
Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 1

MODULE 1: INTRODUCTION TO OBJECT ORIENTED CONCEPTS

Beautiful thought:” You cannot change your future but, you can change your habits &

surely your habits will change your future”- Dr. APJ Abdul kalam.

Syllabus:

Introduction to Object Oriented Concepts: A Review of structures,

Procedure–Oriented Programming system, Object Oriented Programming

System, Comparison of Object Oriented Language with C, Console I/O,

variables and reference variables, Function Prototyping, Function

Overloading.

Class and Objects: Introduction, member functions and data, objects and

functions, objects and arrays, Namespaces, Nested classes, Constructors,

Destructors.

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 2

MODULE 1: INTRODUCTION TO OBJECT ORIENTED CONCEPTS

Overview of C++

 C++ extension was first invented by “Bjarne Stroustrup” in 1979.

 He initially called the new language “ C with Classes”.

 However in 1983 the name was changed to C++.

 c++ is an extension of the C language, in that most C programs are also c++programs.

 C++, as an opposed to C, supports “Object-Oriented Programming”.

Object Oriented Programming System (OOPS)

 In OOPS we try to model real-world objects.

 Most real world objects have internal parts (Data Members) and interfaces

(Member Functions) that enables us to operate them.

Object:

 Everything in the world is an object.

 An object is a collection of variables that hold the data and functions that operate

on the data.

 The variables that hold data are called Data Members.

 The functions that operate on the data are called Member Functions.

The two parts of an object:

 Object = Data + Methods (Functions)

 In object oriented programming the focus is on creating the objects to accomplish

a task and not creating the procedures (Functions).

 In OOPs the data is tied more closely to the functions and does not allow the data

to flow freely around the entire program making the data more secure.

 Data is hidden and cannot be easily accessed by external functions.

 Compliers implementing OOP does not allow unauthorized functions to access the

data thus enabling data security.

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 3

 Only the associated functions can operate on the data and there is no change of

bugs creeping into program.

 The main advantage of OOP is its capability to model real world problems.

 It follows Bottom Up approach in program design.

 Object A object B object C

 Communication

 Identifying objects and assigning responsibilities to these objects.

 Objects communicate to other objects by sending messages.

 Messages are received by the methods (functions) of an object.

Basic concepts (features) of Object-Oriented Programming

1. Objects

2. Classes

3. Data abstraction

4. Data encapsulation

5. Inheritance

6. Polymorphism

7. Binding

8. Message passing

data

Functions
Functions

data

Functions

data

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 4

 Objects and Classes:

 Classes are user defined data types on which objects are created.

 Objects with similar properties and methods are grouped together to form

class.

 So class is a collection of objects.

 Object is an instance of a class.

 Data abstraction

 Abstraction refers to the act of representing essential features without

including the background details or explanation.

 Ex: Let's take one real life example of a TV, which you can turn on and off,

change the channel, adjust the volume, and add external components such as

speakers, VCRs, and DVD players, BUT you do not know its internal details,

that is, you do not know how it receives signals over the air or through a

cable, how it translates them, and finally displays them on the screen.

 Ex: #include <iostream>

 int main()

 {

 cout << "Hello C++" <<endl;

 return 0;

 }

 Here, you don't need to understand how cout displays the text on the user's

screen. You need to only know the public interface and the underlying

implementation of cout is free to change.

 Data encapsulation

 Information hiding

 Wrapping (combining) of data and functions into a single unit (class) is known

as data encapsulation.

 Data is not accessible to the outside world, only those functions which are

wrapped in the class can access it.

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 5

 Inheritance

 Acquiring qualities.

 Process of deriving a new class from an existing class.

 Existing class is known as base, parent or super class.

 The new class that is formed is called derived class, child or sub class.

 Derived class has all the features of the base class plus it has some extra

features also.

 Writing reusable code.

 Objects can inherit characteristics from other objects.

 Polymorphism

 The dictionary meaning of polymorphism is “having multiple forms”.

 Ability to take more than one form.

 A single name can have multiple meanings depending on its context.

 It includes function overloading, operator overloading.

 Binding

 Binding means connecting the function call to the function code to be

executed in response to the call.

 Static binding means that the code associated with the function call is linked

at compile time. Also known as early binding or compile time polymorphism.

 Dynamic binding means that the code associated with the function call is

linked at runtime. Also known as late binding or runtime polymorphism.

 Message passing

Objects communicate with one another by sending and receiving information.

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 6

The process of programming in an OOP involves the following basic steps:

1. Creating classes that define objects and behavior.

2. Creating objects from class definitions.

3. Establishing communications among objects.

Advantages of OOPS

 Data security

 Reusability of existing code

 Creating new data types

 Abstraction

 Less development time

 Reduce complexity

 Better productivity

Benefits of OOP

 Reusability

 Saving of development time and higher productivity

 Data hiding

 Multiple objects feature

 Easy to partition the work in a project based on objects.

 Upgrade from small to large systems

 Message passing technique for interface.

 Software complexity can be easily managed.

Applications of OOP

 Real time systems

 Simulation and modeling

 Object oriented databases

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 7

 Hypertext, hypermedia

 AI (Artificial Intelligence)

 Neural networks and parallel programming

 Decision support and office automation systems

 CIM/CAD/CAED system

Difference between POP(Procedure Oriented Programming) and OOP(Object

Oriented Programming)

Sl.No POP OOP

1. Emphasis is on procedures (functions) Emphasis is on data

2. Programming task is divided into a

collection of data structures and

functions.

Programming task is divided into objects

(consisting of data variables and associated

member functions)

3. Procedures are being separated from

data being manipulated

Procedures are not separated from data,

instead, procedures and data are combined

together.

4. A piece of code uses the data to

perform the specific task

The data uses the piece of code to perform

the specific task

5. Data is moved freely from one

function to another function using

parameters.

Data is hidden and can be accessed only by

member functions not by external function.

6. Data is not secure Data is secure

7. Top-Down approach is used in the

program design

Bottom-Up approach is used in program

design

8. Debugging is the difficult as the code

size increases

Debugging is easier even if the code size is

more

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 8

Comparison of C with C++

Sl.No C C++

1. It is procedure oriented language It is object-oriented language

2. Emphasis is on writing the functions

which performs some specific tasks.

Emphasis is on data which uses functions to

achieve the task.

3. The data and functions are separate The data and functions are combined

4. Does not support polymorphism,

inheritance etc.

Supports polymorphism, inheritance etc.

5. They run faster They run slower when compared to

equivalent C program

6. Type checking is not so strong Type checking is very strong

7. Millions of lines of code management

is very difficult

Millions of lines of code can be managed

very easily

8. Function definition and declarations

are not allowed within structure

definitions

Function definitions and declarations are

allowed within structure definitions.

Console Output/input in C++

Cin: used for keyboard input.

Cout: used for screen output.

Since Cin and Cout are C++ objects, they are somewhat “Intelligent”.

 They do not require the usual format strings and conversion specifications.

 They do automatically know what data types are involved.

 They do not need the address operator and ,

 They do require the use of the stream extraction (>>) and insertion (<<) operators.

Extraction operator (>>):

 To get input from the keyboard we use the extraction operator and the object Cin.

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 9

 Syntax: Cin>> variable;

 No need for “&” infront of the variable.

 The compiler figures out the type of the variable and reads in the appropriate type.

o Example:

 #include<iostream.h>

 Void main()

 {

 int x;

 float y;

 cin>> x;

 cin>>y;

 }

Insertion operator (<<):

 To send output to the screen we use the insertion operator on the object Cout.

 Syntax: Cout<<variable;

 Compiler figures out the type of the object and prints it out appropriately.

Example:

 #include<iostream.h>

 void main()

 {

 cout<<5;

 cout<<4.1;

 cout<< “string”;

 cout<< ‘\n’;

 }

Programs

Example using Cin and Cout

#include<iostream.h>

void main()

{

 int a,b;

 float k;

 char name[30];

 cout<< “Enter your name \n”;

 cin>>name;

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 10

 cout<< “Enter two Integers and a Float \n”;

 cin>>a>>b>>k;

 cout<< “Thank You,” <<name<<”,you entered\n”;

 cout<<a<<”,”<<b<<”,and”<<k<<’/n’;

}

Output:

 Enter your name

 Mahesh

 Enter two integers and a Float

 10

 20

 30.5

 Thank you Mahesh, you entered

 10, 20 and 30.5

C++ program to find out the square of a number

#include<iostream.h>

int main()

{

 int i;

 cout<< “this is output\n”;

 cout<< “Enter a number”;

 cin>>i;

 cout<<i<< “Square is” << i*i<<”\n”;

 return 0;

}

Output:

This is output

 Enter a number 5

 5 square is 25

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 11

Variables

Variable are used in C++, where we need storage for any value, which will change in

program. Variable can be declared in multiple ways each with different memory

requirements and functioning. Variable is the name of memory location allocated by the

compiler depending upon the datatype of the variable.

Declaration and Initialization

 Variable must be declared before they are used. Usually it is preferred to declare

them at the starting of the program, but in C++ they can be declared in the middle

of program too, but must be done before using them.

Example :

int i; // declared but not initialised

char c;

int i, j, k; // Multiple declaration

Initialization means assigning value to an already declared variable,

int i; // declaration

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 12

i = 10; // initialization

Initialization and declaration can be done in one single step also,

int i=10; //initialization and declaration in same step

int i=10, j=11;

 If a variable is declared and not initialized by default it will hold a garbage value.

Also, if a variable is once declared and if try to declare it again, we will get a

compile time error.

 int i,j;

 i=10;

 j=20;

 int j=i+j; //compile time error, cannot redeclare a variable in same scope

Scope of Variables

All the variables have their area of functioning, and out of that boundary they don't hold

their value, this boundary is called scope of the variable. For most of the cases its

between the curly braces, in which variable is declared that a variable exists, not outside

it. we can broadly divide variables into two main types,

 Global Variables

 Local variables

Global variables

Global variables are those, which are once declared and can be used throughout the

lifetime of the program by any class or any function. They must be declared outside the

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 13

main() function. If only declared, they can be assigned different values at different time

in program lifetime. But even if they are declared and initialized at the same time outside

the main() function, then also they can be assigned any value at any point in the program.

Example : Only declared, not initialized

include <iostream>

int x; // Global variable declared

int main()

{

 x=10; // Initialized once

 cout <<"first value of x = "<< x;

 x=20; // Initialized again

 cout <<"Initialized again with value = "<< x;

}

Local Variables

Local variables are the variables which exist only between the curly braces, in which its

declared. Outside that they are unavailable and leads to compile time error.

Example :

include <iostream>

int main()

{

 int i=10;

 if(i<20) // if condition scope starts

 {

 int n=100; // Local variable declared and initialized

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 14

 } // if condition scope ends

 cout << n; // Compile time error, n not available here

}

Reference variable in C++

 When a variable is declared as reference, it becomes an alternative name for an

existing variable. A variable can be declared as reference by putting ‘&’ in the

declaration.

#include<iostream>

using namespace std;

int main()

{

 int x = 10;

 // ref is a reference to x.

 int& ref = x;

 // Value of x is now changed to 20

 ref = 20;

 cout << "x = " << x << endl ;

 // Value of x is now changed to 30

 x = 30;

 cout << "ref = " << ref << endl ;

 return 0;

}

Output:

 x = 20

ref = 30

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 15

Functions in c++:

Definition: Dividing the program into modules, these modules are called as functions.

General form of function:

return_type function_name(parameter list)

{

 Body of the function

}

Where,

 return_type:

 What is the value to be return.

 Function can written any value except array.

Parameter_list: List of variables separated by comma.

The body of the function(code) is private to that particular function, it cannot be

accessed outside the function.

Components of function:

 Function declaration (or) prototype.

 Function parameters (formal parameters)

 Function definition

 Return statement

 Function call

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 16

Example:

#include<iostream.h>

int max(int x, int y); //prototype(consists of formal arguments)

void main() //Function caller

{

 int a, b, c;

 cout<< “enter 2 integers”;

 cin>>a>>b;

 c=max(a,b); //function call

 cout<<c<<endl;

}

int max(int x, int y) // function definition

{

 if(x>y)

 return x; // function return

 else

 return y;

}

Function prototype:

 int max(int x, int y);

 It provides the following information to the compiler.

 The name of the function

 The type of the value returned(default an integer)

 The number and types of the arguments that must be supplied in a call to the

function.

 Function prototyping is one of the key improvements added to the C++ functions.

 When a function is encountered, the compiler checks the function call with its

prototype so that correct argument types are used.

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 17

Consider the following statement:

 int max(int x, int y);

 It informs the compiler that the function max has 2 arguments of the type integer.

 The function max() returns an integer value the compiler knows how many bytes to

retrieve and how to interpret the value returned by the function.

Function definition:

 The function itself is returned to as function definition.

 The first line of the function definition is known as function declarator and is

followed by function body.

 The declarator and declaration must use the same function name, number of

arguments, the argument type and return type.

 The body of the function is enclosed in braces.

 C++ allows the definition to be placed anywhere in the program.

int max(int x, int y) // function declaration, no semicolon

{

 if(x>y) //function body

 return x;

 else

 return y;

}

Function call:

 c= max (a, b) ;

 Invokes the function max() with two integer parameters, executing the call

statement causes the control to be transferred to the first statement in the

function body and after execution of the function body the control is resumed to

the statement following the function call. The max() returns the maximum of the

parameters a and b. the return value is assigned to the local variable c in main().

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 18

Function parameters:

 The parameters specified in the function call are known as actual parameters and

specified in the declarator are known as formal parameters.

c=max(a,b);

 Here a and b are actual parameters. The parameters x and y are formal

parameters. When a function call is made, a one to one correspondence is

established between the actual and the formal parameters. In this case the value

of the variable aa is assigned to the variable x and that of b to y. the scope of

formal parameters is limited to the function only.

Function return:

 Functions can be grouped into two categories. Functions that do not have a return

value(void) and functions that have a return value.

The statement: return x;// function return

 and

 return y;//function return

ex: c=max(a,b);//function call

the value returned by the function max() is assigned to the local variable c in main(

).

 The return statement in a function need not be at the end of the function. It can

occur anywhere in the function body and as soon as it is encountered , execution

control will be returns to the caller.

Argument passing:

Two types

1. Call by value

2. Call by reference

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 19

 Call by value:

 The default mechanism of parameter passing(argument passing) is called call

by value.

 Here we pass the value of actual arguments to formal parameters.

 Changes made to the formal parameters will not be affected the actual

parameters.

Example 1:

#include<iostream.h>

void exchange(int x, int y);

 void main()

{

 int a, b;

 cout<< “enter values for a and b”; // 10 and 20

 cin>>a>>b;

 exchange(a,b);

 cout<<a<<b; output: 10, 20

}

void exchange(int x, int y)

{

 int temp;

 temp=x;

 x=y;

 y=temp;

 cout<<x<<y; output: 20, 10

}

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 20

Example 2:

#include<iostream.h>

void main()

{

 int a, b;

 cout<<” enter the value of a and b\n”; // 20 and 10

 cin>>a>>b;

 sub(a, b);

 getch();

}

void sub(int x, int y)

{

 int result;

 result=x-y;

 cout<<result; output: 10

}

Example 3:

#include<iostream.h>

void main()

{

 int a=10, temp;

 temp=add(a);

 cout<<temp<<”,”<<a;

}

int add(int a)

{

 a=a+a;

 return a;

}

Output: 20

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 21

 Call by reference:

 We pass address of an argument to the formal parameters.

 Changes made to the formal parameters will affect actual arguments.

Example 1:

#include<iostream.h>

void exchange(int *x, int *y);

 void main()

{

 int a, b;

 cout<< “enter values for a and b”; //10, 20

 cin>>a>>b;

 exchange(&a,&b);

 cout<<a<<b; //output: 20,10

}

void exchange(int *x, int *y)

{

 int temp;

 temp=*x;

 *x=*y;

 *y=temp;

 cout<<x<<y; // output: 20, 10

}

Example 2:

#include<iostream.h>

void main()

{

 int a=10, temp;

 temp=add(&a);

 cout<<temp<<”,”<<a;

 getch();

}

int add(int *a)

{

 a=*a+*a;

 return a;

}

Output: 20

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 22

Default arguments:

 Default values are specified when the function is declared.

 The compiler looks at the prototype to see how many arguments a function uses and

alerts the program for possible default values.

Example:

#include <iostream.h>

void add(int a=10, int b=20,int c=30);

void main()

{

 add(1,2,3);

 add(1,2);

 add(1);

 add();

}

void add(int a, int b, int c)

{

 cout<< a+b+c;

}

 A default argument is checked for type at the time of declaration and evaluated at

the time of call.

 We must add defaults from right to left.

 We cannot provide a default value to a particular argument in the middle of an

argument list.

Example:

int mul (int i, int j=5, int k=10); //legal.

int mul (int i=5, int j); //illegal.

int mul (int i=0,int j, int k=10); //illegal.

int mul (int i=2, int j=5, int k=10); //legal.

 Default arguments are useful in situations where some arguments always have the

same value.

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 23

Classes & Objects

Structure of C++ Program

Programming language is most popular language after C Programming language. C++ is first

Object oriented programming language.

 Header File Declaration Section:

 Header files used in the program are listed here.

 Header File provides Prototype declaration for different library functions.

 We can also include user define header file.

 Basically all preprocessor directives are written in this section.

 Global declaration section:

 Global Variables are declared here.

 Global Declaration may include

 Declaring Structure

 Declaring Class

 Declaring Variable

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 24

 Class declaration section:

 Actually this section can be considered as sub section for the global

declaration section.

 Class declaration and all methods of that class are defined here

 Main function:

 Each and every C++ program always starts with main function.

 This is entry point for all the function. Each and every method is called

indirectly through main.

 We can create class objects in the main.

 Operating system calls this function automatically.

 Method definition section

 This is optional section. Generally this method was used in C Programming.

Class specification:

 A Class is way to bind(combine) the data and its associated functions together. it

allows data and functions to be hidden.

 When we define a class, we are creating a new abstract data type that can be

created like any other built-in data types.

 This new type is used to declare objects of that class.

 Object is an instance of class.

General form of class declaration is:

class class_name

{

 access specifier: data

 access specifier: functions;

};

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 25

 The keyword class specifies that what follows is an abstract data of type

class_name.the body of the class is enclosed in braces and terminated by

semicolon.

Access specifier can be of 3 types:

Private:

 Cannot be accessed outside the class.

 But can be accessed by the member functions of the class.

Public:

 Allows functions or data to be accessible to other parts of the program.

Protected:

 Can be accessed when we use inheritance.

Note:

 By default data and member functions declared within a class are private.

 Variables declared inside the class are called as data members and functions

are called as member functions. Only member functions can have access to data

members and function.

 The binding of functions and data together into a single class type variable is

referred as Encapsulation.

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 26

Example:

#include<iostream.h>

class student

{

 private:

 char name[10]; // private variables

 int marks1,marks2;

 public:

 void getdata() // public function accessing private members

 {

 cout<<”enter name,marks in two subjects”;

 cin>>name>>marks1>>marks2;

 }

 void display() // public function

 {

 cout<<”name:”<<name<<endl;

 cout<<”marks”<<marks1<<endl<<marks2;

 }

}; // end of class

void main()

{

 student obj1;

 obj1.getdata();

 obj1.display();

}

Output:

Enter name,marks in two subjects

Mahesh 25 24

Name: Mahesh

Marks 25 24

In the above program,class name is student,with private data members name,marks1 and

marks2,the public data members getdata() and display().

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 27

Functions,the getdata() accepts name and marks in two subjects from user and display()

displays same on the output screen.

Scope resolution operator (::)

 It is used to define the member functions outside the class.

 Scope resolution operator links a class name with a member name in order to tell

the compiler what class the member belongs to.

 Used for accessing global data.

Syntax to define the member functions outside the class using Scope resolution

operator:

return_type class_name : : function_name(actual arguments)

{

 function body

}

Example:

#include<iostream.h>

class student

 {

 private:

 char name[10]; // private variables

 int marks1,marks2;

 public:

 void getdata();

 void display();

 };

 void student: :getdata()

 {

 cout<<”enter name,marks in two subjects”;

 cin>>name>>marks1>>marks2;

 }

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 28

 void student: :display()

 {

 cout<<”name:”<<name<<endl;

 cout<<”marks”<<marks1<<endl<<marks2;

 }

void main()

{

 student obj1;

 obj1.getdata();

 obj1.display();

}

Accessing global variables using scope resolution operator (: :)

 Example:

#include<iostream.h>

int a=100; // declaring global variable

class x

 {

 int a;

 public:

 void f()

 {

 a=20; // local variable

 cout<<a; // prints value of a as 20

 }

};

void main()

{

 x g;

 g.f(); // this function prints value of a(local variable) as 20

 cout<<::a; // this statement prints value of a(global variable) as 100

}

In the above program,the statement ::a prints global variable value of a as 100.

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 29

Defining the functions with arguments(parameters):

#include<iostream.h>

class item

 {

 private:

 int number,cost;

public:

 void getdata(int a,int b);

 void display();

 };

 void item::getdata(int a,int b)

 {

 number=a;

 cost=b;

 }

 void item::display()

 {

 cout<<”cost:”<<number<<endl;

 cout<<”number:”<<cost<<endl;

 }

 void main()

 {

 item i1;

 i1.getdata(10,20);

 i1.display();

 }

output:

 number:10

 cost:20

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 30

Access members

 Class members(variables(data) and functions) Can be accessed through an object

and dot operator.

 Private members can be accessed by the functions which belong to the same class.

 The format for calling a member function is:

Object_name.function_name(actual arguments);

Example: accessing private members

#include<iostream.h>

class item

 {

 Private: int a;

public: int b;

};

void main()

 {

 item i1,i2;

 i1.a=10; // illegal private member cannot be accessed outside the class

 i2.b=20;

 cout<<i2.b; // this statement prints value of b as 20.

}

Note: private members cannot be accessed outside the class but public members can be

accessed.

