
MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

1

MODULE – 1

THE x86 MICROPROCESSOR & ALP

THE x86 MICROPROCESSOR

BRIEF HISTORY OF THE x86 FAMILY:

A study of history is not essential to understand the microprocessor, but it provides a historical

perspective of the fast-paced evolution of the computer.

Evolution from 8080/8085 to 8086:

In 1978, Intel Corporation introduced a 16-bit microprocessor called the 8086. This processor

was a major improvement over the previous generation 8080/8085 series Intel microprocessors in

several ways:

1. The 8080 / 8085 was an 8-bit system (meaning that, the microprocessor could work on only 8

bits of data at a time; data larger than 8 bits need to be broken into 8-bit pieces to be

processed by the CPU). In contrast, the 8086 is a 16-bit microprocessor.

2. The 8086's capacity of 1 mega-byte of memory exceeded the 8080/8085's capability of

handling a maximum of 64K bytes of memory.

3. The 8086 was a pipelined processor, as opposed to the non-pipelined 8080/8085 (In a

system with pipelining, the data and address buses are busy transferring data, while the

CPU is processing information; thereby increasing the effective processing power of the

microprocessor).

Table: Evolution of Intel microprocessors up to the 8088

Product 8008 8080 8085 8086 8088

Year introduced 1972 1974 1976 1978 1979

Technology PMOS NMOS NMOS NMOS NMOS

Number of pins 18 40 40 40 40

Number of transistors 3000 4500 6500 29,000 29,000

Number of instructions 66 111 113 133 133

Physical memory 16KB 64KB 64KB 1MB 1MB

Virtual memory None None None None None

Internal data bus 8 8 8 16 16

External data bus 8 8 8 16 8

Address bus 8 16 16 20 20

Data types 8 8 8 8/16 8/16

Evolution from 8086 to 8088:

The 8086 is a microprocessor with a 16-bit data bus internally and externally, meaning that all

registers are 16 bits wide and there is a 16-bit data bus to transfer data in and out of the CPU.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

2

Although the introduction of the 8086 marked a great advancement over the previous generation of

microprocessors, there was still some resistance in using the 16-bit external data bus:

 At that time, all peripherals were designed around an 8-bit microprocessor

 In addition, a printed circuit board with a 16-bit data bus was much more expensive.

Therefore, Intel came out with the 8088 version. It is identical to the 8086 as far as programming is

concerned, but externally it has an 8-bit data bus instead of a 16-bit bus. It has the same memory

capacity, 1MB.

Success of the 8086:

In 1981, Intel's fortunes changed forever w.hen IBM picked up the 8088 as their microprocessor of

choice in designing the IBM PC. The 8088-based IBM PC was an enormous success, because IBM and

Microsoft made it an open system (meaning that, all documentation and specifications of the

hardware and software of the PC were made public) . This made it possible for many other vendors

to clone the hardware successfully and thus generated a major growth in both hardware and

software designs based on the IBM PC. This is in contrast with the Apple computer, which was a

closed system (blocking any attempt at cloning by other manufacturers, both domestically and overseas).

Other Microprocessors: the 80286, 80386, and 80486:

Intel introduced the 80286 in 1982. Its features included –

 16-bit internal and external data buses.

 24 address lines, which give 16 mega-bytes of memory (2
24

 = 16M bytes).

 Virtual memory – a way or fooling the microprocessor into thinking that it has access to an

almost unlimited amount of memory by swapping data between disk storage and RAM.

 The 80286 can operate in one of two modes: real mode and protected mode. Real mode is

simply a faster 8088/8086 with the same maximum of 1M bytes of memory. Protected

mode allows for 16M bytes of memory but is also capable of protecting the operat ing system

and programs from accidental or deliberate destruction by a user, a feature that is absent in

the single-user 8088/8086. IBM picked up the 80286 for the design of the IBM PC AT.

With users demanding even more powerful systems, in 1985 Intel introduced the 80386 (sometimes

called 80386DX):

 Internally and externally a 32-bit microprocessor.

 32-bit address bus; capable of hand ling physical memory of up to 4 giga-bytes (2
32

 = 4G

bytes).

 Virtual memory was increased to 64 terabytes (2
46

 = 64T bytes).

o All microprocessors discussed so far were general-purpose microprocessors and could not

handle mathemat ica l calculations rapidly. For this reason, Intel introduced numeric data

processing chips, called math-coprocessors, such as the 8087, 80287, and 80387.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

3

o Later Intel introduced the 386SX, which is internally identical to the 80386 but has a 16-bit

external data bus and a 24-bit address bus, which gives a capacity of 16M bytes (2
24

 = 16M bytes)

of memory. This makes the 386SX system much cheaper.

o With the introduction of the 80486 in 1989, Intel put a greatly enhanced vers ion of the

80386 and the math-coprocessor on a single chip plus additional features such as cache

memory. Cache memory is static RAM with a very fast access time. Note that, all programs

written for the 8088/86 will run on 286, 386, and 486 computers.

In 1992, Intel released the newest x86 microprocessor – the Intel Pentium:

 By using submicron fabrication technology, Intel designers were able to utilize more than 3

million transistors on the Pentium chip.

 The Pentium had speeds of 60 and 66 MHz (twice that of 80486 and over 300 times faster than

that of the original 8088).

 Separate 8K cache memory for code and data.

 64-bit external data bus with 32-bit register and 32-bit address bus capable of addressing 4GB of

memory.

 Improved floating-point processor.

 Pentium is packaged in a 273-pin PGA chip.

 It uses BICMOS technology, which combines the speed of bipolar transistors with the power

efficiency of CMOS technology.

Table: Evolution of Intel’s Microprocessors (from the 8086 to the Pentium Pro)

Product 8086 80286 80386 80486 Pentium Pentium Pro

Year introduced 1978 1982 1985 1989 1993 1995

Technology NMOS NMOS CMOS CMOS BICMOS BICMOS

Clock rate (MHz) 3 – 10 10 – 16 16 – 33 25 – 33 60, 66 150

Number of pins 40 68 132 168 273 387

Number of transistors 29,000 134,000 275,000 1.2 million 3.1 million 5.5 million

Physical memory 1MB 16MB 4GB 4GB 4GB 64GB

Virtual memory None 1GB 64TB 64TB 64TB 64TB

Internal data bus 16 16 32 32 32 32

External data bus 16 16 32 32 64 64

Address bus 20 24 32 32 32 36

Data types 8/16 8/16 8/16/32 8/16/32 8/16/32 8/16/32

In 1995, Intel introduced the Pentium Pro, the sixth generation of the x86 family.

 Pentium Pro is an enhanced version of Pentium that uses 5.5 million transistors.

 It was designed to be used for 32-bit servers and workstations.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

4

o In 1997, Intel introduced its Pentium II processor. This 7.5-million-transistor processor 'featured

MMX (Multi-Media extension) technology incorporated into the CPU. MMX allows for fast

graphics and audio processing.

o In 1998 the Pentium II Xcon processor was released. Its primary market is for servers and

workstations.

o In 1999 the Celeron was released. Its lower cost and good performance make it ideal for PCs used

to meet educational and home business needs.

o In 1999, Intel released the Pentium III. This 9.5-million-transistor processor includes 70 new

instructions called SIMD that enhance video and audio performance in such areas as 3-D

imaging, and streaming audio that have become common features of online computing. In 1999,

Intel also introduced the Pentium III Xeon processor, designed more for servers and business

workstations with multiprocessor configurations.

Table: Evolution of Intel’s Microprocessors (from the Pentium II to Itanium)

Product Pentium II Pentium III Pentium 4 Itanium II

Year introduced 1997 1999 2000 2002

Technology BICMOS BICMOS BICMOS BICMOS

Number of transistors 7.5 million 9.5 million 42 million 220 million

Cache size 512K 512K 512K 3MB

Physical memory 64GB 64GB 64GB 64GB

Virtual memory 64TB 64TB 64TB 64TB

Internal data bus 32 32 32 64

External data bus 64 64 64 64

Address bus 36 36 36 64

Data types 8/16/32 8/16/32 8/16/32 8/16/32/64

o The Pentium 4, which debuted late in 1999; had the speeds of 1.4 to 1.5 GHz. The Pentium 4

represents the first completely new architecture since the development of the Pentium Pro. The

new 32-bit architecture, called NetBurst, is designed for heavy multimedia processing such as

video, music, and graphic file manipulation on the Internet. The system bus operates at 400

MHz. In addition, new cache and pipelining technology and an expansion of the multimedia

instruction set are designed to make the P4 a high end media processing microprocessor.

o Intel has selected Itanium as the new brand name for the first product in its 64-bit family of

processors, formerly called Merced. The evolution of microprocessors is increasingly

influenced by t h e evolution of the Internet. The Itanium architecture is designed to meet

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

5

Internet-driven needs for powerful servers and high-performance workstations. The Itanium will

have the ability to execute many instructions simultaneously plus extremely large memory

capabilities.

INSIDE THE 8088/86:

The following Fig shows the internal block diagram of the 8088/86 CPU.

Fig: Internal Block Diagram of the 8088/86 CPU

Pipelining:

There are two ways to make the CPU process information faster:

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

6

1. Increase the working frequency – The designers can make the CPU work faster by increasing

the frequency under which it runs. But, it is technology dependent, meaning that the designer

must use whatever technology is available at the time, with consideration for cost. The

technology and materials used in making ICs (integrated circuits) determine the working

frequency, power consumption and the number of transistors packed into a single-chip

microprocessor.

2. Change the internal architecture of the CPU – The processing power of the CPU can be altered

by changing the internal working of the CPU. (In 8085, the CPU had to fetch an instruction

from memory, then execute it and then fetch again, execute it, and so on; i.e., 8085 CPU could

either fetch or execute at a given time).

The idea of pipelining is to allow the CPU to fetch and execute at the same time as shown in

following Fig.

Fig: Pipelined vs. Non-pipelined Execution

Intel implemented the concept of pipelining in the 8088/86 by splitting the internal structure of

the microprocessor into two sections:

o The execution unit (EU)

o The bus interface unit (BIU) – These two sections work simultaneously.

 The BIU accesses memory and peripherals while the EU executes instructions

previously fetched.

 This works only if the BIU keeps ahead of the EU; thus the BIU of the 8088/86 has

a buffer, or queue. The buffer is 4 bytes long in the 8088 and 6 bytes in the

8086. If any instruction takes too long to execute, the queue is filled to its

maximum capacity and the buses will sit idle.

 The BIU fetches a new instruction whenever the queue has room for 2 bytes in

the 6-byte 8086 queue and for 1 byte in the 4-byte 8088 queue. In some

circumstances, the microprocessor must flush out the queue.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

7

For example, when a jump instruction is executed, the BIU starts to fetch

information from the new location in memory and information in the queue that

was fetched previously is discarded. In this situation the EU must wait until the

BIU fetches the new instruction. This is referred to in computer science

terminology as a branch penalty. In a pipelined CPU, this means that too

much jumping around reduces the efficiency of a program.

 Pipelining in the 8088/86 has two stages, fetch and execute, but in more powerful

computers, pipelining can have many stages. The concept of pipelining

combined with an increased number of data bus pins has, in recent years, led to

the design of very powerful microprocessors.

Registers:

In the CPU, registers are used to store information temporarily. Information could ne one or two bytes of

data to be processed or the address of the data. The registers of 8088/86 fall into six categories; as given

in the following Table.

Table: Register of 8088/86/286 by Category

Category Bits Register Names

General
16 AX, BX, CX, DX

8 AH, AL, BH, BL, VH, CL, DH, DL

Pointer 16 SP (Stack Pointer), BP (Base Pointer)

Index 16 SI (Source Index), DI (Destination Index)

Segment 16 CS (Code Segment), DS (Data Segment), SS (Stack Segment), ES (Extra Segment)

Instruction 16 IP (Instruction Pointer)

Flag 16 FR (Flag Register)

The general-purpose registers in 8088/86 can be accessed as either 16-bit or 8-bit registers. All other

registers can be accessed only as the full 16 bits. In 8088/86, data types are either 8 or 16 bits. To access

12-bit data, a 16-bit register must be used with the highest 4 bits set to 0.

Fig: Structure of General-Purpose Register & Numbering Bits of a Register

Different registers in the 8088/86 are used for different functions . Some instructions use only specific

registers to perform their tasks. The first letter of each general-purpose register indicates its use:

 AX is used for the accumulator

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

8

 BX as a base addressing register

 CX as a counter in loop operations

 DX to point to data in I/O operations.

INTRODUCTION TO ASSEMBLY PROGRAMMING:

o The CPU can work only in binary; it can do so at very high speeds. But, it is quite tedious

and slow for humans to deal with 0 s and 1 s in order to program the computer. A program

that consists of 0s and 1 s is called machine language.

o Although the hexadecimal system was used as a more efficient way to represent binary

numbers, the process of working in machine code was still cumbersome for humans.

Eventually, Assembly languages were developed, which provided mnemonics for the machine

code instructions, plus other ·features that made programming faster and less prone to error.

o The term mnemonic is typically used in computer science and engineering literature to refer to

codes and abbreviations that are relatively easy to remember.

o Assembly language programs (A L P s) must be translated into machine code by a program

called an assembler.

o Assembly language is referred to as a low-level language because it deals directly with the

internal structure of the CPU. To program in Assembly language, the programmer must know the

number of registers and their size, as well as other details of the CPU.

o Today, one can use many different programming languages, such as C/C++, BASIC, C#,

and numerous others. These languages are called high-level languages; because the

programmer does not have to be concerned with the internal details of the CPU.

o An assembler is used to translate an Assembly language program into machine code

(sometimes called object code); high-level languages are translated into machine code by a

program called a compiler. For instance, to write a program in C, one must use a C compiler to

translate the program into machine language.

o There are numerous assemblers available for translating x86 Assembly language programs into

machine code. M ost commonly used assemblers, MASM / TASM.

Assembly Language Programming:

An Assembly language program consists of –

 A series of lines of Assembly language instructions –

 An Assembly language instruction consists of a mnemonic

 Optionally followed by one or two operands.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

9

 The operands are the data items being manipulated, and the mnemonics are the commands to

the CPU, telling it what to do with those items.

E.g.:

 Opcode (Mnemonic) Source operand (register

 Relative addressing)

AGAIN: ADD AX, COUNT [BX] ; ADD ELEMENT OF COUNT TO AX.

Label—provides a Destination operand Comment

Means of branching (register addressing)

To this instruction

MOV Instruction:

The MOV instruction copies data from one location to another. The format is –

The Following Figure shows the operation of the MOV BX, CX instruction.

The MOV instruction does not affect the source operand. The following program first loads CL with

value 55H, then moves this value around to various registers inside the CPU.

The use of 16-bit registers is demonstrated below:

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

10

In 8086 CPU, data can be moved among all the registers (except the flag register) as long as the source

and destination registers match in size.

Note the following three points with regarding MOV instruction:

1. Values cannot be loaded directly into any segment register (CS, DS, SS, and ES). To load a value

into a segment register, first load it to a non-segment register and then move it to the segment

register, as shown below.

2. If a value less than FFH is moved into a 16-bit register, the rest of the bits are assumed to be all

zeros. E.g.: MOV BX, 5 ; result will be BX = 0005, i.e., BH = 00 and BL = 05.

3. Moving a value that is too large into a register will cause an error.

ADD Instruction:

The ADD instruction has the following format –

The ADD instruction tells the CPU to add the source and the destination operands and put the result in the

destination.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

11

Executing above program results in AL (or DH) = 59H (25H + 34H = 59H) and BL (or CL) = 34H.

Notice that, the contents of the source operand do not change.

It is not necessary to move both data items into registers before adding them together.

Hence, for MOV and ADD instructions, the source operand may be an immediate data – this is called an

immediate operand. Please note, the destination operand has always been a register.

The largest number that an 8-bit register can hold is FFH. To use numbers larger than FFH (255 decimal),

16-bit registers (such as AX, BX, CX, or DX) must be used.

Running the above program(s) give DX (or CX) = 9F3H (34E + 6A5 = 9F3H) and AX = 34EH.

INTRODUCTION TO PROGRAM SEGMENTS:

A typical Assembly language program consists of at least three segments:

1. Code segment – contains the Assembly language instructions that perform the tasks that the

program was designed to accomplish.

2. Data segment – is used to store information (data) that needs to be processed by the instructions

in the code segment.

3. Stack segment – is used by the CPU to store i information temporarily.

Origin and Definition of the Segment:

A segment is an area of memory that includes up to 64K bytes and begins on an address evenly

divisible by 16 (such an address ends in 0H). In 8085, there was only 64K byte (2
1 6

 = 1 6 K B) of

memory for all code, data , and stack information; in the 8088/86 there can be up to 64K bytes of

memory assigned to each category. Within an Assembly language program, these categories are called

the code segment, data segment, and stack segment. For this reason, the 8088/86 can only handle a

maximum of 64K bytes of code, 64K bytes of data, and 64K bytes of stack at any .given time, all though it

has a range of 1 M b y t e s (2
20

 = 1M bytes) of memory.

Logical Address and Physical Address:

There are three types of addresses mentioned with the 8086:

1. The physical address – is the 20-bit address that is actually put on the address pins of the 8086

microprocessor and decoded by memory interfacing circuitry. This is an actual physical location

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

12

in RAM or ROM within the 1M byte memory range. This address can have a range of 00000H –

FFFFFH for the 8086, and real mode 286, 386, and 486 CPUs.

2. The offset address – is a location within a 64K byte segment range. Hence, an offset address can

range from 0000H – FFFFH.

3. The logical address – consists of a segment value and an offset address.

Fig: Illustration of Physical Address, Offset, and Logical Address

Code Segment:

To execute a program, the 8086 fetches the instruction (opcode and operands) from the code

segment. The logical address of an instruction always consists of a CS (code segment) and an IP

(instruction pointer), shown in the following Fig.

The physical address for the location of the instruction is generated by

o Shifting the CS left by one hex digit and then adding it to the IP. IP contains the offset address.

The resulting 20-bit address is called the physical address.

o To clarify this concept; assume values in CS and IP as shown in the above diagram. The offset

address is contained in IP; in this case it is 95F3H. The logical address is CS: IP, or 2500: 95F3H.

Then the physical address will be 25000 + 95F3 = 2E5F3H.

The physical address of an instruction can be calculated as follows:

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

13

Fig: Calculation of Physical Address

The microprocessor will retrieve the instruction from memory locations starting at 2E5F3. Since IP can

have a minimum value of 0000H and a maximum of FFFFH; the logical address range in this example

is 2500:0000 to 2500: FFFF. This means that the lowest memory location of the code segment will be

25000H (25000+0000) and the highest memory location will be 34FFFH (25000+FFFF).

Logical Address vs. Physical Address in the Code Segment:

In the code segment, CS and IP hold the logical address of the instructions to be executed. The

following Assembly language instructions have been assembled (translated into machine code) and

stored in memory. The three columns show the logical address of CS: IP, the machine code stored at

that address, and the corresponding Assembly language code.

The program above shows that the byte at address 1132:0100 contains B0, which is the opcode for

moving a value into register AL, and address 1132:0I101I contains the operand (in this case 57) to be

moved to AL. Therefore, the instruction "MOV AL, 57” has a machine code of B057, where B0 is the

opcode and 57 is the operand.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

14

The following are the physical addresses and contents of each location for the above program.

Data Segment:

Assume that a program is being written to add 5 bytes of data, such as 25H, 12H, 15H, IFH, and 2BH.

One way to add them is as follows:

In the program above, the data and code are mixed together. The problem with wri ting the program

this way is that, if the data changes, the code must be searched for every place the data is included, and

the data retyped.

The idea to overcome the problem is to set aside an area of memory is strictly for data. In x86

microprocessors, the area of memory set aside for data is called the data segment. Just as the code

segment is associated with CS and IP as i ts segment register and offset, the data segment uses register

DS and an offset value .

The following demonstrates how data can be stored in the data segment and the program rewritten so

that it can be used for any set of data . Assume that the offset for the data segment begins at 200H.

NOTE:

1. The offset address is enclosed in brackets. The brackets indicate that the operand represents the

address of the data and not the data itself. If the brackets were not included, as in "MOV AL,

0200", the CPU would attempt to move 200 into AL instead of the contents of offset address

200.

2. DEBUG assumes that all numbers are in hex (no "H" suffix is required), whereas

MASM/ T A S M assumes that they are in decimal and the "H" must be included for hex data.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

15

This program will run with any set of data. Changing the data has no effect on the code. Although

this program is an improvement over the preceding one, it can be improved even further.

If the data had to be stored at a different offset address (say 450H), the program would have to

be rewritten. One way to solve this problem would be 'to use a register to hold the offset address, and

before each ADD, to increment the register to access the next byte.

The 8088/86 allows only the use of registers BX, SI, and DI as offset registers for the data

segment In other words, while CS uses only the IP register as an offset, DS uses only BX, DI, and SI

to hold the offset address of the data.

Table: Default Segments and Offset Register Pairs

Segment Offset Special Purpose

CS IP Instruction address

DS SI, DI, BX, an 8- or 16-bit number Data address

SS SP or BP Stack address

ES SI, DI, BX for string instructions String destination address

The term pointer is often used for a register holding an offset address. In the following example, BX is

used as a pointer.

The INC instruction adds 1 to (increments) its operand. "INC BX" achieves the same result as

"ADD BX, 1".

Logical Address and Physical Address in the Data Segment:

The physical address for data is calculated using the same rules as for the code segment. That is, the

physical address of data is calculated by shifting DS left one hex digit and adding the offset value, as

shown in following Examples.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

16

Little Endian Conversion:

Previous examples used 8-bit or 1-byte (16-bi ts) data. In this case the bytes are stored one after

another in memory. The 16-bit data can be used as follows:

In this case, the low byte goes to the low memory location and the high byte goes to the high memory

location. In the above example, memory location DS: 1500 contains F3H and memory location DS: 1501

contains 35H (DS: 1500 = F3 and DS: 1501 = 35). This is called little endian conversion.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

17

NOTE: In the big endian method, the high byte goes to the low address, where as in the little endian

method, the high byte goes to the high address and the low byte goes to the low address. All Intel

microprocessors use the little endian conversion.

Extra Segment (ES):

ES is a segment register used as an extra data segment. Its use is essential for string operations.

Memory map of IBM PC:

The 20-bit address of 8088/86 allows a total

of 1M bytes (1024K bytes) of memory

space with the address range 00000H –

FFFFFH. Memory map is the process of

allocating the 1M bytes of memory space to

various sections of the PC.

Out of 1MB –

 640KB from the address 00000H –

9FFFFH were set aside for RAM;

 the 128KB from A0000H – BFFFFH

were allocated for video memory;

 the remaining 256KB from C0000H

– FFFFFH were set aside for ROM.

More about RAM:

In the early 1980s, most PCs came with only 64K to 256K bytes of RAM memory, which was

considered more than adequate at the time. Users had to buy memory expansion boards to expand

Fig: Memory Allocation in the PC

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

18

memory up to 640K, if they needed additional memory. The need for expansion depends on the

Windows version being used and the memory needs of the application software being run.

The Windows operating system first allocates the available RAM on the PC for its own use

and then lets the rest be used for applications such as word processors. The complicated task of

managing RAM memory is left to Windows, since the amount of memory used by Windows varies

among its various versions and the memory needs of the application packages vary. For this reason we

do not assign any values f:or the CS, D S , and SS registers; since such an assignment means

specifying an exact physical address in the range 00000-9FFFFH , and this is beyond the knowledge

of the user.

Another reason is that assigning a physical address might work on a given PC but it might not

work on a PC with a different OS version and RAM size. In other w ords, the program would not be

portable to another PC.

Therefore, memory management is one of the most important functions of the operating system

and should be left to Windows.

Video RAM:

From A0000H to BFFFFH is set aside for video. The amount used and the location vary depending on the

video board installed on the PC.

More about ROM:

From C0000H to FFFFFH is set aside for ROM. Not all the memory space in this range is used by the

PC's ROM. Of this, 256K bytes, only the 64K bytes from location F0000H – FFFFFH are used by

BIOS (basic input/output system) ROM.

Some of the remaining space is used by various adapter cards (such as the network card), and

the rest is free. In recent years, newer versions of Windows have gained some very powerful

memory management capabilities and can put to good use all the unused memory space beyond 640.

The 640KB memory space from 00000 to 9FFFFH is referred to as conventional memory,

while the 384K bytes from A0000H to FFFFFH are called the UMB (upper memory block) in

Microsoft literature.

Functions of BIOS ROM:

Since the CPU can only execute programs that are stored in memory, there must be some permanent

(nonvolatile) memory to hold the programs, telling the CPU what to do when the power is turned on.

This collection of programs held by ROM is referred to as BIOS in the PC literature.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

19

BIOS, which stands for basic input-output system, contains programs to test RAM and other

components connected to the CPU. It also contains programs that allow Windows to communicate with

peripheral devices such as the keyboard, video, printer, and disk.

It is the function of BIOS to test all the devices connected to the PC when the computer is turned

on and to report any errors. For example, if the keyboard is disconnected from the PC before the

computer is turned on, BIOS will report an error on the screen, indicating that condition.

After testing and setting up the peripherals; BIOS will load Windows from disk into RAM and

hand over control of the PC to Windows. Windows always controls the PC once it is loaded.

THE STACK:

What is Stack, and Why is it Needed?

o There must be some place for the CPU to store information safely and temporary. The stack is a

section of read/write memory (RAM) used by the CPU to store information temporarily.

o The CPU needs this storage area since there are only a limited number of registers.

o The disadvantage of the stack is its access time – since the stack is in RAM, it takes much longer

to access compared to the access time of registers. Note that, the registers are inside the CPU and

RAM is outside.

How the Stack are Accessed?

o If the stack is a section of RAM, there must be registers inside the CPU to point to it.

o The two main registers used to access the stack are the SS (stack segment) register and the SP (stack

pointer) register.

o These registers must be loaded before any instructions accessing the stack are used.

o Every register inside the x86 (except segment registers and SP) can be stored in the stack and

brought back into the CPU from the stack memory.

o The storing of a CPU register in the stack is called a push, and loading the contents of the stack into

the CPU register is called a pop. In other words, a register is pushed onto the stack to store its

contents and popped off the stack to retrieve it.

o The job of the SP is very critical when push and pop are performed. In the x86, the stack pointer

register (SP) points at the current memory location used for the top of the stack and as data is

pushed onto the stack it is decremented. It is incremented as data is popped off the stack into the

CPU.

o When an instruction pushes or pops a general-purpose register, it must be the entire 16-bit regis ter.

In other words, one must code "PUSH AX "; there are no instructions such as "PUSH AL" or

"PUSH AH".

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

20

o The reason that the SP is decremented after the push is to make sure that the stack is growing

downward from upper addresses to lower addresses. This is the opposite of the IP (instruction

pointer). As was seen in the preceding section, the IP points to the next instruction to be executed

and is incremented as each instruction is executed.

Pushing onto the Stack:

As each PUSH is executed, the contents of the registers are saved on the stack and SP is decremented by

2. For every byte of data saved on stack, SP is decremented.

Notice, how the data is stored on the stack. In the x86, the lower byte is always stored in the memory

location with the lower address.

Popping the Stack:

With every POP, the top 2 bytes of the stack are copied to the register specified by the instruction and the

stack pointer in incremented twice. Although the data actually remains in memory, it is not accessible

since the stack pointer is beyond that point.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

21

Logical Address vs. Physical Address for the Stack:

o The exact physical location of the stack depends on the value of the SS (stack segment) register

and SP (stack pointer). To compute the physical address for stack, shift left SS and then add

offset SP register.

o Memory management is the responsibility of the operating system. Hence, the Windows

operating system will assign the values for the SP and SS.

o The top of the stack is the last stack location occupied. BP is another register that can be used as

an offset into the stack.

Table: Default Segments and Offset Register Pairs

Segment Offset Special Purpose

CS IP Instruction address

DS SI, DI, BX, an 8- or 16-bit number Data address

SS SP or BP Stack address

ES SI, DI, BX for string instructions String destination address

NOTE:

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

22

1. A single physical address may belong to many different logical addresses. This shows the

dynamic behavior of the segment and offset concept in the 8086 CPU.

2. When adding the offset to the shifted segment register; if an address beyond the maximum

allowed range (FFFFFH) is resulted, then wrap-around will occur.

3. In calculating the physical address, it is possible that two segments can overlap, as illustrated in

the following Fig.

Fig: Non-overlapping vs. Overlapping Segments

THE FLAG REGISTER:

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

23

o The flag register is a 16-bit register sometimes referred to as the status register. Although the

register is 16 bits wide, only some of the bits are used. The rest are either undefined or reserved

by Intel.

o Six of the flags are called conditional flags, meaning that they indicate some condition that

resulted after an instruction was executed. These six are CF, PF, AF, ZF, SF, and OF.

o The three remaining flags are sometimes called control flags, since they are used to control the

operation of instructions before they are executed.

Fig: Flag Register

Key to remember: in One Day International Tendulkar Scored Zero, All People Cried.

Bits of the Flag Register:

CF, the Carry Flag – This flag is set whenever there is a carry out, either from d7 after an 8-bit

operation or from d 15 after a 16-bit data operation.

PF, the Parity Flag – After certain opera tions, the parity of the result's low-order byte is checked.

If the byte has an even number of 1 s, the parity flag is set to 1; otherwise, it is cleared.

AF, Auxiliary Carry Flag – If there is a carry from d3 to d4 of an operation, this bit is set; otherwise,

it is cleared (set equal to zero). This flag is used by the instructions that perform BCD (binary

coded decimal) arithmetic.

ZF, the Zero Flag – The zero flag is set to 1 if the result of arithmetic or logical operation is zero;

otherwise, it is cleared.

SF, the Sign Flag – Binary representation of signed numbers uses the most significant bit as the sign

bit. After arithmetic or logic operations, the status of this sign bit is copied into the SF, thereby

indicating the sign of the result.

TF, the Trap Flag – When this flag is set, it allows the program to single-step, meaning to ·execute one

instruction at a time. Single-stepping is used for debugging purposes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0F DF IF TF SF ZF AF PF CF

BIT

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

24

IF, Interrupt Enable Flag – This bit is set or cleared to enable or disable only the external

maskable interrupt requests.

