rl, [r2]
POST mem32[0x9000] = 0x11112222
ro = 0x12345678
rl =0x11112222
r2 = 0x00009000

Example: This example shows a simple data guard that can be used to protect data from being written by
another task. The SWP instruction “holds the bus” until the transaction is complete.
spin

MOV rl, =semaphore

MOV r2, #1

SWP r3, r2, [r1] ; hold the bus until complete

CMP r3, #1

BEQ spin

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

The address pointed to by the semaphore either contains the value 0 or 1. When the semaphore equals 1,
then the service in question is being used by another process. The routine will continue to loop around
until the service is released by the other process—in other words, when the semaphore address location

contains the value 0. |

SOFTWARE INTERRUPT INSTRUCTION:

A software interrupt instruction (SWI) causes a software interrupt exception, which provides a

mechanism for applications to call operating system routines.

Syntax: SWI{<cond>} SWI number

SWI | software interrupt | [r_svc=address of instruction following the SWI
SpST_sSve= cpsr

pc=vectors + 0x8

cpsr mode = SVC

cpsr I=1 (mask IRQ interrupts)

When the processor executes an SWI instruction, it sets the program counter pc to the offset 0x8 in the
vector table. The instruction also forces the processor mode to SVC, which allows an operating system
routine to be called in a privileged mode.

Each SWI instruction has an associated SWI number, which is used to represent a particular

function call or feature.

Example: Here we have a simple example of an SWI call with SWI number 0x123456, used by ARM
toolkits as a debugging SWI. Typically the SWI instruction is executed in user mode.
PRE cpsr = nzcVgift USER
pc = 0x00008000
Ir = Ox003fffff dr=rl4
ro = 0x12
0x00008000 SWI 0x123456
POST cpsr = nzcVglft_SVC
nzcVqift USER
pc = 0x00000008
Ir = 0x00008004
ro = 0x12

spsr

Since SWI instructions are used to call operating system routines, you need some form of parameter
passing. This is achieved using registers. In this example, register r0 is used to pass the parameter 0x12.

The return values are also passed back via registers.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Code called the SWI handler is required to process the SWI call. The handler obtains the SWI number
using the address of the executed instruction, which is calculated from the link register Ir.
The SWI number is determined by

SWI_Number = <SWI instruction> AND NOT (0xff000000)

Here the SWI instruction is the actual 32-bit SWI instruction executed by the processor.

Example: This example shows the start of an SWI handler implementation. The code fragment determines
what SWI number is being called and places that number into register r10.
You can see from this example that the load instruction first copies the complete SWI instruction into
register r10. The BIC instruction masks off the top bits of the instruction, leaving the SWI number. We
assume the SWI has been called from ARM state.
SWI_handler
; Store registers r0-r12 and the link register
STMFED sp!, {r0-r12, Ir}
; Read the SWI instruction
LDR r10, [Ir, #-4]
; Mask off top 8 bits
BIC r10, r10, #0xff000000
: r10 - contains the SWI number
BL service_routine
; return from SWI handler
LDMFD sp!, {r0-r12, pc}

The number in register r10 is then used by the SWI handler to call the appropriate SWI service routine.

PROGRAM STATUS REGISTER INSTRUCTIONS:

The ARM instruction set provides two instructions to directly control a program status register (psr).

v" The MRS instruction transfers the contents of either the cpsr or spsr into a register.
v' The MSR instruction transfers the contents of a register into the cpsr or spsr.

Together these instructions are used to read and write the cpsr and spsr.

In the syntax we can see a label called fields. This can be any combination of control (c), extension (x),
status (s), and flags (f).

Syntax: MRS{<cond=} Rd,=cpsr|spsr=>
MSR{=cond>} =cpsr|spsr> <fields>,Rm
MSR{<=cond=} =cpsr|spsr> <fields=,#immediate

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

MRS | copy program status register to a general-purpose register Rd= psr

MSR | move a general-purpose register to a program status register | psr/field|= Rm

MSR | move an immediate value to a program status register psrfield| = immediate

These fields relate to particular byte regions in a psr, as shown in the following Figure.

Ficlds | Flags [24:31] " Status [16:23] | eXtension [8:15] " Control [0:7] |

I 11 [11 1

Bit 31302928 7654 0
N\ Z|C|V I|F|T| Mode

Figure: psr Byte Fields
The c field controls the interrupt masks, Thumb state, and processor mode.

The following Example shows how to enable IRQ interrupts by clearing the I mask. This operation

involves using both the MRS and MSR instructions to read from and then write to the cpsr.

Example: The MSR first copies the cpsr into register rl. The BIC instruction clears bit 7 of r1. Register
rl is then copied back into the cpsr, which enables IRQ interrupts. You can see from this example that
this code preserves all the other settings in the cpsr and only modifies the | bit in the control field.