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 31

Example: private members can be accessed by the functions which belongs to the

same class

#include<iostream.h>

class item

 {

 int a=10; // private member

 public:

 void display()

 {

 cout<<a; // it prints a as10

 }

};

void main()

{

 item i1;

 i1.display();

}

Defining member functions

 We can define the function inside the class.

 We can define the function outside the class.

The member functions have some special characteristics:

 Several different classes can use same function name.

 Member function can access private data of the class.

 A member function can call another function directly, without using dot operator.

Defining the function inside the class:

 Another method of defining a member function is to replace the function

declaration by actual function definition inside the class.

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 32

Example:

 #include<iostream.h>

 class item

 {

 private:

 int cost,number;

 public:

 void getdata(int a,int b) // defining function inside the class

 {

 number=a;

 cost=b;

 }

 void display()

 {

 cout<<”cost:”<<number<<endl;

 cout<<”number:”<<cost<<endl;

 }

 };

void main()

 {

 item i1;

 i1.getdata(10,30);

 i1.display();

 }

output:

 number:10

 cost:30

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 33

Function Overloading in C++

 Two or more functions have the same names but different argument lists. The

arguments may differ in type or number, or both. However, the return types of

overloaded methods can be the same or different is called function overloading. An

example of the function overloading is given below:

#include<iostream.h>

#include<stdlib.h>

#include<conio.h>

#define pi 3.14

class fn

{

 public:

 void area(int); //circle

 void area(int,int); //rectangle

 void area(float ,int,int); //triangle

};

void fn::area(int a)

{

 cout<<"Area of Circle:"<<pi*a*a;

}

void fn::area(int a,int b)

{

 cout<<"Area of rectangle:"<<a*b;

}

void fn::area(float t,int a,int b)

{

 cout<<"Area of triangle:"<<t*a*b;

}

void main()

{

 int ch;

 int a,b,r;

 clrscr();

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 34

 fn obj;

 cout<<"\n\t\tFunction Overloading";

 cout<<"\n1.Area of Circle\n2.Area of Rectangle\n3.Area of Triangle\n4.Exit\n:”;

 cout<<”Enter your Choice:";

 cin>>ch;

 switch(ch)

 {

 case 1:

 cout<<"Enter Radious of the Circle:";

 cin>>r;

 obj.area(r);

 break;

 case 2:

 cout<<"Enter Sides of the Rectangle:";

 cin>>a>>b;

 obj.area(a,b);

 break;

 case 3:

 cout<<"Enter Sides of the Triangle:";

 cin>>a>>b;

 obj.area(0.5,a,b);

 break;

 case 4:

 exit(0);

 }

getch();

}

Static data members

 Data members of class be qualified as static.

A static data member has certain special characteristics:

 It is initialized to zero when first object is created. No other initialization is

permitted.

 Only one copy of the data member is created for the entire class and is shared by

all the objects of class. no matter how many objects are created.

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 35

 Static variables are normally used to maintain values common to entire class

objects.

Example

class item

{

 static int count; // static data member

 int number;

 public:

 void getdata()

 {

 number=a;

 count++;

 }

 void putdata()

 {

 cout<<”count value”<<count<<endl;

 }

};

void main()

{

 item i1,i2,i3; // count is initialized to zero

 i1.putdata();

 i2.putdata();

 i3.putdata();

 i1.getdata();

 i2.getdata();

 i3.getdata();

 i1.putdata(); // display count after reading data

 i2.putdata();

 i3.putdata();

 }

Output:

 Count value 0

 Count value 0

 Count value 0

 Count value 3

 Count value 3

 Count value 3

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 36

 In the above program,the static variable count is initialized to zero when objects

are created.count is incremented whenever data is read into object.since three

times getdata() is called,so 3 times count value is created.all the 3 objects will have

count value as 3 because count variable is shared by all the objects,so all the last 3

statements in

main() prints values of count value as 3.

 i1 i2 i3

 Count(common for all objects)

Static member functions

 Like a static member variable, we can also have static member functions.

A member function that is declared as static has the following properties:

 A static member function can have access to only other static members

declared in the same class.

 A static member function can be called using the class name, instead of objects.

Syntax:

 class_name : : function_name ;

 100

100

200

300

 3

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 37

Example:

class item

{

 int number;

 static int count;

 public:

 void getdata(int a)

 {

 number=a;

 count++;

 }

 static void putdata()

 {

 cout<<”count value”<<count;

 }

};

void main()

 {

 item i1,i2;

 i1.getdata(10);

 i2.getdata(20);

 item::putdata();

 // call static member function using class name with scope resolution operator.

 }

Output:

 Count value 2

 In the above program, we have one static data member count, it is initialized to

zero, when first object is created, and one static member function putdata(),it can

access only static member.

 When getdata() is called,twice,each time, count value is incremented, so the value

of count is 2.when static member function putdata() is called, it prints value of

count as 2.

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 38

Inline functions:

 First control will move from calling to called function. Then arguments will be

pushed on to the stack, then control will move back to the calling from called

function.

 This process takes extra time in executing.

 To avoid this, we use inline function.

 When a function is declared as inline, compiler replaces function call with function

code.

Example:

#include<iostream.h>

void main()

{

 cout<< max(10,20);

 cout<<max(100,90);

 getch();

}

inline int max(int a, int b)

{

 if(a>b)

 return a;

 else

 return b;

}

Output: 20

 100

Note: inline functions are functions consisting of one or two lines of code.

Inline function cannot be used in the following situation:

 If the function definition is too long or too complicated.

 If the function is a recursive function.

 If the function is not returning any value.

 If the function is having switch statement and goto statement.

 If the function having looping constructs such as while, for, do-while.

 If the function has static variables

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 39

Arrays of Objects:

 It is possible to have arrays of objects.

 The syntax for declaring and using an object array is exactly the same as it is for

any other type of array.

 A array variable of type class is called as an array of objects.

Program:

 #include<iostream.h>

 class c1

 {

 int i;

 public:

 void get_i(int j)

 {

 i=j;

 }

 void show()

 {

 cout<<i<<endl;

 }

 };

 void main()

 {

 c1 obj[3]; // declared array of objects

 for(int i=0;i<3;i++)

 obj[i].get_i(i);

 for(int i=0;i<3;i++)

 obj[i].show();

 }

In the above program,we have declared object obj as an array of objects[i.e created 3

objects].

The following statement:

obj[i].get_i(i);

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 40

invokes get_i() function 3 times,each time it stores value of i in the index of obj[i].that is

after the execution of complete loop,the array of object “obj” looks like this:

2

1

0

The following statement

 obj[i].show();

displays the array of objects contents:0,1,2

output: 0

 1

 2

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 41

Namespace

What is Namespace in C++?

Namespace is a new concept introduced by the ANSI C++ standards committee. For using

identifiers it can be defined in the namespace scope as below.

Syntax:

using namespace std;

In the above syntax "std" is the namespace where ANSI C++ standard class libraries are

defined. Even own namespaces can be defined.

Syntax:

namespace namespace_name

{

 //Declaration of variables, functions, classes, etc.

}

Example :

#include <iostream.h>

using namespace std; namespace Own

{

 int a=100;

}

 int main()

{

 cout << "Value of a is:: " << Own::a;

 return 0;

}

Result :

Value of a is:: 100

In the above example, a name space "Own" is used to assign a value to a variable. To get

the value in the "main()" function the "::" operator is used.

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 42

Nested Classes in C++

Nested class is a class defined inside a class that can be used within the scope of the

class in which it is defined. In C++ nested classes are not given importance because of the

strong and flexible usage of inheritance. Its objects are accessed using "Nest::Display".

Example :

#include <iostream.h>

class Nest

{

 public:

 class Display

 {

 private:

 int s;

 public:

 void sum(int a, int b)

 {

 s =a+b;

 }

 void show()

 {

 cout << "\nSum of a and b is:: " << s;

 }

 }; //closing of inner class

}; //closing of outer class

void main()

{

 Nest::Display x; // x is a object, objects are accessed using "Nest::Display".

 x.sum(12, 10);

 x.show();

}

Result : Sum of a and b is::22

 In the above example, the nested class "Display" is given as "public" member of the class

"Nest".

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 43

Constructors

 Constructors are special class functions which performs initialization of every

object. The Compiler calls the Constructor whenever an object is created.

Constructor’s initialize values to data members after storage is allocated to the

object.

class A

{

 int x;

 public: A(); //Constructor

};

 While defining a contructor you must remeber that the name of constructor will be

same as the name of the class, and contructors never have return type.

 Constructors can be defined either inside the class definition or outside class

definition using class name and scope resolution :: operator.

class A

{

 int i;

 public:

 A(); //Constructor declared

};

A::A() // Constructor definition

{

 i=1;

}

Types of Constructors

Constructors are of three types :

1. Default Constructor

2. Parametrized Constructor

3. Copy Constructor

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 44

Default Constructor

Default constructor is the constructor which doesn't take any argument. It has no

parameter.

Syntax :

class_name ()

{

 Constructor Definition

}

Example :

class Cube

{

 int side;

 public: Cube() //constructor

 {

 side=10;

 }

};

int main()

{

 Cube c; //constructor is going to call

 cout << c.side;

}

Output : 10

In this case, as soon as the object is created the constructor is called which initializes its

data members.

A default constructor is so important for initialization of object members, that even if we

do not define a constructor explicitly, the compiler will provide a default constructor

implicitly.

class Cube

{

 int side;

};

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 45

int main()

{

 Cube c;

 cout << c.side;

}

Output : 0

In this case, default constructor provided by the compiler will be called which will initialize

the object data members to default value, that will be 0 in this case.

Parameterized Constructor

These are the constructors with parameter. Using this Constructor you can provide

different values to data members of different objects, by passing the appropriate values

as argument.

Example :

class Cube

{

 int side;

 public:

 Cube(int x)

 {

 side=x;

 }

};

int main()

{

 Cube c1(10);

 Cube c2(20);

 Cube c3(30);

 cout << c1.side;

 cout << c2.side;

 cout << c3.side;

}

OUTPUT : 10 20 30

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 46

By using parameterized construcor in above case, we have initialized 3 objects with user defined

values. We can have any number of parameters in a constructor.

copy constructor

What is copy constructor and how to use it in C++?

A copy constructor in C++ programming language is used to reproduce an identical copy of

an original existing object.It is used to initialize one object from another of the same

type.

Example :

#include<iostream>

using namespace std;

class copycon

{

 int copy_a,copy_b; // Variable Declaration

 public:

 copycon(int x,int y)

 {

 //Constructor with Argument

 copy_a=x;

 copy_b=y; // Assign Values In Constructor

 }

 void Display()

 {

 cout<<"\nValues :"<< copy_a <<"\t"<< copy_b;

 }

};

int main()

 {

 copycon obj(10,20);

 copycon obj2=obj; //Copy Constructor

 cout<<"\nI am Constructor";

 obj.Display(); // Constructor invoked.

 cout<<"\nI am copy Constructor";

 obj2.Display();

 return 0;

}

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 47

Result :

I am Constructor

Values:10 20

I am Copy Constructor

Values:10 20

Constructor Overloading

 Just like other member functions, constructors can also be overloaded. In fact

when you have both default and parameterized constructors defined in your class

you are having Overloaded Constructors, one with no parameter and other with

parameter.

 You can have any number of Constructors in a class that differ in parameter list.

class Student

{

 int rollno;

 string name;

 public:

 Student(int x)

 {

 rollno=x;

 name="None";

 }

 Student(int x, string str)

 {

 rollno=x ;

 name=str ;

 }

};

int main()

{

 Student A(10);

 Student B(11,"Ram");

}

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 48

In above case we have defined two constructors with different parameters, hence

overloading the constructors.

One more important thing, if you define any constructor explicitly, then the compiler will

not provide default constructor and you will have to define it yourself.

In the above case if we write Student S; in main(), it will lead to a compile time error,

because we haven't defined default constructor, and compiler will not provide its default

constructor because we have defined other parameterized constructors.

Destructors

 Destructor is a special class function which destroys the object as soon as the

scope of object ends. The destructor is called automatically by the compiler when

the object goes out of scope.

 The syntax for destructor is same as that for the constructor, the class name is

used for the name of destructor, with a tilde ~ sign as prefix to it.

class A

{

 public:

 ~A();

};

Destructors will never have any arguments.

Example to see how Constructor and Destructor is called

class A

{

A()

 {

 cout << "Constructor called";

 }

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 49

~A()

 {

 cout << "Destructor called";

 }

};

int main()

{

 A obj1; // Constructor Called

 int x=1

 if(x)

 {

 A obj2; // Constructor Called

 } // Destructor Called for obj2

} // Destructor called for obj1

Questions
1. State the important features of object oriented programming. Compare object oriented

programming with procedure oriented programming.

2. Give comparison of C and C++ with example

3. Write the general form of function. Explain different argument passing techniques with

example

4. Define function overloading. Write a C++ program to define three overloaded functions to

swap two integers, swap two floats and swap two doubles

5. Write a C++ program to overload the function area() with three overloaded function to find

area of rectangle and area rectangle box and area of circle

6. Explain the working of inline functions with example

7. Write a C++ recursive program to find the factorial of a given number

8. Explain the use of scope resolution operator

9. List the characteristics of a constructor. Implement a C++ program to define a suitable

parameterized constructor with default values for the class distance with data members

feet and inches.

Object Oriented Concepts-Module 1 15CS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 50

10. What is parameterized constructor. Explain different ways of passing parameters to the

constructor

11. Implement a C++ program to find prime number between 200 and 500 using for loop.

12. List a few areas of applications of OOP Technology.

13. What is class?how it is created? Write a c++ program to create a class called Employee

with data members name age and salary. Display atleast 5 employee information

14. What is nested class? What is its use? Explain with example.

15. What is static data member?explain with example. What is the use of static members

16. Write a class rectangle which contains data items length and breadth and member

functions setdata() getdata() displaydata(),area() to set length and breadth, to take user

input,to display data and find area of rectangle.

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 1

MODULE 2: INTRODUCTION TO JAVA

Beautiful thought:” You cannot change your future but, you can change your habits & surely your habits will

change your future”- Dr. APJ Abdul kalam.

Syllabus:

Java and Java applications; Java Development Kit (JDK); Java is

interpreted, Byte Code, JVM; Object-oriented programming; Simple Java

programs.

Data types and other tokens: Boolean variables, int, long, char, operators,

arrays, white spaces, literals, assigning values; Creating and destroying

objects; Access specifiers.

Operators and Expressions: Arithmetic Operators, Bitwise operators,

Relational operators, The Assignment Operator, The ? Operator; Operator

Precedence; Logical expression; Type casting; Strings.

Control Statements: Selection statements, iteration statements, Jump

Statements.

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 2

MODULE 2: Introduction to JAVA

Basic concepts of object oriented programming

Object:

This is the basic unit of object oriented programming. That is both data and method that

operate on data are bundled as a unit called as object. It is a real world entity (Ex:a

person, book, tables, chairs etc…)

Class:

Class is a collection of objects or class is a collection of instance variables and methods.

When you define a class, you define a blueprint for an object. This doesn't actually define

any data, but it does define what the class name means, that is, what an object of the

class will consist of and what operations can be performed on such an object.

Abstraction:

Data abstraction refers to, providing only essential information to the outside word and

hiding their background details ie. to represent the needed information in program without

presenting the details.

For example, a database system hides certain details of how data is stored and created

and maintained. Similar way, C++ classes provides different methods to the outside world

without giving internal detail about those methods and data.

Encapsulation:

Encapsulation is placing the data and the methods/functions that work on that data in

the same place. While working with procedural languages, it is not always clear which

functions work on which variables but object-oriented programming provides you

framework to place the data and the relevant functions together in the same object.

Inheritance:

One of the most useful aspects of object-oriented programming is code reusability. As

the name suggests Inheritance is the process of forming a new class from an existing class

that is from the existing class called as base class, new class is formed called as derived

class.

This is a very important concept of object oriented programming since this feature helps

to reduce the code size.

Polymorphism:

The ability to use a method/function in different ways in other words giving different

meaning for method/ functions is called polymorphism. Poly refers many. That is a single

method/function functioning in many ways different upon the usage is called polymorphism.

Java History:

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 3

 Java is a general-purpose object oriented programming language developed by sun

Microsystems of USA in the year 1991. The original name of Java is Oak. Java was designed for the

development of the software for consumer electronic devices like TVs, VCRs, etc.

Introduction: Java is a general purpose programming language. We can develop two types

of Java application. They are:

 (1). Stand alone Java application.

 (2). Web applets.

 Stand alone Java application: Stand alone Java application are programs written in

Java to carry out certain tasks on a certain stand alone system. Executing a stand-alone

Java program contains two phases:

(a) Compiling source coded into bytecode using javac compiler.

(b) Executing the bytecodede program using Java interpreter.

 Java applet: Applets are small Java program developed for Internet application. An

applet located on a distant computer can be downloaded via Internet and execute on local

computer.

Java and Internet:

 Java is strongly associated with Internet. Internet users can use Java to create applet

programs and run them locally using a “Java enabled Browser” such as “hotjave”. They can also use a

Java enabled browser to download an applet locating on any computer any where in the internet and

run them locally.

 Internet users can also set their web-sites containing Java applets that could be used by

other remote users of Internet. The ability of the Java applets to hitch a ride on the information

makes Java a unique programming language for Internet.

Java Environment:

 Java environment includes a large number of development tools and hundreds of classes and

methods. The Java development tools are part of the systems known as Java development kit (JDK)

and the classes and methods are part of the Java standard library known as Java standard Library

(JSL) also known as application program interface (API).

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 4

Java Features:
(1) Compiled and Interpreted

(2) Architecture Neutral/Platform independent and portable

(3) Object oriented

(4) Robust and secure.

(5) Distributed.

(6) Familiar, simple and small.

(7) Multithreaded and interactive.

(8) High performance

(9) Dynamic and extendible.

1. Compiled and Interpreted

Usually a computer language is either compiled or interpreted. Java combines both

these approaches; first java compiler translates source code into bytecode

instructions. Bytecodes are not machine instructions and therefore, in the second

stage, java interpreter generates machine code that can be directly executed by the

machine that is running the java program.

2. Architecture Neutral/Platform independent and portable

The concept of Write-once-run-anywhere (known as the Platform independent) is one

of the important key feature of java language that makes java as the most powerful

language. Not even a single language is idle to this feature but java is closer to this

feature. The programs written on one platform can run on any platform provided the

platform must have the JVM.

3. Object oriented

In java everything is an Object. Java can be easily extended since it is based on the

Object model.java is a pure object oriented language.

4. Robust and secure.

Java is a robust language; Java makes an effort to eliminate error situations

by emphasizing mainly on compile time error checking and runtime checking.

Because of absence of pointers in java we can easily achieve the security.

5. Distributed.

Java is designed for the distributed environment of the internet.java applications can

open and access remote objects on internet as easily as they can do in the local

system.

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 5

6. Familiar, simple and small.

Java is designed to be easy to learn. If you understand the basic concept of

OOP java would be easy to master.

7. Multithreaded and interactive.

With Java's multi-threaded feature it is possible to write programs that can do many

tasks simultaneously. This design feature allows developers to construct smoothly

running interactive applications.

8. High performance

Because of the intermediate bytecode java language provides high performance

9. Dynamic and extendible.

Java is considered to be more dynamic than C or C++ since it is designed to adapt to an

evolving environment. Java programs can carry extensive amount of run-time information

that can be used to verify and resolve accesses to objects on run-time.

Java Development kits(java software:jdk1.6): Java development kit comes with a number of

Java development tools. They are:

 (1) Appletviewer: Enables to run Java applet.

 (2) javac: Java compiler.

 (3) java : Java interpreter.

 (4) javah : Produces header files for use with native methods.

 (5) javap : Java disassembler.

 (6) javadoc : Creates HTML documents for Java source code file.

 (7) jdb : Java debugger which helps us to find the error.

Java Building and running Process:

1. Open the notepad and type the below program

Simple Java program:

 Example:

class Sampleone

 {

 public static void main(String args[])

 {

 System.out.println(“Welcome to JAVA”);

 }

 }

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 6

Description:

(1) Class declaration: “class sampleone” declares a class, which is an object-

oriented construct. Sampleone is a Java identifier that specifies the

name of the class to be defined.

(2) Opening braces: Every class definition of Java starts with opening

braces and ends with matching one.

(3) The main line: the line “ public static void main(String args[]) “ defines a

method name main. Java application program must include this main. This

is the starting point of the interpreter from where it starts executing. A

Java program can have any number of classes but only one class will have

the main method.

(4) Public: This key word is an access specifier that declares the main

method as unprotected and therefore making it accessible to the all

other classes.

(5) Static: Static keyword defines the method as one that belongs to the

entire class and not for a particular object of the class. The main must

always be declared as static.

(6) Void: the type modifier void specifies that the method main does not

return any value.

(7) The println: It is a method of the object out of system class. It is

similar to the printf or cout of c or c++.

2. Save the above program with .java extension, here file name and class name should

be same, ex: Sampleone.java,

3. Open the command prompt and Compile the above program

javac Sampleone.java

 From the above compilation the java compiler produces a bytecode(.class file)

4. Finally run the program through the interpreter

java Sapleone.java

Output of the program:

 Welcome to JAVA

Implementing a Java program: Java program implementation contains three stages.

They are:

1. Create the source code.

2. Compile the source code.

3. Execute the program.

(1) Create the source code:

1. Any editor can be used to create the Java source code.

2. After coding the Java program must be saved in a file having the same name of

the class containing main() method.