DF, the Direction Flag – This bit is used to control the direction of string operations. If D = 1, the

registers are automatically decremented; if D = 0, the registers are automatically incremented. The state of

the D flag bit is controlled by STD (set D flag) and CLD (clear D flag) instructions.

OF, the Overflow Flag – This flag is set whenever the result of a signed number operation is too

large, causing the high-order bit to overflow into the sign bit. In general, the carry flag is used to

detect errors in unsigned arithmetic operations. The overflow flag is only used to detect errors in signed

arithmetic operations.

Flag Register and ADD Instruction:

The flag bits affected by the ADD instruction are CF, PF, AF, ZF, SF, and OF. The fo l lowing

examples a re given t o understand how each of these flag bits is affected. Please note that, MOV

instructions have no effect on the flag.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

25

Use of Zero Flag for Looping:

 One of the most widely used applications of the flag register is the use of the zero flag to

implement program loops.

 The t e r m loop refers to a set of instruct ions that is repeated a number of times. For

example, to add 5 bytes of data, a counter can be used to keep track of how many times the

loop needs to be repeated. Each time the addition is performed the counter is decremented

and the zero flag is checked. When the counter becomes zero, the zero flag is set (ZF =

1) and the loop is stopped.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

26

 The following example shows the implementation of the looping concept in the program,

which adds 5 bytes of data. Register CX is used to hold the counter and BX is the offset

pointer (SI or Dl could have been used instead). AL is initialized before the start of the loop.

 In each iteration; ZF is checked by the JNZ instruction. JNZ stands for "Jump Not Zero"

meaning that, if ZF = 0, jump to a new address. If ZF = 1, the jump is not performed and the

instruction below the jump will be executed.

 Notice that the JNZ instruction must come immediately after the instruction that decrements

CX since JNZ needs to check the effect of "DEC CX" on ZF. If any other instruction(s) were

placed between them, that instruction(s) might affect the zero flag.

x86 ADDRESSING MODES:

The CPU can access operands (data) in various ways, called addressing modes. The number of

addressing modes is determined when the microprocessor is designed and cannot be changed. The

x86 provides a total of seven distinct addressing modes:

[1] Register [2] Immediate [3] Direct [4] Register Indirect

[5] Based Relative [6] Indexed Relative [7] Based Indexed Relative

Table: Summary of the x86 Addressing Modes

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

27

1. Register Addressing Mode

The register addressing mode involves the use of registers to hold the data to be manipulated.

Memory is not accessed when this addressing mode is executed; therefore, it is relatively fast.

2. Immediate Addressing Mode

In immediate addressing mode (as the name implies), when the instruction is assembled, the operand

comes immediately after the opcode. For this reason, this addressing mode executes quickly. In this

addressing mode, the source operand is a constant. Immediate addressing mode can be used to load

information into any of the registers except the segment registers and flag registers.

3. Direct Addressing Mode

In the direct addressing mode, the data is in some memory location(s) and the address of the data in

memory comes immediately after the instruction. Note that, in immediate addressing mode, the operand

itself is provided with the instruction; whereas in direct addressing mode, the address of the operand is

provided with the instruction. This address is the offset address and one can calculate the physical address

by shifting left the DS register and adding it to the offset as follows:

PA = DS : Direct Address

Notice the bracket around the address. In the absence of this bracket, executing the command will give an

error since it is interpreted to move the value 2400 (16-bit data) into register DL, an 8-bit register.

 Before After

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

28

Eg: MOV BX, [5634] BX ABCDH 8645H

 DS:5634H 45H LS byte

 DS:5635H 86H MS byte

 Before After

Eg: MOV CL, [5634] CL F2H 45H

 DS:5634H 45H

 DS:5635H 86H

4. Register Indirect Addressing Mode

In the register indirect addressing mode, the address of the memory location where the operand resides is

held by a register. The registers used for this purpose are SI, Dl, and BX. If these three registers are used

as pointers, that is, if they hold the offset of the memory location, they must be combined with DS in

order to generate the 20-bit physical address.

 BX

 PA = DS : SI

 DI

Notice that BX is in brackets. In the absence of brackets, the code is interpreted as an instruction moving

the contents of register BX to AL (which gives an error because source and destination do not match);

instead of the contents of the memory location whose offset address is in BX. The physical address is

calculated by shifting DS left one hex position and adding BX to it. The same rules apply when using

register SI or DI.

5. Based Relative Addressing Mode

In the based relative addressing mode, base registers BX and BP, as well as a displacement value are used

to calculate (what is called) the effective address. The default segments used for the calculation of the

physical address (PA) are DS for BX and SS for BP.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

29

PA = DS BX

 or : or + 8 or 16 bit displacement

SS BP

Alternative codings are “MOV CX, [BX+10]” or “MOV CX, 10[BX]”. In the case of BP register –

Alternative codings are “MOV AL, [BP+5]” or “MOV AL, 5[BP]”.

o In “MOV AL, [BP+5]”, BP+5 is called the effective address; since the 5
th
 byte from the

beginning of the offset BP is moved to register AL. Similarly, in “MOV CX, [BX+10]”, BX+10

is called the effective address.

6. Indexed Relative Addressing Mode

The indexed relative addressing mode works the same as the based relative addressing mode, except that

registers DI and SI hold the offset address.

PA = DS SI

 or : or + 8 or 16 bit displacement

SS DI

7. Based Indexed Addressing Mode

By combining based and indexed addressing modes, a new addressing mode is derived called the based

indexed addressing mode. In this mode, one base register and one index register are used.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

30

PA = DS BX SI

 or : or + or + 8 or 16bit displacement

SS BP DI

The coding of the instructions above can vary. The last example can also be written as –

Segment Overrides:

The following Table summarizes the offset registers that can be used with the four segment registers.

Table: Default Segments and Offset Register Pairs

Segment Offset Special Purpose

CS IP Instruction address

DS SI, DI, BX, an 8- or 16-bit number Data address

SS SP or BP Stack address

ES SI, DI, BX for string instructions String destination address

The x86 CPU allows the program to override the default segment and use any segment register. To do

that, one needs to specify the segment in the code.

For example, in "MOV AL, [BX]", the physical address of the operand to be moved into AL is

DS: BX. To override that default, specify the desired segment in the instruction as "MOV AL, ES: [BX]

". Now the address of the operand being moved to AL is ES: BX instead of DS: BX.

The following Table shows more examples of segment overrides shown next to the default address in the

absence of the override.

Table: Sample Segment Overrides

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

31

ASSEMBLY LANGUAGE PROGRAMMING

DIRECTIVES AND A SIMPLE PROGRAM:

A given Assembly language program (ALP) is a series of statements. There are two types of statements in

x86 ALP:

1. Assembly language instructions – instructions that are given to the microprocessor to do

the specific task. The Assembly language instruction can be translated into object code or

machine language. (E.g.: MOV, ADD, etc.)

2. Pseudo instructions/Directives – instructions that give directions to the assembler about

how it should translate the Assembly language instructions into machine code. These

instructions are not translated into machine code. They are used by the assembler to

organize the program as well as other output files. (E.g.: DB, DW, ASSUME, etc.)

An Assembly language instruction consists of four fields:

Brackets indicate that the field is optional; do not type the brackets.

E.g.:

 Opcode (Mnemonic) Source operand (register

 Relative addressing)

AGAIN: ADD AX, COUNT [BX] ; ADD ELEMENT OF COUNT TO AX.

Label—provides a Destination operand Comment

Means of branching (register addressing)

To this instruction

1. The label field allows the program to refer to a line of code by name. The label field cannot exceed 31

characters. Labels for directives do not need to end with a colon. A label must end with a colon when it

refers to an opcode generating instruction; the colon indicates to the assembler that this refers to code

within this code segment.

2, 3. The Assembly language mnemonic (instruction) and operand(s) fields together perform the real work

of the program and accomplish the tasks for which the program was written. In Assembly language

statements such as ADD AL, BL or MOV AX, 6764; ADD and MOV are mnemonic opcode, and “AL, BL”

and “AX, 6764” are the operands.

4. The comment filed begins with a “;”. The assembler ignores comments. The comments are optional,

but are highly recommended for someone to read and understand the program.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

32

Model Definition:

The first statement in an Assembly language program is the MODEL directive. This directive selects the

size of the memory model. Among the options for the memory model are SMALL, MEDIUM,

COMPACT, and LARGE.

•MODEL SMALL ; this directive defines the model as small

SMALL is one of the most widely used memory models for Assembly language programs This model

uses a maximum of 64K bytes of memory for code and another 64KB for data. The other models are

defined as follows:

Segment Definition:

The x86 CPU has four segment registers: CS (code segment), DS (data segment), SS (stack segment), and

ES (extra segment). Every line of an Assembly language program must correspond to one of these

segments. The simplified segment definition format uses three simple directives: ".CODE", ".DATA",

and ".STACK", which correspond to the CS, DS, and SS registers, respectively.

Segments of a Program:

Although one can write an Assembly language program that uses only one segment, normally a program

consists of at least three segments: the stack segment, the data segment, and the code segment.

Assembly language statements are grouped into segments in order to be recognized by the assembler and

consequently by the CPU.

 The stack segment defines storage for the stack

 The data segment defines the data that the program will use

 The code segment contains the Assembly language instructions.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

33

Fig: Simple Assembly Language Program

•MODEL SMALL – directive defines a model that uses a maximum of 64KB of memory for code and

another 64KB of memory for data.

•STACK 64 – directive reserves 64 bytes of memory for the stack.

•DATA – directive marks the beginning of the data segment.

 The data segment defines three data items: DATA1, DATA2, and SUM. Each is defined as DB

(define byte). The DB directive is used by the assembler to allocate memory in byte-sized chunks.

Memory can be allocated in different sizes; such a 2 bytes, which has the directive DW (define

word).

 The data items defined in the data segment can be accessed in the code segment by their labels.

 DATA1 and DATA2 are given initial vales in the data section; and SUM in not given an initial

value, but storage is set aside for it.

•CODE – directive marks the beginning of the code segment.

 MAIN – is the name (label) of procedure.

 PROC – directive defines a procedure. A procedure is a group of instructions designed to

accomplish a specific function.

 A PROC directive may have the option FAR or NEAR, which are the program entry point(s).

 ENDP – directive defines the end of the procedure.

 PROC and ENDP statements must have the same label (here it is MAIN).

It is the job of the OS (operating system) to assign exact values for the segment registers. When program

begins executing, the OS allocates some of RAM available to the segment registers. This is done as

follows:

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

34

No segment register can be loaded directly. Hence, two lines are required, as shown above.

END – directive ends the entire program by indicating to OS that the entry point MAIN has ended. The

label for the entry point (MAIN, here) and the END must match.

ASSEMBLE, LINK AND RUN A PROGRAM:

Once the Assembly language program has been written; there are three steps to create an executable

Assembly language program:

Step Input Program Output

1. Edit the program Keyboard Editor myfile.asm

2. Assemble the program myfile.asm MASM or TASM myfile.obj

3. Link the program myfile.obj LINK or TLINK myfile.exe

o Text editors are used to create and/or edit the program. These editors must be able to produce an

ASCII file.

o The source file must end in “.asm” for these assemblers. This “.asm” file will be assembled by an

assembler (such MASM/TASM).

• The MASM and LINK programs are the assembler and linker programs for Microsoft’s

MASM assembler. In Borland’s TASM assembler, TASM and TLINK programs are the

assembler and linker programs.

o The assembler will produce an object file (.obj) and a list file (.lst), along with other files that

may be useful to the programmer. All syntax errors produced by the assembler must be corrected

in the object file.

• The assembler creates the opcodes, operands, and offset addresses under the “.obj” file.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

35

• The list file (.lst) lists all the opcodes and the offset addresses, as well as errors that the

assembler detected. This file can be displayed on the monitor by the command: C>type

myfile.lst | more.

• The cross-reference file (.crf) provides an alphabetical list of all symbols and tables used

in the program as well as program line numbers in which they are referenced.

o The object file (.obj) is the input for the LINK program, which produces the executable program

(.exe). The LINK program sets up the file, so that, it can be loaded by the OS and executed.

o We use DEBUG to execute the program and analyze the results.

• When the program is working successfully, it can be run at the OS level by typing the

command: C>myfile. When the program name is typed in at the OS level, the OS loads

the program in memory. This is referred as mapping; which means that the program is

mapped into the physical memory of the PC.

• When there are many segments for code or data, there is a need to see where each is

located and how many bytes are used by each. The “.map” file gives the name of each

segment, where it starts, where it stops, and its size in bytes.

Fig: Steps to Create a Program & Creating and Running the .exe File

PAGE and TITLE Directives:

The PAGE and the TITLE are two directives used make the “.lst” file more readable.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

36

The PAGE directive tells the printer how the list should be printed. In the default mode, the output will

have 66 lines per page and with a maximum of 80 characters per line. The default settings can be altered

to 60 and 132 as follows:

When the list is printed in more than one page, the assembler can be instructed to print the title of the

program on the top of each page by using the TITLE directive. The text after the TITLE pseudo-

instruction cannot be more than 60 ASCII characters.

MORE SAMPLE PROGRAMS:

The following Fig shows the program and the list file generated when the program was assembled. After

the program was assembled and linked, DEBUG was used to dump the code segment to see what value is

assigned to the OS register. Remember that the value you get could be different for "MOV AX, xxxx" as

well as for CS in the program examples.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

37

Fig: Program 2-1

 INC destination – adds 1 to the specified destination. The destination may be a register or

memory location.

Flags affected: AF, OF, PF, SF, and ZF. The CF is not affected.

Eg1: INC AL ; Add one to the contents of AL.

Eg2: INC BX ; Add one to the contents of BX.

 DEC destination – subtract 1 from the specified destination. The destination may be a register or

a memory location.

Flags affected: AF, OF, PF, SF, and ZF. The CF is not affected.

Eg: DEC AL ; Subtract 1 from the contents of AL.

 JNZ label – jump if not zero; if ZF = 0, jumps to the label specified. Checks for zero flag.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

38

Fig: MASM List for Program 2-1

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

39

OFFSET: It is an operator which tells the assembler to determine the offset or displacement of a named

data item (variable) from the start of the segment.

Eg: MOV AX, OFFSET MES1 ; Loads the offset of variable MES1 in AX register.

Fig: Program 2-2

The ORG directive can be used to set the offset addresses for data items. In the above program, the ORG

directive causes SUM to be stored at DS: 0010.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

40

Fig: Program 2-3

CONTROL TRANSFER INSTRUCTIONS:

In an ALP, instructions are executed sequentially. Sometimes, it is often necessary to transfer program

control to a different location. Since the CS: IP registers always point to the address of the next

instruction to be executed; they must be updated when a control transfer instruction is executed. There are

many instructions in the x86 to achieve this.

FAR and NEAR:

o If control is transferred to a memory location within the current code segment, it is NEAR. This is

sometimes called intra-segment (within segment) jump.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

41

• In a NEAR jump, the IP is updated and CS remains the same, since control is still inside

the current code segment.

o If control is transferred to a memory location outside the current code segment, it is a FAR or

intersegment (between segments) jump.

• In a FAR jump, because control is passing outside the current code segment, both CS and

IP have to be updated to the new values.

Conditional Jumps:

In the conditional jump, control is transferred to a new location if a certain condition is met. The flag

register is the one that indicates the current condition. For example, with "JNZ label", the processor looks

at the zero flag to see if it is raised. If not, the CPU starts to fetch and execute instructions from the

address of the label. If ZF = I, it will not jump but will execute the next instruction below the JNZ.

Table: 8086 Conditional Jump Instructions

Short Jumps:

o All conditional jumps are short jumps. In a short jump, the address of the target must be within –

128 to +127 bytes of the IP.

o The conditional jump (short jump) is a two byte instruction: One byte is the opcode of the J

condition and the second byte is a value between 00 and FF.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

42

o An offset range of 00 to FF gives 256 possible addresses; these are split between backward jumps

(to –128) and forward jumps (to +127).

o In a jump backward, the second byte is the 2's complement of the displacement value. To

calculate the target address, the second byte is added to the IP of the instruction after the jump.

o The instruction "JNZ AGAIN" was assembled as "JNZ 000D", and 000D is the address of the

instruction with the label AGAIN. The instruction "JNZ 000D" has the opcode 75 and the target

address FA, which is located at offset addresses 0011 and 0012.

o This is followed by "MOV SUM, AL", which is located beginning at offset address 0013. The IP

value of this MOV (0013), is added to FA to calculate the address of label AGAIN (0013+ FA=

000D) and the carry is dropped.

o In reality, FA is the 2's complement of -6, meaning that the address of the target is -6 bytes from

the IP of the next instruction.

o Similarly, the target address for a forward jump is calculated by adding the IP of the following

instruction to the operand. In that case the displacement value is positive, as shown next.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

43

o In the program above, "JB NEXT" has the opcode 72 and the target address 06 and is located at

IP = 000A and 000B.

o The jump will be 6 bytes from the next instruction, which is IP = 000C. Adding gives us 000CH

+ 0006H = 0012H, which is the exact address of the NEXT label.

o Look also at "JA NEXT", which has 77 and 02 for the opcode and displacement, respectively.

The IP of the following instruction, 0010, is added to 02 to get 0012, the address of the target

location.

Note that, regardless of whether the jump is forward or backward, for conditional jumps, the address of

the target address can never be more than –128 to +127 bytes away from the IP associated with the

instruction following the jump lf any attempt is made to violate this rule, the assembler will generate a

"relative jump out of range" message. These conditional jumps are sometimes referred to as SHORT

jumps.

Unconditional Jumps:

"JMP label" is an unconditional jump in which control is transferred unconditionally to the target

location label. The unconditional jump can take the following forms:

1. SHORT JUMP – which is specified by the format "JMP SHORT label". This is a jump in which

the address of the target location is within –128 to +127 bytes of memory relative to the address

of the current IP.

 In this case, the opcode is EB and the operand is 1 byte in the range 00 to FF. The

operand byte is added to the current IP to calculate the target address. If the jump is

backward, the operand is in 2's complement. This is exactly like the J condition case.

 Coding the directive "short" makes the jump more efficient; i.e., it will be assembled into

a 2-byte instruction instead of a 3-byte instruction.

2. NEAR JUMP, which is the default, has the format "JNP label". This is a near jump (within the

current code segment) and has the opcode E9. The target address can be any of the addressing

modes of direct, register, register indirect, or memory indirect:

 (a) Direct JUMP: is exactly like the short jump explained earlier, except that the target

address can be anywhere in the segment within the range +32767 to –32768 of the

current IP.

 (b) Register indirect JUMP: the target address is in a register. For example, in "JMP

BX", IP takes the value BX.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

44

 (c) Memory indirect JMP: the target address is the contents of two memory locations

pointed at by the register. Example: "JMP [DI]" will replace the IP with the contents of

memory locations pointed at by DI and DI + 1.

3. FAR JUMP, which has the format "JMP FAR PTR label". This is a jump out of the current code

segment, meaning that not only the IP but also the CS is replaced with new values.

CALL Statement:

o Another control transfer instruction is the CALL instruction, which is used to call a procedure.

CALLs to procedures are used to perform tasks that need to be performed frequently. This makes

a program more structured.

o The target address could be in the current segment, in which case it will be a NEAR call or

outside the current CS segment, which is a FAR call.

o To make sure that after execution of the called subroutine the microprocessor knows where to

come back, the microprocessor automatically saves the address of the instruction following the

call on the stack. It must be noted that in the NEAR call only the IP is saved on the stack, and in a

FAR call both CS and IP are saved.

o When a subroutine is called, control is transferred to that subroutine and the processor saves the

IP (and CS in the case of a FAR call) and begins to fetch instructions from the new location.

o After finishing execution of the subroutine, for control to be transferred back to the caller, the last

instruction in the called subroutine must be RET (return). The RET instruction in the case of

NEAR and FAR is different. For NEAR calls, the IP is restored; for FAR calls, both CS and IP

are restored.

o This will ensure that control is given back to the caller. As an example, assume that SP = FFFEH

and the following code is a portion of the program unassembled in DEBUG:

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

45

Fig: IP in the Stack

Since the CALL instruction is a NEAR call, (different IP, same CS), only IP is saved on the stack. In this

case, the IP address of the instruction after the call is saved on the stack as shown in above Fig. This IP

will be 0206, which belongs to the "MOV AX, 142F" instruction.

The last instruction of the called subroutine must be a RET instruction that directs the CPU to

POP the top 2 bytes of the stack into the IP and resume executing at offset address 0206. For this reason,

the number of PUSH and POP instructions (which alter the SP) must match. In other words, for every

PUSH there must be a POP.

Assembly Language Subroutines:

In Assembly language programming it is common to have one main program and many subroutines to be

called from the main program. This allows you to make each subroutine into a separate module. Each

module can be tested separately and then brought together.

The main program is the entry point from the OS and is FAR, as explained earlier, but the

subroutines called within the main program can be FAR or NEAR. Remember that NEAR routines are in

the same code segment, while FAR routines are outside the current code segment. If there is no specific

mention of FAR after the directive PROC, by default, it will be NEAR, as shown in the following Fig.

Rules for Names in Assembly Language:

 By choosing label names that are meaningful, a programmer can make a program much easier to

read and maintain. There are several rules that names must follow.

 Each label name must be unique.

 The names used for labels in Assembly language programming consist of alphabetic letters in

both upper- and lowercase, the digits 0 through 9, and the special characters question mark(?),

period(.), at(@), under line(_), and dollar sign ($).

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

46

 The first character of the name must be an alphabetic character or special character. It cannot be a

digit.

 Names may be up to 31 characters long.

Fig: Shell of Assembly Language Subroutines

DATA TYPES AND DATA DEFINITIONS:

o The assembler supports all the various data types of the x86 microprocessor by providing data

directives that define the data types and set aside memory for them.

o The 8088/86 microprocessor supports many data types, but none are longer than 16 bits wide

since the size of the registers is 16 bits. It is the job of the programmer to break down data larger

than 16 bits (0000 to FFFFH, or 0 to 65535 in decimal) to be processed by the CPU.

o The data types used by the 8088/86 can be 8-bit or 16-bit, positive or negative. If a number is less

than 8 bits wide, it still must be coded as an 8-bit register with the higher digits as zero. Similarly,

if the number is less than 16 bits wide it must use all 16 bits, with the rest being 0s.

o For example, the number 5 is only 3 bits wide (101) in binary, but the 8088/86 will accept it as 05

or "0000 0101" in binary. The number 514 is "10 0000 0010" in binary, but the 8088/86 will

accept it as "0000 0010 0000 0010" in binary.

Assembler Data Directive:

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

47

The following are some of the data directives used by the x86 microprocessor and supported by all

software vendors.

 ORG (origin) – is used to indicate the beginning of the offset address. The number that comes

after ORG can be either in hex or in decimal. If the number is not followed by H, it is decimal

and the assembler will convert it to hex.

 DB (define byte) – directive allows allocation of memory in byte-sized chunks. This is indeed the

smallest allocation unit permitted. DB can be used to define numbers in decimal, binary, hex, and

ASCII. For decimal, the D after the decimal number is optional, but using B (binary) and H

(hexa decimal) for the others is required. Regardless of which one is used, the assembler will

convert numbers into hex. To indicate ASCII, simply place the string in single quotation marks

('like this'). Either single or double quotes can be used around ASCII strings.

 DUP (duplicate) – is used to duplicate a given number of characters. This can avoid a lot of

typing. For example, contrast the following two methods of filling six memory locations with

FFH:

 DW (define word) – is used to allocate memory 2 bytes (one word) at a time. The following are

some examples of DW:

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

48

 EQU (equate) – is used to define a constant without occupying a memory location. EQU does not

set aside storage for a data item but associates a constant value with a data label so that when the

label appears in the program; its constant value will be substituted for the label.

o EQU can also be used outside the data segment, even in the middle of a code segment.

Using EQU for the counter constant in the immediate addressing mode:

COUNT EQU 25

When executing the instructions "MOV CX,

COUNT", the register CX will be loaded with the

value 25.

COUNT DB 25

When executing the same instruction "MOV CX,

COUNT" it will be in the direct addressing mode.

What is the real advantage of EQU? First, note that EQU can also be used in the data segment:

COUNT EQU 25

COUNTER1 DB COUNT

COUNTER2 DB COUNT

Assume that there is a constant (a fixed value) used in many different places in the data and code

segments. By the use of EQU, one can change it once and the assembler will change all of them, rather

than making the programmer tries to find every location and correct it.

 DD (define double word) – directive is used to allocate memory locations that are 4 bytes (two

words) in size. Again, the data can be in decimal, binary, or hex. In any case the data is converted

to hex and placed in memory locations according to the rule of low byte to low address and high

byte to high address. DD examples are:

 DQ (define quad word) – is used to allocate memory 8 bytes (four words) in size. This can be

used to represent any variable up to 64 bits wide:

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

49

 DT (define ten bytes) – is used for memory allocation of packed BCD numbers. The application

of DT will be seen in the multibyte addition of BCD numbers. For now, observe how they are

located in memory. Notice that the "H" after the data is not needed. This directive allocates 10

bytes, but a maximum of 18 digits can be entered.

It is essential to understand the way operands are stored in memory. The following Fig shows the memory

dump of the data section, including all the examples discussed here.

Looking at the memory dump shows that, all of the data directives use the little endian format for storing

data (the least significant byte is located in the memory location of the lower address and the most

significant byte resides in the memory location of the higher address).

For example, look at the case of "DATA20 DQ 4523C2", residing in memory starting at offset

00C0H. C2, the least significant byte, is in location 00C0, with 23 in 00C1, and 45, the most significant

byte, in 00C2. It must also be noted that for ASCII data, only the DB directive can be used to define data

of any length, and the use of DO, DQ, or DT directive for ASCII strings of more than 2 bytes gives an

assembly error. When DB is used for ASCII numbers, notice how it places them backwards in memory.

For example, see “DATA4 DB „2591‟ ” at origin 10H: 32, ASCII for 2, is in memory location 10H; 35,

ASCII for 5, is in 11H; and so on.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

50

FULL SEGMENT DEFINITION:

The way that segments have been defined in the programs above is a newer definition referred to as

simple segment definition. It is supported by Microsoft's MASM 5.0 and higher and/or Borland's TASM

version 1 and higher. The older, more traditional definition is called the full segment definition.

Segment Definition:

 In the full segment definition, the ".MODEL" directive is not used. Further, the directives "

.STACK",".DATA", and" .CODE" are replaced by SEGMENT and ENDS directives that

surround each segment.

 The SEGMENT and the ENDS directives indicate to the assembler the beginning and ending of a

segment and have the following format:

 The label, or name, must follow naming conventions and must be unique.

 The [options] field gives important information to the assembler for organizing the segment, but

is not required.

 The ENDS label must be the same label as in the SEGMENT directive.

The following Fig shows the full segment definition and simplified format, side by side.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

51

Stack Segment Definition:

The stack segment shown below contains the line: "DB 64 DUP (?)" to reserve 64 bytes of memory for

the stack. The following three lines in full segment definition are comparable to ".STACK 64" in simple

definition:

Data Segment Definition:

In full segment definition, the SEGMENT directive names the data segment and must appear before the

data. The ENDS segment marks the end of the data segment:

Code Segment Definition:

The code segment also begins and ends with SEGMENT and ENDS directives:

Example:

Fig: Program 2-2, Rewritten with Full Segment Definition

 In full segment definition, immediately after the PROC directive is the ASSUME directive, which

associates segment registers with specific segments by assuming that the segment register is equal

to the segment labels used in the program.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

52

 If an extra segment had been used, ES would also be included in the ASSUME statement.

 The ASSUME statement is needed because a given Assembly language program can have several

code segments; one or two or three or more data segments and more than one stack segment. But

only one of each can be addressed by the CPU at a given time; since, only one of each of the

segment registers available inside the CPU.

 ASSUME tells the assembler which of the segments defined by the SEGMENT directives should

be used.

Using the emu8086 Assembler:

There is a simple and popular assembler called emu8086; that one can use for assembling the 8086

Assembly language programs. It is available from the www.emu8086.com website. Examine the

following Fig for screenshots using emu8086.

Fig: emu8086

NOTE: emu8086 requires putting brackets around variables, unlike MASM/TASM.

http://www.emu8086.com/

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

53

EXE vs COM Files:

All program examples so far were designed to be assembled and linked into EXE files. The COM file,

similar to the EXE file, contains the executable machine code and can be run at the OS level.

Why COM Files?

 The EXE file can be of any size. Due to limited amount of memory, one needs to have very

compact code in the form of COM file.

 COM files are used because of their compactness, since they cannot be greater than 64K bytes.

The reason for the 64K-byte limit is that the COM file must fit into a single segment, and since in

the x86 the size of a segment is 64K bytes, the COM file cannot be larger than 64K.

 To limit the size of the file to 64K bytes requires defining the data inside the code segment and

also using an area (the end area) of the code segment for the stack.

Table: EXE vs. COM File Format

EXE File COM File

1. Unlimited size
1. Maximum size 64K

bytes

2. Stack segment is defined
2. No stack segment

definition

3. Data segment is defined

3. Data segment is

defined in code

segment

4. Larger file (takes more memory)
4. Smaller file (takes

less memory)

5. Header block (contains information such as size, address location in

memory, and stack address of the EXE module), which occupies 512

bytes of memory precedes every EXE file

5. Does not have a

header file

FLOWCHARTS AND PSEUDOCODE:

Structured programming is a term used to denote programming techniques that can make a program easier

to code, debug, and maintain over time. There are certain principles that every structured program should

follow. Some of these are as follows:

1. The program should be designed before it is coded. By using techniques of flowcharting or

pseudocode, the design of the program is clear to the person coding it, as well as to those who

will maintain the program later.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

54

2. Using comments within the program and documentation accompanying the program also will

help someone else to know what the program does. It may even help the programmer who wrote

the program remember how it worked years later!

3. The main routine should consist of calls to subroutines that perform the work of the program.

This is sometimes called top-down programming. Use subroutines to accomplish tasks that are

repeated. This saves time in coding and also makes the program easier to read.