PRE cpsr = nzcvglFt_SVC

MRS rl, cpsr

BIC r1, r1, #0x80 ; 0b01000000

MSR cpsr_c, rl

POST cpsr = nzcvgiFt_SVC

This example is in SVC mode. In user mode you can read all cpsr bits, but you can only update the

condition flag field f.

Coprocessor Instructions:
Coprocessor instructions are used to extend the instruction set.
v" A coprocessor can either provide additional computation capability or be used to control the
memory subsystem including caches and memory management.
v" The coprocessor instructions include data processing, register transfer, and memory transfer
instructions.

v" Note that these instructions are only used by cores with a coprocessor.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Syntax: CDP{=cond=} cp, opcodel, Cd, Cn {, opcode?}
<MRC |MCR>{<cond>} cp, opcodel, Rd, Cn, Cm {, opcode2}
<LDC|STC>{=<cond>} cp, Cd, addressing

CDP coprocessor data processing—perform an operation in a coprocessor

MRC MCR | coprocessor register transfer—move data to/from coprocessor registers

LDC STC | coprocessor memory transfer—load and store blocks of memory to/from a coprocessor

v In the syntax of the coprocessor instructions,
0 The cp field represents the coprocessor number between p0 and p15
0 The opcode fields describe the operation to take place on the coprocessor.
0 The Cn, Cm, and Cd fields describe registers within the coprocessor.
v The coprocessor operations and registers depend on the specific coprocessor you are using.
v Coprocessor 15 (CP15) is reserved for system control purposes, such as memory management,

write buffer control, cache control, and identification registers.

Example: This example shows a CP15 register being copied into a general-purpose register.
; transferring the contents of CP15 register c0 to register r10
MRC p15, 0, r10, c0, c0, 0
Here CP15 register-0 contains the processor identification number. This register is copied into the

general-purpose register r10.

LOADING CONSTANTS:
You might have noticed that there is no ARM instruction to move a 32-bit constant into a register. Since

ARM instructions are 32 bits in size, they obviously cannot specify a general 32-bit constant.

To aid programming there are two pseudo-instructions to move a 32-bit value into a register.

Syntax: LDR Rd, =constant
ADR Rd, Tlabel

LDR | load constant pseudoinstruction | Rd= 32-bit constant

ADR | load address pseudoinstruction Rd = 32-bit relative address

e The first pseudo-instruction writes a 32-bit constant to a register using whatever instructions are
available. It defaults to a memory read if the constant cannot be encoded using other instructions.
e The second pseudo-instruction writes a relative address into a register, which will be encoded

using a pc-relative expression.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Example: This example shows an LDR instruction loading a 32-bit constant OxffOOffff into register
ro.
LDR r0, [pc, #constant_number-8-{PC}]

constant_number
DCD OxffOOffff
This example involves a memory access to load the constant, which can be expensive for time-critical

routines.

The following Example shows an alternative method to load the same constant into register rO by using
an MVN instruction.

Example: Loading the constant OxffOOffff using an MVN.

PRE none...

MVN r0, #0x00ff0000

POST r0 = OxffOOffff

As you can see, there are alternatives to accessing memory, but they depend upon the constant you are
trying to load.

The LDR pseudo-instruction either inserts an MOV or MVN instruction to generate a value (if possible)
or generates an LDR instruction with a pc-relative address to read the constant from a literal pool—a data

area embedded within the code.

The following Table shows two pseudo-code conversions.

Table: LDR pseudo-instruction Conversion

Pseudoinstruction Actual instruction

LDR r0, =0xff MOV rO, #0xff
LDR r0, =0x55555555 LDR r0, [pc, #offset 12]

The first conversion produces a simple MOV instruction; the second conversion produces a pc-relative
load.
Another useful pseudo-instruction is the ADR instruction, or address relative. This instruction places the

address of the given label into register Rd, using a pc-relative add or subtract.

By: MAHESH PRASANNA K.,

DEPT. OF CSE, VCET.

*khkkkhkkkkkk

*khkkkkkkikikkx

MAHESH PRASANNA K., VCET, PUTTUR

	MODULE – 2
	A AND L INSTRUCTIONS & INT 21H AND INT 10H PROGRAMMING
	Before
	 After
	 BH

	 After
	BH

	 Before
	After
	BH

	 Before
	 After
	BH

	 Before
	MODULE – 3
	SIGNED NUMBERS AND STRINGS & MEMORY INTERFACING & 8255
	After
	1100 0000 = -40H

	Before
	MODULE – 4
	ARM EMBEDDED SYSTEMS & ARM PROCESSOR FUNDAMENTALS
	MODULE – 5
	INTRODUCTION TO THE ARM INSTRUCTION SET