3. Java code file must have .Java extension.

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 7

(2) Compile the source code:

1. Compilation of source code will generate the bytecode.

2. JDK must be installed before completion.

3. Java program can be compiled by typing javac <filename>.java

4. It will create a file called <filename>.class containing the bytecode.

(3) Executing the program:

1. Java program once compiled can be run at any system.

2. Java program can be execute by typing Java <filename>

JVM(Java Virtual Machine)

The concept of Write-once-run-anywhere (known as the Platform independent) is

one of the important key feature of java language that makes java as the most powerful

language. Not even a single language is idle to this feature but java is closer to this

feature. The programs written on one platform can run on any platform provided the

platform must have the JVM(Java Virtual Machine). A Java virtual machine (JVM) is a

virtual machine that can execute Java bytecode. It is the code execution component of

the Java software platform.

http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Java_bytecode
http://en.wikipedia.org/wiki/Java_%28software_platform%29

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 8

More Examples:

Java program with multiple lines:

 Example:

 import java.lang.math;

 class squreroot

 {

 public static void main(String args[])

 {

 double x = 5;

 double y;

 y = Math.sqrt(x);

 System.out.println(“Y = “ + y);

 }

 }

Java Program structure: Java program structure contains six stages.

They are:
 (1) Documentation section: The documentation section contains a set of comment

lines describing about the program.

 (2) Package statement: The first statement allowed in a Java file is a package

statement. This statement declares a package name and informs the compiler that the

class defined here belong to the package.

 Package student;

 (3) Import statements: Import statements instruct the compiler to load the

specific class belongs to the mentioned package.

 Import student.test;

 (4) Interface statements: An interface is like a class but includes a group of

method deceleration. This is an optional statement.

 (5) Class definition: A Java program may contain multiple class definition The class

are used to map the real world object.

 (6) Main method class: The main method creates objects of various classes and

establish communication between them. On reaching to the end of main the program

terminates and the control goes back to operating system.

Java command line arguments: Command line arguments are the parameters that

are supplied to the application program at the time when they are invoked. The main()

method of Java program will take the command line arguments as the parameter of the

args[] variable which is a string array.

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 9

Example:

 Class Comlinetest

 {

 public static void main(String args[])

 {

 int count, n = 0;

 string str;

 count = args.length;

 System.out.println (“ Number of arguments :” + count);

 While (n < count)

 {

 str = args[n];

 n = n + 1;

 System.out.println(n + “ : “ + str);

 }

 }

 }

 Run/Calling the program:

javac Comlinetest.java

java Comlinetest Java c cpp fortran

 Output:

 1 : Java

 2 : c

 3 : cpp

 4 : fortran

Java API:
Java standard library includes hundreds of classes and methods grouped into several

functional packages. Most commonly used packages are:

(a) Language support Package.

(b) Utilities packages.

(c) Input/output packages

(d) Networking packages

(e) AWT packages.

(f) Applet packages.

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 10

Java Tokens

Constants: Constants in Java refers to fixed value that do not change during the

execution of program. Java supported constants are given below:

(1) Integer constants: An integer constant refers to a sequence of digits. There

are three types of integer namely decimal integer, octal integer and

hexadecimal integer. For example: 123 -321

(2) Real constants: Any real world number with a decimal point is known as real

constants. For example : 0.0064 12e-2 etc.

(3) Single character constants: A single character constant contains a single

character enclosed with in a pair of single quotes. For ex: ‘m’ ‘5’

(4) String constants : A string constant is a sequence of character enclosed with

double quotes. For ex: “hello” “java” etc.

(5) Backslash character constants: Java supports some backslash constants those

are used in output methods. They are :

1. \b Backspace

2. \f Form feed

3. \n New Line

4. \r Carriage return.

5. \t Horizontal tab.

6. \’ Single quotes.

7. \” Double quotes

8. \\ Back slash

Data Types in Java:

In java, data types are classified into two catagories :

1. Primitive Data type

2. Non-Primitive Data type

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 11

Data Type Default Value Default size
boolean False 1 bit
char '\u0000' 2 byte
byte 0 1 byte
short 0 2 byte
int 0 4 byte
long 0L 8 byte
float 0.0f 4 byte
double 0.0d 8 byte

Integers Type: Java provides four types of Integers. They are byte, sort, Int, long. All

these are sign, positive or negative.

Byte: The smallest integer type is byte. This is a signed 8-bit type that has a range

from –128 to 127. Bytes are useful for working with stream or data from a network or file.

They are also useful for working with raw binary data. A byte variable is declared with the

keyword “byte”.

 byte b, c;

Short: Short is a signed 16-bit type. It has a range from –32767 to 32767. This

data type is most rarely used specially used in 16 bit computers. Short variables are

declared using the keyword short.

 short a, b;

int: The most commonly used Integer type is int. It is signed 32 bit type has a

range from –2147483648 to 2147483648.

 int a, b, c;

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 12

long: Long is a 64 bit type and useful in all those occasions where Int is not enough.

The range of long is very large.

 long a, b;

Floating point types: Floating point numbers are also known as real numbers are useful

when evaluating a expression that requires fractional precision. The two floating-point

data types are float and double.

float: The float type specifies a single precision value that uses 32-bit storage.

Float keyword is used to declare a floating point variable.

 float a, b;

double: Double DataTips is declared with double keyword and uses 64-bit value.

Characters: The Java data type to store characters is char. char data type of Java uses

Unicode to represent characters. Unicode defines a fully international character set that

can have all the characters of human language. Java char is 16-bit type. The range is 0 to

65536.

Boolean: Java has a simple type called boolean for logical values. It can have only one of

two possible values. They are true or false.

Key Words: Java program is basically a collection of classes. A class is defined by a set of

declaration statements and methods containing executable statements. Most statement

contains an expression that contains the action carried out on data. The compiler

recognizes the tokens for building up the expression and statements. Smallest individual

units of programs are known as tokens. Java language includes five types of tokens. They

are

 (a) Reserved Keyword

 (b) Identifiers

 (c) Literals.

 (d) Operators

 (e) Separators.

(1) Reserved keyword: Java language has 60 words as reserved keywords. They

implement specific feature of the language. The keywords combined with

operators and separators according to syntax build the Java language.

(2) Identifiers: Identifiers are programmer-designed token used for naming

classes methods variable, objects, labels etc. The rules for identifiers are

1. They can have alphabets, digits, dollar sign and underscores.

2. They must not begin with digit.

3. Uppercase and lower case letters are distinct.

4. They can be any lengths.

5. Name of all public method starts with lowercase.

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 13

6. In case of more than one word starts with uppercase in next word.

7. All private and local variables use only lowercase and underscore.

8. All classes and interfaces start with leading uppercases.

9. Constant identifier uses uppercase letters only.

(3) Literals: Literals in Java are sequence of characters that represents constant

values to be stored in variables. Java language specifies five major types of

Literals. They are:

1. Integer Literals.

2. Floating-point Literals.

3. Character Literals.

4. String Literals.

5. Boolean Literals.

(4) Operators: An operator is a symbol that takes one or more arguments and

operates on them to produce an result.

(5) Separators: Separators are the symbols that indicates where group of code are

divided and arranged. Some of the operators are:

1. Parenthases()

2. Braces{ }

3. Brackets []

4. Semicolon ;

5. Comma ,

6. Period .

Java character set: The smallest unit of Java language are its character set used to

write Java tokens. This character are defined by unicode character set that tries to

create character for a large number of character worldwide.

 The Unicode is a 16-bit character coding system and currently supports 34,000

defined characters derived from 24 languages of worldwide.

Variables: A variable is an identifier that denotes a storage location used to store a data

value. A variable may have different value in the different phase of the program. To

declare one identifier as a variable there are certain rules. They are:

1. They must not begin with a digit.

2. Uppercase and lowercase are distinct.

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 14

3. It should not be a keyword.

4. White space is not allowed.

Declaring Variable: One variable should be declared before using. The syntax is

 Data-type variblaname1, variablename2,. variablenameN;

Initializing a variable: A variable can be initialize in two ways. They are

(a) Initializing by Assignment statements.

(b) Initializing by Read statements.

Initializing by assignment statements: One variable can be initialize using

assignment statements. The syntax is :

 Variable-name = Value;

Initialization of this type can be done while declaration.

Initializing by read statements: Using read statements we can get the values in

the variable.

Scope of Variable: Java variable is classified into three types. They are

(a) Instance Variable

(b) Local Variable

(c) Class Variable

Instance Variable: Instance variable is created when objects are instantiated and

therefore they are associated with the object. They take different values for each

object.

Class Variable: Class variable is global to the class and belongs to the entire set of

object that class creates. Only one memory location is created for each class

variable.

Local Variable: Variable declared inside the method are known as local variables.

Local variables are also can be declared with in program blocks. Program blocks can

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 15

be nested. But the inner blocks cannot have same variable that the outer blocks are

having.

Arrays in Java

Array which stores a fixed-size sequential collection of elements of the same type.

An array is used to store a collection of data, but it is often more useful to think of an

array as a collection of variables of the same type.

Declaring Array Variables:

To use an array in a program, you must declare a variable to reference the array, and you

must specify the type of array the variable can reference. Here is the syntax for

declaring an array variable:

 dataType[] arrayRefVar; or dataType arrayRefVar[];

Example:

The following code snippets are examples of this syntax:

 int[] myList; or int myList[];

Creating Arrays:

You can create an array by using the new operator with the following syntax:

 arrayRefVar = new dataType[arraySize];

The above statement does two things:

 It creates an array using new dataType[arraySize];

 It assigns the reference of the newly created array to the variable arrayRefVar.

Declaring an array variable, creating an array, and assigning the reference of the array to

the variable can be combined in one statement, as shown below:

 dataType[] arrayRefVar = new dataType[arraySize];

Alternatively you can create arrays as follows:

 dataType[] arrayRefVar = {value0, value1, ..., valuek};

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 16

The array elements are accessed through the index. Array indices are 0-based; that is,

they start from 0 to arrayRefVar.length-1.

Example:

Following statement declares an array variable, myList, creates an array of 10 elements of

double type and assigns its reference to myList:

 double[] myList = new double[10];

Following picture represents array myList. Here, myList holds ten double values and the

indices are from 0 to 9.

Processing Arrays:

When processing array elements, we often use either for loop or foreach loop because all

of the elements in an array are of the same type and the size of the array is known.

Example:

Here is a complete example of showing how to create, initialize and process arrays:

public class TestArray

 {

 public static void main(String[] args)

 {

 double[] myList = {1.9, 2.9, 3.4, 3.5};

 // Print all the array elements

 for (int i = 0; i < myList.length; i++) {

 System.out.println(myList[i] + " ");

 }

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 17

 // adding all elements

 double total = 0;

 for (int i = 0; i < myList.length; i++)

 {

 total += myList[i];

 }

 System.out.println("Total is " + total);

 // Finding the largest element

 double max = myList[0];

 for (int i = 1; i < myList.length; i++)

 {

 if (myList[i] > max)

 max = myList[i];

 }

 System.out.println("Max is " + max);

 }

}

This would produce the following result:

1.9

2.9

3.4

3.5

Total is 11.7

Max is 3.5

The foreach Loop

JDK 1.5 introduced a new for loop known as for-each loop or enhanced for loop, which

enables you to traverse the complete array sequentially without using an index variable.

Example:

The following code displays all the elements in the array myList:

public class TestArray {

 public static void main(String[] args) {

 double[] myList = {1.9, 2.9, 3.4, 3.5};

 // Print all the array elements

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 18

 for (double element: myList)

 {

 System.out.println(element);

 }

 }

}

This would produce the following result:

1.9

2.9

3.4

3.5

Type Casting: It is often necessary to store a value of one type into the variable of

another type. In these situations the value that to be stored should be casted to

destination type. Type casting can be done in two ways.

Type Casting

Assigning a value of one type to a variable of another type is known as Type Casting.

Example :

int x = 10;

byte y = (byte)x;

In Java, type casting is classified into two types,

 Widening Casting(Implicit)

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 19

 Narrowing Casting(Explicitly done)

Widening or Automatic type converion

Automatic Type casting take place when,

 the two types are compatible

 the target type is larger than the source type

Example :

public class Test

{

 public static void main(String[] args)

 {

 int i = 100;

 long l = i; //no explicit type casting required

 float f = l; //no explicit type casting required

 System.out.println("Int value "+i);

 System.out.println("Long value "+l);

 System.out.println("Float value "+f);

 }

}

Output :

Int value 100

Long value 100

Float value 100.0

Narrowing or Explicit type conversion

When you are assigning a larger type value to a variable of smaller type, then you need to

perform explicit type casting.

Example :

public class Test

{

 public static void main(String[] args)

 {

 double d = 100.04;

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 20

 long l = (long)d; //explicit type casting required

 int i = (int)l; //explicit type casting required

 System.out.println("Double value "+d);

 System.out.println("Long value "+l);

 System.out.println("Int value "+i);

 }

}

Output :

Double value 100.04

Long value 100

Int value 100

Java operators:

Java operators can be categorized into following ways:

(1) Arithmetic operator

(2) Relational operator

(3) Logical operator

(4) Assignment operator

(5) Increment and decrement operator

(6) Conditional operator

(7) Bitwise operator

(8) Special operator.

Arithmetic operator: The Java arithmetic operators are:

 + : Addition

- : Subtraction

 : Multiplication

/ : Division

% : Remainder

 Relational Operator:

 < : Is less then

 <= : Is less then or equals to

 : Is greater then

>= : Is grater then or equals to

== : Is equals to

!= : Is not equal to

 Logical Operators:

 && : Logical AND

 || : Logical OR

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 21

 ! : Logical NOT

 Assignment Operator:

 += : Plus and assign to

 -= : Minus and assign to

 *= : Multiply and assign to.

/= : Divide and assign to.

 %= : Mod and assign to.

 = : Simple assign to.

 Increment and decrement operator:

 ++ : Increment by One {Pre/Post)

 -- : Decrement by one (pre/post)

 Conditional Operator: Conditional operator is also known as ternary operator.

The conditional operator is :

 Exp1 ? exp2 : exp3

 Bitwise Operator: Bit wise operator manipulates the data at Bit level. These operators are

used for tasting the bits. The bit wise operators are:

 & : Bitwise AND

 ! : Bitwise OR

 ^ : Bitwise exclusive OR

~ : One’s Complement.

 << : Shift left.

 >> : Shift Right.

 >>> : Shift right with zero fill

 Example:

Bitwise operator works on bits and performs bit-by-bit operation. Assume if a =

60; and b = 13; now in binary format they will be as follows:

a = 0011 1100

b = 0000 1101

 a&b = 0000 1100

 a|b = 0011 1101

 a^b = 0011 0001

 ~a = 1100 0011

<<
Binary Left Shift Operator. The left operands value is moved left by

the number of bits specified by the right operand.

A << 2 will give 240

which is 1111 0000

>>
Binary Right Shift Operator. The left operands value is moved right

by the number of bits specified by the right operand.

A >> 2 will give 15 which

is 1111

>>>

Shift right zero fill Operator. The left operands value is moved right

by the number of bits specified by the right operand and shifted values

are filled up with zeros.

A >>>2 will give 15

which is 0000 1111

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 22

Special Operator:

 Instanceof operator: The instanceof operator is a object refrence operator

that returns true if the object on the right hand side is an instance of the class given in

the left hand side. This operator allows us to determine whether the object belongs to the

particular class or not.

 Person instanceof student

The expression is true if the person is a instance of class student.

 Dot operator:The dot(.) operator is used to access the instance variable or

method of class object.

Example Programs

class arithmeticop

{

 public static void main(String args[])

 {

 float a=20.5f;

 float b=6.4f;

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 System.out.println("a + b = " + (a+b));

 }

}

class Bitlogic

{

 public static void main(String args[])

 {

String binary[] = {"0000","0001","0010","0011","0100","0101","0110","0111","1000","1001","1010",

 "1011","1100","1101","1110","1111"};

int a = 3;

 int b = 6;

 int c = a | b;

 int d = a & b;

 int e = a ^ b;

 int f = (~a&b)|(a & ~b);

 System.out.println("a or b :"+binary[c]);

 System.out.println("a and b : "+binary[d]);

 System.out.println("a xor b : "+binary[e]);

 System.out.println("(~a&b)|(a & ~b) : "+binary[f]);

 }

}

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 23

Control Statements
Decision making statements:

1.Simple If statement:

 The general form of single if statement is :

 If (test expression)

 {

 statement-Block;

 }

 statement-Blocks;

 2. If- Else statement:

 The general form of if-else statement is

 If (test expression)

 {

 statement-block1;

 }

 else

 {

 statement-block2

 }

 3. Else-if statement:

 The general form of else-if statement is:

 If (test condition)

 {

 statement-block1;

 }

 else if(test expression2)

 {

 statement-block2;

 }

 else

 {

 statement block3;

 }

 4. Nested if – else statement:

 The general form of nested if-else statement is:

 If (test condition)

 {

 if (test condition)

 {

 statement block1;

 }

 else

 {

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 24

 statement block2;

 }

 }

 else

 {

 statement block 3

 }

 5. The switch statements:

 The general form of switch statement is:

 Switch (expression)

 {

 case value-1:

 block-1;

 break;

 case value-2:

 block-2;

 break;

 default:

 default block;

 break;
 }

Loops In Java: In looping a sequence of statements are executed until a number of time or until

some condition for the loop is being satisfied. Any looping process includes following four steps:

(1) Setting an initialization for the counter.

(2) Execution of the statement in the loop

(3) Test the specified condition for the loop.

(4) Incrementing the counter.

Java includes three loops. They are:

(1) While loop:

The general structure of a while loop is:

 Initialization

 While (test condition)

 {

 body of the loop

 }

(2) Do loop:

The general structure of a do loop is :

 Initialization

 do

 {

 Body of the loop;

 }

 while (test condition);

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 25

(3) For loop :

The general structure of for loop is:

 For (Initialization ; Test condition ; Increment)

 {

 body of the loop;

 }

More about Loops:
 Break Statement: Using “break” statement we can jump out from a loop. The “break”

statement will cause termination of the loop.

 Continue statement: The “continue” statement will cause skipping some part of the loop.

 Labeled loops: We can put a label for the loop. The label can be any Java recognized

keyword. The process of giving label is

 Label-name : while (condition)

 {

 Body ;

 }

Example Program for label break statement

class BreakTest

{

 public static void main(String args[])

 {

 boolean t= true;

 first:

 {

 second:

 {

 third:

 {

 System.out.println("Third stage");

 if(t)

 break second;

 System.out.println("Third stage complete");

 }

 System.out.println("Second stage");

 }

 System.out.println("First stage");

 }

 }

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 26

}

Example Program for continue statement

class ContinueTest

{

 public static void main(String args[])

 {

 outer: for(int i=0;i<10;i++)

 {

 for(int j = 0; j<10;j++)

 {

 if(j>i)

 {

 System.out.println("\n");

 continue outer;

 }

 System.out.print(" "+(i*j));

 }

 }

 //System.out.println(" ");

 }

}

Example Program for return statement

class ReturnTest

{

 public static void main(String args[])

 {

 boolean t = true;

 System.out.println("Before the return");

 if(t) return;

 System.out.println("After return");

 }

}

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 27

Java Access Specifiers/Modifiers

Private Access Modifier - private:

Methods, Variables and Constructors that are declared private can only be

accessed within the declared class itself.

Private access modifier is the most restrictive access level. Class and interfaces cannot be

private.

Using the private modifier is the main way that an object encapsulates itself and hides data

from the outside world.

Public Access Modifier - public:

A class, method, constructor, interface etc declared public can be accessed from

any other class. Therefore fields, methods, blocks declared inside a public class can be

accessed from any class belonging to the Java Universe.

However if the public class we are trying to access is in a different package, then the

public class still need to be imported.

Because of class inheritance, all public methods and variables of a class are inherited by

its subclasses.

Protected Access Modifier - protected:

Variables, methods and constructors which are declared protected in a superclass

can be accessed only by the subclasses in other package or any class within the package of

the protected members' class.

The protected access modifier cannot be applied to class and interfaces. Methods, fields

can be declared protected, however methods and fields in a interface cannot be declared

protected.

Default Access Modifier - No keyword:

Default access modifier means we do not explicitly declare an access modifier for a

class, field, method, etc.A variable or method declared without any access control

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 28

modifier is available to any other class in the same package. The fields in an interface are

implicitly public static final and the methods in an interface are by default public.

Advantages of JAVA:

• It is an open source, so users do not have to struggle with heavy license fees each year.

• Platform independent.

• Java API's can easily be accessed by developers.

• Java perform supports garbage collection, so memory management is automatic.

• Java always allocates objects on the stack.

• Java embraced the concept of exception specification.

• Multi-platform support language and support for web-services.

• Using JAVA we can develop dynamic web applications.

• It allows you to create modular programs and reusable codes.

Questions

1. List & explain the characteristics features of java language. (10 Marks)

2. Briefly discuss about the java development tool kit. (07 Marks)

3. Explain the process of building and running java application program (05Marks).

4. Explain the following: a)JVM b)Type casting. (05Marks)

5. Class Example{

 public static void main(String s[]) {

 int a;

 for(a=0;a<3;a++){

 int b=-1;

 System.out.println(“ “+b);

 b=50;

 System.out.println(“ “+b);

http://www.articlesbase.com/programming-articles/java-and-its-advantages-736621.html

Object Oriented Concepts-Module 2 10CS44

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology Page 29

 }

 }}

What is the output of the above code? If you insert another ‘int b’ outside the for loop

what is the output. (05Marks)

6. With example explain the working of >> and >>>. (06Marks)

7. What is the default package & default class in java? (02Marks)

8. Write a program to calculate the average among the elements {4, 5, 7, 8}, using for

each in java. How for each is different from for loop? (07Marks)

9. Briefly explain any six key consideration used for designing JAVA

language.(06Marks)

10. Discuss three OOP principles. (06Marks)

11. How compile once and run anywhere is implemented in JAVA language? (04Marks)

12. List down various operators available in JAVA language. (04Marks)

13. What is polymorphism?explain with an example. (04Marks)

14. Explain the different access specifiers in java, with examples. (06Marks)

15. a)int num,den;

 if(den!=0&&num|den>2)

 {

 }

b)int num,den;

 if(den!=0&num|den==2)

 {

 }

Compare & explain the above two snippets. (02Marks)

16. Write a note on object instantiation. (02Marks)

17. Explain type casting in JAVA

18. With a program explain break, continue and return keyword in java

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 1

UNIT-3: CLASSES, INHERITANCE, EXCEPTIONS,

PACKAGES AND INTERFACES

Beautiful thought: “You have to grow from the inside out. None can teach you, none

can make you spiritual. There is no other teacher but your own soul.” ― Swami

Vivekananda

Syllabus:

Classes, Inheritance, Exceptions, Packages and Interfaces:

 Classes: Classes fundamentals; Declaring objects; Constructors, this

keyword, garbage collection.