4. Data control is very important. It can be very frustrating and time consuming to track through a

long program to find where a variable was changed. First of all, the programmer should document

the purpose of each variable, and which subroutines might alter its value. Further, each subroutine

should document its input and output variables, and which input variables might be altered within

it.

Flow Charts & Pseudocode:

Flowcharts use graphic symbols to represent different types of program operations. These symbols are

connected together into a flowchart to show the flow of execution of the program.

Fig: Commonly used Flowchart Symbols

The limitations of flowchart are –

 We can’t write much in the little boxes

 We can’t get the clear picture of the program without getting bogged down in the details.

An alternative to using flowchart is pseudocode, which involves writing brief descriptions of the flow of

the code.

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

55

Control Structures:

Structured programming used three basic types of program control structures –

1. Sequence

Fig: SEQUENCE Pseudocode vs Flowchart

2. Control

Fig: IF-THEN-ELSE Pseudocode vs Flowchart

Fig: IF-THEN Pseudocode vs Flowchart

3. Iteration

Fig: REPEAT-UNTIL Pseudocode vs Flowchart

MICROPROCESSORS AND MICROCONTROLLERS

MAHESH PRASANNA K., VCET, PUTTUR

15CS44

56

Fig: WHILE-DO Pseudocode vs Flowchart

The purpose of flowchart or pseudocode is to show the flow of the program and what the program does;

not the specific Assembly language instructions.

Fig: Flowchart vs Pseudocode for Program 2-1

By: Mahesh Prasanna K.,

Dept. of CSE, VCET.

____________*********____________

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MODULE – 2

A AND L INSTRUCTIONS & INT 21H AND INT 10H PROGRAMMING

ARITHMETIC & LOGIC INSTRUCTIONS AND PROGRAMS
INTRUCTIONS SET DESCRIPTION:

UNSIGNED ADDITION AND SUBTRACTION:

Unsigned numbers are defined as data in which all the bits are used to represent data and no bits are set

aside for the positive or negative sign. This means that the operand can be between 00 and FFH (0 to 255

decimal) for 8-bit data, and between 0000 and FFFFH (0 to 65535 decimal) for 16-bit data.

Addition of Unsigned Numbers:

 The instructions ADD and ADC are used to add two operands. The destination operand can be a

register or in memory. The source operand can be a register, in memory, or immediate.

 Remember that memory-to-memory operations are never allowed in x86 Assembly language.

 The instruction could change any of the ZF, SF, AF, CF, or PF bits of the flag register, depending

on the operands involved. The overflow flag is used only in signed number operations.

MAHESH PRASANNA K., VCET, PUTTUR

1

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
With addition, two cases will be discussed:

CASE1: Addition of Individual Byte and Word Data:

Program 3-1a

These numbers are converted to hex by the assembler as follows: 125 = 7DH, 235 = 0EBH, 197 = 0C5H,

91 = 5BH, 48 = 30H. This program uses AH to accumulate carries as the operands are added to AL

register. Three iterations of the loop are shown below:

1. In the first iteration of the loop, 7DH is added to AL with CF = 0 and AH = 00. CX = 04 and ZF

= 0.

2. In the second iteration of the loop, EBH is added to AL, which results in AL = 68H and CF = 1.

Since a carry occurred, AH is incremented. CX = 03 and ZF = 0.

3. In the third iteration, C5H is added to AL, which makes AL = 2DH. Again a carry occurred, so

AH is incremented again. CX = 02 and ZF = 0.

This process continues until CX = 00 and the zero flag becomes 1, which will cause JNZ to fall through.

Then the result will be saved in the word-sized memory set aside in the data segment.

MAHESH PRASANNA K., VCET, PUTTUR

2

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Although this program works correctly, due to pipelining it is strongly recommended that the

following lines of the program be replaced:

The instruction "JNC OVER" has to empty the queue of pipelined instructions and fetch the instructions

from the OVER target every time the carry is zero (CF = 0). Hence, the "ADC AH, 00" instruction is

much more efficient.

The addition of many word operands works the same way. Register AX (or CX, DX, or BX) could be

used as the accumulator and BX (or any general-purpose 16-bit register) for keeping the carries. Program

3-1b is the same as Program 3-1a, rewritten for word addition.

Program 3-1b

MAHESH PRASANNA K., VCET, PUTTUR

3

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
CASE2: Addition of Multiword Numbers:

Program 3-2

o Assume, a program is needed that will add the total Indian budget for the last 100 years or the

mass of all the planets in the solar system.

o In cases like this, the numbers being added could be up to 8 bytes wide or even more. Since

registers are only 16 bits wide (2 bytes), it is the job of the programmer to write the code to break

down these large numbers into smaller chunks to be processed by the CPU.

o If a 16-bit register is used and the operand is 8 bytes wide, that would take a total of four

iterations. However, if an 8-bit register is used, the same operands would require eight iterations.

 In writing this program, the first thing to be decided was the directive used for coding the data in

the data segment. DQ was chosen since it can represent data as large as 8 bytes wide.

 In the addition of multibyte (or multiword) numbers, the ADC instruction is always used since the

carry must be added to the next-higher byte (or word) in the next iteration. Before executing

MAHESH PRASANNA K., VCET, PUTTUR

4

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

ADC, the carry flag must be cleared (CF = 0) so that in the first iteration, the carry would not be

added. Clearing the carry flag is achieved by the CLC (clear carry) instruction.

 Three pointers have been used: SI for DATA1, DI for DATA2, and BX for DATA3 where the

result is saved.

 There is a new instruction in that program, "LOOP xxxx", which replaces the often used "DEC

CX" and "JNZ xxxx".

When "LOOP xxxx" is executed, CX is decremented automatically, and if CX is not 0, the microprocessor

will jump to target address xxxx. If CX is 0, the next instruction (the one below "LOOP xxxx") is

executed.

Subtraction of Unsigned Numbers:

The x86 uses internal adder circuitry to perform the subtraction command. Hence, the 2's complement

method is used by the microprocessor to perform the subtraction. The steps involved is –

1. Take the 2's complement of the subtrahend (source operand)

2. Add it to the minuend (destination operand)

3. Invert the carry.

These three steps are performed for every SUB instruction by the internal hardware of the x86 CPU. It is

after these three steps that the result is obtained and the flags are set. The following example illustrates

the three steps:

 After the execution of SUB, if CF = 0, the result is positive; if CF = 1, the result is negative and

the destination has the 2's complement of the result.

MAHESH PRASANNA K., VCET, PUTTUR

5

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o Normally, the result is left in 2's complement, but the NOT and INC instructions can be used to

change it. The NOT instruction performs the 1’s complement of the operand; then the operand is

incremented to get the 2's complement; as shown in the following example:

SBB (Subtract with Borrow):

This instruction is used for multibyte (multiword) numbers and will take care of the borrow of the lower

operand. If the carry flag is 0, SBB works like SUB. If the carry flag is 1, SBB subtracts 1 from the result.

Notice the "PTR" operand in the following Example.

The PTR (pointer) data directive is used to specify the size of the operand when it differs from the defined

size. In above Example; "WORD PTR" tells the assembler to use a word operand, even though the data is

defined as a double word.

MAHESH PRASANNA K., VCET, PUTTUR

6

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
UNSIGNED MULTIPLICATION AND DIVISION:

One of the major changes from the 8080/85 microprocessor to the 8086 was inclusion of instructions for

multiplication and division. The use of registers AX, AL, AH, and DX is necessary.

Multiplication of Unsigned Numbers:

In discussing multiplication, the following cases will be examined: (1) byte times byte, (2) word times

word, and (3) byte times word.

8-bit * 8-bit AL * BL 16-bit * 16-bit AX * BX

 16-bit AX 32-bit DX AX

byte x byte: In byte-by-byte multiplication, one of the operands must be in the AL register and the

second operand can be either in a register or in memory. After the multiplication, the result is in AX.

In the program above, 25H is multiplied by 65H and the result is saved in word-sized memory named

RESULT. Here, the register addressing mode is used.

The next three examples show the register, direct, and register indirect addressing modes.

 In the register addressing mode example, any 8-bit register could have been used in place BL.

 Similarly, in the register indirect example, BX or DI could have been used as pointers.

 If the register indirect addressing mode is used, the operand size must be specified with the help

of the PTR pseudo-instruction. In the absence of the "BYTE PTR" directive in the example above,

MAHESH PRASANNA K., VCET, PUTTUR

7

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

the assembler could not figure out if it should use a byte or word operand pointed at by SI. This

confusion may cause an error.

word x word: In word-by-word multiplication, one operand must be in AX and the second operand can

be in a register or memory. After the multiplication, registers DX and AX will contain the result. Since

word-by-word multiplication can produce a 32-bit result, DX will hold the higher word and AX the lower

word.

word x byte: This is similar to word-by-word multiplication, except that AL-contains the byte operand

and AH must be set to zero.

Table: Unsigned Multiplication Summary

Division of Unsigned Numbers:

In the division of unsigned numbers, the following cases are discussed:

1. Byte over byte

2. Word over word

3. Word over byte

4. Double-word over word

8-bit AL Q: AL 16-bit AX Q: AX

8-bit BL R: AH 16-bit BX R: DX

MAHESH PRASANNA K., VCET, PUTTUR

8

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

16-bit AX Q: AL 32-bit DA AX Q: AX

 8-bit BL R: AH 16-bit BX R: DX

In divide, there could be cases where the CPU cannot perform the division. In these cases an interrupt is

activated. This is referred to as an exception. In following situations, the microprocessor cannot handle

the division and must call an interrupt:

1. If the denominator is zero (dividing any number by 00)

2. If the quotient is too large for the assigned register.

In the IBM PC and compatibles, if either of these cases happens, the PC will display the "divide error"

message.

byte/byte: In dividing a byte by a byte, the numerator must be in the AL register and AH must be set to

zero. The denominator cannot be immediate but can be in a register or memory. After the DIV instruction

is performed, the quotient is in AL and the remainder is in AH.

word/word: In this case, the numerator is in AX and DX must be cleared. The denominator can be in a

register or memory. After the DIV; AX will have the quotient and the remainder will be in DX.

MAHESH PRASANNA K., VCET, PUTTUR

9

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

word/byte: Here, the numerator is in AX and the denominator can be in a register or memory. After the

DIV instruction, AL will contain the quotient, and AH will contain the remainder. The maximum quotient

is FFH.

The following program divides AX = 2055 by CL = 100. Then AL = 14H (20 decimal) is the quotient and

AH = 37H (55 decimal) is the remainder.

Double-word/word: The numerator is in DX and AX, with the most significant word in DX and the least

significant word in AX. The denominator can be in a register or in memory. After the DIV instruction; the

quotient will be in AX, and the remainder in DX. The maximum quotient is FFFFH.

 In the program above, the contents of DX: AX are divided by a word-sized data value, 10000.

 The 8088/86 automatically uses DX: AX as the numerator anytime the denominator is a word in

size.

 Notice in the example above that DATAl is defined as DD but fetched into a word-size register

with the help of WORD PTR. In the absence of WORD PTR, the assembler will generate an

error.

Table: Unsigned Division Summary

MAHESH PRASANNA K., VCET, PUTTUR

10

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
LOGIC INSTRUCTIONS:

Here, the logic instructions AND, OR, XOR, SHIFT, and COMPARE are discussed with examples.

AND

 This instruction will perform a logical AND on the operands and

place the result in the destination. The destination operand can be a

register or memory. The source operand can be a register, memory,

or immediate.

 AND will automatically change the CF and OF to zero, and PF,

ZF, and SF are set according to the result. The rest of the flags are

either undecided or unaffected.

 AND can be used to mask certain bits of the operand. The task of clearing a bit in a binary

number is called masking. It can also be used to test for a zero operand.

 The above code will AND DH with itself, and set ZF =1, if the result is zero. This makes the CPU

to fetch from the target address XXXX. Otherwise, the instruction below JZ is executed. AND

can thus be used to test if a register contains zero.

OR

 The destination and source operands are ORed and the result is

placed in the destination.

 The destination operand can be a register or in memory. The

source operand can be a register, memory, or immediate.

 OR will automatically change the CF and OF to zero, and PF, ZF,

Inputs Output

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

Inputs Output

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

MAHESH PRASANNA K., VCET, PUTTUR

11

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

and SF are set according to the result. The rest of the flags are either undecided or unaffected.

 The OR instruction can be used to test for a zero operand. For example, "OR BL, 0"will OR the

register BL with 0 and make ZF = 1, if BL is zero. "OR BL, BL" will achieve the same result.

 OR can also be used to set certain bits of an operand to 1.

XOR

 The XOR instruction will eXclusive-OR the operands and place the

result in the destination. XOR sets the result bits to 1 if they are

not equal; otherwise, they are reset to 0.

 The destination operand can be a register or in memory. The

source operand can be a register, memory, or immediate.

 OR will automatically change the CF and OF to zero, and PF, ZF,

and SF are set according to the result. The rest of the flags are either undecided or unaffected.

Inputs Output

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

MAHESH PRASANNA K., VCET, PUTTUR

12

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 XOR can be used to see if two registers have the same value. "XOR BX, CX" will make ZF = 1, if

both registers have the same value, and if they do, the result (0000) is saved in BX, the

destination.

 XOR can also be used to toggle (invert/compliment) bits of an operand. For example, to toggle bit

2 of register AL:

 This would cause bit 2 of AL to change to the opposite value; all other bits would remain

unchanged.

SHIFT

o Shift instructions shift the contents of a register or memory location right or left.

o The number of times (or bits) that the operand is shifted can be specified directly if it is once

only, or through the CL register if it is more than once.

o There are two kinds of shifts:

 Logical – for unsigned operands

 Arithmetic – signed operands.

SHR: This is the logical shift right. The operand is shifted right bit by bit, and for every shift the LSB

(least significant bit) will go to the carry flag (CF) and the MSB (most significant bit) is filled with 0.

 SHR does affect the OF, SF, PF, and ZF flags.

 The operand to be shifted can be in a register or in memory, but immediate addressing mode is

not allowed for shift instructions. For example, "SHR 25, CL" will cause the assembler to give an

error.

Eg:
SHR BH, CL R/M Cy

 0

Shift right Before After

 BH 0100 0100 0001 0001

CL 02H
Cy 1 0

MAHESH PRASANNA K., VCET, PUTTUR

13

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

 If the operand is to be shifted once only, this is specified in the SHR instruction itself rather than

placing 1 in the CL. This saves coding of one instruction:

 After the above shift, BX = 7FFFH and CF = 1.

SHL: Shift left is also a logical shift. It is the reverse of SHR. After every shift the LSB is filled with 0

and the MSB goes to CF.

 SHL does affect the OF, SF, PF, and ZF flags.

 The operand to be shifted can be in a register or in memory, but immediate addressing mode is

not allowed for shift instructions. For example, "SHL 25, CL" will cause the assembler to give an

error.

Eg:
SHL BH, CL Cy R/M

 0

Shift left without Cy Before After

BH 0010 0010 1000 1000
 CL 02H
 Cy 1 0

MAHESH PRASANNA K., VCET, PUTTUR

14

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

COMPARE of Unsigned Numbers:

 The CMP instruction compares two operands and changes the flags according to the result of the

comparison. The operands themselves remain unchanged.

 The destination operand can be in a register or in memory and the source operand can be in a

register, memory, or immediate.

 The compare instruction is really a SUBtraction, except that the values of the operands do not

change.

 The flags are changed according to the execution of SUB. Although all the flags (CF, AF, SF, PF,

ZF, and OF flags) are affected, the only ones of interest are ZF and CF.

 It must be emphasized that in CMP instructions, the operands are unaffected regardless of the

result of the comparison. Only the flags are affected.

Table: Flag Settings for Compare Instruction

Compare Operands CF ZF Remark

destination > source 0 0 destination – source; results CF = 0 & ZF = 0

destination = source 0 1 destination – source; results CF = 0 & ZF = 1

destination < source 1 0 destination – source; results CF = 1 & ZF = 0

 In the program above, AX is greater than the contents of memory location DATA1 (0CCCCH >

235FH); therefore, CF = 0 and JNC (jump no carry) will go to target OVER.

MAHESH PRASANNA K., VCET, PUTTUR

15

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

 In the above code, BX is smaller than CX (7888H < 9FFFH), which sets CF = 1, making "JNC

NEXT" fall through so that "ADD BX, 4000H" is executed.

 In the example above, CX and BX still have their original values (CX = 9FFFH and BX =7888H)

after the execution of "CMP BX, CX".

 Notice that CF is always checked for cases of greater or smaller than, but for equal, ZF must be

used.

 The above program sample has a variable named TEMP, which is being checked to see if it has

reached 99.

In the following Program the CMP instruction is used to search for the highest byte in a series of 5 bytes

defined in the data segment.

 The instruction "CMP AL, [BX]" works as follows ([BX] is the contents of the memory location

pointed at by register BX).

• If AL < [BX], then CF = 1 and [BX] becomes the basis of the new comparison.

• If AL > [BX], then CF = 0 and AL is the larger of the two values and remains the basis of

comparison.

 Although JC (jump carry) and JNC (jump no carry) check the carry flag and can be used after a

compare instruction, it is recommended that JA (jump above) and JB (jump below) be used

because,

• The assemblers will unassembled JC as JB, and JNC as JA.

 The below Program searches through five data items to find the highest grade.

 The program has a variable called "Highest" that holds the highest grade found so far. One by

one, the grades are compared to Highest. If any of them is higher, that value is placed in Highest.

 This continues until all data items are checked. A REPEAT-UNTIL structure was chosen in the

program design.

 The program uses register AL to hold the highest grade found so far. AL is given the initial value

of 0. A loop is used to compare each of the 5 bytes with the value in AL.
MAHESH PRASANNA K., VCET, PUTTUR

16

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 If AL contains a higher value, the loop continues to check the next byte. If AL is smaller than the

byte being checked, the contents of AL are replaced by that byte and the loop continues.

Program 3-3

NOTE:

There is a relationship between the pattem of lowercase and uppercase letters, as shown below for A and

a:

A 0100 0001 41H

a 0110 0001 61H

The only bit that changes is d5. To change from lowercase to uppercase , d5 must be masked.

Note that small and capital letters in ASCII have the following values:

MAHESH PRASANNA K., VCET, PUTTUR

17

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Fig: Flowchart and Pseudocode for Program 3-3

The following Program uses the CMP instruction to determine if an ASCII character is uppercase or

lowercase.

 The following Program first detects if the letter is in lowercase, and if it is, it is ANDed wit h

1101 1111B = DFH. Otherwise, it is simply left alone.

 To determine if it is a lowercase letter, it is compared with 61H and 7AH to see if it is in the

range a to z. Anything above or below this range should be left alone.

In the following Program, 20H could have been subtracted from the lowercase letters instead of ANDing

with 1101 1111B.

MAHESH PRASANNA K., VCET, PUTTUR

18

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

 Program 3-4

BCD AND ASCII CONVERSION:

o BCD (binary coded decimal) is needed because we use the digits 0 to 9 for

numbers in everyday life. Binary representation of 0 to 9 is called BCD.

o In computer literature, one encounters two terms for BCD numbers: (1) unpacked

BCD, and (2) packed BCD.

Unpacked BCD:

o In unpacked BCD, the lower 4 bits of the number represent the BCD number and

the rest of the bits are 0.

• Example: "0000 1001" and "0000 0101" are unpacked BCD for 9 and 5,

respectively.

o In the case of unpacked BCD it takes 1 byte of memory location or a register of 8 bits to contain

the number.

Digit BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

MAHESH PRASANNA K., VCET, PUTTUR

19

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Packed BCD:

o In the case of packed BCD, a single byte has two BCD numbers in it, one in the lower 4 bits and

one in the upper 4 bits.

• For example, "0101 1001" is packed BCD for 59.

o It takes only 1 byte of memory to store the packed BCD operands. This is one reason to use

packed BCD since it is twice as efficient in storing data.

ASCII Numbers:

o In ASCII keyboards, when key "0" is activated, for example, "011 0000" (30H) is provided to the

computer. In the same way, 31H (011 0001) is provided for key "1", and so on, as shown in the

following list:

It must be noted that, although ASCII is standard in many countries, BCD numbers have universal

application. So, the data conversion from ASCII to BCD and vice versa should be studied.

ASCII to BCD Conversion:

To process data in BCD, first the ASCII data provided by the keyboard must be converted to BCD.

Whether it should be converted to packed or unpacked BCD depends on the instructions to be used.

ASCII to Unpacked BCD Conversion:

To convert ASCII data to BCD, the programmer must get rid of the tagged "011" in the higher 4 bits of

the ASCII. To do that, each ASCII number is ANDed with "0000 1111" (0FH), as shown in the next

example. These programs show three different methods for converting the 10 ASCII digits to unpacked

BCD. All use the same data segment:

The data is defined as DB.

• In the following Program 3-5a; the data is accessed in word-sized chunks.

• The Program 3-5b used the PTR directive to access the data.
MAHESH PRASANNA K., VCET, PUTTUR

20

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

• The Program 5-3c uses the based addressing mode (BX+ASC is used as a pointer.

Program 3-5a

Program 3-5b

Program 3-5c

ASCII to Packed BCD Conversion:

To convert ASCII to packed BCD, it is first converted to unpacked BCD (to get rid of the 3) and then

combined to make packed BCD.
For example, for 9 and 5 the keyboard gives 39 and 35, respectively. The goal is to produce 95H or"1001 0101",

which is called packed BCD. This process is illustrated in detail below:

MAHESH PRASANNA K., VCET, PUTTUR

21

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
After this conversion, the packed BCD numbers are processed and the result will be in packed BCD

format. There are special instructions, such as DAA and DAS, which require that the data be in packed

BCD form and give the result in packed BCD.

• For the result to be displayed on the monitor or be printed by the printer, it must be in ASCII

format. Conversion from packed BCD to ASCII is discussed next.

Packed BCD to ASCII Conversion:

To convert packed BCD to ASCII, it must first be converted to unpacked and then the unpacked BCD is

tagged with 011 0000 (30H).

The following shows the process of converting from packed BCD to ASCII:

• After learning bow to convert ASCII to BCD, the application of BCD numbers is the next step.

• There are two instructions that deal specifically with BCD numbers: DAA and DAS.

BCD Addition and Correction:

In BCD addition, after adding packed BCD numbers, the result is no longer BCD. Look at this example:

Adding them gives 0011 1111B (3FH), which is not BCD! A BCD number can- only have digits from

0000 to 1001 (or 0 to 9). The result above should have been 17+ 28 = 45 (0100 0101).

 To correct this problem, the programmer must add 6 (0110) to the low digit: 3F + 06 = 45H.

The same problem could have happened in the upper digit (for example, in 52H + 87H = D9H).

 Again to solve this problem, 6 must be added to the upper digit (D9H + 60H = 139H), to ensure

that the result is BCD (52 + 87 = 139).

MAHESH PRASANNA K., VCET, PUTTUR

22

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
DAA

The DAA (decimal adjust for addition) instruction in x86 microprocessors is provided exactly for the

purpose of correcting the problem associated with BCD addition. DAA will add 6 to the lower nibble or

higher nibble if needed; otherwise, it will leave the result alone.

The following example will clarify these points:

After the program is executed, the DATA3 field will contain 72H (47 + 25 =72).

 Note that DAA works only on AL. In other words, while the source can be an operand of any

addressing mode, the destination must be AL in order for DAA to work.

 It needs to be emphasized that DAA must be used after the addition of BCD operands and that

BCD operands can never have any digit greater than 9. In other words, no A-F digit is allowed.

 It is also important to note that DAA works only after an ADD instruction; it will not work after

the INC instruction.

Summary of DAA Action:

1. If after an ADD or ADC instruction the lower nibble (4 bits) is greater than 9, or if AF = 1, add

0110 to the lower 4 bits.

2. If the upper nibble is greater than 9, or if CF = 1, add 0110 to the upper nibble.

In reality there is no other use for the AF (auxiliary flag) except for BCD addition and correction. For

example, adding 29H and 18H will result in 41H, which is incorrect as far as BCD is concerned.

See the following code:

The above example shows that 6 is added to the upper nibble due to the fact it is greater than 9.

Eg1: ; AL = 0011 1001 = 39 BCD

 ; CL = 0001 0010 = 12 BCD
ADD AL, CL ; AL = 0100 1011 = 4BH
DAA ; Since 1011 > 9; Add correction factor 06.
 ; AL = 0101 0001 = 51 BCD

MAHESH PRASANNA K., VCET, PUTTUR

23

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Eg2: ; AL = 1001 0110 = 96 BCD

 ; BL = 0000 0111 = 07 BCD
ADD AL, BL ; AL = 1001 1101 = 9DH
DAA ; Since 1101 > 9; Add correction factor 06
 ; AL = 1010 0011 = A3H
 ; Since 1010 > 9; Add correction factor 60
 ; AL = 0000 0011 = 03 BCD. The result is 103.

More Examples:
1: Add decimal numbers 22 and 18.

MOV AL, 22H ; (AL)= 22H
ADD AL, 18H ; (AL) = 3AH Illegal, incorrect answer!
DAA ; (AL) = 40H Just treat it as decimalwith CF = 0

 3AH In this case, DAA same as ADD AL, 06H
+06H When LS hex digit in AL is >9, add 6 to it
=40H

2: Add decimal numbers 93 and 34.

MOV AL, 93H ; (AL)= 93H
ADD AL, 34H ; (AL) = C7H, CF = 0 Illegal & Incorrect!
DAA

 ; (AL) = 27H Just treat it as decimal with CF = 1

 C7H In this case, DAA same as ADD AL, 60H
+60H When MS hex digit in AL is >9, add 6 to it
=27H

3: Add decimal numbers 93 and 84.

MOV AL, 93H ; (AL)= 93H
ADD AL, 84H

; (AL) = 17H, CF = 1 Incorrect answer!

DAA

 ; (AL) = 77H Just treat it as decimal with CF = 1 (carry generated?)

 17H In this case, DAA same as ADD AL, 60H
+60H When CF = 1, add 6 to MS hex digit of AL and treat
=77H Carry as 1 even though not generated in this addition

4: Add decimal numbers 65 and 57.

MOV AL, 65H ; (AL)= 65H
ADD AL, 57H ; (AL) = BCH
DAA

 ; (AL) = 22H Just treat it as decimal with CF = 1

 BCH In this case, DAA same as ADD AL, 66H
+66H
=22H CF = 1

5: Add decimal numbers 99 and 28.

MOV AL, 99H ; (AL)= 99H
ADD AL, 28H ; (AL) = C1H, AF = 1
DAA

 ; (AL) = 27H Just treat it as decimal with CF = 1

 C1H In this case, DAA same as ADD AL, 66H
+66H 6 added to LS hex digit of AL, as AF = 1
=27H CF = 1 6 added to MS hex digit of AL, as it is >9

6: Add decimal numbers 36 and 42.

MAHESH PRASANNA K., VCET, PUTTUR

24

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MOV AL, 36H ; (AL)= 36H
ADD AL, 42H ; (AL) = 78H
DAA

 ; (AL) = 78H Just treat it as decimal with CF = 0

 78H
+00H In this case, DAA same as ADD AL, 00H
=78H

The following Program demonstrates the use of DAA after addition of multibyte packed BCD numbers.

MAHESH PRASANNA K., VCET, PUTTUR

25

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Program 3-6

MAHESH PRASANNA K., VCET, PUTTUR

26

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
BCD Subtraction and Correction:

The problem associated with the addition of packed BCD numbers also shows up in subtraction. Again,

there is an instruction (DAS) specifically designed to solve the problem.

Therefore, when subtracting packed BCD (single-byte or multibyte) operands, the DAS instruction is put

after the SUB or SBB instruction. AL must be used as the destination register to make DAS work.

Summary of DAS Action:

1. If after a SUB or SBB instruction the lower nibble is greater than 9, or if AF = 1 , subtract 0110

from the lower 4 bits.

2. If the upper nibble is greater than 9, or CF = 1, subtract 0110 from the upper nibble.

Due to the widespread use of BCD numbers, a specific data directive, DT, has been created. DT can be

used to represent BCD numbers from 0 to 1020 – 1 (that is, twenty 9s).

Assume that the following operands represent the budget, the expenses, and the balance, which is the

budget minus the expenses.

Notice in the code section above that,

 no H (hex) indicator is needed for BCD numbers when using the DT directive, and

 the use of the based relative addressing mode (BX + displacement) allows access to all three

arrays with a single register BX.

Eg1: ; AL = 0011 0010 = 32 BCD

 ; CL = 0001 0111 = 17 BCD
SUB AL, CL ; AL = 0001 1011 = 1BH
DAS ; Subtract 06, since 1011 > 9.
 ; AL = 0001 0101 = 15 BCD

Eg2: ; AL = 0010 0011 = 23 BCD
 ; CL = 0101 1000 =58 BCD
SUB AL, CL ; AL = 1100 1011 = CBH
DAS ; Subtract 66, since 1100 >9 & 1011 > 9.
 ; AL = 0110 0101 = 65 BCD, CF = 1.

 ; Since CF = 1, answer is – 65.

MAHESH PRASANNA K., VCET, PUTTUR

27

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
More Examples:

1: Subtract decimal numbers 45 and 38.

MOV AL, 45H ; (AL)= 45H
SUB AL, 38H ; (AL) = 0DH Illegal, incorrect answer!
 DAS ; (AL) = 07H Just treat it as decimal with Cy = 0

 0DH In this case, DAS same as SUB AL, 06H
-06H When LS hex digit in AL is >9, subtract 6
=07H

2: Subtract decimal numbers 63 and 88.

MOV AL, 63H ; (AL)= 63H
SUB AL, 88H ; (AL) = DBH, Cy=1 Illegal & Incorrect!
DAS ; (AL) = 75H Just treat it as decimal with Cy = 1 (carry generated?)

 DBH In this case, DAS same as SUB AL, 66H
-66H When Cy = 1, it means result is negative
=75H Result is 75, which is 10’s complement of 25

Treat Cy as 1 as Cy was generated in the previous subtraction itself!

3: Subtract decimal numbers 45 and 52.