Inheritance: inheritance basics, using super, creating multi level

hierarchy, method overriding.

Exception handling: Exception handling in Java. Packages, Access

Protection, Importing Packages, Interfaces.

.

https://www.goodreads.com/author/show/80592.Swami_Vivekananda
https://www.goodreads.com/author/show/80592.Swami_Vivekananda

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 2

1. CLASSES:

Definition

A class is a template for an object, and defines the data fields and methods

of the object. The class methods provide access to manipulate the data fields. The

“data fields” of an object are often called “instance variables.”

Example Program:

Program to calculate Area of Rectangle

class Rectangle

{

 int length; //Data Member or instance Variables

 int width;

 void getdata(int x,int y) //Method

 {

 length=x;

 width=y;

 }

 int rectArea() //Method

 {

 return(length*width);

 }

}

class RectangleArea

{

 public static void main(String args[])

 {

 Rectangle rect1=new Rectangle(); //object creation

rect1.getdata(10,20); //calling methods using object with dot(.)

 int area1=rect1.rectArea();

 System.out.println("Area1="+area1);

 }

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 3

 After defining a class, it can be used to create objects by instantiating the

class. Each object occupies some memory to hold its instance variables (i.e.

its state).

 After an object is created, it can be used to get the desired functionality

together with its class.

Creating instance of a class/Declaring objects:

Rectangle rect1=new Rectangle()

Rectangle rect2=new Rectangle()

 The above two statements declares an object rect1 and rect2 is of type

Rectangle class using new operator , this operator dynamically allocates

memory for an object and returns a refernce to it.in java all class objects

must be dynamically allocated.

We can also declare the object like this:

Rectangle rect1; // declare reference to object.

rect1=new Rectangle() // allocate memory in the Rectangle object.

The Constructors:

 A constructor initializes an object when it is created. It has the same

name as its class and is syntactically similar to a method. However,

constructors have no explicit return type.

 Typically, you will use a constructor to give initial values to the

instance variables defined by the class, or to perform any other

startup procedures required to create a fully formed object.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 4

 All classes have constructors, whether you define one or not, because

Java automatically provides a default constructor that initializes all

member variables to zero. However, once you define your own

constructor, the default constructor is no longer used.

Example:

Here is a simple example that uses a constructor:

// A simple constructor.

class MyClass

{

 int x;

 // Following is the constructor

 MyClass()

 {

 x = 10;

 }

}

You would call constructor to initialize objects as follows:

class ConsDemo

{

 public static void main(String args[])

 {

 MyClass t1 = new MyClass();

 MyClass t2 = new MyClass();

 System.out.println(t1.x + " " + t2.x);

 }

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 5

Parameterized Constructor:

 Most often you will need a constructor that accepts one or

more parameters. Parameters are added to a constructor in the

same way that they are added to a method: just declare them

inside the parentheses after the constructor's name.

Example:

Here is a simple example that uses a constructor:

// A simple constructor.

class MyClass

{

 int x;

 // Following is the Parameterized constructor

 MyClass(int i)

 {

 x = 10;

 }

}

You would call constructor to initialize objects as follows:

class ConsDemo

{

 public static void main(String args[])

 {

 MyClass t1 = new MyClass(10);

 MyClass t2 = new MyClass(20);

 System.out.println(t1.x + " " + t2.x);

 }

}

This would produce following result:

10 20

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 6

static keyword

The static keyword is used in java mainly for memory management.

We may apply static keyword with variables, methods, blocks and nested

class. The static keyword belongs to the class than instance of the class.

The static can be:

1. variable (also known as class variable)

2. method (also known as class method)

3. block

4. nested class

static variable

Example Program without static variable

In this example, we have created an instance variable named count

which is incremented in the constructor. Since instance variable gets the

memory at the time of object creation, each object will have the copy of the

instance variable, if it is incremented, it won't reflect to other objects. So

each objects will have the value 1 in the count variable.

class Counter

{

int count=0;//will get memory when instance is created

 Counter()

{

count++;

System.out.println(count);

}

}

Class MyPgm

{

public static void main(String args[])

{

Counter c1=new Counter();

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 7

Counter c2=new Counter();

Counter c3=new Counter();

 }

}

Output: 1

 1

 1

Example Program with static variable

As we have mentioned above, static variable will get the memory only

once, if any object changes the value of the static variable, it will retain its

value.

class Counter

{

static int count=0;//will get memory only once and retain its value

Counter()

{

count++;

System.out.println(count);

}

 }

Class MyPgm

{

public static void main(String args[])

{

Counter c1=new Counter();

Counter c2=new Counter();

Counter c3=new Counter();

 }

}

Output:1

 2

 3

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 8

static method

If you apply static keyword with any method, it is known as static method

 A static method belongs to the class rather than object of a class.

 A static method can be invoked without the need for creating an instance

of a class.

 static method can access static data member and can change the value of

it.

//Program to get cube of a given number by static method

 class Calculate

{

 static int cube(int x)

{

 return x*x*x;

 }

 Class MyPgm

{

 public static void main(String args[])

{

 //calling a method directly with class (without creation of object)

int result=Calculate.cube(5);

 System.out.println(result);

 }

}

Output:125

this keyword

 this keyword can be used to refer current class instance variable.

 If there is ambiguity between the instance variable and parameter,

this keyword resolves the problem of ambiguity.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 9

Understanding the problem without this keyword

Let's understand the problem if we don't use this keyword by the example

given below:

class student

{

 int id;

 String name;

 student(int id,String name)

{

 id = id;

 name = name;

 }

 void display()

{

System.out.println(id+" "+name);

}

}

Class MyPgm

{

public static void main(String args[])

{

 student s1 = new student(111,"Anoop");

 student s2 = new student(321,"Arayan");

 s1.display();

 s2.display();

 }

}

Output: 0 null

 0 null

In the above example, parameter (formal arguments) and instance variables are

same that is why we are using this keyword to distinguish between local variable and

instance variable.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 10

Solution of the above problem by this keyword

//example of this keyword

class Student

{

 int id;

 String name;

 student(int id,String name)

{

 this.id = id;

 this.name = name;

 }

 void display()

{

System.out.println(id+" "+name);

 }

}

 Class MyPgm

 {

public static void main(String args[])

{

 Student s1 = new Student(111,"Anoop");

 Student s2 = new Student(222,"Aryan");

 s1.display();

 s2.display();

}

 }

Output111 Anoop

 222 Aryan

Inner class

 It has access to all variables and methods of Outer class and may refer to

them directly. But the reverse is not true, that is, Outer class cannot

directly access members of Inner class.

 One more important thing to notice about an Inner class is that it can be

created only within the scope of Outer class. Java compiler generates an

error if any code outside Outer class attempts to instantiate Inner class.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 11

Example of Inner class

class Outer

{

 public void display()

 {

 Inner in=new Inner();

 in.show();

 }

 class Inner

 {

 public void show()

 {

 System.out.println("Inside inner");

 }

 }

}

class Test

{

 public static void main(String[] args)

 {

 Outer ot=new Outer();

 ot.display();

 }

}

Output:

Inside inner

Garbage Collection

In Java destruction of object from memory is done automatically by the JVM.

When there is no reference to an object, then that object is assumed to be no

longer needed and the memories occupied by the object are released. This

technique is called Garbage Collection. This is accomplished by the JVM.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 12

Can the Garbage Collection be forced explicitly?

No, the Garbage Collection cannot be forced explicitly. We may request JVM for

garbage collection by calling System.gc() method. But this does not guarantee that

JVM will perform the garbage collection.

Advantages of Garbage Collection

1. Programmer doesn't need to worry about dereferencing an object.

2. It is done automatically by JVM.

3. Increases memory efficiency and decreases the chances for memory leak.

finalize() method

Sometime an object will need to perform some specific task before it is destroyed

such as closing an open connection or releasing any resources held. To handle such

situation finalize() method is used. finalize() method is called by garbage collection

thread before collecting object. It’s the last chance for any object to perform

cleanup utility.

Signature of finalize() method

protected void finalize()

{

 //finalize-code

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 13

gc() Method

gc() method is used to call garbage collector explicitly. However gc() method does

not guarantee that JVM will perform the garbage collection. It only requests the

JVM for garbage collection. This method is present in System and Runtime class.

Example for gc() method

public class Test

{

 public static void main(String[] args)

 {

 Test t = new Test();

 t=null;

 System.gc();

 }

 public void finalize()

 {

 System.out.println("Garbage Collected");

 }

}

Output :

Garbage Collected

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 14

Inheritance:

 As the name suggests, inheritance means to take something that is

already made. It is one of the most important features of Object

Oriented Programming. It is the concept that is used for reusability

purpose.

 Inheritance is the mechanism through which we can derive classes

from other classes.

 The derived class is called as child class or the subclass or we can say

the extended class and the class from which we are deriving the

subclass is called the base class or the parent class.

 To derive a class in java the keyword extends is used. The following

kinds of inheritance are there in java.

Types of Inheritance

1. Single level/Simple Inheritance

2. Multilevel Inheritance

3. Multiple Inheritance (Java doesn’t support Multiple inheritance

but we can achieve this through the concept of Interface.)

Pictorial Representation of Simple and Multilevel Inheritance

Simple Inheritance Multilevel Inheritance

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 15

Single level/Simple Inheritance

 When a subclass is derived simply from its parent class then this

mechanism is known as simple inheritance. In case of simple

inheritance there is only a sub class and its parent class. It is also

called single inheritance or one level inheritance.

 Example

class A

{

 int x;

 int y;

 int get(int p, int q)

 {

 x=p;

 y=q;

 return(0);

 }

 void Show()

 {

 System.out.println(x);

 }

}

class B extends A

{

 public static void main(String args[])

 {

 A a = new A();

 a.get(5,6);

 a.Show();

 }

 void display()

 {

 System.out.println("y"); //inherited “y” from class A

 }

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 16

 The syntax for creating a subclass is simple. At the beginning of your class

declaration, use the extends keyword, followed by the name of the class to

inherit from:

class A

{

}

class B extends A //B is a subclass of super class A.

{

}

Multilevel Inheritance

 When a subclass is derived from a derived class then this mechanism

is known as the multilevel inheritance.

 The derived class is called the subclass or child class for it's parent

class and this parent class works as the child class for it's just above

(parent) class.

 Multilevel inheritance can go up to any number of level.

class A

{

 int x;

 int y;

 int get(int p, int q)

 {

 x=p;

 y=q;

 return(0);

 }

 void Show()

 {

 System.out.println(x);

 }

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 17

class B extends A

{

 void Showb()

 {

 System.out.println("B");

 }

}

class C extends B

{

 void display()

 {

 System.out.println("C");

 }

 public static void main(String args[])

 {

 A a = new A();

 a.get(5,6);

 a.Show();

 }

}

OUTPUT

5

Multiple Inheritance

 The mechanism of inheriting the features of more than one base class into a

single class is known as multiple inheritance. Java does not support multiple

inheritance but the multiple inheritance can be achieved by using the

interface.

 Here you can derive a class from any number of base classes. Deriving a

class from more than one direct base class is called multiple inheritance.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 18

Java does not support multiple Inheritance

In Java Multiple Inheritance can be achieved through use of Interfaces by

implementing more than one interfaces in a class.

super keyword

 The super is java keyword. As the name suggest super is used to access the

members of the super class. It is used for two purposes in java.

 The first use of keyword super is to access the hidden data variables of the

super class hidden by the sub class.

Example: Suppose class A is the super class that has two instance variables

as int a and float b. class B is the subclass that also contains its own data members

named a and b. then we can access the super class (class A) variables a and b inside

the subclass class B just by calling the following command.

super.member;

 Here member can either be an instance variable or a method. This form of

super most useful to handle situations where the local members of a

subclass hides the members of a super class having the same name. The

following example clarifies all the confusions.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 19

Example:

class A

{

 int a;

 float b;

 void Show()

 {

 System.out.println("b in super class: " + b);

 }

}

class B extends A

{

 int a;

 float b;

 B(int p, float q)

 {

 a = p;

 super.b = q;

 }

 void Show()

 {

 super.Show();

 System.out.println("b in super class: " + super.b);

 System.out.println("a in sub class: " + a);

 }

}

 class Mypgm

{

 public static void main(String[] args)

 {

 B subobj = new B(1, 5);

 subobj.Show();

 }

}

OUTPUT

b in super class: 5.0

b in super class: 5.0

a in sub class: 1

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 20

Use of super to call super class constructor: The second use of the keyword

super in java is to call super class constructor in the subclass. This functionality can

be achieved just by using the following command.

super(param-list);

 Here parameter list is the list of the parameter requires by the constructor

in the super class. super must be the first statement executed inside a

super class constructor. If we want to call the default constructor then we

pass the empty parameter list. The following program illustrates the use of

the super keyword to call a super class constructor.

Example:

class A

{

 int a;

 int b;

 int c;

 A(int p, int q, int r)

 {

 a=p;

 b=q;

 c=r;

 }

}

class B extends A

{

 int d;

 B(int l, int m, int n, int o)

 {

 super(l,m,n);

 d=o;

 }

 void Show()

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 21

 {

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 System.out.println("c = " + c);

 System.out.println("d = " + d);

 }

}

class Mypgm

{

 public static void main(String args[])

 {

 B b = new B(4,3,8,7);

 b.Show();

 }

 }

OUTPUT

a = 4

b = 3

c = 8

d = 7

Method Overriding

 Method overriding in java means a subclass method overriding a super class

method.

 Superclass method should be non-static. Subclass uses extends keyword to

extend the super class. In the example class B is the sub class and class A

is the super class. In overriding methods of both subclass and superclass

possess same signatures. Overriding is used in modifying the methods of

the super class. In overriding return types and constructor parameters of

methods should match.

Below example illustrates method overriding in java.

Example:

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 22

class A

{

 int i;

 A(int a, int b)

 {

 i = a+b;

 }

 void add()

 {

 System.out.println("Sum of a and b is: " + i);

 }

}

class B extends A

{

 int j;

 B(int a, int b, int c)

 {

 super(a, b);

 j = a+b+c;

 }

 void add()

 {

 super.add();

 System.out.println("Sum of a, b and c is: " + j);

 }

}

class MethodOverriding

{

 public static void main(String args[])

 {

 B b = new B(10, 20, 30);

 b.add();

 }

}

OUTPUT

Sum of a and b is: 30

Sum of a, b and c is: 60

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 23

Method Overloading

 Two or more methods have the same names but different argument lists.

The arguments may differ in type or number, or both. However, the return

types of overloaded methods can be the same or different is called method

overloading. An example of the method overloading is given below:

Example:

class MethodOverloading

{

 int add(int a,int b)

 {

 return(a+b);

 }

 float add(float a,float b)

 {

 return(a+b);

 }

 double add(int a, double b,double c)

 {

 return(a+b+c);

 }

}

class MainClass

{

 public static void main(String arr[])

 {

 MethodOverloading mobj = new MethodOverloading ();

 System.out.println(mobj.add(50,60));

 System.out.println(mobj.add(3.5f,2.5f));

 System.out.println(mobj.add(10,30.5,10.5));

 }

}

OUTPUT

110

6.0

51.0

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 24

Abstract Class

 abstract keyword is used to make a class abstract.

 Abstract class can’t be instantiated with new operator.

 We can use abstract keyword to create an abstract method; an abstract

method doesn’t have body.

 If classes have abstract methods, then the class also needs to be made

abstract using abstract keyword, else it will not compile.

 Abstract classes are used to provide common method implementation to all

the subclasses or to provide default implementation.

Example Program:

abstract Class AreaPgm

{

 double dim1,dim2;

 AreaPgm(double x,double y)

 {

 dim1=x;

 dim2=y;

 }

 abstract double area();

}

class rectangle extends AreaPgm

{

 rectangle(double a,double b)

 {

 super(a,b);

 }

 double area()

 {

 System.out.println("Rectangle Area");

 return dim1*dim2;

 }

}

class triangle extends figure

{

 triangle(double x,double y)

 {

 super(x,y);

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 25

 }

 double area()

 {

 System.out.println("Traingle Area");

 return dim1*dim2/2;

 }

}

class MyPgm

{

 public static void main(String args[])

 {

AreaPgm a=new AreaPgm(10,10); // error, AreaPgm is a abstract class.

 rectangle r=new rectangle(10,5);

 System.out.println("Area="+r.area());

 triangle t=new triangle(10,8);

 AreaPgm ar;

 ar=obj;

 System.out.println("Area="+ar.area());

 }

}

final Keyword In Java

The final keyword in java is used to restrict the user. The final keyword can be

used in many context. Final can be:

1. variable

2. method

3. class

1) final variable: If you make any variable as final, you cannot change the value of

final variable(It will be constant).

Example:There is a final variable speedlimit, we are going to change the value of

this variable, but It can't be changed because final variable once assigned a value

can never be changed.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 26

class Bike

{

 final int speedlimit=90;//final variable

 void run()

{

 speedlimit=400;

 }

}

Class MyPgm

{

 public static void main(String args[])

{

 Bike obj=new Bike();

 obj.run();

 }

}

Output:Compile Time Error

2) final method: If you make any method as final, you cannot override it.

Example:

class Bike

{

final void run()

{

System.out.println("running");

}

}

class Honda extends Bike

{

void run()

{

System.out.println("running safely with 100kmph");

}

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 27

Class MyPgm

{

public static void main(String args[])

{

Honda honda= new Honda();

honda.run();

}

}

Output:Compile Time Error

3) final class:If you make any class as final, you cannot extend it.

Example:

final class Bike

{

}

class Honda extends Bike

{

 void run()

 {

System.out.println("running safely with 50kmph");

 }

}

Class MyPgm

{

 public static void main(String args[])

{

 Honda honda= new Honda();

 honda.run();

 }

}

Output:Compile Time Error

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 28

Exception handling:

Introduction

An Exception, It can be defined as an abnormal event that occurs during program

execution and disrupts the normal flow of instructions. The abnormal event can be

an error in the program.

Errors in a java program are categorized into two groups:

1. Compile-time errors occur when you do not follow the syntax of a

programming language.

2. Run-time errors occur during the execution of a program.

Concepts of Exceptions

An exception is a run-time error that occurs during the exception of a java

program.

Example: If you divide a number by zero or open a file that does not exist, an

exception is raised.

In java, exceptions can be handled either by the java run-time system or by a user-

defined code. When a run-time error occurs, an exception is thrown.

The unexpected situations that may occur during program execution are:

 Running out of memory

 Resource allocation errors

 Inability to find files

 Problems in network connectivity

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 29

Exception handling techniques:

Java exception handling is managed via five keywords they are:

1. try:

2. catch.

3. throw.

4. throws.

5. finally.

Exception handling Statement Syntax

Exceptions are handled using a try-catch-finally construct, which has the Syntax.

try

{

 <code>

}

catch (<exception type1> <parameter1>)

{

 // 0 or more<statements>

}

finally

{

 // finally block<statements>

}

1. try Block: The java code that you think may produce an exception is placed

within a try block for a suitable catch block to handle the error.

If no exception occurs the execution proceeds with the finally block else it

will look for the matching catch block to handle the error.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 30

Again if the matching catch handler is not found execution proceeds with

the finally block and the default exception handler throws an exception.

2. catch Block: Exceptions thrown during execution of the try block can be caught

and handled in a catch block. On exit from a catch block, normal execution

continues and the finally block is executed (Though the catch block throws an

exception).

3. finally Block: A finally block is always executed, regardless of the cause of exit

from the try block, or whether any catch block was executed. Generally finally

block is used for freeing resources, cleaning up, closing connections etc.

 Example:

The following is an array is declared with 2 elements. Then the code tries to access

the 3rd element of the array which throws an exception.

// File Name : ExcepTest.java

import java.io.*;

public class ExcepTest

{

 public static void main(String args[])

 {

 try

 {

 int a[] = new int[2];

 System.out.println("Access element three :" + a[3]);

 }

 catch(ArrayIndexOutOfBoundsException e)

 {

 System.out.println("Exception thrown :" + e);

 }

 System.out.println("Out of the block");

 }

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 31

This would produce following result:

Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3

Out of the block

Multiple catch Blocks:

A try block can be followed by multiple catch blocks. The syntax for multiple catch

blocks looks like the following:

try

{

 // code

}

catch(ExceptionType1 e1)

{

 //Catch block

}

catch(ExceptionType2 e2)

{

 //Catch block

}

catch(ExceptionType3 e3)

{

 //Catch block

}

The previous statements demonstrate three catch blocks, but you can have any

number of them after a single try.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 32

Example: Here is code segment showing how to use multiple try/catch

statements.

class Multi_Catch

{

 public static void main (String args [])

 {

 try

 {

 int a=args.length;

 System.out.println(“a=”+a);

 int b=50/a;

 int c[]={1}

 }

 catch (ArithmeticException e)

 {

 System.out.println ("Division by zero");

 }

 catch (ArrayIndexOutOfBoundsException e)

 {

 System.out.println (" array index out of bound");

 }

 }

}

OUTPUT

Division by zero

array index out of bound

Nested try Statements

 Just like the multiple catch blocks, we can also have multiple try blocks.

These try blocks may be written independently or we can nest the try blocks

within each other, i.e., keep one try-catch block within another try-block.

The program structure for nested try statement is:

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 33

Syntax

try

{

 // statements

 // statements

 try

 {

 // statements

 // statements

 }

 catch (<exception_two> obj)

 {

 // statements

 }

 // statements

 // statements

}

catch (<exception_two> obj)

{

 // statements

}

 Consider the following example in which you are accepting two numbers from

the command line. After that, the command line arguments, which are in the

string format, are converted to integers.

 If the numbers were not received properly in a number format, then during

the conversion a NumberFormatException is raised otherwise the control

goes to the next try block. Inside this second try-catch block the first

number is divided by the second number, and during the calculation if there

is any arithmetic error, it is caught by the inner catch block.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 34

Example

class Nested_Try

{

 public static void main (String args [])

 {

 try

 {

 int a = Integer.parseInt (args [0]);

 int b = Integer.parseInt (args [1]);

 int quot = 0;

 try

 {

 quot = a / b;

 System.out.println(quot);

 }

 catch (ArithmeticException e)

 {

 System.out.println("divide by zero");

 }

 }

 catch (NumberFormatException e)

 {

 System.out.println ("Incorrect argument type");

 }

 }

}

The output of the program is: If the arguments are entered properly in the

command prompt like:

OUTPUT

java Nested_Try 2 4 6

 4

If the argument contains a string than the number:

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 35

OUTPUT

java Nested_Try 2 4 aa

 Incorrect argument type

If the second argument is entered zero:

OUTPUT

java Nested_Try 2 4 0

 divide by zero

throw Keyword

 throw keyword is used to throw an exception explicitly. Only object of

Throwable class or its sub classes can be thrown.

 Program execution stops on encountering throw statement, and the closest

catch statement is checked for matching type of exception.

Syntax : throw ThrowableInstance

Creating Instance of Throwable class

There are two possible ways to get an instance of class Throwable,

1. Using a parameter in catch block.

2. Creating instance with new operator.

 new NullPointerException("test");

This constructs an instance of NullPointerException with name test.

Example demonstrating throw Keyword

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 36

class Test

{

 static void avg()

 {

 try

 {

 throw new ArithmeticException("demo");

 }

 catch(ArithmeticException e)

 {

 System.out.println("Exception caught");

 }

 }

 public static void main(String args[])
 {

 avg();

 }

}

In the above example the avg() method throw an instance of ArithmeticException,

which is successfully handled using the catch statement.

throws Keyword

 Any method capable of causing exceptions must list all the exceptions

possible during its execution, so that anyone calling that method gets a prior

knowledge about which exceptions to handle. A method can do so by using

the throws keyword.

Syntax :

 type method_name(parameter_list) throws exception_list

 {

 //definition of method

 }

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 37

NOTE : It is necessary for all exceptions, except the exceptions of type Error and

RuntimeException, or any of their subclass.

Example demonstrating throws Keyword

class Test

{

 static void check() throws ArithmeticException

 {

 System.out.println("Inside check function");

 throw new ArithmeticException("demo");

 }

 public static void main(String args[])

 {

 try

 {

 check();

 }

 catch(ArithmeticException e)

 {

 System.out.println("caught" + e);

 }

 }

}

finally

 The finally clause is written with the try-catch statement. It is guaranteed

to be executed after a catch block or before the method quits.

Syntax

try

{

 // statements

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 38

catch (<exception> obj)

{

 // statements

}

finally

{

 //statements

}

 Take a look at the following example which has a catch and a finally block.

The catch block catches the ArithmeticException which occurs for

arithmetic error like divide-by-zero. After executing the catch block the

finally is also executed and you get the output for both the blocks.

Example:

class Finally_Block

{

 static void division ()

 {

 try

 {

 int num = 34, den = 0;

 int quot = num / den;

 }

 catch(ArithmeticException e)

 {

 System.out.println ("Divide by zero");

 }

 finally

 {

 System.out.println ("In the finally block");

 }

 }

class Mypgm

{

 public static void main(String args[])

 {

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 39

 Finally_Block f=new Finally_Block();

 f.division ();

 }

}

OUTPUT

Divide by zero

In the finally block

Java’s Built in Exceptions

Java defines several exception classes inside the standard package java.lang.

 The most general of these exceptions are subclasses of the standard type

RuntimeException. Since java.lang is implicitly imported into all Java

programs, most exceptions derived from RuntimeException are

automatically available.

Java defines several other types of exceptions that relate to its various class

libraries. Following is the list of Java Unchecked RuntimeException.

Exception Description

ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException
Assignment to an array element of an

incompatible type.

ClassCastException Invalid cast.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalMonitorStateException
Illegal monitor operation, such as waiting on an

unlocked thread.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 40

IllegalStateException
Environment or application is in incorrect

state.

IllegalThreadStateException
Requested operation not compatible with

current thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException
Invalid conversion of a string to a numeric

format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds
Attempt to index outside the bounds of a

string.

UnsupportedOperationException An unsupported operation was encountered.

Following is the list of Java Checked Exceptions Defined in java.lang.

Exception Description

ClassNotFoundException Class not found.

CloneNotSupportedException
Attempt to clone an object that does not implement

the Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException
Attempt to create an object of an abstract class or

interface.

InterruptedException One thread has been interrupted by another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 41

Creating your own Exception Subclasses

 Here you can also define your own exception classes by extending Exception.

These exception can represents specific runtime condition of course you will

have to throw them yourself, but once thrown they will behave just like

ordinary exceptions.

 When you define your own exception classes, choose the ancestor carefully.

Most custom exception will be part of the official design and thus checked,

meaning that they extend Exception but not RuntimeException.

Example: Throwing User defined Exception

public class MyException extends Exception

{

 String msg = "";

 int marks=50;

 public MyException()

 {

 }

 public MyException(String str)

 {

 super(str);

 }

 public String toString()

 {

 if(marks <= 40)

 msg = "You have failed";

 if(marks > 40)

 msg = "You have Passed";

 return msg;

 }

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 42

 class test

 {

 public static void main(String args[])

 {

 test t = new test();

 t.dd();

 }

 public void add()

 {

 try

 {

 int i=0;

 if(i<40)

 throw new MyException();

 }

 catch(MyException ee1)

 {

 System.out.println("Result:"+ee1);

 }

 }

}

OUTPUT

Result: You have Passed

Chained Exception

 Chained exceptions are the exceptions which occur one after another i.e.

most of the time to response to an exception are given by an application by

throwing another exception.

 Whenever in a program the first exception causes an another exception,

that is termed as Chained Exception. Java provides new functionality for

chaining exceptions.

 Exception chaining (also known as "nesting exception") is a technique for

handling the exception, which occur one after another i.e. most of the time

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 43

is given by an application to response to an exception by throwing another

exception.

 Typically the second exception is caused by the first exception. Therefore

chained exceptions help the programmer to know when one exception causes

another.

The constructors that support chained exceptions in Throwable class are:

Throwable initCause(Throwable)

Throwable(Throwable)

Throwable(String, Throwable)

Throwable getCause()

http://www.roseindia.net/java/exceptions/what-are-chained-exceptions.shtml

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 44

Packages in JAVA

 A java package is a group of similar types of classes, interfaces and sub-

packages.

 Package in java can be categorized in two form,

o built-in package and

o user-defined package.

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util,

sql etc.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be

easily maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

The package keyword is used to create a package in java.

//save as Simple.java

package mypack;

public class Simple
{

 public static void main(String args[])
{

 System.out.println("Welcome to package");
 }
}

How to access package from another package?

There are three ways to access the package from outside the package.

1. import package.*;

2. import package.classname;

3. fully qualified name.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 45

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package will be

accessible but not subpackages.

The import keyword is used to make the classes and interface of another package

accessible to the current package.

Example of package that import the packagename.*

//save by A.java

package pack;

public class A
{

 public void msg(){System.out.println("Hello");}
}

//save by B.java

package mypack;

import pack.*;

class B
{

 public static void main(String args[])
{

 A obj = new A();
 obj.msg();
 }
}

Output:Hello

2) Using packagename.classname

If you import package.classname then only declared class of this package will be

accessible.

Example of package by import package.classname

//save by A.java

package pack;

public class A
{

 public void msg(){System.out.println("Hello");

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 46

}
}

//save by B.java

package mypack;

import pack.A;

class B
{

 public static void main(String args[])
{

 A obj = new A();
 obj.msg();
 }
}

Output:Hello

3) Using fully qualified name

If you use fully qualified name then only declared class of this package will be

accessible. Now there is no need to import. But you need to use fully qualified name

every time when you are accessing the class or interface.

It is generally used when two packages have same class name e.g. java.util and

java.sql packages contain Date class.

Example of package by import fully qualified name

//save by A.java

package pack;

public class A
{

 public void msg()
{

System.out.println("Hello");
}

}

//save by B.java

package mypack;

class B
{

 public static void main(String args[])

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 47

{

 pack.A obj = new pack.A();//using fully qualified name
 obj.msg();
 }
}

Output:Hello

Access Modifiers/Specifiers

The access modifiers in java specify accessibility (scope) of a data member,

method, constructor or class.

There are 4 types of java access modifiers:

1. private

2. default

3. protected

4. public

1) private access modifier

The private access modifier is accessible only within class.

2) default access modifier

If you don't use any modifier, it is treated as default by default. The default

modifier is accessible only within package.

3) protected access modifier

The protected access modifier is accessible within package and outside the

package but through inheritance only.

The protected access modifier can be applied on the data member, method and

constructor. It can't be applied on the class.

4) public access modifier

The public access modifier is accessible everywhere. It has the widest scope

among all other modifiers.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 48

Understanding all java access modifiers by a simple table.

Access

Modifier

within

class

within

package

outside package by

subclass only

outside

package

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

Interface in java

 An interface in java is a blueprint of a class. It has static final variables

and abstract methods.

 The interface in java is a mechanism to achieve abstraction. There can be

only abstract methods in the java interface does not contain method body.

It is used to achieve abstraction and multiple inheritance in Java.

 It cannot be instantiated just like abstract class.

 Interface fields are public, static and final by default, and methods are

public and abstract.

There are mainly three reasons to use interface. They are given below.

 It is used to achieve abstraction.

 By interface, we can support the functionality of multiple inheritance.

Understanding relationship between classes and interfaces

As shown in the figure given below, a class extends another class, an interface

extends another interface but a class implements an interface.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 49

Example 1

In this example, Printable interface has only one method, its implementation is

provided in the Pgm1 class.

interface printable

{

void print();

}

class Pgm1 implements printable

{

public void print()

{

System.out.println("Hello");

}

}

 class IntefacePgm1

{

public static void main(String args[])

{

Pgm1 obj = new Pgm1 ();

obj.print();

 }

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 50

Output:

Hello

Example 2

In this example, Drawable interface has only one method. Its implementation is

provided by Rectangle and Circle classes. In real scenario, interface is defined by

someone but implementation is provided by different implementation providers.

And, it is used by someone else. The implementation part is hidden by the user

which uses the interface.

//Interface declaration: by first user

interface Drawable
{

void draw();
}

//Implementation: by second user

class Rectangle implements Drawable
{

public void draw()
{

System.out.println("drawing rectangle");
}

}

class Circle implements Drawable
{

public void draw()
{

System.out.println("drawing circle");
}

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 51

//Using interface: by third user

class TestInterface1
{

public static void main(String args[])
{

//In real scenario, object is provided by method e.g. getDrawable()

Drawable d=new Circle();

d.draw();
}

}

Output:

drawing circle

Multiple inheritance in Java by interface

 If a class implements multiple interfaces, or an interface extends multiple

interfaces i.e. known as multiple inheritance.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 52

Example

interface Printable
{

void print();
}

interface Showable
{

void show();
}

class Pgm2 implements Printable,Showable
{

public void print()
{

System.out.println("Hello");
}

public void show()
{

System.out.println("Welcome");
}

}

Class InterfaceDemo

{

public static void main(String args[])
{

Pgm2 obj = new Pgm2 ();
obj.print();
obj.show();

 }
}

Output:

Hello

Welcome

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 53

 Multiple inheritance is not supported through class in java but it is

possible by interface, why?

 As we have explained in the inheritance chapter, multiple inheritance is not

supported in case of class because of ambiguity.

 But it is supported in case of interface because there is no ambiguity as

implementation is provided by the implementation class. For example:

Example

interface Printable
{

void print();
}

interface Showable
{

void print();
}

class InterfacePgm1 implements Printable, Showable
{

public void print()
{

System.out.println("Hello");
}

}
class InterfaceDemo
{

public static void main(String args[])
{

InterfacePgm1 obj = new InterfacePgm1 ();
obj.print();

 }
}

Output:

Hello

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 54

 As you can see in the above example, Printable and Showable interface have

same methods but its implementation is provided by class TestTnterface1,

so there is no ambiguity.

Interface inheritance

 A class implements interface but one interface extends another interface .

interface Printable
{

void print();
}

interface Showable extends Printable
{

void show();
}

class InterfacePgm2 implements Showable
{

public void print()
{

System.out.println("Hello");
}

public void show()
{

System.out.println("Welcome");
}

Class InterfaceDemo2
{

public static void main(String args[])
{

InterfacePgm2 obj = new InterfacePgm2 ();
obj.print();
obj.show();

 }
}

Output:

Hello

Welcome

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 55

Program to implement Stack
public class StackDemo

{

private static final int capacity = 3;

int arr[] = new int[capacity];

int top = -1;

public void push(int pushedElement)

{

if (top < capacity - 1)

{

top++;

arr[top] = pushedElement;

System.out.println("Element " + pushedElement + " is pushed to Stack !")

;

printElements();

}

else

 {

System.out.println("Stack Overflow !");

}

}

public void pop()

 {

if (top >= 0)

 {

top--;

System.out.println("Pop operation done !");

}

else

 {

System.out.println("Stack Underflow !");

}

}

public void printElements()

 {

if (top >= 0)

 {

System.out.println("Elements in stack :");

for (int i = 0; i <= top; i++)

{

System.out.println(arr[i]);

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 56

}

}

class MyPgm

{

public static void main(String[] args)

{

StackDemo stackDemo = new StackDemo();

stackDemo.pop();

stackDemo.push(23);

stackDemo.push(2);

stackDemo.push(73);

stackDemo.push(21);

stackDemo.pop();

stackDemo.pop();

stackDemo.pop();

stackDemo.pop();

}

}

Output

http://2.bp.blogspot.com/-g2nDb7CDNc8/UevfGok-tAI/AAAAAAAAAkE/qmZjdkeM7l0/s1600/stack-in-java.png

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 57

Questions

1. Distinguish between Method overloading and Method

overriding in JAVA, with suitable examples.(Jan 2014) 6marks

2. What is super? Explain the use of super with suitable example

 (Jan 2014) 6marks

3. Write a JAVA program to implement stack operations.

 (Jan 2014) 6marks

4. What is an Exception? Give an example for nested try

statements? (Jan 2013) 6 Marks

5. WAP in java to implement a stack that can hold 10 integers

values (Jan 2013) 6 Marks

6. What is mean by instance variable hiding ?how to overcome it?

(Jan 2013) 04 Marks

7. Define exception .demonstrate the working of nested try blocks

with suitable example? (Dec 2011)08Marks

8. Write short notes on (Dec 2011)04Marks

 i) Final class ii) abstract class

9. Write a java program to find the area and volume of a room.

Use a base class rectangle with a constructor and a method for

finding the area. Use its subclass room with a constructor that

gets the value of length and breadth from the base class and

has a method to find the volume. Create an object of the class

room and obtain the area and volume. (Jan-2006) 8Marks

10. Explain i) Instance variables ii) Class Variables iii) Local

variables (Jan-2009) 06 marks

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 58

11. Distinguish between method overloading and method

overriding? How does java decide the method to call?

 (Jan-2008-8Marks) 6Marks

12. Explain the following with example.

 i) Method overloading ii) Method overriding (jun-2006) 8Marks

13. Write a java program to find the distance between two points

whose coordinates are given. The coordinates can be 2-

dimensional or 3-dimensional (for comparing the distance

between 2D and a 3D point, the 3D point, the 3D x and y

components must be divided by z). Demonstrate method

overriding in this program. (May-2007)10 marks

14. What is an interface? Write a program to illustrate multiple

inheritance using interfaces. (Jan-2010) 8Marks

15. Explain packages in java.

16. What are access specifiers? Explain with an example.

17. With an example explain static keyword in java.

18. Why java is not support concept of multiple inheritance?

Justify with an example program.

19. Write a short note on:

1. this keyword

2. super keyword

3. final keyword

4. abstract

20. Illustrate constructors with an example program

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 1

MODULE:IV

What are threads?

 Java provides built-in support for multithreaded programming. A multithreaded program

contains two or more parts that can run concurrently. Each part of such a program is

called a thread, and each thread defines a separate path of execution. Thus,

multithreading is a specialized form of multitasking.

 Multithreading enables you to write very efficient programs that make maximum use of

the CPU, because idle time can be kept to a minimum. Multitasking threads require less

overhead than multitasking processes.

The Thread Class and the Runnable Interface

 Java’s multithreading system is built upon the Thread class, its methods, and its

companion interface, Runnable.

 The Thread class defines several methods that help manage threads (shown below)

The Main Thread

When a Java program starts up, one thread begins running immediately. This is usually called the

main thread of your program, because it is the one that is executed when your program begins.

The main thread is important for two reasons:

• It is the thread from which other “child” threads will be spawned.

• Often, it must be the last thread to finish execution because it performs various shutdown

actions.

Although the main thread is created automatically when your program is started, it can be

controlled through a Thread object. To do so, you must obtain a reference to it by calling the

method currentThread(), which is a public static member of Thread. Its general form is

shown here:

static Thread currentThread()

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 2

This method returns a reference to the thread in which it is called. Once you have a reference to

the main thread, you can control it just like any other thread.

Example:

 In this program, a reference to the current thread (the main thread, in this case) is

obtained by calling currentThread(), and this reference is stored in the local variable t.

 Next, the program displays information about the thread. The program then calls

setName() to change the internal name of the thread. Information about the thread is

then redisplayed.

 Next, a loop counts down from five, pausing one second between each line.

 The pause is accomplished by the sleep() method. The argument to sleep() specifies the

delay period in milliseconds.

Output:

Current thread: Thread[main,5,main]

After name change: Thread[My Thread,5,main]

5

4

3

2

1

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 3

These displays, in order: the name of the thread, its priority, and the name of its group. By

default, the name of the main thread is main. Its priority is 5, which is the default value, and

main is also the name of the group of threads to which this thread belongs.

The general form of sleep() is:

static void sleep(long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method may throw an

InterruptedException.

Creating a Thread

There are two different ways to create threads.

• You can implement the Runnable interface.
• You can extend the Thread class, itself.

Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable interface.

You can construct a thread on any object that implements Runnable. To implement Runnable, a

class need only implement a single method called run(), which is declared like this:

public void run()

run() establishes the entry point for another, concurrent thread of execution within your

program. This thread will end when run() returns.

Thread defines several constructors.

Thread(Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable interface.

This defines where execution of the thread will begin. The name of the new thread is specified

by threadName.

After the new thread is created, it will not start running until you call its start() method, which

is declared within Thread. In essence, start() executes a call to run(). The start() method is

shown here:

void start()

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 4

Example:

a new Thread object is created by the following statement:

t = new Thread(this, "Demo Thread");

Next, start() is called, which starts the thread of execution beginning at the run() method. This

causes the child thread’s for loop to begin. After calling start(), NewThread’s constructor

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 5

returns to main(). When the main thread resumes, it enters its for loop. Both threads continue

running, sharing the CPU, until their loops finish.

Output:

Child thread: Thread[Demo Thread,5,main]

Main Thread: 5

Child Thread: 5

Child Thread: 4

Main Thread: 4

Child Thread: 3

Child Thread: 2

Main Thread: 3

Child Thread: 1

Exiting child thread.

Main Thread: 2

Main Thread: 1

Main thread exiting.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 6

Extending Thread Class

The second way to create a thread is to create a new class that extends Thread, and then to

create an instance of that class. The extending class must override the run() method, which is

the entry point for the new thread. It must also call start() to begin execution of the new thread.

Example:

The child thread is created by instantiating an object of NewThread, which is derived from

Thread.

Notice the call to super() inside NewThread. This invokes the following form of the Thread

constructor:

public Thread(String threadName)

Here, threadName specifies the name of the thread.

Creating Multiple Threads

For example, the following program creates three child threads:

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 7

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 8

As you can see, once started, all three child threads share the CPU. Notice the call to

sleep(10000) in main(). This causes the main thread to sleep for ten seconds and ensures that it

will finish last.

Using isAlive() and join()

To make main to finish last First, you can call isAlive()

on the thread. This method is defined by Thread, and its general form is shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running. It returns

false otherwise.

While isAlive() is occasionally useful, the method that you will more commonly use to

wait for a thread to finish is called join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates.

Here is an improved version of the preceding example that uses join() to ensure that the main

thread is the last to stop. It also demonstrates the isAlive() method.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 9

Output:

New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

New thread: Thread[Three,5,main]

Thread One is alive: true

Thread Two is alive: true

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 10

Thread Three is alive: true

Waiting for threads to finish.

One: 5

Two: 5

Three: 5

One: 4

Two: 4

Three: 4

One: 3

Two: 3

Three: 3

One: 2

Two: 2

Three: 2

One: 1

Two: 1

Three: 1

Two exiting.

Three exiting.

One exiting.

Thread One is alive: false

Thread Two is alive: false

Thread Three is alive: false

Main thread exiting.

As you can see, after the calls to join() return, the threads have stopped executing.

Thread Priorities

Thread priorities are used by the thread scheduler to decide when each thread should be allowed

to run. In theory, higher-priority threads get more CPU time than lower-priority threads. In

practice, the amount of CPU time that a thread gets often depends on several factors besides its

priority.

To set a thread’s priority, use the setPriority() method, which is a member of Thread.

This is its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level must be

within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and

10, respectively. To return a thread to default priority, specify NORM_PRIORITY, which is

currently 5. These priorities are defined as static final variables within Thread.