MOV AL, 45H ; (AL)= 45H
SUB AL, 52H ; (AL) = F3H, Cy = 1 Incorrect answer!
DAS ; (AL) = 93H Just treat it as decimal with Cy = 1 (carry generated?)

 F3H In this case, DAS same as SUB AL, 60H
-60H When Cy = 1, it means result is negative
=93H Result is 93, which is 10’s complement of 07

4: Subtract decimal numbers 50 and 19.

MOV AL, 50H ; (AL)= 50H
SUB AL, 19H ; (AL) = 37H, Ac = 1
DAS ; (AL) = 31H Just treat it as decimal with Cy =0

 37H In this case, DAS same as SUB AL, 06H
-06H 06H is subtracted from AL as Ac = 1
=31H

5: Subtract decimal numbers 99 and 88.

MOV AL, 99H ; (AL)= 99H
SUB AL, 88H ; (AL) = 11H
DAS ; (AL) = 11H Just treat it as decimal with Cy = 0

 11H In this case, DAS same as SUB AL, 00H
-00H
=11H

6: Subtract decimal numbers 14 and 92.

MOV AL, 14H ; (AL)= 14H
SUB AL, 92H ; (AL) = 82H, Cy = 1
DAS ; (AL) = 22H Just treat it as decimal with Cy = 1

 82H In this case, DAS same as SUB AL, 60H
-60H 60H is subtracted from AL as Cy = 1
=22H 22 is 10’s complement of 78

MAHESH PRASANNA K., VCET, PUTTUR

28

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
ROTATE INSTRUCTIONS:

In many applications there is a need to perform a bitwise rotation of an operand. The rotation instructions

ROR, ROL and RCR, RCL are designed specifically for that purpose. They allow a program to rotate an

operand right or left.

o In rotate instructions, the operand can be in a register or memory. If the number of times an

operand is to be rotated is more than 1, this is indicated by CL. This is similar to the shift

instructions.

o There are two types of rotations. One is a simple rotation of the bits of the operand, and the other

is a rotation through the carry.

ROR (rotate right)

In rotate right, as bits are shifted from left to right they exit from the right end (LSB) and enter the left

end (MSB). In addition, as each bit exits the LSB, a copy of it is given to the carry flag. In other words, in

ROR, the LSB is moved to the MSB and is also copied to CF, as shown in the diagram.

If the operand is to be rotated once, the 1 is coded, but if it is to be rotated more than once, register CL is

used to hold the number of times it is to be rotated.

Eg:

ROR BH, 1 R/M Cy

Rotate right without Cy Before After

BH 0100 0010 0010 0001
Cy 1 0

MAHESH PRASANNA K., VCET, PUTTUR

29

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
ROL (rotate left)

In rotate left, as bits are shifted from right to left they exit the left end (MSB) and enter the right end

(LSB). In addition, every bit that leaves the MSB is copied to the carry flag. In other words, in ROL the

MSB is moved to the LSB and is also copied to CF, as shown in the diagram.

If the operand is to be rotated once, the 1 is coded. Otherwise, the number of times it is to be rotated is in

CL. Eg:

ROL BH, CL Cy R/M

Rotate left without Cy Before After

BH 0010 0010 1000 1000
CL 02H
Cy 1 0

The following Program shows an application of the rotation instruction. The maximum count in Program

will be 8 since the program is counting the number of 1s in a byte of data. If the operand is a 16-bit word,

the number of 1s can go as high as 16.

Program 3-7

MAHESH PRASANNA K., VCET, PUTTUR

30

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
The Program is similar to the previous one, rewritten for a word-sized operand. It also provides the count

in BCD format instead of hex. Reminder: AL is used to make a BCD counter because the because, the

DAA instruction works only on AL.

Program 3-8

RCR (rotate right through carry)

In RCR, as bits are shifted from left to right, they exit the right end (LSB) to the carry flag, and the carry

flag enters the left end (MSB). In other words, in RCR the LSB is moved to CF and CF is moved to the

MSB. In reality, CF acts as if it is part of the operand. This is shown in the diagram.

If the operand is to be rotated once, the 1 is coded, but if it is to be rotated more than once, the register CL

holds the number of times.

Eg:
RCR BH, 1 R/M Cy

Rotate right with Cy Before After

BH 0100 0010 1010 0001
Cy 1 0

MAHESH PRASANNA K., VCET, PUTTUR

31

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

RCL (rotate left through carry)

In RCL, as bits are shifted from right to left, they exit the left end (MSB) and enter the carry flag, and the

carry flag enters the right end (LSB). In other words, in RCL the MSB is moved to CF and CF is moved

to the LSB. In reality, CF acts as if it is part of the operand. This is shown in the following diagram.

If the operand is to be rotated once, the 1 is coded, but if it is to be rotated more than once, register CL

holds the number of times.
Eg:
RCL BH, CL Cy R/M

Rotate left with Cy Before After

BH 0010 0010 1000 1010
CL 02H
Cy 1 0

MAHESH PRASANNA K., VCET, PUTTUR

32

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

INTERRUPTS IN x86 PC
8088/86 INTERRUPTS

o An interrupt is an external event that informs the CPU that a device needs its service. In 8088/86,

there are 256 interrupts: INT 00, INT 01, . . . , INT FF (sometimes called TYPEs).

o When an interrupt is executed, the microprocessor automatically saves the flag register (FR), the

instruction pointer (IP), and the code segment register (CS) on the stack; and goes to a fixed

memory location.

o In x86 PCs, the memory locations to which an interrupt goes is always four times the value of the

interrupt number. For example, INT 03 will go to address 0000CH (4 * 3 = 12 = 0CH). The

following Table is a partial list of the interrupt vector table.

Table: Interrupt Vector

Interrupt Service Routine (ISR):

 For every interrupt there must be a program associated with it.

 When an interrupt is invoked, it is asked to run a program to perform a certain service. This

program is commonly referred to as an interrupt service routine (ISR). The interrupt service

routine is also called the interrupt handler.

 When an interrupt is invoked, the CPU runs the interrupt service routine. As shown in the above

Table, for every interrupt there are allocated four bytes of memory in the interrupt vector table.

Two bytes are for the IP and the other two are for the CS of the ISR.

 These four memory locations provide the addresses of the interrupt service routine for which the

interrupt was invoked. Thus the lowest 1024 bytes (256 x 4 = 1024) of memory space are set

aside for the interrupt vector table and must not be used for any other function.

INT

Number

Physical

Address

Logical

Address

INT 00 00000 0000 – 0000

INT 01 00004 0000 – 0004

INT 02 00008 0000 – 0008

INT 03 0000C 0000 – 000C

INT 04 00010 0000 – 0010

INT 05 00014 0000 – 0014

.

INT FF 003FC 0000 – 03FC

MAHESH PRASANNA K., VCET, PUTTUR

33

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Difference between INT and CALL Instructions:

The INT instruction saves the CS: IP of the following instruction and jumps indirectly to the subroutine

associated with the interrupt. A CALL FAR instruction also saves the CS: IP and jumps to the desired

subroutine (procedure).

The differences can be summarized as follows:

CALL Instruction INT instruction

1. A CALL FAR instruction can jump to any

location within the 1M byte address range

of the 8088/86 CPU.

1. INT nn goes to a fixed memory location in

the interrupt vector table to get the address

of the interrupt service routine.

2. A CALL FAR instruction is used by the

programmer in the sequence of

instructions in the program.

2. An externally activated hardware interrupt

can come-in at any time, requesting the

attention of the CPU.

3. A CALL FAR instruction cannot be

masked (disabled).

3. INT nn belonging to externally activated

hardware interrupts can be masked.

4. A CALL FAR instruction automatically

saves only CS: IP of the next instruction

on the stack.

4. INT nn saves FR (flag register) in addition

to CS: IP of the next instruction.

5. At the end of the subroutine that has been

called by the CALL FAR instruction, the

RETF (return FAR) is the last instruction.

RETF pops CS and IP off the stack.

5. The last instruction in the interrupt service

routine (ISR) for INT nn is the instruction

IRET (interrupt return). IRET pops off the

FR (flag register) in addition to CS and IP.

Processing Interrupts:

When the 8088/86 processes any interrupt (software or hardware), it goes through the following steps:

1. The flag register (FR) is pushed onto the stack and SP is decremented by 2, since FR is a 2-byte

register.
MAHESH PRASANNA K., VCET, PUTTUR

34

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

2. IF (interrupt enable flag) and TF (trap flag) are both cleared (IF = 0 and TF = 0). This masks

(causes the system to ignore) interrupt requests from the INTR pin and disables single stepping

while the CPU is executing the interrupt service routine.

3. The current CS is pushed onto the stack and SP is decremented by 2.

4. The current IP is pushed onto the stack and SP is decremented by 2.

5. The INT number (type) is multiplied by 4 to get the physical address of the location within the

vector table to fetch the CS and IP of the interrupt service routine.

6. From the new CS: IP, the CPU starts to fetch and execute instructions belonging to the ISR

program.

7. The last instruction of the interrupt service routine must be IRET, to get IP, CS, and FR back

from the stack and make the CPU run the code where it left off.

The following Figure summarizes these steps in diagram form.

Categories of Interrupts:

INT nn is a 2-byte instruction where the first byte is for the opcode and the second byte is the interrupt

number. We can have a maximum of 256 (INT 00 INT FFH) interrupts. Of these 256 interrupts, some are

used for software interrupts and some are for hardware interrupts.

1. Hardware Interrupts:

o There are three pins in the x86 that are associated with hardware interrupts. They are INTR

(interrupt request), NMI (non-maskable interrupt), and INTA (interrupt acknowledge).

o INTR is an input signal into the CPU, which can be masked (ignored) and unmasked through the

use of instructions CLI (clear interrupt flag) and STI (set interrupt flag).

MAHESH PRASANNA K., VCET, PUTTUR

35

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o If IF = 0 (in flag register), all hardware interrupt requests through INTR are ignored. This has no

effect on interrupts coming from the NMI pin. The instruction CLI (clear interrupt flag) will make

IF = 0.

o To allow interrupt request through the INTR pin, this flag must be set to one (IF = 1). The STI

(set interrupt flag) instruction can be used to set IF to 1.

o NMI, which is also an input signal into the CPU, cannot be masked and unmasked using

instructions CLI and STI; and for this reason it is called a non-maskable interrupt.

o INTR and NMI are activated externally by putting 5V on the pins of NMI and INTR of the x86

microprocessor.

o When either of these interrupts is activated, the x86 finishes the instruction that it is executing,

pushes FR and the CS: IP of the next instruction onto the stack, then jumps to a fixed location in

the interrupt vector table and fetches the CS: IP for the interrupt service routine (ISR) associated

with that interrupt.

o At the end of the ISR, the IRET instruction causes the CPU to get (pop) back its original FR and

CS: IP from the stack, thereby forcing the CPU to continue at the instruction where it left off

when the interrupt came in.

• Intel has embedded "INT 02" into the x86 microprocessor to be used only for NMI.

• Whenever the NMI pin is activated, the CPU will go to memory location 00008 to get the address

(CS: IP) of the interrupt service routine (ISR) associated with NMI.

• Memory locations 00008, 00009, 0000A, and 0000B contain the 4 bytes of CS: IP of the ISR

belonging to NMI.

• The 8259 programmable interrupt controller (PIC) chip can be connected to INTR to expand the

number of hardware interrupts to 64.

MAHESH PRASANNA K., VCET, PUTTUR

36

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

2. Software Interrupts:

o If an ISR is called upon as a result of the execution of an x86 instruction such as "INT nn", it is

referred to as software interrupt, since it was invoked from software, not from external hardware.

o Examples of such interrupts are DOS "INT 21H" function calls and video interrupts "INT 10H".

o These interrupts can be invoked in the sequence of code just like any other x86 instruction.

o Many of the interrupts in this category are used by the MS DOS operating system and IBM BIOS

to perform essential tasks that every computer must provide to the system and the user.

o Within this group of interrupts there are also some predefined functions associated with some of

the interrupts. They are "INT 00" (divide error), "INT 01" (single step), "INT 03" (breakpoint),

and "INT 04" (signed number overflow). Each is described below.

o The rest of the interrupts from "INT 05" to "INT FF" can be used to implement either software or

hardware interrupts.

Functions associated with INT 00 to INT 04:

Interrupts INT 00 to INT 04 have predefined tasks (functions) and cannot be used in any other way.

INT 00 (divide error)

 This interrupt belongs to the category of interrupts referred to as conditional or exception

interrupts. Internally, they are invoked by the microprocessor whenever there are conditions

(exceptions) that the CPU is unable to handle.

 One such situation is an attempt to divide a number by zero. Since the result of dividing a number

by zero is undefined, and the CPU has no way of handling such a result, it automatically invokes

the divide error exception interrupt.

 In the 8088/86 microprocessor, out of 256 interrupts, Intel has set aside only INT 0 for the

exception interrupt.

 INT 00 is invoked by the microprocessor whenever there is an attempt to divide a number by

zero.

 In the x86 PC, the service subroutine for this interrupt is responsible for displaying the message

"DIVIDE ERROR" on the screen if a program such as the following is executed:

 INT 0 is also invoked if the quotient is too large to fit into the assigned register when executing a

DIV instruction. Look at the following case:

MAHESH PRASANNA K., VCET, PUTTUR

37

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

INT 01 (single step)

 In executing a sequence of instructions, there is a need to examine the contents of the CPU's

registers and system memory. This is often done by executing the program one instruction at a

time and then inspecting registers and memory. This is commonly referred to as single-stepping,

or performing a trace.

 Intel has designated INT 01 specifically for implementation of single-stepping. To single-step, the

trap flag (TF) (D8 of the flag register), must be set to 1. Then after execution of each instruction,

the 8088/86 automatically jumps to physical location 00004 to fetch the 4 bytes for CS: IP of the

interrupt service routine, which will dump the registers onto the screen.

 Intel has not provided any specific instruction for to set or reset (unlike IF, which uses STI and

CLI instructions to set or reset), the TF; one can write a simple program to do that. The following

shows how to make TF = 0:

 Recall that, TF is D8 of the flag register.

 To make TF = 1, one simply uses the OR instruction in place of the AND instruction above.

INT 02 (non-maskable interrupt)

 All Intel x86 microprocessors have a pin designated NMI. It is an active-high input. Intel has set

aside INT 2 for the NMI interrupt. Whenever the NMI pin of the x86 is activated by a high (5 V)

signal, the CPU jumps to physical memory location 00008 to fetch the CS: IP of the interrupt

service routine associated with NMI.

 The NMI input is often used for major system faults, such as power failures. The NMI interrupt

will be caused whenever AC power drops out. In response to this interrupt, the microprocessor

stores all of the internal registers in a battery-backed-up memory or an EEPROM.

INT 03 (breakpoint)

 To allow implementation of breakpoints in software engineering, Intel has set aside INT 03.

MAHESH PRASANNA K., VCET, PUTTUR

38

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 In single-step mode, one can inspect the CPU and system memory after the execution of each

instruction, a breakpoint is used to examine the CPU and memory after the execution of a group

of instructions.

 INT 3 is a 1-byte instruction; where as all other “INT nn” instructions are 2-byte instructions.

INT 04 (signed number overflow)

 This interrupt is invoked by a signed number overflow condition. There is an instruction

associated with this, INTO (interrupt on overflow).

 The CPU will activate INT 04 if OF = 1. In cases, where OF = 0, the INTO instruction is not

executed; but is bypassed and acts as a NOP (no operation) instruction.

 To understand this, look at the following example: Suppose in the following program; DATA1=

+64 = 0100 0000 and DATA2 = +64 = 0100 0000. The INTO instruction will be executed and the

8088/86 will jump to physical location 00010H, the memory location associated with INT 04.

The carry from D6 to D7 causes the overflow flag to become l.

 Now, the INTO causes the CPU to perform "INT 4" and jump to physical location 00010H of the

vector table to get the CS: IP of the service routine.

 Suppose that the data in the above program was DATA1 = +64 and DATA2 = +17. In that case,

OF would become 0; the INTO is not executed and acts simply as a NOP (no operation)

instruction.

x86 PC AND INTERRUPT ASSIGNMENT:

o Of the 256 possible interrupts in the x86;

 some are used by the PC peripheral hardware (BIOS)

 some are used by the Microsoft operating system

 the rest are available for programmers of software applications.

MAHESH PRASANNA K., VCET, PUTTUR

39

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

INT 21H & INT 10H PROGRAMMING
The INT instruction has the following format:

Interrupts are numbered 00 to FF; this gives a total of 256 interrupts in x86 microprocessors. Of these 256

interrupts, two of them are the most widely used: INT 10H and INT 21H.

BIOS INT 10H PROGRAMMING:

o INT 10H subroutines are burned into the ROM BIOS of the x86-based IBM PC and compatibles

and are used to communicate with the computer's screen video. The manipulation of screen text

or graphics can be done through INT 10H.

o There are many functions associated with INT 10H. Among them are changing the color of

characters or the background color, clearing the screen, and changing the location of the cursor.

o These options are chosen by putting a specific value in register AH.

Monitor Screen in Text Mode:

 The monitor screen in the x86 PC is divided into 80 columns and 25 rows in normal text mode

(see the following Fig). In other words, the text screen is 80 characters wide by 25 characters

long.

Fig: Cursor Locations (row, column)

 Since both a row and a column number are associated with each location on the screen, one can

move the cursor to any location on the screen simply by changing the row and column values.

 The 80 columns are numbered from 0 to 79 and the 25 rows are numbered 0 to 24. The top left

comer has been assigned 00, 00 (row = 00, column = 00). Therefore, the top right comer will be

00, 79 (row = 00, column = 79).

 Similarly, the bottom left comer is 24, 00 (row = 24, column = 00) and the bottom right corner of

the monitor is 24, 79 (row = 24, column = 79).

MAHESH PRASANNA K., VCET, PUTTUR

40

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
INT 10H Function 06H: Clearing the Screen

To clear the screen before displaying data; the following registers must contain certain values before INT

10H is called: AH = 06, AL = 00, BH = 07, CX = 0000, DH = 24, and DL= 79. The code will look like

this:

 Remember that DEBUG assumes immediate operands to be in hex; therefore, DX would be

entered as 184F. However, MASM assumes immediate operands to be in decimal. In that case

DH = 24 and DL = 79.

 In the program above, one of many options of INT 10H was chosen by putting 06 into AH.

Option AH = 06, called the scroll function, will cause the screen to scroll upward.

 The CH and CL registers hold the starting row and column, respectively, and DH and DL hold

the ending row and column.

 To clear the entire screen, one must use the top left cursor position of 00, 00 for the start point

and the bottom right position of 24, 79 for the end point.

 Option AH = 06 of INT 10H is in reality the "scroll window up" function; therefore, one could

use that to make a window of any size by choosing appropriate values for the start and end rows

and columns.

 To clear the screen, the top left and bottom right values are used for start and stop points in order

to scroll up the entire screen. It is more efficient coding to clear the screen by combining some of

the lines above as follows:

INT 10H Function 02: Setting the Cursor to a Specific Location

 INT 10H function AH = 02 will change the position of the cursor to any location.

 The desired position of the cursor is identified by the row and column values in DX, where DH =

row and DL = column.

 Video RAM can have multiple pages of text, but only one of them can be viewed at a time. When

AH = 02, to set the cursor position, page zero is chosen by making BH = 00.

MAHESH PRASANNA K., VCET, PUTTUR

41

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

INT 10H Function 03: Get Current Cursor Position

In text mode, it is possible to determine where the cursor is located at any time by executing the

following:

 After execution of the program above, registers DH and DL will have the current row and column

positions, and CX provides information about the shape of the cursor.

 The reason that page 00 was chosen is that the video memory could contain more than one page

of data, depending on the video board installed on the PC.

 In text mode, page 00 is chosen for the currently viewed page.

Attribute Byte in Monochrome Monitors:

 There is an attribute associated with each character on the screen.

MAHESH PRASANNA K., VCET, PUTTUR

42

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 The attribute provides information to the video circuitry, such as color and intensity of the

character (foreground) and the background.

 The attribute byte for each character on the monochrome monitor is limited. The following Fig

shows bit definitions of the monochrome attribute byte.

Fig: Attribute Byte for Monochrome Monitors

The following are some possible variations of the attributes shown in the above Fig.

MAHESH PRASANNA K., VCET, PUTTUR

43

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Attribute Byte in CGA Text Mode:

The bit definition of the attribute byte in CGA text mode is shown in the following Fig.

From the bit definition, it can be seen that, the background can take eight different colors by combining

the prime colors red, blue, and green. The foreground can be any of 16 different colors by combining red,

blue, green, and intensity.

MAHESH PRASANNA K., VCET, PUTTUR

44

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

The following Program shows the use of the attribute byte in CGA mode.

Graphics: Pixel Resolution and Color:

o In the text mode, the screen is viewed as a matrix of rows and columns of characters.

o In graphics mode, the screen is viewed as a matrix of horizontal and vertical pixels.

o The number of pixels varies among monitors and depends on monitor resolution and the video

board.

o There are two facts associated with every pixel on the screen:

 The location of the pixel

 Its attributes, color, and intensity

o These two facts must be stored in the video RAM.

o Higher the number of pixels and colors, the larger the amount of memory is needed to store.

o The CGA mode can have a maximum of 16K bytes of video memory.

o This 16K bytes of memory can be used in three different ways:

 Text mode of 80 x 25 characters: Use AL = 03 for mode selection in INT 10H option AH

= 00. In this mode, 16 colors are supported.

 Graphics mode of resolution 320 x 200 (medium resolution): Use AL = 04. In this mode,

4 colors are supported.

 Graphics mode of resolution 640 x 200 (high resolution): Use AL = 06. In this mode,

only 1 color (black and white) is supported.

MAHESH PRASANNA K., VCET, PUTTUR

45

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o Hence, with a fixed amount of video RAM, the number of supported colors decreases as the

resolution increases.

Table: The 16 Possible Colors

I R G B Color

I R G B Color

0 0 0 0 Black 1 0 0 0 Gray

0 0 0 1 Blue 1 0 0 1 Light Blue

0 0 1 0 Green 1 0 1 0 Light Green

0 0 1 1 Cyan 1 0 1 1 Light Cyan

0 1 0 0 Red 1 1 0 0 Light Red

0 1 0 1 Magenta 1 1 0 1 Light Magenta

0 1 1 0 Brown 1 1 1 0 Yellow

0 1 1 1 White 1 1 1 1 High Intensity White

INT 10H and Pixel Programming:

To draw a horizontal line, choose values for the row and column to point to the beginning of the line and

then continue to increment the column until it reaches the end of the line, as shown in Example below:

DOS INTERRUPT 21H:

o INT21H is provided by DOS, which is BIOS-ROM based.

o When the OS is loaded into the computer, INT 21H can be invoked to perform some extremely

useful functions. These functions are commonly referred to as DOS INT 21H function calls.

MAHESH PRASANNA K., VCET, PUTTUR

46

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
INT 21H Option 09: Outputting a String of Data to the Monitor

 INT 21H can be used to send a set of ASCII data to the monitor. To do that, the following

registers must be set: AH = 09 and DX = the offset address of the ASCII data to be displayed.

 The address in the DX register is an offset address and DS is assumed to be the data segment.

INT 21H option 09 will display the ASCII data string pointed at by DX until it encounters the

dollar sign "$".

 In the absence of encountering a dollar sign, DOS function call 09 will continue to display any

garbage that it can find in subsequent memory locations until it finds "$".

INT 21H Option 02: Outputting a Single Character to the Monitor

 To output a single character to the monitor, 02 is put in AH, DL is loaded with the character to be

displayed, and then INT 21H is invoked. The following displays the letter "J'.

INT 21H Option 01: Inputting a Single Character, with Echo

This function waits until a character is input from the keyboard, and then echoes it to the monitor. After

the interrupt, the input character (ASCII value) will be in AL.

The Program 4-1 does the following:

1. clears the screen

2. sets the cursor to the center of the screen, and

3. starting at that point of the screen, displays the message "This is a test of the display routine".

MAHESH PRASANNA K., VCET, PUTTUR

47

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Program 4-1

INT 21H Option 0AH: Inputting a String of Data from the Keyboard

 Option 0AH of INT 21H provides a means by which one can get data from the keyboard and

store it in a predefined area of memory in the data segment.

 To do this; the register options are: AH = 0AH and DX = offset address at which the string of

data is stored.

 This is commonly referred to as a buffer area.
MAHESH PRASANNA K., VCET, PUTTUR

48

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 DOS requires that a buffer area be defined in the data segment and the first byte specifies the size

of the buffer. DOS will put the number of characters that came in through the keyboard in the

second byte and the keyed-in data is placed in the buffer starting at the third byte.

 For example, the following program will accept up to six characters from the keyboard, including

the return (carriage return) key. Six locations were reserved for the buffer and filled with FFH.

 The following shows portions of the data segment and code segment:

 The following shows the memory contents of offset 0010H:

 When this program is executed, the computer waits for the information to come in from the

keyboard.

 When the data comes in, the IBM PC will not exit the INT 21H routine until it encounters the

return key.

 Assuming the data that was entered through the keyboard was "USA" <RETURN>, the contents

of memory locations starting at offset 0010H would look like this:

 The step-by-step analysis is given below:

 The 0AH option of INT 21H accepts the string of data from the keyboard and echoes (displays) it

on the screen as it is keyed in.

Use of Carriage Return and Line Feed:

o In the Program 4-2, the EQU statement is used to equate CR (carriage return) with its ASCII

value of 0DH, and LF (line feed) with its ASCII value of 0AH.

o This makes the program much more readable. Since the result of the conversion was to be

displayed in the next line, the string was preceded by CR and LF.
MAHESH PRASANNA K., VCET, PUTTUR

49

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o In the absence of CR the string would be displayed wherever the cursor happened to be.

o In the case of CR and no LF, the string would be displayed on the same line after it had been

returned to the beginning of the line.

MAHESH PRASANNA K., VCET, PUTTUR

50

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Program 4-2

o The Program 4-3 prompts the user to type in a name. The name can have a maximum of eight

letters.

o After the name is typed in, the program gets the length of the name and prints it to the screen.

MAHESH PRASANNA K., VCET, PUTTUR

51

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Program 4-3

MAHESH PRASANNA K., VCET, PUTTUR

52

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o Program 4-4 demonstrates many of the functions described:

MAHESH PRASANNA K., VCET, PUTTUR

53

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Program 4-4

INT 21H Option 07: Keyboard Input without Echo

 Option 07 of INT 21H requires the user to enter a single character but that character is not

displayed (or echoed) on the screen.

 After execution of the interrupt, the PC waits until a single character is entered and provides the

character in AL.

Using the LABEL Directive to Define a String Buffer:

o A more systematic way of defining the buffer area for the string input is to use the LABEL

directive.

o The LABEL directive can be used in the data segment to assign multiple names to data. When

used in the data segment it looks like this:

o The attribute can be BYTE, WORD, DWORD, FWORD, QWORD, or TBYTE.

By: Mahesh Prasanna K.,

DePt. of Cse, VCet.

____________*********____________

MAHESH PRASANNA K., VCET, PUTTUR

54

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MODULE – 3

SIGNED NUMBERS AND STRINGS & MEMORY INTERFACING & 8255

SIGNED NUMBERS & STRINGS
SIGNED NUMBER ARITHMETIC OPERATIONS:

o In everyday life, numbers are used that could be positive or negative. For example, a temperature

of 5 degrees below zero can be represented as –5, and 20 degrees above zero as +20.

o Computers must be able to accommodate such numbers. To do that, an arrangement for the

representation of signed positive and negative numbers is made:

 The most significant bit (MSB) is set aside for the sign (+ or –)

 The rest of the bits are used for the magnitude.

o The sign is represented by 0 for positive (+) numbers and 1 for negative (–) numbers.

o Note that, entire 8-bit or 16-bit operand will be treated as magnitude in the case of unsigned

number representation.

Byte-sized Signed Numbers:

o In signed byte operands, D7 (MSB) is the sign and D6 to D0 are set aside for the magnitude of

the number.

 If D7 = 0, the operand is positive

 If 07 = 1, the operand is negative.

o The range of positive numbers that can be represented by the format above is 0 to + 127.

o If a positive number is larger than +127, a word sized operand must be used.

o For negative numbers D7 is 1, but the magnitude is represented in 2's complement.

o Although the assembler does the conversion, it is still important to understand how the

conversion works. To convert to negative number representation (2's complement), follow these

steps:

 Write the magnitude of the number in 8-bit binary (no sign).

 Invert each bit

 Add 1 to it.
MAHESH PRASANNA K., VCET, PUTTUR

1

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Word-sized Signed Numbers:

o In x86 computers a word is 16-bits in length. Setting aside the MSB (D15) for the sign leaves a

total of 15 bits (D14 – D0) for the magnitude. This gives a range of –32,768 to +32,767.

o If a number is larger than this, it must be treated as a multiword operand and be processed chunk

by chunk the same way as unsigned numbers.

MAHESH PRASANNA K., VCET, PUTTUR

2

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Overflow Problem in Signed Number Operations:

What is an overflow? If the result of an operation on signed numbers is too large for the register, an

overflow occurs and the programmer must be notified. Look at following Example:

o In the example above; +96 is added to +70 and the result according to the CPU is –90 (5AH).

Why?

o The reason is that, the result was more than what AL could handle. Like all other 8-bit registers,

AL could only contain up to +127. The designers of the CPU created the overflow flag

specifically for the purpose of informing the programmer that the result of the signed number

operation is erroneous.

Hence, when using signed numbers, a serious problem with regarding overflow arises that must be dealt

with. The CPU indicates the existence of the problem by raising the OF (overflow) flag, but it is up to the

programmer to take care of it. The CPU understands only 0s and 1s and ignores the human convention of

positive and negative numbers.

When Overflow Flag is Set in 8-bit Operations?

In 8-bit signed number operations, OF is set to 1, if either of the following two conditions occurs:

MAHESH PRASANNA K., VCET, PUTTUR

3

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

1. There is a carry from D6 to D7, but no carry out of D7 (CF = 0)

2. There is a carry from D7 out (CF = 1), but no carry from D6 to D7.

When Overflow Flag is Set in 16-bit Operations?