You can obtain the current priority setting by calling the getPriority() method of Thread,

shown here:

final int getPriority()

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 11

The following example demonstrates two threads at different priorities, One thread is set two

levels above the normal priority, as defined by Thread.NORM_

PRIORITY, and the other is set to two levels below it. The threads are started and allowed to

run for ten seconds. Each thread executes a loop, counting the number of iterations. After ten

seconds, the main thread stops both threads. The number of times that each thread madeit

through the loop is then displayed.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 12

The higher-priority thread got the majority of the CPU time.

Low-priority thread: 4408112

High-priority thread: 589626904

Synchronization

When two or more threads need access to a shared resource, they need some way to ensure that

the resource will be used by only one thread at a time. The process by which this is achieved is

called synchronization.

Key to synchronization is the concept of the monitor (also called a semaphore). A monitor is an

object that is used as a mutually exclusive lock, or mutex. Only one thread can own a monitor at

a given time. When a thread acquires a lock, it is said to have entered the monitor. All other

threads attempting to enter the locked monitor will be suspended until the first thread exits the

monitor. These other threads are said to be waiting for the monitor.

Using Synchronized Methods

To enter an object’s monitor, just call a method that has been modified with the synchronized

keyword. While a thread is inside a synchronized method, all other threads that try to call it (or

any other synchronized method) on the same instance have to wait. To exit the monitor and

relinquish control of the object to the next waiting thread, the owner of the monitor simply

returns from the synchronized method.

The following program has three simple classes. The first one, Callme, has a single method

named call(). The call() method takes a String parameter called msg. This method tries to print

the msg string inside of square brackets. The interesting thing to notice is that after call() prints

the opening bracket and the msg string, it calls Thread.sleep(1000), which pauses the current

thread for one second.

The constructor of the next class, Caller, takes a reference to an instance of the Callme class and

a String, which are stored in target and msg, respectively. The constructor also creates a new

thread that will call this object’s run() method. The thread is started immediately. The run()

method of Caller calls the call() method on the target instance of Callme, passing in the msg

string. Finally, the Synch class starts by creating a single instance of Callme, and three instances

of Caller, each with a unique message string. The same instance of Callme is passed to each

Caller.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 13

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 14

As you can see, by calling sleep(), the call() method allows execution to switch to another

thread. This results in the mixed-up output of the three message strings. In this program, nothing

exists to stop all three threads from calling the same method, on the same object, at the same

time. This is known as a race condition, because the three threads are racing each other to

complete the method.

To fix the preceding program, you must serialize access to call(). That is, you must restrict its

access to only one thread at a time. To do this, you simply need to precede call()’s definition

with the keyword synchronized, as shown here:

class Callme {

synchronized void call(String msg) {

...

After

synchronized has been added to call(), the output of the program is as follows:

[Hello]

[Synchronized]

[World]

The synchronized Statement

You simply put calls to the methods defined by this class inside a synchronized block.

This is the general form of the synchronized statement:

synchronized(object) {

// statements to be synchronized

}

Here, object is a reference to the object being synchronized.

Here is an alternative version of the preceding example, using a synchronized block within the

run() method:

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 15

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 16

Interthread Communication

Java supports interprocess communication mechanism via the wait(), notify(), and notifyAll()

methods.

• wait() tells the calling thread to give up the monitor and go to sleep until some other

thread enters the same monitor and calls notify().

• notify() wakes up a thread that called wait() on the same object.

• notifyAll() wakes up all the threads that called wait() on the same object. One of the

threads will be granted access.

These methods are declared within Object, as shown here:

final void wait() throws InterruptedException

final void notify()

final void notifyAll()

The following sample program that incorrectly implements a simple form of the producer/

consumer problem. It consists of four classes: Q, the queue that you’re trying to synchronize;

Producer, the threaded object that is producing queue entries; Consumer, the threaded object

that is consuming queue entries; and PC, the tiny class that creates the single Q, Producer, and

Consumer.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 17

Although the put() and get() methods on Q are synchronized, nothing stops the producer from

overrunning the consumer, nor will anything stop the consumer from consuming the same queue

value twice. Thus, you get the erroneous output shown here.

Put: 1

Got: 1

Got: 1

Got: 1

Got: 1

Got: 1

Put: 2

Put: 3

Put: 4

Put: 5

Put: 6

Put: 7

Got: 7

As you can see, after the producer put 1, the consumer started and got the same 1 five times in a

row. Then, the producer resumed and produced 2 through 7 without letting the consumer have a

chance to consume them.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 18

The proper way to write this program in Java is to use wait() and notify() to signal in both

directions, as shown here:

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 19

Inside get(), wait() is called. This causes its execution to suspend until the Producer notifies

you that some data is ready. When this happens, execution inside get() resumes. After the data

has been obtained, get() calls notify(). This tells Producer that it is okay to put more data in the

queue. Inside put(), wait() suspends execution until the Consumer has removed the item from

the queue. When execution resumes, the next item of data is put in the queue, and notify() is

called. This tells the Consumer that it should now remove it.

Here is some output from this program:

Put: 1

Got: 1

Put: 2

Got: 2

Put: 3

Got: 3

Put: 4

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 20

Got: 4

Put: 5

Got: 5

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 21

Event Handling

The Delegation Event Model
 Delegation event model defines standard and consistent mechanisms to generate and

process events.

 A source generates an event and sends it to one or more listeners. In this scheme, the

listener simply waits until it receives an event. Once an event is received, the listener

processes the event and then returns.

 In the delegation event model, listeners must register with a source in order to receive an

event notification. This provides an important benefit: notifications are sent only to

listeners that want to receive them.

Events:

 An event is an object that describes a state change in a source.

 It can be generated as a consequence of a person interacting with the elements in a

graphical user interface.

 Some of the activities that cause events to be generated are pressing a button, entering a

character via the keyboard, selecting an item in a list, and clicking the mouse.

Event Sources:

 A source is an object that generates an event. This occurs when the internal state of that

object changes in some way. Sources may generate more than one type of event.

 A source must register listeners in order for the listeners to receive notifications about a

specific type of event.

 Each type of event has its own registration method. General form:

public void addTypeListener(TypeListener el)

 Here, Type is the name of the event, and el is a reference to the event listener. For

example, the method that registers a keyboard event listener is called addKeyListener().

The method that registers a mouse motion listener is called addMouseMotionListener(

).

 A source must also provide a method that allows a listener to unregister an interest in a

specific type of event. The general form of such a method is this:

public void removeTypeListener(TypeListener el)

 Here, Type is the name of the event, and el is a reference to the event listener. For

example, to remove a keyboard listener, you would call removeKeyListener().

Event Listeners

 A listener is an object that is notified when an event occurs.

 It has two major requirements. First, it must have been registered with one or more

sources to receive notifications about specific types of events. Second, it must implement

methods to receive and process these notifications.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 22

Event Classes

ActionEvent Class

 An ActionEvent is generated when a button is pressed, a list item is double-clicked, or a

 menu item is selected.

 ActionEvent has these three constructors:

ActionEvent(Object src, int type, String cmd)

ActionEvent(Object src, int type, String cmd, int modifiers)

ActionEvent(Object src, int type, String cmd, long when, int modifiers)

 Here, src is a reference to the object that generated this event. The type of the event is

specified by type, and its command string is cmd. The argument modifiers indicates

which modifier keys (ALT, CTRL, META, and/or SHIFT) were pressed when the event

was generated. The when parameter specifies when the event occurred.

 You can obtain the command name for the invoking ActionEvent object by using the

getActionCommand() method, shown here:

String getActionCommand()

 The getModifiers() method returns a value that indicates which modifier keys (ALT,

CTRL, META, and/or SHIFT) were pressed when the event was generated. Its form is

shown here:

int getModifiers()

 The method getWhen() returns the time at which the event took place. This is called the

event’s timestamp. The getWhen() method is shown here:

long getWhen()

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 23

AdjustmentEvent Class
 An AdjustmentEvent is generated by a scroll bar. There are five types of adjustment

events.

 AdjustmentEvent constructor:

AdjustmentEvent(Adjustable src, int id, int type, int data)

Here, src is a reference to the object that generated this event. The id specifies the event.

The type of the adjustment is specified by type, and its associated data is data.

ComponentEvent Class
 A ComponentEvent is generated when the size, position, or visibility of a component is

changed.

 There are four types of component events.

 ComponentEvent has this constructor:

ComponentEvent(Component src, int type)

Here, src is a reference to the object that generated this event. The type of the event is

specified by type.

 ComponentEvent is the superclass either directly or indirectly of ContainerEvent,

FocusEvent, KeyEvent, MouseEvent, and WindowEvent.

 The getComponent() method returns the component that generated the event. It is

shown here:

Component getComponent()

ContainerEvent Class
 A ContainerEvent is generated when a component is added to or removed from a

container.

 There are two types of container events. The ContainerEvent class defines int constants

that can be used to identify them: COMPONENT_ADDED and

COMPONENT_REMOVED.

 ContainerEvent is a subclass of ComponentEvent and has this constructor:

ContainerEvent(Component src, int type, Component comp)

Here, src is a reference to the container that generated this event. The type of the event is

specified by type, and the component that has been added to or removed from the

container is comp.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 24

 You can obtain a reference to the container that generated this event by using the

getContainer() method, shown here:

Container getContainer()

 The getChild() method returns a reference to the component that was added to or

removed from the container. Its general form is shown here:

Component getChild()

FocusEvent Class
 A FocusEvent is generated when a component gains or loses input focus. These events

are identified by the integer constants FOCUS_GAINED and FOCUS_LOST.

 FocusEvent is a subclass of ComponentEvent and has these constructors:

FocusEvent(Component src, int type)

FocusEvent(Component src, int type, boolean temporaryFlag)

FocusEvent(Component src, int type, boolean temporaryFlag, Component other)

Here, src is a reference to the component that generated this event. The type of the event

is specified by type. The argument temporaryFlag is set to true if the focus event is

temporary. Otherwise, it is set to false.

 You can determine the other component by calling getOppositeComponent(), shown

here:

Component getOppositeComponent()

The opposite component is returned.

 The isTemporary() method indicates if this focus change is temporary. Its form is

shown here:

boolean isTemporary()

The method returns true if the change is temporary. Otherwise, it returns false.

InputEvent Class
 It is the superclass for component input events.

 Its subclasses are KeyEvent and MouseEvent.

 InputEvent defines several integer constants that represent any modifiers, such as the

control key being pressed, that might be associated with the event.

 To test if a modifier was pressed at the time an event is generated, use the isAltDown(),

isAltGraphDown(), isControlDown(), isMetaDown(), and isShiftDown() methods.

The forms of these methods are shown here:

boolean isAltDown()

boolean isAltGraphDown()

boolean isControlDown()

boolean isMetaDown()

boolean isShiftDown()

 You can obtain a value that contains all of the original modifier flags by calling the

getModifiers() method. It is shown here:

int getModifiers()

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 25

ItemEvent Class
 An ItemEvent is generated when a check box or a list item is clicked or when a

checkable menu item is selected or deselected.

 There are two types of item events, which are identified by the following integer

constants:

 ItemEvent has this constructor:

ItemEvent(ItemSelectable src, int type, Object entry, int state)

Here, src is a reference to the component that generated this event. For example, this

might be a list or choice element. The type of the event is specified by type. The specific

item that generated the item event is passed in entry. The current state of that item is in

state.

 The getItem() method can be used to obtain a reference to the item that generated an

event. Its signature is shown here:

Object getItem()

 The getItemSelectable() method can be used to obtain a reference to the ItemSelectable

object that generated an event. Its general form is shown here:

temSelectable getItemSelectable()

KeyEvent Class
 A KeyEvent is generated when keyboard input occurs. There are three types of key

events, which are identified by these integer constants: KEY_PRESSED,

KEY_RELEASED, andKEY_TYPED.

 There are many other integer constants that are defined by KeyEvent. For example,

VK_0 through VK_9 and VK_A through VK_Z define the ASCII equivalents of the

numbers and letters. Here are some others:

 The VK constants specify virtual key codes

 KeyEvent is a subclass of InputEvent. Here is one of its constructors:

KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)

Here, src is a reference to the component that generated the event. The type of the event

is specified by type

 getKeyChar(), which returns the character that was entered, and getKeyCode(), which

returns the key code. Their general forms are shown here:

char getKeyChar()

int getKeyCode()

 If no valid character is available, then getKeyChar() returns CHAR_UNDEFINED.

When a KEY_TYPED event occurs, getKeyCode() returns VK_UNDEFINED.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 26

MouseEvent Class
 There are eight types of mouse events.

 MouseEvent is a subclass of InputEvent. Here is one of its constructors:

MouseEvent(Component src, int type, long when, int modifiers, int x, int y, int clicks,

boolean triggersPopup)

Here, src is a reference to the component that generated the event. The type of the event

is specified by type. The system time at which the mouse event occurred is passed in

when. The odifiers argument indicates which modifiers were pressed when a mouse event

occurred. The coordinates of the mouse are passed in x and y. The click count is passed in

clicks. The triggersPopup flag indicates if this event causes a pop-up menu to appear on

this platform.

 getX() and getY(): These return the X and Y coordinates of the mouse within the

component when the event occurred. Their forms are shown here:

int getX()

int getY()

 getPoint() method to obtain the coordinates of the mouse.

Point getPoint()

 The translatePoint() method changes the location of the event. Its form is shown here:

void translatePoint(int x, int y)

Here, the arguments x and y are added to the coordinates of the event.

 The getClickCount() method obtains the number of mouse clicks for this event.

Its signature is shown here:

int getClickCount()

 The isPopupTrigger() method tests if this event causes a pop-up menu to appear on this

platform. Its form is shown here:

boolean isPopupTrigger()

 getButton() method, shown here:

int getButton()

It returns a value that represents the button that caused the event. The return value will be

one of these constants defined by MouseEvent:

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 27

MouseWheelEvent Class

 The MouseWheelEvent class encapsulates a mouse wheel event. It is a subclass of

MouseEvent.

 MouseWheelEvent defines these two integer constants:

 Here is one of the constructors defined by MouseWheelEvent:

MouseWheelEvent(Component src, int type, long when, int modifiers, int x, int y, int

clicks, boolean triggersPopup, int scrollHow, int amount, int count)

Here, src is a reference to the object that generated the event. The type of the event is

specified by type. The system time at which the mouse event occurred is passed in when.

The modifiers argument indicates which modifiers were pressed when the event occurred.

 To obtain the number of rotational units, call getWheelRotation(), shown here:

int getWheelRotation()

TextEvent Class
 These are generated by text fields and text areas when characters are entered by a user or

program. TextEvent defines the integer constant TEXT_VALUE_CHANGED.

 The one constructor for this class is shown here:

TextEvent(Object src, int type)

Here, src is a reference to the object that generated this event. The type of the event is

specified by type.

WindowEvent Class
 There are ten types of window events.

 WindowEvent is a subclass of ComponentEvent. It defines several constructors.

WindowEvent(Window src, int type)

WindowEvent(Window src, int type, Window other)

WindowEvent(Window src, int type, int fromState, int toState)

WindowEvent(Window src, int type, Window other, int fromState, int toState)

other specifies the opposite window when a focus or activation event occurs. The

fromState specifies the prior state of the window, and toState specifies the new state that

the window will have when a window state change occurs.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 28

 getWindow(). It returns the Window object that generated the event. Its general form is

shown here:

Window getWindow()

Sources of Events

Event Listener Interfaces

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 29

ActionListener Interface

This interface defines the actionPerformed() method that is invoked when an action event

occurs. Its general form is shown here:

void actionPerformed(ActionEvent ae)

AdjustmentListener Interface

This interface defines the adjustmentValueChanged() method that is invoked when an

adjustment event occurs. Its general form is shown here:

void adjustmentValueChanged(AdjustmentEvent ae)

The ComponentListener Interface

This interface defines four methods that are invoked when a component is resized, moved,

shown, or hidden. Their general forms are shown here:

void componentResized(ComponentEvent ce)

void componentMoved(ComponentEvent ce)

void componentShown(ComponentEvent ce)

void componentHidden(ComponentEvent ce)

The ContainerListener Interface

This interface contains two methods. When a component is added to a container,

componentAdded() is invoked. When a component is removed from a container,

componentRemoved() is invoked. Their general forms are shown here:

void componentAdded(ContainerEvent ce)

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 30

void componentRemoved(ContainerEvent ce)

The FocusListener Interface

This interface defines two methods. When a component obtains keyboard focus, focusGained()

is invoked. When a component loses keyboard focus, focusLost() is called. Their general forms

are shown here:

void focusGained(FocusEvent fe)

void focusLost(FocusEvent fe)

The ItemListener Interface

This interface defines the itemStateChanged() method that is invoked when the state of an

item changes. Its general form is shown here:

void itemStateChanged(ItemEvent ie)

The KeyListener Interface

This interface defines three methods. The keyPressed() and keyReleased() methods are

invoked when a key is pressed and released, respectively. The keyTyped() method is invoked

when a character has been entered.

The general forms of these methods are shown here:

void keyPressed(KeyEvent ke)

void keyReleased(KeyEvent ke)

void keyTyped(KeyEvent ke)

The MouseListener Interface

This interface defines five methods.

The general forms of these methods are shown here:

void mouseClicked(MouseEvent me)

void mouseEntered(MouseEvent me)

void mouseExited(MouseEvent me)

void mousePressed(MouseEvent me)

void mouseReleased(MouseEvent me)

The MouseMotionListener Interface

This interface defines two methods.

void mouseDragged(MouseEvent me)

void mouseMoved(MouseEvent me)

The MouseWheelListener Interface

This interface defines the mouseWheelMoved() method that is invoked when the mouse

wheel is moved. Its general form is shown here:

void mouseWheelMoved(MouseWheelEvent mwe)

The TextListener Interface

This interface defines the textChanged() method that is invoked when a change occurs

in a text area or text field. Its general form is shown here:

void textChanged(TextEvent te)

The WindowFocusListener Interface

This interface defines two methods: windowGainedFocus() and windowLostFocus(). These

are called when a window gains or loses input focus. Their general forms are shown here:

void windowGainedFocus(WindowEvent we)

void windowLostFocus(WindowEvent we)

The WindowListener Interface

This interface defines seven methods.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 31

void windowActivated(WindowEvent we)

void windowClosed(WindowEvent we)

void windowClosing(WindowEvent we)

void windowDeactivated(WindowEvent we)

void windowDeiconified(WindowEvent we)

void windowIconified(WindowEvent we)

void windowOpened(WindowEvent we)

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 32

Handling Mouse Events
To handle mouse events, you must implement the MouseListener and the

MouseMotionListener interfaces.

// Demonstrate the mouse event handlers.
import java.awt.*;

import java.awt.event.*;

import java.applet.*;
/*

<applet code="MouseEvents" width=300 height=100>

</applet>
*/

public class MouseEvents extends Applet implements MouseListener, MouseMotionListener

{

String msg = "";
int mouseX = 0, mouseY = 0; // coordinates of mouse

public void init()

{
addMouseListener(this);

addMouseMotionListener(this);

}

// Handle mouse clicked.
public void mouseClicked(MouseEvent me)

 {

// save coordinates
mouseX = 0;

mouseY = 10;

msg = "Mouse clicked.";
repaint();

}

// Handle mouse entered.

public void mouseEntered(MouseEvent me)
{

// save coordinates

mouseX = 0;
mouseY = 10;

msg = "Mouse entered.";

repaint();
}

// Handle mouse exited.

public void mouseExited(MouseEvent me)

{
// save coordinates

mouseX = 0;

mouseY = 10;
msg = "Mouse exited.";

repaint();

}

// Handle button pressed.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 33

public void mousePressed(MouseEvent me)

{

// save coordinates
mouseX = me.getX();

mouseY = me.getY();

msg = "Down";
repaint();

}

// Handle button released.

public void mouseReleased(MouseEvent me)
{

// save coordinates

mouseX = me.getX();
mouseY = me.getY();

msg = "Up";

repaint();
}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me)

{
// save coordinates

mouseX = me.getX();

mouseY = me.getY();
msg = "*";

showStatus("Dragging mouse at " + mouseX + ", " + mouseY);

repaint();
}

// Handle mouse moved.

public void mouseMoved(MouseEvent me)

{
// show status

showStatus("Moving mouse at " + me.getX() + ", " + me.getY());

}
// Display msg in applet window at current X,Y location.

public void paint(Graphics g)

{

g.drawString(msg, mouseX, mouseY);
}

}

 It displays the current coordinates of the mouse in the applet’s status window. Each time a

button is pressed, the word “Down” is displayed at the location of the mouse pointer.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 34

Each time the button is released, the word “Up” is shown. If a button is clicked, the

message “Mouse clicked” is displayed in the upperleft corner of the applet display area.

 It displays the current coordinates of the mouse in the applet’s status window. Each time

a button is pressed, the word “Down” is displayed at the location of the mouse pointer.

Each time the button is released, the word “Up” is shown. If a button is clicked, the

message “Mouse clicked” is displayed in the upperleft corner of the applet display area.

 The MouseEvents class extends Applet and implements both the MouseListener and

MouseMotionListener interfaces.

 Inside init(), the applet registers itself as a listener for mouse events. This is done by

using addMouseListener() and addMouseMotionListener(), which, as mentioned, are

members of Component. They are shown here:

void addMouseListener(MouseListener ml)

void addMouseMotionListener(MouseMotionListener mml)

Handling Keyboard Events
 When a key is pressed, a KEY_PRESSED event is generated. This results in a call to the

keyPressed() event handler.

 When the key is released, a KEY_RELEASED event is generated and the keyReleased(

) handler is executed.

 If a character is generated by the keystroke, then a KEY_TYPED event is sent and the

keyTyped() handler is invoked.
// Demonstrate the key event handlers.
import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*
<applet code="SimpleKey" width=300 height=100>

</applet>

*/
public class SimpleKey extends Applet implements KeyListener

{

String msg = "";
int X = 10, Y = 20; // output coordinates

public void init()

{

addKeyListener(this);
}

public void keyPressed(KeyEvent ke)

{
showStatus("Key Down");

}

public void keyReleased(KeyEvent ke)
{

showStatus("Key Up");

}

public void keyTyped(KeyEvent ke)
{

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 35

msg += ke.getKeyChar();

}

// Display keystrokes.
public void paint(Graphics g)

 {

g.drawString(msg, X, Y);

}
}

Adapter Classes

An adapter class provides an empty implementation of all methods in an event listener interface.

Adapter classes are useful when you want to receive and process only some of the events that are

handled by a particular event listener interface.

For example, the MouseMotionAdapter class has two methods, mouseDragged() and

mouseMoved(), which are the methods defined by the MouseMotionListener interface. If you

were interested in only mouse drag events, then you could simply extend MouseMotionAdapter

and override mouseDragged(). The empty implementation of mouseMoved() would handle the

mouse motion events for you.

// Demonstrate an adapter.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="AdapterDemo" width=300 height=100>

</applet>

*/

public class AdapterDemo extends Applet

{

public void init()

{

addMouseListener(new MyMouseAdapter(this));

addMouseMotionListener(new MyMouseMotionAdapter(this));

}

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 36

}

class MyMouseAdapter extends MouseAdapter

{

AdapterDemo adapterDemo;

public MyMouseAdapter(AdapterDemo adapterDemo)

{

this.adapterDemo = adapterDemo;

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me)

{

adapterDemo.showStatus("Mouse clicked");

}

}

class MyMouseMotionAdapter extends MouseMotionAdapter

{

AdapterDemo adapterDemo;

public MyMouseMotionAdapter(AdapterDemo adapterDemo)

{

this.adapterDemo = adapterDemo;

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me)

{

adapterDemo.showStatus("Mouse dragged");

}

}

 It displays a message in the status bar of an applet viewer or browser when the mouse is

clicked or dragged. However, all other mouse events are silently ignored.

 The program has three classes.

 AdapterDemo extends Applet. Its init() method creates an instance of

MyMouseAdapter and registers that object to receive notifications of mouse events. It

also creates an instance of MyMouseMotionAdapter and registers that object to receive

notifications of mouse motion events.

 MyMouseAdapter extends MouseAdapter and overrides the mouseClicked() method.

The other mouse events are silently ignored by code inherited from the MouseAdapter

class.

 MyMouseMotionAdapter extends MouseMotionAdapter and overrides the

mouseDragged() method. The other mouse motion event is silently ignored by code

inherited from the MouseMotionAdapter class.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 37

Inner Classes
An inner class is a class defined within another class, or even within an expression.

// Inner class demo.

import java.applet.*;

import java.awt.event.*;

/*

<applet code="InnerClassDemo" width=200 height=100>

</applet>

*/

public class InnerClassDemo extends Applet

{

public void init()

{

addMouseListener(new MyMouseAdapter());

}

class MyMouseAdapter extends MouseAdapter

{

public void mousePressed(MouseEvent me)

{

showStatus("Mouse Pressed");

}

}

}

 Here, InnerClassDemo is a top-level class that extends Applet. MyMouseAdapter is an

inner class that extends MouseAdapter.

 Because MyMouseAdapter is defined within the scope of InnerClassDemo, it has

access to all of the variables and methods within the scope of that class. Therefore, the

mousePressed() method can call the showStatus() method directly.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 38

Anonymous Inner Classes
An anonymous inner class is one that is not assigned a name.

// Anonymous inner class demo.

import java.applet.*;

import java.awt.event.*;

/*

<applet code="AnonymousInnerClassDemo" width=200 height=100>

</applet>

*/

public class AnonymousInnerClassDemo extends Applet

{

public void init()

{

addMouseListener(new MouseAdapter()

{

public void mousePressed(MouseEvent me)

{

showStatus("Mouse Pressed");

}

});

}

}

There is one top-level class in this program: AnonymousInnerClassDemo.

The init() method calls the addMouseListener() method. Its argument is an expression that

defines and instantiates an anonymous inner class.

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 1

MODULE 5: APPLETS & SWINGS

Beautiful thought: “You have to grow from the inside out. None can teach you, none

can make you spiritual. There is no other teacher but your own soul.” ― Swami

Vivekananda

Syllabus:

The Applet Class: Two types of Applets; Applet basics; Applet

Architecture; An Applet skeleton; Simple Applet display methods;

Requesting repainting; Using the Status Window; The HTML APPLET

tag; Passing parameters to Applets; getDocumentbase() and

getCodebase(); ApletContext and showDocument(); The AudioClip

Interface; The AppletStub Interface; Output o the Console.

https://www.goodreads.com/author/show/80592.Swami_Vivekananda
https://www.goodreads.com/author/show/80592.Swami_Vivekananda

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 2

APPLET

The Applet Introduction:

 Applets are small Java program/applications that are accessed on an

Internet Server, transported over the Internet, automatically installed, and

run as part of a Web document

 An applet is a program written in the Java programming language that can be

included in an HTML page, much in the same way an image is included in a

page. When you use a Java technology enabled browser to view a page that

contains an applet, the applet's code is transferred to your system and

executed by the browser's Java Virtual Machine (JVM)

Two Types of Applets

There are two varieties of applets. They are

1. Based on the Applet class: Applet

2. Based on the Swing Class Applet: JApplet

1. Based on the Applet class.

 These Applet uses the Abstract Window Toolkit(AWT) to provide the

graphical user interface.

 This type of applet has been widely available since java was first created.

2. Based on the Swing Class Applet.

 This applet uses the swing class to provide GUI.

 Swing offers a rich and easier to use interface than AWT.

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 3

 Swing based applets are the most popular in practice.

Applet Basics

 The reason people are excited about Java as more than just another OOP

language is because it allows them to write interactive applets on the web.

Hello World isn't a very interactive program, but let's look at a webbed

version.

import java.applet.Applet;

import java.awt.Graphics;

public class HelloWorldApplet extends Applet

 {

 public void paint(Graphics g)

 {

 g.drawString("Hello world!", 50, 25);

 }

 }

OUTPUT

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 4

 The applet version of HelloWorld is a little more complicated than the

HelloWorld application, and it will take a little more effort to run it as well.

 First type in the source code and save it into file called HelloWorldApplet.java.

Compile this file in the usual way. If all is well a file called

HelloWorldApplet.class will be created. Now you need to create an HTML file

that will include your applet. The following simple HTML file will do.

<html>

<head>

<title> hello world </title>

</head>

<body>

This is the applet:<P>

<applet code="HelloWorldApplet" width="150" height="50">

</applet>

</body>

</html>

OUTPUT

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 5

 Save this file as HelloWorldApplet.html in the same directory as the

HelloWorldApplet.class file. When you have done that, load the HTML file into a

Java enabled browser and see the output in the browser window.

 If the applet compiled without error and produced a HelloWorldApplet.class file,

and yet you don't see the string "Hello World" in your browser chances are that

the .class file is in the wrong place. Make sure HelloWorldApplet.class is in the

same directory as HelloWorldApplet.html. Also make sure that your browsers

support Java or that the Java plugin has been installed. Not all browsers support

Java out of the box.

The Applet Class

 An applet is a small program that is intended not to be run on its own, but

rather to be embedded inside another application.

 The Applet class must be the super class of any applet that is to be

embedded in a Web page or viewed by the Java Applet Viewer. The Applet

class provides a standard interface between applets and their environment.

Method Summary

 Void

destroy()

Called by the browser or applet viewer to inform this

applet that it is being reclaimed and that it should

destroy any resources that it has allocated.

 AccessibleContext

getAccessibleContext()

Gets the AccessibleContext associated with this

Applet.

 AppletContext

getAppletContext()

Determines this applet's context, which allows the

applet to query and affect the environment in which it

runs.

 String

getAppletInfo()
Returns information about this applet.

 AudioClip

getAudioClip(URL url)

Returns the AudioClip object specified by the URL

argument.

 AudioClip

getAudioClip(URL url,

Returns the AudioClip object specified by the URL and

name arguments.

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 6

String name)

 URL

getCodeBase()
Gets the base URL.

 URL

getDocumentBase()

 Returns an absolute URL naming the directory of the

document in which the applet is embedded.

 Image

getImage(URL url)

Returns an Image object that can then be painted on

the screen.

 Image

getImage(URL url,

String name)

 Returns an Image object that can then be painted on

the screen.

 Locale

getLocale()
Gets the Locale for the applet, if it has been set.

 String

getParameter(String name)

Returns the value of the named parameter in the

HTML tag.

 String[][]

getParameterInfo()

Returns information about the parameters than are

understood by this applet.

 Void

init()

Called by the browser or applet viewer to inform this

applet that it has been loaded into the system.

 Boolean

isActive()
Determines if this applet is active.

static AudioClip

newAudioClip(URL url)
Get an audio clip from the given URL.

 Void

play(URL url)
Plays the audio clip at the specified absolute URL.

 Void

play(URL url, String name)

Plays the audio clip given the URL and a specifier that

is relative to it.

 Void

resize(Dimension d)
Requests that this applet be resized.

 Void

resize(int width,

int height)

Requests that this applet be resized.

 Void

setStub(AppletStub stub)
Sets this applet's stub.

 Void Requests that the argument string be displayed in the

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 7

showStatus(String msg) "status window".

 void start() Called by the browser or applet viewer to inform this

applet that it should start its execution.

 void stop() Called by the browser or applet viewer to inform this

applet that it should stop its execution.

Applet Architecture

 An applet is a window-based program, its architecture different from the

console-based programs. There are two key concepts to understand the

architecture they are

1. Applets are Event driven

 An applet waits until an event occurs.

 The AWT notifies the applet about an event by calling event handler

that has been provided by the applet.The applet takes appropriate

action and then quickly return control to AWT

 All Swing components descend from the AWT Container class

2. User initiates interaction with an Applet (and not the other way

around)

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 8

An Applet Skelton

 // An Applet skeleton.

import java.awt.*;

import javax.swing.*;

/*

<applet code="AppletSkel" width=300 height=100>

</applet>

*/

public class AppletSkel extends JApplet

{

 // Called first.

 public void init()

 {

 // initialization

 }

 /* Called second, after init(). Also called whenever the applet is restarted. */

 public void start()

 {

 // start or resume execution

 }

 // Called when the applet is stopped.

 public void stop()

 {

 // suspends execution

 }

 /* Called when applet is terminated. This is the last method executed. */

 public void destroy()

 {

 // perform shutdown activities

 }

 // Called when an applet's window must be restored.

 public void paint(Graphics g)

 {

 // redisplay contents of window

 }

}

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 9

OUTPUT

Applet Initialization and Termination/Applet Life Cycle

It is important to understand the order in which the various methods shown in the

skeleton are called. When an applet begins, the AWT calls the following

initialization methods, in

this sequence:

1. init()

2. start()

3. paint()

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 10

When an applet is terminated, the following sequence of method calls takes place:

1. stop()

2. destroy()

1. init()

The init() method is the first method to be called. This is where you should

initialize variables. This method is called only once during the run time of your

applet.

2. start()

The start() method is called after init(). It is also called to restart an

applet after it has been stopped. Whereas init() is called once—the first time an

applet is loaded start() is called each time an applet’s HTML document is displayed

onscreen. So, if a user leaves a web page and comes back, the applet resumes

execution at start().

3. paint()

The paint() method is called each time your applet’s output must be

redrawn. paint() is also called when the applet begins execution. Whatever the

cause, whenever the applet must redraw its output, paint() is called.

The paint() method has one parameter of type Graphics. This parameter

will contain the graphics context, which describes the graphics environment in

which the applet is running. This context is used whenever output to the applet is

required.

4. stop()

The stop() method is called when a web browser leaves the HTML document

containing the applet when it goes to another page, for example. When stop() is

called, the applet is probably running. You should use stop() to suspend threads

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 11

that don’t need to run when the applet is not visible. You can restart them when

start() is called if the user returns to the page.

5. destroy()

The destroy() method is called when the environment determines that your

applet needs to be removed completely from memory. At this point, you should free

up any resources the applet may be using. The stop() method is always called

before destroy().

Simple Applet display methods

import java.applet.Applet;

import java.awt.Graphics;

 public class HelloWorldApplet extends Applet

 {

 public void paint(Graphics g)

 {

 g.drawString("Hello world!", 50, 25);

 }

}

 Consider the above program to output a string to an applet, use drawString()

this is a member of the Graphics class, this drawstring is called from within

either update() or paint() as shown in the above program example .The

general form of is

 drawString(String msg,int x, int y)

 The msg indicates that string to be output beginning at x,y. in java window

the upper-left corner location is 0,0.the drawstring() method will not

recognize newline character.

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 12

 To set the background color of an applet window use setBackground() and

to set the foreground color for example the color in which text is shown use

setForeground().these methods are defined by Component and they have the

following general forms

 void setBackground(Color newColor) ,

 void setForeground(Color newColor)

The newColor specifies that new color. The class Color defines the constant shown

below that can be used to specify colors.

Color.black Color.lightGray Color.yellow

Color.blue Color.magenta Color.red

Color.cyan Color.orange Color.white

Color.darkGray Color.pink Color.gray Color.green

 Example:

 setBackround(Color.cyan);

 setForeground(Color.red)

Example Program:

/* This Applet sets the foreground and background colors and out puts a string. */

import java.applet.*;

import java.awt.*;

public class Simple extends Applet

{

 String msg;

 // set the foreground and background colors.

 public void init()

 {

 setBackground(Color.cyan);

 setForeground(Color.red);

 msg = "Initialized--";

 }

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 13

 // Add to the string to be displayed.

 public void start()

 {

 msg += " Starting --";

 }

 // Display the msg in the applet window.

 public void paint(Graphics g)

 {

 msg += " Painting.";

 g.drawString(msg, 10, 30);

 }

}

OUTPUT:

 Requesting repainting;

 The repaint() method is defined by the AWT. It causes the AWT run time

system to call to your applet's update() method, which in its default

implementation, calls paint(). Again for example if a part of your applet

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 14

needs to output a string, it can store this string in a variable and then call

repaint(). Inside paint(), you can output the string using drawstring().

The repaint method has four forms.

void repaint()

void repaint(int left, int top, int width, int height)

void repaint(long maxDelay)

void repaint(long maxDelay, int x, int y, int width, int height)

void repaint()

This causes the entire window to be repainted

void repaint(int left, int top, int width, int height)

This specifies a region that will be repainted. the integers left, top, width and

height are in pixels. You save time by specifying a region to repaint instead of the

whole window.

void repaint(long maxDelay)

void repaint(long maxDelay, int x, int y, int width, int height)

Calling repaint() is essentially a request that your applet be repainted sometime

soon. However, if your system is slow or busy, update() might not be called

immediately. This gives rise to a problem of update() being called sporadically. If

your task requires consistent update time, like in animation, then use the above two

forms of repaint(). Here, the maxDelay() is the maximum number of milliseconds

that can elaspe before update() is called.

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 15

Using the Status Window

 If the user has chosen to show the Status Bar in their browser then

messages can be put there from an applet.

The showStatus() method would do it for this applet, if the applet was

running in a browser.

Example

import java.awt.*;

import java.applet.*;

import java.awt.Graphics;

public class statuswindow extends Applet

{

 public void init()

 {

 setBackground(Color.green);

 }

 public void paint(Graphics g)

 {

 g.drawString("Hi this is in the applet window",10,20);

 showStatus("shown in the status window");

 }

}

OUTPUT

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 16

The HTML APPLET Tag

 The APPLET tag is used to start an applet from both an HTML document and

from an applet viewer.

 An applet viewer will execute each APPLET tag that it finds in a separate

window, while web browsers like Netscape Navigator, Internet Explorer, and

HotJava will allow many applets on a single page.

The syntax for the standard APPLET tag is shown here. Bracketed items are

optional.

< APPLET

 [CODEBASE = codebaseURL]

 CODE = appletFile

 [ALT = alternateText]

 [NAME = appletInstanceName]

 WIDTH = pixels HEIGHT = pixels

 [ALIGN = alignment]

 [VSPACE = pixels] [HSPACE = pixels]

>

 [< PARAM NAME = AttributeName VALUE = AttributeValue>]

 [< PARAM NAME = AttributeName2 VALUE = AttributeValue>]

 . . .

 [HTML Displayed in the absence of Java]

</APPLET>

CODEBASE: CODEBASE is an optional attribute that specifies the base URL of the

applet code, which is the directory that will be searched for the applet’s

executable class file (specified by the CODE tag).

CODE: CODE is a required attribute that gives the name of the file containing your

applet’s compiled .class file. This file is relative to the code base URL of the

applet, which is the directory that the HTML file was in or the directory indicated

by CODEBASE if set.

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 17

ALT The ALT tag is an optional attribute used to specify a short text message that

should be displayed if the browser understands the APPLET tag but can’t currently

run Java applets. This is distinct from the alternate HTML you provide for

browsers that don’t support applets.

THEAVA

WIDTH AND HEIGHT: WIDTH and HEIGHT are required attributes that give

the size (in pixels) of the applet display area.

ALIGN: ALIGN is an optional attribute that specifies the alignment of the applet.

This attribute is treated the same as the HTML IMG tag with these possible

values: LEFT, RIGHT, TOP, BOTTOM, MIDDLE, BASELINE, TEXTTOP,

ABSMIDDLE, and ABSBOTTOM.

VSPACE AND HSPACE: These attributes are optional. VSPACE specifies the

space, in pixels, above and below the applet. HSPACE specifies the space, in pixels,

on each side of the applet. They’re treated the same as the IMG tag’s VSPACE and

HSPACE attributes.

PARAM NAME AND VALUE: The PARAM tag allows you to specify appletspecific

arguments in an HTML page. Applets access their attributes with the

getParameter() method.

Passing parameters to Applets;

 Parameters are passed to applets in NAME=VALUE pairs in <PARAM> tags

between the opening and closing APPLET tags. Inside the applet, you read

the values passed through the PARAM tags with the getParameter() method

of the java.applet.Applet class.

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 18

The program below demonstrates this with a generic string drawing applet. The

applet parameter "Message" is the string to be drawn.

Example:

import java.applet.*;

import java.awt.*;

public class DrawStringApplet extends Applet

{

 private String defaultMessage = "Hello!";

 public void paint(Graphics g)

 {

 String inputFromPage = this.getParameter("Message");

 if (inputFromPage == null)

 inputFromPage = defaultMessage;

 g.drawString(inputFromPage, 50, 25);

 }

}

You also need an HTML file that references your applet. The following simple HTML

file will do:

 <HTML>

<HEAD>

<TITLE> Draw String </TITLE>

</HEAD>

<BODY>

This is the applet:<P>

<APPLET code="DrawStringApplet" width="300" height="50">

<PARAM name="Message" value="welcome to java world!">

This page will be very boring if your

browser doesn't understand Java.

</APPLET>

</BODY>

</HTML>

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 19

OUTPUT

 You pass getParameter() a string that names the parameter you want. This

string should match the name of a PARAM element in the HTML page.

getParameter() returns the value of the parameter.

 All values are passed as strings. If you want to get another type like an

integer, then you'll need to pass it as a string and convert it to the type you

really want.

 The PARAM element is also straightforward. It occurs between <APPLET>

and </APPLET>. It has two attributes of its own, NAME and VALUE. NAME

identifies which PARAM this is. VALUE is the string value of the PARAM.

Both should be enclosed in double quote marks if they contain white space.

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 20

getDocumentbase() and getCodebase()

 We sometimes need to load media and Text with the help of Applets. We

have the facility to load the data from the directory which holds the HTML

file which started the applet and the directory from which the applet’s class

loaded. These directories are returned in the form of URL by

getDocumnetBase() and getCodeBase() methods.

import java.awt.*;

import java.applet.*;

import java.net.*;

public class getbase extends Applet

{

 public void paint(Graphics g)

 {

 String message;

 URL url=getCodeBase();

 message="code-base:"+url.toString();

 g.drawString(message,10,20);

 url=getDocumentBase();

 message="Document-base:"+url.toString();

 g.drawString(message,10,30);

 }

}

OUTPUT

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 21

AppletContext and showDocument()

 AppletContext is an interface which helps us to get the required information

from the environment in which the applet is running and getting executed.

 This information is derived by getAppletContext() method which is defined

by Applet. Once we get the information with the above mentioned method,

we can easily bring another document into view by calling showDocument()

method. The basic functionality of this method is that it returns no value

and never throw any exception even if it fails hence needed to be

implemented with utmost care and caution.

There are two showDocument() methods.

1. The method showDocument(URL) displays the document at the specified URL.

2. The method showDocument(URL, where) displays the specified document at the

specified location within the browser window.

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 22

import java.awt.*;

import java.applet.*;

import java.net.*;

public class contextdoc extends Applet

{

 public void start()

 {

 AppletContext ac=getAppletContext();

 URL url=getCodeBase();

 try

 {

 ac.showDocument(new URL(url+"demo.html"));

 }

 catch(MalformedURLException e)

 {

 showStatus("URL not found");

 }

 }

}

The AudioClip Interface;

 The AudioClip interface is a simple abstraction for playing a sound clip.

Multiple AudioClip items can be playing at the same time, and the resulting

sound is mixed together to produce a composite.

It contains three methods:

 Play(): Starts playing this audio clip.

 Stop(): Stops playing this audio clip.

 Loop():Starts playing this audio clip in a loop.

After you have loaded an audio clip using getAudioClip(), you can use these methods

to play it.

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 23

The AppletStub Interface

 The AppletStub interface provides a way to get information from the run-

time browser environment.

Output to the Console

 The output to an applet window must be accomplished through GUI based

methods such as drawstring() as illustrated in the above example applet

programs, it is still also possible to use console output in your applet for

debugging purpose.

 In an applet program where you call a method such as

System.out.println() the output is not sent to your applet window

instead it appears either in the console session or in the java console

that is available in some br JAVA

Object Oriented Programming Module5 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 24

Questions

1. List applet initialization and termination method? Write a java applet

that set the background color cyan and foreground color red and

output a string message “A simple Applet”?