In 16-bit signed number operations, OF is set to 1, if either of the following two conditions occurs:

1. There is a carry from D14 to D15, but no carry out of D15 (CF = 0)

2. There is a carry from D15 out (CF = 1), but no carry from D14 to D15.

MAHESH PRASANNA K., VCET, PUTTUR

4

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Avoiding Erroneous Results in Signed Number Operations:

o To avoid the problems associated with signed number operations, one can sign extend the

operand.

o Sign extension copies;

 the sign bit (D7) of the lower byte of a register into the upper bits of the register, or

 the sign bit of a 16-bit register into another register.

o The instructions used to perform the sign extension are;

o CBW (convert signed byte to signed word) – will copy D7 (the sign flag) of AL to all bit

positions of AH register.

o CWD (convert signed word to signed double word): will copy D15 of AX to all bot positions of

DX register.

In the following Example (program for addition of any two signed bytes);

 If the overflow flag is not raised (OF = 0), the result of the signed number is correct and JNO

(jump if no overflow) will jump to OVER.

MAHESH PRASANNA K., VCET, PUTTUR

5

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 If OF = 1, (which means that the result is erroneous), each operand must be sign extended and

then added. That is the function of the code below the JNO instruction.

IDIV (signed number division):

The Intel manual says that IDIV means "integer division"; it is used for signed number division. In

actuality, all arithmetic instructions of 8088/86 are for integer numbers regardless of whether the

operands are signed or unsigned. To perform operations on real numbers, the 8087 coprocessor is used.

Remember that real numbers are the ones with decimal points such as "3.56".

Division of signed numbers is very similar to the division of unsigned numbers (already discussed).

Eg1:

 IDIV CH Before After
 F0H = -10H CH F0H EE = -12H
 AL 25H EEH Quotient
 AH 01H 05H Remainder

MAHESH PRASANNA K., VCET, PUTTUR

6

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Eg2:
 IDIV BL Before After

 F0H = -3H BL FDH FB = -5H
 AL 10H EBH Quotient
 AH 00H 01H Remainder

An application of signed number arithmetic is given in the following Program. It computes the average of

the Celsius temperatures: +13, -10, + 19, +14, -18, -9, +12, -19, and + 16.

Program 6-1

IMUL (signed number multiplication)

Signed number multiplication is similar in its operation to the unsigned multiplication. The only

difference between them is that the operands in signed number operations can be positive or negative;

therefore, the result must indicate the sign.

MAHESH PRASANNA K., VCET, PUTTUR

7

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Eg1:

IMUL CH Before After

 FEH = -02 CH FEH
 AL 02H FCH FFFCH = -04

AH 34H FFH

Arithmetic Shift:

The arithmetic shift is used for signed numbers. It is basically the same as the logical shift, except that the

sign bit is copied to the shifted bits. SAR (shift arithmetic right) and SAL (shift arithmetic left) are two

instructions for the arithmetic shift.

SAR (shift arithmetic right)

Eg:
SAR BH, CL R/M

 Cy

Shift right Before After
1100 0000 = -40H BH 1100 0000 1111 0000

1111 0000 = -10H CL 02H
Cy 1 0

As the bits of the destination are shifted to the right into CF, the empty bits are filled with the sign bit.

One can use the SAR instruction to divide a signed number by 2, as shown next:

MAHESH PRASANNA K., VCET, PUTTUR

8

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

SAL (shift arithmetic left)

SAL & SHL (shift left) do exactly the same thing.

Signed Number Comparison

Although the CMP (compare) instruction is the same for both signed and unsigned numbers, the J

condition instruction used to make a decision for the signed numbers is different from that used for the

unsigned numbers.

o In unsigned number comparisons, CF and ZF are checked for conditions of larger, equal, and

smaller.

o In signed number comparison, OF, ZF, and SF are checked.

o The memories used to detect the conditions above are as follows:

MAHESH PRASANNA K., VCET, PUTTUR

9

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Program 6-2

STRING & TABLE OPERATIONS:

o There is a group of instructions referred to as string instructions in the x86 family of

microprocessors.

o They are capable of performing operations on a series of operands located in consecutive memory

locations.

o For example, while the CMP instruction can compare only 2 bytes (or words) of data, the CMPS

(compare string) instruction is capable of comparing two arrays of data located in memory

locations pointed at by the SI and DI registers. These instructions are very powerful and can be

used in many applications,

Use of SI and DI, DS and ES in String Instructions:

o For string operations to work, designers of CPUs must set aside certain registers for specific

functions. These registers must permanently provide the source and destination operands.

o In 088/86 microprocessor, the SI and DI registers always point to the source and destination

operands, respectively.

o To generate the physical address, the 8088/86 always uses SI as the offset of the DS (data

segment) register and DI as the offset of ES (extra segment).

o The ES register must be initialized for the string operation(s) to work.
MAHESH PRASANNA K., VCET, PUTTUR

10

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Byte and Word Operands in String Instructions:

o In each of the string instructions, the operand can be a byte or a word.

o Operands are distinguished by the letters B (byte) and W (word) in the instruction mnemonic.

DF, the Direction Flag:

o To process operands located in consecutive memory locations; it requires that, the pointer be

incremented or decremented.

o In string operations this is achieved by the direction flag. Of the 16 bits of the flag register (D0 –

D15), bit 11 (D10) is set aside for the direction flag (DF).

o It is the job of the string instruction to increment or decrement the SI and DI pointers; but it is the

job of the programmer to specify the choice of increment or decrement by setting the direction

flag to high or low.

o The instructions CLD (clear direction flag) and STD (set direction flag) are specifically designed

for the purpose.

o CLD (clear direction flag) will reset (put to zero) the DF, indicating that the string instruction

should increment the pointers automatically. This is referred to as auto-increment.

o STD (set the direction flag) sets DF to 1, indicating to the string instruction that the pointers SI

and DI should be decremented automatically. This is referred to as auto-decrement.

Table: Summary of String Operations

Instruction Mnemonic Destination Source Prefix

Move string byte MOVSB ES: DI DS: SI REP

Move string word MOVSW ES: DI DS: SI REP

Store string byte STOSB ES: DI AL REP

Store string word STOSW ES: DI AX REP

Load string byte LODSB AL DS: SI None

Load string word LODSW AX DS: SI None

Compare string byte CMPSB ES: DI DS: SI REPE/REPNE

Compare string word CMPSW ES: DI DS: SI REPE/REPNE

Scan string byte SCASB ES: DI AL REPE/REPNE

Scan string word SCASW ES: DI AX REPE/REPNE

REP/REPZ/REPNZ Prefix:

o REP (repeat) prefix allows a string instruction to perform the operation repeatedly.

o REP assumes that CX holds the number of times that the instruction should be repeated.

o In other words, the REP prefix tells the CPU to perform the string operation and then decrements

the CX register automatically. This process is repeated until CX becomes zero.

MAHESH PRASANNA K., VCET, PUTTUR

11

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o REPZ (repeat zero)/REPE (repeat equal) repeat the string operation as long as source and

destination operands are equal (ZF = 1) or until CX becomes zero.

o REPNZ (repeat not zero)/REPNE (repeat not equal) repeat the string operation as long as

source and destination operands are not equal (ZF = 0) or until CX becomes zero.

Instruction Code Condition for Exit

REP CX = 0

REPE/REPZ CX = 0 or ZF = 0

REPNE/REPNZ CX = 0 or ZF = 1

 After the transfer of every byte by the MOVSB instruction, both the SI and DI registers are

incremented automatically once only (notice CLD).

 The REP prefix causes the CX counter to be decremented and MOVSB is repeated until CX

becomes zero.

 An alternative solution for above Example would change only two lines of code:

MOV CX, 10

REP MOVSB

 In this case the MOVSW will transfer a word (2 bytes) at a time and increment the SI and DI

registers each twice. REP will repeat that process until CX becomes zero. Notice that, the CX has

the value of 10 in it; since 10 words is equal to 20 bytes.

STOS and LODS Instructions:

STOSB – stores the byte in the AL register into memory location pointed at by ES: DI and then

increment DI once (if DF = 0) or decrement DI once (if DF = 1).

STOSW – stores the content of AX in memory locations ES: DI and ES: DI+1 (AL into ES: DI and AH

into ES: Dl+1) then increments DI twice (if DF = 0) or decrements DI twice (if DF = 1).

MAHESH PRASANNA K., VCET, PUTTUR

12

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
LODSB – loads the contents of memory location pointed at by DS: SI into AL and increments SI once (if

DF = 0) or decrements SI once (if DF = l).

LODSW – loads the content of memory locations pointed at by DS: SI into AL and DS: SI+l into AH.

The SI is incremented twice if DF = 0 or SI is decremented twice if DF = 1.

• LODS is never used with a REP prefix.

Testing Memory using STOSB and LODSB:

 The following Example uses string instructions STOSB and LODSB to test an area of RAM

memory.

 First AAH is written into 100 locations by using word-sized operand AAAAH and a count of 50.

 In the test part, LODSB brings in the contents of memory locations into AL one by one, and each

time it is eXclusive-ORed with AAH (the AH register has the hex value of AA).

o If they are the same, ZF = l and the process is continued.

o Otherwise, the pattern written there by the previous routine is not there and the program

will exit.

MAHESH PRASANNA K., VCET, PUTTUR

13

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
CMPS (Compare String):

o CMPS allows the comparison of two arrays of data pointed at by the SI and DI registers.

o One can test for the equality or inequality of data by the use of REPE or REPNE prefixes,

respectively.

o The comparison can be performed a byte at a time or a word at time by using CMPSB or

CMPSW forms of the instruction.

For example, if comparing "Euorop" and "Europe" for equality, the comparison will continue using the

REPE CMPS as long as the two arrays are the same.

 Here, the two arrays are to be compared letter by letter.

 The first characters pointed at by SI and DI are compared. In this case they are the same ("E"), so

the zero flag is set to 1 and both SI and DI are incremented.

 Since ZF = 1, the REPE prefix repeats the comparison.

 This process is repeated until the third letter is reached. The third letters “o” and "r" are not the

same; therefore, ZF = 0, and the comparison will stop.

SCAS (Scan String):

o SCASB – compares each byte of the array pointed at by ES: DI with the contents of the AL

register, and depending on which prefix, REPE or REPNE, is used, a decision is made for

equality or inequality.

MAHESH PRASANNA K., VCET, PUTTUR

14

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o For example, in the array "Mr. Gones", one can scan for the letter "G" by loading the AL register

with the character "G" and then using the "REPNE SCASB" operation to look for that letter.

 Here, the letter "G" is compared with "M".

 Since they are not equal, DI is incremented and CX is decremented, and the scanning is repeated

until the letter "G" is found or the CX register is zero. In this example, since "G" is found, ZF = 1,

indicating that there is a letter "G" in the array.

Replacing the Scanned Character:

o SCASB can be used to search for a character in an array, and if it is found, it will be replaced

with the desired character. (See Example given above).

o In string operations the pointer is incremented after each execution (if DF = 0). Therefore, in the

example above, DI must be decremented, causing the pointer to point to the scanned character

and then replace it.

XLAT Instruction and Look-Up Tables:

o There is often a need in computer applications for a table that holds some important information.

To access the elements of the table, 8088/86 microprocessors provide the XLAT (translate)

instruction.

MAHESH PRASANNA K., VCET, PUTTUR

15

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o To understand the XLAT instruction, one must first understand tables. The table is commonly

referred to as a look-up table.

o Assume that one needs a table for the values of x2, where x is between 0 and 9. First the table is

generated and stored in memory:

o It is possible to access the square of any number from 0 to 9 by the use of XLAT instruction.

 To do that, the register BX must have the offset address of the look-up table, and the

number whose square is sought must be in the AL register.

 Then after the execution of XLAT, the AL register will have the square of the number.

o The following shows how to get the square of 5 from the table:

o After execution of this program, the AL register will have 25 (19H), the square of 5.

o It must be noted that, for XLAT to work the entries of the look-up table must be in sequential

order and must have a one-to-one relation with the element itself. This is because of the way

XLAT work.

o In actuality, XLAT is one instruction, which is equivalent to the following code:

Code Conversion using XLAT:

o In many microprocessor-based systems, the keyboard is not an ASCII type of keyboard.

o One can use XLAT to translate the hex keys of such keyboards to ASCII.

o Assuming that the keys are 0-F, the following is the program to convert the hex digits of 0-F to

their ASCII equivalents.

MAHESH PRASANNA K., VCET, PUTTUR

16

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MEMORY & MEMORY INTERFACING
SEMICONDUCTOR MEMORIES

» In the design of computers, semiconductor memories are used as primary storage for code and

data. Semiconductor memories are connected directly to the CPU. For this reason, semiconductor

memories are referred to as primary memory. Most widely used semiconductor memories are

ROM and RAM.

» Read-only memory (ROM) contains system software and permanent system data.

» Random access memory (RAM) or read/write memory contains temporary data and application

software.

Memory Organization:

» The number of bits that a semiconductor memory chip can store is called its capacity. It can be in

the units of K bits (kilobits)/M bits (megabits).

» Memory chips are organized into a number of locations within the IC. Each location can hold 1

bit, 4-bits, 8-bits, or even 16-bits.

» Each memory chip contains 2x locations, where x is the number of address pins on the chip.

» Each location contains y bits, where y is the number of data pins on the chip.

» The entire chip will contain 2x x y bits – the capacity of the chip.

The pin connections common to all memory devices are –

» Address Connections. All memory devices have address inputs that select a memory location

within the memory device. Address inputs are always labeled from A0 to An (Note, ‘n’ is one less

than the total number of address pins). The number of address pins found on a memory device is

determined by the number of memory locations found within it.

» Data Connections. All memory devices have a set of data outputs or input/outputs. The device

illustrated in the following Figure has a common set of I/O (input/output) connections.

MAHESH PRASANNA K., VCET, PUTTUR

17

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

» As shown in the Fig. above; the memory chips have CS (chip select) pin that must be activated

for memory contents to be accessed. That means, no data can be written into or read form the

memory chip unless CS is activated.

» Sometimes, OE (output enable)/RD (read)/WR (write) pins may also be present along with CS

pin.

Examples: 1] A given memory chip has 12 address pins and 8 data pins. Find the memory

organization and the capacity.

Solution:

 Memory chip has 12 address lines ↔ 212 = 4,096 locations.

 Memory chip has 8 data lines ↔ Each location hold 8 bits of data.

 Thus, the memory organization is 4,096 x 8 = 4K x 8 = 32K bits capacity.

Examples: 2] A 512K memory chip has 8 data pins. Find the organization.

Solution:

 The memory chip has 8 data lines ↔ Each location within the chip can hold 8 bits of data.

 Given, the capacity of the memory chip = 512K.

 Hence, the locations within the memory chip = 512K / 8 = 64K.

 Since, 216 = 64K; the memory chip has 16 address lines.

 Hence, the memory organization is: 64K x 8 = 512K bits capacity.

MEMORY ADDRESS DECODING:

o Consider a 32K x 8 capacity memory chip. This chip has 15 (215 = 32K) address lines and 8 data

lines.

o Suppose, this memory chip is to be interfaced to x86 microprocessor, which is having 20 address

lines and 16 data lines.

o This means that, the microprocessor sends out a 20-bit memory address whenever it reads or

writes data. Hence there is a mismatch that must be corrected.

o The decoder corrects the mismatch by decoding the address pins that do not connect to the

memory component.

Simple Logic Gates as Address Decoder:

 The CS (chip select) input pin (in any memory chip) is usually active low and can be activated

using some simple logic gates; such as NAND gate and Inverters.

 The following Fig. shows some simple NAND gate decoding for memory chips, along with the

address range calculations.

MAHESH PRASANNA K., VCET, PUTTUR

18

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Fig: Simple Logic Gates as Decoder (1)

Fig: Simple Logic Gates as Decoder (2)

MAHESH PRASANNA K., VCET, PUTTUR

19

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o Notice that, the output of the NAND gate is active low and that the CS pin is also active low. That

makes them a perfect match.

o Also notice that Al9-A16 must equal 1001 in order for CS to be activated. This results in the

assignment of addresses 9000H to 9FFFFH to this memory block.

Using the 74LS138 as Decoder:

o The 74LS138 has 8 NAND gates in it; therefore, a single chip can control 8 blocks of memory.

o In 74LS138 decoder; the three inputs A, B, C generates eight active low outputs Y0 to Y7.

o Each Y output can be connected to the CS of memory chip, allowing control of 8 memory blocks

by a single 74LS138.

 Consider the following memory decoding diagram. We have, A0-A15 from the CPU, directly

connected to A0-A15 of the memory chip.

 A16-A18 are used for the A, B, and C inputs of 74LS138; A19 is controlling G1 pin. G2A and

G2B are grounded.

MAHESH PRASANNA K., VCET, PUTTUR

20

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

 To enable 74LS138; G2A = 0, G2B = 0; and G1 = 1.

 To select Y4; CBA = 100.

 This gives the address range (for the memory chip controlled by Y4): C0000H to CFFFFH.

MAHESH PRASANNA K., VCET, PUTTUR

21

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

DATA INTEGRITY IN RAM & ROM:

o When storing data, one major concern is maintaining data integrity – ensuring that, the data

retrieved is the same as the data stored.

o The same principle applies when transferring data from one place to another – ensuring that, the

data received is the same as the data transmitted.

o There are many way to ensure data integrity depending on the type of storage.

o The checksum method is used for ROM and the parity bit method is used for DRAM.

o For mass storage devices such as hard disks and for transferring data on the Internet, the CRC

(cyclic redundancy check) method is employed.

Checksum Byte:

o During the current surge, or when the PC is turned on, or during operation, the contents of the

ROM may be corrupted.

o To ensure the integrity of the contents of ROM, every PC must perform a checksum calculation.

The process of checksum will detect any corruption of the contents of ROM.

o The checksum method uses a checksum byte. This checksum byte is an extra byte that is tagged

to the end of a series of bytes of data.

o To calculate the checksum byte of a series of bytes of data, the following steps can be taken .

1. Add the bytes together and drop the carries.

2. Take the 2's complement of the total sum, and that is the checksum byte, which becomes the

last byte of the stored information.
MAHESH PRASANNA K., VCET, PUTTUR

22

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o To perform the checksum operation, add all the bytes, including the checksum byte. The result

must be zero. If it is not zero, one or more bytes of data have been changed (corrupted).

Checksum Program:

 When the PC is turned on, one of the first things the BIOS does is to test the system ROM. The

code for such a test is stored in the BIOS ROM.

 The following Figure shows the program using the checksum method.

MAHESH PRASANNA K., VCET, PUTTUR

23

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 Notice in the code how all the bytes are added together without keeping the track of carries. Then,

the total sum is ORed with itself to see if it is zero. The zero flag is expected to be set to high

upon return from this subroutine. If it is not, the ROM is corrupted.

Fig: PC BIOS Checksum Routine

Use of Parity Bit in DRAM Error Detection:

o System boards or memory modules are populated with DRAM chips of various organizations,

depending on the time they were designed and the availability of a given chip at a reasonable

cost.

o The memory technology is changing so fast that DRAM chips on the boards have a different look

every year or two. While early PCs used 64K DRAMs, current PCs commonly use 1G chips.

o To understand the use of a parity bit in detecting data storage errors, we use some simple

examples from the early PCs to clarify some very important design concepts.

DRAM Memory Banks:

 The arrangement of DRAM chips on the system or memory module board is often referred to as a

memory bank. For example, the 64K bytes of DRAM can be arranged as one bank of 8 IC chips

of 64K x 1 organization, or 4 bank of 16K x 1 organization.

 The first IBM PC introduced in 1981, used memory chip of l6K x l organization.

 The following Figure shows the memory banks for 640K bytes of RAM using 256K and 1M

DRAM chips.

 Notice the use of an extra bit for every byte of data to store the parity bit.

 With the extra parity bit every bank requires an extra chip of x 1 organization for parity check.

MAHESH PRASANNA K., VCET, PUTTUR

24

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

 The following Figure shows DRAM design and parity bit circuitry for a bank of DRAM.

MAHESH PRASANNA K., VCET, PUTTUR

25

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 First, note the use of the 74LS158 to multiplex the 16 address lines A0-A15, changing them to the

8 address lines of MA0-MA7 (multiplexed address) as required by the 64K x l DRAM chip.

 The resistors are for the serial bus line termination to prevent undershooting and overshooting at

the inputs of DRAM. They range from 20 to 50 ohms, depending on the speed of the CPU and the

printed circuit board layout.

 A few additional observations above Figure should be made. The output of multiplexer addresses

MA0-MA7 will go to all the banks. Likewise, memory data MD0-MD7 and memory data parity

MDP will go to all the banks.

 The 74LS245 not only buffers the data bus MD0-MD7 but also boosts it to drive all DRAM

inputs. Since the banks of the DRAMs are connected in parallel and the capacitance loading is

additive, the data line must be capable of driving all the loads.

Parity Bit Generator/Checker in IBM PC:

o There are two types of errors that can occur in DRAM chips:

o Hard error – some bits or an entire row of memory cell inside the memory chip get stuck to high

or low permanently, thereafter always producing l or 0 regardless of what you write into the

cell(s).

o Soft error – a single bit is changed from 1 to 0 or from 0 to 1 due to current surge or certain kinds

of particle radiation in the air. Parity is used to detect soft errors.

o Including a parity bit to ensure data integrity in RAM is the most widely used method; since, it is

the simplest and cheapest.

o This method can only indicate if there is a difference between the data that was written to

memory and the data that was read.

o It cannot correct the error as is the case with some high-performance computers. In those

computers and some of the x86-based servers, the EDC (error detection and correction) method is

used to detect and correct the error bit.

o The early IBM PC and compatibles use the 74S280 parity bit generator and checker to implement

the concept of the parity bit.

74S280 Parity Bit Generator & Checker:

 The 74S280 chip has 9 inputs and 2 outputs. Depending on whether an even or odd number of

ones appear in the input, the even or odd output is activated (according to following Table).

 As can be seen from Table, if all 9 inputs have an even number of 1 bits, the even output goes

high (as in cases 1 and 4). If the 9 inputs have an odd number of high bits, the odd output goes

high (as in cases 2 and 3).

MAHESH PRASANNA K., VCET, PUTTUR

26

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

The way the IBM PC uses this chip is as follows:

 Notice that in above Figure (DRAM design and parity bit circuitry for a bank of DRAM), inputs

A – H are connected to the data bus, which is 8 bits, or one byte. The I input is used as a parity bit

to check the correctness of the byte of data read from memory. When a byte of information is

written to a given memory location in DRAM, the even-parity bit is generated and saved on the

ninth DRAM chip as a parity bit with use of control signal 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀����������. This is done by activating the

tri-state buffer using 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀����������. At this point, I of the 74S280 is equal to zero, since 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀��������� high.

 When a byte of data is read from the same location, the parity bit is gated into the I input of the

74S280 through 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀���������. This time the odd output is taken out and fed into a 74LS74. If there is a

difference between the data written and the data read, the Q output (called PCK, parity bit check)

of the 74LS74 is activated and Q activates NMI, indicating that there is a parity bit error,

meaning that the data read is not the same as the data written. Consequently, it will display

a parity bit error message.

 For example, if the byte of data written to a location has an even number of ls, A to H has an even

number of ls, and I is zero, then the even-parity output of 74S280 becomes 1 and is saved on

parity bit DRAM. This is case 1 shown in the above Table. If the same byte of data is read and

there is an even number of ls (the byte is unchanged), I from the ninth bit DRAM, which is 1, is

input to the 74S280, even becomes low, and odd becomes high, which is case 2 in the above

Table. This high from the odd output will be inverted and fed to the 74LS74, making Q low.

This means that 𝑄𝑄� is high thereby indicating that the written byte is the same as the byte read and

there is no errors occurred.

 If the number of 1s in the byte has changed from even to odd and the 1 from the saved parity

DRAM makes the number of inputs even (case 4 above), the odd output becomes low, which is

inverted and passed to the 74LS74 D flip-flop. This makes Q = 1 and 𝑄𝑄� = 0, which signals the

NMI to display a parity bit error message on the screen.

Case
Inputs Outputs

A – H I Even ODD

1 Even 0 1 0

2 Even 1 0 1

3 Odd 0 0 1

4 Odd 1 1 0

MAHESH PRASANNA K., VCET, PUTTUR

27

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
16-BIT MEMORY INTERFACING:

In this section, memory interfacing for 16-bit CPUs will be discussed. 80286 is taken as an example, but

the concepts can apply to any 16-bit microprocessor.

ODD & EVEN Banks:

In a 16-bit CPU such as the 80286, memory locations 00000-FFFFF are designated as odd and even bytes

as shown in the following Fig. This Figure shows only 1M byte of memory; the concept of odd and even

banks applies to the entire memory space of a given processor with a 16-bit data bus.

Fig: ODD & EVEN Banks of Memory

To distinguish between odd and even bytes, the CPU provides a

signal called BHE (bus high enable). BHE in association with A0

is used to select the odd or even byte according to following

Table.

The following Figure shows 640KB of DRAM for 16-bit buses.

Fig: 640K Bytes of DRAM with ODD & EVEN Banks Designation

The following Figure shows the use of A0 and BHE as bank selectors. Here, the 74LS245 chip is used as

a data bus buffer.

BHE A0 Memory Selection

0 0 Even Word D0 – D15

0 1 Odd Byte D8 – D15

1 0 Even Byte D0 – D7

1 1 None -

MAHESH PRASANNA K., VCET, PUTTUR

28

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Fig: 16-bit Data Connection in the Systems with 16-bit Data Bus

Memory Cycle Time and Inserting Wait States:

o To access an external device such as memory or I/O, the CPU provides a fixed amount of time

called a bus cycle time. During this bus cycle time, the read and write operation of memory or I/O

must be completed.

o The bus cycle time used for accessing memory is often referred to as MC (memory cycle) time.

The time from when the CPU provides the addresses at its address pins to when the data is

expected at its data pins is called memory read cycle time.

o The processors such as the 8088/86, the memory cycle time takes 4 clocks, and from 286 to

Pentium, the memory cycle time is only 2 clocks.

o If memory is slow and its access time does not match the MC time of the CPU, extra time can be

requested from the CPU to extend the read cycle time. This extra time is called a wait state (WS).

MAHESH PRASANNA K., VCET, PUTTUR

29

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

» It must be noted that, memory access time is not the only factor in slowing down the CPU. The

other factor is the delay associated with signals going through the data and address path.

» Delay associated with reading data stored in memory has the following two components:

1. The time taken for address signals to go from CPU pins to memory pins, (going through

decoders and buffers (e.g., 74LS245)); plus the time taken for the data to travel from memory

to CPU, is referred to as a path delay.

2. The memory access time to get the data out of the memory chip. This is the larger (80% of the

read cycle time) of the two components.

» The total sum of these two (path delay + memory access time) must equal the memory read cycle

time provided by the CPU.

MAHESH PRASANNA K., VCET, PUTTUR

30

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Accessing EVEN & ODD Words:

o Intel defines 16-bit data as a word. The address of a word can start at an even or an odd number.

o For example, in the instruction "MOV AX, [2000]" the address of the word being fetched into AX

starts at an even address. In the case of "MOV AX, [2007]" the address starts at an odd address.

o In systems with a 16-bit data bus, accessing a word from an odd addressed location can be

slower.

o As shown in the following Fig, in the 8-bit system, accessing a word is treated like accessing two

bytes regardless of whether the address is odd or even. Since accessing a byte takes one memory

cycle, accessing any word will take 2 memory cycles.

Fig: Accessing EVEN & ODD Words in 8-bit CPU

o In the 16- bit system, accessing a word with an even address takes one memory cycle. That is

because; one byte is carried on D0-D7 and the other on D8-Dl5 in the same memory cycle.

MAHESH PRASANNA K., VCET, PUTTUR

31

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o But, accessing a word with an odd address requires two memory cycles. For example, see how

accessing the word in the instruction "MOV AX, [F617]" works as shown in following Fig.

Fig: Accessing an Odd-Addressed Word in 16-bit Processor

o Assuming that DS = F000H in this instruction, the contents of physical memory locations FF6

l7H and FF6l8H are being moved into AX.

o In the first cycle, the 286 CPU accesses location FF617H and puts it in AL.

o In the second cycle, the contents of memory location FF618H are accessed and put into AH.

o Hence, it will be wise to put any words on an even address if the program is going to be run on a

16-bit system.

o A pseudo-instruction is specifically designed for this purpose. It is the EVEN directive and is

used as follows:

o This directive ensures that, the VALUE1, a word-sized operand, is located in an even address

location. Hence, an instruction such as “MOV AX, VALUE1” will take only a single memory

cycle.

Bus Bandwidth:

» The main advantage of the 16-bit data bus is; doubling of the rate of transfer of information

between the CPU and the outside world. The rate of data transfer is generally called bus

bandwidth. In other words, bus bandwidth is a measure of how fast buses transfer information

between the CPU and memory or peripherals. The wider the data bus, the higher the bus

bandwidth.

» But, the advantage of the wider external data bus comes at the cost of increasing the size of the

printed circuit board. Bus bandwidth is measured in MB (megabytes) per second and is calculated

as follows:

bus bandwidth = (1/bus cycle time) x bus width in bytes

MAHESH PRASANNA K., VCET, PUTTUR

32

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o In the above formula, bus cycle time can be either memory or I/O cycle time.

o There are two ways to increase the bus bandwidth:

 Use a wider data bus.

 Shorten the bus cycle time.

o While the data bus width has increased from 16-bit in the 80286 to 64-bit in the Pentium, the bus

cycle time is reaching a maximum of 133 MHz.

8255 I/O PROGRAMMING
8088 INPUT/OUTPUT INSTRUCTIONS:

o All x86 microprocessors, from the 8088 to the Pentium, can access external devices called ports.

This is done using I/O instructions.

o The x86 CPU has I/O space in addition to memory space. While memory can contain Opcode and

data, I/O ports contain data only.

o There are two instructions for this purpose: OUT and IN. These instructions can send data from

the accumulator (AL or AX) to ports or bring data from ports into the accumulator.

o In accessing ports, we can use an 8-bit or 16-bit data port.

MAHESH PRASANNA K., VCET, PUTTUR

33

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
8-bit Data Ports:

o The 8-bit I/O operation of the 8088 is applicable to all x86 CPUs from the 8088 to the Pentium.

o The 8-bit port uses the D0-D7 data bus to communicate with I/O devices.

o In 8-bit port programming, register AL is used as the source of data, when using the OUT

instruction; and as the destination, for the IN instruction. This means that to input or output data

from any other registers, the data must first be moved to the AL register.

o Instructions OUT and IN have the following formats:

In format (l) –

 port# is the address of the port and can be from 00 to FFH, allowing up to 256 input and 256

output ports.

 In this format, the 8-bit port address is carried on address bus A0-A7.

 No segment register is involved in computing the address.

In format (2) –

 port# is the address of the port and can be from 0000 to FFFFH, allowing up to 65,536 input and

65,536 output ports.

 In this format, the 16- bit port address is carried on the address bus A0-A15.

 The use of a register as a pointer for the port address has an advantage in that the port address can

be changed very easily, especially in. cases of dynamic compilations where the port address can

be passed to DX.

» I/O instructions are widely used in programming peripheral devices such as printers, hard disks,

and keyboards.

» The port address can be either 8-bit or 16-bit. For an 8-bit port address, we can use the immediate

addressing mode.

» The following program sends a byte of data to a fixed port address of 43H:

MAHESH PRASANNA K., VCET, PUTTUR

34

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

» The 8-bit address used in immediate addressing mode limits the number of ports to 256 for input

plus 256 for output. To have a larger number of ports we must use the 16-bit port address

instruction.

» To use the 16-bit port address, register indirect addressing mode must be used. The register used

for this purpose is DX.

» The following program sends values 55H and AAH to I/O port address 300H (a 16-bit port

address).

» We can only use register DX for 16-bit I/O addresses; no other register can be used for this

purpose. Also, notice the use of register AL for 8-bit data:

» Just like the OUT instruction, the IN instruction uses the DX register to hold the address and AL

to hold the arrived 8-bit data. In other words, DX holds the 16-bit port address while AL receives

the 8-bit data brought in from an external port.

» The following program gets data from port address 300H and sends it to port address 302H.

I/O ADDRESS DECODING & DESIGN:

The decoding of I/O ports is done by using TTL logic gates 74LS373 and 74LS244. The following are the

steps:
MAHESH PRASANNA K., VCET, PUTTUR

35

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

1. The control signals IOR and IOW are used along with the decoders.

2. For an 8-bit port address, A0-A7 is decoded.

3. If the port address is 16-bit (using DX), A0-A15 is decoded.

Using 74LA373 in an Output Port Design:

o In every computer, whenever data is sent out by the CPU via the data bus, the data must be

latched by the receiving device. While memories have an internal latch to grab the data, a latching

system must be designed for simple I/O ports.

o The 74LS373 can be used for this purpose. Notice in the following Fig. that in order to make the

74LS373 work as a latch, the OC pin must be grounded.

Fig: 74LS373 D Latch

o For an output latch, it is common to AND the output of the address decoder with the control

signal IOW to provide the latching action as shown in Figure.

Fig: Design for “OUT 99H, AL”

MAHESH PRASANNA K., VCET, PUTTUR

36

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Fig: Design for Output Port Address of 31FH

IN Port Design Using the 74LA244:

o When the data is coming in by way of a data bus, it must come in through a three-state buffer.

This is referred to as tri-stated. See the following Fig for the internal circuitry of 74LS244.

Fig: 74LS244 Octal Buffer

MAHESH PRASANNA K., VCET, PUTTUR

37

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o Here, since 1G and 2G each control only 4 bits of 74LS244, both must be activated for 8 bits

input. The following Fig shows the use of 74LS244 as an entry port to the system data bus. In the

following Figures, the address decoder and IOR control signal together activate the tri-state input.

Fig: Input Port Design for “IN AL, 5FH”

Fig: Design for “IN AL, 9FH”

Memory-Mapped I/O:

» Communicating with the I/O devices using IN and OUT instructions is referred to as peripheral

I/O. Some designers also refer to it as isolated I/O.

MAHESH PRASANNA K., VCET, PUTTUR

38

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

» Some new RISC processors do not have IN and OUT instructions; they use memory-mapped I/O.

» In memory-mapped I/O, a memory location is assigned to be an input and output port.

» The following are the differences between peripheral I/O and memory-mapped I/O in x86 PC:

Isolated (Peripheral) I/O Memory-Mapped I/O

1. The IN and OUT instructions

transfer data between the

microprocessors accumulator or

memory and the I/O device.

1. Instructions that access memory locations are used

instead of IN and OUT instructions: MOV AL, [2000]

will access the input port & MOV [2000], AL will access

the output port.

2. Only A0-A15 are decoded; Hence,

DS initialization is not required;

decoding circuitry may be less

expensive.

2. Entire 20-bit address, A0-A19, must be decoded

(decoding circuitry is expensive); Hence DS must be

loaded before accessing memory-mapped I/O:

3. IOR and IOW control signals are

used.
3. MEMR and MEMW control signals are used.

4. Limited only to 65,536 input ports 4. The number of ports can be as high as 220 (1,048,576).

MAHESH PRASANNA K., VCET, PUTTUR

39

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

and 65,536 output ports.

5. Data should be moved to

accumulator for any kind of

operations.

5. Arithmetic and logic operations can be performed

directly, without moving data to accumulator.

6. The user can expand the memory to

its full size without using any

memory space for I/O devices.

6. Uses memory address space, which could lead to

memory space fragmentation.

I/O ADDRESS MAP OF x86 PCs:

Any system that needs to be compatible with the x86 IBM PC must follow the I/O map of the following

Table:

Table: I/O Map for x86 PC

MAHESH PRASANNA K., VCET, PUTTUR

40

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Absolute vs. Linear Select Address Decoding:

o In decoding addresses, either all the address lines or a selected number of them are decoded.

• If all the address lines are decoded, it is called absolute decoding.

• If only selected address pins are used for decoding, it is called linear select decoding –

This is cheaper due to the less number of input and the fewer the gates needed for

decoding. The disadvantage is that it creates what are called aliases, the same port with

multiple addresses. Hence, port address documentation is necessary.

Portable Addresses 300 – 31FH in x86 PC:

In the x86 PC, the address range 300H – 31FH is set aside for prototype cards to be plugged into the

expansion slot. These prototype cards can be data acquisition boards used to monitor analog signals such

as temperature, pressure, and so on. Interface cards using the prototype address space use the following

signals on the 62-pin section of the ISA expansion slot:

1. IOR and IOW. Both are active low.

2. AEN signal: AEN = 0 when the CPU is using the bus.

3. A0-A9 for address decoding.

MAHESH PRASANNA K., VCET, PUTTUR

41

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Use of Simple Logic Gates as Address Decoders:

The following Fig shows the circuit design for a 74LS373 latch connected to port address 300H of an x86

PC via an ISA expansion slot. Notice the use of signals A0-A9 and AEN. AEN is low when the x86

microprocessor is in control of the buses. Here, we are using simple logic gates such as NAND and

inverter gates for the I/O address decoder. These can be replaced with the 74LS138 chip because the

74LS138 is a group of NAND gates in a single chip.

Fig: Using Simple Logic Gates for I/O Address Decoder (I/O Address 300H)

Use of 74LS138 as Decoder:

The following Fig shows the 74LS138.

The following Fig is an example of the use of a 74LA138 for an I/O address decoder.

MAHESH PRASANNA K., VCET, PUTTUR

42

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Fig: Using 74LS138 for I/O Address Decoding

 This is an address decoding for an input port located at address 304H.

 The Y4 output, together with the IOR signal, controls the 74LS244 input buffer.

 Note that, each Y output can control a single I/O device.

IBM PC I/O Address Decoder:

The following Fig shows a 74LS138 chip used as an I/O address decoder in the original IBM PC.

Fig: Port Address Decoding in the Original IBM PC

 Notice that, while A0 to A4 go to individual peripheral input addresses, A5, A6, and A7 are

responsible for the selection of outputs Y0 to Y7.

 In order to enable the 74LS138, pins A8, A9, and AEN all must be low. While A8 and A9 will

directly affect the port address calculations, AEN is low only when the x86 is in control of the

system bus (see the following Table).

Table: Port Address Decoding Table on the Original PC

MAHESH PRASANNA K., VCET, PUTTUR

43

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Port 61H and Time Delay Generation:

o In order to maintain compatibility with the IBM PC and run operating systems such as MS-DOS

and Windows, the assignment of I/O port addresses must follow the standard.

o Port 61H is a widely used port. We can use this port to generate a time delay which will work in

any PC with any type of processor from the 286 to the Pentium.

o I/O port 61H has eight bits (D0-D7). Bit D4 is of particular interest to us. In all 286 and higher

PCs bit D4 of port 61H changes its state every 15.085 microseconds (µs) (stays low for 15.085

µs and then changes to high and stay high for the same amount of time before it goes low again).

o This toggling of bit D4 goes on indefinitely as long as the PC is on.

• The following program shows how to use port 61H to generate a delay of 1/2 second. In this

program all the bits of port 310H are toggled with a 1/2 second delay in between.

Notice that, when port 61H is read, all the bits are masked except D4. The program waits for D4 to

change every 15.085 µs before it loops again.

PROGRAMMING & INTERFACING THE 8255:

The 8255 is –

» a widely used 40-pin DIP I/O chip.

» Having three separately accessible ports, A, B, and C, which can be programmed to be input or

output port, hence the name PPI (programmable peripheral interface).

MAHESH PRASANNA K., VCET, PUTTUR

44

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

» They can also be changed dynamically, in contrast to the 74LS244 and 74LS373, which are hard-

wired.

Port A (PA0-PA7):

» This 8-bit port A can be programmed all as input or all as output.

Port B (PB0-PB7):

» This 8-bit port B can be programmed all as input or all as output.

Port C (PC0-PC7):

» This 8-bit port C can be programmed all as input or all as output.

» It can also be split into two parts; CU (upper bits PC4-PC7) and CL (lower bits PC0-PC3). Each

can be used as input or output.

» Any bit of Port C can be programmed individually.

Fig: 8255 PPI Chip

RD and WR:

» Active low input signals to 8255.

» If 8255 is using peripheral I/O design, IOR and IOW of the system bus are connected to these two

pins.

» If 8255 is using memory-mapped I/O, MEMR and MEMW of the system bus will activate these

two pins.

MAHESH PRASANNA K., VCET, PUTTUR

45

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
RESET:

» Active high signal input to 8255.

» Used to clear the control register.

» When RESET is activated, all the ports are initialized as input ports.

» This pin must be connected to the RESET output of the system bus, or grounded, making it

inactive.

A0, A1, and CS:

» CS (chip select) selects the entire chip.

» Address pins A0 and A1 selects specific port within the 8255.

» These three pins are used to access ports A, B, C, or the control register; as shown in the table:

Mode Selection of the 8255A:

The ports (A, B, and C) of the 8255 can be programmed in various modes, as shown in the following Fig.

CS A1 A0 Selects

0 0 0 Port A

0 0 1 Port B

0 1 0 Port C

0 1 1 Control Register

1 x x 8255 is not selected

MAHESH PRASANNA K., VCET, PUTTUR

46

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Fig: Control Word Format

Mode 0, the simple I/O mode, is the most widely used mode. In this mode, any of the ports A, B, CU, and

CL can be programmed as input or output. In this mode, all bits are out or all are in. In other words, there

is no control of individual bits.

MAHESH PRASANNA K., VCET, PUTTUR

47

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MAHESH PRASANNA K., VCET, PUTTUR

48

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MAHESH PRASANNA K., VCET, PUTTUR

49

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Buffering 300 – 31FH Address Range:

o When accessing the system bus via the expansion slot; we must make sure that the plug-in card

does not interfere with the working of system buses on the motherboard.

o To do that we isolate (buffer) a range of I/O addresses using the 74LS245 chip.

o In buffering, the data bus is accessed only for a specific address range, and access by any address

beyond the range is blocked.

o The following Fig shows how the I/O address range 300H-31FH is buffered with the use of the

74LS245.

o The following Fig shows another example of 8255 interfacing using the 74LS138 decoder. As

shown in the Fig., Y0 and Y1 are used for the 8255 and 8253, respectively. The Table shows the

74LS 138 address assignment.

MAHESH PRASANNA K., VCET, PUTTUR

50

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o The following Fig shows the circuit for buffering all the buses. The 74LS244 is used to boost the

address and control signals.

Fig: Design of 8-bit ISA PC Bus Extender

» The following shows a test program to toggle the PA and PB bits. Notice that in order to avoid

locking up the system, INT 16H is used to exit upon pressing any key.

MAHESH PRASANNA K., VCET, PUTTUR

51

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Visual C/C++ I/O Programming:

o Microsoft Visual C++ is a programming language widely used on the Windows platform.

o Since Visual C++ is an object-oriented language, it comes with many classes and objects to make

programming easier and more efficient.

o But, there is no object or class for directly accessing I/O ports in the full Windows version of

Visual C++.

o The reason for that is that Microsoft wants to make sure the x86 system programming is under

full control of the operating system. This prevents any hacking into the system hardware.

o This applies to Windows NT, 2000, XP, and higher.

MAHESH PRASANNA K., VCET, PUTTUR

52

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o Hence, none of the system INT instructions such as INT 21H and I/O operations are applicable in

Windows XP and its subsequent versions.

o To access the I/O and other hardware features of the x86 PC in the XP environment you must use

the Windows Platform SDK provided by Microsoft.

• The situation is different in the Windows 9x (95 and 98) environment.

• While INT 21H and other system interrupt instructions are blocked in Windows 9x, direct I/O

addressing is available.

• To access I/O directly in Windows 9x, you must program Visual C++ in console mode.

• The instruction syntax for I/O operations is shown in the following Table.

x86 Assembly Visual C++

OUT port#, AL _outp (port#, byte)

OUT DX, AL _outp (port#, byte)

IN AL, port# _inp (port#)

IN AL, DX _inp (port#)

• Notice the use of the underscore character (_) in both the _outp and _inp instructions.

• Also note that, while the x86 Assembly language makes a distinction between the 8-bit and 16-bit

I/O addresses by using the DX register, there is no such distinction in C programming. In other

words, for the instruction "outp (port#, byte)" the port# can take any address value between 0000

and FFFFH.

MAHESH PRASANNA K., VCET, PUTTUR

53

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

I/O Programming in Linux C/C++:

o Linux is a popular operating system for the x86 PC.

o The following Table provides the C/C++ syntax for I/O programming in the Linux OS

environment.

x86 Assembly Linux C/C++

OUT port#, AL outb (byte, port#)

OUT DX, AL outb (byte, port#)

IN AL, port# inb (port#)

IN AL, DX inb (port#)

Compiling & Running Linux C/C++ Programs with I/O Functions:

• To compile the I/O programs, the following points must be noted:

o To compile with a keypress loop, you must link to library ncurses as follows:

> gcc -lncurses toggle.c -o toggle

• To run the program, you must either be root or root must change permissions on executable for

hardware port access.

Example: (as root or superuser)

MAHESH PRASANNA K., VCET, PUTTUR

54

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

> chown root toggle

> chmod 4750 toggle

• Now toggle can be executed by users other than root.

MAHESH PRASANNA K., VCET, PUTTUR

55

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

By: Mahesh Prasanna K.,

DePt. of Cse, VCet.

____________*********____________

MAHESH PRASANNA K., VCET, PUTTUR

56

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MODULE – 4

ARM EMBEDDED SYSTEMS & ARM PROCESSOR FUNDAMENTALS

ARM EMBEDDED SYSTEMS
The ARM processor core is a key component of many successful 32-bit embedded systems. ARM cores are

widely used in mobile phones, handheld organizers, and a multitude of other everyday portable consumer

devices.

The first ARM1 prototype was designed in 1985. Over one billion ARM processors had been

shipped worldwide by the end of 2001. The ARM Company bases their success on a simple and

powerful original design, which continues to improve today through constant technical innovation.

For example, one of ARM’s most successful cores is the ARM7TDMI. It provides up to 120

Dhrystone MIPS and is known for its high code density and low power consumption, making it ideal for

mobile embedded devices.

THE RISC DESIGN PHYLOSOPHY:

 The ARM core uses reduced instruction set computer (RISC) architecture. RISC is a design

philosophy aimed at delivering simple but powerful instructions that execute within a single cycle

at a high clock speed.

 The RISC philosophy concentrates on reducing the complexity of instructions performed by the

hardware because it is easier to provide greater flexibility and intelligence in software rather than

hardware. As a result, a RISC design places greater demands on the compiler.

 In contrast, the traditional complex instruction set computer (CISC) relies more on the hardware

for instruction functionality, and consequently the CISC instructions are more complicated. The

following Figure illustrates these major differences.

Fig: CISC vs. RISC

CISC RISC

1. Complex instructions, taking multiple clock 1. Simple instructions, taking single clock

2. Emphasis on hardware, complexity is in the 2. Emphasis on software, complexity is in the

MAHESH PRASANNA K., VCET, PUTTUR

1

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

micro-program/processor complier

3. Complex instructions, instructions executed by

micro-program/processor

3. Reduced instructions, instructions executed by

hardware

4. Variable format instructions, single register set

and many instructions

4. Fixed format instructions, multiple register sets

and few instructions

5. Many instructions and many addressing modes 5. Fixed instructions and few addressing modes

6. Conditional jump is usually based on status

register bit

6. Conditional jump can be based on a bit

anywhere in memory

7. Memory reference is embedded in many

instructions

7. Memory reference is embedded in

LOAD/STORE instructions

The RISC philosophy is implemented with four major design rules:

1. Instructions—RISC processors have a reduced number of instruction classes. These classes

provide simple operations that can each execute in a single cycle. The compiler or programmer

synthesizes complicated operations (for example, a divide operation) by combining several

simple instructions. Each instruction is having fixed length to allow the pipeline to fetch future

instructions before decoding the current instruction.

o In contrast, in CISC processors the instructions are often of variable size and take many

cycles to execute.

2. Pipelines—The processing of instructions is broken down into smaller units that can be executed

in parallel by pipelines. Ideally the pipeline advances by one step on each cycle for maximum

throughput. Instructions can be decoded in one pipeline stage.

o There is no need for an instruction to be executed by a mini-program called microcode as

on CISC processors.

3. Registers—RISC machines have a large general-purpose register set. Any register can contain

either data or an address. Registers act as the fast local memory store for all data processing

operations.

o In contrast, CISC processors have dedicated registers for specific purposes.

4. Load-store architecture—The processor operates on data held in registers. Separate load and

store instructions transfer data between the register bank and external memory. Memory accesses

are costly, so separating memory accesses from data processing provides an advantage because

you can use data items held in the register bank multiple times without needing multiple memory

accesses.

o In contrast, with a CISC design the data processing operations can act on memory

directly.

MAHESH PRASANNA K., VCET, PUTTUR

2

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

• These design rules allow a RISC processor to be simpler, and thus the core can operate at higher

clock frequencies.

o In contrast, traditional CISC processors are more complex and operate at lower clock

frequencies.

THE ARM DESIGN PHYLOSOPHY:

There are a number of physical features that have driven the ARM processor design.

 Portable embedded systems require battery power. The ARM processor has been specially

designed to be small to reduce power consumption and extend battery operation—essential for

applications such as mobile phones and personal digital assistants (PDAs).

 High code density is another major requirement since embedded systems have limited memory

due to cost and/or physical size restrictions—useful for applications that have limited on-board

memory, such as mobile phones and mass storage devices.

 Embedded systems are price sensitive

o Hence, use slow and low-cost memory devices to get substantial savings—essential for

high-volume applications like digital cameras.

o Also, reduce the area of the die taken up by the embedded processor; smaller the area

used by the embedded processor, reduced cost of the design and manufacturing for the

end product.

 ARM has incorporated hardware debug technology within the processor so that software

engineers can view what is happening while the processor is executing code. With greater

visibility, software engineers can resolve issues faster.

 The ARM core is not a pure RISC architecture because of the constraints of its primary

application—the embedded system. In some sense, the strength of the ARM core is that it does

not take the RISC concept too far.

Instruction Set for Embedded Systems:

The ARM instruction set differs from the pure RISC definition in several ways that make the ARM

instruction set suitable for embedded applications:

 Variable cycle execution for certain instructions—Not every ARM instruction executes in a

single cycle. For example, load-store-multiple instructions vary in the number of execution cycles

depending upon the number of registers being transferred. The transfer can occur on sequential

memory addresses. Code density is also improved since multiple register transfers are common

operations at the start and end of functions.

MAHESH PRASANNA K., VCET, PUTTUR

3

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 Inline barrel shifter leading to more complex instructions—The inline barrel shifter is a hardware

component that preprocesses one of the input registers before it is used by an instruction. This

expands the capability of many instructions to improve core performance and code density.

 Thumb 16-bit instruction set—ARM enhanced the processor core by adding a second 16-bit

instruction set called Thumb that permits the ARM core to execute either 16- or 32-bit

instructions. The 16-bit instructions improve code density by about 30% over 32-bit fixed-length

instructions.

 Conditional execution—An instruction is only executed when a specific condition has been

satisfied. This feature improves performance and code density by reducing branch instructions.

 Enhanced instructions—The enhanced digital signal processor (DSP) instructions were added to

the standard ARM instruction set to support fast 16×16-bit multiplier operations. These

instructions allow a faster-performing ARM processor.

These additional features have made the ARM processor one of the most commonly used 32-bit

embedded processor cores.

EMBEDDED SYSTEM HARDWARE:

Embedded systems can control many different devices, from small sensors found on a production line, to

the real-time control systems used on a NASA space probe. All these devices use a combination of

software and hardware components.

The following Figure shows a typical embedded device based on an ARM core. Each box represents a

feature or function. The lines connecting the boxes are the buses carrying data.

Figure: An ARM-based Embedded Device, a Microcontroller

MAHESH PRASANNA K., VCET, PUTTUR

4

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
We can separate the device into four main hardware components:

1. The ARM processor controls the embedded device. Different versions of the ARM processor are

available to suit the desired operating characteristics. An ARM processor comprises a core (the

execution engine that processes instructions and manipulates data) plus the surrounding

components (memory and cache) that interface it with a bus.

2. Controllers coordinate important functional blocks of the system. Two commonly found

controllers are interrupt and memory controllers.

3. The peripherals provide all the input-output capability external to the chip and are responsible for

the uniqueness of the embedded device.

4. A bus is used to communicate between different parts of the device.

ARM Bus Technology:

Embedded devices use an on-chip bus that is internal to the chip and that allows different peripheral

devices to be interconnected with an ARM core.

There are two different classes of devices attached to the bus:

1. The ARM processor core is a bus master—a logical device capable of initiating a data transfer

with another device across the same bus.

2. Peripherals tend to be bus slaves—logical devices capable only of responding to a transfer

request from a bus master device.

A bus has two architecture levels:

A physical level—covers the electrical characteristics and bus width (16, 32, or 64 bits).

The protocol—the logical rules that govern the communication between the processor and a peripheral.

AMBA Bus Protocol:

 The Advanced Microcontroller Bus Architecture (AMBA) was introduced in 1996 and has been

widely adopted as the on-chip bus architecture used for ARM processors.

 The first AMBA buses introduced were the ARM System Bus (ASB) and the ARM Peripheral Bus

(APB). Later ARM introduced another bus design, called the ARM High Performance Bus

(AHB).

 Using AMBA, peripheral designers can reuse the same design on multiple projects. A peripheral

can simply be bolted onto the on-chip bus without having to redesign an interface for each

different processor architecture. This plug-and-play interface for hardware developers improves

availability and time to market.

 AHB provides higher data throughput than ASB because it is based on a centralized multiplexed

bus scheme rather than the ASB bidirectional bus design. This change allows the AHB bus to run

at higher clock speeds.
MAHESH PRASANNA K., VCET, PUTTUR

5

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 ARM has introduced two variations on the AHB bus: Multi-layer AHB and AHB-Lite.

o The Multi-layer AHB bus allows multiple active bus masters.

o AHB-Lite is a subset of the AHB bus and it is limited to a single bus master.

 The example device shown in the above Figure has three buses:

o an AHB bus for the high- performance peripherals

o an APB bus for the slower peripherals

o a third bus for external peripherals, proprietary to this device.

Memory:

An embedded system has to have some form of memory to store and execute code. You have to compare

price, performance, and power consumption when deciding upon specific memory characteristics, such as

hierarchy, width, and type.

Hierarchy: All computer systems have memory arranged in some form of hierarchy. The following

Figure shows the memory trade-offs: the fastest memory cache is physically located nearer the ARM

processor core and the slowest secondary memory is set further away. Generally the closer memory is to

the processor core, the more it costs and the smaller its capacity.

Figure: Memory Storage Trade-offs

 The cache is placed between main memory and the core. It is used to speed up data transfer

between the processor and main memory. A cache provides an overall increase in performance

but with a loss of predictable execution time. Although the cache increases the general

performance of the system, it does not help real-time system response.

 The main memory is large—around 256 KB to 256 MB (or even greater), depending on the

application—and is generally stored in separate chips. Load and store instructions access the main

memory unless the values have been stored in the cache for fast access.

MAHESH PRASANNA K., VCET, PUTTUR

6

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 Secondary storage is the largest and slowest form of memory. Hard disk drives and CD-ROM

drives are examples of secondary storage.

Width: The memory width is the number of bits the memory returns on each access—typically 8, 16, 32,

or 64 bits.

 The memory width has a direct effect on the overall performance and cost ratio. Lower bit

memories are less expensive, but reduce the system performance.

The following Table summarizes theoretical cycle times on an ARM processor using different memory

width devices.

Table: Fetching Instruction from Memory

Instruction Size 8-bit Memory 16-bit Memory 32-bit Memory

ARM 32-bit 4 cycles 2 cycles 1 cycles

Thumb 16-bit 2 cycles 1 cycles 1 cycles

Types: There are many different types of memory:

 Read-only memory (ROM) is the least flexible of all memory types because it contains an image

that is permanently set at production time and cannot be reprogrammed.
o ROMs are used in high-volume devices that require no updates or corrections. Many devices also

use a ROM to hold boot code.

 Flash ROM can be written to as well as read, but it is slow to write so you shouldn’t use it for

holding dynamic data.
o Its main use is for holding the device firmware or storing long-term data that needs to be preserved

after power is off. The erasing and writing of flash ROM are completely software controlled with

no additional hardware circuitry required, which reduces the manufacturing costs.

 Dynamic random access memory (DRAM) is the most commonly used RAM for devices. It has

the lowest cost per megabyte compared with other types of RAM. DRAM is dynamic—it needs

to have its storage cells refreshed and given a new electronic charge every few milliseconds, so

you need to set up a DRAM controller before using the memory.

 Static random access memory (SRAM) is faster than the more traditional DRAM, but requires

more silicon area. SRAM is static—the RAM does not require refreshing. The access time for

SRAM is considerably shorter than the equivalent DRAM because SRAM does not require a

pause between data accesses. But cost of SRAM is high.

 Synchronous dynamic random access memory (SDRAM) is one of many subcategories of DRAM.

It can run at much higher clock speeds than conventional memory. SDRAM synchronizes itself

with the processor bus, because it is clocked. Internally the data is fetched from memory cells,

pipelined, and finally brought out on the bus in a burst.

MAHESH PRASANNA K., VCET, PUTTUR

7

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Peripherals:

Embedded systems that interact with the outside world need some form of peripheral device. A

peripheral device performs input and output functions for the chip by connecting to other devices or

sensors that are off-chip.

o Each peripheral device usually performs a single function and may reside on-chip.

o Peripherals range from a simple serial communication device to a more complex 802.11

wireless device.

 All ARM peripherals are memory mapped—the programming interface is a set of memory-

addressed registers. The address of these registers is an offset from a specific peripheral base

address.

 Controllers are specialized peripherals that implement higher levels of functionality within an

embedded system.

o Two important types of controllers are memory controllers and interrupt controllers.

Memory Controllers: Memory controllers connect different types of memory to the processor bus.

o On power-up a memory controller is configured in hardware to allow certain memory devices to

be active. These memory devices allow the initialization code to be executed.

Some memory devices must be set up by software; for example, when using DRAM, you first have to set

up the memory timings and refresh rate before it can be accessed.

Interrupt Controllers: When a peripheral or device requires attention, it raises an interrupt to the

processor. An interrupt controller provides a programmable governing policy that allows software to

determine which peripheral or device can interrupt the processor at any specific time by setting the

appropriate bits in the interrupt controller registers.

There are two types of interrupt controller available for the ARM processor: the standard interrupt

controller and the vector interrupt controller.

1. The standard interrupt controller sends an interrupt signal to the processor core when an external

device requests servicing. It can be programmed to ignore or mask an individual device or set of

devices.

o The interrupt handler determines which device requires servicing by reading a device

bitmap register in the interrupt controller.

2. The vector interrupt controller (VIC) is more powerful than the standard interrupt controller,

because it prioritizes interrupts and simplifies the determination of which device caused the

interrupt.

o Depending on the type, the VIC will either call the standard interrupt exception handler,

which can load the address of the handler.
MAHESH PRASANNA K., VCET, PUTTUR

8

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
EMBEDDED SYSTEM SOFTWARE:

An embedded system needs software to drive it. The following Figure shows four typical software

components required to control an embedded device.

Figure: Software Abstraction Layers Executing on Hardware

 The initialization code is the first code executed on the board and is specific to a particular target

or group of targets. It sets up the minimum parts of the board before handing control over to the

operating system.

 The operating system provides an infrastructure to control applications and manage hardware

system resources.

 The device drivers provide a consistent software interface to the peripherals on the hardware

device.

 An application performs one of the tasks required for a device.

o For example, a mobile phone might have a diary application.

There may be multiple applications running on the same device, controlled by the operating

system.

Initialization (Boot) Code:

 Initialization code (or boot code) takes the processor from the reset state to a state where the

operating system can run. It usually configures the memory controller and processor caches and

initializes some devices.