 (Jan 2013) 4 Marks

2. What are applets? Explain the different stages in the life cycle of

applet? (Dec 2011)08Marks

3. How to embed applet inside the html page? Explain with an example

program.

4. Explain getCodeBase() and getDocumentBase() methods.

5. Write a note on:

a. showStatus().

b. AppletContext and showDocument()

c. AudioClip interface

6. Exaplin HTML Applet Tag attributes

7. With an example program explain how to pass parameters to Applet.

8. Explain Applet Skelton.

Object Oriented Programming Module-5 10CS/IS45

 MODULE 5: Applets and Swings

Syllabus:

The Applet Class: Two types of Applets; Applet basics; Applet

Architecture; An Applet skeleton; Simple Applet display methods;

Requesting repainting; Using the Status Window; The HTML APPLET

tag; Passing parameters to Applets; getDocumentbase() and

getCodebase(); ApletContext and showDocument(); The AudioClip

Interface; The AppletStub Interface; Output o the Console

Swings: The origins of Swing; Two key Swing features; Components and

Containers; The Swing Packages; A simple Swing Application; Create a

Swing Applet; Jlabel and ImageIcon; JTextField;The Swing Buttons;

JTabbedpane; JScrollPane; JList; JComboBox; JTable.

Beautiful thought: “What you do today can improve all your

tomorrows”. - Ralph Marston

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 1

Object Oriented Programming Module-5 10CS/IS45

Introduction

Swing contains a set of classes that provides more powerful and flexible GUI

components than those of AWT. Swing provides the look and feel of modern Java

GUI. Swing library is an official Java GUI tool kit released by Sun Microsystems. It

is used to create graphical user interface with Java.

Swing is a set of program component s for Java programmers that provide the

ability to create graphical user interface (GUI) components, such as buttons and

scroll bars, that are independent of the windowing system for specific operating

system . Swing components are used with the Java Foundation Classes (JFC).

The Origins of Swing

The original Java GUI subsystem was the Abstract Window Toolkit (AWT).

AWT translates it visual components into platform-specific equivalents

(peers).

Under AWT, the look and feel of a component was defined by the platform.

AWT components are referred to as heavyweight.

Swing was introduced in 1997 to fix the problems with AWT.

Swing offers following key features:

1. Platform Independent
2. Customizable
3. Extensible
4. Configurable
5. Lightweight

 Swing components are lightweight and don't rely on peers.

 Swing supports a pluggable look and feel.

 Swing is built on AWT.

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 2

Object Oriented Programming Module-5 10CS/IS45

Model-View-Controller

One component architecture is MVC - Model-View-Controller.

The model corresponds to the state information associated with

the component.

The view determines how the component is displayed on the screen.

The controller determines how the component responds to the user.

Swing uses a modified version of MVC called "Model-Delegate". In this

model the view (look) and controller (feel) are combined into a "delegate".

Because of the Model-Delegate architecture, the look and feel can be

changed without affecting how the component is used in a program.

Components and Containers

A component is an independent visual control: a button, a slider, a label, ...

A container holds a group of components.

In order to display a component, it must be placed in a container.

A container is also a component and can be contained in other containers.

Swing applications create a containment-hierarchy with a single top-level

container.

Components

Swing components are derived from the JComponent class. The only

exceptions are the four top-level containers: JFrame, JApplet,

JWindow, and JDialog.

JComponent inherits AWT classes Container and Component.

All the Swing components are represented by classes in the

javax.swing package.

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 3

Object Oriented Programming Module-5 10CS/IS45

All the component classes start with J: JLabel, JButton, JScrollbar, ...

Containers

There are two types of containers:

1) Top-level which do not inherit JComponent, and

2) Lightweight containers that do inherit JComponent.

Lightweight components are often used to organize groups of components.

Containers can contain other containers.

All the component classes start with J: JLabel, JButton, JScrollbar, ...

Top-level Container Panes

Each top-level component defines a collection of "panes". The top-level pane

is JRootPane.

JRootPane manages the other panes and can add a menu bar.

There are three panes in JRootPane: 1) the glass pane, 2) the content pane,

3) the layered pane.

The content pane is the container used for visual components. The content

pane is an instance of JPanel.

The Swing Packages:

Swing is a very large subsystem and makes use of many packages. These are

the packages used by Swing that are defined by Java SE 6.

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 4

Object Oriented Programming Module-5 10CS/IS45

The main package is javax.swing. This package must be imported into any

program that uses Swing. It contains the classes that implement the basic

Swing components, such as push buttons, labels, and check boxes.

Some of the Swing Packages are:

javax.swing javax.swing.plaf.synth
javax.swing.border javax.swing.table
javax.swing.colorchooser javax.swing.text

javax.swing.event javax.swing.text.html
javax.swing.filechooser javax.swing.text.html.parser

javax.swing.plaf javax.swing.text.rtf
javax.swing.plaf.basic javax.swing.tree

javax.swing.plaf.metal javax.swing.undo
javax.swing.plaf.multi

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 5

Object Oriented Programming Module-5 10CS/IS45

A simple Swing Application;

There are two ways to create a frame:

By creating the object of Frame class (association)

By extending Frame class (inheritance)

We can write the code of swing inside the main(), constructor or any other

method.

By creating the object of Frame class

import javax.swing.*;

public class FirstSwing

{

public static void main(String[] args)

{

JFrame f=new JFrame(“ MyApp”);

//creating instance of JFrame and title of the frame is MyApp.

JButton b=new JButton("click");

//creating instance of JButton and name of the button is click.

b.setBounds(130,100,100, 40); //x axis, y axis, width, height

f.add(b); //adding button in JFrame

f.setSize(400,500); //400 width and 500 height

f.setLayout(null); //using no layout managers

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

f.setVisible(true); //making the frame visible

}

}

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 6

Object Oriented Programming Module-5 10CS/IS45

Output:

Explanation:

 The program begins by importing javax.swing. As mentioned, this package
contains the components and models defined by Swing.

 For example, javax.swing defines classes that implement labels, buttons,

text controls, and menus. It will be included in all programs that use Swing.

Next,

 the program declares the FirstSwing class

 It begins by creating a JFrame, using this line of code:

JFrame f = new JFrame("My App");

 This creates a container called f that defines a rectangular window complete
with a title bar; close, minimize, maximize, and restore buttons; and a

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 7

Object Oriented Programming Module-5 10CS/IS45

system menu. Thus, it creates a standard, top-level window. The title of the

window is passed to the constructor.

Next, the window is sized using this statement:

f.setSize(400,500);

 The setSize() method (which is inherited by JFrame from the AWT class

Component) sets the dimensions of the window, which are specified in pixels.

in this example, the width of the window is set to 400 and the height is set

to 500.

 By default, when a top-level window is closed (such as when the user clicks

the close box), the window is removed from the screen, but the application is

not terminated.

 If want the entire application to terminate when its top-level window is

closed. There are a couple of ways to achieve this. The easiest way is to call

setDefaultCloseOperation(), as the program does:

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Swing by inheritance

 We can also inherit the JFrame class, so there is no need to

create the instance of JFrame class explicitly.

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 8

Object Oriented Programming Module-5 10CS/IS45

import javax.swing.*;

public class MySwing extends JFram //inheriting JFrame

{

JFrame f;

MySwing()

{

JButton b=new JButton("click");//create

button b.setBounds(130,100,100, 40);

add(b);//adding button on

frame setSize(400,500);

setLayout(null);

setVisible(true);

}

public static void main(String[] args)

{

new MySwing();

}

}

Jlabel, JTextField and JPassword

 JLabel is Swing’s easiest-to-use component. It creates a label and was

introduced in the preceding chapter. Here, we will look at JLabel a bit more

closely.

 JLabel can be used to display text and/or an icon. It is a passive component

in that it does not respond to user input. JLabel defines several

constructors. Here are three of them:

JLabel(Icon icon)

JLabel(String str)

JLabel(String str, Icon icon, int align)

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 9

Object Oriented Programming Module-5 10CS/IS45

 JTextField is the simplest Swing text component. It is also probably its

most widely used text component. JTextField allows you to edit one line of

text. It is derived from JTextComponent, which provides the basic

functionality common to Swing text components.

Three of JTextField’s constructors are shown here:

JTextField(int cols)

JTextField(String str, int cols)

JTextField(String str)

 Here, str is the string to be initially presented, and cols is the number of

columns in the text field. If no string is specified, the text field is initially

empty. If the number of columns is not specified, the text field is sized to

fit the specified string.

 JPasswordField is a lightweight component that allows the editing of a

single line of text where the view indicates something was typed, but does

not show the original characters.

import javax.swing.*;

public class JTextFieldPgm

{

public static void main(String[] args)
{

JFrame f=new JFrame("My App");

JLabel namelabel= new JLabel("User ID: ");

namelabel.setBounds(10, 20, 70, 10);

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 10

Object Oriented Programming Module-5 10CS/IS45

JLabel passwordLabel = new JLabel("Password: ");

passwordLabel.setBounds(10, 50, 70, 10);

JTextField userText = new JTextField();

userText.setBounds(80, 20, 100, 20);

JPasswordField passwordText = new JPasswordField();

passwordText.setBounds(80, 50, 100, 20);

f.add(namelabel);

f.add(passwordLabel);

f.add(userText);

f.add(passwordText);

f.setSize(300, 300);

f.setLayout(null);

f.setVisible(true);

}

}

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 11

Object Oriented Programming Module-5 10CS/IS45

ImageIcon with JLabel

 JLabel can be used to display text and/or an icon. It is a passive component

in that it does not respond to user input. JLabel defines several

constructors. Here are three of them:

JLabel(Icon icon)

JLabel(String str)

JLabel(String str, Icon icon, int align)

 Here, str and icon are the text and icon used for the label.

 The align argument specifies the horizontal alignment of the text and/or

icon within the dimensions of the label. It must be one of the following

values: LEFT, RIGHT, CENTER, LEADING, or TRAILING.

 These constants are defined in the Swing Constants interface, along with

several others used by the Swing classes. Notice that icons are specified by

objects of type Icon, which is an interface defined by Swing.

 The easiest way to obtain an icon is to use the ImageIcon class. ImageIcon
implements Icon and encapsulates an image. Thus, an object of type

ImageIcon can be passed as an argument to the Icon parameter of JLabel’s

constructor.

ImageIcon(String filename)

 It obtains the image in the file named filename. The icon and text associated
with the label can be obtained by the following methods:

Icon getIcon()

String getText()

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 12

Object Oriented Programming Module-5 10CS/IS45

The icon and text associated with a label can be set by these methods:

void setIcon(Icon icon)

void setText(String str)

 Here, icon and str are the icon and text, respectively.

Therefore, using setText() it is possible to change the text

inside a label during program execution.

import javax.swing.*;

public class PgmImageIcon

{

public static void main(String[] args)
{

JFrame jf=new

JFrame("Image Icon");
jf.setLayout(null);

Icon icon = new ImageIcon("a.jpg");

JLabel label1 = new JLabel("Welocme to SVIT",icon,JLabel.RIGHT);
label1.setBounds(20, 30,

267, 200); jf.add(label1);

jf.setSize(

300,400);

jf.setVisib
le(true);

}

}

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 13

Object Oriented Programming Module-5 10CS/IS45

The Swing Buttons:

There are four types of Swing Button

1. JButton

2. JRadioButton

3. JCheckBox

4. JComboBox

JButton class provides functionality of a button. A JButton is the Swing equivalent

of a Button in AWT. It is used to provide an interface equivalent of a common

button.

JButton class has three constuctors,

JButton(Icon ic)

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 14

Object Oriented Programming Module-5 10CS/IS45

JButton(String str)

JButton(String str, Icon ic)

import javax.swing.*;

class FirstSwing

{
public static void main(String args[])

{

JFrame jf=new JFrame("My App");

JButton jb=new JButton("Next");

jb.setBounds(30, 100, 100, 50);

JButton jb1=new JButton("Prev");

jb1.setBounds(30, 200, 100, 50);

jf.add(jb);

jf.add(jb1);

jf.setSize(300, 600);

jf.setLayout(null);

jf.setVisible(true);

}

}

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 15

Object Oriented Programming Module-5 10CS/IS45

A JRadioButton is the swing equivalent of a RadioButton in AWT. It is used to

represent multiple option single selection elements in a form. This is performed by

grouping the JRadio buttons using a ButtonGroup component. The ButtonGroup class

can be used to group multiple buttons so that at a time only one button can be

selected.

import javax.swing.*;

import javax.swing.*;

public class RadioButton1

{

public static void main(String args[])

{

JFrame f=new JFrame("MyAppRadio");

JRadioButton r1=new JRadioButton("Male ");

JRadioButton r2=new JRadioButton("Female");

r1.setBounds(50, 100, 70, 30);

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 16

Object Oriented Programming Module-5 10CS/IS45

r2.setBounds(50,150,70,30);

ButtonGroup bg=new

ButtonGroup(); bg.add(r1);

bg.add(r2);

f.add(r1)

;

f.add(r2)

;

f.setSize(500,500);
f.setLayout(null);
f.setVisible(true);

}

}

A JCheckBox is the Swing equivalent of the Checkbox component in AWT. This is

sometimes called a ticker box, and is used to represent multiple option selections in

a form.

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 17

Object Oriented Programming Module-5 10CS/IS45

import javax.swing.*;

class FirstSwing

{
public static void main(String args[])

{
JFrame jf=new JFrame("CheckBox");

JCheckBox jb=new JCheckBox("JAVA");

jb.setBounds(30, 100, 100, 50);

JCheckBox jb1=new JCheckBox("Python");

jb1.setBounds(30, 200, 100, 50);

jf.add(jb);

jf.add(jb1);

jf.setSize(300, 600);

jf.setLayout(null);

jf.setVisible(true);

}

}

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 18

Object Oriented Programming Module-5 10CS/IS45

JComboBox

The JComboBox class is used to create the combobox (drop-down list). At a time

only one item can be selected from the item list.

import java.awt.*;

import javax.swing.*;

public class Comboexample

{

public static void main(String[] args)

{

JFrame f=new JFrame("Combo demo");

String Branch[]={"cse","ise","ec","mech"};

JComboBox jc=new JComboBox(Branch);

jc.setBounds(50,50,80,50);

f.add(jc);

f.setSize(400, 400);

f.setLayout(null);

f.setVisible(true);

}

}

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 19

Object Oriented Programming Module-5 10CS/IS45

JTable and JScrollPane:

The JTable class is used to display the data on two dimensional tables of cells.

Commonly used Constructors of JTable class:

JTable(): creates a table with empty cells.

JTable(Object[][] rows, Object[] columns): creates a table with the

specified data.

 JScrollPane is a lightweight container that automatically handles the
scrolling of another component.

 The component being scrolled can either be an individual component, such as

a table, or a group of components contained within another lightweight

container, such as a JPanel.

 In either case, if the object being scrolled is larger than the viewable area,
horizontal and/or vertical scroll bars are automatically provided, and the

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 20

Object Oriented Programming Module-5 10CS/IS45

component can be scrolled through the pane. Because JScrollPane automates

scrolling, it usually eliminates the need to manage individual scroll bars.

 The viewable area of a scroll pane is called the viewport.

 It is a window in which the component being scrolled is displayed.

 Thus, the view port displays the visible portion of the component being
scrolled. The scroll bars scroll the component through the viewport.

 In its default behavior, a JScrollPane will dynamically add or remove a scroll

bar as needed. For example, if the component is taller than the viewport, a

vertical scroll bar is added. If the component will completely fit within the

viewport, the scroll bars are removed.

import javax.swing.*;

public class TableExample1
{

public static void main(String[] args)
{

// TODO Auto-generated method stub

JFrame f=new JFrame("Table Demo");

String data[][]={
{"100","CSE","VTU"}

,

{"101","ISE","VTU"}

,

{"102","CSE","VTU"}

,

{"103","ISE","VTU"}

,

{"105","ISE","VTU"}

,

{"106","ISE","VTU"}
};

String column[]={"courseID","Branch","University"};

JTable jt=new JTable(data,column);

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 21

Object Oriented Programming Module-5 10CS/IS45

JScrollPane js=new JScrollPane(jt);

js.setBounds(30,100,300,100);

f.add(js);

f.setSize(300,400);

f.setLayout(null);

f.setVisible(true);

}

}

JTabbedpane

 JTabbedPane encapsulates a tabbed pane. It manages a set of components
by linking them with tabs.

 Selecting a tab causes the component associated with that tab to come to
the forefront. Tabbed panes are very common in the modern GUI.

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 22

Object Oriented Programming Module-5 10CS/IS45

 Given the complex nature of a tabbed pane, they are surprisingly easy to

create and use. JTabbedPane defines three constructors. We will use its

default constructor, which creates an empty control with the tabs

positioned across the top of the pane.

 The other two constructors let you specify the location of the tabs, which
can be along any of the four sides.

 JTabbedPane uses the SingleSelectionModel model. Tabs are added by
calling addTab() method. Here is one of its forms:

void addTab(String name, Component comp)

 Here, name is the name for the tab, and comp is the component that should

be added to the tab. Often, the component added to a tab is a JPanel that

contains a group of related components. This technique allows a tab to hold a

set of components.

import javax.swing.*;

public class MainClass

{

public static void main(String[] a)

{

JFrame f = new JFrame("JTab");

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

f.add(new JTabbedPaneDemo());

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 23

Object Oriented Programming Module-5 10CS/IS45

f.setSize(500, 500);

f.setVisible(true);

}

}

class JTabbedPaneDemo extends JPanel

{

JTabbedPaneDemo()

{

makeGUI();

}

void makeGUI()

{

JTabbedPane jtp = new JTabbedPane();

jtp.addTab("Cities", new CitiesPanel());

jtp.addTab("Colors", new ColorsPanel());

jtp.addTab("Flavors", new FlavorsPanel());

add(jtp);

}

}

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 24

Object Oriented Programming Module-5 10CS/IS45

class CitiesPanel extends JPanel

{

public CitiesPanel()

{

JButton b1 = new JButton("NewYork");

add(b1);

JButton b2 = new JButton("London");

add(b2);

JButton b3 = new JButton("Hong Kong");

add(b3);

JButton b4 = new JButton("Tokyo");

add(b4);

}

}

class ColorsPanel extends JPanel

{

public ColorsPanel()

{

JCheckBox cb1 = new

JCheckBox("Red"); add(cb1);

JCheckBox cb2 = new

JCheckBox("Green"); add(cb2);

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 25

Java & J2EE UNIT-4 10CS753

JCheckBox cb3 = new

JCheckBox("Blue"); add(cb3);

}

}

class FlavorsPanel extends JPanel

{

public FlavorsPanel()

{

JComboBox jcb = new JComboBox();

jcb.addItem("Vanilla");

jcb.addItem("Chocolate");

jcb.addItem("Strawberry");

add(jcb);

}

}

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 26

Object Oriented Programming Module-5 10CS/IS45

JList:

 In Swing, the basic list class is called JList.

 It supports the selection of one or more items from a list.

 Although the list often consists of strings, it is possible to create a list of
just about any object that can be displayed.

 JList is so widely used in Java that it is highly unlikely that you have not
seen one before.

JList provides several constructors. The one used here is

JList(Object[] items)

 This creates a JList that contains the items in the array specified by items.

 JList is based on two models. The first is ListModel. This interface defines
how access to the list data is achieved.

 The second model is the ListSelectionModel interface, which defines
methods that determine what list item or items are selected.

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 27

Object Oriented Programming Module-5 10CS/IS45

import java.awt.FlowLayout;

import javax.swing.*;

public class JListPgm
{

public static void main(String[] args)

{

JFrame frame = new JFrame("JList");

String[] selections = { "green", "red", "orange", "dark blue"
}; JList list = new JList(selections);

list.setSelectedIndex(1);

frame.add(new JScrollPane(list));

frame.setSize(300, 400);

frame.setLayout(new FlowLayout());
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setVisible(true);

}

}

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 28

Questions

1. Write a swing applet program to demonstrate with two

JButtons named India and Srilanka. When either of button

pressed, it should display respective label with its icon. Refer

the image icon

“india.gif” and “srilanka.gif”. set the initial label is “press the

button” (Jan 2015)10marks

2. Explain JscrollPane with an example. (Jan 2015) 5marks

3. Explain IComboBox with an example. (Jan 2015) 5marks

4. Name & Explain the different types of Swing Buttons with

syntax.

(Jan 2014) 10 Marks

5. Write the steps to create J-table.write a program to create a

table with column heading “fname,lname,age” and insert at

least five records in the table and display. (Jan 2014) 10

Marks

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology page 29

 Java AWT Java Swing

1) AWT components are platform-dependent.
Java swing components are platform-

independent.

2) AWT components are heavyweight. Swing components are lightweight.

3)
AWT doesn't support pluggable look and

Swing supports pluggable look and feel.

feel.

 Swing provides more powerful

4) AWT provides less components than Swing. components such as tables, lists,
 scrollpanes, colorchooser, tabbedpane etc.

 AWT doesn't follows MVC(Model View

5) Controller) where model represents data, view Swing follows MVC.
 represents presentation and controller acts as

 an interface between model and view.

6. Differentiate between AWT and Swings? (Jan 2013) 05 Marks

7. Explain the MVC architecture of swings?(Jan 2013)10 Marks

8. Describe the different types of swing button? ?(Jan 2013)10

Marks

9. What is a swing ? explain the components and containers in the

swings (Dec 2011)08Marks

10. Explain the following with an example for each

i)JTextField class ii)JButton class iii)JComboBox Class

(Dec 2011)12Marks

11. Explain the following swing buttons.

A. JButton B. JToggleButton

C. ChekBoxes D. Radio Buttons

12. Explain the concept of JComboBox and JTable. (Jan-2010)

13. Write a program which displays the contents of an array in the

tabular format.

Prepared by Nagamahesh BS,Asst.Professor, CSE, Sai Vidya Institute of Technology Page 30