 The initialization code handles a number of administrative tasks prior to handing control over to

an operating system image.

o We can group these different tasks into three phases: initial hardware configuration,

diagnostics, and booting.

1. Initial hardware configuration involves setting up the target platform, so that it can boot an

image. The target platform comes up in a standard configuration; but, this configuration normally

requires modification to satisfy the requirements of the booted image.

MAHESH PRASANNA K., VCET, PUTTUR

9

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o For example, the memory system normally requires reorganization of the memory map,

as shown in the following Example.

Example: Initializing or organizing memory is an important part of the initialization code, because many

operating systems expect a known memory layout before they can start.

Figure: Memory Remapping

The above Figure shows memory before and after reorganization. It is common for ARM-based embedded

systems to provide for memory remapping because it allows the system to start the initialization code

from ROM at power-up. The initialization code then redefines or remaps the memory map to place RAM

at address 0x00000000—an important step because then the exception vector table can be in RAM and

thus can be reprogrammed.

2. Diagnostics are often embedded in the initialization code. Diagnostic code tests the system by

exercising the hardware target to check if the target is in working order. It also tracks down

standard system-related issues. The primary purpose of diagnostic code is fault identification and

isolation.

3. Booting involves loading an image and handing control over to that image. The boot process

itself can be complicated if the system must boot different operating systems or different versions

of the same operating system.

o Booting an image is the final phase, but first you must load the image. Loading an image

involves anything from copying an entire program including code and data into RAM, to

just copying a data area containing volatile variables into RAM. Once booted, the system

hands over control by modifying the program counter to point into the start of the image.

MAHESH PRASANNA K., VCET, PUTTUR

10

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Operating System:

 The initialization process prepares the hardware for an operating system to take control. An

operating system organizes the system resources: the peripherals, memory, and processing time.

 ARM processors support over 50 operating systems. We can divide operating systems into two

main categories: real-time operating systems (RTOSs) and platform operating systems.

1. RTOSs provide guaranteed response times to events. Different operating systems have different

amounts of control over the system response time.

o A hard real-time application requires a guaranteed response to work at all.

o In contrast, a soft real-time application requires a good response time, but the

performance degrades more gracefully if the response time overruns.

2. Platform operating systems require a memory management unit to manage large, non-real-time

applications and tend to have secondary storage.

o The Linux operating system is a typical example of a platform operating system.

Applications:

 The operating system schedules applications—code dedicated to handle a particular task. An

application implements a processing task; the operating system controls the environment.

o An embedded system can have one active application or several applications running

simultaneously.

 ARM processors are found in numerous market segments, including networking, auto-motive,

mobile and consumer devices, mass storage, and imaging.

 ARM processor is found in networking applications like home gateways, DSL modems for high-

speed Internet communication, and 802.11 wireless communications.

 The mobile device segment is the largest application area for ARM processors, because of mobile

phones.

 ARM processors are also found in mass storage devices such as hard drives and imaging products

such as inkjet printers—applications that are cost sensitive and high volume.

• In contrast, ARM processors are not found in applications that require leading-edge high

performance. Because these applications tend to be low volume and high cost, ARM has decided

not to focus designs on these types of applications.

MAHESH PRASANNA K., VCET, PUTTUR

11

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

ARM PROCESSOR FUNDAMENTALS
A programmer can think of an ARM core as functional units connected by data buses, as shown in the

following Figure.

Figure: ARM Core dataflow Model

The arrows represent the flow of data, the lines represent the buses, and the boxes represent either an

operation unit or a storage area.

 Data enters the processor core through the Data bus. The data may be an instruction to execute

or a data item.

o Figure shows a Von Neumann implementation of the ARM—data items and instructions

share the same bus. (In contrast, Harvard implementations of the ARM use two different

buses).

 The instruction decoder translates instructions before they are executed. Each instruction

executed belongs to a particular instruction set.

 The ARM processor, like all RISC processors, uses load-store architecture—means it has two

instruction types for transferring data in and out of the processor:
MAHESH PRASANNA K., VCET, PUTTUR

12

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o load instructions copy data from memory to registers in the core

o store instructions copy data from registers to memory

 There are no data processing instructions that directly manipulate data in memory. Thus, data

processing is carried out in registers.

 Data items are placed in the register file—a storage bank made up of 32-bit registers.

o Since the ARM core is a 32-bit processor, most instructions treat the registers as holding

signed or unsigned 32-bit values. The sign extend hardware converts signed 8-bit and

16-bit numbers to 32-bit values as they are read from memory and placed in a register.

 ARM instructions typically have two source registers, Rn and Rm, and a single result or

destination register, Rd. Source operands are read from the register file using the internal buses

A and B, respectively.

 The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the register values Rn

and Rm from the A and B buses and computes a result. Data processing instructions write the

result in Rd directly to the register file.

 Load and store instructions use the ALU to generate an address to be held in the address register

and broadcast on the Address bus.

o One important feature of the ARM is that register Rm alternatively can be preprocessed in

the barrel shifter before it enters the ALU. Together the barrel shifter and ALU can

calculate a wide range of expressions and addresses.

 After passing through the functional units, the result in Rd is written back to the register file using

the Result bus.

 For load and store instructions the Incrementer updates the address register before the core reads

or writes the next register value from or to the next sequential memory location.

 The processor continues executing instructions until an exception or interrupt

changes the normal execution flow.

REGISTERS:

General-purpose registers hold either data or an address. They are identified with the

letter r prefixed to the register number. For example, register 4 is given the label r4.

The Figure shows the active registers available in user mode. (A protected mode is

normally used when executing applications).

 The processor can operate in seven different modes.

 All the registers shown are 32 bits in size.

 There are up to 18 active registers:

o 16 data registers and 2 processor status registers.

o The data registers visible to the programmer are r0 to r15.

MAHESH PRASANNA K., VCET, PUTTUR

13

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 The ARM processor has three registers assigned to a particular task or special function: r13, r14,

and r15. They are given with different labels to differentiate them from the other registers.

o Register r13 is traditionally used as the stack pointer (sp) and stores the head of the stack

in the current processor mode.

o Register r14 is called the link register (lr) and is where the core puts the return address

whenever it calls a subroutine.

o Register r15 is the program counter (pc) and contains the address of the next instruction

to be fetched by the processor.

 In ARM state the registers r0 to r13 are orthogonal—any instruction that you can apply to r0 you

can equally well apply to any of the other registers.

 In addition to the 16 data registers, there are two program status registers: cpsr (current program

status register) and spsr (saved program status register).

CURRENT PROGRAM STATUS REGISTER:

The ARM core uses the cpsr to monitor and control internal operations. The cpsr is a dedicated 32-bit

register and resides in the register file. The following Figure shows the basic layout of a generic program

status register. Note that the shaded parts are reserved for future expansion.

Figure: A Generic Program Status Register (psr)

The cpsr is divided into four fields, each 8 bits wide: flags, status, extension, and control. In current

designs the extension and status fields are reserved for future use.

 The control field contains the processor mode, state, and interrupt mask bits.

 The flags field contains the condition flags.

Some ARM processor cores have extra bits allocated. For example, the J bit, which can be found in the

flags field, is only available on Jazelle-enabled processors, which execute 8-bit instructions.

It is highly probable that future designs will assign extra bits for the monitoring and control of new

features.

MAHESH PRASANNA K., VCET, PUTTUR

14

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Processor Modes:

 The processor mode determines which registers are active and the access rights to the cpsr

register itself. Each processor mode is either privileged or non-privileged:

o A privileged mode allows full read-write access to the cpsr.

o A non-privileged mode only allows read access to the control field in the cpsr, but still

allows read-write access to the condition flags.

 There are seven processor modes in total:

o six privileged modes (abort, fast interrupt request, interrupt request, supervisor, system,

and undefined)

• The processor enters abort mode when there is a failed attempt to access

memory.

• Fast interrupt request and interrupt request modes correspond to the two

interrupt levels available on the ARM processor.

• Supervisor mode is the mode that the processor is in after reset and is generally

the mode that an operating system kernel operates in.

• System mode is a special version of user mode that allows full read-write access

to the cpsr.

• Undefined mode is used when the processor encounters an instruction that is

undefined or not supported by the implementation.

o one non-privileged mode (user).

• User mode is used for programs and applications.

Banked Registers:

The following Figure shows all 37 registers in the register file.

 Of these, 20 registers are hidden from a program at different times.

 These registers are called banked registers and are identified by the shading in the diagram.

 They are available only when the processor is in a particular mode; for example, abort mode has

banked registers r13_abt, r14_abt and spsr_abt.

 Banked registers of a particular mode are denoted by an underline character post-fixed to the

mode mnemonic or _mode.

 Every processor mode except user mode can change mode by writing directly to the mode bits of

the cpsr.

 All processor modes except system mode have a set of associated banked registers that are a

subset of the main 16 registers.

 A banked register maps one-to-one onto a user mode register.

MAHESH PRASANNA K., VCET, PUTTUR

15

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 If you change processor mode, a banked register from the new mode will replace an existing

register.

o For example, when the processor is in the interrupt request mode, the instructions you

execute still access registers named r13 and r14. However, these registers are the banked

registers r13_irq and r14_irq. The user mode registers r13_usr and r14_usr are not

affected by the instruction referencing these registers. A program still has normal access

to the other registers r0 to r12.

Figure: Complete ARM Register Set

 The processor mode can be changed by a program that writes directly to the cpsr (the processor

core has to be in privileged mode) or by hardware when the core responds to an exception or

interrupt.

 The following exceptions and interrupts cause a mode change: reset, interrupt request, fast

interrupt request, software interrupt, data abort, prefetch abort, and undefined instruction.

 Exceptions and interrupts suspend the normal execution of sequential instructions and jump to a

specific location.
MAHESH PRASANNA K., VCET, PUTTUR

16

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 The following Figure illustrates what happens when an interrupt forces a mode change.

Figure: Changing Mode on an Exception

 The Figure shows the core changing from user mode to interrupt request mode, which happens

when an interrupt request occurs due to an external device raising an interrupt to the processor

core.

 This change causes user registers r13 and r14 to be banked. The user registers are replaced with

registers r13_irq and r14_irq, respectively.

o Note r14_irq contains the return address and r13_irq contains the stack pointer for

interrupt request mode.

 The above Figure also shows a new register appearing in interrupt request mode: the saved

program status register (spsr), which stores the previous mode’s cpsr. The cpsr being copied into

spsr_irq.

 To return back to user mode, a special return instruction is used that instructs the core to restore

the original cpsr from the spsr_irq and bank in the user registers r13 and r14.

MAHESH PRASANNA K., VCET, PUTTUR

17

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 Note that, the spsr can only be modified and read in a privileged mode. There is no spsr available

in user mode.

 Another important feature to note is that the cpsr is not copied into the spsr when a mode change

is forced due to a program writing directly to the cpsr. The saving of the cpsr only occurs when

an exception or interrupt is raised.

 When power is applied to the core, it starts in supervisor mode, which is privileged. Starting in a

privileged mode is useful since initialization code can use full access to the cpsr to set up the

stacks for each of the other modes.

 The following Table lists the various modes and the associated binary patterns. The last column

of the table gives the bit patterns that represent each of the processor modes in the cpsr.

Table: Processor Mode

Mode Abbreviation Privileged Mode[4:0]

Abort abt yes 10111

Fast Interrupt Request fiq yes 10001

Interrupt Request irq yes 10010

Supervisor svc yes 10011

System sys yes 11111

Undefined und yes 11011

User usr no 10000

State and Instruction Sets:

 The state of the core determines which instruction set is being executed. There are three

instruction sets:

• ARM

• Thumb

• Jazelle.

 The ARM instruction set is only active when the processor is in ARM state.

 The Thumb instruction set is only active when the processor is in Thumb state. Once in Thumb

state the processor is executing purely Thumb 16-bit instructions.

 You cannot inter-mingle sequential ARM, Thumb, and Jazelle instructions.

 The Jazelle J and Thumb T bits in the cpsr reflect the state of the processor.

o When both J and T bits are 0, the processor is in ARM state and executes ARM

instructions. This is the case when power is applied to the processor.

o When the T bit is 1, then the processor is in Thumb state.

MAHESH PRASANNA K., VCET, PUTTUR

18

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 To change states the core executes a specialized branch instruction.

The following Table compares the ARM and Thumb instruction set features.

Table: ARM and Thumb Instruction Set Features

- ARM (cspr T = 0) Thumb (cspr T = 1)

Instruction size 32-bit 16-bit

Core instructions 58 30

Conditional execution most only branch instructions

Data processing

instructions

access to barrel shifter and

ALU

separate barrel shifter and

ALU instructions

Program status register read-write in privileged mode no direct access

Register usage
15 general-purpose registers

+pc

8 general-purpose registers +7 high registers

+pc

 The ARM designers introduced a third instruction set called Jazelle. Jazelle executes 8-bit

instructions and is a hybrid mix of software and hardware designed to speed up the execution of

Java byte-codes.

 To execute Java byte-codes, you require the Jazelle technology plus a specially modified version

of the Java virtual machine.

The following Table gives the Jazelle instruction set features.

Table: Jazelle instruction set features

- Jezelle (cspr T = 0, J – 1)

Instruction size 8-bit

Core Instructions
Over 60% of the Java byte-codes are implemented in hardware;

the rest of the codes are implemented in software

Interrupt Masks:

 Interrupt masks are used to stop specific interrupt requests from interrupting the processor.

 There are two interrupt request levels available on the ARM processor core—

o interrupt request (IRQ)

o fast interrupt request (FIQ).

 The cpsr has two interrupt mask bits, 7 and 6 (or I and F), which control the masking of IRQ and

FIQ, respectively.

 The I bit masks IRQ when set to binary 1; and similarly, the F bit masks FIQ when set to binary

1.

MAHESH PRASANNA K., VCET, PUTTUR

19

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Condition Flags:

 Condition flags are updated by comparisons and the result of ALU operations that specify the S

instruction suffix.

o For example, if a SUBS subtract instruction results in a register value of zero, then the Z

Flag in the cpsr is set. This particular subtract instruction specifically updates the cpsr.

 With processor cores that include the DSP extensions, the Q bit indicates if an overflow or

saturation has occurred in an enhanced DSP instruction. The flag is “sticky” in the sense that the

hardware only sets this flag. To clear the flag you need to write to the cpsr directly.

 In Jazelle-enabled processors, the J bit reflects the state of the core; if it is set, the core is in

Jazelle state. The J bit is not generally usable and is only available on some processor cores. To

take advantage of Jazelle, extra software has to be licensed from both ARM Limited and Sun

Microsystems.

 Most ARM instructions can be executed conditionally on the value of the condition flags.

The following Table lists the condition flags and a short description on what causes them to be set.

Table: Condition Flags

Flag Flag Name Set When

Q Saturation the result causes an overflow and/or saturation

V oVerflow the result causes a signed overflow

C Carry the result causes an unsigned carry

Z Zero the result is zero

N Negative bit 31 of the result is a binary 1

These flags are located in the most significant bits in the cpsr. These bits are used for conditional

execution. The following Figure shows a typical value for the cpsr with both DSP extensions and Jazelle.

Figure: Example: cspr = nzCvqjiFt_SVC

 For the condition flags a capital letter shows that the flag has been set. For interrupts a capital

letter shows that an interrupt is disabled.

 In the cpsr example shown in above Figure, the C flag is the only condition flag set. The rest

nzvq flags are all clear.

MAHESH PRASANNA K., VCET, PUTTUR

20

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 The processor is in ARM state because neither the Jazelle j nor Thumb t bits are set. The IRQ

interrupts are enabled, and FIQ interrupts are disabled.

 Finally, you can see from the Figure, the processor is in supervisor (SVC) mode, since the

mode[4:0] is equal to binary 10011.

Conditional Execution:

 Conditional execution controls whether or not the core will execute an instruction.

 Prior to execution, the processor compares the condition attribute with the condition flags in the

cpsr. If they match, then the instruction is executed; otherwise the instruction is ignored.

 The condition attribute is post-fixed to the instruction mnemonic, which is encoded into the

instruction.

 The following Table lists the conditional execution code mnemonics. When a condition

mnemonic is not present, the default behavior is to set it to always (AL) execute.

Table: Condition Mnemonics

PIPELINE:

 A pipeline is the mechanism in a RISC processor, which is used to execute instructions.

 Pipeline speeds up execution by fetching the next instruction while other instructions are being

decoded and executed.

Figure: ARM7 Three-stage Pipeline

MAHESH PRASANNA K., VCET, PUTTUR

21

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
The above Figure shows a three-stage pipeline:

o Fetch loads an instruction from memory.

o Decode identifies the instruction to be executed.

o Execute processes the instruction and writes the result back to a register.

The following Figure illustrates pipeline using a simple example.

Figure: Pipelined Instruction Sequence

 The Figure shows a sequence of three instructions being fetched, decoded, and executed by the

processor.

o The three instructions are placed into the pipeline sequentially.

o In the first cycle, the core fetches the ADD instruction from memory.

o In the second cycle, the core fetches the SUB instruction and decodes the ADD

instruction.

o In the third cycle, both the SUB and ADD instructions are moved along the pipeline. The

ADD instruction is executed, the SUB instruction is decoded, and the CMP instruction is

fetched.

 This procedure is called filling the pipeline.

 The pipeline allows the core to execute an instruction every cycle.

o As the pipeline length increases, the amount of work done at each stage is reduced, which allows

the processor to attain a higher operating frequency. This in turn increases the performance.

o The increased pipeline length also means increased system latency and there can be data

dependency between certain stages.

o The pipeline design for each ARM family differs. For example, The ARM9 core increases the

pipeline length to five stages, as shown in Figure.

Figure: ARM9 Five-stage Pipeline

MAHESH PRASANNA K., VCET, PUTTUR

22

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o The ARM9 adds a memory and writeback stage, which allows the ARM9 to –

 process on average 1.1 Dhrystone MIPS per MHz

 increase the instruction throughput in ARM9 by around 13% compared with an

ARM7.

o The ARM10 increases the pipeline length still further by adding a sixth stage, as shown in the

following Figure.

Figure: ARM10 Six-stage Pipeline

o The ARM10 –

 can process on average 1.3 Dhrystone MIPS per MHz

 have about 34% more throughput than an ARM7 processor core

 but again at a higher latency cost.

NOTE: Even though the ARM9 and ARM10 pipelines are different, they still use the same pipeline

executing characteristics as an ARM7. Hence, code written for the ARM7 will execute on an ARM9 or

ARM10.

Pipeline Executing Characteristics:

 The ARM pipeline will not process an instruction, until it passes completely through the execute

stage.

o For example, an ARM7 pipeline (with three stages) has executed an instruction only

when the fourth instruction is fetched.

The following Figure shows an instruction sequence on an ARM7 pipeline.

Figure: ARM Instruction Sequence

 The MSR instruction is used to enable IRQ interrupts, which only occurs once the MSR

instruction completes the execute stage of the pipeline. It clears the I bit in the cpsr to enable the

IRQ interrupts.

MAHESH PRASANNA K., VCET, PUTTUR

23

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 Once the ADD instruction enters the execute stage of the pipeline, IRQ interrupts are enabled.

The following Figure illustrates the use of the pipeline and the program counter pc.

Figure: Example: pc = address + 8

 In the execute stage, the pc always points to the address of the instruction plus 8 bytes. In other

words, the pc always points to the address of the instruction being executed plus two instructions

ahead.

 Note when the processor is in Thumb state the pc is the instruction address plus 4.

 There are three other characteristics of the pipeline.

o First, the execution of a branch instruction or branching by the direct modification of the

pc causes the ARM core to flush its pipeline.

o Second, ARM10 uses branch prediction, which reduces the effect of a pipeline flush by

predicting possible branches and loading the new branch address prior to the execution of

the instruction.

o Third, an instruction in the execute stage will complete even though an interrupt has been

raised. Other instructions in the pipeline will be abandoned, and the processor will start

filling the pipeline.

EXCEPTIONS, INTERRUPTS AND THE VECTOR TABLE:

 When an exception or interrupt occurs, the processor sets the pc to a specific memory address.

The address is within a special address range called the vector table.

o The entries in the vector table are instructions that branch to specific routines designed to

handle a particular exception or interrupt.

o The memory map address 0x00000000 (or in some processors starting at the offset

0xffff0000) is reserved for the vector table, a set of 32-bit words.

 When an exception or interrupt occurs, the processor suspends normal execution and starts

loading instructions from the exception vector table (see the following Table).

MAHESH PRASANNA K., VCET, PUTTUR

24

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Table: The Vector Table

Exception/Interrupt Shorthand Address High Address

Reset RESET 0x00000000 0x00000000

Undefined instruction UNDEF 0x00000004 0xffff0004

Software interrupt SWI 0x00000008 0xffff0008

Prefetch abort PABT 0x0000000c 0xffff000c

Data abort SABT 0x00000010 0xffff0010

Reserved – 0x00000014 0xffff0014

Interrupt request IRQ 0x00000018 0xffff0018

Fast interrupt request FIQ 0x0000001c 0xffff001c

 Each vector table entry contains a form of branch instruction pointing to the start of a specific

routine:

o Reset vector is the location of the first instruction executed by the processor when power

is applied. This instruction branches to the initialization code.

o Undefined instruction vector is used when the processor cannot decode an instruction.

o Software interrupt vector is called when you execute a SWI instruction. The SWI

instruction is frequently used as the mechanism to invoke an operating system routine.

o Prefetch abort vector occurs when the processor attempts to fetch an instruction from an

address without the correct access permissions. The actual abort occurs in the decode

stage.

o Data abort vector is similar to a prefetch abort, but is raised when an instruction attempts

to access data memory without the correct access permissions.

o Interrupt request vector is used by external hardware to interrupt the normal execution

flow of the processor. It can only be raised if IRQs are not masked in the cpsr.

o Fast interrupt request vector is similar to the interrupt request, but is reserved for

hardware requiring faster response times. It can only be raised if FIQs are not masked in

the cpsr.

CORE EXTENSIONS:

 Core extensions are the standard hardware components placed next to the ARM core.

 They improve performance, manage resources, and provide extra functionality and are designed

to provide flexibility in handling particular applications.

Each ARM family has different extensions available. There are three hardware extensions: cache and

tightly coupled memory, memory management, and the coprocessor interface.

MAHESH PRASANNA K., VCET, PUTTUR

25

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Cache and Tightly Coupled Memory:

 The cache is a block of fast memory placed between main memory and the core. It allows for

more efficient fetches from some memory types. With a cache the processor core can run for the

majority of the time without having to wait for data from slow external memory.

 Most ARM-based embedded systems use a single-level cache internal to the processor.

 ARM has two forms of cache. The first is found attached to the Von Neumann–style cores. It

combines both data and instruction into a single unified cache, as shown in the following Figure.

Figure: Von Neumann Architecture with Cache

 The second form, attached to the Harvard-style cores, has separate caches for data and

instruction, as shown in the following Figure.

Figure: Harvard Architecture with TCMs

 A cache provides an overall increase in performance, but at the expense of predictable execution.

But the real-time systems require the code execution to be deterministic— the time taken for

loading and storing instructions or data must be predictable.
MAHESH PRASANNA K., VCET, PUTTUR

26

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 This is achieved using a form of memory called tightly coupled memory (TCM). TCM is fast

SRAM located close to the core and guarantees the clock cycles required to fetch instructions or

data.

 TCMs appear as memory in the address map and can be accessed as fast memory.

By combining both technologies, ARM processors can have both improved performance and predictable

real-time response. The following Figure shows an example core with a combination of caches and

TCMs.

Figure: Harvard Architecture with Caches and TCMs

Memory Management:

 Embedded systems often use multiple memory devices. It is usually necessary to have a method

to organize these devices and protect the system from applications trying to make inappropriate

accesses to hardware. This is achieved with the assistance of memory management hardware.

 ARM cores have three different types of memory management hardware—

o no extensions providing no protection

o a memory protection unit (MPU) providing limited protection

o a memory management unit (MMU) providing full protection

 Non protected memory is fixed and provides very little flexibility. It is normally used for small,

simple embedded systems that require no protection from rogue applications.

 MPUs employ a simple system that uses a limited number of memory regions. These regions are

controlled with a set of special coprocessor registers, and each region is defined with specific

access permissions. This type of memory management is used for systems that require memory

protection but don’t have a complex memory map.

MAHESH PRASANNA K., VCET, PUTTUR

27

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 MMUs are the most comprehensive memory management hardware available on the ARM. The

MMU uses a set of translation tables to provide fine-grained control over memory. These tables

are stored in main memory and provide a virtual-to-physical address map as well as access

permissions. MMUs are designed for more sophisticated platform operating systems that support

multitasking.

Coprocessors:

 Coprocessors can be attached to the ARM processor. A coprocessor extends the processing

features of a core by extending the instruction set or by providing configuration registers. More

than one coprocessor can be added to the ARM core via the coprocessor interface.

 The coprocessor can be accessed through a group of dedicated ARM instructions that provide a

load-store type interface.

o For example, coprocessor 15: The ARM processor uses coprocessor 15 registers to

control the cache, TCMs, and memory management.

 The coprocessor can also extend the instruction set by providing a specialized group of new

instructions.

o For example, there are a set of specialized instructions that can be added to the standard

ARM instruction set to process vector floating-point (VFP) operations.

 These new instructions are processed in the decode stage of the ARM pipeline.

o If the decode stage sees a coprocessor instruction, then it offers it to the relevant

coprocessor.

o If the coprocessor is not present or doesn’t recognize the instruction, then the ARM takes

an undefined instruction exception, which allows you to emulate the behavior of the

coprocessor in software.

By: Mahesh Prasanna K.,

DePt. of Cse, VCet.

____________*********____________

MAHESH PRASANNA K., VCET, PUTTUR

28

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MODULE – 5

INTRODUCTION TO THE ARM INSTRUCTION SET

INTRODUCTION TO THE ARM INSTRUCTION SET
Different ARM architecture revisions support different instructions. However, new revisions usually add

instructions and remain backwardly compatible. Code you write for architecture ARMv4T should execute

on an ARMv5TE processor.

The following Table provides a complete list of ARM instructions available in the ARMv5E

instruction set architecture (ISA). This ISA includes all the core ARM instructions as well as some of the

newer features in the ARM instruction set.

Table: ARM Instruction Set

MAHESH PRASANNA K., VCET, PUTTUR

1

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

In the following sections, the hexadecimal numbers are represented with the prefix 0x and binary numbers

with the prefix 0b. The examples follow this format:

PRE <pre-conditions>

<instruction/s>

POST <post-conditions>

In the pre- and post-conditions, memory is denoted as

mem<data_size>[address]

This refers to data_size bits of memory starting at the given byte address. For example, mem32[1024] is

the 32-bit value starting at address 1 KB.

ARM instructions process data held in registers and memory is accessed only with load and store

instructions.

MAHESH PRASANNA K., VCET, PUTTUR

2

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

ARM instructions commonly take two or three operands. For instance, the ADD instruction

below adds the two values stored in registers r1 and r2 (the source registers). It writes the result to register

r3 (the destination register).

ARM instructions classified as—data processing instructions, branch instructions, load-store

instructions, software interrupt instruction, and program status register instructions.

DATA PROCESSING INSTRUCTIONS:

The data processing instructions manipulate data within registers. They are—

 move instructions, arithmetic instructions, logical instructions, comparison instructions, and

multiply instructions.

Most data processing instructions can process one of their operands using the barrel shifter.

If you use the S suffix on a data processing instruction, then it updates the flags in the cpsr.

Move and logical operations update the carry flag C, negative flag N, and zero flag Z.

o The C flag is set from the result of the barrel shift as the last bit shifted out.

o The N flag is set to bit 31 of the result.

o The Z flag is set if the result is zero.

MOVe Instructions:

Move instruction copies N into a destination register Rd, where N is a register or immediate value. This

instruction is useful for setting initial values and transferring data between registers.

Example: This example shows a simple move instruction. The MOV instruction takes the contents of

register r5 and copies them into register r7, in this case, taking the value 5, and overwriting the value 8 in

register r7.

PRE r5 = 5

r7 = 8

MOV r7, r5 ; let r7 = r5

POST r5 = 5

r7 = 5

MAHESH PRASANNA K., VCET, PUTTUR

3

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Barrel Shifter:

In above Example, we showed a MOV instruction where N is a simple register. But N can be more than

just a register or immediate value; it can also be a register Rm that has been preprocessed by the barrel

shifter prior to being used by a data processing instruction.

 Data processing instructions are processed within the arithmetic logic unit (ALU).

 A unique and powerful feature of the ARM processor is the ability to shift the 32-bit binary

pattern in one of the source registers left or right by a specific number of positions before it enters

the ALU.

 Pre-processing or shift occurs within the cycle time of the instruction.

o This shift increases the power and flexibility of many data processing operations.

o This is particularly useful for loading constants into a register and achieving fast

multiplies or division by a power of 2.

 There are data processing instructions that do not use the barrel shift, for example, the

MUL (multiply), CLZ (count leading zeros), and QADD (signed saturated 32-bit add)

instructions.

Figure: Barrel Shifter and ALU

 Figure shows the data flow between the ALU and the barrel shifter.

 Register Rn enters the ALU without any pre- processing of registers.

 We apply a logical shift left (LSL) to register Rm before moving it to the destination register. This

is the same as applying the standard C language shift operator « to the register.

 The MOV instruction copies the shift operator result N into register Rd. N represents the result of

the LSL operation described in the following Table.

MAHESH PRASANNA K., VCET, PUTTUR

4

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Table: Barrel Shifter Operations

 The five different shift operations that you can use within the barrel shifter are summarized in the

above Table.

PRE r5 = 5

r7 = 8

MOV r7, r5, LSL #2 ; let r7 = r5*4 = (r5 << 2)

POST r5 = 5

r7 = 20

 The above example multiplies register r5 by four and then places the result into register r7.

 The following Figure illustrates a logical shift left by one.

Figure: Logical Shift Left by One

 For example, the contents of bit 0 are shifted to bit 1. Bit 0 is cleared. The C flag is updated with

the last bit shifted out of the register. This is bit (32 - y) of the original value, where y is the shift

amount. When y is greater than one, then a shift by y positions is the same as a shift by one

position executed y times.

MAHESH PRASANNA K., VCET, PUTTUR

5

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Example: This example of a MOVS instruction shifts register r1 left by one bit. This multiplies register r1

by a value 21. As you can see, the C flag is updated in the cpsr because the S suffix is present in the

instruction mnemonic.

PRE cpsr = nzcvqiFt_USER

r0 = 0x00000000

r1 = 0x80000004

MOVS r0, r1, LSL #1

POST cpsr = nzCvqiFt_USER

r0 = 0x00000008

r1 = 0x80000004

The following Table lists the syntax for the different barrel shift operations available on data processing

instructions. The second operand N can be an immediate constant preceded by #, a register value Rm, or

the value of Rm processed by a shift.

Table: Barrel Shifter Operation Syntax for data Processing Instructions

Arithmetic Instructions:

The arithmetic instructions implement addition and subtraction of 32-bit signed and unsigned values.

MAHESH PRASANNA K., VCET, PUTTUR

6

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Example: The following simple subtract instruction subtracts a value stored in register r2 from a value

stored in register r1. The result is stored in register r0.

PRE r0 = 0x00000000

r1 = 0x00000002

r2 = 0x00000001

SUB r0, r1, r2

POST r0 = 0x00000001

Example: The following reverse subtract instruction (RSB) subtracts r1 from the constant value #0,

writing the result to r0. You can use this instruction to negate numbers.

PRE r0 = 0x00000000

r1 = 0x00000077

RSB r0, r1, #0 ; Rd = 0x0 - r1

POST r0 = -r1 = 0xffffff89

Example: The SUBS instruction is useful for decrementing loop counters. In this example, we subtract the

immediate value one from the value one stored in register r1. The result value zero is written to register

r1. The cpsr is updated with the ZC flags being set.

PRE cpsr = nzcvqiFt_USER

r1 = 0x00000001

SUBS r1, r1, #1

POST cpsr = nZCvqiFt_USER

r1 = 0x00000000

Using the Barrel Shifter with Arithmetic Instructions:

The wide range of second operand shifts available on arithmetic and logical instructions is a very

powerful feature of the ARM instruction set. The following Example illustrates the use of the inline barrel

shifter with an arithmetic instruction. The instruction multiplies the value stored in register r1 by three.

Example: Register r1 is first shifted one location to the left to give the value of twice r1. The ADD

instruction then adds the result of the barrel shift operation to register r1. The final result transferred into

register r0 is equal to three times the value stored in register r1.

PRE r0 = 0x00000000

r1 = 0x00000005

ADD r0, r1, r1, LSL #1

POST r0 = 0x0000000f

r1 = 0x00000005
MAHESH PRASANNA K., VCET, PUTTUR

7

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 Logical Instructions:

Logical instructions perform bitwise logical operations on the two source registers.

Example: This example shows a logical OR operation between registers r1 and r2. Register r0 holds the

result.

PRE r0 = 0x00000000

r1 = 0x02040608

r2 = 0x10305070

 ORR r0, r1, r2

POST r0 = 0x12345678

Example: This example shows a more complicated logical instruction called BIC, which carries out a

logical bit clear.

PRE r1 = 0b1111

r2 = 0b0101

BIC r0, r1, r2

POST r0 = 0b1010

This is equivalent to – Rd = Rn AND NOT (N)

In this example, register r2 contains a binary pattern where every binary 1 in r2 clears a corresponding bit

location in register r1.

This instruction is particularly useful when clearing status bits and is frequently used to change interrupt

masks in the cpsr.

NOTE: The logical instructions update the cpsr flags only if the S suffix is present. These instructions

can use barrel-shifted second operands in the same way as the arithmetic instructions.

Comparison Instructions:

 The comparison instructions are used to compare or test a register with a 32-bit value.

 They update the cpsr flag bits according to the result, but do not affect other registers.

MAHESH PRASANNA K., VCET, PUTTUR

8

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 After the bits have been set, the information can then be used to change program flow by using

conditional execution.

 It is not required to apply the S suffix for comparison instructions to update the flags.

Example: This example shows a CMP comparison instruction. You can see that both registers, r0 and r9,

are equal before executing the instruction. The value of the Z flag prior to execution is 0 and is

represented by a lowercase z. After execution the Z flag changes to 1 or an uppercase Z. This change

indicates equality.

PRE cpsr = nzcvqiFt_USER

r0 = 4

r9 = 4

CMP r0, r9

POST cpsr = nZcvqiFt_USER

 The CMP is effectively a subtract instruction with the result discarded; similarly the TST

instruction is a logical AND operation, and TEQ is a logical exclusive OR operation.

 For each, the results are discarded but the condition bits are updated in the cpsr.

 It is important to understand that comparison instructions only modify the condition flags of the

cpsr and do not affect the registers being compared.

Multiply Instructions:

The multiply instructions multiply the contents of a pair of registers and, depending upon the instruction,

accumulate the results in with another register.

The long multiplies accumulate onto a pair of registers representing a 64-bit value. The final result is

placed in a destination register or a pair of registers.

MAHESH PRASANNA K., VCET, PUTTUR

9

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

The number of cycles taken to execute a multiply instruction depends on the processor implementation.

For some implementations the cycle timing also depends on the value in Rs.

Example: This example shows a simple multiply instruction that multiplies registers r1 and r2 together

and places the result into register r0. In this example, register r1 is equal to the value 2, and r2 is equal to

2. The result, 4, is then placed into register r0.

PRE r0 = 0x00000000

r1 = 0x00000002

r2 = 0x00000002

MUL r0, r1, r2 ; r0 = r1*r2

POST r0 = 0x00000004

r1 = 0x00000002

r2 = 0x00000002

The long multiply instructions (SMLAL, SMULL, UMLAL, and UMULL) produce a 64-bit result. The

result is too large to fit a single 32-bit register so the result is placed in two registers labeled RdLo and

RdHi. RdLo holds the lower 32 bits of the 64-bit result, and RdHi holds the higher 32 bits of the 64-bit

result. The following shows an example of a long unsigned multiply instruction.

Example: The instruction multiplies registers r2 and r3 and places the result into register r0 and r1.

Register r0 contains the lower 32 bits, and register r1 contains the higher 32 bits of the 64-bit result.

PRE r0 = 0x00000000

r1 = 0x00000000

r2 = 0xf0000002

r3 = 0x00000002

UMULL r0, r1, r2, r3 ; [r1,r0] = r2*r3

POST r0 = 0xe0000004 ; = RdLo

r1 = 0x00000001 ; = RdHi

MAHESH PRASANNA K., VCET, PUTTUR

10

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
BRANCH INSTRUCTIONS:

A branch instruction changes the flow of execution or is used to call a routine. This type of instruction

allows programs to have subroutines, if-then-else structures, and loops.

The change of execution flow forces the program counter pc to point to a new address. The ARMv5E

instruction set includes four different branch instructions.

 The address label is stored in the instruction as a signed pc-relative offset and must be within

approximately 32 MB of the branch instruction.

 T refers to the Thumb bit in the cpsr. When instructions set T, the ARM switches to Thumb state.

Example: This example shows a forward and backward branch. Because these loops are address specific,

we do not include the pre- and post-conditions. The forward branch skips three instructions. The

backward branch creates an infinite loop.

B forward

ADD r1, r2, #4

ADD r0, r6, #2

ADD r3, r7, #4

forward

SUB r1, r2, #4

backward

ADD r1, r2, #4

SUB r1, r2, #4

ADD r4, r6, r7

B backward

MAHESH PRASANNA K., VCET, PUTTUR

11

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
In this example, forward and backward are the labels. The branch labels are placed at the beginning of the

line and are used to mark an address that can be used later by the assembler to calculate the branch offset.

 The branch with link, or BL, instruction is similar to the B instruction but overwrites the link

register lr with a return address. It performs a subroutine call.

Example: This example shows a simple fragment of code that, branches to a subroutine using the BL

instruction. To return from a subroutine, you copy the link register to the pc.

BL subroutine ; branch to subroutine

CMP r1, #5 ; compare r1 with 5

MOVEQ r1, #0 ; if (r1==5) then r1 = 0

:

subroutine

<subroutine code>

MOV pc, lr ; return by moving pc = lr

 The branch exchange (BX) and branch exchange with link (BLX) are the third type of branch

instruction.

 The BX instruction uses an absolute address stored in register Rm. It is primarily used to branch

to and from Thumb code. The T bit in the cpsr is updated by the least significant bit of the branch

register.

 Similarly the BLX instruction updates the T bit of the cpsr with the least significant bit and

additionally sets the link register with the return address.

LOAD-STORE INSTRUCTIONS:

Load-store instructions transfer data between memory and processor registers. There are three types of

load-store instructions: single-register transfer, multiple-register transfer, and swap.

Single-Register Transfer:

 These instructions are used for moving a single data item in and out of a register.

 The data types supported are signed and unsigned words (32-bit), half-words (16-bit), and bytes.

Here are the various load-store single-register transfer instructions.

MAHESH PRASANNA K., VCET, PUTTUR

12

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

 LDR and STR instructions can load and store data on a boundary alignment that is the same as

the data type size being loaded or stored.

o For example, LDR can only load 32-bit words on a memory address that is a multiple of

four bytes—0, 4, 8, and so on.

Example: This example shows a load from a memory address contained in register r1, followed by a store

back to the same address in memory.

;

; load register r0 with the contents of

; the memory address pointed to by register

; r1.

;

 LDR r0, [r1] ; = LDR r0, [r1, #0]

;

; store the contents of register r0 to

; the memory address pointed to by

; register r1.

;

STR r0, [r1] ; = STR r0, [r1, #0]

The first instruction loads a word from the address stored in register r1 and places it into register r0. The

second instruction goes the other way by storing the contents of register r0 to the address contained in

register r1. The offset from register r1 is zero. Register r1 is called the base address register.

MAHESH PRASANNA K., VCET, PUTTUR

13

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Single-Register Load-Store Addressing Modes:

The ARM instruction set provides different modes for addressing memory. These modes incorporate one

of the indexing methods: preindex with writeback, preindex, and postindex.

Table: Index Methods

 Preindex with writeback calculates an address from a base register plus address offset and then

updates that address base register with the new address.

 Preindex offset is the same as the preindex with writeback but does not update the address base

register.

o The preindex mode is useful for accessing an element in a data structure.

 Postindex only updates the address base register after the address is used.

o The postindex and preindex with writeback modes are useful for traversing an array.

Example:

PRE r0 = 0x00000000

r1 = 0x00090000

mem32[0x00009000] = 0x01010101

mem32[0x00009004] = 0x02020202

LDR r0, [r1, #4]!

Preindexing with writeback:

POST(1) r0 = 0x02020202

r1 = 0x00009004

LDR r0, [r1, #4]

Preindexing:

POST(2) r0 = 0x02020202

r1 = 0x00009000

LDR r0, [r1], #4

Postindexing:

POST(3) r0 = 0x01010101

r1 = 0x00009004

 The above Example used a preindex method. This example shows how each indexing method

affects the address held in register r1, as well as the data loaded into register r0.
MAHESH PRASANNA K., VCET, PUTTUR

14

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
The addressing modes available with a particular load or store instruction depend on the instruction class.

The following Table shows the addressing modes available for load and store of a 32-bit word or an

unsigned byte.

Table: Single-Register Load-Store Addressing, Word or Unsigned Byte

 A signed offset or register is denoted by “+/-”, identifying that it is either a positive or negative

offset from the base address register Rn. The base address register is a pointer to a byte in

memory, and the offset specifies a number of bytes.

 Immediate means the address is calculated using the base address register and a 12-bit offset

encoded in the instruction.

 Register means the address is calculated using the base address register and a specific register’s

contents.

 Scaled means the address is calculated using the base address register and a barrel shift operation.

The following Table provides an example of the different variations of the LDR instruction.

Table: Examples of LDR Instructions using Different Addressing Modes

MAHESH PRASANNA K., VCET, PUTTUR

15

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
The following Table shows the addressing modes available on load and store instructions using 16-bit

halfword or signed byte data.

Table: Single-Register Load-Store Addressing, Halfword, Signed Halfword, Signed Byte and Doubleword

These operations cannot use the barrel shifter. There are no STRSB or STRSH instructions since STRH

stores both a signed and unsigned halfword; similarly STRB stores signed and unsigned bytes.

The following Table shows the variations for STRH instructions.

Table: Variations of STRH Instructions

Multiple-Register Transfer:

 Load-store multiple instructions can transfer multiple registers between memory and the

processor in a single instruction.

 The transfer occurs from a base address register Rn pointing into memory.

o Multiple-register transfer instructions are more efficient from single-register transfers for

 moving blocks of data around memory and

 saving and restoring context and stacks.

 Load-store multiple instructions can increase interrupt latency.

 ARM implementations do not usually interrupt instructions while they are executing.

o For example, on an ARM7 a load multiple instruction takes 2 + Nt cycles, where N is the

number of registers to load and t is the number of cycles required for each sequential

access to memory.

 If an interrupt has been raised, then it has no effect until the load-store multiple instruction is

complete.

MAHESH PRASANNA K., VCET, PUTTUR

16

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 Compilers, such as armcc, provide a switch to control the maximum number of registers being

transferred on a load-store, which limits the maximum interrupt latency.

The following Table shows the different addressing modes for the load-store multiple instructions. Here N

is the number of registers in the list of registers.

Table: Addressing Mode for Load-Store Multiple Instructions

 Any subset of the current bank of registers can be transferred to memory or fetched from

memory.

 The base register Rn determines the source or destination address for a load-store multiple

instruction. This register can be optionally updated following the transfer. This occurs when

register Rn is followed by the ! character, similar to the single-register load-store using preindex

with writeback.

Example: In this example, register r0 is the base register Rn and is followed by !, indicating that the

register is updated after the instruction is executed. You will notice within the load multiple instruction

that the registers are not individually listed. Instead the “-” character is used to identify a range of

registers. In this case the range is from register r1 to r3 inclusive.

Each register can also be listed, using a comma to separate each register within “{” and “}” brackets.

PRE mem32[0x80018] = 0x03

mem32[0x80014] = 0x02

 mem32[0x80010] = 0x01

r0 = 0x00080010

r1 = 0x00000000

r2 = 0x00000000

r3 = 0x00000000

LDMIA r0!, {r1–r3}

POST r0 = 0x0008001c

MAHESH PRASANNA K., VCET, PUTTUR

17

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

r1 = 0x00000001

r2 = 0x00000002

r3 = 0x00000003

The following Figure shows a graphical representation.

Figure: Pre-condition for LDMIA Instruction

 The base register r0 points to memory address 0x80010 in the PRE condition.

 Memory addresses 0x80010, 0x80014, and 0x80018 contain the values 1, 2, and 3 respectively.

 After the load multiple instruction executes, registers r1, r2, and r3 contain these values as shown

in the following Figure.

Figure: Post Condition for LDMIA Instruction

 The base register r0 now points to memory address 0x8001c after the last loaded word.

 Now replace the LDMIA instruction with a load multiple and increment before LDMIB

instruction and use the same PRE conditions.

 The first word pointed to by register r0 is ignored and register r1 is loaded from the next memory

location as shown in the following Figure.

MAHESH PRASANNA K., VCET, PUTTUR

18

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Figure: Post Condition for LDMIB Instruction

 After execution, register r0 now points to the last loaded memory location. This is in contrast

with the LDMIA example, which pointed to the next memory location.

• The decrement versions DA and DB of the load-store multiple instructions decrement the start

address and then store to ascending memory locations.

• This is equivalent to descending memory but accessing the register list in reverse order.

• With the increment and decrement load multiples; you can access arrays forwards or backwards.

• They also allow for stack push and pull operations.

The following Table shows a list of load-store multiple instruction pairs.

Table: Load-Store Multiple Pairs when Base Update used

Store Multiple Load Multiple

STMIA LDMDB

STMIB LDMDA

STMDA LDMIB

STMDB LDMIA

• If you use a store with base update, then the paired load instruction of the same number of

registers will reload the data and restore the base address pointer.

• This is useful when you need to temporarily save a group of registers and restore them later.

Example: This example shows an STM increment before instruction followed by an LDM decrement

after instruction.

PRE r0 = 0x00009000

r1 = 0x00000009

r2 = 0x00000008

r3 = 0x00000007

STMIB r0!, {r1–r3}

MOV r1, #1

MOV r2, #2

MAHESH PRASANNA K., VCET, PUTTUR

19

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
MOV r3, #3

PRE(2) r0 = 0x0000900c

r1 = 0x00000001

r2 = 0x00000002

r3 = 0x00000003

LDMDA r0!, {r1–r3}

POST r0 = 0x00009000

r1 = 0x00000009

r2 = 0x00000008

r3 = 0x00000007

The STMIB instruction stores the values 7, 8, 9 to memory. We then corrupt register r1 to r3. The

LDMDA reloads the original values and restores the base pointer r0.

Example: We illustrate the use of the load-store multiple instructions with a block memory copy example.

This example is a simple routine that copies blocks of 32 bytes from a source address location to a

destination address location.

The example has two load-store multiple instructions, which use the same increment after addressing

mode.

; r9 points to start of source data

; r10 points to start of destination data

; r11 points to end of the source

loop

; load 32 bytes from source and update r9 pointer

LDMIA r9!, {r0–r7}

; store 32 bytes to destination and update r10 pointer

STMIA r10!, {r0–r7} ; and store them

; have we reached the end

CMP r9, r11

BNE loop

 This routine relies on registers r9, r10, and r11 being set up before the code is executed.

 Registers r9 and r11 determine the data to be copied, and register r10 points to the destination in

memory for the data.

 LDMIA loads the data pointed to by register r9 into registers r0 to r7. It also updates r9 to point

to the next block of data to be copied.

 STMIA copies the contents of registers r0 to r7 to the destination memory address pointed to by

register r10. It also updates r10 to point to the next destination location.
MAHESH PRASANNA K., VCET, PUTTUR

20

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 CMP and BNE compare pointers r9 and r11 to check whether the end of the block copy has been

reached.

 If the block copy is complete, then the routine finishes; otherwise the loop repeats with the

updated values of register r9 and r10.

• The BNE is the branch instruction B with a condition mnemonic NE (not equal). If the previous

compare instruction sets the condition flags to not equal, the branch instruction is executed.

The following Figure shows the memory map of the block memory copy and how the routine moves

through memory.

Figure: Block Memory Copy in the Memory map

Theoretically this loop can transfer 32 bytes (8 words) in two instructions, for a maximum possible

throughput of 46 MB/second being transferred at 33 MHz. These numbers assume a perfect memory

system with fast memory.

Stock Operation: The ARM architecture uses the load-store multiple instructions to carry out stack

operations.

• The pop operation (removing data from a stack) uses a load multiple instruction.

• The push operation (placing data onto the stack) uses a store multiple instruction.

 When using a stack you have to decide whether the stack will grow up or down in memory.

o A stack is either –

 ascending (A) – stacks grow towards higher memory addresses or

 descending (D) – stacks grow towards lower memory addresses.

 When you use a full stack (F), the stack pointer sp points to an address that is the last used or full

location (i.e., sp points to the last item on the stack).

MAHESH PRASANNA K., VCET, PUTTUR

21

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 If you use an empty stack (E) the sp points to an address that is the first unused or empty location

(i.e., it points after the last item on the stack).

• There are number of load-store multiple addressing mode aliases available to support stack

operations (see the following Table).

Table: Addressing Methods for Stack Operations

• Next to the pop column is the actual load multiple instruction equivalent.

o For example, a full ascending stack would have the notation FA appended to the load

multiple instruction—LDMFA. This would be translated into an LDMDA instruction.

• ARM has specified an ARM-Thumb Procedure Call Standard (ATPCS) that defines how routines

are called and how registers are allocated. In the ATPCS, stacks are defined as being full

descending stacks. Thus, the LDMFD and STMFD instructions provide the pop and push

functions, respectively.

Example: The STMFD instruction pushes registers onto the stack, updating the sp. The following Figure

shows a push onto a full descending stack.

Figure: STMFD Instruction – Full Stack push Operation

You can see that when the stack grows the stack pointer points to the last full entry in the stack.

PRE r1 = 0x00000002

r4 = 0x00000003

sp = 0x00080014

STMFD sp!, {r1, r4}

POST r1 = 0x00000002

r4 = 0x00000003

sp = 0x0008000c

MAHESH PRASANNA K., VCET, PUTTUR

22

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Example: The following Figure shows a push operation on an empty stack using the STMED instruction.

Figure: STMED Instruction – Empty Stack push Operation

The STMED instruction pushes the registers onto the stack but updates register sp to point to the next

empty location.

PRE r1 = 0x00000002

r4 = 0x00000003

sp = 0x00080010

STMED sp!, {r1, r4}

POST r1 = 0x00000002

r4 = 0x00000003

sp = 0x00080008

 When handling a checked stack there are three attributes that need to be preserved: the stack base,

the stack pointer, and the stack limit.

 The stack base is the starting address of the stack in memory.

 The stack pointer initially points to the stack base; as data is pushed onto the stack, the stack

pointer descends memory and continuously points to the top of stack. If the stack pointer passes

the stack limit, then a stack overflow error has occurred.

 Here is a small piece of code that checks for stack overflow errors for a descending stack:

; check for stack overflow

SUB sp, sp, #size

CMP sp, r10

BLLO _stack_overflow ; condition

• ATPCS defines register r10 as the stack limit or sl. This is optional since it is only used when

stack checking is enabled.

• The BLLO instruction is a branch with link instruction plus the condition mnemonic LO.

o If sp is less than register r10 after the new items are pushed onto the stack, then stack

overflow error has occurred.

o If the stack pointer goes back past the stack base, then a stack underflow error has

occurred.

MAHESH PRASANNA K., VCET, PUTTUR

23

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Swap Instruction:

The swap instruction is a special case of a load-store instruction. It swaps the contents of memory with

the contents of a register.

This instruction is an atomic operation—it reads and writes a location in the same bus operation,

preventing any other instruction from reading or writing to that location until it completes.

Swap cannot be interrupted by any other instruction or any other bus access. We say the system “holds

the bus” until the transaction is complete. Also, swap instruction allows for both a word and a byte swap.

Example: The swap instruction loads a word from memory into register r0 and overwrites the memory

with register r1.

 PRE mem32[0x9000] = 0x12345678

r0 = 0x00000000

r1 = 0x11112222

r2 = 0x00009000

SWP r0, r1, [r2]

POST mem32[0x9000] = 0x11112222

r0 = 0x12345678

r1 = 0x11112222

r2 = 0x00009000

Example: This example shows a simple data guard that can be used to protect data from being written by

another task. The SWP instruction “holds the bus” until the transaction is complete.

 spin

 MOV r1, =semaphore

MOV r2, #1

SWP r3, r2, [r1] ; hold the bus until complete

CMP r3, #1

BEQ spin

MAHESH PRASANNA K., VCET, PUTTUR

24

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
The address pointed to by the semaphore either contains the value 0 or 1. When the semaphore equals 1,

then the service in question is being used by another process. The routine will continue to loop around

until the service is released by the other process—in other words, when the semaphore address location

contains the value 0. ¦

SOFTWARE INTERRUPT INSTRUCTION:

A software interrupt instruction (SWI) causes a software interrupt exception, which provides a

mechanism for applications to call operating system routines.

When the processor executes an SWI instruction, it sets the program counter pc to the offset 0x8 in the

vector table. The instruction also forces the processor mode to SVC, which allows an operating system

routine to be called in a privileged mode.

Each SWI instruction has an associated SWI number, which is used to represent a particular

function call or feature.

Example: Here we have a simple example of an SWI call with SWI number 0x123456, used by ARM

toolkits as a debugging SWI. Typically the SWI instruction is executed in user mode.

PRE cpsr = nzcVqift_USER

pc = 0x00008000

lr = 0x003fffff ;lr = r14

r0 = 0x12

0x00008000 SWI 0x123456

POST cpsr = nzcVqIft_SVC

spsr = nzcVqift_USER

pc = 0x00000008

lr = 0x00008004

r0 = 0x12

Since SWI instructions are used to call operating system routines, you need some form of parameter

passing. This is achieved using registers. In this example, register r0 is used to pass the parameter 0x12.

The return values are also passed back via registers.

MAHESH PRASANNA K., VCET, PUTTUR

25

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Code called the SWI handler is required to process the SWI call. The handler obtains the SWI number

using the address of the executed instruction, which is calculated from the link register lr.

The SWI number is determined by

SWI_Number = <SWI instruction> AND NOT (0xff000000)

Here the SWI instruction is the actual 32-bit SWI instruction executed by the processor.

Example: This example shows the start of an SWI handler implementation. The code fragment determines

what SWI number is being called and places that number into register r10.

You can see from this example that the load instruction first copies the complete SWI instruction into

register r10. The BIC instruction masks off the top bits of the instruction, leaving the SWI number. We

assume the SWI has been called from ARM state.

SWI_handler

; Store registers r0-r12 and the link register

 STMFD sp!, {r0–r12, lr}

; Read the SWI instruction

LDR r10, [lr, #–4]

; Mask off top 8 bits

BIC r10, r10, #0xff000000

; r10 - contains the SWI number

BL service_routine

; return from SWI handler

LDMFD sp!, {r0–r12, pc}ˆ

The number in register r10 is then used by the SWI handler to call the appropriate SWI service routine.

PROGRAM STATUS REGISTER INSTRUCTIONS:

The ARM instruction set provides two instructions to directly control a program status register (psr).

 The MRS instruction transfers the contents of either the cpsr or spsr into a register.

 The MSR instruction transfers the contents of a register into the cpsr or spsr.

Together these instructions are used to read and write the cpsr and spsr.

In the syntax we can see a label called fields. This can be any combination of control (c), extension (x),

status (s), and flags (f).

MAHESH PRASANNA K., VCET, PUTTUR

26

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

These fields relate to particular byte regions in a psr, as shown in the following Figure.

Figure: psr Byte Fields

The c field controls the interrupt masks, Thumb state, and processor mode.

The following Example shows how to enable IRQ interrupts by clearing the I mask. This operation

involves using both the MRS and MSR instructions to read from and then write to the cpsr.

Example: The MSR first copies the cpsr into register r1. The BIC instruction clears bit 7 of r1. Register

r1 is then copied back into the cpsr, which enables IRQ interrupts. You can see from this example that

this code preserves all the other settings in the cpsr and only modifies the I bit in the control field.

PRE cpsr = nzcvqIFt_SVC

MRS r1, cpsr

BIC r1, r1, #0x80 ; 0b01000000

MSR cpsr_c, r1

POST cpsr = nzcvqiFt_SVC

This example is in SVC mode. In user mode you can read all cpsr bits, but you can only update the

condition flag field f.

Coprocessor Instructions:

Coprocessor instructions are used to extend the instruction set.

 A coprocessor can either provide additional computation capability or be used to control the

memory subsystem including caches and memory management.

 The coprocessor instructions include data processing, register transfer, and memory transfer

instructions.

 Note that these instructions are only used by cores with a coprocessor.

MAHESH PRASANNA K., VCET, PUTTUR

27

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

 In the syntax of the coprocessor instructions,

o The cp field represents the coprocessor number between p0 and p15

o The opcode fields describe the operation to take place on the coprocessor.

o The Cn, Cm, and Cd fields describe registers within the coprocessor.

 The coprocessor operations and registers depend on the specific coprocessor you are using.

 Coprocessor 15 (CP15) is reserved for system control purposes, such as memory management,

write buffer control, cache control, and identification registers.

Example: This example shows a CP15 register being copied into a general-purpose register.

; transferring the contents of CP15 register c0 to register r10

MRC p15, 0, r10, c0, c0, 0

Here CP15 register-0 contains the processor identification number. This register is copied into the

general-purpose register r10.

LOADING CONSTANTS:

You might have noticed that there is no ARM instruction to move a 32-bit constant into a register. Since

ARM instructions are 32 bits in size, they obviously cannot specify a general 32-bit constant.

To aid programming there are two pseudo-instructions to move a 32-bit value into a register.

• The first pseudo-instruction writes a 32-bit constant to a register using whatever instructions are

available. It defaults to a memory read if the constant cannot be encoded using other instructions.

• The second pseudo-instruction writes a relative address into a register, which will be encoded

using a pc-relative expression.

MAHESH PRASANNA K., VCET, PUTTUR

28

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Example: This example shows an LDR instruction loading a 32-bit constant 0xff00ffff into register

r0.

LDR r0, [pc, #constant_number-8-{PC}]

:

constant_number

DCD 0xff00ffff

This example involves a memory access to load the constant, which can be expensive for time-critical

routines.

The following Example shows an alternative method to load the same constant into register r0 by using

an MVN instruction.

Example: Loading the constant 0xff00ffff using an MVN.

PRE none...

MVN r0, #0x00ff0000

POST r0 = 0xff00ffff

As you can see, there are alternatives to accessing memory, but they depend upon the constant you are

trying to load.

The LDR pseudo-instruction either inserts an MOV or MVN instruction to generate a value (if possible)

or generates an LDR instruction with a pc-relative address to read the constant from a literal pool—a data

area embedded within the code.

The following Table shows two pseudo-code conversions.

Table: LDR pseudo-instruction Conversion

The first conversion produces a simple MOV instruction; the second conversion produces a pc-relative

load.

Another useful pseudo-instruction is the ADR instruction, or address relative. This instruction places the

address of the given label into register Rd, using a pc-relative add or subtract.

By: Mahesh Prasanna K.,

DePt. of Cse, VCet.

____________*********____________

MAHESH PRASANNA K., VCET, PUTTUR

29

	MODULE – 2
	A AND L INSTRUCTIONS & INT 21H AND INT 10H PROGRAMMING
	Before
	 After
	 BH

	 After
	BH

	 Before
	After
	BH

	 Before
	 After
	BH

	 Before
	MODULE – 3
	SIGNED NUMBERS AND STRINGS & MEMORY INTERFACING & 8255
	After
	1100 0000 = -40H

	Before
	MODULE – 4
	ARM EMBEDDED SYSTEMS & ARM PROCESSOR FUNDAMENTALS
	MODULE – 5
	INTRODUCTION TO THE ARM INSTRUCTION SET

